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Abstract

Tiltrotors suffer from an aeroelastic instability during forward flight called whirl
flutter. Whirl flutter is caused by the whirling motion of the rotor, characterized
by highly coupled wing-rotor-pylon modes of vibration. Whirl flutter is a major
obstacle for tiltrotors in achieving high-speed flight. The conventional approach to
assure adequate whirl flutter stability margins for tiltrotors is to design the wings
with high torsional stiffness, typically using 23% thickness-to-chord ratio wings.
However, the large aerodynamic drag associated with these high thickness-to-chord
ratio wings decreases aerodynamic efficiency and increases fuel consumption. Wing-
tip devices such as wing extensions and winglets have the potential to increase the
whirl flutter characteristics and the aerodynamic efficiency of a tiltrotor. However,
wing-tip devices can add more weight to the aircraft.

In this study, multi-objective parametric and optimization methodologies for
tiltrotor aircraft with wing extensions and winglets are investigated. The objectives
are to maximize aircraft aerodynamic efficiency while minimizing weight penalty due
to extensions and winglets, subject to whirl flutter constraints. An aeroelastic model
that predicts the whirl flutter speed and a wing structural model that computes
strength and weight of a composite wing are developed. An existing aerodynamic
model (that predicts the aerodynamic efficiency) is merged with the developed
structural and aeroelastic models for the purpose of conducting parametric and
optimization studies. The variables of interest are the wing thickness and structural
properties, and extension and winglet planform variables. The Bell XV-15 tiltrotor
aircraft the chosen as the parent aircraft for this study.

Parametric studies reveal that a wing extension of span 25% of the inboard wing
increases the whirl flutter speed by 10% and also increases the aircraft aerodynamic
efficiency by 8%. Structurally tapering the wing of a tiltrotor equipped with an
extension and a winglet can increase the whirl flutter speed by 15% while reducing
the wing weight by 7.5%.

The baseline design for the optimization is the optimized wing with no extension
or winglet. The optimization studies reveal that the optimum design for a cruise
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speed of 250 knots has an increased aerodynamic efficiency of 7% over the baseline
design for only a weight penalty of 3% – thus a better transport range of 5.5%
more than the baseline. The optimal design for a cruise speed of 300 knots has
an increased aerodynamic efficiency of 5%, a weight penalty of 2.5%, and a better
transport range of 3.5% more than the baseline.
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Chapter 1 |
Introduction

Tiltrotor aircraft are a class of compound helicopters which have the hovering
capabilities of a helicopter, and the speed and range of a fixed-wing aircraft. The
aircraft is characterized by rotors mounted at the wing-tips which can be tilted by
90 degrees for conversion from hovering flight to forward flight. The Bell XV-15,
the Bell/Boeing V-22, and the Agusta Westland AW-609 (Fig. 1.1, from Refs. 1
and 2) are examples of successful manned tiltrotor aircraft. Nearly sixty years
of development and extensive research efforts have established the feasibility of
different tiltrotor configurations for meeting civil and military requirements.

Tiltrotors suffer from an aeroelastic instability called whirl flutter. Whirl flutter
is an instability caused by the whirling motion of the rotor, characterized by highly
coupled wing-rotor-pylon modes of vibration. The damping ratios of the coupled
vibration modes are dependent on forward speed. At high speeds, the damping
ratios can become negative due to destabilizing aerodynamic forces on the rotor -
leading to a catastrophe. Therefore, whirl flutter is a major obstacle for tiltrotors
in achieving high-speed flight.

One approach to assure adequate whirl flutter stability margins for tiltrotors is
to design the wings with high torsional stiffness [3]. The high torsional stiffness
requirement leads to thick wing sections – the XV-15 and the V-22 are designed with
23% thickness-to-chord ratio wings [4, 5]. The large aerodynamic drag associated
with these high thickness-to-chord ratio wings decreases the aerodynamic efficiency
and increases fuel consumption.

The aerodynamic efficiency of tiltrotors can be increased by the use of wing-tip
devices such as wing extensions and winglets [6]. Wing-tip devices also have the
potential to increase the whirl flutter characteristics of a tiltrotor [7]. However,
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(a) Bell/Boeing V-22 (b) AW 609

(c) Bell XV-15

Figure 1.1: Examples of successful manned tiltrotor aircraft (from Refs. 1 and 2).

wing-tip devices redistribute the aerodynamic loads on the wing, increase the
bending moment at the root, eventually increasing the wing weight [8]. Therefore,
the pros and cons associated with wing-tip devices motivates an optimization study
aimed at increasing the aerodynamic efficiency and reducing the wing weight, while
keeping the whirl flutter stability in check.

This chapter discusses an overview of the literature on analytical and experimen-
tal research on whirl flutter and tiltrotor wing design. The overview includes survey
on the effects of winglets on aerodynamics and aeroelastic stability of tiltrotors.
The literature on various structural and aerodynamic optimization studies are also
presented. This chapter concludes with the objectives of this dissertation.
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1.1 Initial Efforts to Understand Whirl Flutter
Whirl flutter was first identified by Taylor and Browne [9] as a possible instability
involving the yawing and pitching motion of a propeller-nacelle combination. The
nacelle pitching motions in high-speed flight produce aerodynamic yawing moments,
while the nacelle yawing motions produce aerodynamic pitching moments. These
aerodynamic moments, at certain frequencies, may result in an unstable whirling
motion opposite to the direction of propeller. Whirl flutter first occurred in 1959 –
breaking up a turboprop powered Lockheed Electra aircraft (Fig. 1.2) in mid-air.
Thorough analytical investigation and studies at NASA Langley Research Center
confirmed that whirl flutter was the reason for the catastrophe [10]. This incident
with the Electra sparked further research to understand whirl flutter.

Houbolt and Reed at the NASA Langley Research Center isolated the parameters
that were strongly linked with whirl flutter [11]. The pylon pitch and yaw stiffness,
and damping were found to be the important parameters. By independently varying
stiffness in pitch and yaw direction, the divergence and flutter boundaries were
plotted. The role of gyroscopic coupling which affects the overall stiffness of the
system was explained. The results showed that when stiffness in pitch and yaw
were unequal, then it was beneficial to have greater damping in the direction of
minimum stiffness. A few of these results were validated with wind tunnel tests on
a model consisting of a windmilling propeller attached to a rod that had pitch and
yaw degrees of freedom.

Figure 1.2: Lockheed Electra turboprop airliner (from Ref. 1).
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Figure 1.3: The Bell XV-3 (from Ref. 1).

The Bell XV-3 tiltrotor research aircraft (Fig. 1.3) was the first tiltrotor to have
experienced whirl flutter problems – resulting in a crash that injured the pilot. The
XV-3 was redesigned with a new 2-bladed stiff in-plane teetering rotor system along
with external struts to stiffen the wings. The changes helped the XV-3 perform
first full conversion from hover to airplane mode. However, the airplane mode flight
tests revealed that there were problems with transient blade flapping.

The XV-3 was then tested in the 40-by-80 foot wind tunnel at NASA Ames
Research Center to investigate the effects of the kinematic pitch-flap coupling
parameter, δ3, on transient flapping response. δ3 is the angle between the line
joining the pitch horn and the hub, and the line joining the pitch bearing and
the hub (Fig. 1.4). δ3 kinematically couples the flapping and pitching motion of
the blade. During this course of testing, a rotor/pylon instability similar to the
propeller/nacelle whirl flutter, where the rotor and pylon were precessing in the
opposite direction of the rotor rotation, was observed. This experimental data
provided researchers valuable information to gain understanding of the fundamentals
of whirl flutter, and to develop rotor/pylon stability analyses.

A four degree of freedom (DOF) model consisting of pylon pitch and yaw, and
rotor lateral and longitudinal flapping was developed by Hall [13]. Hall, with
the help of this 4DOF model, showed that the principal destabilizing forces were
the in-plane rotor forces generated due to the gyroscopic precession of the rotor.
Edenborough [14] extended the 4DOF model by including the vertical displacement
of the pylon, which was driven by the wing vertical bending displacement. The
analysis, followed by experimental results, showed that increasing the flapping
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Figure 1.4: A schematic of the kinematic pitch-flap coupling parameter, δ3 (from
Ref. 12).

restraint and δ3 was stabilizing to whirl flutter. Gaffey [15] investigated the effects
of δ3 on flapping stability and whirl flutter. The XV-3 was designed with a positive
δ3 (flap-up pitch-down coupling), to reduce the transient flapping response. Gaffey
showed that a positive δ3 ultimately lead to a flap-lag instability. Negative δ3, on
the other hand, also decreased the flapping response for teetering rotors such as
the XV-3 rotor, and eliminated the flap-lag instability.

The experience gained from the design of the XV-3 motivated NASA to award
new contracts to Bell and Boeing to develop a new tiltrotor research aircraft. The
Bell design (Bell Model 301) featured a stiff in-plane gimballed hub, while the
Boeing design (Boeing Model 222) featured a hingeless soft in-plane design. Full
scale tests were conducted on these rotors in the NASA Ames 40-by-80 foot wind
tunnel (Fig. 1.5). These tests provided substantial data on performance, loads,
and vibration as well as the aeroelastic stability. The Bell Model 301 was selected
by NASA and got subsequently designated as Bell XV-15 [16].

Johnson established a method to predict the dynamic behavior of a tiltrotor in
forward flight [17]. The results of this method were validated using the wind tunnel
tests at NASA Ames. The analysis started with a 6DOF model for a three bladed
rotor with a flap and a lag DOF each for the blades. A 3DOF model for a cantilever
wing was developed and was coupled to the 6DOF model for the rotor, resulting
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(a) Bell Model 301 rotor. (b) Boeing Model 22 rotor.

Figure 1.5: The Bell 301 and Boeing Model 301 rotors in the Ames 40-by-80-ft
wind tunnel (from Ref. 16).

in a 9DOF model. This analysis was extended by including coupled flap, lag, and
torsion degrees of freedom for the rotor. The influence of the blade rigid pitch
and elastic torsion degrees of freedom on whirl flutter was thoroughly examined by
Johnson in Ref. 18. The rigid pitch motion blade, arising due to a non-rigid control
system, when combined with the precone angle, introduced an effective pitch-flap
coupling in the model. This pitch-flap coupling was destabilizing to whirl flutter.
The analysis developed in these models formed the basis for the tiltrotor modeling
in CAMRAD [19], a comprehensive rotorcraft analysis code developed by Johnson.

1.2 Parametric Studies on Whirl Flutter
The research described in the previous section was focused on understanding the
physics behind whirl flutter. This section summarizes the various parametric studies
conducted on whirl flutter.
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1.2.1 Analytical Studies

The key design parameters that influence whirl flutter stability were identified by
Nixon [20]. It was shown that an improved stability boundary can be obtained by
setting the rotor flap and lag frequencies to an optimum value. It was also shown
that these stability improvements arise due to the coalescence of certain rotor
frequencies with wing frequencies. The parametric study on the wing frequencies
showed that the flutter speed was more dependent on the placement of the wing
frequencies relative to each other than the placement of the wing frequencies relative
to rotor frequencies. Specifically, the frequency separation between the beam and
torsion frequencies had a greater importance on the flutter stability.

Nixon [20] showed that wing sweep introduced additional coupling between
the beam and torsion modes of the wing. This coupling increased the required
frequency separation between the wing beam and torsion modes. A parametric
study of wing sweep on whirl flutter for the XV-15 is shown in Fig. 1.6, where the
non-dimensional whirl flutter speed (V ∗F = VF/VT , VF is the whirl flutter speed and
VT is the rotor blade tip speed) is plotted against wing sweep angle. The stability
boundary of the beam and the chord modes reduced with increasing the sweep
angle. The stability boundary of the torsion mode decreased for small sweep angles
and increased for larger sweep angles.

Figure 1.6: Parametric study of wing sweep for the XV-15 (from Ref. 20).
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(a) Schematic of the 18% wing torque
box.

(b) Results showing the 70/30 blend
ratio maximizing beam mode stability
(SWB) and 50/50 blend ratio maximiz-
ing chord mode stability (SWC).

Figure 1.7: Results from a composite tailoring study on the V-22 wing (from Ref. 5).

A parametric study of wing thickness and composite tailoring on the whirl-flutter
stability boundary of the V-22 tiltrotor was presented by Popelka et al. in Ref. 5.
The thin wing had a thickness of 18% while the baseline V-22 had a 23% thick
wing (Fig. 1.7a). Reducing the stiffness of the wing to 18% decreased the airframe
drag by 10%, but it also decreased the stability boundary by 38 knots due to loss
in stiffness. This stability boundary could be recovered by adding more stiffness
at the cost of increasing the wing weight. This additional weight penalty could
be avoided by using composite tailoring. The laminate blend ratio, defined as the
ratio between the number of -45 degree plies to the number of +45 degree plies,
was the key parameter that introduces bending/torsion coupling in the wing. It
was found that a blend ratio of 70/30 maximized the beam mode stability, while a
50/50 blend ratio maximized the chord mode stability (Fig. 1.7b).

The authors of Ref. 5 also investigated the effects of stringer and spar cap areas.
The loss in stiffness due to composite tailoring of the skin could be regained by
redistributing the spar cap area directly to the spars with no net increase in weight.
It was shown that the chord mode stability boundary increases by 6 knots for
redistributing a 50% spar cap area to the spar. The final results showed that the
18% thick wing, which was tailored using composites and had a redistributed spar
cap and spar area, was 1.2% heavier but had a stability boundary of 12 knots than
the baseline 23% wing.
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Parametric studies on rotor design to improve whirl flutter stability margins
were explored in Ref. 4. Although the study was related to changes in the rotor, a
thin composite wing representative of a high speed tiltrotor was also investigated.
The thin wing offered a better aerodynamic performance, but it also had a lower
stiffness, which reduced the whirl flutter stability. The wing was assumed to have
the same geometry as the XV-15, except that the thickness was reduced from 23%
to 15%. The weight distribution of the 23% and 15% wings is tabulated in Table
1.1. The torque box was assumed to be the primary load carrying structure, and
was made of T300/5208 graphite-epoxy material. The ply angles were assumed to
be combinations of 0,±45,90 degree plies. The wing structure was sized based on
strength to meet 2-g jump take off and 4-g symmetric pull-up loads. The whirl
flutter speed of the thick wing was 330 knots and weighed 946 lbs. The whirl flutter
speed of the thin wing was 275 knots, and it weighed 579 lbs. The thin wing was
redesigned by adding more plies to match the flutter speed of the thick wing, which
was 330 knots, but it weighed 1062 lbs, which is 12% heavier than the thick wing.

Table 1.1: Wing structural weight (lbs) comparison between XV-15 wing and a the
conceptual 15% t/c wing used in Ref. 4.

XV-15 wing (23% t/c) Conceptual wing (15% t/c)

Torque box 567 260
Spars 52 34

Control surfaces 97 77
Fairings 108 86

Fittings other 122 122
Total wing 946 579

1.2.2 Wind-Tunnel Studies

The analytical studies on wing thickness and composite tailoring presented by
Popelka et al. in Ref. 5 were tested experimentally in Ref. 21. A 1/5-size Froude-
scaled aeroelastic model of the V-22 (Fig. 1.8a) was tested using the Wing and
Rotor Aeroelastic Test System (WRATS) as the test bed. The first test of the
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(a) A 1/5-size Froude-scaled model of
the V-22.

(b) The 23% and the 18% wing cross
sections.

Figure 1.8: Results from a composite tailoring study by Corso et al. [21].

WRATS model established baseline aeroelastic stability boundaries for a tiltrotor
with an untailored and 23% thick wing. The next test was to measure the aeroelastic
stability of an 18% thick composite tailored wing. The 23% and the 18% wings were
designed around a central spar which acted as the primary load carrying member
(Fig. 1.8b). Additional aluminum T-section flanges provided additional chordwise
stiffness to the desired target values. The baseline wing spar had ±45 degree plies
forming a composite box beam with a constant rectangular cross section. The
tailored wing spar, on the other hand, had 90% -45 degree plies and 10% 45 degree
plies.

The bending mode stability correlation plot for the 1/5-scale tailored wing is
shown in Fig. 1.9a. An agreement between the predictions and the experiments
was achieved for the 1/5-scale tailored wing. The stability boundary of the 23%
wing (baseline) and the tailored 18% wing for different rotor speeds is shown in
Fig. 1.9b. The tailored wing had a stability boundary greater than the baseline
wing by approximately 30 knots for the all the rotor speeds considered in Ref. 21.

An experimental parametric investigation of the wind tunnel stability boundaries
of a 0.2-scaled semi-span tiltrotor was studied by Piatak et. al. [22]. The parameters
of interest were mainly rotor design variables such as control system stiffness, offset
coning hinge hub, pitch-flap coupling, and compressibility effects. A downstop spring
is used to simulate the stiffness of the pylon conversion actuator in the locked and
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(a) Bending mode stability correlation
for the 1/5-scale tailored wing .

(b) Stability boundary of the baseline
and tailored wings

Figure 1.9: Results from a composite tailoring study by Corso et al. [21].

unlocked configurations, which are referred to as the on-downstop and off-downstop
configurations, respectively. The baseline wing did not have any bending-torsion
couplings. This model was found to have a beam mode instability at 88 knots for
888 RPM, and 142 knots at 742 RPM for the off-downstop configuration. For the
on-downstop configuration, the beam mode instability occurred at 155 knots for
888 RPM and 187 knots for 777 RPM. The on-downstop configuration represented
a much stiffer pylon compared to the on-downstop configuration. This resulted
in an increased separation between the wing beam and torsion frequencies for the
on-downstop configuration, and hence the increase in the stability boundary. The
chord mode remained stable in the test regime for both 742 RPM and 888 RPM.
The effects of compressibility was investigated by using a heavy gas medium in the
wind tunnel. The airfoil lift curve slope increased with mach number, resulting in
higher aerodynamic forces, which had a destabilizing effect on whirl flutter. The
stability boundary in the heavy gas was found to be 12 knots and 25 knots lower
than the stability boundary in air, respectively, for 770 RPM and 888 RPM. The
effects of the pitch-flap coupling, via δ3, on a flexured-hub were also investigated in
Ref 22. The results confirmed the destabilizing nature of the pitch-flap coupling.
However, when compared to the rigid hub, the destabilizing nature of the pitch-flap
coupling was reduced due to the flexured-hub.

The experimental results also showed that the control system flexibility does not
have a significant impact on the wing beam mode damping, for both on-downstop
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and off-downstop configurations. These results were contrary to the previous studies
reported by Johnson in Ref. 18.

Wind-Tunnel studies of a four-bladed semi-articulated soft-in-plane rotor system
(SASIP) on WRATS were presented by Nixon et al. in Ref. 23. Several experiments
were conducted on SASIP including the effects of pitch-flap coupling, pitch-lag
coupling, and drive-train dynamics on whirl flutter. The results were compared to
the three-bladed WRATS tiltrotor model (the 1/5-size Froude-scaled aeroelastic
model of the V-22 discussed in Ref. 21). To investigate the effects of drive-
train dynamics, experiments were conducted for two operating rotor modes - the
windmilling mode where the rotor is unpowered and disconnected from the drive
train, and the powered mode where the rotor is connected to the drive train. The
results showed that the damping of the beam mode of the stiff-inplane rotor system
was significantly increased for the powered case (Fig. 1.10a). For the soft-inplane
rotor system, both the stability boundary and the damping of the beam mode
increased significantly for the powered case (Fig. 1.10b ). The results in Fig.
1.11 show that the drive train provides additional damping to the the beam-mode
stability .

Wind tunnel test results for a 0.2 scaled stiff in-plane tiltrotor model were
presented in Ref. 24. Previous analyses showed that a pitch-flap coupling of -15
degrees was a good balance of whirl flutter stability, blade flap-lag stability, and

(a) Stiff-inplane rotor system. (b) Soft-inplane rotor system

Figure 1.10: Comparison of wing beam mode damping between the windmilling
and powered conditions (from Ref. 23).
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(a) Conventional control layout would re-
sult in an interference between the pitch
horn and the adjacent blade.

(b) Components of the 4-bladed stepover
control mechanism

Figure 1.11: Schematics of the conventional and the stepover control layouts (from
Ref. 24).

rotor flapping reduction. The geometric space required to achieve this pitch-flap
coupling was easily available in a 3-bladed rotor. However, for a 4-bladed rotor, a
conventional control layout cannot provide a δ3 angle of greater than -40 degrees.
A -15-degree δ3 angle would result in an interference between the pitch horn and
the adjacent blade (Fig. 1.11a). To overcome this problem, a novel stepover control
mechanism was used to achieve the required pitch-flap coupling of -15 degrees
within the restricted space (Fig. 1.11b). We can see from Fig. 1.11b that stepover
idler, helps the upper pitch link to avoid interference with the adjacent blade. The
results of this study showed that the stepover mechanism provided more stability
to the 4-bladed rotor. The results also showed that, for the 4-bladed rotor, the
stepover configuration (δ3 = −15 degrees) was stable for speeds up to 200 knots,
while the conventions configuration (δ3 = −40 degrees) was unstable at 133 knots.

