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ABSTRACT 
 

Developing an understanding of fractions is critical as a significant predictor for future 

mathematical proficiency and an important area of emphasis in the learning progression of 

advanced domains such as algebra.  Despite its importance, students face significant challenges in 

learning fractions because of their unique properties and studentsô difficulty in reorganizing the 

number system from whole numbers to rational numbers.  In order to systematically approach 

remediation of studentsô difficulties, a research basis involving specific patterns or characteristics 

in performance of solving fractions needs to be established.  The current study examined the 

common error patterns committed by middle school students with and without MLD when 

solving fraction computations involving addition.  Based on the logic that errors reflected 

meaningful misconceptions and that individual difficulties and flexibility of solution pathway 

should be taken into consideration, errors associated in each solution stage established in a 

solution algorithm were analyzed.  It is especially essential to examine differences between 

students with and without MLD because the findings can provide a starting point of instruction 

when teaching students in different achievement groups in inclusive settings.  Moreover, the 

findings of this study can provide an instructional and diagnostic basis to develop practical 

guidelines for researchers, insights into identifying individual difficulties, and an awareness about 

what areas of concepts, sub-skills, or techniques teachers should teach and/or re-teach, especially 

for students with MLD.  Careful consideration of errors in particular solution stages along with 

solution pathway preference can maximize the efficacy of instructions involving fractions.  

Future research directions, educational implications, and limitations are discussed.   

Keywords: fractions, error analysis, mathematics, learning disabilities, solution pathway 
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Chapter 1  
 

Introduction  

Fractions play a critical role in studentsô mathematical development and in living a better 

life.  They are a part of the rational number system, which completes the gap between discrete 

whole-number units by locating continuous and infinite values.  Fractions are pervasive 

throughout daily life, and knowledge about them helps students articulate a given situation more 

accurately.  For example, situations where we rely on fractions include recipes (e.g., 1¾ cups of 

sugar), medical dosage (e.g., take ½ tablet), and foot size (e.g., 5½).  From an educational 

perspective, the National Mathematics Advisory Panel (2008) placed an emphasis on teaching 

fractions by demonstrating that difficulties with fractions are a significant barrier to further 

progress in mathematics (e.g., Algebra) and related occupational fields.  The importance of 

fractions is also reflected in the national mathematics standards and principles (Common Core 

State Standards Initiative [CCSSI], 2015; National Council of Teachers of Mathematics [NCTM], 

2008; 2000). 

According to the CCSSI (2015) and the NCTM (2008), fractions are first introduced in 

third grade and taught throughout fourth and fifth grades as ñnumbersò by expanding the number 

set from whole numbers to rational numbers within a single framework.  Learning fractions is 

crucial because the transition from whole number properties requires recognizing the substantial 

differences between the two properties.  When learning fractions, students need to adjust and 

expand their systems to embrace infinite and continuous numbers because up to that point their 

mathematics experiences have been limited to discrete single-unit counting and operations 

(Geary, Hoard, Byrd-Craven, Nugent, & Numtee, 2007; Ni & Zhou, 2005).  The primary 

connection between whole numbers and rational numbers is that they are ñnumbersò with 
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comparable magnitudes; hence teaching fractions as numbers is recommended as a means of 

decreasing studentsô failure to understand fractions in number entities (Siegler, Fazio, Bailey, & 

Zhou, 2013; Siegler & Pyke, 2013). 

To support studentsô flexibility between the two number sets, the CCSSI (2015) in third 

grade focuses heavily on developing an understanding of fractions as numbers by representing 

them on a number line, comparing two fractions with equal denominators by reasoning about 

their size, and expressing whole numbers as fractions.  Throughout fourth and fifth grade, 

strategies to solve all four operations using fractions (i.e., addition, subtraction, multiplication, 

and division) as well as associated conceptual understanding of fractions properties are 

introduced and developed (e.g., number decreasing when multiplying two fractions and 

understanding a multiple of a/b as a multiple of 1/b being used to learn multiply a fraction by a 

whole number).  The operations and conceptual meanings are then applied to problem-solving 

tasks in the form of word problems. 

Although students receive substantial instruction on fractions during this period in 

elementary school (NCTM, 2008), difficulties in learning fractions are longitudinally persistent 

into middle and high school and continue into adulthood (Hecht & Vagi, 2010; Hwang & 

Riccomini, 2016; Mazzocoo & Devlin, 2008; Mazzocco, Myers, Lewis, Hanich, & Murphy, 

2013; Riccomini, Hughes, Morano, Hwang, & Witzel, 2016).  The National Assessment of 

Educational Progress ([NAEP], 2013, 2007, 2005, 2003) has demonstrated that over 50% of 

eighth- and twelfth-grade students presented errors on fraction-related items in mathematics 

assessments (e.g., ordering fractions, converting a sum of fractions to decimal numbers, and 

problem solving involving fractions) and significantly lack the conceptual understanding and 

procedural knowledge for competence in fractions.  Knowing that fractions are essential in 

advanced mathematics domains (e.g., algebra, geometry, and statistics and probability), it is not 

surprising that knowledge of fractions has been shown to be a significant predictor of studentsô 
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future mathematical achievement (Bailey, Hoard, Nugent, & Geary, 2012; Bailey, Siegler, & 

Geary, 2014; Jordan et al., 2013; Siegler et al., 2012).  Moreover, the difficulties extended to pre- 

and in-service teachers in that they had superficial knowledge of fractions-related concepts and 

failed to explain underlying logic in fractions operations (Isik, 2012; Mok, Cai, & Fung, 2008; 

Redmond, 2009; Zembat, 2007).  Teachersô lack of depth of knowledge often resulted in students 

receiving poor instructional support and lack of learning depth, thus difficulties in fractions will 

likely remain or continue to worsen. 

In the global aspect, the Trends in International Mathematics and Science Study 

([TIMSS], 2011; Mullis, Martin, Foy, & Arora, 2012) shows that both fourth- and eighth-grade 

students in the United States fell behind East Asian students in mathematics achievement 

including reasoning and fraction knowledge.  As fraction knowledge is a critical piece in the 

mathematics learning continuum, these results provide and alarming indication of and point out 

the need for educators to re-dedicate educational efforts to improving proficiency in fractions.  In 

addition to the difficulties in learning fractions demonstrated by large numbers of U.S. students, 

the severity is even greater for students with disabilities.  The results of the NAEP in mathematics 

in 2009, 2011, 2013, and 2015 showed that the percentage of students with disabilities who 

scored below the basic level continuously increased and approached 68% in 2015 compared to 

23% of students without disabilities; moreover, the performance gap between the two groups 

continuously increased from 41% in 2009 to 45% in 2015.  Students who have failed to 

demonstrate a basic levels of performance in mathematics usually lack understanding of 

arithmetic operations involving both whole numbers and rational numbers. 
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Complex nature of fractions 

 To remediate these well-documented difficulties many students experience in fractions, 

there has been a continuous and growing interest in learning and teaching fractions more 

effectively to all students in general education classrooms.  Educational efforts including related 

research to improve achievement in learning fractions have been conducted in several areas (e.g., 

instruction, teacher preparation, and curriculum).  However, prior to providing appropriate 

instruction, there should be a systematic approach to remediating studentsô difficulties with 

fractions.  Based on the idea that instruction is more effective when focused on specific 

problematic areas observed across assessments, educational researchers have put their effort into 

identifying the root causes and other observable factors that contribute to certain patterns of 

misconceptions presented in studentsô solutions. 

One of the predominant underlying factors involved in learning and understanding 

fractions is the idea that ñfractions comprise a multifaceted constructò (Brousseau et al., 2004; 

Charalambous, 2007; Kieren & Southwell, 1979; Lamon, 1999) compared to the concept of 

whole numbers, which has a single construct.  Fractions comprise a set of interrelated sub-

constructs, part-whole/partitioning, ratio, operator, quotient, and measurement (Behr, Lesh, Post, 

& Silver, 1983; Kieren & Southwell, 1976; Kieren, 1993) that require students to blend these 

numerous sub-constructs of fractions to form a deep level of understanding.  Without this depth 

of knowledge, students develop a superficial level of understanding which causes long-term 

difficulties.  This complex array of sub-constructs inherent in fractions causes students to have 

misconceptions when trying to conceptualize fractions, which becomes more problematic as the 

mathematics content becomes more complex.   

Based on the idea of the multifaceted and interrelated sub-constructs embedded within 

fractions, Behr et al. (1983) suggested a theoretical model linking these sub-constructs to 
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different problem types (e.g., fraction equivalence, multiplicative operations, additive operations, 

and problem solving).  The part-whole/partitioning sub-construct is considered central for 

developing understanding of the remaining four sub-constructs and is linked indirectly to all the 

problem types; the ratio sub-construct is linked to fraction equivalence; the operator sub-

construct is linked to multiplicative operations; the measure sub-construct is linked to additive 

operations; and all the five sub-constructs including the quotient sub-construct are linked to 

problem solving because it is an integrated process.  Their theoretical framework provides more 

practical implications for educators because it indicates the types of sub-construct embedded in 

certain fraction problems and further suggests how the interpretation of fractions should be made 

differently when teaching various fraction-related problems. 

According to their model, the first sub-construct, part-whole/partitioning, is considered a 

central element that affects the understanding of the remaining four sub-constructs of fractions.  It 

refers to a situation where a continuous quantity or a set of discrete objects is partitioned into 

parts of equal size and requires students to understand the relationship between the parts and the 

whole.  The ratio sub-construct is considered a comparative index rather than a number (Carraher, 

1996; Charalambous, 2007), conveying the idea of a comparison between two quantities of the 

same type (Charalambous, 2007; Lamon, 1999).  Students need to recognize the constant 

relationship between the numerator and denominator, thus the understanding of fractions in the 

ratio sub-construct promotes the concept of fraction equivalence. 

The operator sub-construct promotes the understanding of the multiplicative operation by 

regarding fractions as functions of two discrete numbers (e.g., υ ) or as a combination of 

two multiplicative operations consecutively (e.g., ).  This sub-construct is further 

interpreted as the transformation of line segments, or number changes in a set of discrete objects 

(Lamon, 1999).  In the quotient sub-construct, fractions are viewed as the result of a division 
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operation.  For example, the fraction  can be interpreted as the numerical value obtained when 3 

(numerator) is divided by 8 (denominator) (Kieren, 1993).  Finally, the measure sub-construct 

involves the meaning of a distance from one point to another in terms of a given unit interval 

(e.g., ρὲ units).  This requires students to understand that ñfractions are numbersò having 

quantities that can be located on a number line (Siegler & Pyke, 2013); hence, this promotes 

proficiency in additive operations.  The notion of density of fractions (i.e., there is an infinite 

number of fractions between any two fractions) should also be acknowledged.   

Understanding of the sub-constructs of fractions and the relationship with the problem 

types in the domain of fractions is an essential consideration in the remediation of struggling 

students.  Therefore, teaching and learning fraction computations should be regarded distinctively 

because of their inherently different natures from other problem types.  It is especially important 

for additive operations (i.e., addition and subtraction) because of their unique sub-constructs 

(measure) that are different from multiplicative operations (i.e., multiplication and division; 

operator).   

Fraction computation 

 In addition to the nature of sub-constructs, fraction computation is crucial because this 

can be achieved as a result of understanding and applying the properties of fractions.  By showing 

that they know that fractions are a distinctive entity where the properties of whole numbers do not 

always hold true (e.g., adding across numerators and denominators and considering each number 

as a single unit is not true in fraction computation), proficiency in fraction computation implies 

studentsô success not only in expanding the number set from whole numbers but also having an 

integrated knowledge of fractions, both in conceptual and procedural knowledge.  Moreover, 
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students who are not competent in fraction computation will be less likely to succeed in the next 

steps of mathematics because it is a critical piece embedded in problem solving in later grades. 

However, specific instruction on fractions, such as fraction computation, is not common 

in middle and high school inclusive classroom settings because the mathematics standards do not 

reflect fractions as an instruction focus; instead, the standards are more about advanced domains 

(e.g., algebra and probability) based on basic knowledge of fractions established in earlier grades 

(CCSSI, 2015).  Because of this, it is not surprising that the achievement gap gets wider, so 

interventions should be more focused on fraction computation for students with disabilities before 

moving on to the next stage (e.g., problem solving and algebra).  Regardless of its importance, 

previous research in special education has not paid appropriate attention to fraction computation 

in terms of understanding and applying the unique features of fractions. 

Prior studies involving students with mathematics learning disabilities 

 The research basis for students with mathematics learning disabilities (MLD) is relatively 

underdeveloped despite the severity of difficulties in learning fractions for this particular group of 

students.  The research to date has also not successfully addressed the lack of a systematic 

approach to remediation of special difficulties in managing the unique features of fractions.  

Mazzocco et al. (2013) demonstrated significantly lower performance in students with MLD on 

fraction-related problems (e.g., fraction equivalence and comparing and ordering fractions) by 

making comparisons with students without MLD in different achievement levels.  Additional 

studies have demonstrated that fractions, especially computation involving fractions, are one of 

the weakest areas for students with MLD (Calhoon et al., 2007; McLeod & Armstrong, 1982).  

Although these researchers have clearly documented the fact that students with MLD experience 

significant deficits with fractions, the results have been limited to reporting general problematic 
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areas but the studies have not done investigation at a level of specificity necessary to fully 

characterize the exact problems (e.g., erroneous features or misconceptions in solving fractions).   

Misquitta (2011) reviewed 10 experimental studies involving fractions published between 

1998 and 2008 that involved students with MLD and students who were having severe difficulties 

in mathematics.  These studies demonstrated the overall effect of interventions when solving 

several types of problems involving fractions (e.g., word problems and fraction computation).  

The recent work of Shin and Bryant (2015) expanded Misquittaôs (2011) review by extending 

publication dates from 1975 to 2014 to include 17 intervention studies.  They provided 

descriptive features of several aspects of fraction instruction (e.g., participant, setting, instructor, 

and length of instruction), analyzed the effects of instruction that consisted of identified 

instructional components (e.g., concrete and visual representations, explicit instruction, and 

heuristic strategies), and examined the connections of each instruction to the CCSSI (2015) in 

mathematics.  Both literature reviews provided insights into effective instructional approaches 

that could be used to improve overall fraction proficiency for students with mathematics 

difficulties. 

However, most of the identified interventions did not emphasize directly remediating the 

deficits in understanding of fractions (e.g., fraction equivalence and ordering) and/or how to solve 

fraction computations by applying unique features of their properties.  Instead, the studies 

focused more on the overall process of solving problems to achieve an answer using general 

problem-solving skills or strategies.  For example, anchored instruction enhanced studentsô 

engagement in real-world situations via video instructional materials and placed more emphasis 

on complex problem-solving skills (Bottge 1999; Bottge & Hasselbring, 1993; Bottge, Heinrichs, 

Mehta, & Hung, 2002) and direct instruction (Gerston & Kelly, 1992; Kelly et al., 1990) or 

strategy instruction, such as a cue card strategy (Joseph & Hunter, 2001; Test & Ellis, 2005), that 
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supported an overall process of fraction computation rather than having a direct impact on certain 

inherent features of fractions. 

For these reasons (i.e., lack of a research basis and less focus on understanding of 

inherent properties), there is a critical need to establish a systematic approach to developing 

proficiency in fractions-related contents in special education in order to close the gap between 

students with and without MLD.  The current study flowed from the recognition of this need.  

The first step should be understanding the unique characteristics of fraction performance and then 

diagnosing the misconceptions and/or errors that students with and without MLD make, with a 

focus on differences that may be evident.  Exploring error patterns is especially relevant since 

misconceptions or erroneous rules usually produce aberrant response patterns (Klein, Birenbaum, 

Standiford, & Tatsuoka, 1981; Tatsuoka, Birenbaum, Tatsuoka, & Baillie, 1980).  Analysis of 

consistent error patterns of students with MLD is important and necessary to provide more 

effective remediation.  Instruction is much more effective when it is specially designed to address 

specific areas of deficit rather than general problem areas.  In other words, diagnosis of errors and 

misconceptions will likely enhance and improve educatorsô ability to support the mathematical 

performance of students with MLD and should be used in conjunction with instruction. 

Framework for the current study: error analysis associated in the solution pathways 

 Two main assumptions guided this study.  First, analysis of error patterns should be 

preceded by instruction of computation involving fractions.  In order to systematically approach 

remediation of studentsô difficulties, a research basis of specific patterns or characteristics in 

performance across achievement groups needs to be established.  This research base can help 

teachers both in inclusive and special education settings provide and promote effective 
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instructions and/or interventions tailored to the precise difficulties students show in fraction 

computation solution pathways (Cawley, 1978). 

Second, flexibility in solving fraction computations should be considered when analyzing 

error patterns.  There are often multiple ways to solve mathematics problems, and problems 

become more complicated when fractionsô properties are involved.  Thus errors may occur as a 

consequence of the procedures students use during their solution of fraction computations (i.e., 

their solution pathway).  It is not appropriate to characterize an achievement group as having 

certain types of errors while ignoring their processes of solution; frequency of errors should be 

considered based on where they occur within the solution pathway.  Because some steps may or 

may not occur depending on a studentôs way of solving a fractions-related item, errors associated 

with certain steps consequently may or may not occur. 

Error pattern analysis 

Since the results of group study measures such as norm-referenced and criterion-

referenced achievement tests were met with skepticism and disappointment (e.g., they simply 

provide average performance across items to evaluate a studentôs mathematical ability and the 

focus is primarily on the percentage of correct answers), error analysis has been suggested as an 

alternative assessment tool in mathematics education (e.g., Fleishchner & Manheimer, 1997).  

Instead of interpreting studentsô performance simply as correct or incorrect, error analysis 

provides more in-depth and item-level descriptions of errors from a diagnostic point of view.  The 

rich research base both in the United States (e.g., Buswell & Judd, 1925) and Germany (e.g., 

Seemann, 1929; Weimer, 1925) from 1920 to the present shows that the characteristics of 

studentsô errors in mathematics were found and described as systematic, causally determined 

(e.g., errors are derived from certain difficulties in procedure or sub-skills), persistent across 
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school years unless teachers intervene, and so forth.  Radatz (1979, 1980) noted that studentsô 

errors are not merely the result of ignorance or situational accidents but a product of studentsô 

previous experiences in education (e.g., curriculum, instruction, and teacher) and/or ñmeaningful 

misconceptions.ò  Errors illustrate specific areas where students failed to understand certain 

concepts and/or techniques, which implies individual difficulties.  From this perspective, 

analyzing studentsô errors plays a central role in establishing diagnostic and instructional 

guidelines for teachers and provides insight into identifying individual difficulties and awareness 

about what areas of concepts, sub-skills, or techniques teachers should teach and/or re-teach. 

