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Abstract

Predictions of climate change depend strongly on the accurate implementation and
parameterization of climate system properties, processes, and feedbacks. In this
study, surface temperature, upper-air temperature, and ocean heat content data
are used to constrain the distributions of the parameters that define three climate
system properties: climate sensitivity, the rate of ocean heat uptake into the deep
ocean, and net anthropogenic aerosol forcing. Climate sensitivity is diagnosed by
changing the strength of cloud feedback, the rate of deep-ocean heat uptake is de-
termined by varying the effective vertical diffusivity of heat anomalies in the ocean,
and the net anthropogenic aerosol forcing is controlled by scaling the spatial and
temporal pattern of sulfate aerosol loadings by the model-defined global value in
the 1980s. Running a climate model of intermediate complexity forced by historical
forcing patterns over a range of these parameter values allows for the derivation of
probability distribution functions for the model parameter values corresponding to
the climate system properties. Using five different surface temperature datasets,
this study explores the sensitivity of the parameter distributions to the choice of
surface temperature data used to evaluate the model output. Differences in es-
timates of climate sensitivity mode and mean are as great as 1 K between the
datasets. Ocean effective diffusivity is poorly constrained using all datasets and
the shape of the distribution differs greatly depending on which surface dataset
is used. Distributions for anthropogenic aerosol forcing cluster into two groups.
While each group has the same general shape, the location of the mode and confi-
dence intervals differ by approximately 0.1 Wm−2 between the two clusters. This
difference is small compared to other uncertainties in climate forcings. Transient
climate response derived from these distributions ranges anywhere between 1 and
3 K and the shape of the distribution of these possible values is surface dataset
dependent. Some distributions are tall and narrow, while other distributions are
short and broad. Understanding the differences in parameter distributions and pre-
dicted warming is critical to understanding the full range of uncertainty involved
in climate model calibration studies.
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Chapter 1

Introduction

The climate system is a complex interaction of countless feedbacks and processes,

all of which have some degree of uncertainty in their behavior (Bony et al., 2006;

Randall et al., 2007). Specific uncertainties include the impacts of clouds and the

water vapor, lapse rate, and surface albedo feedbacks. As a whole, these contribute

to the long term behavior of the climate system by setting the equilibrium climate

sensitivity of the climate system (Randall et al., 2007). Given current concerns

over global warming, the need for climate models that yield reliable projections

is undeniable. To have a model that yields results in a reasonable amount of

time given available computer resources, decisions have to be made as to which

climate processes to represent explicitly, parameterize, and omit completely. When

parameterizations are required, this reduces complexity in a given process to a set

of uncertain parameter values. Parameterization of processes marks a trade-off

between completeness in the representation of the climate system and efficiency

of the model. This trade-off is minimized when the optimal parameter value is

used: the value that yields model output that best matches the historical record.

When this parameter value is found, the model best represents the climate system

behavior for a specific set of predictions, and as a result will produce the best

possible projections of future climate by the given model. The search for these

optimal parameter values motivates this study.
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1.1 Hierarchy of Climate Models

Climate models exhibit a wide range of complexities. Current models range from

fully coupled, three-dimensional Atmosphere-Ocean General Circulation Models

(AOGCMs), to Earth System Models of Intermediate Complexity (EMICs), to

simple climate models (Randall et al., 2007). AOGCMs represent the most com-

plete climate models through their incorporation of many climate system compo-

nents in an effort to completely mimic the dynamics of the climate system. Given

their complexity, AOGCMs require significant computer time for each model run.

As a result, AOGCMs give the most comprehensive climate projections but are

not ideal when multiple runs are needed. EMICs include many of the same com-

ponents as AOGCMs but substitute parameterizations for certain climate system

components and include additional processes (e.g., biogeochemistry) not permissi-

ble in AOGCMs due to computational costs. Simple climate models include even

more parameterized processes and are typically tuned to replicate results from

AOGCMs (Randall et al., 2007). Given their simplifications of the climate system,

EMICs and simple climate models run much faster than AOGCMs. For example,

a single run of an AOGCM may take months to complete, whereas the EMIC used

in this study can yield hundreds of runs in a single night. As a result of the fast

run times, multiple model runs over a wide range of parameter values can be run

in the same time it takes for one run of an AOGCM. This efficiency makes EMICs

and simple climate models ideal for probabilistic climate model studies (Randall

et al., 2007). This study will make use of the climate model component of the

Integrated Global Systems Model, an EMIC developed by the MIT Joint Program

on Climate Change (Sokolov and Stone, 1998; Sokolov et al., 2005), to take a

probabilistic approach to the parameter calibration problem.

1.2 Past Studies

Numerous studies investigating climate parameter distributions have been con-

ducted (Andronova and Schlesinger, 2001; Knutti et al., 2003; Tomassini et al.,

2007; Forest et al., 2002, 2006, 2008; Urban and Keller, 2010). Andronova and

Schlesinger (2001), Forest et al. (2002), and Knutti et al. (2003) mark the initial
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studies in the field. Each study uses probabilistic methods to determine likely

values for model parameters through the comparison of model output to obser-

vational data. These methods make use of the likelihood-based approach made

possible by the use of EMICs and simplified climate models. Although each study

explores the same problem with the same basic approach, each does so using a

different methodology. The studies by each group use different approaches to com-

pare model output to observational data, use different diagnostics for evaluation

of model performance, and use different estimates of internal climate variability.

Andronova and Schlesinger (2001) estimate probability distributions for cli-

mate sensitivity under a range of forcing scenarios by comparing global mean

temperature and hemispheric temperature differences. In total, 16 radiative forc-

ing schemes are used by taking combinations of the radiative forcing produced by

greenhouse gases, tropospheric ozone, anthropogenic sulfate aerosols, the sun, and

volcanic eruptions. These forcing scenarios are used to investigate the impacts

that each of the constituent forcings, anthropogenic aerosol forcing in particular,

have on model estimated climate sensitivity. To account for uncertainty in the

estimation due to internal climate variability and other error sources (i.e., observa-

tional errors), bootstrap samples of the correlated observed data are used to create

multiple realizations of a natural climate system.

Forest et al. (2002) estimate probability distributions for three climate param-

eters: climate sensitivity, effective ocean diffusivity, and net anthropogenic aerosol

forcing. Distributions of the parameters are derived using statistics from an opti-

mal fingerprint detection algorithm (Allen and Tett, 1999) with changes in surface

temperatures, upper-air temperatures, and global ocean heat content used as di-

agnostics. The optimal fingerprint algorithm acts to maximize the signal-to-noise

ratio of the model response through a rotation of the modeled and observed tem-

perature patterns into the coordinate space of the internal variability pattern. This

maximization allows small signals in the patterns to be detected as opposed to be-

ing interpreted as noise. Rather than use bootstrap samples of the observational

dataset as in Andronova and Schlesinger (2001), internal variability is estimated

from unforced equilibrium control runs of an AOGCM.

Knutti et al. (2003) use a neural network to estimate probability distributions

for climate sensitivity and indirect aerosol forcing in the climate system. Neural
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networks use pattern recognition to determine connections between members of

the model. In climate studies, these connections represent temperature patterns

and trends. A significant benefit of the neural network approach is that once

the network has been trained on a set of model runs, no further model runs are

necessary. From the training runs, the model response using any combination

of the settings can be approximated. Through comparison of the modeled surface

temperature and ocean heat uptake trends to the observed trends, the performance

of a model run simulated by the neural network is evaluated. One drawback of

Knutti et al. (2003) is that the model is too simple to include an estimate of

internal variability. It is noted that the results are reliant upon the assumption

that external solar, volcanic, and anthropogenic aerosol forcings are sufficient to

explain warming on decadal time scales. Furthermore, Knutti et al. (2003) argue

that, based on prior studies, it can be expected that the magnitude of internal

variability is smaller than the uncertainty in the observations and can thus be

ignored.

Parameter calibration studies have been ongoing since the initial work pre-

sented above (Forest et al., 2006, 2008; Tomassini et al., 2007; Sansó and Forest,

2009; Urban and Keller, 2010). Forest et al. (2006, 2008) continue working with

similar methodology but with updates to both the climate forcings used to drive

the model and the climate model itself. Tomassini et al. (2007) and Sansó and

Forest (2009) present new approaches to the estimation of climate model parame-

ter distributions. In these studies, Markov Chain Monte Carlo methods are used.