1.3 Aerodynamic and Aeroelastic Effects of Wing-Tip
Devices
Wing-tip devices such as wing extension and winglets (Fig. 1.12) are often used
in fixed-wing aircraft to reduce induced-drag and to increase fuel efficiency [26].
Modern tiltrotor wing designs use wing extensions to reduce the induced drag
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Figure 1.12: Different types of winglets on different fixed-wing aircraft a) Whitcomb
Winglet (McDonnellDouglas MD-11), b) Wingtip Fence (Airbus A380), c) Canted
Winglet (Airbus A330), d) Raked Wingtip (Boeing 777F)(from Ref. 25).

on the aircraft (Large Civil Tiltrotor 2 [27]). Cole et al. [6] showed that wing
extensions and winglets can potentially reduce the induced drag on tiltrotor wings,
as they operate at relatively high lift coefficients.

Winglets have a negative impact structurally on fixed-wing aircraft since they
increase the bending moment at the root, leading to the need of reinforcements
which also add weight. Another setback is the reduction in dynamic stability of
the wing. Experimental results showed that the addition of a winglet reduced the
wing-flutter dynamic pressure by 12 percent [28]. This reduction in flutter speed
was primarily due to the aerodynamic forces on the winglet rather than the winglet
interference effects on the wing or winglet mass. It was also noted that for some
cases, the chordwise bending mode, which was usually stable and decoupled from
bending and torsion modes, had significant bending-torsion components and was
the critical mode [29].

In another study presented in Ref. 30, flutter tests were conducted experimentally
at Mach numbers from 0.6 to 0.95, on models with a wing-tip, a tip with a winglet,
and a normal-shaped ballast to simulate the winglet mass properties. The results
showed that the addition of the winglet and tip ballast reduced the wing flutter
speed by 7% and 5%, respectively. Hence, they concluded that the winglet effect
on flutter was equally a mass effect as well as an aerodynamic effect. The results
showed that the effect of winglet stiffness on flutter speed was negligible, and the
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aerodynamic and inertial effects were major contributors to flutter. For subsonic
inflow, the winglet addition resulted in a degradation of flutter characteristics, and
the winglet aerodynamics was the major contributor, and the flutter speed reduced
by about 15 percent.

The multi-fidelity design of an aeroelastic wing-tip was discussed in Ref. 31,
where the extension was aeroelastically tailored to alleviate the extra load. The
structure of the device was made sufficiently flexible for a favorable lift distribution
that could reduce structural loads. Two designs of the wing-tip were proposed.
The wing-tip was attached to the wing by a flexible torque tube and its torsional
stiffness was tuned to provide a nose down deflection of the extension, thus shifting
the aerodynamic load towards the root in the first design. Such devices were
proposed by Miller [32] (Fig. 1.13), and its effectiveness was confirmed by numerical
simulations as well as experiments. However, for low values of this torsional stiffness,
the extension introduced unstable modes at low speed by combining with wing
bending and torsion modes in low flight. An optimization was also performed to
reduce the mass of the extension and the design variables were the bending and
torsional stiffness of the attachment, while imposing a constraint on the flutter
speed. The second design design used composite materials, where bending and
torsion modes were structurally coupled.

Figure 1.13: Load alleviation device proposed by Miller [32].

1.4 Optimization Studies on Tiltrotors
A survey of the literature reveals several optimization studies on tiltrotors aimed
at improving the aeroelastic stability and aerodynamic efficiency, while reducing
the weight of the tiltrotor.
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1.4.1 Aeroelastic Optimization

Active and passive methods of optimization to improve the whirl flutter speed
of tiltrotors were explored by Hathaway in Ref. 1. A whirl flutter model which
used a basic rigid blade model for the rotor was developed. Such basic models
can be useful in optimization studies as they were computationally cheap. Passive
optimization studies revealed that when only minor changes were allowed on the
design variables, the pitch-flap and pitch-lag coupling parameters were the key
parameters in increasing the stability of the aircraft. If large changes in the design
variables were permitted, the destabilizing effects of δ3 can be reversed by adjusting
other rotor parameters, and this gave the designer flexibility to select δ3 that
satisfies other design requirements. The wing parameters which had the greatest
influence in the optimum design were vertical bending and torsional stiffness. They
influence the nacelle plunging and pitching motions and were often the critical
modes of flutter in tiltrotors. The damping of the baseline design and the damping
of the optimized design is shown in Fig. 1.14. In the baseline design (Fig. 1.17a)
beam mode (labeled b) is stable for speeds up to 310 knots and the chord mode is
stable for speeds up to 350 knots. In the optimized design (Fig. 1.17b), both the
beam and chord modes are stable for speeds up to 450 knots. The optimization
study, thus, yielded a 130 knot increase in flutter speed.

(a) Damping of baseline design. (b) Damping of optimized design.

Figure 1.14: Optimization results presented by Hathaway [1].

The influence of rotor and wing parameters on the whirl flutter stability of a soft
in-plane tiltrotor was investigated by Paik in Ref. 33. Soft in-plane tiltrotors were
generally characterized with low damping in the wing vertical bending mode. Formal
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gradient based optimization algorithms were used to identify the combinations of
the rotor and wing parameters that would maximize the flutter speed. Results
showed that a concurrent optimization of rotor/wing design variables increased the
flutter speed from 390 to 425 knots and also improved the sub-critical beam mode
damping significantly, relative to the baseline configuration.

The investigation of the design and optimization of a thin composite wing box
structure for a tilt-rotor aircraft was presented by Clements and Rais-Rohani in
Ref. 34. The study was focused on the structural design, and hence the wing shape
and rotor pylon system were held fixed. The airfoil section was an 18% thick scaled
down version of the V-22 airfoil. The optimization problem was formulated as
a wing weight minimization problem subject to strength, stiffness and dynamic
constraints. The design variables were sizing parameters of the composite skin
plies, stringers, spars, and ribs. A global-local procedure was used in this study.
First, the global model of the wing was optimized based on strength and dynamic
constraints. The local methods involved examining the skin panels and spar webs
for local failure (buckling) using a panel failure code. If the local method predicts
failure, then the thickness of the panel was optimized locally for minimum weight
subject to the failure criterion. This optimal thickness was used in the global
method for any constraint violation. If a particular constraint was violated, the
iteration was repeated until the constraints were satisfied. The placement of the
wing natural frequencies were used as dynamic constraints. The wing beamwise
bending frequency must be less than 80% of the wing chordwise bending frequency.
The wing chordwise bending frequency must be approximately 0.85/rev. The wing
torsion frequency must be at least 1.15/rev. The lower bound on the bending
frequency was the active constraint in this study. Thus, the wing stiffness required
to avoid whirl flutter was higher than the stiffness required to avoid 2-g failure
loads. The optimization scheme converged to a minimum weight in 23 iterations
(Fig. 1.15).

1.4.2 Aerodynamic Optimization

Performance optimization of a tiltrotor with composite blades was reported by
Soykasap and Hodges in Ref. 35. Since the difference in hover and forward-flight
modes of tiltrotors caused a change in the blade centrifugal force, the extension-
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Figure 1.15: Optimization converges after 23 iterations for the two design cases
considered (from Ref. 34).

twist structural coupling could be optimized for better performance. The study
revealed that built-in twist and extension-twist coupling played a key role in the
optimum design. The results showed significant improvements in performance when
optimizing only extension-twist coupling. Previous studies (Ref. 20) showed that
the amount of twist deformation caused by the coupling could be increased by the
addition of a tip-mass, but it was detrimental to whirl flutter. The study showed
that the required twist can be optimized by choosing the appropriate lay-up without
the addition of a tip mass.

An inverse method for optimization of tiltrotor rotor blades was developed in
Ref. 36. In this method, the rotor blade stiffness distributions were treated as
design variables. The objective function used was maximizing the axial efficiency
and figure of merit in hover with equal weighting ratios. Constraints were placed
on the positive definiteness of the stiffness matrix, non-rotating natural frequencies
of the blade, and material failure. Subsequently, geometric properties of the cross-
section and ply orientation angles were determined which can produce the optimum
stiffness.

A passive optimization study of extension-twist coupling in tiltrotor rotor blades
was presented in Ref. 37. The blade control design referred to as The Sliding
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Mass Concept (SMC), was developed for performance improvement. The SMC
concept took advantage of non-structural masses in the blade, such as the leading
edge balancing mass, and allowed it to slide with respect to the blade frame, thus
having the control to change the centrifugal force, and hence the blade twist, when
required.

Performance optimization and analysis on a Large Civil Tiltrotor 2 (LCTR2)
(Fig. 1.16) was presented by Acree et al. in Ref. 38, Ref. 39, and Ref. 27. Rotor
blade twist, taper, and solidity optimizations including rotor/wing interference
calculations were presented in Ref. 38. Hover/cruise performance trade-offs for
different cruise tip speeds were also analyzed in Ref. 38. In Ref. 39, this optimization
was extended to vehicle sizing. The optimization was performed by making use
of a coupled design process of the LCTR2, where the rotor/wing interference was
included explicitly in the aeromechanics analysis. Four different designs of the
LCTR2 including practical considerations with tilting/non-tilting nacelles, with
and without extensions, were presented in Ref. 27. The study showed that an
extension improves the L/D by 6%. However, the wing weight had to be increased
by 21% to handle the extension loads.

Figure 1.16: Schematic of the LCTR2 (dimensions in feet, from Ref. 27).

1.4.3 Multidisciplinary Optimization

A multidisciplinary optimization procedure was developed in Ref. 40 to investigate
the trade-offs associated with the performance of a high speed tiltrotor aircraft.
The objectives considered were to maximize the hover figure of merit and cruise
propulsive efficiency in forward flight while minimizing wing weight. The design
variables were the rotor and wing planform variables, and the wall thicknesses
in the wing. Constraints were placed on natural frequencies on rotor and wing,
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autorotational inertia and weight of the rotor, and whirl flutter speed of the tiltrotor.
The rotor analysis was performed using CAMRAD, which calculates the loads using
the blade element approach. The wing was modeled as a cantilevered box-beam with
a rectangular cross-section with tip masses. The dynamic analysis was performed
for the wing using a finite element analysis, and the mode-shapes and frequencies
were used as inputs to CAMRAD. A lifting line theory based on quasi-steady
aerodynamic assumptions was used to calculate the loads and perturbation forces
on the wing. The optimum design had an increased hover figure of merit by about
2.3 percent, while having a reduced weight of about 10 percent compared to the
baseline configuration (Fig. 1.17).

Multidisciplinary optimization can be computationally intensive especially in
aircraft design where the design variables are usually large. Multi-level decomposi-
tion methods, where the multi-objective problem is divided into sub-problems, are
used to reduce the computational effort involved. Such multi-level decomposition
based optimization procedure was developed by Chattopadhyay and McCarthy
in Ref. 41 for aerodynamic and structural design of tiltrotors. The design space
was not continuous, and hence a simulated annealing based technique was used
for optimization. The figure of merit was increased by 6.6 percent and the cruise
propulsive efficiency was increased by 3.2 percent compared to the baseline rotor.
The optimum wall ply-orientation angles were ±30degree plies, which represent a

(a) Aerodynamic variables. (b) Weight distribution.

Figure 1.17: Reference and optimized hover efficiency (FM), cruise efficiency (η),
and weight (from Ref. 40).
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compromise between elastic twist and bending.

Figure 1.18: Optimized results showing decrease in 4/rev pitching and rolling
moments (Mx and My) [42].

Multidisciplinary optimization involves blending of analysis models from different
disciplines into one model. Design sensitivity computations are computed based on
the blended model to reduce computational time. A blended rotor aeroelastic model
obtained by combining blade structural dynamics and aerodynamics was developed
in Ref. 42 for a multidisciplinary rotor blade optimization study. Finite elements
were used for structurally modeling the blade, which included three rectilinear and
three rotational degree of freedoms at each end. These degrees of freedom affected
the relative airflow by changing the local angle of attack and relative velocity at a
given point along the span, and the air-loads were computed based on the affected
airflow. The calculated results from this model were verified by comparing with
measured data of SA349/2 helicopter. Using this method, an optimization study
was performed for minimizing vibratory hub loads and power required in hover and
forward flight. The optimized design had an improved rotor performance (2.4% less
power) as compared to the baseline rotor. Results also showed that about 65% and
52% decrease in amplitude for 4/rev vibratory pitch and roll moments, respectively,
in the optimum design (Fig. 1.18). This new model, where design sensitivity
computations were calculated using the combined structural and aerodynamic
model, saved more than 80% of the CPU time.
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(a) Damping ratios of beam, chord and
torsion modes, with and without exten-
sion.

(b) Damping ratios of beam, chord and
torsion modes, for the regular and the
optimal wing extension.

Figure 1.19: Influence of wing extension on whirl-flutter stability (from Ref. 43).

1.5 Recent Studies on Tiltrotors at Penn State
A 9DOF aeroelastic model that takes into account the coupled motions of the
rotor, pylon, wing, wing extension, and winglet to compute the whirl flutter speed
of a tiltrotor, was developed by Zhang and Smith [7, 43]. It was shown that the
wing extension can significantly improve the whirl flutter speed. A wing extension
could improve the damping of the beam and torsion modes by 70 knots and 80
knots, respectively (shown in Fig. 1.19a). Tuning the stiffness of the the wing
extension resulted in an 80 knot increase in whirl flutter speed (shown in Fig. 1.19b).
Parametric studies conducted on the winglet indicated that lowering the cant angle
of the winglet improved the the beam and torsion mode stability boundaries.

The studies on the design, fabrication, and testing of low-cost, small, semi-span,
sub-scale tiltrotor wind tunnel models were presented by Johnson in Ref. 44 and
Costa in Ref. 2. Three generations of models were developed for the wind-tunnel
tests. The first-generation model consisted of a hollow, rapid-prototyped ABS-
plastic wing (Fig. 1.20a), with a three-bladed rotor consisting of constant-chord
wooden blades . The Gen-1 model exhibited a whirl-flutter instability at tunnel
speed of 115 ft/s. The second-generation model used the same wing, but featured
composite rotor blades instead of wooden blades. The second-generation model
exhibited whirl flutter at a tunnel speed of 113 ft/s. The third-generation model
consisted of a composite wing, with an integrated wing spar that acted as a flexure,
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(a) The hollow ABS-plastic Gen-1 wing. (b) The composite Gen-3 wing.

Figure 1.20: The Gen-1 and Gen-3 wings (from Refs. 2, 44)

and featured composite rotor blades. A schematic of the third-generation wing
assembly is shown in Fig. 1.20b. The third-generation model, Gen-3a, exhibited
whirl flutter within the test facility, at tunnel speeds of 101 and 95 ft/s, for untwisted
and twisted blades, respectively.

Cole et al. [6] investigated the potential aerodynamic benefits of a adding a
wing extension and a winglet to the LCTR2. A free-wake method to model the
complex interaction between the wing and rotor inferences was implemented. The
rotor-wing interference was shown to have a beneficial effect on the aerodynamic
efficiency by lowering the induced drag. The total performance of the LCTR2
was not taken in account as the analysis methodology did not include changes in
structural and aeroelastic properties of the LCTR2. The results showed that the
winglet significantly improves span efficiency. The increase in span efficiency due
to winglets with rotor-wing interference was approximately 6% as compared to 5%
without rotor-wing interference.

Hoover [45] investigated the cruise performance optimization of the LCTR2
and the Military Heavy Tiltrotor (MHTR). The design variables were the wing
extension and winglet planform variables. The objective function was the Range
Specific Transport Efficiency (RSTE), which is the payload-fuel efficiency of the
tiltrotor. RSTE captures both the aerodynamic and structural characteristics
associated with wing extensions and winglets. The optimization results showed
that the RSTE can be improved by 5.4% for the LCTR2 and 8.0% for the MHTR.

1.6 Summary
A survey of literature on tiltrotor whirl flutter reveals considerable analytical and
experimental research over the years. The research reveals the causes for this
instability, which are the gyroscopic precession of the rotor and the destabilizing
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aerodynamic forces acting on the hub. Several tiltrotor comprehensive analysis
codes have been developed which can accurately predict the stability boundaries.

Several methodologies were investigated which affect tiltrotor whirl flutter
stability through analyses and experiments. One such methodology is the use
of wing-tip devices such as wing extensions and winglets. The wing tip devices
also improve the aerodynamic efficiency of a tiltrotor by increasing the span and
reducing the induced drag. Several research studies are available in literature which
investigate ways to improve the aerodynamic efficiency by using wing-tip devices
on aircraft. However, the combined effects of wing-tip devices on whirl flutter
and aerodynamic efficiency are not investigated yet. Wing-tip devices can also
increase the weight of the aircraft. Therefore, a combined optimization study of
the aeroelastic, structural, and aerodynamic effects of wing-tip devices would help
tiltrotors in achieving high speeds with minimum fuel consumption.

1.7 Objectives of the Research
The main objective of this research is to improve the performance of a tiltrotor
using the help of wing extensions and winglets, considering wing loading, stress,
buckling, and whirl flutter constraints. The research tasks which help in achieving
the main objective are:

• To develop an aeroelastic model to compute the whirl-flutter speed of a
tiltrotor by including the coupled vibrations of rotor, pylon, wing, and wing-
tip devices (discussed in Chapter-2).

• To conduct parametric studies aiming at improving the whirl flutter speed.
The wing and wing extension parameters are stiffness, composite coupling,
and structural taper (discussed in Chapter-3).

• To develop a wing structural model – to compute the wing stiffness, strength,
and weight for a given wing geometry, planform variables, material properties,
and torque box dimensions (discussed in Chapter-4).

• Use an aerodynamic model to conduct parametric studies on improving the
lift-to-drag ratio (discussed in Chapter-5).
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• Merge the wing aerodynamic analysis model into the developed aeroelastic and
structural models in order to perform multi-disciplinary optimization studies.
The optimization is aimed at minimizing weight penalty due to extensions and
winglets, while maximizing lift-to-drag ratio, subject to strength, buckling,
wing loading, and whirl flutter constraints (discussed in Chapter-6).
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Chapter 2 |
Aeroelastic Model and Valida-
tion

An aeroelastic model consisting of a three-bladed gimballed rotor and pylon mounted
on a cantilevered wing with extension and winglet is developed in this chapter. The
rotor blades undergo flap (β), lag (ζ), and torsion (p) motions. The pylon has three
translational degrees of freedom (xP , yP , zP ) and three rotational degrees of freedom
(αx, αy, αz), which are coupled with the wing bending and torsion motions (w, v, φ).
In other words, the wing motion affects the rotor motion, and the resulting rotor
aerodynamic and inertial forces influence the wing motion. The details of this
derivation are discussed here. This model is built based on the model presented by
Zhang and Smith in Ref. 7. However, Zhang and Smith did not include the rotor
blade torsion DOF in their analysis. The rotor blade torsion DOF is included in
the present analysis.

2.1 Rotor and Pylon Model
Consider a three-bladed rotor on a rigid pylon as illustrated in Fig. 2.1. The
pylon motion at the pivot point is assumed to have six degrees of freedom – three
translational and three rotational. The translational degrees of freedom of the
pylon are xP , yP , and zP , which are the vertical, lateral, and longitudinal motions,
respectively, and the rotational degrees of freedom of the pylon are αx, αy, and αz,
which represent the pylon yaw, pitch, and roll motions, respectively.
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Figure 2.1: Rotor and pylon model.

