STUDIES TOWARD THE SYNTHESIS OF TMC-95A AND DEVELOPMENT OF AN ENANTIOSELECTIVE PUMMERER REACTION FOR THE SYNTHESIS OF 3,3-SPIROCYCLIC OXINDOLES

A Thesis in
Chemistry

by

Andrew George Karatjas

© 2006 Andrew George Karatjas

Submitted in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

August 2006
The thesis of Andrew G Karatjas was reviewed and approved* by the following:

Ken S. Feldman
Professor of Chemistry
Thesis Advisor
Chair of Committee

Raymond L. Funk
Professor of Chemistry

Blake R. Peterson
Associate Professor of Chemistry

James P. Runt
Professor of Polymer Science

Ayusman Sen
Professor of Chemistry
Head of the Department of Chemistry

*Signatures are on file in the Graduate School
ABSTRACT

Oxidative cyclizations of tryptophan derivatives have seen little use in total synthesis. The use of this methodology in a model system of TMC-95A was explored. This method failed to lead to products for continuation of the synthesis. A new approach to indole C(3) cyclizations was proposed using Pummerer reaction chemistry. This method was found to be successful on both simpler tryptophan derivatives and on the TMC-95A model system, leading to the correct regiochemistry and stereochemistry for TMC-95A.

Further extension of the Pummerer reaction methodology was desired through attempts toward an enantioselective variant with carbon nucleophiles. Results with silyl enol ether nucleophiles showed excellent stereoselectivity.
TABLE OF CONTENTS

LIST OF FIGURES..vi

LIST OF TABLES...x

ACKNOWLEDGEMENTS...xi

Chapter 1 3,3-Spirocyclic Oxindoles – Overview of Synthetic Methods.................1

1.1 Oxidative Rearrangement...2
1.2 Claisen rearrangement..4
1.3 Oxidative cyclizations of tryptophan derivatives...5
1.4 Ring expansion reactions...8
1.5 Carbene annulation..10
1.6 Radical methods..10
1.7 Mannich Reactions...13
1.8 1,3-Dipolar cycloadditions..14
1.9 Transition Metal-Mediated Coupling Reactions...16
1.10 Asymmetric Nitroolefination..17
1.11 Samarium mediated reductive coupling..18
1.12 Photochemistry..19
1.13 Conclusions...20

Chapter 2 Pummerer reaction methodology..21

2.1 Pummerer reaction; history and mechanism...21
2.2 Indole based Pummerer reaction..22
 2.2.1 Vinylogous mechanism...23
 2.2.2 Additive mechanism..24
2.3 Asymmetric Pummerer reaction..25
 2.3.1 Background ...25
 2.3.2 Chiral sulfoxides...30
2.4 Iodonium based Pummerer reaction methodology...31

Chapter 3 Review of TMC-95A-D background and synthesis.................................33

3.1 Isolation and Biological Activity of TMC-95 A – D...33
3.2 Synthetic approaches toward TMC-95A...34
 3.2.1 Danishefsky et al..35
 3.2.2 Hirama et al..39
 3.2.3 Williams et al..44
3.3 Conclusions..47

Chapter 4 Studies toward the oxindole core of TMC-95...48
<table>
<thead>
<tr>
<th>Chapter 4</th>
<th>Methods toward an enantioselective Pummerer reaction</th>
<th>65</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Retrosynthesis</td>
<td>4.2 Oxidative cyclization approaches</td>
<td>48</td>
</tr>
<tr>
<td>4.3 Pummerer reaction methodology development</td>
<td>4.3.1 Tryptophan-based model system</td>
<td>50</td>
</tr>
<tr>
<td>4.3.2 Pummerer methodology as applied to TMC-95A</td>
<td>4.4 Conclusions</td>
<td>56</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 5</th>
<th>Methods toward an enantioselective Pummerer reaction</th>
<th>65</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 Substrate synthesis</td>
<td>5.1.1 Allylsilanes</td>
<td>66</td>
</tr>
<tr>
<td>5.1.2 Silyl enol ethers</td>
<td>5.2 Optimization of Pummerer reaction ee’s</td>
<td>67</td>
</tr>
<tr>
<td>5.2.1 Allylsilanes</td>
<td>5.2.2 Silyl enol ethers</td>
<td>69</td>
</tr>
<tr>
<td>5.3 Absolute stereochemistry determination</td>
<td>5.4 Conclusions</td>
<td>73</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 6</th>
<th>Experimental Procedures</th>
<th>86</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 General</td>
<td>6.2 Methods toward TMC-95A-D synthesis</td>
<td>86</td>
</tr>
<tr>
<td>6.3 Enantioselective Pummerer reaction development</td>
<td>6.3.1 Enantioselective Pummerer reaction development</td>
<td>121</td>
</tr>
</tbody>
</table>

Bibliography | 158 |
LIST OF FIGURES

Figure 1.1: 3,3-Disubstituted oxindole containing natural products.................................1

Figure 1.2: Biomimetic type rearrangement...2

Figure 1.3: Pterodine synthesis key step...3

Figure 1.4: Horsfiline synthesis – oxidative rearrangement method..............................3

Figure 1.5: Horsfiline and coerulescine syntheses...4

Figure 1.6: Claisen rearrangement to form oxindoles..5

Figure 1.7: Baldwin’s oxindole synthesis...5

Figure 1.8: Oxidative cyclization results...6

Figure 1.9: Key step in tryptoquivaline G synthesis..7

Figure 1.10: Possible mechanisms for the oxidative cyclization.....................................8

Figure 1.11: Synthesis toward strychnofoline using a ring expansion reaction.................9

Figure 1.12: Mechanistic possibilities for Carriera’s ring expansion reaction...............9

Figure 1.13: Carbene annulation method...10

Figure 1.14: Radical addition to enones..11

Figure 1.15: Gelsemine synthesis..12

Figure 1.16: Radical route toward oxindoles..13

Figure 1.17: Rychnophylline/isorychnophylline isomerization using a Mannich reaction...13

Figure 1.18: Mannich reaction in the synthesis of horsfiline..14

Figure 1.19: Danishefsky’s Mannich reaction route for the spirotryprostatin B synthesis..14

Figure 1.20: Dipolar cycloaddition approach to (-)-spirotryprostatin.......................15
Figure 1.21: Dipolar cycloaddition approach to (-)-horsfiline

Figure 1.22: Overman’s gelsemine synthesis

Figure 1.23: Tandem Heck and carbonylation reaction

Figure 1.24: Synthesis of (-)-horsfiline using an asymmetric nitroolefination reaction

Figure 1.25: Reductive coupling as a strategy for oxindole synthesis

Figure 1.26: Photochemical dimerization to form oxindoles

Figure 2.1: Smythe’s reaction

Figure 2.2: Pummerer’s first result

Figure 2.3: Ac₂O activated Pummerer

Figure 2.4: General Pummerer reaction mechanism

Figure 2.5: General scheme for the indole based Pummerer reaction

Figure 2.6: Vinylogous indole Pummerer reaction

Figure 2.7: Additive indole Pummerer mechanism

Figure 2.8: Racemic indole based Pummerer reactions using carbon nucleophiles

Figure 2.9: A proposal for expecting enantioselectivity in the Pummerer reaction of chiral indole-2-sulfoxides

Figure 2.10: Tight ion pair for enantioselectivity in the Pummerer reaction

Figure 2.11: Kita’s enantioselective Pummerer reaction

Figure 2.12: Evans’ oxazolidinone route to chiral sulfoxides

Figure 2.13: Marino’s use of Evans reagent

Figure 2.14: Tamura’s iodonium based Pummerer reaction

Figure 2.15: Mechanism for the PhI(CN)OTf mediated Pummerer reaction

Figure 3.1: TMC-95A-D
Figure 3.2: Danishefsky’s retrosynthetic analysis………………………………………35

Figure 3.3: Biaryl coupling of the oxindole with the tyrosine piece36

Figure 3.4: Sharpless to set the stereochemistry at C(6) and C(7)37

Figure 3.5: Synthesis of the macrolactam ..38

Figure 3.6: Enamide formation ..38

Figure 3.7: Completion of the synthesis ...39

Figure 3.8: Hirama’s retrosynthesis ...40

Figure 3.9: Hirama’s synthesis of the oxindole portion of TMC-95A40

Figure 3.10: Continuing the synthesis of the northern half41

Figure 3.11: Synthesis of the tyrosine derived piece41

Figure 3.12: Completion of Hirama’s synthesis ..43

Figure 3.13: Williams’ retrosynthesis ...44

Figure 3.14: Williams’ oxindole synthesis ..45

Figure 3.15: Biaryl coupling in the Williams route ..45

Figure 3.16: Completion of Williams’ synthesis ..46

Figure 4.1: Retrosynthesis of TMC-95A ..49

Figure 4.2: Possible cyclization transition states ..51

Figure 4.3: Syn amino alcohol model system ...53

Figure 4.4: Anti amino alcohol model system ..53

Figure 4.5: Explanation for the observation that a 6-membered alternative is favored...55

Figure 4.6: Synthesis of the free indole N-H cyclization precursor 24555

Figure 4.7: Transition states of the Pummerer mediated oxidative cyclization of a
tryptophan derivative ..57
Figure 4.8: Initial Pummerer studies with the indole system.................................59
Figure 4.9: Pummerer reaction in the methyl ester series.................................60
Figure 4.10: New oxindole retrosynthesis for the Pummerer based TMC-95 synthesis...60
Figure 4.11: TMC-95A Pummerer based route...61
Figure 4.12: Cyclic carbamate...63
Figure 4.13: t-Butyl ester based Pummerer reactions..63
Figure 5.1: Chiral sulfoxides examined in this study..66
Figure 5.2: Japp-Klingemann synthesis of 5-methoxy indole 3-butyric acid..........67
Figure 5.3: 5-Methoxy allylsilane substrate syntheses...68
Figure 5.4: Synthesis of allylsilanes 131 and 134..69
Figure 5.5: 55-Methoxy indole-2-sulfoxide silyl enol ether synthesis....................70
Figure 5.6: 5-H indole-2-sulfoxide silyl enol ether synthesis71
Figure 5.7: Alternative route to 293 and 299..72
Figure 5.8: Possible resonance effect of the methoxy substituent............................73
Figure 5.9: 5-Methoxyindole allylsilane Pummerer reactions..................................74
Figure 5.10: 5-H indole allylsilane Pummerer reactions...75
Figure 5.11: Dicationic intermediate for the N-methyl based Pummerer reaction.....77
Figure 5.12: N-methyl 5-methoxyindole allylsilane Pummerer reaction................77
Figure 5.13: N-methyl 5-H allylsilane Pummerer reaction......................................78
Figure 5.14: 5-methoxyindole silyl enol ether Pummerer reaction..........................80
Figure 5.15: 5-H silyl enol ether Pummerer reaction...80
Figure 5.16: Determination of the stereochemistry of the 5-methoxy series..........83
Figure 5.17: Determination of the stereochemistry of the 5H series.......................84
LIST OF TABLES

Table 1.1: Oxidative cyclization results...6

Table 3.1: Inhibitory activities of against 20S proteasome activities.........................34

Table 4.1: Cyclization attempts with deprotected indole 245................................55

Table 4.2: Optimization of Stang-initiated Pummerer on 263...............................62

Table 5.1: Results of the 5-Methoxy allylsilane Pummerer reactions......................74

Table 5.2: Results of the 5-H allylsilane Pummerer reactions...............................76

Table 5.3: N-methyl 5-methoxy allylsilane Pummerer reaction results...................78

Table 5.4: N-methyl 5-H allylsilane Pummerer reaction results.............................78

Table 5.5: 5-methoxy silyl enol ether Pummerer reaction....................................80

Table 5.6: 5-H silyl enol ether Pummerer reaction results....................................81
ACKNOWLEDGEMENTS

I will start out by thanking my advisor, Professor Ken Feldman. The opportunity to work with him has been a valuable experience through which I have learned a great deal. Through both research projects and stimulating group meetings, the opportunity for further learning was always available. As a senior graduate student, the responsibility of mentoring younger students provided a valuable learning experience. Thanks also goes to my committee members, past and present, Professor Tim Glass, Professor Blake Peterson, Professor Raymond Funk, and Professor James Runt for their time and commitment.

I’d also like to thank Feldman group members past and present for all of their help. Thanks especially to Tim Cutarelli and Mike Lawlor for their mentoring when I was a new graduate student. Their guidance in the early stages of my career was a great benefit to my development as a chemist. Thanks also to current grad student Kyle Eastman for many hours of helpful discussion in lab.

Thanks to my parents, Nick and Susan, without whose constant encouragement, I never would have gotten to this point. Their unwavering support got me through the toughest times in graduate school, especially when research was not going as well as I would have liked. Thanks to my sister Pam with whom I had the pleasure of living with for three and a half years of graduate school. Being able to share those years with you and the encouragement you provided made them a wonderful time.

Thank you to the Penn State Music Department. To Professor Richard Bundy, and TA’s Matt Sisia, Chris Bygott, Joe Palmeter, and Jon Watts for the opportunity to play in
your ensembles, and reminding me how important music is to me. For eight semesters, the enjoyment working with you was a great release for when research was frustrating.

Finally, I would also like to acknowledge those who sparked my interest in chemistry. Professor John Wood (Indiana University of Pennsylvania) gave me my first exposure to organic chemistry and to research. As a bored high school student, taking his class sparked my interest in organic chemistry. Later on, the ability to work in your lab, even though I was not actually one of your students and the guidance that you have given me since then are things that I could never have done without. Also, thanks to my advisor at Haverford College, Professor Terry Newirth who was an excellent mentor during my time there.
This thesis is dedicated to the memory of my Yiayia and Pappou.
Chapter 1
3,3-Spirocyclic Oxindoles – Overview of Synthetic Methods

The search for new methods for the synthesis of 3,3-disubstituted oxindoles is of interest to synthetic organic chemists. Spurring this interest is the large number of 3,3-disubstituted oxindole alkaloid natural products (Figure 1.1). A variety of methods have been developed for accessing these systems. Unfortunately, several limitations can be identified, with little stereochemical control being the main problem. Additionally, many methods were designed with a specific skeleton as the focus, and have not been shown to be generally applicable.

Methods for 3,3-disubstituted oxindole construction vary extensively. One main focus is a biosynthetic-type oxidative rearrangement pathway. Others involve ring

Figure 1.1: 3,3-Disubstituted oxindole containing natural products.
expansion or ring contraction of an already constructed C(3) spirocycle. Another approach uses radicals to close the five-membered ring. 1,3-dipolar cycloadditions have also seen application. There are also examples of Heck coupling, nitroolefination, and Mannich reactions. Some newer methods include photochemistry or a samarium promoted reductive cyclization. These approaches are exemplified below.

1.1 Oxidative Rearrangement

One of the more common methods for formation of 3,3-disubstituted oxindoles follows an oxidative rearrangement strategy. It is postulated that this approach could be a biomimetic route. In this mechanism, the N-C(2)-C(3) unit acts as an enamine. An electrophile is added across the C(2)-C(3) double bond of the indole, leading to an imine or iminium ion. Addition of water at C(2) forms an indoline as illustrated in the conversion of 7 into 9. Subsequent deprotonation of the hydroxyl group initiates a pinacol-type 1,2-shift, resulting in the product oxindole 10.

```
N           N
            |
            X

7  →  8  →  9  →  10
```

Figure 1.2: Biomimetic type rearrangement.

Several electrophiles have been used successfully in this process. Martin and coworkers employed this approach in their synthesis of pteropodine (13). Indole 11 was treated with t-BuOCl leading to chlorination at C(3). Subsequent ring contraction to a 5-membered spirocycle at C(3) set the framework for pteropodine. Reduction of 12 followed by epimerization at C(3) led to the natural product.
1. tBuOCl
2. AgClO₄, aq.

87%

Figure 1.3: Pterodine synthesis key step.

Borschberg and coworkers⁵ used N-bromosuccimide (NBS) in the key step of their synthesis of (-)-horsfiline. Addition of NBS to indole 15 followed by addition of acetic acid formed bromoacetate 15a en route to spirocycle 16. This rearrangement completed the skeleton of (-)-horsfiline. It was found that some stereocontrol was possible based on the substitution of the piperidine ring’s nitrogen atom.

Figure 1.4: Horsfiline synthesis – oxidative rearrangement method.

Two additional electrophiles that have been used are sodium tungstate⁶ and lead tetraacetate.¹⁶ Figure 1.5 displays their use in the key steps of the syntheses of racemic
coerulescine and horsfiline. Both electrophiles are proposed to follow the same general mechanism. Osmium tetroxide has also seen some use in this methodology.7

![Synthesis of (+/-)-coerulescine and (+/-)-horsfiline](image)

Figure 1.5: Horsfiline and coerulescine syntheses.

1.2 Claisen rearrangement

Another method for the formation of 3,3-disubstituted oxindoles is shown in figure 1.6.8 Addition of \textit{N}-chlorosuccinimide (NCS) to indole 22 leads to electrophile addition at C(3). Instead of water, allyl alcohol adds to the imine, resulting in 24. This compound undergoes a Claisen rearrangement, delivering the oxindole. Spirocycles can be formed from subsequent elaboration if needed.
Figure 1.6: Claisen rearrangement to form oxindoles.

Another example is illustrated in figure 1.7. Baldwin and Mao\(^9\) formed hydroxylamine ester 28 through a DCC coupling of 26 and 27. A Claisen rearrangement of the enolate derived from 28 yielded acid 29 which was converted to the oxindole upon formation of the anhydride of the acid.

Figure 1.7: Baldwin’s oxindole synthesis.

1.3 Oxidative cyclizations of tryptophan derivatives

Another method for 3,3-disubstituted oxindole synthesis is the use of N-substituted tryptophan derivatives in electrophile promoted oxidative cyclization reactions to form spirolactones.\(^{10}\) This method has some mechanistic similarity to the
oxidative rearrangement method. An electrophile is added across the C(2)–C(3) double bond. Nucleophilic addition of the carboxylic acid yields a spirolactone. C(2) is then further oxidized to the oxindole.

Figure 1.8: Oxidative cyclization results.

<table>
<thead>
<tr>
<th>R, R'</th>
<th>Conditions</th>
<th>Yield (%)</th>
<th>Ratio 32:33</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phthalimide</td>
<td>CCl₃SO₂Cl/DMSO</td>
<td>65</td>
<td>2.5:1</td>
<td>10a</td>
</tr>
<tr>
<td>Quinazolinone</td>
<td>(CH₃SO₂)₂)/DMSO</td>
<td>66</td>
<td>>10:1</td>
<td>10a</td>
</tr>
<tr>
<td>Phthalimide</td>
<td>NBS/NaHCO₃/t-BuOH</td>
<td>89</td>
<td>Not given</td>
<td>10g</td>
</tr>
<tr>
<td>Ac, H</td>
<td>t-BuBr/DMSO</td>
<td>67</td>
<td>Not given</td>
<td>10i</td>
</tr>
<tr>
<td>Phthalimide</td>
<td>Tl(NO₃)₃</td>
<td>50</td>
<td>2.1:1</td>
<td>10j</td>
</tr>
<tr>
<td>Phthalimide</td>
<td>CrO₃/AcOH</td>
<td>87%</td>
<td>1:1</td>
<td>10d</td>
</tr>
</tbody>
</table>

Table 1.1: Oxidative cyclization results.

This methodology has seen little application in total synthesis. One successful example is Buchi’s synthesis of tryptoquivaline G (Figure 1.9). In this route, tryptophan derivative 34 was treated with methanesulfonic anhydride in DMSO to yield spirolactone 35 with better than 10:1 diastereoselectivity. None of the other reported examples (Table 1.1) exhibit more than modest stereoselectivity. Also, none of the known examples contain substitution on the carbon adjacent to C(3) of the indole, limiting the scope of the
accessible targets. Additionally, problems exist from overoxidation of the products11 and a lack of control for nucleophilic addition to C(2) versus C(3).12

![Chemical reaction diagram]

Figure 1.9: Key step in tryptoquivaline G synthesis.

A major problem with this tryptophan-based cyclization lies in the inability to accurately predict its outcome with respect to the site of carboxylate addition (C(2) vs. C(3)). This uncertainty is in part due to a lack of understanding of its mechanism. Three different intermediates have been proposed for this reaction (Figure 1.10).10 There has been little explanation offered for any stereochemical control observed. Additionally, the lack of natural product targets other than the tryptoquivalines did not spur interest in developing this methodology further.
1.4 Ring expansion reactions

Another method for the preparation of 3,3-disubstituted oxindoles uses ring expansion reactions. Carriera13 used this methodology in a synthesis of strychnofoline. A spiro cyclopropane ring at C(3) of oxindole 44 was synthesized. Upon formal [3 + 2] cycloaddition, a single diastereomer, 46, was obtained. From 46, the synthesis of strychnofoline was completed in nine additional steps.
Figure 1.11: Synthesis toward strychnofoline using a ring expansion reaction.

