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Abstract 

Timber harvesting activity takes place for a variety of reasons.  Environmental, social, 

and economic factors all influence where and when a harvest occurs.  Using the FIA database 

and statistical modeling, our research has shown that there are factors statistically significant to a 

harvest at both the plot and tree level in the northeastern United States.  These factors also vary 

with the proportion of basal area of timber removed in a harvest.  Using logistic regression to 

examine these significant factors, we have determined that the value of standing timber has an 

effect on harvest probability at the stand level.  At a tree harvest level, there is no significant 

relationship between harvesting decision and individual tree value.  This may be due to the 

factors considered when a site is being considered for a harvest differing from those when 

individual trees are being selected.  A significant difference also exists for harvests on private 

versus public land, with private owners tending to take larger, more valuable trees, but less 

overall stand volume.  Diameter tends to be a strong predictor of harvest probability at both the 

plot and tree level, and suggests that there is an increasing harvest probability up to a maximum 

plot average or individual tree size, after which, the probability of a harvest decreases.  Model 

variable statistical significance for volume/size metrics such as diameter and cubic feet is quite 

high.  The inability to utilize strong explanatory variables to describe a large portion of the 

variation inherent in timber harvests is a problem that plagues similar studies, even at smaller 

scales, suggesting that more research needs to be done on what environmental, social, or 

economic variables influence timber harvests, and whether these factors are national or regional.  

In attempting to explain what significantly influences timber harvests with our models, we can 

statistically say that volume, size, and to a degree, value, are all factors influential to timber 

harvesting in the northeastern United States.  
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Chapter 1 - Introduction 

Timber harvesting in the United States is a 235 billion dollar a year industry (AFPA, 

2016).  It accounts for 53% of total tree mortality, as 13 billion cubic feet of standing timber are 

removed every year (US Forest Service, 2014).  Yet very little research has been done on the 

decision-making processes by which trees are selected for harvest, as shown in articles as recent 

as Kittredge (2015).  Are these decisions the product of silvicultural planning?  When a harvest 

does occur, which trees are selected and why?  Is the value of the tree a factor?  These questions 

need to be answered in order to better understand and predict future management practices by 

forest owners, from the private woodland owner (PWO) of a few acres all the way to federally-

held, multi-million-acre forests. 

This research examines whether a variety of factors contribute to the probability of 

harvesting standing timber. A specific and new focus of the research is the effect of value on the 

probability of harvest.  Statistics on specifically what species and size of trees have been 

harvested are also examined.  The data used in this study are from a 22-state region in the 

northeastern United States, and are primarily from the Forest Inventory Analysis (FIA) database 

created by the United States Forest Service (USDA-FS). United States Census data are also used.  

FIA data are collected on 1/6-acre permanent plots that have been re-measured, in most cases, on 

a 5-year interval. FIA data were used for this study because the data offer the largest and only 

representative sample available of the condition of forests in the United States 

(http://www.fia.fs.fed.us/).  

In addition to answering questions about harvest behavior, the motivation to model 

harvesting activity using FIA data also stems from a collaboration with Dr. Charles Canham of 

the Cary Institute that is focused on using the SORTIE model (Pacala et al. 1993) to project how 

future forest composition and conditions may be affected by forest pests, pathogens, and climate 

change.  The project is funded by the United States Department of Agriculture Animal and Plant 

Health Inspection Service (APHIS). This work models the impact and spread of invasive forest 

species such as Asian Longhorn Beetle (ALB), Emerald Ash Borer (EAB), Hemlock Wooley 

Adelgid (HWA), and Beech Bark Disease (BBD).  Adding the human component of forest 

http://www.fia.fs.fed.us/
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change dynamics requires an examination of the factors that influence forest landowners’ and 

managers’ decisions to harvest standing timber and what they choose to harvest. 

In order to model the probability of forest harvests, it is necessary to first define what we 

mean by the phrase “timber harvest.” Does a harvest only occur when a large portion of a stand 

is removed?  If the removal of even a single tree is considered a harvest, then are the factors that 

influence the decision to conduct a low volume removal the same as those that influence a high 

volume removal?  How motivations vary among different types of harvests has not been well 

studied.  This research examines this question explicitly by separating harvests into three 

categories: light thinnings (less than 20% of the basal area (BA) removed), medium-heavy 

thinnings (between 20% and 85% of the BA removed), and stand-replacing harvests (more than 

85% of the BA removed). 

Preliminary analysis for this research found that the vast majority of harvests that occur 

on FIA plots do not involve removing all the trees on the plot-condition; Canham et al (2012) 

described partial harvests as the norm, not the exception. Thus, in addition to understanding why 

a harvest might occur on a plot-condition, it is also important to evaluate the factors that 

motivate the selection of individual trees to harvest from a plot-condition when a harvest occurs. 

Thus, where harvest activity was observed to occur on an FIA plot-condition, a second step 

modeled the selection of specific trees to be harvested to evaluate what variables influenced 

those decisions. 

The motivations behind timber harvesting have been studied in a variety of previous 

academic articles, though only a few previous studies focused on an area as large as the 22-state 

study area of this research (Butler and Leatherberry 2004; Canham et al 2013).  Those studies 

both dealt with regional landowner behavior.  Factors considered in past harvesting research 

have typically included both environmental and socio-economic variables.  A variety of studies 

looked at price as a factor significantly influencing timber harvests (Adams et al., 1991; 

Buongiorno et al., 1988; Butler, 2005; Gong, 1998; Lönnstedt, 1997; Max and Lehman, 1988; 

Plantinga, 1998; Prestemon and Wear, 2000; Provencher, 1995; Rucker and Leffler, 1988; 

Schuster and Niccolucci, 1983), However, none of these looked beyond regional markets with 

limited price data, and none looked specifically at tree value.  Many of the variables included in 

models in this paper were found to be significantly related to timber harvesting in previous 
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studies. A unique contribution of this research is the inclusion of timber price data from many 

states covering a large region of the US. 

The primary objective of this research is to statistically explore factors significant to 

forest landowners’ and managers’ harvesting decisions at both the plot and tree level, based on 

variables that are available in the FIA data or that can be easily linked to the FIA data, and by 

examining these variables at different removal intensities.  In addition, when these harvests 

occur, the research examines what is taken.  Another objective of this research was to develop 

prediction models of harvests on FIA plots using multiple variables obtained from the FIA 

database and other sources.  Both goals were accomplished using logistic regression analysis to 

assess whether various plot attributes that can be derived from the FIA data (or external data that 

can be obtained for all FIA plots) are good predictors of whether or not the plot was harvested, 

what type of harvest was conducted, and whether tree attributes are good predictors of which 

trees were removed.  Because FIA data contain limited socioeconomic and no attitudinal 

information about the forest landowners and/or managers, these factors could not be assessed in 

depth. On the other hand, the advantages of using FIA data for this study are the size and 

representativeness of the FIA data set, covering all owners and all forest types, and the wealth of 

factors that can be assessed using this data set.  
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Chapter 2 - Literature Review 

The birth of modern statistics in the United States had its roots in agriculture (USDA, 

2014), and as long as there has been a market for forest products, statistical work has been used 

to manage and optimize resources (Straka, 2009).  Although timber production is the number one 

cause of forest tree mortality in the northeastern United States (Canham et al., 2012), timber 

growth rates are also fastest in those forests that are best managed (Beuter, 1976).  The best 

managers of these harvest-focused forests typically tend to be high-income, multi-objective, non-

industrial private forest owners (NIPFs) and industrial forest land owners, both of whom 

generally have a continuing financial investment in these stands (Berck, 1979; Joshi, 2007; 

Lönnstedt, 1998; Prestemon and Wear, 2000).  However, with only 5% of NIPFs having a 

management plan in place and the majority of those landowner properties not being held for 

timber production, using ownership as an indicator of best management practice is not 

recommended (Birch, 1996; Dennis, 1989).  Past harvest by an owner significantly increases the 

probability that they will harvest again in the future (Larsen and Gansner, 1972), and given 

enough time, all stands tend to enter into some form of management (Stone, 1970).  

Ecologically, timber harvest and management directly affect wildlife and habitat fragmentation, 

so it is important to understand where and what will be harvested (Hof and Joyce, 1993). 

History 

Early research on harvest choice includes a United States Forest Service report by 

Ferguson (1958) that examined Pennsylvania forests by ownership class and distribution.  In 

quantifying what resources were available, this paper laid the ground work for further 

investigation of the forest industry as businesses sought to better utilize timber products.  Stone 

(1970) was arguably the first to supplement the Ferguson (1958) report to break down who was 

utilizing timber and why, though this early research had more to do with defining why harvests 

occur and less to do with optimization. 

Timber RAM (Navon 1971) led to the use of linear programming optimization models to 

maximize yield or net present value for optimal timber management.  Statistical models at the 

time used independent landowner surveys, and employed chi-square analysis to assess factor 
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significance.  Larsen and Gansner (1972) worked to identify characteristics of those who owned 

land and harvested it and established model criteria for the majority of future research. Their 

approach was later used by both Beuter (1976) and Kingsley et al. (1977), who conducted their 

own surveys across varying US regions. 

Binkley (1981) utilized a logistic regression model coded for harvest vs. non-harvest that 

shifted research to focus on factor interpretation.  This generally marked a turning point away 

from simple optimal harvest volume prediction based on Markov chain, linear optimization, and 

general regression such as that used by Johnson and Scheurman (1977), Tedder et al. (1980), 

Schuster and Niccolucci (1983), and others, towards a more complete understanding of basic 

factors influential to harvest.  That focus added factors of interest related to landowner 

characteristics from those related to productive capacity, species composition, harvesting price, 

and discounting rates.  For example, Larsen and Gansner (1973) examined landowner 

characteristics such as income, land holding size, and landowner occupation.  Following 

Ferguson’s (1958) grouping of  owners as either public and private and Stone’s (1970) division 

of private groups into NIPFs and industry in the early 70’s, work on owner-level factors 

continued to further define harvest and management choices by different ownership types using 

detailed landowner surveys. 

Barlow et al. (1998) were the first to utilize the US Forest Service’s Forest Inventory 

Analysis (FIA) data to test variables in a logistic regression model to predict probability of 

harvest.  The FIA is a national survey of permanent forest plots that are measured at regular 

intervals (USDA-FS, 2014).  This data set allowed for an examination of harvests on individual 

plots, which were then linked to site attributes.  Whereas previous studies focused on landowner 

factors from surveys, use of FIA data allowed for an examination of the relationship between site 

attributes and the probability of harvest.  Follow-up work on the significance of these 

environmental factors included Reams and McCollum (1999) and Prestemon and Wear (2000). 

In the mid 2000’s, the focus turned to classifying NIPF owners into categories by the 

variables that defined them, such as income, ownership size, employment type and status, 

ownership purpose, and others (Favada et al., 2009; Hoyt and Hodges, 2010; Majumdar et al., 

2008). Given that industrial owners tend to harvest based on timber economics and market 

activity (Kuuluvainen et al., 1996), the focus of initially classifying NIPFs was on those whose 

irregular harvesting patterns made it difficult to determine when larger volumes of timber would 
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enter the market (Munsell et al., 2009), or focused on goals to increase these private holdings 

(Hoyt and Hodges, 2010). 

Types of Forest Owners 

Forest land ownership in the United States falls into two broad categories, public and 

private, and each has a different propensity for harvesting timber (Barlow et al., 1998; 

Buongiorno et al., 1988; Jamnick and Beckett, 1988; Stone, 1970).  Ownership broken into these 

two categories is a highly significant variable for modeling harvests (Young and Reichenbach, 

1987).  This is due to the dichotomy between public lands, primarily less managed with a more 

diverse species composition, and private lands, managed to some extent with the possible 

expectation of sale or lived on and used for materials (Berck, 1979; Beuter, 1976; Butler, 2005; 

Stone, 1970).  With these differences in motivation for harvest and management, fewer harvests 

tend occur on public lands (Barlow et al., 1998; Greene and Blatner, 1986). 

Economically, public lands tend to undergo harvesting for different reasons than private 

lands.  Private lands frequently have single-owner decision makers and thus tend to be more 

liquid; they undergo harvests when prices are higher (Buongiorno et al., 1988; Max and Lehman, 

1988).  Overall, however, public stands, though harvested less frequently, are harvested with less 

stochasticity than private lands (Beuter, 1976; Birch, 1996; Jamnick and Beckett, 1988; Stone, 

1970), likely due to the higher proportion of public owners having management plans (Joshi, 

2007). 

Public 

Public land in the northeastern United States generally consists of federal, state, and local 

government entities (Arbuckle et al., 1993).  These entities tend to harvest less frequently, 

though there is no reason to suspect that it is not equally as well managed, if not more so, than 

private forest (Barlow et al., 1998).  Because of a reduced amount of harvesting, with less of a 

focus on financial objectives, public forests tend to have older stands and a more diverse species 

composition (Berck, 1979; Beuter, 1976; Johnson and Scheurman, 1977).  Other research has 

found that stands in their natural state are more resistant to invasive species (Holmes et al., 2009; 
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Hu et al., 2009).  Thus, it could be that the risk of invasive impact is reduced in these public 

stands, and as a result, the probability of harvest due to invasive species is also reduced. Harvests 

from national forests tend to be treated as fixed and insensitive to price in the long term (Adams 

et al., 1991).  In the short term, however, Adams et al. (1991) argue that national forest 

harvesting increases in times of increased price. 

Private  

Public forests are generally more homogeneous than private forests with respect to the 

objectives and actions of their owners. Work by Barlow et al. (1998), Birch (1994), Buongiorno 

et al. (1988), Hoyt and Hodges (2009), Jamnick and Beckett (1988), Larsen and Gansner (1972), 

and Max and Lehman (1988)) tended to show that private owners’ objectives are much more 

variable.  Considering the different motivations of these varying owners, private lands can be 

split between two general groups: 1) those who have an active willingness to harvest, and 2) 

those who do not (Favada et al., 2009; Young and Reichenbach, 1987).  Private ownerships can 

also be categorized roughly into industry, which is typically management and harvest oriented 

(Berck, 1979; Straka et al., 1984) and non-industrial private forest owners (NIPFs). NIPFs 

consist generally of two groups of owners, with differing proclivity to harvest (Birch, 1996; 

Favada et al., 2009; Gan and Kebede, 2005; Hoyt and Hodges, 2010; Joshi, 2007; Lönnstedt, 

1997; Majumdar et al., 2008; Stone, 1970). 

Among private forest owners, a previous harvest is strongly correlated with the likelihood 

of a future harvest (Hoyt and Hodges, 2010), and owners of large tracts “tend to harvest 2 to 1 

over small and medium owners” (Larsen and Gansner, 1972).  Having a management plan in 

place is also one of the strongest predictors of a future harvest occurring (Greene and Blatner, 

1986; Larsen and Gansner, 1973; Young and Reichenbach, 1987)  Most owners tend not to have 

a management plan (Birch, 1996; Joshi, 2007), though a great deal of work has been done on 

reaching owners who already support harvesting and offering to help manage their stands, which 

has been proven to increase landowner productivity (Larsen and Gansner, 1973). 
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NIPFs 

Non-industrial private forest owners (NIPFs) make up roughly 60% of privately held 

forestland in the northeastern United States (Kittredge et al., 2003).  Within this group, a 

distinction can be drawn between owners who align more closely with the harvesting patterns of 

industrial owners and those who have less predictable harvest behavior due to a number of 

factors (Birch, 1996; Bliss and Martin, 1989; Favada et al., 2009; Gan and Kebede, 2005; Joshi 

and Arano, 2009a; Lönnstedt, 1997; Majumdar et al., 2008; Max and Lehman, 1988; Munsell et 

al., 2009; Stone, 1970).  These factors make it useful to divide private forest landowners 

primarily based on their original goals in owning land (Joshi and Mehmood, 2011). 

Young and Reichenbach (1987) divided NIPFs into two groups. The first has a much 

greater propensity for harvest.  This group tends to include highly educated individuals (Dennis, 

1989; Greene and Blatner, 1986). They overwhelmingly tend to own larger tracts of forest land 

(Binkley, 1981; Bliss and Grassl, 1987; Gan and Kebede, 2005; Greene and Blatner, 1986; Hoyt 

and Hodges, 2010; Jamnick and Beckett, 1988; Larsen and Gansner, 1973; Lönnstedt, 1997; 

Reams and McCollum, 1999; Salkie et al., 1995; Sterba et al., 2000; Straka et al., 1984).  They 

also tend to live away from the land they harvest, though not great distances from it (Butler, 

2005; Carpenter, 1985; Sun et al., 2008).  Frequently, they have consulted with a forester about 

selling timber from their property, or they have a management plan in place for their land (Gan 

and Kebede, 2005; Gong, 1998; Greene and Blatner, 1986; Hoyt and Hodges, 2010; Larsen and 

Gansner, 1973; Sun et al., 2008). 

The second group has a reduced but volatile probability of harvest, and they make up the 

majority of NIPF private landowners (Stone, 1970).  They tend to be landowners with homes on 

their forest land (Butler, 2005).  They overwhelmingly prioritize recreation or aesthetics as one 

of the main factors for owning their land (Favada et al., 2009; Kuuluvainen et al., 1996; 

Majumdar et al., 2008; Pukkala et al., 2003). They tend to be younger than their harvesting 

counterparts (Butler, 2005; Gan and Kebede, 2005; Kuuluvainen et al., 1996). They also less 

likely to be in the farming profession (Binkley, 1981; Greene and Blatner, 1986; Hoyt and 

Hodges, 2010; Larsen and Gansner, 1973).  In reality, though, this group’s lack of predictability 

of harvest means that other, less obvious factors contribute when a harvest does actually occur 

(Max and Lehman, 1988, p. 72).  The need for money, for instance, was a reason frequently cited 

for harvesting (Carpenter, 1985; Kingsley and Birch, 1977; Young and Reichenbach, 1987). 
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Modeling and Variables 

Types of Models 

Approaches for analyzing timber harvests have taken on two primary forms in the 

literature, optimization and statistics.  Researchers such as Nautiyal and Pearse (1967), Navon 

(1971), and Johnson and Scheurman (1977) focused on volume of timber harvested.  This work 

was followed up by Tedder et al. (1980), Hof and Joyce (1993), Gustafson et al. (2006), and 

others.  These groups applied Markov chains, linear programming, stochastic optimization 

models, and Monte Carlo designs to prescribe optimum harvest volumes and management 

activities.  These models assisted project planners and landowners in determining how best to 

manage resources. 

The second modeling approach uses statistical models to assess the significance of 

multiple factors to model or predict the probability that a stand will undergo a harvest given its 

specific characteristics.  This is the focus of the research reported here.  This approach was first 

employed by Binkley (1981) who utilized logistic regression combined with site and landowner 

attributes to model harvest probability. Binkley’s work was followed by Bliss and Grassl (1987), 

Rucker and Leffler (1988), Reams and McCollum (1999), and Butler (2005).  Jamnick and 

Beckett (1988) argued that the logit model was specifically warranted when considering multiple 

variables with the intention of predicting a harvest. This was further supported by Kingsley et al. 

(1977) and Schuster et al. (1983) who said that using more factors to explain the motivation 

behind harvest should be considered over simple models with only a few variables. 