2.1.1 Governing Equations

The equations of motion for the rotor flap and lag motions, along with the pylon
motions included are (from Ref. 1):

I∗β0(
∗∗
β0 + ν2

β0β0) + S∗β0

∗∗
zP = γMF0

ac
(2.1)

I∗β(
∗∗
β1C + 2

∗
β1S + (ν2

β − 1)β1C) + I∗βα(− ∗∗αy + 2 ∗αx) = γMF1C

ac
(2.2)

I∗β(
∗∗
β1S − 2

∗
β1C + (ν2

β − 1)β1S) + I∗βα( ∗∗αx + 2 ∗αy) = γMF1S

ac
(2.3)

I∗ζ0(
∗∗
ζ + ν2

ζ0ζ0)− I∗ζ0α
∗∗
αz = γML0

ac
(2.4)

Iζ(
∗∗
ζ1C + 2

∗
ζ1S + (ν2

ζ − 1)ζ1C) + S∗ζ (−
∗∗
yP + h

∗∗
αx) = γML1C

ac
(2.5)

27



Iζ(
∗∗
ζ1S − 2

∗
ζ1C + (ν2

ζ − 1)ζ1S) + S∗ζ (
∗∗
xP + h

∗∗
αy) = γML1S

ac
(2.6)

where βp and βt are the precone angle and the trim flapping angle, respectively.
The superscripts ∗ and ∗∗ are the non-dimensional time derivatives. For example,

∗
β = 1

Ω
dβ

dt
;
∗∗
β = 1

Ω2
d2β

dt2
(2.7)

where Ω is the rotor angular speed, and t time.
The equations governing the pitching motion (p) of a rotor blade in the rotating

frame for the mth blade is given by ([12]):

I∗p (∗∗p + (ω2
θ + 1)p) = Mt (2.8)

where Mt = −(γM0−βp−βt)ζ. Eq. (2.8) is in the rotating frame, and is converted
into the fixed frame by using the following transformations:

p0 = 1
3

3∑
1
p(m) (2.9)

p1C = 2
3

3∑
1
p(m) cosψm (2.10)

p1S = 2
3

3∑
1
p(m) sinψm (2.11)

The above transformation yields the following equations for the blade pitching
motion in the fixed frame:

I∗p (∗∗p0 + (ω2
θ + 1)p0) + (γM0 − βp − βt)ζ0 = 0 (2.12)

I∗p ( ∗∗p1C − p1C + 2 ∗
p1S + (ω2

θ + 1)p1C) + (γM0 − βp − βt)ζ1C = 0 (2.13)

I∗p ( ∗∗p1S − p1S − 2 ∗
p1C + (ω2

θ + 1)p1S) + (γM0 − βp − βt)ζ1S = 0 (2.14)

The Equations (2.1 -2.6) and Equations (2.12 - 2.14) are the governing equations
of the coupled pylon-rotor motion. The coefficients of rotor and wing DOFs
appearing on the left-hand side of these equations are the inertial and frequency
parameters, and are non-dimensionalized by the blade rigid flap inertia, for example
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I∗β = Iβ/Ib. The inertia parameters are defined in terms of blade section mass and
modeshapes as follows:

Ib =
∫ R

0
r2mdr (2.15)

Iβ =
∫ R

0
η2
βm dr (2.16)

Iβα =
∫ R

0
ηβrm dr (2.17)

Sβ =
∫ R

0
ηβm dr (2.18)

Iζ =
∫ R

0
η2
ζm dr (2.19)

Iζα =
∫ R

0
ηζmr dr (2.20)

Sζ =
∫ R

0
ηζm dr (2.21)

ηβ = r (2.22)

ηζ = r (2.23)

where m is mass per length of the blade, and R is the length of the blade.
Certain frequencies and inertial parameters in the fixed frame are different from

the parameters in the rotating frame. This is because the boundary conditions
at the root vary for a gimballed rotor system based on the rotor mode involved.
The collective flapping mode and the cyclic lag modes the blade acts as if it were
cantilevered, while in the cyclic flap modes the blade acts as if it were hinged at
root. For a windmilling rotor, the blades freely rotate about the shaft so that

νζ0 = 0 (2.24)

I∗ζ0 = 1 (2.25)

I∗ζ0α = 1 (2.26)

The terms appearing on the right hand side of Equations (2.1 -2.6), MF0 ,

MF1C
, MF1S

, ML0 , ML1C
, ML1S

, are the aerodynamic perturbation moments and
are dependent on the rotor and pylon DOFs (derived in the next section).
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2.1.2 Rotor Aerodynamic Perturbation Model

The rotor aerodynamics are based on linear strip theory (a detailed derivation can
be found in Ref. 17). The section lift and drag, L and D, are defined as:

L = 1
2ρc(U

2)cl (2.27)

D = 1
2ρc(U

2)cd (2.28)

where cl is the coefficient of lift, cd is the coefficient of drag, and U is the velocity
of the air relative to the blade. The velocity, U , has three components (shown in
Fig. 2.2, from Ref. 20) – a tangential component (uT ), a perpendicular component
(uP ), and a radial component (uR), which are given by

uT = Ωr + δuT (2.29)

uP = V + δuP (2.30)

uR = 0 + δuR (2.31)

Figure 2.2: Velocity and force components of a blade section [20].

where δuT , δuP , and δuR are the perturbation parts of the velocity components,
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due to hub and rotor motions. The expressions for the perturbations are given by

δuT = r( ∗αz −
∗
ζ)− h(

∗
αy) sinψm + ∗

αx cosψm + (2.32)

V (αy sinψm + αx cosψm) + ∗
yP cosψm −

∗
xP sinψm

δup = r(
∗
β − ∗

αy cosψm + ∗
αx sinψm) + ∗

zP (2.33)

δuR = h(− ∗αy cosψm −
∗
αx sinψm)− ∗yP sinψm −

∗
xP cosψm (2.34)

The tangential and perpendicular velocity perturbation components are written as

δuT = rδuTA
+ δuTB

(2.35)

δuP = rδuPB
+ δuPA

(2.36)

such that the terms δuTA
, δuTB

, δuPA
, and δuPB

do not depend on the radial location.
The perturbations of the lift and drag coefficients are

δcl = clαδα + clMδM (2.37)

δcd = cdαδα + cdMδM (2.38)

where following expressions are used for unstalled lift and drag perturbation pa-
rameters:

clα
2a = 1

2(1−M2)−1/2 (2.39)

cl
2a = α

2 (1−M2)−1/2 (2.40)

cl
2a + MclM

2a = α

2 (1−M2)−3/2 (2.41)

cd = 0.0065− 0.0216α + 0.4α2 + ∆cd (2.42)

∆cd = 0.43(M + |α|/0.26− 0.9)for|α| > αd (2.43)

∆cd = 0|α| < αd (2.44)

31



For stalled flow, the following expressions are used

cl = sgn(α) (2.45)

clα = 0 (2.46)

cd = 2 sin2 α (2.47)

cdα = 4 sinα cosα (2.48)

cdM = 0 (2.49)

The other aerodynamic parameter perturbations in terms of the above perturbations
are given by

δθ = θ −KPβ (2.50)

δU = uT δuT − uP δuP
U

(2.51)

δM = MδU (2.52)

δα = δθ − uT δuP − uP δuT
U2 (2.53)

Resolving the section lift and drag forces into the hub-plane coordinates ({x, y, r})
yields the following equations:

Fz
ac

= U(uT
cl

2a − uP
cd
2a) (2.54)

Fx
ac

= U(uP
cl

2a + uT
cd
2a) (2.55)

Fr
ac

= UuR
cd

2a − β
Fz
2a (2.56)

The coefficients appearing on the right-hand side of Equations (2.1-2.6),
({MF0 , MF1C

, MF1S
, ML0 , ML1C

, ML1S
}) are the aerodynamic perturbation mo-

ments. The expressions for these terms are:

MF0 = 1
3

3∑
1

∫ R

0
Fzr dr
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= M0 +M∗
ζ
( ∗αz −

∗
ζ0) +M∗

β

∗
β0 +

Mλ
∗
zP +Mθ(θ0 −KPβ0) (2.57)

MF1C
= 2

3

3∑
1

∫ R

0
Fzr cosψm dr

= Mµ(−h ∗αx + V αx + ∗
yP ) +

M∗
ζ
(
∗
ζ1C −

∗
ζ1S) +M∗

β
(
∗
β1C + β1S −

∗
αy) +

Mθ(θ1C −KPβ1C) (2.58)

MF1S
= 2

3

3∑
1

∫ R

0
Fzr sinψm dr

= Mµ(−h ∗αy + V αy −
∗
xP ) +

M∗
ζ
(
∗
ζ1C −

∗
ζ1S) +M∗

β
(
∗
β1S − β1C + ∗

αx) +

Mθ(θ1S −KPβ1S) (2.59)

ML0 = 1
3

3∑
1

∫ R

0
Fxr dr

= Q0 +Q∗
ζ
( ∗αz −

∗
ζ0) +Q∗

β

∗
β0 +

Qλ
∗
zP +Qθ(θ0 −KPβ0) (2.60)

ML1C
= 2

3

3∑
1

∫ R

0
Fxr cosψm dr

= Qµ(−h ∗αx + V αx + ∗
yP ) +

Q∗
ζ
(
∗
ζ1C −

∗
ζ1S) +Q∗

β
(
∗
β1C + β1S −

∗
αy) +

Qθ(θ1C −KPβ1C) (2.61)
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ML1S
= 2

3

3∑
1

∫ R

0
Fxr sinψm dr

= Qµ(−h ∗αy + V αy −
∗
xP ) +

Q∗
ζ
(
∗
ζ1C −

∗
ζ1S) +Q∗

β
(
∗
β1S − β1C + ∗

αx) +

Qθ(θ1S −KPβ1S) (2.62)

The hub forces are also dependent on the rotor perturbation terms. The expressions
for the hub forces in the non-dimensional form is given by:

CT
σα

= 1
3
∑
m

∫ 1

0

Fz
ac
dr

= T0 + T∗
ζ
( ∗αz −

∗
ζ0) + T∗

β

∗
β0 +

Tλ
∗
zP + Tθ(θ0 −KPβ0) (2.63)

2CH
σα

= 2
3
∑
m

∫ 1

0
(Fr
ac

cosψm + Fx
ac

sinψm)dr

= (Hµ +Rµ)(−h ∗αy + V αy −
∗
xP ) +

H∗
ζ
(
∗
ζ1C −

∗
ζ1S) +H∗

β
(
∗
β1S − β1C + ∗

αx) +

Hθ(θ1S −KPβ1S) (2.64)

2CY
σα

= 2
3
∑
m

∫ 1

0
(Fr
ac

sinψm −
Fx
ac

cosψm)dr

= −((Hµ +Rµ))(−h ∗αx + V αx + ∗
yP )−

H∗
ζ
(
∗
ζ1C −

∗
ζ1S)−H∗

β
(
∗
β1S + β1C + ∗

αy) +

Hθ(θ1C −KPβ1C) (2.65)
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CQ
σα

= 1
3
∑
m

∫ 1

0

Fx
ac
dr

= Q0 +Q∗
ζ
( ∗αz −

∗
ζ0) +Q∗

β

∗
β0 +

Qλ
∗
zP +Qθ(θ0 −KPβ0) (2.66)

Inertial contributions to the hub forces must be added to the above aerodynamic
contributions:

(CT
σα

)int = −
S∗β0

γ

∗∗
β0 −

M∗
b

γ

∗∗
zP (2.67)

(2CH
σα

)int = −
S∗ζ
γ

∗∗
ζ1S −

2M∗
b

γ
( ∗∗xP + h

∗∗
αy) (2.68)

(2CY
σα

)int = −
S∗ζ
γ

∗∗
ζ1C −

2M∗
b

γ
( ∗∗yP + h

∗∗
αx) (2.69)

(CQ
σα

)int = −
I∗ζ0α

γ

∗∗
ζ0 −

I∗0
γ

∗∗
αz (2.70)

The the hub moment coefficients, CMx and CMy can be expressed as

2CMx

σα
= −

I∗β
γ

(ν2
β − 1)β1S (2.71)

2CMy

σα
= −

I∗β
γ

(ν2
β − 1)β1C (2.72)

The aerodynamic coefficientsM,H, T,Q, and R represent flap moment, in-plane
drag force, thrust, torque, and blade radial force, respectively. The terms such as Hµ

represent the perturbation coefficients of the forces and moments. The subscripts
of these perturbation coefficients designate the source of the perturbation: 0 is the
trim value, µ is hub inplane velocity,

∗
ζ is blade rotational velocity,

∗
β is flap velocity,

λ is hub inflow velocity, and θ is blade pitch. The expressions for the aerodynamic
perturbation coefficients are listed below. The derivation of these expressions can
be found in Ref. 17.

T0 =
∫ 1

0
U

[
rcl
2a −

V cd
2a

]
dr (2.73)
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Tθ =
∫ 1

0
U

[
rclα
2a −

V cdα
2a

]
dr (2.74)

Tµ =
∫ 1

0

[
cl
2aU + ( cl2a + MclM

2a )r
2

U
− ( cd2a + McdM

2α )rV
U

+

(rclα2a −
V cdα
2a )V

U

]
dr (2.75)

T∗
ζ

=
∫ 1

0
r

[
cl
2aU + ( cl2a + MclM

2a )r
2

U
− ( cd2a + McdM

2α )rV
U

+

(rclα2a −
V cdα
2a )V

U

]
dr (2.76)

T∗
β

=
∫ 1

0
r

[
− cd2aU + ( cl2a + MclM

2a )rV
U
− ( cd2a + McdM

2a )V
2

U
−

(rclα2a −
V cdα
2a ) r

U

]
dr (2.77)

Tλ =
∫ 1

0

[
− cd2aU + ( cl2a + MclM

2a )rV
U
− ( cd2a + McdM

2a )V
2

U
−

(rclα2a −
V cdα
2a ) r

U

]
dr (2.78)

M0 =
∫ 1

0
rU

[
rcl
2a −

V cd
2a

]
dr (2.79)

Mθ =
∫ 1

0
rU

[
rclα
2a −

V cdα
2a

]
dr (2.80)

Mµ =
∫ 1

0
r

[
cl
2aU + ( cl2a + MclM

2a )r
2

U
− ( cd2a + McdM

2α )rV
U

+

36



(rclα2a −
V cdα
2a )V

U

]
dr (2.81)

M∗
ζ

=
∫ 1

0
r2
[
cl
2aU + ( cl2a + MclM

2a )r
2

U
− ( cd2a + McdM

2α )rV
U

+

(rclα2a −
V cdα
2a )V

U

]
dr (2.82)

M∗
β

=
∫ 1

0
r2
[
− cd2aU + ( cl2a + MclM

2a )rV
U
− ( cd2a + McdM

2a )V
2

U
−

(rclα2a −
V cdα
2a ) r

U

]
dr (2.83)

Mλ =
∫ 1

0
r

[
− cd2aU + ( cl2a + MclM

2a )rV
U
− ( cd2a + McdM

2a )V
2

U
−

(rclα2a −
V cdα
2a ) r

U

]
dr (2.84)

H0 ==
∫ 1

0
U

[
V cl
2a + rcd

2a

]
dr (2.85)

Hθ =
∫ 1

0
U

[
V clα
2a + rcdα

2a

]
dr (2.86)

Hµ =
∫ 1

0

[
cd
2aU + ( cl2a + MclM

2a )rV
U

+ ( cd2a + McdM
2a )r

2

U
+

(V clα2a + V cdα
2a ) r

U

]
dr (2.87)

H∗
ζ

=
∫ 1

0
r

[
cd
2aU + ( cl2a + MclM

2a )rV
U

+ ( cd2a + McdM
2a )r

2

U
+
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(V clα2a + V cdα
2a ) r

U

]
dr (2.88)

H∗
β

=
∫ 1

0
r

[
cl
2aU + ( cl2a + MclM

2a )V
2

U
+ ( cd2a + McdM

2a )rV
U
−

(V clα2a + V cdα
2a ) r

U

]
dr (2.89)

Hλ =
∫ 1

0

[
cl
2aU + ( cl2a + MclM

2a )V
2

U
+ ( cd2a + McdM

2a )rV
U
−

(V clα2a + V cdα
2a ) r

U

]
dr (2.90)

Q0 ==
∫ 1

0
rU

[
V cl
2a + rcd

2a

]
dr (2.91)

Qθ =
∫ 1

0
rU

[
V clα
2a + rcdα

2a

]
dr (2.92)

Qµ =
∫ 1

0
r

[
cd
2aU + ( cl2a + MclM

2a )rV
U

+ ( cd2a + McdM
2a )r

2

U
+

(V clα2a + V cdα
2a ) r

U

]
dr (2.93)

Q∗
ζ

=
∫ 1

0
r2
[
cd
2aU + ( cl2a + MclM

2a )rV
U

+ ( cd2a + McdM
2a )r

2

U
+

(V clα2a + V cdα
2a ) r

U

]
dr (2.94)

Q∗
β

=
∫ 1

0
r2
[
cl
2aU + ( cl2a + MclM

2a )V
2

U
+ ( cd2a + McdM

2a )rV
U
−
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(V clα2a + V cdα
2a ) r

U

]
dr (2.95)

Qλ =
∫ 1

0
r

[
cl
2aU + ( cl2a + MclM

2a )V
2

U
+ ( cd2a + McdM

2a )rV
U
−

(V clα2a + V cdα
2a ) r

U

]
dr (2.96)

The above force and moment derivatives are computed numerically using the Gauss-
Legendre quadrature. The rotor is trimmed by adjusting the collective pitch (θ0)
such that the rotor torque (Q0 = 0).

2.2 Wing and Extension Model
The wing structural model is based on a finite element formulation, where the
wing is discretized into several elements, and Hamilton’s principle is applied for
each element on the total energy of the system. The wing is assumed to undergo a
vertical bending motion (w(x)), a chordwise bending motion (v(x)), and torsional
motion (φ(x)). For a single element, v(x), w(x), and φ(x) can be written as a linear
combinations of shape functions such that

û = [w v φ]T = [H][q] (2.97)

where
[q]T = [w1 v1 φ1 v

′
1 w

′
1 w2 v2 φ2 v

′
2 w

′
2] (2.98)

are the discretized DOFs, and [H] is given by:

[H] =


H1
b 0 0 0 H2

b H3
b 0 0 0 H4

b

0 H1
b 0 H2

b 0 0 H3
b 0 H4

b 0
0 0 H1

θ 0 0 0 0 H2
θ 0 0

 (2.99)

where H i
b, i = 1, 2, 3, 4 are the standard cubic Hermitian shape functions, and

H i
θ, i = 1, 2 are the standard linear Hermitian shape functions. A schematic of the

finite element discretization of the wing is shown in Fig. 2.3.
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Figure 2.3: A schematic of the finite element model of the wing [7].

The strain energy V for a single element of the wing is given by:

V = 1
2

∫ L

0
[w′′ v′′ φ′][Ks][w′′ v′′ φ′]Tdx (2.100)

where

[Ks] =


EIb 0 Kbt

0 EIc Kct

Kbt Kct GJ

 (2.101)

where EIb is the beamwise bending stiffness, EIc is the chordwise bending stiffness,
GJ is the torsional stiffness,Kbt is the beamwise bending-torsion coupling parameter,
Kct is the chordwise bending-torsion coupling parameter, and L is the length of
the element. The notations v′ and v′′ represent dv/dx and d2v/dx2, respectively.
The strain energy can be written in terms of the discrete DOFs as

V = 1
2[q]T [KS][q] (2.102)

where
[KS] =

∫ L

0
[H ′′]T [Ks][H ′′] dx (2.103)

The kinetic energy of the wing element can be written as

T =
∫ L

0

1
2ρ(u̇x2 + u̇y

2 + u̇z
2) dV = q̇T [MS]q̇ (2.104)
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where
u̇x = 0 (2.105)

u̇y = v̇ (2.106)

u̇z = ẇ + yφ̇ (2.107)

[MS] =
∫ L

0
[H]T [Ms][H] dx

=


m 0 Sα

0 m 0
Sα 0 Iθ

 =
∫ ∫

A
ρ


1 0 y

0 1 0
y 0 y2

 dA (2.108)

The notation u̇ represents du/dt. The expressions for kinetic and strain energies
computed here will be used in the coming sections when applying the Hamilton’s
principle.

The wing and extension are modeled with sweep Λ. The extension is modeled
with an offset dex (see Fig. 2.4). The quasi-steady lift approximation can now be
written as

α = α0 + φ cos Λ− ẇ

U
+ φ̇

U
(dex + x sin Λ− e)− w′ sin Λ (2.109)

where w,w′, and φ are the continuous degrees of freedom of the wing. These degrees
of freedom can be written as a linear combination of the discretized DOFs as:

[ûA] = [HA][q] (2.110)

where
[ûA] = [w v φ v′ w′ ]T (2.111)

[HA] =



H1
b 0 0 0 H2

b H3
b 0 0 0 H4

b

0 H1
b 0 H2

b 0 0 H3
b 0 H4

b 0
0 0 H1

θ 0 0 0 0 H2
θ 0 0

0 (H1
b )′ 0 (H2

b )′ 0 0 (H3
b )′ 0 (H4

b )′ 0
(H1

b )′ 0 0 0 (H2
b )′ (H3

b )′ 0 0 0 (H4
b )′


(2.112)

q = [w1 v1 φ1 v
′
1 w

′
1 w2 v2 φ2 v

′
2 w

′
2]T (2.113)

41



Figure 2.4: A schematic of a swept extension with an offset.

The aerodynamic forces and moments are

L = qcclαα (2.114)

M = Le1 (2.115)

where e1 = −(dex + x sin Λ − e) In matrix form, the forces and moments can be
written as

[L] =



Lw

Lv

Mφ

Mx

My


= [A4]



w

v

φ

v′

w′


+ [A5]



ẇ

v̇

φ̇

v̇′

ẇ′


(2.116)

where [A4] and [A5] are given by

[A4] =



0 0 qcclα cos Λ 0 qcclα sin Λ
0 0 0 0 0
0 0 e1qcclα cos Λ 0 e1qcclα sin Λ
0 0 0 0 0
0 0 0 0 0


(2.117)

42



[A5] =



−qcclα/U 0 −qcclα/Ue1 0 0
0 0 0 0 0

−qcclα/Ue1 0 −qcclα/Ue2
1 0 0

0 0 0 0 0
0 0 0 0 0


(2.118)

The work done by the conservative forces and moments can now be expressed
as:

W = [q]T
∫ 1

0
[HA]T [A4][HA] dx[q] (2.119)

The non-conservative forces (due to aerodynamic damping, FD) can be written
as

FD =
∫ 1

0
[HA]T [A5][HA] dx[q̇] (2.120)

Applying the Euler-Lagrange equations for strain energy, V (Eq. 2.102), the
kinetic energy T (Eq. 2.104), the external work done W (Eq. 2.119), and the
non-conservative force FD (Eq. 2.120), we get

∂Lg

∂q
− d

dt

∂Lg

∂q̇
= FD (2.121)

where Lg is the lagrangian of the wing element, given by

Lg = T − V +W (2.122)

Applying the Euler-Lagrange equations for the strain and kinetic energies of
the wing yields the following set of equations for each element:

MW ẌW + CW ẌW + KW ẌW = FW (2.123)

where XW = [w1 v1 φ1 v
′
1 w

′
1 w2 v2 φ2 v

′
2 w

′
2] is the vector containing the DOFs

corresponding to the wing, and MW , CW , and KW are the mass, damping, and
stiffness matrices of the wing, respectively. The detailed derivation of the wing
modeling, and the expressions for MW , CW , KW can be found in the Appendix-A.
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2.3 Winglet Model
The winglet is assumed to be rigid, and is connected to the wing extension tip.
The winglet is swept by an angle θs and canted by an angle θc as shown in Fig. 2.5
(from Ref. 7 and Ref. 45). The detailed derivation of the winglet model can be
found in Ref. 7.

