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Abstract 

The purpose of this research is to develop supply chain inventory models that 

simultaneously coordinate supplier selection and pricing decisions for a range of retailing 

situations. The selection of appropriate suppliers plays an important role in improving companies’ 

purchasing performance. Many researchers and firms have studied the supplier selection problem 

without taking into account the price-sensitive nature of the demand for certain products. A 

product’s selling price has a significant impact not only on a company’s ability to attract 

consumers, but also on its strategic decisions on matters such as supplier selection that are taken 

at the upstream stages of the supply chain.  

In this dissertation, we start with the development of a new mathematical model for the 

supplier selection problem that refines and generalizes some of the existing models in the literature. 

We propose a mixed integer nonlinear programming (MINLP) model to find the optimal inventory 

replenishment policy for a particular type of raw material in a supply chain defined by a single 

manufacturer and multiple suppliers. Each supplier offers an all-unit quantity discount as an in-

centive mechanism. Multiple orders can be submitted to the selected suppliers within a repeating 

order cycle. We initially assume the demand rate to be constant. The model provides the optimal 

number of orders and corresponding order quantities for the selected suppliers such that the re-

plenishment and inventory cost per time unit is minimized under suppliers’ capacity and quality 

constraints. Then, we extend the model to simultaneously find the optimal selling price and re-

plenishment policy for a particular type of product in a supply chain defined by a single retailer 

and multiple potential suppliers. Hence, we replace the manufacturer with a retailer subject to a 

demand rate considered to be dependent on the selling price. We propose an MINLP model to find 
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the optimal order frequency and corresponding order quantity allocated to each selected supplier, 

and the optimal demand rate and selling price such that the profit per time unit is maximized taking 

into consideration  suppliers’ limitation on capacity and quality. In addition, we provide sufficient 

conditions under which there exists an optimal solution where the retailer only orders from one 

supplier. We also apply the Karush–Kuhn–Tucker conditions to investigate the impact of the sup-

plier’s capacity on the optimal sourcing strategy. The results show that there may exist a range of 

capacity values for the dominating supplier, where the retailer’s optimal sourcing strategy is to 

order from multiple suppliers without fully utilizing the dominating supplier’s capacity. 

Next, we study the integrated pricing and supplier selection problem in a two-stage supply 

chain that comprises a manufacturer stage followed by a retailer stage, both controlled by a single 

decision-maker. The manufacturer can procure the required raw material from a list of potential 

suppliers, each of which has constraints in regard to capacity and quality. In this model, the 

manufacturer periodically replenishes the retailer’s inventory, the demand for which is proving to 

be price-sensitive. We propose an MINLP model designed to determine the optimal replenishment 

policy for the raw material, the optimal amount of inventory replenished at each stage, and the 

optimal final product’s selling price at which the profit per time unit is maximized. Additionally, 

we provide upper and lower bounds for the optimal selling price and for the manufacturer’s lot 

size multiplicative factor, which result in a tight feasible search space. 

Next, we propose an MINLP model to extend the prior model by considering a serial supply 

chain controlled by a decision-maker responsible for maximizing the profit per time unit by 

determining the following: the optimal amount of raw material to order from the selected suppliers, 

the optimal amount of product to transfer between consecutive stages in order to avoid any 

inventory shortage, and the optimal final product’s selling price. Coordinating all these decisions 



 

vi 
 

simultaneously is a topic that has been neglected in literature. In addition, our model requires the 

order quantity received from each selected supplier to be an integer multiple of the order quantity 

delivered to the following stage, which means that a different multiplicative factor can be assigned 

to each supplier. This coordination mechanism shows an improvement in the objective function 

compared to those of existing models that assign the same multiplicative factor to each selected 

supplier. Moreover, we develop a heuristic algorithm that generates near-optimal solutions. A 

numerical example is presented to illustrate the proposed model and the heuristic algorithm.  
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Chapter 1: Introduction and Overview  

 

1.1. Introduction 

In today’s competitive environment, companies tend to leverage their profits and reduce 

the cost of the final product by acquiring some of the parts and/or services needed for the final 

product from outside suppliers. On this point, it should be noted that the purchasing cost of raw 

materials and component parts may represent a significant portion of the cost of a product. For 

instance, Weber et al. (1991) stated that purchased services and parts in the high-tech industry 

represent up to 80% of a product’s total cost. In addition, Wadhwa and Ravindran (2007) showed 

that in the automotive industry the purchased components and parts exceed 50% of the total sales. 

Therefore, efficient management of purchasing processes is needed for a company to remain com-

petitive and reduce costs. For these reasons, researchers studied companies’ purchasing policies 

and found that the selection of appropriate suppliers is a key strategic decision in enhancing com-

panies’ purchasing performance (Ravindran and Warsing, 2012).   

Supplier selection is a multi-criteria problem that aims is to select a group of preferred 

suppliers from a large set of potential suppliers based on the buyer’s qualitative and quantitative 

criteria. Price, delivery lag, quality, production capacity, and location are the most common criteria 

influencing the supplier selection process discussed in the literature. Hence, the multi-criteria na-

ture of the supplier selection problem increases the level of complexity, since different contradic-

tions will take place when a trade-off between qualitative and quantitative factors is performed to 

select the best supplier. For example, the supplier offering the lowest unit price may not have the 

best quality or the supplier with the best quality may not be able to offer timely product delivery. 
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The majority of supplier selection problems in practice take place in a multiple source 

purchasing environment in which there is no single supplier who is capable of satisfying the 

buyer’s demand due to suppliers’ constraints on matters such as capacity, quality, delivery lag, and 

price. A central goal in supply chain management, therefore, is that of maintaining long-term 

relationships with suppliers that provide competitive prices and reliable service. Thus, it is crucial 

to use a pre-selection decision-making approach to screen suppliers and on that basis generate a 

manageable list of effective suppliers. Then, a mathematical model can be formulated to select the 

most appropriate suppliers and determine the corresponding order quantities considering mostly 

quantitative criteria. Comprehensive surveys on the supplier selection problem include those by 

Minner (2003), Aissaoui et al. (2007), Ho et al. (2010), Agarwal et al. (2011), and Chai et al. 

(2013). 

The majority of the existing supply chain models available in the literature consider placing 

a single order to each selected supplier within a repeating order cycle. However, Mendoza and 

Ventura (2008) showed that the cost per time unit can be reduced by submitting multiple orders 

with different frequencies to the selected suppliers within an order cycle. This effective approach 

is well suited when the most efficient supplier is unable to satisfy the demand due to capacity 

limitations. For instance, assume that supplier 1, the most efficient supplier, can satisfy only 10% 

of the demand whereas supplier 2, a less efficient supplier, can satisfy all the demand. Then, 

allowing at most one order to each supplier per order cycle would either result in using both 

suppliers at the expense of having a very high holding cost due to the large order quantity submitted 

to supplier 2 or it would result in ruling out supplier 1 and satisfying all the demand requirements 

from supplier 2. Clearly, suboptimal solutions will be obtained in both cases, since the cost could 
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be reduced further by allowing multiple orders to be submitted to supplier 2 for each order placed 

to supplier 1 in a repeating order cycle.   

Most of the research on the supplier selection problem is founded on the unrealistic 

assumption that product demand is deterministic and constant. In the contemporary environment, 

however, supply chain inventory management faces challenges presented by the price-sensitive 

nature of demand for certain products. In practice, it is common for product demand to vary with 

selling price, given that low prices in most markets play a significant role in attracting consumers. 

Considering the impact of price on sales, many researchers and firms have focused on developing 

mathematical models to optimize pricing decisions alone. However, pricing decisions can affect 

other aspects of the supply chain, such as production and distribution decisions. Therefore, it is 

essential to coordinate all these decisions simultaneously.  Such environment setting is unlike the 

classical economic order quantity (EOQ) model that unrealistically assumes the demand rate to be 

fixed and independent of the selling price. Hence, product demand must be considered as a 

decision variable, as it is strongly influenced by the selling price. It can also be argued that in retail 

contexts, more profit can be obtained when pricing and lot-sizing decisions are jointly determined. 

Another unrealistic assumption found in the literature on the supplier selection problem is 

that most of the models optimize supplier selection decisions in regard to a specific member of the 

supply chain. Inventory decisions at any given stage can have an effect on key decisions in the 

entire supply chain. In addition, due to the challenges facing today’s supply chains, such as the 

increase in manufacturing, transportation, and holding costs, there is a clear need to consider the 

supply chain as a whole. A supply chain is defined as “a coordinated set of activities concerned 

with the procurement of raw materials, production of intermediate and finished products, and the 

distribution of these products to customers within and external to the chain” (Ravindran and 
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Warsing, 2013). This integrated process is one in which several activities are simultaneously 

coordinated among the various members of a supply chain: suppliers, manufacturers, warehouses, 

distribution centers, retailers, and customers. These activities can include designing the supply 

chain network, selecting appropriate suppliers, designing transportation channels, allocating order 

quantities, and distributing finished goods to customers. Comprehensive studies on supply chain 

management include those by Thomas and Griffin (1996), Vidal and Goetschalckx (1997), 

Beamon (1998), Chandra and Kumar (2000), Min and Zhou (2002), Meixell and Gargeya (2005), 

and Badole et al. (2012).  

Many scholars have shown that each member of a supply chain is better off when all 

members work together to determine a joint economic inventory policy compared to when each 

member determines its own inventory policy independently. The challenging aspect of a multi-

stage supply chain is that the inventory at any given stage is used to replenish the inventory for the 

next stage. Therefore, the principal critical decision in a multi-stage supply chain system pertains 

to coordinating the flow of products from one stage to the next stage such that inventory shortages 

are avoided. Researchers have shown that inventory shortages are avoided when two conditions 

hold: (1) replenishment orders are placed only when the inventory level drops to zero and (2) when 

an order is placed at any stage in the supply chain, orders are placed at all the downstream stages 

as well. These assumptions require the order quantity placed at any stage to be an integer multiple 

of the order quantity placed at the downstream stage. This ordering policy is known as the zero-

nested inventory ordering (Love, 1972; Schwarz, 1973; Schwarz and Schrage, 1975; Maxwell and 

Muckstadt, 1985). Following this line of thought, Roundy (1985) proved that a near-optimal 

solution can be obtained if the vendor’s integer multiplicative factor is a power-of-two. 
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1.2. Research Contributions 

The main contributions of this research are as follows: 

1. A mixed integer nonlinear programming (MINLP) model is developed to solve a supplier 

selection problem for a manufacturer that procures a particular type of raw material from 

a set of potential suppliers, across which ordering and purchasing costs, production 

capacity, and quality limitations all vary. Multiple orders can be placed to the selected 

suppliers within a repeating order cycle. Further, the model is realistic and practical in 

nature given that the suppliers offer all-unit quantity discounts as an incentive mechanism 

to increase the order quantity placed, thereby reducing the average replenishment cost.  

2. An MINLP model is developed to solve the integrated pricing and supplier selection 

problem for a retailer that procures a particular type of product from a set of potential 

suppliers and faces price-sensitive demand. In addition, an investigation of the retailer’s 

sourcing strategy when the dominating supplier is capacitated is also provided. Results 

show that the dominating supplier can be selected without fully utilizing its capacity.  

3. An MINLP model is developed to solve the integrated pricing and supplier selection 

problem in a two-stage supply chain. Moreover, a procedure to compute tight bounds for 

the profit per time unit and for the main decision variables, such as the selling price and 

integer multiplicative factors is presented. These bounds help in obtaining a reduced 

feasible region and solve the problem in a timely manner.  

4. An MINLP model is developed to solve the integrated pricing and supplier selection 

problem in a serial supply chain. In addition, a heuristic algorithm that provides a solution 

within 2% of the optimal solution is presented. Furthermore, the model allows a different 

multiplicative factor to be applied to the order quantity placed for each selected supplier. 
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This effective tool yields a higher profit per time unit compared to those of models that use 

the same multiplicative factor.  

 

1.3. Structure of the Dissertation  

This dissertation is organized as follows. Chapter 2 presents a literature review of the most recent 

and significant related work on pricing and the supplier selection problem and on multi-stage 

inventory systems. Chapter 3 proposes a model for a supply chain inventory problem for a specific 

type of raw material with multiple suppliers, where the final product’s demand is assumed to be 

constant and known in advance. Then, in Chapter 4, we simultaneously study pricing and inventory 

replenishment decisions by extending the model proposed in Chapter 3 to the case where the 

demand rate is a decreasing function of the selling price. Chapter 5 presents an inventory 

replenishment model with supplier selection and pricing decisions in a two-stage supply chain 

comprising a manufacturer stage followed by a retailer stage. Then, Chapter 6 presents a study of 

the integrated pricing and supplier selection problem in a serial supply. Chapter 7 summarizes the 

dissertation research, and suggest some directions for future work. 
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Chapter 2: Literature Review 

 

2.1. Supplier Selection under Constant Demand Rate   

The supplier selection problem has been studied widely for the past three decades due to 

the critical role it plays in the purchasing decision processes. Some good comprehensive surveys 

were done in reviewing and analyzing previous published work. For instance, Weber et al. (1991) 

classified 74 articles based on the specific purchasing situations and the decision tools used in 

supplier selection. Degraeve et al. (2000) presented rating models to evaluate and compare differ-

ent supplier selection approaches based on the total cost of ownership which considers the pur-

chasing price and other related costs. De Boer et al. (2001) considered the entire supplier selection 

process. Thus, they did not just review the final supplier selection models, but also considered all 

the decision making steps involved in the supplier selection process. Ho et al. (2010) and Agarwal 

et al. (2011) reviewed and evaluated the multi-criteria decision making methods in supplier selec-

tion. More recently, Chai et al. (2013) reviewed 123 journal articles from year 2008 to 2012 based 

on decision-making techniques in supplier selection. The rest of this section provides a brief dis-

cussion on the most significant and recent published articles related to all unit quantity discounts 

and supplier selection problem which have been considered in the development of our proposed 

general model in Chapter 3. 

 Researchers considered two purchasing situations in the supplier selection problem. 

Firstly, in the single sourcing purchasing situation, any supplier can satisfy the buyer’s demand 

without any capacity constraint. Benton (1991) developed nonlinear programming models using 

the concept of economic order quantity to find the best supplier among all the candidate suppliers 

who offered all-unit quantity discounts and under the conditions of multiple items and suppliers’ 

constraints. Instead, Lee et al. (2001) applied a multi-criteria approach for selecting the preferred 
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supplier. They used the analytical hierarchy process (AHP) to compare suppliers based on a pre-

determined set of attributes. Conversely, Jayaraman et al. (1999) concluded in their work that sin-

gle sourcing is not necessarily the most efficient approach. When a large number of products need 

to be ordered, it may not be practical to drop some suppliers just to reduce the total ordering cost.  

Secondly, in a multiple sourcing purchasing situation, there may not be one individual sup-

plier who can satisfy the buyer’s demand due to suppliers’ constraints on quality, capacity, lead 

time, etc.  Rosenblatt et al. (1998) developed a single item EOQ model considering multiple ca-

pacitated suppliers and a constant demand rate. Ghodsypour and O’Brien (2001) developed an 

MINLP model for a supply chain inventory problem to determine the optimal allocation of prod-

ucts assigned to suppliers while minimizing the total annual cost of purchasing, ordering, and 

holding under capacity, budget, and quality constraints. Later, Mendoza and Ventura (2008) pro-

posed a two-phase approach, where in the first phase the subset of preferred suppliers was selected 

within a large set of suppliers, and then in the second phase an MINLP model was formulated to 

find the optimal order quantity allocation to suppliers. It was found that the optimal solution ob-

tained by Ghodsypour and O’Brien (2001) could be improved by allowing multiple number of 

orders to be placed to the selected suppliers within a repeating order cycle. Moreover, Mendoza 

and Ventura (2011) compared two MINLP models for supplier selection, where the first one allows 

the submission of different order quantities to each supplier while in the second one all the order 

quantities are restricted to have the same size. Recently, Mohammaditabar and Ghodsypour (2016) 

developed a supplier selection model to determine the joint replenishment inventory decision for 

multiple items. They showed that the ordering cost decreases when ordering multiple items from 

the same supplier. The cost components that they considered are: ordering, inventory holding, and 

purchasing cost.  
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However, in none of the aforementioned supplier selection models, suppliers are allowed 

to adopt incentive mechanisms such as quantity discounts. All-unit quantity discounts are com-

monly used as incentive tools offered by suppliers to motivate buyers to place larger order quanti-

ties by reducing the unit ordering cost and, as a result, the setup cost per time unit. Monahan (1984) 

analyzed the quantity discount problem with respect to the supplier point of view. Later, Lee and 

Rosenblatt (1986) generalized the model and discussed the ordering and price discount problem. 

Similarly, Rubin and Benton (2003) developed a generalized framework for quantity discount 

pricing schedules to increase the supplier’s profits. In addition, Abad (1994) formulated the prob-

lem of coordination between a vendor and a buyer as a two-person fixed threat bargaining game, 

and proposed two pricing scheduled for a vendor who is supplying several buyers. One of them is 

based on profit sharing and the other one resembles the all-unit quantity discount schedule. Re-

cently, Ke and Bookbinder (2012) developed a model to find the optimal all-unit quantity discounts 

that should be offered by a supplier for the non-cooperative (Stackelberg equilibrium) and coop-

erative (Pareto efficient solution) cases. It was found that, if the quantity discount is determined 

cooperatively, the supply chain efficiency can be enhanced. 

Thereafter, scholars have incorporated all-unit quantity discounts with the supplier selec-

tion problem. For instance, in Chaudhry et al. (1993), suppliers offer all-unit (cumulative) and 

incremental (non-cumulative) quantity discounts to motivate the buyer to increase the order quan-

tity. They developed linear and mixed binary integer programming models to find the best suppli-

ers under capacity, quality, and delivery performance constraints. Tempelemeier (2002) consid-

ered supplier selection and purchase order quantity under time sensitive demand and quantity dis-

counts. He developed a mixed integer linear programming model and proposed an efficient heu-

ristic algorithm. However, neither Chaudhry et al. (1993) nor Tempelemeier (2002) consider the 
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concept of economic order quantity (EOQ) in their procedures. Moon et al. (2008) developed a 

hybrid genetic algorithm to solve the joint replenishment problem when multiple items need to be 

ordered from a number of suppliers offering different quantity discounts schedules. Lee et al. 

(2013) developed a mixed integer programming model to solve an integrated supplier selection 

and lot-sizing problem considering multiple suppliers, multiple periods, and quantity discounts. 

They also proposed a genetic algorithm to determine the order quantity in each time period. Kamali 

et al. (2011) applied a multi-criteria approach by developing an MINLP model considering quali-

tative and quantitative objectives for a supply chain inventory model to achieve buyer-suppliers 

coordination under all-unit quantity discounts; however, they also restrict the buyer to place only 

one order to each selected supplier within a repeating order cycle.  

In Chapter 3, we propose a new model for the supplier selection problem that refines and 

generalizes some existing models in which the goal is to minimize the average replenishment and 

inventory cost under suppliers’ limitations on capacity and quality. Furthermore, to ensure a more 

realistic and practical situation, the suppliers in our model are offering all-unit quantity discounts 

as an incentive mechanism to increase the placed order quantities, and hence reduce the average 

replenishment cost. Under all-unit quantity discounts, every unit in the order is discounted if the 

ordered quantity is above certain order level. In addition, multiple orders to the selected suppliers 

are allowed within a repeating order cycle. Computational results show that the average replenish-

ment and inventory cost is reduced in comparison to the models that allow at most one order to 

each supplier within an order cycle. Moreover, two versions of our model are considered based on 

the type of order quantity: the first one considers independent order quantities where different 

order quantities can be placed to the selected suppliers, while the second one considers equal-size 

order quantities where all the order quantities submitted to all suppliers have the same size. Thus, 
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the proposed model determines the optimal set of selected suppliers, number of orders to each 

supplier per order cycle, and the corresponding order quantities to take advantage of possible dis-

counts. 

2.2. Pricing and Supplier Selection Problem   

Whitin (1955) was the first to incorporate the concept of linking inventory theory and 

economic price theory in which he considered the demand rate to be linearly dependent on the 

selling price. Later, Kunreuther and Richard (1971) studied the interrelationship between pricing 

and inventory decisions, and determined the retailer’s optimal pricing and ordering decisions. 

Thereafter, Abad (1988) found the optimal selling price and lot size when the supplier offers all-

unit quantity discounts considering two types of price varying demands, namely linear and 

negative power functions of price. He also considered the problem when the supplier offers 

incremental quantity discounts. In this direction, researchers have considered various settings and 

provided extensions for the joint pricing and inventory problem proposed by Abad (1988). For 

instance, Kim and Lee (1998) jointly determined the optimal price and lot size for a capacitated 

manufacturing firm facing a price-sensitive demand, and provided managerial insights on the 

firm’s optimal capacity decisions. Deng and Yano (2006) also considered the case of a capacitated 

manufacturer facing a price sensitive demand for which they studied the optimal prices and 

production quantities for a constant and time-varying capacity.  

In the context of incorporating coordination mechanisms such as quantity discounts the 

following scholars: Weng and Wong (1993), Weng (1995), and Viswanathan and Wang (2003), 

have addressed the effectiveness of quantity discounts and their managerial insights when price 

sensitive demand is considered. And, Qin et al. (2007), and Lin and Ho (2011) proposed an 

integrated inventory model with quantity discounts and price sensitive demand to find the optimal 
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pricing and ordering strategies. Other scholars included transportation cost in determining the 

retailer’s optimal pricing and lot-sizing decisions, e.g. Burwell et al. (1997), Abad and Aggrawal 

(2005), Yildirmaz et al. (2009), and Hua et al. (2012). While others extended the Abad (1988) 

model by considering a set of geographically dispersed retailers, where each has a price-sensitive 

demand e.g. Boyaci and Gallego (2002), Wang and Wang (2005), Mokhlesian and Zegordi (2014), 

and Taleizadeh et al. (2015). 

Although, several studies have been developed in coordinating pricing and lot sizing 

decisions for different retailing settings, all are restricted to a single reliable supplier. However, 

it’s a common practice that retailers would consider multiple potential suppliers to seek the best 

supplier(s) based on certain qualitative and quantitative criteria. Therefore, in Chapter 4 we 

consider supplier selection decisions, which have often been neglected in related literature of joint 

pricing and lot-sizing problem. Research on coordinating pricing and inventory replenishment 

decisions considering multiple suppliers include Qi (2007) who developed heuristic and dynamic 

programming algorithms to find the optimal selling price for a manufacturer who faces a price 

sensitive demand and procures a single product from multiple capacitated suppliers. The proposed 

model is considered as a fractional knapsack model, where the manufacturer needs to split the 

demand (i.e., the total number of products) among a set of capacitated suppliers. Thus, he was able 

to prove that there exists an optimal solution to the proposed problem where at most one of the 

selected suppliers gets a less than full-capacity order. The same result was obtained earlier by 

Rosenblatt et al. (1998) who developed a single item EOQ model considering multiple capacitated 

suppliers and a constant demand. Although the model we present in Chapter 4 can be considered 

as an extension to the model proposed by Rosenblatt et al. (1988), we show in an illustrative 
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example that the aforementioned result does not hold true and more than one supplier can be 

selected without fully utilizing their capacities. 

More recently, Huang et al. (2011) coordinated pricing, and inventory decisions in a supply 

chain that consists of multiple suppliers, a single manufacturer, and multiple retailers. The problem 

was modeled as a three level dynamic non-cooperative game. However, they assumed that only a 

single sourcing strategy can be considered between the manufacturer and suppliers. Later, Rezaei 

and Davoodi (2012) proposed a multi-objective nonlinear programming model and a robust 

genetic algorithm for selecting suppliers and finding Pareto near-optimal selling prices and lot-

sizes of multiple products in multiple periods considering budget, storage, and supplier capacity 

limitations. Qian (2014) studied supplier selection problem under a linear attribute-dependent 

demand function. The considered the demand to be a function of serval product attributes such as 

price, delivery time, service level, and quality.  However, similar to the majority of the supplier-

selection models found in literature, inventory management was ignored in Rezaei and Davoodi 

(2012), Qian (2014) models. In Chapter 4, we consider a single item EOQ model with multiple 

capacitated suppliers. Each supplier offers an all-unit quantity discount to motivate the retailer to 

place larger orders for a lower unit price. The retailer faces a price-sensitive demand which is 

modeled as a negative power function of the selling price. In addition, the retailer can place 

multiple orders to the selected suppliers in a cycle. Thus, the goal of the proposed supplier model 

is to simultaneously find the optimal number of orders per cycle and the corresponding order 

quantities for the selected suppliers, and the optimal selling price that maximize the retailer’s profit 

per time unit under suppliers’ limitations on capacity and quality. We also propose a model that 

only considers submitting equal-size order quantities to the selected suppliers. Furthermore, in 

Chapter 4, we provide sufficient conditions under which there exists an optimal solution where the 
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retailer only orders from a single supplier. Moreover, we study the impact of the dominating 

supplier’s capacity on the retailer’s sourcing strategies. Thus, we apply Karush–Kuhn–Tucker 

(KKT) conditions to monitor the change in the retailer’s sourcing strategy as the dominating 

supplier’s capacity decreases, and to check whether the supplier’s capacity is fully utilized or not 

(i.e., active or inactive capacity constraint). 

2.3. Pricing and Supplier Selection Problem in a Two-Stage Supply Chain  

Research on the joint economic lot sizing (JELS) problem has typically focused on 

coordinating inventory replenishment decisions for a single vendor and a single buyer in a 

centralized decision-making process. Schwarz (1973) was the first to develop an integrated 

inventory model to address supply chain inventory problems faced by a single warehouse and a 

single retailer for a particular product type. Goyal (1977) showed that when supply chain members 

work together to determine their joint economic inventory policy, each can achieve significant 

savings compared to the case in which each party determines its own inventory policy 

independently. Banerjee (1986) developed a joint economic lot-size model for the case of a single 

vendor with a finite production rate and a single buyer. However, in his model, the vendor is 

obliged to follow a lot-for-lot policy; i.e., the vendor procures only the quantity of a given product 

that is required by the buyer. Goyal (1988) extended this research by showing that if the vendor 

produces an integer multiple of the buyer’s order quantity, the obtained cost in Banerjee’s (1986) 

model can be reduced. This ordering policy is defined in the literature as the nested ordering policy 

(Love, 1972; Schwarz, 1973; Schwarz and Schrage, 1975; Maxwell and Muckstadt, 1985). 

Following this line of thought, Roundy (1985) proved that a near optimal solution can be obtained 

if the vendor’s integer multiplicative factor is a power-of-two. In the following decades, various 
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aspects of the joint economic lot-sizing problem were addressed, including most recently in 

comprehensive studies such as those by Ben-Daya et al. (2008) and Glock (2012). 

Most of the research on the JELS problem makes the unrealistic assumption that the 

product demand is deterministic and constant, although in practice the demand is a function of the 

selling price. The first to address the importance of linking inventory policies with pricing 

decisions were Whitin (1955), and Kunreuther and Richard (1971), who attempted to determine 

the optimal selling price and the optimal order quantity for a single retailer. Scholars who studied 

the JELS problem in conditions of price-sensitive demand include Abad (1994), who determined 

the optimal policy for a centralized vendor–buyer channel, and characterized the Pareto efficient 

and Nash bargaining solutions for a decentralized vendor–buyer channel. Viswanathan and Wang 

(2003) published a similar study considering the coordination mechanisms between two supply 

chain members in which quantity and volume discounts were considered. Sajadieh and Jokar 

(2009) analyzed a two-stage supply chain that consists of a vendor with a certain production rate 

and a buyer who is facing a price-sensitive demand. They proposed a solution algorithm to find 

the optimal ordering, shipment, and pricing policies that maximize the joint profit of the supply 

chain members. They also showed that, it is beneficial for supply chain members to cooperate in 

high competitive environments where customers can easily shift to other less expensive suppliers. 

Wang et al. (2015) studied the same problem and they proposed two sequential algorithms to find 

the optimal order quantity, the selling price, and the multiplicative factor. They also investigated 

coordination mechanisms for cases in which the supply chain is decentralized. Mokhlesian and 

Zegordi (2014) developed a nonlinear multidivisional bi-level programming model to coordinate 

pricing and inventory decisions in a multiproduct two-stage supply chain that consists of a single 

manufacturer and multiple retailers. Pal et al. (2015) considered a two-stage supply chain that is 
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defined by a single manufacturer and a single retailer. They assumed the demand to be not only 

sensitive to the selling price, but also to the product’s quality, and retailer’s promotional effort. 

Taleizadeh et al. (2015) developed vendor managed inventory model for a two-stage supply that 

is defined by a single vendor and multiple retailers.  They considered a certain production rate for 

the vendor and a different price-sensitive demand function for each retailer. However, they 

developed their model based on Stackelberg approach in which the vendor is the leader and the 

retailers are the followers. Recently, Mohabbatdara et al. (2016) studied the ordering and pricing 

problem for a supply chain that consists of a manufacturer who deliver the final product with an 

imperfect quality to the retailer. The retailer on the other hand receives the products and determines 

the optimal selling price. 

Another unrealistic assumption found in the literature on the JELS problem is that the 

vendor procures all the required raw material to produce a good from a single supplier even though 

in practice many companies use multiple suppliers. On the other hand, many scholars have studied 

the advantages to companies for selecting more than one supplier. Researches that addressed the 

coordination of supplier selection and pricing decisions as presented in Section 2.2 are limited to 

Qi (2007), Rezaei and Davoodi (2012), and Qian (2014). All these studies limited their 

investigations of the pricing and supplier selection problem to a single stage supply chain. 

Although Huang, Huang and Newman (2011) coordinated supplier selection, pricing, and 

inventory in a three-stage supply chain, they considered a non-cooperative game between supply 

chain members. Moreover, the manufacturer in their model is restricted to a single sourcing 

strategy. Therefore, in Chapter 5, we formulate the integrated inventory problem for a single 

manufacturer and a single retailer. The retailer is responsible for deciding the selling price and the 

size of the order placed to the manufacturer. The manufacturer must make decisions on the integer 
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multiplicative factor in order to determine the number of orders per order cycle and the amount of 

raw material to order from the selected suppliers, where setup and purchasing costs, production 

capacity, and quality limitations all vary across suppliers. We develop an MINLP model 

considering that the two supply chain stages are vertically integrated (i.e., centralized control 

system) in order to find the number of orders placed to the selected suppliers per order cycle and 

the corresponding order quantity, the optimal manufacturer’s integer multiplicative factor, and the 

optimal selling price whereby the joint profit per time unit for the manufacturer and retailer is 

maximized. Moreover, we develop upper and lower bounds on the optimal selling price and the 

multiplicative factor to obtain a tight feasible region.   

2.4. Pricing and Supplier Selection Problem in a Multi-Stage Serial Supply Chain  

Inventory policies for a multi-stage supply chain were first studied by Clark and Scarf 

(1960) and Hadley and Whitin (1963). The challenging aspect of a multi-stage supply chain is that 

the inventory at any given stage is used to replenish the inventory for the next stage. Therefore, 

the principal critical decision in a multi-stage supply chain management pertains to coordinating 

the flow of products from one to stage to another such that inventory shortages are avoided. 

Researchers have shown that inventory shortages are avoided when two conditions hold: 

replenishment orders are only placed when the inventory level drops to zero and, when any stage 

in the supply chain orders, all the downstream stages order as well. This requires the order quantity 

placed at any stage to be an integer multiple of the order quantity placed at the downstream stage. 

This ordering policy is known as the zero-nested inventory ordering (Love, 1972; Schwarz, 1973; 

Schwarz and Schrage, 1975; Maxwell and Muckstadt, 1985). In this direction, Roundy (1985) 

considered a one-warehouse multi-retailer system and showed that if the integer multiplicative 

factor is of a power of two, then a near-optimal solution can be obtained for the multi-stage supply 
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chain system. He proved that, when the base cycle time is fixed and known in advance, then the 

power-of-two (POT) policy solution is within 6% of the optimal solution. And, when the base 

cycle time is treated as a decision variable, the obtained solution is even closer to the optimal 

solution, i.e., within 2%. Then, Roundy (1986) generalized his work to consider a multi-product, 

multi-stage production/inventory system. Further, Muckstadt and Roundy (1993) contributed to 

the literature by providing a comprehensive analysis of multi-stage production systems. In 

addition, Li and Wang (2007) provided a review of supply chain coordination mechanisms. Khouja 

(2003) studied three different inventory coordination mechanisms in a three-stage supply chain. 

The first mechanism is to use the same cycle time for each member in the supply chain. The second 

mechanism is to make sure that the cycle time for any stage is an integer multiple of the cycle time 

of the downstream stage. And, in the third mechanism the integer multiplier is considered to be of 

a power of two. Reviews of supply chain coordination mechanisms include those by Li and Wang 

(2007), and Bahinipati et al. (2009).  