There is a good foundation in research that has conducted error analysis in several 

mathematics domains: arithmetic including whole-number operations (e.g., Luneta & Makonye, 

2010; Raghubar et al., 2009; Riccomini, 2005), algebraic equation solving with emphasis mostly 

on procedural techniques (e.g., Hawes, 2006; Seng, 2010; Zakaria, Ibrahim, & Maat, 2010), and 

word-problem solving (e.g., Kingsdorf & Krawec, 2014).  In these areas, analysis of arithmetical 

errors has been most actively conducted in the aspect of numerical development, with a strong 

emphasis on whole numbers.  Although error analysis in fractions-related content has received 

relatively less attention, there has been continuous interest in embracing and exploring errors or 

misconceptions while solving fraction problems (e.g., Behr, Harel, Post, & Lesh, 1992). 

Enright (1991) proposed four common errors in each of the four fraction operation types 

and recommended that teachers use these as a checklist to establish student error patterns.  Behr 

et al. (1984) and Steffe and Olive (1991) wrote about studentsô common misconceptions in 

ordering, equivalence, and part-whole conceptual knowledge of fractions, but these studies were 

limited in that they did not speculate about error patterns across items.  In addition, Brown and 

Quinn (2006) classified 25 problems from researcher-modified fraction assessment into six 

categories in order to examine specific errors within different levels and natures of problems.  

The six categories included algorithmic applications, applications of basic fractions concepts in 
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word problems, elementary algebraic concepts, specific arithmetic skills that are prerequisite to 

algebra, and computational fluency.  A result of the error analysis was provided along with 

descriptions of common errors students made in each item category. 

Recently, Newton, Willard, and Teufel (2014) examined errors and their patterns across 

fraction computation problems solved by students with MLD.  They found one or two common 

errors per each fractions operation and demonstrated that they were following predictable patterns 

(i.e., systematic patterns were detected).  Moreover, Bottge, Ma, Gassaway, Butler, and Toland 

(2014) closely focused on fraction addition and subtraction operations in order to detect common 

types of systemic errors students with MLD made.  In this study, 14 addition and 6 subtraction 

problems were used and 10 categories of possible errors were proposed.  The commonality of 

errors was measured by frequency counts, and researchers consistently found certain types 

specific to different instructional groups.  Finally, some studies have revealed differences in 

performance and misconception in fractions problems across different achievement groups (e.g., 

Mazzocco & Devlin, 2008; Siegler & Pyke, 2013), but these studies were restricted in that they 

did not give item-by-item descriptions of error patterns. 

Based on the logic that errors reflect meaningful misconceptions and individual 

difficulties, there is a critical need to expand research to specifically examine all errors that occur 

in the solution of each item following the sequential steps built in a solution algorithm using 

previously identified error types as a guideline.  Among the several domains of fraction problems, 

this study particularly concentrated on adding fractions, which is the first challenge for students, 

where they must reorganize their knowledge of numbers by distinguishing between the properties 

of whole numbers and fractions.  Moreover, this study investigated the commonalities and 

differences in systematic error patterns across achievement groups.  It was especially crucial to 

explore a comparison between students with and without MLD because the findings were 



13 

 

 

expected to serve as a starting point of instruction when teaching and/or re-teaching students in 

different achievement groups in inclusive settings. 

Flexibility of solution pathway 

Although there may exist a most efficient and elegant way to solve a given problem, most 

mathematics problems have various ways to achieve a correct answer (Blöte, Van der Burg, & 

Klein, 2001; Star & Newton, 2009).  The way of solving a problem, i.e., a solution pathway, 

typically gets complicated when a problem involves various steps requiring studentsô decisions as 

to which method to use.  Mathematics computation problems involving fractions tend to have 

flexibilit y in their solution pathway because of the unique features of fractionsô properties when 

compared to the properties of whole numbers.  For example, when given a mixed number + 

mixed number item, some students may disaggregate each mixed number into whole number and 

a fraction in order to carry out two separate operations (e.g., ) while some 

may decide to convert mixed numbers to improper fractions in order to carry out one operation 

(e.g., Ͻ Ͻ ).  Additionally, in the case of a proper fraction + improper fraction 

item, some students may convert the improper fraction to a mixed number and do two operations 

(e.g., , b < c, X > f) while others do not do the conversion but do 

just one operation as it is given (e.g., Ͻ Ͻ

Ͻ
). 

Numerous studies suggest that studentsô flexibility in their solution pathway should be 

encouraged and promoted through instruction (e.g., Carpenter, Fennema, Franke, Levi, & 

Empson, 1999; NCTM, 2014; National Research Council, 2001; Star & Seifert, 2006).  One of 

the mathematical standards for practice stated in the CCSSI (2015) advocates diverse thinking in 

solution plans, which was a characteristic that was revealed in mathematically proficient studentsô 
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work.  Therefore, the logic of analyzing the particular error patterns associated with each of the 

studentsô solution pathways starts from this orientation.  In other words, to promote effective 

instruction, flexibility of solution pathway should be taken into consideration not only when 

designing mathematics instruction but when analyzing the error patterns in studentsô solutions.  

Roschelle (1993) pointed out that students might take different pathways to arrive at the solution 

of a problem, so errors or misconceptions should be identified along with the studentsô solution 

pathways.  Several studies conducted error analysis using qualitative methods such as interviews 

to avoid overlooking the possibility of various solution pathways and to investigate conceptual 

aspects behind the answer (e.g., Luneta & Makonye, 2010; Raghubar et al., 2009; Seng, 2010). 

The current study fully considered the solution pathways the students presented and 

detected errors in each step of the process of fraction computations by qualitatively tracking the 

solution pathways the students preferred to follow.  Based on the previous findings from Hwang 

and Riccomini (2016), occurrence of errors depended on studentsô solution pathway preferences 

(i.e., errors may or may not be detected depending on what solution method a student uses) and 

item types.  Moreover, instead of evaluating a studentôs performance on a fraction computation 

simply as correct or incorrect, this studyôs approach provided a thorough examination of types of 

errors in an incorrect performance along with an in-depth, item-level description of the errors.  

This method of analysis allows teachers to detect multiple errors that may occur within the whole 

process of a fraction computation, diagnose the severity of the errors, and have an idea or 

estimate of possible sources of those errors to reference as a starting point for instruction to 

remediate the specific difficulties. 

For example, say four students gave incorrect answers when adding fractions.  Student A 

did the procedure correctly but made a mistake in calculation, Student B knows how to add two 

fractions (e.g., keep the same denominator but add across the numerators) but made consistent 

errors in converting mixed numbers to improper fractions, Student C made procedural errors by 
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applying a whole-number property by adding across numerators and denominators separately, and 

Student D added all numbers that appeared in fractions with arithmetic errors.  All four students 

made errors and received no points on a fraction computation item; however, Student A had a full 

understanding of fractions properties but made errors due to careless behavior, Student B had an 

understanding of fractionsô properties but will improve if a teacher re-teaches ñhow to convert 

between fractions,ò Student C had an understanding of whole number properties but was not 

successful in expanding a number set to fractions, and Student D had a poor understanding of 

whole number properties.  As can be seen from this example, teachers need to pay more attention 

to what and why errors occur, and appropriate instruction should be tailored to these types of 

errors. 

Purpose of study 

 This study examined the common error patterns that occurred in each stage of different 

solution pathways when solving fraction computation problems.  The purpose of the study is (1) 

to examine the common types of error patterns students with and without learning disabilities in 

mathematics produce in their solution pathways in order to establish an instructional/diagnostic 

basis to develop practical teaching and/or re-teaching guidelines for teachers, (2) to examine 

whether error patterns in each stage of a solution pathway hold across achievement groups (i.e., 

typical achievement [TA], low achievement [LA], and mathematics learning disabilities [MLD]) 

in order to be aware of different starting points of instruction for each achievement group when 

teaching fraction computation involving addition, and (3) to examine whether item type 

influences error patterns for students with MLD who have mathematics goals in their 

individualized education program (IEP) based on the finding that students with disabilities were 

vulnerable to item type (i.e., item type was a significant moderator). 
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Based on these aims, the following research questions guided this study: 

(1) What are the common types of errors students with and without MLD make in each 

stage of a solution pathway when solving a problem involving the addition of 

fractions? 

(2) How do the most common error types differ across achievement group (i.e., TA, LA, 

and MLD) and solution pathway? 

(3) How do item types relate to solution pathways and error patterns for students with 

MLD?  

  



 

 

Chapter 2  
 

Methodology 

Participants and settings 

A total of 755 middle school students in Grades 7 and 8 in Central Pennsylvania were 

recruited.  Of these students, 57.62% were receiving reduced or free lunch services.  All students 

took the tests in their regular mathematics class periods either in an inclusive or self-contained 

classroom.  The final group of participants for the current study consisted 448 students (59.34%) 

who returned consent forms (55.8% in Grade 7 [57.3% female] and 44.2% in Grade 8 [54% 

female]).  The test performances of the students who did not return consent forms were not used 

and analyzed for the study purposes but were used by mathematics teachers at the school for their 

information only.  Among the 448 participants, 11.38% of the students had an IEP (Grade 7, 

7.14%; Grade 8, 4.24%) with one or more goals in mathematics, reading, behavior, or speech; 

and 9.82% of the students were identified as MLD having a specific IEP goal in mathematics.  In 

addition, three students were receiving special education services in self-contained classrooms 

and the rest of the students were in inclusive mathematics classrooms (see Table 2-1).  

The researchers included students in Grades 7 and 8 based on the expectation of mathematics 

instructional contents by grade that was stated in the CCSSI (2015) and NCTM (2008).  

According to these principles and standards, fractions should be taught from Grade 3 through 

Grade 6; thus we expected students in Grades 7 and 8 to have received instruction and practice 

opportunities involving fractions, including fraction computation.  Because of evidence showing 

difficulties with fractions that persist into middle school (Hecht & Vagi, 2010; Mazzocoo & 
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Devlin, 2008; Mazzocco, et al., 2013), the researchers were interested in studentsô performance in 

fraction computation after having fraction instruction throughout the four previous years. 

  

Table 2-1 Student Characteristics 

 

 

Achievement group    

TA 

(n = 262) 

LA 

(n = 142) 

MLD 

(n = 44) … F p 

Gender    1.37a  .51 

Male 117 60 23    

Female 145 82 21    

Grade    .73a  .70 

7 143 80 27    

8 119 62 17    

Service area/IEP goal    459.51a  .00***  

None 260 137 0    

Math only 0 0 4    

Math and reading 0 0 40    

Reading only 0 4 0    

Behavior 1 0 0    

Speech 0 1 0    

504 Plan 1 0 0    

Subsidized lunchc    41.65a  .00***  

Free 81 87 27    

Reduced 30 7 4    

None 151 48 13    

Math achievement test:  

M (SE) 

   

PSSA-M 

1723.43 

(13.15) 

1339.94 

(17.86) 

1107.27 

(32.09) 

 250.99b .00***  

Fraction Computation 

Test (Addition)d 

4.12 

(.10) 

1.74 

(.14) 

.85 

(.26) 

 132.60b .00***  

Note. TA = Typical achieving; LA = Low achieving; MLD = Mathematics learning disabilities; IEP = 

Individualized education plan. M = Mean; SE = Standard error. PSSA-M = Pennsylvania System of School 

Assessment in Mathematics. *** p < .001. 
aChi-square test. bUnivariate analysis of variance was conducted; pairwise comparisons among three achievement 

groups indicated they were significantly different from each other at .05 after a Bonferroni adjustment for multiple 

comparison. cSubsidized lunch represents three categories of studentsô socioeconomic status: student receiving free 

lunch, reduced lunch, and no benefit (pay full price). dResearcher-developed test involving fraction addition items; 

total score is 6. 
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Measures 

Fraction achievement test 

A researcher-developed assessment was used to measure fractions performance.  The test 

consists of 27 items including fraction computation (n = 24), comparing magnitudes (n = 2), and 

ordering (n = 1).  The fraction computations involved six items for each operation (i.e., addition, 

subtraction, multiplication, division), and each item was comprised of two fractions in 

combination with a whole number, a mixed number, a proper fraction, or an improper fraction.  

For the study purposes, performance on six fraction addition items was investigated.  The six 

items varied in their combination of fraction type (e.g., mixed number  + improper fraction and 

proper fraction + proper fraction) and relation between denominators (e.g., equal denominators 

and relative prime or multiple of one another if unequal denominators) (see Table 2-2). 

PSSA-M 

Participants in this study completed the Pennsylvania System of School Assessments in 

Mathematics (PSSA-M) at the end of Grade 6 or 7 during the year before the completion of this 

study.  The PSSA-M is a standardized statewide mathematics achievement test measuring 

studentsô ability in four main constructs: numbers and operations, algebraic concepts, geometry, 

and data analysis and probability.  Each construct is broken down into sub-categories associated 

with specific grade and corresponding grade-spans.  It has been successfully used as a reference 

for studentsô overall mathematics achievement (Hanich, Jordan, Kaplan, & Dick, 2001; Jordan, 

Hanich, & Kaplan, 2003) with Cronbachôs alphas greater than .90 (PSSA-M, 2012). 

The PSSA-M was used as the primary standard to determine studentsô general 

achievement level in mathematics and to categorize them into two achievement groups, TA and  
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LA.  Students who scored above the 35th percentile were classified as TA and those who scored 

at or below the 35th percentile were classified as LA.  Previous studies that examined 

mathematics performance by different achievement group also used the 35th percentile as the cut-

off in defining low-achieving students (e.g., Gamst, Meyers, & Guarino, 2008; Mazzocco et al., 

2013).  In addition to the TA and LA groups, researchers defined the MLD group as students who 

were diagnosed as having specific learning disabilities in mathematics and had mathematics goals 

in their IEP regardless of their PSSA-M scores.  MLD was distinguished from LA because of the 

growing evidence that students with disabilities, especially in mathematics, have unique 

cognitive, strategic, and academic profiles (Fuchs et al., 2005; Swanson & Beebe-Frankenberger, 

2004; Wilson & Swanson, 2001).  Therefore, we examined errors presented in studentsô fractions 

performance to explore how they varied in three different achievement groups, TA, LA, and 

MLD. 

Data collection 

A total of 13 teachers (12 mathematics teachers and one special education teacher) 

administered the fraction achievement test during their regular mathematics class period.  One 

researcher with expertise in mathematics provided instruction to teachers for administering the 

test (e.g., test duration and restrictions), and two doctoral students assisted teachers while the test 

was being conducted.  Teachers were provided a written script to reduce the possibility of teacher 

effect.  Before distributing the test to students, teachers explained its purposes and provided 

instruction.  Students were provided 45 minutes to complete the fraction achievement test.   

Given that one of our study purposes was to detect all possible errors presented in 

studentsô solution pathways, we did not provide specific directions for solving fraction 

computations (e.g., convert a mixed number before adding fractions).  Instead, students were 
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asked to provide all the procedures or trials they used to solve a problem on the test, and they 

were allowed to use extra sheets if more space was needed to show their work.  Additionally, 

students were directed to write their answer in the simplest form, such as simplifying their answer 

and writing it as a proper fraction, whole number, or mixed number (e.g.,  = 1  , or  =  ).  We 

gave this direction to detect errors in the simplification or transformation stage, because without 

this direction it would be difficult to know whether students made errors in this last stage (e.g., 

when given  ,   is a correct answer but students might make errors in simplifying  or 

transforming it into a mixed number). 

Analysis 

To detect all errors students made by tracking the solution pathway they presented in 

their performance, the analysis was conducted in three steps: (1) establishment of an algorithm of 

solving fraction computations involving addition, (2) analysis of the solution pathway, and (3) 

error coding. 

Algorithm of solving fraction problems involving addition 

To analyze errors in studentsô solution pathways, the lead researcher established an 

algorithm for solving fractions addition problems based on the common process suggested in 

previous research.  This study mainly borrowed Klein et al.ôs (1981) procedural network 

illustrating the different algorithms used to solve different types of problems.  Additionally, the 

lead researcher made minor adjustments reflecting the construction of algorithms suggested in 

previous research (e.g., NCII, 2014; Peck, Jencks, & Chatterley, 1980).  Klein et al.ôs (1981) 

interconnected chain system provides the theoretical background for developing an understanding 
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of the process of adding two fractions of various types; moreover, it postulates a diagnostic 

system to detect all possible errors by taking into account studentsô solution pathways and item 

types, which appropriately and precisely supports the purposes of the current study.  According to 

their procedural network, when given a problem, studentsô solution pathway preferences are 

reflected when they recognize a problemôs type and make a decision as to which solution method 

to use (e.g., (fraction + fraction) or (whole number + whole number) + (fraction + fraction)).  

Depending on the item type and a studentôs solution pathway preference, subsequent stages differ 

consequently. 

Therefore, the algorithm used in this study involves five main steps: converting, 

renaming, operating, arithmetic, and simplifying, which are operationally defined as follows: 

Converting refers to replacing mixed numbers or whole numbers with equivalent improper 

fractions or vice versa (e.g., Ͻ ,  ).  While converting occurs in each fraction itself, 

renaming depends on the other fraction because it is the process of adjustment of two fractions for 

the operation.  In this sense, renaming is transforming fractions to those with equal denominators 

to execute the fraction computation procedure.  When two fractions have unequal denominators, 

students need to find a common denominator first and then rename each of the fractions as 

equivalent fractions (i.e., Ͻ

Ͻ

Ͻ

Ͻ
 ).  After students have changed the format of the fractions 

as a result of converting and/or renaming, operating occurs.  This is divided into whole numbers 

operations and fractions operations, where most of the procedural errors are detected (e.g., adding 

across numerators and denominators) (Bottge et al., 2014; Riccomini et al., 2016).  Finally, to 

extend the previous research findings and respond to our research questions, the arithmetic and 

simplifying stages were additionally specified in order to examine studentsô ability in whole 

numbers operations and simplifying fractions and transforming improper fractions with mixed or 

whole numbers into the simplest form.   
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Solution pathways 

Different solution pathways may appear depending on item type and the way in which a 

student plans to solve the problem, as some steps may or may not occur.  Depending on which 

solution pathway students decide to follow, different algorithms apply.  There are four main 

solution pathways which have emerged from 50 randomly selected samples and prior research 

findings (Hwang & Riccomini, 2016; Riccomini et al., 2016) (see Figure 2-1).   