(a) Winglet sweep. (b) Winglet cant angle.

Figure 2.5: A schematic showing winglet sweep and cant angles (from Ref. 7).

The wing motion causes a perturbation in the angle of attack as seen by the
winglet. The effective angle of attack can be written as

αeff = φwl cos θs − ẇwl/V (2.124)

where ẇwl is the velocity of the wind as seen by the winglet, and φwl is the twist
additional wing twist as seen by the winglet. The expressions for ẇwl and φwl

ẇwl = ẇ2 cos θc + ẇ′2x cos θs − (φ̇2 cos θc + v̇2 sin θc)x sin θs (2.125)

φwl = φ2 cos θc + v′2 sin θc (2.126)

and the subscript 2 indicated the DOF of the node at which the winglet is added
to the wing extension.

The sectional lift generated by the winglet due the effective angle of attack is
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given by
Lwl = 1

2ρV
2cclααeff (2.127)

The generalized forces due this lift are given by

Lw =
∫ L

0
Lwl cos θcx dz (2.128)

Lv = 0 (2.129)

Mφ = −
∫ L

0
Lwl cos θc(d+ x sin θs) dz (2.130)

Mx = −
∫ L

0
Lwl sin θc(d+ x sin θs) dz (2.131)

My = −
∫ L

0
Lwl cos θcx dz (2.132)

These generalized forces are computed numerically and must be added to the
finite element model of the wing at the nodes where the wing extension is attached
to the winglet.

2.4 Coupling of the Wing and Rotor Systems
The wing is coupled to the rotor through the degrees of freedom at the wing-tip.
There are two ways in which the coupling occurs:

1. The rotor system DOFs at the pylon pivot point are kinematically related to
the degrees of wing DOFs.

2. The rotor hub forces, which are functions of the rotor perturbation parameters,
force the motion of the wing.

The relationship between the pylon DOFs at the pivot point and the wing DOFs
are

xP = w2 (2.133)

yP = v2 sin Λ (2.134)

zP = v2 cos Λ (2.135)

αx = v′2 (2.136)
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αy = φ2 cos Λ− w′2 sin Λ (2.137)

αz = −φ2 sin Λ− w′2 cos Λ (2.138)

The subscript 2 indicated the DOF with the node at the wing-tip of the the beam
element. These relationships are substituted in the rotor system equations and the
net hub force equations. The expressions for the generalized rotor hub forces are

FR = (3γIbΩ2

σα
)



CH

CT cos Λ + CY sin Λ
(CMy + h̄CH) cos Λ + CQ sin Λ

CMx − h̄CY
−CQ cos Λ + CMy + h̄CH) sin Λ


(2.139)

The generalized rotor hub forces must be added to the finite element model of the
wing at the point where the pylon is attached to the rotor. These generalized rotor
hub forces are aerodynamic forces acting at the hub in the fixed frame, and are not
the internal nodal forces the aerodynamic forces acting at the rotor hub.

After assembly, the equations for the rotor/wing coupling system can be written
in the following matrix form:

MRẌR + ΩCRẌR + Ω2KRXW = FR (2.140)

where XW is the vector containing the DOFs of the rotor and pylon, and

XR = [w2 v2 φ2 v
′
2 w

′
2 β0 β1C β1S ζ0 ζ1C ζ1S p0 p1C p1S]T (2.141)

The expressions for MR, CR, and KR can be found in the Appendix-A.
The independent DOFs obtained after coupling the wing and rotor DOFs are:

X = [w1 v1 φ1 v
′
1 w

′
1 w2 v2 φ2 v

′
2 w

′
2

w3 v3 φ3 v
′
3 w

′
3 w4 v4 φ4 v

′
4 w

′
4

w5 v5 φ5 v
′
5 w

′
5 w6v6 φ6 v

′
6 w

′
6

β0 β1C β1S ζ0 ζ1C ζ1S p0 p1C p1S] (2.142)
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where DOFS such as w1 and w2 correspond to node 1 and node 2, respectively.
Node 1, node 2, node 3 correspond to the wing, nodes 3 and 4 correspond to the
nacelle, nodes 4 and 5 correspond to the extension, and nodes 5 and 6 correspond
to the winglet. The other DOFs such as β0, β1C , etc., correspond to the rotor.

2.5 Eigenvalues
After assembling the equations using standard finite-element techniques, the equa-
tions of motion can be written as

M
..

X + C
.

X +KX = 0 (2.143)

where X is vector containing all the degrees of freedom, M,C, and K are the
mass, damping and stiffness matrices, respectively. The frequency and damping
characteristics of the system can be calculated from the eigenvalues (λi) of Eq.
2.143. The frequency (ωi) and damping (ζi) are given by

ωi = Im(λi) (2.144)

ζi = Re(λi)
|λi|

(2.145)

A particular mode becomes unstable becomes unstable when the damping of
that particular mode goes to zero. The lowest forward speed at which the damping
of any of the modes is zero, is defined as the whirl flutter speed.

2.6 Validation
The present analysis is validated with experimental data from two semi-span
tiltrotor tests: (a) semi-span tests for the XV-15 in the NASA Ames 40 x 80 ft
wind tunnel (Ref. 17), (b) semi-span tests on an in-house small scale wind tunnel
model (Ref. 2).
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2.6.1 XV-15

Validation results are presented in this section for a full-scale Bell XV-15 rotor,
tested in a semi-span configuration in the NASA Ames 40 x 80 ft wind tunnel. The
important model parameters of the Bell XV-15 rotor and wing are tabulated in
Tables 2.1 and 2.2. The damping of the wing beamwise bending mode as a function
of airspeed is shown in Fig. 2.6 for an elastic blade analysis by Johnson [18], a rigid
blade analysis by Hathaway [1], the present analysis, and test data (from Ref. 17).
All three analyses predict the stability boundary at around 330 knots. Figures 2.7
and 2.8 show the same comparisons for wing chordwise bending and wing torsion
modes, respectively. Only two data points are available for the chordwise bending,
and the data points for the torsion have significant scatter. From Figures 2.6,
2.7, and 2.8 we conclude that the present analysis provides stability predictions
comparable to the test data and is in close agreement with the analysis presented
by Johnson and Hathaway.
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Table 2.1: XV-15 Rotor properties (from Ref. 17).

Number of blades, N 3
Radius, R 12.5 ft

Lock number, γ 3.83
Solidity, σ 0.089

Lift curve slope, clα 5.7
Rotor speed, Ω 458 RPM

Pitch-flap coupling, KP -0.268

Blade inertias

Ib 105 slug − ft2

I∗β 1.0
I∗β0 0.779
I∗ζ 0.670
I∗ζ0 1
I∗0 1.0
I∗βα 1.0
I∗ζ0α 1
S∗ζ 1.035
S∗β0 1.212
M∗

b 6.160

Blade frequencies

νβ

[
1 + 0.0355

(
600
ΩR

)]1/2

νβ0 1.85
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Table 2.2: XV-15 wing properties (from Ref. 20).

Element Number #1 (root) #2 #3 #4 (pylon)
Element length, L(ft) 4.55 4.55 4.55 3

Iθ (slug − ft2) 1.0 1.0 1.0 63.3cos2 Λ
Sα (slug − ft2) 0.05 0.05 0.05 9.09cos Λ
m (slug/ft) 1.0 1.0 1.0 14.54
EIb (lb− ft2) 3.13e7 3.13e7 3.13e7 3.13e7
EIc (lb− ft2) 8.48e7 8.48e7 8.48e7 8.48e7
GJ (slug − ft2) 1.62e7 1.62e7 1.62e7 1.62e7
Kbt (slug − ft2) 0 0 0 0
Kct (slug − ft2) 0 0 0 0

V, knots
0 50 100 150 200 250 300 350 400

D
am

pi
ng

 r
at

io
, %

0

1

2

3

4

5

6

7

8

Test data
Hathaway
Johnson
Present

Figure 2.6: Semi-span XV-15 – Damping of wing beamwise bending mode vs
airspeed.
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Figure 2.7: Semi-span XV-15 – Damping of wing chordwise bending mode vs
airspeed.
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Figure 2.8: Semi-span XV-15 – Damping of wing torsion mode vs airspeed.
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2.6.2 In-House Small-Scale Wind Tunnel Model

A semi-span wind tunnel tiltrotor whirl flutter model is designed and tested in the
Penn State Hammond Low-Speed Wind Tunnel (Ref. 2), for validating the present
analysis. The properties of the wing and rotor for two particular configurations
titled Gen-3a and Gen-3b are tabulated in Tables 2.3 and 2.4. The damping of the
wing modes for Gen-3a and Gen-3b is shown in Fig. 2.9. We can see from Fig. 2.9
that the predictions match well with the experiments.
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Table 2.3: Rotor properties of Gen-3a and Gen-3b.

Item Gen-3a Gen-3b

Number of blades, N 3 3
Radius, R 8.05 in 8.55 in

Lock number, γ 3.22 3.70
Solidity, σ 0.102 0.096

Lift curve slope, clα 5.7 5.7
Rotor speed, Ω 2000 RPM 2000 RPM

Pitch-flap coupling, KP -1.09 -1.09

Blade inertias

Ib 8.9E-05 slug − ft2 22.3E-05 slug − ft2

I∗β 1.0 1.0
I∗β0 0.779 1.0
I∗ζ 0.670 1.0
I∗ζ0 1 1.0
I∗0 1.0 1.0
I∗βα 1.0 1.0
I∗ζ0α 1 1.0
S∗ζ 1.035 1.0
S∗β0 1.212 1.0
M∗

b 6.160 6.160

Blade frequencies

νβ

[
1 + 0.0355

(
600
ΩR

)]1/2 [
1 + 0.0355

(
600
ΩR

)]1/2

νβ0 3.60 3.72
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Table 2.4: Wing properties of Gen-3a and Gen-3b.

Semispan (in) 14.35 14.35
ωb (Hz) 5.316 5.316
ωc (Hz) 7.526 7.526
ωt (Hz) 26.49 26.49

2.7 Summary
The equations governing the motion of a rotor/pylon system, are listed in (2.1
-2.6; 2.12 - 2.14). The coefficients of the DOFs appearing on the left-hand side of
these equations are inertial properties of the rotor, and the terms appearing on
the right-hand side of these equations are the aerodynamic forcing terms, which
are dependent on the DOFs. A perturbational aerodynamic analysis is used to
compute these forcing terms.

The wing is modeled using the finite element analysis. Cubic hermite polynomials
are used for modeling the beamwise bending and chordwise bending, and the linear
hermite polynomials are used for modeling torsion. The rotor hub forces and the
aerodynamic forces by the winglet must be applied as generalized forcing terms in
the finite element analysis.

The equations of motion are then assembled, resulting in a set of linear second-
order set of differential equations. An eigenvalue analysis is performed on these
equations to get the frequencies and damping of various modes.

The aeroelastic model is validated with experimental data from (a) semi-span
tests for the XV-15 in the NASA Ames 40 x 80 ft wind tunnel, (b) semi-span tests
on an in-house small scale wind tunnel model. The validation studies show that
the aeroelastic model predictions are an agreement with the experimental data.
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(a) Gen-3a.

(b) Gen 3-b.

Figure 2.9: predicted and measured damping versus tunnel speed.
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Chapter 3 |
Aeroelastic Parametric Studies
and Aeroelastic Optimization

In this chapter, parametric studies are conducted on the influence of rotor blade
torsion DOF, structural taper, composite couplings, wing spar twist, wing extension
stiffness, and winglet planform variables on whirl flutter, using the aeroelastic
model described in the previous chapter. The parametric studies are followed by
an optimization study aiming at improving the whirl flutter speed. The design
variables are wing parameters (stiffness, composite coupling, and taper), wing
extension parameters (stiffness), and winglet parameters (toe, cant and sweep
angles). Genetic algorithm (GA), a non-gradient based search method, is used
for the optimization. The optimization study is validated using a comprehensive
analysis code (Rotorcraft Comprehensive Analysis System, RCAS).

3.1 Parametric Studies
The baseline model for our study is the Bell XV-15 rotor on a soft torsion wing
[7] with an extension and a winglet. The important rotor, wing, extension, and
winglet parameters of the baseline model are tabulated in Tables 3.1 and 3.2. The
inputs for the finite element analysis of the wing are given in Table 3.3, where Le
is the element length, Sα and Icg are the first and second mass moments of inertia,
respectively, m is the mass per length, Λ is the wing forward sweep angle and e is
the distance of wing elastic axis from the aerodynamic center.
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3.1.1 Rotor Blade Torsion DOF

The frequency of the blade torsion motion (ωθ), in combination with the blade
precone angle (βp), can be destabilizing to whirl flutter. The influence of βp on the
damping of wing modes is shown in Fig. 3.1a, for βp = 0o and 2.5o (baseline). From
Fig. 3.1a, we can see the destabilizing effect on wing damping for higher precone
values. The influence of ωθ on the damping of wing modes is shown in Fig. 3.1b
for ωθ = 4.8/rev (baseline) and no torsion (ωθ =∞). Results from the Figures 3.1a
and 3.1b, which show the destabilizing nature of βp and ωθ, are consistent with
previous studies (Ref. 18).

3.1.2 Structural Taper

Structural taper and wing extension are design features in the NASA LCTR2 [46].
The beam mode damping is increased from 4.5% to 6% when the taper ratio is
changed from 1 to 0.1. This result has motivated us to investigate the effects of
structural taper upon our model. In Fig. 3.2a, the wing modes damping is plotted
for an untapered and a tapered wing, without the wing-tip devices. The whirl
flutter speed is increased slightly, by about 10 knots, for the case with the tapered
wing. With the wing wing-tip devices on, the whirl flutter speed is increased by 45
knots (Fig. 3.2b) for the tapered wing case, when compared to the untapered wing.

Structural taper increases the tip deflection. The efficiency of the wing extensions
in improving the beam mode damping increases with tip deflection. The mode
shapes with and without taper (normalized by the root bending curvature) are
plotted in Fig. 3.3, where we can see that the tapered wing has a higher tip
deflection than the untapered wing. Thus we can conclude that structural taper,
when combined with wing-tip devices, can help increase the beam mode damping.

3.1.3 Composite Coupling

Composite tailoring of wing can introduce coupling between bending and torsional
modes. εbt and εct are the non-dimensional values of the bending torsion coupling
of beam and chord modes, respectively, defined by

εbt = Kbt√
EIbGJ

; εct = Kct√
EIcGJ

(3.1)
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Fig. 3.4 shows the effect of beamwise bending torsion coupling on the bending
and torsion modes. Positive values of εbt bring the frequencies of beam and torsion
modes closer, and stabilize the beam mode while destabilizing the torsion mode.

Fig. 3.5 shows the effect of chordwise bending torsion coupling. Positive values
of εct separates the frequencies of chord and torsion modes, and stabilize the chord
mode while destabilizing the torsion mode. These results are that of a structurally
untapered wing, and are consistent with previous studies (Ref. 7 and Ref. 47).

The effect of tapering the wing combined with composite tailoring are shown in
Fig. 3.6. From Fig. 3.6, we can see that stability boundary of the beam and chord
modes is increased by an exchanged damping between between torsion modes and
beam/chord modes.

3.1.4 Twisted Wing Spar

Twisting the wing spar introduces an elastic coupling between beam and chord
modes. The moment-curvature relationship of a wing spar twisted by an angle θ1

is given by:
Mx

My

Mz

 =


EIb cos2 θ1 + EIc sin2 θ1 (EIc − EIb) cos θ1 sin θ1 0
(EIc − EIb) cos θ1 sin θ1 EIc cos2 θ1 + EIb sin2 θ1 0

0 0 GJ



w′′(z)
v′′(z)
φ′(z)

 (3.2)

where the term (EIc − EIb) cos θ1 sin θ1 couples the beam and chord modes. Fig.
3.7 shows this coupling effect on an untapered wing. Positive values of θ1 stabilizes
the chord mode while destabilizing the beam mode, and vice-versa. Thus we can
tailor the wing taper and twist to get the optimum flutter speed.

3.1.5 Influence of a Soft Wing Extension

Reducing the stiffness of the wing extension significantly (0.2% of its baseline
value) can stabilize the beam mode. Fig. 3.8a shows the damping of the beam
mode for the baseline case (unstable at 285 kts) and the soft wing extension case
(stable mode). The mode shapes of this beam mode for the baseline and soft wing
extension case are shown in Fig. 3.8b, where the non-dimensional vertical deflection
(w) is plotted against span. The softer wing extension has a higher value of vertical
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deflection when compared to the baseline value, and hence provides the additional
damping required to stabilize the beam mode.

3.1.6 Parametric Study of Extension Sweep Angle and Aft Off-
set

The wing extension with an aft offset (dex) and sweep (Λ) (schematic shown in Fig.
3.9) can couple the beam and torsion modes, and has a significant influence on
stability. The potential benefits of a swept extension with an aft offset are discussed
in [27].

The damping of the beam and torsion modes are plotted in Fig. 3.10 for
different offset values. Introducing an aft offset (dex = 1 ft) stabilizes the torsion
mode while destabilizing the beam mode. This is because the beam mode shape
has a flap-up nose-up type coupling – which implies that the extension, when
located aft of the wing, creates a perturbation force in the direction of the wing
vertical deflection – thus destabilizing the beam mode. Introducing a fore-offset
(d1ex = −1 ft, impractical for tiltrotors) can stabilize the beam mode, as it creates
a perturbation force opposing the motion of the wing.

Similar results can be obtained for extension sweep (see Fig. 3.11), where having
a swept back extension (sweep = 30o) creates a perturbation force in the direction
of the wing deflection, due to the flap-up nose-up type coupling, thus destabilizing
the beam mode. Having a swept forward extension (sweep = −30o, impractical for
tiltrotors) creates a perturbation force opposing the deflection – thus stabilizing
the beam mode.

3.1.7 Parametric Study of Winglet Cant Angle

The effects of winglet cant angle on whirl flutter are studied here (shown in Fig
3.12). Decreasing the cant angle increases the wing span, which provides additional
damping to the wing – increasing the stability of the beam and torsion modes. The
chord mode, on the other hand is not affected by the cant angle.
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Table 3.1: Rotor and wing properties.

Rotor
Number of blades 3
Radius (R) (ft) 12.5
Lock number 3.83

Solidity 0.089
Blade flapping inertia (slug-ft2) 105

Lift curve slope 5.7
Pitch-flap coupling -0.268
Tip speed (ft/sec.) 600

Rotational speed (Ω) (rad/sec.) 48

Wing (Semi-span)
Span (L/R) 1.333
Chord (c/R) 0.413

Mast height (h/R) 0.342

Table 3.2: Wing extension and winglet
properties.

Wing Extension
Length 4.55 (ft) (27% of wing span)
Chord 5.16 (ft) (100% wing chord)
Stiffness 50% of wing
Inertia 50% of wing

Winglet
Length 4.55 (ft) = 27% of wing span
Chord 2.58 (ft) = 50% wing chord

Cant angle 45o
Sweep angle 45o

Toe 0o
Inertia 25% of wing
Stiffness 25% of wing
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Table 3.3: Wing properties used for FEA.

Element Number #1 (root) #2 #3 #4 (pylon)
Le(ft) 4.55 4.55 4.55 3

Icg (slug − ft2) 1.0 1.0 1.0 63.3cos2 Λ
Sα (slug − ft2) 0.05 0.05 0.05 9.09cos Λ
m (slug/ft) 1.0 1.0 1.0 14.54
EI0

b (lb− ft2) 3.13e7 3.13e7 3.13e7 3.13e7
EI0

c (lb− ft2) 8.48e7 8.48e7 8.48e7 8.48e7
GJ0 (slug − ft2) 0.81e7 0.81e7 0.81e7 0.81e7

e/c 0.051 0.051 0.051 0.0
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Figure 3.1: Damping of wing modes for different values of βp and ωθ.
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Figure 3.2: Effects of structural taper on wing modes damping.
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Figure 3.4: Effects of composite coupling on wing modes damping.
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Figure 3.9: A schematic of a swept extension with an offset.
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Figure 3.10: Damping of beam and torsion modes for different offset values.
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modes.

69



3.2 Aeroelastic Optimization
The parametric studies helped us understand the influence of many parameters
that influence whirl flutter (wing stiffness, taper, composite coupling, and wing-tip
devices). This motivated us to conduct an optimization study to improve the
aeroelastic stability of the aircraft by identifying the optimal combinations of the
aforementioned parameters.