In this methodology, MgI2 initiates opening of the cyclopropane ring. The key observation was that the charge affinity pattern of the cyclopropane ring was complementary to that of aldimines. Two possible mechanistic pathways have been proposed for this reaction. Both routes lead to the same product although it is unknown whether alkylation of the aldimine occurs prior to, or after, C-C bond formation.

Figure 1.12: Mechanistic possibilities for Carriera’s ring expansion reaction.
1.5 Carbene annulation

A new method for spirolactone formation was recently disclosed by Nair.14 It is proposed15 that a homoenolate formed from catalyst 52 and an aldehyde adds into C(3) of an isatin. The resulting alcohol at C(3) cyclizes into the activated carbonyl forming the spirolactone while simultaneously regenerating the catalyst.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{carbene_annulation_diagram.png}
\caption{Carbene annulation method.}
\end{figure}

1.6 Radical methods

Several methods that use radical reactions to form 3,3-disubstituted oxindoles are known. Storey and Jones16 showed that bromoaniline derivatives would undergo radical addition to the α-position of an appended enone, yielding oxindoles upon treatment with tributyltin hydride and AIBN.
In their total synthesis of gelsemine, Johnson and coworkers17 found that steric bulk at C(3) caused the failure of other oxindole formation methods. In order to solve this problem, they took advantage of Wender’s indole synthesis using benzotriazoles.18 Photolysis of benzotriazole 59 resulted in a diradical of which two possible resonance forms are 60 and 61. Ring closure of diradical 61 formed a 2:1 mixture of imino-ethers 62 and 63. The minor isomer was hydrolyzed to the oxindole and reduced to complete the natural product.
Another example of the use of radical reactions in 3,3-disubstituted oxindole formation is provided by Fukuyama and Liu. In this methodology, exposure of isonitrile 66 to benzenethiol and AIBN formed thioimidate 67, which was hydrolyzed to the oxindole.

Figure 1.15: Gelsemine synthesis.
1.7 Mannich Reactions

Oxindole alkaloids are often found to exist as mixtures of C(3) isomers. Wenkert20 and Marion21 independently proposed that the isomerization of indole alkaloids in nature could take place through a retro-Mannich/Mannich sequence. Van Tamelen22 used this methodology in the synthesis of a mixture of rychnophylline and isorychnophylline.

Figure 1.16: Radical route toward oxindoles.

Figure 1.17: Rychnophylline/isorychnophylline isomerization using a Mannich reaction.
In order to further explore the utility of this idea, Laronze23 employed an intramolecular Mannich reaction with indole 71 and formaldehyde to form racemic horsfiline.

![Mannich reaction in the synthesis of horsfiline.](image)

Figure 1.18: Mannich reaction in the synthesis of horsfiline.

Another example in natural product synthesis is Danishefsky’s route to spirotryprostatin B.24 A Mannich reaction between oxindole 73 and aldehyde 74 resulted in a nearly equal mixture of all four diastereomers of 75.

![Danishefsky’s Mannich reaction the route for the spirotryprostatin B synthesis.](image)

Figure 1.19: Danishefsky’s Mannich reaction the route for the spirotryprostatin B synthesis.

1.8 1-3 Dipolar cycloadditions

1,3-Dipolar cycloadditions are another method to access 3,3-disubstituted oxindoles. The first example of this reactivity was demonstrated by Grigg in the use of azomethine ylides with oxindolylidene 3-ylidene acetate.25 More recently, Williams26 used a 1,3 dipolar cycloaddition as the key step in a synthesis of (-)-spirotryprostatin B.
The reaction provided a single diastereomeric oxindole, setting four stereocenters in one step. The single diastereomeric product indicated that the reaction proceeds through an E-β-exo transition state.

Figure 1.20: Dipolar cycloaddition approach to (-)-spirotryprostatin.

Palmisano used this methodology in a synthesis of (-)-horsfiline. Decarboxylation of the iminium ion generated from the reaction of N-methylglycine and formaldehyde generated an azomethine ylide. Dipolar cycloaddition of this 4-electron species with yielded the 5-membered ring in 83. Hydrogenation of the nitro group of 83 simultaneously closed the 5-membered ring of the oxindole to yield (-)-horsfiline. The use of the unusual 2-phenyl-cyclohexyl ester was due to the poor stereoselectivity (< 43%) seen with other esters.

Figure 1.21: Dipolar cycloaddition approach to (-)-horsfiline.
1.9 Transition Metal-Mediated Coupling Reactions

The use of metal coupling reactions constitutes another method for the formation of spirocyclic oxindoles. Overman28 utilized a Heck reaction in a synthesis of gelsemine. It was found that “ligandless” conditions offered high diastereoselectivity for C(3) bond formation (11:1) whereas the use of chiral phosphine ligands gave lower selectivity (< 3:1). As with Johnson’s route (Figure 1.14), C(3) sterics were a concern. In this case, the bond formation involved addition to a tetrasubstituted double bond. They found that the reaction proceeded with high yield and good diastereoselectivity. Unfortunately, the stereochemistry at C(3) was opposite to that found in gelsemine. Epimerization under retro aldol conditions gave the correct stereochemistry and allowed for completion of the synthesis.

![Diagram of Overman's gelsemine synthesis.](image)

Figure 1.22: Overman’s gelsemine synthesis.

Another example of transition metal-mediated oxindole synthesis can be found in recent work toward perophoraminidine by Weinreb29. In this sequence, a tandem Heck-carbonylation reaction is used to close the oxindole. Also noteworthy is that syn addition of the aryl palladium and carbon monoxide along the olefin led to a single diastereomer of the oxindole product.
1.10 Asymmetric Nitroolefination

Fuji and coworkers demonstrated that asymmetric nitroolefination methodology could be used for formation of the quaternary center at C(3) of oxindoles. The enolate generated at C(3) of oxindole is added to chiral nitroenamine. Subsequent elimination of the auxiliary regenerates the nitroolefin with high enantioselectivity. Several additional transformations were used to convert this product to (-)-horsfiline.

Figure 1.23: Tandem Heck and carbonylation reaction.

Figure 1.24: Synthesis of (-)-horsfiline using an asymmetric nitroolefination reaction.
1.11 Samarium mediated reductive coupling

A recent report31 disclosed a new reductive coupling method for oxindole synthesis. Opening of cyclic carbamate 91 via β-elimination following exposure to phosgene led to formation of intermediate isocyanate 92. Reductively mediated addition of the cyclobutene double bond to the isocyanate gave oxindole 93 with good stereoselectivity. Eventually, this methodology led to a total synthesis of welwitindolinone A isonitrile.32

![Chemical reaction diagram](image)

Figure 1.25: Reductive coupling as a strategy for oxindole synthesis.
1.12 Photochemistry

One final method for formation of 3,3-disubstituted oxindoles utilizes a photochemically induced dimerization of \(N \)-acetyl isatin with an alkyne.33 This reaction led to a 2:1 mixture of diastereomeric products. This method is unlikely to see much use due to the specific nature of the dimeric products.

![Diagram of photochemical dimerization to form oxindoles.](image)

Figure 1.26: Photochemical dimerization to form oxindoles.
1.13 Conclusions

The abundance of natural products containing the 3,3-disubstituted oxindole core has generated interest in methods for their synthesis. Toward this goal, development of efficient routes which allow for regio- and stereochemical control are important. Whereas a number of successful strategies have been developed, many are specific to a limited number of natural product skeletons. The development of methods which are more general and allow for high levels of stereoselectivity in their application would be a valuable addition to this area.
2.1 Pummerer reaction; history and mechanism.

The chemistry now known as the Pummerer reaction was originally observed by Smythe in 1909 (Figure 2.1). However, he had little rationale or explanation for the observed products.

Later that year, Pummerer reported a similar result. As an explanation for the formal oxidation at carbon, he proposed sulfuryl chloride as an intermediate. This species was (in his proposal) followed by a 1,2-chloride shift to yield, which was hydrolyzed to glyoxylic acid.

In 1910, he published his only other paper on this topic. That report described the first example with conditions similar to modern methods. Sulfoxide was activated with acetic anhydride, and OAc functioned as the nucleophile to furnish product (Figure 2.3).
The Pummerer reaction is defined as any reaction which follows the general mechanism in figure 2.4. Activation of a sulfoxide can be accomplished with a number of different electrophiles (e.g. Ac₂O, TFAA, Tf₂O, TMSOTf), resulting in sulfonium salts of the type 118. Deprotonation at the α-carbon results in a thionium ion, 119. Nucleophilic addition at this carbon leads to products of the type 120.

The general scheme for an indole based Pummerer reaction is displayed in figure 2.5. This process provides for C(3) activation through the presence of a sulfoxide at C(2). The goal of this methodology is to eliminate two problems in known methods for spirocycle formation at C(3) of the oxindole core. By separating oxidation and cyclization into separate steps, product overoxidiation should not be a concern. Problems with C(2) versus C(3) regioselectivity should not be present here (vide infra). Upon activation of the C(2) sulfoxide, attack of an appended nucleophile will form the
spirocycle at C(3). Subsequent hydrolysis of the thioimidate product will lead to the oxindole.

Figure 2.5: General scheme for the indole based Pummerer reaction.

For Pummerer reactions of this type, two mechanistic extremes are possible. These two processes have been termed the additive and the vinylogous mechanisms.37

2.2.1 Vinylogous mechanism

In the vinylogous mechanism (Figure 2.6), sulfoxide activation is followed by deprotonation of the indole nitrogen atom. From here, similar to the classical Pummerer reaction, this deprotonation triggers elimination of the activated oxygen leaving group to form a sulfonium ion at C(2). Nucleophilic attack theoretically could occur at three positions (C(2), C(3), C(4)). Only C(3) addition is expected to occur. Attack at any of the other positions would be energetically unfavorable. Path a would break aromaticity, presumably making it a higher energy process. Nucleophilic attack at C(2) (path b) would not restore aromaticity to the indole core. Attack at C(3) (path c) will restore aromaticity, providing the most energetically favorable pathway.
2.2.2 Additive mechanism

The second mechanism is termed the additive mechanism. In this mechanism, it is attack of the internal nucleophile itself which leads to formation of the sulfonium ion. Subsequent deprotonation of the indole nitrogen leads to the thioimidate product. As in the vinylogous case, C(3) addition is expected to predominate. Attack on either phenyl ring (path a or b) would break aromaticity. Only through C(3) addition would aromaticity be retained. It is for this reason that exclusive attack at C(3) is expected.
Direct evidence that delineates which mechanism the indole based Pummerer reaction proceeds through is not yet in hand. Some information from work toward an asymmetric version of this transformation may suggest the prevalence of one of the two pathways, as detailed below.

2.3 Asymmetric Pummerer reaction

2.3.1 Background
Earlier results from Penn State38 showed success in this indole functionalization chemistry with carbon based nucleophiles (Figure 2.8). Use of racemic sulfoxides led, of course, to racemic thioimidate and oxindole products. There are a limited number of examples of enantioselective Pummerer reactions based on chiral sulfoxides, and so the feasibility of achieving absolute stereocontrol through the use of chiral indole-2-sulfoxides was deemed worthy of investigation.

![Figure 2.8](image-url)

Figure 2.8: Racemic indole based Pummerer reactions using carbon nucleophiles.
The difference in the two mechanistic pathways may play a significant role in the success of this work. The additive mechanism which bears stereochemical information when the new C-C bond is formed seems the most likely route by which asymmetric induction might be achieved. A reaction that follows the vinylogous pathway could proceed through achiral intermediate 123. Reaction through this intermediate would eliminate any transfer of chirality from the chiral sulfoxide during the cyclization process. On the other hand, a vinylogous mechanism leading to chiral tight ion pairs that retain (planar) stereochemical information may provide a middle ground between these mechanistic extremes. The stereochemical outcome in this instance is uncertain.

In the additive mechanism, it is possible that a substrate with an activated chiral sulfoxide such as 122 would orient itself in a conformation that avoids the steric interaction between the incoming nucleophile and the activated sulfoxide or the phenyl ring. In this scenario, it is expected that there may be some enantioselectivity upon oxindole formation.

More specifically, a proposed transition state analysis for this reaction is given in Figure 2.9. Orthogonal alignment of the sulfoxide bond with the C(2)-C(3) double bond is expected to be necessary for good orbital overlap. Rotamers 139 and 141, which contain the lowest steric interaction between the incoming nucleophile and the triflate (or phenyl ring), are the most favorable with regard to minimizing steric interactions. Rotation around the S-O bond will likely favor the antiperiplanar position of the lone pairs of the sulfur and oxygen atoms in order to minimize electrostatic repulsion. Taking into account both sterics and electrostatics, 139 should be the lowest energy transition
state. This would result in nucleophilic attack will come from the bottom face, favoring formation of enantiomer 142.

Figure 2.9: A proposal for expecting enantioselectivity in the Pummerer reaction of chiral indole-2-sulfoxides.

An alternative mechanism for obtaining enantioselectivity upon C-C bond formation is a chiral tight ion pair. Through tight ion pair 144 the vinylogous mechanism may exhibit enantioselectivity. If this chiral ion pair can be trapped by the internal nucleophile prior to racemization, similar results to that of the additive mechanism may be seen.
Figure 2.10: Tight ion pair for enantioselectivity in the Pummerer reaction.

Kita has had success in obtaining high selectivities using chiral sulfoxides and silyl ketene acetals in the presence of zinc (II) iodide (Figure 2.11). Some selectivity is due to the α-carbon substituent, in that it is thought that deprotonation of the α-carbon plays a role in the stereoselectivity. Deprotonation is controlled by the requirement for an anti-periplanar orientation of the proton and the S-O bond. The siloxy anion then rearranges on the same face. In systems with an α-methylene unit, decreased selectivities were seen (~ 80% ee). It is also possible that the selectivity may arise from a tight ion pair of the sulfonium ion with the −OTBS. However, the use of chiral sulfoxides using classical Pummerer reaction conditions has not met with great success (< 30% ee).41

Figure 2.11: Kita’s enantioselective Pummerer reaction.
2.3.2 Chiral sulfoxides

While there are a variety of methods to synthesize chiral sulfoxides, many of them involve asymmetric oxidation of a sulfide. Without a method to assay the absolute configuration at sulfur, these methods alone do not always allow for the unambiguous synthesis of a specific chiral sulfoxide. Work by Evans provides a solution to this problem. By addition of the anion of a chiral oxazolidinone to benzenesulfinyl chloride, chiral sulfoxides such as 152 can be obtained in high (>95%) ee. The chirality then can be transferred to an appropriate substrate in an SN2 reaction with inversion of configuration using an appropriate nucleophile.

![Chemical structures](image)

Figure 2.12: Evans’ oxazolidinone route to chiral sulfoxides.

Work by Marino provides a basis for substitution at C(2) of an indole. Ortholithiation with an appropriate nitrogen protecting group (BOC, Ts) using sec-butyllithium provides the C(2) anion. Quenching that anion with 156 provides virtually enantiomerically pure C(2)-sulfoxide products. The stereochemistry is assigned by assuming complete inversion at the sulfur center.
2.4 Iodonium based Pummerer reaction methodology

One of the disadvantages of the classical Pummerer reaction is the distinct oxidation step. This step can be low yielding due to overoxidation to the sulfone. An alternative method of activation for Pummerer-like processes involves the use of hypervalent iodine species as simultaneous oxidizers and activators. An example of this process is given by Tamura45 who showed that concomitant oxidation and activation took place in a single step (Figure 2.4). This alternative to the classical sulfoxide based methods may be useful when traditional methods are unsuccessful or inconvenient. Other hypervalent iodonium sources which have shown utility in this process are PhI(OAc)\textsubscript{2} and PhI(CN)OTf46.
Similar to the classical Pummerer reaction, the iodonium based chemistry as applied to an indole substrate has two mechanistic possibilities. Initially, the sulfide may add to the iodine of Stang’s reagent with loss of triflate. This intermediate, 162, is similar in structure and reactivity to the activated sulfoxide species. From here, additive and vinylogous mechanisms are analogous to those discussed earlier with the sulfoxide series and they result in thioimidate 123. Of course, this hypervalent iodine initiation only applies to racemic oxindole synthesis.

Figure 2.15: Mechanism for the PhI(CN)OTf mediated Pummerer reaction.
Chapter 3
Review of TMC-95A-D background and synthesis

3.1 Isolation and Biological Activity of TMC-95 A – D

TMC-95A – D (1a-d) are four novel proteasome inhibitors isolated from the fermentation broth of *Apiospora montagnei* Sacc. TC 1093.\(^1\) The four compounds are found to consist of a novel cyclic peptide structure containing L-tyrosine, L-asparagine, and a highly oxidized L-tryptophan unit. The difference in the four structures was found to reside with the stereochemical relationship at C(7) and C(36).

![TMC-95A-D](image)

Figure 3.1: TMC-95A-D.

The inhibitory activity of the TMC-95 compounds was tested in chymotrypsin-like (ChT-L), trypsin-like (T-L), and peptidylglutamyl-peptide hydrolyzing (PGPH) activities assays with the 20S proteasome (Table 3.1).\(^4\) All four compounds showed good inhibition against these 20S proteasome activities, with both TMC-95A and B showing better inhibition than a known proteasome inhibitor, *N*-Acetyl-Leu-Leu-nLeu-CHO (ALLN). The 20S proteasome makes up the catalytic core of the 26S proteasome,
which is responsible for degradation of ubiquinated proteins in ATP dependent processes. Recent studies indicate that activation of the ubiquitin-proteasome pathway may be a major cause of the muscle destruction seen in cancer, diabetes, and sepsis.48 Additionally, TMC-95A showed cytotoxicity against human colon carcinoma cells and human promelocytic cells with IC\textsubscript{50} values of 4.4 \textmu M and 9.8 \textmu M, respectively.

<table>
<thead>
<tr>
<th>Compound</th>
<th>ChT-L (IC\textsubscript{50}, \textmu M)</th>
<th>T-L (IC\textsubscript{50}, \textmu M)</th>
<th>PGPH (IC\textsubscript{50}, \textmu M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TMC-95A</td>
<td>0.0054</td>
<td>0.20</td>
<td>0.060</td>
</tr>
<tr>
<td>TMC-95B</td>
<td>0.0087</td>
<td>0.49</td>
<td>0.060</td>
</tr>
<tr>
<td>TMC-95C</td>
<td>0.36</td>
<td>14</td>
<td>8.7</td>
</tr>
<tr>
<td>TMC-95D</td>
<td>0.27</td>
<td>9.3</td>
<td>3.3</td>
</tr>
<tr>
<td>ALLN</td>
<td>6.6</td>
<td>6.0</td>
<td>21</td>
</tr>
</tbody>
</table>

Table 3.1: Inhibitory activities of TMC-95A-D against 20S proteasome activities.

3.2 Synthetic approaches toward TMC-95A

The biological activity of these compounds has led to interest in their total synthesis. At this time, total syntheses of TMC-95A have been completed by Danishefsky49 and Hirama.50 A formal synthesis has been completed by Williams.51 Additional synthetic studies toward these compounds have been disclosed by Ma.52 Work toward a better understanding of the biological activity, and attempts to improve upon this activity, have been studied through the synthesis of analogues by Moroder,53 Vidal,54 and Danishefsky.55
A review of the synthetic approaches will be discussed below. The major difference in each route is the synthesis of the oxidized tryptophan portion. All three routes used similar approaches for the southern half.

3.2.1 Danishefsky et al.

Danishefsky’s retrosynthesis (Figure 3.2) breaks TMC-95A and B into four components. These components consisted of an oxidized tryptophan piece originating from 7-iodooxindole, two amino acid derived pieces originating from L-tyrosine and L-asparagine, and the final piece was derived from (±)-3-methyl-2-oxopentanoic acid. The key transformations included (1) setting the stereocenters at C(6) and C(7) using a Sharpless asymmetric dihydroxylation reaction, and (2) formation of the cis-enamide functionality using a thermal rearrangement of an α-silylallyl amide.

![Figure 3.2: Danishefsky’s retrosynthetic analysis.](image)

The synthesis commenced with an aldol condensation of oxindole 169 with Garner aldehyde 170. Elimination of the derived mesylate yielded a 1:1:3 mixture of double bond isomers. An iodine mediated isomerization of the olefin converted the E
isomer to the Z isomer, setting up oxindole 171 for the biaryl coupling. The partner for the biaryl coupling, 174, was synthesized in 5 steps from L-tyrosine. From here, 171 and 174 underwent a Suzuki coupling to yield 172.