These methods use a probabilistic rule to govern the complete sampling of a distri-

bution while spending a majority of the time in high probability regions. Similar

to the neural network approach of Knutti et al. (2003), Markov Chain Monte Carlo

methods can use training runs to build a statistical emulator of the model. An

emulator is built such that the behavior of a model at a set of parameter values

where the model has not been run can be approximated based on the behavior of

the training runs. The power of an emulator is that all uncertain variables can be

built into the model and distribution functions derived from the Markov Chain.

Tomassini et al. (2007) build in uncertainty in the external forcings used to drive

their model while Sansó and Forest (2009) incorporate uncertainty in the estimate

of internal variability into the model and estimate the parameters for the emu-
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lator and noise model simultaneously with the climate model parameters within

a hierarchical Bayesian framework. Utilizing the efficiency of a simple climate

model, Urban and Keller (2010) use Markov Chain Monte Carlo methods to esti-

mate many of the parameters associated with the prediction of the collapse of the

Atlantic Meridional Overturning Circulation. In this study, correlations that are

present in each observational time series used to evaluate model performance are

considered. The estimated autocorrelation is removed from the residuals between

model data and observations, and the statistical parameters used to define the

autocorrelation structure are estimated. These estimations are included in order

to include an evaluation of the structural uncertainties in the study, as well as

uncertainties in the parameters.

Building off of the studies just discussed, this study is focused on evaluating

how the choice of the observation-based, surface temperature dataset used in the

comparison with model output data impacts the parameter distribution functions.

In total, five different surface temperature datasets are used to derive the joint

probability distribution function for the three climate system parameters evalu-

ated in Forest et al. (2002, 2006, 2008). From this joint distribution function,

marginal distribution functions for each parameter, two-dimensional distribution

functions for pairs of the parameters, and the distribution for a measure of future

climate change are all derived. Specific details on the surface datasets used and

the evaluation of future climate change are deferred to later sections.

1.3 Optimal Fingerprint Detection

In order to derive the distribution functions for the model parameters, model

performance must be evaluated. A given model run can be evaluated through the

use of a goodness-of-fit statistic, r2, calculated by

r2 = (x− y)TC−1
N (x− y), (1.1)

where x is the vector of model output, y is the vector of observed data and C−1
N is

the inverse of the noise-covariance matrix. Low values of r2 represent models that

yield temperature patterns that are more consistent with the observations than
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models that have higher r2 values. It should be noted that this definition of r2 is

opposite of the conventional definition.

Model goodness-of-fit statistics in this study are calculated using the same op-

timal fingerprint detection algorithm initially described in Forest et al. (2001) and

used in Forest et al. (2002, 2006, 2008). The methodology represents a variation

on the methods of Allen and Tett (1999). Given that the climate varies naturally

with time due to non-linear dynamics, both modeled and observed trends will have

these natural variability patterns embedded in them. In an effort to estimate this

background variability, control run data are obtained by running a climate model

for thousands of years with no external forcings. From the control run, spatial and

temporal correlations between the regions used in the diagnostics are calculated.

For example, for the surface diagnostics which use four zonal bands on a decadal

scale, the correlation between the temperatures in one zonal band and itself from

decade to decade is calculated, in addition to the correlation within a given decade

between the zonal band and the other zonal bands. The complete set of spatial

and temporal correlations determines the noise-covariance matrix, CN. In total,

CN is a square matrix of dimension NT ×NT , where NT = Nzones ×Ndecades.

Through eigenvalue decomposition, CN is decomposed into a set of orthogonal

eigenfunctions that describes the internal climate variability. As the rank of the

eigenfunction decreases, so too does the magnitude of its eigenvalue, and thus the

fraction of the total variance in the overall pattern described by the individual

pattern (Forest et al., 2001). To create an orthonormal set of basis functions,

each eigenfunction is normalized by its singular value (i.e., square root of eigen-

value). With the internal variability patterns defined, the model and observed

patterns are rotated into the coordinate space defined by the basis functions. This

rotation serves to maximize the signal-to-noise ratio in each pattern by transform-

ing temperature patterns along the main components of internal variability into

coordinates in the direction of less internal variability. By maximizing the signal-

to-noise ratio, small patterns observed in the rotated trends are interpreted as a

temperature variation and not erroneously discarded as noise.

The x − y pattern in the rotated space is compared to each of the variability

patterns and each evaluation contributes individually to the total r2 value. To avoid

rotating into a direction with infinite variance (i.e., dividing by singular values near
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zero), the low variance patterns are filtered out of the pattern through a reduction

in the number of eigenvalues and eigenfunctions retained in the calculation. The

small magnitude singular values associated with the last temperature patterns

result in division by a small number and cause the calculation to approach infinity.

However, the removal of these patterns can be justified by remembering that they

contribute minimally to the total variability and represents a truncation of the

empirical orthogonal function decomposition.

Before concluding this section, potential causes of mismatches between models

and observations presented in Hegerl et al. (2000) are discussed. Differences can

be attributed to both observations and models. As previously mentioned, patterns

of internal variability associated with non-linear dynamics are a component of any

observed climate record. If the internal variability is large enough, climate change

signals are masked by these patterns and may go undetected. A second observa-

tional contribution to the mismatch is attributed to the distribution and density

of recording stations, as it contributes to errors in the climate record. Given the

spatial and temporal inhomogeneities of the observations, regions without data

must be filled in through interpolation. Lastly, instrumental errors affect the tem-

perature values obtained from observations and contribute to differences that are

present. All three components of observational error are present in all climate

records and can contribute to the differences between the observations and climate

model simulations.

Given that AOGCMs are approximations of reality, the internal variability

derived from them is also an approximation and may not reproduce that of the true

system. Any estimation of the internal variability derived from models is therefore

likely to be different than that derived from observations. The construction of a

climate model requires that assumptions be made in how the system behaves. As a

result, the underlying physics and feedbacks that govern the model may not exactly

mimic the behavior of the true climate system. However, given the current state

of climate models, the approximations are close to reality. Because structural

uncertainties still remain, they can lead to differences in temperature patterns

produced by models compared to what has been observed. Lastly, uncertainties

and errors in the radiative forcing scheme of the model will lead to differences

between model output and observations. The climate is driven by these forcings,
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and if they do not accurately represent reality, even the best climate models will

differ from the historical record. These uncertainties in the model representation of

the true climate system will also contribute to the differences between observations

and climate model simulations.

1.4 Detection and Attribution

In addition to determining likely values of climate model parameters, the climate

science community has actively searched for the causes of temperature change ob-

served in the past century (Tett et al., 1999, 2002; Allen et al., 2000; Stott et al.,

2000; Stott and Kettleborough, 2002; Hegerl et al., 2007). In particular, the im-

pacts of anthropogenic sources of climate change are of interest. Tett et al. (1999)

identify the main radiative forcings to be those resulting from well-mixed green-

house gases, tropospheric aerosols, changes in solar irradiance, and stratospheric

aerosols due to volcanic activity. Of these, greenhouse gases and tropospheric

aerosols are classified as anthropogenic sources and solar irradiance and volcanic

aerosols are classified as natural sources. Additional anthropogenic sources of tem-

perature change that have been identified include stratospheric ozone depletion

(Stott et al., 2006) and land-use changes (Cox et al., 2000).

In detection and attribution studies, linear combinations of the temperature

trends that arise from natural and anthropogenic climate forcings are tested to

determine which best match the past climate record. The study of Hegerl et al.

(1997) marks the first application of optimal fingerprint techniques to the detection

and attribution of climate change using simulated climate change from AOGCMs.

Through the use of fingerprint signals, the study investigates the likelihood that

forcings due to greenhouse gas emissions, sulfate aerosols, and solar variations will

produce temperature patterns consistent with the observed record. The multi-

fingerprint method utilized in the study allows for the combination of signals from

more than one source to be used in an attempt to explain the recent climate record.

Tett et al. (1999) find that in the early 20th century, natural variability alone

could account for the observed temperature change, but a combination of both

natural and anthropogenic forcings could also account for the observed change.

However, it is also shown that the recent trends in warming cannot be matched
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unless the anthropogenic signal is included. This result is in agreement with Hegerl

et al. (1997). Tett et al. (2002) also determine that internal variability and natural

forcings alone cannot account for the observed temperature change between 1946

and 1996. Furthermore, Stott et al. (2000) show that both the global mean response

and some large-scale features are also matched when the anthropogenic forcing

pattern is included.