This work signaled a fundamental change in the direction of research at the time. Work 

was still being done, and is still being done today, on tools to help owners optimize forest 

management decisions, but the focus of this new area of research was to determine how likely 

harvests were to occur, given the wealth of ownership information coming out at the time.  

Munsell et al. (2009) called this a “Fundamental Shift,” which marked the turning point from 

maximization-focused modeling, to a multi-objective approach that focused more on 

environmentalism.  In more recent research, the focus has turned from general continuous 

variable only models, to specific logistic models that more frequently utilize categorical 

variables. Majumdar et al. (2008) outlined three groups of models, multiple-objective, non-

timber, and timber.  Favada et al. (2009) also identified ownership objective as an important 
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categorical factor through principal components analysis. Sterba et al. (2000) devised specific 

models that focused on the type of harvest occurring, which were defined as harvest, thinning, or 

salvage, previously suggested for classification by Reams and McCollum (1999).  This 

breakdown makes sense, given that “even owners who are averse to harvesting have an interest 

in thinning as a stand improvement” (Carpenter, 1985). 

Independent Variables 

Reassessing what factors influence the probability of harvest is important given that 

landowner preferences change over time (Carpenter, 1985), and also due to the diversity of 

NIPFs (Joshi and Arano, 2009b).  Additionally, while a large amount of research has been done 

using questionnaires on why NIPF land owners choose to harvest, less has been done on other 

non-social factors such as market conditions, environmental factors, stand attributes, or potential 

threats such as impending invasive insect or disease damage (Kittredge et al., 2003).   

Stand Characteristics 

Geography  

Lockwood and Moore (1993) suggested that terrain may be significant.  Barlow et al. 

(1998) tested slope in Alabama and Mississippi and found that it was not significantly related to 

harvest probability.  Later research by Sterba et al. (2000) and Butler (2005) found that elevation 

was significant to removal amounts and that increased slope significantly reduced harvest 

probability. 

Even though smaller regions were expected to dramatically improve the models, state 

level variables worked almost as well, and were significant predictors of harvest (Schuster and 

Niccolucci, 1983).  Reams and McCollum (1999) utilized region for modeling and determined 

that it was significant in modeling harvests. 
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Age Class and Timber Maturity 

Categorical classification by age class was found to be a significant predictor of harvest 

probability, with increasing stand age being positively correlated with harvest probability 

(Butler, 2005; Johnson and Scheurman, 1977).  Maturity of timber was a significant  predictor of 

whether owners would harvest, with mature stands being one of the most important reasons cited 

by landowners as the reason for harvest (Carpenter, 1985; Kingsley and Birch, 1977; Young and 

Reichenbach, 1987). 

Stand Volume, Size, Density, and Stocking Status 

Per-acre volume was a significant predictor of harvest probability (Barlow et al., 1998; 

Butler, 2005; Dennis, 1989; Lönnstedt, 1997; Prestemon and Wear, 2000; Reams and 

McCollum, 1999), as was basal area (Butler, 2005; Sterba et al., 2000).  Overall expectation was 

that increased volume would lead to increased harvest probability, given that harvests seek to 

maximize yield, though Butler (2005) found that higher volumes and basal area in hardwood 

stands correlated with a decrease in harvest probability.  Reams and McCollum (1999) found that 

trees per acre was a significant predictor of harvest, and that a harvest probability increase 

corresponded to more softwood, and less hardwood trees per acre.   

Canham et al. (2012) modeled trees in the northeastern United States and determined that 

diameter increased the probability of harvest.  Reams and McCollum (1999) cited average pine 

stand diameter significantly positively correlating with increased harvest probability.  Butler 

(2005) found that categorical stocking status was a significant predictor of the probability of 

harvest, with percentage of full stocking increasing the probability of harvest. 

Distance to Road, Mill, and Urbanized Area 

Lockwood and Moore (1993) and Reams and McCollum (1999) both suggested that road 

access may be significant. Then, Barlow et al. (1998) determined that proximity to an improved 

road significantly increased the probability of harvest.  Distance to mill was thought to be 

significant by Reams and McCollum (1999), but was not tested in their study, without 

justification.  Barlow et al. (1998) found that closer distances to urbanized areas significantly 
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reduced the probability of being harvested.  Reams and McCollum (1999) suggested that future 

research should be done on distance to urban populations.  Butler (2005) found that increased 

housing density decreased the probability of harvest. 

Forest Type and Stand Origin 

Reams and McCollum (1999) found species mix to be a significant predictor of harvest, 

with increased pine significantly increasing the probability of harvest (Canham et al., 2012).  

Butler (2005) and Sterba et al. (2000) found proportion of conifers had an increasing effect on 

harvest probability.  Butler (2005) and Reams and McCollum (1999) considered stand origin of 

natural versus artificial as a possible significant predictor of harvest.  Butler (2005) found that in 

the southeastern US there was no significant effect.  

Economic 

National Economics and Taxes 

The regional unemployment rate significantly correlated with an increased probability of 

harvest (Schuster and Niccolucci, 1983), and Birch (1994) suggested that the strength of the 

American dollar may be important.  Buongiorno et al. (1988) found that “Local private harvests 

were not by influenced by housing starts or price.”  

Changes in future tax rates cause uncertainty, and thus have an effect on increasing the 

probability of harvest (Beuter, 1976), though Max and Lehman (1988) said that the increased 

harvests only occur for a short time after implementation of the tax. 

Price 

Real price received, corresponding to an increased probability of harvest, was the best 

predictor used by Schuster et al. (1983) and real price was found to be a significantly better 

predictor than nominal price.  Adams et al. (1991) and Gong et al. (2005) utilized price as a 

variable in their models, though Provencher (1995) argued it should not be the only variable.  

Butler (2005) and Prestemon and Wear (2000) also said that stumpage price has a strong 
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influence on the probability of harvest, but it is current market price rather than future price that 

significantly impacts harvesting (Lönnstedt, 1997).  

Rucker and Leffler (1988) stated that “changes in initial stumpage values do not 

significantly affect harvest probabilities,” and Adams et al. (1991) said that harvest schedules are 

largely independent of price.  Plantinga (1998) said that harvest scheduling should be based on 

price.  Reductions in price variability also caused an increase in harvest probability (Rucker and 

Leffler, 1988), and Gong et al. (2005) found that price uncertainty affects management decisions. 

Landowner Characteristics 

Income 

Increasing income decreases the probability of harvest (Binkley, 1981), but owners in 

better financial positions have a stronger incentive to manage land (Straka et al., 1984).  

Landowner income was not a significant factor in whether a harvest would occur in a study by 

Larsen and Gansner (1973), but Binkley (1981), Jamnick and Beckett (1988), and Dennis (1989; 

1990) showed that people were significantly less likely to harvest as income increased.  On the 

other hand, Joshi and Arano (2009) found that income was positively correlated with the 

probability of management activity. Kuuluvainen et al. (1996) found a negative correlation 

between income and probability of harvest for single-objective owners, but found a positive 

correlation for multi-objective owners. 

Age, Education, and Occupation 

Older owners have a higher probability of harvesting than younger owners according to 

Butler (2005), Gan and Kebede (2005), and Kuuluvainen et al. (1996). However, Joshi and 

Arano’s (2009) found that younger landowners had a higher probability of harvest. 

Years of education was found to be significant to harvest, and education correlated with 

lot size in some areas (Greene and Blatner, 1986; Joshi and Arano, 2009b).  Dennis (1989) said 

that years of formal education and harvest probability were significantly negatively related, 

suggesting that more educated landowners procured land for future recreational use. 



  14 

 

Farmers are generally more likely to harvest (Binkley, 1981; Greene and Blatner, 1986; 

Jamnick and Beckett, 1988; Larsen and Gansner, 1973; Salkie et al. 1995).  Occupation plays a 

role in probability of harvest (Gan and Kebede, 2005; Joshi and Arano, 2009b), and forest 

associated with agricultural land is significantly more likely to be harvested (Bliss and Grassl, 

1987). 

Land Holding Size and Residency 

Total tract/land holding size has been shown to have a positive effect on the probability 

and volume of harvest, arguably more frequently than any other predictive variable (Binkley, 

1981; Bliss and Grassl, 1987; Gan and Kebede, 2005; Greene and Blatner, 1986; Jamnick and 

Beckett, 1988; Joshi and Arano, 2009b; Kingsley and Birch, 1977; Larsen and Gansner, 1973, 

1972; Lönnstedt, 1997; Salkie et al., 1995; Straka et al., 1984).  Past harvest is also strongly 

correlated with an increased probability of future harvest (Larsen and Gansner, 1973). 

Resident owners have been found to be less likely to harvest timber than non-residents 

(Butler, 2005; Carpenter, 1985; Jamnick and Beckett, 1988; Joshi and Arano, 2009b). 

Management Plans 

The implementation of forest management plans has been shown to significantly increase 

the probability of harvest (Gan and Kebede, 2005; Greene and Blatner, 1986; Hoyt and Hodges, 

2010; Jamnick and Beckett, 1988; Joshi and Arano, 2009b; Larsen and Gansner, 1973).  The 

probability of harvest also increases if the landowner has had contact with a state forester (Bliss 

and Grassl, 1987; Greene and Blatner, 1986). 
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Chapter 3 - Methods 

Modeling work began following the general examination of the available literature on 

various approaches to modeling harvest regimes, as described in the previous chapter.  The study 

region was selected based on research previously conducted by The Pennsylvania State 

University APHIS project research team, in conjunction with Dr. Canham of the Cary Institute. 

They selected the 22-state region encompassing the northeastern United States, which also shows 

the spatial distribution of FIA plots within the region, by the eight broad forest types used by 

Canham.  This 22-state region contains approximately 465,102,080 total acres, of which roughly 

46% of the area is forest (Worldbank.org, 2016).  

 

 

Figure 1 - FIA Plot Distribution within the study area by Forest Type based on Dr. Canham Forest Type 

 

The primary data used to create these models is derived from the US Forest Service’s 

Forest Inventory Analysis (FIA) program.  This is a continuous plot survey system that samples 

1/6-acre plots that are randomly distributed within hexagons in a grid overlaid over each state in 

the United States.  Sites are sampled remotely for forested/non-forested status by the US Forest 

Service, and forested plots are then sampled on the ground by crews, roughly on a five-year 

interval.  This allows for the observation and quantification of site metrics dealing with all 

aspects of vegetative growth on the plot (volume, size, condition), as well as a variety of site-
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specific factors (location, elevation, ownership, etc.).  Because plots are randomly distributed, it 

is possible for a plot to fall on multiple conditions, based on forest type and ownership.  It is 

imperative that when a plot represents multiple conditions, the corresponding areas are defined 

separately.  The FIA uses the concept of “condition” to accomplish this.  A “plot-condition” 

therefore represents a subset of a plot – in most cases, the entire plot – that all belongs to the 

same condition, i.e., shares the same forest type and ownership characteristics.  When separate 

plot conditions occur on a plot, the condition-proportion field gives the percentage of the plot 

represented by that particular condition.  Plot measurements are mapped to the condition on 

which each item was located so that data can be associated with the appropriate plot-condition. 

In this study, a plot-condition was considered an observation, and plot-conditions that did 

not represent at least a half of a plot were dropped.  Thus, the effect of the plot-condition is that 

some plots are less than 1/6th acre and some plots were dropped completely – if there were more 

than two plot-conditions and none of the plot-condition proportions were greater than a half.  To 

then make volumetric assumptions across remaining plots, the expansion factors of plots with a 

plot-condition proportion less than 100% were normalized by dividing them by the plot 

condition proportion. 

Preliminary examination of general FIA plot attributes for the study area showed diverse 

forest types, with mostly northern hardwoods and oak-hickory in the southern part of the study 

area, and aspen-birch and spruce-fir in the northern part, as shown in Figure 1. 

Since the goal of this research was to predict and explain harvesting behavior, 

preliminary model exploration focused on specific forest type regions within the area.  Those 

areas can be broken down by observed boundaries, such as state lines or groups of states, or 

ecological boundaries, such as forest or species type (Canham et al., 2012). 

Defining a Harvest 

As mentioned above, FIA is a continuous sampling system of permanent plots across the 

United States. Vegetation on a given plot was measured and recorded every five years in most 

states, except in Virginia and Kentucky where plots were re-measured every six and four years, 

respectively. This four-to-six-year period is called the measurement cycle, and all plots within a 

state were measured at some point within this cycle, unless they were excluded from the study 
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for an unforeseen reason. The initial four-to-six-year measurement period, which will be referred 

to as cycle 1, varied for each state, as the FIA continuous inventory program began in different 

years in different states. Plots were then re-measured over a second four-to-six-year cycle. Data 

from this second cycle, cycle 2, were used in this research to determine whether a harvest had 

occurred on a plot and, if so, which trees were harvested. A list of the data sets used for each 

state can be found in Table A1. 

The definition of harvest in this research is that at least one single tree on the plot was 

removed by human activity between cycle 1 and cycle 2. This was determined using the FIA tree 

status code from cycle 2.  For each plot, the trees present and alive in cycle 1 were identified, and 

a tree list for each plot was populated. Tree status code was used to include only trees that were 

living in cycle 1. This tree list was used to calculate various plot-level attributes, such as per-acre 

volume, basal area, and average tree diameter. Knowing that a tree (or stump) can be tracked 

between cycles is the foundation for determining if it remained or was removed, and it allows the 

plot to be marked as harvested.  This plot harvest status is then used to select only trees on plots 

that underwent a harvest, for the tree models.  The plot and tree classification scheme used to 

produce the datasets can be seen in Figure 2. 

Plot 
Plot-Level 

Environmental 
Attributes 

Trees 

Tree-Level 
Environmental 

Attributes 

Harvested 
Status 

Cycle 2 Cycle 1 

 

Figure 2 – Harvest grouping methodology showing both plot and tree model steps. 
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Modeling Outline and Workflow 

One goal of the regression models developed for this research is to simulate harvests on 

FIA plots. One set of multinomial logistic models can be used to predict the probability of three 

different types of timber harvests. The three types of harvests are: 1) low-intensity thinnings 

(<20% of the basal area (BA) removed, e.g., firewood harvesting), 2) moderate-heavy thinnings 

(between 20% and 85% of the BA removed, e.g., selection harvests, diameter-limit harvests, or 

shelterwood harvests) and 3) stand-replacing harvests (>85% of the BA removed, e.g., clearcuts, 

overstory removals, seed-tree harvests). These harvest intensity categories were chosen because 

it was hypothesized that the motivations differed for different types of harvests and, as a result, 

different variables would impact different types of harvests in different ways.  Since preliminary 

analyses found that nearly all harvests remove only some of the trees, a second set of logistic 

regression models was also developed to predict which trees on the plot will be harvested, or, 

more precisely, whether a given tree on a plot that has been selected to be harvested will be 

harvested.  Thus, there are two prediction steps in using these models. The first determines 

whether or not a plot will be harvested, and, if so, what type of harvest will occur. The second 

determines whether a specific tree on that plot will be harvested, given the type of harvest and 

other factors.  

Plot Models 

The plot models developed here give a probability of whether a given plot will undergo a 

harvest, and if so, what categorical type of harvest.  For this stage, separate multinomial logistic 

regression models were developed for five broad stand-origin/forest-type combinations: 1) 

Artificial stands (any planted stand, but most are softwoods), 2) Natural Aspen-Birch stands, 3) 

Natural Northern Hardwood stands, 4) Natural Oak-Hickory stands, and 5) Natural Softwood 

stands.  These groups are aggregations of more detailed forest types (Table 1) and are referred to 

as “plot modeling categories” below.  For each of these plot modeling categories, a multinomial 

probability model was fit with four outcomes: 1) low-intensity thinnings (<20% of the BA 

removed), 2) moderate-high intensity thinnings (between 20% and 85% of the BA removed), 3) 

stand-replacing harvests (>85% of the BA removed), and 4) no harvest.  Models corresponding 

to the first three outcomes give a probability of each type of harvest. These probabilities sum to 
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less than one, with the remaining probability being the probability of no harvest. The 

independent variables in the models are latitude and longitude, ownership (public vs. private), 

average diameter and average diameter squared, basal area per acre (a density measure), net 

board foot volume per acre, net cubic foot volume per acre, value per square foot of basal area, 

slope, county population density, distance to a mill, distance to road, and some forest type sub-

categories (for example, Oak-Hickory, Oak-Pine, Other Hardwoods, and Swamp Forests within 

the larger Natural Oak-Hickory Modeling type). Initial diagnostics of plot counts by basal area 

harvested informed decisions on utilizing different harvest outcome groupings.  The overall 

distribution of plots harvested by basal area removed is shown in Figure 3. 

 

 

Figure 3 –Distribution of the harvested FIA plots by percent of basal area harvested. 

Dividing the data 

Initial modeling showed a clear difference between harvesting that occurred on plots that 

were artificially regenerated and those that were naturally regenerated.  Forest type also varied 

greatly between the two groupings, with artificial plots having a softwood-to-hardwood ratio of 

0

100

200

300

400

500

600

700

800

900

1000

1-10% 10-20% 20-30% 30-40% 40-50% 50-60% 60-70% 70-80% 80-90% 90-100%

C
o

u
n

t 
o

f 
P

lo
ts

Percent BA Removed



  20 

 

roughly 2.5:1, versus 0.16:1 for natural stands.  The literature also supports the assumption that 

harvesting motivation is different for plantations than for naturally-regenerated stands (e.g., 

Butler 2005). Based on this information, we chose to develop separate models for plantations and 

naturally-regenerated stands (Figure 4). 

In addition to separating the data sets based on stand origin, we also chose to divide the 

data based on broad forest types that are aggregates of Canham forest types, shown in Figure 1. 

As the figure shows, these forest types also roughly correspond to regional species distributions.  

Because of the correlation between the broad forest type categories and region, no regional factor 

was ultimately included in the model, except latitude and longitude.  In preliminary model 

testing, region was not a strong predictor when it was included with forest type, while forest type 

was significant.  This suggested that regional variation in harvesting activity could better be 

accounted for, which was also used by Canham et al (2012). In some cases, it might be desirable 

to model specific categories of forest types, but lack of data made it impossible to accomplish 

this with separate data sets and separate models. To account for differences between these finer 

forest type groups, less aggregated forest type categories were also used as categorical variables 

in some of the models to capture some differences between harvesting behavior among forest 

types. This is discussed in greater detail below, when specific variables are described. 

Figure 4 summarizes how the FIA data for the 22-state region were divided into separate 

data sets for modeling purposes. The data were first divided by regeneration type. There were not 

enough observations to further subdivide artificially-regenerated plots. Data from naturally-

regenerated plots were then subdivided into softwood and hardwood forest types. The naturally-

regenerated softwood data set was also too small to subdivide further. Finally, the naturally-

regenerated hardwood plot data were subdivided into three broad forest-type groupings: 1) 

aspen-birch plots, 2) oak-hickory plots, and 3) northern hardwood plots. Table 4 (on p. 26) 

shows the total number of plots in each of these data sets and the number and percentage of plots 

that were harvested by harvest category. The relationship between the broad forest type 

categories used here and Canham forest types is shown in Table 1. 
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Table 1 – Dr. Canham forest types with corresponding plot modeling categories used for this study. 