The objective of the aeroelastic optimization is to maximize the whirl flutter
speed. The schematic of the wing, extension, and winglet is shown in Fig. 3.13.
The inboard wing is divided into three sections and the outboard wing is divided
into an extension and a winglet. The design variables for the optimization are the
stiffness values in sections 2 and 3 (EIb, EIc, GJ, εbt, εct), wing spar twist, extension
sweep, extension aft offset, and winglet cant angle. Genetic algorithm is used for
the optimization [48]. Constraints are placed on these design variables in the form
of upper and lower bounds.

The baseline, bounds, and optimum values of the design variables are tabulated
in Table 3.4 (EI0

b , EI
0
c , and GJ0 are the baseline stiffness values). The damping

ratios of the wing modes for the baseline are shown in Fig. 3.14. The whirl flutter
speed of the baseline design is 310 knots (beam mode). Since GA is used for
the optimization, multiple optimal designs can be obtained in the analysis. The
parameters of two optimal designs (Optimized-A and Optimized-B) are tabulated
in Table 3.4. The damping ratios of the wing modes for Optimized designs A and
B are shown in Fig. 3.14 and Fig. 3.15, respectively. The flutter speed of the
optimized design is 65 knots greater than the baseline.

Figure 3.13: Schematic of the wing, extension, and winglet.
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Table 3.4: Design variables of baseline, Optimized-A, and Optimized-B designs

Item Min/Max Baseline Optimized-A Optimized-B

εbt -0.2/0.2 0 -0.05 -0.07
εct -0.2/0.2 0 0.19 -0.05

Spar twist 0o/10o 0o 2.9o 6.30

Wing Section-2

EIb/EI
0
b 0.5/1 1 0.84 0.89

EIc/EI
0
c 0.5/1 1 0.84 0.89

GJ/GJ0 1 1 1 0.63

Wing Section-3

EIb/EI
0
b 0.5/1 1 0.80 0.89

EIc/EI
0
c 0.5/1 1 0.80 0.89

GJ/GJ0 0.5/1 1 0.95 0.91

Extension and Winglet

Extension sweep 0o/25o 0o 5o 5o

Extension aft offset (ft) 0/4 0 0 0.4
Winglet cant angle 60o/90o 90o 68.7o 60o

71



V, knots
200 250 300 350 400

D
am

pi
ng

 R
at

io

0

0.02

0.04

0.06

0.08

0.1

Optimized
Baseline

Chord

Torsion

Beam

65 knots

Figure 3.14: Damping Ratios of Baseline and Optimized-A designs.
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The optimization results obtained by freezing certain design variable is studied
here. Firstly, the bending-torsion coupling variables (εbt, εct) are set to zero in
order to investigate the effects of composite coupling. The resulting optimal design
variables (Optimized-C) are tabulated in Table 3.5. The damping ratios of the
wing modes are plotted in Fig. 3.16. From Fig. 3.16, we can see that the optimum
design has an improved flutter speed of 375 knots (a 65 knot increase). These
results show that the flutter speed of Optimized-A and Optimized-B, which have
composite couplings, have the same flutter speed as Optimized-C, which has no
composite coupling.

Next the cant angle held fixed at 90 degrees to investigate the effects of the
outboard wing span. The resulting optimal design variables (Optimized-D) are
tabulated in Table 3.5. The damping ratios of the wing modes are plotted in Fig.
3.17 where we can see that the optimized design has a 60 knot increase in flutter
speed.
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Table 3.5: Design variables of Optimized-C and Optimized-D designs.

Item Min/Max Baseline Optimized-C Optimized-D

εbt -0.2/0.2 0 0 -0.1
εct -0.2/0.2 0 0 0.13

Spar twist 0o/10o 0o 8.6o 2.30

Wing Section-2

EIb/EI
0
b 0.5/1 1 1 0.5

EIc/EI
0
c 0.5/1 1 1 0.5

GJ/GJ0 1 1 0.96 0.95
Wing Section-3

EIb/EI
0
b 0.5/1 1 0.76 0.5

EIc/EI
0
c 0.5/1 1 0.76 0.5

GJ/GJ0 0.5/1 1 0.76 0.96
Extension and Winglet

Extension sweep 0o/25o 0o 5o 6.4o

Extension aft offset (ft) 0/4 0 0 0.53
Winglet cant angle 60o/90o 90o 63.6o 90o

74



V, knots
200 250 300 350 400

D
am

pi
ng

 R
at

io

0

0.02

0.04

0.06

0.08

0.1

Optimized
Baseline

Chord

Torsion

Beam

65
knots

Figure 3.16: Damping Ratios of Baseline and Optimized-C designs.
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Figure 3.17: Damping Ratios of Baseline and Optimized-D designs.
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3.3 Validation of the Aeroelastic Optimization using
RCAS
The optimization is validated using a software called Rotorcraft Comprehensive
Analysis System (RCAS), which is an ongoing effort by the US Army Aeroflightdy-
namics Directorate at Ames Research Center to provide rotorcraft modeling and
analysis technology [49].

RCAS uses finite element modeling for structural analysis, using a non-linear
beam element with ten DOFs per element. RCAS also has the capability of modeling
hinges, linear and torsional springs and dampers. The aerodynamic analysis uses
linear steady and unsteady, quasi-steady airfoil table lookup, and vortex shedding
methods. The rotor disc inflow is modeled using dynamic inflow methods. The
aeroelastic stability analysis is performed by perturbing the system about the
equilibrium state.

In this section, the optimization studies are validated using RCAS. A com-
prehensive model of an elastic wing with an extension and a winglet, and a rigid
gimballed rotor is developed in RCAS for this purpose. Since the rotor model
developed in RCAS is that of a rigid rotor, the lag and torsion frequencies are set
to infinity in the analytical model (νζ = ωθ =∞).

First, a parametric study of the extension and winglet on the damping of the
wing modes computed using the developed aeroelastic analysis and RCAS is studied.
In Fig. 3.18 the damping of the beam mode is shown. The analysis predicts that
adding an extension and a winglet increases the damping by approximately 2%,
and increases the flutter speed by approximately 20 knots. The results obtained
using RCAS show that the extension and a winglet increases the damping by
approximately 2%, and increases the flutter speed by approximately 25 knots –
agreeing well with the analysis. In Fig. 3.19 the damping of the torsion mode is
shown, where we can see that the extension increases the damping by approximately
1%. The results obtained by RCAS predict that the extension increases the damping
by more than 2%.

Next, the optimization is performed again for the rigid rotor. The baseline and
optimized (Optimized-E) design variables are tabulated in Table 3.6. Note that
the baseline design already has an extension and a winglet; and the baseline and

76



optimized designs have no composite couplings. The damping ratios of the wing
for the baseline and optimized designs, calculated using the developed aeroelastic
analysis and RCAS, are shown in Fig. 3.20. In Fig. 3.20, we can see that analysis
predicts that the optimized design has approximately 3% more damping, and a
25-knot increase in the flutter speed than the baseline. The results obtained using
RCAS agree well with the present analysis, showing that the optimized design has
approximately 3% more damping as well as a 25-knot increase in flutter speed than
the baseline design – agreeing well with the analysis.
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Table 3.6: Design variables of baseline and Optimized-E designs for the rigid rotor
model for validation in RCAS.

Item Min/Max Baseline Optimized-E

εbt 0/0 0 0
εct 0/0 0 0

Spar twist 0o/10o 0o −7.2o

Wing Section-2

EIb/EI
0
b 0.5/1 1 0.61

EIc/EI
0
c 0.5/1 1 0.61

GJ/GJ0 1 1 1
Wing Section-3

EIb/EI
0
b 0.5/1 1 0.52

EIc/EI
0
c 0.5/1 1 0.52

GJ/GJ0 0.5/1 1 1
Extension and Winglet

Extension sweep 0o/25o 0o 0o

Extension aft offset (ft) 0/4 0 0
Winglet cant angle 60o/90o 90o 63o
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Chapter 4 |
Wing Structural Model and Para-
metric Studies

The optimization studies presented in Chapter-3 determine the optimal combi-
nations of the wing beamwise stiffness (EIb), chordwise stiffness (EIc), torsional
stiffness (GJ), bending torsion coupling parameters (Kbt, Kct), and structural taper.
The wing structural model in developed in this chapter computes the stiffness
parameters for a given airfoil contour, stringers and spar locations, torque box
dimensions, and material properties. The model also computes the strength of the
wing under any given loading condition. The Tsai-Wu stress criterion, which is a
quadratic stress criterion (material fails if Tsai-Wu coefficient is greater than unity
[50]), is used as a metric to quantify strength. The structural model also calculates
the buckling load. The panels on the upper surface are under compression and
are susceptible to buckling. The compressive force is computed by integrating
the in-plane normal force under the given loading. This in-plane force must be
less than the buckling load of the panel. The panel is modeled as a rectangular
panel, clamped between adjacent ribs and simply supported between two adjacent
stringers.

4.1 Structural Model
The wing is structurally modeled as a three-cell cross section including stringers,
skin, and a torque box. A schematic of the wing structure is shown in Fig. 4.1.
This structural model of the wing is similar to the models describes in Refs. 4, 5,
and 51. The details of the structural model are described here.
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Figure 4.1: Schematic of the wing structural model.

4.1.1 Modeling Composite Panels

The torque box of the wing is made of composite laminate panels (Fig. 4.2, from
Ref. 5). The classical laminated plate theory, where the contributions of each
individual lamina are summed together to form properties of the laminate, is used
to model the composite laminate panels.

Figure 4.2: Schematic showing wing torque box and composite laminate panels.

The stiffness coefficients of the individual lamina depend on its orientation θp
with respect to its principal axes (Fig. 4.3a, from Ref 52). The equations governing
the stress and strain of a laminate is given by

σx

σy

σxy

 =


Q̄11 Q̄12 Q̄61

Q̄21 Q̄22 Q̄62

Q̄61 Q̄26 Q̄66



εx

εy

εxy

 (4.1)
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(a) Schematic of a lamina showing its
orientation with the principal axis.

(b) Laminate displacement and force def-
initions.

Figure 4.3: Laminae principal directions and laminate force and moment definitions.

If transverse in-plane stress, σy is neglected, the above equation can be rewritten as
 σx
σxy

 = [Q1]
 εx
εxy

 (4.2)

where

[Q1] =

 Q̄11 − Q̄2
12

Q̄22
Q̄16 − Q̄12Q̄26

Q̄22

Q̄16 − Q̄12Q̄26
Q̄22

Q̄66 − Q̄2
26

Q̄22

 (4.3)

The properties of a composite laminate are calculated by integrating individual
lamina properties through thickness (tp) of the blade.

The relationship between the force resultants and laminate strains is given by
Nz

Nzs

Mz

Mzs

 =


A11 A16 B11 B16

A16 A66 B16 B66

B11 B16 D11 D16

B16 B66 D16 D66




εz

εzs

κz

κzs

 (4.4)

where
(Aij, Bij, Dij) =

∫ tp/2

−tp/2
Q1ij(1, z, z2) dz (4.5)

and Nz and Nzs are the plate stress resultants, Mz and Mzs are the plate moment
resultant, εz and εzs are the plate strains, and κz and κzs are the plate bending
curvatures (Fig. 4.3b).
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4.1.2 Computing Wing Stiffnesses and Strength

The wing stiffness is computed based on the laminate panel properties and the
cross-section geometry using Vlasov theory [53]. The wing displacements and
rotations are computed in terms of the beam forces to find the wing stiffness. The
detailed derivation of this analysis can be found in Ref. 53. The wing is assumed to
undergo beamwise bending (w(z)), chordwise bending (v(z)), and torsion (φ(z)),
where z is the spanwise coordinate (Fig. 4.4).

Figure 4.4: A schematic the wing showing shear moduli for different cells.

The relationship between the beamwise bending moment (Mx), chordwise bend-
ing moment (My), torsional moment (Mz), and the curvatures w′′(z), v′′(z), φ′(z),
is given by 

Mx

My

Mz

 =


EIb 0 Kbt

0 EIc Kct

Kbt Kct GJ



w′′(z)
v′′(z)
φ′(z)

 (4.6)

where the expressions for various stiffness terms appearing in the above equations
are given by

EIb =
∮

cos θ(D11 cos θ +B11y) + y(B11 cos θ + A11y) ds (4.7)

EIc =
∮

sin θ(D11 sin θ −B11x)− x(B11 sin θ − A11x) ds (4.8)

GJ =
∮

4D66 − (2B66Gs)/Gt − (Gs(2B66 − (A66Gs)/Gt))/Gt ds (4.9)
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Kbt =
∮
− cos θ(2D16 − (B16Gs)/Gt)− y(2B16 − (A16Gs)/Gt) ds (4.10)

Kct =
∮

sin θ(2D16 − (B16Gs)/Gt)− x(2B16 − (A16Gs)/Gt) ds (4.11)

where θ is the angle between a tangent drawn at the airfoil segment location and
the x axis (see Fig. 4.5). Gt = A66 and Gs is the variation of shear modulus along

Figure 4.5: A schematic showing the tangential (s) and normal directions (n) of an
airfoil segment.

the contour. The shear flow distribution for the three-celled cross section wing is
shown in Fig. 4.4. In Fig. 4.4, Gs1, Gs2, and Gs3, are the shear moduli for cells
1,2, and 3, respectively. The shear moduli are computed by setting the warping
deformation over each cell to be zero, yielding the following equations:

∮ Gs

A66
ds = 2Ai; i = 1, 2, 3 (4.12)

where Ai is the area of the ith cell.
The stiffness values thus calculated can be substituted in Eq. (4.6) to compute

w′′, v′′, φ′ for any given moments Mx,My, and Mz. The strains εzs and εz can be
computed using the expressions:

εz = xw′′ + yv′′ (4.13)

εsz = Gs

A66
φ′z (4.14)

The strains are substituted into the Eq. 4.2 to get the stresses in each lamina. The
Tsai-Wu stress criterion, which is a quadratic stress criterion, is used as a metric to
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quantify strength. The Tsai-Wu stress criterion is [50]:

F11σ
2
1 + F22σ

2
2 + F66σ

2
6 + F1σ1 + F2σ2 + 2F12σ1σ2 < 1 (4.15)

where
F11 = 1

s+
Ls
−
L

; F1 = 1
s+
L

− 1
s−L

(4.16)

F22 = 1
s+
T s
−
T

; F2 = 1
s+
T

− 1
s−T

(4.17)

F66 = 1
s2
LT

; F12 = −
√
F11F22

2 (4.18)

and s is the strength of the lamina. The subscripts L and T stand for longitudinal
and transverse directions, respectively. The superscripts + and − stand for tension
and compressive strength, respectively.

4.1.3 Buckling

The model also calculates the buckling load. The panels on the upper surface
are under compression and are susceptible to buckling. The compressive force is
computed by integrating the in-plane normal force under the given loading (Fig.
4.6). This in-plane force must be less than the buckling load of the panel. The
panel is modeled as a rectangular panel, clamped between adjacent ribs and simply
supported between two adjacent stringers.

Figure 4.6: A schematic for computing buckling loads.

Consider a composite rectangular panel with sides a and b, as shown in Fig. 4.7
(from Ref. 54). The in-plane compressive forces are N0

xx and N0
yy. The in-plane
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shear load is N0
xy. In this analysis, N0

yy = 0 and N0
xy = 0, and only the compressive

buckling load N0
xx is studied.

Figure 4.7: Schematic of a composite panel (from Ref. 54).

The Ritz method [54] is used to find the critical buckling loads. The transverse
deflection, w(x, y) is written as a sum of admissible functions, depending on the
boundary conditions:

w(x, y) =
m∑
i

n∑
i

cijXi(x)Yj(y) (4.19)

where Xi(x) and Yj(y) are the admissible functions. The panel is assumed to be
clamped between the adjacent ribs (x = 0 and x = a) and simply supported along
two adjacent stringers (y = 0 and y = b). The admissible functions are given by:

Xi(x) =
(
x

a

)i+1 (a− x
a

)i+1
(4.20)

Yj(x) =
(
y

b

)j (b− y
b

)j
(4.21)

The total energy (Π) of the system is given by

2Π =
∫ b

0

∫ a

0

[
D11

(
∂2w

∂x2

)2

+ 2D12

(
∂2w

∂x2

)(
∂2w

∂y2

)
+ 4D66

(
∂2w

∂x∂y

)2

+D22

(
∂2w

∂y2

)2

− 2Nxx

(
∂w

∂x

)2]
dx dy (4.22)

87



Applying the total minimum total energy principle, δΠ = ∂Π
∂cij

= 0, results in an
eigenvalue problem:

[Ab][Xb] = Nxx[Bb][Xb] (4.23)

where [Ab] and [Bb] are mn × mn matrices given by

[Ab]rs = D11X
′′
i YjX

′′
pYq + 2(D12 + 2D66)X ′iY ′jX ′pY ′q +D22XiY

′′
j XpY

′′
q (4.24)

[Bb]rs = X ′iX
′
pYjYq (4.25)

and i = 1, . . . ,m; p = 1, . . . ,m; j = 1, . . . , n; q = 1, . . . , n, r = (i − 1)m + j, and
s = (p− 1)m+ q.

4.2 Structural Parametric Studies
The wing structural model is exercised by designing a wing with similar characteris-
tics as that of the XV-15 wing (23% t/c). The material chosen for the laminates is
the advanced composite material IM7/8552. The material properties of IM7/8552
composite are tabulated in Table 4.1 (from [52]).

Table 4.1: IM7/8552 material properties (from [52]).

Property EL ET GLT νLT S+
L S−L S+

T S−T SLT

Value 23.8 1.7 0.754 0.32 395 245 16.1 21.8 17.4
Unit msi msi msi msi ksi ksi ksi ksi ksi

The vertical walls of the torque box are designed to be at a distance of 0.07c and
0.55c from the leading edge, where c = 5.16 ft, is the chord of the wing. The skin is
designed with ±45 laminates; adding more plies to the skin increases the bending
and torsional stiffness, but also increases the weight. Fifty unidirectional plies are
used for the spar caps and stringers. The torque box of the wing is designed using
[±15,±303]S laminates. The orientations are determined using the trial-and-error
method, such that the stiffness of the designed wing matches that of the XV-15
wing. The beamwise bending stiffness (EIb), chordwise bending stiffness (EIc), and
torsional stiffness (GJ) of the designed wing and the XV-15 wing are tabulated in
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Table 4.2: Comparison of the XV-15 wing stiffness [4] and the designed wings in
this study.

Stiffness XV-15 Designed
(lb-in2) 23% t/c 23% t/c

EIb 3.70E09 3.66E09
EIc 1.12E10 1.35E10
GJ 2.80E09 2.82E09

Table 4.2. From Table 4.2, we can say that the designed wing has similar stiffness
to the XV-15 wing.

The loading cases considered are 2g jump takeoff (helicopter mode) and 4g pull-
up loadings (airplane mode). The 2g jump takeoff loading case is where a load equal
to twice the aircraft weight, multiplied by a safety factor of 1.25 (T = 2×1.25×W )
is applied at the wing-tips. The 4g pull-up loading case is where a load of four-times
the aircraft weight, multiplied by a safety factor of 1.25 is applied on the wings
(triangularly distributed). The corresponding bending moment plots for the 2g and
the 4g loadings are shown in Fig. 4.8. The 2g and the 4g loading cases are used in
the design of the NASA LCTR2 (Ref. 46).
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Figure 4.8: Bending moment distribution for the 2g jump takeoff and 4g pull-up
loading cases.

The Tsai-Wu coefficient along the wing contour is shown in Fig. 4.9 for 2g
loading and 4g loading. The maximum Tsai-Wu coefficient is 0.71 for the 2g loading
and 0.46 for the 4g loading.
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(a) 2g jump takeoff loading (max Tsai-Wu = 0.71).

(b) 4g pull-up loading (max Tsai-Wu = 0.46).

Figure 4.9: Tsai-Wu coefficient for the designed XV-15 wing.

To simulate an aerodynamically efficient wing, the thickness of the designed
wing is reduced from 23% to 15% retaining the material properties. The Tsai-Wu
coefficient along the wing contour for this thin wing, is shown in Fig. 4.10. In Fig.
4.10, we can see that the top and bottom faces walls of the torque box are in yellow
– which implies that the Tsai-Wu coefficient is greater than unity in these regions.
The maximum Tsa-Wu coefficient for the thin wing is 1.57 for 2g loading and 1.01
for 4g loading.
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(a) 2g jump takeoff loading (max Tsai-Wu = 1.57).

(b) 4g pull-up loading (max Tsai-Wu = 1.01).

Figure 4.10: Tsai-Wu coefficient for the 15% t/c wing.

To strengthen the thin wing, the torque box is redesigned with eight unidi-
rectional plies at the top and bottom of the torque box. This brought down
the maximum Tsai-Wu coefficient to 0.61 and 0.45 for the 2g and 4g loadings,
respectively (see Fig. 4.11).

Reducing the wing thickness also decreases the beamwise bending and torsion
stiffnesses. The beamwise bending stiffness is reduced by 30% while the torsional
stiffness is reduced by 49%. The stiffnesses for the thick wing and thin wing are
tabulated in Table 4.3.

The reduction in stiffness of the thin wing affects the aeroelastic characteristics
of the wing. The damping characteristics of the thin and thick wings are plotted in
Fig. 4.12. We can see from Fig. 4.12 that the damping of the beam and torsion
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(a) 2g jump takeoff loading (max Tsai-Wu = 0.61).