![Chemical Diagram](image_url)

Figure 3.3: Biaryl coupling of the oxindole with the tyrosine piece.

Ester hydrolysis within 172, followed by EDC coupling of the derived acid with L-asparagine-\(t\)-butyl ester, afforded 175. An asymmetric dihydroxylation of the C(6)-C(7) alkene using (DHQD)$_2$PHAL furnished diol 176 with the correct stereochemistry for TMC-95A and B predominating (5:1).
Figure 3.4: Sharpless dihydroxylation to set the stereochemistry at C(6) and C(7).

From 176, deprotection of the acetonide yielded the triol, and the primary alcohol was selectively protected as its TIPS ether. TFA deprotection of the BOC and t-butyl ester groups followed by an EDC mediated coupling of the derived amino acid yielded the macrolactam. A series of transformations led to 179, the precursor for the rearrangement/hydrolysis sequence that completes the synthesis.
Figure 3.5: Synthesis of the macrolactam.

The cis-enamide was formed through rearrangement and hydrolysis of a silyl allyl amide. A thermal rearrangement of 180 forms silyl imidate 181. Subsequent hydrolysis reveals the cis-enamide.

Figure 3.6: Enamide formation.
Global deprotection of the silicon protecting groups led to the isolation of TMC-95A and B. Danishefsky’s route led to 2 of the TMC-95 congeners in 21 linear steps, and 23 steps overall. The key transformations were an asymmetric dihydroxylation to set the stereochemistry at C(6) and C(7), and a rearrangement/hydrolysis sequence to yield the sensitive cis-enamide functionality.

3.2.2 Hirama et al.

Hirama and coworkers used a similar approach for the southern half of the TMC-95 system, but their approach for the northern half differed. A similar retrosynthesis breaks TMC-95A into L-tyrosine, L-asparagine, an oxidized tryptophan piece and L-allo-threonine. A stereoselective epoxidation of the C(6)-C(7) double bond led to the correct stereochemistry at both carbons. The cis-enamide group was formed through a decarboxylation of L-allo-threonine.
Figure 3.8: Hirama’s retrosynthesis.

Hirama’s synthesis started with methyl ester 185. Reduction to the aldehyde followed by a Horner-Emmons reaction formed ester 186. Amidation of the ester with 2,6-dibromoaniline yielded 187. A Mizoroki-Heck reaction using “ligandless” conditions yielded oxindole 188. The C(6)-C(7) double bond was stereoselectively oxidized with dimethyldioxirane, which, upon treatment with BF$_3$•Et$_2$O, afforded cyclic carbamate 190.

Figure 3.9: Hirama’s synthesis of the oxindole portion of TMC-95A.
Oxindole 190 was further elaborated through protecting group manipulation and exchange of bromine for iodine. Using conditions developed by Gassman, the acetonide and carbamate were cleaved to yield triol 192. Finally, the amine and two of the alcohols were protected to set the tryptophan piece for further elaboration.

Figure 3.10: Continuing the synthesis of the northern half.

Figure 3.11: Synthesis of the tyrosine derived piece.
Boronic ester 195 was derived from tyrosine and acid 184 in four steps. The completion of the synthesis started with the Suzuki coupling of 190 with 195. Six additional steps installed the L-asparagine unit, and the macrolactam was closed under standard carbodiimide conditions. The PMP acetal was cleaved to afford triol 198. Oxidation of the primary alcohol to the acid followed by coupling of this carboxylate to L-\textit{allo}-threonine benzyl ester and finally deprotection of the benzyl ester furnished acid 199. Treatment of 199 under Mitsunobu-type conditions (PPh\textsubscript{3} and DEAD) favored anti-elimination to afford \textit{cis}-enamide 200. Two deprotections and an oxidation were used to complete the synthesis of TMC-95A.

Hirama’s route to TMC-95A utilized chiral acid 184, leading to only one of the TMC-95 congeners upon completion. Synthesis of the southern portion is similar to Danishefsky’s work. The most significant difference is the use of L-\textit{allo}-threonine and its dehydrative decarboxylation to yield the \textit{cis}-enamide. The route is also longer at 29 linear steps and 33 steps overall.
Figure 3.12: Completion of Hirama’s synthesis.
3.2.3 Williams et al.

Williams and Albrecht completed a formal synthesis of TMC-95A and B. Again, the southern half was derived from L-tyrosine and L-asparagine. The northern half component 201 was synthesized by a Julia olefination between 7-iodoisatin and 202. Synthesis of the sensitive cis-enamide was not explored due to the interception of 213, one of Danishefsky’s advanced intermediates.

Figure 3.13: Williams’ retrosynthesis.

The synthesis started with N-Cbz-serine methyl ester, which was converted in four steps to acetonide 205. A modified Julia coupling with 7-iodoisatin yielded 206 in good yield with a 5:1 preference for the thermodynamic E-alkene product.
Figure 3.14: Williams’ oxindole synthesis.

Protected tyrosine derivative 207 was converted to its boronic ester which underwent a Suzuki coupling with oxindole 206 to yield 209. Hydrolysis of the methyl ester followed by coupling of the derived acid to L-asparagine benzyl ester led to 210.

Figure 3.15: Biaryl coupling in the Williams route.

The formal synthesis was completed through dihydroxylation of the C(6)-C(7) olefin, resulting in the correct stereochemistry. A series of transformations revealed the
acid and free amine for macrolactam formation. Finally, conversion of the primary alcohol to its TES ether provided completion of the Williams effort by reaching one of the advanced intermediates from Danishefsky’s route.

The formal synthesis of TMC-95A and B was accomplished by Williams and Albrecht in 14 steps. Although the retrosynthesis was similar to Danishefsky’s, with the only major difference being the Julia coupling, they were able to synthesize one of Danishefsky’s advanced intermediates in fewer steps.

Figure 3.16:Completion of Williams’ synthesis.
3.3 Conclusions

At this time, three syntheses (two total and one formal) of the TMC-95 compounds have been achieved. The key transformations are formation of the cis-enamide and establishment of the correct stereochemistry at C(6) and C(7). The southern portion is completed in similar fashion in each route.
Chapter 4
Studies toward the oxindole core of TMC-95

4.1 Retrosynthesis

The initial studies toward the TMC-95 compounds followed the retrosynthesis seen in Figure 4.1. The macrocycle would be closed in two steps, a Suzuki coupling followed by macrolactamization. The dipeptide 217 was successfully constructed in 5 steps and 23% overall yield from tyrosine and asparagine.57

Interest in TMC-95 focused on the oxidative cyclization methodology. Two main factors had to be addressed in order to ascertain the feasibility of this strategy. Most of the known examples of tryptophan oxidative cyclizations showed either modest stereoselectivity at C(3) of the indole or did not report a ratio. As this reaction would be used to set C(6) relative stereochemistry (TMC-95 numbering), high selectivity was critical. It was also unknown what effect the oxygen substituent at C(7) would have. All known examples were on N-substituted tryptophan derivatives, with no other functionality. It was hypothesized that a sufficiently bulky protecting group on the C(7) oxygen might be used to influence the relative stereochemistry of C-O bond formation at C(6) upon oxidative cyclization (219→218). From spirolactone 218, ring opening with L-allo-threonine and dehydrative decarboxylation would lead to the northern half of TMC-95. The precursors for cyclization would be derived from indole-3-carbaldehyde.
Figure 4.1: Retrosynthesis of TMC-95A.

Two possible transition states for the key 219→218 cyclization are presented in Figure 4.2. The expectation that there will be a stereochemical preference at C(6) originates from 227 where a steric interaction would be present between the C(7) oxygen
substituent and the peri-positioned hydrogen. No such steric interaction exists in the alternative transition state 225.

Figure 4.2: Possible cyclization transition states.

4.2 Oxidative cyclization approaches.

Work towards the first model system commenced with the known enoate 229. This model has the incorrect relative stereochemistry between C(7) and C(8) (TMC-95 numbering) for TMC-95A and B, but it still has value as a test of the transition state analysis shown in Figure 4.2. Amino alcohol 230 was formed in >99% ee (10:1 regiochemical preference) via a Sharpless asymmetric aminohydroxylation reaction. Protection of the alcohol as its TIPS ether followed by hydrolysis of the ester led to 231, which was ready for attempts at the key cyclization step. A variety of conditions were screened. Only NBS and sodium bicarbonate led to a cyclized product. A single diastereomeric compound was isolated from this reaction. As anticipated from the
analysis in Figure 4.2, an nOe between the C(7) hydrogen and the peri-postioned hydrogen determined that the stereochemistry was as shown in 232. While the incorrect stereochemistry for the TMC-95 compounds was obtained as expected, the isolation of a single diastereomer was encouraging, as was the ability to correctly predict the relative C(6)/C(7) stereochemistry of the product based on the stereochemistry of the transition state model 225.

![Chemical structures](image)

Figure 4.3: Syn amino alcohol model system.

Synthesis of the required anti amido alcohol 236, which does contain the correct C(7)/C(8) relative and absolute stereochemistry for TMC-95A synthesis started from enoate 229. A Sharpless asymmetric dihydroxylation\(^{60}\) gave the desired diol in >99\% ee. A sequence developed by Boger\(^{61}\) was followed to yield protected azido alcohol 235. The azide was reduced and protected in a one pot procedure.\(^{62}\) The yield of this reaction
was not optimized due to the downstream cyclization results. Hydrolysis of the methyl ester led to the cyclization substrate 236. A similar set of cyclization conditions as before were screened with 236. Again, NBS/NaHCO₃ was the only reagent combination to lead to a cyclization product. However, the presence of a singlet at 6.62 ppm (and a lower IR shift: 1764 cm⁻¹ for 237 compared to 1810 cm⁻¹ for 232) suggested valerolactone 237 was formed. Additionally, an HMBC correlation between the proton at C(2) of the indoline and the carbonyl carbon of the lactone provided further evidence for structure 237. Interestingly, this species was isolated as a single diastereomer, although the ring junction stereochemistry was not assigned.

The basis for the formation of 237 instead of 233 may be explained through examination of the transition states. Transition state 238 would lead to the desired 5-membered lactone 233. However, this assembly contains an unfavorable eclipsing interaction between the OTBS and NHCBz groups. Transition state 239, which may normally represent a higher energy mode of nucleophilic addition, displays a gauche interaction between OTBS and NHCBz and leads to the observed product 237. 238 and 239 are the expected transition states in this scenario. Transition states 40 and 42 both require addition of the nitrogen atom’s lone pair. The use of an electron withdrawing group on the indole nitrogen makes these transition states unlikely. With undesired C(2) addition in the oxidative cyclization, any new strategy would have to overcome this unfavorable eclipsing interaction to steer the transformation back to the TMC-95 butyrolactone-type product.
As an alternative to the N-tosyl indole series, screening of an acid with a free N-H indole was also desired. Attempts to remove the tosyl group on an intermediate more
advanced than 229 were unsuccessful. Attempts at azide formation on a substrate bearing a free N-H encountered problems. A route that avoids both of these issues begins with indole-3-carbaldehyde. Protection of the indole nitrogen followed by a Horner-Emmons reaction gave enoate 241. The same route used before with 235 led to azide 243. Here, one-pot reduction of the azide and protection of the derived amine with BOC-ON afforded the protected anti-amino alcohol in good yield. All attempts to hydrolyze the methyl ester led to decomposition of the starting material. Use of distannoxane catalyzed transesterification conditions63 afforded the benzyl ester. Hydrogenation was successful in removing both the benzyl and CBz protecting groups in quantitative yield. A wide variety of electrophilic cyclization conditions were screened (Table 4.1). Unfortunately, no productive cyclization was seen, with all attempts leading to decomposition of the starting material.
Figure 4.6: Synthesis of the free indole N-H cyclization precursor 245.

<table>
<thead>
<tr>
<th>Conditions</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>NBS/NaHCO₃, t-BuOH/H₂O</td>
<td>RT</td>
</tr>
<tr>
<td>t-BuBr/DMSO</td>
<td>40 °C</td>
</tr>
<tr>
<td>t-BuBr/DMSO/CH₂Cl₂, sealed tube</td>
<td>45 °C</td>
</tr>
<tr>
<td>DMDO</td>
<td></td>
</tr>
<tr>
<td>CrO₃/AcOH</td>
<td>40 °C</td>
</tr>
<tr>
<td>CCl₃SO₂Cl/DMSO</td>
<td>-20 °C</td>
</tr>
<tr>
<td>(CH₃SO₂)₂O/DMSO</td>
<td>-20 °C</td>
</tr>
<tr>
<td>NBS/t-BuOH</td>
<td></td>
</tr>
<tr>
<td>mCPBA</td>
<td></td>
</tr>
<tr>
<td>PhI(OAc)₂</td>
<td></td>
</tr>
<tr>
<td>NBS, DMSO, CH₂Cl₂</td>
<td></td>
</tr>
<tr>
<td>Pb(OAc)₄, benzene</td>
<td></td>
</tr>
<tr>
<td>NBS, pyridine, DMSO, CH₂Cl₂</td>
<td></td>
</tr>
<tr>
<td>PhI(O₂CCF₃)₂</td>
<td></td>
</tr>
</tbody>
</table>

Table 4.1: Cyclization attempts with deprotected indole 245.
4.3 Pummerer reaction methodology development

With the failure of these brominative cyclizations to form the desired products, a different approach toward cyclization was needed. Any new strategy would need to overcome the unfavorable eclipsing interaction seen in Figure 4.5. For this purpose, Pummerer methodology was explored. Through either the vinylogous or additive mechanisms, cyclization of a pendant nucleophile at C(3) would be favored (vide supra). In the vinylogous mechanism, rearomatization would be the driving force to promote cyclization at C(3). Nucleophilic attack at C(2) would not lead to an intermediate that could regain aromaticity in the 6-membered ring. This energy difference was expected to force the reaction to give only the desired 5-membered ring product. In the additive mechanism, attack at C(2) would not be possible. Regardless of the mechanistic preference, the presence of the silyl ether was expected to generate the desired C(6)-C(7) relative stereochemistry based upon the analysis shown in Figure 4.7.
4.3.1 Tryptophan-based model system

In order to test this hypothesis, an initial set of studies with simpler tryptophan derivatives was explored. Starting from N-BOC tryptophan, sulfoxide 255 was formed in two steps. A variety of conditions were screened with 255, with none leading to productive cyclization. The first encouraging result with this methodology was seen with sulfoxide 256. By utilizing a TBS ester in the cyclization substrate, a low yield of the desired 5-membered lactone 254, as a 1:1 mixture of diastereomers, was observed. Subsequent hydrolysis of the thioimidate successfully led to the oxindole 257. Whereas
the yield was lower than desired, this initial success prompted further exploration for formation of 3,3-spirocyclic oxindoles.65 Other conditions (activators and bases) for this reaction were examined, but did not lead to increased yields. Longer reaction times did not lead to improvement, although the initial trial showed a significant amount of starting material present in the crude reaction mixture. Several factors might contribute to the low yield. Foremost is the instability of the TBS ester. It is likely that the yield was low in the sulfide oxidation step, although product instability precluded isolation and therefore yield measurement. Second, the lifetime of the TBS ester group was found even at low temperature to be very short. If the TBS group was cleaved in the reaction, the resulting acid 255 was known to decompose under these reaction conditions. This sensitivity would account for the yield not increasing when the reaction time was lengthened. Future results (vide infra) showed that the BOC group could function as a nucleophile in this process and therefore compete with the silyl ester for the C(3) electrophile. While the six membered cyclic carbamate was not recovered from this particular trial, it was seen with other related substrates. Results were improved by use of the hypervalent iodine reagent, PhI(CN)OTf developed by Stang and Zhdankin.66 Employing this reagent enabled use of a more readily accessible substrate (acid 253) than the TBS ester. The success of this reaction raised a question as to why the acid succeeded here when it has failed with the sulfoxide conditions. One possibility in the latter case is formation of a mixed anhydride from trifluoroacetic anhydride and 255. This mixed anhydride could compete as an activator, resulting in a cyclic intermediate which may not be able to adopt the proper conformation for a Pummerer reaction to occur readily.
Further attempts were made to extend this reaction to substrates bearing other ester groups. Attempts to use methyl ester 259, made in two steps from sulfide 253, led to a mixture of two products. The desired lactone was isolated in 33% yield. However, an additional 63% yield of 260 was isolated from competitive addition of the trifluoroacetate anion (and hydrolysis upon workup). While the yields were not as high as desired, the strategy appeared to have promise as a method for forming 3,3 spirocyclic oxindoles. At this point, application to the oxindole portion of TMC-95A was investigated.
Figure 4.9: Pummerer reaction in the methyl ester series.

4.3.2 Pummerer methodology as applied to TMC-95A

The modified retrosynthesis of the oxindole portion of TMC-95A is seen in Figure 4.10. The spirolactone 262 would be derived from 263, which would be made starting from 264.67

Figure 4.10: New oxindole retrosynthesis for the Pummerer based TMC-95 synthesis.

This route begins with known indole 265.68 Addition of the anion of benzenethiol gave sulfur substitution at C(2).69 Additional steps to form the anti azido alcohol were
similar to those used before with [235], resulting in azide [267] in good yield. The azide functionality was maintained due to other results which showed competition of the amine protecting group (vide infra) in cyclization. Hydrolysis of both protecting groups occurred readily with lithium hydroxide to yield the key precursor for cyclization, [263].

Successful Pummerer-mediated cyclization of [263] furnished lactone [268] as a single diastereomer and regioisomer. Extensive optimization of the Pummerer methodology was completed (Table 4.2), resulting in 40% as the best yield. Hydrolysis of the thioimidate led to oxindole [262]. The stereochemistry at C(6) was determined to be appropriate for TMC-95A (and B) synthesis. This assignment was based on an nOe observation between the hydrogen at C(7) and the peri positioned hydrogen of [262].

Figure 4.11: TMC-95A Pummerer based route.
Table 4.2: Optimization of Stang-initiated Pummerer reaction on 263.