Canham Forest Types Plot Modeling Category for Natural Stands 

Aspen – Birch Natural Hardwood (Aspen-Birch) 

Northern Hardwood Natural Hardwood (Northern Hardwood) 

Oak – Hickory Natural Hardwood (Oak-Hickory) 

Oak – Pine Natural Hardwood (Oak-Hickory) 

Other Hardwoods Natural Hardwood (Oak-Hickory) 

Swamp Forests Natural Hardwood (Oak-Hickory) 

Northern Pines - Hemlock Natural Softwood 

Southern Pines - Other Conifers Natural Softwood 

Spruce – Fir Natural Softwood 

Tree Models 

The FIA tree data for the harvested plots in the 22-state region were divided into 30 

separate data sets for fitting models to predict the probability of an individual tree being 

harvested. Tree data from plots that were not harvested were not used for this part of the work.  

Division of the data was based on five different plot-level stand types (artificial, natural aspen-

birch, natural oak-hickory, natural northern hardwoods, and natural softwoods,) three possible 

harvest types based on the plot level harvest (less than 20% BA removed, between 20% and 85% 

Regeneration 

Type 

Natural 

Regeneration 
Artificial 

Regeneration 

Softwood Hardwood 

Aspen-Birch Oak-Hickory Northern Hardwood 

Figure 4 – Diagram illustrating the data partition followed to develop the plot level models.  A model was 

fit for each group in the terminal boxes. 
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BA removed, above 85% BA removed,) and is further subdivided by ownership class 

(public/private). Tree record counts by stand origin, forest type and harvest categories are shown 

in Table 2. Model methodology was similar for tree models and plot models except that the tree 

models are binomial logistic models while plot models are multinomial logistic models.  

Variables differed between models, although some plot-level variables were based on tree level 

data (e.g., average tree diameter).  Owner was the common variable used in both model sets.  

Separate logistic regression models were fit for each of these 30 tree-level data sets. 

 

Table 2 - Tree record counts and proportions by stand origin, forest type and harvest category. 

 Above 85% Between 20% and 85% Less Than 20% 
Grand 

Total 

Stand 

Origin/Forest 

Type No Harvest Harvest No Harvest Harvest No Harvest Harvest  

Artificial        

Hardwoods 6 (6%) 93 (94%) 257 (57%) 191 (43%) 560 (91%) 55 (9%) 1162 

Northern Pines 101 (14%) 633 (86%) 2277 (60%) 1522 (40%) 1622 (85%) 294 (15%) 6449 

Southern Pines 102 (12%) 759 (88%) 1995 (52%) 1835 (48%) 408 (89%) 50 (11%) 5149 

Natural Hardwood               

Aspen - Birch 464 (21%) 1738 (79%) 4644 (58%) 3417 (42%) 4156 (92%) 348 (8%) 14767 

Northern 

Hardwood 152 (17%) 747 (83%) 14876 (68%) 7162 (32%) 17187 (92%) 1405 (8%) 41529 

Oak - Hickory 117 (15%) 675 (85%) 11039 (71%) 4433 (29%) 17393 (94%) 1205 (6%) 34862 

Oak - Pine 46 (15%) 265 (85%) 1530 (65%) 826 (35%) 1981 (91%) 190 (9%) 4838 

Other Hardwoods             332 

Swamp Forests 25 (17%) 120 (83%) 1109 (70%) 474 (30%) 2324 (94%) 146 (6%) 4198 

Natural Softwood               

Northern Pines - 

Hemlock 166 (23%) 546 (77%) 2156 (60%) 1459 (40%) 3120 (93%) 242 (7%) 7689 

Southern Pines - 

Other Conifers 28 (9%) 294 (91%) 738 (59%) 520 (41%) 363 (92%) 33 (8%) 1976 

Spruce - Fir 129 (15%) 749 (85%) 4557 (61%) 2966 (39%) 3557 (91%) 354 (9%) 12312 

Grand Total 1336 (17%) 6621 (83%) 45240 (65%) 24872 (35%) 52870 (92%) 4337 (8%) 135276 
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Defining Variables 

Based on the variables identified in the literature review and the variables that are 

available in the FIA database, an initial variable list was created and expected relationship to 

harvest probability was outlined.  The majority of the variables came from the FIA database, but 

data from external sources, including stumpage prices and census data, were also used. 

FIA Data 

The literature review suggested that several environmental factors could be useful for 

modeling harvest probability. Most environmental factors can be classified into two groups: 1) 

factors relating to the trees on the plot, or 2) factors relating to the environment of the plot.  

Data organization initially started with the FIA database, using Microsoft Access queries.  

Whether a harvest occurred was determined by the status code of the tree in cycle 2, as outlined 

above in Defining a Harvest. This initial dataset was the starting point from which to add other 

variables to the dataset from both FIA data and secondary sources as well. All volume metrics 

(including basal area) are expanded at the tree level to per-acre values using the trees-per-acre 

FIA field. As tree data were gathered and processed, all trees per plot condition were summed to 

the plot level and expanded to a full plot volume estimate by dividing by the plot condition 

proportion, allowing for a uniform model assessment. 

Plot Variables 

Forest Type Groups 

The FIA defines 207 specific forest types for the entire United States.  Additionally, FIA 

also defines 34 forest type groupings.  Within the study region, a total of 80 forest types was 

observed, which can be aggregated into 17 FIA forest type groups.  To further reduce possible 

categories while still preserving key forest type differences, forest types in this list were further 

combined to arrive at a reduced list of nine forest types as defined to the working group by Dr. 

Canham (“Canham forest types” hereafter). 
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The broad stand-origin/forest-type categories that were used in this research to divide the 

data set (see Table 3), referred to here as plot modeling categories, are aggregates of some very 

different forest types.  Lack of data forced us to combine these different forest types for 

modeling purposes, but there likely are substantial differences in the likelihood, and even in the 

variables that influence the likelihood of harvest, between these types.  Thus, several models 

include a categorical forest type group variable to at least capture differences in the likelihood of 

harvest for different forest type groups within the broader modeling categories.  Table 3 shows 

the set of forest type groups used for each plot modeling category where a forest type group 

variable was used and the relationship of the different levels of each forest type group to the 

Canham forest types. 

Categorical variables require that one level be designated as the “reference level” for that 

variable, and the coefficients for the remaining levels indicate any difference between that level 

and the reference level.  Reference levels for forest type groups were selected based on the group 

containing the largest number of observations.  Thus, “Northern Pines” was the reference forest 

type group for the artificial models; “Oak-Hickory” was the reference level in the Natural Oak-

Hickory models, and “Spruce-Fir” was the reference level in Natural Softwood models. Two 

models, Aspen-Birch and Northern Hardwoods, do not use forest type group as a variable since 

they contain only one forest type group.  
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Table 3 – Relationship between plot modeling categories, Canham forest types, and forest type groups. 

(Asterisks show reference levels for forest type groups.) 

Plot Modeling Category Canham Forest Type Forest Type Group 

Artificial Aspen - Birch Hardwoods 

Artificial Northern Hardwood Hardwoods 

Artificial Northern Pines - Hemlock Northern Pines* 

Artificial Oak - Hickory Hardwoods 

Artificial Oak - Pine Hardwoods 

Artificial Other Hardwoods Hardwoods 

Artificial Southern Pines - Other Conifers Southern Pines 

Artificial Spruce - Fir Northern Pines* 

Artificial Swamp Forests Hardwoods 

Natural Aspen – Birch Aspen - Birch No forest type groups 

Natural Northern Hardwood Northern Hardwood No forest type groups 

Natural Oak – Hickory Oak - Hickory Oak – Hickory* 

Natural Oak – Hickory Oak - Pine Oak – Pine 

Natural Oak – Hickory Other Hardwoods Other Hardwoods - Swamp Forests 

Natural Softwood Northern Pines - Hemlock Northern Pines - Hemlock 

Natural Softwood Southern Pines - Other Conifers Southern Pines - Other Conifers 

Natural Softwood Spruce - Fir Spruce – Fir* 

 

The division of data into plot modeling categories and forest type groups was done so 

that each harvest category and forest type group would contain a minimum number of 

observations, as indicated in Table 4. 

 

Table 4 - Plot counts by plot modeling category, forest type group and harvest type, bold totals are for separate 

models. 

 >85% 20% to 85% <20% No Harvest Total 

Artificial - Hardwoods 3 (<1%) 18 (4%) 17 (3%) 448 (92%) 486 

Artificial - Northern Pines 16 (2%) 74 (10%) 48 (6%) 614 (82%) 752 

Artificial - Southern Pines 15 (3%) 69 (15%) 9 (2%) 365 (80%) 458 

Total Artificial 34 (2%) 161 (9%) 74 (4%) 1,427 (84%) 1,696 

Total Natural Aspen – Birch 63 (1%) 204 (5%) 112 (3%) 4,024 (91%) 4,403 

Total Natural Northern Hardwood  26 (<1%) 591 (7%) 498 (6%) 6,896 (86%) 8,011 

Natural Oak-Hickory – Oak-Hickory 31 (<1%) 556 (4%) 626  (4%) 13,194 (92%) 14,407 

Natural Oak-Hickory – Oak-Pine 10 (1%) 73 (5%) 58 (4%) 1,195 (89%) 1,336 

Natural Oak-Hickory – Oth. Hdwds - Swmp For. 6 (<1%) 59 (2%) 79 (3%) 3,009 (95%) 3,153 

Total Natural Oak-Hickory 47 (<1%) 688 (4%) 763 (4%) 17,398 (92%) 18,896 

Natural Softwoods – No. Pines - Hemlock 20 (2%) 90 (8%) 83 (7%) 993 (84%) 1,186 

Natural Softwoods – So. Pines – Oth. Conif. 8 (1%) 35 (6%) 10 (2%) 543 (91%) 596 

Natural Softwoods – Spruce - Fir 18 (1%) 145 (4%) 74 (2%) 3,061 (93%) 3,298 

Total Natural Softwoods 46 (1%) 270 (5%) 167 (3%) 4,597 (90%) 5,080 
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Average Diameter and Average Diameter Squared 

The average diameter (in inches) of all trees on the plot is a measure of stand maturity. 

The expectation is that plots with larger trees will be more likely to be harvested, as larger trees 

have greater volume and generally slower growth rates (as a percent of volume).  Tree size has 

been suggested in the literature to be a predictor of harvesting activity (Butler and Leatherberry, 

2004; Canham et al., 2012).  This should equate to a higher probability of harvest in tree models 

as well.  Based on these results, the square of the average diameter was also included. 

Basal Area  

The basal area (BA) per acre is calculated from the diameter of the trees on the plot using 

the following formula 1, where the sum is over the trees in the plot tree list.  

 

 
𝐵𝐴 =  ∑((𝑑𝑏ℎ𝑖

2 ∗ 0.05454

𝑛

𝑖=1

) ∗ 𝑇𝑟𝑒𝑒𝑠 𝑝𝑒𝑟 𝐴𝑐𝑟𝑒 𝐸𝑥𝑝𝑎𝑛𝑠𝑖𝑜𝑛) (Equation 1) 

 where: 

BA is the plot basal area in ft2/acre 

dbh is the diameter at breast height of the ith tree in inches 

i is a tree index 

n = number of trees a the plot 

 

 

Stands with more BA are denser and more likely to benefit from thinning and also tend to have 

greater value. Basal area per acre is assumed to be positively related to the likelihood of a 

harvest. The units of basal area are feet2 per acre; this variable was divided by 100 to normalize 

coefficients.  

Wood Volume in Board Feet 

At the plot level, this is the sum of the net board foot volume of trees, on a per-acre basis.  

Board foot volume indicates the amount of lumber that can be sawn from a tree. Cull (unusable) 

volume has been removed from net board foot volumes. Wood that can be used for sawtimber 
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typically fetches a much higher market value than wood that can only be used for pulpwood or 

fuelwood. Trees must reach a minimum diameter (e.g., 12 inches for hardwoods) before they 

contain any board foot volume. Merchantable timber volume should be positively related to the 

probability of harvest.  It is reported in board feet, and was divided by 1000 to normalize model 

coefficients. 

Wood Volume in Cubic Feet 

The sum of cubic-foot volume of trees, per acre.  Cubic feet is included because it 

encompasses all of the volume of the tree bole, from the crown and stump, instead of simply 

merchantable board feet volume.  This variable is a more accurate representation of the volume 

that can be harvested for pulpwood or fuelwood. 

Tree Models 

Wood Volume in Board Feet 

Tree models utilize total net board foot volume per tree.  Higher board foot volume trees 

should be more valuable, and therefore more likely to be harvested.   

Wood Volume in Cubic Feet 

Tree models use total net cubic foot volume per tree.  Higher cubic foot volume should 

be more valuable desirable, and therefore have an increased likelihood of being harvested.   

Cull 

The percentage of volume in a live or dead tree that is rotten or otherwise unusable.  

Approximately 51% of total trees sampled had some amount of cull on them, with an average of 

3.5% overall.  Trees with a high percentage of dead material may be less desirable for a harvest. 

The expectation is that as the percent dead material increases, the probability of harvest will 

decrease, though it could also increase if the harvesting objective is to improve the stand. 
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Diameter and Diameter Squared 

The tree models include diameter of the tree measured in inches at breast height (DBH).  

Diameter is reported for any tree above 1” DBH.  The expectation is that larger diameter trees 

contain more volume and have a lower percentage rate of growth and are therefore more likely to 

be harvested. Expecting that average diameter would behave similarly in the tree models as in 

the plot models, the squared tree diameter was also included.   

Species 

Tree species is a categorical variable that is potentially important for modeling harvests at 

the tree level.  Unique species per state were also used to link the FIA data to the stumpage price 

data as discussed below.  For plots in the 22-state region, there are 146 unique tree species from 

the FIA species list.  Because of the large number of species, and the desire to model species 

categorically, it was necessary to aggregate these species into a manageable number of species 

groups to create a useable categorical variable for the tree-level models. 

Species were aggregated into groups for two purposes.  First, pricing data were obtained 

from a variety of states, each with its own methodology for combining their state’s species into 

price groups. Therefore, a lookup table had to be constructed for each state to map tree species to 

species price categories using that state’s methodology (Table A2).  Similarly, for modeling 

purposes, as stated above, a lookup table was used to aggregate all FIA species within the study 

area to a reduced modeling species group list, outlined in Table A3. Commonality between 

species and price groupings used by timber market price reports from a variety of states informed 

the species groupings used in predictive species group categories. Table 5 lists the set of 

modeling species groups that was used. The reference species for each species group variable is 

the species group with the most observations in that modeling category (forest type/origin 

combinations). Reference species for each modeling category are also shown in Table 5. 

Tree species potentially covers multiple effects in this model.  Specifically, one might 

hypothesize that harvesters target higher quality/value species.  Alternatively, landowners 

interested in improving their timber stands might target lower quality/value species for removal. 
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Table 5 – List of all species groups used in the tree models, with included reference category for each plot 

model.  Species groups that serve as the reference species for a given modeling category are 

indicated, with the corresponding modeling category. 

Harvest Species Group Name 

American beech Other valuable hardwood 

Ash Other white oak 

Aspen (Ref - AB) Red and white pine (Ref – Art) 

Birch Red maple (Ref – OH) 

Elm Southern-jack pine 

Hickories Spruce-fir (Ref – Soft) 

Miscellaneous hardwoods Sugar maple (Ref – NH) 

Non-canopy Valuable red oak 

Non-commercial White oak 

Other maple Yellow-birch 

Other red oak Yellow-poplar 

Other softwoods  

 

Timber Product Price Data 

How price affects harvest activity is a topic that has not been explored much in previous 

statistical models of timber harvesting behavior.  However, economic theory would suggest that 

price data might add considerably to making accurate predictions.  Price data were gathered by 

soliciting prices from all states within the 22-state region.  Some sources responded with specific 

datasets, and other datasets were compiled manually by acquiring data from websites.  Although 

22 states were used in the study, price data were only available for ten states.  Several states do 

not actively track timber prices (see table A2), and in those instances, surrounding states with 

similar species were used to calculate prices.  Price data were gathered for a 12-year period for 

all available states.  Price data for available states were initially gathered by Zak Miller, a MS 

student under Michael Jacobson.   

State Price Groupings 

Data gathered from the ten states’ timber market pricing reports varied greatly by species 

groupings and prices for particular species.  This suggested a need to value species on a state-by-

state basis instead of using one price for a species over the entire study area.  These prices vary 

widely due to regional variation in markets and species quality, and they were combined to 
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roughly follow FIA species groupings at a state level.  For example, black oak could be in a 

mixed oak classification in Pennsylvania, while black oak in Delaware could have a unique black 

oak category. There were two important factors in the methodology behind these groupings: 1) 

different states’ relative location to each other, and 2) similarity in the species distributions of 

these states. 

Given that FIA plots are measured on four-to-six-year intervals, it is not possible to know 

exactly when a harvest occurred on a plot. All that is known is that at least one tree was 

harvested in between measurements. Thus, the average of the prices for the four or six year 

interval corresponding to cycle 1 was used to approximate the price for standing timber for each 

state (see table A1 for cycle dates by state). 

Value Density (Value per Ft2) 

To capture the “value density” of a stand, we developed a metric by dividing the total 

value per acre of standing timber on a plot by the total basal area per acre.  The expectation is 

that areas with higher values per ft2 of basal area, in other words, a higher density of value, will 

be more likely to be harvested as each unit value requires less volume removed. The units of this 

variable are dollars per square foot. The variable was divided by 1000 to normalize the 

coefficients.  Equation 2 outlines the method for calculating value per square foot. 

 

 𝑉𝑎𝑙𝑢𝑒 𝐷𝑒𝑛𝑠𝑖𝑡𝑦

=  
∑((𝐵𝑜𝑎𝑟𝑑 𝐹𝑜𝑜𝑡 𝑉𝑜𝑙𝑢𝑚𝑒 ∗ 𝑇𝑟𝑒𝑒𝑠 𝑝𝑒𝑟 𝐴𝑐𝑟𝑒 𝐸𝑥𝑝) ∗ 𝑆𝑝𝑒𝑐𝑖𝑒𝑠 𝑃𝑟𝑖𝑐𝑒)

∑(𝐵𝑎𝑠𝑎𝑙 𝐴𝑟𝑒𝑎 ∗ 𝑇𝑟𝑒𝑒𝑠 𝑝𝑒𝑟 𝐴𝑐𝑟𝑒 𝐸𝑥𝑝)
 

(Equation 2) 

 

 

 where: 

Value Density is in dollars of board feet, divided by basal area per acre. 

Board foot volume is net board feet of the plot. 

Trees per Acre Exp. is the trees per acre expansion factor to bring volumes to a 

per acre metric. 

Basal area is the plot basal area in ft2/acre 
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Geolocational Data 

Distance to Mill 

Distance to mill was obtained using point locations of mills in the northeastern US, 

provided by a 2005 census done by the US Forest Service, and shown in Figure 5.  The data were 

available in the form of an ArcGIS shapefile which was combined with a shapefile location of all 

plots in the primary sample dataset.  A nearest neighbor query was then run on the datasets with 

the basis being the plot locations and the nearest neighbors being the mills.  This query identified 

nearest distances to mills for each plot location, which was stored as a continuous variable 

measured in miles. 

 

 

Figure 5 – Map of mill locations supplied by the US Forest Service for use in determining distance to mill. 