First, two separate operations are conducted by decomposing the mixed number into its 

whole number part and fraction part (SP1).  Students who prefer SP1 add whole numbers and 

fractions separately.  Second, one operation with fractions is conducted (SP2).  When the item 

contains a mixed number or a whole number, SP2 includes additional prior steps that involve 

transforming mixed numbers to improper fractions, thereby avoiding a whole-number operation.  

Previous research has also suggested that SP1 and SP2 were common algorithms that students 

followed (e.g., Klein et al., 1981).  Third, fractions are transformed to decimal or percentage 

values where fraction operations do not occur (SP3).  Fourth, when researchers could not 

diagnose how students solved an item, the solution pathway was considered to be random (SP4).  

Because of acknowledgeable limitations in extracting information about studentsô reasoning from 

insufficient work, researchers considered it as a separate category.  Students who did not show 

computation steps but merely wrote random numbers were also classified as SP4. 
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Figure 2-1. Algorithm for solving fraction addition operations showing solution pathways.  

C = Converting; R = Renaming; S = Simplifying; SP = Solution pathway; UM = Unknown 

mechanism; Solid line = solution stage occurred; Dashed line = solution stage did not occur.  

Examples are provided following routes a and b. 

a.  ᴼ ρȢ#ÏÎÖÅÒÔÉÎÇ ÏÃÃÕÒÒÅÄȡ ᴼ ςȢ  2ÅÎÁÍÉÎÇ ÄÉÄ ÎÏÔ ÏÃÃÕÒȡ ᴼ

σȢ  0ÁÒÔρȡ 0ÁÒÔςȡ ᴼ τȢ  !ÒÉÔÈÍÅÔÉÃȡ ᴼ υȢ  3ÉÍÐÌÉÆÙÉÎÇ ÏÃÃÕÒÒÅÄȡ ᴼ

φȢ!ÎÓ×ÅÒȡ    

b.  ᴼ ρȢ#ÏÎÖÅÒÔÉÎÇ ÏÃÃÕÒÒÅÄȡ ᴼ ςȢ  2ÅÎÁÍÉÎÇ ÏÃÃÕÒÒÅÄȡ ᴼ σȢ  0ÁÒÔςȡ

ᴼ τȢ  !ÒÉÔÈÍÅÔÉÃȡ ᴼ υȢ  3ÉÍÐÌÉÆÙÉÎÇ ÏÃÃÕÒÒÅÄȡ ᴼ φȢ!ÎÓ×ÅÒȡ  

Error coding  

Error coding was conducted for each item in the five steps.  First, types of errors were 

extracted from previous research and summarized.  To find evidence about error analysis 

involving fraction addition, a keyword search using the combination ñfraction*, add*, calculation, 

computation, erroneous, and error*ò was done in ProQuest and PsychINFO databases.  The errors 

described in these studies served as a basis to guide error coding for this study.  Second, 
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identified errors were categorized into the six stages embedded in the algorithm established for 

our analysis (i.e., converting, renaming, whole number operations, fractions operations, 

arithmetic, and simplifying).  Third, for each stage, the researchers coded the occurrence in the 

stage (1 = occurred; 0 = not occurred), correctness if occurred (1 = correct; 0 = incorrect), and the 

error type if incorrect.  All errors were coded following the algorithm of each solution pathway 

(SP1 - SP4) using previously identified error types, but new errors codes were created as needed.  

Lastly, frequency of errors was calculated to reference their severity.  Because certain stages may 

or may not occur depending on a studentôs solution pathway preference, errors associated in a 

certain stage may or may not occur.  Thus, instead of frequency of errors, the frequency of the 

error occurring in the associated stage divided by the frequency that stage occurred was 

calculated.  This is different from traditional frequency counts of ñ{ error occurrence 

frequency/(frequency a certain stage occurred + did not occur)},ò which does not account for 

studentsô flexibility in selecting a correct solution method. 

Error identified in prior studies  

Errors identified in prior studies were used as a guideline to code all possible errors that 

occurred during studentsô fraction computations involving addition.  As a result, a total of three 

recent studies on error analysis were identified that satisfied the given criteria (Bottge et al., 2014; 

Brown & Quinn, 2006; Newton et al., 2014).  Some studies were excluded since they provided 

error types for general fraction domains rather than focusing on the addition operation (e.g., 

Enright, 1991), errors were not systematically analyzed (e.g., Steffe & Olive, 1991), or the 

population who showed errors were not school-aged students (e.g., Isik, 2012).   

Adding across numerators and denominators was the most frequent and representative 

error when students attempted to solve fraction addition items (F2).  Bottge et al. (2014) 
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additionally found errors where students added all numerators and denominators to find a total 

sum (C6), errors where students picked one of the denominators for the answer without finding 

the equivalent fraction (R2), and general errors where students attempted to find equivalent 

fractions (R1).  Moreover, Brown and Quinn (2006) described an error caused by misconceptions 

related to equivalent fractions (e.g., when  was given,  became  by adding 4 to the 

numerator and denominator) (R2b), basic arithmetic errors (AE), and two errors in simplifying 

(e.g., skipping [S0] or not completely simplifying a fraction [S1]).  These errors were categorized 

in appropriate solution stages within the algorithm the researcher developed for the current study 

and served as a basis to guide error coding for this study (see asterisks in Table 3-3, Table 3-4, 

Table 3-5, and Table 3-6). 

Inter -rater reliability  

Four inter-rater reliabilities were calculated for: (1) categorizing error types identified in 

previous research into the six stages in the algorithm, (2) coding occurrence and correctness for 

each stage, (3) coding errors using identified error types, and (4) coding errors using newly 

created error codes.  Two trained researchers independently coded 20% of the fraction measures.  

Initial inter-rater reliabilities for (1) and (3) were 100%, (2) was 88.91%, and (4) was 92.32%.  

However, we achieved 100% for both (2) and (4) after disagreements were discussed and 

resolved. 

  



 

 

Chapter 3  
 

Results 

The logic behind the error analysis used in the current study was that students have a 

variety of sources of error with a spectrum of severity when performing fraction computation; 

therefore, identifying common patterns of errors students make serves as a diagnostic and 

instructional guideline for teachers to provide effective instructions and remedy ongoing 

difficulties by targeting erroneous areas.  In addition, flexibility of solution pathway was taken 

into consideration in order to detect multiple errors throughout solution stages and, more 

importantly, to avoid over-representing errors caused by ignoring the occurrence of solution 

stages.  The aims were to (a) identify common error types middle school students with and 

without MLD make in each stage of a solution pathway, (b) examine differences in common error 

patterns among achievement groups, and (c) identify specific error types to pinpoint unique error 

patterns and examine how item type and solution pathway preference relate to errors for students 

with MLD. 

Error types in each stage of solution pathway 

 Prior to demonstrating common error types in each solution stage, solution pathway 

preference was examined and classified into four types (SP1-SP4) in each item level (see Table 

3-1).  A total of 2,688 cases of item performance were analyzed.  The mean percentages of 

solution pathway preference across achievement groups were 44.72% (SP1), 44.61% (SP2),  
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0.11% (SP3), and 4.84% (SP4); 5.73% of the items did not have a student response provided so 

they were not classified as any of the four types.  Among 2,688 cases of item performance, only 

89.33% of the cases classified as SP1 or SP2 were included for error analysis because it was not 

possible to detect errors when students did not follow a general algorithm of fraction computation 

(SP3), when researchers could not recognize a mechanism of errors or students merely wrote a 

random number (SP4), or when students did not respond or skipped an item. 

Error type  

Errors were examined in 2,401 cases of item performance (89.33%), and a total of 74 

types of errors were initially identified during the process of fraction computation involving 

addition.  As the study assumed that certain errors were uniquely associated with certain stages of 

a solution pathway, certain errors were only examined in the cases where a certain solution stage 

occurred but was done incorrectly.  The mean percentages of errors regardless of type in an 

associated solution stage and the number of error types found in each were as follows: 11.98% 

and 24 types in converting, 18.27% and 9 types in renaming, 2.91% and 5 types in whole-number 

operations, 27.39% and 29 types in fraction operations, 4.71% and 5 types in arithmetic, and 

26.99% and 2 types in simplifying stages (see Table 3-2).  Overall, the solution stage where 

students made the most errors was fraction operations, followed by simplification, renaming, 

converting, arithmetic, and whole-number operations.  In addition, error types were most diverse 

in the fraction operation and converting stages, followed by the renaming, arithmetic, whole-

number operation, and simplifying stages. 

Table 3-3, Table 3-4, Table 3-5, and Table 3-6 present the specific error types detected 

and their descriptions.  The identified errors in each solution stage were clustered into several 

upper categories based on the representative features that the three researchers agreed upon (see  
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the inter-rater reliability discussion in the Methods section).  This process enabled completion of 

a practical diagnostic basis for providing intuitive senses of studentsô erroneous features at a 

glance.  In the converting stage, the researchers found eight categories of errors: (1) correct 

converting procedure but errors in calculation; (2) a denominator being ignored; (3) the correct 

denominator but errors when finding a numerator; (4) errors in finding a denominator; (5) a 

whole number part in a mixed number being inappropriately added, subtracted, multiplied, or 

divided to a numerator and a denominator; (6) numbers composing a mixed number or a fraction 

being separated and added, subtracted, multiplied, or divided among each other; (7) errors in 

converting a whole number to a fraction format; and (8) random errors.  In addition, the renaming 

stage included three categories of errors: (1) correct in finding an equivalent denominator but 

errors in finding appropriate numerators, (2) errors in finding an equivalent denominator, and (3) 

random errors. 

Moreover, the errors in operation procedure were described in two parts: whole number 

operations and fraction operations.  In the whole-number operation stage, the three main 

categories of errors found were (1) choosing an inappropriate operation, (2) a whole-number 

operation being ignored and skipped, and (3) random errors.  In the fraction operation stage 

where the greatest variety of error types was detected, errors were grouped into four categories: 

(1) choosing an inappropriate operation, (2) over-generalization of independent whole-number 

strategy, (3) special error types when an item involves a fraction and a whole number, and (4) 

random errors.  Lastly, in the arithmetic and simplifying solution stages, identified errors were 

not grouped because there were less than five. 
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Error pattern analysis 

After all of the types of errors were identified and analyzed during the whole process of 

fraction addition at the item level, common and unique errors associated with each solution stage 

were discussed by making comparisons among three achievement groups as a function of solution 

pathway preference (SP1 and SP2) in three ways: (1) percentage of solution stage occurrence, (2) 

percentage of error occurrence in each solution stage regardless of type, and (3) error patterns 

associated with each solution stage. 

Occurrence of solution stage and associated errors 

The percentage of errors that occurred in each solution stage explains the percentages of 

item cases that the students solved incorrectly only when they experienced a certain solution 

stage.  In other words, these reflect the possibility of error occurrence for students who 

experienced a certain solution stage.  The current study compared how students in different 

achievement groups performed each solution stage uniquely established in solution pathways (see 

Table 3-2 and Figure 3-1). 

Overall, the mean percentages of solution stage occurrence varied among achievement 

groups while those of associated errors across and within solution stages were the lowest in TA, 

followed by LA and MLD, regardless of solution pathway preference (see Table 3-2).  Both the 

converting and renaming stages predominantly occurred in the TA group, followed by LA and 

MLD, regardless of solution pathway preference.  The mean percentages of the converting and 

renaming stages were 40.27% and 44.68% (TA), 20.22% and 22.40% (LA), and 17.53% and 

15.98% (MLD), respectively.  In addition, both stages occurred more frequently when students 

followed SP2 than SP1 across all achievement groups, with the mean percentages of difference  
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Figure 3-1. Percentage of Occurrence of Solution Stages and Associated Errors for Three 

Achievement Groups  
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being 44.96% and 48.07% (TA), 22.97% and 16.22% (LA), and 29.20% and 11.79% (MLD), 

respectively for the converting and renaming stages.  Among cases where the converting stage 

occurred, the mean percentages of error occurrence were correspondingly greater within SP2 than 

SP1, with differences of 22.52% and 3.13%, respectively for LA and MLD, but the TA group had 

the opposite result in that errors were 4.11% more frequent in SP1.  Moreover, for the cases 

where the renaming stage occurred, the mean percentages of error occurrence were greater within 

SP2 than SP1 across all achievement groups, with the differences being 3.26% (TA), 12.87% 

(LA), and 8.59% (MLD). 

The whole-number operation stage always and only occurred in SP1 because it is defined 

as a solution pathway carrying two operations (whole-number and fraction operations), whereas 

SP2 is characterized as performing only a fraction operation.  In contrast, the fraction operation 

stage always occurred except for several cases which involved errors in prior stages that caused a 

fraction operation to be unnecessary (e.g., when ὥ  is incorrectly transformed into (c Ā a) + b in 

the converting stage there are no fraction parts upon which to perform a fraction operation stage); 

therefore, the mean percentages of its occurrence were above 97.88% across achievement groups 

and solution pathways.  Similar to other previous solution stages, however, the mean percentages 

of errors that occurred in the fraction operation stage were greater within SP2 when compared to 

SP1 across all achievement groups, with the differences being 11.11% (TA), 30.77% (LA), and 

23% (MLD). 

Finally, the arithmetic and simplifying stages were always established in solution 

pathways that students needed to proceed to in order to get an answer; therefore, percentages of 

solution stage occurrence were always 100%.  Mean percentages of errors were greater within 

SP2 than SP1, with the differences being 1.56% and 9.49% (TA) and 0.53% and 0.31% (LA), 

respectively, but students in the MLD group made 1.62% and 8.27% more errors when following 

SP1 instead of SP2, in the arithmetic and simplifying stages, respectively. 
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Error patterns across achievement groups 

In addition to comparing percentages of item-level cases that students in different 

achievement groups solved incorrectly at each solution stage, this study investigated common and 

unique error types that occurred in studentsô solutions.  This process enabled us to examine 

whether students create common error patterns within and across achievement groups in each 

solution pathway they followed.  Overall, similar error patterns were found across all solution 

stages except for the converting stage; specifically, the patterns of LA were more similar to those 

of TA in some stages (e.g., the renaming stages within SP2) while they were more similar to 

those of MLD in others (e.g., the whole-number stage in SP1, the arithmetic stage in SP2).  The 

error patterns in each solution stage showed the error types that students in TA, LA, and MLD 

had in common most to least frequently, which are detailed as follows (see Table 3-7, Figure 3-2, 

and Figure 3-3). 

First, when compared to other solution stages, the converting stage had less commonality 

in the error patterns of the three achievement groups in both SP1 and SP2.  In other words, 

students in each achievement group had a unique error pattern that showed that each group had 

different types of difficulties.  In SP1, the most frequent error in TA and MLD was C1 (C1b, 

75%), the two major errors in LA were C5 (50%) and C6 (50%), and the only error type 

discovered in MLD was C1 (C1a).  When compared to SP1, error types in SP2 were less 

straightforward and dispersed into eight types (C1-C7 and CR).  The most frequent error in TA 

was C3 (55.56%) while other error types occurred at below 20%.  Various error types were 

detected in LA, with the percentage of C2 (30.56%) being the highest while the others mostly 

stayed between 8-16%.  Finally, for MLD, two main error types (C3 and C4, 38.89% each) 

characterized their erroneous features.   
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Second, in the renaming stage, overall patterns were similar across achievement groups 

and solution pathways: students made R1 the most frequently, followed by R2 and RR.  Among 

errors categorized in R1 (R1a, R1b, and R1c), the frequency of R1a, which describes errors in 

finding numerators made by keeping them the same regardless of a new equivalent denominator, 

was the highest.  Moreover, the percentage of R1 occurrence was slightly higher in SP2 than SP1 

 

Figure 3-2 Error Patterns in SP1 for Three Achievement Groups. 

 

 

Figure 3-3 Error Patterns in SP2 for Three Achievement Groups. 
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for TA (SP1, 66.67%; SP2, 73.58%) and LA (SP1, 73.33%; SP2, 76%) as opposed to MLD (SP1, 

71.43%; SP2, 63.16%).  The percentage of R2 occurrence was larger in SP1 than SP2 for TA 

(SP1, 33.33%; SP2, 22.64%) and MLD (SP1, 36.84%; SP2, 28.57%), whereas it was larger in 

SP2 than SP1 for LA (SP1, 20%; SP2, 24%). 

Third, in the whole-number operations stage, errors were examined only in the cases with 

SP1 since a whole-number operation was uniquely established in SP1.  The error patterns were 

very similar between LA and MLD with the percentage of W2 being the largest (LA, 66.67%; 

MLD, 66.67%), followed by WR and W1.  The patterns were also similar for TA; however, the 

percentages of the three error types (W1, 26.67%; W2, 40%; WR, 33.33%) were fairly 

comparable with each other when compared to LA and MLD groups, where W2 was the 

representative error in this solution stage. 

Fourth, in the fraction-operation solution stage, overall error patterns were similar across 

achievement groups and solution pathways.  F2 was the most common error, while other error 

types occurred below 15%.  Although both F3 and F4 occupied a relatively smaller portion in this 

solution stage, they were commonly detected in SP1 and SP2.  SP2 had a wider variety of error 

types, and error patterns were very similar when compared to SP1.  Except for F2, the most 

frequent error type was F6 (TA, 6.43%; LA, 9.61%; MLD, 12.31%) while F4 (TA, 5.71%; LA, 

3.93%; MLD, 4.62%) and F3 (TA, 4.29%; LA, 5.24%; MLD, 10.77%) were also considerable.  

In SP1 there was little variation in the occurrences of F3, F4, and FR among the three 

achievement groups: F3 occurred the most frequently in MLD (11.90%) while FR was fairly 

frequent in both TA (10.94%) and LA (5.41%).   