<table>
<thead>
<tr>
<th>Base</th>
<th>Equiv. Base</th>
<th>Solvent</th>
<th>Equiv. Stang</th>
<th>Temperature</th>
<th>Product</th>
<th>Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,6-Lutidine</td>
<td>3</td>
<td>CH₂Cl₂</td>
<td>3.5</td>
<td>-78 °C to RT</td>
<td>Lactone</td>
<td>40%</td>
</tr>
<tr>
<td>2,6-Lutidine</td>
<td>3</td>
<td>Ether</td>
<td>3.5</td>
<td>-78 °C to RT</td>
<td>Lactone</td>
<td>40%</td>
</tr>
<tr>
<td>2,6-Lutidine</td>
<td>3</td>
<td>Toluene</td>
<td>3.5</td>
<td>-78 °C to RT</td>
<td>Lactone</td>
<td>35%</td>
</tr>
<tr>
<td>2,6-Lutidine</td>
<td>3</td>
<td>CF₃CH₂OH</td>
<td>3.5</td>
<td>-40 °C to RT</td>
<td>Lactone</td>
<td>32%</td>
</tr>
<tr>
<td>2,6-Lutidine</td>
<td>3</td>
<td>CH₂Cl₂</td>
<td>3.5</td>
<td>-78 °C to RT</td>
<td>Lactone</td>
<td>20%</td>
</tr>
<tr>
<td>2,6-Lutidine</td>
<td>5</td>
<td>CH₂Cl₂</td>
<td>3.5</td>
<td>-78 °C to RT</td>
<td>Lactone</td>
<td>13%</td>
</tr>
<tr>
<td>2,6-Lutidine</td>
<td>10</td>
<td>CH₂Cl₂</td>
<td>3.5</td>
<td>-78 °C to RT</td>
<td>Lactone</td>
<td>10%</td>
</tr>
<tr>
<td>2,6-Lutidine</td>
<td>3</td>
<td>CH₂Cl₂</td>
<td>3.5</td>
<td>0 °C</td>
<td>Lactone</td>
<td>10%</td>
</tr>
<tr>
<td>2,6-Lutidine</td>
<td>3</td>
<td>Hexafluoroisopropanol</td>
<td>3.5</td>
<td>-78 °C to RT</td>
<td>Lactone</td>
<td><10%</td>
</tr>
<tr>
<td>2,6-Lutidine</td>
<td>3</td>
<td>CH₂Cl₂</td>
<td>3.5</td>
<td>-20 °C</td>
<td>Lactone</td>
<td><10%</td>
</tr>
<tr>
<td>2,6-Lutidine</td>
<td>3</td>
<td>CH₃CN</td>
<td>3.5</td>
<td>-40 °C to RT</td>
<td>Lactone</td>
<td><10%</td>
</tr>
<tr>
<td>2,6-Lutidine</td>
<td>3</td>
<td>CH₂Cl₂</td>
<td>1</td>
<td>-78 °C to RT</td>
<td>Lactone</td>
<td><5%</td>
</tr>
<tr>
<td>2,6-Lutidine</td>
<td>3</td>
<td>CH₂Cl₂</td>
<td>2</td>
<td>-78 °C to RT</td>
<td>Lactone</td>
<td><5%</td>
</tr>
<tr>
<td>2,6-Lutidine</td>
<td>1</td>
<td>CH₂Cl₂</td>
<td>3.5</td>
<td>-78 °C to RT</td>
<td>Lactone</td>
<td>Trace</td>
</tr>
<tr>
<td>2,6-Lutidine</td>
<td>2</td>
<td>CH₂Cl₂</td>
<td>3.5</td>
<td>-78 °C to RT</td>
<td>Lactone</td>
<td>Trace</td>
</tr>
<tr>
<td>None</td>
<td>3</td>
<td>CH₂Cl₂</td>
<td>3.5</td>
<td>-78 °C to RT</td>
<td>dec.</td>
<td></td>
</tr>
<tr>
<td>2,6-Lutidine</td>
<td>3</td>
<td>THF</td>
<td>3.5</td>
<td>-78 °C to RT</td>
<td>dec.</td>
<td></td>
</tr>
<tr>
<td>2,6-Lutidine</td>
<td>3</td>
<td>CH₂Cl₂</td>
<td>3.5</td>
<td>RT</td>
<td>dec.</td>
<td></td>
</tr>
<tr>
<td>2,6-Lutidine</td>
<td>3</td>
<td>CH₂Cl₂</td>
<td>3.5</td>
<td>-78 °C</td>
<td>dec.</td>
<td></td>
</tr>
<tr>
<td>Pyridine</td>
<td>3</td>
<td>CH₂Cl₂</td>
<td>3.5</td>
<td>-78 °C to RT</td>
<td>dec.</td>
<td></td>
</tr>
<tr>
<td>K₂CO₃</td>
<td>3</td>
<td>CH₂Cl₂</td>
<td>3.5</td>
<td>-78 °C to RT</td>
<td>dec.</td>
<td></td>
</tr>
<tr>
<td>2,6-Lutidine</td>
<td>3</td>
<td>CH₂Cl₂</td>
<td>3.5</td>
<td>-40 °C</td>
<td>dec.</td>
<td></td>
</tr>
<tr>
<td>2,6-Lutidine</td>
<td>3</td>
<td>CH₂Cl₂</td>
<td>3.5</td>
<td>-78 °C to RT</td>
<td>dec.</td>
<td></td>
</tr>
<tr>
<td>2,6-Lutidine</td>
<td>3</td>
<td>CH₂Cl₂</td>
<td>3.5</td>
<td>-78 °C to RT</td>
<td>dec.</td>
<td></td>
</tr>
</tbody>
</table>

A series of related substrates were also examined, including a TBS ester containing species. In this case, the unstable TBS ester did not yield any cyclized product, and only the derived acid was recovered. Additionally, the use of a tert-butyl ester was investigated. Initially, the azide was reduced to the BOC-protected amine. Pummerer reaction attempts with sulfide 270 (Figure 4.12) showed that inclusion of the carbamate protecting group gave rise to an undesired 6-membered cyclic carbamate product (271).
Figure 4.12: Cyclic carbamate.

A Pummerer reaction on t-butyl ester substrates that retained the azide was also explored. These substrates were made via formation of the t-butyl ester from acid 263 with dimethylformamide di-tert-butyl acetal, followed by oxidation to the sulfoxide. Both the sulfide and sulfoxide were exposed to appropriate conditions, and both substrates led to the desired product. However, neither reaction showed an improvement over that realized with acid 263.

Figure 4.13: t-Butyl ester based Pummerer reactions.
4.4 Conclusions

The synthesis of the oxindole portion of the TMC-95 compounds was explored through both an oxidative cyclization approach and through development of new methodology using Pummerer chemistry. The initial chemistry highlighted problems of the oxidative cyclization approach: a lack of access to the desired stereo- and regioisomeric product. Development of the Pummerer methodology removed the possibility of cyclization at C(2) by using aromaticity as the driving force for C(3) attack. Application to the TMC-95A model system yielded spirolactone oxindole 262 which possessed the correct stereochemistry at C(3). The project was terminated at this point due to the successful synthesis of TMC-95A by Danishefsky, Hirama, and Williams. Since the planned conversion of lactone 262 to TMC-95A closely followed these other routes, there appeared to be little to gain by continuing this work.
Chapter 5
Methods toward an enantioselective Pummerer reaction

Recent results from Penn State have shown that the indole based Pummerer chemistry is a useful method for formation of spiro six membered rings at C(3) of oxindoles using carbon nucleophiles.\(^\text{65}\) The next stage of this work involved the synthesis of chiral versions of these spirocyclic products from enantiopure sulfoxides. Preliminary evidence indicated that there would be some enantioselectivity induced by a chiral sulfoxide.\(^\text{70}\) However, these scouting experiments were performed on sulfoxides with varying ee’s. In addition, a method was needed by which enantiopure indole-2-sulfoxides with known configuration could be synthesized. Additional optimization was needed to find the highest obtainable ee’s for these reactions. Moreover, the preliminary work had only measured the ee’s, but had not defined the absolute stereochemistry at C(3) of the spirocyclic product. Finally, both unsubstituted indoles and 5-methoxyindoles were tested to determine if the electron donating ability of the methoxy group would have an impact on the ee.

In order for the chiral sulfoxide to transfer stereochemical information to the forming C-C bond, the reaction must proceed through either an additive mechanism or a vinylogous pathway through a tight ion pair. If the reaction were to proceed through the vinylogous mechanism with formation of an achiral sulfonium ion, all stereochemical information would be lost. This achiral intermediate would lead to racemic products.

Determination of the enantiomeric excesses of the Pummerer products was achieved using \(^1\)H NMR titration with one of the chiral shift reagents \((S)-(+)\)-2,2,2-
trifluoro-1-(9-anthryl)ethanol71 (S-\(+\)-TFAE) or europium [3-(trifluoromethylhydroxymethylene)-(\(+\))-camphorate]72 (Eu(tfc)$_3$).

5.1 Substrate synthesis

Using the previous results as a starting point, the initial goal was the synthesis of the six enantiopure sulfoxides shown in Figure 5.1. Whereas a route was known to racemic material, this chemistry would not be useful here. In order to secure chiral sulfoxides of known absolute stereochemistry, it was necessary to develop new routes to each of these compounds which would utilize C(2) lithiation and reaction with (4R,5S)-4-methyl-5-phenyl-3-[\(\rho\)-phenyl]-2-isooxazolidinone.43 Marino had shown44 that this approach is a useful method for the synthesis of chiral sulfoxides at C(2) of indoles.

![Figure 5.1: Chiral sulfoxides examined in this study.](image-url)
5.1.1 Allylsilanes

Synthesis of the allylsilane chiral sulfoxides 131, 134, 275, and 276 started with 5-methoxyindole butyric acid (281), which was available in four steps from p-anisidine (Figure 5.2).

\[
\begin{align*}
\text{OMe} & \quad \text{CO}_2\text{Et} \\
\text{NH}_2 & \quad \text{CO}_2\text{Et} \quad \text{MeO} \\
\text{HCl}, \text{NaNO}_2, \text{NaOAc}, \text{MeOH}, \text{KOH}, \text{ice} & \quad 59\% \quad \text{KOH, EtOH reflux} \quad 90\% \\
\text{1} & \quad \text{2} \\
\end{align*}
\]

Figure 5.2: Japp-Klingemann synthesis of 5-methoxy indole 3-butyric acid.

The acid was converted to the methyl ester 282 with trimethylsilyl diazomethane. Peterson olefination of 282 by addition of (trimethylsilyl)methyl lithium in the presence of cerium (III) chloride, followed by silica gel assisted elimination, yielded allylsilane 283. BOC protection of the indole formed precursor 284 for chiral sulfoxide formation at C(2). Ortho lithiation with s-butyllithium followed by quenching of the derived C(2) lithiate with (4R,5S)-4-methyl-5-phenyl-3-[p-phenyl]-2-isooxazolidinone (156) produced allylsilane 275 in good yield. Unexpectedly, this reaction also led to removal of the indole nitrogen’s BOC group. This deprotection was a fortuitous result as removal of this protecting group was planned next. From here, methylation of the indole nitrogen with lithium bis(trimethylsilylamide) and methyl iodide afforded compound 276, completing
two of the six compounds desired to test the question of asymmetric induction with this methodology.

Figure 5.3: 5-Methoxy allylsilane substrate syntheses.

Having established this route, syntheses of the analogous des-methoxy compounds were accomplished following the same strategy (Figure 5.4). The only significant difference in these two routes is the yield of the esterification. This discrepancy can be explained by the origins of the starting materials. Whereas 281 was synthesized in four steps, indole 3-butyric acid is commercially available. The four step procedure for the formation of 281 is seen in figure 5.2. The first three steps were high yielding, but decarboxylation of 280 at high temperature or under microwave conditions was found to give inconsistent yields. In addition, spectral analysis of the decarboxylated material indicated a pure product, but the low yields of the methylation and bromination reaction suggested that this analysis was suspect. Bromination of the crude product 281 with one equivalent of NBS resulted in at least one dibrominated product. When the
reaction was run with addition of small portions of NBS until the process was judged to be complete by TLC analysis, just over 0.5 equivalents were needed, indicating that acid 281 was approximately 50% pure.

Figure 5.4: Synthesis of allylsilanes 131 and 134.

5.1.2 Silyl enol ethers

Synthesis of silyl enol ether 274 started with methyl ester 282. NBS treatment of 282 gave bromination at C(2). Bromination was found to be necessary in this instance because direct metallation of the des-bromo analogue of 288 was unsuccessful. This bromination was followed by protection of the indole nitrogen and then reduction of the methyl ester to the primary alcohol, which was protected as its TBS ether, 288. t-Butyllithium was used to initiate lithium-halogen exchange on 288. Quenching of the anion with (4R,5S)-4-methyl-5-phenyl-3-\([p\text{-phenyl}]-2\text{-isooxazolidinone}\) (156) gave sulfoxide 289 in good yield. As with the allylsilane chemistry, the BOC group was
conveniently cleaved in this reaction. Elaboration of 289 was continued with deprotection of the TBS group using TBAF, followed by oxidation of the resulting alcohol with N-methyl morpholine N-oxide (NMO) and tetrapropylammonium perruthenate (TPAP). The aldehyde was converted to the ketone through addition of methylmagnesium bromide, resulting in a 1:1 mixture of diastereomeric alcohols which were both oxidized to ketone 293 with TPAP and NMO. Formation of the silyl enol ether 274 was accomplished according to conditions that were previously established.

![Chemical structures and reaction schemes](image-url)

Figure 5.5: 5-Methoxy indole-2-sulfoxide silyl enol ether synthesis.
The final desired substrate, the des-methoxy silyl enol ether 136, was synthesized using the same route as its 5-methoxy counterpart (Figure 5.6). The yield of the second oxidation was not optimized, as an alternative route was used for synthesis of larger quantities of material, as elaborated in Figure 5.7.

Figure 5.6: 5-H indole-2-sulfoxide silyl enol ether synthesis.
In order to expedite development of this methodology, a shorter, alternative route70 was used to access 293 and 299. This route utilized a chiral oxidation of sulfides 302 and 30476 using oxaziridine 303, a reagent that was developed by Davis.77

![Chemical structures and reactions](image-url)

Figure 5.7: Alternative route to 293 and 299.
5.2 Optimization of Pummerer reaction ee’s

With the six substrates in hand, attempts were made to optimize the enantiomeric excess of the key Pummerer cyclization. Toward this goal, several variables which might play a role were considered. The most significant was expected to be solvent. Also of interest was the effect that reaction temperatures would have on the enantiomeric excess. A short exploration of solvent viscosity was carried out to see if increasing the viscosity might be able to preserve any chiral tight ion pair present and hence enhance the ee. Finally, the difference between the methoxyindole and the unsubstituted analogue was of interest due to their difference in stabilizing the electron demand generated by the electron deficient transition states. The donating ability of the methoxy group could contribute to a resonance structure (306) where a thionium ion intermediate (achiral or chiral tight ion pair) is stabilized. Other factors such as different activators and bases were not investigated due to previous results which showed that other common activators (TFAA, TMSOTf) were ineffective for this methodology.

![Possible resonance effect of the methoxy substituent.](image)

Figure 5.8: Possible resonance effect of the methoxy substituent.

5.2.1 Allylsilanes

The first substrate chosen for optimization was sulfoxide 275. This system was screened with different solvents. Table 5.1 displays the yields of the three steps used to determine the ee’s. It was found that in order to get optimal separation of the 1H NMR
signals using the shift reagent Eu(tfc)$_3$, conversion to N-methyloxindole 309 was necessary. However, as neither hydrolysis nor methylation should effect C(3), it was expected that doing so would not affect the ability to accurately measure the ee of the initial Pummerer cyclization. Whereas these results did indicate the expected changes with regard to solvent polarity, the use of toluene resulted in the highest ee, a disappointing 56%. In order to continue probing the methodology, the next substrate was the des-methoxy sulfoxide, 131.

![Reaction Scheme](image)

Figure 5.9: 5-Methoxyindole allylsilane Pummerer reactions.

<table>
<thead>
<tr>
<th>Solvent</th>
<th>Yield 307</th>
<th>Yield 308</th>
<th>Yield 309</th>
<th>ee</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dichloromethane (-78 °C)</td>
<td>47%</td>
<td>50%</td>
<td>44%</td>
<td>10%</td>
</tr>
<tr>
<td>Ether (-78 °C)</td>
<td>47%</td>
<td>50%</td>
<td>50%</td>
<td>28%</td>
</tr>
<tr>
<td>Toluene (-78 °C)</td>
<td>47%</td>
<td>75%</td>
<td>60%</td>
<td>56%</td>
</tr>
</tbody>
</table>

Table 5.1: Results of the 5-Methoxy allylsilane Pummerer reactions.

The next substrate for investigation was the des-methoxyindole 131. It was desired to see if the absence of the electron donating methoxy group would impact the ee.
A series of solvents were explored with allylsilane 131. Although some solvents showed improvement over the methoxy series, the ee peaked at 58%, similar to the best 5-methoxyindole example. A couple of trends were noted. Enantiomeric excess was directly related to the polarity of the solvent. The best results were seen in the lowest polarity solvent, toluene, while the most polar solvent, trifluoroethanol, gave a racemic mixture. Attempts to use less polar solvents (or mixtures) did not lead to useful results. A mixture of toluene and hexane gave lower selectivity than toluene alone. The use of pure hexane as the solvent showed no reactivity, most likely caused by insolubility of the starting sulfoxide. The idea that solvent viscosities might play a role was also explored. In this scenario, more viscous solvents should favor a tight ion pair over a free thionium ion if the vinylogous mechanism were operative. Unfortunately in the search for an appropriate solvent, two trends were observed. Higher viscosity solvents such as tetrachloroethane had higher freezing points and would not allow reaction at the lower temperatures generally employed in this reaction. The use of tetrachloroethane resulted
in a lower ee than the most similar solvent previously tried (dichloromethane). This comparison suggested that if the vinylogous mechanism were operative, the increased temperature superseded any possibly beneficial effect that solvent viscosity increase might have on ee. The only solvents with higher viscosities that could be cooled to -78 °C were more polar alcohol solvents, and previous results suggested that the ee would be low. An attempt with n-pentanol confirmed this supposition, resulting in no selectivity. On the other hand, these results are also consistent with reaction through the viscosity invariant additive mechanism. Two further attempts were made at lower temperatures, but likely due to the low nucleophilicity of the allylsilane, no reaction was observed.

<table>
<thead>
<tr>
<th>Solvent (Temperature)</th>
<th>E_T (30) (kcal/mol)</th>
<th>Viscosity (mpa s at -25 °C)</th>
<th>Yield</th>
<th>ee</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trifluoroethanol (-40 °C)</td>
<td>59.8</td>
<td>2.00 (20 °C)</td>
<td>18%</td>
<td>0%</td>
</tr>
<tr>
<td>n-pentanol (-78 °C)</td>
<td>49.1</td>
<td>25.4</td>
<td>17%</td>
<td>0%</td>
</tr>
<tr>
<td>Tetrachloroethane (-40 °C)</td>
<td>39.4</td>
<td>3.660</td>
<td>17%</td>
<td>26%</td>
</tr>
<tr>
<td>Dichloromethane (-78 °C)</td>
<td>40.7</td>
<td>0.727</td>
<td>57%</td>
<td>34%</td>
</tr>
<tr>
<td>Ether (-78 °C)</td>
<td>34.5</td>
<td>0.283 (0 °C)</td>
<td>39%</td>
<td>48%</td>
</tr>
<tr>
<td>Toluene/hexane (1/1) (-78 °C)</td>
<td>Toluene – 33.9 Hexane – 31.0</td>
<td>Toluene – 1.165 Hexane – 0.405 (0 °C)</td>
<td>18%</td>
<td>48%</td>
</tr>
<tr>
<td>Toluene (-78 °C)</td>
<td>33.9</td>
<td>1.165</td>
<td>41%</td>
<td>58%</td>
</tr>
<tr>
<td>Toluene (-90 °C)</td>
<td>33.9</td>
<td>1.165</td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td>Ether (-110 °C)</td>
<td>34.5</td>
<td>0.283 (0 °C)</td>
<td>NR</td>
<td></td>
</tr>
</tbody>
</table>

Table 5.2: Results of the 5-H allylsilane Pummerer reactions.

The next two substrates examined were the N-methyl allylsilane sulfoxides 276 and 134. With the N-methylated indoles, it was thought that the reaction may be forced through the additive mechanism, since deprotonation of the indole nitrogen following sulfoxide activation is not available for this substrate and a vinylogous pathway must
result in a presumable high-energy dicationic species 314. 134 and 276 afforded the lowest enantioselectivity for the allylsilane series. While the absence of the methoxy group on the indole did result in higher ee’s, the maximum result was 46% ee. The low ee’s for this reaction provide some basis for the reaction proceeding through an achiral thionium ion. It is also possible that the transition state analysis in Figure 2.9 may not apply here. The presence of the methylated nitrogen, via an eclipsing interaction with the phenyl ring may lessen the energy difference of the transition states.

Figure 5.11: Dicationic intermediate for the N-methyl based Pummerer reaction.

Figure 5.12: N-methyl 5-methoxyindole allylsilane Pummerer reaction.
<table>
<thead>
<tr>
<th>Solvent</th>
<th>Yield 309</th>
<th>ee</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toluene (-78 °C)</td>
<td>41%</td>
<td>20%</td>
</tr>
<tr>
<td>Ether (-78 °C)</td>
<td>45%</td>
<td>28%</td>
</tr>
<tr>
<td>Acetonitrile (-40 °C)</td>
<td>59%</td>
<td>32%</td>
</tr>
</tbody>
</table>

Table 5.3: N-methyl 5-methoxyindole allylsilane Pummerer reaction results.

![Chemical structure](image1)

Figure 5.13: N-methyl 5-H allylsilane Pummerer reaction.

<table>
<thead>
<tr>
<th>Solvent</th>
<th>Yield 312</th>
<th>ee</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dichloromethane (-78 °C)</td>
<td>63%</td>
<td>8%</td>
</tr>
<tr>
<td>Acetonitrile (-40 °C)</td>
<td>63%</td>
<td>46%</td>
</tr>
</tbody>
</table>

Table 5.4: N-methyl 5-H indole allylsilane Pummerer reaction results.

5.2.2 Silyl enol ethers

The final two systems investigated were the silyl enol ethers, 136 and 274. It was with these compounds that the most encouraging results were seen. Mercury (II) chloride hydrolysis on the crude thioimidates was necessary to obtain a species whose 1H NMR signals in the presence of (S)-TFAE permitted determination of ee. Initial attempts with the 5-methoxy series showed poor ee’s. These results were immediately improved upon
with the 5(H) series. However, the 68% ee was still unsatisfying, and further attempts were made to find better selectivity. Gratifyingly, it was found that by cooling silyl enol ether 136 to -110 °C, and using the standard protocol at this temperature, a single enantiomer of the oxindole product was produced after mercury (II) chloride hydrolysis. Subjecting the methoxy substituted indole 274 to the same conditions led to oxindole 316 in greater than 98% ee. These results were in contrast to attempts with the allylsilane (Table 5.2), which did not react at -110 °C. The most likely explanation is that the lower nucleophilicity of the allylsilane (Mayr N = 1.8)\(^82\) as compared to the silyl enol ether (Mayr N ~ 5.4)\(^10\) renders it unreactive at the decreased temperature. This may provide some mechanistic elucidation. In the case of a vinylogous mechanism, the starting sulfoxide would not be recovered, unless loss of the leaving group was reversible through a tight ion pair. In the additive mechanism sulfoxide activation would still readily occur, nucleophilic attack would not occur. The starting sulfoxide is recovered presumably upon workup.
Figure 5.14: 5-methoxyindole silyl enol ether Pummerer reaction.