 

The variable is listed in miles to the nearest lumber mill.  This is linear distance and not 

based on a road network.  The assumption is that plots closer to mills will be more likely to be 

harvested.  This may be especially true in low basal area harvests, where harvesting activity may 

occur with less silvicultural planning, where access and operability factors may influence 

harvesting. 

Ownership 

The type of stand owner could play a large role in harvesting activity, as public entities 

may have different ownership objectives than private landowners.  Two ownership class were 

defined: public and private (a table linking the classes to their constructed classes is seen below 
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in Table 6), with each plot falling into one of those two ownership classes.  Because market or 

financial goals are more likely to drive the decision making of private landowners, they may 

have a higher likelihood of harvesting plots relative to public landowners. 

 

 

Table 6 - Owner group categories used to classify groups into public or private ownership. 

OWNGRPCD Description Ownership Group 

10 Forest Service (OWNCD 11,12,13). Public 

20 Other federal (OWNCD 21,22,23,24,25). Public 

30 State and local government (OWNCD 31,32,33) Public 

40 Private (OWNCD 41,42,43,44,45,46) Private 

Latitude/Longitude 

Latitude and Longitude are the specific northing and easting of a plot, listed in decimal 

degrees. Because harvesting behavior may vary by plot location, this variable is intended to 

capture broad regional differences in harvesting behavior.  This variable is fuzzed by up to a mile 

to protect the location and privacy of the plot and its landowner.  All variables except for 

population density and distance to mill are in the FIA database, and thus are unaffected by this 

built-in error.  For census and mill data, we assume that although plot location is not absolutely 

accurate, this slight variation will average out overall, and thus not affect the estimated variable 

response and significance. 

Slope 

The slope of the stand is also expected to influence the likelihood that a plot will be 

harvested.  Stands on steeper slopes may be harder to access, harder to operate on, and more 

sensitive to harvesting activity and are therefore expected to be less likely to be harvested. The 

slope variable is reported as slope angle, in percent. 

Distance to Road 

The distance to the nearest improved road can influence the likelihood that a plot will be 

harvested.  One would expect that more remote stands are less likely to be harvested.  
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Furthermore, basal area removed, corresponding roughly to firewood, thinning/shelterwood, or 

overstory removal cuts, may be affected by the distance to a road. 

Distance to road is recorded in the FIA database as a categorical variable. It was 

converted to a continuous variable of distance in feet for use in the model using the midpoint 

distance for each category as shown in Table 7.  For modeling purposes, the measurement of feet 

was converted to miles to be consistent with other distance measurement metrics.  The rationale 

behind using a continuous variable was the data sparsity that arose from predefined categories.  

After combining groupings for a reduced subset, variable still caused too much sparsity given the 

hierarchical breakdown of forest type and harvest type into unique models. 

 

Table 7 - Distance to road group categories showing distance in feet, which is converted to miles for use in 

the models. 

Distance To Road Group Distance To Road 

100 feet or less 50 

101 to 300 feet 200 

301 to 500 feet 400 

501 to 1000 feet 750 

1001 to 1/2 mile 1320 

1/2 to 1 mile 3960 

1 to 3 miles 10560 

3 to 5 miles 21120 

Greater than 5 miles 36960 

Census Data 

Data from the US Census were also considered for possible use in the model.  Census 

data include a variety of socio-economic variables, including county population, average family 

size, median income, male/female proportion, and median age.  Plot points were used as the 

primary record, and merged with county data within the county boundaries they fell in.  This data 

was then added to the plot record. 

Census Density Data (Plot) 

Population density is given by the population of the county divided by the land area in 

square miles in that county.  These data were derived from the US census.  Higher population 
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densities could suggests a more urban setting, with a reduced likelihood of being harvested.  This 

metric was then divided by 100 to normalize model coefficients. 

Statistical Methods 

After defining the variables to be used for modeling, statistical work could begin to 

estimate a relationship between harvesting and the predictor variables. 

Model Selection 

Many environmental plot-level attributes can be used to predict harvest activity.  A 

methodological process was employed to select only variables that were significant in the model.  

The first step of this process was a stepwise model selection, using the full list of variables 

extracted from the FIA database.  In this step, all variables with a p-value greater than 0.05 were 

removed from the model in a stepwise manner, using an automated script in R. 

This initial model selection step resulted in a reduced variable list for both the plot and 

tree models.  Given that models were created that covered different stand origin and forest type 

groupings, but that each model was to be reduced to the best possible model (as described under 

“Plot Models” below), the decision was made to employ a uniform selection criteria to all 

models to determine each of the final best models. 

This best model final best model selection step reduced variables in the models based on 

a weighted combination of R2, AIC, and BIC. Three variables were all similarly related to plot 

volume and were of interest in the final model selection step, though they may not have been 

significant in all basal area removed categories.  For the plot models, these variables were board 

feet, cubic feet, and value per square foot of basal area.  In the tree models, the variables of 

interest in this final selection step were board feet per acre and cubic feet per acre. 

In this final reduction step for the tree models, the AIC, BIC, and McFadden R2 for all 

possible combinations of the above variables for each model were weighted using the weights 

0.4 for AIC, 0.2 for BIC, 0.4 for McFadden R2, respectively.  These weighted values were then 

summed to produce a metric which was manually interpreted to determine the best overall 

reduction in AIC and BIC, and the best R2 statistic, and thus the best final model variable set in 

each forest type/stand origin category. 
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Logistic Regression 

Logistic regression was the primary regression method used for both the plot models and 

tree models.  The plot models used multinomial logistic regression, which allows multiple 

possible outcomes.  The result of a multinomial logistic model is the probability of each outcome 

occurring.  As our plot models have 3 distinct harvest removals, and each outcome is a 

probability of a specific event occurring while taking into account the likelihood of the other 

events occurring, the sum of the probability of the three events is the probability of a harvest 

occurring.  This means that one minus the sum of all probable harvest types occurring equals the 

probability of no harvest.  Equation 3 is the mathematical form of a statistical logistic model.  

The coefficient bn represents the response of the odds of each type of harvest occurring 

corresponding to the the individual variables, which are represented by Xn.  Specifically, b0 

represents the intercept. 

 𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐 𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑡𝑦 = 𝑙𝑛 (
𝑝𝑖

1 − 𝑝𝑖
)

= 𝑏0 + 𝑏1𝑋1 + 𝑏2𝑋2 + 𝑏3𝑋3 + ⋯ + 𝑏𝑛𝑋𝑛 

(Equation 3) 

 where: 

P is log of the odds of the event occurring. 

bn is the variable coefficient. 

Xn is the slope of the coefficient. 

 

Using the Models for Prediction 

To determine which of the three categories of harvest is predicted, let Pi, be the 

probability of the ith type of harvest.  We draw a random number (x) uniformly distributed from 

[0,1].  If x ≤ P1, then harvest type 1 occurs.  Otherwise, if ∑ 𝑃𝑖  
𝑗−1
𝑖=1 ≤  x ≤ ∑ 𝑃𝑖  

𝑗
𝑖=1 , then harvest 

type j occurs. Otherwise, if x ≥ ∑ 𝑃𝑖
𝑛
𝑖=1  (where n is the number of harvest types) then no harvest 

occurs.  If a plot is selected for a harvest, the simulation will loop over each tree within the plot’s 

tree list, and for each one the appropriate tree-level model will generate a probability that that 

tree will be harvested. Just as for the plot models, for each tree a random number between 0 and 

1 will be drawn to determine whether the tree is harvested.  In the tree models, however, there is 

only a binomial outcome of harvest or no-harvest.  Therefore the random number uniformly 
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distributed between zero and one is drawn, and if it less than the probability of a harvest 

occurring (from 0 to the probability) then a harvest occurs.  If it is greater than that probability, a 

harvest does not occur. 

This algorithm does not guarantee that when a plot is predicted to be in one of the three 

harvest categories, the corresponding percentage of the BA will actually end up being removed. 

For example, the plot could be selected for a low intensity thinning (≤20% of the BA removed), 

but the total BA of the trees actually selected for harvest could comprise more than 20% of the 

plot BA, or no trees could actually be selected for harvest. One could imagine several ways to 

revise the harvested tree list so that the result is always within the desired BA bound, or one 

could simply live with the tree selection that occurs in the first pass. 

McFadden R2 

In order to assess the goodness of fit of all models, McFadden R2 was used as a metric to 

determine the model fit.  This metric is appropriate for logistic models since it uses the deviance 

of the model, versus a null model where the intercept is set to 1.  By running a null model using 

1 as the only variable, we create a deviance statistic for which there is no change in the predictor 

for the varying levels of response.  Any reduction in variance due to good model fit then has a 

standard with which to compare.  General interpretation of this metric for assessing absolute 

model fit is not recommended, however, as logistic models tend to have lower R2 values than 

Gaussian regression models (Hosmer et al. 2013). 

The McFadden R2 is outlined in equation 4, below.  The proportion of deviance between 

model and null model is calculated, and the value is then subtracted from 1.  Better model fit 

occurs as McFadden R2 approaches 1. 

 
𝑀𝑐𝐹𝑎𝑑𝑑𝑒𝑛 𝑅2 = 1 − (

𝐷𝑒𝑣𝑖𝑎𝑛𝑐𝑒(𝑀𝑜𝑑𝑒𝑙)

𝐷𝑒𝑣𝑖𝑎𝑛𝑐𝑒(𝑁𝑢𝑙𝑙 𝑀𝑜𝑑𝑒𝑙)
) (Equation 4) 

 where:  

McFadden R2 is reported as proportion of variance explained by the 

model versus a null model. 

Model is the model being evaluated. 

Null Model is a model where a single model variable is set to 1. 
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 Akaike Information Criterion 

In the model selection process, the Akaike Information Criterion (AIC) was used to select 

final models based on the log-liklihood of that model versus similar models but reduced models.  

This metric, outlined in Equation 5, is not specifically interpretable beyond allowing for 

quantification of models for use in stepwise selection. 

 

 𝐴𝑘𝑎𝑖𝑘𝑒 𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 (𝐴𝐼𝐶)

= −2(𝑙𝑜𝑔 − 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑) + 2𝐾 +
2𝐾 (𝐾 + 1)

(𝑛 − 𝐾 − 1)
 

(Equation 5) 

  where: 

 AIC is the Akaike Information Criterion. 

 Log-Liklihood is the log-likelihood of the model 

 K is the # of model parameters. 

 And n is the number of observations. 

 

Odds Ratio 

The odds ratio in logistic modeling is how much more or less likely a predictive factor 

makes the outcome of occurring, per unit of that variable.  It is created by exponentiating the 

variable coefficient.  A value above one would be interpreted as the percentage more likely a 

harvest is to occur, for a change of one unit of the explanatory variable, and a number less than 

one would be what percentage less likely a harvest is to occur. 

Public/Private Assessed Harvest Behavior 

In addition to employing statistical models to research harvest behavior, valuable 

information could also be gained by looking at what is taken when a harvest occurs.  The same 

datasets that informed statistical models also provided information on the impact of the harvest 

on stand characteristics, and specifically how tree composition and abundance changed with a 

harvest.  Knowing the species, diameter and volume of trees that were harvested made it possible 

to assign value removed estimates. 
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The value of regeneration is not taken into account on these plots, as this is not the goal 

of the assessment, which is simply to track which trees were removed, and the underlying 

attributes associated with them compared with trees that were not removed.  Using the actual plot 

values, rather than measuring value change between two cycles, we can more accurately 

determine how the change affects stand dynamics at a tree level. 

Stand Value Change 

The value of a tree can be assigned using the merchantable volume and tree market price.  

Any harvest that removes valuable trees reduces the total value from the stand.  However, if 

lower-value species are harvested, in the long run this can increase the value of the stand as 

future growth is concentrated on trees with higher potential value. Some trees left behind in an 

improvement cut may be high-value species that currently have no value because they are too 

small to contain merchantable volume. Conversely, if higher-value species are removed, then the 

potential future value of the stand is reduced. 

To get at whether a harvest resulted in a net improvement in the long-term value of a 

stand, we developed two indicators of stand value that may increase or decrease with a harvest: 

1) plot value per square foot of basal area, and 2) plot value index per square foot of basal area. 

Value index is the species price times the basal area of a tree, rather than price times board feet, 

which would give plot value.  This index reflects the value of trees that are valuable species but 

are too small to have merchantable volume, as board foot volume only occurs in hardwoods over 

12 inches and softwoods over 9 inches, while basal area uses tree diameter.  Both of these 

indexes are measures of a concept that could be described as “value density,” or value per square 

foot of basal area.  A harvest that improves the value density of a stand can be considered an 

“improvement” cut, while those that reduce value density can be considered a “diminishment” 

cut. 

As covered in the literature review, the ownership of a timber stand affects the 

probability of harvesting activity. An interesting question is whether there is a difference 

between private and public ownerships with regard to whether harvests tend to improve or 

reduce the value of the stand.  The FIA classifies ownership groups into two groups: public and 

private.  The harvest behavior of both groups was examined using the natural hardwoods plots 
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with 20% to 85% BA removed. This subset of the data was used because this harvest category 

represents thinnings that could have the greatest impact on future stand development and the 

natural hardwoods category was the most abundant forest type group.  The analysis used two 

sample t-tests to assess whether there is a significant difference between public and private 

harvests, examining the characteristics of percent basal area removed, change in value per square 

foot of basal area removed, change in value index per square foot of basal area removed, and 

proportion of diameter removed to diameter remaining. 

 For testing the difference between means, an unequal variance was assumed with a two-

tailed Welch t-test.  The public/private, medium-heavily thinned, natural hardwood dataset 

consisted of 1,484 plots, with a 4:1 ratio of private to public.  The mean of each population was 

also tested using a one-sample t-test, to determine if the percent change in value per square foot 

of basal area, and the proportion of the diameter of trees harvested to the overall plot average 

diameter (discussed in the next section) were significantly different from zero and one, 

respectively. 

Diameter harvested versus overall average 

Assuming a possible reduction in quality and value of a stand due to selective species 

harvesting, the average diameter of harvested trees may be higher or lower than the stand 

average diameter. Selecting larger-than-average diameter trees may be indicative of diameter-

limit-cutting.  The average diameter of trees removed from the plot is divided by the average 

diameter of all trees on the plot.  This produced a proportion for harvested size versus stand size, 

where numbers above one indicated a harvest where trees larger than the average were taken, and 

trees under one indicated a harvest where trees smaller than the average were taken. 
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Chapter 4 - Results 

Two types of information were gained from the analysis of data from our northeastern 

United States forests.  The first is an examination of harvest behavior through the analysis of 

actual harvest activity observed from the cycle 1 dataset, and the second is a statistical 

examination of how environmental, economic, and social factors influence timber harvests. 

Plot Model Analysis 

Table 8 shows the McFadden R2’s for the five multinomial logistic regression models 

predicting the likelihood of harvesting a plot.  Table 9 shows the coefficients of these models, the 

corresponding odds ratios, and the p-values for the test of whether the effect measured by the 

coefficient is statistically different from zero. McFadden R2 was higher for softwood models, and 

are thus model fit was assumed to be low. 

 

 Table 8 - Plot level McFadden R2, giving model goodness of fit for the five modeling categories. 

PlotType McFadden R2 

Artificial (Art) 0.108 

Natural Aspen-Birch (NAB) 0.090 

Natural Northern Hardwood (NNH) 0.061 

Natural Oak-Hickory (NOH) 0.056 

Natural Softwood (NatSf) 0.115 

 

Results from the analysis of plot models (shown in table 9) reveals consistently strong 

significance across models for a variety of variables.  Volume is a strongly correlated with 

harvest, most significantly cubic feet, compared to board foot volume. In general, though, the 

diameter and diameter2 are more consistently significant overall.  Site factors tend to be non-

significant for high intensity harvests, likely due to the smaller number of plots receiving this 

type of harvest.  Lower intensity harvests exhibit significance in access and operability factors 

that affect the difficulty in procuring or utilizing timber. 

Many variable coefficients varied in sign and significance based on basal area removed.  

Latitude and longitude, was positive, but overwhelmingly significant only in the low to moderate 
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intensity harvests.  Population density was negatively correlated with harvests in all models, but 

only significant in moderate intensity harvests. 

 

Table 9 - Coefficients, odds ratio and p values for the variables in the different developed models. Negative 

coefficients are highlighted in red, and significant p-values are highlighted in green. 

 

Variable Model 
BA >85% BA 85%>20% BA <20% 

Coef Odds P* Coef Odds P* Coef Odds P* 

Intercept 

Art -9.78   0.00 -6.31   0.00 -6.69   0.00 

NAB -11.90  0.00 -6.87  0.00 -5.28  0.00 

NNH -11.25  0.04 -8.36  0.00 -8.09  0.00 

NOH -7.05  0.01 -8.06  0.00 -8.95  0.00 

NatSf -18.76  0.00 -10.19  0.00 -10.70  0.00 

Latitude NNH 0.11 1.11 0.35 0.14 1.15 0.00 0.08 1.09 0.00 

(Decimal Degrees) NOH -0.02 0.98 0.70 0.07 1.07 0.00 0.09 1.09 0.00 

  NatSf 0.25 1.28 0.02 0.14 1.16 0.01 0.17 1.19 0.01 

Longitude NNH 0.02 1.02 0.55 0.02 1.02 0.00 0.00 1.00 0.49 

(Decimal Degrees) NatSf -0.01 0.99 0.51 0.04 1.04 0.00 0.03 1.03 0.00 

Slope Art -0.05 0.95 0.09 -0.03 0.98 0.03 -0.01 0.99 0.36 

(Percent) NAB -0.05 0.96 0.02 -0.03 0.97 0.00 -0.01 0.99 0.55 

  NNH -0.03 0.97 0.12 -0.01 0.99 0.00 -0.01 0.99 0.00 

  NOH -0.04 0.96 0.01 -0.01 0.99 0.01 -0.01 0.99 0.00 

  NatSf -0.03 0.97 0.17 -0.01 0.99 0.41 0.00 1.00 0.57 

Population Density Art -0.75 0.47 0.08 -0.45 0.64 0.00 -0.02 0.98 0.78 

((Pop/Mile2)/100) NAB -0.02 0.98 0.91 -1.61 0.20 0.00 -0.16 0.85 0.45 

  NNH -0.01 0.99 0.90 -0.30 0.74 0.00 -0.02 0.98 0.48 

  NOH -0.04 0.96 0.48 -0.12 0.89 0.00 -0.01 0.99 0.65 

  NatSf -0.27 0.77 0.24 -0.24 0.79 0.01 -0.05 0.95 0.33 

Distance to Mill Art -0.10 0.90 0.03 -0.01 0.99 0.59 -0.01 0.99 0.55 

(Miles) NAB -0.01 0.99 0.67 -0.02 0.98 0.05 -0.02 0.98 0.18 

  NNH 0.02 1.02 0.55 0.02 1.02 0.00 -0.03 0.97 0.01 

  NOH -0.06 0.94 0.08 -0.04 0.96 0.00 -0.02 0.98 0.00 

  NatSf -0.02 0.98 0.32 0.00 1.00 0.73 -0.04 0.96 0.02 

Distance to Road Art -0.09 0.92 0.86 -0.17 0.85 0.51 -0.76 0.47 0.18 

(Miles)  NAB -0.25 0.78 0.20 -0.23 0.80 0.04 -0.14 0.87 0.34 

  NNH -0.13 0.88 0.69 -0.18 0.84 0.02 -0.56 0.57 0.00 

  NOH -0.09 0.91 0.81 -0.07 0.93 0.49 -0.36 0.70 0.01 

  NatSf -0.16 0.85 0.39 -0.29 0.75 0.01 -0.58 0.56 0.00 
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Variable Model 
BA >85% BA 85%>20% BA <20% 