Fifth, in the arithmetic stage, A1 occupied the largest portion among error types detected 

within each achievement group in SP1 and was the only error type detected for MLD (TA, 

47.62%; LA, 65.22%; MLD, 100%).  AR also occurred fairly frequent in TA (33.33%) and LA 

(26.09%).  In SP2, A1 was still the primary error for TA (77.42%) whereas the percentage of AR 
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was greater than A1 for LA and MLD (LA, 51.85%; MLD, 60%).  In the simplifying stage, the 

last solution stage before getting a final answer, a majority of students across achievement groups 

using SP1 and SP2 made error S0, an error involving skipping or not simplifying a fraction into 

the least fraction or a mixed number even though it is necessary (SP1, 87.36%; SP2, 79.33% 

[TA]; SP1, 92.67%; SP2, 92.07% [LA]; SP1, 92%; SP2, 89.36 [MLD]).  When students 

attempted to simplify a fraction, the S1 error occurred similarly in both the TA and LA groups but 

less than in the MLD group (SP1, 4.60%; SP2, 1.33% [TA]; SP1, 4.67%; SP2, 4.88% [LA]; SP1, 

8%; SP2, 10.64% [MLD]).  Moreover, percentages of S2 and S3 were greater for TA than LA in 

both SP1 and SP2.   

Error a nalysis for students with MLD 

Based on the comparison of error patterns across achievement groups, specific error types 

for students in the MLD group were examined to demonstrate the groupôs characteristics in 

fraction computation performance.  Rather than exploring an error pattern using broad categories 

of errors (e.g., C1, R2), all specific errors that fell into those categories were analyzed in each 

solution stage.  Furthermore, as prior studies (e.g., Hwang & Riccomini, 2016; Newton et al., 

2015) have shown that students with MLD are vulnerable and sensitive to item type, especially 

equality of denominator, the current study examined its relation to solution pathway preference, 

percentage of errors in each solution stage, and consequent error patterns (see Table 2-2 for item 

categorization).   
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Characteristics of error pattern  for students with MLD 

Among all item-performance cases for students with MLD, SP2 (38.64%) was the most 

prevalent, followed by SP1 (34.85%), SP4 (13.26%), and no response (13.26%).  Nevertheless, 

even though SP2 was the most popular solution pathway students with MLD followed, the mean 

percentages of errors were greater in SP2 than in SP1 in the converting, renaming, and fraction-

operation solution stages.  In other words, students were more likely to make errors in these three 

stages when solving items using SP2.  An additional analysis of the specific error types and their 

patterns in order to examine how they differed between SP1 and SP2 follows (see Figure 3-4).   

 

 

Figure 3-4 Specific Error Patterns for Students with MLD. 

 

Among all cases of item performance where students with MLD solved with SP1, only 

2.17% of the cases involved the converting stage, and 50% of these cases involved error type 

C2a.  For SP2, both the percentage of cases involving the converting stage (31.37%) and the 

percentage of errors (53.13%) were greater when compared to SP1.  Error types were various, 

with C3g being the most frequent, followed by C2a, C6a, C6b, C6d, C2b, C3d, C3e, and C7b.  

Although the C2a error type was commonly detected in SP1 and SP2, overall patterns of specific 

error types were not the same for both pathways. 
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The renaming stage had a similar situation in that both the percentage of cases involving 

this solution stage and the percentage of associated errors among those cases were greater in SP2 

(21.57% and 86.36%, respectively) when compared to SP1 (9.78% and 77.78%, respectively); 

however, students with MLD were most likely to make errors in the renaming stage regardless of 

solution pathway preference.  Error types were more various in SP2 than in SP1, where only four 

main types were detected (R1a, R1c, R2a, and R2e).  The errors in SP2 involved three error types 

(R1a, R1c, and R2a) in common with SP1, with R1a as the primary error, but SP2 involved four 

additional error types (R1b, R2b, R2c, and R2d).  Error patterns were not the same in this solution 

stage as well.   

Moreover, a majority of item cases involved the fraction-operation solution stage in both 

SP1 (98.91%) and SP2 (92.16%), which always occurred unless there were errors in the previous 

stages and fraction operations were unnecessary.  And among these cases, students were more 

likely to make errors in SP2 (69.15%) than in SP1 (46.15%).  Although more error types were 

detected in SP2 than SP1, similar to the converting and renaming solution stages, both solution 

pathway preferences involved F2a as the primary error.  In SP1, F6a and F3c were also relatively 

frequent, followed by 11 error types (F1b, F1c, F2e, F3a, F3b, F3c, F4a, F5a, F6b, F6g, and FR), 

with 2% each.  In SP2, F3a was the most frequent error type followed by three other types (F3c, 

F4a, and F4c), staying slightly below 3% each. 

In contrast to the above three solution stages, percentages of error in the last two solution 

stages, arithmetic and simplifying, were slightly greater within SP1 than SP2 for students with 

MLD.  Among the cases where errors occurred, only A1 was identified in SP1 while AR (60%) 

was additionally found in SP2.  S0 was found to be a major error in both SP1 (92%) and SP2 

(89.36%), followed by S1 with 8% in SP1 and 10.64% in SP2.  Lastly, a whole-number operation 

stage occurred only within SP1, where 6.52% errors occurred; error types were W2 with 66.67% 

and W1b and WR each with 16.67%.   
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Relation of item type with solution pathway and error 

Solution pathway preferences in two item types were opposite in that SP1 (63.63%) was 

more predominantly used than SP2 (17.05%) in items with equal denominators while SP2 

(50.76%) was more predominant than SP1 (20.45%) in items with unequal denominators.  For 

both item clusters, the percentages of SP3 used were 0%, SP4 usage was in the 10-15% range, 

and no responses were in the 16-18% range.  In addition to relation of item type to solution 

pathway preference, percentages of occurrence of each solution stage and associated errors varied 

by item type (see Table 3-8 and Figure 3-5). 

 

 

Figure 3-5 Specific Error Patterns for Items with Equal and Unequal Denominators for Students 

with MLD. 

 

In the converting stage, the mean percentages of the solution stage occurrence and errors 

were greater in items with equal denominator in both SP1 and SP2 (see Table 3-8), while error 

patterns did not hold the same across either item types or solution pathways.  In SP1, C1a was the 

only error type identified in items with equal denominators and there were none identified in 

items with unequal denominators.  In SP2, two error types (C3g and C6b) were identified in 

common while five (C2a, C3d, C3e, C6a, and C6d) were uniquely affiliated in items with equal 
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denominators and one type (C2b) in items with unequal denominators.  In the renaming stage, 

mean percentages of solution stage occurrence along with associated errors were greater in items 

with unequal denominators in SP2, while percentages of solution stage occurrence were greater 

and percentages of errors were smaller in items with unequal denominators in SP1.  Accordingly, 

specific error types varied and their patterns did not hold the same across item type or solution 

pathway.  In SP1, R1c was the only error type identified in items with equal denominators while 

three types (R1a, R2a, and R2e) occurred in items with unequal denominators.  In SP2, no error 

types were identified in items with equal denominators since the renaming stage did not occur, 

while seven types (R1a to R1c and R2a to R2d) were identified in items with unequal 

denominators.   

A whole-number operation stage only and always occurred in SP1 regardless of item 

type.  W2 was the most frequent error type with 66.67% for items with both equal and unequal 

denominators, but W1b was the second in items with equal denominators while WR was second 

in items with unequal denominators.  In the fraction-operation stage, mean percentages of 

solution stage occurrence and errors were greater in items with unequal denominators in both SP1 

and SP2, and error patterns mostly held the same across item types and solution pathways.  In 

SP1, F2a (equal denominators, 73.91%; unequal denominators, 89.47%) was the most frequent 

error followed by F3a (equal denominators, 13.04%; unequal denominators, 5.26%) across item 

types, while F3c and F4c were uniquely involved in items with equal denominators and F4a was 

uniquely involved in items with unequal denominators.   

Finally, for both arithmetic and simplifying, mean percentages of errors were greater in 

items with unequal denominators when students followed SP1 but were smaller when SP2 was 

used.  For both items with equal and unequal denominators, error patterns in the simplifying stage 

were very similar across solution pathways, with S0 being the primary error.  Similarly, error 

patterns in the arithmetic stage in SP1 were very similar to SP2, with A1 being the primary error 
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in common; however, the percentage of A1 was smaller or the same when compared to that of 

AR in SP2.   
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Tables 

Table 3-3 Error Types in Converting Solution Stage 

Var Error type Example Description 

CO   Converting occurred? (1 = yes; 0 = no)  

CC 
  

If RO = 1, converting occurred correctly? (1 = yes; 0 = 

no) 

CE   If RC = 0, identify with following error codes 

 1.  Correct procedure in converting between mixed number and fraction but errors in calculation 

 

C1 

C1a ὥ
ὦ

ὧ
 

ὉὧϽὥ ὦ

ὧ
 

Correct procedure of converting mixed number to 

fraction but incorrect calculation. 

 C1b 
ὢ

ὧ
 Ὁὥ

ὦ

ὧ
 

Correct procedure of converting fraction to mixed 

number but incorrect calculation. 

 2.  Denominator is ignored 

 

C2 

C2a ὥ
ὦ

ὧ
 ὧϽὥ ὦ Correct procedure but ignored denominators 

 
C2b ὥ

ὦ

ὧ
 ὉὧϽὥ ὦ 

Correct procedure but ignored denominators and 

incorrect calculation  

 
C2c ὥ

ὦ

ὧ
 ὦϽὥ  ὧ Incorrect procedure and ignored denominators 

 
C2d ὥ

ὦ

ὧ
 ὉὦϽὥ  ὧ 

Incorrect procedure, ignored denominator, and 

incorrect calculation  

 3.  Correct denominator but errors in finding numerator; confusion detected in relationship among a, b, and c 

 

C3 

C3a ὥ
ὦ

ὧ
 

ὦϽὥ  ὧ

ὧ
 

Incorrect procedure and operation sequence in opposite 

manner 

 
C3b ὥ

ὦ

ὧ
 

ὉὦϽὥ  ὧ

ὧ
 Incorrect procedure and incorrect calculation  

 
C3c ὥ

ὦ

ὧ
 

ὥ ὦϽὧ

ὧ
 Incorrect procedure 

 
C3d ὥ

ὦ

ὧ
 

ὥϽὧ ὦ

ὧ
 Subtract b from ὥϽὧ instead of adding a 

 
C3e ὥ

ὦ

ὧ
 

ὥϽὧ ὦ ὥ

ὧ
 Added additional a, which is needless 

 
C3f ὥ

ὦ

ὧ
 

ὥ ὦ ὧ

ὧ
 Added a, b, and c to make numerator 

 
C3g ὥ

ὦ

ὧ
 

ὥ ὦ

ὧ
 Added a and b to make numerator 

 
C3h ὥ

ὦ

ὧ
 

ὥϽὧ

ὧ
 Ignored adding b to ὥϽὧ 

 4.  Errors in finding denominator 

 

C4 

C4a ὥ
ὦ

ὧ
 

ὥϽὧ ὦ

ὦ
 

Correct procedure in calculating new numerator but 

denominator is chosen incorrectly from numerator in 

mixed number 

 
C4b ὥ

ὦ

ὧ
 

ὦ

ὥϽὧ
 

Keep numerator the same and denominator is 

calculated incorrectly  

 5.  Whole number a in mixed number is inappropriately added or multiplied to numerator and denominator  

 

C5 

C5a ὥ
ὦ

ὧ
 

ὥϽὦ

ὥϽὧ
 

a is multiplied to numerator and denominator 

separately 

 
C5b ὥ

ὦ

ὧ
 

ὥ ὦ

ὥ ὧ
 a is added to numerator and denominator separately 
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C5c ὥ

ὦ

ὧ
 

ὥϽὦ

ὥ ὧ
 

a is multiplied to numerator and added to denominator 

separately 

 6.  Whole number operation is conducted with numbers composed of mixed number or fraction  

 

C6 

(*)  

C6a ὥ
ὦ

ὧ
 ὥ ὦ ὧ 

Add all three whole numbers composing mixed 

number  

 
C6b 

ὦ

ὧ
 ὦ ὧ Add numerator and denominator 

 
C6c 

ὦ

ὧ
 ȿὦ ὧȿ Subtract numerator and denominator 

 
C6d 

ὦ

ὧ
 ὦϽὧ Multiply numerator by denominator 

 7.  Errors in converting whole number to fraction format 

 

C7 

C7a ὥ 
ρ

ὥ
 Whole number is converted into inverted fraction 

 
C7b ὥ 

ὥ

π
 Add numerator and denominator 

 8.  Random error 

 CR - Random error other than specified.   
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Table 3-4 Error Types in Renaming Solution Stage 

  

Var Error code Example Description 

RO   Renaming occurred? (1 = yes; 0 = no) 

RC  
 If RO = 1, renaming occurred correctly? (1 = yes; 0 

= no) 

RL   If RO = 1, renaming with LCM? (1 = yes; 0 = no)  

RE   If RC = 0, identify with following error codes 

 1.  Correct in finding an equivalent denominator but errors in finding appropriate numerators 

 

R1 

R1a 
ὦ

ὧ

Ὡ

Ὢ
 

ὦ

ὧϽὪ

Ὡ

ὧϽὪ
 

ȟέὶ
ὦ

ὯϽὒὅὓὧȟὪ
Ὡ

ὯϽὒὅὓὧȟὪ
 

Numerators stayed the same regardless of new 

equivalent denominator.  If ñὧ ὯϽὪ Ὧᶰὔ ,ò ñὧϽ

Ὢ used as denominator,ò and ñnumerators remained 

the same,ò it primarily falls under this category 

(C1a) although it overlaps with C1b category.   

 

R1b 
ὦ

ὧ

Ὡ

Ὢ
 

ὉὦϽὪ

ὧϽὪ

ὩϽὧ

ὧϽὪ
 

ȟέὶ 
ὦϽὪ

ὧϽὪ

ὉὩϽὧ

ὧϽὪ
 

One of the numerators is incorrect  

Note: We are not certain if this is just simple 

calculation error or some other misprocess, so this 

will not be simply categorized as calculation 

(multiplication) mistake. 

 
R1c 

ὦ

ὧ

Ὡ

Ὢ
 
ὉὦϽὪ

ὧϽὪ

ὉὩϽὧ

ὧϽὪ
 Two numerators are apparently incorrect. 

 2.  Errors in finding an equivalent denominator (*) 

 

R2 

(*)  

2-1.  Pick one of the denominators for an equivalent denominator 

* If ὧ ὯϽὪ Ὧᶰὔ , pick one denominator ὧȟÉȢÅȢȟὯϽὪ, between two denominators ὧ ÁÎÄ Ὢ is 

not the case for this category.  This category applies only when ὧ ὯϽὪ Ὧᶰὔ . 

 
R2a 

(*)  

ὦ

ὧ

Ὡ

Ὢ
 
ὦ

ὧ

Ὡ

ὧ
ȟέὶ 
ὦ

Ὢ

Ὡ

Ὢ
 

Pick one of the denominators for an equivalent 

denominator (which is incorrect), and two 

numerators remain the same.   

 

R2b 

 

ὦ

ὧ

Ὡ

Ὢ
 
ὦ

ὧ

Ὁ

ὧ
ȟέὶ 
Ὁ

Ὢ

Ὡ

Ὢ
 

Pick one of the denominators for an equivalent 

denominator (which is incorrect); one numerator 

remains the same (correct numerator) and the other 

numerator is incorrect (this is automatically caused 

by having an incorrect denominator).   

 

R2c 
ὦ

ὧ

Ὡ

Ὢ
 
Ὁ

ὧ

Ὁ

ὧ
ȟέὶ 
Ὁ

Ὢ

Ὁ

Ὢ
 

Pick one of the denominators for an equivalent 

denominator (which is incorrect), and get two 

incorrect numerators. 

 2-2.  Pick random number for an equivalent denominator. 

 
R2d 

ὦ

ὧ

Ὡ

Ὢ
 
ὦ

Ὁ

Ὡ

Ὁ
 

Pick random number for an equivalent denominator, 

and numerators remain the same.   

 
R2e 

ὦ

ὧ

Ὡ

Ὢ
 
Ὁ

Ὁ

Ὁ

Ὁ
 

Pick random number for an equivalent denominator, 

and try to convert numerators in incorrect way.   

 RR  Random error other than specified. 
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Table 3-5 Error Types in Procedure Solution Stages 

Var Error code Example Description 

PART1.  Whole number part operation 

WO   

Whole number operation occurred? (1 = yes; 0 = 

no) 

WO = 1 only when solution pathway type is SP1 

or SP3; WO = 0 when SP 2 or SP4 

WC   
Whole number operation occurred correctly? (1 

= yes; 0 = no) 

WE   If WC = 0, identify with following error codes 

 1.  Choose an incorrect operation 

 

W1 

W1a ὥ
ὦ

ὧ
Ὠ
Ὡ

Ὢ
 ὥ Ὠ ὢ 

Subtract two whole numbers when an operation 

is addition 

W1b ὥ
ὦ

ὧ
Ὠ
Ὡ

Ὢ
 ὥϽὨ ὢ Multiply two whole numbers 

W1c ὥ
ὦ

ὧ
Ὠ
Ὡ

Ὢ
 

ὥ

Ὠ
ὢ 

Ὠ

ὥ
ὢ 

Divide two whole numbers 

W2 ὥ
ὦ

ὧ
Ὠ
Ὡ

Ὢ
 

ὦ

ὧ

Ὡ

Ὢ
 Whole number operation is ignored and skipped 

WR  Random error other than specified. 

PART 2.  Fraction part operation 

FO   
Fraction operation occurred? (Problem solving 

type P2 and P3) 

FC   
Fraction operation occurred correctly? (1 = yes; 

0 = no or did not occur) 

FE 

1.  Choose an inappropriate operation 

F1 

F1a 
ὦ

ὧ

Ὡ

Ὢ
 

ὦϽὪ

ὧϽὪ

ὩϽὧ

ὧϽὪ
 

ὦϽὪ ὩϽὧ

ὧϽὪ
 

Correct procedure of adding two fractions in 

subtraction problem or correct procedure of 

subtracting two fractions in addition problem.   

F1b 
ὦ

ὧ

Ὡ

Ὢ
 

ὦϽὩ

ὧϽὪ
 Correct procedure in multiplying two fractions. 

F1c 
ὦ

ὧ

Ὡ

Ὢ
 

ὦϽὪ

ὧϽὩ
 Correct procedure in dividing two fractions. 

F1d 
ὦ

ὧ

Ὡ

Ὢ
 

ὧϽὩ

ὦϽὪ
 

Incorrect procedure in dividing two fractions; 

flipping first fraction. 

F1e 
ὦ

ὧ

Ὡ

Ὢ
 

ὧϽὪ

ὦϽὩ
 

Incorrect procedure in dividing two fractions; 

flipping both fractions. 

2.  Over-generalization of independent whole number strategy 

F2 

(*)  

2-1.  Add or subtract across numerators or denominators  

F2a 
ὦ

ὧ

Ὡ

Ὢ
 

ὦ Ὡ

ὧ Ὢ
 

Add across each pair of denominators and 

numerators. 