<table>
<thead>
<tr>
<th>Solvent</th>
<th>Yield 316 (2 steps)</th>
<th>ee</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dichloromethane (-78 °C)</td>
<td>80%</td>
<td>14%</td>
</tr>
<tr>
<td>Ether (-78 °C)</td>
<td>80%</td>
<td>40%</td>
</tr>
<tr>
<td>Toluene (-78 °C)</td>
<td>76%</td>
<td>40%</td>
</tr>
<tr>
<td>Ether (-110 °C)</td>
<td>32%</td>
<td>>98%</td>
</tr>
</tbody>
</table>

Table 5.5: 5-methoxy silyl enol ether Pummerer reaction.

Figure 5.15: 5-H silyl enol ether Pummerer reaction.
| Solvent | Yield 318 (2 steps) | ee
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dichloromethane (-78 °C)</td>
<td>33%</td>
<td>42%</td>
</tr>
<tr>
<td>Ether (-78 °C)</td>
<td>60%</td>
<td>51%</td>
</tr>
<tr>
<td>Toluene (-78 °C)</td>
<td>33%</td>
<td>68%</td>
</tr>
<tr>
<td>Ether (-110 °C)</td>
<td>58%</td>
<td>>98%</td>
</tr>
</tbody>
</table>

Table 5.6: 5-H silyl enol ether Pummerer reaction results.

5.3 Absolute stereochemistry determination

Having established that high ee’s can be obtained with the silyl enol ether series, attention turned toward methods for determining the absolute stereochemistry of the oxindole product. Following a procedure used on spirobrassinin by Monde and coworkers,83 oxindoles 318 (68% ee) and 316 (40% ee) were converted to their camphanic acid derivatives. Crude mixtures of the diastereomeric imides were obtained which showed through integration of their 1H NMR spectra to have retained the same diasteromeric ratio as the enantiomeric ratio in the starting material. Rapid separation of the diastereomers was necessary as exposure of the products to silica gel chromatography for an extended time would cleave the camphanyl moiety.

The major product from each reaction was analyzed through X-ray crystallography using the camphanyl group as an internal standard of known absolute configuration. Crystals suitable for X-ray analysis of oxindole 320 were formed from crystallization with tetrahydrofuran and n-hexane. For the des-methoxy oxindole (322), crystals suitable for X-ray analysis were obtained via crystallization from dimethoxyethane and n-hexane. In both major products, the stereochemistry at the newly
formed spiro center was found to be S. This result was consistent with the transition state analysis discussed earlier (Figure 2.9). The origin of the R enantiomer in the product mixtures is uncertain, but may be due to (1) reaction through an additive mechanism via higher energy conformer 138, or (2) reaction through a vinylogous mechanism and an achiral thionium intermediate 123. The major enantiomer could arise from an additive mechanism as in Figure 2.7, or through a tight ion pair 144 with attack from the thionium ion face opposite of the OTf unit in a geometry similar to the major additive path transition state 141.

Further correlation studies were needed to establish the stereochemistry of the allylsilane Pummerer products. It was already established that the N-methyl and N-H examples resulted in the same stereochemistry, as evidenced by the use of Eu(tfc)$_3$. Since both reactions showed the same major peak, it suggested that both were the same absolute stereochemistry. Additionally, comparison of the optical rotation of the N-methylated oxindole products showed the same sign of rotation for the products derived from the N-H allylsilanes and from the N-Me allylsilanes. However, in order to compare these species with the secure stereochemistry of 316 determined by X-ray analysis, oxindole 316 was treated with Tebbe’s reagent84 to yield oxindole 308. This compound was found to have the same sign of optical rotation as the oxindole species synthesized through the Pummerer reaction/hydrolysis sequence from allylsilane 131. For the des-methoxy compound, a similar reaction was carried out with methyl triphenylphosphonium bromide. This product was N-methylated, and the product was checked with Eu(tfc)$_3$ and found to have the same major peak as 312, establishing that both compounds had the same absolute stereochemistry.
Figure 5.16: Determination of the stereochemistry of the 5-methoxy series.
5.4 Conclusions

An extension of the Pummerer methodology previously developed at Penn State has been explored. In order to obtain enantioselectivity in the Pummerer cyclization of chiral sulfoxides, it was necessary to find conditions which would favor the additive mechanism or reaction through a tight ion pair, and not the achiral thionium intermediate present in the vinylogous mechanism. Upon synthesis of enantiopure sulfoxides, optimization of the enantiomeric excess derived from Pummerer-triggered oxidative cyclization of a series of six indole-2-sulfoxide substrates was explored. Through control
of temperature and solvent polarity it was found that at low temperatures (-110 °C), excellent enantioselectivity could be obtained. The success at low temperature was only for the silyl enol ether substrates. It is likely that with the allylsilane sulfoxides, the inherently lower nucleophilicity made them unreactive at lower temperatures. The effects of solvent polarity, solvent viscosity, and the electronics of the indole ring were also explored as possibly influential factors in the selectivity. Solvent polarity exhibited clear trends as the use of alcohol solvents gave no selectivity. In less polar solvents, where a thionium ion might be less stable, and where an additive mechanism or a tight ion pair might be favored, ee’s as high as 68% in toluene for the allylsilane series were observed. The ability to achieve high levels of enantioselectivity with the silyl enol ether substrates will serve to further enhance the utility of this methodology.
6.1 General

General Experimental. All reactions involving air and moisture sensitive reagents or solvents were performed in flame-dried glassware under an argon or nitrogen atmosphere. Tetrahydrofuran and benzene were distilled from sodium benzophenone ketyl under argon or passed through an activated alumina column immediately before use. Dichloromethane and acetonitrile were distilled from calcium hydride under argon or passed through an activated alumina column immediately before use. Dimethoxyethane was distilled from sodium and fluorenone under argon or passed through an activated alumina column immediately before use. Methanol, toluene, and ether were passed through an activated alumina column immediately before use. All organic reagents were used as purchased. Flash chromatography was performed using 32 – 63 μm silica gel with the indicated solvent systems. All melting points are uncorrected. Low and high-resolution mass spectra were obtained according to the specified technique and were performed at The Huck Institute of the Life Sciences – Proteomics and Mass Spectrometry Core Facility at The Pennsylvania State University, University Park, PA. Combustion analyses were performed by Midwest Microlab, IN.

6.2 Methods toward TMC-95A-D synthesis

General Procedure for the Pummerer Reaction Promoted by Stang’s reagent, PhI(CN)OTf. The substrate was dissolved in the indicated solvent and cooled to the indicated temperature. 2,6-Lutidine was added followed by PhI(CN)OTf in one
portion. The reaction solution was slowly brought to room temperature over 2 h and held there for an additional 15 h. Water was added, the two layers were separated and the aqueous phase was extracted with CH₂Cl₂. The combined organic layers were dried, filtered, and concentrated in vacuo. The crude product was purified via flash chromatography using the indicated solvent system.

\[(2S,3R)-\text{Methyl 2-(Benzyloxycarbonylamino)-3-hydroxy-3-(1-tosyl-1H-indol-3-yl)propanoate (230).}\]

Freshly prepared \(t\)-butyl hypochlorite (2.0 mL, 18 mmol) was added to a solution of benzyl carbamate (2.69 g, 17.8 mmol) in 0.4 M sodium hydroxide (35 mL) and \(n\)-propanol (25 mL) in a flask covered with aluminum foil. This mixture was stirred for 5 min. A solution of (DHQD)₂AQN (150 mg, 0.17 mmol) in \(n\)-propanol (25 mL), 229 (1.71 g, 4.82 mmol), and a solution of K₂OsO₂(OH)₄ (80 mg, 0.21 mmol) in 0.4 M NaOH (5 mL) were added, and this solution was stirred for 22 h. Sodium bisulfite (2.5 g) was added to the reaction mixture which was then extracted with EtOAc (3 x 30 mL), washed with water and brine, dried over MgSO₄, filtered, and concentrated in vacuo. The product was purified by flash chromatography using 20% EtOAc in hexanes as the eluent to remove excess benzyl carbamate, then 50% EtOAc in hexanes as the eluent to yield 1.72 g (69% > 99% ee₈⁵) of protected amino alcohol 230 as a white solid.

\(\text{mp } 66 – 68 \, ^\circ\text{C}; [\alpha]^{25}_D = 34.6 (c 1 \text{ CH}_2\text{Cl}_2); \text{IR (CDCl}_3) 3436, 1712 \text{ cm}^{-1}; \text{^1H NMR (400 MHz, CDCl}_3) \delta 7.97 (d, J = 9.7 \text{ Hz, 1H}), 7.73 (d, J = 8.1 \text{ Hz, 2H}), 7.68 (s, 1H), 7.57 (d, J}
= 7.1 Hz, 1H), 7.34 (m, 7H), 7.13 (d, \(J = 8.1\) Hz, 2H), 5.86 (d, \(J = 8.9\) Hz, 1H), 5.54 (d, \(J = 2.2\) Hz, 1H), 5.02 (m, 2H), 4.77 (dd, \(J = 8.9, 2.2\) Hz, 1H), 3.73 (s, 3H), 3.37 (s, 1H), 2.27 (s, 3H); \(^{13}\text{C}\) NMR (100 MHz, CDCl\(_3\)) \(\delta\), 171.5, 156.9, 145.4, 136.4, 135.6, 135.4, 130.3, 129.0, 128.9, 128.6, 128.2, 127.2, 125.4, 124.4, 123.9, 122.0, 120.2, 114.1, 68.5, 67.5, 58.9, 53.2, 21.9; ESI \textit{m/z} (relative intensity) 540.2 (M + NH\(_4\), 100%), 505.2 (M + H – H\(_2\)O, 20%); HRMS calcd for C\(_{27}\)H\(_{26}\)N\(_2\)O\(_7\)S (M + NH\(_4\)) 540.1804, found 540.1786.

(2S,3R)-Methyl 2-(Benzyloxycarbonylamino)-3-(1-tosyl-1\(H\)-indol-3-yl)-3-(triisopropylsilyloxy)propanoate. A solution of protected amino alcohol 230 (1.11 g, 2.1 mmol) and 2,6-lutidine (730 \(\mu\)L, 6.3 mmol) in CH\(_2\)Cl\(_2\) (20 mL) were stirred for 5 min. Triisopropylsilyl trifluoromethanesulfonate (750 \(\mu\)L, 2.8 mmol) was added and stirring was continued for 15 h. The reaction mixture was added to water (10 mL), extracted with CH\(_2\)Cl\(_2\) (3 x 10 mL), dried over MgSO\(_4\), filtered, and concentrated in vacuo. The product was purified by flash chromatography using 20% EtOAc in hexanes as the eluent to yield 1.25 g (88%) of the TIPS ether as a colorless oil. IR (CDCl\(_3\)) 3442, 1728 cm\(^{-1}\); \(^1\text{H}\) NMR (300 MHz, CDCl\(_3\)) \(\delta\) 7.99 (d, \(J = 8.3\) Hz, 1H), 7.75 (d, \(J = 7.9\) Hz, 2H), 7.60 (m, 2H), 7.39 (m, 6H), 7.24 (t, \(J = 7.1\) Hz, 1H), 7.16 (d, \(J = 8.1\) Hz, 2H), 5.67 (d, \(J = 3\) Hz, 1H), 5.56 (d, \(J = 9.6\) Hz, 1H), 5.08 (d, \(J = 12.3\) Hz, 1H), 5.01 (d, \(J = 12.3\) Hz, 1H), 4.56 (dd, \(J = 9.6, 3\) Hz, 1H), 3.80 (s, 3H), 2.31 (s, 3H), 0.95 (m, 21H); \(^{13}\text{C}\) NMR (75 MHz, CDCl\(_3\)) \(\delta\) 171.1, 156.5, 145.4, 136.6, 135.7, 135.5, 130.2, 129.0, 128.8, 128.6, 128.5, 127.1, 125.5, 124.7, 123.9, 123.3, 120.0, 114.3, 69.4, 67.5, 60.0, 52.9, 22.0, 18.3, 12.8; ESI \textit{m/z}
(relative intensity) 701.2 (M + Na, 100%), 696.3 (M + NH₄, 30%); HRMS calcd for C_{36}H_{46}N_{2}O_{7}SSi (M + NH₄) 696.3139, found 696.3190.

\[
\text{(2S,3R)-2-(Benzyloxycarbonylamino)-3-(1-tosyl-1H-indol-3-yl)-3-(triisopropylsilyloxy)propanoic Acid (231).} \]

The TIPS ether (32 mg, 0.05 mmol) and LiOH•H₂O (7 mg, 0.2 mmol) were stirred for 15 h in THF/H₂O (0.5 mL, 4/1). The reaction solution was acidified with 1 M HCl (2 mL), extracted with CH₂Cl₂ (3 x 5 mL), dried over MgSO₄, filtered, and concentrated in vacuo. The crude product was purified by flash chromatography using 5% MeOH in 1/1 ethyl acetate/hexanes as the eluent to yield 25 mg (80 %) of 231 as a white solid: mp 72 – 75 °C (sublime); IR (CDCl₃) 3419, 3035, 1770, 1719 cm⁻¹; ¹H NMR (360 MHz, CDCl₃) δ 7.97 (d, J = 8.2 Hz, 1H), 7.70 (d, J = 8.2 Hz, 2H), 7.60 (s, 1H), 7.41 (m, 7H), 7.18 (m, 3H), 5.77 (d, J = 3.4 Hz, 1H), 5.42 (d, J = 7.6 Hz, 1H), 5.14 (d, J = 12 Hz, 1H), 5.06 (d, J = 12 Hz, 1H), 4.70 (dd, J = 7.3, 3.5 Hz, 1H), 2.31 (s, 3H), 1.05 (m, 21H); ¹³C NMR (125 MHz, CDCl₃) δ 171.1, 156.2, 145.3, 136.1, 135.1, 135.0, 130.1, 129.1, 128.9, 128.5, 128.4, 127.0, 125.3, 124.6, 123.8, 121.5, 119.5, 114.1, 68.0, 67.4, 59.4, 21.8, 18.0, 12.3; ESI m/z (relative intensity) 663.3 (M – H, 100%), 507.1 (M – TIPS, 10%); HRMS calcd for C_{35}H_{44}N_{2}O_{7}SSi (M - H) 663.2560, found 663.2513; Anal. Calcd for C_{35}H_{44}N_{2}O_{7}SSi: C, 63.23; H, 6.67; N, 4.21; S, 4.82; Found: C, 63.31; H, 6.97; N, 4.01; S, 4.79.
(2R,3R,4R)-4-(2-Oxo-2-phenylethylideneamino)-3-(triisopropylsilyloxy)-3H-spiro[furan-2,3'-indoline]-2',5(4H)-dione (232). N-bromosuccinimide (16 mg, 0.09 mmol) was added to a solution of 231 (30 mg, 0.045 mmol) and sodium bicarbonate (8 mg, 0.09 mmol) in t-BuOH (340 μL)/H2O (80 μL) and stirred for 15 h. The reaction solution was concentrated in vacuo and the residue was purified by flash chromatography using 33% ether in hexanes as the eluent, providing 10 mg (33%) of the 232, as a white solid. mp 82 – 85 °C (sublime), IR (CDCl₃) 3452, 1810, 1772, 1725 cm⁻¹; ¹H NMR (360 MHz, CDCl₃) δ 7.97 (m, 3H), 7.53 (m, 2H), 7.42 (m, 1H), 7.36 (m, 7H), 5.50 (d, J = 7.4 Hz, 1H), 5.35 (d, J = 9 Hz, 1H), 5.22 (d, J = 12 Hz, 1H), 5.09 (d, J = 12 Hz, 1H), 4.61 (m, 1H), 2.42 (s, 3H), 0.84 (m, 21H); ¹³C NMR (100 MHz, CDCl₃) δ 174.5, 171.7, 156.0, 147.0, 146.6, 141.3, 136.0, 135.0, 132.7, 130.3, 129.0, 128.9, 128.3, 126.1, 125.9, 124.0, 114.3, 83.1, 78.4, 68.0, 57.9, 22.1, 17.9, 12.6; ESI m/z (relative intensity) 679.2 (M + H, 35%), 696.3 (M + NH₄, 100%), 701.2 (M + Na, 70%); HRMS calcd for C₃₅H₄₂N₂O₇SSi (M + NH₄) 696.2775, found 696.2778; Anal. Calcd for C₃₅H₄₂N₂O₇SSi: C, 61.92; H, 6.24; N, 4.13; S, 4.72; Found: C, 61.31; H, 6.13; N, 4.01; S, 4.68.
(2R,3S)-Methyl 2,3-Dihydroxy-3-(1-tosyl-1H-indol-3-yl)propanoate (234).
Enoate 229 (2.0 g, 5.6 mmol) was suspended in t-BuOH/H₂O (26 mL, 1/1). A modified AD mix-α (potassium ferricyanide (4.40 g), potassium carbonate (1.86 g), (DHQ)₂PHAL (174 mg), and K₂OsO₂(OH)₄ (18 mg)) and methanesulfonamide (1.28 g, 13.4 mmol) was added in 4 equal portions at 1 h intervals, and stirring was continued for 15 h. Sodium sulfite (8.4 g) was added, and the reaction solution was stirred for 30 min. The reaction solution was extracted with EtOAc (3 x 25 mL), the combined organic fractions were washed with 1 M KOH (25 mL), water, and brine, dried over Na₂SO₄, filtered, and concentrated in vacuo. The crude product was purified by flash chromatography using 40% EtOAc in hexanes as the eluent, providing 1.72 g (79%, > 99% ee⁸⁶) of diol 234 as a white solid. mp 48 – 51 °C; [α]²⁵°D + 30.7 (c 1 CH₂Cl₂); IR (CDCl₃) 3534, 1738, 1598 cm⁻¹; ¹H NMR (360 MHz, CDCl₃) δ 7.97 (d, J = 8.3 Hz, 1H), 7.76 (s, 1H), 7.73 (d, J = 5.3 Hz, 2H), 7.60 (d, J = 7.9 Hz, 1H), 7.33 (t, J = 7.3 Hz, 1H), 7.21 (d, J = 7.3 Hz, 1H), 7.17 (d, J = 7.9 Hz, 2H), 5.25 (d, J = 5 Hz, 1H), 4.52 (dd, J = 5.1, 2.4 Hz, 1H), 3.78 (s, 3H), 3.50 (d, J = 4.9 Hz, 1H), 2.99 (d, J = 7.8 Hz, 1H), 2.29 (s, 3H); ¹³C NMR (90 MHz, CDCl₃) δ 173.2, 145.2, 135.3, 135.3, 130.1, 129.2, 127.0, 125.1, 124.5, 123.5, 121.7, 120.1, 113.9, 73.6, 68.6, 43.1, 21.7; APCI m/z (relative intensity) 372.2 (M + H – H₂O, 100%); Anal. Calcd for C₁₀H₁₉NO₆S: C, 58.60; H, 4.92; N, 3.60; S, 8.23; Found: C, 58.89; H, 5.30; N, 3.43; S, 7.93.
(2S,3S)-Methyl 2-Azido-3-(tert-butyldimethylsilyloxy)-3-(1-tosyl-1H-indol-3-yl)propanoate (235). The diol (3.8 g, 9.7 mmol) was dissolved in CH$_2$Cl$_2$ (125 mL) and cooled to 0 °C. 4-Nitrobenzenesulfonyl chloride (2.2 g, 10 mmol) and Et$_3$N (2.85 mL, 20.5 mmol) were added and the reaction solution was stirred at 0 °C for 15 h. The reaction solution was added to 1 M HCl (50 mL), extracted with CH$_2$Cl$_2$ (3 x 50 mL), washed with water and brine, dried over Na$_2$SO$_4$, filtered, and concentrated in vacuo to yield 4.2 g (75%) of a crude yellow-orange solid.