Coef Odds P* Coef Odds P* Coef Odds P* 

Value per Ft2 NAB -2.45 0.09 0.01 0.08 1.08 0.84 0.61 1.84 0.14 

(($BFAcre/1000)/(BA/100)) NNH 0.14 1.15 0.33 0.09 1.10 0.05 0.01 1.01 0.90 

  NOH 0.04 1.04 0.89 0.35 1.42 0.00 0.22 1.25 0.00 

  NatSf 1.57 4.81 0.00 0.99 2.70 0.00 -0.18 0.84 0.64 

Owner(Public) 

Art -0.88 0.41 0.05 -0.55 0.58 0.01 -0.59 0.55 0.03 

NAB -0.16 0.85 0.56 -0.34 0.71 0.03 -0.88 0.41 0.00 

NNH -0.51 0.60 0.32 -1.32 0.27 0.00 -1.17 0.31 0.00 

NOH 0.69 1.99 0.20 -0.23 0.80 0.21 -1.46 0.23 0.00 

NatSf -0.35 0.70 0.32 -0.80 0.45 0.00 -0.65 0.52 0.00 

Owner(Public)*Value NOH -0.84 0.43 0.15 -0.46 0.63 0.00 0.14 1.16 0.23 

Basal Area per Acre 
(Feet2/100) 

 

Art -0.12 0.89 0.90 1.10 3.01 0.01 1.81 6.13 0.00 

NOH -0.44 0.65 0.43 0.08 1.09 0.59 0.89 2.43 0.00 

NatSf -2.21 0.11 0.01 -0.59 0.55 0.05 0.52 1.68 0.12 

Board Feet per Acre 
(Feet/1000) 

NOH -0.01 0.99 0.82 0.02 1.02 0.23 -0.05 0.95 0.00 

NatSf -0.36 0.69 0.00 -0.09 0.91 0.03 0.01 1.01 0.80 

Cubic Feet per Acre 
(Feet3/1000) 

 
 

Art 0.13 1.14 0.74 -0.17 0.84 0.35 -0.57 0.56 0.05 

NAB 0.25 1.29 0.12 0.33 1.40 0.00 0.46 1.58 0.00 

NNH -0.14 0.87 0.57 0.21 1.24 0.00 0.28 1.32 0.00 

NatSf 1.98 7.24 0.00 0.67 1.95 0.01 -0.04 0.96 0.90 

Average Diameter 
(DBH Inches) 

 
 

 

Art 1.80 6.05 0.02 1.01 2.75 0.00 0.77 2.16 0.02 

NAB 1.70 5.48 0.00 1.17 3.23 0.00 0.70 2.01 0.01 

NNH 0.44 1.56 0.27 0.31 1.36 0.01 0.40 1.49 0.01 

NOH 0.55 1.74 0.05 0.46 1.58 0.00 0.46 1.58 0.00 

NatSf 0.50 1.66 0.20 1.25 3.50 0.00 0.48 1.61 0.02 

Average Diameter2 
(DBH Inches) 

 
 

 

Art -0.10 0.91 0.03 -0.06 0.94 0.00 -0.03 0.97 0.08 

NAB -0.07 0.93 0.03 -0.07 0.93 0.00 -0.06 0.94 0.00 

NNH -0.01 0.99 0.52 -0.01 0.99 0.03 -0.02 0.98 0.01 

NOH -0.02 0.98 0.15 -0.02 0.98 0.00 -0.02 0.98 0.00 

NatSf -0.03 0.97 0.23 -0.09 0.91 0.00 -0.03 0.97 0.04 

Hardwoods Art -0.92 0.40 0.17 -0.60 0.55 0.04 -0.42 0.66 0.19 

Southern Pines Art 0.44 1.56 0.30 0.33 1.39 0.12 -1.31 0.27 0.00 

Oak - Pine NOH 1.18 3.26 0.00 0.43 1.54 0.00 -0.03 0.97 0.84 

Other HdWd/Swamp Forest NOH -0.53 0.59 0.27 -0.67 0.51 0.00 -0.70 0.50 0.00 

Northern Pines - Hemlock NatSf 1.23 3.42 0.00 0.61 1.85 0.00 1.00 2.72 0.00 

Southern Pines - Other Conifers NatSf 2.09 8.07 0.02 0.83 2.28 0.05 0.67 1.95 0.23 
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Location 

Latitude and longitude tend to be significant and positive in natural hardwood models for 

less than 20% BA removed and between 20% to 85% BA removed.  This suggests the further 

east and north a plot is the more likely that plot is to undergo a harvest.  For example, for 

moderate intensity northern hardwood harvests, the probability of a harvest increases by 15% for 

each degree of latitude increased and 3% for each degree of longitude. 

Distance to a mill and distance to an improved road are also important factors, given their 

significance and consistency.  Distance to mill tends to be significantly negative for low and 

moderate intensity harvests, which may be due to an overall trend of access and operability 

factors being significant when few trees were removed from a plot.  This equates to a reduced 

probability of harvest the further from a lumber mill the plot is.  Distance to road is also 

significantly negative for low and medium intensity harvests, suggesting that more remote stands 

are significantly less likely to be harvested.  Population density is negatively related with harvest 

probability in nearly all harvesting models, but it is only statistically significant in moderate 

harvest intensity models. 

Plot slope is also consistently negatively related to harvesting overall.  Plots with steeper 

slopes are less likely to be harvested in all models where it is significant.  On average, a one 

degree increase in slope causes a 3% reduction in harvest probability.  This negative harvest 

probability effect is strongest as the basal area removed increases. 

Ownership 

The category of ownership is influential in determining harvest frequency according to 

previous literature (Butler and Leatherberry 2004).  The analysis here suggests a similar result, 

with public ownership correlating to a decreased probability of a harvest, specifically reducing 

the odds of being harvested by 50% to 75% in significant cases.  This effect is more statistically 

significant for plots where a lower volume of timber was harvested.  Interacting public 

ownership with value gave significant results only in the moderate intensity harvests of Natural 

Oak-Hickory stands, suggesting that public owners are less influenced by value for those stands. 
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Value Per Square Foot of Basal Area 

Value per square foot of basal area tends to be positively related to harvesting likelihood 

when statistically significant. The one exception is overstory removal harvests on natural aspen-

birch plots. The significance of plot value in some of the models suggests that harvesting occurs 

with monetary goals in mind.  Value per square foot of basal area was not significant on 

artificially-regenerated plots. The variable was generally significant and positively related to the 

probability of harvest for natural stands – except aspen-birch.  This effect was strongest in 

natural softwood stands. 

Diameter/Volume 

Diameter and diameter2 are both strongly significant across almost all models, making 

them valuable in predicting whether a stand is likely to undergo a harvest. The strong non-linear 

response in harvest likelihood to the average diameter suggests that stands with very large trees 

are less likely to be harvested. A possible explanation for this is that the presence of very large 

trees indicates that timber management is not a high priority for the owners of those stands. 

Consequently, the likelihood that a stand will be harvested tends to increase with diameter up to 

a point of maximum likelihood and then it declines. Diameter tended to be most strongly 

significant in moderate intensity harvests, and the squared effect of diameter is strongest in 

artificial and natural aspen-birch stands.   

Plot volume in feet3/acre tends to be significantly positively related to the probability of 

medium intensity thinnings on natural-origin stands, but negatively related to the probability of 

thinnings on artificial stands.  In moderate intensity harvests, the odds ratio indicates that each 

thousand cubic feet increase in volume improves the probability of a harvest by between 25%-

95%.  Somewhat unexpectedly, board foot volume, which is only greater than zero on trees 9 

inches or larger for softwoods and 12 inches or larger for hardwoods, was negatively related to 

harvesting when it was significant.  This is likely reinforced by cubic foot, board foot, basal area, 

and diameter are all being highly correlated.  Higher basal area, which is a measure of the 

density of a stand, tended to be significantly positive for thinnings, increasing the odds of harvest 

on artificial stands, and significantly negative for overstory removal harvests.  Higher basal area 

makes a low intensity harvest more likely, and a high intensity harvest less likely. 
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Forest Type 

The effect of forest type varied across models due to different forest type groupings being 

used within those models.  In artificial plots, southern pine plots were less likely to be harvested 

than northern pines in low intensity harvests, while hardwoods were less likely to be harvested in 

moderate intensity harvests.  In the broad oak-hickory modeling category, oak-hickory stands 

were less likely to be harvested in moderate-to-high intensity harvests than oak-pine stands, but 

more likely to be harvested than swamp-forest stands in moderate-to-low intensity harvests.  In 

the natural softwoods model, spruce-fir was significantly less likely than northern pines-hemlock 

to be harvested at all intensities, and significantly less likely than southern pines-other conifers in 

moderate-to-high intensity harvests. 

Tree Model Analysis 

Table 10 shows the McFadden R2’s for the 30 logistic regression models of the likelihood 

of a tree being harvested.  Table 11 shows the coefficients of these models, the corresponding 

odds ratios, and the p-values for the test of whether the effect measured by the coefficient is 

statistically different from 0. Tree-level models utilized a smaller variable list than plot-level 

models.  The overall result was consistent effects and significance within volume variables, with 

varied effects and significance among species. 

McFadden R2 was higher overall in individual tree models than plot models, suggesting 

that model fit for tree harvests is less difficult than plot-level harvests, using model fit as a 

reference.  Best model fit was in the high harvest intensity categories of natural aspen-birch and 

natural softwoods, and artificial plots on publically held land. Model fit was generally higher the 

higher the harvest intensity, suggesting that more likely events – such as a tree being harvested in 

a plot where more than 85% of the basal area is being removed – are easier to predict than less 

likely events – such as a tree being harvested in a plot where less than 20% of the basal area is 

being removed. 
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Table 10 - McFadden R2s for 30 tree-level models, showing goodness of fit of each model. 

Ownership PlotType BA>85% 85%>BA>20% BA<20% 

Private Artificial 0.277 0.074 0.113 

Private NaturalAB 0.423 0.219 0.056 

Private NaturalNH 0.232 0.124 0.052 

Private NaturalOH 0.275 0.118 0.031 

Private NaturalSoftwood 0.321 0.168 0.074 

Public Artificial 0.641 0.071 0.112 

Public NaturalAB 0.527 0.198 0.049 

Public NaturalNH 0.235 0.064 0.019 

Public NaturalOH 0.314 0.127 0.057 

Public NaturalSoftwood 0.415 0.159 0.080 

 

Diameter/Volume 

Diameter and diameter2 were the strongest predictors in the tree models (Table 11).  They 

were significant in all but one of the models, and in that model, public natural oak-hickory, the p-

value for diameter2 was 0.061.  The parameter values also showed a consistent nonlinear pattern 

as in the plot level models.   

Cubic feet was also consistently significant and positive. The odds ratios for this variable 

suggested the largest increase in harvest odds due to this variable occurs in high-intensity 

harvests in natural aspen-birch stands. 

Cull 

Cull was negatively related to harvest probability in all of the private tree harvest models 

and in most public tree harvest models. In most cases it is significantly different from zero, and 

when the coefficient is negative, it is generally significantly different from zero, with the one 

exception of overstory removal harvests on publicly-owned natural aspen-birch stands.  Thus, in 

most models trees with a higher percentage of dead wood are less likely to be harvested, with the 

overall average of each percentage increase in cull reducing the probability of harvest by roughly 

3% on average. By contrast, while not significant, the estimated cull coefficients for overstory 

removal harvests on public land are positive and large, suggesting that trees with a large 

proportion of cull are almost certain to be harvested in those instances. 
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Species 

Timber species significance varied considerably among different tree models.  The goal 

in modeling species was to examine harvest trends for individual species depending on which 

forest type they occurred.  This can work to explain which species are targeted depending on 

forest type.  White oak, for example, is consistently less likely to be harvested in moderate to 

heavy thinnings, regardless of forest type.  Spruce-fir has roughly a 50% less chance to be 

harvested than aspen in a natural aspen-birch stand, regardless of harvest type.  Aspen trees are 

2-3 times more likely to be harvested than sugar maple on natural northern hardwood plots.  Red 

maple on natural oak-hickory stands in low to moderate intensity harvests is also 2-3 times more 

likely to be harvested than sugar maple.  Elm is almost 75% less likely to be harvested in the 

majority of moderate intensity harvests.  Other softwoods are half as likely to be harvested in 

natural stands overall. 
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Table 11 - Statistical output, including coefficients, odds ratios and p-values for 30 tree-level models. Negative coefficients are shown in red, and significant p-values are 

shown in green. 

    Private Public 

    BA>85% 85%>BA>20% BA<20% BA>85% 85%>BA>20% BA<20% 

Variable PlotType Coef Odds P* Coef Odds P* Coef Odds P* Coef Odds P* Coef Odds P* Coef Odds P* 

Intercept 

Art -1.24  0.03 -2.59  0.00 -2.64  0.00 -9.83  0.00 -3.4  0.00 -2.69  0.00 

NatAB -1.09  0.00 -3.71  0.00 -3.01  0.00 -2.67  0.00 -3.14  0.00 -5.19  0.00 

NatNH -0.51  0.13 -3.41  0.00 -4.59  0.00 -1.57  0.01 -2.46  0.00 -3.74  0.00 

NatOH -0.25  0.56 -2.72  0.00 -4.14  0.00 -2.45  0.00 -2.24  0.00 -3.02  0.00 

NatSoft -0.95  0.05 -3.15  0.00 -4.29  0.00 -4.94  0.00 -3.73  0.00 -4.27  0.00 

Cubic 
Feet 
(Ft3 

Volume) 

Art 0.06 1.06 0.00 0.02 1.02 0.00     0.64 1.9 0.00 0.03 1.03 0.00 0.04 1.04 0.01 

NatAB 0.21 1.24 0.00 0.05 1.05 0.00 0.03 1.03 0.00 0.25 1.29 0.00 0.05 1.05 0.00 0.04 1.04 0.01 

NatNH 0.01 1.01 0.10 0.01 1.01 0.00 0.00 1 0.22 0.08 1.08 0.00 0.01 1.01 0.00 0.01 1.01 0.02 

NatOH 0.05 1.05 0.00 0.01 1.01 0.00     0.19 1.21 0.00 0.03 1.03 0.00     

NatSoft 0.09 1.1 0.00 0.01 1.01 0.00 0.00 1 0.35 0.20 1.23 0.00 0.04 1.05 0.00 0.01 1.01 0.20 

Diameter 
(DBH 

Inches) 

Art 0.95 2.59 0.00 0.62 1.86 0.00 0.17 1.18 0.04 4.62 101.9 0.00 0.73 2.07 0.00 0.62 1.86 0.00 

NatAB 1.27 3.56 0.00 0.98 2.67 0.00 0.27 1.31 0.00 1.53 4.6 0.00 0.86 2.35 0.00 0.72 2.06 0.00 

NatNH 0.47 1.61 0.00 0.44 1.55 0.00 0.32 1.38 0.00 0.85 2.33 0.00 0.37 1.44 0.00 0.40 1.49 0.00 

NatOH 0.48 1.62 0.00 0.29 1.33 0.00 0.17 1.19 0.00 1.29 3.63 0.00 0.53 1.69 0.00 0.15 1.16 0.03 

NatSoft 0.72 2.06 0.00 0.66 1.94 0.00 0.5 1.65 0.00 2.11 8.27 0.00 1.1 2.99 0.00 0.55 1.74 0.00 

Diameter2 

(DBH 
Inches) 

Art -0.08 0.92 0.00 -0.05 0.95 0.00 -0.01 0.99 0.05 -0.71 0.49 0.00 -0.06 0.94 0.00 -0.07 0.93 0.00 

NatAB -0.21 0.81 0.00 -0.08 0.92 0.00 -0.03 0.97 0.00 -0.25 0.78 0.00 -0.07 0.93 0.00 -0.07 0.94 0.00 

NatNH -0.02 0.98 0.00 -0.02 0.98 0.00 -0.01 0.99 0.00 -0.08 0.92 0.00 -0.02 0.98 0.00 -0.03 0.97 0.00 

NatOH -0.05 0.96 0.00 -0.01 0.99 0.00 0.00 1 0.00 -0.18 0.83 0.00 -0.04 0.96 0.00 -0.01 0.99 0.06 

NatSoft -0.09 0.91 0.00 -0.04 0.96 0.00 -0.02 0.98 0.00 -0.25 0.78 0.00 -0.09 0.91 0.00 -0.04 0.96 0.00 

Cull 

(% dead 
wood) 

Art -0.07 0.93 0.00 -0.02 0.98 0.00 -0.09 0.91 0.13 11.78 1E+05 0.99 -0.03 0.97 0.09 -1.17 0.31 0.16 

NatAB -0.02 0.98 0.14 -0.01 0.99 0.01 -0.01 0.99 0.33 0.13 1.14 0.05 0.01 1.01 0.23 0.00 1 0.94 

NatNH -0.05 0.95 0.00 -0.03 0.97 0.00 -0.02 0.98 0.00 -0.06 0.95 0.04 -0.03 0.98 0.00 0.00 1 0.73 

NatOH -0.01 0.99 0.03 -0.02 0.98 0.00 -0.01 0.99 0.06 15.02 3E+06 0.99 -0.01 0.99 0.09 -0.01 0.99 0.50 

NatSoft -0.02 0.98 0.00 -0.04 0.96 0.00 -0.03 0.97 0.00 12.43 3E+05 0.98 -0.03 0.97 0.04 -0.05 0.95 0.17 

 



  57 

 

 

    Private Public 

    BA>85% 85%>BA>20% BA<20% BA>85% 85%>BA>20% BA<20% 

Variable PlotType Coef Odds P* Coef Odds P* Coef Odds P* Coef Odds P* Coef Odds P* Coef Odds P* 

Species 
American 

Beech 

Art      0.40 1.49 0.34    -5.24 0.01 0.01         

NatAB -1.66 0.19 0.31 -1.12 0.33 0.15 1.38 3.96 0.00      0.87 2.39 0.6     

NatNH      0.82 2.27 0.00 0.52 1.69 0.00      0.07 1.07 0.66     

NatOH -0.25 0.78 0.72 -0.13 0.88 0.33 0.21 1.23 0.47      -0.42 0.66 0.23 -15 0.00 0.99 

NatSoft      -2.30 0.10 0.00 -0.32 0.72 0.54      -15.8 0.00 0.99 -13.9 0.00 0.99 

Species 
Ash 

Art 12.16  1 0.12 1.12 0.65    26.58 3E+11 1 -14.1 0.00 0.98 -16.8 0.00 0.99 

NatAB -1.04 0.35 0.03 -1.32 0.27 0.00 -0.67 0.51 0.16 -1.25 0.29 0.02 -2.66 0.07 0.00     

NatNH      0.11 1.11 0.23 0.4 1.49 0.00      0.17 1.18 0.49     

NatOH 1.44 4.24 0.07 0.02 1.02 0.83 0.51 1.67 0.00      -0.59 0.56 0.01 -0.88 0.42 0.11 