F2b 
ὦ

ὧ

Ὡ

Ὢ
 

ὦ Ὡ

ὧ Ὢ
 

Subtract across each pair of denominators and 

numerators.   

F2c 
ὦ

ὧ

Ὡ

Ὢ
 

ὦ Ὡ

ὧ Ὢ
 

Add across numerators and subtract across 

denominators.   

F2d 
ὦ

ὧ

Ὡ

Ὢ
 

ὦ Ὡ

ὧ Ὢ
 

Subtract across numerators and add across 

denominators. 
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F2e 
ὦ

ὧ

Ὡ

Ὢ
 

ὦ Ὡ

ὧ Ὢ
 When numerators are the same. 

F3 

2-2.  Add or subtract numerators and denominators diagonally 

F3a 
ὦ

ὧ

Ὡ

Ὢ
 

ὦ Ὢ

ὧ Ὡ
 

Add diagonal; add first denominator and second 

numerator to get denominator, and add second 

denominator and first numerator to get 

numerator Ą flip second fraction and subtract 

across.   

F3b 
ὦ

ὧ

Ὡ

Ὢ
 

ȿὦ Ὢȿ

ȿὧ Ὡȿ
 

Subtract diagonal; subtract first denominator and 

second numerator to get denominator, and 

subtract second denominator and first numerator 

to get numerator Ą flip second fraction and 

subtract across.   

F3c 
ὦ

ὧ

Ὡ

Ὢ
 

ὧ Ὡ

ὦ Ὢ
 

Add diagonal; add first denominator and second 

numerator to get numerator, and add second 

denominator and first numerator to get 

denominator Ą flip first fraction and 

add/subtract across.   

F3d 
ὦ

ὧ

Ὡ

Ὢ
 

ȿὧ Ὡȿ

ȿὦ Ὢȿ
 

Subtract diagonal; subtract first denominator and 

second numerator to get numerator, and subtract 

second denominator and first numerator to get 

denominator Ą flip first fraction and subtract 

across. 

F3e 
ὦ

ὧ

Ὡ

Ὢ
 

ὦ Ὡ

ȿὧ Ὡȿ
  

F4 

2-3.  Add or subtract across numerators or denominators and multiply across denominators 

or numerators 

F4a 
ὦ

ὧ

Ὡ

Ὢ
 

ὦ Ὡ

ὧϽὪ
 

Multiply across denominators and add across 

numerators 

F4b 
ὦ

ὧ

Ὡ

Ὢ
 

ὦ Ὡ

ὧϽὪ
 

Multiply across denominators and subtract 

across numerators 

F4c 
ὦ

ὧ

Ὡ

Ὢ
 

ὦϽὩ

ὧ Ὢ
 

Add across denominators and multiply across 

numerators 

F4d 
ὦ

ὧ

Ὡ

Ὢ
 

ὦϽὩ

ὧ Ὢ
 

Subtract across denominators and multiply 

across numerators 

F4e 
ὦ

ὧ

Ὡ

Ὢ
 

ὦϽὩ

ὧ Ὢ
 

Denominator remains the same (which is correct 

when ὧ Ὢ) and multiply numerators. 

3.  Special type: fraction and whole number operation 

F5 

3-1.  Denominator ignored 

F5a 
ὦ

ὧ
Ὠ ὧϽὨ ὦ 

Multiply whole number with denominator and 

add numerator 

F5b 
ὦ

ὧ
Ὠ ὧϽὨ ὦ 

Multiply whole number with denominator and 

subtract numerator 

F5c 
ὦ

ὧ
Ὠ ὦϽὨ ὧ 

Multiply whole number with numerator and add 

denominator 

F5d 
ὦ

ὧ
Ὠ ὦϽὨ ὧ 

Multiply whole number with numerator and 

subtract denominator 

F6 

3-2.  Over-generalized whole number strategy; whole number is applied to numerator 

and/or denominator separately 

F6a 
ὦ

ὧ
Ὠ 

ὦ Ὠ

ὧ Ὠ
 

Add whole number to each numerator and 

denominator 
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Table 3-6 Error Types in Arithmetic and Simplification Solution Stages 

F6b 
ὦ

ὧ
Ὠ 

ȿὦ Ὠȿ

ȿὧ Ὠȿ
 

Subtract whole number from each numerator and 

denominator 

F6c 
ὦ

ὧ
Ὠ Ὠ

ὦ Ὠ

ὧ Ὠ
 

Add whole number to each numerator and 

denominator in addition to whole number 

F6d 
ὦ

ὧ
Ὠ 

ὦϽὨ

ὧ
 

Multiply whole number by numerator and 

denominator remains the same 

F6e 
ὦ

ὧ
Ὠ 

ὦϽὨ

ὧ Ὠ
 

Multiply whole number by numerator and add it 

to denominator 

F6f 
ὦ

ὧ
Ὠ 

ὦ Ὠ

ὧ
 

Add whole number to numerator and 

denominator remains the same 

F6g 
ὦ

ὧ
Ὠ 

Ὠ

ὦ ὧ
 

Add numerator and denominator to make new 

denominator and place whole number as 

numerator  

F6h 
ὦ

ὧ
Ὠ 

ὧ Ὠ

ὦϽὨ
 

Multiply whole number by denominator and add 

it to numerator 

F6i 
ὦ

ὧ
Ὠ Ὠ

ὦϽὨ

ὧϽὨ
 

Multiply whole number by each numerator and 

denominator in addition to whole number 

F6j 
ὦ

ὧ
Ὠ 

Ὠ

ὦϽὧ
 

Multiply numerator and denominator to make 

new denominator and place whole number as 

numerator 

F6k 
ὦ

ὧ
Ὠ 

ὦ

ὧ Ὠ
 

Add denominator and whole number to make 

new denominator, and place numerator as new 

numerator 

FR  Random error other than specified.   

 

Var Error type Description 

Arithmetic 

AC  Arithmetic occurred correctly? (1 = yes; 0 = no) 

AE 

(*)  

A1 Arithmetic mistake in addition 

A2 Arithmetic mistake in subtraction other than A2b 

A3 
Arithmetic error in subtraction that students subtract smaller number from bigger 

number regardless of their alignment 

A4 Arithmetic mistake in simple multiplication facts 

AR Random error in Arithmetic; unable to determine 

Simplifying 

SO  Simplifying occurred? (1 = yes; 0 = no)  

SC  

Simplifying occurred correctly?  

a) 1 = yes; simplified correctly or did not simplify because it was already in the 

reduced/simplified form 

b) 0 = no; simplified incorrectly or was not simplified although it needs to be 

reduced/simplified.   

SE S0 (*) SO = 0 and SC = 0  

 S1 (*) Simplifying Type 1: Error when fraction is simplified to the least fraction 

 S2 
Simplifying Type 2: Error when proper fraction is simplified into mixed number or 

whole number 

 S3 Errors in both S1 and S2  
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Table 3-7 Percentage of Specific Errors in Each Solution Stage for Three Achievement Groups 

 Achievement group  

 TA LA MLD Total 

SP 

type SP1 SP2 Total SP1 SP2 Total SP1 SP2 Total SP1 SP2 Total 

Error 

type             

C1a 0.00 11.11 6.67 0.00 5.56 5.26 100.00 0.00 5.26 6.67 5.56 5.75 

C1b 75.00 5.56 33.33 0.00 2.78 2.63 0.00 0.00 0.00 60.00 2.78 12.64 

C2a 8.33 0.00 3.33 0.00 27.78 26.32 0.00 11.11 10.53 6.67 16.67 14.94 

C2b 0.00 0.00 0.00 0.00 2.78 2.63 0.00 5.56 5.26 0.00 2.78 2.30 

C3a 0.00 27.78 16.67 0.00 2.78 2.63 0.00 0.00 0.00 0.00 8.33 6.90 

C3b 0.00 5.56 3.33 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.39 1.15 

C3c 0.00 0.00 0.00 0.00 2.78 2.63 0.00 0.00 0.00 0.00 1.39 1.15 

C3d 0.00 0.00 0.00 0.00 5.56 5.26 0.00 5.56 5.26 0.00 4.17 3.45 

C3e 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5.56 5.26 0.00 1.39 1.15 

C3f 0.00 5.56 3.33 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.39 1.15 

C3g 8.33 11.11 10.00 0.00 2.78 2.63 0.00 27.78 26.32 6.67 11.11 10.34 

C3h 0.00 5.56 3.33 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.39 1.15 

C4a 0.00 0.00 0.00 0.00 2.78 2.63 0.00 0.00 0.00 0.00 1.39 1.15 

C4b 0.00 0.00 0.00 0.00 5.56 5.26 0.00 0.00 0.00 0.00 2.78 2.30 

C5a 0.00 0.00 0.00 0.00 5.56 5.26 0.00 0.00 0.00 0.00 2.78 2.30 

C5b 0.00 0.00 0.00 50.00 0.00 2.63 0.00 0.00 0.00 6.67 0.00 1.15 

C5c 0.00 0.00 0.00 0.00 2.78 2.63 0.00 0.00 0.00 0.00 1.39 1.15 

C6a 0.00 0.00 0.00 0.00 0.00 0.00 0.00 11.11 10.53 0.00 2.78 2.30 

C6b 0.00 0.00 0.00 50.00 8.33 10.53 0.00 11.11 10.53 6.67 6.94 6.90 

C6c 8.33 0.00 3.33 0.00 0.00 0.00 0.00 5.56 5.26 6.67 1.39 2.30 

C6d 0.00 0.00 0.00 0.00 8.33 7.89 0.00 11.11 10.53 0.00 6.94 5.75 

C7a 0.00 5.56 3.33 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.39 1.15 

C7b 0.00 5.56 3.33 0.00 2.78 2.63 0.00 5.56 5.26 0.00 4.17 3.45 

CR 0.00 16.67 10.00 0.00 11.11 10.53 0.00 0.00 0.00 0.00 9.72 8.05 

C Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

R1a 58.33 45.28 47.69 60.00 64.00 63.08 42.86 52.63 50.00 55.88 54.10 54.49 

R1b 8.33 22.64 20.00 6.67 8.00 7.69 0.00 5.26 3.85 5.88 13.93 12.18 

R1c 0.00 5.66 4.62 6.67 4.00 4.62 28.57 5.26 11.54 8.82 4.92 5.77 

R2a 0.00 3.77 3.08 6.67 14.00 12.31 14.29 10.53 11.54 5.88 9.02 8.33 

R2b 0.00 1.89 1.54 0.00 4.00 3.08 0.00 10.53 7.69 0.00 4.10 3.21 

R2c 0.00 1.89 1.54 0.00 0.00 0.00 0.00 5.26 3.85 0.00 1.64 1.28 

R2d 25.00 7.55 10.77 13.33 6.00 7.69 0.00 10.53 7.69 14.71 7.38 8.97 

R2e 8.33 7.55 7.69 0.00 0.00 0.00 14.29 0.00 3.85 5.88 3.28 3.85 

RR 0.00 3.77 3.08 6.67 0.00 1.54 0.00 0.00 0.00 2.94 1.64 1.92 

R Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

W1a 13.33 NA 13.33 0.00 NA 0.00 0.00 NA 0.00 5.71 NA 5.71 

W1b 13.33 NA 13.33 7.14 NA 7.14 16.67 NA 16.67 11.43 NA 11.43 

W1c 0.00 NA 0.00 0.00 NA 0.00 0.00 NA 0.00 0.00 NA 0.00 

W2 40.00 NA 40.00 78.57 NA 78.57 66.67 NA 66.67 60.00 NA 60.00 

WR 33.33 NA 33.33 14.29 NA 14.29 16.67 NA 16.67 22.86 NA 22.86 

W Total 100.00 NA 100.00 100.00 NA 100.00 100.00 NA 100.00 100.00 NA 100.00 

F1a 7.81 8.57 8.33 1.80 1.31 1.47 2.38 0.00 0.93 3.69 3.46 3.53 

F1b 0.00 0.71 0.49 0.00 0.44 0.29 0.00 1.54 0.93 0.00 0.69 0.46 

F1c 0.00 0.00 0.00 0.00 0.87 0.59 0.00 1.54 0.93 0.00 0.69 0.46 
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F1d 1.56 1.43 1.47 3.60 0.44 1.47 0.00 0.00 0.00 2.30 0.69 1.23 

F1e 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

F2a 68.75 70.00 69.61 81.98 72.93 75.88 80.95 64.62 71.03 77.88 70.74 73.12 

F2b 0.00 0.00 0.00 0.00 0.87 0.59 0.00 0.00 0.00 0.00 0.46 0.31 

F2c 0.00 0.71 0.49 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.23 0.15 

F2d 0.00 0.00 0.00 0.90 0.00 0.29 0.00 0.00 0.00 0.46 0.00 0.15 

F2e 0.00 0.00 0.00 0.00 3.06 2.06 0.00 1.54 0.93 0.00 1.84 1.23 

F3a 1.56 2.14 1.96 3.60 0.87 1.76 9.52 3.08 5.61 4.15 1.61 2.46 

F3b 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.54 0.93 0.00 0.23 0.15 

F3c 1.56 2.14 1.96 1.80 3.93 3.24 2.38 6.15 4.67 1.84 3.69 3.07 

F3d 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

F3e 0.00 0.00 0.00 0.00 0.44 0.29 0.00 0.00 0.00 0.00 0.23 0.15 

F4a 3.13 2.86 2.94 0.00 1.31 0.88 2.38 3.08 2.80 1.38 2.07 1.84 

F4b 0.00 0.71 0.49 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.23 0.15 

F4c 1.56 2.14 1.96 0.90 2.18 1.76 2.38 0.00 0.93 1.38 1.84 1.69 

F4d 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

F4e 3.13 0.00 0.98 0.00 0.44 0.29 0.00 1.54 0.93 0.92 0.46 0.61 

F5a 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.54 0.93 0.00 0.23 0.15 

F5b 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

F5c 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

F5d 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

F6a 0.00 4.29 2.94 0.00 5.68 3.82 0.00 9.23 5.61 0.00 5.76 3.84 

F6b 0.00 0.00 0.00 0.00 0.44 0.29 0.00 1.54 0.93 0.00 0.46 0.31 

F6c 0.00 0.71 0.49 0.00 0.44 0.29 0.00 0.00 0.00 0.00 0.46 0.31 

F6d 0.00 0.71 0.49 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.23 0.15 

F6e 0.00 0.00 0.00 0.00 0.44 0.29 0.00 0.00 0.00 0.00 0.23 0.15 

F6f 0.00 0.00 0.00 0.00 1.31 0.88 0.00 0.00 0.00 0.00 0.69 0.46 

F6g 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.54 0.93 0.00 0.23 0.15 

F6h 0.00 0.00 0.00 0.00 0.44 0.29 0.00 0.00 0.00 0.00 0.23 0.15 

F6i 0.00 0.71 0.49 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.23 0.15 

F6j 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

F6k 0.00 0.00 0.00 0.00 0.87 0.59 0.00 0.00 0.00 0.00 0.46 0.31 

FR 10.94 2.14 4.90 5.41 1.31 2.65 0.00 1.54 0.93 5.99 1.61 3.07 

F Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

A1 47.62 77.42 65.38 65.22 40.74 52.00 100.00 40.00 72.73 62.00 58.73 60.18 

A2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

A3 19.05 3.23 9.62 4.35 7.41 6.00 0.00 0.00 0.00 10.00 4.76 7.08 

A4 0.00 0.00 0.00 4.35 0.00 2.00 0.00 0.00 0.00 2.00 0.00 0.88 

AR 33.33 19.35 25.00 26.09 51.85 40.00 0.00 60.00 27.27 26.00 36.51 31.86 

A Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

S0 87.36 79.33 82.28 92.67 92.07 92.36 92.00 89.36 90.72 90.94 86.43 88.43 

S1 4.60 1.33 2.53 4.67 4.88 4.78 8.00 10.64 9.28 5.23 4.16 4.63 

S2 5.75 17.33 13.08 2.67 2.44 2.55 0.00 0.00 0.00 3.14 8.31 6.02 

S3 2.30 2.00 2.11 0.00 0.61 0.32 0.00 0.00 0.00 0.70 1.11 0.93 

S Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 
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Table 3-8 Comparison of Percentages of Solution Pathway and Associated Errors between Two 

Item Types 

 

Item format 

Equal denominator Unequal denominator 

SP 1 2 Total 1 2 Total 

(%) 63.64 17.05  20.45 50.76  

Sol.  

stage 

 

Error type 

      

C 

CO/SP  3.57 100.00 23.94 0.00 8.96 6.38 

CE/CO  50.00 73.33 70.59 NA 66.67 66.67 

 C1a 100.00 0.00 8.33 NA 0.00 0.00 

 C2a 0.00 18.18 16.67 NA 0.00 0.00 

 C2b 0.00 0.00 0.00 NA 25.00 25.00 

 C3d 0.00 9.09 8.33 NA 0.00 0.00 

 C3e 0.00 9.09 8.33 NA 0.00 0.00 

 C3g 0.00 27.27 25.00 NA 50.00 50.00 

 C6a 0.00 18.18 16.67 NA 0.00 0.00 

 C6b 0.00 9.09 8.33 NA 25.00 25.00 

 C6c 0.00 0.00 0.00 NA 0.00 0.00 

 C6d 0.00 9.09 8.33 NA 0.00 0.00 

 C7b 0.00 0.00 0.00 NA 0.00 0.00 

 Total 100.00 100.00 100.00  100.00 100.00 

R 

RO/SP  3.57 0.00 2.82 25.93 28.36 27.66 

RE/RO  100.00 NA 100.00 71.43 84.21 80.77 

 R1a 0.00 NA 0.00 60.00 43.75 47.62 

 R1b 0.00 NA 0.00 0.00 6.25 4.76 

 R1c 100.00 NA 100.00 0.00 6.25 4.76 

 R2a 0.00 NA 0.00 20.00 12.50 14.29 

 R2b 0.00 NA 0.00 0.00 12.50 9.52 

 R2c 0.00 NA 0.00 0.00 6.25 4.76 

 R2d 0.00 NA 0.00 0.00 12.50 9.52 

 R2e 0.00 NA 0.00 20.00 0.00 4.76 

 Total 100.00  100.00 100.00 100.00 100.00 

W 

WO/SP  100.00 0.00 78.87 100.00 0.00 28.72 

WE/WO  5.36 NA 5.36 11.11 NA 11.11 

 W1a 0.00 NA 0.00 0.00 NA 0.00 

 W1b 33.33 NA 33.33 0.00 NA 0.00 

 W1c 0.00 NA 0.00 0.00 NA 0.00 

 W2 66.67 NA 66.67 66.67 NA 66.67 

 WR 0.00 NA 0.00 33.33 NA 33.33 

 Total 100.00  100.00 100.00  100.00 

F 

FO/SP  98.21 66.67 91.55 100.00 98.51 98.94 

FE/CO  41.82 20.00 38.46 70.37 72.73 72.04 

 F1a 4.35 0.00 4.00 0.00 0.00 0.00 

 F1b 0.00 0.00 0.00 0.00 2.08 1.49 

 F1c 0.00 0.00 0.00 0.00 2.08 1.49 

 F2a 73.91 50.00 72.00 89.47 77.08 80.60 

 F2e 0.00 0.00 0.00 0.00 2.08 1.49 

 F3a 13.04 0.00 12.00 5.26 2.08 2.99 
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 F3b 0.00 0.00 0.00 0.00 2.08 1.49 