Stott and Kettleborough (2002) use detection and attribution studies to show

the effect that mitigation strategies may have on future climate response. It is

shown that under the forcing scenarios presented by the Intergovernmental Panel

on Climate Change (IPCC), anthropogenic forcings lead unequivocally to a rise in

global mean temperature. A summary of detection and attribution studies is pre-

sented in Chapter 9 of the IPCC’s Fourth Assessment Report (IPCC AR4) (Hegerl

et al., 2007). Similar to the studies addressed above, the IPCC AR4 agrees that

it is very likely that recent climate change cannot solely be attributed to inter-

nal variability. None of the models used in the report have matched the warming

trend of the past century when anthropogenic forcings are omitted. Furthermore,

detectable anthropogenic signals of climate change have been found on every con-

tinent with the exclusion of Antarctica. This exclusion is present only due to the

currently poor data coverage over the continent (Hegerl et al., 2007).

The recognition that anthropogenic forcings contribute to observed surface tem-

perature changes has motivated its inclusion in this study. In particular, the an-

thropogenic aerosol forcing from sulfate aerosols is an adjustable parameter in the

model and can be estimated in this study. The magnitude of this forcing plays

a critical role in the representation of past and future climate change through its

impact on the net radiation balance of the climate system.

1.5 Transient Climate Response

The behavior of the global climate system can be explained with the aid of a simple

energy balance model and a discussion is presented in Sokolov et al. (2003). The

governing equation of the model is:

C
∂∆T

∂t
= F (t)− λ∆T (t) + φ(t), (1.2)
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where C is the heat capacity of the climate system, ∆T is the change in global mean

surface temperature, F(t) is the net radiative forcing, λ is a feedback parameter,

and φ(t) is the flux of heat into the deep ocean below the oceanic mixed layer.

For the climate system, the heat capacity is mainly that of the mixed layer of the

ocean and the associated mass defines C. This is due to the relatively large heat

capacity of water compared to air and lack of mixing between the mixed layer and

deep ocean. The feedback parameter is a single number that is characteristic of the

impacts that the active processes in the climate system have on the temperature

of the system. Furthermore, the feedback parameter determines the equilibrium

sensitivity of the system.

When F(t) is taken to be the additional forcing instantaneously introduced by

a doubling of carbon dioxide (CO2) concentrations, the corresponding temperature

change when the system is brought into equilibrium is defined as the equilibrium cli-

mate sensitivity. When the system is in equilibrium, the left-hand side of Eq. (1.2)

is zero, the heat flux into the ocean is zero, and the corresponding equilibrium

temperature change and climate sensitivity of the system is ∆Teq =
F2XCO2

λeq
.

If F(t) is taken to be the forcing when CO2 concentrations are increased at the

rate of 1% per year instead of that due to an instantaneous doubling of CO2, an

effective climate sensitivity, λeff , can be derived through inversion of Eq. (1.2). At

any point in the simulation, all quantities in Eq. (1.2) can be estimated from the

model time series. The effective climate sensitivity corresponds to the equilibrium

climate sensitivity at any given time in the simulation for the set of active feedbacks

in the system. Transient climate simulations include a set of active feedbacks in

the climate system that contribute to the change in temperature under idealized

or more realistic forcing scenarios (Murphy, 1995). In simulations utilizing this

specific forcing scenario, the transient climate response (TCR) is taken to be the

temperature change at the time of CO2 doubling, the average of the 20 year period

surrounding year 70.

Through its connection to the feedback parameter, it is clear that the climate

sensitivity of the system plays a key role in the transient climate response. What

may not be clear is that the rate of ocean heat uptake also plays a large role

in transient simulations. The rate of ocean heat uptake is a measure of how

well heat advects and diffuses into the ocean below the climatological mixed layer
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(Stouffer et al., 2006). If the rate of advection and/or diffusion, and thus rate

of heat uptake, is slow, heat is not able to easily cross the interface between the

mixed layer and deep ocean. As a result, heat is not transported as efficiently

into the deep ocean. This lack of heat removal leads to increasing temperatures

in the atmosphere and mixed layer. Because the mixed layer serves as the main

component of the heat capacity of the system, changes in mixed layer behavior

and interaction with the deep ocean drastically impact the thermal inertia of the

climate system and subsequent climate behavior.

Using a box diffusion model, Hansen et al. (1984) first showed that equilib-

rium climate sensitivity and ocean heat uptake are correlated quantities. The

study showed that the ocean relaxation time depended on the feedback factors

that define the climate sensitivity. If it assumed that ocean relaxation time is

also dependent upon the rate of ocean heat uptake, a positive correlation between

climate sensitivity and ocean heat uptake can be inferred. Thus, as the climate

sensitivity increases, so too does the rate of ocean heat uptake. The assumed de-

pendence of ocean relaxation time on the rate of ocean heat uptake is justified

through the argument that the rate of ocean heat uptake determines the heat

capacity of the climate system, and the heat capacity of the climate system de-

termines the longterm behavior of the system. Under the assumption of constant

forcings, if the climate sensitivity were to increase, surface and mixed layer tem-

peratures would tend to increase more than if the climate sensitivity were lower.

However, in order for temperatures to remain consistent with the observed tem-

perature change, a portion of the additional heat must be removed from the mixed

layer so that temperatures do not increase too much and become inconsistent with

the observations. As a result, heat must be transported from the mixed layer to

the deep ocean. To obtain the necessary heat transfer, the ocean diffusivity, and

subsequent ocean heat uptake value, must be greater, showing that the increased

climate sensitivity led to the requirement of greater ocean heat uptake. A similar

argument can be constructed for when climate sensitivity values are decreased as

well.

Andrews and Allen (2008) frame the same argument in terms of effective climate

sensitivity by exploring the relationship between effective climate sensitivity, ocean

heat uptake, and TCR. In the study, ocean heat uptake is related to the feedback
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response time of the system. This definition is based on the argument that the rate

of ocean heat uptake defines the heat capacity of the system and thus sets the time

it takes for the system to respond to changes in external forcing. In their Figure 2b,

contours of constant effective climate sensitivity are drawn as a function of TCR

and feedback response time. The contours show that for a fixed TCR, if effective

climate sensitivity is to increase, the feedback response time must also increase.

Because the feedback response time is proportional to the heat capacity, and the

heat capacity is determined by the rate of ocean heat uptake, the study shows

that effective climate sensitivity and ocean heat uptake are correlated quantities.

Both the physical argument presented above and the study of Andrews and Allen

(2008) lead to the conclusion that climate sensitivity and ocean heat uptake must

be correlated.

Given that TCR is a function of climate sensitivity and ocean heat uptake,

uncertainties in the two properties propagate as uncertainties in TCR. Despite

knowing that climate sensitivity and ocean heat uptake are correlated, it has been

shown that large uncertainties in TCR still remain due to uncertainties in climate

sensitivity (Raper et al., 2002). If an understanding of future climate change is to

be gained, more reliable projections of TCR must be obtained. Current estimates

from the IPCC AR4 put TCR estimates between 1 and 4 K (Hegerl et al., 2007).

At this point it should be mentioned that surface temperature change is not the

only metric of future climate change. Additional metrics of climate change include

changes in precipitation, sea-ice coverage, the strength of the Atlantic Meridional

Overturning Circulation, and sea-level rise. Although reducing TCR uncertainty

may not lead to decreased uncertainties in other climate change metrics, the need

for reliable TCR projections motivates the inclusion of estimates for the param-

eters that define it, climate sensitivity and ocean heat uptake, into this study.

Furthermore, this study explores the sensitivity of TCR projections to the surface

datasets used to evaluate model performance and derive the parameter distribution

functions.



Chapter 2

Surface Datasets

One diagnostic used to estimate distributions of model parameters in this study

is the set of surface temperature trends in four equal-area zonal bands. It can be

argued that surface temperature change, ∆T , provides the best dataset possible for

the comparison of model output and observations. Surface temperature records

provide a relatively long dataset, allowing for longer time series to be used in

model evaluation studies. Additionally, the large number of stations that have

long surface temperature time series allow for greater spatial coverage of the record

than other potential datasets. Currently, estimates of past surface temperatures

are available from multiple sources. This study will utilize estimates from three

research groups that are considered to provide the best datasets available. The

high quality of the data products produced by the research groups have led to their

inclusion in the IPCC AR4.