Studies of supplier selection decisions in a serial supply chain include one by Jaber and 

Goyal (2008), who studied inventory coordination decisions in a supply chain that consists of 

multiple suppliers, a single manufacturer, and multiple buyers. Mendoza and Ventura (2010), who 

developed an MINLP to determine supplier selection decisions and order quantity allocation in a 

serial supply chain. They also proposed a heuristic algorithm that obtains near-optimal solutions 

in a timely manner. Later, Ventura et al. (2013) considered the same problem, but for a multi-

period inventory lot-sizing model. They developed an MINLP model to determine the optimal 

inventory policy for each stage in each period. And, most recently, Pazhani et al. (2015) developed 

an MINLP model to simultaneously determine inventory replenishment and supplier selection 

decisions for a serial supply chain in which transportation costs are accounted for.  
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Research on pricing has recently become the subject of considerable scholarly work, 

although as  shown in Section 2.2 only few studies have been published in the last decade that 

address supplier selection and price-sensitive demand. However, in all these studies, the model 

accounts for only a single-stage supply chain.  Taleizadeh and Noori-daryan (2016) considered a 

three-stage supply chain that consist of multi-supplier, a single manufacturer, and multi-retailer. 

They assumed the demand to be price sensitive, yet they established Stackelberg game among the 

supply chain members. Kumar et al. (2016) studied a three stage supply chain under linear price 

sensitive demand. They considered three cost components which are the ordering, transportation, 

and holding costs. They developed an inventory system for coordinated and non-coordinated 

supply chain. However, they unrealistically assumed that there is only a single supplier to procure 

the required raw material from. Given this gap in the literature, in Chapter 6, we study pricing and 

supplier selection decisions in a serial supply chain. Hence, we develop an MINLP model to 

simultaneously determine the number of orders and corresponding order quantities to submit to 

the selected suppliers, lot-size decisions between consecutive stages, and the selling price such 

that the long-run average profit is maximized. And, in order to coordinate inventory decisions to 

avoid inventory shortages at any stage of the supply chain, the zero-nested ordering policy is 

considered. We also consider different multiplicative factors to apply to order quantities allocated 

to the selected suppliers. This approach results in an increase in the average profit in comparison 

with the average profit generated by models that consider the same multiplicative factor, e.g., 

Mendoza and Ventura (2010). In addition, we develop a heuristic algorithm through which a near-

optimal solution is obtained in a timely manner. 
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Chapter 3: Quantity Discount Decisions considering Multiple Suppliers with Capacity and 

Quality Restriction 

 

3.1. Problem Description and Model Formulation  

This section presents an MINLP formulation to model a supply chain inventory problem 

considering a single type of item and multiple (𝑛) potential suppliers. The manufacturer’s demand 

rate 𝑑 is constant and can be satisfied by allocating multiple orders to the selected suppliers in a 

repeating order cycle. Also, the manufacturer’s unit purchase price is defined by the following all-

unit quantity discounts mechanism offered by supplier 𝑖, 

𝑝(𝑄𝑖) =

{
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, 𝑖 = 1,2, … 𝑛, 

where 𝑄𝑖 is the purchased lot size from supplier 𝑖, 𝑢𝑖0 = 0 < 𝑢𝑖1 < ⋯ < 𝑢𝑖,𝑎𝑖−1 < 𝑢𝑖,𝑎𝑖 = ∞ are 

the sequence of quantities at which the unit price changes, and 𝑎𝑖 is the number of quantity discount 

intervals offered by supplier 𝑖. For instance, the purchasing cost for a lot size 𝑄𝑖 is  𝑝𝑖𝑗𝑄𝑖, 

if  𝑢𝑖,𝑗−1 ≤ 𝑄𝑖 < 𝑢𝑖𝑗, where  𝑢𝑖𝑗  is supplier 𝑖’s strict upper bound of discount interval 𝑗 and  𝑝𝑖𝑗 is 

the unit price, 𝑗 = 1,2, … 𝑎𝑖, and  𝑝𝑖1 > ⋯ >  𝑝𝑖,𝑎𝑖−1 >  𝑝𝑖,𝑎𝑖 > 0.  

In addition, each supplier has a certain capacity (or production) rate 𝑐𝑖 and quality level  𝑞𝑖 (i.e. 

percentage of acceptable units), and also the minimum acceptable quality level for the buyer (or 

manufacturer) is  𝑞𝑎. Therefore, the goal of the proposed model is to minimize the replenishment 
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and inventory cost per time unit by finding the optimal number of orders and the corresponding 

order quantity 𝑄𝑖 for each supplier 𝑖 where  𝑢𝑖,𝑗−1 ≤ 𝑄𝑖 < 𝑢𝑖𝑗. 

Additional Parameters 

𝑟  Inventory holding cost rate. 

𝑘𝑖  Setup cost for supplier  𝑖, where 𝑖 = 1,2, …  𝑛. 

𝑚  Maximum number of orders that can be placed to the selected suppliers in a repeating order 

cycle. 

Additional Decision Variables 

𝑄  Total order quantity from all suppliers per order cycle. 

𝑌𝑖𝑗  Binary variable; equals one if discount interval 𝑗 is selected for supplier 𝑖, and zero 

otherwise, where 𝑖 = 1,2, …  𝑛, 𝑗 = 1,2, … 𝑎𝑖. 

𝐽𝑖𝑗 Number of orders submitted to supplier 𝑖 in interval 𝑗 per a repeating order cycle, where 𝑖 =

1,2, …  𝑛, 𝑗 = 1,2, … 𝑎𝑖. 

𝑇𝑖 Time interval to consume the ordered quantity 𝑄𝑖, where 𝑖 = 1,2, …  𝑛. 

𝑇𝑐 Repeating order cycle time.   

The goal of the objective function is to minimize the replenishment and inventory cost per time 

unit, which consists of setup cost, holding cost, and purchasing cost. Note that in our model, 

multiple orders can be allocated to the selected suppliers within an order cycle. For instance, as 

shown in Figure 3.1, six orders are submitted in an order cycle of length  𝑇𝑐. Two orders are 

submitted to supplier 1 ( 𝐽1𝑗 = 2), three orders to supplier 2 ( 𝐽2𝑗 = 3), and one order to supplier 

3  (𝐽3𝑗 = 1). Also note that the number of orders submitted to each supplier and the corresponding 

order quantities will be repeated in each cycle. 
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The time interval to consume the ordered quantity 𝑄𝑖 under a constant demand is equal to 𝑇𝑖 =

𝑄𝑖/𝑑. Since it is allowed to place 𝐽𝑖𝑗  orders to supplier 𝑖 in interval 𝑗, then the total time to consume 

all the units ordered from supplier 𝑖  is equal to  𝑇𝑖 ∑ 𝐽𝑖𝑗
𝑎𝑖
𝑗=1 = (𝑄𝑖/𝑑 )∑ 𝐽𝑖𝑗

𝑎𝑖
𝑗=1 . Thus the total 

repeating order cycle time  𝑇𝑐 = ∑ 𝑇𝑖 ∑ 𝐽𝑖𝑗
𝑎𝑖
𝑗=1

𝑛
𝑖=1 = ∑ (𝑄𝑖/𝑑)

𝑛
𝑖=1  ∑ 𝐽𝑖𝑗

𝑎𝑖
𝑗=1 = 𝑄/𝑑, where 𝑄 =

∑ 𝑄𝑖 ∑ 𝐽𝑖𝑗
𝑎𝑖
𝑗=1

𝑛
𝑖=1 . 

Now, the three objective function components are explained as follows. The first component is the 

setup cost per time unit which is equal to the total setup cost per cycle  ∑ 𝑘𝑖 ∑  𝐽𝑖𝑗
𝑎𝑖
𝑗=1

𝑛
𝑖=1  divided by 

the cycle time 𝑇𝑐. Hence,  

Setup Cost per Time Unit =
∑ 𝑘𝑖 ∑  𝐽𝑖𝑗

𝑎𝑖
𝑗=1

𝑛
𝑖=1

𝑇𝑐
=
𝑑∑ 𝑘𝑖 ∑  𝐽𝑖𝑗
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Figure 3.1. Orders submitted to each supplier within a repeating order cycle. 
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The second component is the holding cost per time unit. Note that, the unit holding cost depends 

on the unit price, since every supplier is offering different unit price based on the order quantity. 

Now, for instance the holding cost per time unit due to supplier 𝑖 is the product of the average 

inventory per time unit for the purchased units that are received from supplier 𝑖 in interval 𝑗 , 

(𝑄𝑖/2)(  𝑇𝑖 𝐽𝑖𝑗)/𝑇𝑐 and the corresponding unit holding cost for that supplier  𝑟𝑝𝑖𝑗. Thus,  

Holding Cost per Time Unit =
∑ (𝑄𝑖/2) ((𝑄𝑖/𝑑)𝑟 ∑ 𝐽𝑖𝑗𝑝𝑖𝑗

𝑎𝑖
𝑗=1 )𝑛

𝑖=1

𝑇𝑐

=
(1/2)𝑟 ∑ 𝑄𝑖

2∑ 𝐽𝑖𝑗
𝑎𝑖
𝑗=1

𝑛
𝑖=1 𝑝𝑖𝑗

𝑄
. 

Finally, the third component is the purchasing cost per time unit which is equal to the purchasing 

cost per cycle  ∑ 𝑄𝑖 ∑ 𝐽𝑖𝑗𝑝𝑖𝑗
𝑎𝑖
𝑗=1

𝑛
𝑖=1  divided by the cycle time  𝑇𝑐. Hence, 

Purchasing Cost per Time Unit =
∑ 𝑄𝑖 ∑ 𝐽𝑖𝑗𝑝𝑖𝑗

𝑎𝑖
𝑗=1

𝑛
𝑖=1

 𝑇𝑐
=
𝑑∑ 𝑄𝑖 ∑ 𝐽𝑖𝑗𝑝𝑖𝑗

𝑎𝑖
𝑗=1

𝑛
𝑖=1

𝑄
. 

Therefore, the MINLP model (𝑀1) can be formulated as follows: 

𝑀𝑖𝑛  𝑍 =
1

𝑄
[𝑑∑𝑘𝑖∑ 𝐽𝑖𝑗

𝑎𝑖

𝑗=1

𝑛

𝑖=1

+ (1/2)𝑟∑𝑄𝑖
2∑𝐽𝑖𝑗

𝑎𝑖

𝑗=1

𝑛

𝑖=1

𝑝𝑖𝑗 + 𝑑∑𝑄𝑖∑𝐽𝑖𝑗𝑝𝑖𝑗

𝑎𝑖

𝑗=1

𝑛

𝑖=1

], 

subject to 

𝑄 = ∑ 𝑄𝑖 ∑ 𝐽𝑖𝑗
𝑎𝑖
𝑗=1

𝑛
𝑖=1 ,   (1) 

𝑑𝑄𝑖 ∑ 𝐽𝑖𝑗
𝑎𝑖
𝑗=1 ≤ 𝑄𝑐𝑖 ,  𝑖 = 1, … , 𝑛 , (2) 

∑ 𝑄𝑖(𝑞𝑖 − 𝑞𝑎)∑ 𝐽𝑖𝑗
𝑎𝑖
𝑗=1

𝑛
𝑖=1 ≥   0 ,    (3) 

∑ 𝑌𝑖𝑗 ≤ 1
𝑎𝑖
𝑗=1  ,  𝑖 = 1, … , 𝑛, (4) 
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𝑄𝑖  ≤ ∑ 𝑢𝑖𝑗𝑌𝑖𝑗
𝑎𝑖
𝑗=1  ,    𝑖 = 1, . . , 𝑛  , and 𝑗 = 1, … , 𝑎𝑖 , (5) 

𝑄𝑖  ≥ ∑ 𝑢𝑖,𝑗−1𝑌𝑖𝑗
𝑎𝑖
𝑗=1 ,   𝑖 = 1, . . , 𝑛 , and 𝑗 = 1, … , 𝑎𝑖 , (6) 

∑ ∑ 𝐽𝑖𝑗
𝑎𝑖
𝑗=1

𝑛
𝑖=1 ≤ 𝑚 ,   (7) 

𝐽𝑖𝑗 ≤ 𝑚𝑌𝑖𝑗,          𝑖 = 1, . . , 𝑛 , and 𝑗 = 1, … , 𝑎𝑖 , (8) 

𝐽𝑖𝑗 ≥ 0,   𝑖𝑛𝑡𝑒𝑔𝑒𝑟 , 𝑖 = 1, . . , 𝑛 ,and 𝑗 = 1,… , 𝑎𝑖, (9) 

𝑄𝑖 ≥ 0 ,        𝑖 = 1, . . , 𝑛, (10) 

𝑌𝑖𝑗 ∈ (0,1),  𝑖 = 1, . . , 𝑛, and 𝑗 = 1, … , 𝑎𝑖, (11) 

In this model, constraint (1) represents the total order quantity from all suppliers per order cycle. 

Constraint (2) represents the suppliers’ capacity restrictions, where the total purchased quantity 

from a certain supplier over the order cycle time should be less than or equal to the supplier’s 

capacity rate 𝑐𝑖. Constraint (3) represents the suppliers’ quality restriction in which the average 

quality level offered by all suppliers should be greater than or equal to the minimum acceptable 

quality level 𝑞𝑎. The following three constraints, (4) to (6), are related to the quantity discount 

intervals; for instance, constraint (4) guarantees that at most one of the supplier’s quantity discount 

intervals is selected, and constraints (5) and (6) make sure the purchased quantity is within the 

supplier’s quantity discount interval. Note that, when 𝑄𝑖 = 𝑢𝑖𝑗, both 𝑌𝑖𝑗  and 𝑌𝑖,𝑗+1 can be set to 1; 

however, in this cost model 𝑌𝑖,𝑗+1 will be set to 1 because of the lower unit price. Moreover, 

constraint (7) represents the restriction on the total number of orders that can be placed to the 

suppliers within an order cycle. This constraint allows controlling the length of the cycle time. In 

addition, constraints (8) and (9) guarantee that the total number of orders placed to each supplier 

is integer and less than or equal to 𝑚. Finally, non-negativity and binary conditions are represented 

by constraints (10) and (11), respectively. 
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Note that the previous model considers independent order quantities, meaning that a different order 

quantity can be placed by each selected supplier. However, as shown in Munson and Rosenblatt 

(2001), coordinating the channel of supply chain can be achieved by ensuring that the placed order 

quantities at each stage in the supply chain is an integer multiple of the order quantities at the 

downstream stage. Hence, to facilitate this coordination mechanism, the second version of our 

Model (𝑀2) allows only equal-size of order quantities to the selected suppliers. Thus, the 

independent order quantities 𝑄𝑖 in Model (𝑀1) are replaced by an equal-size order quantity 𝑄𝑐 in 

Model (𝑀2). 

3.2. Numerical Example 

Suppose that a supplier selection problem consists of three suppliers and a manufacturer. The 

manufacturer’s demand per time unit is 500 units per month, and he/she is allowed to place  𝑚  

orders to supplier(s) within a repeating order cycle. The manufacturer wants to select the best set 

of suppliers to purchase from, given that the manufacturer’s minimum acceptable quality level is 

0.95, while the quality levels for the three suppliers are 0.92, 0.95, and 0.98, respectively. 

Moreover, each supplier has a production capacity of 300, 350, and 250 units per month, 

respectively. Also, the suppliers are offering the manufacturer all-unit quantity discounts with the 

discount intervals and prices shown in Table 3.1. The manufacturer’s inventory holding cost rate 

is 0.3 per month. Furthermore, the manufacturer’s fixed ordering cost from each supplier is $500, 

$250, and $450 per order, respectively. Note that the transportation cost is considered to be fixed 

and part of the ordering cost. The goal of the manufacturer is to determine the optimal order 

quantities that need to be placed to the selected suppliers and how often they need to be placed 

during an order cycle time in order to minimize the replenishment and inventory cost per time unit 

under supplier’s capacity and quality constraints. 
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Table 3.1. Suppliers' all unit quantity discounts. 

Suppliers 𝒋 
Lower bound 

(𝑢𝑗−1) 
Upper bound 

(𝑢𝑗) 
Unit price 

($) 

Supplier 1 

1 0 50 9 

2 50 100 8.9 

3 100 150 8.8 

4 150 200 8.7 

5 200 ∞ 8.6 

Supplier 2 

1 0 75 9.8 

2 75 150 9.6 

3 150 225 9.4 

4 225 ∞ 9.2 

Supplier 3 

1 0 100 10.5 

2 100 200 10.4 

3 200 ∞ 10.3 

This problem was formulated and solved using LINGO 13.0 with global optimizer on a PC with 

INTEL(R) Core (TM) 2 Duo Processor at 2.10 GHz and 4.0 GB RAM. In order to determine the 

absolute minimum cost, 𝑚 in constraint (7) is set to a very large value and it has been found that 

the absolute minimum cost is obtained at 𝑚 = 117 ($5566.21/month).   However, it corresponds 

to an impractical cycle time of 76.45 months. Observe that in Figure 3.2, as 𝑚 increases, the order 

cycle time increases. Thus, decision makers should select a reasonable value for  𝑚  that achieves 

a low average monthly cost and reaches a reasonably small order cycle. Consequently, constraint 

(7) is changed to equality to observe model (𝑀1)’s behavior concerning the optimal solution for 

different values of  𝑚. Table 3.2 shows the detailed solutions for  𝑚 = 2,… , 20. Also, Figure 3.2 

depicts the change in average monthly cost and order cycle time with respect to 𝑚. In this case, 

the first and second lowest average monthly cost occurs at 𝑚 = 17($5567.44/month) and  𝑚 =

8, 16 ($5567.16/month), respectively. Notice that, the average monthly cost is almost the same; 

hence the key decision factor is the cycle time. Accordingly, 𝑚 = 8 is selected since the cycle time 

is reduced to 5.27 months which can justify the small increment in cost of $0.022%/month 

comparing to the absolute minimum cost value.  
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Model (𝑀1′) can be seen as a combination of the model proposed by Ghodsypour and O’Brien 

(2001), where only one order can be placed to each selected supplier within an order cycle, and 

Model (𝑀1), where suppliers offer all-unit quantity discounts. As shown in Figure 3.2, the average 

monthly cost of Model (𝑀1) when 𝑚 = 3 is $5717.15/month (𝐽24 = 2, 𝐽33 = 1,and 𝑄24 =

349.21 units, 𝑄33 = 299.32 units), which is lower than the $5741.04/month (𝐽15 = 𝐽24 = 𝐽33 =

1,and 𝑄15 = 358.39 units, 𝑄24 = 413.42 units, 𝑄33 = 358.39 units) obtained by Model(𝑀1′). 

Accordingly, it can be concluded that, by restricting the manufacturer to submit at most one order 

to each supplier within an order cycle may result in a suboptimal solution.  

 

Figure 3.2. Behavior of Model (M1) over different values of m. 
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Table 3.2. Detailed solutions of Model (M1) over different values of m. 

Number 

of 

Orders 

(𝑚) 

Supplier 1 Supplier 2 Supplier3 

Cost 

($/month) 

Cycle 

Time  

(months) 
(𝑗) (𝐽1𝑗) 

 (𝑄1) 

(units) 
(𝑗) (𝐽2𝑗) 

 (𝑄2) 

(units) 
(𝑗) (𝐽3𝑗) 

 (𝑄3) 

(units) 

2  0 0 0 4 1 446.25 3 1 220.60 5831.65 1.33 

3 0 0 0 4 2 349.21 3 1 299.32 5717.15 2.00 

4 5 1 332.15 4 2 386.47 3 1 332.15 5666.65 2.87 

5 5 1 316.11 4 3 369.98 3 1 316.11 5621.16 3.48 

6 5 1 306.95 4 4 358.11 3 1 306.95 5590.43 4.09 

7 5 1 352.64 4 5 329.13 3 1 352.64 5573.30 4.70 

8 5 1 395.19 4 6 307.37 3 1 395.19 5567.44 5.27 

9 5 1 435.18 4 7 290.12 3 1 435.18 5568.14 5.80 

10 5 1 473.04 4 8 275.94 3 1 473.04 5572.94 6.31 

11 5 1 509.06 4 9 263.96 3 1 509.06 5580.57 6.79 

12 5 1 581.25 4 9 301.39 3 2 290.63 5579.43 7.75 

13 5 2 330.24 4 9 342.47 3 2 330.24 5580.01 8.81 

14 5 2 352.64 4 10 329.13 3 2 352.64 5573.30 9.40 

15 5 2 374.26 4 11 317.56 3 2 374.26 5569.33 9.98 

16 5 2 395.19 4 12 307.37 3 2 395.19 5567.44 10.54 

17 5 2 415.48 4 13 298.29 3 2 415.48 5567.16 11.08 

18 5 2 435.18 4 14 290.12 3 2 435.18 5568.14 11.60 

19 5 2 454.36 4 15 282.71 3 2 454.36 5570.13 12.12 

20 5 2 490.94 4 15 305.48 3 3 327.30 5569.38 13.09 

 

Moreover, based on the problem structure, it is important to mention that, the average monthly 

cost for any value of 𝑚 should be less than or equal to the resulting cost when 𝑚 is set to any of 

its factors. In addition, if the number of orders placed to the selected suppliers has a greatest 

common factor 𝑘, such that 𝑘 > 1, then an alternative solution can be generated by dividing the 

number of orders placed to each selected supplier by 𝑘; this solution will have the same average 

monthly cost, but the cycle time will be reduced by 100 × (𝑘 − 1)/𝑘%. For example, the average 

monthly cost for 𝑚 = 18 should be less than or equal to the average monthly cost for𝑚 =

2, 3, 6, 9; Note that, when 𝑚 = 1, the problem is infeasible due to the supplier capacities. In 

addition, given that 𝑘 = 2 for 𝑚 = 18, the average monthly cost for 𝑚 = 18 and 𝑚 = 9 is the 

same. Also, the cycle time for 𝑚 = 9 is 50% less than the corresponding cycle time at  𝑚 = 18.   
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The second version of Model (𝑀2) places an equal-size order quantity to the selected suppliers to 

allow coordination among the various stages of a supply chain. Table 3.3 shows Model (𝑀2)’s 

detailed solutions over different values of 𝑚. Also, Figure 3.3 depicts the increase in the average 

monthly cost from Model (𝑀1) to Model (𝑀2). 

Notice that, when 𝑚 = 3 in Model (𝑀2), the average monthly cost is equal to $5736.66/month 

(𝐽24 = 2, 𝐽33 = 1and 𝑄𝑐 = 332.17 units), which is less than the average monthly cost obtained 

from Model (𝑀2′), which is $5743.52/month (𝐽15 = 𝐽24 = 𝐽33 = 1and 𝑄𝑐 = 377.29 units), where 

the manufacturer only places one order to the selected suppliers during an order cycle. 

Consequently, as shown in Figure 3.3, it can be concluded that, by allowing the manufacturer to 

place multiple orders to the selected suppliers per order cycle, the average monthly cost can be 

reduced.  

 

Figure 3.3. Cost comparison between Models (M1) and (M2). 
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 Table 3.3. Model (M2)’s detailed solutions for different values of m. 

 

 

In addition, by implementing this coordination mechanism, the average monthly cost also 

increases, compared to Model (𝑀1), due to the changes in the manufacturer’s order allocations. 

For instance, when 𝑚 = 4, both models have the same order allocations; however, the optimal 

order quantities submitted to each supplier in Model (𝑀1), 𝑄15 = 332.15 units, 𝑄24 =

386.46 units, and 𝑄33 = 332.15 units, are changed to a single order quantity 𝑄𝑐 = 359.97 units 

in Model (𝑀2). This change in order quantities leads to a slight increase in the purchasing cost and 

hence an increase in the overall average monthly cost. Note that, since the order allocations have 

not been changed, the average monthly cost does not increase significantly and that explains the 

good behavior of Model (𝑀2) compared to Model (𝑀1) for 𝑚 = 4, 5, 6 and 13, as shown in Figure 

3.3. However, when the order allocations change in Model (𝑀2) compared to those in Model (𝑀1), 

the average monthly cost may increase significantly. For instance, let us consider 𝑚 = 7 in both 

Number of 

Orders 

(𝑚) 

Supplier 1 Supplier 2 Supplier 3 
 (𝑄𝑐) 

(units) 
Cost  

($/month) 
Cycle time  

(months) (𝑗) (𝐽1𝑗) (𝑗) (𝐽2𝑗) (𝑗) (𝐽3𝑗) 

2 5 1 0 0 0 1 409.33 5885.44 1.64 

3  0 0 4 2 3 1 332.17 5736.66 1.99 

4 5 1 4 2 3 1 359.97 5669.52 2.88 

5 5 1 4 3 3 1 349.09 5623.96 3.49 

6 5 1 4 4 3 1 341.61 5593.05 4.10 

7 5 1 4 4 3 2 348.16 5699.07 4.87 

8 5 1 4 5 3 2 342.73 5666.50 5.48 

9 5 1 4 6 3 2 338.43 5641.00 6.09 

10 5 1 4 7 3 2 334.93 5620.49 6.70 

11 5 2 4 7 3 2 345.03 5607.16 7.59 

12 5 2 4 8 3 2 341.61 5593.05 8.20 

13 5 2 4 9 3 2 338.68 5581.03 8.81 

14 5 2 4 9 3 3 342.25 5635.02 9.58 

15 5 2 4 10 3 3 339.70 5621.83 10.19 

16 5 2 4 11 3 3 337.44 5610.24 10.80 

17 5 3 4 11 3 3 343.83 5602.19 11.69 

18 5 3 4 12 3 3 341.61 5593.05 12.30 

19 5 3 4 13 3 3 339.61 5584.84 12.91 

20 5 3 4 14 3 3 337.80 5577.42 13.51 
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models. In this case, it can be noticed in Table 3.2 that in Model (𝑀2) one additional order is 

placed to supplier 3 (i.e., in Model (𝑀1), 𝐽33 = 1 and in Model (𝑀2), 𝐽33 = 2). Hence, in the case 

of supplier 3 all the cost components increase because one more order is allocated to supplier 3 as 

a result of the reduction in supplier 3 order quantity from Model (𝑀1) to Model (𝑀2). Table 3.4 

shows the change of each cost component for each supplier when 𝑚 = 7. Even though all the cost 

components decrease in the case of suppliers 1 and 2, this reduction is not enough to reduce the 

average monthly cost because all the cost components for supplier 3 increase.  

Table 3.4. Cost comparison between Models (M1) and (M2) for m = 7. 

𝒎 = 7 
Ordering Policy Setup cost Holding cost  Purchasing cost 

𝑀1 𝑀2 𝑀1 𝑀2 𝑀1 𝑀2 𝑀1 𝑀2 

Supplier 1 
𝐽15 = 1  

𝑄1 = 352.64 

𝐽15 = 1 

𝑄𝑐 = 348.16 
106.34 102.58 68.23 64.15 645 614.28 

Supplier 2 
𝐽24 = 5 

𝑄2 = 329.13 

𝐽24 = 4 

𝑄𝑐 = 348.16 
265.85 205.16 317.93 274.54 3220 2628.57 

Supplier 3 
𝐽33 = 1  

𝑄3 = 352.64 

𝐽33 = 2 

𝑄𝑐 = 348.16 
95.706 184.64 81.72 153.68 772.5 1471.42 

Total  467.9 492.39 467.9 492.39 4637.5 4714.29 

Now, sensitivity analysis for the inventory holding cost rate  𝑟  is performed for its significant 

influence on the behavior of model (𝑀1). Thus, for  𝑚 = 8, different values for the inventory 

holding cost rate  𝑟 are considered, keeping the values of the remaining parameters unchanged. 

Figure 3.4 shows the order quantities for the three suppliers and the average monthly cost for 

different values of  𝑟. 
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Figure 3.4. Model (M1)’s behavior with respect to the inventory holding cost rate. 

It can be argued that, as the holding cost rate increases, the optimal order quantities will either 

keep decreasing or remain the same. For instance, as shown in Figure 3.4, the optimal order 

quantities keep decreasing until the inventory holding cost rate reached the value of  0.6. Then, for 

all 0.6 ≤ 𝑟 ≤ 1.0, the optimal order quantities remained unchanged. In some cases, it is more 

efficient to keep the optimal order quantities unchanged, even though that would result in 

increasing the holding cost, but it would avoid incurring some additional setup and purchasing 

costs. Thus, over some ranges of the holding cost rate, the optimal order quantities remain the same 

until the holding cost rate becomes really high, at which point it becomes more efficient to decrease 

the optimal order quantities instead of incurring in a very high holding cost. In this example, the 

optimal order quantity for supplier 2 at 𝑟 = 0.1 is 𝑄2 = 532.38 units and it starts decreasing until 

it reaches 𝑢23 = 225 units at  𝑟 = 0.6. Note that the average monthly cost would increase 

significantly if the optimal order quantity (𝑄2) was decreased to a value lower than 𝑢23 , because 

that would result in ordering at a higher unit price in a lower quantity discount interval. Therefore 

the optimal order quantities remained unchanged for 0.6 ≤ 𝑟 ≤ 1.0. 
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3.3. Conclusions  

An MINLP model has been developed for a supplier selection problem with 𝑛 suppliers. The 

proposed model combines two efficient approaches to incur the least possible average 

replenishment and inventory cost associated to the supplier selection process: the first one allows 

submitting multiple orders to each selected supplier during a repeating order cycle, and the second 

one allows suppliers to offer all-unit quantity discounts to encourage the increase of the order 

quantities and reduce the ordering cost per time unit. Moreover, two versions of the proposed 

model have been considered based on the type of order quantities: the first one considers 

independent order quantities for the selected suppliers and the second one considers equal-size 

order quantities. The proposed model minimizes the replenishment and inventory cost per time 

unit under supplier’s capacity and quality constraints. The model determines the appropriate 

suppliers to order from, the number of orders placed to the selected suppliers, the optimal order 

quantities, and the suppliers’ prices based on the corresponding quantity discount intervals.  
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Chapter 4: Determining the Retailer’s Replenishment Policy considering Multiple 

Capacitated Suppliers and Price-Sensitive Demand  

 

4.1. Problem Description and Model Development 

In this section, we develop a joint pricing and inventory replenishment model in a supply chain 

that consists of a single retailer and 𝑛 potential suppliers, as shown in Figure 4.1. Suppliers can 

deliver a particular type of product to the retailer. Let 𝑐𝑖 denote the capacity or production rate,  𝑘𝑖 

be the setup cost, and  𝑞𝑖 denote the quality level, which represents the percentage of acceptable 

units, for supplier 𝑖. In addition, let 𝑞𝑎 denote the retailer’s minimum acceptable quality level on 

the average quality level obtained from all suppliers, and let the inventory holding cost rate be  𝑟. 

 

 

 

 

 

Also, the retailer’s unit purchasing price depends on the following all-unit quantity discount 

mechanism that is offered by the suppliers: 

𝑣(𝑄𝑖) =

{
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, 𝑖 = 1,2, … 𝑛, 

Figure 4.1. Supply chain with a single retailer and multiple suppliers. 

𝑄𝑛 , 𝐽𝑛𝑗  

𝑄1, 𝐽1𝑗  

𝑃 
Set of Customers   

(Price-sensitive 

Demand)         

𝐷 = ∝ 𝑃−𝑒 

Retailer     

𝑞𝑎, 𝑟 

𝑄2, 𝐽2𝑗 

Supplier 1  

𝑐1, 𝑘1 , 𝑞1, 𝑣(𝑄1)  

 

Supplier 2  

𝑐2, 𝑘2 , 𝑞2, 𝑣(𝑄2)  

 

Supplier n  

𝑐𝑛, 𝑘𝑛 , 𝑞𝑛, 𝑣(𝑄𝑛)  

 



 

35 
 

where 𝑄𝑖 is the purchased lot size from supplier 𝑖, 𝑢𝑖0 = 0 < 𝑢𝑖1 < ⋯ < 𝑢𝑖,𝑎𝑖−1 < 𝑢𝑖,𝑎𝑖 = ∞  

provide the sequence of order quantities at which the unit price changes, and 𝑎𝑖 is the number of 

quantity discount intervals offered by supplier 𝑖. For instance, the purchasing price for a lot size 

𝑄𝑖 is  𝑣𝑖𝑗𝑄𝑖, if  𝑢𝑖,𝑗−1 ≤ 𝑄𝑖 < 𝑢𝑖𝑗, where  𝑢𝑖𝑗  is supplier 𝑖’s strict upper bound of discount interval 𝑗 

and  𝑣𝑖𝑗  is the unit price, 𝑗 = 1,2, … 𝑎𝑖, such that  𝑣𝑖1 > ⋯ >  𝑣𝑖,𝑎𝑖−1 >  𝑣𝑖,𝑎𝑖 > 0. Let 𝑌𝑖𝑗 be a 

binary variable that equals one if discount interval 𝑗 for supplier 𝑖 is selected, and equals zero 

otherwise.  