The crude nosylate (4.2 g, 7.4 mmol) was dissolved in DMF (40 mL), and sodium azide (534 mg, 8.2 mmol) was added. The mixture was heated at 45 °C for 15 h. The reaction solution was concentrated in vacuo, and the residue was added to 1 M H$_3$PO$_4$ (50 mL), extracted with CH$_2$Cl$_2$ (3 x 50 mL), washed with water and brine, dried over Na$_2$SO$_4$, filtered, and concentrated in vacuo to yield 2.0 g (64%) of the crude azide.

2,6-Lutidine (1.5 mL, 13 mmol) was added to the crude azide (2.0 g, 4.8 mmol) in CH$_2$Cl$_2$ (100 mL) and the mixture was stirred for 5 min. Tertbutyldimethylsilyl trifluoromethanesulfonate (1.5 mL, 6.5 mmol) was added and stirring was continued for 15 h. The reaction solution was added to water (25 mL), extracted with CH$_2$Cl$_2$ (3 x 25 mL), dried over Na$_2$SO$_4$, filtered, and concentrated in vacuo. The crude product was purified by flash chromatography using 10% ether in hexanes as the eluent, providing 1.65 g (68%) of the TBS ether as a colorless oil. IR (CDCl$_3$) 2117, 1748 cm$^{-1}$; 1H NMR (300 MHz, CDCl$_3$) δ 8.04 (d, $J = 7.4$ Hz, 1H), 7.79 (m, 3H), 7.64 (s, 1H), 7.38 (m, 4H),
5.24 (d, J = 7.7 Hz, 1H), 4.25 (d, J = 7.7 Hz, 1H), 3.75 (s, 3H), 2.33 (s, 3H), 0.84 (s, 9H), 0.06 (s, 3H), -0.28 (s, 3H); 13C NMR (75 MHz, CDCl3) δ 168.9, 135.6, 135.1, 130.1, 130.0, 128.6, 126.8, 125.2, 125.1, 123.5, 121.7, 120.9, 114.0, 69.9, 66.8, 52.6, 25.6, 21.6, 18.2, -4.9, -5.5; ESI m/z (relative intensity) 551.1 (M + Na, 100%); HRMS calcd for C25H32N4O5SSi (M + NH4) 546.2206, found 546.2164.

(2S,3S)-Methyl 2-(Benzyloxycarbonylamino)-3-(tert-butyldimethylsilyloxy)-3-(1-tosyl-1H-indol-3-yl)propanoate. Trimethyl phosphine (3.5 mL, 1M in THF, 3.5 mmol) was slowly added to a solution of the TBS ether (1.55 g, 2.9 mmol) in THF (30 mL), and stirring was continued for 45 min. The reaction solution was cooled below -20°C, benzyl chloroformate (440 μL, 3.1 mmol) was added, and the reaction solution was warmed to room temperature and stirred for 15 h. The reaction mixture was added to water (10 mL), extracted with CH2Cl2 (3 x 10 mL), washed with brine, dried over Na2SO4, filtered, and concentrated in vacuo. The crude product was purified by flash chromatography using 20% EtOAc in hexanes as the eluent, providing 650 mg (35%) of the CBz protected amine as a colorless oil. IR (CDCl3) 3436, 1726 cm⁻¹; 1H NMR (400 MHz, CDCl3) δ 7.99 (d, J = 8.2 Hz, 1H), 7.84 (d, J = 7.7 Hz, 1H), 7.71 (m, 2H), 7.44 (s, 1H), 7.37 (m, 7H), 7.18 (d, J = 8.2 Hz, 2H), 5.68 (d, J = 7.7 Hz, 1H), 5.31 (d, J = 3 Hz, 1H), 5.15 (d, J = 12 Hz, 1H), 5.11 (d, J = 12 Hz, 1H), 4.73 (dd, J = 7.7, 3 Hz, 1H), 3.53 (s, 3H), 2.30 (s, 3H), 0.88 (s, 9H), 0.03 (s, 3H), -0.17 (s, 3H); 13C NMR (100 MHz,
CDCl₃) δ 169.5, 155.7, 145.1, 136.3, 135.6, 135.4, 130.1, 130.0, 128.7, 128.4, 128.2, 126.9, 125.1, 124.4, 124.1, 123.0, 120.7, 113.9, 70.5, 67.2, 59.9, 52.1, 25.8, 21.7, 18.3, -4.8, -5.2; ESI m/z (relative intensity) 659.2 (M + Na, 100%), 654.2 (M + NH₄, 35%); HRMS calcd for C₃₃H₄₀N₂O₇SSi (M + NH₄) 654.2669, found 654.2627.

(2S,3S)-2-(Benzyloxycarbonylamino)-3-(tert-butyldimethylsilyloxy)-3-(1-tosyl-1H-indol-3-yl)propanoic Acid (236). The CBz-protected amine (600 mg, 0.94 mmol) and LiOH•H₂O (120 mg, 3.86 mmol) were stirred for 15 h in THF/H₂O (15 mL, 4/1). The reaction mixture was acidified with 1 M HCl (10 mL), extracted with CH₂Cl₂ (3 x 10 mL), washed with water and brine, dried over Na₂SO₄, filtered, and concentrated in vacuo, providing 500 mg (86%) of the product 236 as a white solid. mp 65 – 68 °C; IR (CDCl₃) 3690, 3433, 1716 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.98 (d, J = 8.4 Hz, 1H), 7.85 (d, J = 7.7 Hz, 1H), 7.69 (d, J = 8.3 Hz, 2H), 7.50 (s, 1H), 7.38 (m, 7H), 7.15 (d, J = 8.2 Hz, 2H), 5.63 (d, J = 7.7 Hz, 1H), 5.35 (d, J = 4.5 Hz, 1H), 5.17 (d, J = 12 Hz, 1H), 5.13 (d, J = 12 Hz, 1H), 4.75 (dd, J = 7.3, 4.5 Hz, 1H), 2.27 (s, 3H), 0.90 (s, 9H), 0.07 (s, 3H), 0.04 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 171.2, 155.8, 145.2, 136.2, 135.6, 135.2, 130.0, 128.8, 128.6, 128.5, 128.3, 126.9, 125.2, 124.6, 123.8, 122.6, 120.5, 114.0, 70.3, 67.4, 59.7, 25.9, 21.7, 18.4, -4.7, -5.2; APCI m/z (relative intensity) 645.2 (M + Na, 100%); HRMS calcd for C₃₂H₃₈N₂O₇SSi (M + NH₄) 640.2513, found 640.2496.
N-bromosuccinimide (250 mg, 1.5 mmol) was added to a solution of 236 (200 mg, 0.32 mmol) and NaHCO₃ (120 mg, 1.4 mmol) in t-BuOH (5.5 mL)/H₂O (1.3 mL) and stirred for 15 h. The reaction solution was concentrated in vacuo and purified by flash chromatography using 33% ether in hexanes as the eluent, providing 150 mg (67%) of lactone 237, as a white solid. mp 92 – 95 °C; IR (CDCl₃) 3426, 1764, 1718 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.93 (d, J = 8.3 Hz, 2H), 7.53 (d, 8.3 Hz, 2H), 7.42 (m, 9H), 6.62 (s, 1H), 5.61 (d, J = 4.4 Hz, 1H), 5.23 (m, 3H), 4.32 (dd, J = 4.4, 1.4 Hz, 1H), 2.40 (s, 3H), 0.95 (s, 9H), 0.27 (s, 3H), 0.09 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 165.4, 155.6, 145.3, 139.9, 135.8, 135.2, 131.9, 130.3, 130.0, 128.8, 128.6, 128.3, 128.1, 125.8, 124.9, 115.2, 98.1, 74.1, 67.5, 63.5, 54.3, 26.1, 21.9, 18.6, -3.5, -4.1; APCIMS m/z (relative intensity) 701.1 (M + H, 85%), 703.1 (⁸¹Br, 100%) HRMS calcd for C₃₂H₃₇BrN₂O₇Si (M + H) 701.1352, found 701.1373; Anal. Calcd for C₃₂H₃₇BrN₂O₇Si: C, 54.77; H, 5.31; N, 3.99; S, 4.57; Found: C, 54.76; H, 5.30; N, 3.91; S, 4.57.
Lithium bis(trimethylsilylamide) (1.0 M in THF, 100 mL, 100 mmol) was added to indole-3-carbaldehyde (14.5 g, 100 mmol) in THF (250 mL) and stirred for 90 min at room temperature. Benzyl chloroformate (16.3 mL, 110 mmol) was added and the reaction solution was stirred for 15 h. The reaction solution was added to water (200 mL), extracted with CH$_2$Cl$_2$ (3 x 100 mL), dried over MgSO$_4$, filtered, and concentrated in vacuo to yield 28.3 g (100%) of the crude CBz-protected aldehyde as a yellow solid.

**n-Butyllithium (38.5 mL, 2.5 M in hexanes, 96 mmol) was added to (carbomethoxy)methyltriphenylphosphonium bromide (41 g, 100 mmol) in DME (500 mL). To this solution, the protected indole (25.1 g, 90 mmol) was added as a solid in one portion and the reaction solution was stirred for 36 h at room temperature. The reaction solution was added to ice, extracted with CH$_2$Cl$_2$ (3 x 200 mL), dried over MgSO$_4$, filtered, and concentrated in vacuo. The crude product was recrystallized from methanol to yield 22.4 g (74%) of alkene 241 as a yellow solid. mp 94 - 96 °C; IR (CDCl$_3$) 1741, 1707 cm$^{-1}$; 1H NMR (300 MHz, CDCl$_3$) δ 8.19 (d, $J = 7.9$ Hz, 1H), 7.79 (m, 3H), 7.47 (m, 7H), 6.52 (d, $J = 16.1$ Hz, 1H), 5.41 (s, 2H), 3.79 (s, 3H); 13C NMR (75 MHz, CDCl$_3$) δ 167.8, 150.3, 136.4, 136.3, 136.2, 134.8, 129.1, 129.0, 128.7, 128.2, 127.9, 125.6, 124.0, 120.4, 117.6, 115.7, 69.3, 51.2; ESI m/z (relative intensity) 358.1 (M + Na, 100%); HRMS calcd for C$_{20}$H$_{17}$NO$_4$ (M + Na), 358.1043, found 358.1055.
Benzyl 3-((1S,2R)-1,2-Dihydroxy-3-methoxy-3-oxopropyl)-1H-indole-1-carboxylate (242). Alkene 241 (280 mg, 0.84 mmol) was added to AD mix-α (1.4 g) and methanesulfonamide (95 mg, 1 mmol) in t-BuOH/water (10 mL, 1/1) and stirred for 15 h at room temperature. Sodium sulfite (1.5 g) was added and the reaction solution was stirred for 30 min and extracted with ethyl acetate (3 x 25 mL). The combined organic layers were washed with 1 M KOH (25 mL), water, and brine, dried over MgSO₄, filtered, and concentrated in vacuo. The product was purified by flash chromatography using 40% EtOAc in hexanes as the eluent to yield 170 mg (55%) of the diol as a white solid. mp 104 - 106 °C; [α]²⁵ D + 11.347 (c 0.43 CH₂Cl₂); IR (CDCl₃) 3440, 1735, 1644 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 8.18 (s, 1H), 7.74 (s, 1H), 7.64 (d, J = 7.9 Hz, 1H), 7.48 (m, 2H), 7.41 (m, 3H), 7.37 (m, 1H), 7.28 (m, 1H), 5.43 (s, 2H), 5.30 (dd, J = 5.8, 1.5 Hz, 1H), 4.54 (dd, J = 5.6, 1.5 Hz, 1H), 3.84 (s, 3H), 3.28 (d, J = 5.4 Hz, 1H), 2.66 (d, J = 8.3 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 173.3, 150.8, 149.2, 135.8, 135.7, 135.2, 129.0, 128.8, 125.3, 123.6, 123.4, 120.9, 119.5, 115.7, 73.4, 69.0, 68.6, 53.3; ESI m/z (relative intensity) 392.1 (M + Na, 100%); HRMS calcd for C₂₀H₁₉NO₆ (M + Na), 392.1110, found 392.1113.
Benzyl 3-((1S,2S)-2-Azido-1-(tert-butyldimethylsilyloxy)-3-methoxy-3-oxopropyl)-1H-indole-1-carboxylate (243). Diol 242 (13.3 g, 36 mmol) was dissolved in CH₂Cl₂ (350 mL) and cooled to 0 °C. Triethylamine (10.2 mL, 73 mmol) and 4-nitrobenzenesulfonyl chloride (7.9 g, 36 mmol) were added and the reaction solution was stirred at 0 °C for 15 h. The reaction solution was added to 1 M HCl (150 mL), extracted with CH₂Cl₂ (3 x 150 mL), washed with water and brine, dried over Na₂SO₄, filtered, and concentrated in vacuo to yield 14.4 g (72%) of the crude nosylate as a yellow solid.

Sodium azide (1.87 g, 28.7 mmol) was added to a solution of the nosylate (14.4 g, 25.9) in DMF (130 mL), and the reaction solution was heated for 15 h at 45 °C. The reaction solution was concentrated in vacuo, and the residue was dissolved in CH₂Cl₂ (150 mL), washed with water and brine, dried over Na₂SO₄, filtered, and concentrated in vacuo to yield 5.73 g (56%) of the crude azide.

2,6-Lutidine (4.40 mL, 38.1 mmol) was added to the crude azide (5.73 g, 14.5 mmol) in CH₂Cl₂ (250 mL) and stirred for 5 min. tert-Butyldimethylsilyl trifluoromethanesulfonate (4.40 mL, 19.1 mmol) was added and stirring was continued for 15 h at room temperature. The reaction solution was added to water (150 mL), extracted with CH₂Cl₂ (3 x 150 mL), dried over Na₂SO₄, filtered, and concentrated in vacuo. The crude product was purified by flash chromatography using 10% ether in hexanes as the eluent, providing 6.70 g (91%) of the TBS ether as a yellow solid. mp 58 - 60 °C; IR (CDCl₃) 2111, 1743 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 8.19 (bs, 1H), 87
7.73 (d, $J = 7.7$ Hz, 1H), 7.66 (s, 1H), 7.50 (m, 2H), 7.44 (m, 3H), 7.33 (m, 1H), 7.26 (m, 1H), 5.49 (d, $J = 12$ Hz, 1H), 5.45 (d, $J = 12$ Hz, 1H), 5.22 (d, $J = 7.7$ Hz, 1H), 4.26 (d, $J = 7.7$ Hz, 1H), 3.75 (s, 3H), 0.84 (s, 9H), 0.06 (s, 3H), -0.21 (s, 3H); 13C NMR (125 MHz, CDCl$_3$) δ 169.4, 151.1, 149.4, 136.2, 135.4, 129.2, 128.9, 128.6, 125.5, 124.4, 123.5, 120.9, 120.8, 115.9, 70.4, 69.3, 67.3, 52.9, 25.9, 18.4, -4.4, -5.1; ESI m/z (relative intensity) 531.2 (M + Na, 100%); HRMS calcd for C$_{26}$H$_{32}$N$_4$O$_5$Si (M + Na), 531.2040, found 531.2074.

Benzyl 3-((5S,6S)-6-(Methoxycarbonyl)-2,2,3,3,10,10-hexamethyl-8-oxo-4,9-dioxa-7-aza-3-silaundecan-5-yl)-1H-indole-1-carboxylate. Trimethylphosphine (2.7 mL, 1M in THF, 2.7 mmol) was slowly added to a solution of 243 (1.30 g, 2.55 mmol) in THF (25 mL) at room temperature, and stirring was continued for 45 min. The reaction solution was cooled below -20 °C, BOC-ON (680 mg, 2.72 mmol) in THF (10 mL) was added, and the reaction solution was warmed to room temperature and stirred for 15 h. The reaction mixture was added to water (20 mL), extracted with CH$_2$Cl$_2$ (3 x 20 mL), washed with brine, dried over Na$_2$SO$_4$, filtered, and concentrated in vacuo. The crude product was purified by flash chromatography using 10% ether in hexanes as the eluent, providing 1.13 g (76%) of the Boc protected amine as a colorless oil. IR (CDCl$_3$) 1741 cm$^{-1}$; 1H NMR (500 MHz, CDCl$_3$) δ 8.16 (bs, 1H),87 7.84 (d, $J = 7.6$ Hz, 1H), 7.52 (s, 1H), 7.49 (m, 2H), 7.42 (m, 3H), 7.33 (m, 2H), 5.49 (d, $J = 11.8$ Hz, 1H), 5.44 (d, $J =$
11.8 Hz, 1H), 5.36 (d, J = 8.0 Hz, 1H), 5.28 (d, J = 3.3 Hz, 1H), 4.69 (dd, J = 8.0, 3.6 Hz, 1H), 3.53 (s, 3H), 1.42 (s, 9H), 0.90 (s, 9H), 0.09 (s, 3H), -0.10 (s, 3H); 13C NMR (125 MHz, CDCl$_3$) δ 170.2, 155.0, 150.9, 135.3, 129.2, 129.0 (2 carbons), 128.7, 128.6, 125.0, 123.3, 122.1, 120.8, 115.7, 115.4, 80.1, 70.8, 68.9, 59.7, 52.1, 28.5, 25.9, 18.3, -4.7, -5.1; ESI m/z (relative intensity) 583.3 (M + H, 100%), 605.3 (M + Na, 80%); HRMS calcd for C$_{31}$H$_{42}$N$_2$O$_7$Si (M + H), 583.2840, found 583.2836.

Benzyl 3-((5S,6S)-6-(Benzyloxy carbonyl)-2,2,3,3,10,10-hexamethyl-8-oxo-4,9-dioxa-7-aza-3-silaundecan-5-yl)-1H-indole-1-carboxylate (244). The BOC protected amine (4.30 g, 7.4 mmol), benzyl alcohol (7.75 mL, 74 mmol) and bis(dibutylchlorotin) oxide (1.55 g, 28 mmol) in benzene (300 mL) were refluxed for 15 h. Additional bis(dibutylchlorotin) oxide (1.55 g, 28 mmol) was added and refluxing was continued for 24 h. The reaction solution was concentrated in vacuo, and the crude product was purified by flash chromatography using 7% ether in hexanes as the eluent, providing 3.4 g (70%) of benzyl ester 244 as a colorless oil. IR (CDCl$_3$) 1740, 1710 cm$^{-1}$; 1H NMR (500 MHz, CDCl$_3$) δ 8.17 (bs, 1H),87 7.90 (d, J = 7.5 Hz, 1H), 7.43 (m, 6H), 7.33 (m, 2H), 7.17 (m, 3H), 6.96 (m, 2H), 5.52 (d, J = 7.7 Hz, 1H), 5.43 (d, J = 11.7 Hz, 1H), 5.34 (m, 2H), 5.00 (d, J = 12.3 Hz, 1H), 4.91 (d, J = 12.3 Hz, 1H), 4.81 (dd, J = 7.8, 3.0 Hz, 1H), 1.45 (s, 9H), 0.90 (s, 9H), 0.10 (s, 3H), -0.08 (s, 3H); 13C NMR (125 MHz, CDCl$_3$) δ 169.1, 154.8, 150.5, 135.7, 135.1, 134.9, 128.7, 128.6, 128.3, 128.2, 128.1, 128.0, 124.8, 123.2, 123.1, 122.0, 120.4, 115.2, 79.8, 70.7, 68.5, 66.8, 59.3, 28.4, 25.7, 18.1, -
4.9, -5.2; ESI m/z (relative intensity) 681.3 (M + Na, 100%); HRMS calcd for C$_{37}$H$_{46}$N$_2$O$_7$Si (M + Na), 681.2972, found 681.3019.

(2S,3S)-2-(tert-Butoxycarbonylamino)-3-(tert-butyldimethylsilyloxy)-3-(1H-indol-3-yl)propanoic Acid (245). Benzyl ester 244 (60 mg, 0.09 mmol) and 10 % palladium-on-carbon were freeze-pump-thaw degassed in THF (3 mL) and stirred under H$_2$ for 1 h at room temperature. The reaction solution was filtered through Celite and concentrated in vacuo to yield 40 mg (100%) of the crude acid as a white solid which was found to be unstable to silica gel. IR (CDCl$_3$) 3306, 1716 cm$^{-1}$; 1H NMR (300 MHz, d6-acetone) δ 8.23 (d, $J = 7.9$ Hz, 1H), 8.01 (d, $J = 7.4$ Hz, 1H), 7.73 (s, 1H), 7.46 (m, 2H), 7.23 (m, 1H), 5.96 (d, $J = 8.5$ Hz, 1H), 5.45 (d, $J = 5$ Hz, 1H), 4.74 (dd, $J = 8.5$, 5.0 Hz, 1H), 1.43 (s, 9H), 0.92 (s, 9H), 0.14 (s, 3H), -0.06 (s, 3H); 13C NMR (75 MHz, d6-acetone) δ 172.9, 156.3, 138.3, 127.3, 124.8, 122.7, 121.3, 120.1, 116.3, 112.7, 79.7, 71.8, 61.4, 28.9, 26.5, 19.2, -4.2, -4.7; APCI m/z (relative intensity) 457.1 (M + Na, 100%); HRMS calcd for C$_{22}$H$_{34}$N$_2$O$_5$Si (M + Na), 457.2135, found 457.2123.