In total, five different temperature reconstructions are used. The first two

reconstructions are from the Hadley Centre for Climate Prediction and Research

and represent their second (Jones and Moberg, 2003) and third (Brohan et al.,

2006) versions. These datasets will be referred to hereafter as HadCRUT2 (version

2) and HadCRUT3 (version 3). The third reconstruction is from NOAA’s National

Climatic Data Center (Smith et al., 2008) and will be referred to hereafter as

NCDC. The remaining two reconstructions are from NASA’s Goddard Institute for

Space Studies (Hansen et al., 2010) and will be referred to hereafter as GISTEMP

250 and GISTEMP 1200. The significance of the 250 and 1200 designations for

these datasets will be made clear later in this section. Each dataset reports monthly
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surface temperatures as anomalies on a 5x5 degree grid with respect to a given base

period. HadCRUT anomalies are with respect to a 1961-1990 base period, NCDC

anomalies are with respect to a 1971-2000 base period, and GISTEMP anomalies

are with respect to a 1951-1980 base period. While the goal of each group is

reconstructing the ∆T time series, the estimations differ from one another. The

potential reasons for these differences are discussed below because they impact our

ability to estimate climate model parameter values.

The first major difference between the reconstructions is which data records

are used in the analysis. All of the reconstructions obtain a majority of their

land surface data from the Global Historical Climatology Network (GHCN) from

the National Climatic Data Center (Peterson and Vose, 1997). The GHCN is

an international effort to provide, maintain, and make available historical surface

temperature data. Each of the reconstructions in this study utilize the available

data differently. For example, the Hadley Centre requires that stations have suf-

ficient data between 1961 and 1990 in order to be used in the analysis (Jones

and Moberg, 2003; Brohan et al., 2006). The choice of ocean surface data also

differs between the datasets. Because oceans cover 70% of the Earth’s surface,

this difference plays a crucial role in causing the differences between the temper-

ature reconstructions (Smith et al., 2008). For HadCRUT2, ocean data from the

HadISST1 (Rayner et al., 2003) sea surface temperature reconstruction is used.

HadSST2 (Rayner et al., 2006), an update to HadISST1, is used in HadCRUT3

surface temperature estimates. The most recent ocean dataset from the National

Climatic Data Center, ERSST version 3b, is used and described in the description

of the NCDC surface temperature reconstruction (Smith et al., 2008). GISTEMP

temperature reconstructions use HadISST1 data from 1880-1981 and switch to

satellite sea surface temperature data (Reynolds et al., 2002) from 1981 to the

present. In a test of the sensitivity to ocean data choice, Hansen et al. (2010) show

that the GISTEMP temperature reconstructions are affected by the choice of sea

surface temperature data. Slightly greater warming trends in recent decades and

on the century time scale were observed in the GISTEMP reconstructions when

using HadSST2 or ERSST ocean data as opposed to the combined HadISST1 and

satellite data currently used.

The second major difference between the surface datasets are the interpolation
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and averaging methods used to fill in missing data regions and create the 5x5 degree

grid boxes. HadCRUT2 and HadCRUT3 data use the climate anomaly method

(Jones et al., 1982) to create the 5x5 degree temperature anomalies. Surface tem-

perature anomalies with respect to the 1960-1990 base period are calculated for

each station used in their reconstructions. These stations are carefully selected

and include only those with sufficient data in the climatology period. Once the

time series of anomalies for each station are calculated, the value for a given grid

box is taken to be the average of all of the stations contained in that grid box.

NCDC uses the methodology of Van den Dool et al. (2000) to interpolate tem-

perature patterns between observation stations. The interpolation is carried out

separately for temperature anomalies over land using land surface data and sea

surface temperature anomalies using ocean data. Using the observed data, large

and small scale temperature patterns are identified. By weighting these patterns

by the amount of variance they explain, regions without data are filled in by tak-

ing combinations of the base patterns to identify anomalies for each grid box. The

complete reconstruction is determined through a blending of the land and ocean

anomalies. GISTEMP calculates temperature anomalies in each of 80 equal-area

grid boxes. Each larger box is divided into 100 sub-boxes, and the anomaly for

each sub-box is taken to be the weighted average of all stations within a predefined

radius of influence (Hansen and Lebedeff, 1987). The weight given to a station in

the average is a linear function of the distance between the point and the station.

An area-weighted average of the sub-boxes gives the anomaly for each of the larger

grid boxes. Data are currently available with 250 and 1200 km radii of influence,

and these radii are reflected in the naming of the GISTEMP datasets in this study.

Using publicly available FORTRAN codes from their website, the 80 equal-area

box reconstruction can be interpolated onto the same 5x5 degree grid used by the

other three datasets. A summary of the differences between the reconstructions is

given in Table 2.1.

Owing to the different data choices and interpolation methods, the five surface

temperature reconstructions differ from each other. Due to the data requirement

used in the climate anomaly method, HadCRUT reconstructions have less spatial

coverage in the polar regions when compared to the NCDC and GISTEMP recon-

structions (Hansen et al., 2010). The polar coverage differences mark the biggest
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discrepancies between the datasets. Given these differences in the reconstructions,

this study is geared towards understanding the impacts that the choice of dataset

has on the parameter calibrations.

Table 2.1. Summary of differences in surface temperature datasets
Dataset Ocean Data Land Data Grid Box Averaging

Method
HadCRUT2 HadISST1 GHCN Network

- restricted to those
with at least 20 years
of data in the 1960-
1990 climatology pe-
riod

Climate anomaly
method (average of
selected stations in
each grid box)

HadCRUT3 HadSST2 GHCN Network
- restricted to those
with at least 20 years
of data in the 1960-
1990 climatology pe-
riod

Climate anomaly
method (average of
selected stations in
each grid box)

NCDC ERSST GHCN Network
- subjective choice of
stations

Infilling of data by
variance-weighted
average of observed
temperature patterns

GISTEMP
250

HadISST1
(1880-1981),
OISST.V2
(1981-present)

GHCN Network
- subjective choice of
stations

Weighted average of
stations within a 250
km radius of influ-
ence in each of 80
equal-area grid boxes

GISTEMP
1200

HadISST1
(1880-1981),
OISST.V2
(1981-present)

GHCN Network
- subjective choice of
stations

Weighted average
of stations within a
1200 km radius of
influence in each of
80 equal-area grid
boxes



Chapter 3

Methods

Following the work of Forest et al. (2002, 2006, 2008), this study estimates the

joint distribution function of climate model parameters for climate sensitivity (S),

effective ocean diffusivity (Kv), and net anthropogenic aerosol forcing (Faer). Using

the climate system portion of MIT’s Integrated Global Systems Model (Sokolov

and Stone, 1998; Sokolov et al., 2005), the model simulates historical temperature

responses given choices of the three climate model parameters. Climate sensitivity

in the model is adjusted by changing the strength of the cloud feedback parameter

at different levels in the atmosphere. Through these changes, the amount of clouds

in the radiative transfer scheme is altered, and the resulting climate system be-

havior adjusts accordingly. Model effective ocean diffusivity describes the vertical

diffusion of heat anomalies below the mixed layer into the deep ocean and tends

to be larger than typical ocean diffusivity values which describe the diffusion of

heat (Sokolov et al., 2003). The strength of the diffusion coefficient sets the rate

of ocean heat uptake. This rate of ocean heat uptake is what was described in

connection with the transient climate response. The anthropogenic aerosol forc-

ing used in the model is prescribed spatially by a latitude-dependent pattern and

differs over land and ocean. Additionally, the pattern amplitude varies with time

based on the estimated anthropogenic emissions of sulfur dioxide, with weaker

amplitudes at the beginning of the simulation and progressively larger amplitudes

as time progresses. These spatial and temporal patterns can be found in Forest

et al. (2001). In the model, the net anthropogenic aerosol forcing parameter sets

the strength of the aerosol forcing in 1986, the time when the pattern amplitude
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is equal to 1. This is representative of the forcing strength for the decade of the

1980s.

In this study, the parameter space is sampled by varying climate sensitivity

between 0 to 8 K, effective ocean diffusivity between 0 to 25 cm2s−1 and an-

thropogenic aerosol forcing between -1.5 and 0.5 Wm−2. Negative anthropogenic

aerosol values represent a cooling effect on the climate and positive values repre-

sent a warming effect. In total, 640 different parameter combinations are used.

Each model run is forced by historical records of greenhouse gas concentrations,

sulfate aerosol loadings, tropospheric and stratospheric ozone concentrations, so-

lar irradiance changes, and stratospheric aerosols from volcanic eruptions (Forest

et al., 2008).