The retailer’s demand rate is a decreasing function of the selling price 𝑃 given by a constant price 

elasticity function,  𝐷 = ∝ 𝑃−𝑒, where ∝ and 𝑒 are the scaling factor and the price elasticity index, 

respectively. We consider the contribution made by Mendoza and Ventura (2008) who recommend 

allowing multiple orders to be submitted to the selected suppliers during a repeating order cycle. 

Thus, let 𝐽𝑖𝑗 denote the number of orders submitted to supplier 𝑖 in interval  𝑗 per order cycle, and 

𝑚  denote the maximum number of orders that can be placed to the selected suppliers in a cycle. 

Therefore, the goal is to find the optimal number of orders per cycle and the corresponding order 

quantity for the selected suppliers, and the optimal selling price that maximize the retailer’s profit 

per time unit subject to quality and capacity constraints.  

In this section, we propose two mixed integer nonlinear programming formulations depending on 

the type of order quantities submitted to the selected supplies, which can be supplier-dependent 

order quantities and equal-size order quantities. In the first case, when the retailer receives an order 

quantity of size 𝑄𝑖 from supplier 𝑖, let  𝑇𝑖 be the time to consume that order under price-elastic 

demand; thus, 𝑇𝑖 = 𝑄𝑖/𝐷 = 𝑄𝑖/(∝ 𝑃
−𝑒). Hence, the total time to consume all the units ordered 

from supplier 𝑖  in an order cycle is equal to  𝑇𝑖 ∑ 𝐽𝑖𝑗
𝑎𝑖
𝑗=1 = 𝑄𝑖/(∝ 𝑃

−𝑒 ) ∑ 𝐽𝑖𝑗
𝑎𝑖
𝑗=1 . Given that the 
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repeating order cycle time 𝑇𝑐 is the time where all the units from the selected suppliers are 

consumed, 𝑇𝑐 = ∑ 𝑇𝑖 ∑ 𝐽𝑖𝑗
𝑎𝑖
𝑗=1

𝑛
𝑖=1 = ∑ 𝑄𝑖/(∝ 𝑃

−𝑒)𝑛
𝑖=1  ∑ 𝐽𝑖𝑗

𝑎𝑖
𝑗=1 = 𝑄/(∝ 𝑃−𝑒), where 𝑄 denotes the 

sum of the order quantities received from all the suppliers within an order cycle (i.e., 𝑄 =

∑ 𝑄𝑖 ∑ 𝐽𝑖𝑗
𝑎𝑖
𝑗=1

𝑛
𝑖=1 ). Note that the number of orders submitted to each supplier and the corresponding 

order quantities will be repeated in each cycle. Therefore, the mixed integer nonlinear 

programming Model (𝑀1) is as follows: 

𝑀𝑎𝑥  𝑍 =∝ 𝑃1−𝑒 −
1

𝑄
[∝ 𝑃−𝑒∑𝑘𝑖∑ 𝐽𝑖𝑗

𝑎𝑖

𝑗=1

𝑛

𝑖=1

+ (1/2)𝑟∑𝑄𝑖
2∑𝐽𝑖𝑗

𝑎𝑖

𝑗=1

𝑛

𝑖=1

𝑣𝑖𝑗+∝ 𝑃
−𝑒∑𝑄𝑖∑𝐽𝑖𝑗𝑣𝑖𝑗

𝑎𝑖

𝑗=1

𝑛

𝑖=1

], 

subject to 

𝑄 = ∑ 𝑄𝑖 ∑ 𝐽𝑖𝑗
𝑎𝑖
𝑗=1  ,𝑛

𝑖=1    (1) 

∝ 𝑃−𝑒𝑄𝑖 ∑ 𝐽𝑖𝑗
𝑎𝑖
𝑗=1 ≤ 𝑄𝑐𝑖 ,  𝑖 = 1, … , 𝑛,  (2) 

∑ 𝑄𝑖(𝑞𝑖 − 𝑞𝑎)∑ 𝐽𝑖𝑗
𝑎𝑖
𝑗=1

𝑛
𝑖=1 ≥   0  ,   (3) 

𝑄𝑖  ≤ ∑ 𝑢𝑖𝑗𝑌𝑖𝑗
𝑎𝑖
𝑗=1  ,  𝑖 = 1, . . , 𝑛, 𝑎𝑛𝑑  𝑗 = 1,… , 𝑎𝑖,  (4) 

𝑄𝑖  ≥ ∑ 𝑢𝑖,𝑗−1𝑌𝑖𝑗
𝑎𝑖
𝑗=1  ,  𝑖 = 1, . . , 𝑛, 𝑎𝑛𝑑  𝑗 = 1,… , 𝑎𝑖,  (5) 

∑ 𝑌𝑖𝑗 ≤ 1
𝑎𝑖
𝑗=1  ,  𝑖 = 1, … , 𝑛, (6) 

∑ ∑ 𝐽𝑖𝑗
𝑎𝑖
𝑗=1

𝑛
𝑖=1 ≤ 𝑚 ,   (7) 

𝐽𝑖𝑗 ≤ 𝑚𝑌𝑖𝑗 , 𝑖 = 1, . . , 𝑛, 𝑎𝑛𝑑  𝑗 = 1,… , 𝑎𝑖, (8) 

𝐽𝑖𝑗 ≥ 0,  𝑖𝑛𝑡𝑒𝑔𝑒𝑟 , 𝑖 = 1, . . , 𝑛, 𝑎𝑛𝑑  𝑗 = 1,… , 𝑎𝑖, (9) 

𝑃 ≥ 0 ,   (10) 

𝑄𝑖 ≥ 0 ,  𝑖 = 1, . . , 𝑛, (11) 

𝑌𝑖𝑗  ∈ (0,1) ,  𝑖 = 1, . . , 𝑛 , 𝑎𝑛𝑑  𝑗 = 1,… , 𝑎𝑖. (12) 
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In this formulation, the objective function maximizes the retailer’s profit per time unit, which is 

equal to the sales revenue per time unit, ∝ 𝑃1−𝑒, minus the cost per time unit; the latter includes 

the setup cost per time unit, holding cost per time unit, and purchasing cost per time unit. The setup 

cost per time unit is obtained by dividing the total setup cost per cycle ∑ 𝑘𝑖 ∑  𝐽𝑖𝑗
𝑎𝑖
𝑗=1

𝑛
𝑖=1  by the 

repeating order cycle time 𝑇𝑐; this cost component becomes (∝ 𝑃−𝑒 ∑ 𝑘𝑖 ∑  𝐽𝑖𝑗
𝑎𝑖
𝑗=1

𝑛
𝑖=1 )/𝑄. The 

holding cost per time unit corresponding to the units purchased from supplier 𝑖 is obtained by 

multiplying the unit holding cost 𝑟𝑣𝑖𝑗 by the average inventory level  (𝑄𝑖/2)( 𝑇𝑖 ∑ 𝐽𝑖𝑗
𝑎𝑖
𝑗=1 /𝑇𝑐). 

Hence, the holding cost per time unit is equal to ((1/2)𝑟 ∑ 𝑄𝑖
2∑ 𝐽𝑖𝑗

𝑎𝑖
𝑗=1

𝑛
𝑖=1 𝑣𝑖𝑗) /𝑄. Lastly, the 

purchasing cost per time unit is obtained by dividing the total purchasing cost per cycle 

∑ 𝑄𝑖 ∑ 𝐽𝑖𝑗𝑣𝑖𝑗
𝑎𝑖
𝑗=1

𝑛
𝑖=1  by the repeating order cycle time 𝑇𝑐; thus, the purchasing cost per time unit 

becomes  (∝ 𝑃−𝑒 ∑ 𝑄𝑖 ∑ 𝐽𝑖𝑗𝑣𝑖𝑗
𝑎𝑖
𝑗=1

𝑛
𝑖=1 )/𝑄.  

Model (𝑀1) is subject to a number of constraints. Constraint (1) represents the sum of the order 

quantities submitted to all suppliers within an order cycle. Constraint set (2) insures that, on 

average, the number of units ordered from each supplier (i.e., the supplier’s demand share) does 

not exceed the supplier’s capacity. Constraint (3) guarantees that the average quality level 

computed from all suppliers, ∑ 𝑄𝑖𝑞𝑖 ∑ 𝐽𝑖𝑗
𝑎𝑖
𝑗=1

𝑛
𝑖=1 /∑ 𝑄𝑖 ∑ 𝐽𝑖𝑗

𝑎𝑖
𝑗=1

𝑛
𝑖=1 , is greater than or equal to the 

retailer’s minimum acceptable quality level 𝑞𝑎. Constraint sets (4) and (5) make sure that the 

ordered quantity for a particular supplier is within the proper quantity discount interval, and 

constraint set (6) assures that at most one of the supplier’s quantity discount intervals is selected. 

Constraint (7) restricts the maximum number of orders that can be placed to the selected suppliers 

within a repeating order cycle. Note that, this constraint helps in controlling the length of the cycle 



 

38 
 

time as it will be shown in Section 4.3. Constraint sets (8) and (9) make sure that the number of 

orders allocated to a certain supplier is integer and less than or equal to  𝑚. Finally, constraint sets 

(10) and (11) impose non-negativity conditions, and constraint set (12) enforces binary conditions. 

The second model, denoted as (𝑀2), allows only order quantities of equal size to the selected 

suppliers. The independent order quantities 𝑄𝑖 in Model (𝑀1) are replaced by an equal-size order 

quantity 𝑄𝑐. In addition, constraint set (11) is replaced by 𝑄𝑐 ≥ 0. Model (𝑀2) is useful because 

it can be extended to a multi-stage supply chain system, where inventory coordination between 

consecutive stages is essential to facilitate the inventory planning process and eliminate the 

possibility of having undesirable shortages. Coordination occurs when the equal-size order 

quantity employed at a given stage is an integer multiple of the equal-size order quantity employed 

at the downstream stage (Ravindran and Warsing, 2012). 

4.2. Model Analysis   

4.2.1. Uncapacitated Dominating Supplier   

The general solution for Model (𝑀1) can be represented by (𝑃, 𝐽1, … , 𝐽𝑛, 𝑄1, … , 𝑄𝑛), where 𝐽𝑖 =

∑ 𝐽𝑖𝑗
𝑎𝑖
𝑗=1 , 𝑖 = 1, … , 𝑛. For instance, Figure 4.2 illustrates a solution for Model (𝑀1); it shows that, 

for a given price 𝑃, the same supplier can be selected multiple times within an order cycle, i.e., 

 𝐽1 = 2,  𝐽2 = 3, and  𝐽3 = 2 . In Theorem 1 below, we provide sufficient conditions under which 

there exists an optimal solution where the retailer orders from a single supplier.  
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Theorem 1 Consider a special case of Model (𝑀1) where the retailer’s demand rate is constant 

(i.e., ∝ 𝑃−𝑒  is replaced by 𝐷). In addition, without loss of generality, assume that supplier 1 is 

such that 𝑐1 ≥ 𝐷, 𝑞1 ≥ 𝑞𝑎, and 𝑇𝐶1
′ ≤ 𝑇𝐶𝑖

′ , 𝑖 = 2,… , 𝑛, where 𝑇𝐶𝑖
′ is the cost per time unit 

incurred by only selecting supplier 𝑖 without considering capacity and quality constraints: 𝑇𝐶𝑖
′ =

𝐷
𝑘𝑖

𝑄𝑖
′ + (1/2) 𝑟𝑄𝑖

′𝑣𝑖𝑗∗ + 𝐷𝑣𝑖𝑗∗, 𝑖 = 1, . . , 𝑛 and 𝑗∗ {1, … , 𝑎𝑖}  (the Appendix shows the procedure 

to calculate the optimal order quantity 𝑄𝑖
′ and identify the supplier’s best quantity discount interval 

𝑗∗). Then, there exists an optimal solution where the retailer only orders from supplier 1, i.e.,  𝐽1
′ =

1, 𝐽2
′ = ⋯ = 𝐽𝑛

′ = 0, 𝑄1
′ > 0,𝑄2

′ = ⋯ = 𝑄𝑛
′ = 0, where 𝐽1

′ = ∑ 𝐽1𝑗
′𝑎𝑖

𝑗=1 = 𝐽1𝑗∗
′ = 1. 

Proof (By contradiction): 

Since the demand rate is assumed to be constant, the selling price 𝑃 is also constant. Consequently, 

the revenue component ∝ 𝑃1−𝑒 in the objective function for Model (𝑀1) is the same for any 

ordering strategy. Thus, we only need to consider the cost component in the proof.    

2T1 2T3 

Orders 

received from 

Supplier 2  

Orders 

received from 

Supplier 3  

Orders 

received from 

Supplier 1  

Inventory 

Level (units) 

Time 

Tc 

Q2 

Q1 

Q3 

3T2 

Figure 4.2. Illustration of a solution for Model (M1). 
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Now, assume that the solution stated in Theorem 1, say Solution I, is not optimal. Instead, there 

exists an optimal solution, say Solution II, (𝐽1
′′, … , 𝐽𝑛

′′,   𝑄1
′′, … , 𝑄𝑛

′′), where 𝐽𝑖
′′ = ∑ 𝐽𝑖𝑗

′′𝑎𝑖
𝑗=1 =

𝐽𝑖𝑗∗
′′   , 𝑖 = 1,… , 𝑛 where  𝑗∗ is the quantity discount interval used when supplier 𝑖 is selected. Also, 

in Solution II, at least one supplier different from supplier 1 is selected, i.e., ∑ 𝐽𝑖
′′ > 0𝑛

𝑖=2  

and  ∑ 𝑄𝑖
′′ > 0𝑛

𝑖=2 . Hence, the cost per time unit for Solution II is 

𝑇𝐶′′ =
1

∑ 𝑄𝑖
′′𝐽𝑖
′′𝑛

𝑖=1

[𝐷∑𝑘𝑖𝐽𝑖
′′

𝑛

𝑖=1

+ (
1

2
) 𝑟∑𝑄𝑖

′′2𝐽𝑖
′′

𝑛

𝑖=1

𝑣𝑖𝑗∗ + 𝐷∑𝑄𝑖
′′𝐽𝑖
′′𝑣𝑖𝑗∗

𝑛

𝑖=1

] 

=∑
𝑄𝑖
′′𝐽𝑖
′′

∑ 𝑄𝑖
′′𝐽𝑖
′′𝑛

𝑖=1

[𝐷
𝑘𝑖
𝑄𝑖
′′ + (1/2)𝑟𝑄𝑖

′′𝑣𝑖𝑗∗ + 𝐷𝑣𝑖𝑗∗]

𝑛

𝑖=1

. 

Let 𝛽𝑖 = 𝑄𝑖
′′𝐽𝑖
′′/∑ 𝑄𝑖

′′𝐽𝑖
′′𝑛

𝑖=1  represent the proportion of cycle time associated to supplier 𝑖, 

where ∑  𝛽𝑖
𝑛
𝑖=1 = 1; hence,  

𝑇𝐶′′ =∑ 𝛽𝑖 [𝐷
𝑘𝑖
𝑄𝑖
′′ + (1/2)𝑟𝑄𝑖

′′𝑣𝑖𝑗∗ + 𝐷𝑣𝑖𝑗∗]

𝑛

𝑖=1

. (13) 

Note that 
𝑘𝑖

𝑄𝑖
′′ + (1/2)𝑟𝑄𝑖

′′𝑣𝑖𝑗∗ + 𝐷𝑣𝑖𝑗∗ ≥ 𝑇𝐶𝑖
′, because in Solution II the determination of the 

order quantity for a certain supplier is influenced by the order quantities placed to the other 

suppliers. In addition, the suppliers in Solution II may have some quality and capacity limitations. 

Thus,  

𝑇𝐶′′ ≥∑ 𝛽𝑖 𝑇𝐶𝑖
′

𝑛

𝑖=1

 . (14) 

By assumption, 𝑇𝐶1
′ ≤ 𝑇𝐶𝑖

′ , 𝑖 = 2, … , 𝑛. Therefore, ∑  𝛽𝑖 𝑇𝐶𝑖
′𝑛

𝑖=1 ≥ ∑  𝛽𝑖
𝑛
𝑖=1 𝑇𝐶1

′, and accordingly,  
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𝑇𝐶′′ ≥∑ 𝛽𝑖

𝑛

𝑖=1

𝑇𝐶1
′ = 𝑇𝐶1

′∑ 𝛽𝑖

𝑛

𝑖=1

= 𝑇𝐶1
′  . (15) 

This shows that Solution I, when the retailer only orders from supplier 1, is at least as good as 

Solution II. Therefore, this is a contradiction, because it implies that Solution I must also be 

optimal.  ∎ 

Corollary 1.1 In Theorem 1, let the cost per time unit incurred from selecting supplier 1 only be 

strictly less than the cost per time incurred from selecting any other supplier (i.e., 𝑇𝐶1
′ < 𝑇𝐶𝑖

′,   𝑖 =

2, … , 𝑛), then ordering from supplier 1 alone is the retailer’s unique optimal solution. 

Proof: This proof is a variation of the proof for Theorem 1. Since, by assumption, 𝑇𝐶1
′ < 𝑇𝐶𝑖

′,   𝑖 =

2, … , 𝑛, then 𝐷
𝑘𝑖

𝑄𝑖
′′ + (1/2)𝑟𝑄𝑖

′′𝑣𝑖𝑗∗ + 𝐷𝑣𝑖𝑗∗ becomes strictly greater than 𝑇𝐶1
′.  Hence, (15) is 

rewritten as follows: 

𝑇𝐶′′ >∑ 𝛽𝑖

𝑛

𝑖=1

𝑇𝐶1
′ = 𝑇𝐶1

′∑ 𝛽𝑖

𝑛

𝑖=1

= 𝑇𝐶1
′  . 

Therefore, Solution II is not optimal and the only optimal solution is to only order from supplier 

1. ∎ 

Note that Corollary 1.1 proves the following property that was identified by Rosenblatt et al. 

(1998) for their model: “if no capacity constraints exist, then only one supplier with the minimum 

cost per time unit is selected”. However, if quality constraints are considered, then this single 

sourcing strategy might be infeasible. 
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4.2.2. Capacity Analysis for Dominating Supplier 

In this subsection, we study the retailer’s optimal sourcing strategy as the capacity of the 

dominating supplier changes. As a matter of fact, supplier’s capacity (i.e., production capability) 

may vary over time; it can majorly be affected by several factors, such as a natural disaster, 

business stability, and economic crisis. Any reduction in suppliers’ capacity may ultimately disrupt 

the retailer’s supply chain, and hence, may require the retailer to reevaluate sourcing decisions 

based on new supplier new capacities.  

For instance, if the dominating supplier (i.e., retailer’s sole source) experiences a capacity 

shortage, then the retailer would generally tend to either keep sourcing from the dominating 

supplier, switch to other supplier(s), or consider a multiple sourcing strategy with fully utilizing 

the available capacity of the dominating supplier. In this subsection, however, we show that for 

some capacity values, the retailer’s optimal sourcing strategy is to consider a multiple sourcing 

strategy but without fully utilizing the dominating supplier’s capacity.  

In order to address all the above possible retailer’s sourcing strategies, let us consider a special 

case of Model (𝑀1), detonated as  (𝑀1∗), where there are only two potential suppliers (i.e.,  𝑛 =

2) such that 𝑞𝑖 ≥ 𝑞𝑎 , 𝑖 = 1,2. Assume also that there are no quantity discounts (i.e., 𝐽𝑖𝑗 and 𝑣𝑖𝑗 

are replaced by  𝐽𝑖, and 𝑣𝑖, respectively). Moreover, without loss of generality, assume that supplier 

1 is the dominating supplier, i.e., 𝑇𝑃1 > 𝑇𝑃2, where 𝑇𝑃𝑖 is the profit per time unit obtained by only 

selecting supplier 𝑖 without considering capacity and quality constraints: 𝑇𝑃𝑖 =∝ 𝑃
1−𝑒 −

[∝ 𝑃−𝑒
𝑘𝑖

𝑄𝑖
+ (1/2)𝑟𝑄𝑖𝑣𝑖+∝ 𝑃

−𝑒𝑣𝑖] , 𝑖 = 1,2. Let also 𝐷𝑖 represent the optimal demand rate that 

is obtained by only selecting supplier 𝑖 without considering capacity and quality constraints, 



 

43 
 

where 𝑖 = 1, 2. In addition, assume that supplier 1’s capacity 𝑐1 is strictly less than  𝐷1, and 

supplier 2 has no capacity limitations. Consequently, Model (𝑀1∗) can be written as follows: 

𝑀𝑎𝑥  𝑇𝑃 =∝ 𝑃1−𝑒 −
1

∑ 𝑄𝑖𝐽𝑖
2
𝑖=1

[∝ 𝑃−𝑒∑ 𝑘𝑖 𝐽𝑖

2

𝑖=1

+ (1/2)𝑟∑𝑄𝑖
2𝐽
𝑖

2

𝑖=1

𝑣𝑖+∝ 𝑃
−𝑒∑𝑄𝑖𝐽𝑖𝑣𝑖

2

𝑖=1

], 

subject to 

∝𝑃−𝑒𝑄1𝐽1

∑ 𝑄𝑖𝐽𝑖
2
𝑖=1

≤ 𝑐1 ,   (16) 

∑ 𝐽𝑖
2
𝑖=1 ≤ 𝑚 ,   (17) 

𝐽𝑖 ≥ 0 ,   𝑖𝑛𝑡𝑒𝑔𝑒𝑟, 𝑎𝑛𝑑 𝑖 = 1,2 , (18) 

𝑃 ≥ 0 ,   (19) 

𝑄𝑖 ≥ 0 ,  𝑖 = 1,2 . (20) 

Now, let the integer variables  𝐽𝑖, and 𝑚 be known in advance and assumed to be constant. Under 

these assumptions, we can generate the corresponding KKT conditions for Model (𝑀1∗) to address 

the retailer’s possible optimal sourcing strategies, and analyze supplier 1’s capacity constraint to 

find out whether it is fully utilized (i.e., active capacity constraint) or underutilized (i.e., inactive 

capacity constraint) for each sourcing strategy. Therefore, let 𝜇1 and 𝛾 be the nonnegative 

Lagrangian multiplier associated with constraints (16) and (19), respectively. Let also 𝜆1 and 𝜆2 

be the nonnegative Lagrangian multipliers for the two variables in constraint set (20). Then the 

Lagrangian function is written as follows: 
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ℒ(𝜇1, 𝛾,𝜆1, 𝜆2, 𝑄1, 𝑄2, 𝑃) = 

∝ 𝑃1−𝑒 −
1

∑ 𝑄𝑖𝐽𝑖
2
𝑖=1

[(∝ 𝑃−𝑒)∑𝑘𝑖 𝐽𝑖

2

𝑖=1

+ (1/2)𝑟∑𝑄𝑖
2𝐽𝑖

2

𝑖=1

𝑣𝑖 + (∝ 𝑃
−𝑒)∑𝑄𝑖𝐽𝑖𝑣𝑖

2

𝑖=1

]

+ 𝜇1 (𝑐1∑𝑄𝑖𝐽𝑖

2

𝑖=1

− (∝ 𝑃−𝑒)𝑄1𝐽1) + 𝛾(𝑃) + 𝜆1(𝑄1) + 𝜆2 (𝑄2) . 

Note that, the objective function of Model (𝑀1∗) has a singularity at 𝑃 = 0 (i.e., the objective 

function is not defined at 𝑃 = 0). In addition, it can be also noticed that there is a singularity when 

𝑄1and 𝑄2 are both equal to zero. Therefore, for any sourcing strategy, 𝑃 > 0 which implies that 

𝛾 = 0 (i.e., 𝛾 > 0 never happens) also at least one of  𝑄𝑖 > 0, where 𝑖 = 1, 2 and that implies that 

at least one of  𝜆𝑖 = 0 , where  𝑖 = 1, 2 (i.e., both 𝜆1 > 0 and 𝜆2 > 0 never happen).  

Hence, the necessary KKT conditions are:   

(∝ 𝑃−𝑒)𝑄1𝐽1
∑ 𝑄𝑖𝐽𝑖
2
𝑖=1

≤ 𝑐1 ,  (21) 

𝜕ℒ

𝜕𝑃
=
∝

𝑃𝑒
+
∝ 𝑒

𝑃𝑒+1
(−𝑃 +

∑ 𝑘𝑖  𝐽𝑖
2
𝑖=1

∑ 𝑄𝑖𝐽𝑖
2
𝑖=1

+
∑ 𝑄𝑖𝐽𝑖𝑣𝑖
2
𝑖=1

∑ 𝑄𝑖𝐽𝑖
2
𝑖=1

) + 𝜇1𝑄1𝐽1
∝ 𝑒

𝑃𝑒+1
= 0 , (22) 

𝜕ℒ

𝜕𝑄1
= 𝜆1 + 𝜇1 (𝐽1𝑐1 − 𝐽1

∝

𝑃𝑒
) +

∝ 𝐽1

𝑃𝑒 ∑ 𝑄𝑖𝐽𝑖
2
𝑖=1

(
∑ 𝑄𝑖𝐽𝑖𝑣𝑖
2
𝑖=1

∑ 𝑄𝑖𝐽𝑖
2
𝑖=1

− 𝑣1 +
∑ 𝐽𝑖𝑘𝑖
2
𝑖=1

∑ 𝑄𝑖𝐽𝑖
2
𝑖=1

)

+
𝐽1𝑟 ∑ 𝑄𝑖

2𝐽𝑖
2
𝑖=1 𝑣𝑖

2(∑ 𝑄𝑖𝐽𝑖
2
𝑖=1 )2

−
𝐽1𝑄1𝑟𝑣1
∑ 𝑄𝑖𝐽𝑖
2
𝑖=1

= 0 , 

(23) 

𝜕ℒ

𝜕𝑄2
= 𝜆2 + 𝜇1𝐽2𝑐1 ++

∝ 𝐽2

𝑃𝑒 ∑ 𝑄𝑖𝐽𝑖
2
𝑖=1

(
∑ 𝑄𝑖𝐽𝑖𝑣𝑖
2
𝑖=1

∑ 𝑄𝑖𝐽𝑖
2
𝑖=1

− 𝑣2 +
∑ 𝐽𝑖𝑘𝑖
2
𝑖=1

∑ 𝑄𝑖𝐽𝑖
2
𝑖=1

)

+ 
𝐽2𝑟 ∑ 𝑄𝑖

2𝐽𝑖
2
𝑖=1 𝑣𝑖

2(∑ 𝑄𝑖𝐽𝑖
2
𝑖=1 )2

−
𝐽2𝑄2𝑟𝑣2
∑ 𝑄𝑖𝐽𝑖
2
𝑖=1

= 0 , 

(24) 

𝜇1 (𝑐1∑𝑄𝑖𝐽𝑖

2

𝑖=1

− (∝ 𝑃−𝑒)𝑄1𝐽1) = 0 , (25) 
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𝜆1𝑄1 = 0 , (26) 

𝜆2𝑄2 = 0 , (27) 

𝜇1, 𝜆1, 𝜆2 ≥ 0 ,  𝑎𝑛𝑑  𝑃, 𝑄1, 𝑄2 ≥ 0 . (28) 

The capacity analysis for supplier 1 can be performed by considering the following cases:  

Case 1: λ1 = 0, λ2 > 0, and 𝜇1 > 0. Consequently, 𝑄1 ≥ 0, 𝑄2 = 0, and from constraint (25), 

𝑐1∑ 𝑄𝑖𝐽𝑖
2
𝑖=1 − (∝ 𝑃−𝑒)𝑄1𝐽1 = 0.  

Case 1.1: If 𝑄1 >  0, the retailer selects only supplier 1 and utilizes its full capacity. Based on 

constraint (25), 𝑐1 =∝ 𝑃
−𝑒.  

Case 1.2: When 𝑄1 =  0, both  𝑄1 and  𝑄2 end up being equal to zero. Hence, this case is 

excluded because at least one 𝑄𝑖 must be positive. 

Case 2: 𝜆1 = 0, 𝜆2 > 0, and 𝜇1 = 0. Consequently, 𝑄1 ≥ 0, 𝑄2 = 0 and, from constraint (25), 

 𝑐1∑ 𝑄𝑖𝐽𝑖
2
𝑖=1 − (∝ 𝑃−𝑒)𝑄1𝐽1 ≥ 0.  

Case 2.1: If 𝑄1 > 0 and 𝑐1∑ 𝑄𝑖 𝐽𝑖
2
𝑖=1 − (∝ 𝑃−𝑒) 𝑄1 𝐽1 = 0, the retailer selects only supplier 1 

and fully utilizes its capacity, i.e., constraint (25) implies that 𝑐1 = ∝ 𝑃
−𝑒.  

Case 2.2: If 𝑄1 > 0 and 𝑐1∑ 𝑄𝑖 𝐽𝑖
2
𝑖=1 − (∝ 𝑃−𝑒) 𝑄1 𝐽1 > 0, the retailer selects only supplier 1 

without fully utilizing supplier 1’s capacity, i.e., using constraint (25), c1 > ∝ 𝑃
−𝑒. This case 

is valid when supplier 1 has a high value for the capacity rate 𝑐1. However, Model (𝑀1∗) 

assumes that 𝑐1 < 𝐷1 (recall that 𝐷1 is the maximum demand rate that is obtained when only 

supplier 1 is selected without considering capacity and quality constraints). Thus, this case 

results in a suboptimal solution because additional supplier 1’s capacity can still be utilized to 

maximize the retailer’s profit per time unit.  
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Case 2.3: If 𝑄1 = 0 and 𝑐1∑ 𝑄𝑖 𝐽𝑖
2
𝑖=1 − (∝ 𝑃−𝑒) 𝑄1 𝐽1 ≥ 0, then both 𝑄1 and 𝑄2 are equal to 

zero and this case can be ignored. 

Case 3: 𝜆1 > 0, 𝜆2 = 0, and 𝜇1 ≥ 0. Note that we can ignore again the cases at which 𝑄2 = 0  

since 𝑄1 = 0 (i.e., 𝜆1 > 0). Hence, this case implies that the retailer selects only supplier 2, 

i.e., 𝑄1 = 0 and 𝑄2 > 0. In addition, constraint (25) is not considered because supplier 1 is not 

selected.  

Case 4: 𝜆1 = 0, 𝜆2 = 0, and 𝜇1 > 0. Consequently, 𝑄1 ≥ 0, 𝑄2 ≥ 0, and from constraint (25), 

𝑐1∑ 𝑄𝑖 𝐽𝑖
2
𝑖=1 − (∝ 𝑃−𝑒) 𝑄1 𝐽1 = 0. 

Case 4.1: If 𝑄1 > 0 and 𝑄2 > 0, the retailer selects both suppliers, where supplier 1’s capacity 

is fully utilized, i.e., using constraint (25), 𝑐1 =
∝𝑃−𝑒𝑄1 𝐽1

∑ 𝑄𝑖 𝐽𝑖
2
𝑖=1

. 

Case 4.2: If 𝑄1 > 0 and 𝑄2 = 0, the retailer selects only supplier 1 and fully utilizes its 

capacity. Considering constraint (25), 𝑐1 =∝ 𝑃
−𝑒. 

Case 4.3: If 𝑄1 = 0 and 𝑄2 > 0, the retailer selects only supplier 2. Note that, constraint (25) 

is not considered because supplier 1 is not selected.  

Case 4.4: We exclude the case 𝑄1 = 0 and 𝑄2 = 0 because at least one 𝑄𝑖 must be positive. 

Case 5: 𝜆1 = 0, 𝜆2 = 0, and 𝜇1 = 0. Consequently, 𝑄1 ≥ 0, 𝑄2 ≥ 0, and from constraint 

(25), 𝑐1∑ 𝑄𝑖 𝐽𝑖
2
𝑖=1 − (∝ 𝑃−𝑒) 𝑄1 𝐽1 ≥ 0.  

Case 5.1: If 𝑄1 > 0, 𝑄2 > 0, and 𝑐1∑ 𝑄𝑖 𝐽𝑖
2
𝑖=1 − (∝ 𝑃−𝑒) 𝑄1 𝐽1 ≥ 0,  the retailer selects both 

suppliers.  
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Case 5.1.1: When  𝑐1∑ 𝑄𝑖 𝐽𝑖
2
𝑖=1 − (∝ 𝑃−𝑒) 𝑄1 𝐽1 = 0, supplier 1’s capacity is fully utilized 

i.e., 𝑐1 =
∝𝑃−𝑒𝑄1 𝐽1

∑ 𝑄𝑖 𝐽𝑖
2
𝑖=1

.  

Case 5.1.2: When 𝑐1∑ 𝑄𝑖 𝐽𝑖
2
𝑖=1 − (∝ 𝑃−𝑒) 𝑄1 𝐽1 > 0, supplier 1’s capacity is not fully 

utilized, i.e., 𝑐1 >
∝𝑃−𝑒𝑄1 𝐽1

∑ 𝑄𝑖 𝐽𝑖
2
𝑖=1

. Therefore, over a range of 𝑐1 values, there exists an optimal 

solution to the supplier selection problem in which the dominating supplier’s capacity is 

not fully used.  