 F3c 4.35 50.00 8.00 0.00 6.25 4.48 

 F4a 0.00 0.00 0.00 5.26 2.08 2.99 

 F4c 4.35 0.00 4.00 0.00 0.00 0.00 

 F4e 0.00 0.00 0.00 0.00 2.08 1.49 

 F5a 0.00 0.00 0.00 0.00 0.00 0.00 

 F6a 0.00 0.00 0.00 0.00 0.00 0.00 

 F6b 0.00 0.00 0.00 0.00 0.00 0.00 

 F6g 0.00 0.00 0.00 0.00 0.00 0.00 

 FR 0.00 0.00 0.00 0.00 2.08 1.49 

  Total 100.00 100.00 100.00 100.00 100.00 100.00 

A 

AE/AO  5.36 13.33 7.04 11.11 4.48 6.38 

 A1 100.00 50.00 80.00 100.00 33.33 66.67 

 AR 0.00 50.00 20.00 0.00 66.67 33.33 

 Total 100.00 100.00 100.00 100.00 100.00 100.00 

S 

SE/SO  57.14 66.67 59.15 66.67 53.73 57.45 

 S0 90.63 100.00 92.86 94.44 88.89 90.74 

 S1 9.38 0.00 7.14 5.56 11.11 9.26 

 Total 100.00 100.00 100.00 100.00 100.00 100.00 

 



 

 

Chapter 4  
 

Discussion 

The findings suggest a direct link to practical applications that may influence educators 

when teaching and/or re-teaching students with MLD or those who struggle in mathematics.  The 

research findings confirmed and extended the knowledge base offered by previous research on 

students with disabilitiesô performance on fraction computation.  In order to address research 

questions, the current study thoroughly (a) examined specific error types that middle students 

with and without MLD committed, (b) compared their patterns across three different achievement 

groups, and (c) analyzed specific erroneous features for students with MLD and examined how 

item types relate to error occurrence in their fraction performance.  Since this study fully 

considered flexibility of solution pathway where solution stages are sequentially involved as in an 

algorithm, the procedures for analyzing errors were different from previous studies on error 

analysis.  Previous studies reported frequency of errors while ignoring solution stage occurrence 

and solution pathway preference (e.g., Bottge et al., 2014; Brown & Quinn, 2006; Newton et al., 

2014); consequently, errors were counted even when students did not go through certain solution 

stages.  This process under-represented the possibility of errors students make. 

Consequently, our analysis included occurrence of solution stage and solution pathway 

preference as significant factors to consider in ruling out concerns about biased results.  This was 

a unique and accurate way to measure how likely students make errors in that errors were 

examined and summarized by solution stage by following solution pathways in order to pinpoint 

possibilities of students making errors only when a certain solution stage occurs.  In this sense, 

percentages of errors reflected the probability of students making errors only when they 

experienced a certain solution stage; and percentages of specific error types indicated the 
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probability of students making a certain error only when they made errors in a certain solution 

stage.  The latter was used to examine the most and least frequent error types students made.   

Prior to determining the areas that most needed remediation during the whole process of 

fraction performance and detecting specific types of errors, solution pathway preferences were 

examined.  Overall, the findings confirmed that SP1 (44.71%) and SP2 (44.61%) were the major 

solution pathways students preferred to follow when solving fraction computations involving 

addition, although there were some variations in preferences between SP1 and SP2 depending on 

the items given.  Cases of item performance with these two solution pathways were included in 

the analysis in order to detect all types of errors that were limited to fraction addition in the 

studentsô solutions.  Meanwhile, less than 1% of TA and LA students attempted to solve items 

with SP3, which is not a standard algorithm of fraction computation, and percentages of no 

response and SP4 were the greatest in MLD (13.26% and 13.26%, respectively), followed by LA 

(7.63% and 6.34%, respectively) and TA (3.44% and 0.13%, respectively).  These are consistent 

with previous findings that students with MLD are more likely to skip a question or provide a 

random number than LA and TA peers (Geary, 2004; 2011; Ginsburg, 1997); however, the 

current study neither considered nor labeled no response as an error based on the assumption that 

errors should be coded only when there were attempts to solve through solution stages (i.e., 

solution stage occurrence). 

According to NMAP (2008) and NRC (2001), fraction computation involves a complete 

set of understanding of both fraction properties and whole-number properties that requires 

students to apply skills involving these two independent sets of properties in appropriate solution 

stages throughout a solution pathway.  Basic skills in whole-number properties are largely 

reflected in the whole-number operation and arithmetic stages, while skills in fraction properties 

are mainly reflected in the converting, renaming, fraction-operation, and simplifying stages.  
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Among the six solution stages, our findings indicate that students were most likely to commit 

errors and had the widest range of errors in fraction operation.  The simplifying, converting, and 

renaming stages, which require core understanding of fraction properties, also contained 

considerable possibility of error occurrence, whereas the arithmetic and whole-number operation 

stages were not major problem areas in fraction performance.  These findings indicate that middle 

school students are generally proficient in whole number properties but still experience 

difficulties in expanding a number set to rational numbers by embracing fractions.    

Table 3-3, Table 3-4, Table 3-5, and Table 3-6 present specific error types the researchers 

identified in the six solution stages of fraction computation.  When compared to previous research 

on error analysis, where errors were generally described without erroneous details and solution 

pathways being considered (e.g., Carpenter et al., 1976, Kingsdorf & Krawec, 2014; Raghubar et 

al., 2009), the error types found in this study provide direct links to diagnoses of studentsô 

difficulties.  Because all types of possible errors have been categorized in their associated 

solution stages, teachers can easily diagnose sources or areas of difficulty students experience by 

finding error types summarized in the tables.  This also helps teachers to provide effective 

remedies by concentrating on local areas of difficulty that have exact sources rather than merely 

teaching or re-teaching fraction addition from a general standpoint (Cawley, 1978).  This is 

especially important when analyzing errors made by students with MLD because many of them 

have unique difficulties that require instructions that are more targeted and individualized 

(Calhoon et al., 2007; Gerston & Kelly, 1992; Test & Ellis, 2005).  This study argues that because 

error types that have been found and categorized within specific solution stages provide more 

specific guidelines, they were used as a basis to respond to the next two research questions. 
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Analysis of error patterns and types 

Possibility of error occurrence 

Prior to examining error patterns across achievement groups and solution pathway 

preferences in order to determine common and unique errors associated with specific solution 

stages, percentages of solution stage occurrence and associated error occurrence regardless of 

type were analyzed.  Considering these two types of occurrence was important because errors 

were detected only when certain solution stages occurred; thus referencing these helps to 

understand error patterns more accurately.  The current study compared how students in different 

achievement groups performed in each solution stage uniquely established in different solution 

pathways. 

The findings indicated that students in a higher achievement group are more likely to 

attempt to convert and rename fractions but less likely to make errors regardless of solution 

pathway preference (i.e., percentages of solution stage occurrence were the greatest in TA, 

followed by LA and MLD, but the order was the opposite for percentages of error occurrence).  

For all achievement groups, percentages of errors were greater when students followed SP2 than 

when they followed SP1, indicating that students following SP1 are less likely to make errors.  

Although the converting and renaming stages do not always need to occur, they are typically 

desirable in facilitating the procedure of solving fraction computation problems.  This is 

especially true when an item involves fractions with unequal denominators since adjusting two 

fractions by finding a common denominator happens in the renaming stage and converting 

fractions into other forms may make the procedure simpler and easier (e.g., ρ ς

ρ ȟÏÒ  ).  In this respect, the results indicate that students in lower achievement groups may 
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not have been strategic and efficient enough to skip the first two solution stages, and even when 

they attempted to convert or rename fractions, the possibility of errors was fairly high.   

The fraction operation and simplifying solution stages almost always occurred unless 

they were unnecessary.  As anticipated, percentages of errors were the greatest in MLD, followed 

by LA and TA, both in SP1 and SP2; these errors were much severer in SP2 than in SP1 in 

fraction operations, whereas no apparent differences were found between SP1 and SP2 in 

simplifying.  In the whole-number operation and arithmetic stages, which are the main areas 

where understanding of whole numbers is required, less than 10% of students made errors, 

indicating that middle school students, including those with MLD, are proficient with whole 

numbers.  To recap, results confirmed and replicated previous studies in that students in lower 

achievement groups are apt to commit more errors (Hwang & Riccomini, 2016; Mazzocco et al., 

2013) and uniquely suggested that possibilities of error occurrences were higher when students 

chose SP2 instead of SP1 when solving fraction computations involving addition.  Therefore, this 

study suggests that teachers should consider SP1 to re-teach or even initially teach students, 

especially those with MLD. 

Common error patterns 

Among the cases of item performance where a certain solution stage occurred but was 

answered incorrectly, general themes of error patterns also emerged across achievement groups in 

each solution pathway where specific errors were examined and compared.  Overall, error 

patterns were similar in all solution stages except for the converting stage, where the three 

achievement groups committed different types of errors with different percentages.  The findings 

of this study support the idea that the patterns of specific errors in the addition operation are 
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mostly similar, which aligns with and extends previous research findings (Riccomini et al., 2016) 

that indicated that error patterns of different item types (i.e., addition, subtraction, multiplication, 

division, and ordering) held the same across achievement groups. 

In the converting solution stage, the majority of TA and MLD students following SP1 

made C1 errors, which were simple calculation errors while converting between a mixed number 

and an improper fraction, whereas the majority LA students made C5 and C6 errors that were 

caused by a misconception of the relation among numbers composing a mixed number or a 

fraction.  More error types were detected in SP2 than in SP1 but their patterns did not hold the 

same across achievement groups.  C3 errors, where the correct denominator was found but the 

numerator was incorrectly calculated, were the most common error for both TA and MLD 

students, while C6 was additionally found as a frequent error for MLD.  Most LA students made 

C2 errors, where a mixed number was successfully converted to an improper fraction but the 

denominator was ignored. 

This entangled error patterns in the converting stage explain the different performances 

and severities of errors in the three achievement groups.  TA students tended to commit less 

severe errors since the errors they tended to maker were simple calculation mistakes during 

conversion of fractions.  In contrast, the severity of LA and MLD studentsô errors was relatively 

higher since they had misconceptions in their basic understanding of fractions in that they 

inappropriately decomposed fractions into independent whole numbers.  These are grounded in 

whole-number bias and caused by failure to understand fractions as numbers (Ni & Zhou, 2005; 

Siegler et al., 2011; Siegler et al., 2013), implying that many LA and MLD students struggle in 

distinguishing fraction properties from whole number properties.  Knowing that the CCSSI 

(2015) placed a priority on developing understanding of fractions as numbers by using a number 

line diagram, it is strongly recommended for teachers to provide more frequent instructional 
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opportunities for LA and MLD students to better develop their understanding of fractions as 

numbers.  By providing practice in representing fractions on a number line, students will 

recognize relation of fractions with whole numbers by defining the interval from 0 to 1 and 

marking a fraction 1/b, reasoning about their magnitudes, and ultimately, making smooth 

transitions from whole numbers to fractions. 

In contrast to the converting stage, error patterns in renaming were similar across 

achievement groups and solution pathway preferences; the R1 error was the most frequent, 

followed by R2 and RR.  The severity of R2 was greater than R1 because R1 indicates that 

students do have knowledge in finding an equivalent denominator but only have problems finding 

appropriate numerators; however, R2 reflects studentsô lack of ability to find an equivalent 

denominator as well as an appropriate numerator.  This indicates that MLD students made more 

severe errors because they had a higher percentage of R2 errors than TA and LA students in SP2.  

Among R1 errors, students in all achievement groups both in SP1 and SP2 most frequently made 

R1a errors, where students were successful in finding an equivalent denominator but failed to find 

an appropriate numerators because they kept the old numerators unchanged.  In the R2 error 

category, TA students most frequently made R2d and R2e errors, where students failed to find an 

equivalent denominator but instead picked an incorrect random number.  LA students also most 

frequently made R2d errors in SP1, but in SP2 most frequently made R2a errors, where students 

picked one of the denominators to be an equivalent denominator and kept the two numerators the 

same.  MLD students made R2a and R2e errors in SP1 while making R2a, R2b, and R2d errors 

with the same percentages in SP2.  Likewise, specific error types were more diverse in SP2 than 

in SP1 for all achievement groups, indicating that there are many obstacles when students solve 

using SP2.   
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In the fraction-operation solution stage, which was identified as the solution stage with 

the most errors, error patterns were similar across achievement groups as well as solution 

pathway preferences.  F2 errors, especially F2a, an error where students added across 

denominators and numerators, were the most frequent errors for all students, which replicates 

findings in previous studies (Bottge et al., 2014; Brown & Quinn, 2006; Mazzocco et al., 2013; 

Riccomini et al., 2016; Star & Newton, 2009).  Students who were not successful in expanding a 

number set to embrace fractions tended to experience confusion between the properties of whole 

numbers and fractions, thus inappropriately applying rules for whole numbers to fractions (Ni & 

Zhou, 2005).  These errors are described as whole-number bias, where whole-number strategies 

were inappropriately generalized so that students did operations on numerators and denominators 

across or diagonally as if they were independent whole numbers (Ni & Zhou, 2005; Siegler et al., 

2011).   

Similar to F2 errors, F3 and F4 errors are also products of misconceptions about fractions 

and over-generalized whole-number strategies and were commonly found in both SP1 and SP2.  

In these errors numerators and denominators were added or subtracted diagonally, numerators or 

denominators were added or subtracted across, and/or denominators or numerators were 

multiplied across.  Moreover, when given an item that involved a fraction plus a whole number, 

F5 and F6 errors were also found within SP2.  Students with MLD uniquely made F5 errors, 

where a product of multiplication of a whole number and a denominator and a numerator were 

added.  These errors were also a part of over-generalized whole-number strategies because 

mechanism of error occurrence was similar except the denominator was ignored in an item.  F6, 

especially F6a, where a whole number was added to a numerator and a denominator, was frequent 

among all students.  Although F2 and F6 are considered to be different categories since the given 
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item forms are different, they were very similar in that over-generalized whole-number strategies 

were presented in these error types. 

In the simplifying solution stage, most of the students did not attempt to simplify a 

fraction to the least or the simplest form even though it was necessary; this error was categorized 

as S0.  Among those who tried simplifying, LA and MLD students were more likely to make 

errors when simplifying a fraction into the least form (S1) while TA students were more likely to 

commit errors when simplifying an improper fraction into a mixed number or a whole number 

(S2).  Lastly, in the whole-number operation and arithmetic solution stages, which require 

knowledge in whole number properties independent from fraction properties, the overall error 

pattern was similar across achievement groups.  The whole-number stage was uniquely 

established in SP1 and error patterns were very similar in both LA and MLD, with W2 as the 

most frequent error, indicating that students were apt to skip a whole-number operation part and 

solve only the fraction operation.  Other W1 and WR errors occurrence rates were below 20%.  

TA students also committed W2 errors most frequently; however, W1 and WR also occurred at a 

similar rate, with percentages between 20% and 40%.  In the arithmetic stage, mistakes in 

addition (A1) were the most common error across achievement groups in SP1, while random 

errors (AR) were also considerable in SP2.  Error patterns were very similar in LA and MLD in 

SP2.   

Relation of equality of denominator with errors for students with MLD 

Previous studies have found that students with MLD were vulnerable to certain item 

types, and equality of denominator was one of the significant variables (Hwang & Riccomini, 

2016; Star & Newton, 2009).  Although it was evident that students showed significantly lower 
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performance when given items with unequal denominators than with equal denominators, the 

possibilities of error occurrence in each solution stages varied within and across solution pathway 

preferences.  The results indicate that equality of denominator was related to which solution 

pathway students with MLD preferred to follow: the majority of these students used SP1 when 

given items with equal denominators whereas they used SP2 when given items with unequal 

denominators.  Furthermore, the finding examined the relation of item type to possibility of errors 

in each solution stage.  In SP1, the percentage of errors was greater when items involved equal 

denominators in the converting and renaming stages, whereas the percentage of errors was greater 

when items involved unequal denominators in the whole-number operations, fraction operations, 

arithmetic, and simplifying stages.  In SP2, the percentage of errors was greater when items 

involved equal denominators in the converting, arithmetic, and simplifying stages, whereas the 

percentage of errors was greater when items involved unequal denominators in the renaming and 

fraction operation stages.   

Regardless of these variations in the possibility of error occurrence between two item 

clusters throughout solution stages, their differences were below 20% except for the fraction-

operation solution stage.  In the fraction-operation stage, the percentage of errors was 

approximately 40% greater in items with unequal denominators, indicating that this was a 

significant source of deficit that teachers need to focus on in order to increase studentsô 

performance in this area.  Therefore, the study argues that this is the weakest area, especially for 

students with MLD, and further evidence of significantly low procedural fluency. 
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Educational implications 

Studentsô errors emerge in a continuous and systematic manner in fraction computation 

and reflect meaningful misconceptions.  Rather than evaluating studentsô performance as correct 

or incorrect, analyzing errors enables educators to recognize specific areas of deficit in order to 

design instructions by putting more emphasis on those areas.  In this sense, understanding 

studentsô common errors and their patterns is the first step in providing effective instructions and 

interventions, and it is especially important to know the unique errors that occur in different 

achievement groups so that teachers can have an insight into determining a starting point of 

instruction in inclusive settings.  Research has been conducted on error analysis in several 

domains in mathematics (e.g., word problems, multi-digit operations, and algebraic equations); 

however, the body of research on fraction computation involving addition is rather small even 

though it is a critical domain that can predict future mathematical performance (NMAP, 2008).  