Model performance under a given set of parameter values is evaluated through

comparison of model output to historical data using diagnostics described in Forest

et al. (2006, 2008). The first diagnostic used is surface temperature anomaly

patterns for four zonal bands on a decadal time scale from 1946-1995 using a

reference climatology of 1906-1995. The second diagnostic is the height-latitude

pattern of upper-air temperature differences between the periods 1961-1980 and

1986-1995. The third diagnostic used is the trend in ocean heat content for the

0-3 km layer from 1948-1995. Surface temperature diagnostics are calculated using

four equal-area zonal bands from 90 to 30 ◦S, 30 to 0 ◦S, 0 to 30 ◦N, and 30 to 90
◦N. Upper-air temperature diagnostics are calculated using eight vertical layers in

the atmosphere on a 5 degree latitude grid (excluding missing values). Ocean heat

content diagnostics are calculated on a global scale. The set of diagnostics for this

study was chosen to match those used in Forest et al. (2008).

For surface and upper-air temperature diagnostics, an estimate of the un-

forced variability of the climate system is determined from the control run of

the Hadley Centre’s coupled atmosphere-ocean global circulation model, HadCM2

(Johns et al., 1997). For the surface temperature and upper-air temperature di-

agnostics, the internal variability estimate is represented by the noise-covariance

matrix. This matrix calculates the spatial and temporal correlations that are

present in an unforced model scenario and represents an estimate of the internal

variability found in the climate system. Rotating the model and observed temper-

ature patterns into the coordinate space defined by the internal variability serves
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to maximize the signal-to-noise ratio in an attempt to allow for the detection of

small patterns in the trends. With the rotation, the goodness-of-fit statistic, r2,

discussed in Section 1.3 is calculated for each model run for each of the diagnos-

tics and gives a measure of how consistent the modeled trends are with observed

trends. Because the ocean diagnostic uses the linear trend in a global quantity,

there are no spatial correlations between zonal bands to be calculated. As a result,

the noise-covariance matrix for the ocean diagnostic reduces to an estimate of the

standard deviation of the linear trend values taken from control run data and is

a single value. This value is estimated from the control run of the GFDL R30

model (Delworth et al., 2002) and takes the place of C−1
N in Eq. (1.1). Through

an application of Bayes’ Theorem (Bayes, 1763), information from the individual

diagnostics are combined to give a full evaluation of the model parameters.

Determination of the surface diagnostic requires the derivation of decadal mean

temperature anomalies from the monthly observational datasets for each of the four

zonal bands. Zonal mean decadal temperatures are derived by first calculating

yearly and decadal average anomalies for each of the points on the 5x5 degree

grid, then averaging the temporal averages spatially within each latitude band.

Due to data coverage issues, coverage thresholds must be placed on the spatial

and temporal averages to avoid one data point significantly influencing the time

series. When annual averages are taken, eight months within the given year must

be defined; otherwise, the grid point is marked as missing data. This threshold is

a similar, yet slightly more stringent requirement than that used in Thorne et al.

(2002), which requires two months of data in at least three of the four seasons.

Once the annual average is calculated, the decadal average for each grid box is

calculated with the requirement that at least eight years must contain defined

data. With decadal averages for all grid points, the longitudinal average for a

given latitude band is calculated with the requirement that at least 20-percent of

the zonal band is covered. Finally, the time series for the four zonal bands used in

the analysis are calculated by taking a mass-weighted average of the zonal bands

contained within the diagnostic band.



Chapter 4

Results

4.1 Surface Temperature Time Series

Using the averaging techniques for deriving decadal mean temperatures described

in Chapter 3, time series of the temperature trends used for the surface diagnostics

are plotted (Fig. 4.1). It is important to note that the HadCRUT2 data presented

here is different than that used in Forest et al. (2008). This study uses the monthly

version of the HadCRUT2 dataset to allow for identical treatment of data as for the

other four datasets. In general, the patterns in each zonal band are similar, with

the sign of the temperature change consistent across a majority of the decades

for each dataset. However, the magnitudes of these temperature changes differ

amongst each other. In particular, agreement in the trends is weakest in the

Southern Hemisphere, particularly in the poleward latitude band. These results

follow from the discussion presented in Chapter 2. Because each reconstruction

uses different data and interpolation schemes, the temperature patterns cannot be

expected to be the same. Furthermore, the observation that Southern Hemisphere

patterns show the largest discrepancies is not surprising given that sea surface

temperature datasets differ between the reconstructions and a greater fraction of

the Earth’s surface is ocean in the Southern Hemisphere.

Another significant difference is the overall temperature trend observed during

the period used in the surface diagnostic, 1946-1995. In all zonal bands, GISTEMP

datasets show either similar or weaker warming trends when compared to the other

datasets. This is most evident in the 30-90 ◦S zonal band, where in the first decade,
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Figure 4.1. Surface temperature time series from 1896-1995 for each of the individual
datasets. Only data beginning in 1906 is used in this study, but the time series begins
in 1896 to show data from the same period that was available in Forest et al. (2008).
Vertical lines mark the beginning of the period used in the surface diagnostic (1946).

GISTEMP data are by far the warmest, yet in the last decade, GISTEMP data

are the coldest. Similar, yet weaker, patterns hold in the remaining zonal bands.

In general, the NCDC time series yields the next weakest warming trends, followed

by the HadCRUT2 and HadCRUT3 datasets, which yield similar overall trends.

However, the extent of the differences is much less pronounced than with the

GISTEMP datasets, and the rank order of the trends is not consistent across all

zonal bands.
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4.2 Parameter Diagnostics

With the surface time series determined, the temperature diagnostics for each

model run are calculated. Each model run is identified by a unique set of the

three parameter values, θ, where θ = {S, Kv, Faer}. The model output, x(θ) is

substituted in for x in Eq. (1.1) and shows the dependence of the r2 calculation

on θ. At each aerosol forcing level, the r2 values at a given climate sensitivity

value and across all effective ocean diffusivity values are initially smoothed. This

smoothing is accomplished by fitting a sixth-order polynomial to the eight data

points defined when ocean diffusivity and aerosol forcing are fixed and climate

sensitivity is varied over the eight values used when running the model. After the

smoothing, the difference between the r2 value for a given model, r2(θ), and the

global minimum for the diagnostic, r2
min, is calculated to give the ∆r2 value for each

model run. The r2
min value for each diagnostic corresponds to the lowest r2 value

calculated across the set of θs used in this study. Each ∆r2 value is then converted

into an estimate of the likelihood that the given model yields results consistent with

the observations through evaluation of an F-statistic for each value. The likelihood

of a given set of model parameters is calculated by finding the probability that the

∆r2 value from the distribution could be greater than the calculated ∆r2 value

for the model. For the surface and ocean diagnostics, the F-distribution used

to calculate the statistic has 3 and 24 degrees of freedom, and for the upper-air

diagnostic, the F-distribution has 3 and 12 degrees of freedom. The assumptions

for using the F-statistic are satisfied because the rotation of the observed and

modeled temperature patterns when calculating the r2 values assures that the

errors are identically and independently distributed.

Once the likelihood values have been calculated for each model run, the cli-

mate sensitivity-effective ocean diffusivity parameter space is filled by least-squares

quadratic interpolation of the smoothed data. Figs. 4.2-4.9 show the resulting like-

lihood distributions at each of the aerosol levels. At each level the 90- (white) and

99-percent (light blue) confidence intervals are shown. The 90-percent confidence

regions mark the strongest acceptance of a given set of parameter values. Regions

outside of the 90-percent confidence interval are rejected at the 10-percent sig-

nificance level for being inconsistent with the observed data, indicating that the
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parameter values have a less than 10% chance of yielding results consistent with

the data. Similarly, regions outside of the 99-percent confidence region are rejected

at the 1-percent significance level for being inconsistent with the observed data,

indicating that the parameter values have a less than 1% chance of yielding results

consistent with the data. As a result, parameter combinations in dark blue regions

(outside of the 99-percent confidence intervals) are rejected for being inconsistent

with the data.

Regardless of the observational surface dataset choice, the upper-air and ocean

temperature diagnostics are the same in each analysis. These diagnostics are also

the same as in Forest et al. (2008). For the strongest positive aerosol forcing that

the model was run with, +0.50 Wm−2, the upper-air diagnostic yields parameter

combinations that are accepted at the 90-percent confidence interval for all effec-

tive ocean diffusivity values when the climate sensitivity is between 1 and 2.5 K.

Additionally, a slight positive trend in the 99-percent confidence interval can be

seen, that as the ocean diffusivity increases, so too does the climate sensitivity. As

the aerosol forcing becomes less positive, the positive trend between effective ocean

diffusivity and climate sensitivity becomes more pronounced and the slope steeper.

Additionally, the strong lower bound at 1 K remains intact across all diffusivity

values. In the negative aerosol forcing levels, the upper-air diagnostic becomes pro-

gressively less informative due to the growth of the 90-percent confidence region.