Since in this case supplier 1’s capacity is not fully utilized, let 𝑑1 =
∝ 𝑃−𝑒𝑄1 𝐽1

∑ 𝑄𝑖 𝐽𝑖
2
𝑖=1

 be the 

component of the demand rate assigned to supplier 1, where 𝑐1 > 𝑑1. Note that, if 𝑐1 

decreases and becomes less than or equal to 𝑑1, then the optimal sourcing strategy might 

change or supplier 1’s capacity might become fully utilized.  

Case 5.2: If 𝑄1 > 0, 𝑄2 = 0, and 𝑐1∑ 𝑄𝑖 𝐽𝑖
2
𝑖=1 − (∝ 𝑃−𝑒) 𝑄1 𝐽1 ≥ 0, the retailer selects only 

supplier 1.  

Case 5.2.1: When 𝑐1∑ 𝑄𝑖 𝐽𝑖
2
𝑖=1 − (∝ 𝑃−𝑒) 𝑄1 𝐽1 = 0, supplier 1’s capacity is fully utilized, 

i.e., 𝑐1 = ∝ 𝑃
−𝑒.  

Case 5.2.2: When 𝑐1∑ 𝑄𝑖 𝐽𝑖
2
𝑖=1 − (∝ 𝑃−𝑒) 𝑄1 𝐽1 > 0, supplier 1’s capacity is not fully 

utilized, i.e., using constraint (25), c1 > ∝ 𝑃
−𝑒. This case results in a suboptimal solution, 

as discussed in Case 2.2.  

Case 5.3: If 𝑄1 = 0, 𝑄2 > 0, and 𝑐1∑ 𝑄𝑖 𝐽𝑖
2
𝑖=1 − (∝ 𝑃−𝑒) 𝑄1 𝐽1 ≥ 0, the retailer selects only 

supplier 2. Note that constraint (25) is not analyzed because supplier 1 is not selected. 
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Case 5.4: If 𝑄1 = 0, 𝑄2 = 0, and 𝑐1∑ 𝑄𝑖 𝐽𝑖
2
𝑖=1 − (∝ 𝑃−𝑒) 𝑄1 𝐽1 ≥ 0, then this case is excluded 

because at least one 𝑄𝑖  should be positive.  

The model proposed in this subsection can be considered as an extension to the model developed 

by Rosenblatt et al. (1998) who studied the problem of multiple capacitated suppliers under a 

constant demand rate. Since they do not use the 𝐽𝑖 variables and constraint (17), their optimal 

solutions may be difficult to implement since they are not guaranteed to be stationary, i.e., some 

solutions may not produce finite repeating cycle times. Nevertheless, they introduced the following 

optimality property for their model: “there is at most one supplier whose capacity is not fully 

utilized”. This property, however, does not hold true in our case. Note that Case 5.1.2 shows that 

two suppliers can be selected without fully utilizing their corresponding capacities. For instance, 

let us assume that the dominating supplier is only able to satisfy the majority of demand due to 

some capacity limitations, and hence the retailer will need to satisfy the remaining small portion 

of the demand by placing a very small order quantity to the second supplier. Now, since both 

suppliers will be used, the retailer will incur an increase in the ordering cost per time unit because 

a very small order quantity will be placed to the other supplier. Then, in order to lighten this 

increase in the ordering cost, the order quantities submitted to both suppliers is altered to ensure 

that both of them are relatively large. As a result, both suppliers will be used without fully utilizing 

their capacity. 

Rosenblatt et al. (1998) also provided an optimal greedy algorithm that ranks the suppliers based 

on their effective unit cost and orders the maximum allowed quantity from each supplier starting 

with the lowest cost supplier until satisfying all the demand. However, in our model, we show that 

in Case 3, Case 4.3, and Case 5.3, the dominating supplier is not selected at all, and instead the 

retailer switches to the second supplier. These cases occur when the dominating supplier’s capacity 
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is reduced significantly, and hence the retailer can only place a very small order quantity to the 

dominating supplier, which makes the use the dominating supplier inefficient due to the increase 

in the ordering cost per time unit.   

The numerical example shown in Section 4.3 illustrates the retailer’s optimal sourcing strategy 

and the related cases of the KKT conditions as the dominating supplier’s capacity decreases. 

4.3. Numerical Example 

In this section we consider a numerical example in which the retailer’s monthly demand rate is a 

decreasing function of the selling price: 𝐷 = ∝ 𝑃−𝑒, where ∝= 3,375,000 and 𝑒 = 3. The 

retailer’s inventory holding cost rate is 0.3 per month, and the retailer’s minimum acceptable 

quality level is 0.95. Table 4.1 shows the suppliers’ parameters. The retailer wants to determine 

the optimal number of orders per cycle and the corresponding order quantity for the selected 

suppliers, and the optimal selling price that maximize the profit per time unit. 

Table 4.1. Suppliers' parameters. 

Suppliers 𝒋 
Lower 

Bound 

(𝑢𝑗−1) 

Upper 

Bound 

(𝑢𝑗) 

Unit 

Price 

($) 

Quality Level  
(𝑞𝑖) 

Capacity 

(Units/month) 
Ordering Cost 

($/order) 

Supplier 

1 

1 0 50 9 

0.92 300 500 
2 50 100 8.9 

3 100 150 8.8 

4 150 200 8.7 

5 200 ∞ 8.6 

Supplier 

2 

1 0 75 9.8 

0.95 350 250 
2 75 150 9.6 

3 150 225 9.4 

4 225 ∞ 9.2 

Supplier 

3 

1 0 100 10.5 

0.98 250 450 2 100 200 10.4 

3 200 ∞ 10.3 
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This problem is solved using the global solver in LINGO 14.0 on a PC with INTEL(R) Core (TM) 

2 Duo Processor at 2.10 GHz and 4.0 GB RAM. We first set 𝑚 in constraint (7) to a very large 

value to find out the optimal value of 𝑚 that obtains the absolute maximum profit per time unit. In 

this example, the optimal value of 𝑚 is 29 ($4180.98/month). However, this value of 𝑚 results in 

a very large cycle time of 15.98 months. Therefore, a reasonable small value of 𝑚 has to be selected 

to reduce the cycle time. For this purpose, constraint (7) is changed to equality to evaluate the 

monthly profit over different values of 𝑚, and hence, select a reasonable small value of  𝑚 with a 

profit close to the absolute maximum. Table 4.2 shows Model (𝑀1)’s detailed solutions for 𝑚 =

1, … , 20, and Figure 4.3 illustrates the total monthly profit and cycle time versus the total number 

of orders allowed per order cycle 𝑚. In this example, 𝑚 = 4 is selected because it corresponds to 

a short cycle time of just 2.17 months and results in a small decrease in profit of only 0.06% 

compared to the absolute maximum profit per time unit obtained at 𝑚 = 29.   

 

Figure 4.3. Total monthly profit and cycle time for m = 1,…, 20. 
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Table 4.2. Model (M1)’s detailed solutions for 𝑚 = 1,… , 20. 

Number 

of 

Orders 

(𝑚) 

Supplier 1 Supplier 2 Supplier3 

Price 
($) 

Profit 

($/month) 

Cycle 

Time  

(months) 
(𝑗) (𝐽1𝑗) 

 (𝑄1) 
(units) 

(𝑗) (𝐽2𝑗) 
 (𝑄2) 

(units) 
(𝑗) (𝐽3𝑗) 

 (𝑄3) 
(units) 

1 0 0 0 4 1 251.81 0 0 0 21.29 3534.68 0.72 

2  0 0 0 4 1 440.12 3 1 314.37 17.78 3762.34 1.26 

3 5 1 429.10 4 1 600.73 3 1 429.10 15.84 4116.46 1.72 

4 5 1 542.52 4 2 379.77 3 1 542.53 15.84 4178.42 2.17 

5 5 1 595.82 4 3 300.74 3 1 595.82 16.08 4151.03 2.58 

6 5 1 785.20 4 3 366.43 3 2 392.60 15.84 4145.69 3.14 

7 5 2 492.77 4 3 459.92 3 2 492.77 15.84 4170.31 3.94 

8 5 2 542.53 4 4 379.77 3 2 542.53 15.84 4178.42 4.34 

9 5 2 576.81 4 5 330.68 3 2 576.81 15.91 4168.04 4.72 

10 5 2 670.63 4 5 375.55 3 3 447.09 15.84 4172.74 5.37 

11 5 3 510.48 4 5 428.80 3 3 510.48 15.84 4176.14 6.13 

12 5 3 542.52 4 6 379.77 3 3 542.53 15.84 4178.42 6.51 

13 5 3 598.15 4 6 418.71 3 4 448.61 15.84 4177.31 7.18 

14 5 3 629.74 4 7 377.85 3 4 472.31 15.84 4178.24 7.56 

15 5 4 518.87 4 7 415.10 3 4 518.87 15.84 4177.72 8.30 

16 5 4 542.53 4 8 379.77 3 4 542.53 15.84 4178.42 8.68 

17 5 4 585.19 4 8 409.63 3 5 468.15 15.84 4179.71 9.36 

18 5 4 608.68 4 9 378.74 3 5 486.95 15.84 4179.91 9.74 

19 5 5 523.78 4 9 407.38 3 5 523.78 15.84 4178.31 10.48 

20 5 5 542.52 4 10 379.77 3 5 542.53 15.84 4178.42 10.85 

In Figure 4.3, Label 1 represents the solution of Model (𝑀1′) in which the retailer is restricted to 

place at most one order to each supplier per order cycle. As shown in Figure 4.3, the proposed 

Model (𝑀1) and Model (𝑀1′) have the same monthly profit when 𝑚 =  3. Accordingly, it can be 

concluded that restricting the retailer to place at most one order to each supplier results in a 

suboptimal solution.  

To help coordinate inventory between consecutive stages of a supply chain, the placed order 

quantities at each stage in the supply chain need to be an integer multiple of the placed order 

quantities at the downstream stage. Thus, as stated in Section 4.1, Model (𝑀2) facilitates this 

coordination mechanism by placing equal-size order quantities to the selected suppliers. Table 4.3 

shows Model (𝑀2)’s detailed solutions for  𝑚 = 1,… , 20. Also, Figure 4.4 compares Models 
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(𝑀1) and (𝑀2) with respect to the total monthly profit. Note that, the decrease in the total monthly 

profit from Model (𝑀1) to Model (𝑀2) is due to the changes in the retailer’s order allocations. 

 

Figure 4.4. Model (M1) vs. Model (M2). 

  Table 4.3. Model (M2)’s detailed solutions for 𝑚 = 1,… , 20. 
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($) 

1 0 0 4 1 0 0 251.81 21.29 3534.68 0.72 

2 5 1 0 0 3 1 409.33 18.90 3563.97 1.64 

3  5 1 4 1 3 1 462.09 16.51 4058.77 1.85 

4 5 1 4 2 3 1 425.92 16.89 4106.58 2.43 

5 5 1 4 3 3 1 377.06 17.95 3995.15 3.23 

6 5 2 4 2 3 2 462.09 16.51 4058.77 3.70 

7 5 2 4 3 3 2 469.69 16.05 4159.05 4.03 

8 5 2 4 4 3 2 425.93 16.89 4106.58 4.87 

9 5 3 4 3 3 3 462.09 16.51 4058.77 5.55 
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16 5 5 4 6 3 5 471.88 16.16 4117.11 9.44 
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19 5 5 4 9 3 5 441.00 16.59 4130.06 11.34 

20 5 6 4 8 3 6 478.29 15.94 4149.97 11.48 
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Now, to study the impact of the dominating supplier’s capacity on the sourcing strategy, let us 

consider only suppliers 1 and 2 from the previous numerical example, and assume that both 

suppliers have no quality restrictions (i.e., 𝑞𝑖 ≥ 𝑞𝑎 , 𝑖 = 1,2). In addition, assume that none of the 

suppliers offer all-unit quantity discounts, and the fixed unit purchase prices for suppliers 1 and 2 

are $8.6 and $9.2, respectively. Let us first obtain the optimal order quantity, and the optimal 

selling price and demand rate that maximize the profit per time unit when each supplier is selected 

separately without considering capacity and quality constraints. A summary of the results are 

shown in Table 4.4. Notice that, supplier 1 is the dominating supplier (i.e., 𝑇𝑃1 > 𝑇𝑃2). 

Table 4.4. Results obtained from selecting each supplier separately. 

 

 
Order Quantity, 𝑸𝒊 

(Units) 
Selling Price, 𝑷 

($) 
Demand, 𝑫𝒊 
(Units/month) 

Profit, 𝑻𝑷𝒊 
($/month) 

Supplier 1 691.61 13.98 1234.10 4860.41 

Supplier 2 440.95 14.65 1073.30 4632.94 

Let us assume supplier 2 has no capacity limitation. Then, as long as supplier 1’s capacity is greater 

than the optimal demand rate (i.e., 𝑐1 > 𝐷1 = 1234.10), the retailer’s optimal sourcing strategy 

will always be to select supplier 1 alone. Once supplier 1 experiences some capacity shortages, the 

retailer’s sourcing strategy might change. Figure 4.5 is developed to illustrate the change in the 

retailer’s sourcing strategy as 𝑐1 decreases. Note that, the total number of orders allowed per order 

cycle is two (i.e., 𝑚 = 2).  
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Figure 4.5. The impact of supplier 1’s capacity on the sourcing strategy when m = 2. 

Figure 4.5 is divided into five regions, where each region represents a different sourcing strategy. 

Now, starting form Region I where supplier 1’s capacity is very high (i.e., 𝑐1 >  𝐷1 = 1234.10), 

the optimal sourcing strategy is to use supplier 1 alone without fully utilizing the corresponding 

capacity. This region is equivalent to solving the problem for the case of uncapacitated suppliers. 

Then, as 𝑐1 decreases, the optimal sourcing strategy remains almost unchanged ,as shown in 

Region II (956 < 𝑐1 ≤ 1234.10); however, supplier 1’s capacity in Region II is fully utilized 

which corresponds to Cases 1.1, 2.1, 4.2, and 5.2.1. Note that, the reduction in supplier 1’s capacity 

in Region II is not significant enough to consider the use of supplier 2.  

Next, as 𝑐1 keeps decreasing, both suppliers are selected without utilizing any of them at full 

capacity, as shown in Region III (742.15 < 𝑐1 ≤ 956), which corresponds to Case 5.1.2. In this 

region, selecting supplier 1 alone is not enough to satisfy all the demand. Hence, instead of 
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ordering a small order quantity from supplier 2 to satisfy the remaining portion of the demand and 

incurring in a significant increase in the ordering cost per time unit, the order quantity submitted 

to each supplier is relatively large and, as a result, both suppliers are used without fully utilizing 

their capacities. For instance, the demand rate fulfilled by supplier 1 is less than all the capacity 

values in Region III (i.e., 𝑑1 = 742.15 < 𝑐1). Notice that, 𝑑1 becomes equal to the lower bound 

of Region III. Subsequently, in Region IV (438 < 𝑐1 ≤ 742.15), the optimal sourcing strategy 

remains to order from both suppliers but fully utilizing supplier 1’s capacity. This region 

corresponds to Cases 4.1 and 5.1.1.  

Lastly, once supplier 1’s capacity is reduced significantly, the optimal sourcing strategy is to only 

order from supplier 2, as shown in Region V ( 𝑐1 ≤ 438) that corresponds to Cases 3, 4.3, and 5.3. 

In this region, supplier 1 is not selected because it can only provide a small order quantity due to 

capacity limitations. Thus, it is not efficient for the retailer to use supplier 1 and increase the 

ordering cost per time unit. 

4.4. Conclusions 

In this chapter, we have proposed a mixed integer nonlinear programming model for a supplier 

selection problem in which the goal is to maximize the retailer’s profit per time unit under 

suppliers’ limitations on capacity and quality. In addition, to ensure a more realistic and practical 

situation, the suppliers in our model are adopting all-unit quantity discounts as an incentive 

mechanism for the retailer. Also, we assume that the demand is price-sensitive and multiple orders 

are allowed to be submitted to the selected suppliers during a repeating order cycle. The proposed 

model simultaneously finds the optimal number of orders and the corresponding order quantities 

for the selected suppliers, and the selling price that maximize the retailer’s profit per time unit. 
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Moreover, we have considered two versions of our model based on the type of order quantity: the 

first one allows a different order quantity for each selected supplier and the second one considers 

equal-size order quantities. Furthermore, we have developed sufficient conditions under which 

there exists an optimal solution where the retailer only orders from one supplier. We have also 

investigated the impact of the dominating supplier’s capacity on the retailer’s sourcing strategies.  
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Chapter 5: Integrated Pricing and Supplier Selection Problem in a Two-Stage 

Supply Chain 

 

5.1. Problem Description and Model Development   

Consider an integrated company that controls its entire production process from purchasing raw 

material to selling the final product to a set of customers (i.e., a centralized decision-making 

process). We assume that this company can be modeled as a two-stage supply chain system, 

i.e., 𝑙 = 2, as shown in Figure 5.1. 

 

 

 

 

The first stage in the supply chain is represented by a manufacturer who can procure the needed 

amount of raw material from 𝑛 potential suppliers. The suppliers differ from each other in terms 

of quality level (i.e., percentage of acceptable units), production capacity, unit purchasing cost, 

and unit setup cost. We assume that the manufacturer at the first stage has a minimum acceptable 

quality rate 𝑞𝑎 and can place multiple orders to the selected suppliers in a repeating order cycle. 

Mendoza and Ventura (2008) showed that placing at most one order per order cycle per supplier 

results in a suboptimal solution. Hence, in the model proposed in this chapter, supplier-selection 

decisions at the first stage include finding the number of orders placed to the selected suppliers per 

order cycle and the corresponding order quantities taking into account capacity and quality 

restrictions. Thereafter, the manufacturer produces the finished product for which the retailer is 
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Figure 5.1. Two-stage supply chain system. 
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facing a price-sensitive demand. Therefore, the problem is to simultaneously carry out supplier-

selection decisions at the first stage, coordinate inventory-replenishment decisions across supply 

chain stages, and handle the retailer’s pricing decisions in order to maximize the company’s profit 

per time unit. 

Now, we introduce the notation and assumptions underlying our model. Subsequently, we describe 

the proposed mixed integer nonlinear programming model.  

Indices 

𝑠 Stage, where 𝑠 = 1,2. 

𝑖 Potential supplier, where 𝑖 = 1, … , 𝑛.  

Parameters 

𝑐𝑖 Production capacity rate of supplier 𝑖, where 𝑖 = 1,… , 𝑛. 

𝑞𝑖 Quality level (i.e., portion of acceptable units) of supplier 𝑖, 0 < 𝑞𝑖 ≤ 1, where 𝑖 = 1,… , 𝑛. 

This level is defined as a positive rational number. 

𝑞𝑎 Minimum acceptable quality level for the manufacturer at stage 1, 0 < 𝑞𝑎 ≤ 1. This level 

is defined as a positive rational number. 

𝑣1𝑖 Purchasing cost of one unit from supplier 𝑖 at stage 1, where 𝑖 = 1,… , 𝑛. Note that 𝑣1is the 

weighted average unit purchasing cost for the selected suppliers. 

𝑘𝑠 Setup cost for placing one order in stage 𝑠, where 𝑠 = 1,2.  

𝑘1𝑖 Setup cost for placing one order to supplier 𝑖 at stage 1, where 𝑖 = 1, … , 𝑛.  Note that 𝑘1 is 

the weighted average unit setup cost for the selected suppliers. 

ℎ𝑠 Unit inventory holding cost at stage 𝑠, where 𝑠 = 1,2. 

𝑒𝑠 Unit echelon inventory holding cost at stage 𝑠, i.e., 𝑒1 = ℎ1, and 𝑒2 = ℎ2 − ℎ1 .  
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∝ Scaling factor for price-sensitive demand. 

𝛿 Price elasticity index for price-sensitive demand. 

Decision variables 

𝐽𝑖 Number of orders submitted to supplier 𝑖 per a repeating order cycle, where 𝑖 = 1,… , 𝑛. 

𝑄𝑠 Order quantity at stage 𝑠, where 𝑠 = 1,2.  

𝑋1 Multiplicative factor for the order quantity received from stage 2. 

𝑃 Retailer’s optimal selling price. 

𝐷 Retailer’s price-sensitive demand rate. 

𝐷𝑖   Maximum demand rate met by supplier 𝑖 when quality and capacity constraints are not 

considered, where 𝑖 = 1,… , 𝑛. 

The following assumptions are considered: 

1. The time horizon is infinite. 

2. The supply chain produces a single type of product.  

3. The lead times are constant and can be assumed to be zero. 

4. The manufacturer has an infinite production rate and storage capacity. 

5. To avoid inventory shortages at any of the supply chain stages, inventory replenishment deci-

sions must follow the zero-nested inventory ordering policy. Love (1972), and Schwarz (1973) 

proved that the zero-nested inventory ordering policy is optimal for a serial inventory system. 

The zero-inventory ordering policy implies that the inventory at each stage is replenished by 

the immediate upstream stage only when the inventory level drops to zero. A policy is nested 

if, when any stage in the supply chain orders, all the downstream stages order as well. This 

requires the order quantity placed at any stage to be an integer multiple of the order quantity 
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placed at the downstream stage. For instance, in this chapter, the manufacturer’s order quantity 

is an integer multiple of the retailer’s order quantity, i.e., 𝑄1 = 𝑋1𝑄2. 

6. The product gains more value upon the arrival to the retailer stage. Thus, the echelon holding 

cost of the first stage is strictly less than that of the second stage (i.e., ℎ1 < ℎ2 ). 

7. The stages are treated separately if and only if   
𝑘1

𝑒1
>

𝑘2

𝑒2
 ; otherwise, they are combined into a 

single stage with a setup cost of 𝑘1 + 𝑘2 and an echelon holding cost of 𝑒1 + 𝑒2. 

8. The demand rate is considered to be a power function of the selling price, i.e., 𝐷(𝑃) =∝ 𝑃−𝛿, 

where ∝ , and 𝛿 are the scaling factor and the price elasticity index for the price-sensitive 

demand, respectively.  

Now, the following mixed integer nonlinear programming Model (𝑀1) is developed, where the 

goal is to maximize the profit per time unit such that supplier-selection, inventory-replenishment, 

and pricing decisions are coordinated simultaneously.  

𝑀𝑎𝑥.  𝑇𝑃1 = ∝ 𝑃
1−𝛿 − (∝ 𝑃−𝛿

∑ 𝐽𝑖
𝑛
𝑖=1 𝑘1𝑖
𝑄1∑ 𝐽𝑖

𝑛
𝑖=1

+
𝑒1
2
𝑄1  +∝ 𝑃

−𝛿
∑ 𝐽𝑖
𝑛
𝑖=1 𝑣1𝑖
∑ 𝐽𝑖
𝑛
𝑖=1

)

− (∝ 𝑃−𝛿
𝑘2
𝑄2
+
𝑒2
2
𝑄2) , 

(1) 

subject to 

 ∝ 𝑃−𝛿𝐽𝑖 ≤ 𝑐𝑖 ∑ 𝐽𝑖
𝑛
𝑖=1   ,  𝑖 = 1, … , 𝑛 , (2) 

 ∑ 𝐽𝑖
𝑛
𝑖=1 𝑞𝑖 ≥  𝑞𝑎  ∑ 𝐽𝑖

𝑛
𝑖=1   ,   (3) 

 𝑄1 = 𝑋1𝑄2 ,   (4) 

 𝑋1 ≥ 1 , 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 ,   (5) 
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 ∑ 𝐽𝑖
𝑛
𝑖=1 ≥ 1 ,    (6) 

 𝐽𝑖 ≥ 0 , 𝑖𝑛𝑡𝑒𝑔𝑒𝑟,    𝑖 = 1, … , 𝑛 ,  (7) 

 𝑃, 𝑄2 > 0 .   (8) 

The first component in the objective function represents the revenue per time unit. The second 

component includes the replenishment cost (i.e., setup cost and purchasing cost per time unit), and 

holding cost per time unit at the first stage. And the third component accounts for the setup and 

holding cost per time unit for the retailer stage.  

The model is subject to a set of constraints. Constraint set (2) represents the suppliers’ capacity 

limitations. Constraint (3) imposes the manufacturer’s restriction on the minimum acceptable 

quality level. Constraints (4) and (5) ensure that the order quantity placed at the first stage is an 

integer multiple of the order quantity received from stage 2. Constraint (6) makes sure that at least 

one supplier is selected to be able to satisfy the retailer’s demand. In addition, as discussed in 

Mendoza and Ventura (2008), the total number of orders submitted to the selected suppliers can 

be fixed to a small integer value to obtain a reasonable small cycle time. Constraint (7) imposes 

the integrality condition on the number of order submitted to each supplier. Finally, Constraint set 

(8) avoids the division by zero. Hence, a small positive number can be set as a lower bound for 

these non-zero variables.   

In the following section, we provide some analysis regarding the determination of the supplier, 

who under ideal conditions, would generate the highest profit per time unit for the company. 

Throughout this chapter, we refer to this supplier as the dominating supplier. In addition, we 

identify upper and lower bounds for the profit per time unit that corresponds to multiple sourcing 

strategy, and hence, we develop bounds on the selling price. Moreover, we identify the feasible 
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region for the optimal multiplicative factor, and propose an algorithm to improve the bounds when 

the suppliers have no capacity limitations. And then, we find a tight feasible region for the 

manufacturer’s multiplicative factor for the special case when there are only two potential 

suppliers to order from and the suppliers have capacity and quality restrictions. 

5.2. Model Analysis 

5.2.1. Finding the Dominating Supplier 

In this subsection, we identify the supplier with whom the company can obtain the highest profit 

per time unit when capacity and quality restrictions are not considered. Thus, we need to determine 

the profit per time unit when each supplier is selected individually without accounting for the 

supplier’s limitations on capacity and quality. This requires finding the optimal order quantity 

placed by the manufacturer, 𝑄1𝑖
∗ , order quantity placed by the retailer, 𝑄2𝑖

∗ , multiplicative 

factor, 𝑋1𝑖
∗  , and selling price, 𝑃𝑖

∗ , when supplier 𝑖 is selected individually without considering 

capacity and quality constraints, 𝑖 = 1,… , 𝑛. Therefore, the following mixed integer nonlinear 

programming Model (𝑀1𝑖
′) is developed for supplier 𝑖, 𝑖 = 1,… , 𝑛: 

𝑀𝑎𝑥.  𝑇𝑃𝑖
′ =∝ 𝑃𝑖

1−𝛿 − (∝ 𝑃𝑖
−𝛿 𝑘1𝑖
𝑄1𝑖

+
𝑒1
2
𝑄1𝑖  +∝ 𝑃𝑖

−𝛿𝑣1𝑖) − (∝ 𝑃𝑖
−𝛿 𝑘2
𝑄2𝑖

+
𝑒2
2
𝑄2𝑖) ,  (9) 

subject to 

 𝑄1𝑖 = 𝑋1𝑖𝑄2𝑖 ,     (10) 

 𝑋1𝑖 ≥ 1, 𝑖𝑛𝑡𝑒𝑔𝑒𝑟,   (11) 

 𝑃𝑖 , 𝑄2𝑖 > 0.    (12) 

The objective function of Model (𝑀1𝑖
′) represents the profit per time unit which is equal to the 

gross revenue per time unit minus the replenishment cost and inventory holding cost per time unit 
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occurred at the first stage, and the setup cost and inventory holding cost per time unit for the second 

stage. Model (𝑀1𝑖
′)  is subject to Constraint (10), which ensures that the quantity ordered at the 

first stage is an integer multiple of the order quantity placed at the second stage. Constraint (11) 

guarantees that the multiplicative factor is a positive integer. Finally, Constraint set (12) avoids 

the division by zero.  

Now, let us first replace 𝑄1𝑖 in Equation (9) by 𝑋1𝑖𝑄2𝑖, then 𝑇𝑃𝑖
′  is a concave function in 𝑄2𝑖 for 

given values of 𝑃𝑖 and 𝑋1𝑖. Hence, the optimal EOQ policy is established as follows: 

 𝑄2𝑖
∗ = √

2∝𝑃𝑖
−𝛿(

𝑘1𝑖
𝑋1𝑖

+𝑘2)

(𝑋1𝑖𝑒1+𝑒2)
 , 𝑖 = 1,… , 𝑛.  (13) 

By substituting 𝑄2𝑖
∗  in Equation (9), we obtain a profit function that is only a function of the 

multiplicative factor for a given selling price, i.e.,  

𝑇𝑃𝑖
′ =∝ 𝑃𝑖

−𝛿(𝑃𝑖 − 𝑣1𝑖 ) − √2 ∝ 𝑃𝑖
−𝛿 (

𝑘1𝑖
𝑋1𝑖

+ 𝑘2) (𝑋1𝑖𝑒1 + 𝑒2) . (14) 

The next step is to find the optimal multiplicative factor that maximizes the profit function shown 

in Equation (14). Note that, this is equivalent to minimizing the expression under the square root, 

i.e.,   

𝑇𝑃𝑖
′̅̅ ̅̅ ̅ = 2 ∝ 𝑃𝑖

−𝛿 (
𝑘1𝑖
𝑋1𝑖

+ 𝑘2) (𝑋1𝑖𝑒1 + 𝑒2) . (15) 

Hence, by relaxing the integrality of 𝑋1𝑖, and taking the first partial derivative of 𝑇𝑃𝑖′̅̅ ̅̅ ̅with respect 

to 𝑋1𝑖, we get  
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𝜕𝑇𝑃𝑖′̅̅ ̅̅ ̅

𝜕𝑋1𝑖
= 2 ∝ 𝑃𝑖

−𝛿 (𝑒1𝑘2 − 𝑒2
𝑘1𝑖

𝑋1𝑖
2 ) . (16) 

Note that 𝑇𝑃𝑖′̅̅ ̅̅ ̅is a convex function of 𝑋1𝑖, i.e., 
𝜕2𝑇𝑃𝑖

′̅̅ ̅̅ ̅

𝜕𝑋1𝑖
 2 =

4∝𝑃𝑖
−𝛿𝑒2𝑘1𝑖

𝑋1𝑖
3 > 0. Thus, by setting Equation 

(16) to zero and solving for 𝑋1𝑖, we get a closed-form solution for the multiplier that is independent 

on 𝑄2𝑖 and 𝑃𝑖, i.e.,  

𝑋̂1𝑖 = √
𝑘1𝑖𝑒2
𝑒1𝑘2

  , 𝑖 = 1, … , 𝑛. (17) 

Clearly, 𝑋̂1𝑖  can be a real number. Thus, we need to round it either to the nearest lower or upper 

integer. The optimal 𝑋̂1𝑖 must satisfy 𝑇𝑃𝑖′̅̅ ̅̅ ̅(𝑋̂1𝑖) ≤ 𝑇𝑃𝑖′̅̅ ̅̅ ̅(𝑋̂1𝑖 + 1) and 𝑇𝑃𝑖′̅̅ ̅̅ ̅(𝑋̂1𝑖) ≤ 𝑇𝑃𝑖′̅̅ ̅̅ ̅(𝑋̂1𝑖 − 1). 

Therefore, by simplifying the inequalities and using the quadratic formula, lower and upper bounds 

can be derived as follows:   

−1 + √1 + 4
𝑘1𝑖𝑒2
𝑘2𝑒1

2
≤ 𝑋̂1𝑖 ≤

1 + √1 + 4
𝑘1𝑖𝑒2
𝑘2𝑒1

2
     , 𝑖 = 1,… , 𝑛. 

(18) 

Let us denote the lower and upper bound in Relation (18) by 𝑋̂1𝑖,𝑙𝑜, and 𝑋̂1𝑖,𝑢𝑝, respectively.  The 

difference between the upper bound and the lower bound is 1. Therefore, if the bounds are not 

integers, then the optimal integer multiplicative factor  𝑋1𝑖
∗  is either equal to the nearest upper 

integer of the lower bound, i.e., ⌈𝑋̂1𝑖,𝑙𝑜⌉  or to the nearest lower integer of the upper bound, i.e., 

⌊𝑋̂1𝑖,𝑢𝑝⌋. And, when the bounds are integer, then the lower and upper bounds are the two possible 

solutions for 𝑋1𝑖
∗ .  Hence, the optimal integer multiplicative factor can be written: 

 𝑋1𝑖
∗ = {

⌊𝑋̂1𝑖,𝑢𝑝⌋ 𝑖𝑓 𝑋̂1𝑖,𝑢𝑝 ∈ ℝ

⌈𝑋̂1𝑖,𝑙𝑜⌉, ⌊𝑋̂1𝑖,𝑢𝑝⌋ 𝑖𝑓 𝑋̂1𝑖,𝑢𝑝 ∈ ℕ
} , 𝑖 = 1, … , 𝑛. (19) 
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Note that, Munson and Rosenblatt (2001) consider only one solution for the integer multiplicative 

factor that is equal to ⌊𝑋̂1𝑖,𝑢𝑝⌋, when in fact, two solutions can be obtained if the bounds in Relation 

(18) are integer.  