The findings of this study exclusively contribute two main instructional implications to the fields 

of special education and mathematics education as detailed below. 

First, the error types we analyzed and summarized in the solution stages could be used as 

diagnostic and instructional guidelines.  When students make errors, the severity of these errors 

should be measured differently since their sources may different.  By knowing where (i.e., which 

solution stage in a solution algorithm) students experience difficulties, teachers can effectively re-

teach fractions with greater focus on certain areas. 

For example, when students continually make errors in the whole-number operation or 

arithmetic solution stages, in addition to others, it is highly likely that students have not yet 

mastered whole-number properties.  This indicates to teachers that they need to go back and re-

teach these properties, because students are less likely to succeed in fraction properties and future 

achievements if pre-requisite skills are not mastered.  In addition, when students continually 
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make unique errors in the fraction operations stage, especially over-generalization of whole-

number strategy errors, studentsô knowledge in numbers may be at a transition between whole-

number and fraction properties.  We therefore recommend that teachers structure re-teaching 

instructions by concentrating on bridging studentsô previous understanding of whole-number 

properties with the knowledge of fraction properties to remediate their confusion.  Moreover, 

when studentsô errors occur mostly in the renaming or converting stages but they do not make 

fraction operation errors, it is highly likely that students have successfully expanded the number 

set to fractions but are still experiencing difficulties in learning fraction properties and skills.   

Second, errors should be evaluated taking into consideration the flexibility of the solution 

pathway students follow in their fraction computations.  Depending on which solution pathway 

students choose, the solution stages they experience may differ and the types and possibilities of 

making errors may differ accordingly.  Based on the findings of this study, the possibilities of 

students making errors and the number of error types were greater when students followed SP2 as 

their solution algorithm than when they followed SP1.  Although flexibility of solution pathway 

should be encouraged in order to enhance studentsô creative and conceptual understanding in 

mathematics (NCTM, 2014; Star & Seifert, 2006), teachers are encouraged to teach with SP1 for 

MLD or LA students in order to reduce errors, especially when teaching fraction computation 

involving items with unequal denominators.   

Pre-service teacher education program 

As frustrating mathematics outcomes for students who struggle with fractions have been 

constantly reported and most of the errors this study identified have been consistently found in 

previous studies dating back several decades, this study addresses a need to provide innovative 
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instructions to enhance studentsô fraction achievement.  One of these educational efforts should 

be directed towards pre-service teacher education programs.  Based on the results showing a lack 

of depth in pre-service teachersô fraction knowledge (e.g., they had trouble explaining the 

underlying logic in fractions operations and had a superficial understanding of fraction-related 

concepts; Isik, 2012; Mok et al., 2008; Redmond, 2009), pre-service teacher education programs 

need to specifically address the features of the errors students commit in solving fraction 

computations in order to better prepare teachers to be effective instructors.  The findings of this 

study provide a building block to help both in-service teachers and pre-service teachers provide 

appropriate instructional support to students with mathematics difficulties, leading toward 

improved outcome. 

Limitation and future suggestions 

There are two limitations to consider when interpreting the overall findings of this study.  

First, we used a small number of items and there were incomplete item combinations included in 

the analysis.  Given that fractions are represented in different forms (i.e., mixed numbers, 

improper fractions, proper fractions, and whole numbers), the number of possible item 

combinations is 16, but our study involved only 31% of these combinations.  Second, we focused 

on only one operation, addition.  However, since the purpose of this study was to examine unique 

characteristics and patterns of errors focusing on fraction addition performance, the researchers 

believe our comprehensive and sophisticated identification and analysis of errors in six addition 

items provides sufficient information. 

Future studies could address the limitations of this study in two main ways.  First, 

researchers could examine the performance of fraction addition in various item combinations in 
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terms of item formats and pairs of denominators and numerators comprising an item.  The 

researchers could also determine whether our findings of solution pathways are consistent and 

generalizable across item types beyond the items used in this study.  Second, researchers could 

analyze performance of other operations (i.e., subtraction, multiplication, and division) to 

examine their relationship to performance of fraction addition.  Knowing that subtraction follows 

a solution algorithm and has error patterns similar to addition, it is important to examine whether 

operation type is a significant variable in fraction performance.  Even when considering the 

identified limitations, the results presented in this study can provide useful guidelines on what to 

consider when teaching fraction addition to students with MLD. 

Conclusion 

The current study has explored possible errors middle school students with and without 

MLD committed in different solution stages that had been established in a solution algorithm.  

Based on the identified errors, the percentage of occurrence in each solution stage and the 

probability of students making certain errors in a particular solution stage were determined, and 

error patterns across three different achievement groups as a function of solution pathway were 

examined.  Furthermore, this study analyzed specific erroneous features for students with MLD 

and examined how item types relate to solution pathway and error occurrence in their fraction 

performance.  As understanding of common and unique error patterns is critical to diagnosing 

deficit areas more precisely and providing effective instructions, the findings of this study provide 

an instructional and diagnostic basis to develop practical guidelines for teachers when teaching 

and/or re-teaching students with diverse achievement levels, especially students with MLD. 
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Careful consideration of errors in particular solution stages along with solution pathways can 

maximize the efficacy of instructions involving fractions.
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A Systematic Analysis of Experimental Studies Targeting Fractions for Students with 

Mathematics Difficulties 

 

Jiwon Hwang and Paul J. Riccomini, Ph.D. 

The Pennsylvania State University, University Park, Pennsylvania 

 

 Developing an understanding of fraction is one of the biggest challenges in studentsô 

numerical development and at the same time plays a predominant role in learning mathematics. 

Many studies demonstrate the importance of learning fraction in theoretical and educational 

contexts. In the continuum of numerical development, fraction is theoretically important as they 

represent the first intermediary rational number property between real number from whole 

number (Geary, 2006; Siegler, Thompson, & Schneider, 2011). Fraction requires a deeper 

understanding of number than whole number because of the unique properties of fraction that do 

not generalize from whole number (e.g., Ni & Zhou, 2005; Siegler, Fazio, Bailey, & Zhou, 2013; 

Siegler & Pyke, 2013). 

 Based on this theoretical importance, it is also essential to develop knowledge of fraction 

in an educational context. The National Mathematics Advisory Panel (NMAP) (2008) and other 

researchers (Bailey, Hoard, Nugent, & Geary, 2012; Booth & Newton, 2012) reported that 

knowledge of fraction is a strong predictor for future mathematics achievements; in other words, 

students who failed to gain fraction proficiency during elementary school or the earlier grades of 

middle school tend to struggle more in later grades as fraction is embedded in advanced 

mathematics domains (e.g., algebra, geometry, and statistics). Additionally, fraction knowledge 
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has a positive impact on studentsô life skills because fraction is prevalent throughout everyday life 

and help students communicate within a given situation more fluently and precisely (e.g., recipes, 

medical dosages, and shoe size). Although research in cognitive psychology about numerical 

development had focused heavily on whole number (Geary, 2006; Siegler et al., 2013; Wynn, 

2002), recent educational efforts and attention have extended to effective practices to emphasize 

learning fraction in schools. These are reflected in the national mathematics standards and 

principles (Common Core State Standards Initiative [CCSSI], 2015; National Council of Teachers 

of Mathematics [NCTM], 2014; 2008).  

 Despite the crucial role of fraction knowledge, fraction is a notoriously and continuously 

difficult area for U.S. students across grade and achievement levels (Bottge et al., 2015; Hecht & 

Vagi, 2010; Mazzocco & Devlin, 2008; Mazzocco, Myers, Lewis, Hanich, & Murphy, 2013). 

Educational trials have been undertaken that have attempted to enhance studentsô fraction 

achievement by providing general evidence-based instructional approaches in mathematics (e.g., 

explicit instruction and graphic organizer) and other instructions developed by researchers; 

however, studentsô growth was not longitudinally evident, and overall achievement even 

decreased. According to the National Assessment of Educational Progress (NAEP) from 2003 to 

2015, students demonstrated a lack of proficiency in computation skills and understanding of 

fraction concepts, and these difficulties were persistently displayed in middle and high school 

students. More than 50% of the students presented errors on fraction-related items in mathematics 

assessments (e.g., ordering fractions, converting a sum of fractions to decimal numbers, and 

problem solving involving fraction).  

 Moreover, the NAEP (2009; 2011; 2013; 2015) showed that the situation was even worse 

for students who struggled in mathematics, including those with disabilities. The report 

demonstrated that the percentage of students with disabilities who scored below the basic level 
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increased continuously and approached 68% in 2015, compared to 23% of students without 

disabilities. Students with disabilities tended to have a lack of understanding of arithmetic 

operations involving both whole number and fraction. In addition, some studies (Bottge et al., 

2015; Mazzocco & Devlin, 2008; Mazzocco et al., 2013; Newton, Willard, & Teufel, 2014) also 

provided evidence that students with disabilities had lower achievement in fraction when 

compared to students without disabilities. They analyzed studentsô errors to address the most 

problematic area of fraction and found that over-generalization of whole number strategies (e.g., 

adding or subtracting across numerators and across denominators) and errors in conceptual 

understanding (e.g., ordering and comparing) were the most common (Bottge et al., 2015; Brown 

& Quinn, 2008; Hwang & Riccomini, 2016). 

 Therefore, these trends in studentsô poor fraction achievement over the past 10 years 

(NMAP, 2015) along with the difficulties that have been continuously addressed by previous 

research raise concerns and point out the need to diagnose whether classroom instruction 

conducted in the previous studies have successfully and effectively guided improvement in 

student achievement. Given the inherently complex nature of fraction, it is very natural that 

students experience challenges in learning fraction, since they are required to re-organize the 

knowledge of number; however, we argue that it is the educatorsô responsibility to provide easier 

access and effective instructional scaffolds to improve their understanding and proficiency in 

fraction. From this perspective, instruction and intervention should target fraction more robustly 

and instruction should go beyond standard and typical ways of teaching where instruction is 

generally delivered via a teacherôs explanation/demonstration based on textbooks and a standard 

curriculum. As students who severely struggle in mathematics, including those with disabilities, 

are more sensitive to instruction, instruction should be designed to address their special needs and 

targeted to intervene and remediate any difficulties appropriately.  
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Previous Studies on Fraction 

 Despite the increasing emphasis on learning fraction and the need to remediate 

difficulties in order to close the gap among students with diverse achievement levels, the research 

basis for fraction instruction for students with mathematics difficulties is very limited. Instead of 

specifically focusing on the fraction domains, studies have focused on general mathematics 

domains (e.g., Cheung & Slavin, 2013; Gersten et al., 2009; Kroesbergen & Van Luit, 2003; 

Swanson & Jerman, 2006), other studies have addressed word problems (e.g., Zheng, Flynn, & 

Swanson, 2013; Fuches et al., 2011), and some studies have focused on basic fact fluency (e.g., 

Codding, Burns, & Lukito, 2011). There have been only two syntheses conducted to address the 

overall effects of instruction designed to enhance fraction achievement and examine effective 

instruction types for students with mathematics difficulties. Misquitta (2011) reviewed 10 

experimental studies published between 1998 and 2008 that examined fraction instruction for 

students who struggle in mathematics. Although the included studies demonstrated the effects of 

interventions for the targeted population, effect sizes (ESs) were not aggregated and compared 

across intervention types, and students with disabilities and those with low achievement were not 

differentiated. The recent work of Shin and Bryant (2015) expanded Misquittaôs (2011) work by 

providing descriptive features of several aspects of fraction instruction (e.g., participant, setting, 

instructor, and length of instruction), analyzing the effects of instruction consisting of identified 

instructional components (e.g., concrete and visual representations, explicit instruction, and 

heuristic strategies) and examining connections of each instruction to the standards of CCSS 

(2012) in mathematics. 

Operationalized Definition 

 For this study, instruction is operationally defined as any instructional trials and attempts 

conducted in a classroom to enhance studentsô fraction knowledge, including standard/typical 
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instruction. Intervention is considered a subset of instruction and defined as instruction designed 

with a special remedy or approach based on researchersô theoretical reasons and is, as such, 

distinguishable from standard/typical instruction. Given these operationalized definitions, with 

intervention being special types of instruction devised to facilitate student achievement, we 

therefore hypothesized that larger effects should be expected for intervention when compared to 

standard/typical instruction. Furthermore, we particularly concentrated on students with 

mathematic difficulties, where we operationally combined students with disabilities and students 

with low achievement in mathematics; because both groups generally show an achievement level 

that is negative two standard deviations below an average in a norm-referenced test (Hwang & 

Riccomini, 2016; Mazzocco et al., 2012).  

Purpose of the Study  

 The purpose of our systematic synthesis of the literature was to expand on previous 

literature reviews (Misquitta, 2011; Shin & Bryant, 2015) by making three unique commitments. 

Our first was to analyze all possible types of classroom instruction designed to enhance studentsô 

mathematical achievement in fractions-related contents (e.g., computation, ordering, and word 

problems involving fractions). We examined the overall efficacy of fraction instruction that has 

been conducted with students with diverse achievement levels and to further demonstrate whether 

the ESs varied by or related to instruction type, achievement level, grade, and measurement type. 

Our second was to identify whether students received appropriate educational benefits by 

analyzing the efficacy of fraction intervention when compared to standard/typical instruction. By 

testing our hypothesis that intervention should have significantly greater effects than 

standard/typical instruction, this study provides a diagnostic view of the current state of U.S. 

mathematics education in the area of fractions. Our third was to explore the intervention effects 

specifically for students with mathematical difficulties (i.e., students with low achievement and 
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those with disabilities) in order to evaluate whether intervention satisfied their unique needs and 

yielded significant growth in fraction achievement by making a comparison with standard/typical 

instruction. We also examined the differentiated effects between students with low achievement 

and students with disabilities.  

 This study aims to provide insights for future directions about fraction instruction, 

particularly focusing on students with disabilities. Therefore, the following research questions 

guided this study: 

1. Does a linear function of four grouping variables (i.e., instruction type, achievement 

group, grade, and measurement type) explain the variation in ESs in fraction 

instruction in the five domains of dependent measures in fraction achievement 

(conceptual understanding, procedural skills, word problems, contextualized 

problems, and mixture)? Also, do ESs for fraction instruction vary across levels of 

each grouping variable?  

2. Are outcomes of fraction intervention more effective than standard/typical instruction 

in the five domains of dependent measures in fraction achievement?  

3. How do the ES differences between fraction intervention and standard/typical 

instruction relate to students with mathematical difficulties (which includes those 

with disabilities), grade levels, and measurement type? 

Methods 

Study Identification 

 We conducted a systematic literature search to examine peer-reviewed experimental 

intervention studies targeting fraction for all school-aged students (i.e., elementary, middle, and 

high school students). The search was completed in three steps to identify potential studies. First, 

three electronic databases, ERIC, PsychINFO, and ProQuest were used with combinations of 
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following descriptors: fraction, math*, computation, equival*, ordering, comparing, problem*, 

learn*, teach*, instruct*, intervention*, disabilit*, struggl*, at-risk, difficult*, low-achiev*, low 

perform*. Second, references in relevant studies that included a literature review (Misquitta, 

2008; Shin & Bryant, 2015) were examined to identify studies satisfying our inclusion criteria. 

Third, a hand search of the major journals in the areas of mathematics education and special 

education was conducted (e.g., Education and Treatment of Children, Exceptional Children, 

Learning Disabilities Quarterly, Journal of Learning Disabilities, Journal of Special Education, 

Remedial and Special Education, and Journal of Research in Mathematics Education). As a 

result, we identified 35 studies for potential further evaluation to be included for this meta-

analysis. The range of publication date was not restricted for the search; however, studies were 

found to be published between 1990 and the present, which may reflect recent trends and 

standards suggested in the National Council of Teachers of Mathematics (NCTM, 2000). 

 Inclusion criteria.  The potential studies were thoroughly examined based on the 

following inclusion criteria. First, we chose studies that were conducted using an experimental 

group design. Non-experimental studies such as longitudinal (e.g., Mazzocco et al., 2013; Saxe, 

Gearhart, & Nasir, 2001), concept/theory (e.g., Hecht & Vagi, 2012; Pitsolantis & Osana, 2013; 

Siegler & Pyke, 2013), or case study (e.g., Lewis, 2010; Newton, Willard, & Teufel, 2014) types 

were excluded. Our initial criteria focused on experimental studies including both group design 

and single-case research design; however, we restricted our inclusion to group studies involving 

randomized, quasi, and independent group studies with a comparison group. When considering 

the nature of calculating ESs, studies with group and single-case designs should be analyzed and 

compared differently (Cooper, Hedges, & Valentine, 2009). But since only two studies (Joseph & 

Hunter, 2001; Test & Elli, 2005) satisfying the rest of the criteria used a single-case design, there 
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were limitations in summarizing and generalizing findings; therefore, this study included group 

studies only. 

 Second, the studies chosen focused on fraction as instructional content and included 

classroom mathematics instruction designed to enhance studentsô fraction achievement. Third, we 

chose studies that the participants were elementary, middle, and high school students. In general, 

fractions are first introduced in elementary grades (Grade 3 or 4) and taught throughout middle 

school (CCSS, 2015; NCTM, 2008, 2000), indicating that fractions are one of the critical topics 

students learn during these period. We additionally included high school students because 

fraction-related content is embedded in advanced mathematics domains (e.g., problem solving 

with knowledge of fraction properties) and fraction is an instructional target for high school 

students who have great difficulty in mathematics, including those with disabilities. We excluded 

studies if participants were pre- or in-service teachers (e.g., Gersten & Kelly, 1992; Lewis, 2014). 

Lastly, studies were chosen that provided sufficient quantitative information to calculate ESs. For 

some studies without quantitative statistics directly provided, we used Graphclick software to 

extract graphical data (Burtler, Miller, Crehan, Battitt, & Pierce, 2003) or calculated the estimates 

of prerequisite information from provided statistics in order to calculate appropriate ESs for this 

meta-analysis (Courey, Balogh, Siker, & Paik, 2012). As a result, a total of 22 studies satisfied all 

the criteria above and were included in the analysis. 