(b) 4g pull-up loading (max Tsai-Wu = 0.45).

Figure 4.11: Tsai-Wu coefficient for the strength designed 15% t/c wing.

Table 4.3: Comparison of the thin wing and the thick wing stiffnesses.

Stiffness Designed Strength designed
(lb-in2) 23% t/c 15% t/c

EIb 3.66E09 2.55E09
EIc 1.35E10 1.70E10
GJ 2.82E09 1.42E09

modes decreases significantly. This result, showing the reduction in the stability
with decreasing wing thickness, is consistent with the results reported in Ref. 4.

The variation of buckling load of the laminate of the torque box is computed
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Figure 4.12: Damping characteristics of the thin and thick wings.

using 25 admissible functions. The buckling load factor (BLF), which is the ratio
of the critical buckling load and applied load, is tabulated in Table 4.4 for the
laminate [±303,±15,04]S, for different thickness ratios and boundary conditions:
simply supported along the stringers and clamped between ribs (ss-cc), and simply
supported along the stringers and ribs (ss-ss). From Table 4.4, we can see that BLF
increases with thickness and is higher for the ss-cc boundary condition compared
to the ss-ss boundary condition. Therefore, the ss-ss boundary condition must be
used in the bucking analysis of torque box laminates.

For t/c = 15%, the BLF is less than one for the [±303,±15,04]S laminate under
the ss-cc boundary condition, and hence it buckles. Since BLF is less than one, the
laminate is reinforced with unidirectional plies [02], (the new reinforced laminate is
[±303,±15,05]S) to increase the stiffness of the laminate and to increase the BLF.
We can see from Table 4.4 that the reinforced laminate [±303,±15,05]S has a BLF
of 1.11 for t/c = 15%, and hence does not buckle.
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Table 4.4: Variation of buckling load factor vs wing thickness.

[±303,±15,04]S [±303,±15,05]S
t/c BLF (ss-cc) BLF (ss-ss) BLF (ss-cc) BLF (ss-ss)

15% 1.15 0.88 1.45 1.11
17% 1.32 1.01 1.66 1.27
19% 1.49 1.15 1.87 1.43
21% 1.66 1.28 2.09 1.60
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Chapter 5 |
Aerodynamic Model and Para-
metric Studies

The previous chapters discuss the aeroelastic and structural aspects of tiltrotor
wing design. This chapter discusses the aerodynamic issues involved in designing
high-speed tiltrotor aircraft. An existing aerodynamic model (described in the
following section) is used for conducting parametric studies on improving the
lift-to-drag ratio.

5.1 Aerodynamic Model
The aerodynamic performance is generated from an in-house tool called Polar
Generation Software (PGEN, [55]), which was developed to analyze the performance
of sailplanes, and applied to tiltrotors recently [45]. PGEN calculates the total drag
for fixed-wing aircraft based on the aircraft geometry, center of gravity, gross weight,
two-dimensional aerodynamic airfoil data, and operating conditions. The induced
drag of the wing is calculated using Horstmann’s multiple lifting line method
for non-planar wings. This method allows the modeling of complex geometrical
discontinuities such as wing-nacelle and wing extension-winglet junctions. The
wing and empennage profile drag and pitching moment are computed from two-
dimensional airfoil tables based on the sectional lift coefficient. The fuselage drag
is modeled using the equivalent flat plate area approximation. PGEN computes
accurate and fast calculation of vehicle aerodynamic performance, which is needed
when coupled to an optimizer. The propeller/wing interaction effect was not taken
in account in the analysis due to research results showing limited impact on the
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tiltrotor performance [45].
The wing and extension airfoils used in this analysis are the SM205 airfoil [56].

The SM205 airfoil (21% t/c) is designed for high-efficiency tiltrotors by taking
advantage of laminar flow. It has a large minimum drag bucket that extends to
relatively high lift coefficients as shown in Fig. 5.1. This allows the tiltrotor to
cruise at high lift coefficients with relatively low drag.

Figure 5.1: Drag polar of the SM205 airfoil, M = 0.55, R = 23.6E06, computed by
Somers and Martin in [56], using PROFIL07 [57] , MSES 3.0 [58].

The data for the SM205 airfoil was not available in the literature for the range of
Reynolds and Mach numbers required for the current study. Therefore, the Prandlt-
Gluaert corrections are used to scale the airfoil characteristics to incompressible
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flow. The Prandlt-Gluaert corrections are

cx = cx0√
1−M2

∞

(5.1)

where cx = {cl, cm, cd} , and cl, cm, and cd are the lift, moment, and drag coefficients,
respectively. The following equation [59] is used to account for the behavior of drag
coefficient with Reynolds number:

cd = cd0

(
R0

R

)0.11

(5.2)

The drag polars for R= 7.3E06, 14.6E06, and 29.2E06, calculated using the above
equation, are shown in Fig. 5.2.
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Figure 5.2: Drag polars of the SM205 airfoil at different Reynolds numbers.

5.2 Parametric Studies
The aerodynamic effects of parameters such as wing thickness, extension and winglet
planform variables, and cruise speed and altitude are discussed here. The baseline
parameters are tabulated in Tables 5.1 and 5.2. The cruise speed and altitude are
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assumed to be 250 knots and 10,000 ft, respectively. All the parametric studies
conducted here are for a constant wing loading. In other words, the planform
area, which is the projected area of the wing, extension, and winglet, is maintained
constant throughout the parametric studies. The chords of the wing, extension,
and winglet are multiplied by a correction factor (kwl, a function of extension span
and taper ratio, and winglet span and taper ratio), so as to maintain a constant
planform area. A schematic showing the extension span, winglet height and winglet
span is shown in Fig. 5.3. In Fig. 5.3, l0, le, and lw are the spans of the inboard
wing, extension, and winglet, respectively. c1 and c2 are the root and tip chords of
the extension, respectively. c2 and c3 are the root and tip chords of the winglet,
respectively. The expression for the total planform area of the wing is

SW = 2(c1l0 + 0.5(c1 + c2)le + 0.5(c2 + c3)lw) (5.3)

The expression for kwl is:

kwl = l0
l0 + 0.5le(1 + λe) + 0.5lwλe(1 + λw) (5.4)

where λe and λw are the taper ratios of the extension and winglet.

Table 5.1: Rotor and wing properties (baseline).

Rotor
Number of blades 3
Radius (R) (ft) 12.5
Lock number 3.83

Solidity 0.089
Blade flapping inertia (slug-ft2) 105

Lift curve slope 5.7
Pitch-flap coupling -0.268
Tip speed (ft/sec.) 600

Rotational speed (Ω) (rad/sec.) 48

Wing (Semi-span)
Span (L/R) 1.333
Chord (c/R) 0.413

Mast height (h/R) 0.342
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Table 5.2: Wing extension and winglet properties (baseline).

Wing Extension
Length 4.5 ft

Root chord 5.16 ft
Taper 0.5
Sweep 0 deg

Aft offset 0 ft
Winglet

Height 4.5 (ft)
Root chord 2.58 ft

Taper 0.5
Sweep 0 deg

Cant angle 80 deg
Toe angle 0 deg
Twist angle 0deg

Figure 5.3: A schematic showing extension span, winglet winglet height.
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5.2.1 Wing Extension Span and Winglet Height

The extension increases the span of the aircraft and reduces induced drag. The
effects of the wing extension on L/D are shown in Fig. 5.4 for different winglets
heights. From Fig. 5.4, we can see that the L/D increases with extension span; and
for a given extension span, L/D increases as the winglet height is increased.
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Figure 5.4: L/D vs extension span for different winglet heights.

5.2.2 Winglet Cant, Toe, and Twist Angles

The effects of winglet cant, sweep, and toe angles (schematic shown in Fig. 5.5)
on L/D are investigated here. The properties of the extension are held at their
baseline values. The L/D vs cant angle for is shown in Fig. 5.6. Increasing the cant
angle reduces the span, and hence increases induced drag. From Fig. 5.6, we can
see that increasing the cant angle reduces the efficiency of the winglet in improving
L/D.

The effects of the winglet toe and twist angles on L/D are shown in Figures 5.7
and 5.8. We can see from Figures 5.7 and 5.8 that a winglet toe angle of about
4 degrees yields a maximum L/D, while a winglet twist angle of about 6 degrees
yields a maximum L/D.
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Figure 5.5: A schematic showing the toe, twist, and cant angles of the winglet [45].
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Figure 5.6: L/D vs cant angle.
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Figure 5.7: L/D vs winglet toe angle.
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Figure 5.8: L/D vs winglet twist angle.
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5.2.3 Wing Thickness

Thickness ratios of t/c = 15%, 18%, and 21% are considered for analyzing the
aerodynamic effects of thickness. The SM205 airfoil is used for the 21% thick wing.
To analyze the t/c = 15% and 18% cases, the drag of the SM205 airfoil is reduced
by 6 drag counts and 3 drag counts, respectively. The drag polars of the for the
21%, 18%, and 15% wings is shown in Fig. 5.9, for R = 14.6 million and Mach
number M = 0.55.

The effects of thickness on L/D of the aircraft, for different extension spans
(with the baseline winglet on), is shown in Fig. 5.10. From Fig. 5.10, we can see
that L/D increases with extension for all t/c ratios, and for a given thickness ratio,
the L/D decreases with increase in thickness.
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Figure 5.9: Drag polars of the airfoils considered.

5.2.4 Cruise Speed and Altitude

The L/D vs cruise speed for different altitudes is shown in Fig. 5.11 (with the
extension and winglet). As the altitude increases, cruise cl increases, which increases
the cl/cd. As the cruise speed increases, the fuselage drag increases, which reduces
L/D.

Extensions and winglets are more effective in increasing L/D when the cruise cl
is high (at high altitudes). The L/D vs extension span is shown in Fig. 5.12 for
cruise speed = 250 knots, and altitude = 5000 ft and 20000 ft. We can see from
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Figure 5.10: L/D vs extension span 250 knots.
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Figure 5.11: L/D vs cruise speed for different altitudes.

Fig. 5.12 that at 5000 ft, adding the extension and winglet increases the L/D from
7.82 to 8.27, which is an 5.7% increase in L/D. At 20000 ft, adding the extension
and winglet increases the L/D from 10.25 to 11.78, which is a 15% increase in L/D.
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Thus, we can see that efficiency of the extension and winglet in increasing L/D
increases with altitude.
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Figure 5.12: L/D vs extension span for different altitudes.
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Chapter 6 |
Multidisciplinary Optimization

In this study, we extend the optimization studies presented in Chapter 3 by
investigating the combined structural and aerodynamic design and optimization of
a tiltrotor wing equipped with an extension and a winglet. The aeroelastic and
structural models developed are merged with the aerodynamic model for the purpose
of optimization. The optimization objective is to minimize the weight penalty due
to extensions while maximizing aerodynamic efficiency (lift-to-drag ratio, L/D),
subject to strength, buckling, wing loading, and whirl flutter constraints. The key
design variables that affect both the structural and aerodynamic characteristics are
wing thickness and wing-tip span. The wing loading is held constant throughout
the optimization process. The Bell XV-15 tiltrotor aircraft is chosen as the parent
aircraft for this study.

6.1 Optimization Methodology
The optimization flowchart is shown in Fig. 6.1. The process begins with choosing
the design variables for the optimization. The design variables corresponding to the
wing are the torque box skin laminate orientation angles, number of plies, stringer
locations, and stringer areas. The extension design variables are the span, taper,
sweep, and incidence angles. The winglet design variables are its height, cant, taper,
and incidence angles.

These design variables are fed into the aerodynamic analysis, which outputs
the performance (objective) to the optimizer. The aerodynamic analysis also
outputs the loads. Perturbations of these loads around the trim angle of attack are
performed to numerically calculate the lift per pitch distributions (dL/dθ).
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Figure 6.1: Optimization flowchart.

The structural analysis outputs the overall weight of the wing and buckling
load, while calculating the stress at any given location along the span, based on the
loads generated by the aerodynamic analysis. The weight (objective), buckling load
(constraint), and strength (constraint) are fed into the optimizer. The structural
analysis also outputs the stiffness (EI and GJ) of the wing.

The EI and GJ values, along with the (dL/dθ) distributions are fed into the
aeroelastic analysis in order to calculate the whirl flutter speed, which is fed into
the optimizer as a constraint. The optimizer changes the design variables and the
iterations are carried on until the design variables converge to their optimum values.

Only combinations of 0,±45, and 90 degree angles are allowed for the ply
orientations. A safety factor of 1.33 is placed on the flutter speed (flutter speed
> 1.3 Vc). The other constraints include buckling load factor > 1 and maximum
Tsai-Wu coefficient < 1.
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Figure 6.2: Schematic of the wing, extension, and winglet.

The chord of the inboard wing is decreased accordingly with the length of the
extension, so as to maintain a constant wing loading. Genetic algorithm (GA) is
used to for the optimization process [48].

6.2 Results: Winglet Excluded
The optimization is first performed excluding the winglet in the analysis, for a
cruise speed of 220 knots. Five cases were analyzed for different extension spans =
{0, 2.5, 3.5, 4.5, 5.5 } ft. The baseline design for the optimization performed is the
optimized wing with no extension. The iterations start with a wing weight of 598
lbs. The algorithm converges after 50 iterations to 527 lbs. The convergence plot of
the algorithm is plotted in Fig. 6.3. The optimum values for the design variables
are tabulated in Table 6.1.

For the case where the wing extension span is set to 2.5 ft, the optimized wing
weight is plotted for different thickness ratios in Fig. 6.4. From Fig. 6.4, we can see
that the optimum weight decreases from 595 lbs (t/c) to 525 lbs as the thickness
increases from 15% to 18%. The optimized laminate is [04,±455] for the thin wing
(thickness ratio = 15 %), and the optimized laminate is [06,±454] for the thick
wing (t/c = 18%). The thin wing has more number of ±45 plies, which implies
that the bending stiffness is compromised for torsional stiffness. Thus, the plies in
the stringers need to provide additional bending stiffness. The thick wing, on the
other hand has more 0 degree plies and has sufficient bending stiffness, and does
not require additional stiffness addition from the stringers. Thus the plies on the
stringers can be dropped to save weight.
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Figure 6.3: Convergence characteristics for the optimization of baseline design.
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Figure 6.4: Optimum wing weight for vs thickness ratio for extension span = 2.5 ft.

Similar trends are found for other values of extension span. The optimum
weight vs thickness ratio for extension span of 3.5 ft and 4.5 ft are plotted in
Fig. 6.5. The thinner wings have more 0 degree plies than the thicker wings, and
have sufficient bending stiffness. As a result, thick wings do not require additional
stiffness addition from the stringers, and hence plies on the stringers can be dropped
to save weight.
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(a) Extension span = 3.5 ft.

(b) Extension span = 4.5 ft.

Figure 6.5: Optimum wing weight for vs thickness ratio for extension span = 3.5 ft.
and 4.5 ft.
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The optimum designs for all the cases considered are tabulated in Table 6.1.
All the designs have different extension spans while having the same whirl flutter
speed. The baseline design and Designs A and B have t/c = 18%, while Designs C
and D have t/c = 21%. Design-B has the least wing weight and Design-D has the
highest wing weight. However, Design-D has an L/D of 11.51 (11% more than the
baseline), for only a weight penalty of 8 lbs (1.5%).
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Table 6.1: Optimization results.

Baseline Design-A Design-B Design-C Design-D

Extension
span (ft)

0 2.5 3.5 4.5 5.5

t/c 18% 18% 18% 21% 21%

Wing
Weight (lbs)

527 528 513 527 535

L/D 8.36 8.76 8.90 9.02 9.14

WFS (kts) 330 330 330 330 330

Buckling
safety

1.43 2.43 2.43 2.65 2.65

Laminate [012,±452]S [06,±454]S [06,±454]S [08,±453]S [08,±453]S
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6.3 Results: Winglet Included
The optimization is performed in the following way: five cases were analyzed where
extension and winglet combined span (lew = le + lw) is held fixed at the following
values: {0 ft, 2 ft, 3.5 ft, 5.5 ft, 7.5 ft}. The case where lew = 0 ft is the baseline
case, which has no extension or winglet. The other cases are labeled Designs A, B,
C, and D, for lew = {2 ft, 3.5 ft, 5.5 ft, 7.5 ft}, respectively.

6.3.1 Results: Cruise speed = 250 knots

The baseline design for the optimization is the optimized wing with no extension
and winglet. Since the cruise speed is 250 knots, the whirl flutter speed must be
at least 330 knots for maintaining a safety factor of 1.33. Only the wing weight
needs to be minimized for the baseline case, since the variables influencing L/D
(extension and winglet variables) are absent. The following fitness function is used
for optimization:

fitness = W

W0
− L/D

(L/D)0
(6.1)

where W0 and (L/D)0 are the wing weight and L/D of the baseline case.
The optimum designs for all the cases considered are tabulated in Table 6.2.

All the designs have the same whirl flutter speed and wing loading. The optimum
extension span for all the designs is less than 1 ft, and the optimum cant angle is
less than 30 degrees. The optimum winglet span and height increase with lew.

The stiffness distribution and damping ratios of the optimized design are shown
in Fig. 6.6, Fig. 6.7, Fig. 6.8, and Fig. 6.9 for lew = 2, 3.5, 5.5, and 7.5 ft,
respectively. From these figures, we can see that the beamwise and chordwise
stiffness decreases along span for all the designs, while the torsional stiffness is
almost a constant for all values of wing-tip spans.
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Table 6.2: Optimization results when cruise speed = 250 knots.

Baseline Design-A Design-B Design-C Design-D

lew (ft) 0 2.0 3.5 5.5 7.5

Extension span
(ft)

– 0.64 0.66 0.87 0.56

Winglet span
(ft)

– 1.36 2.84 3.63 6.94

Winglet height
(ft)

– 0.49 1.51 0.64 3.69

Winglet cant
(deg)

– 20 28 11 23

t/c 21% 21% 21% 21% 21%

Wing Weight
(lbs)

518 529 539 577 607

L/D 8.48 8.85 9.09 9.33 9.53

Fitness 0 -0.022 -0.031 0.014 0.048

WFS (kts) 330 330 330 330 330

Buckling safety 1.52 2.65 2.65 2.65 2.65

Laminate [012,±452]S [08,±453]S [08,±453]S [08,±453]S [08,±453]S
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Figure 6.6: Stiffness distribution and damping ratios of the optimized design for
lew = 2 ft and cruise speed = 250 knots.
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Figure 6.7: Stiffness distribution and damping ratios of the optimized design for
lew = 3.5 ft and cruise speed = 250 knots.
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Figure 6.8: Stiffness distribution and damping ratios of the optimized design for
lew = 5.5 ft and cruise speed = 250 knots.
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Figure 6.9: Stiffness distribution and damping ratios of the optimized design for
lew = 7.5 ft and cruise speed = 250 knots.

118



6.3.2 Results: Cruise speed = 300 knots

The cruise speed is set to be 300 knots, and hence the whirl flutter speed must be
at least 400 knots. The optimum designs for all the cases considered are tabulated
in Table 6.3. All the designs have the same whirl flutter speed and wing loading.
The optimum winglet spans increase with lew, while the optimum extension span is
less than 1 ft for all the designs.

The stiffness distribution and damping ratios of the optimized design are shown
in Fig. 6.10, Fig. 6.11, Fig. 6.12, and Fig. 6.13 for lew = 2, 3.5, 5.5, and 7.5 ft,
respectively. From these figures, we can see that the stiffness in beamwise and
chordwise direction decreases, while the torsional stiffness is almost a constant,
similar to previous case where cruise speed is 250 knots. Also, the whirl flutter
speed is close to 400 knots for all the cases.

From Tables 6.2 and 6.3, we can see that the optimum L/D reduces as cruise
speed increases. This can be attributed to the fact that the fuselage profile drag
increases with the square of cruise speed – reducing L/D significantly. Also, the
optimum wing weight increases with cruise speed, as the stiffness required to
maintain the whirl flutter boundary increases – making the wing heavier.
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Table 6.3: Optimization results when cruise speed = 300 knots.

Baseline Design-A Design-B Design-C Design-D

lew (ft) 0 2.0 3.5 5.5 7.5

Extension span
(ft)

– 0.52 0.51 0.82 0.50

Winglet span
(ft)

– 1.48 2.99 4.86 7.00

Winglet height
(ft)

– 1.69 3.21 1.61 1.87

Winglet cant
(deg)

– 47 46 19 15

t/c 21% 21% 21% 21% 21%

Wing Weight
(lbs)

529 537 544 589 607

L/D 6.52 6.71 6.82 6.92 7.00

Fitness 0 -0.014 -0.0177 0.052 0.073

WFS (kts) 400 400 400 400 400

Buckling safety 1.43 2.33 2.65 2.88 2.88

Laminate [012,±452]S [010,±452]S [08,±453]S [06,±454]S [06,±454]S
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Figure 6.10: Stiffness distribution and damping ratios of the optimized design for
lew = 2.0 ft and cruise speed = 300 knots.
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Figure 6.11: Stiffness distribution and damping ratios of the optimized design for
lew = 3.5 ft and cruise speed = 300 knots.
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Figure 6.12: Stiffness distribution and damping ratios of the optimized design for
lew = 5.5 ft and cruise speed = 300 knots.
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Figure 6.13: Stiffness distribution and damping ratios of the optimized design for
lew = 7.5 ft and cruise speed = 300 knots.
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6.3.3 Discussion: Fitness

The fitness (Eq. (6.1)) of all the optimal designs is shown in Fig. 6.14 for cruise
speeds of both 250 knots and 300 knots. From Fig. 6.14, we can see that the best
fitness is achieved for lew = 3.5 ft for both the cruise speeds considered. Specifically,
the optimum fitness is -0.031 and -0.017 for cruise speeds of 250 knots and 300
knots, respectively.
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Figure 6.14: Fitness values for all the optimal designs.