Moving towards more negative aerosol levels brings more regions in the climate

sensitivity-effective ocean diffusivity space into the 90-percent confidence region.

By the -0.75 Wm−2 aerosol level, only extreme combinations of low diffusivity and

high climate sensitivity are rejected for being inconsistent with the data at the

1-percent significance level. At the most negative aerosol level, -1.5 Wm−2, almost

all parameter combinations fall outside of the 90-percent confidence interval and

have a less than 10% likelihood of yielding results consistent with the observations.

The ocean diagnostic shows an initial increase in the size of the 90-percent

confidence region through a changing of aerosol values from positive to negative

values and rejection of all points at the largest negative aerosol forcing. When

moving from the +0.5 to -0.5 Wm−2 aerosol levels, an increase in the size of the 90-

percent confidence region is observed. This acceptance region initially corresponds

to low climate sensitivity values and a wide range of effective ocean diffusivity
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Figure 4.2. Distributions of r2 for temperature diagnostics as a function of climate sen-
sitivity and effective ocean diffusivity at an aerosol forcing (labeled as FA) of 0.50 Wm−2.
White shading represents the 90-percent confidence region, and light blue shading repre-
sents the 99-percent confidence region based on an F-test. Dark blue shading represents
regions that are outside of the 99-percent confidence region and are thus rejected at the
1-percent significance level.

values. As the aerosol forcing becomes less positive in the +0.5 to -0.5 Wm−2

range, progressively larger regions of high climate sensitivity and low effective
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Figure 4.3. As in Fig. 4.2 but at an aerosol forcing of 0.25 Wm−2

ocean diffusivity are consistent at the 99-percent level. The region accepted at

the 90-percent level grows and shifts towards regions of higher climate sensitivity

and higher effective ocean diffusivity at -0.75 Wm−2 aerosol forcing. By the -1.00

Wm−2 aerosol level, the acceptance region shifts to include only regions of high

climate sensitivity and high effective ocean diffusivity. When aerosol forcing is
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Figure 4.4. As in Fig. 4.2 but at an aerosol forcing of 0.00 Wm−2

-1.50 Wm−2, no regions of the parameter space are consistent with the ocean data.

For positive anthropogenic aerosol forcing values, all values are rejected for

being inconsistent with the data by the surface diagnostic, regardless of which

observational dataset is used. Additionally, all regions are rejected at zero aerosol

forcing. As the aerosol forcing moves to -0.25 Wm−2, regions of the parameter space
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Figure 4.5. As in Fig. 4.2 but at an aerosol forcing of -0.25 Wm−2

using the HadCRUT datasets are accepted at the 90-percent confidence interval,

but no points in the NCDC or GISTEMP datasets are consistent with the data

at this level. In both HadCRUT cases, a positive correlation between the climate

sensitivity and effective ocean diffusivity values in the 99-percent confidence region

can be seen.
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Figure 4.6. As in Fig. 4.2 but at an aerosol forcing of -0.50 Wm−2

At the -0.50 Wm−2 level, substantial portions of the parameter space are ac-

cepted at the 90-percent confidence interval using the HadCRUT datasets. In each

of these cases, only extreme regions of high climate sensitivity and low effective

ocean diffusivity are rejected. The same general trend can be seen using the NCDC

dataset, but a much larger region of the high sensitivity and low diffusivity quad-
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Figure 4.7. As in Fig. 4.2 but at an aerosol forcing of -0.75 Wm−2

rant is rejected. At this level, both GISTEMP datasets reject all regions with

climate sensitivities over 3 K, and only small portions of the parameter space are

not rejected at the 10-percent level within the same region. Noticeable differences

in the surface diagnostics are also present at the -0.75 Wm−2 aerosol forcing level.

HadCRUT2 data are no longer rejected in the high sensitivity and low diffusivity
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Figure 4.8. As in Fig. 4.2 but at an aerosol forcing of -1.00 Wm−2

regions, and a large portion of the low climate sensitivity region is rejected for

being inconsistent with the data. The upper bound of the rejection region for

HadCRUT3 is lower than that for HadCRUT2, and a greater portion of the pa-

rameter space is still not rejected at the 1-percent significance level. Similar to the

HadCRUT3 data, NCDC data accept a large portion of the parameter space at
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Figure 4.9. As in Fig. 4.2 but at an aerosol forcing of -1.50 Wm−2

this aerosol level. However, a greater portion of the high climate sensitivity and

low diffusivity space is rejected. The upper bound of the rejection region for cli-

mate sensitivity is also lower. Both GISTEMP datasets continue to reject a larger

region of the high sensitivity and low diffusivity space than any of the other sur-

face datasets, with the GISTEMP 1200 data being slightly more restrictive. While
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the correlation between climate sensitivity and effective ocean diffusivity values is

present in both GISTEMP datasets, the lower bound on climate sensitivity con-

tinues to be weak. This is shown by the lack of rejection in low climate sensitivity

values across all effective ocean diffusivity values.

At the most extreme negative aerosol values used, -1.0 and -1.5 Wm−2, all five

surface datasets strongly reject all of the parameter space. Except for a few regions

in the -1.0 Wm−2 level, all of the parameter combinations are rejected at the 1-

percent significance level. The only deviation from this pattern is the acceptance

of a small region of the parameter space in the GISTEMP 250 case falling inside

of the 99-percent confidence region at an aerosol value of -1.0 Wm−2. Despite the

agreement at these levels and the positive levels, significant differences exist in the

surface diagnostics at the levels in between.

4.3 Probability Distribution Functions for Cli-

mate System Properties

To generate a full three-dimensional likelihood for each diagnostic, likelihood values

between the eight aerosol levels have been interpolated using a thin plate spline to

fill the entire parameter space. By applying Bayes’ Theorem (Bayes, 1763) to the

likelihood distributions derived from each diagnostic, the information is combined

to determine the joint probability distribution function for the parameter values.

For this study, Bayes’ Theorem is written as

P (θ|y) ∝ P (θ) ∗ P (y|θ), (4.1)

where P (θ|y) is the likelihood of a set of parameter values, given the observed

data, P (θ) represents prior assumptions on the parameters, and P (y|θ) is the

likelihood of the observed data, given that the parameters have been set. For each

diagnostic, the likelihood distributions derived in Sec. 4.2 represent the P (y|θ)
term in Eq. (4.1). The information from the three diagnostics is combined in

an iterative process. In the first step, an expert prior on climate sensitivity first

described and used in Forest et al. (2002) is combined with one of the diagnostics.

Uniform priors have been used on effective ocean diffusivity and net aerosol forcing.
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The prior on climate sensitivity acts to eliminate large values of climate sensitivity

that have been deemed to be inconsistent with temperature changes observed in

the paleoclimate records. The resulting likelihood function is then used as the prior

for the second application of Eq. (4.1) and incorporates the second temperature

diagnostic. To complete the process, the likelihood from the second step is used

as the prior for incorporation of the final temperature diagnostic. The resulting

likelihood function now incorporates all of the information obtained from the three

observational datasets and gives a measure of the likelihood that a given set of

parameter values, when used in the model, will yield model output that matches

the observed temperature patterns.

From the three-dimesional distribution function, the marginal distributions of

each parameter are calculated through integration across the other two parame-

ters. The marginal distributions (Fig. 4.10) show that the constraints on the three

parameters are sensitive to the choice of surface dataset. For climate sensitivity,

the distribution derived from the GISTEMP datasets give the lowest values for

the parameter. This can be traced back to the failure in the surface diagnostic to

constrain the lower bound of the distribution. Furthermore, the 95-percent bound

has the lowest value due to the rejection of high climate sensitivity values in the

surface diagnostic. This rejection can be attributed to the weak warming trends

discussed in Section 4.1 because model runs with high climate sensitivity values

yield warming which is too strong to be consistent with the GISTEMP datasets.

The remaining three datasets yield similar, yet still noticeably different results.

HadCRUT datasets show the widest confidence intervals as a result of the large

regions of the parameter space found to be consistent in the surface diagnostic.

At nearly all levels, these regions were larger than those observed for the NCDC

data. NCDC derived climate sensitivity values are only slightly smaller than those

derived from the HadCRUT datasets. The similarities in the distributions can be

loosely attributed to the similar long-range temperature trends shown in Fig. 4.1

because similar climate sensitivity values would be accepted and rejected based off

of the first-order approximation of the temperature change.