Coding Procedure 

 After a thorough examination for final inclusion, we performed a two-phase coding of 

four aspects of each of the 22 studies. First, participant characteristics (grade and achievement 

level), instruction characteristics (instruction type, instructional components, and mathematics 

domain), dependent-measure characteristics (measure types and domain), and other additional 

study characteristics (research design and sample size) were initially coded with specific 
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information provided in the studies. Second, for each of hypothesized moderators for this study 

(i.e., grade, achievement group, measurement type, instruction type, and dependent measure), we 

re-coded the information with the new categories we had determined and operationally defined in 

order to classify information for ease of analysis and drawing of practical implications. 

 Categorization of coding variables. Our hypothesized moderators were categorically re-

coded and aggregated as follows: (1) Grade (n = 3): Grades 1 to 4 (elementary), Grades 5 to 8 

(middle), and Grades 9 to 12 (high); (2) Achievement group (n = 5): high-achieving students (H), 

typical-achieving students (T), low-achieving students including at-risk of disabilities (L), 

students with disabilities including students having IEP goals or receiving special services (D), 

and a mixture of achievement levels in inclusive setting (I). Students were coded with the five 

achievement group categories based on information provided in the studies, but if a study was 

conducted in an inclusive classroom without studentsô achievement levels specified, we 

considered this population to be mixed achievement level; (3) Measurement type (n = 2): 

researcher-developed measure (RD) and norm-referenced/standardized measure (NR). 

Meanwhile, instruction types and domains of dependent measures were also re-coded with 

categorical variables using operationally defined categories as follows. 

 Instruction type. In response to our research question examining whether fraction 

interventions proposed in previous studies are more effective than standard/typical instruction, we 

considered traditional or business-as-usual instruction conducted in control groups as one type of 

instruction. Because intervention is a special type of instruction devised with instructional 

scaffolds (e.g., teaching sequence and strategy), the word instruction in this study indicates an 

upper category of coding variables that includes intervention as well as standard/typical 

instruction. We identified five instruction types (i.e., four interventions and standard/typical 

instruction) for this study, under which all of the specific type of instruction that emerged in the  
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Table 1 

 

Summary of Instruction Coding 
 

  Instruction Category 

   Intervention   

Study Instruction Type 

 instr 

1 

instr 

2 

instr 

3 

instr 

4 

 instr 

5 

Bottge (1999) CI        

Bottge & Hasselbring 

(1993) CI  

     

Bottge et al. (2014) EAI       

Bottge et al. (2010) EAI       

Bottge et al. (2010) EAI + EI + Software       

Bottge et al. (2002) EAI       

Bottge et al. (2006) EAI        

Bottge et al. (2007) EAI       

Bottge et al. (2007) EAI       

Onu et al. (2012) Meta-cognitive strategy       

Sidney & Alibali (2015) Cognitive strategy to link to prior 

knowledge   

     

Butler et al. (2003) CRA + RA       

Courey et al. (2012) CRA in music context       

de Castro (2008) RA + Cognitive model       

Gabriel et al. (2012) CRA + Card game       

Jordan et al. (1999) CRA       

Kurumeh & Achor (2008) CA (Cuisenaire rods)       

Moyer-Packenham & Suh 

(2012) CA (Physical manipulatives)  

     

Osana & Pitsolantis 

(2013) 

CRA (link conceptual and procedural 

using multiple representation)  

     

Flores & Kaylor (2007) Cognitive and meta-cognitive strategy 

in direct instruction  

     

Kelly et al. (1990) Instructional design curriculum       

Kellman et al. (2008) Perceptual learning modules with 

visual representation  

     

Kellman et al. (2008) Perceptual learning modules with 

visual representation  

     

Moyer-Packenham & Suh 

(2012) Computer-based virtual manipulatives   

     

Reimer & Moyer (2005) Computer-based virtual manipulatives       

Roschelle et al. (2010) TechPALS1        

Roschelle et al. (2010) iSucceed       

Bottge (1999) BAU       

Bottge & Hasselbring 

(1993) BAU  

     

Bottge et al. (2014) BAU       

Bottge et al. (2002) BAU       

Courey et al. (2012) BAU       

Gabriel et al. (2012) BAU       

Osana & Pitsolantis 

(2013) BAU  

     

NOTE. CI = Contextualized instruction; EAI = Enhanced anchored instruction; CRA = Concrete-

Representational-Abstract multiple representation learning sequence; RA = Representational-Abstract; 

CA = Concrete-Abstract; TechPALS1 = Technology mediated Peer Assisted Learning; BAU = Business 

as unusual. 
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22 studies were categorized, as shown in Table 1. The five instruction types were (a) video-based 

anchored instruction (instr1), (b) cognitive and meta-cognitive strategies instruction (instr2), (c) 

multiple representation instruction (instr3), (d) computer-based instruction with use of visual 

representation (instr4), and (e) standard/typical instruction (instr5). 

Dependent measures. All of the studies evaluated student outcomes (i.e., solution 

accuracy) as a product of achievements reflecting efficacy of instruction but with various types of 

measures assessing different mathematics domains. We identified five mathematics domains 

within fractions as follows: (a) conceptual understanding, (b) procedural skill, (c) word problem, 

(d) contextualized problem, and (e) mixture (overall proficiency in fractions). Although 

considerable debates exist about the definition of conceptual knowledge and procedural 

knowledge in mathematics, we operationally defined types of fraction problems associated in 

each of these domains based on the previous research (e.g., Shin & Bryan, 2015) and theoretical 

framework provided in the work of Behr et al. (1983). Based on the idea that fractions comprise 

multifaceted and interrelated sub-constructs (e.g., part-whole/partitioning, ratio, operator, 

quotient, and measurement; see Brousseau et al., 2004; Charalambous, 2007), Behr et al. 

suggested a model linking these sub-constructs to different problem types. 

First, dependent measures of conceptual understanding reflect studentsô proficiency in 

understanding of fractions as numbers, fraction equivalence and ordering, relationship between 

numerator and denominator, comparing and judging the magnitudes of fractions, and part-

whole/partitioning of fractions (NMAP, 2008). For this study, problem types primarily measuring 

conceptual understanding of fraction involved finding the part or finding the whole (e.g., a part-

whole model was shown and students were asked to provide a fraction for the shaded area or 

asked to shade an appropriate portion of the area for a given fraction), comparing fractions by 
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reasoning their magnitudes, explaining fractions using writing or drawings, and finding unit 

fraction. 

Second, dependent measures categorized as procedural skill reflect studentsô capability of 

carrying a sequential procedure during a solution process and proficiency of computation using 

abstract notations (Miller & Hudson, 2007). Among the five sub-constructs of fraction, problems 

underpinning the operator construct primarily measure fraction computation skills with four basic 

operations (addition, subtraction, multiplication, and division). In this study, problem types for 

the procedural skill domain included fraction computation where fraction is presented 

symbolically either vertically or horizontally, finding missing values to make equivalence 

fractions, and discrimination between algorithms of the four operations (Kelly, Gersten, & 

Carnine, 1990).  

Third, both the word problem and contextualized problem categories are commonly used 

to measure mathematical problem-solving ability using fractions to solve problems anchored in 

real-life situations, which requires an integrated set of mathematical knowledge. However, 

dependent measures of these two domains are categorized separately because problem 

presentations are different in that word problems are given with text while contextualized 

problems are given with video clips. For these reasons, some studies evaluated these two 

measures separately (e.g., Bottge, 1999). Lastly, measures that involve various types of problems 

rather than focusing on a specific domain were considered as a mixture of problems evaluating 

overall proficiency in fraction.  

Inter-rater reliability. Inter-rater reliability (IRR) was calculated by dividing the number 

of agreements by the number of agreements and disagreements then multiplying by 100. Three 

researchers independently coded study information for reliability in two parts: (a) grade level 

(elementary, middle, and high), achievement group (H, T, L, D, and I), and measure type (RD and 
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NR) and (b) instruction type (instr1, instr2, instr3, instr4, and instr5) and dependent measure 

domain (C, P, WP, CP, and M). Because coding of the three variables in the first part is 

completely based on the information provided in the studies, we randomly selected 8 out of 22 

studies (36.36%) to calculate reliability via data coding. For the second part of coding, the three 

researchers independently coded all of the included studies after being given an explanation of 

each category we defined for this study so that IRR could be calculated via data categorization as 

well as data coding. As a result, we achieved 100% mean IRR for the first part and 89% for the 

second part; we reached 100% after researchers discussed the discrepancies that occurred in data 

categorization and were able to come to agreements on all of them. 

Data Analysis 

ES calculation. Hedgesôs g for the 22 experimental studies was calculated in two ways. 

First, when a study reported mean and standard deviation for repeated measures, ES was 

calculated as ESIG = (Xpost ï Xpre)/Spre, where Xpost and Xpre were unadjusted pre- and post-test 

means and Spre was the unadjusted pre-test standard deviation. Knowing that one of our purposes 

of the analysis was to compare the efficacy of intervention to standard/typical instruction, we 

considered the control group as one type of independent treatment group; therefore, ESs were 

calculated separately as if there were two treatment groups without a control group. Second, when 

a study did not provide a mean or standard deviation but reported F- or t-statistics instead, ES was 

calculated as ESIG =
Ѝ

, or =
Ѝ

. 

ESs for the five domains of dependent measures were calculated separately, but ESs were 

aggregated if a study reported more than one outcome under the same domain (e.g., if a study 

reported outcomes in two contextualized-problem tests, two corresponding ESs were aggregated). 

In addition, all of the ESs were adjusted by multiplying ρ  and weighted by the 
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inverse of the conditional variance of g, („ = ), in order to achieve an 

unbiased estimate to correct small sample bias (Hedges & Olkin, 1985).  

Statistical analysis. The identified studies reported effects of multiple outcomes (i.e., 

dependent measures) as well as multiple factors; therefore, we employed multifactor ANOVA 

separately for each dependent measure. This analysis allowed us to examine variability in ESs for 

each dependent measure as a function of five grouping variables that we hypothesized as 

moderators (instruction type, achievement group, grade level, and measurement type). Although 

we categorized fraction problems into five domains, we separated analysis of each dependent 

measure and produced five models rather than including dependent measure as a factor in a 

model and analyzing simultaneously (multivariate analysis) for following reasons.  

First, there were concerns about violating independence among multiple ESs of 

dependent measures since the five domains of dependent measure were not distinctly independent 

based on the nature of mathematics (Rittle-Johnson, Siegler, & Alibali, 2001). Additionally, the 

five dependent measure domains cannot be integrated because theoretically they are highly 

correlated and mingled with each other; for example, researchers have argued that development 

of conceptual knowledge and procedural knowledge are an iterative process which cannot be 

separated in mathematics (Rittle-Johnson & Alibali, 1999; Rittle-Johnson et al., 2001), overall 

fraction proficiency involves a mixture of four domains of dependent measure (Kellman et al., 

2008), and both word problems and contextualized problems require problem-solving ability in 

common (Bottge, Rueda, Grant, Stephens, & Laroque, 2010). Second, even if we can remediate 

the violations, there would still be a lack of information to run a multivariate analysis (e.g., 

coefficient r between dependent measures and standard deviations of mean difference) that 

includes dependent measure as a factor in a model. Therefore, direct comparisons are restricted to 
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being conducted between multiple ESs across domains of dependent measure. The five separate 

models with different set of factors used for our analysis are presented as follows: 

a. Conceptual knowledge: y1 = b10 + b11(instr) + b12(ach) + b13(gr) + e1 

b. Procedural knowledge: y2 = b20 + b21(instr) + b22(ach) + b23(gr) + b4(mt) + e2 

c. Word problem: y3 = b30 + b31(instr) + b32(ach) + b33(gr) + b34(mt) + e3 

d. Contextualized problem: y4 = b40 + b41(instr) + b42(ach) + b43(gr) + e4 

e. Mixture: y5 = b50 + b51(instr) + b52(ach) + b53(gr) + e5 

For each domain of dependent measure, we determined whether all of the ESs were 

estimating the same population mean (i.e., if ESs were consistent across studies) by calculating a 

homogeneity statistic Q (Hedges & Olkin, 1985). The Q statistic was weighted sums of the 

square, represented as Q = Вύ ὉὛ
В

В
, where w indicated weight (ύ  and 

ES was Hedgesôs g. Q was distributed as chi-square with k-1 degrees of freedom, where k was the 

number of ESs (Lipsey & Wilson, 2001). A significant Q indicated that variability across ESs 

exceed what would be expected based on sampling error, justifying that further analysis was 

needed to find variables that moderated this variation (Cooper et al., 2009). Furthermore, we 

conducted specific comparisons among the levels of variables of interest in order to formulate 

responses to the research questions. Planned contrast was used when variables or combinations of 

variables (i.e., interactions) were found to be moderators, having significant QBetween and QInteraction, 

respectively. In some cases where Qs were not significant, post hoc multiple comparison with 

Bonferroni correction was employed in order to determine specific a priori differences that the 

test might not have been powerful enough to detect (Cooper et al., 2009). 

Results 

A total of 22 experimental studies involving fraction intervention for elementary to high 

school students were identified. Publication dates ranged from 1990 to 2015, which may reflect 
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recent trends and standards in mathematics (CCSSI, 2015; NCTM, 2014). The sample size used 

for the analysis was 8,313, approximately twice as large as the original size, since we separated 

out a control group and considered it as one type of treatment group. In terms of overall sample 

characteristics, grade level spanned from third to twelfth with slightly over 70% of our sample 

being middle school students (Grades 6-8), followed by elementary (Grades 1-5) and high school 

students (Grades 9-12). Studentsô achievement levels were categorized into five groups, with 42% 

of students being in a mixture of achievement levels and 29% of students being in the disability 

group.  

We initially identified 18 types of interventions with some variations in instructional 

components (e.g., explicit instruction, guided practice, feedback, and graphic organizer) that were 

then categorized into four main types (anchored instruction [instr1], cognitive and meta-cognitive 

strategy instruction [instr2], multiple representation instruction [instr3], and computer-based 

instruction [instr4]) after researchers discussed them based on common instructional components 

provided in the studies (see inter-rater reliability in Methods section). As our interest is to 

compare the overall efficacy of interventions with the efficacy of standard/typical instruction 

(instr5), instruction conducted in business-as-usual conditions was considered as one type of 

instruction; therefore, five instruction types were used: four different intervention types and 

standard/typical instruction. Furthermore, we categorized dependent measures used in the 

included studies into five domains (conceptual knowledge [C], procedural knowledge [P], word 

problem [WP], contextualized problem [CP], and mixture [M]). Among the dependent measures, 

33% measured procedural knowledge of fractions, which was the greatest portion among five 

domains, and 90% were researcher-developed measure types. 

Moderator Analysis 
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Table 2 shows the weighted means and standard errors for ESs for each domain of 

dependent measure. A total of 330 ESs were initially calculated but after we aggregated them by 

levels in each grouping variable, 53 mean ESs were identified with standard errors (see Table 2 

for ESs for each domain of dependent measure). In the current study, we employed a fixed-effect 

model regardless of significant Qwithins (p < .05) identified in all of the five domains because a 

fixed-effect model is more appropriate and provides a better explanation than a random-effect 

model in the context of limited sample size (Cooper et al., 2009). For these reasons, we assumed 

that the ESs varied from each other due to sampling errors, not due to unexplained heterogeneity. 

We also found Qs in all of the five domains were significant at p = .05 (C, Q = 36.13; P, Q = 

812.79; WP, Q = 76.61; CP, Q = 165.02; and M, Q = 41.69), indicating that a linear function of 

grouping variables explained the variation in ESs. This further suggested that the ESs needed to 

be disaggregated by appropriate grouping variables, which justified our need of moderator 

analysis. 

Therefore, we analyzed whether our grouping variables (instruction type [instr], 

achievement group [ach], grade level [gr], measurement type [mt]) created heterogeneous 

distributions of the ESs; in other words, if the ESs varied across levels of each grouping variable. 

Table 2 presents Q components for each grouping variable along with the mean ESs and 

significance for each level. The instr was a significant moderator in three domains (C, Q = 9.79; 

P, Q = 100.86; and CP, Q = 32.42), ach and mt in two domains (P, Qach = 78.42, Qmt = 23.11; WP, 

Qach = 12.11, Qmt = 17.23), and gr in two domains (P, Qgr = 60.32; CP, Qgr = 30.6). This indicates 

that the grouping variables did not coherently moderate across the different domains of dependent 

measure; however, similar patterns of ESs were identified across some domains (i.e., ESs of 

levels of grouping variables showed similar patterns in some dependent measure domains). For 

instr, instr1, instr3, and instr5 were significantly effective for all of the five domains with ESs 
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Table 2 

 

Weighted ESs, SEs, and homogeneity Q as a function of grouping variables on five domains of 

dependent measure 
 

DV 

measures IV K ES SE Q 

C
 =

 C
O

N
C

E
P

T
U

A
L

 

K
N

O
L

W
E

D
G

E
 

Total 12    36.13*** 

instr     9.79** 

instr2 1  0.17 0.21  

instr3 6  0.88***  0.1  

instr4 1  0.31 0.33  

instr5 4  0.6***  0.1  

ach     0.003 

D 1  0.4 7.37  

L 1  1.02** 0.41  

I 10  0.66***  0.07  

gr     1.21 

E  5  0.78***  0.1  

M 6  0.57** 0.09  

H 1  1.02** 0.41  

P
 =

 P
R

O
C

E
D

U
R

A
L

 

K
N

O
W

L
E

D
G

E
 

Total  31    812.79*** 

instr     100.86*** 

inst1 12  0.96***  0.07  

inst2 1  0.28 0.21  

inst3 8  0.75***  0.09  

inst4 1  0.08 0.32  

inst5 9  0.93***  0.07  

ach     78.42*** 

D 11  1.12***  0.06  

L 4  1.23***  0.27  

T 2  0.01 0.2  

I 14  0.6***  0.06  

gr     60.32*** 

E  4  0.83***  0.11  

M 23  0.87***  0.05  

H 4  0.7***  0.21  

mt     23.11*** 

NR 5  0.93***  0.08  

RD 26  0.83***  0.05  

W
P

 =
 W

O
R

D
 

P
R

O
B

L
E

M
 

Total  20    76.61** 

instr     4.33 

inst1 12  0.72***  0.06  

inst3 1  0.49** 0.19  

inst5 7  0.46***  0.07  

ach    12.11***  

D 11  0.65***  0.05  

L 4  0.56***  0.21  

T 2  0.42** 0.2  

I 3  0.1 0.2  

gr     1.23 

M 17  0.61***  0.05  

H 3  0.4* 0.21  

mt     17.23*** 

NR 5  0.42***  0.07  