Now, for given values of 𝑄2𝑖 and 𝑋1𝑖, we obtain the first partial derivative of the profit function 

with respect to 𝑃𝑖, i.e.,  

𝜕𝑇𝑃𝑖
′

𝜕𝑃𝑖
=∝ 𝑃𝑖

−𝛿 +
(−𝛿) ∝ 𝑃𝑖

−𝛿

𝑃𝑖
(𝑃𝑖 − 𝑣1𝑖 −

(
𝑘1𝑖
𝑋1𝑖

+ 𝑘2 )

𝑄2𝑖
) . (20) 

Note that 𝑇𝑃𝑖
′  is a concave function of 𝑃𝑖, i.e., for 𝛿 > 1,  

𝜕2𝑇𝑃𝑖
′

𝜕𝑃𝑖
2 < 0 at the stationary point. Hence, 

by setting Equation (20) to zero and solving for 𝑃𝑖, we obtain the optimal selling price: 

𝑃𝑖
∗ =

𝛿

𝛿 − 1
(𝑣1𝑖 +

𝑘1𝑖
𝑋1𝑖

+ 𝑘2

𝑄2𝑖
) , 𝑖 = 1, … , 𝑛. (21) 

Therefore, Algorithm I below can be used to find the values of 𝑃𝑖
∗, 𝑄2𝑖

∗ , and 𝑋1𝑖
∗  that maximize the 

company’s profit per time unit when each supplier is selected when capacity and quality 

constraints are not taking into consideration. Algorithm I is an extension to the algorithm proposed 

by Abad (1988) who studied pricing and lot sizing decisions for a single stage supply chain. He 

proved that, if the optimal selling price is known, then the profit function is a convex-concave 

function of the order quantity, thus by starting with a large value for the order quantity and 

iteratively solving for the selling price and order quantity, the algorithm keeps getting closer to the 

optimal order quantity until it converges at a desired accuracy threshold  𝜀.  
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Algorithm I – Finding the unrestricted dominating supplier 

Step 1. For each supplier 𝑖, 𝑖 = 1,… , 𝑛. 

 Step 1.1 Let 𝑘 = 0, 𝑄2𝑖,𝑘=0 =  ∞, and calculate 𝑋1𝑖
∗  using Equation (19). 

 Step 1.2 Calculate 𝑃𝑖,𝑘
∗  using Equation (21). Calculate 𝑄2𝑖,𝑘+1

∗  using Equation (13). 

If |𝑄2𝑖,𝑘+1
∗ − 𝑄2𝑖,𝑘

∗ | < 𝜀, stop and go to Step 1.3. Otherwise, let 𝑘 = 𝑘 + 1 and 

repeat Step 1.2. 

 Step 1.3 Return the values of 𝑋1𝑖
∗  𝑄2𝑖,𝑘

∗ , and 𝑃𝑖,𝑘
∗ . Calculate 𝑇𝑃𝑖

′ using Equation (9), and 

determine 𝐷𝑖
∗ =∝ 𝑃𝑖,𝑘

∗−𝛿 . 

Step 2. If 𝑖 < 𝑛, then let 𝑖 = 𝑖 + 1 and go back to Step 1.1.  Otherwise, find the optimal 

supplier 𝑖∗, 𝑖∗ ∈ 𝑎𝑟𝑔𝑚𝑎𝑥  {𝑇𝑃𝑖
′: 𝑖 = 1,… , 𝑛}. 

Note that Algorithm I can be extended to the case where one supplier needs to be selected from a 

set of potential capacitated suppliers. This can be done by checking if the respective supplier’s 

capacity is enough to cover the maximum demand rate that the supplier can achieve when is 

selected individually and there is no capacity or quality limitations. Hence, Step 1.3 can be replaced 

by, if ∝ 𝑃𝑖,𝑘
∗−𝛿 ≤ 𝑐𝑖, then return the values of 𝑋1𝑖

∗  𝑄2𝑖,𝑘
∗ , and 𝑃𝑖,𝑘

∗ , and calculate 𝑇𝑃𝑖
′ using Equation 

(9). Otherwise, set 𝑃𝑖,𝑘
∗ = (𝑐𝑖/∝)

−1/𝛿, update 𝑄2𝑖,𝑘
∗  using Equation (13), and calculate 𝑇𝑃𝑖

′ using 

Equation (9). 

5.2.2. Developing Lower and Upper Bounds for the Selling Price.  

The goal of this subsection is to determine the lower and upper bounds for the optimal selling price 

when suppliers’ limitations on capacity and/or quality requirements are considered. Let us first 

present Lemma 1, which shows the lower and upper bounds for the profit per time unit when the 
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suppliers have no capacity limitations. Then, we use the result from Lemma 1 to develop the 

optimal selling price’s bounds. 

Lemma 1. Consider a special case of Model (𝑀1) where the suppliers are such that 𝑐𝑖 ≥

 ∝ 𝑃𝑖
∗−𝛿, 𝑖 = 1,… , 𝑛. And, without loss of generality, assume that supplier 1 is the dominating 

supplier; if there are multiple dominating suppliers, then supplier 1 is the dominating supplier with 

the highest quality level among all the dominating suppliers. In addition, assume that there is a 

supplier 𝑘 such that 𝑞𝑘 ≥ 𝑞𝑎. Therefore, the obtained profit per time unit is 𝑇𝑃′′ ∈

[  𝑚𝑖𝑛 {𝑇𝑃𝑖
′; 𝑖 = 2,… , 𝑛} , 𝑇𝑃1

′ ], where 𝑇𝑃𝑖
′ is the profit per time unit obtained by selecting only 

supplier 𝑖 without considering capacity and quality constraints: 𝑇𝑃𝑖
′ = ∝ 𝑃1−𝛿 − (∝ 𝑃−𝛿

𝑘1𝑖

𝑄1
+

𝑒1

2
𝑄1  +∝ 𝑃

−𝛿𝑣1𝑖) − (∝ 𝑃
−𝛿 𝑘2

𝑄2
+
𝑒2

2
𝑄2), 𝑖 = 1,… , 𝑛. 

Proof.   

The two possible sourcing strategies are either the single or multiple sourcing strategy. Now, in 

case of a single sourcing strategy, it is clear that the obtained profit per time unit is 𝑇𝑃′′ ∈

[  𝑚𝑖𝑛 {𝑇𝑃𝑖
′; 𝑖 = 2,… , 𝑛} , 𝑇𝑃1

′ ]. Now, the same bounds can also be considered for the case of a 

multiple sourcing strategy. To prove this, assume that multiple sourcing strategy is the optimal 

sourcing strategy and let us analyze the corresponding profit per time unit equation. We know that    

𝑇𝑃′′ =∝ 𝑃1−𝛿 − (∝ 𝑃−𝛿
∑ 𝐽𝑖
𝑛
𝑖=1 𝑘1𝑖
𝑄1∑ 𝐽𝑖

𝑛
𝑖=1

+
𝑒1
2
𝑄1  +∝ 𝑃

−𝛿
∑ 𝐽𝑖
𝑛
𝑖=1 𝑣1𝑖
∑ 𝐽𝑖
𝑛
𝑖=1

) − (∝ 𝑃−𝛿
𝑘2
𝑄2
+
𝑒2
2
𝑄2) . (22) 

By rewriting Equation (22), we obtain 
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𝑇𝑃′′ =∑
𝐽𝑖

∑ 𝐽𝑖
𝑛
𝑖=1

𝑛

𝑖=1

(∝ 𝑃1−𝛿 − (∝ 𝑃−𝛿
𝑘1𝑖
𝑄1

+
𝑒1
2
𝑄1  +∝ 𝑃

−𝛿𝑣1𝑖) − (∝ 𝑃
−𝛿
𝑘2
𝑄2
+
𝑒2
2
𝑄2)) . (23) 

Let 𝛽𝑖 =
𝐽𝑖

∑ 𝐽𝑖
𝑛
𝑖=1

 represent the proportion of orders submitted to supplier 𝑖, where ∑ 𝛽𝑖
𝑛
𝑖=1 = 1. 

Hence, 

𝑇𝑃′′ =∑𝛽𝑖

𝑛

𝑖=1

𝑇𝑃𝑖
′′, (24) 

where 𝑇𝑃𝑖
′′ is the profit per time unit obtained from supplier 𝑖 when a single sourcing strategy is 

considered given that the optimal order quantities and selling price are obtained from the multiple 

sourcing strategy. Note that 𝑇𝑃𝑖
′′ ≤ 𝑇𝑃𝑖

′ because in a multiple sourcing strategy the determination 

of the order quantities and selling price are functions of the selected suppliers’ parameters. In 

addition, the suppliers may have quality limitations. Thus,  

𝑇𝑃′′ ≤∑𝛽𝑖

𝑛

𝑖=1

𝑇𝑃𝑖
′.  (25) 

By assumption, supplier 1 is the dominating supplier, i.e., 𝑇𝑃1
′ ≥ 𝑇𝑃𝑖

′, 𝑖 = 2,… , 𝑛. Hence, 𝑇𝑃′′ ≤

∑ 𝛽𝑖
𝑛
𝑖=1 𝑇𝑃1

′ = 𝑇𝑃1
′. This ends the first part of the proof regarding the upper bound, i.e., 𝑇𝑃′′ ≤

𝑇𝑃1
′.  

The goal of the remaining part of the proof is to show that 𝑇𝑃′′ ≥ 𝑚𝑖𝑛 {𝑇𝑃𝑖
′: 𝑖 = 2, … , 𝑛}. This 

part of the proof can be done by contradiction. Thus, let us assume that the optimal multiple 

sourcing strategy corresponds to a profit per time unit that is lower than the minimum profit per 

time unit obtained with a single sourcing strategy, i.e., 
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𝑇𝑃′′ < 𝑚𝑖𝑛  {𝑇𝑃𝑖
′: 𝑖 = 2… , 𝑛}.  (26) 

By assumption, there is a supplier 𝑘 such that 𝑞𝑘 ≥ 𝑞𝑎. Then, supplier 𝑘 can be selected 

individually without violating the quality constraint. Accordingly, the profit per time unit obtained 

from selecting supplier 𝑘 is greater than or equal to the minimum profit per time unit obtained in 

the case of a single sourcing strategy, i.e., 𝑇𝑃𝑘
′ ≥ 𝑚𝑖𝑛 {𝑇𝑃𝑖

′: 𝑖 = 2… , 𝑛}. Therefore, Relation (26) 

can be written as follows:  

𝑇𝑃′′ < 𝑚𝑖𝑛  {𝑇𝑃𝑖
′: 𝑖 = 2… , 𝑛} ≤ 𝑇𝑃𝑘

′  .  (27) 

Equation (27) thereby shows in regard to profit per time unit that selecting supplier 𝑘 individually 

produces results at least as good as those obtained with the multiple sourcing strategy. Therefore, 

this is a contradiction, because it violates the assumption that multiple sourcing strategy is the 

optimal sourcing strategy. ∎ 

Note that Lemma 2 below shows that for the case in which suppliers have no capacity limitations, 

there is no need to consider all the non-dominating suppliers given that their quality level is less 

than or equal to the quality level of supplier 1.  

Lemma 2. In Lemma 1, supplier 𝑟 such that 𝑇𝑃𝑟
′′ < 𝑇𝑃1

′′ and 𝑞𝑟 ≤ 𝑞1 < 𝑞𝑎 will not be selected, 

i.e., 𝛽𝑟 = 0, 𝑟 = 2, … , 𝑛,  

Proof.  

Let us address all the possible sourcing strategies to show that supplier 𝑟 will not be selected. 

Based on the suppliers’ quality level, the following three sourcing strategies are considered: 
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A. If 𝑞1 ≥ 𝑞𝑎 > 0, then only the dominating suppliers can be used because there is at least one 

dominating supplier with a good quality level that can be selected and generates profit per time 

unit greater than the one obtained from any sourcing strategy that includes supplier 𝑟.  

B. If 0 < 𝑞1 < 𝑞𝑎 and all the non-dominating suppliers are such that 𝑞𝑘 ≤ 𝑞𝑎, but at least one of 

the non-dominating suppliers has a quality level of 𝑞𝑎, then neither the dominating suppliers nor 

supplier 𝑟 are selected because if they are selected the minimum average quality level cannot be 

achieved. Note that the problem becomes infeasible if all the non-dominating suppliers have also 

a quality level that is strictly less than 𝑞𝑎. 

C. If 0 < 𝑞1 < 𝑞𝑎 and there is a supplier 𝑘 such that 𝑞𝑘 > 𝑞𝑎 and 𝑇𝑃𝑘
′′ < 𝑇𝑃1

′′, then multiple 

sourcing strategy is the optimal sourcing strategy where supplier 𝑟 is not selected. This can be 

proved by contradiction. Let us assume that there exists an optimal solution where 𝑆 is the optimal 

set of suppliers selected in the case of the multiple sourcing strategy, in which  𝛽𝑟 > 0, 𝛽1 > 0, 

and 𝛽𝑘 > 0. Hence,  𝑇𝑃′′ = 𝛽𝑟𝑇𝑃𝑟
′′ + 𝛽1𝑇𝑃1

′′ + 𝛽𝑘𝑇𝑃𝑘
′′ + ∑ 𝛽𝑖𝑇𝑃𝑖

′′
𝑖∈𝑆−{𝑟}−{1}−{𝑘} .  

Now, if we replace supplier 𝑟  by the dominating supplier (i.e., supplier 1), and allocate the 

proportion of orders submitted to supplier  𝑟 to supplier 1, then,  𝑇𝑃′′ < (𝛽𝑟 + 𝛽1)𝑇𝑃1
′′ +

𝛽𝑘𝑇𝑃𝑘
′′ + ∑ 𝛽𝑖𝑇𝑃𝑖

′′
𝑖∈𝑆−{𝑟}−{1}−{𝑘}   because  𝛽𝑟 > 0 and 𝑇𝑃𝑟

′′ < 𝑇𝑃1
′′.  This shows that 𝑇𝑃′′ can be 

increased by replacing supplier 𝑟 by supplier 1. Therefore, this is a contradiction, because it 

violates the assumption that supplier 𝑟 ∈ 𝑆. 

Note that the quality constraint is not violated when supplier 𝑟  is replaced by supplier 1 

because 𝑞𝑟 ≤ 𝑞1, i.e., 𝑞𝑎 ≤ 𝛽𝑟𝑞𝑟 + 𝛽1𝑞1 + 𝛽𝑘𝑞𝑘 + ∑ 𝛽𝑖𝑞𝑖𝑖∈𝑆−{𝑟}−{1}−{𝑘}  ≤  (𝛽𝑟 + 𝛽1)𝑞1 +

𝛽𝑘𝑞𝑘 +∑ 𝛽𝑖𝑞𝑖𝑖∈𝑆−{𝑟}−{1}−{𝑘} .  ∎ 
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Theorem 1. Consider a special case of Model (𝑀1) where the suppliers have no capacity 

problems, i.e., 𝑐𝑖 ≥ 𝑃𝑖
∗−𝛿, 𝑖 = 1,… , 𝑛. Then, the selling price is 𝑃 ∈ [𝑃𝑙𝑜 , 𝑃𝑢𝑝], where 𝑃𝑙𝑜 is the 

minimum optimal selling price in case of a single sourcing strategy, i.e., 𝑃𝑙𝑜 = 𝑚𝑖𝑛  {𝑃𝑖
∗: 𝑖 =

1, … , 𝑛}, and 𝑃𝑢𝑝 is the maximum optimal selling price in case of a single sourcing strategy, i.e., 

𝑃𝑢𝑝 = 𝑚𝑎𝑥 {𝑃𝑖
∗: 𝑖 = 1,… , 𝑛}.  

Proof.  

Lemma 1 shows that 𝑇𝑃′′ ∈ [  𝑚𝑖𝑛 {𝑇𝑃𝑖
′; 𝑖 = 2,… , 𝑛} , 𝑇𝑃1

′ ], where 𝑇𝑃′′ is a weighted sum 

function as shown in Equation (24). Thus, as 𝛽𝑖 approaches value 1, the optimal solution gets 

closer to the case in which supplier 𝑖 is the only selected supplier, 𝑖 = 1… , 𝑛. Therefore, when the 

suppliers are such that 𝑐𝑖 ≥∝ 𝑃𝑖
∗−𝛿, 𝑖 = 1… , 𝑛, the obtained selling price is 𝑃 ∈ [𝑃𝑙𝑜 , 𝑃𝑢𝑝]. ∎ 

The remaining part of this subsection discusses the calculation of the lower and upper bounds for 

the selling price when there is a possibility that the suppliers also have capacity restrictions, i.e., 

𝑐𝑖 <∝ 𝑃𝑖
∗−𝛿, 𝑖 = 1,… , 𝑛. Now, the lower bound of the selling price 𝑃𝑙𝑜 remains the same because 

it is the lowest selling price calculated when capacity and quality constraints are dropped. And, in 

order to calculate the upper bound for the selling price, we need to account for the sourcing strategy 

that obtains the highest selling price (i.e., lowest demand rate). Note that similar to Lemma 1, it 

can be shown that, the profit per time unit when capacity and quality constraints are considered is 

𝑇𝑃′′ ∈ [ 𝑚𝑖𝑛 {𝑇𝑃𝑖
′|
𝑃𝑖=(𝑐𝑖/∝)

−1/𝛿 ∶  𝑖 = 2, … , 𝑛} , 𝑇𝑃1
′ ] given that supplier 1 is the dominating 

supplier. Therefore, the upper bound shown in Theorem 1 can be rewritten as follows: 

𝑃𝑢𝑝 = 𝑚𝑎𝑥  {𝑃𝑖
∗,  (𝑐𝑖/∝)

−1/𝛿 ∶ 𝑖 = 1,… , 𝑛}.  (28) 
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Note that the second component in parentheses, i.e., (𝑐𝑖/∝)
−1/𝛿, is added so that we can consider 

the case in which a single supplier is selected at full capacity.  

5.2.3. Feasible Region for the Multiplicative Factor.   

In this subsection, we assume that a multiple sourcing strategy is implemented due to the 

dominating supplier’s limitations in regard to capacity and/or quality requirements. Therefore, by 

carrying the same derivations shown in Subsection 3.1 for given values of  𝐽𝑖, 𝑖 = 1,… , 𝑛, we 

obtain the optimal multiplicative factor 𝑋̂1 = √𝑘1𝑒2/𝑒1𝑘2 , where 𝑘1 is the weighted average unit 

setup cost, i.e., 𝑘1 = ∑ 𝐽𝑖
𝑛
𝑖=1 𝑘1𝑖/∑ 𝐽𝑖

𝑛
𝑖=1 . Recall that 𝑋̂1 can be a real number; thus, the optimal 

integer multiplicative factor can be determined as follows: 

 𝑋1
∗ = {

⌊𝑋̂1,𝑢𝑝⌋ 𝑖𝑓 𝑋̂1,𝑢𝑝 ∈ ℝ

⌈𝑋̂1,𝑙𝑜⌉, ⌊𝑋̂1,𝑢𝑝⌋ 𝑖𝑓 𝑋̂1,𝑢𝑝 ∈ ℕ
} , 𝑖 = 1, … , 𝑛 ,  (29) 

where 𝑋̂1,𝑙𝑜 = − 0.5 + 0.5√1 + 4(𝑘1𝑒2/𝑒1𝑘2), and 𝑋̂1,𝑢𝑝 = 0.5 + 0.5√1 + 4(𝑘1𝑒2/𝑒1𝑘2) .  

The challenging aspect here is the inability to determine in advance the values of  𝐽𝑖, 𝑖 = 1,… , 𝑛, 

and as a result a specific value for 𝑋1
∗ cannot be calculated. For instance, if multiple suppliers are 

selected because the dominating supplier has limits on capacity, then it is difficult to determine in 

advance the extent to which the suppliers’ capacity is utilized, it was shown in Adeinat and Ventura 

(2015) that in some cases multiple suppliers can be selected without fully utilizing their capacity. 

However, Lemma 3 shows that lower and upper bounds can be obtained for the multiplicative 

factor.  

Lemma 3. The optimal multiplicative factor is 𝑋̂1 ∈ [𝑋1,𝑙𝑜, 𝑋1,𝑢𝑝], where 𝑋1,𝑙𝑜 is the multiplicative 

factor obtained using the lowest unit setup cost, i.e.,  𝑘1,𝑚𝑖𝑛 = 𝑚𝑖𝑛 {𝑘1𝑖: 𝑖 = 1,… , 𝑛}, and 𝑋1,𝑢𝑝 
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is the multiplicative factor obtained using the highest unit setup cost, i.e.,  𝑘1,𝑚𝑎𝑥 =

 𝑚𝑎𝑥  {𝑘1𝑖: 𝑖 = 1, … , 𝑛}.   

Proof.  

In the case of a multiple sourcing strategy, the optimal multiplicative factor is a function of the 

weighted average unit setup cost, i.e.,  

𝑋̂1 = √
𝑘1𝑒2
𝑒1𝑘2

=
√

∑ 𝐽𝑖
𝑛
𝑖=1 𝑘1𝑖
∑ 𝐽𝑖
𝑛
𝑖=1

𝑒2

𝑒1𝑘2
 . 

(30) 

Note that  
∑ 𝐽𝑖
𝑛
𝑖=1 𝑘1𝑖

∑ 𝐽𝑖
𝑛
𝑖=1

≤
∑ 𝐽𝑖
𝑛
𝑖=1  𝑘1,𝑚𝑎𝑥

∑ 𝐽𝑖
𝑛
𝑖=1

= 𝑘1,𝑚𝑎𝑥. Similarly, 
∑ 𝐽𝑖
𝑛
𝑖=1 𝑘1𝑖

∑ 𝐽𝑖
𝑛
𝑖=1

≥
∑ 𝐽𝑖
𝑛
𝑖=1  𝑘1,𝑚𝑖𝑛

∑ 𝐽𝑖
𝑛
𝑖=1

= 𝑘1,𝑚𝑖𝑛. Thus,  

√
𝑘1,𝑚𝑖𝑛𝑒2 

𝑒1𝑘2
≤ 𝑋̂1 ≤ √

𝑘1,𝑚𝑎𝑥𝑒2 

𝑒1𝑘2
 . (31) 

𝑋1,𝑙𝑜 ≤ 𝑋̂1 ≤ 𝑋1,𝑢𝑝 . ∎ (32) 

In the following subsection, we show that the bounds described in Lemma 3 can be improved. 

5.2.4. Improving the Multiplicative Factor’s Bounds 

Assume that the suppliers have no capacity limitations, i.e., 𝑐𝑖 ≥ ∝ 𝑃𝑖
∗−𝛿, 𝑖 = 1,… , 𝑛. Also, 

assume that the suppliers are re-indexed as 

𝑋1
(𝑖=1)

≤ 𝑋1
(2) ≤ ⋯ ≤ 𝑋1

(𝑛−1)
≤ 𝑋1

(𝑖=𝑛)
 , (33) 

where 𝑋1
(𝑖)

 is the corresponding multiplicative factor obtained when supplier 𝑖 is selected 

individually when capacity and quality constraints are not considered, 𝑖 = 1,… , 𝑛. The 

superscripts in this subsection represent the selected supplier(s). 
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Now, in order to improve the bounds, we need to check the corresponding quality level for supplier 

1 and supplier 𝑛. For instance, if supplier 1 is such that 𝑞1 ≥ 𝑞𝑎, then the lower bound shown in 

Relation (33) remains the same because this supplier can be selected individually without violating 

the quality constraint. Now, if supplier 1 is such that 𝑞1 < 𝑞𝑎, then this supplier will not be selected 

unless supplier 𝑖 such that 𝑞1 < 𝑞𝑎 < 𝑞𝑖 is also selected, 𝑖 = 2,… , 𝑛. Hence, the corresponding 

multiplicative factor when supplier 1 and supplier 𝑖 are selected, i.e., 𝑋1
(1,𝑖)

, might improve the 

lower bound shown in Relation (33). Consequently, the lower bound can be improved by selecting 

the minimum between 𝑋1
(1,𝑖)

 and  𝑋1
(2)

, i.e.,  

 𝑋1,𝑙𝑜 = 𝑚𝑖𝑛 {𝑋1
(1,𝑖), 𝑋1

(2)} ,  𝑞1 < 𝑞𝑎 < 𝑞𝑖 and 𝑖 = 2,… , 𝑛.    (34) 

Similarly, if supplier 𝑛 is such that 𝑞𝑛 ≥ 𝑞𝑎, then the upper bound shown in Relation (33) remains 

the same because this supplier can be selected individually without violating the quality constraint. 

And, if supplier 𝑛 is such that 𝑞𝑛 < 𝑞𝑎, then there is a possibility of improving the multiplicative 

factor’s upper bound shown in Relation (33). This is because if supplier 𝑛 needs to be selected, 

then supplier 𝑖 such that 𝑞𝑛 < 𝑞𝑎 < 𝑞𝑖, 𝑖 = 1, … , 𝑛 − 1 must be selected to achieve the quality 

requirement. Hence, the corresponding multiplicative factor, i.e., 𝑋1
(𝑛,𝑖), might improve the upper 

bound as follows: 

𝑋1,𝑢𝑝 = 𝑚𝑎𝑥 {𝑋1
(𝑛,𝑖), 𝑋1

(𝑛−1)} ,  𝑞𝑛 < 𝑞𝑎 < 𝑞𝑖 and 𝑖 = 1,… , 𝑛 − 1.    (35) 

Now, the challenge is to find the supplier who if selected with supplier 1 obtains the minimum 

multiplicative factor, and the supplier who if selected with supplier 𝑛 obtains the maximum 

multiplicative factor. In Theorem 2, we show a property that helps in finding the potential pair of 
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suppliers that need to be considered when improving the multiplicative factor’s bounds shown in 

Lemma 3. 

Theorem 2. Assume that 𝑐𝑖 ≥ ∝ 𝑃𝑖
∗−𝛿 , 𝑖 = 1,… , 𝑛. Also, without loss of generality, assume that 

the lower and upper bounds shown in Lemma 3 correspond to supplier 1 and supplier 𝑛, 

respectively. In addition, assume that supplier 1 is such that  𝑞1 < 𝑞𝑎. Thus, the minimum 

multiplicative factor is obtained when supplier 1 and supplier 𝑖 are selected, given that supplier 𝑖 

is such that 0 < 𝑞𝑎 < 𝑞𝑗 ≤ 𝑞𝑖 and 0 < 𝑘11 ≤ 𝑘1𝑖 ≤ 𝑘1𝑗, 𝑖, 𝑗 = 2, … , 𝑛 and 𝑖 ≠ 𝑗. 

Similarly, if supplier 𝑛 is such that  𝑞𝑛 < 𝑞𝑎, then the maximum multiplicative factor is obtained 

when supplier 𝑛 and supplier 𝑖 are selected, given that supplier 𝑖 is such that  0 < 𝑞𝑎 < 𝑞𝑗 ≤ 𝑞𝑖 

and 0 < 𝑘11 ≤ 𝑘1𝑗 ≤ 𝑘1𝑖, 𝑖, 𝑗 = 1,… , 𝑛 − 1 and 𝑖 ≠ 𝑗. 

Proof. (By contradiction). 

The goal of the first part of the proof (i.e., when 𝑞1 < 𝑞𝑎) is to show that 𝑋1
(1,𝑖)

≤ 𝑋1
(1,𝑗)

, 𝑖, 𝑗 =

2, … , 𝑛 and 𝑖 ≠ 𝑗. This implies that the weighted average unit setup cost is such that 𝑘1
(1,𝑖)

≤ 𝑘1
(1,𝑗)

. 

Instead, let us assume that 𝑘1
(1,𝑖)

> 𝑘1
(1,𝑗)

, i.e.,  

 𝐽1
(1,𝑖)𝑘11 +  𝐽𝑖

(1,𝑖)𝑘1𝑖
𝑀(1,𝑖)

>
 𝐽1
(1,𝑗)

𝑘11 +  𝐽𝑗
(1,𝑗)

𝑘1𝑗

𝑀(1,𝑗)
 , 𝑖, 𝑗 = 2,… , 𝑛 and 𝑖 ≠ 𝑗 . 

(36) 

Replacing  𝐽1
(1,𝑖)

 by 𝑀(1,𝑖) −  𝐽𝑖
(1,𝑖)

 and  𝐽1
(1,𝑗)

 by 𝑀(1,𝑗) −  𝐽𝑗
(1,𝑗)

, we obtain  

𝑘11 +
 𝐽𝑖
(1,𝑖)

𝑀(1,𝑖)
(𝑘1𝑖 − 𝑘11) >  𝑘11 +

 𝐽𝑗
(1,𝑗)

𝑀(1,𝑗)
(𝑘1𝑗 − 𝑘11) , 𝑖, 𝑗 = 2,… , 𝑛 and 𝑖 ≠ 𝑗 . 

(37) 
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By canceling out 𝑘11 from both sides and then by adding a positive number ∇ to the lower bound 

in order to change the inequality into an equality, we obtain 

∇=
 𝐽𝑖
(1,𝑖)

𝑀(1,𝑖)
(𝑘1𝑖 − 𝑘11) −

 𝐽𝑗
(1,𝑗)

𝑀(1,𝑗)
(𝑘1𝑗 − 𝑘11) , 𝑖, 𝑗 = 2,… , 𝑛 and 𝑖 ≠ 𝑗 . 

(38) 

Since, by assumption, 0 < 𝑘11 ≤ 𝑘1𝑖 ≤ 𝑘1𝑗, then (𝑘1𝑖 − 𝑘11) ≤ (𝑘1𝑗 − 𝑘11). Also, since by 

assumption, 0 < 𝑞𝑎 < 𝑞𝑗 ≤ 𝑞𝑖, then  
 𝐽𝑖
(1,𝑖)

𝑀(1,𝑖)
≤

 𝐽𝑗
(1,𝑗)

𝑀(1,𝑗)
. Thus, a negative value is obtained for ∇, which 

is a contradiction because ∇ is assumed to be a positive number. Therefore, the minimum 

multiplicative factor is obtained when supplier 1 and the supplier with the highest quality level and 

lowest unit setup cost are selected.  

The second part of the theorem can be proved in the same way to show that the maximum 

multiplicative factor is obtained when supplier 𝑛 and the supplier with the highest quality level 

and highest unit setup cost are selected. ∎ 

Theorem 2 implies that supplier 𝑗 such that 𝑞𝑗 > 𝑞𝑎 and 𝑘1𝑗 > 𝑘1𝑖 , 𝑖, 𝑗 = 2,… , 𝑛 and 𝑖 ≠ 𝑗, must 

be excluded when we attempt to improve the lower bound in Lemma 3  because a lower 

multiplicative factor can be obtained by selecting supplier 1 and supplier 𝑖 such that 0 < 𝑞𝑎 <

𝑞𝑗 ≤ 𝑞𝑖 and 0 < 𝑘11 ≤ 𝑘1𝑖 ≤ 𝑘1𝑗, 𝑖, 𝑗 = 2,… , 𝑛 and 𝑖 ≠ 𝑗. Hence, Algorithm II is developed 

using Theorem 2 to show the steps needed to improve the lower bound shown in Lemma 3. 
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Algorithm II – Improving the lower bound 

Step 1.  Re-index the suppliers such that 𝑋1
(𝑖=1)

≤ 𝑋1
(2) ≤ ⋯ ≤ 𝑋1

(𝑛−1) ≤ 𝑋1
(𝑖=𝑛). 

Step 2. If 𝑞1 ≥ 𝑞𝑎, then 𝑋1,𝑙𝑜 = 𝑋1
(1)

. Otherwise, find supplier 𝑖 such that 𝑞𝑎 < 𝑞𝑗 ≤ 𝑞𝑖, 

𝑖, 𝑗 = 2,… , 𝑛, and 𝑖 ≠ 𝑗. 

 Step 2.1 If 𝑘1𝑖 ≤ 𝑘1𝑗 . Then, 𝑋1,𝑙𝑜 =  𝑚𝑖𝑛  { 𝑋1
(1,𝑖), 𝑋1

(2)}. Otherwise, go to Step 2.2. 

 

Step 2.2 Consider only supplier 𝑗 such that 𝑘1𝑗 < 𝑘1𝑖 and 𝑞𝑗 > 𝑞𝑎, 𝑗 = 2, … , 𝑛 and 𝑖 ≠ 𝑗. 

Hence,  𝑋1,𝑙𝑜 =  𝑚𝑖𝑛 { 𝑋1
(1,𝑖), 𝑚𝑖𝑛 { 𝑋1

(1,𝑗)
: 𝑗 = 2,… , 𝑛, & 𝑖 ≠ 𝑗  } , 𝑋1

(2)}. 