NatSoft -17.8 0.00 0.99 -1.43 0.24 0.00 -0.95 0.39 0.04      0.78 2.17 0.37 -13.5 0.00 0.98 

Species 
Aspen 

Art -0.44 0.64 0.47 0.29 1.34 0.26    -1.76 0.17 0.37 0.73 2.07 0.00 -0.49 0.61 0.25 

NatNH      1.22 3.40 0.00 0.96 2.60 0.00      0.70 2.01 0.00     

NatOH -1.16 0.31 0.07 0.80 2.22 0.00 0.68 1.98 0.00      0.44 1.55 0.01 1.11 3.04 0.00 

NatSoft 0.60 1.81 0.44 -0.23 0.80 0.15 0.25 1.28 0.32      -0.19 0.83 0.35 -0.27 0.76 0.56 

Species 
Birch 

Art 0.01 1.01 0.99 -0.69 0.50 0.25    1.32 3.75 0.73 -1.28 0.28 0.09 -1.33 0.27 0.22 

NatAB -0.48 0.62 0.22 -0.16 0.85 0.13 -0.14 0.87 0.46 -0.54 0.58 0.14 -0.21 0.81 0.09     

NatNH      0.66 1.94 0.00 0.61 1.84 0.00      0.16 1.18 0.52     

NatOH -0.29 0.75 0.84 0.55 1.74 0.00 0.22 1.24 0.27      -0.20 0.82 0.37 0.23 1.26 0.72 

NatSoft -0.72 0.49 0.17 -0.61 0.54 0.00 0.12 1.12 0.60      0.09 1.10 0.73 1.26 3.52 0.00 

Species 
Elm 

Art -17.7 0.00 0.99 -0.43 0.65 0.26    26.05 2E+11 1 -0.54 0.58 0.50 1.91 6.74 0.2 

NatAB -0.38 0.68 0.75 -2.53 0.08 0.00 0.75 2.12 0.18 15.51 5E+06 0.99 -1.70 0.18 0.00     

NatNH      -0.18 0.84 0.36 0.8 2.23 0.00      0.89 2.44 0.29     

NatOH 0.14 1.15 0.81 -0.75 0.47 0.00 0.45 1.57 0.00      -2.62 0.07 0.01 -0.50 0.6 0.63 

NatSoft -0.90 0.41 0.36 -3.00 0.05 0.00 0.52 1.69 0.35      -15.7 0.00 0.99     

Species 
Hickories 

Art 16.5  0.99 0.44 1.55 0.21         -14.7 0.00 0.98     

NatAB      -0.55 0.58 0.47 -15.3 0.00 1              

NatNH      -0.06 0.95 0.80 -0.5 0.61 0.24      -14.3 0.00 0.98     

NatOH -0.79 0.45 0.15 -0.63 0.53 0.00 -0.17 0.84 0.31      -2.01 0.13 0.00 -1.68 0.19 0.10 

NatSoft -0.11 0.89 0.93 0.08 1.08 0.88 -14.7 0.00 0.99       -17.1 0.00 0.98       
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    Private Public 

    BA>85% 85%>BA>20% BA<20% BA>85% 85%>BA>20% BA<20% 

Variable PlotType Coef Odds P* Coef Odds P* Coef Odds P* Coef Odds P* Coef Odds P* Coef Odds P* 

Species 
Miscellaneous 

Hardwoods 

Art 0.90 2.46 0.11 0.1 1.11 0.56         -0.54 0.58 0.62 -17.4 0.00 0.99 

NatAB 11.93  0.99 -0.87 0.42 0.06 -0.09 0.91 0.88 13.22 6E+05 0.99 -1.82 0.16 0     

NatNH      -0.15 0.86 0.13 -0.01 0.99 0.94     0.14 1.15 0.43     

NatOH 0.44 1.55 0.30 -0.30 0.74 0.00 0.15 1.16 0.26     -1.18 0.31 0 -0.15 0.86 0.71 

NatSoft 2.59 13.29 0.00 -0.52 0.59 0.04 -0.50 0.60 0.35     -1.99 0.14 0.07 -13.9 0.00 0.99 

Species Non-
Canopy/ Non-
Commerical 

Art -1.08 0.34 0.10 0.06 1.06 0.82         -1.2 0.3 0.25 -16.6 0.00 0.99 

NatAB -1.37 0.25 0.02 -1.18 0.31 0.00 -0.32 0.72 0.5 -1.98 0.14 0.08 -2.59 0.07 0.01     

NatNH      0.10 1.11 0.39 0.48 1.62 0.01     0.03 1.03 0.92     

NatOH 1.46 4.29 0.01 -0.16 0.85 0.09 0.55 1.73 0     -1.29 0.28 0.00 -0.30 0.74 0.59 

NatSoft 0.26 1.30 0.73 -0.24 0.78 0.11 0.05 1.05 0.87     -14.2 0 0.96 -13.1 0.00 0.99 

Species Other 
Red Oak 

Art -0.35 0.7 0.69 -0.45 0.64 0.16     29.39 6E+12 1 0.83 2.3 0.08 0.51 1.66 0.39 

NatAB      -13.5 0.00 0.97                 

NatNH      -11.7 0.00 0.93 -11.1 0.00 0.94             

NatOH -0.29 0.75 0.58 0.12 1.13 0.14 0.54 1.72 0     0.42 1.52 0.02 -0.04 0.96 0.92 

NatSoft -1.67 0.19 0.00 -0.25 0.78 0.52 -14.7 0.00 0.98     0.54 1.71 0.62 0.12 1.13 0.91 

Species Other 
Softwoods 

Art 0.12 1.13 0.88 1.98 7.21 0.01     16.26 1E+07 1 -6.2 0 1 -17.2 0.00 1 

NatAB -2.17 0.11 0.02 -0.60 0.55 0.00 0.76 2.14 0 14.6 2E+06 0.99 -1.41 0.24 0.00     

NatNH      -0.14 0.87 0.09 -0.62 0.54 0     -1.14 0.32 0.00     

NatOH 1.25 3.47 0.26 -0.79 0.45 0.00 -0.04 0.96 0.83     -0.36 0.7 0.52 -15.3 0.00 0.98 

NatSoft 3.51 33.58 0.00 -0.39 0.68 0.00 -1.15 0.32 0     -0.99 0.37 0.00 -0.25 0.78 0.35 

Species Other 
Valuable 

Hardwood 

Art 0.61 1.85 0.67 -0.14 0.87 0.61     -1.13 0.32 0.84 -0.76 0.47 0.26 -17 0.00 0.99 

NatAB -2.20 0.11 0.04 -1.21 0.3 0.00 -0.01 0.99 0.99 -4.59 0.01 0.58 -1.76 0.17 0.01     

NatNH      0.13 1.14 0.04 0.26 1.29 0.04     -0.55 0.58 0.00     

NatOH -0.28 0.75 0.62 -0.17 0.84 0.11 0.46 1.58 0     -1.58 0.21 0.00 -0.92 0.40 0.22 

NatSoft -0.83 0.44 0.45 -0.51 0.6 0.00 -0.37 0.69 0.27     -1.9 0.15 0.00 0.04 1.04 0.95 

Species White 
Oak 

Art      -1.36 0.26 0.03         -0.98 0.38 0.20 -16.8 0.00 1 

NatAB -17.2 0.00 0.97 -1.86 0.16 0.00 -15.1 0 0.98 13.94 1E+06 1 -2.14 0.12 0.01     

NatNH      -1.67 0.19 0.03 1.22 3.39 0.03             

NatOH 0.52 1.69 0.47 -0.18 0.83 0.05 0.10 1.11 0.48     -0.49 0.61 0.02 -0.6 0.55 0.21 

NatSoft -16.2 0.00 0.99 -2 0.14 0.00 1.31 3.69 0.14       15.66   0.99 -14.4 0.00 0.99 
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    Private Public 

    BA>85% 85%>BA>20% BA<20% BA>85% 85%>BA>20% BA<20% 

Variable PlotType Coef Odds P* Coef Odds P* Coef Odds P* Coef Odds P* Coef Odds P* Coef Odds P* 

Species 
Red & 
White 
Pine 

NatAB -1.41 0.24 0.28 -2.11 0.12 0.00 -16.4 0.00 0.97 -16.7 0.00 0.99 -2.55 0.08 0.00     

NatNH      0.24 1.27 0.19 0.33 1.40 0.13     0.29 1.34 0.37     

NatOH -0.93 0.39 0.12 -0.07 0.93 0.49 0.58 1.79 0.00     -0.67 0.51 0.00 0.04 1.04 0.92 

NatSoft 2.88 17.77 0.00 -0.52 0.6 0.00 -0.77 0.46 0.00     -1.32 0.27 0.00 -0.80 0.45 0.01 

Species 
Red 

Maple 

Art 1.17 3.24 0.07 -0.16 0.85 0.46     3.61 36.81 0.06 -0.44 0.65 0.30 -0.60 0.55 0.38 

NatAB 0.82 2.26 0.08 -0.83 0.43 0.00 -0.28 0.76 0.27 1.68 5.39 0.00 -0.56 0.57 0.00     

NatNH      0.37 1.45 0.00 0.30 1.35 0.00     0.33 1.39 0.00     

NatSoft -0.04 0.96 0.92 -0.74 0.48 0.00 -0.36 0.7 0.07     -0.35 0.70 0.12 0.24 1.27 0.61 

Species 
Southern-
Jack Pine 

Art -0.97 0.38 0.00 0.51 1.67 0.00     -0.15 0.86 0.90 1.27 3.56 0.00 0.81 2.24 0.07 

NatAB      0.96 2.61 0.01 0.09 1.10 0.90     -0.55 0.57 0.29     

NatNH      -11.8 0 0.97 -10.9 0.00 0.98             

NatOH -0.50 0.60 0.30 0.82 2.28 0.00 1.12 3.06 0.00     1.20 3.33 0.01 -15.5 0.00 0.99 

NatSoft 0.44 1.56 0.08 -0.03 0.97 0.7 -0.61 0.54 0.01     0.22 1.24 0.11 -1.19 0.30 0.01 

Species 
Spruce-

Fir 

Art -0.29 0.75 0.65 -0.66 0.52 0.01     1.41 4.10 0.42 0.75 2.12 0.00 -0.81 0.44 0.01 

NatAB -0.68 0.51 0.01 -0.37 0.69 0.00 -1 0.37 0.00 -0.42 0.66 0.13 -0.39 0.67 0.00     

NatNH      1 2.72 0.00 0.58 1.79 0.00     0.11 1.12 0.54     

NatOH -2.17 0.11 0.00 0.64 1.89 0.00 0.59 1.81 0.02     -0.73 0.48 0.10 -0.95 0.39 0.21 

Species 
Sugar 
Maple 

Art 15.36  0.99 1.02 2.77 0.09     -23.4 0.00 1 -13.6 0.00 0.98 -16.7 0.00 0.99 

NatAB -1.16 0.31 0.08 -0.37 0.69 0.13 0.06 1.06 0.90 3.69 39.92 0.00 -1.52 0.22 0.00     

NatOH 0.38 1.46 0.61 -1.06 0.35 0.00 -0.11 0.89 0.59     0.13 1.14 0.64 0.05 1.05 0.91 

NatSoft      -1.09 0.34 0.01 -14.4 0.00 0.96     -1.18 0.31 0.11 0.83 2.30 0.16 

Species 
Valuable 
Red Oak 

Art 15.34  0.98 0.08 1.08 0.79     -17.3 0.00 1 1.34 3.83 0.01 -17.1 0.00 0.99 

NatAB -0.65 0.52 0.44 -2.98 0.05 0.00 1.14 3.11 0.00 -0.07 0.94 0.95 -0.97 0.38 0.00     

NatNH      0.29 1.33 0.02 0.44 1.55 0.01     -0.56 0.57 0.07     

NatOH -1.42 0.24 0.02 -0.03 0.97 0.67 0.26 1.30 0.06     -0.21 0.81 0.13 0.11 1.11 0.73 

NatSoft 1.01 2.74 0.38 -1.14 0.32 0.00 -0.29 0.75 0.42       -0.51 0.60 0.13 -0.37 0.69 0.63 
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    Private Public 

    BA>85% 85%>BA>20% BA<20% BA>85% 85%>BA>20% BA<20% 

Variable PlotType Coef Odds P* Coef Odds P* Coef Odds P* Coef Odds P* Coef Odds P* Coef Odds P* 

Species 
White 
Oak 

Art 1.43 4.18 0.23 0.17 1.19 0.49         -12.4 0.00 0.99 -16.8 0.00 0.99 

NatAB      -13.6 0.00 0.95 -15.3 0.00 0.99     -0.46 0.63 0.55     

NatNH      -0.29 0.75 0.39 -0.22 0.80 0.83     -14.1 0.00 0.98     

NatOH 0.30 1.36 0.54 -0.10 0.90 0.20 0.14 1.15 0.33     -1.23 0.29 0.00 0.05 1.05 0.88 

NatSoft 12.78  0.99 -0.56 0.57 0.23 -1.11 0.33 0.28     -0.79 0.45 0.39     

Species 
Yellow-
Poplar 

Art 0.91 2.49 0.12 0.00 1 0.99         -1.14 0.32 0.33     

NatNH      0.13 1.13 0.66 -0.68 0.51 0.36     -14.6 0.00 0.97     

NatOH 2.30 9.97 0.03 0.17 1.18 0.10 0.31 1.36 0.09     -0.84 0.43 0.08 0.44 1.56 0.37 

NatSoft 13.49   0.98 -0.57 0.56 0.07 -14.8 0.00 0.98       -18.2 0.00 0.99       
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Public/Private Harvest Index 

Assessment of percent change in value per square foot basal area on harvested plots 

showed that the pattern of value removed from private plots differed significantly from public 

plots. Figure 6 shows a scatterplot of natural hardwood plots with between 20 and 85% of the 

basal area removed. The vertical axis of the graph shows the percent change in value per square 

foot of basal area. Positive values indicate that the harvest increased the value per square foot of 

basal area, while negative values indicate that the harvest decreased the value per square foot of 

basal area. Reductions of up to 100% are possible if the remaining trees have no value. This 

could happen if the remaining trees are too small to have merchantable board foot volume. 

Increases in value per square foot are possible if small or lower-value trees are removed. Possible 

increases in value per square foot are limited if only a small percent of the basal area is removed. 

This is why there are no points in the upper right corner of the graph. 
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Figure 6 - Percent change in value per ft2 versus percent of basal area removed on natural hardwood FIA 

plots where more than 20% and less than 85% of the basal area was removed. by public and private 

ownership. 

 

While both ownership categories have plots above and below the 0% change line, private 

plots are much more likely to be below the line than above it while public plots are only slightly 

more likely to be below the line. This result was confirmed statistically by calculating the 

average percent change in value per ft2 of basal area for both ownerships. As shown in Table 12, 

the average percent change in value per ft2 of basal area for private plots was -33.1%, while the 

average percent change in value per ft2 of basal area for public plots was only -11.8%.  These 

values are both significantly different from zero and from each other.  

Unless the trees removed have no value, harvests will always decrease the total value of a 

stand. Harvests also always decrease the basal area of a stand. This is why the value per square 

foot of basal area can go up or down after a harvest. Each tree has a value and represents a 

certain amount of the square foot basal area of the stand. If a tree that has a value per square foot 

of basal area that is lower than the stand average is harvested, this will increase the value per 

square foot of the residual stand. If a tree that has a value per square foot that is higher than the 

stand average is harvested, then the value per square foot of the residual stand is decreased. The 
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value per square foot of a tree tends to be higher if the tree is a high value species. It also tends to 

be higher for larger trees. For trees that are too small to have any board foot volume, the value 

per square foot of basal area is zero. As a tree grows past the minimum diameter for sawtimber, 

its value becomes positive. After that, it will tend to put on board foot volume at a faster rate 

than it increases in basal area. Thus, trees vary in terms of their value per ft2 of basal area for two 

reasons: 1) because different species have different values, and 2) because larger trees have more 

value per ft2 of basal area than small trees. Thus a harvest may decrease the average value per ft2 

of basal area for two reasons: 1) because higher-value species are more likely to be removed, or 

2) because larger trees are more likely to be removed.  

The first reason is more of a concern than the second. If larger trees are being removed, 

but the species composition of the stand is not being changed, then once the smaller trees grow 

larger, the stand likely will recover in value. On the other hand, if the higher-value species are 

being removed from the stand, then it is unlikely that the stand will recover its value. The 

purpose of the “value index” measure used in this thesis is to eliminate the size effect to allow us 

to focus on the species effect. Thus the value index is based on the price per board foot of a 

given species, but rather than multiplying this price times board foot volume, it is multiplied by 

the basal area of the tree. This index values a board foot of basal area the same whether it is from 

a small tree or a large tree and therefore removes the size effect from the value measure. 

Figure 7 shows a plot of the percent change in value index per square foot of basal area, 

against the percent basal area removed and also indicates the ownership of the plot.  Value index 

shows a pattern of increasing variability in value gained and lost as percent of basal area 

removed increases, just as value does.  However, with value index, public plots tend to be above 

zero, the line at which stand value remains unchanged in a harvest, suggesting increases in stand 

value per square foot of basal area due to harvesting.  While the density distribution of private 

plots tends to be at or below the line, suggesting no overall change in stand value per square foot 

of basal area.  This is significant in that it suggests that although a value reduction occurs with 

harvest in both public and private plots, on public plots this value reduction is due mainly to 

removing larger trees; harvests on public plots tend to improve the species composition of the 

plot. On the other hand, harvests on private plots are just as likely to worsen the species 

composition of the plot as they are to improve it. 
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Figure 7 – Plot percent change in value index per ft2 of basal area versus percent of basal area removed, 

20% to 85% basal area removed natural hardwood plots, by public and private 

 

The graphical illustration in Figure 7 is confirmed by the results in Table 12 that show 

that the average percent change in value index per ft2 of basal area for private plots was -0.3%, 

not significantly different from zero. The average percent change in value index per ft2 of basal 

area for public plots was 8.4% and was significantly different from zero. Furthermore, this value 

is significantly different from the average percent change in value index per ft2 of basal area for 

private plots.  

 It does appear, however, that the reduction in value per ft2 of basal area shown in Figure 

6 is largely due to a tendency to harvest larger trees rather than smaller trees, on both public and 

private plots. This tendency can be assessed by calculating the ratio of average diameter 

harvested over the average stand diameter prior to harvest.  This statistic is shown in Figure 8 

where it is graphed against the percent value change per square foot of basal area.  Plots that are 

graphed in the upper-left quadrant of Figure 8, have experienced a harvest with a negative 

change in value per ft2 and a harvest-diameter to average-diameter ratio greater than 1.  They 

show two harvest behaviors: 1) the stand value density is reduced (i.e., higher-value species are 

more likely to be harvested than lower-value species), and 2) average stand diameter is reduced 

(i.e., larger trees are more likely to be selected for harvest than smaller trees).  These harvests 
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tend to take large, valuable trees, and leave smaller, less valuable trees.  Conversely, plots in the 

lower right quadrant, with a positive change in value per ft2 and a harvest diameter-average 

diameter ratio less than 1 tend to be harvests that remove smaller trees from the stand and leave 

bigger trees, and also tend to leave higher-value species in the residual stand. 