Given the wide confidence intervals regardless of which surface dataset is used,

effective ocean diffusivity is poorly constrained by the data. Figs. 4.2-4.9 have

demonstrated that regions consistent with the data span the entire range of effec-
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Figure 4.10. Marginal probability distribution functions using each of the surface
datasets. Distributions for climate sensitivity (top), effective ocean diffusivity (middle),
and net anthropogenic aerosol forcing (bottom) are shown. Box-and-whisker plots show
the percentile bounds: 2.5-97.5 (dots), 5-95 (vertical lines at ends), 25-75 (box ends),
and 50 (vertical line in box). The distribution mean is represented by a diamond, and
the distribution mode is the peak in the distribution



35

tive ocean diffusivity values. This acceptance across all values leads to the wide

parameter distributions seen in Fig. 4.10. With the exclusion of the GISTEMP

cases, the mode in the distribution is found for low values of effective ocean diffusiv-

ity. This is due to the high climate sensitivity and high effective ocean diffusivity

regions being rejected for positive values of aerosol forcing. As mentioned pre-

viously, an estimate of natural variability has been included in the ocean heat

content diagnostic. This estimation results in a decrease in the significance of the

ocean heat content signal and leads to weaker constraints for the effective ocean

diffusivity parameter.

The distributions for net aerosol forcing cluster into two groups: those derived

using HadCRUT data and those that are not. Weaker aerosol forcing values are

estimated when using HadCRUT data than when either of the NCDC or GISTEMP

datasets are used. It was noted previously that regions that are consistent with the

surface data were first present at the -0.25 Wm−2 aerosol level for the HadCRUT

datasets. As a result, the marginal distribution for the two datasets is shifted more

Table 4.1. Percentiles and means for marginal probability distribution functions for
each surface dataset

Surface Data 0.05 0.25 0.50 0.75 0.95 Mean
S

HadCRUT2 2.0 2.6 3.0 3.7 5.3 3.1
HadCRUT3 1.9 2.4 2.9 3.6 5.1 3.0

NCDC 1.8 2.3 2.7 3.3 4.7 2.8
GISTEMP 250 1.3 1.7 2.1 2.6 3.6 2.2

GISTEMP 1200 1.2 1.6 2.0 2.5 3.4 2.1√
Kv

HadCRUT2 0.18 0.61 1.3 2.3 4.1 1.6
HadCRUT3 0.24 0.80 1.7 2.9 4.4 1.9

NCDC 0.28 0.98 2.2 3.5 4.7 2.2
GISTEMP 250 0.50 1.7 2.9 4.0 4.8 2.7

GISTEMP 1200 0.47 1.7 2.9 4.0 4.8 2.7
Faer

HadCRUT2 -0.19 -0.36 -0.47 -0.57 -0.70 -0.46
HadCRUT3 -0.22 -0.40 -0.51 -0.61 -0.74 -0.50

NCDC -0.37 -0.50 -0.59 -0.67 -0.78 -0.58
GISTEMP 250 -0.32 -0.49 -0.59 -0.69 -0.83 -0.58

GISTEMP 1200 -0.33 -0.49 -0.58 -0.67 -0.80 -0.57
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towards zero than for the other two datasets. Furthermore, the largest regions of

consistent results for the NCDC and GISTEMP datasets were found in the -0.75

Wm−2 level. This leads to the observed shift in the distribution away from zero. A

complete summary of the parameter distribution bounds and modes are presented

in Table 4.1.

To gain a better understanding of the interactions between the parameters,

marginal two-dimensional distributions are investigated. Like the one-dimensional

marginal distributions, these are obtained through integration of the joint distribu-

tion over the other parameter values. For all of the datasets, a weak correlation can
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Figure 4.11. Two-dimensional marginal distribution function for climate sensitivity and
effective ocean diffusivity when using HadCRUT2 (black), HadCRUT3 (blue), NCDC
(green), GISTEMP 250 (orange), and GISTEMP 1200 (red) surface data. Starting from
the outermost moving inward, contours mark the 99-, 90-, and 10-percent confidence
regions. The 10-percent confidence region is included to show the modes of the distribu-
tions
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be observed between climate sensitivity and effective ocean diffusivity (Fig. 4.11).

As the effective ocean diffusivity increases, the climate sensitivity increases as

well. This trend is seen most clearly using the 10-percent confidence region in

the HadCRUT2, HadCRUT3, and NCDC sets, but is nearly non-existent using

the GISTEMP data. However, in the GISTEMP cases, the upper bounds of the

99-percent confidence region display this trend. These trends are consistent with

what has been found in past studies: the two parameters are positively correlated

(Hansen et al., 1984).

From the climate sensitivity-aerosol forcing two-dimensional marginal distri-

butions, it can be seen that the two parameters are correlated, regardless of the

surface dataset (Fig. 4.12). As the climate sensitivity increases, the aerosol forcing

takes on stronger negative values. Similarly, as the climate sensitivity decreases,
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Figure 4.12. As in Fig 4.11, but for the two-dimensional marginal distribution function
for climate sensitivity and anthropogenic aerosol forcing.
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the aerosol forcing takes on less negative values. When considering the physical

processes involved, these results agree with intuition. For all model runs, the cli-

mate forcings and surface dataset are fixed. If the climate sensitivity is increased

for a model that yielded results consistent with the observed data without any

other adjustments, surface warming becomes too high in the model to match the

observations. To account for this increased warming, a stronger anthropogenic

forcing would need to be used to introduce additional cooling into the system.

The same reasoning can be used to argue that a decrease in climate sensitivity

should lead to an increase in anthropogenic warming.

4.4 Transient Climate Response

The probability distributions of transient climate response (TCR) using each sur-

face dataset have also been investigated. Similar to Forest et al. (2008), transient

climate response in this study is defined as the change in surface air tempera-

ture averaged over years 61-80 in simulations that have 1% per year increases

in CO2 concentrations. From each joint distribution, a 1000 member Latin Hy-

percube sample (McKay et al., 1979) is drawn, whereby climate sensitivity-ocean

diffusivity pairs are formed. Each pair of parameter values is then equated to a

TCR using a functional fit calibrated by past runs of the MIT climate model. The

fit has been derived using many runs of the model and a graphical representation

of the derived relationships between climate sensitivity, effective ocean diffusivity,

and TCR is shown in Figure 1 of Sokolov et al. (2003). Histograms of the resulting

distributions are presented in the top panel of Figure 4.13 with the correspond-

ing cumulative distribution functions in the bottom panel. Table 4.2 presents a

summary of the distribution statistics for each of the datasets.

Similar to the parameter distributions, each of the TCR distributions derived

from the different datasets takes on a different shape and yields different estimates

of future warming. The most striking feature of the distributions is the wide

range of possible transient climate responses. Depending on which dataset is used,

predictions of future warming range anywhere from less than 1 K to as much 3

K. Furthermore, the modes of the distributions are all found at different locations,

showing that estimates of future climate change are sensitive to which surface
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Histogram of TCR from Latin Hypercube Sample
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Figure 4.13. Histogram of TCR (top) and cumulative density function (bottom) derived
from 1000 member Latin Hypercube samples of the joint distribution functions using each
surface dataset.

Table 4.2. Percentiles for distributions of transient climate response for each surface
dataset

Surface Data 0.05 0.25 0.50 0.75 0.95
TCR (K)

HadCRUT2 1.24 1.50 1.73 2.00 2.41
HadCRUT3 1.13 1.40 1.60 1.87 2.28

NCDC 1.10 1.30 1.46 1.64 1.96
GISTEMP 250 0.91 1.08 1.21 1.35 1.61

GISTEMP 1200 0.87 1.02 1.17 1.32 1.58
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dataset is used in the analysis.

One of the most noticeable differences is that the GISTEMP datasets produce

sharper and narrower distributions and that the TCR is significantly less than

the other datasets. Given the sharper marginal distribution for climate sensitivity

around lower values found in the GISTEMP datasets, this result is not surprising.

When climate sensitivity is lower, surface temperatures will not increase as much

when the forcing is held constant. Since a greater number of climate sensitivity

values from the GISTEMP datasets are in the low regions, the corresponding

transient climate response values are lower as well. The weak constraint on high

effective ocean diffusivity values also contributes strongly to the likelihood of lower

TCR.