(5S)-2-(tert-Butoxycarbonylamino)-3-(2-(phenylthio)-1H-indol-3-yl)propanoic Acid (253). A solution of phenylsulfenyl chloride (1.25 mL, 8.7 mmol) in CH$_2$Cl$_2$ (30 mL) was added to a solution of N-tertbutoxycarbonyl-L-tryptophan (2.5 g, 8.2 mmol) and
triethylamine (1.25 mL, 9.0 mmol) in CH₂Cl₂ (30 mL) and stirred for 90 min. The reaction solution was concentrated and the residue was purified by flash chromatography using 5% MeOH in 1/1 EtOAc/hexanes as the eluent to yield 3.04 g (90%) of the 2-substituted indole as a white solid. mp 76 – 78 °C; IR (CDCl₃) 3459, 1756, 1711 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 10.67 (s, 1H), 7.76 (d, J = 8.1 Hz, 1H), 7.38 (d, J = 8.1 Hz, 1H), 7.28 (m, 2H), 7.18 (m, 5H), 5.84 (d, J = 7.7 Hz, 1H), 4.54 (m, 1H), 3.50 (dd, J = 14, 6 Hz, 1H), 3.34 (dd, J = 14, 6 Hz, 1H), 1.30 (s, 9H); ¹³C NMR (75 MHz, d₆-acetone) δ 173.5, 155.9, 138.4, 137.9, 129.9, 128.8, 127.6, 126.6, 124.0, 123.8, 120.2, 120.1, 119.0, 114.9, 79.0, 55.2, 28.3, 15.5; APCI m/z (relative intensity) 413.3 (M + H, 100%); HRMS calcd for C₂₂H₂₄N₂O₄S (M + H) 413.1535, found 413.1520.

3-(2-Benzene sulfinyl-1H-indol-3-yl)-2-tert-butoxycarbonylaminopropionic Acid (255). m-Chloroperbenzoic acid (100 mg, 0.58 mmol) was added to a solution of 253 (250 mg, 0.61 mmol) in CH₂Cl₂ (15 mL) at 0 °C and stirred at 0 °C for 1 h, followed by concentration in vacuo. The crude product was purified by flash chromatography using 10% methanol in ethyl acetate as the eluent to yield 200 mg (81%) of 255 as a white solid (1:1 mixture of diastereomers). IR (CDCl₃) 3434, 3259, 1699 cm⁻¹; ¹H NMR (360 MHz, CD₃OD, 1:1 mixture of diastereomers) δ 7.96 (m, 1H), 7.93 (m, 1H), 7.77 (m, 6H), 7.57 (m, 6H), 7.44 (m, 1H), 7.30 (m, 2H), 7.23 (t, J = 7.4 Hz, 1H), 7.10 (t, J = 7.1 Hz, 2H), 4.56 (m, 1H), 4.49 (m, 1H), 3.71 (td, J = 16.8, 5.3 Hz, 2H), 3.51 (dd, J = 8.5, 7.9 Hz, 1H), 2.10 (m, 4H), 1.30 (s, 9H).
Hz, 2H), 1.29 (s, 9H), 1.26 (s, 9H); 13C NMR (75 MHz, CD$_3$OD, 1:1 mixture of diastereomers) δ 178.2, 177.2, 156.1, 141.3, 141.2, 138.7, 132.5, 131.0, 129.4, 127.6, 126.9, 125.4, 125.2, 125.1, 121.5, 121.3, 121.1, 120.1, 120.0, 112.1, 80.5, 79.3, 57.0, 56.8, 27.7, 27.0, 21.9; ESI m/z (relative intensity) 427.2 (M – H, 100%); HRMS calcd for C$_{22}$H$_{24}$N$_2$O$_5$S (M - H) 427.1328, found 427.1313.

(2S)-tert-butyldimethylsilyl 2-(tert-Butoxycarbonylamino)-3-(2-(phenylsulfanyl)-1H-indol-3-yl)propanoate (256). Acid 253 (2.83 g, 6.9 mmol) was cooled to 0 °C in EtOAc (65 mL). Triethylamine (965 μL, 6.9 mmol) followed by TBSCI (1.08 g, 7.1 mmol) were added and the reaction mixture was stirred at 0 °C for 2 h. The reaction solution was filtered to remove triethylamine hydrochloride and concentrated to yield 3.43 g of the TBS protected ester as a highly unstable beige solid.

The TBS ester (3.43 g, 6.5 mmol) was dissolved in CH$_2$Cl$_2$ (120 mL) and cooled to 0 °C. m-Chloroperbenzoic acid (1.08 g, 6.3 mmol) was added and the reaction solution was stirred at 0 °C for 3 h. The reaction solution was added to saturated NaHCO$_3$ (10 mL), extracted with CH$_2$Cl$_2$ (3 x 20 mL), dried over Na$_2$SO$_4$, filtered, and concentrated in vacuo to yield 3.4 g (100%, 2 steps) of 256 as a highly unstable light brown solid (mixture of diastereomers). IR (CDCl$_3$) 3442, 1716 cm$^{-1}$; 1H NMR (360 MHz, CDCl$_3$) δ 7.71 (m, 4H), 7.59 (m, 2H), 7.39 (m, 6H), 7.30 (m, 2H), 7.19 (m, 2H), 7.06 (m, 4H), 5.35 (d, J = 8 Hz, 1H), 5.29 (d, J = 8 Hz, 1H), 4.60 (m, 2H), 3.61 (m, 1H),
3.43 (m, 3H), 1.33 (s, 9H), 1.31 (s, 9H), 0.87 (s, 9H), 0.86 (s, 9H), 0.23 (s, 3H), 0.20 (s, 3H), 0.19 (s, 3H), 0.17 (s, 3H); 13C NMR (100 MHz, CDCl$_3$) δ 172.6, 172.4, 155.7, 155.5, 143.5, 143.4, 138.3, 138.2, 133.9, 133.7, 131.4, 129.8, 129.6, 127.4, 127.0, 126.2, 125.8, 125.6, 125.4, 120.8, 120.7, 120.6, 120.5, 117.2, 116.7, 112.3, 80.2, 80.2, 55.8, 28.8, 28.6, 26.2, 26.1, 25.9, 25.8, 18.5, 18.0, -3.1, -4.4; APCI m/z (relative intensity) 543.2 (M + H, 100%), 443.1 (M – Boc, 45%); HRMS calcd for C$_{28}$H$_{38}$N$_2$O$_5$SSi (M + H) 543.2349, found 543.2341.

![Structural formula](image)

tert-Butyl (4S)-5-oxo-2'-(phenylthio)-4,5-dihydro-3H-spiro[furan-2,3'-indole]-4-ylcarbamate (254). A solution of trifluoroacetic anhydride (175 μL, 1.24 mmol) in CH$_2$Cl$_2$ (20 mL) at -78 °C was added to a solution of 256 (500 mg, 0.93 mmol) and Hunig’s base (400 μL, 2.30 mmol) in CH$_2$Cl$_2$ (20 mL) at -78 °C, and the solution was stirred at -78 °C for 2 h. The reaction solution was warmed to room temperature and added to saturated NaHCO$_3$ (5 mL), extracted with CH$_2$Cl$_2$ (3 x 10 mL), dried over Na$_2$SO$_4$, filtered, and concentrated in vacuo. The crude product was purified by flash chromatography using 50% ether in hexanes as the eluent to yield 80 mg (21%) of 254 as a white solid (1:1 mixture of diastereomers). From this mixture, a small amount (30 mg) of the less polar diastereomer was isolated by flash chromatography using 50% ether in hexanes as the eluent as a white solid. IR (CDCl$_3$) 3434, 1798, 1714, 1525 cm$^{-1}$; 1H NMR (300 MHz, CDCl$_3$) δ 7.69 (m, 2H), 7.54 (m, 4H), 7.36 (m, 2H), 7.23 (m, 1H), 5.32 (d, $J = 7.1$ Hz, 1H), 4.93 (m, 1H), 3.06 (dd, $J = 13.7$, 9.5 Hz, 1H), 2.83 (m, 1H), 1.52 (s, 9H);
For the mixture: ESI m/z (relative intensity) 411.1 (M + H, 100%); HRMS calcd for C_{22}H_{22}N_{2}O_{4}S (M + H) 411.1379, found 411.1351; Anal. Calcd for C_{22}H_{22}N_{2}O_{4}S: C, 64.37; H, 5.40; N, 6.82; S, 7.81; Found: C, 64.49; H, 5.75; N, 6.50; S, 7.70.

Lactone 254 from Sulfide 253. 253 (500 mg, 1.21 mmol) was cooled to -78 °C in CH_{2}Cl_{2} (40 mL). 2, 6-Lutidine (400 μL, 3.46 mmol) was added followed by PhI(CN)OTf (1.12 g, 2.96 mmol). The reaction solution was slowly warmed to room temperature and stirred there for 15 h. The reaction solution was added to water (25 mL) and extracted with CH_{2}Cl_{2} (3 x 25 mL), dried over Na_{2}SO_{4}, filtered, and concentrated in vacuo. The crude product was purified by flash chromatography using 33% ether in hexanes as the eluent to yield 190 mg (38%) of 254 as a white solid (1:1 mixture of diastereomers).

\[
\text{tert-Butyl (4S)-2',5-dioxo-4,5-dihydro-3H-spiro[furan-2,3'-indoline]-4-ylcarbamate (257).} \]

Cerium (IV) ammonium nitrate (868 mg, 1.58 mmol) was added to a solution of 254 (550 mg, 1.34 mmol) in CH_{3}CN/H_{2}O (60 mL, 5/1) and stirred for 15 h. The aqueous layer was extracted with EtOAc (3 x 10 mL), and the combined organic
layers were dried over Na$_2$SO$_4$, filtered, and concentrated in vacuo. The crude product was purified by flash chromatography using 25% hexanes in Et$_2$O as the eluent to yield 370 mg (87%) of 257, as a white solid (1:1 mixture of diastereomers). IR (CDCl$_3$) 3434, 1793, 1747, 1715 cm$^{-1}$; 1H NMR (300 MHz, CDCl$_3$) δ 8.13 (s, 2H), 7.49 (d, $J = 6.5$ Hz, 1H), 7.38 (m, 3H), 7.16 (t, $J = 7.6$ Hz, 2H), 6.95 (t, $J = 8.6$ Hz, 2H), 5.88 (d, $J = 9$ Hz, 1H), 5.30 (d, $J = 9$ Hz, 1H), 5.08 (m, 2H), 2.99 (m, 1H), 2.85 (dd, $J = 9.3$, 4.2 Hz, 1H), 2.73 (t, $J = 12.2$ Hz, 1H), 2.51 (dd, $J = 13.7$, 5.6 Hz, 1H), 1.48 (s, 18H); 13C NMR (75 MHz, d8-THF) δ 176.7, 174.2, 156.2, 143.7, 143.1, 131.8, 131.7, 128.6, 128.0, 125.8, 125.4, 123.6, 123.5, 111.2, 111.0, 81.2, 80.5, 79.8, 50.9, 50.3, 37.9, 37.2, 28.6; APCI m/z (relative intensity) 336.0 (M + NH$_4$, 100%), 262.9 (M + H – t-Bu, 40%); HRMS calcd for C$_{15}$H$_{11}$N$_4$O$_4$S (M + NH$_4$) 336.1559, found 336.1526.

Methyl 3-(2-Benzene sulfinyl-1H-indol-3-yl)-2-tert-butoxycarbonylamino propionate (258). Trimethylsilyldiazomethane (808 µL, 2M in hexanes 1.62 mmol) was added to acid 253 (500 mg, 1.21 mmol) in benzene (5 mL) and methanol (5 mL). The reaction solution was stirred for 45 min and then concentrated in vacuo. The crude product was purified by flash chromatography using 33% ether in hexanes as the eluent to yield 330 mg (64%) of the methyl ester as a white solid. mp 104 - 106 ºC; IR (CDCl$_3$) 3458, 1741, 1710 cm$^{-1}$; 1H NMR (360 MHz, CDCl$_3$) δ 8.53 (s, 1H), 7.59 (d, $J = 7.9$ Hz, 1H), 7.33 (m, 8H), 5.15 (d, $J = 8.0$ Hz, 1H), 4.66 (m, 1H), 3.61 (s, 3H), 3.44 (dd,
\(J = 14.3, 5.5 \text{ Hz, 1H}, 3.31 (\text{dd, } J = 14.3, 6.3 \text{ Hz, 1H}), 1.36 (s, 9\text{H}); \) \(^{13}\text{C NMR (90 MHz, CDCl}_3) \) \(\delta 172.8, 155.3, 137.2, 136.6, 129.4, 128.1, 127.1, 126.3, 123.9, 123.8, 120.3, 119.5, 117.7, 111.2, 79.9, 54.3, 52.5, 28.4, 14.3; \) ESI \(m/z \) (relative intensity) 449.1 (M + Na, 100%); HRMS calcd for C\(_{23}\)H\(_{26}\)N\(_2\)O\(_4\)S 449.1511 (M + Na), found 449.1502.

(2S)-methyl 2-(\text{tert-butoxycarbonylamino})-3-(\text{2-(phenylsulfinyl)-}1H\text{-indol-3-yl})\text{propanoate (259).} \) The methyl ester (330 mg, 0.77 mmol) was cooled to 0 °C in CH\(_2\)Cl\(_2\) (15 mL). \(m\)-Chloroperbenzoic acid (132 mg, 0.76 mmol) was added and the reaction solution was stirred at 0 °C for 90 min. The reaction solution was added to NaHCO\(_3\) (10 mL), extracted with CH\(_2\)Cl\(_2\) (3 x 10 mL), washed with water and brine, and dried over Na\(_2\)SO\(_4\), filtered, and concentrated in vacuo. The crude product was purified by flash chromatography using 20% hexanes in ether as the eluent to yield 240 mg (71%) of 259 as a white solid (1:1 mixture of diastereomers). IR (CDCl\(_3\)) 3439, 1741, 1708 cm\(^{-1}\); \(^1\text{H NMR (360 MHz, CDCl}_3, 1:1 \text{mixture of diastereomers) } \delta 8.58 \text{(s, 1H), 8.53 \text{(s, 1H), 7.72 \text{(m, 4H), 7.64 \text{(m, 2H), 7.52 \text{(m, 6H), 7.29 \text{(m, 4H), 7.16 \text{(m, 2H), 5.35 \text{(d, } J = 8.2 \text{ Hz, 1H), 5.24 \text{(d, } J = 8.0 \text{ Hz, 1H), 4.73 \text{(m, 2H), 3.74 \text{(s, 3H), 3.64 \text{(s, 3H), 3.59 \text{(d, } J = 5.9 \text{ Hz, 1H), 3.50 \text{(m, 3H), 1.46 \text{(s, 9H), 1.37 \text{(s, 9H);}}} \) \(^{13}\text{C NMR (100 MHz, CDCl}_3, 1:1 \text{mixture of diastereomers) } \delta 173.2, 172.2, 155.3, 155.1, 143.3, 143.2, 137.8, 137.7, 134, 133.7, 131.2, 129.6, 129.5, 127.3, 127.2, 125.5, 125.2, 120.7, 120.6, 120.3, 120.2, 116.3, 115.8, 112.7, 112.6, 80.2, 80.1, 54.3, 54.2, 52.7, 52.6, 28.5, 28.4, 14.3; \) ESI \(m/z \) (relative
intensity) 465.1 (M + Na, 100%); HRMS calcd for C_{23}H_{26}N_2O_5S 465.1460 (M + Na), found 465.1465.

Methyl 2-tert-Butoxycarbonylamino-3-(3-hydroxy-2-phenylsulfanyl-3H-indol-3-yl) propionate (260) and (256) from 259. Diisopropylethylamine (86 µL, 0.49 mmol) was added to a solution of 259 (88 mg, 0.20 mmol) in CH_2Cl_2 (8 mL) at -78 °C and stirred for 5 min. Trifluoroacetic anhydride (36 µL, 0.26 mmol) was added and the reaction solution was slowly warmed to room temperature over 3 h and stirred there for 15 h. Additional diisopropylethylamine (86 µL, 0.49 mmol) and then trifluoroacetic anhydride (36 µL, 0.26 mmol) were added and the reaction solution was stirred for 48 h. The reaction solution was added to water (10 mL), extracted with CH_2Cl_2 (3 x 5 mL), dried over Na_2SO_4, filtered, and concentrated in vacuo. The crude product was purified by flash chromatography using 50% ether in hexanes as the eluent to yield 52 mg (63%) of 260 as a white solid (1:1 mixture of diastereomers) and 29 mg (33%) of 256 as a white solid (1:1 mixture of diastereomers). 260: IR (CDCl_3) 1745, 1714 cm\(^{-1}\); \(^1\)H NMR (400 MHz, CDCl_3, 1:1 mixture of diastereomers) \(\delta\) 8.00 (d, \(J = 12.2\) Hz, 1H), 7.72 (m, 4H), 7.46 (m, 7H), 7.33 (m, 4H), 7.17 (m, 2H), 5.35 (bs, 1H), 5.09 (bs, 1H), 4.57 (bs, 1H), 4.25 (bs, 1H), 3.68 (s, 3H), 3.65 (s, 3H), 2.71 (dd, \(J = 14.4, 5\) Hz, 1H), 2.56 (dd, \(J = 14.6, 9.4\) Hz, 1H), 2.34 (dd, \(J = 14.4, 9.0\) Hz, 1H), 2.26 (dd, \(J = 14.7\) Hz, 3.6 Hz, 1H), 1.44 (s, 9H), 1.39 (s, 9H); \(^{13}\)C NMR (75 MHz, CDCl_3, 1:1 mixture of diastereomers) \(\delta\) 184.8, 172.4, 154.0, 153.9, 138.6, 134.8, 134.7 130.7, 130.5, 129.7, 129.6, 125.5, 125.3,
123.5, 123.0, 120.3, 86.6, 86.3, 80.8, 77.4, 52.8, 28.5 (2 carbons), 23.8; ESI m/z (relative intensity) 443.1 (M + H, 85%), 465.1 (M + Na, 100%); HRMS calcd for C_{23}H_{26}N_{2}O_{5}S 443.1641 (M + H), found 443.1644.

2-Phenylsulfanyl-1H-indole-3-carbaldehyde. Sodium hydride (1.88 g, 60% dispersion in mineral oil, 47.0 mmol) was added in small portions to a solution of benzenethiol (5.50 mL, 53.5 mmol) in dimethylacetamide (180 mL). Chloride 265 (8.50 g, 47.5 mmol) was added and the reaction solution was heated at 90 °C for 2.5 h. The reaction solution was added to ice, extracted with EtOAc (3 x 40 mL), dried over Na_{2}SO_{4}, filtered, and concentrated in vacuo. The crude product was purified by flash chromatography using 50% ether in hexanes as the eluent to yield 9.95 g (83%) of the 2-substituted indole as a white solid: mp 166 – 169 °C; IR (CDCl3) 3439, 1655 cm\(^{-1}\); \(^1\)H NMR (300 MHz, CDCl3) \(\delta\) 10.3 (s, 1H), 8.41 (s, 1H), 8.29 (m, 1H), 7.46 (m, 2H), 7.39 (m, 3H), 7.29 (m, 3H); \(^{13}\)C NMR (75 MHz, CDCl3) \(\delta\) 185.6, 140.7, 136.5, 131.9, 131.6, 130.2, 128.9, 126.1, 124.7, 123.4, 121.3, 118.8, 111.1; ESI m/z (relative intensity) 254.0 (M + H, 100%); HRMS calcd for C_{15}H_{11}N_{4}O_{4}S (M + H) 254.0640, found 254.0631; Anal. Calcd for C_{15}H_{11}N_{4}O_{4}S: C, 71.12; H, 4.38; N, 5.53; S, 12.66; Found: C, 71.12; H, 4.42; N, 5.54; S, 12.89.
2-Azido-3-(tert-butyl-dimethyl-silanyloxy)-3-(2-phenylsulfanyl-1H-indol-3-yl)-propionic Acid. *n*-Butyllithium (9.1 mL, 2.3 M in hexanes, 21 mmol) was added to (carbomethoxy)methyltriphenylphosphonium bromide (8.8 g, 21 mmol) in DME (100 mL). To this solution, the aldehyde (4.89 g, 19.3 mmol) in DME (100 mL) was added and the reaction solution was brought to reflux and held there for 40 h. The reaction solution was added to ice, extracted with CH$_2$Cl$_2$ (3 x 50 mL), dried over Na$_2$SO$_4$, filtered, and concentrated in vacuo. The crude product was purified by flash chromatography using 33% ether in hexanes as the eluent to yield 4.84 g (81%) of the alkene as a white solid. mp 161 - 162 °C; IR (CDCl$_3$) 3450, 1698, 1627 cm$^{-1}$; 1H NMR (300 MHz, CDCl$_3$) δ 8.18 (d, $J = 16.1$ Hz, 1H), 7.93 (m, 1H), 7.73 (m, 2H), 7.46 (m, 1H), 7.36 (m, 1H), 7.26 (m, 5H), 6.65 (d, $J = 16.1$ Hz, 1H), 3.79 (s, 3H); 13C NMR (75 MHz, CDCl$_3$) δ 168.5, 137.3, 134.8, 132.0, 131.3, 129.4, 128.6, 126.9, 125.8, 124.1, 121.7, 120.4, 117.3, 115.0, 111.6, 51.5; APCI m/z (relative intensity) 310.2 (M + H, 100%); HRMS calcd for C$_{18}$H$_{15}$NO$_2$S (M + H) 310.0902, found 310.0892
Benzyl 3-((1S,2R)-1,2-Dihydroxy-3-methoxy-3-oxopropyl)-2-(phenylthio)-1H-indole-1-carboxylate (266). Sodium hydride (702 mg, 60% dispersion in mineral oil, 17.6 mmol) was added to a solution of the alkene (5.0 g, 16 mmol) in THF (100 mL) and stirred for 2 h. Benzyl chloroformate (2.56 mL, 17.9 mmol) was added and stirring was continued for 15 h. The reaction solution was added to ice, extracted with CH$_2$Cl$_2$ (3 x 25 mL), dried over Na$_2$SO$_4$, filtered, and concentrated in vacuo to yield 7.4 g crude of the CBz-protected indole.