Similarly, Theorem 2 implies that supplier 𝑗 such that 𝑞𝑗 > 𝑞𝑎 and 𝑘1𝑗 < 𝑘1𝑖  , 𝑖, 𝑗 =

2, … , 𝑛 and 𝑖 ≠ 𝑗, must be excluded when we attempt to improve the upper bound in Lemma 3   

because a higher multiplicative factor can be obtained by selecting supplier 𝑛 and supplier 𝑖 such 

that  0 < 𝑞𝑎 < 𝑞𝑗 ≤ 𝑞𝑖 and 0 < 𝑘11 ≤ 𝑘1𝑗 ≤ 𝑘1𝑖, 𝑖, 𝑗 = 1, … , 𝑛 − 1 and 𝑖 ≠ 𝑗. Hence, Algorithm 

III is developed to improve the multiplicative factor’s upper bound shown in Lemma 3. 

Algorithm II – Improving the upper bound 

Step 1.  Re-index the suppliers such that 𝑋1
(𝑖=1)

≤ 𝑋1
(2) ≤ ⋯ ≤ 𝑋1

(𝑛−1) ≤ 𝑋1
(𝑖=𝑛). 

Step 2. If 𝑞𝑛 ≥ 𝑞𝑎, then 𝑋1,𝑢𝑝 = 𝑋1
(𝑛)

. Otherwise, find supplier 𝑖 such that 𝑞𝑎 < 𝑞𝑗 ≤ 𝑞𝑖, 

𝑖, 𝑗 = 1,… , 𝑛 − 1 and 𝑖 ≠ 𝑗.  

 Step 2.1 If 𝑘1𝑖 ≥ 𝑘1𝑗 . Then, 𝑋1,𝑢𝑝 =  𝑚𝑎𝑥 { 𝑋1
(𝑛,𝑖), 𝑋1

(𝑛−1)}. Otherwise, go to Step 2.2. 

 

Step 2.2 Consider only supplier 𝑗 such that 𝑘1𝑗 > 𝑘1𝑖 and 𝑞𝑗 > 𝑞𝑎, 𝑗 = 2, … , 𝑛 and 𝑖 ≠ 𝑗. 

Hence,  𝑋1,𝑢𝑝 =  𝑚𝑎𝑥 { 𝑋1
(𝑛,𝑖), 𝑚𝑎𝑥 { 𝑋1

(𝑛,𝑗)
: 𝑗 = 1,… , 𝑛 − 1, & 𝑖 ≠ 𝑗  } , 𝑋1

(n−1)}. 
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Now, in order to calculate the multiplicative factor when two suppliers are selected. Let us assume 

that supplier 𝑟 and supplier 𝑘 are selected. Hence, we first need to determine the minimum number 

of orders to be submitted to each supplier in a cycle time such that the lower bound of the quality 

constraint is satisfied, i.e.,   

𝐽𝑟𝑞𝑟 + 𝐽𝑘𝑞𝑘
𝐽𝑟 + 𝐽𝑘

= 𝑞𝑎 .  (39) 

Let 𝑀  represents the total number of orders allocated to supplier 𝑟 and supplier 𝑘 during a cycle 

time. Thus, by substituting  𝑀 − 𝐽𝑟 , for  𝐽𝑘  we obtain 

𝐽𝑟 = 𝑀 (
𝑞𝑘 − 𝑞𝑎
𝑞𝑘 − 𝑞𝑟

) . (40) 

Recall that the quality levels for the suppliers and the manufacturer are defined as positive rational 

numbers. Therefore, after the ratio (
𝑞𝑘−𝑞𝑎

𝑞𝑘−𝑞𝑟
) shown in Equation (40) is turned into a fraction in the 

simplest form (i.e., the numerator and dominator are relative prime numbers), the minimum integer 

value for 𝑀 that guarantees the integrality of 𝐽𝑟 is equal to the value of the dominator, and the 

number of orders placed to supplier 𝑟 per order cycle is equal to the numerator’s value. Now, after 

determining the number of orders submitted to supplier 𝑟 and supplier 𝑘 per order cycle, we can 

obtain the weighted average unit setup cost needed to calculate the multiplicative factor. 

Let us now discuss the determination of the multiplicative factor’s feasible region when there are 

only two potential suppliers to order from, i.e.,  𝑛 = 2, and with taken into consideration suppliers’ 

limitations in regard to capacity and quality requirements. Now, if 0 < 𝑘1 < 𝑘2, then based on 

Lemma 3 the optimal multiplicative factor is 𝑋1
∗ ∈ [𝑋1

(1)
, 𝑋1

(2)
]. Consequently, if  𝑞1 < 𝑞𝑎 
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and 𝑞2 > 𝑞𝑎, then the lower bound can be improved, i.e., 𝑋1
∗ ∈ [𝑋1

(1,2)
, 𝑋1

(2)
], where  𝑋1

(1,2)
 is the 

multiplicative factor obtained when both suppliers are selected considering only the quality 

constraint.  Note that, as 𝑋1
(1,2)

 is calculated such that the lower bound of the quality constraint is 

satisfied, hence, the obtained average quality level is equal to 𝑞𝑎. Therefore, any ordering policy 

that would result in a multiplicative factor that belongs to the range of [𝑋1
(1)
,  𝑋1

(1,2)
) is not feasible, 

because the proportion of orders placed to supplier 1 in this range is more than the one placed to 

supplier 1 when 𝑋1
(1,2)

 is calculated. Hence, the corresponding average quality level will be less 

than 𝑞𝑎 since supplier 1 has the lower quality level of the two suppliers. Similarly, if the both 

suppliers are such that  𝑞1 > 𝑞𝑎 and 𝑞2 < 𝑞𝑎, then the range of ( 𝑋1
(1,2), 𝑋1

(2)
] is not feasible, and 

the optimal multiplicative factor is 𝑋1
∗ ∈ [𝑋1

(1)
,  𝑋1

(1,2)]. 

5.3. Numerical Examples  

Two numerical examples are addressed in this section. In the first example, we develop upper and 

lower bounds on the selling price and the multiplicative factor when capacity and quality 

constraints are considered. Then, in this first example, we show how the obtained bounds are 

changed when we consider only the quality constraint. Next, in the second example, we develop a 

tight feasible region for the case in which there are only two potential suppliers and in doing so we 

take the suppliers’ limitations in regard to capacity and quality into consideration.    

Example 1. Consider a two-stage serial supply chain in which a manufacturer is located at the first 

stage and a retailer is at the second stage. The manufacturer can replenish inventory from six 

potential suppliers. Table 5.1 shows the parameter data of the six suppliers. Also, the 
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manufacturer’s minimum acceptable quality level is 𝑞𝑎 = 0.95. The retailer is facing price-

sensitive demand, i.e., 𝐷 =∝ 𝑃−𝛿, where  ∝ = 4.00E + 08 and 𝛿 = 2.   

Table 5.1. Suppliers’ parameter information. 

Supplier 𝑖 
Quality level  

𝑞𝑖 
Capacity 

 𝑐𝑖 (units/month) 

Unit setup cost 

𝑘𝑖 ($/order) 

Unit purchasing cost 

𝑣𝑖 ($/unit) 

Supplier 1 0.94 9,000 6,100 45 

Supplier 2 0.99 9,500 1,900 54 

Supplier 3 0.94 8,000 14,500 49 

Supplier 4 0.98 9,000 8,500 51 

Supplier 5 0.96 32,000 30,000 50 

Supplier 6 0.94 15,000 40,000 46 

Table 5.2 shows the unit setup cost and the unit echelon cost for each stage. Note that the unit 

setup cost at the first stage is equal to the weighted average unit setup cost that depends on the 

number of orders submitted to the selected suppliers per order cycle. 

 Table 5.2. Parameter information for each stage. 

Stages 
Unit setup cost 

  𝑘𝑠 ($/order) 

Unit holding cost 

ℎ𝑠 ($/unit/month) 

Unit echelon cost 

𝑒𝑠 ($/unit/month) 

Stage 1  -  4 4 

Stage 2 1,000 34 30 

Next, using Algorithm I, we need to find the dominating supplier(s) (i.e., the supplier who 

generates the highest profit per time unit for the company when capacity and quality constraints 

are not considered). Table 5.3 shows the result when each supplier is selected separately and when 

there are neither capacity nor quality requirements.   
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 Table 5.3. Optimal solution when each supplier is selected separately. 

Supplier  

𝑖 

Order 

quantity 

𝑄1(units) 

Multiplicative 

factor 

𝑋1 

Order 

quantity 

𝑄2(units) 

Selling 

price 

𝑃 ($/unit) 

Demand 

 rate 

𝐷(units/month) 

Profit  

rate 

 𝑇𝑃 ($/month) 

1  12,204.95 7 1,743.56 92.15 47,108.65 2,119,889 
2 5,822.70 4 1,455.68 110.03 33,039.83 1,784,263 
3 16,574.69 10 1,657.47 100.96 39,245.79 1,923,043 

4 12,471.34 8 1,558.92 104.65 36,527.01 1,862,878 

5 23,594.90 15 1,572.99 103.81 37,114.61 1,855,731 

6 29,331.61 17 1,725.39 95.89 43,505.51 2,001,253 

Now, we need to find the lower and upper bounds for the selling price and the manufacturer’s 

multiplicative factor when both capacity and quality constraints are considered. Thus, based on 

Theorem 1, the lower bound for the selling price is  𝑃𝑙𝑜 = 𝑚𝑖𝑛  {𝑃𝑖
∗: 𝑖 = 1,… ,6} = $ 92.15 per 

unit. And, when Equation (28) is used, the upper bound for the selling price is 𝑃𝑢𝑝 =

𝑚𝑎𝑥 {𝑃𝑖
∗, (𝑐𝑖/∝)

−1/𝛿 ∶ 𝑖 = 1,… ,6} = $ 210.82 per unit. In addition, based on Lemma 3, the 

optimal multiplicative factor is 𝑋1
∗ ∈ [4,17]. This problem is solved using the global solver in 

LINGO15.0 on a PC with an INTEL(R) Core (TM) 2 Duo Processor at 2.10 GHz and 4.0 gigabytes 

RAM. Table 5.4 shows the reduction in computational time when the selling price and 

multiplicative factor bounds are considered.   

Table 5.4. CPU time comparison. 

 Original problem without bounds Original problem with bounds 

𝑋1 𝑋1 ≥ 1  4 ≤ 𝑋1 ≤ 17 

𝑃 𝑃 ≥ 0.1 92.15 ≤ 𝑃 ≤ 210.82 

CPU time 17 seconds 2 seconds 

The optimal solution obtains a profit per time unit of 1,970,010 $/month, i.e., 𝐽1 = 21, 𝐽2 = 1, 𝐽3 =

11, 𝐽4 = 21, 𝐽5 = 0, 𝐽6 = 35, 𝑄1 = 20,274.68 units, 𝑋1 = 13, 𝑄2 = 1,559.59 units, and 𝑃 =

$102.41 per unit.  
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Next, let us assume that the suppliers have no capacity limits, i.e., 𝑐𝑖 ≥ ∝ 𝑃𝑖
∗−𝛿, 𝑖 = 1, … , 𝑛. Then, 

based on Theorem 1, the upper bound for the selling price is equal to the maximum selling price 

obtained when each supplier is selected individually and when capacity and quality restrictions are 

not considered. Thus, from Table 5.3, 𝑃𝑢𝑝 = 𝑚𝑎𝑥{𝑃𝑖
∗: 𝑖 = 1,… ,6} = $ 110.03 per unit. Note that 

the lower bound for the selling price remains unchanged, i.e., 𝑃𝑙𝑜 = 𝑚𝑖𝑛{𝑃𝑖
∗: 𝑖 = 1,… ,6} =

$ 92.15 per unit.   

And, in regard to the multiplicative factor, 𝑋1
∗ ∈ [4,17]. However, the upper bound value is 

obtained when supplier 6, who has quality limitations, is selected. Therefore, the upper bound can 

be improved based on Algorithm III. Consequently, we need to find the supplier who has the 

maximum quality level, which in this case is supplier 2. However, supplier 2 does not have the 

highest unit setup cost. Therefore, we also need to calculate the multiplicative factor when supplier 

6 is selected with supplier 𝑗 such that 𝑘𝑗 > 𝑘2 and 𝑞𝑗 > 𝑞𝑎, 𝑗 = 1,… ,5, and 𝑗 ≠ 2. Table 5.5 shows 

the number of orders submitted to each supplier per order cycle and the corresponding 

multiplicative factor. 

Table 5.5. Calculation to improve the upper bound for the multiplicative factor. 

Supplier 𝒊 𝑱𝒋 𝑱𝟔 𝑿𝟏
(𝒋,𝟔)

 𝒎𝒂𝒙 {𝑿𝟏
(𝒋,𝟔)

} Feasible region 

Supplier 2  1 4 16   

Supplier 4 1 3 16 16 [4,16] 
Supplier 5 1 1 16   

Note that the number of orders shown in Table 5.5 are calculated such that the lower bound of the 

quality constraint is satisfied, i.e., 𝐽6 = 𝑀(
𝑞𝑗−𝑞𝑎

𝑞𝑗−𝑞6
). Thus, after the ratio (

𝑞𝑗−𝑞𝑎

𝑞𝑗−𝑞6
) is turned into a 

fraction in the simplest form, the value for 𝑀 that guarantees the integrality of 𝐽6 is equal to the 

value of the dominator, and 𝐽6 is equal to the numerator’s value. Table 5.6 shows some reduction 

in the CPU time after we impose the proposed bounds. 
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Table 5.6. CPU time comparison. 

 Original problem without bounds Original problem with bounds 

𝑋1 𝑋1 ≥ 1  4 ≤ 𝑋1 ≤ 16 

𝑃 𝑃 ≥ 0.1 92.15 ≤ 𝑃 ≤ 110.03 

CPU time 4 seconds <1 second 

The optimal solution obtains a profit per time unit of 2,049,290 $/month, i.e., 𝐽1 = 3, 𝐽2 = 0, 𝐽3 =

0 ,𝐽4 = 1, 𝐽5 = 0,  𝐽6 = 0, 𝑄1 = 12,072.18 units, 𝑋1 = 7, 𝑄2 = 1,724.60 units, and 𝑃 = $ 95.27 

per unit.   

Example 2. Consider the same two-stage serial supply chain presented in Example 1. The only 

difference between this example and the first example is that the manufacturer can replenish 

inventory from only two potential suppliers. Table 5.7 shows the parameter data of the two 

suppliers. 

Table 5.7. Suppliers’ parameter information. 

Supplier 𝑖 
Quality level  

𝑞𝑖 
Capacity 

 𝑐𝑖 (units/month) 

Ordering cost 

𝑘𝑖 ($/order) 

Unit purchasing cost 

𝑣𝑖 ($/unit) 

Supplier 1 0.92 5,000 7,500 25 

Supplier 2 0.962 30,000 35,000 50 

The goal of this example is to find a tight feasible region for the multiplicative factor when the 

suppliers’ capacity and quality are considered. Thus, as a first step, we use Algorithm 1 to find 

the dominating supplier. Table 5.8 shows the results when each supplier is selected separately in a 

case in which there are neither capacity nor quality constraints. 

Table 5.8. Optimal solution when each supplier is selected separately. 

Supplier  

𝑖 

Order 

quantity 

𝑄1 
(units) 

Multiplicative 

factor 

𝑋1 

Order 

quantity 

𝑄2 
(units) 

Selling 

price 

𝑃 
($/unit) 

Demand 

 rate 

𝐷 
(units/month) 

Profit  

rate 

𝑇𝑃 
($/month) 

Supplier 1  24,678.22 8 3,084.78 51.25 152,253.7 3,806,341 

Supplier 2 25,332.76 16 1,583.30 104.03 36,963.48 1,848,174 
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Let us initially assume that both suppliers will be selected to satisfy the quality requirement. Hence, 

we need to find the number of orders submitted to each supplier during a cycle time such that the 

quality requirement is satisfied. Accordingly, 𝑀 = 7, 𝐽1 = 2, and 𝐽2 = 5. Therefore, by using 

Equation (29), the integer multiplicative factor when supplier 1 and 2 are selected with only the 

quality constraint taken into consideration is 𝑋1
(1,2)

= 14. And, given that 𝑘1 < 𝑘2 and 𝑞1 < 𝑞𝑎, 

then the optimal multiplicative factor, 𝑋1
∗ ∈ [𝑋1

(1,2)
, 𝑋1

(2)
] = [14,16]. Now, we need to find the 

selling price bounds when both capacity and quality constraints are considered. Thus, by using 

Theorem 1 and Equation (28), 𝑃∗ ∈ [$ 51.25, $ 282.84]. Table 5.9 shows the difference between 

the computational time when the bounds are imposed and when they are not imposed.   

Table 5.9. CPU time comparison. 

 Original problem without bounds Original problem with bounds 

𝑋1 𝑋1 ≥ 1  14 ≤ 𝑋1 ≤ 16 

𝑃 𝑃 ≥ 0.1 51.25 ≤ 𝑃 ≤ 282.84 

CPU time 44 seconds 20 seconds 

The optimal solution obtains a profit per time unit of 1,977,553 $/month (i.e., 𝐽1 = 1, 𝐽2 = 6,𝑄1 =

23,184.05 units, 𝑋1 = 15, 𝑄2 = 1,545.60 units, and 𝑃 = $106.90 per unit. 

5.4. Conclusions  

In this chapter, we have considered the integrated pricing and supplier selection problem in a two-

stage supply chain. We have developed an MINLP model to find the number of orders placed to 

the selected suppliers per order cycle and the corresponding order quantity, the inventory lot size 

for the second stage, and the retailer’s selling price such that the profit per time unit is maximized. 

Moreover, we have proposed an algorithm to find the supplier who, if selected, would yield the 

highest profit per time unit when capacity and quality limitations are not considered. Then, we 

show how the algorithm can be edited to find the best supplier when the capacity of each potential 
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supplier’s capacity is taken into consideration. In addition, we have identified lower and upper 

bounds for the optimal selling price. We have also identified the feasible region for the 

multiplicative integer factor and shown a tighter feasible region when there are only two potential 

suppliers. Further, we have presented two numerical examples to explain the proposed model and 

the calculation of the lower and upper bounds for the selling price and the integer multiplicative 

factor. 
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Chapter 6: Integrated Pricing and Lot-sizing Decisions in a Serial Supply Chain 

 

6.1. Problem Description and Model Development   

In the present chapter, we consider a company that controls a series of supply chain stages through 

which a single product is produced. Figure 6.1 describes the serial supply chain that we consider 

in this chapter. The manufacturer in the first stage facility determines the required amount of raw 

material and how often it should be ordered from the selected suppliers in a cycle time taken into 

account suppliers’ limitations in regard to capacity and quality. Then after the first stage, the 

products made from the raw materials go through a series of stages that can represent additional 

manufacturing facilities or warehouses until reaching the last stage, i.e., the distribution center. 

Finally, the distribution center identifies the optimal selling price, as we assume that demand is 

price-sensitive. Therefore, the goal is to simultaneously coordinate supplier selection, inventory 

replenishment, and pricing decisions such that the profit per time unit is maximized. 

 

 

The challenging aspect of the serial system shown in Figure 6.1 is that the inventory at any given 

stage is used to replenish the inventory for the next stage. For instance, the manufacturer at the 

first stage uses its inventory to periodically replenish the inventory at the second stage. Hence, 

once the inventory level at stage 2 drops to zero, then immediately stage 1 uses its inventory to 

Manufacturer  Distribution 

Center 

𝑙-1  2  1  𝑙  

Additional 

Manufacturers or 

Warehouses  

Suppliers  

𝑛  

3 

1 

2 Set of Retailers 

(Price-Sensitive 

Demand) 

Figure 6.1. Pricing and supplier selection in a serial system. 
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replenish the inventory at stage 2 by providing a batch of the required order quantity. Accordingly, 

the manufacturer should receive the order quantities placed to the selected suppliers in time to 

avoid any inventory shortages.  Note that, the lead time is fixed and or it can be assumed to be zero 

because each stage would order just at the right time such that the order quantity is received when 

inventory level drops to zero.   

Let us now introduce the notation and the assumptions underlying our model. Then, we show the 

development of the proposed MINLP model. Listed below are the model’s indices, parameters, 

and decision variables. 

Indices 

𝑠 Stage, where 𝑠 = 1, … , 𝑙. 

𝑖 Potential supplier, where 𝑖 = 1, … , 𝑛.  

Parameters  

𝑐𝑖 Production capacity rate of supplier 𝑖, where 𝑖 = 1,… , 𝑛. 

𝑞𝑖 Quality level (i.e., portion of acceptable units) of supplier 𝑖, 0 < 𝑞𝑖 ≤ 1, where 𝑖 = 1,… , 𝑛. 

𝑞𝑎 Minimum acceptable quality level for the manufacturer at stage 1, 0 < 𝑞𝑎 ≤ 1. 

𝑣1𝑖 Purchasing cost of one unit from supplier 𝑖 at stage 1, where 𝑖 = 1,… , 𝑛. Note that 𝑣1 is 

the weighted average unit purchasing cost for the selected suppliers. 

𝑘𝑠 Setup cost for placing one order at stage 𝑠, where 𝑠 = 1,… , 𝑙.  

𝑘1𝑖 Setup cost for placing one order to supplier 𝑖 at stage 1, where 𝑖 = 1, … , 𝑛. Note that 𝑘1 is 

the weighted average unit setup cost for the selected suppliers. 

ℎ𝑠 Unit inventory holding cost at stage 𝑠, where 𝑠 = 1,… , 𝑙. 
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𝑒𝑠 Unit echelon inventory holding cost at stage 𝑠, i.e., 𝑒1 = ℎ1, and 𝑒𝑠 = ℎ𝑠 − ℎ𝑠−1, where 

𝑠 = 2,… , 𝑙.  

∝ Scaling factor for price-sensitive demand. 

𝛿 Price elasticity index for price-sensitive demand. 

𝑚 Maximum number of orders that can be placed to the selected suppliers in an order cycle. 

Decision variables 

𝐽𝑖 Number of orders submitted to supplier 𝑖 per order cycle. 

𝑋1𝑖 Multiplicative factor for order quantity submitted to supplier 𝑖, where 𝑖 = 1,… , 𝑛. 

𝑋𝑠 Multiplicative factor for order quantity received from stage 𝑠 + 1, where 𝑠 = 2, … , 𝑙 − 1. 

𝑄𝑠 Order quantity at stage 𝑠, i.e., 𝑄𝑠 = 𝑋𝑠𝑄𝑠+1, where 𝑠 = 2,… , 𝑙 − 1. 

𝑄1𝑖 Order quantity placed to supplier 𝑖, i.e., 𝑄1𝑖 = 𝑋1𝑖𝑄2, where 𝑖 = 1, … , 𝑛. 

𝑃 Distribution center’s optimal selling price. 

𝐷 Distribution center’s price-sensitive demand rate, i.e., 𝐷 =∝ 𝑃−𝛿. 

The assumptions are summarized as follows: 

1. The time horizon is infinite. 

2. Backordering is not allowed.  

3. The supply chain produces a single type of product.  

4. The lead times are constant and can be assumed to be zero. 

5. All the supply chain stages have an infinite production rate and storage capacity.  

6. The variable cost components for each stage are mainly the setup and holding costs, with the 

exception of the first stage in which purchasing cost is also considered.  



 

89 
 

7. An inventory replenishment decision must follow the zero-nested inventory ordering policy. 

Love (1972) and Schwarz (1973) proved that the zero-nested inventory policy is optimal for a 

serial inventory system.  

8. The product gains more value as it moves down to the downstream stages. Thus, the unit hold-

ing cost increases, as the product gets closer to the final consumer, i.e., ℎ1 < ℎ2 < ⋯ < ℎ𝑙. In 

addition, we consider the unit echelon inventory holding cost for each stage, i.e., 𝑒1 = ℎ1, and 

𝑒𝑠 = ℎ𝑠 − ℎ𝑠−1 , 𝑠 = 2,… , 𝑙.  

9. Two consecutive stages are treated separately if and only if  
𝑘𝑠

𝑒𝑠
>

𝑘𝑠+1

𝑒𝑠+1
, 𝑠 = 1, … , 𝑙 − 1. Other-

wise, they are combined into one stage with a unit setup cost of 𝑘𝑠 + 𝑘𝑠+1 and a unit echelon 

holding cost of 𝑒𝑠 + 𝑒𝑠+1.  Schwarz and Schrage (1975), and Muckstadt and Roundy (1993) 

proved the optimality of applying this rule for combining consecutive stages in a serial supply 

chain.  

10. Retailers' demand rate 𝐷 occurs at stage 𝑙 and is a decreasing power function of the selling 

price 𝑃, i.e., 𝐷(𝑃) =∝ 𝑃−𝛿, where ∝ and 𝛿 are the scaling factor and price elasticity index, 

respectively. And, to guarantee that the selling price has a significant impact on the demand, 

we assume that 𝛿 > 1 (Kim and Lee, 1998). 

Note that, Assumption (7) indicates that an optimal policy in a serial inventory system must be 

nested and inventory replenished only when inventory level is zero. The zero-inventory ordering 

policy implies that the inventory at each stage is replenished by the immediate upstream stage only 

when the inventory level drops to zero and it is time to replenish the inventory at the immediate 

downstream stage. The nested ordering policy implies that when any stage in the supply chain 

orders, all the downstream stages order as well, where the quantity ordered at each stage is an 

integer multiple of the order quantity at the immediate downstream stage, i.e., 𝑄1𝑖 = 𝑋1𝑖𝑄2, 𝑖 =
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1, … , 𝑛, and 𝑄𝑠 = 𝑋𝑠𝑄𝑠+1, 𝑠 = 2, … , 𝑙 − 1. Figure 6.2 provides an example of a two-stage supply 

chain with inventory shortages because the order quantity placed at stage 1 is not an integer 

multiple of the order quantity placed at stage 2. The example assumes that the demand rate is 𝐷 =

1 unit per time unit, the order quantity placed at the first stage is 𝑄1 = 3 units, and the order 

quantity placed at the second stage is 𝑄2 = 2 units.  

 

Figure 6.2. Unsynchronized inventory levels in a two-stage supply chain. 

As shown in Figure 6.2, at the beginning of the cycle time, stage 1 uses its inventory of 3 units to 

deliver 2 units to the second stage. Hence, the inventory level at stage 1 drops to 1 unit. Then after 

two time units, the inventory level at stage 2 drops to zero. Hence, stage 2 immediately places an 

order of 2 units to stage 1. However, stage 1 does not have enough inventory to cover the required 

order quantity, thus inventory shortages occur at the first stage and only 1 unit is delivered to the 

second stage. The second unit has to be delivered at time unit 3. Note that, if 𝑄1/𝑄2 is not rational, 

then the ordering policy would also result in a nonstationary inventory policy where the order cycle 

is not repeatable.   
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On the other hand, if the inventory levels are synchronized such that the order quantity placed at 

stage 1 is an integer multiple of the order quantity placed at stage 2. Then an optimal policy can 

be obtained and inventory shortages are voided. Figure 6.3 shows an example of coordinated 

inventory levels in a two-stage supply chain. The example assumes that the demand rate is 𝐷 = 1 

unit per time unit, the order quantity placed at the first stage is 𝑄1 = 4 units, and the order quantity 

placed at the second stage is 𝑄2 = 2 units. 

A shown in Figure 6.3, inventory shortages are avoided because the order quantity at the first stage 

is an integer multiple of the order quantity placed at the second stage. Note that, stage 1 replenishes 

its inventory only when the inventory level drops to zero and it is the time to replenish the inventory 

of the second stage in order to avoid inventory leftovers and shortages.  

Assumption (8) is made to simplify the calculation of the holding cost per time unit (Muckstadt 

and Roundy, 1993). Recall that for a single-stage system, the on-hand inventory follows the well-

known saw-toothed curve. Now, if we consider a two-stage serial system in which the zero-nested 

inventory policy is applied, then the on-hand inventory for stage 2 follows the saw-toothed curve, 

but the on-hand inventory for stage 1 does not take this form, because over a certain time range 
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the on-hand inventory level for stage 1 remains constant until stage 2 places an order. Thus, if we 

add the amount of on-hand inventory at stage 1 and the amount of on-hand inventory at stage 2, 

we obtain what is known by the echelon inventory for stage 1 which follows the saw-toothed curve. 

Therefore, it is easier to consider the echelon inventory instead of the on-hand inventory because 

the average on-hand inventory for stage 1 is a function of the order quantity ordered at stage 1 and 

the order quantity ordered at stage 2. Note that the holding cost per time unit that is calculated 

using the unit echelon holding cost is the same as that obtained using the unit inventory holding 

cost. For instance, the holding cost per time unit for the two-stage supply chain shown in Figure 

6.3 is 𝑇𝐻 =
1

2
(𝑄1 − 𝑄2)ℎ1 +

1

2
𝑄2ℎ2, where 𝑄1 = 𝑋1𝑄2, and 𝑋1 is a positive integer multiplicative 

factor. Hence, 𝑇𝐻 can be written as  𝑇𝐻 =
𝑄2

2
((𝑋1 − 1)ℎ1 + ℎ2) =

𝑄2

2
(𝑋1𝑒1 + 𝑒2), where 𝑒1 =

ℎ1, and 𝑒2 = ℎ2 − ℎ1. 

In addition, Assumption (9) ensures that the condition for any feasible solution is satisfied, i.e., the 

order quantity at any stage must be greater than or at least equal to that of the immediate 

downstream stage. Thus, if two consecutive stages are such that 𝑄𝑠 < 𝑄𝑠+1, 𝑠 = 1,… , 𝑙 − 1, then 

the order quantities at these consecutive stages are set to be equal to each other in order not to 

violate the feasibility condition. This is achieved by combining the two stages into one stage with 

a unit setup cost of 𝑘𝑠 + 𝑘𝑠+1 and a unit echelon holding cost of 𝑒𝑠 + 𝑒𝑠+1. Similarly, if two 

consecutive stages are such that 𝑄𝑠 = 𝑄𝑠+1, 𝑠 = 1,… , 𝑙 − 1, then these two stages can also be 

treated as a single combined stage. Hence, by using the economic order quantity (EOQ) formula, 

any two consecutive stages are combined into one stage if   
𝑘𝑠

𝑒𝑠
≤

𝑘𝑠+1

𝑒𝑠+1
, 𝑠 = 1,… , 𝑙 − 1. 
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Based on these assumptions, the following MINLP model (𝑀1) is formulated: 

𝑀𝑎𝑥.  𝑇𝑃1 =∝ 𝑃
1−𝛿 −

1

𝑄1
(∝ 𝑃−𝛿 ∑ 𝐽𝑖

𝑛
𝑖=1 𝑘1𝑖 +

𝑒1

2
∑ 𝐽𝑖𝑄1𝑖

2𝑛
𝑖=1 +∝ 𝑃−𝛿 ∑ 𝐽𝑖

𝑛
𝑖=1 𝑄1𝑖𝑣1𝑖)  

                         −(∝ 𝑃−𝛿 ∑
𝑘𝑠

𝑄𝑠

𝑙
𝑠=2 + 

1

2
∑ 𝑄𝑠𝑒𝑠
𝑙
𝑠=2 ) ,  

subject to  

𝑄1 = ∑ 𝐽𝑖
𝑛
𝑖=1 𝑄1𝑖 ,      (1) 

∝ 𝑃−𝛿𝐽𝑖𝑄1𝑖 ≤ 𝑄1𝑐𝑖 ,   𝑖 = 1, … , 𝑛 ,  (2) 

∑ 𝐽𝑖
𝑛
𝑖=1 𝑄1𝑖𝑞𝑖 ≥ 𝑄1𝑞𝑎 ,    (3) 

𝑄1𝑖 = 𝑋1𝑖𝑄2 ,   𝑖 = 1, … , 𝑛 , (4) 

𝑋1𝑖 ≥ 1 ,  𝑖𝑛𝑡𝑒𝑔𝑒𝑟, 𝑖 = 1,… , 𝑛 , (5) 

𝑄𝑠 = 𝑋𝑠𝑄𝑠+1 ,  𝑠 = 2 , … , 𝑙 − 1 ,   (6) 

𝑋𝑠 ≥ 1 ,  𝑖𝑛𝑡𝑒𝑔𝑒𝑟, 𝑠 =  2 , … , 𝑙 − 1 ,  (7) 

∑ 𝐽𝑖
𝑛
𝑖=1 ≤ 𝑚 ,   (8) 

𝐽𝑖 ≥ 0 ,   𝑖𝑛𝑡𝑒𝑔𝑒𝑟,  𝑖 = 1,… , 𝑛 ,  (9) 

𝑄1𝑖 ≥ 0 ,  𝑖 = 1, … , 𝑛 ,  (10) 

𝑄𝑠 > 0 , 𝑠 =  2 , … , 𝑙 , (11) 

𝑃 > 0 .  (12) 

The objective function consists of three components: the first one is the revenue per time unit ∝

𝑃1−𝛿; the second component includes the replenishment cost (i.e., setup cost and purchasing cost 

per time unit) and holding cost per time unit at the first stage; and, lastly, the third component is 

the setup and holding costs per time unit for stages 2 to 𝑙. The model is subject to a number of 

constraints. Constraint (1) represents the total quantity ordered from all the selected suppliers 
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during a cycle time. Constraint set (2) requires that a supplier’s replenishment rate does not exceed 

the capacity rate. Constraint (3) imposes the manufacturer’s restriction on the minimum acceptable 

quality level. Constraint sets (4) and (5) guarantee that the purchased order quantity from each 

supplier is an integer multiple of the quantity ordered at stage 2, where a different multiplicative 

factor can be applied to each supplier. Constraint sets (6) and (7) ensure that the order quantity at 

each stage is an integer multiple of the order quantity at the immediate downstream stage. 