Following the pattern discussed for the GISTEMP datasets, the remaining three

datasets follow a similar trend. Given that the effective ocean diffusivity distribu-

tions for the HadCRUT and NCDC datasets have similar shapes and comparable

confidence intervals, the distribution of effective ocean diffusivity values drawn by

the Latin Hypercube sample will be similar. Due to this, the TCR distribution

is strongly influenced by the climate sensitivity distributions and weak constraint

on effective ocean diffusivity. Both HadCRUT climate sensitivity distributions are

wider than the NCDC distribution, and since there are a wider range of possi-

ble values to be drawn from in the sampling, the TCR distribution is broader

for these datasets. Similarly, since the climate sensitivity distributions are shifted

towards higher values for the HadCRUT distributions, the resulting TCR distri-

butions are shifted towards higher values. This feature is in agreement with what

was discussed with regard to the GISTEMP datasets, that the transient warming

follows shifts in climate sensitivity due to the weak constraints on effective ocean

diffusivity. However, differences in the effective ocean diffusivity distribution have

also contributed to the differences in TCR for these datasets. Due to the more

reasonable constraints on effective ocean diffusivity in the NCDC and HadCRUT

datasets (modes near lower values), a significant region of low TCR values is no

longer sampled. This contributes to the shifts towards higher TCR observed from

these distributions. Given that the aerosol forcing distributions are nearly identi-

cal across all datasets, these results also show that TCR follows climate sensitivity

and effective ocean diffusivity rather than the aerosol forcing.



Chapter 5

Conclusions

The results presented here show that climate model parameter distributions are

sensitive to the surface temperature dataset used to compare model output against.

In general, the widths of the climate sensitivity parameter distributions are com-

parable, but the locations of the means and fractiles are shifted depending on

which surface dataset is used. The biggest shift in climate sensitivity is observed

when the GISTEMP datasets are used and can be attributed to the weaker warm-

ing trends observed in those datasets. Regardless of the surface dataset, effective

ocean diffusivity is poorly constrained by the data. This is likely due to the in-

clusion of the ocean internal variability estimate reducing the detectable signal

in the ocean record. Distributions for anthropogenic aerosol forcing cluster into

two groups. Distributions derived from the HadCRUT reconstructions indicate a

weaker anthropogenic aerosol forcing. Reconstructions from the other groups show

that approximately 0.1 Wm−2 of additional cooling from anthropogenic sources is

needed in order to match the observed temperature records.

In addition to the differences in the one-dimensional marginal distributions,

the two-dimensional marginal distributions for each surface dataset are different.

However, all five distributions yield results that are consistent with findings from

prior studies that investigate the correlations between parameters and are in line

physical reasoning. The positive correlation between climate sensitivity and ocean

diffusivity found in past studies is evident in each of the distributions. Stronger cor-

relations are found using the HadCRUT2, HadCRUT3, and NCDC datasets and,

although weak, they can also be detected in the GISTEMP cases. All five two-
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dimensional distributions for climate sensitivity and anthropogenic aerosol forcing

show that if climate sensitivity increases, anthropogenic aerosol cooling must in-

crease, and if climate sensitivity decreases, anthropogenic aerosol cooling must also

decrease. These results are in line with physical arguments.

The sensitivity to choice of surface data used to constrain model parameters

introduces additional uncertainties into model parameter calibration. When re-

porting climate system properties and designing climate models, this additional

uncertainty must be considered. Failure to do so can result in overconfidence in

the results and lead to inaccurate representations of the climate system and pre-

dictions of future climate change. The 2 K range in possible transient climate

responses found when varying the surface datasets provides an example of the

potential pitfalls associated with neglecting this uncertainty.

5.1 Future Work

The work presented here serves as the foundation for a variety of future studies.

Thus far, only data from 1906-1995 has been used so that this study exactly

matches the work of Forest et al. (2002, 2006, 2008). In those studies, data from

1906-1995 from a version of the HadCRUT2 reconstruction used in Allen et al.

(2000) is used. The Allen et al. (2000) version of the data reports decadal mean

temperatures from 1896-1995 on a 5x5 degree grid. Because the datasets used in

this study report monthly temperature anomalies from pre-1900 and extend to the

present, the methods developed here are not subject to the same restrictions as

Forest et al. (2002, 2006, 2008). As a result, the period of comparison between

model and observed surface temperatures can be modified to include more recent

temperature trends. Using the model runs utilized in this study, nine additional

years of data can be incorporated into the surface diagnostics. This extension of

the data is due to the monthly surface datasets extending at minimum to 2005,

but limited by the model runs which end in December of 2004.

Additional surface data can be utilized in one of two ways. The first way

to incorporate additional data would be to shift the window for the period of

comparison forward nine years. This method would replace the oldest nine years

with the newest nine years. As a result of this shift, data which is sparse and less
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reliable from the early 1900’s will be replaced by more densely distributed and more

reliable data from the early 2000’s. The increased data coverage would reduce the

effects that the differing interpolation schemes have on the surface datasets and

lead to a reduction in the differences between the surface dataset time series. Thus,

it is hypothesized that this would lead to convergence of the resulting parameter

distribution functions.

The second way to utilize the additional data would be to use the additional

nine years of more reliable data to add a sixth decade into the surface diagnostic.

The addition of data would require the start date of the surface diagnostic to

be shifted back one year from 1906 to 1905 in order to fill six complete decades.

Shifting back the start year introduces one additional year of data from the less

reliable portion of the temperature record, but the addition of this year is offset

by the inclusion of nine years of updated, more reliable data. It is hypothesized

that the inclusion of the additional decade of surface data will lead to a tightening

of the parameter distribution functions. This hypothesis is based on the notion

that the additional decade will include recent warming trends and thus lead to the

rejection of parameter combinations that do not produce the warming found in the

observations.

Much like the surface datasets, additional work to extend the upper-air and

ocean temperature datasets is planned. For the upper-air temperature data, new

time ranges need to be determined in order to keep the diagnostics similar to

what is presented in this study. Choosing which two periods to use to calculate

the differences used in the diagnostic would need to both utilize additional data

and avoid periods which contain significant volcanic eruptions. For the ocean

diagnostic, additional ocean data can be used in much the same way that additional

surface temperature data is used. New data can be used to replace old data or

new data can be used to extend the period of comparison used in the diagnostic.

Similar to the surface temperature data, the use of extended upper-air and ocean

data is expected to further tighten the parameter distribution functions.

When extended data are available, care needs to be taken as to how much

data to add to the diagnostics. This caveat applies most readily to the surface

diagnostic. If the number of zones or decades increases, the dimension of the

noise-covariance matrix also increases. When the dimension becomes too large,
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the noise-covariance matrix cannot be estimated due to the limited amount of

control run data available. Potential methods to reduce the dimensionality of the

matrix include moving from a four zonal band pattern to a hemispheric pattern

or using 20-year means as opposed to decadal means. In both cases, the amount

of control run data required for calculation of the noise-covariance is reduced by a

factor of two.

The use of monthly surface temperature datasets greatly increases the flexibility

of the method employed in this study. Since yearly and decadal temperatures

can be derived, any comparison period and climatology can be used to derive

parameter distribution functions. Using this flexibility, the impact that the choice

of climatology has on the distribution functions can be further investigated. Initial

work on this matter has shown that if a short, 50-year climatology consisting of

the most recent data is used, the time series using the different datasets begin to

converge. Differences still exist, and although not yet run, it is assumed that these

remaining differences will still lead to differences in the parameter distribution

functions depending on which dataset is used. However, signs are pointing in a

positive direction that the issues addressed in this work may be eliminated in the

future due to the increased quality and coverage of observed surface temperatures.

Since it may be tens to hundreds of years until full convergence is realized, the

issues presented in this study are still relevant, and future work investigating how

to best reduce their impacts through climatology choices will help minimize the

differences.

One last variation of future interest is altering the scheme used when calculating

the surface diagnostic. In the current study, temperature anomalies for a given

zonal band are calculated by subtracting the climatology of the band off of the

decadal average temperatures for that band. As a result, all temperature anomalies

calculated are typically less than 1 ◦C warmer or colder from the climatology for

each zonal band and the equator-to-pole temperature gradient observed on the

planet is masked. A diagnostic where the global mean climatology is subtracted

from each zonal band would introduce the equator-to-pole temperature gradient

into the analysis. This gradient is introduced because equatorward zonal bands

would show positive anomalies from the global mean, whereas poleward zonal

bands would show negative anomalies from the global mean. As it stands, this
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characteristic of the climate record is masked by subtracting a warmer climatology

from the equatorward bands and a colder climatology from the poleward bands.

Under the proposed modification, the same value would be subtracted off of each

of the four zonal bands. By unmasking the equator-to-pole temperature gradient,

the observed and modeled temperature trends would be different than what is

presented in this study. This variation of the treatment of the surface diagnostic

and accounting for spatial differences may lead to significantly different parameter

distribution functions.
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