The L/D and wing weights of optimal designs are shown in Fig. 6.15 and Fig.
6.16 for 250 knots and 300 knots, respectively. From Fig. 6.15 and Fig. 6.16, we
can see that the for lower values of wing-tip span (lew), weight penalty (W/W0) is
small compared to the increase in efficiency ((L/D)/(L/D)0). For higher values of
wing-tip span, the weight penalty is comparable or even more than the increase in
efficiency.
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Figure 6.15: L/D and wing weights of optimal designs for cruise speed = 250 knots.
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Figure 6.16: L/D and wing weights of optimal designs for cruise speed = 300 knots.
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6.3.4 Discussion: Range

The optimum designs are substituted in the Breguet range equation [60], which
computes the maximum range R for a propeller driven aircraft with a given L/D,
empty weight, and specific fuel consumption (SFC). The Breguet range equation is

R = 1000
SFC

L

D
log

(
1 + WF

WE

)
(6.2)

where WF is the fuel weight and WE is the empty weight.
The range of the optimum designs, normalized by the range of the baseline

(R0), is shown in Fig. 6.17. From Fig. 6.17, we can see that for cruise speed equal
to 250 knots, the optimized design where lew = 3.5 ft gives 5.5% more range than
the baseline. For cruise speed = 300 knots, the optimized design where lew = 3.5 ft
gives 3.3% more range than the baseline.
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Figure 6.17: Range of the optimum designs for cruise speed = 250 knots and 300
knots.
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6.3.5 Discussion: Range Specific Transport Efficiency

The Range Specific Transport Efficiency (RSTE), suggested by Lieshman [61], is a
useful metric to evaluate tiltrotor performance when the range is fixed. The RSTE
is the ratio of the payload weight transported to the fuel consumed for a specific
transport range. The expression for RSTE is

RSTE = WG −WE −WF

WF

(6.3)

where WG is the aircraft gross weight, WE is the aircraft empty weight, and WF is
the fuel weight.

The RSTE values for the optimum designs are shown in Fig. 6.18 for cruise
speeds equal to 250 knots and 300 knots. From Fig. 6.18, we can see that the for
cruise speed equal to 250 knots, the RSTE increases from 1.03 for the baseline to
1.21 for the optimum design with lew = 7.5 ft. For cruise speed equal to 300 knots,
the RSTE increases from 1.02 for the baseline to 1.12 for the optimum design with
lew = 3.5 ft.
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Figure 6.18: RSTE values for the optimum designs for cruise speed = 250 knots
and 300 knots.
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Chapter 7 |
Conclusions and Recommenda-
tions

The investigation of combined structural and aerodynamic design and optimization
of a tiltrotor is performed. An aeroelastic analysis and a wing structural analysis
model is developed for analyzing tiltrotor wings with extensions and winglets. The
aeroelastic and structural analysis models are merged with an existing aerodynamic
analysis model for the optimization.

7.1 Aeroelastic Model
The aeroelastic model has 12 DOFs and takes into account the rotor blade torsion
degree of freedom. Parametric studies of the structural taper, composite couplings,
stiffness of the wing and wing extension, on whirl flutter are conducted. The
parametric study is followed by an optimization study, where the optimal combina-
tions of these parameters to maximize the whirl flutter speed are computed. The
following conclusions can be drawn based on this study:

1. The rotor blade torsion degree of freedom is destabilizing to whirl flutter,
reducing the whirl flutter speed by 35 % (100) knots (consistent with previous
studies).

2. The wing-tip devices continue to improve the beam and torsion mode stability,
even after adding the blade torsion degree of freedom. However, they do not
have a significant influence on the chord mode.
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3. Structural taper increases the tip deflection, and hence the wing extensions
are more efficient in increasing the beam mode damping – by 15% (45 knots)
when the wing has a structural taper. The chord and torsion modes are,
however, not affected by structural taper.

4. A wing extension, which is swept back or located aft of the wing, can aerody-
namically couple the beam and torsion modes. Such an extension destabilizes
the beam mode, while stabilizing the torsion mode, if the modeshape of the
beam mode has a flap-up nose-up type of coupling.

5. The optimized design has an improved flutter speed of 22% (65 knots) more
than that of the baseline design. The beam mode is the least stable mode in
the baseline design, while the chord and torsion modes are the least stable
modes in the optimized design.

6. The optimization is performed by setting the bending-torsion composite
coupling parameters to zero. The resulting optimum design also has a 22%
(65 knots) increase in flutter speed. Thus, maximum gains in flutter speed
can be achieved without using the composite coupling parameters.

7. The aeroelastic optimization study is validated using RCAS, a commercial
software for performing comprehensive rotorcraft analyses. The analytical
model and the optimization results agree well with RCAS.

7.2 Structural Model
A wing structural model – to compute the wing stiffness, strength, buckling load,
and weight for a given wing geometry, planform variables, material properties, and
torque box dimensions is developed. The wing stiffness and strength are computed
using an analysis based on Vlasov therory [53]. The laminate buckling load is
calculated using the Ritz method with 25 admissible functions. The structural model
is exercised by successfully designing a wing which has a similar characteristics of
the XV-15 wing. The designed wing was made sure that it can handle 2g jump
take off loads and 4g pull up loads loads. The following conclusions can be drawn
from the parametric studies conducted on the structural model:
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1. Reducing the thickness of the designed wing from 23% t/c to 15% t/c decreases
the strength. The thin wing is reinforced by adding unidirectional plies, which
increased the strength of the 15% wing.

2. Reducing the thickness also reduces the stiffness of the thin wing – affecting
the aeroelastic stability of the wing – even after the thin wing is reinforced
with unidirectional plies. The damping of the beam and torsion modes
decreases significantly when the thickness is decreased from 21% to 15%.

7.3 Aerodynamic Model
An existing aerodynamic model called Polar Generation Software (PGEN), which
was developed to analyze the performance of sailplanes, is used to compute the
aerodynamic performance of tiltrotors equipped with wing extensions and winglets.
Parametric studies are conducted on the effects of wing, extension, and winglet
planform variables on the lift-to-drag ratio. The following conclusions can be drawn
from this study:

1. Adding an extension of span 4.5 ft and a winglet of height 4.5 ft on a 1.67
semi-span wing increases L/D by over 9%

2. Decreasing the wing thickness from 21% to 15% increases the drag by only
1%, as at high-speeds, the fuselage drag is the dominant source of drag.

3. Wing-tip devices are more effective in increasing the L/D of the tiltrotor at
higher altitudes, as the cruise cl increases with altitude.

7.4 Optimization
A multi-objective optimization methodology for tiltrotor aircraft is developed, where
the weight penalty due to extensions and winglets is minimized while maximizing
L/D, subject to strength, buckling, wing loading, and whirl flutter constraints.
The aeroelastic, aerodynamic, and the structural models developed are merged
together for the optimization study. The wing design variables are wing thickness,
the torque box skin laminate orientation angles, number of plies, stringer locations,
and stringer areas. The extension design variables are the span, taper, sweep, and
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incidence angles. The winglet design variables are its taper, height, cant, toe, and
twist angles. The wing thickness and the extension span effect both structural and
aerodynamic properties of the aircraft. The following conclusions can be drawn
from the optimization study:

1. The results show that achieving the stiffness criteria (for whirl-flutter con-
straints) is possible with fewer plies on thick wings than on thin wings. This
implies that thick wings can be lighter than the thin wings while providing
adequate whirl-flutter stability.

2. For cruise speed = 250 knots, the optimal design has an increased L/D of 7%
for a weight penalty of 3% over the baseline.

3. For cruise speed = 300 knots, the optimal design has an increased L/D of 5%
for a weight penalty of 2.5% over the baseline.

4. The optimal designs for cruise speeds of 250 knots and 300 knots have a
better transport range of over 5.5% and 3.5%, respectively, over the baseline.

5. When the transport range is fixed, the RSTE can be used as metric to evaluate
performance. The optimal design for cruise speed of 250 knots and 300 knots
increase the RSTE from 1.03 to 1.21, and from 1.02 to 1.12, respectively.
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7.5 Recommendations for Future Work
The research presented in this dissertation is focused on conducting parametric
and optimization studies on improving the performance of tiltrotors by using wing
extensions and winglets. This section discusses recommendations for future work
on tiltrotor wing design using extensions and winglets.

7.5.1 Validating the Aerodynamic Model of the Wing-Nacelle-
Extension with Wind-Tunnel Data

A 6% scale model of the NASA Large Civil Tilt Rotor (LCTR) was tested without
rotors in airplane mode at NASA Ames Research Center [62]. The purpose of the
test was to collect data for validating their computational fluid dynamics tools.
Measurements of lift, drag, and moments were acquired for isolated wing and
various wing-tip configurations. The study concluded with the following interesting
observations:

1. The addition of the nacelle to the LCTR isolated wing produced an increase in
lift – due to the end-plating effect of the nacelle. However the L/D decreased
due to a larger increase in drag.

2. The addition of the extension to the nacelle decreased overall drag. The
authors claimed that this result may be due to the complex interactions
between the nacelle and the wing extension.

The aerodynamic model used in the current dissertation can be validated with
the experimental data and the above observations. This validation study can shed
some light on the end-plating effect of the nacelle and the aerodynamic interactions
between extension and winglet – by qualitatively as well as quantitatively examining
their effects on lift and drag of the airframe.

133



7.5.2 Experimental Validation of Aeroelastic Effects of Exten-
sions and Winglets

Wind-tunnel tests on semi-span whirl flutter models are presented in [2]. The wing
is fabricated using composite laminates, with an integrated spar that acted as a
flexure. The stiffness of the flexure was tuned so that the wing vibrated at desired
frequencies. The model exhibited whirl flutter at a tunnel speed of 101 ft/s. The
test data was validated with the aeroelastic analysis presented in this dissertation.
However, the models developed in Ref. 2 did not include wing extensions or winglets.
Also, the non-dimensional frequencies of the wing used in Ref. 2 does not represent
typical tiltrotors.

Wind-tunnel models which are similar to the models presented in Ref. 2 can be
fabricated such that (a) the wing frequencies represent typical tiltrotors; and (b)
the wings are equipped with extensions and winglets. The structural properties
of the proposed wind-tunnel wing and the XV-15 tiltrotor wing are tabulated in
Table. 7.1. We can see from Table. 7.1 that the non-dimensional properties of the
proposed model are approximately equal to the XV-15.

Such a scaled-down wind-tunnel model helps us to quantify the effects of the
extension and winglet on the original tiltrotor. For example, the beam mode
damping predictions of the scaled-down model, with and without an extension are
shown in Fig. 7.1. These damping results in Fig. 7.1 can be scaled up and can be
used to predict the damping ratios of the XV-15 tiltrotor (shown in Fig. 7.2). The
damping results presented in Fig. 7.2 show that the damping of the beam mode of
the XV-15 is unstable at 380 knots; and adding an extension increases the damping
and stabilizes the beam mode.
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Table 7.1: The properties of the proposed wind-tunnel wing and the XV-15 tiltrotor
wing.

Item XV-15 Scaled-down

Dimensional
Rotor radius, R (ft) 12.5 0.712
Rotor RPM (rad/s) 48 125

Wing semi-span, b (ft) 16.67 0.94
EIb (lb− ft2) 3.3E7 20
EIc (lb− ft2) 8.5E7 40
GJ (lb− ft2) 1.6E7 17

Non-Dimensional
Lock number 3.83 3.24

Beam frequency 0.42 0.46
Chord frequency 0.70 0.65
Torsion frequency 1.3 1.26

b/R 1.33 1.33
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Figure 7.1: Damping predictions for the beam mode for the wind-tunnel model.
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Figure 7.2: Damping predictions for the beam mode for the XV-15, predicted by
scaling up the results from the scaled down model.
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7.5.3 Whirl Flutter Alleviation Using Flexible Torque Tubes

In Section 3.1.5, we showed that reducing the bending stiffness of the extension
can significantly improve the damping of the beam mode. Similarly, the torsional
stiffness of the extension can be made sufficiently flexible so that it can improve
the damping of the wing. Specifically, the extension can be attached to the wing
by means of a flexible torque tube. Such flexible torque tubes were proposed by
Miller [32].

The stiffness and location of the tube can be tailored such that the extension
experiences a nose-down pitching moment whenever the wing flaps up – thus
creating an aerodynamic force opposing the motion of the wing and increasing
damping. Applications of such flexible torque tubes are discussed in Ref. 31.

For example, if the torsional stiffness of the torque tube is tailored to 10% of
the torsional stiffness of the wing, and is located 3 ft aft of the aerodynamic center
of the wing, the perturbational forces create a nose-down pitching moment and
thus increasing damping. The damping ratio of the beam and torsion modes of the
wing using flexible torque tubes is shown in Fig. 7.3, where we can see that the
flexible torque tube increases that damping of the beam mode. Thus, other means
of alleviating whirl flutter using flexible torque tubes can be investigated.
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Figure 7.3: Damping predictions for the beam and torsion modes for the flexible
torque tubes.
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7.5.4 Conducting Optimization Studies Using the Standard Weight
Model

In Ref. 63, a method is developed and described for estimating the wing weights
of tiltrotors at a conceptual level and development. This method is based on
dynamically scaling the wing stiffness requirements, and is used in Ref. 4 to compute
the weight of a thin composite wing representative of a high-speed tiltrotor. The
key parameters required for this method are

1. Wing planform and cross-section geometry

2. Wing beamwise, chordwise, and torsional frequencies

3. Wing torque box cross-sectional and wing spar cap area and geometry

4. Ultimate load factors for the wing for pull-up maneuver and landing

This method can be used to validate the wing structural model and to conduct
optimization studies.

7.5.4.1 Validation of the Wing Structural Model

The following approach can be followed for validating the wing weight model
developed in this dissertation with the wing weight model presented in Ref. 63:

1. Start with an optimum design in presented in Chapter-6.

2. Compute the wing beamwise, chordwise, and torsional frequencies (at zero
forward speed) using the analysis presented in Chapter-3.

3. Compute the torque box and cross-sectional wing spar cap area and geometry
(which are outputs of the structural analysis used in Chapter-4).

4. Compute bending moment at the root based on the loads for 2g jump takeoff
and 4g pull up (aerodynamic analysis in Chapter-5) maneuver.

5. Compare the weights of the optimum designs presented in Chapter-5 versus
the wing weights computed using the standard tiltrotor wing weight model.
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7.5.4.2 Conducting Optimization Studies

The standard structural tiltrotor model can be used for the multi-objective opti-
mization presented in Chapter-6, section 6.1. In order to do this, the optimization
flowchart needs to be modified as shown in Fig. 7.4. The modifications are:

1. The root bending moments Mb, based on the loads generated by the aerody-
namic analysis, and the wing planform area SW are given to the wing weight
model.

2. The wing structural analysis computes the wing frequencies for beamwise
bending, chordwise bending, and torsion (ωb, ωc, ωt). These frequencies are
inputs to the wing weight model.

3. The wing weight model uses Mb, ω, SW and computes the wing weight, which
is given to the optimizer as an objective.

Figure 7.4: Optimization flowchart using the standard tiltrotor weight model.
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Appendix |
Appendix-A

The rotor/wing matricesMR = MR, CR = CR, and KR = KR are 14×14 matrices.
The non-zero terms are listed below. Some of the parameters appearing in the
listing are defined as follows:

MR(1,1) = 2*Mb;
MR(1,3) = 2*Mb*csl*h;
MR(1,5) = 2*Mb*h*snl;
MR(1,9) = Sz;
MR(2,2) = gam*((2*Mb*csl^2)/gam + (2*Mb*snl^2)/gam);
MR(2,4) = -2*Mb*h*snl;
MR(2,8) = -Sz*snl;
MR(2,10) = 2*Sb0*csl;
MR(3,1) = 2*Mb*csl*h;
MR(3,3) = 2*I0*snl^2 + 2*Mb*csl^2*h^2;
MR(3,5) = 2*Mb*csl*h^2*snl - 2*I0*csl*snl;
MR(3,9) = Sz*csl*h;
MR(3,11) = 2*Iz0al*snl;
MR(4,2) = -2*Mb*h*snl;
MR(4,4) = 2*Mb*h^2;
MR(4,8) = Sz*h;
MR(5,1) = 2*Mb*h*snl;
MR(5,3) = 2*Mb*csl*h^2*snl - 2*I0*csl*snl;
MR(5,5) = 2*I0*csl^2 + 2*Mb*h^2*snl^2;
MR(5,9) = Sz*h*snl;
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MR(5,11) = -2*Iz0al*csl;
MR(6,3) = -Ibal*csl;
MR(6,5) = -Ibal*snl;
MR(6,6) = Ib;
MR(7,4) = Ibal;
MR(7,7) = Ib;
MR(8,2) = -Sz*snl;
MR(8,4) = Sz*h;
MR(8,8) = Iz;
MR(9,1) = Sz;
MR(9,3) = Sz*csl*h;
MR(9,5) = Sz*h*snl;
MR(9,9) = Iz;
MR(10,2) = Sb0*csl;
MR(10,10) = Ib0;
MR(11,3) = Iz0al*snl;
MR(11,5) = -Iz0al*csl;
MR(11,11) = Iz0;
MR(12,12) = Ip;
MR(13,4) = Ip;
MR(13,13) = Ip;
MR(14,3) = Ip*csl;
MR(14,5) = Ip*snl;
MR(14,14) = Ip;
CR(1,1) = Hu*gam;
CR(1,3) = Hu*csl*gam*h;
CR(1,4) = -Hb_d*gam;
CR(1,5) = Hu*gam*h*snl;
CR(1,7) = -Hb_d*gam;
CR(1,9) = Hz_d*gam;
CR(2,2) = -gam*(2*Tlam*csl^2 - Hu*snl^2);
CR(2,3) = -gam*(Hb_d*csl*snl - 2*Tz_d*csl*snl);
CR(2,4) = -Hu*gam*h*snl;
CR(2,5) = -gam*(2*Tz_d*csl^2 + Hb_d*snl^2);
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CR(2,6) = Hb_d*gam*snl;
CR(2,8) = -Hz_d*gam*snl;
CR(2,10) = -2*Tb_d*csl*gam;
CR(2,11) = 2*Tz_d*csl*gam;
CR(3,1) = Hu*csl*gam*h;
CR(3,2) = -2*Qlam*csl*gam*snl;
CR(3,3) = 2*Qz_d*gam*snl^2 + Hu*csl^2*gam*h^2;
CR(3,4) = -Hb_d*csl*gam*h;
CR(3,5) = Hu*csl*gam*h^2*snl - 2*Qz_d*csl*gam*snl;
CR(3,7) = -Hb_d*csl*gam*h;
CR(3,9) = Hz_d*csl*gam*h;
CR(3,10) = -2*Qb_d*gam*snl;
CR(3,11) = 2*Qz_d*gam*snl;
CR(4,2) = -Hu*gam*h*snl;
CR(4,3) = Hb_d*csl*gam*h;
CR(4,4) = Hu*gam*h^2;
CR(4,5) = Hb_d*gam*h*snl;
CR(4,6) = -Hb_d*gam*h;
CR(4,8) = Hz_d*gam*h;
CR(5,1) = Hu*gam*h*snl;
CR(5,2) = 2*Qlam*csl^2*gam;
CR(5,3) = Hu*csl*gam*h^2*snl - 2*Qz_d*csl*gam*snl;
CR(5,4) = -Hb_d*gam*h*snl;
CR(5,5) = 2*Qz_d*csl^2*gam + Hu*gam*h^2*snl^2;
CR(5,7) = -Hb_d*gam*h*snl;
CR(5,9) = Hz_d*gam*h*snl;
CR(5,10) = 2*Qb_d*csl*gam;
CR(5,11) = -2*Qz_d*csl*gam;
CR(6,2) = -Mu*gam*snl;
CR(6,3) = Mb_d*csl*gam;
CR(6,4) = 2*Ibal + Mu*gam*h;
CR(6,5) = Mb_d*gam*snl;
CR(6,6) = -Mb_d*gam;
CR(6,7) = 2*Ib;
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CR(6,8) = Mz_d*gam;
CR(7,1) = Mu*gam;
CR(7,3) = 2*Ibal*csl + Mu*csl*gam*h;
CR(7,4) = -Mb_d*gam;
CR(7,5) = 2*Ibal*snl + Mu*gam*h*snl;
CR(7,6) = -2*Ib;
CR(7,7) = -Mb_d*gam;
CR(7,9) = Mz_d*gam;
CR(8,2) = -Qu*gam*snl;
CR(8,3) = Qb_d*csl*gam;
CR(8,4) = Qu*gam*h;
CR(8,5) = Qb_d*gam*snl;
CR(8,6) = -Qb_d*gam;
CR(8,8) = Qz_d*gam;
CR(8,9) = 2*Iz;
CR(9,1) = Qu*gam;
CR(9,3) = Qu*csl*gam*h;
CR(9,4) = -Qb_d*gam;
CR(9,5) = Qu*gam*h*snl;
CR(9,7) = -Qb_d*gam;
CR(9,8) = -2*Iz;
CR(9,9) = Qz_d*gam;
CR(10,2) = -Mlam*csl*gam;
CR(10,3) = Mz_d*gam*snl;
CR(10,5) = -Mz_d*csl*gam;
CR(10,10) = -Mb_d*gam;
CR(10,11) = Mz_d*gam;
CR(11,2) = -Qlam*csl*gam;
CR(11,3) = Qz_d*gam*snl;
CR(11,5) = -Qz_d*csl*gam;
CR(11,10) = -Qb_d*gam;
CR(11,11) = Qz_d*gam;
CR(13,14) = 2*Ip;
CR(14,13) = -2*Ip;
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KR(1,3) = -Hu*csl*gam*(V + v);
KR(1,5) = -Hu*gam*snl*(V + v);
KR(1,6) = Hb_d*gam;
KR(1,7) = Ht*Kp*gam;
KR(1,8) = -Hz_d*gam;
KR(1,14) = -Ht*gam;
KR(2,4) = Hu*gam*snl*(V + v);
KR(2,6) = -Ht*Kp*gam*snl;
KR(2,7) = Hb_d*gam*snl;
KR(2,9) = -Hz_d*gam*snl;
KR(2,10) = 2*Kp*Tt*csl*gam;
KR(2,12) = -2*Tt*csl*gam;
KR(2,13) = Ht*gam*snl;
KR(3,3) = -Hu*csl^2*gam*h*(V + v);
KR(3,5) = -Hu*csl*gam*h*snl*(V + v);
KR(3,6) = csl*gam*(Hb_d*h + (Ib*(vb^2 - 1))/gam);
KR(3,7) = Ht*Kp*csl*gam*h;
KR(3,8) = -Hz_d*csl*gam*h;
KR(3,10) = 2*Kp*Qt*gam*snl;
KR(3,12) = -2*Qt*gam*snl;
KR(3,14) = -Ht*csl*gam*h;
KR(4,4) = -Hu*gam*h*(V + v);
KR(4,6) = Ht*Kp*gam*h;
KR(4,7) = -gam*(Hb_d*h + (Ib*(vb^2 - 1))/gam);
KR(4,9) = Hz_d*gam*h;
KR(4,13) = -Ht*gam*h;
KR(5,3) = -Hu*csl*gam*h*snl*(V + v);
KR(5,5) = -Hu*gam*h*snl^2*(V + v);
KR(5,6) = gam*snl*(Hb_d*h + (Ib*(vb^2 - 1))/gam);
KR(5,7) = Ht*Kp*gam*h*snl;
KR(5,8) = -Hz_d*gam*h*snl;
KR(5,10) = -2*Kp*Qt*csl*gam;
KR(5,12) = 2*Qt*csl*gam;
KR(5,14) = -Ht*gam*h*snl;
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KR(6,4) = -Mu*gam*(V + v);
KR(6,6) = Ib*(vb^2 - 1) + Kp*Mt*gam;
KR(6,7) = -Mb_d*gam;
KR(6,9) = Mz_d*gam;
KR(6,13) = -Mt*gam;
KR(7,3) = -Mu*csl*gam*(V + v);
KR(7,5) = -Mu*gam*snl*(V + v);
KR(7,6) = Mb_d*gam;
KR(7,7) = Ib*(vb^2 - 1) + Kp*Mt*gam;
KR(7,8) = -Mz_d*gam;
KR(7,14) = -Mt*gam;
KR(8,4) = -Qu*gam*(V + v);
KR(8,6) = Kp*Qt*gam;
KR(8,7) = -Qb_d*gam;
KR(8,8) = Iz*(vz^2 - 1);
KR(8,9) = Qz_d*gam;
KR(8,13) = -Qt*gam;
KR(9,3) = -Qu*csl*gam*(V + v);
KR(9,5) = -Qu*gam*snl*(V + v);
KR(9,6) = Qb_d*gam;
KR(9,7) = Kp*Qt*gam;
KR(9,8) = -Qz_d*gam;
KR(9,9) = Iz*(vz^2 - 1);
KR(9,14) = -Qt*gam;
KR(10,10) = Ib0*vb0^2 + Kp*Mt*gam;
KR(10,12) = -Mt*gam;
KR(11,10) = Kp*Qt*gam;
KR(11,11) = Iz0*vz0^2;
KR(11,12) = -Qt*gam;
KR(12,11) = M0*gam - btr - bpr;
KR(12,12) = Ip*(wt^2 + 1);
KR(13,8) = M0*gam - btr - bpr;
KR(13,13) = Ip*wt^2;
KR(14,9) = M0*gam - btr - bpr;
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KR(14,14) = Ip*wt^2;