Constraint (8) imposes an upper bound on the total number of orders submitted to suppliers in a 

repeating order cycle. This constraint is important in regard to controlling the length of the cycle 

time, as discussed by Mendoza and Ventura (2008). Constraint set (9) imposes the integrality 

condition on the number of orders placed to the selected suppliers during an order cycle. Constraint 

set (10) represents the non-negativity conditions. Constraint sets (11) and (12) ensure avoiding the 

division by zero. Note that the objective function of Model (𝑀1) has singularities at 𝑃 = 0 

and 𝑄𝑠 = 0 , 𝑠 = 2, … , 𝑙.  

Note that Model (𝑀1) makes it possible to order different quantities from the selected suppliers 

because each order quantity is multiplied by a different integer multiplicative factor. Model (𝑀1) 

is compared with models that consider only the same multiplicative factor for the quantity of each 

order submitted to the selected supplier, e.g., Mendoza and Ventura (2010). For this purpose, 

Model (𝑀2) is developed by allowing only an equal-size order quantity to be submitted to the 

selected suppliers. Hence, Model (𝑀1) is edited so that 𝑄1𝑖 = 𝑄1, and 𝑋1𝑖 = 𝑋1, 𝑖 = 1,… , 𝑛. In 

Section 6.3, we show that Model (𝑀1) obtains a higher profit per time unit than Model (𝑀2).  

 



 

95 
 

6.2. Heuristic Algorithm using the Power-of-Two (POT) Policy   

As the number of suppliers and stages increases, the problem becomes more complex and, 

consequently, more computational time is needed to solve it. Therefore, there is an increasing need 

for a heuristic algorithm that is capable of reducing the feasible region to solve the problem in a 

timely manner, and obtaining near-optimal solutions. One possible way to reduce the size of the 

feasible region is to consider the POT nested policy, which restricts the integer multiplicative 

factors to be powers of two, i.e., 𝑋1𝑖 = 2
𝑟1𝑖, 𝑖 = 1,… , 𝑛, and 𝑋𝑠 = 2

𝑟𝑠, 𝑠 = 2,… , 𝑙, where 𝑟1𝑖 and 

𝑟𝑠 are non-negative integers. Roundy (1986) proved that this policy provides a solution that is 

within 6% of the model’s optimal nested solution if the base cycle time is fixed and within 2% of 

the model’s optimal nested solution if the base cycle time is treated as a decision variable. In 

addition, POT policies haven been considered by many scholars to determine inventory policies 

in a multi-stage supply chain (Maxwell and Muckstadt 1985; Roundy 1989; Hahm and Yano, 

1995; Ouenniche and Boctor, 2001; Mendoza and Ventura 2010), and were found to provide a 

practical approach in determining supply chain inventory policies as they are simple to implement 

and computationally efficient. In addition, Khouja (2003) showed that implementing POT policies 

yield to significant cost reductions. Therefore, we propose a heuristic algorithm to solve the pricing 

and supplier selection problem in the case of a serial supply chain using the POT inventory policy. 

Let us first turn our attention to developing an upper bound for Model (𝑀1). An upper bound for 

the problem can be obtained by relaxing the coordination mechanism from Model (𝑀1), which if 

it remained would ensure that the order quantity for any given stage in the supply chain would be 

an integer multiple of the order quantity of the immediate downstream stage. Therefore, by 
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replacing Constraints (4–7) in Model (𝑀1) with 𝑄1𝑖 ≥ 𝑄2, 𝑖 = 1,… , 𝑛, and 𝑄𝑠 ≥ 𝑄𝑠+1, 𝑠 =

2, … , 𝑙 − 1, the relaxed model that provides an upper bound, denoted as (𝑀1̅̅ ̅̅ ), is obtained: 

𝑀𝑎𝑥.  𝑇𝑃̅̅ ̅̅ 1 =∝ 𝑃
1−𝛿 −

1

𝑄1
(∝ 𝑃−𝛿 ∑ 𝐽𝑖

𝑛
𝑖=1 𝑘1𝑖 +

𝑒1

2
∑ 𝐽𝑖𝑄1𝑖

2𝑛
𝑖=1 +∝ 𝑃−𝛿 ∑ 𝐽𝑖

𝑛
𝑖=1 𝑄1𝑖𝑣1𝑖)  

                         −(∝ 𝑃−𝛿 ∑
𝑘𝑠

𝑄𝑠

𝑙
𝑠=2 + 

1

2
∑ 𝑄𝑠𝑒𝑠
𝑙
𝑠=2 ) ,  

subject to  

𝑄1 = ∑ 𝐽𝑖
𝑛
𝑖=1 𝑄1𝑖 ,    (13) 

∝ 𝑃−𝛿𝐽𝑖𝑄1𝑖 ≤ 𝑄1𝑐𝑖 ,  𝑖 = 1, … , 𝑛 ,  (14) 

∑ 𝐽𝑖
𝑛
𝑖=1 𝑄1𝑖𝑞𝑖 ≥ 𝑄1𝑞𝑎 ,    (15) 

𝑄1𝑖 ≥ 𝑄2 ,   𝑖 = 1, … , 𝑛 , (16) 

𝑄𝑠 ≥ 𝑄𝑠+1 ,  𝑠 = 2 , … , 𝑙 − 1 ,   (17) 

∑ 𝐽𝑖
𝑛
𝑖=1 ≤ 𝑚 ,   (18) 

𝐽𝑖 ≥ 0 ,   𝑖𝑛𝑡𝑒𝑔𝑒𝑟,  𝑖 = 1,… , 𝑛 ,  (19) 

𝑄1𝑖 ≥ 0 ,  𝑖 = 1, … , 𝑛 ,  (20) 

𝑄𝑠 > 0 , 𝑠 =  2 , … , 𝑙 , (21) 

𝑃 > 0 .  (22) 

Even though, Model (𝑀1̅̅ ̅̅ ) provides an upper bound on the profit of the optimal solution, the 

resulting solution might not satisfy the zero-nested inventory policy because the coordination 

mechanism is dropped. Hence, inventory shortages might occur, and the inventory policy becomes 

non-stationary.  
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Note that, solving Model (𝑀1̅̅ ̅̅ ) for a given selling price is equivalent to optimizing the inventory 

decisions at each stage separately without taking into consideration the inventory policy of other 

stages. Hence, one way to obtain an upper bound for a given selling price is to consider one stage 

at a time and optimize its inventory decisions alone. Thus, the supplier selection problem at the 

first stage needs to be solved, and the optimal order quantities for stage𝑠, 𝑠 = 2,… , 𝑙 need to be 

determined by applying the EOQ formula at each stage using the unit echelon holding cost. If the 

order quantity at any stage is greater than or equal the order quantity of the downstream stage, then 

the obtained solution is optimal for Model (𝑀1̅̅ ̅̅ ) and the corresponding profit is an upper bound 

for Model (𝑀1).  

The heuristic algorithm consists of four main steps. In the first step, initial values for the order 

quantities are obtained for each stage. For this purpose, an initial value is set for the selling price, 

i.e., 𝑃 = 𝑃𝑜. Then, the EOQ formula is used to compute the initial order quantities at each stage. 

Let 𝑄1𝑖
𝑅  donate the initial order quantity placed to supplier 𝑖, i.e., 𝑄1𝑖

𝑅 = √2 ∝ 𝑃−𝛿𝑘1𝑖/𝑒1, 𝑖 =

1, … , 𝑛. And, let 𝑄𝑠
𝑅 donate the initial order quantity placed at stage 𝑠, i.e., 𝑄𝑠

𝑅 = √2 ∝ 𝑃−𝛿𝑘𝑠/𝑒𝑠, 

𝑠 = 2,… , 𝑙. This step is similar to solving Model (𝑀1̅̅ ̅̅ ) for a given selling price and without taking 

into consideration suppliers’ limitation in regard to capacity and quality constraints. In addition, 

the resulting solution might not satisfy the zero-nested inventory policy because the coordination 

mechanism is dropped.  

Nevertheless, the obtained initial order quantities are going to be altered to ensure that the order 

quantities between consecutive stages are coordinated with multiplicative factors that are powers 

of two, i.e., 𝑄1𝑖 = 𝑋1𝑖𝑄2, 𝑋1𝑖 = 2𝑟1𝑖, 𝑖 = 1,… , 𝑛, and 𝑄𝑠 = 𝑋𝑠𝑄𝑠+1, 𝑋𝑠 = 2
𝑟𝑠, 𝑠 = 2,… , 𝑙 − 1, 

where 𝑟1𝑖 and 𝑟𝑠  are non-negative integers.  Hence, as a second step, we generalize the POT 
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procedure proposed by Roundy (1986) in order to determine a POT solution using the initial values 

of the order quantities. Procedure 1 shown below presents a generalized POT procedure that can 

be used for a multi-supplier serial supply chain system in which a different multiplicative factor is 

assigned to the order quantities placed to the selected suppliers.   

Procedure 1 below shows the detailed steps that must be followed in altering the initial order 

quantities. Let 𝑄1𝑖
𝑃𝑂𝑇, 𝑖 = 1,… , 𝑛, and 𝑄𝑠

𝑃𝑂𝑇, 𝑠 = 2,… , 𝑙, be the POT solution that is obtained from 

implementing Procedure 1. The procedure starts with using the POT solution for that last stage, 

i.e.,  𝑄𝑙
𝑃𝑂𝑇 in order to determine the POT solution for the immediate upstream stage, i.e., 𝑄𝑙−1

𝑃𝑂𝑇. 

Not that, 𝑄𝑙
𝑃𝑂𝑇 is not known initially, hence  𝑄𝑙

𝑅 can instead be used as an estimation of 𝑄𝑙
𝑃𝑂𝑇. 

Then, 𝑄𝑙−1
𝑃𝑂𝑇 is used to obtain the POT solution for stage 𝑙 − 2, i.e., 𝑄𝑙−2

𝑃𝑂𝑇. Similarly, the procedure 

continues until the POT solution is obtained for stage 2. Then, as we are allowing different order 

quantities to be placed to the selected suppliers, each order quantity placed to the selected supplier 

must be an integer multiple of the order quantity for stage 2. Thus, the POT solution for stage 2 is 

used to determine the POT solution for the order quantity placed at stage 1 to supplier 𝑖, 

i.e., 𝑄1𝑖
𝑃𝑂𝑇, 𝑖 = 1,… , 𝑛.  
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Procedure 1. A Generalized Power-of-Two Procedure  

Step I.  If 𝑄𝑙
𝑃𝑂𝑇 is known, then go to Step II. Otherwise, set 𝑄𝑙

𝑃𝑂𝑇 to 𝑄𝑙
𝑅. 

Step II.  For 𝑠 = 𝑙 − 1,… , 2, find the positive integer 𝑟, such that 2𝑟𝑄𝑠+1
𝑃𝑂𝑇 ≤ 𝑄𝑠

𝑅 ≤
2𝑟+1𝑄𝑠+1

𝑃𝑂𝑇. 

If 
𝑄𝑠
𝑅

2𝑟𝑄𝑠+1
𝑃𝑂𝑇 ≤

2𝑟+1𝑄𝑠+1
𝑃𝑂𝑇

𝑄𝑠
𝑅 , set 𝑋𝑠 = 2𝑟 and 𝑄𝑠

𝑃𝑂𝑇 = 𝑋𝑠 𝑄𝑠+1
𝑃𝑂𝑇. 

Otherwise, set 𝑋𝑠 = 2
𝑟+1 and 𝑄𝑠

𝑃𝑂𝑇 = 𝑋𝑠 𝑄𝑠+1
𝑃𝑂𝑇. 

Step III.  For 𝑠 = 1, find the positive integer 𝑟, such that 2𝑟𝑄2
𝑃𝑂𝑇 ≤ 𝑄1𝑖

𝑅 ≤ 2𝑟+1𝑄2
𝑃𝑂𝑇, 𝑖 =

1, … , 𝑛. 

If 
𝑄1𝑖
𝑅

2𝑟𝑄2
𝑃𝑂𝑇 ≤

2𝑟+1𝑄2
𝑃𝑂𝑇

𝑄1𝑖
𝑅 , set 𝑋1𝑖 = 2𝑟 and 𝑄1𝑖

𝑃𝑂𝑇 = 𝑋1𝑖𝑄2
𝑃𝑂𝑇. 

Otherwise, set 𝑋1𝑖 = 2𝑟+1 and 𝑄1𝑖
𝑃𝑂𝑇 = 𝑋1𝑖𝑄2

𝑃𝑂𝑇. 

Once the POT solutions are determined, we need to update the value of the selling price and find 

the number of orders that must be placed to the selected suppliers during a cycle time to ensure 

that the model’s constraints are not violated based on the order quantities obtained from Procedure 

1. Therefore, as a third step, the supplier selection problem at the first stage must be solved given 

that the order quantities submitted to each supplier, i.e., 𝑄1𝑖, are equal to 𝑄1𝑖
𝑃𝑂𝑇 , 𝑖 = 1,… , 𝑛. Thus, 

Model (𝑀1′) below is developed to solve the supplier selection problem at the first stage, 

where 𝑄1𝑖 need to be treated as input parameters:  

𝑀𝑎𝑥.  𝑇𝑃1
′ =∝ 𝑃1−𝛿 −

1

𝑄1
(∝ 𝑃−𝛿 ∑ 𝐽𝑖

𝑛
𝑖=1 𝑘1𝑖 +

𝑒1

2
∑ 𝐽𝑖𝑄1𝑖

2𝑛
𝑖=1 +∝ 𝑃−𝛿 ∑ 𝐽𝑖

𝑛
𝑖=1 𝑄1𝑖𝑣1𝑖),             

subject to 

 (1), (2), (3), (8), (9), (10), and (12).    
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Now, after determining the 𝑋1𝑖,𝑋𝑠, 𝐽𝑖, and 𝑃 values, as a fourth step, we need to refine the value of 

the order quantity at the last stage 𝑄𝑙 in order to try obtaining an optimal POT solution for Model 

(𝑀1). Consequently, to obtain a closed form solution that refines the value of 𝑄𝑙, let us first rewrite 

the objective function in Model (𝑀1) in terms of 𝑄𝑙, i.e.,  

𝑇𝑃1 =∝ 𝑃
1−𝛿 −

1

𝑄𝑙∑ 𝐽𝑖
𝑛
𝑖=1 𝑌1𝑖

(∝ 𝑃−𝛿 ∑ 𝐽𝑖
𝑛
𝑖=1 𝑘1𝑖 +

𝑒1𝑄𝑙
2

2
∑ 𝐽𝑖𝑌1𝑖

2𝑛
𝑖=1 +∝ 𝑃−𝛿𝑄𝑙 ∑ 𝐽𝑖

𝑛
𝑖=1 𝑌1𝑖𝑣1𝑖)  

                        −(
∝𝑃−𝛿

𝑄𝑙
∑

𝑘𝑠

𝑌𝑠

𝑙
𝑠=2 + 

𝑄𝑙

2
∑ 𝑌𝑠𝑒𝑠
𝑙
𝑠=2 )  

(23) 

where 𝑌1𝑖 = 𝑋1𝑖𝑋2𝑋3…𝑋𝑙, 𝑖 = 1,… , 𝑛 and 𝑌𝑠 = 𝑋𝑠𝑋𝑠+1… 𝑋𝑙, 𝑠 = 2,… , 𝑙. Note that the capacity 

and quality constraints are not functions of 𝑄𝑙  Also, note that 𝑇𝑃1 is a function of only 𝑄𝑙 because 

the selling price 𝑃 and the number of orders per supplier per cycle 𝐽𝑖, 𝑖 = 1,… , 𝑛 are determined 

by solving Model (𝑀1′). And, the multiplicative factors 𝑋1𝑖, 𝑖 = 1,… , 𝑛 and 𝑋𝑠, 𝑠 = 2,… , 𝑙, are 

obtained from Procedure 1. Thus, we take the first partial derivative of 𝑇𝑃1with respect to 𝑄𝑙: 

𝜕𝑇𝑃1

𝜕𝑄𝑙
=

∝𝑃−𝛿

𝑄𝑙
2 (

∑ 𝐽𝑖
𝑛
𝑖=1 𝑘1𝑖

∑ 𝐽𝑖
𝑛
𝑖=1 𝑌1𝑖

+∑
𝑘𝑠

𝑌𝑠

𝑙
𝑠=2 ) −

1

2
(
𝑒1∑ 𝐽𝑖𝑌1𝑖

2𝑛
𝑖=1

∑ 𝐽𝑖
𝑛
𝑖=1 𝑌1𝑖

+∑ 𝑌𝑠𝑒𝑠
𝑙
𝑠=2 ) .  (24) 

Note that 𝑇𝑃1 is a concave function of 𝑄𝑙 , i.e., 
𝜕2𝑇𝑃1

𝜕𝑄𝑙
   2 = −

2∝𝑃−𝛿

𝑄𝑙
3 (

∑ 𝐽𝑖
𝑛
𝑖=1 𝑘1𝑖

∑ 𝐽𝑖
𝑛
𝑖=1 𝑌1𝑖

+ ∑
𝑘𝑠

𝑌𝑠

𝑙
𝑠=2 ) < 0. Thus, 

by setting Equation (24) to zero and solving for 𝑄𝑙, we establish the optimal EOQ policy as 

follows: 

𝑄𝑙
∗ = √

2∝𝑃−𝛿(
∑ 𝐽𝑖
𝑛
𝑖=1 𝑘1𝑖

∑ 𝐽𝑖
𝑛
𝑖=1 𝑌1𝑖

+∑
𝑘𝑠
𝑌𝑠

𝑙
𝑠=2 )

𝑒1 ∑ 𝐽𝑖𝑌1𝑖
2𝑛

𝑖=1
∑ 𝐽𝑖
𝑛
𝑖=1 𝑌1𝑖

+∑ 𝑌𝑠𝑒𝑠
𝑙
𝑠=2

 ,      (25) 

where 𝑌1𝑖 = 𝑋1𝑖𝑋2𝑋3…𝑋𝑙, 𝑖 = 1,… , 𝑛 and 𝑌𝑠 = 𝑋𝑠𝑋𝑠+1…𝑋𝑙, 𝑠 = 2,… , 𝑙.  
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Now, we use the refined value of 𝑄𝑙 as an input to Procedure 1 to make sure all the order quantities 

placed at the upstream stages are power-of-two integer multiples of the refined 𝑄𝑙 value. Hence, 

we repeat Procedure 1 by first updating the initial order quantities using the selling price 𝑃 obtained 

from solving Model (𝑀1′). And then the remaining steps of the algorithm are followed. If the 

multiplicative factors and the number of orders per supplier per cycle remain unchanged, then we 

can terminate the algorithm and report the resulting solution. The heuristic algorithm is 

summarized as follows: 

Heuristic Algorithm. Solving the Pricing and Supplier Selection Problem in a Serial System  

Let 𝑡 = 0, and set 𝑃 = 𝑃0, where 𝑃0 is an initial value for the selling price. 

Step 1.  

 

Obtain initial values for the order quantities.  

Compute 𝑄1𝑖
𝑅 = √2 ∝ 𝑃−𝛿𝑘1𝑖/𝑒1, 𝑖 = 1,… , 𝑛. 

Compute 𝑄𝑠
𝑅 = √2 ∝ 𝑃−𝛿𝑘𝑠/𝑒𝑠, 𝑠 = 2, … , 𝑙. 

Step 2.  Modify the initial order quantities.    

Use Procedure 1 to find 𝑄1𝑖
𝑃𝑂𝑇 and X1𝑖, 𝑖 = 1, … , 𝑛, and to find  𝑄𝑠

𝑃𝑂𝑇 and 𝑋𝑠, 𝑠 = 2,… , 𝑙. 

Step 3.  Update the selling price and find the number of orders per supplier per cycle. 

Solve Model (𝑀1′) given 𝑄1𝑖
𝑃𝑂𝑇, 𝑖 = 1, … , 𝑛, to obtain 𝑃 and 𝐽𝑖, 𝑖 = 1,… , 𝑛. 

Step 4.  Refine the order quantity placed at the last stage. 

Use Equation (25) to find a new value for 𝑄𝑙. 

Step 5.  Check for termination. 

1. If 𝑡 = 0, let 𝑡 = 𝑡 + 1 and go to Step 1.  

2. If the number of orders placed to the selected suppliers during a cycle time and 

the multiplicative factors at iteration 𝑡 are the same as those obtained in itera-

tion 𝑡 − 1, then stop. Otherwise, let 𝑡 = 𝑡 + 1 and go to Step 1. 
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Now, in order to obtain an initial value for the selling price 𝑃0, we first need to determine several 

values for the selling price, then these values can be used to estimate an initial value. For instance, 

the mean/median can be calculated to be set as an initial value for the selling price. One possible 

way to obtain several values for the selling price is by considering the supplier selection problem 

at the first stage where one supplier can be selected. Thus, we need to determine the selling price 

obtained when each supplier is selected individually without considering capacity and quality 

constraints.  Note that, Abad (1988) proposed an algorithm to determine the optimal selling price 

and order quantity for a retailer purchasing a product from a single supplier. Therefore, we can use 

Abad’s algorithm to determine the optimal selling price when each supplier is selected individually 

without considering capacity and quality constraints. Let 𝑃𝑖
∗ denote the optimal selling price when 

supplier 𝑖 is selected individually without taking into consideration supplier’s limitations in regard 

to capacity and quality, 𝑖 = 1,… , 𝑛. Now, if the respective supplier’s capacity is not enough to 

cover the maximum demand rate that the supplier can achieve when is selected individually and 

there is no capacity or quality limitations, i.e., 𝑐𝑖 < ∝ 𝑃𝑖
∗−𝛿, 𝑖 = 1,… , 𝑛, then more values for the 

selling price can be obtained by considering the case where the supplier is selected at a full 

capacity, hence 𝑃𝑖 = (𝑐𝑖/∝)
−1/𝛿, 𝑖 = 1, … , 𝑛. 

6.3. Illustrative Examples   

In this section, two numerical examples are analyzed. The first one illustrates the proposed 

algorithm and shows that it converges to a near-optimal solution in a timely manner.  The second 

one provides a comparison between Model (𝑀1), and Model (𝑀2).  

Example 1. Consider a five-stage serial supply chain in which a manufacturer is located at the first 

stage and a distribution center is at the last stage. And, the intermediate stages can represent 
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additional manufacturers and warehouses. The manufacturer at the first stage can replenish raw 

material inventory from four potential suppliers. Table 6.1 shows the parameter data of the four 

suppliers. Also, the manufacturer’s minimum acceptable quality level is 𝑞𝑎 = 0.95. The retailers 

are facing price-sensitive demand, i.e., 𝐷 =∝ 𝑃−𝛿, where ∝= 4.0𝐸 + 08 and 𝛿 = 2. 

Table 6.1. Suppliers’ parameters information. 

Supplier 𝑖 
Quality level  

𝑞𝑖 
Unit setup cost 

𝑘𝑖 ($/order) 

Unit purchasing cost 

𝑣1𝑖 ($/unit) 

Capacity rate 

 𝑐𝑖 (units/month) 

1 0.94 5000 180 700 

2 0.92 1500 150 1200 

3 0.96 4500 240 900 

4 0.98 3500 300 600 

Table 6.2 shows the unit setup cost and unit echelon cost for each stage. Note that the setup cost 

at the first stage is determined once the number of orders placed to the selected suppliers during a 

cycle time is determined, then it equals the weighted average unit setup cost. 

Table 6.2. Cost parameters of each stage. 

Stage 𝒔 
Unit holding cost 

ℎ𝑠 ($/unit/month) 

Unit echelon cost 

𝑒𝑠 ($/unit/month) 

Unit setup cost 

  𝑘𝑠 ($/order) 

1 5 5 - 

2 20 15 200 

3 50 30 150 

4 95 45 100 

5 145 50 50 

The problem is solved using the global solver in LINGO15.0 on a PC with an INTEL(R) Core 

(TM) 2 Duo Processor at 2.10 GHz and 4.0 gigabytes RAM. Table 6.3 shows the optimal values 

for the decision variables in each stage such that the profit per time unit is maximized. Note that, 

for the serial supply chain inventory system, researchers have found closed form solutions for the 

decision variables to obtain the optimal policy for the case of two-stage supply chain. However, 

as shown by Roundy (1986), as the number of stages increase, the problem becomes more complex 

due to the integer variables and the nonlinear terms in the constraints that result in a non-convex 
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feasible space. Hence, he developed a heuristic algorithm using the POT policy to obtain a near 

optimal solution, and he showed that the average cost of a POT policy is a convex function since 

the objective function can be represented as a sum of convex functions. Therefore, to obtain the 

optimal solution for Model (𝑀1), we use the global solver in LINGO15.0 that converts the 

problem into several convex, linear subproblems and uses a branch and bound technique to 

perform exhaustively search over these subproblems until a global solution is found. 

Table 6.3. Optimal solution for Model (M1). 

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 

𝒊 𝑱𝒊 
𝑸𝟏𝒊 

(units) 
𝑿𝟏𝒊 

𝑸𝟐 
(units) 

𝑿𝟐 
𝑸𝟑 

(units) 
𝑿𝟑 

𝑸𝟒 
(units) 

𝑿𝟒 
𝑸𝟓 

(units) 
𝑿𝟓 

𝑷 

($/unit) 

1 112 2036.52 9 

226.28 2 113.14 1 113.14 2 56.57 1 461.20 
2 50 1131.4 5 

3 162 1810.24 8 

4 22 1583.96 7 

Profit per time unit $ 443,379 per month  

As shown in Table 6.3, the order quantities placed to the selected suppliers vary among the 

suppliers. This is the case because each supplier has a different multiplicative factor, which results 

in different order quantities.  

Next, the algorithm that is proposed by Abad (1988) can be used to find the optimal selling price 

𝑃𝑖
∗ when each supplier is selected individually without considering capacity and quality 

constraints. In addition, if the maximum demand rate met by supplier 𝑖 when quality and capacity 

constraints are not considered ∝ 𝑃𝑖
∗−𝛿is less than or equal to the supplier’s capacity rate 𝑐𝑖 , then 

additional values for the selling price can be obtained by computing the selling price when supplier 

𝑖 is selected at full capacity. Hence, 𝑃𝑖 = (𝑐𝑖/∝)
−1/𝛿 because the demand rate obtained when 

supplier 𝑖 is selected at full capacity is equal to the supplier’s capacity rate 𝑐𝑖 since ∝ 𝑃𝑖
∗−𝛿 ≤
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𝑐𝑖, 𝑖 = 1,… , 𝑛. Table 6.4 presents several values for the selling price that can be used to obtain an 

initial value for the selling price. 

Table 6.4. Several values for the selling price. 

Supplier 𝑖 𝑃𝑖
∗ 𝑃𝑖 = (𝑐𝑖/∝)

−1/𝛿 

Supplier 1  364.07 755.93 

Supplier 2 301.84 577.40 

Supplier 3 485.15 666.67 

Supplier 4 605.67 816.50 

Now, from Table 6.4, let us set the initial the selling price to be the average selling price values 

shown in Table 6.4 without considering the highest and lowest values, i.e., 𝑃0 = $575.80 per unit. 

Consequently, as shown in Table 6.5, the initial order quantities for each stage are obtained using 

the EOQ formula considering the unit echelon holding cost of each stage. 

Table 6.5. Initial order quantities for each stage. 

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 

𝒊 
Order quantity 

𝑄1𝑖(units) 

Order quantity 

𝑄2(units) 

Order quantity 

𝑄3(units) 

Order quantity 

𝑄4(units) 

Order quantity 

𝑄5(units) 

1 1553.35 

179.37 109.84 73.23 49.12 
2 850.81 

3 1473.64 

4 1299.63 

The initial order quantities shown in Table 6.5 are adjusted such that the order quantity of each 

stage is an integer multiple of the immediate downstream stage, where the integer multiplicative 

factor is an integer of the power of two. Table 6.6 shows the order quantities obtained after 

implementing the first iteration of Procedure 1. Note that the value of 𝑄5 in Table 6.6 is the same 

as to the one shown in Table 6.5.  
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Table 6.6. First iteration of Procedure 1. 

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 

𝒊 
𝑸𝟏𝒊
𝑷𝑶𝑻 

(units) 
𝑿𝟏𝐢 

𝑸𝟐
𝑷𝑶𝑻 

(units) 
𝑿𝟐 

𝑸𝟑
𝑷𝑶𝑻 

(units) 
𝑿𝟑 

𝑸𝟒
𝑷𝑶𝑻 

(units) 
𝑿𝟒 

𝑸𝟓
𝑷𝑶𝑻 

(units) 
𝑿𝟓 

1 1571.84 8 

196.48 2 98.24 1 98.24 2 49.12 1 
2 785.92 4 

3 1571.84 8 

4 1571.84 8 

As new order quantities have to be placed to the selected suppliers, we need to update the selling 

price and find the number of orders to be placed to the selected suppliers during a cycle time such 

that the capacity and quality constraints are not violated. Therefore, Model (𝑀1′) is solved in 

which 𝑄1𝑖 = 𝑄1𝑖
𝑃𝑂𝑇, 𝑖 = 1, … , 𝑛. The obtained number of orders submitted to each of the selected 

suppliers per order cycle are as follows: 𝐽11 = 84,  𝐽12 = 50, 𝐽13 = 108, and 𝐽14 = 17, and the 

updated selling price is $452.91 per unit. Consequently, the order quantity at the last stage can 

now be refined by using Equation (25), i.e., 𝑄𝑙 = 58.73 units. Accordingly, the algorithm 

continues until the number of orders submitted to the selected suppliers during a cycle time and 

the integer multiplicative factors remain unchanged. Table 6.7 shows the order quantities after 

implementing the second iteration of Procedure 1.  

Table 6.7. Second iteration of Procedure 1. 

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 

𝒊 
𝑸𝟏𝒊
𝑷𝑶𝑻 

(units) 
𝑿𝟏𝐢 

𝑸𝟐
𝑷𝑶𝑻 

(units) 
𝑿𝟐 

𝑸𝟑
𝑷𝑶𝑻 

(units) 
𝑿𝟑 

𝑸𝟒
𝑷𝑶𝑻 

(units) 
𝑿𝟒 

𝑸𝟓
𝑷𝑶𝑻 

(units) 
𝑿𝟓 

1 1879.36 8 

234.92 2 117.46 1 117.46 2 58.73 1 
2 939.68 4 

3 1879.36 8 

4 1879.36 8 

Similarly, given 𝑄1𝑖
𝑃𝑂𝑇 from Table 6.7, 𝑖 = 1,… , 𝑛, we need to solve Model (𝑀1′) to check the 

new number of orders submitted to each supplier in a repeating order cycle time and also to update 

the selling price. As a result, the number of orders submitted to each supplier in a cycle are 𝐽11 =
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63, 𝐽12 = 38, 𝐽13 = 81, 𝐽14 = 13, and the selling price is $452.27 per unit. Therefore, since the 

number of orders allocated to the suppliers in the cycle time got changed. Then, we need to refine 

the order quantity at the last stage and start a new iteration. Hence, by using Equation (25), i.e., 

𝑄𝑙 = 58.82 units. Table 6.8 shows the order quantities after implementing the third iteration of 

Procedure 1. 

Table 6.8. Third iteration of Procedure 1. 

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 

𝒊 
𝑸𝟏𝒊
𝑷𝑶𝑻 

(units) 
𝑿𝟏𝐢 

𝑸𝟐
𝑷𝑶𝑻 

(units) 
𝑿𝟐 

𝑸𝟑
𝑷𝑶𝑻 

(units) 
𝑿𝟑 

𝑸𝟒
𝑷𝑶𝑻 

(units) 
𝑿𝟒 

𝑸𝟓
𝑷𝑶𝑻 

(units) 
𝑿𝟓 

1 1882.24 8 

235.28 2 117.64 1 117.64 2 58.82 1 
2 941.12 4 

3 1882.24 8 

4 1882.24 8 

Similarly, by solving Model (𝑀1′) where the order quantity placed to the selected suppliers are 

given in Table 6.8, we obtain  𝐽11 = 63, 𝐽12 = 38, 𝐽13 = 81, 𝐽14 = 13, and the selling price is 

$452.27 per unit. Therefore, since the number of orders allocated to the suppliers in the cycle time 

and the multiplicative factors in Tables 6.7 and 6.8 remain unchanged, then we terminate the 

algorithm and compute the profit per time unit, which is equal to $443,238.4 per month (i.e., 

0.031% less than the optimal profit per time unit shown in Table 6.3, and 0.07 % less than the 

upper bound that is $443,567.2 per month obtained by solving Model (𝑀1̅̅ ̅̅ )). Note that the CPU 

time needed to solve the problem using the heuristic algorithm is about 10 seconds, whereas the 

time needed to solve the problem optimally is 104 seconds.  