Figure 8 shows a large number of private harvest observations in the upper-left part of the 

graph.  Public harvest observations, on the other hand, tend to group near 1 with respect to the 

ratio of tree diameter removed, with relatively few observations on the negative side of the value 

change axis.  In this chart, the difference between harvest activity on private and public stands is 

more obvious. 

 

 

Figure 8 – Plots by percent change in value per ft2 of basal area, by average diameter removed, for 

natural hardwood plots between 20% to 85% basal area removed, with separate private and public 

groupings. 

 

 A Welch two-sample t-test was run between private and public plots for the three stand 

metrics, in addition to a one sample t-test of whether the mean percent change in value per 

square foot of basal area is significantly different from zero, and whether the ratio of diameter 

harvested to average plot diameter is significantly different from one. 
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Table 12 - Analysis of mean % change in value index per foot squared basal area, % change in value per 

foot squared basal area, and mean ratio of average diameter harvested to initial average stand diameter by 

ownership, with significant difference from 0 and 1. 

    

% Change Value per 

Foot2 BA 

% Change Value 

Index per Foot2 BA 

Ratio of average 

diameter harvested to 

initial average stand 

diameter  

Private 

n=1244 

 

95% CI Upper -33.1% 1.00% 1.47 

Mean -35.6% -0.30% 1.45 

95% CI Lower -38.1% -1.50% 1.42 

Sig Mean P-Value (not 0) 0  (not 0) 0.653 (not 1) 0 

      (Different from 0) (Different from 1) 

Public 

n=240 

 

95% CI Upper -11.8% 11.60% 1.25 

Mean -18.0% 8.40% 1.21 

95% CI Lower -24.2% 5.10% 1.17 

Sig Mean P-Value (not 0) 0  (not 0) 0 (not 1) 0 

          

Sig Owner 

Difference 
P-Value 0 0 0 

 

The result as shown in table 12 was a significant difference between public and private 

ownerships for percent change in value per square foot of BA, also for percent change in value 

index per square foot of basal area, as well as the ratio of average diameter of harvested trees to 

average plot diameter prior to harvest, thus we were able to reject the null that there is no 

difference between public and private harvest behavior regarding these three metrics. 

 In addition, the results show a higher basal area volume harvested, but a significantly 

positive net increase in value for public harvests, versus no significant change in value for 

private harvests.  The mean ratio of the diameter of harvested trees to initial stand diameter was 

substantially higher in private stands than in pubic stands, and both were significantly greater 

than 1.  Therefore, public harvests in the 20% to 85% category remove more basal area overall, 

but tend to improve the value of the stand in the process, while harvesting larger than average, 

but significantly smaller trees than their private counterparts.  For example, a 12” average 

diameter plot would equal an average harvested diameter of 17.4” on a private stand, and an 

average harvested diameter of 14.5” on a public stand, with a significantly different mean 

harvested diameter between the two.  
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Chapter 5 - Conclusion 

The work on this project has been the culmination of a multiple-year project funded by 

APHIS.  The project has involved collecting and consolidating the price data from the 22-state 

region of interest and creating a system of MS ACCESS queries from to extract the needed data 

from each state’s FIA database.  Further creating and refining a working FIA database product 

from 22 separate states, to a dataset that could undergo uniform statistical assessment, was a 

considerable undertaking. 

There were two major goals of this project.  The first to better understand the factors 

influencing timber harvesting decisions in the northeastern United States.  We accomplished this 

by using logistic models to determine the influence of key variables from the FIA data and other 

sources on the probability of three types of harvest.  To that end, the results were consistent with 

expectations, and the trends displayed made sense silviculturally.  One would expect that 

diameter and other volumetric indicators would influence harvest probability at both the plot and 

individual tree level, and they did.  Discovering that value was significant at the plot level, but 

not statistically significant at the tree level was unexpected, but assuming that stand harvest 

decisions are separate from tree harvesting decisions, one could expect there to be differences in 

motivation at each level. 

One contribution of this research was the separate analysis of different types of harvests 

based on the proportion of the basal area that was removed. Harvests were divided into 1) light 

thinnings (less than 20% of the basal area (BA) removed), 2) medium-heavy thinnings (between 

20 and 85% of the BA removed), and 3) stand-replacing harvests (more than 85% of the BA 

removed). The rationale for this approach was that the motivations for different harvests are 

likely different, so the predictive models for the different types of harvests should be different. 

Multinomial logistic models were used at the plot level to estimate the probability of one of the 

three types of harvest or of no harvest. Independent logistic models were used for each type of 

harvest (and for each modeling category and ownership) to estimate the probability of a given 

tree being harvested. The model coefficients varied for different types of harvests, supporting our 

assumption that factors influencing a harvest are different depending on the basal area removal 

rate.  In other words, people’s motivations change based on their goal in performing a harvest.  



  68 

 

This information will help foresters and ecologists better understand the management decisions 

of landowners. 

Comparing the management decisions of public versus private forest own is also 

important.  Privately held land is managed differently than publicly held land because public 

objectives are often different than private objectives. This research found that public forests 

undergo poorly executed harvesting practices less often, as evidenced by stand value and size 

reductions.  Public lands were much less likely to undergo a harvest at all.  Furthermore, cull 

trees were much more likely to be harvested on public land versus private, as you would expect 

if the management objective was to improve a stand rather than simply harvest valuable standing 

timber. 

The second goal of our project was much less clearly satisfied.  We wanted to create 

models with strong harvest prediction ability.  Although McFadden R2 values are more 

appropriate for model building than interpretation (Hosmer Jr et al., 2013), plot model R2 values 

indicate that plot models poorly fit our model data.  Tree model R2 were significantly better 

overall.  The other issue in model building is simply data sparsity.  Although the dataset is quite 

large, using so many separate models to correctly differentiate between significant variables 

according to harvest volume, species, and stand origin in each modeling dataset, causes limited 

data in each category as the overall number of harvests is under 10%.  An increased amount of 

observations may help to produce better overall predictive models, as well as utilizing more 

variables in the model. 

Overall Outcomes 

Site factors tend to be non-significant for predicting high intensity harvests.  For these 

types of harvests, site factors were not as strongly significant in both public and private models.  

This is a function of data sparsity in these model categories, but also likely due to economic and 

environmental factors, such as the need for immediate income, invasive species damage, and 

market recession, many of which have been studied as influencing harvest activity (Binkley, 

1981; Butler and Leatherberry, 2004; Gong et al., 2005; Joshi and Arano, 2009b; Straka et al., 

1984).  Variables related to operability and accessibility tend to be important for predicting 

lower-volume harvests.   
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Diameter is significantly positively correlated with harvests in nearly all cases. However, 

diameter2 is significantly negatively related to the probability of harvest.  This leads us to 

conclude that the probability of harvest reaches a maximum at some diameter, after which the 

harvest probability decreases.  This raises an interesting possibility, which has been cited in 

literature regarding ownership information from the timber woodland owner’s survey, that 

woodlots exist as recreational or conservation forests, continuously preserved without the 

intention of ever being harvested (Butler and Leatherberry 2004).  The strong significance of this 

nonlinear response seems to support that hypothesis.  Assessing diameter further by looking at 

size, private landowners harvest natural hardwood stands with progressively greater probability 

as volume and diameter increase, but with a significant diameter squared term, this harvest 

probability reaches a maximum. 

Interestingly, tree price was included in the tree models, but was ultimately dropped from 

consideration for general lack of significance, and also the fact that species tended to explain 

variation in harvests more consistently.  In the plot-level models, however, value per foot2 of 

basal area was significantly positively related to probability of harvest in many cases.  This 

suggests that value is a driving factor of harvests at the plot level, but not at the tree level.  

Decision making that involves total plot value as a determinant in the harvesting consideration 

process is carried out at the plot level, perhaps in the form of a timber cruise, but absent from the 

tree level.  Gong et al (1998) and Prestemon and Wear (2000) also concluded that price was a 

significant factor in harvest probability. 

In calculating the value and size removed from the stand at harvest, the significance of 

finding that value per square foot of basal area is reduced in both public and private harvests, 

while value index, a measure of all tree value, is improved in public harvests while unchanged in 

private harvests cannot be overstated.  Both owners decrease the value density of their stands 

when harvesting, but when smaller trees are also considered, as would be in improvement cuts, 

value is improved in public stands, while it is unchanged in private stands.  This suggests what 

when all size classes of trees are considered in terms of value, public harvesting is improving 

future stand value while private harvesting is not. 
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Future Considerations 

The work carried out in this thesis was an exploration of harvesting behavior using the 

first completed second cycle of FIA data.  Because most FIA data has only now just finished the 

second sampling cycle in many states, a third sampling cycle of data would help to reinforce 

observed patterns in harvest mentality and behavior.  Future research that assess the third full 

cycle of plot observations would add significantly to validating these results. 

In addition, even with such a large study area as the 22 northeastern states examined in 

this work, lack of data was still an issue.  Division into basal area harvested categories, 

separation of public and private landowners, and assessment of multiple species/forest types 

resulted in data sparsity in some data categories.  This meant division of the dataset would be 

difficult beyond the level done in this research. 

Although there was strong significance given the variables used in this assessment, model 

predictive ability was weak.  As a result, the possible inclusion of The US Forest Services 

Woodland Owners Survey could add to model prediction power.  This dataset is only available 

for a limited number of plots, however, so data sparsity would be an even greater issue, but the 

introduction of more socio-economic variables could strengthen the predictive ability of the 

harvesting models developed in this study.  
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Appendix 

Table A1 - Project state list, with corresponding region, price grouping, and listing of cycle 1 and cycle 2 

year ranges. 

State Region Price Group Cycle 1 Years Cycle 2 Years 

 Connecticut CT/MA/RI/VT/NH CT/MA/RI 2003-2007 2007-2012 

 Delaware MD/DE/NJ DE/MD/VA/WV 2004-2008 2008-2013 

 Illinois IA/IL/IN IL/IN 2003-2007 2007-2012 

 Indiana IA/IL/IN IL/IN 2003-2007 2007-2012 

 Iowa IA/IL/IN IA/MN/MO 2003-2007 2007-2012 

 Kentucky  Kentucky KY/OH 2003-2007 2003-2007 

 Maine  Maine Maine 2003-2007 2007-2012 

 Maryland MD/DE/NJ DE/MD/VA/WV 2004-2008 2008-2013 

 Massachusetts CT/MA/RI/VT/NH CT/MA/RI 2003-2007 2007-2012 

 Michigan  Michigan MI/WI 2003-2007 2007-2012 

 Minnesota  Minnesota IA/MN/MO 2003-2007 2007-2012 

 Missouri  Missouri IA/MN/MO 2003-2007 2007-2012 

 New Hampshire CT/MA/RI/VT/NH NH/VT 2003-2007 2007-2012 

 New Jersey MD/DE/NJ NJ/PA 2004-2008 2008-2013 

 New York  New York New York 2003-2007 2007-2012 

 Ohio  Ohio KY/OH 2003-2007 2007-2012 

 Pennsylvania  Pennsylvania NJ/PA 2003-2007 2007-2012 

 Rhode Island CT/MA/RI/VT/NH CT/MA/RI 2003-2007 2007-2012 

 Vermont CT/MA/RI/VT/NH NH/VT 2003-2007 2007-2012 

 Virginia  Virginia DE/MD/VA/WV 2003-2008 2007-2013 

 West Virginia  West Virginia DE/MD/VA/WV 2004-2008 2008-2013 

 Wisconsin  Wisconsin MI/WI 2003-2007 2007-2012 
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Table A2 - Species Price Grouping by Regionlisting of all FIA species with corresponding price region used 

to value assessment. 

Price 

Region 

Species 

Name 

Price 

Region 

Species 

Name 

Price 

Region 

Species 

Name 

Price 

Region 

Species 

Name 

CT/MA/RI ash IA/MN/MO 
Other 

Hardwoods 
Maine Spruce-Fir New York 

Misc 

Hardwoods 

CT/MA/RI beech IA/MN/MO 
Red & 

White Pine 
Maine Sugar Maple New York NCS 

CT/MA/RI blackbirch IA/MN/MO Spruce Maine White Birch New York 
Oak, 

Chestnut 

CT/MA/RI cherry IA/MN/MO Tamarack Maine White Pine New York Oak, Red 

CT/MA/RI hemlock IA/MN/MO White Cedar Maine 
Yellow 

Birch 
New York Oak, White 

CT/MA/RI NCS IL/IN Basswood MI/WI ASH New York Pine, Red 

CT/MA/RI otherhdwd IL/IN Beech MI/WI ASPEN New York Pine, White 

CT/MA/RI otheroaks IL/IN Black oak MI/WI 
BASSWOO

D 
New York 

Spruce 

(spp.) 

CT/MA/RI othersfwd IL/IN 
Black 

walnut 
MI/WI BEECH New York Tulip Poplar 

CT/MA/RI pallethdwd IL/IN Cedar MI/WI 
BIRCH 

WHITE 
New York 

Walnut, 

Black 

CT/MA/RI paperbirch IL/IN Cherry MI/WI 
BIRCH 

YELLOW 
NH/VT ash 

CT/MA/RI poplar IL/IN Cottonwood MI/WI 
CEDAR - 

WHITE 
NH/VT aspen 

CT/MA/RI redmaple IL/IN Elm MI/WI CHERRY NH/VT basswood 

CT/MA/RI redoak IL/IN Hard maple MI/WI 
COTTONW

OOD 
NH/VT beech 

CT/MA/RI redpine IL/IN NCS MI/WI ELM NH/VT butternut 

CT/MA/RI spruce IL/IN Pine  MI/WI 
FIR - 

BALSAM 
NH/VT cedar 

CT/MA/RI sugarmaple IL/IN Red oak MI/WI HEMLOCK NH/VT cherry 

CT/MA/RI whiteoak IL/IN S. Hickory MI/WI HICKORY NH/VT elm 

CT/MA/RI whitepine IL/IN Soft maple MI/WI 
MAPLE 

OTHER 
NH/VT hemlock 

CT/MA/RI yellowbirch IL/IN Sweetgum MI/WI 
MAPLE 

SUGAR 
NH/VT NCS 

DE/MD/VA

/WV 
Ash IL/IN Sycamore MI/WI 

MISC. 

HARDWOO

DS 

NH/VT other hdwd 

DE/MD/VA

/WV 

Black 

Cherry  
IL/IN Tulip poplar MI/WI NCS NH/VT red maple 

DE/MD/VA

/WV 
Hard Maple  IL/IN White ash MI/WI 

OAK 

OTHER 
NH/VT red oak 

DE/MD/VA

/WV 
Hemlock IL/IN White oak MI/WI OAK RED NH/VT red pine 

DE/MD/VA

/WV 
Hickory KY/OH Ash MI/WI 

OAK 

WHITE 
NH/VT spruce/fir 

DE/MD/VA

/WV 
Misc Hdwd KY/OH Basswood MI/WI PINE JACK NH/VT sugar maple 

DE/MD/VA

/WV 
Mixed Oak  KY/OH Cherry MI/WI PINE RED NH/VT tamarack 

DE/MD/VA

/WV 
NCS KY/OH Hard Maple MI/WI 

PINE 

WHITE 
NH/VT white birch 

DE/MD/VA

/WV 
Pine KY/OH Hickory MI/WI 

RED 

MAPLE 
NH/VT white oak 

DE/MD/VA

/WV 

Red/Black 

Oak  
KY/OH NCS MI/WI 

TAMARAC

K 
NH/VT white pine 

DE/MD/VA

/WV 
Soft Maple  KY/OH Pine  MI/WI WALNUT NH/VT yellow birch 



  73 

 

Price 

Region 

Species 

Name 

Price 

Region 

Species 

Name 

Price 

Region 

Species 

Name 

Price 

Region 

Species 

Name 
DE/MD/VA

/WV 
Walnut KY/OH Red Oak MI/WI 

WHITE 

SPRUCE 
NJ/PA 

Black 

Cherry 

DE/MD/VA

/WV 
White Oak  KY/OH Soft Maple New York Ash, White NJ/PA Hard Maple 

DE/MD/VA

/WV 

Yellow 

Poplar  
KY/OH Walnut New York Aspen NJ/PA Hemlock 

IA/MN/MO Ash KY/OH White Oak New York Basswood NJ/PA 
Misc. 

Hardwoods 

IA/MN/MO Aspen KY/OH 
Yellow 

Poplar 
New York Beech NJ/PA Mixed Oak 

IA/MN/MO 
Balm of 

Gilead 
Maine Ash New York Birch, White NJ/PA NCS 

IA/MN/MO Balsam Fir Maine Aspen New York 
Birch, 

Yellow 
NJ/PA 

Northern 

Red Oak 

IA/MN/MO Basswood Maine Beech New York Butternut NJ/PA Soft Maple 

IA/MN/MO Birch Maine Cedar New York 
Cherry, 

Black 
NJ/PA White Ash 

IA/MN/MO Elm Maine Hemlock New York 
Elm, 

American 
NJ/PA White Oak 

IA/MN/MO Jack Pine Maine NCS New York Hemlock NJ/PA White Pine 

IA/MN/MO Maple Maine Oak New York 
Hickory 

(spp.) 
NJ/PA 

Yellow 

Poplar 

IA/MN/MO NCS Maine Red Pine New York 
Maple, Red 

(Soft)   

IA/MN/MO Oak Maine Soft Maple New York 
Maple, 

Sugar (Hard)   
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Table A3 - FIA species and their common harvest species grouping category used for tree model species 

categorical variables. 