where

csl = cos Λ
snl = sin Λ
Mb = Mb∗

Sz = S∗ζ

gam = γ

I0 = I∗0

Iz0al = Iζ0α

Sb0 = Sβ0

Hu = Hµ

Hb_d = Hβ∗

Hz_d = Hζ∗

Hlam = Hλ

Kp = kinematic pitch-flap coupling

and the remaining terms can be understood from the above examples.
The wing matrices MW = MW , CW = CW , and KW = KW are 10×10

matrices. The non-zero terms are listed below. Some of the parameters appearing
in the listing are defined as follows:

MW(1,1) = (13*L*R^2*m)/35;
MW(1,3) = (7*L*R*S)/20;
MW(1,5) = -(11*L^2*R*m)/210;
MW(1,6) = (9*L*R^2*m)/70;
MW(1,8) = (3*L*R*S)/20;
MW(1,10) = (13*L^2*R*m)/420;
MW(2,2) = (13*L*R^2*m)/35;
MW(2,4) = (11*L^2*R*m)/210;
MW(2,7) = (9*L*R^2*m)/70;
MW(2,9) = -(13*L^2*R*m)/420;
MW(3,1) = (7*L*R*S)/20;
MW(3,3) = (I*L)/3;
MW(3,5) = -(L^2*S)/20;
MW(3,6) = (3*L*R*S)/20;
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MW(3,8) = (I*L)/6;
MW(3,10) = (L^2*S)/30;
MW(4,2) = (11*L^2*R*m)/210;
MW(4,4) = (L^3*m)/105;
MW(4,7) = (13*L^2*R*m)/420;
MW(4,9) = -(L^3*m)/140;
MW(5,1) = -(11*L^2*R*m)/210;
MW(5,3) = -(L^2*S)/20;
MW(5,5) = (L^3*m)/105;
MW(5,6) = -(13*L^2*R*m)/420;
MW(5,8) = -(L^2*S)/30;
MW(5,10) = -(L^3*m)/140;
MW(6,1) = (9*L*R^2*m)/70;
MW(6,3) = (3*L*R*S)/20;
MW(6,5) = -(13*L^2*R*m)/420;
MW(6,6) = (13*L*R^2*m)/35;
MW(6,8) = (7*L*R*S)/20;
MW(6,10) = (11*L^2*R*m)/210;
MW(7,2) = (9*L*R^2*m)/70;
MW(7,4) = (13*L^2*R*m)/420;
MW(7,7) = (13*L*R^2*m)/35;
MW(7,9) = -(11*L^2*R*m)/210;
MW(8,1) = (3*L*R*S)/20;
MW(8,3) = (I*L)/6;
MW(8,5) = -(L^2*S)/30;
MW(8,6) = (7*L*R*S)/20;
MW(8,8) = (I*L)/3;
MW(8,10) = (L^2*S)/20;
MW(9,2) = -(13*L^2*R*m)/420;
MW(9,4) = -(L^3*m)/140;
MW(9,7) = -(11*L^2*R*m)/210;
MW(9,9) = (L^3*m)/105;
MW(10,1) = (13*L^2*R*m)/420;
MW(10,3) = (L^2*S)/30;
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MW(10,5) = -(L^3*m)/140;
MW(10,6) = (11*L^2*R*m)/210;
MW(10,8) = (L^2*S)/20;
MW(10,10) = (L^3*m)/105;
CW(1,1) = sdamp_w + (L*R^2*a*q*(10*croot + 3*ctip))/(35*U);
CW(1,3) = (L*R*a*q*(112*croot*e + 35*ctip*e - 112*croot*wexd -
35*ctip*wexd))/(420*U) -
(L*R*a*q*(22*L*croot*snlw + 13*L*ctip*snlw))/(420*U*cslw);

CW(1,5) = -(L^2*R*a*q*(15*croot + 7*ctip))/(420*U);
CW(1,6) = (9*L*R^2*a*q*(croot + ctip))/(140*U);
CW(1,8) = (L*R*a*q*(35*croot*e + 28*ctip*e - 35*croot*wexd
- 28*ctip*wexd))/(420*U) - (L*R*a*q*(13*L*croot*snlw

+ 15*L*ctip*snlw))/(420*U*cslw);
CW(1,10) = (L^2*R*a*q*(7*croot + 6*ctip))/(420*U);
CW(2,2) = sdamp_v;
CW(3,1) = (L*R*a*q*(112*croot*e + 35*ctip*e -
112*croot*wexd - 35*ctip*wexd))/(420*U) -
(L*R*a*q*(22*L*croot*snlw + 13*L*ctip*snlw))/(420*U*cslw);

CW(3,3) = sdamp_phi + ((L*a*q*(L^2*croot*snlw^2 +
L^2*ctip*snlw^2))/60 - (L*a*cslw*q*(6*L*croot*e*snlw +
4*L*ctip*e*snlw - 6*L*croot*snlw*wexd -
4*L*ctip*snlw*wexd))/60)/(U*cslw^2) + (L*a*q*(15*croot*e^2
+ 5*ctip*e^2 + 15*croot*wexd^2 + 5*ctip*wexd^2 - 30*croot*e*wexd
- 10*ctip*e*wexd))/(60*U);

CW(3,5) = (L^2*a*q*(4*L*croot*snlw + 3*L*ctip*snlw))/(420*U*cslw)
- (L^2*a*q*(14*croot*e + 7*ctip*e - 14*croot*wexd -
7*ctip*wexd))/(420*U);

CW(3,6) = (L*R*a*q*(28*croot*e + 35*ctip*e - 28*croot*wexd
- 35*ctip*wexd))/(420*U) - (L*R*a*q*(13*L*croot*snlw +
22*L*ctip*snlw))/(420*U*cslw);
CW(3,8) = ((L*a*q*(L^2*croot*snlw^2 + 2*L^2*ctip*snlw^2))/60
- (L*a*cslw*q*(4*L*croot*e*snlw + 6*L*ctip*e*snlw -
4*L*croot*snlw*wexd - 6*L*ctip*snlw*wexd))/60)/(U*cslw^2)
+ (L*a*q*(5*croot*e^2 + 5*ctip*e^2 + 5*croot*wexd^2 +
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5*ctip*wexd^2 - 10*croot*e*wexd - 10*ctip*e*wexd))/(60*U);
CW(3,10) = (L^2*a*q*(7*croot*e + 7*ctip*e - 7*croot*wexd -
7*ctip*wexd))/(420*U) - (L^2*a*q*(3*L*croot*snlw +
4*L*ctip*snlw))/(420*U*cslw);
CW(5,1) = -(L^2*R*a*q*(15*croot + 7*ctip))/(420*U);
CW(5,3) = (L^2*a*q*(4*L*croot*snlw + 3*L*ctip*snlw))/(420*U*cslw)
- (L^2*a*q*(14*croot*e + 7*ctip*e - 14*croot*wexd - 7*ctip*wexd))/(420*U);
CW(5,5) = (L^3*a*q*(5*croot + 3*ctip))/(840*U);
CW(5,6) = -(L^2*R*a*q*(6*croot + 7*ctip))/(420*U);
CW(5,8) = (L^2*a*q*(3*L*croot*snlw + 4*L*ctip*snlw))/(420*U*cslw)
- (L^2*a*q*(7*croot*e + 7*ctip*e - 7*croot*wexd -
7*ctip*wexd))/(420*U);

CW(5,10) = -(L^3*a*q*(croot + ctip))/(280*U);
CW(6,1) = (9*L*R^2*a*q*(croot + ctip))/(140*U);
CW(6,3) = (L*R*a*q*(28*croot*e + 35*ctip*e - 28*croot*wexd
- 35*ctip*wexd))/(420*U) - (L*R*a*q*(13*L*croot*snlw +
22*L*ctip*snlw))/(420*U*cslw);

CW(6,5) = -(L^2*R*a*q*(6*croot + 7*ctip))/(420*U);
CW(6,6) = sdamp_w + (L*R^2*a*q*(3*croot + 10*ctip))/(35*U);
CW(6,8) = (L*R*a*q*(35*croot*e + 112*ctip*e - 35*croot*wexd
- 112*ctip*wexd))/(420*U) - (L*R*a*q*(22*L*croot*snlw +
90*L*ctip*snlw))/(420*U*cslw);
CW(6,10) = (L^2*R*a*q*(7*croot + 15*ctip))/(420*U);
CW(7,7) = sdamp_v;
CW(8,1) = (L*R*a*q*(35*croot*e + 28*ctip*e - 35*croot*wexd
- 28*ctip*wexd))/(420*U) - (L*R*a*q*(13*L*croot*snlw +
15*L*ctip*snlw))/(420*U*cslw);

CW(8,3) = ((L*a*q*(L^2*croot*snlw^2 + 2*L^2*ctip*snlw^2))/60
- (L*a*cslw*q*(4*L*croot*e*snlw + 6*L*ctip*e*snlw -
4*L*croot*snlw*wexd - 6*L*ctip*snlw*wexd))/60)/(U*cslw^2)
+ (L*a*q*(5*croot*e^2 + 5*ctip*e^2 + 5*croot*wexd^2

+ 5*ctip*wexd^2 - 10*croot*e*wexd - 10*ctip*e*wexd))/(60*U);
CW(8,5) = (L^2*a*q*(3*L*croot*snlw + 4*L*ctip*snlw))/(420*U*cslw)
- (L^2*a*q*(7*croot*e + 7*ctip*e - 7*croot*wexd -
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7*ctip*wexd))/(420*U);
CW(8,6) = (L*R*a*q*(35*croot*e + 112*ctip*e
- 35*croot*wexd - 112*ctip*wexd))/(420*U)
- (L*R*a*q*(22*L*croot*snlw + 90*L*ctip*snlw))/(420*U*cslw);
CW(8,8) = sdamp_phi + ((L*a*q*(2*L^2*croot*snlw^2
+ 10*L^2*ctip*snlw^2))/60 - (L*a*cslw*q*(6*L*croot*e*snlw
+ 24*L*ctip*e*snlw - 6*L*croot*snlw*wexd -

24*L*ctip*snlw*wexd))/60)/(U*cslw^2) + (L*a*q*(5*croot*e^2 +
15*ctip*e^2 + 5*croot*wexd^2 + 15*ctip*wexd^2 - 10*croot*e*wexd
- 30*ctip*e*wexd))/(60*U);

CW(8,10) = (L^2*a*q*(7*croot*e + 14*ctip*e - 7*croot*wexd
- 14*ctip*wexd))/(420*U) - (L^2*a*q*(4*L*croot*snlw +

10*L*ctip*snlw))/(420*U*cslw);
CW(10,1) = (L^2*R*a*q*(7*croot + 6*ctip))/(420*U);
CW(10,3) = (L^2*a*q*(7*croot*e + 7*ctip*e - 7*croot*wexd
- 7*ctip*wexd))/(420*U) - (L^2*a*q*(3*L*croot*snlw +
4*L*ctip*snlw))/(420*U*cslw);

CW(10,5) = -(L^3*a*q*(croot + ctip))/(280*U);
CW(10,6) = (L^2*R*a*q*(7*croot + 15*ctip))/(420*U);
CW(10,8) = (L^2*a*q*(7*croot*e + 14*ctip*e - 7*croot*wexd
- 14*ctip*wexd))/(420*U) - (L^2*a*q*(4*L*croot*snlw +

10*L*ctip*snlw))/(420*U*cslw);
CW(10,10) = (L^3*a*q*(3*croot + 5*ctip))/(840*U);
KW(1,1) = (12*EIb*R^2)/L^3;
KW(1,3) = -(L*R*a*q*(16*croot + 5*ctip))/60;
KW(1,5) = -(6*EIb*R)/L^2;
KW(1,6) = -(12*EIb*R^2)/L^3;
KW(1,8) = -(L*R*a*q*(5*croot + 4*ctip))/60;
KW(1,10) = -(6*EIb*R)/L^2;
KW(2,2) = (12*EIc*R^2)/L^3;
KW(2,4) = (6*EIc*R)/L^2;
KW(2,7) = -(12*EIc*R^2)/L^3;
KW(2,9) = (6*EIc*R)/L^2;
KW(3,3) = GJ/L - (L*a*q*(15*croot*e + 5*ctip*e +
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15*croot*wexd + 5*ctip*wexd))/60 -
(L*a*q*(3*L*croot*snlw + 2*L*ctip*snlw))/(60*cslw);
KW(3,4) = (epct*(EIc*GJ)^(1/2))/L;
KW(3,5) = -(epbt*(EIb*GJ)^(1/2))/L;
KW(3,8) = - GJ/L - (L*a*q*(5*croot*e + 5*ctip*e + 5*croot*wexd
+ 5*ctip*wexd))/60 - (L*a*q*(2*L*croot*snlw
+ 3*L*ctip*snlw))/(60*cslw);
KW(3,9) = -(epct*(EIc*GJ)^(1/2))/L;
KW(3,10) = (epbt*(EIb*GJ)^(1/2))/L;
KW(4,2) = (6*EIc*R)/L^2;
KW(4,3) = (epct*(EIc*GJ)^(1/2))/L;
KW(4,4) = (4*EIc)/L;
KW(4,7) = -(6*EIc*R)/L^2;
KW(4,8) = -(epct*(EIc*GJ)^(1/2))/L;
KW(4,9) = (2*EIc)/L;
KW(5,1) = -(6*EIb*R)/L^2;
KW(5,3) = (L^2*a*q*(2*croot + ctip))/60 -
(epbt*(EIb*GJ)^(1/2))/L;

KW(5,5) = (4*EIb)/L;
KW(5,6) = (6*EIb*R)/L^2;
KW(5,8) = (epbt*(EIb*GJ)^(1/2))/L +
(L^2*a*q*(croot + ctip))/60;
KW(5,10) = (2*EIb)/L;
KW(6,1) = -(12*EIb*R^2)/L^3;
KW(6,3) = -(L*R*a*q*(4*croot + 5*ctip))/60;
KW(6,5) = (6*EIb*R)/L^2;
KW(6,6) = (12*EIb*R^2)/L^3;
KW(6,8) = -(L*R*a*q*(5*croot + 16*ctip))/60;
KW(6,10) = (6*EIb*R)/L^2;
KW(7,2) = -(12*EIc*R^2)/L^3;
KW(7,4) = -(6*EIc*R)/L^2;
KW(7,7) = (12*EIc*R^2)/L^3;
KW(7,9) = -(6*EIc*R)/L^2;
KW(8,3) = - GJ/L - (L*a*q*(5*croot*e + 5*ctip*e +
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5*croot*wexd + 5*ctip*wexd))/60 - (L*a*q*(2*L*croot*snlw +
3*L*ctip*snlw))/(60*cslw);

KW(8,4) = -(epct*(EIc*GJ)^(1/2))/L;
KW(8,5) = (epbt*(EIb*GJ)^(1/2))/L;
KW(8,8) = GJ/L - (L*a*q*(5*croot*e + 15*ctip*e +
5*croot*wexd + 15*ctip*wexd))/60 -
(L*a*q*(3*L*croot*snlw + 12*L*ctip*snlw))/(60*cslw);
KW(8,9) = (epct*(EIc*GJ)^(1/2))/L;
KW(8,10) = -(epbt*(EIb*GJ)^(1/2))/L;
KW(9,2) = (6*EIc*R)/L^2;
KW(9,3) = -(epct*(EIc*GJ)^(1/2))/L;
KW(9,4) = (2*EIc)/L;
KW(9,7) = -(6*EIc*R)/L^2;
KW(9,8) = (epct*(EIc*GJ)^(1/2))/L;
KW(9,9) = (4*EIc)/L;
KW(10,1) = -(6*EIb*R)/L^2;
KW(10,3) = (epbt*(EIb*GJ)^(1/2))/L - (L^2*a*q*(croot + ctip))/60;
KW(10,5) = (2*EIb)/L;
KW(10,6) = (6*EIb*R)/L^2;
KW(10,8) = - (epbt*(EIb*GJ)^(1/2))/L - (L^2*a*q*(croot + 2*ctip))/60;
KW(10,10) = (4*EIb)/L;

where

EIb = EIb

EIc = EIc

epbt = εbt

epct = εct

croot = root chord of element
ctip = tip chord of element
snlw = sin Λ
cslw = cos Λ
wexd = dex

and the remaining terms can be understood from the above examples.
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