Example 2. Consider a five-stage serial supply chain in which a manufacturer is located at the first 

stage and a distribution center is at the last stage, and the intermediate stages can represent 

additional manufacturing facilities or warehouses. The manufacturer at the first stage can replenish 

raw material inventory from four potential suppliers. Table 6.9 shows the parameter data of the 
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four suppliers. Also, the manufacturer’s minimum acceptable quality level is 𝑞𝑎 = 0.95. The 

retailers are facing price-sensitive demand, i.e., 𝐷 =∝ 𝑃−𝛿, where ∝= 3,375,000 and 𝛿 = 2. 

Table 6.9. Suppliers’ parameters information. 

Supplier 𝑖 
Quality level  

𝑞𝑖 
Unit setup cost 

𝑘𝑖 ($/order) 

Unit purchasing cost 

𝑣1𝑖 ($/unit) 

Capacity rate 

 𝑐𝑖 (units/month) 

1 0.94 16000 5 1000 

2 0.92 1500 4 1400 

3 0.96 4000 6 1300 

4 0.98 1000 7 1250 

Table 6.10 shows the unit setup cost and unit echelon cost for each stage. Note that the unit setup 

cost at the first stage is determined once the number of orders placed to the selected suppliers 

during a cycle time is determined, then it equals the weighted average unit setup cost. 

Table 6.10. Cost parameters for each stage. 

Stage 𝒔 
Unit holding cost 

ℎ𝑠 ($/unit/month) 

Unit echelon cost 

𝑒𝑠 ($/unit/month) 

Unit setup cost 

  𝑘𝑠 ($/order) 

1 5 5 - 

2 20 15 200 

3 50 30 150 

4 95 45 100 

5 145 50 50 

The goal of this example is to show that when each supplier has a different multiplicative factor, 

the optimal solution can be improved in comparison with the optimal solution for models in which 

the same multiplicative factor is assigned to each supplier. The optimal solutions for Model (𝑀1) 

and Model (𝑀2) are presented in Table 6.11 and Table 6.12, respectively.  
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Table 6.11. Optimal solution for Model (M1). 

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 

𝒊 𝑱𝒊 
𝑸𝟏𝒊 

(units) 
𝑿𝟏𝒊 

𝑸𝟐 
(units) 

𝑿𝟐 
𝑸𝟑 

(units) 
𝑿𝟑 

𝑸𝟒 
(units) 

𝑿𝟒 
𝑸𝟓 

(units) 
𝑿𝟓 

𝑷 

($/unit) 

1 570 5498.1            15 

366.5 2 183.3 1 183.3 2 91.63 1 26.11 
2 3003 1832.7 5 

3 1743  2932.3 8 

4 3352 1466.16 4 

Profit per time unit $ 64,430.5 per month  

Table 6.12. Optimal solution for Model (M2). 

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 

𝒊 𝑱𝒊 
𝑸𝟏 

(units) 
𝑿𝟏 

𝑸𝟐 
(units) 

𝑿𝟐 
𝑸𝟑 

(units) 
𝑿𝟑 

𝑸𝟒 
(units) 

𝑿𝟒 
𝑸𝟓 

(units) 
𝑿𝟓 

𝑷 

($/unit) 

1 0 

1942.8           6 323.8 2 161.9 1 161.9 2 80.9 1 29.2 
2 28 

3 26 

4 25 

Profit per time unit $ 62,550.7 per month  

As shown in Tables 6.11 and Table 6.12, when we apply different multiplicative factors to the 

order quantities submitted to the selected suppliers, i.e., Model (𝑀1), the profit per time unit has 

increased by 3% in comparison with the case in which the same multiplicative factor is considered, 

i.e., Model (𝑀2). Note that supplier 1 in Model (𝑀2) is not selected because a relatively small 

order quantity will be placed to supplier 1 if selected. Hence, this small order quantity is not enough 

to justify the increase in the setup cost per time unit as supplier 1 has the highest unit setup cost. 

Hence, when we allow different multiplicative factors as shown in Model(𝑀1), supplier 1 is 

selected with a relatively large order quantity that justifies selecting supplier 1 who has the highest 

unit setup cost.  

A similar analysis is performed for the model proposed by Mendoza and Ventura (2010) who 

considered the same multiplicative factor for each order quantity placed to the selected suppliers. 
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However, we found that the cost per time unit can be reduced by 1.5% if each order quantity placed 

to the selected suppliers has a different multiplicative factor.  

6.4. Conclusions  

Coordinating pricing and inventory decisions in retail and manufacturing industries has recently 

gained a considerable attention in the literature and practice. Many firms including Dell, Amazon, 

J.C. Penney, and Grainger change their selling prices frequently based on several factors such as 

inventory levels and demand variations (Elmaghraby and Keskinocak, 2003; Chan et al., 2005). 

Therefore, it is important to develop models that simultaneously coordinate pricing decisions with 

other key decisions in the supply chain, such as supplier selection, and inventory replenishment 

decisions. In this chapter, we have considered the integrated pricing and inventory replenishment 

problem in a serial supply chain. We have developed an MINLP model to find the number of 

orders placed to the selected suppliers during a cycle time and corresponding order quantities, 

inventory lot sizes between consecutive stages, and the final product’s selling price, such that the 

profit per time unit is maximized. Moreover, we have proposed an algorithm capable of finding 

near-optimal solutions within 2% of the optimal solution, as verified in the numerical analysis. In 

addition, we have shown that models that use different multiplicative factors for the selected 

suppliers obtains an increase in the average profit in comparison with the average profit generated 

by models that consider the same multiplicative factor.  
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 Chapter 7: Research Summary and Future Directions 

7.1. Research Summary 

 

In this dissertation, we have addressed the importance of coordinating pricing decisions 

with other aspects of the supply chain such as inventory replenishment decisions. The simultane-

ous coordination of these decisions has recently become a focus of attention by many scholars, as 

it leads to optimizing the entire supply chain rather than to optimizing decision-making around 

specific members of it. Therefore, this dissertation has focused on integrating pricing decisions 

with other aspects of the supply chain, particularly in regard to supplier selection and inventory 

coordination in a serial supply chain. 

Supplier selection is a key strategic decision in improving companies’ purchasing perfor-

mance. Studies have shown that the cost of acquiring a product’s parts from outside suppliers 

represents a significant portion of the final product’s cost. Therefore, it is crucial to develop sup-

plier selection models that reflect real-life situations so that companies can use them to improve 

their purchasing performance. Accordingly, we have developed a new model for the supplier se-

lection problem that refines and generalizes some of the existing models in the literature. The 

suppliers in the model offer all-unit quantity discounts to ensure a more realistic and practical 

situation. In addition, the model accounts for placing multiple orders to the selected suppliers dur-

ing a cycle time. Previous research in the area showed that this ordering strategy reduces the cost 

per time unit compared to the cost shown by models that allow at most one order to each supplier 

during a cycle time. Thereafter, we have developed a more general model for the supplier selection 

problem in which the pricing problem is also considered. Many researchers and firms have studied 

these two problems separately or unrealistically assume that the demand rate is constant and known 

in advance. In real retailing environments, it can be argued that the selling price plays a significant 



 

112 
 

role not only in attracting more consumers, but also in determining the appropriate suppliers. 

Hence, we have studied the supplier selection problem under the assumption that the demand rate 

is not constant but is, instead, dependent on the selling price. In addition, we applied KKT condi-

tions to monitor any changes in the retailer’s sourcing strategy as the dominating supplier’s capac-

ity decreases, and to determine whether the supplier’s capacity is fully utilized or not (i.e., active 

or inactive capacity constraint). Researchers showed that if an optimal solution exists, then at most 

one of the selected suppliers receives a less than full-capacity order whereas the dominating sup-

plier’s capacity is fully utilized. However, we have shown that this result does not hold true, such 

that more than one supplier can be selected without fully utilizing the capacity of any of them. In 

some cases, the retailer considers a multiple-sourcing strategy whereby the dominating supplier’s 

capacity is not fully utilized.  

Next, we have studied the integrated pricing and supplier selection problem in a two-stage 

supply chain. The two stages are considered to be vertically integrated (i.e., a centralized-making 

process). Thus, the goal becomes to simultaneously determine pricing, supplier selection, and in-

ventory coordination decisions whereby the joint profit per time unit is maximized. In addition, 

we have obtained lower and upper bounds on the profit per time unit obtained when more than one 

supplier is selected. In addition, we have developed lower and upper bounds on the optimal selling 

price and the multiplicative factor in order to obtain a tight feasible region and solve the problem 

in a timely manner. We have also identified a tighter feasible region for the multiplicative factor 

when there are only two potential suppliers. Then, we have studied the integrated pricing and sup-

plier selection problem in a serial supply chain. As the number of suppliers and stages increases, 

the problem becomes more complex and, consequently, more computational time is needed to 

solve it. Therefore, we have proposed an algorithm capable of finding near-optimal solutions as 
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verified in our numerical analysis, within 2% of the optimal solution. In addition, we have showed 

that models using the same multiplicative factor for the selected suppliers obtains an increase in 

the average profit in comparison with the average profit generated by models that consider the 

same multiplicative factor.  

7.2. Future Directions 

In regard to future research, it would be worthwhile to investigate algorithms that eliminate 

some of the suppliers before solving the mathematical model taking into consideration a price-

sensitive demand and suppliers’ limitations on capacity and quality. For instance, a supplier with 

a very low capacity rate and a low quality level might not be selected; therefore, this supplier can 

be eliminated in advance. However, price-sensitive demand and the multiple orders that can be 

placed to selected suppliers per order cycle make the problem more interesting and challenging. 

In addition, the MINLP model developed in Chapter 6 to solve the integrated pricing and 

supplier selection problem in a serial supply chain can be extended to consider distribution 

decisions as well. The distribution center in the proposed model can be considered to serve a 

number of independent markets, where each has a different price-sensitive demand function. 

Hence, the proposed heuristic algorithm can be generalized to solve this integrated pricing, 

supplier selection, and distribution problem in a serial supply chain. In addition, researchers can 

also consider the case in which the company negotiates with its suppliers such that the latter lower 

their unit prices and provide discounts on raw material so that the selling price can be decreased. 

By reducing the selling price, the demand will increase, which will result in improve profits for 

the company and selected suppliers. 

Furthermore, pricing and inventory replenishment decisions are highly influenced by the 

price-sensitive demand function that may change over time. Therefore, researchers can formulate 
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a robust optimization model to deal with demand uncertainty in the integrated pricing and lot-

sizing problem. 
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Appendix 

We suggest the procedure discussed in Hopp and Spearman (2001) to determine the retailer’s 

optimal order quantity 𝑄𝑖
′ when supplier 𝑖 offers all unit quantity discounts, for  𝑖 = 1,… , 𝑛. Let 

𝑇𝐶𝑖𝑗 denote the cost per time unit incurred form ordering  𝑄𝑖𝑗
∗  units from discount interval  𝑗. Then,  

𝑇𝐶𝑖𝑗 = 𝐷
𝑘𝑖

 𝑄𝑖𝑗
∗ + (1/2)𝑟 𝑄𝑖𝑗

∗ 𝑣𝑖𝑗 + 𝐷𝑣𝑖𝑗   , 𝑖 = 1, . . , 𝑛 & 𝑗 = 1,… , 𝑎𝑖 , 

where 𝑄𝑖𝑗
∗  is the order quantity that minimizes the cost per time unit in interval 𝑗. The steps of the 

procedure are provided below. 

Step 1. For each quantity discount interval 𝑗, where  𝑗 = 1,… , 𝑎𝑖, use the corresponding 𝑣𝑖𝑗 to 

compute the economic order quantity 𝑄𝑖𝑗, i.e.,  𝑄𝑖𝑗 = √2𝑘𝑖𝐷/(𝑟𝑣𝑖𝑗) , 𝑖 = 1,… , 𝑛, &  𝑗 = 1,… , 𝑎𝑖. 

Step 2. Find out the largest quantity discount interval index 𝑗𝑜 such that 𝑢𝑖,𝑗𝑜−1 ≤ 𝑄𝑖𝑗𝑜 < 𝑢𝑖𝑗𝑜  

(i.e., 𝑄𝑖𝑗𝑜  is the largest realizable EOQ that is within the correct discount interval) and then 

calculate the corresponding cost per time unit  𝑇𝐶𝑖𝑗𝑜 , where 𝑄𝑖𝑗
∗ = 𝑄𝑖𝑗𝑜 = √2𝑘𝑖𝐷/(𝑟𝑣𝑖𝑗𝑜) ; hence, 

𝑇𝐶𝑖𝑗𝑜 = √2𝑘𝑖𝐷𝑟𝑣𝑖𝑗𝑜 + 𝐷𝑣𝑖𝑗𝑜. 

Step 3. Ignore all the discount intervals that are less than  𝑗𝑜, and for each  𝑗 > 𝑗𝑜, use the 

corresponding 𝑣𝑖𝑗   to calculate the cost per time unit donated by 𝑇𝐶𝑖𝑗
𝑟 , where 𝑄𝑖𝑗

∗ = 𝑢𝑖,𝑗−1. Thus, 

𝑇𝐶𝑖𝑗
𝑟 = 𝐷

𝑘𝑖
𝑢𝑖,𝑗−1

+ (1/2)𝑟𝑢𝑖,𝑗−1𝑣𝑖𝑗 + 𝐷𝑣𝑖𝑗  ,   𝑖 = 1, … , 𝑛, &  𝑗 > 𝑗𝑜 . 

Step 4. Select the order quantity 𝑄𝑖𝑗
∗  and the index of the supplier’s best quantity discount interval 

𝑗∗ corresponding to the minimum cost per time unit: 𝑇𝐶𝑖
′ = 𝑚𝑖𝑛 {𝑇𝐶𝑖𝑗𝑜 , 𝑇𝐶𝑖,𝑗0+1

𝑟 , … , 𝑇𝐶𝑖,𝑎𝑖
𝑟  }. 

Then, the retailer’s optimal order quantity is 𝑄𝑖
′ = 𝑄𝑖𝑗∗

∗  .   



 

116 
 

References  

Abad, P.L. (1988). Determining the optimal selling price and lot size when the supplier offers all-

unit quantity discounts. Decision Sciences, 19(3), 622 – 634. 

Abad, P.L. (1988). Joint price and lot size determination when supplier offers incremental quantity 

discounts. Journal of the Operational Research Society, 39(6), 603 – 607. 

Abad, P.L. (1994). Supplier pricing and lot sizing when demand is price sensitive. European 

Journal of Operational Research, 78(3), 334 – 354. 

Abad, P.L. and Aggarwal, V. (2005). Incorporating transport cost in the lot size and pricing 

decisions with downward sloping demand. International Journal of Production Economics, 95(3), 

297 – 305. 

Adeinat H. and Ventura J. (2015). Determining the retailer’s replenishment policy considering 

multiple capacitated suppliers and price-sensitive demand. European Journal of Operational 

Research, 247(1), 83 – 92. 

Agarwal, P., Sahai, M., Vaibhav, M., Monark, B., and Vrijendra, S. (2011). A review of multi-

criteria techniques for supplier valuation and selection. International Journal of Industrial 

Engineering Computations, 2(4), 801 – 810. 

Aissaoui, N., Haouari, M., and Hassini, E. (2007). Supplier selection and order lot sizing modeling: 

A review. Computers and Operations Research, 34(12), 3516 – 3540.   

Badole, C.M., Jain, R., Rathore, A.P.S., and Nepal, B. (2012). Research and opportunities in 

supply chain modeling: a review. International Journal of Supply Chain Management, 1(3), 63 – 

86. 

Bahinipati, B.K., Kanda, A., and Deshmukh, S.G. (2009). Coordinated supply management: 

review, insights, and limitations. International Journal of Logistics Research and Applications, 

12(6), 407 – 422.  

Banerjee, A. (1986). A joint economic-lot-size model for purchaser and vendor. Decision Sciences, 

17(3), 292 – 311. 

Beamon, B.M. (1998). Supply chain design and analysis: models and methods. International 

Journal of Production Economics, 55(3), 281 – 294. 

Ben-Day, M., Darwish, M., and Ertogroal, K. (2012). The joint economic lot sizing problem: 

Review and extensions. European Journal of Operational Research, 185(2), 726 – 742. 

Benton, W.C. (1991). Quantity discount decisions under conditions of multiple items, multiple 

suppliers and resource limitation. International Journal of Production Research, 29(10), 1953 – 

1961. 



 

117 
 

Boyaci, T. and Gallego, G. (2002). Coordinating pricing and inventory replenishment policies for 

one wholesaler and one or more geographically dispersed retailers. International Journal of 

Production Economics, 77(2), 95 – 111. 

Burwell, T.H., Dave, D.S., Fitzpatrick, K.E., and Roy, M.R. (1997). Economic lot size model for 

price-dependent demand under quantity and freight discounts. International Journal of Production 

Economics, 48(2), 141 – 155.  

Chai, H., Liu, J.N.K., and Nagi, E.W.T. (2013). Application of decision-making techniques in 

supplier selection: A systematic review of literature. Expert Systems with Applications, 40(10), 

3872 – 3885. 

Chan, L.M.A., Shen, Z.J.M., Simchi-Levi, D., and Swann, J. (2005). Coordination of pricing and 

inventory decisions: A survey and classification. Wu, S.D., Shen, Z.J.M, eds. Handbook of 

Quantitative Supply Chain Analysis: Modeling in the E-Business Era. Kluwer Academic 

Publishers, Norwell, MA, 335 – 392. 

Chandra, C. and Kumar, S. (2000). Supply chain management in theory and practice: a passing 

fad or fundamental change?. Industrial Management and Data Systems, 100(3), 100 – 114.  

Chaudhry, S.S., Forst, F.G., and Zaydiak, J.L. (1993). Vendor selection with price breaks. 

European Journal of Operational Research, 70(1), 52 – 66. 

Clark, A. and Scarf, H. (1960). Optimal policies for a multi-echelon inventory problem. 

Management Science, 6(4), 475 – 490. 

De Boer, L., Labro, E., and Morlacchi, P. (2001). A review of methods supporting supplier 

selection. European Journal of Purchasing and Supply Management, 7(2), 75 – 89. 

Degraeve, Z., Labro, E. and Roodhooft, F. (2000). An evaluation of vendor selection models from 

a total cost of ownership perspective. European Journal of Operational Research, 125(1), 34 – 58. 

Deng, S. and Yano, C.A. (2006). Joint production and pricing decisions with setup costs and 

capacity constraints. Management Science, 52(5), 741 – 756. 

Elmaghraby, W. and Keskinocak, P. (2003). Dynamic pricing in the presence of inventory 

considerations: research overview, current practices, and future directions. Management Science, 

49(10), 1287 – 1309. 

Ghodsypour, S.H. and O’Brien, C. (2001). The total cost of logistics in supplier selection under 

conditions of multiple sourcing, multiple criteria and capacity constraint. International Journal of 

Production Economics, 73(1), 15 – 27. 

Glock, C.H. (2012). The joint economic lot size problem: A review. International Journal of 

Production and Economics, 135(2), 671 – 686.  



 

118 
 

Goyal, S.K. (1977). An integrated inventory model for a single supplier–single customer problem. 

International Journal of Production Research, 15(1), 107 – 111.  

Goyal, S.K. (1988). A joint economic-lot-size model for purchaser and vendor: A comment. 

Decision Sciences, 19(1), 236 – 241. 

Hadley, G. and Whitin, T.M. (1963). Analysis of Inventory Systems. Prentice-Hall, Englewood 

Cliffs, NJ.  

Hahm, J. and Yano, C.A. (1995). The economic lot and delivery scheduling problem: powers of 

two policies. Transportation Science, 29(3), 222 – 241. 

Ho, W., Xu, X., and Dey, P.K. (2010). Multi-criteria decision making approaches for supplier 

evaluation and selection: A literature review. European Journal of Operational Research, 202(1), 

16 – 24. 

Hopp, W.J. and Spearman, M.L. (2001). Factory Physics: Foundations of Manufacturing 

Management, 2nd ed., Irwin/McGraw-Hill, Boston, MA. 

Hua, G., Wang, S., and Cheng, T.C.E. (2012). Optimal order lot sizing and pricing with free 

shipping. European Journal of Operational Research, 218(2), 435 – 441. 

Huang, Y., Huang, G.Q., and Newman, S.T. (2011). Coordinating pricing and inventory decisions 

in a multi-level supply chain: A game theoretic approach. Transportation Research Part E, 47(2), 

115 – 129. 

Jaber, M.Y. and Goyal, S.K. (2008). Coordinating a three-level supply chain with multiple 

suppliers, a vendor and multiple buyers. International Journal of Production Economics, 116(1), 

95 – 103.  

Jayaraman, V., Srivastava, R., and Benton, W.C. (1999). Supplier selection and order quantity 

allocation: a comprehensive model. Journal of Supply Chain Management, 35(1), 50 – 58. 

Kamali, A., Ghomi, S.M.T.F., and Jolai, F. (2011). A multi-objective quantity discount and joint 

optimization model for coordination of a single-buyer multi-vendor supply chain. Computer and 

Mathematics with Applications, 62(8), 3251 – 3269. 

Ke, G.Y. and Bookbinder, J.H. (2012). The optimal quantity discount that a supplier should offer. 

Journal of the Operational Research Society, 63(3), 354 – 367. 

Khouja, M. (2003). Optimizing inventory decisions in a multi-stage multi-customer supply chain. 

Transportation Part E, 39(3), 193 – 208.    

Kim, D. and Lee, W.L. (1998). Optimal joint pricing and lot sizing with fixed and variable 

capacity. European Journal of Operational Research, 109(1), 212 – 227. 



 

119 
 

Kumar, B.K, Nagaraju, D., and Narayanan, S. (2016). Three-echelon supply chain with centralised 

and decentralised inventory decisions under linear price dependent demand. International Journal 

of Logistics Systems and Management, 23(2), 231 – 254.  

Kunreuther, H. and Richard, J.F. (1971). Optimal pricing and inventory decisions for non-seasonal 

items. Management Science, 39(1), 173 – 175. 

Lee, A.H.I, Kang, H.-Y., Lai, C.-M., and Hong, W.-Y. (2013). An integrated model for lot sizing 

with supplier selection and quantity discounts. Applied Mathematical Modelling, 37(7), 4733 – 

4746.   

Lee, E.K., Ha, S. and Kim, S.K. (2001). Supplier selection and management system considering 

relationships in supply chain management. IEEE Transactions of Engineering Management, 48(3), 

307 – 318. 

Lee, H.L. and Rosenblatt, M.J. (1986). A generalized quantity discount pricing model to increase 

supplier’s profits. Management Science, 32(9), 1177 – 1185. 

Li, X. and Wang, Q. (2007). Coordination mechanisms of supply chain systems. European Journal 

of Operational Research, 179(1), 1 – 16.  

Lin, Y.J. and Ho, C.H. (2011). Integrated inventory model with quantity discount and price-

sensitive demand. Top, 19(1), 177 – 188. 

Love, S.F. (1972). A facilities in series inventory model with nested schedules. Management 

Science, 18(5), 327 – 338. 

Maxwell, W.L. and Muckstadt, J.A. (1985). Establishing consistent and realistic reorder intervals 

in production-distribution systems. Operations Research, 33(6), 1316 – 1341.  

Meixell, M.J. and Gargeya, V.B. (2005). Global supply chain design: A literature review and 

critique. Transportation Research Part E, 41(6), 531 – 550. 

Mendoza, A. and Ventura J. (2010). A serial inventory system supplier selection and order quantity 

allocation. European Journal of Operational Research, 207(3), 1304 – 1315.  

Mendoza, A. and Ventura, J.A. (2008). An effective method to supplier selection and order 

quantity allocation. International Journal of Business and Systems Research, 2(1), 1 – 15. 

Mendoza, A. and Ventura, J.A. (2011). Analytical models for supplier selection and order quantity 

allocation. Applied Mathematical Modelling, 36(8), 3826 – 3835. 

Min, H. (2002). Supply chain modeling: past, present and future. Computers and Industrial 

Engineering, 43(1-2), 231 – 249.   

Min, H. and Zhou, G. (2002). Supply chain modeling: past, present and future. Computers and 

Industrial Engineering, 43(1-2), 231 – 249.   



 

120 
 

Minner, S. (2003). Multiple-supplier inventory models in supply chain management: A review. 

International Journal of Production Economics, 81-82, 265 – 279.    

Mohabbatdar, S., Ahmadi, A., and Sajadieh, M.S. (2016). Optimal manufacturer-retailer policies 

in a supply chain with defective product and price dependent demand. Journal of Optimization in 

Industrial Engineering, 9(19), 37 – 46. 

Mohammaditabar, D. and Ghodsypour, S.H. (2016). A supplier-selection model with classification 

and joint replenishment of inventory items. International Journal of Systems Science, 47(8), 1745 

– 1754.   

Mokhlesian, M. and Zegordi, S.H. (2014). Application of multidivisional bi-level programming to 

coordinate pricing and inventory decisions in a multiproduct competitive supply chain. The 

International Journal of Advanced Manufacturing Technology, 71(9), 1975 – 1989. 

Monahan, J.P. (1984). A quantity discount pricing model to increase vendor profits. Management 

Science, 30(6), 720 – 726.  

Moon, I.K., Goyal, S.K., and Cha, B.C. (2008). The Joint replenishment problem involving 

multiple suppliers offering quantity discounts. International Journal of Systems Science, 39(6), 

629 – 637.    

Muckstadt, J. and Roundy, R. (1993). Analysis of multistage production systems. Graves, S., 

Rinnooy Kan, A., and Ziplen, P., eds. Handbook in Operations Research and Management 

Science, Logistics of Production and Inventory, North-Holland, Amsterdam, (4), 59 – 131.  

Munson, C.L. and Rosenblatt, M.J. (2001). Coordinating a three-level supply chain with quantity 

discounts. IIE Transactions, 33(5), 371 – 384. 

Ouenniche, J. and Boctor, F.F. (2001). The multi-product, economic lot-sizing problem in flow 

shops: the powers-of-two heuristic. Computers and Operations Research, 28(12), 1165 – 1182. 

Pal, B., Sana, S.S., and Chaudhuri, K. (2015). Two-echelon manufacturer-retailer supply chain 

strategies with price, quality, and promotional effort sensitive demand. International Transactions 

in Operational Research, 22(6), 1071 – 1095.  

Pazhani, S., Ventura, J., and Mendoza, A. (2015). A serial inventory system with supplier selection 

and order quantity allocation considering transportation costs. Applied Mathematical Modelling, 

40(1), 612 – 634.  

Qi, X. (2007). Order splitting with multiple capacitated suppliers. European Journal of 

Operational Research, 178(2), 421 – 432.  

Qian, L. (2014). Market-based supplier selection with price, delivery time, and service level 

dependent demand. International Journal of Production Economics, 147, 697 – 706. 

Qin, Y., Tang, H., and Guo, C. (2007). Channel coordination and volume with price-sensitive 

demand. International Journal of Production Economics, 105(1), 43 – 53. 



 

121 
 

Ravindran, A.R. and Warsing, D.P. (2012). Supply chain engineering: Models and applications. 

Boca Raton, FL: CRC Press. 

Rezaei, J. and Davoodi, M. (2012). A joint pricing, lot sizing, and supplier selection model. 

International Journal of Production Research, 50(16), 4524 – 4542.  

Rosenblatt, M.J., Herer, Y.T., and Hefter, I. (1998). Note. An acquisition policy for a single item 

multi-supplier system. Management Science, 44(11), S96 – S100. 

Roundy, R. (1985). 98%-effective integer-ratio lot-sizing for one-warehouse multi-retailer system. 

Management Science, 31(11), 1416 – 1430. 

Roundy, R. (1986). 98%-effective lot-sizing rule for a multi-product, multi-stage 

production/inventory system. Mathematics of Operations Research, 11(4), 699 – 727. 

Roundy, R. (1989). Rounding off to powers of two in continuous relaxation of capacitated lot 

sizing problems. Management Science, 35(12), 1433 – 1442. 

Rubin, P.A. and Benton, W.C. (2003). A generalized framework for quantity discount pricing 

schedules. Decision Sciences, 34(1), 173 – 188. 

Sajadieh, M.S. and Jokar, M.R.A. (2009). Optimizing shipment, ordering and pricing policies in a 

two-stage supply chain with price-sensitive demand. Transportation Research Part E, 45(4), 564 

– 571. 

Schwarz, L.B. (1973). A simple continuous review deterministic one-warehouse N-retailer 

inventory problem. Management Science, 19(5), 555 – 566.  

Schwarz, L.B. and Schrage, L. (1975). Optimal and system-myopic policies for multi-echelon 

production/inventory assembly systems. Management Science, 21(11), 1285 – 1294. 

Taleizadeh, A.A. and Noori-daryan, M. (2016). Pricing, inventory, and production policies in a 

supply chain of pharmacological products with rework process: a game theoretic approach. 

Operation Research, 16(1), 89 – 115.   

Taleizadeh, A.A., Noori-daryan, M., and Cárdenas-Barrón, L. (2015).  Joint optimization of price, 

replenishment frequency, replenishment cycle, and production rate in a vendor managed inventory 

system with deteriorating items. International Journal of Production Economics, 159, 285 – 295.  

Tempelemeier, H. (2002). A simple heuristic for dynamic order sizing and supplier selection with 

time-varying data. Production and Operations Management, 11(4), 499 – 515. 

Thomas, D.J. and Griffin, P.M. (1996). Coordinated supply chain management. European Journal 

of Operational Research, 94(1), 1 – 15. 

Ventura, J. A., Valdebenito, V.A., and Golany, B. (2013). A dynamic inventory model with 

supplier selection in a serial supply chain structure. European Journal of Operational Research, 

230(2), 258 – 271.   



 

122 
 

Vidal, C.J. and Goetschalackx, M. (1997). Strategic production-distribution models: A critical 

review with emphasis on global supply chain models. European Journal of Operational Research, 

98(1), 1 – 18. 

Viswanathan, S. and Wang, Q. (2003). Discount pricing decision in distribution channels with 

price sensitive demand. European Journal of Operational Research, 149(3), 571 – 587. 

Wadhwa, V. and Ravindran A. (2007). Vendor selection in outsourcing. Computers and 

Operations Research, 34(12), 3725 – 3737.   

Wang, C., Huang, R., and Wei, Q. (2015). Integrated pricing and lot sizing decision in a two 

echelon supply chain with a finite production rate. International Journal of Production Economics, 

161, 44 – 53. 

Wang, Q. and Wang, R. (2005). Quantity discount pricing policies for heterogeneous retailers with 

price sensitive demand. Naval Research Logistics, 52(7), 645 – 658.  

Weber, C.A., Current, J.R., and Benton, W.C. (1991). Vendor selection criteria and methods, 

European Journal of Operational Research, 50(1), 2 – 18. 

Weng, Z. (1995). Channel coordination and quantity discounts. Management Science, 41(9), 1509 

– 1522. 

Weng, Z.K. and Wong, R.T. (1993). General models for the supplier’s all-unit quantity discount 

policy. Naval Research Logistics, 40(7), 971 – 991. 

Whitin, T.M. (1955). Inventory control and price theory. Management Science, 2(1), 61 – 68. 

Yildirmaz, C., Karabati, S., and Sayin, S. (2009). Pricing and lot-sizing decisions in a two-echelon 

system with transportation costs. OR Spectrum, 31(3), 629 – 650. 

 

 

 

 

 

 

 



 

 

 

Vita 

Hamza Adeinat 

Education  

The Pennsylvania State University – University Park, PA          January 2011 – August 2016 

Dual PhD Degree in Industrial Engineering and Operations Research 

University of Houston – Houston, TX             August 2009 – December 2010 

Master of Industrial Engineering / Engineering Management                                   

University of Jordan – Amman, Jordan              August 2004 – January 2009 

Bachelor of Science in Industrial Engineering                                                           

 

 

Publications 

 Adeinat H. and Ventura J. A. (2015). Determining the retailer’s replenishment policy consid-

ering multiple capacitated suppliers and price-sensitive demand. European Journal of Opera-

tional Research, 247(1), 83 – 92. 

 Adeinat H. and Ventura J. A. (2015). Quantity discount decisions considering multiple suppli-

ers with capacity and quality restrictions. International Journal of Inventory Research, 2(4), 

223 – 238.  

 

 

 