SPCD COMMON_NAME 
Harvest Species 

Name SPCD COMMON_NAME Harvest Species Name 

10 Fir Spp. Spruce-Fir 600 Walnut Spp. Other Valuable Hardwood 

12 Balsam Fir Spruce-Fir 601 Butternut Other Valuable Hardwood 

15 White Fir Spruce-Fir 602 Black Walnut Other Valuable Hardwood 

16 Fraser Fir Spruce-Fir 611 Sweetgum Misc Hardwoods 

43 Atlantic White-Cedar Other Softwoods 621 Yellow-Poplar Yellow-Poplar 

57 Redcedar/Juniper Spp. Other Softwoods 641 Osage-Orange Non-Commercial 

68 Eastern Redcedar Non-Canopy 650 Magnolia Spp. Misc Hardwoods 

70 Larch Spp. Other Softwoods 651 Cucumbertree Misc Hardwoods 

71 Tamarack (Native) Other Softwoods 652 Southern Magnolia Misc Hardwoods 

90 Spruce Spp. Spruce-Fir 653 Sweetbay Misc Hardwoods 

91 Norway Spruce Spruce-Fir 654 Bigleaf Magnolia Misc Hardwoods 

93 Engelmann Spruce Spruce-Fir 655 Mountain Or Fraser Magnolia Non-Commercial 

94 White Spruce Spruce-Fir 658 Umbrella Magnolia Non-Commercial 

95 Black Spruce Spruce-Fir 660 Apple Spp. Non-Canopy 

96 Blue Spruce Spruce-Fir 661 Oregon Crab Apple Non-Canopy 

97 Red Spruce Spruce-Fir 662 Southern Crab Apple Non-Canopy 

100 Pine Spp. Other Softwoods 663 Sweet Crab Apple Non-Canopy 

105 Jack Pine Southern-Jack Pine 664 Prairie Crab Apple Non-Canopy 

110 Shortleaf Pine Southern-Jack Pine 680 Mulberry Spp. Non-Commercial 

122 Ponderosa Pine Other Softwoods 681 White Mulberry Non-Commercial 

123 Table Mountain Pine Southern-Jack Pine 682 Red Mulberry Non-Commercial 

125 Red Pine Red & White Pine 691 Water Tupelo Misc Hardwoods 

126 Pitch Pine Southern-Jack Pine 693 Blackgum Misc Hardwoods 

128 Pond Pine Southern-Jack Pine 694 Swamp Tupelo Misc Hardwoods 

129 Eastern White Pine Red & White Pine 701 Eastern Hophornbeam Non-Canopy 

130 Scotch Pine Southern-Jack Pine 711 Sourwood Misc Hardwoods 

131 Loblolly Pine Southern-Jack Pine 712 Paulownia, Empress-Tree Misc Hardwoods 

132 Virginia Pine Southern-Jack Pine 721 Redbay Non-Canopy 

136 Austrian Pine Southern-Jack Pine 722 Water-Elm, Planertree Non-Commercial 

202 Douglas-Fir Other Softwoods 729 Sycamore Spp. Misc Hardwoods 

221 Baldcypress Other Softwoods 731 American Sycamore Misc Hardwoods 

222 Pondcypress Other Softwoods 740 Cottonwood And Poplar Spp. Aspen 

241 Northern White-Cedar Other Softwoods 741 Balsam Poplar Aspen 

260 Hemlock Spp. Other Softwoods 742 Eastern Cottonwood Aspen 

261 Eastern Hemlock Other Softwoods 743 Bigtooth Aspen Aspen 

262 Carolina Hemlock Other Softwoods 744 Swamp Cottonwood Aspen 

299 
Unknown Dead 
Conifer Unknown 746 Quaking Aspen Aspen 

310 Maple Spp. Other Maple 752 Silver Poplar Aspen 

311 Florida Maple Other Maple 753 Lombardy Poplar Aspen 

313 Boxelder Misc Hardwoods 760 Cherry And Plum Spp. Non-Commercial 

314 Black Maple Other Maple 761 Pin Cherry Non-Canopy 

315 Striped Maple Non-Canopy 762 Black Cherry Other Valuable Hardwood 

316 Red Maple Red Maple 763 Chokecherry Non-Canopy 

317 Silver Maple Other Maple 764 Peach Non-Canopy 
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318 Sugar Maple Sugar Maple 765 Canada Plum Non-Canopy 

319 Mountain Maple Non-Canopy 766 American Plum Non-Canopy 

320 Norway Maple Other Maple 771 Sweet Cherry, Domesticated Non-Canopy 

330 
Buckeye, 
Horsechestnut Spp. Misc Hardwoods 772 Sour Cherry, Domesticated Non-Canopy 

331 Ohio Buckeye Misc Hardwoods 800 Oak Spp. Other White Oak 

332 Yellow Buckeye Misc Hardwoods 800 Oak Spp Other White Oak 

341 Ailanthus Non-Commercial 802 White Oak White Oak 

345 Mimosa, Silktree Non-Canopy 804 Swamp White Oak Other White Oak 

355 European Alder Non-Canopy 806 Scarlet Oak Other Red Oak 

356 Serviceberry Spp. Misc Hardwoods 809 Northern Pin Oak Valuable Red Oak 

357 Common Serviceberry Misc Hardwoods 812 Southern Red Oak Valuable Red Oak 

358 
Roundleaf 
Serviceberry Non-Commercial 813 Cherrybark Oak Valuable Red Oak 

367 Pawpaw Non-Canopy 816 Scrub Oak Non-Commercial 

370 Birch Spp. Birch 817 Shingle Oak Valuable Red Oak 

371 Yellow Birch Yellow Birch 819 Turkey Oak Other Red Oak 

372 Sweet Birch Birch 820 Laurel Oak Non-Commercial 

373 River Birch Birch 822 Overcup Oak Other White Oak 

375 Paper Birch Birch 823 Bur Oak Other White Oak 

379 Gray Birch Birch 824 Blackjack Oak Other Red Oak 

381 
Chittamwood, Gum 
Bumelia Misc Hardwoods 825 Swamp Chestnut Oak Other White Oak 

391 
American Hornbeam, 
Musclewood Non-Canopy 826 Chinkapin Oak Other White Oak 

400 Hickory Spp. Hickories 827 Water Oak Other Red Oak 

401 Water Hickory Hickories 828 Texas Red Oak Other Red Oak 

402 Bitternut Hickory Hickories 830 Pin Oak Valuable Red Oak 

403 Pignut Hickory Hickories 831 Willow Oak Valuable Red Oak 

404 Pecan 
Other Valuable 
Hardwood 832 Chestnut Oak Other White Oak 

405 Shellbark Hickory Hickories 833 Northern Red Oak Valuable Red Oak 

407 Shagbark Hickory Hickories 834 Shumard Oak Valuable Red Oak 

408 Black Hickory Hickories 835 Post Oak Other White Oak 

409 Mockernut Hickory Hickories 837 Black Oak Other Red Oak 

410 Sand Hickory Hickories 840 Dwarf Post Oak Non-Commercial 

412 Red Hickory Hickories 845 Dwarf Chinkapin Oak Non-Commercial 

421 American Chestnut Non-Commercial 901 Black Locust Misc Hardwoods 

422 Allegheny Chinkapin Misc Hardwoods 920 Willow Spp. Non-Commercial 

424 Chinese Chestnut Misc Hardwoods 921 Peachleaf Willow Non-Commercial 

450 Catalpa Spp. Misc Hardwoods 922 Black Willow Non-Commercial 

451 Southern Catalpa Misc Hardwoods 923 Bebb Willow Non-Commercial 

452 Northern Catalpa Misc Hardwoods 926 Balsam Willow Non-Canopy 

460 Hackberry Spp. Misc Hardwoods 927 White Willow Non-Commercial 

461 Sugarberry Elm 929 Weeping Willow Misc Hardwoods 

462 Hackberry Misc Hardwoods 931 Sassafras Non-Canopy 

471 Eastern Redbud Non-Canopy 934 Mountain-Ash Spp. Non-Commercial 

481 Yellowwood Non-Commercial 935 American Mountain-Ash Non-Canopy 

491 Flowering Dogwood Non-Canopy 936 European Mountain-Ash Non-Canopy 
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500 Hawthorn Spp. Non-Canopy 937 Northern Mountain-Ash Non-Commercial 

501 Cockspur Hawthorn Non-Canopy 950 Basswood Spp. Misc Hardwoods 

502 Downy Hawthorn Non-Canopy 951 American Basswood Misc Hardwoods 

520 Persimmon Spp. Misc Hardwoods 952 White Basswood Misc Hardwoods 

521 Common Persimmon Misc Hardwoods 970 Elm Spp. Elm 

531 American Beech American Beech 971 Winged Elm Elm 

540 Ash Spp. Ash 972 American Elm Elm 

541 White Ash Ash 974 Siberian Elm Elm 

543 Black Ash Ash 975 Slippery Elm Elm 

544 Green Ash Ash 976 September Elm Elm 

545 Pumpkin Ash Ash 977 Rock Elm Elm 

546 Blue Ash Ash 993 Chinaberry Non-Commercial 

548 Carolina Ash Ash 997 Russian-Olive Non-Canopy 

551 Waterlocust Misc Hardwoods 998 Unknown Dead Hardwood Unknown 

552 Honeylocust Misc Hardwoods 999 Other Or Unknown Live Tree Unknown 

561 
Ginkgo, Maidenhair 
Tree Non-Commercial    

571 Kentucky Coffeetree Misc Hardwoods    

580 Silverbell Spp. Non-Canopy    

581 Carolina Silverbell Non-Canopy    

591 American Holly Non-Canopy    
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Table A4 - FIA Forest Types to Combined Forest Type Groups used in models and their respective forest 

type groupings used for modeling forest type in plot models. 

Forest Type Codes 

FORTYPCD Forest Type Type Group 

100 White/Red/Jack Pine Group Northern Pines - Hemlock 

101 Jack Pine Northern Pines - Hemlock 

102 Red Pine Northern Pines - Hemlock 

103 Eastern White Pine Northern Pines - Hemlock 

104 Eastern White Pine/Eastern Hemlock Northern Pines - Hemlock 

105 Eastern Hemlock Northern Pines - Hemlock 

120 Spruce/Fir Group Spruce - Fir 

121 Balsam Fir Spruce - Fir 

122 White Spruce Spruce - Fir 

123 Red Spruce Spruce - Fir 

124 Red Spruce/Balsam Fir Spruce - Fir 

125 Black Spruce Spruce - Fir 

126 Tamarack Spruce - Fir 

127 Northern White-Cedar Spruce - Fir 

128 Fraser Fir Spruce - Fir 

129 Red Spruce/Fraser Fir Spruce - Fir 

140 Longleaf/Slash Pine Group Southern Pines - Other Conifers 

141 Logleaf Pine Southern Pines - Other Conifers 

142 Slash Pine Southern Pines - Other Conifers 

150 Tropical Softwoods Group Southern Pines - Other Conifers 

151 Tropical Pines Southern Pines - Other Conifers 

160 Loblolly/Shortleaf Pine Group Southern Pines - Other Conifers 

161 Loblolly Pine Southern Pines - Other Conifers 

162 Shortleaf Pine Southern Pines - Other Conifers 

163 Virginia Pine Southern Pines - Other Conifers 

164 Sand Pine Southern Pines - Other Conifers 

165 Table Mountain Pine Southern Pines - Other Conifers 

166 Pond Pine Southern Pines - Other Conifers 

167 Pitch Pine Southern Pines - Other Conifers 

168 Spruce Pine Southern Pines - Other Conifers 

170 Other Eastern Softwoods Group Southern Pines - Other Conifers 

171 Eastern Redcedar Southern Pines - Other Conifers 

172 Florida Softwoods Southern Pines - Other Conifers 

180 Pinyon/Juniper Group Southern Pines - Other Conifers 

182 Rocky Mountain Juniper Southern Pines - Other Conifers 



  78 

 

Forest Type Codes 

FORTYPCD Forest Type Type Group 

184 Juniper Woodland Southern Pines - Other Conifers 

185 Pinyon/Juniper Woodland Southern Pines - Other Conifers 

200 Douglas-Fir Group Southern Pines - Other Conifers 

201 Douglas-Fir Southern Pines - Other Conifers 

202 Port-Orford-Cedar Southern Pines - Other Conifers 

203 Bigcone Douglas-Fir Southern Pines - Other Conifers 

220 Ponderosa Pine Group Southern Pines - Other Conifers 

221 Ponderosa Pine Southern Pines - Other Conifers 

222 Incense-Cedar Southern Pines - Other Conifers 

224 Sugar Pine Southern Pines - Other Conifers 

225 Jeffrey Pine Southern Pines - Other Conifers 

226 Coulter Pine Southern Pines - Other Conifers 

240 Western White Pine Group Southern Pines - Other Conifers 

241 Western White Pine Southern Pines - Other Conifers 

260 Fir/Spruce/Mountain Hemlock Group Southern Pines - Other Conifers 

261 White Fir Southern Pines - Other Conifers 

262 Red Fir Southern Pines - Other Conifers 

263 Noble Fir Southern Pines - Other Conifers 

264 Pacific Silver Fir Southern Pines - Other Conifers 

265 Engelmann Spruce Southern Pines - Other Conifers 

266 Engelmann Spruce/Subalpine Fir Southern Pines - Other Conifers 

267 Grand Fir Southern Pines - Other Conifers 

268 Subalpine Fir Southern Pines - Other Conifers 

269 Blue Spruce Southern Pines - Other Conifers 

270 Mountain Hemlock Southern Pines - Other Conifers 

271 Alaska-Yellow-Cedar Southern Pines - Other Conifers 

280 Lodgepole Pine Group Southern Pines - Other Conifers 

281 Lodgepole Pine Southern Pines - Other Conifers 

300 Hemlock/Sitka Spruce Group Southern Pines - Other Conifers 

301 Western Hemlock Southern Pines - Other Conifers 

304 Western Redcedar Southern Pines - Other Conifers 

305 Sitka Spruce Southern Pines - Other Conifers 

320 Western Larch Group Southern Pines - Other Conifers 

321 Western Larch Southern Pines - Other Conifers 

340 Redwood Group Southern Pines - Other Conifers 

341 Redwood Southern Pines - Other Conifers 

342 Giant Sequoia Southern Pines - Other Conifers 
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Forest Type Codes 

FORTYPCD Forest Type Type Group 

360 Other Western Softwoods Group Southern Pines - Other Conifers 

361 Knobcone Pine Southern Pines - Other Conifers 

362 Southwestern White Pine Southern Pines - Other Conifers 

363 Bishop Pine Southern Pines - Other Conifers 

364 Monterey Pine Southern Pines - Other Conifers 

365 Foxtail Pine/Bristlecone Pine Southern Pines - Other Conifers 

366 Limber Pine Southern Pines - Other Conifers 

367 Whitebark Pine Southern Pines - Other Conifers 

368 Miscellaneous Western Softwoods Southern Pines - Other Conifers 

369 Western Juniper Southern Pines - Other Conifers 

370 California Mixed Conifer Group Southern Pines - Other Conifers 

371 California Mixed Conifer Southern Pines - Other Conifers 

380 Exotic Softwoods Group Southern Pines - Other Conifers 

381 Scotch Pine Southern Pines - Other Conifers 

383 Other Exotic Softwoods Southern Pines - Other Conifers 

384 Norway Spruce Southern Pines - Other Conifers 

385 Introduced Larch Southern Pines - Other Conifers 

390 Other Softwoods Group Southern Pines - Other Conifers 

391 Other Softwoods Southern Pines - Other Conifers 

400 Oak/Pine Group Oak - Pine 

401 Eastern White Pine/Northern Red Oak/White Ash Oak - Pine 

402 Eastern Redcedar/Hardwood Oak - Pine 

403 Longleaf Pine/Oak Oak - Pine 

404 Shortleaf Pine/Oak Oak - Pine 

405 Virginia Pine/Southern Red Oak Oak - Pine 

406 Loblolly Pine/Hardwood Oak - Pine 

407 Slash Pine/Hardwood Oak - Pine 

409 Other Pine/Hardwood Oak - Pine 

500 Oak/Hickory Group Oak - Hickory 

501 Post Oak/Blackjack Oak Oak - Hickory 

502 Chestnut Oak Oak - Hickory 

503 White Oak/Red Oak/Hickory Oak - Hickory 

504 White Oak Oak - Hickory 

505 Notrthern Red Oak Oak - Hickory 

506 Yellow-Poplar/White Oak/Northern Red Oak Oak - Hickory 

507 Sassafras/Persimmon Oak - Hickory 

508 Sweetgum/Yellow-Poplar Oak - Hickory 
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Forest Type Codes 

FORTYPCD Forest Type Type Group 

509 Bur Oak Oak - Hickory 

510 Scarlet Oak Oak - Hickory 

511 Yellow-Poplar Oak - Hickory 

512 Black Walnut Oak - Hickory 

513 Black Locust Oak - Hickory 

514 Southern Scrub Oak Oak - Hickory 

515 Chestnut Oak/Black Oak/Scarlet Oak Oak - Hickory 

516 Cherry/White Ash/Yellow-Poplar Oak - Hickory 

517 Elm/Ash/Black Locust Oak - Hickory 

519 Red Maple/Oak Oak - Hickory 

520 Mixed Upland Hardwoods Oak - Hickory 

600 Oak/Gum/Cypress Group Swamp Forests 

601 Swamp Chestnut Oak/Cherrybark Oak Swamp Forests 

602 Sweetgum/Nuttall Oak/Willow Oak Swamp Forests 

605 Overcup Oak/Water Hickory Swamp Forests 

606 Atlantic White-Cedar Swamp Forests 

607 Baldcypress/Water Tupelo Swamp Forests 

608 Sweetbay/Swamp Tupelo/Red Maple Swamp Forests 

609 Baldcypress/Pondcypress Swamp Forests 

700 Elm/Ash/Cottonwood Group Swamp Forests 

701 Black Ash/American Elm/Red Maple Swamp Forests 

702 River Birch/Sycamore Swamp Forests 

703 Cottonwood Swamp Forests 

704 Willow Swamp Forests 

705 Sycamore/Pecan/American Elm Swamp Forests 

706 Sugarberry/Hackberry/Elm/Green Ash Swamp Forests 

707 Silver Maple/American Elm Swamp Forests 

708 Red Maple/Lowland Swamp Forests 

709 Cottonwood/Willow Swamp Forests 

722 Oregon Ash Other Hardwoods 

800 Maple/Beech/Birch Group Northern Hardwood 

801 Sugar Maple/Beech/Yellow Birch Northern Hardwood 

802 Black Cherry Northern Hardwood 

805 Hard Maple/Basswood Northern Hardwood 

809 Red Maple/Upland Northern Hardwood 

900 Aspen/Birch Group Aspen - Birch 

901 Aspen Aspen - Birch 
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Forest Type Codes 

FORTYPCD Forest Type Type Group 

902 Paper Birch Aspen - Birch 

903 Gray Birch Aspen - Birch 

904 Balsam Poplar Aspen - Birch 

905 Pin Cherry Aspen - Birch 

910 Alder/Maple Group Other Hardwoods 

911 Red Alder Other Hardwoods 

912 Bigleaf Maple Other Hardwoods 

920 Western Oak Group Other Hardwoods 

921 Gray Pine Other Hardwoods 

922 California Black Oak Other Hardwoods 

923 Oregon White Oak Other Hardwoods 

924 Blue Oak Other Hardwoods 

931 Coast Live Oak Other Hardwoods 

933 Canyon Live Oak Other Hardwoods 

934 Interior Live Oak Other Hardwoods 

935 California White Oak (Valley Oak) Other Hardwoods 

940 Tanoak/Laurel Group Other Hardwoods 

941 Tanoak Other Hardwoods 

942 California Laurel Other Hardwoods 

943 Giant Chinkapin Other Hardwoods 

960 Other Hardwoods Group Other Hardwoods 

961 Pacific Madrone Other Hardwoods 

962 Othe Hardwoods Other Hardwoods 

970 Woodland Hardwoods Group Other Hardwoods 

971 Deciduous Oak Woodland Other Hardwoods 

972 Evergreen Oak Woodland Other Hardwoods 

973 Mesquite Woodland Other Hardwoods 

974 Cercocarpus (Mountain Brush) Woodland Other Hardwoods 

975 Intermountain Maple Woodland Other Hardwoods 

976 Miscellaneous Woodland Hardwoods Other Hardwoods 

980 TropicalHardwoods Group Other Hardwoods 

982 Mangrove Other Hardwoods 

983 Palms Other Hardwoods 

984 Dry Forest Other Hardwoods 

985 Moist Forest Other Hardwoods 

986 Wet and Rain Forest Other Hardwoods 

987 Lower Montaine Wet and Rain Forest Other Hardwoods 
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Forest Type Codes 

FORTYPCD Forest Type Type Group 

989 Other Tropical Hardwoods Other Hardwoods 

990 Exotic Hardwoods Group Other Hardwoods 

991 Paulownia Other Hardwoods 

992 Melaleuca Other Hardwoods 

993 Eucalyptus Other Hardwoods 

995 Other Exotic Hardwoods Other Hardwoods 

999 Nonstocked Nonstocked 
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