The crude CBz-protected indole (7.4 g) was suspended in t-BuOH/H$_2$O (90 mL, 1/1). A modified AD mix-α (potassium ferricyanide (15.80 g), potassium carbonate (6.67 g), (DHQ)$_2$PHAL (625 mg), and K$_2$OsO$_2$(OH)$_4$ (63 mg)) and methanesulfonamide (4.61 g, 48.5 mmol) was added in 4 equal portions at 1 h intervals, and stirring was continued for 15 h. Sodium sulfite (25 g) was added, and the reaction solution was stirred for 30 min. The reaction mixture was then extracted with EtOAc (3 x 25 mL), and the combined organic fractions were washed with 1 M KOH (25 mL), water, and brine, dried over Na$_2$SO$_4$, filtered, and concentrated in vacuo. The crude product was purified by flash chromatography using 40% EtOAc in hexanes as the eluent to yield 6.45 g (85%, 2 steps, > 99% ee88) of the diol as a white solid. mp 142 – 144 °C; [α]$^D_{25}$ + 7.8 (c 1 CH$_2$Cl$_2$); IR (CDCl$_3$) 3531, 1737 cm$^{-1}$; 1H NMR (360 MHz, CDCl$_3$) δ 8.16 (d, J = 8.4 Hz, 1H), 8.05 (d, J = 7.8 Hz, 1H), 7.34 (m, 7H), 7.18 (m, 3H), 7.03 (m, 2H), 5.60 (dd, J
= 6, 4 Hz, 1H), 5.27 (d, J = 12 Hz, 1H), 5.22 (d, J = 12 Hz, 1H), 4.39 (dd, J = 6, 4 Hz, 1H), 3.75 (s, 3H), 3.60 (d, J = 6 Hz, 1H), 3.31 (d, J = 6 Hz, 1H); \(^{13}\)C NMR (75 MHz, CDCl\(_3\)) \(\delta\), 173.0, 150.9, 138.0, 136.8, 134.8, 130.3, 129.9, 129.3, 128.9, 128.8, 127.3, 126.7, 126.6, 126.2, 124.5, 123.6, 121.0, 116.1, 74.5, 70.9, 69.2, 53.3; ESI m/z (relative intensity) 460.2 (M + H – H\(_2\)O, 100%); Anal. Calcd for C\(_{26}\)H\(_{23}\)NO\(_6\)S: C, 65.39; H, 4.85; N, 2.93; S, 6.71; Found: C, 65.11; H, 4.90; N, 3.00; S, 6.53.

Benzyl 3-((1S,2S)-2-Azido-1-(tert-butyldimethylsilyloxy)-3-methoxy-3-oxopropyl)-2-(phenylthio)-1H-indole-1-carboxylate (267). The diol (1.6 g, 3.4 mmol) was dissolved in CH\(_2\)Cl\(_2\) (60 mL) and cooled to 0 °C. Triethylamine (966 \(\mu\)L, 6.9 mmol) and 4-nitrobenzenesulfonyl chloride (772 mg, 3.5 mmol) were added and the reaction solution was stirred at 0 °C for 15 h. The reaction solution was added to 1 M HCl (20 mL), extracted with CH\(_2\)Cl\(_2\) (3 x 20 mL), washed with water and brine, dried over Na\(_2\)SO\(_4\), filtered, and concentrated in vacuo to yield 2.4 g of the crude nosylate as a yellow solid.

Sodium azide (450 mg, 6.9 mmol) was added to a solution of the nosylate (2.4 g, crude) in acetone/water (50 mL, 1/1), and the reaction solution was heated for 15 h at 60 °C. The acetone was removed in vacuo, and the resulting water layer was extracted with CH\(_2\)Cl\(_2\) (3 x 25 mL). The organic layers were washed with water and brine, dried over Na\(_2\)SO\(_4\), filtered, and concentrated in vacuo to yield 1.78 g of the crude azide.
2,6-Lutidine (1.08 mL, 9.4 mmol) was added to the crude azide (1.78 g) in CH₂Cl₂ (60 mL) and stirred for 5 min. Tertbutyldimethylsilyl trifluoromethanesulfonate (1.08 mL, 4.7 mmol) was added and stirring was continued for 15 h. The reaction solution was added to water (30 mL), extracted with CH₂Cl₂ (3 x 30 mL), dried over Na₂SO₄, filtered, and concentrated in vacuo. The crude product was purified by flash chromatography using 33% ether in hexanes as the eluent, providing 1.40 g (67% over 3 steps) of the TBS ether as a yellow oil. IR (CDCl₃) 2116, 1739 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 8.23 (m, 2H), 7.45 (m, 7H), 7.21 (m, 3H), 7.03 (m, 2H), 6.03 (d, J = 3 Hz, 1H), 5.36 (d, J = 12 Hz, 1H), 5.29 (d, J = 12 Hz, 1H), 3.80 (s, 3H), 3.72 (d, J = 3 Hz, 1H), 0.90 (s, 9H), -0.02 (s, 3H), -0.28 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 168.7, 150.8, 137.6, 136.9, 134.5, 131.0, 129.2, 128.7, 128.6, 128.0, 126.2, 126.1, 126.0, 125.8, 123.2, 122.2, 121.9, 115.5, 72.7, 69.1, 67.5, 52.7, 25.5, 18.0, -4.8, -6.0; ESI m/z (relative intensity) 639.2 (M + Na, 100%); HRMS calcd for C₃₂H₃₆N₄O₅SSi (M + NH₄) 634.2519, found 634.2558.

(2S,3S)-2-Azido-3-(tert-butyldimethylsilyloxy)-3-(2-(phenylthio)-1H-indol-3-yl)propanoic Acid (263). The TBS ether (835 mg, 1.35 mmol) and LiOH•H₂O (192 mg, 4.57 mmol) were stirred for 15 h in THF/H₂O (25 mL, 4/1). The reaction solution was acidified with 1 M HCl (10 mL), extracted with CH₂Cl₂ (3 x 10 mL), dried over Na₂SO₄, and concentrated in vacuo, to yield 950 mg crude product of 263, which was found to be unstable to chromatography, as a dark brown oil. IR (CDCl₃) 3455, 3063, 2116, 1722
cm⁻¹; ¹H NMR (360 MHz, CDCl₃) δ 9.83 (s, 1H), 8.18 (s, 1H), 8.06 (d, J = 7.9 Hz, 1H), 7.29 (m, 8H), 5.86 (d, J = 3.6 Hz, 1H), 3.70 (d, J = 3.6 Hz, 1H), 0.85 (s, 9H), -0.01 (s, 3H), -0.30 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 173.6, 136.8, 135.8, 129.4, 127.8, 127.1, 126.6, 123.6, 122.2, 121.5, 120.8, 120.4, 110.9, 72.1, 67.7, 25.6, 18.1, -4.9, -5.8; ESI m/z (relative intensity) 467.1 (M – H, 100%), 503.1 (M + Cl, 10%); HRMS calcd for C₂₃H₂₈N₄O₃SSi (M - H) 467.1573, found 467.1570.

![Structural formula](image)

(3R,4S)-4-Azido-3-(tert-butyldimethylsilyloxy)-2′-(phenylthio)-3H-spiro[furan-2,3′-indol]-5(4H)-one (268). A solution of 263 (20 mg, 0.043 mmol) in CH₂Cl₂ (1 mL) was cooled to -78 °C. 2, 6-Lutidine (15 μL, 0.13 mmol) followed by PhI(CN)OTf (41 mg, 0.11 mmol) were added and the reaction solution was slowly warmed to room temperature over 45 min and stirred there for 15 h. The reaction solution was added to water (3 mL), extracted with CH₂Cl₂ (3 x 5 mL), washed with water and brine, dried over Na₂SO₄, filtered, and concentrated in vacuo. The crude product was purified by flash chromatography using 20% Et₂O in hexanes as the eluent to yield 8 mg (40%) of 268 as an orange oil. IR (CDCl₃) 2116, 1803, 1524 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.68 (m, 2H), 7.49 (m, 3H), 7.34 (m, 2H), 7.22 (m, 2H), 5.03 (d, J = 9.5 Hz, 1H), 4.56 (d, J = 9.5 Hz, 1H), 0.79 (s, 9H), 0.00 (s, 3H), -0.48 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 178.0, 169.8, 154.7, 134.5, 134.0, 132.0, 129.9, 129.6, 126.9, 125.7, 122.8, 120.2, 93.2, 79.2, 63.6, 25.3, 17.7, -5.2, -5.9; ESI m/z (relative intensity) 467.1 (M + H, 100%); HRMS calcd for C₂₃H₂₆N₄O₃SSi (M + H) 467.1573, found 467.1591.
(3R,4S)-4-Azido-3-(tert-butyldimethylsilyloxy)-3H-spiro[furan-2,3'-indoline]-2',5(4H)-dione (262). Cerium (IV) ammonium nitrate (42 mg, 0.077 mmol) was added to a solution of 268 (30 mg, 0.06 mmol) in CH₃CN/H₂O (4.5 mL, 5/1) and stirred for 15 h. The reaction solution was extracted with EtOAc (3 x 5 mL), dried over Na₂SO₄, filtered, and concentrated in vacuo. The crude product was purified by flash chromatography using 50% ether in hexanes as the eluent to yield 12 mg (50%) of 262, as a white solid: mp 128 – 130 °C; IR (CDCl₃) 3432, 2117, 1807, 1752 cm⁻¹; ¹H NMR (360 MHz, CDCl₃) δ 7.50 (m, 2H), 7.41 (m, 1H), 7.15 (m, 1H), 6.91 (d, J = 7.7 Hz, 1H), 4.93 (d, J = 5.1 Hz, 1H), 4.51 (d, J = 5.1 Hz), 0.87 (s, 9H), -0.06 (s, 3H), -0.36 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 173.4, 170.1, 142.4, 132.1, 125.2, 123.9, 123.6, 110.8, 83.1, 79.9, 62.7, 25.4, 17.8, 0.2, -5.5; ESI m/z (relative intensity) 392.2 (M + NH₄, 100%) 375.2 (M + H, 16%); HRMS calcd for C₁₇H₂₂N₄O₄Si (M + H) 375.1489, found 375.1454; Anal. Calcd for C₁₇H₂₂N₄O₄Si: C, 54.53; H, 5.92; N, 14.96; Found: C, 54.32; H, 5.94; N, 14.73.

tert-Butyl 2-Azido-3-(tert-butyldimethylsilyloxy)-3-(2-phenylsulfanyl-1H-indol-3-yl) propionate (272). N, N-Dimethylformamide di-tert-butyl acetal (232 μL,
0.97 mmol) was added to a solution of acid 263 (87 mg, 0.19 mmol) in toluene (3 mL). The reaction solution was brought to 55 °C and held there for 15 h. The reaction solution was added to water (5 mL), extracted with ethyl acetate (3 x 5 mL), washed with brine, dried over Na₂SO₄, filtered, and concentrated in vacuo. The crude product was purified by flash chromatography using 17% ether in hexanes as the eluent to yield 50 mg (52%) of 272 as a colorless oil. IR (CDCl₃) 3458, 2115, 1733 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 8.25 (s, 1H), 8.06 (d, J = 7.7 Hz, 1H), 7.34 (m, 8H), 5.83 (d, J = 4.4 Hz, 1H), 3.70 (m, 1H), 1.40 (s, 9H), 0.94 (s, 9H), 0.09 (s, 3H), -0.29 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 168.9, 137.2, 136.2, 129.8, 129.0, 127.6, 127.1, 124.0, 123.1, 121.9, 121.5, 121.0, 111.2, 83.1, 71.9, 69.0, 28.6, 26.2, 18.5, -4.3, -5.2; ESI m/z (relative intensity) 547.1 (M + Na, 100%); HRMS calcd for C₂₇H₃₆N₄O₃SSi 547.2175 (M + Na), found 547.2162.

tert-Butyl 2-Azido-3-(2-benzesulfinyl-1H-indol-3-yl)-3-(tert-butyl-dimethylsilanyloxy) propionate (273). Sulfide 272 (153 mg, 0.29 mmol) was cooled to 0 °C in CH₂Cl₂ (9 mL). m-Chloroperbenzoic acid (49 mg, 0.28 mmol) was added and the reaction solution was stirred at 0 °C for 20 min. The reaction solution was added to sat. NaHCO₃ (10 mL), extracted with CH₂Cl₂ (3 x 10 mL), washed with water and brine, dried over Na₂SO₄, filtered, and concentrated in vacuo. The crude product was purified by flash chromatography using 33% hexanes in ether as the eluent to yield 107 mg (70
% of 273 as a white solid (1:1 mixture of diastereomers) and 45 mg of recovered 272 (30
%). IR (CDCl₃) 3430, 2115, 1737 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, 1:1 mixture of diastereomers) δ 7.94 (d, J = 8.0 Hz, 1H), 7.84 (m, 4H), 7.49 (m, 3H), 7.44 (m, 3H), 7.41 (m, 3H), 7.34 (m, 2H), 7.23 (m, 2H), 7.14 (m, 2H), 5.84 (d, J = 3.6 Hz, 1H), 5.74 (d, J = 4.4 Hz, 1H), 3.57 (bs, 1H), 3.46 (bs, 1H), 1.43 (s, 18H), 0.94 (s, 9H), 0.86 (s, 9H), 0.17 (s, 3H), 0.07 (s, 3H), -0.01 (s, 3H), -0.33 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, 1:1 mixture of diastereomers) δ 167.6, 167.4, 143.8, 143.3, 137.6, 137.0, 136.8, 134.1, 132.4, 132.0, 131.8, 131.7, 129.7, 129.7, 128.8, 128.8, 126.6, 126.3, 126.3, 125.6, 125.2, 125.1, 121.1, 120.9, 119.4, 112.5, 83.5, 83.4, 70.3, 70.2, 68.7, 68.3, 28.1, 28.1, 18.4, 18.3, 0.2, -4.6, -5.2, -5.3; ESI m/z (relative intensity) 563.2 (M + Na, 100%); HRMS calcd for
C₂₇H₃₆N₄O₄SSi 563.2124 (M + Na), found 563.2133.

Lactone 268 from 272. A solution of 272 (45 mg, 0.086 mmol) in CH₂Cl₂ (2.5
ml) was cooled to -78 °C. 2, 6-Lutidine (37 µL, 0.32 mmol) followed by PhI(CN)OTf
(51 mg, 0.13 mmol) were added and the reaction solution was slowly warmed to room
temperature over 45 min and stirred there for 15 h. The reaction solution was added to
water (3 mL), extracted with ethyl acetate (3 x 5 mL), washed with brine, dried over
Na₂SO₄, filtered, and concentrated in vacuo. The crude product was purified by flash
chromatography using 10% Et₂O in hexanes as the eluent to yield 8 mg (20%) of 268 as
an orange oil.
Lactone 268 from 273. 2,6-Lutidine (17 μL, 0.15 mmol) was added to 273 (22 mg, 0.041 mmol) in CH₃CN (1 mL) and cooled to –40 °C. A solution of Tf₂O (17 μL, 0.10 mmol) in CH₃CN (1 mL) was added and the reaction solution was slowly warmed to room temperature and stirred for 36 h. The reaction solution was added to sat. NaHCO₃ (5 mL), extracted with CH₂Cl₂ (3 x 5 mL), washed with water and brine, dried over Na₂SO₄, filtered, and concentrated in vacuo. The crude product was purified by flash chromatography using 20% ether in hexanes as the eluent to yield 7 mg (37%) of 268 as an orange oil.

![Chemical structure of 268](image)

tert-Butyl 2-tert-Butoxycarbonylamino-3-(tert-butyl-dimethylsilanyloxy)-3-(2-phenylsulfanyl-1H-indol-3-yl) propionate (269). Trimethylphosphine (0.95 mL, 1M in THF, 0.95 mmol) was slowly added to a solution of 267 (200 mg, 0.32 mmol) in THF (4 mL), and stirring was continued for 45 min. The reaction solution was cooled below -20 °C, BOC-ON (230 mg, 0.93 mmol) in THF (1 mL) was added, and the reaction solution was warmed to room temperature and stirred for 15 h. The reaction mixture was added to water (10 mL), extracted with CH₂Cl₂ (3 x 10 mL), washed with brine, dried over Na₂SO₄, filtered, and concentrated in vacuo. The crude product was purified by flash chromatography using 20% ether in hexanes as the eluent, providing 160 mg (72%) of the BOC protected amine as a colorless oil. IR (CDCl₃) 3550, 1743, 1710 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 8.21 (d, J = 8.3 Hz, 1H), 8.02 (d, J = 7.8 Hz, 1H), 7.84 (m, 2H), 7.51 (m, 4H), 7.38 (m, 6H), 5.94 (d, J = 2.6 Hz, 1H), 5.72 (d, J = 9.8 Hz, 1H), 5.26
(s, 2H), 4.72 (dd, J = 9.8, 2.3 Hz, 1H), 3.76 (s, 3H) 1.14 (s, 9H), 0.86 (s, 9H), -0.07 (s, 3H), -0.29 (s, 3H); 13C NMR (75 MHz, CDCl$_3$) δ 171.1, 155.5, 151.2, 138.1, 137.3, 134.7, 133.3, 131.2, 129.6, 129.2 (2 carbons), 128.9, 128.7, 128.5, 126.4, 126.1, 125.7, 123.0, 115.7, 80.5, 72.1, 69.2, 66.4, 52.7, 28.1, 25.8, 15.2, -3.5, -4.7; ESI m/z (relative intensity) 713.2 (M + Na, 90%); HRMS calcd for C$_{37}$H$_{46}$N$_2$O$_7$SiS 713.2693 (M + Na), found 713.2673.

![Chemical structure]

(2R,3S)-**tert-Butyl** 2-(tert-Butoxycarbonylamino)-3-(tert-butyldimethylsilyloxy)-3-(2-(phenylthio)-1H-indol-3-yl)propanoate (270). The BOC-protected amine (160 mg, 0.23 mmol) and LiOH·H$_2$O (33 mg, 0.79 mmol) were stirred for 15 h in THF/H$_2$O (15 mL, 4/1). The reaction mixture was acidified with 1 M HCl (5 mL), extracted with CH$_2$Cl$_2$ (3 x 5 mL), washed with water and brine, dried over Na$_2$SO$_4$, filtered, and concentrated in vacuo. The crude product was purified by flash chromatography using 50% ether in hexanes as the eluent, providing 31 mg (25%) of the acid as a yellow solid.

N, N-Dimethylformamide di-**tert-butyl** acetal (72 µL, 0.30 mmol) was added to a solution of the acid from above (31 mg, 0.057 mmol) in toluene (2 mL). The reaction solution was brought to 55 °C and held there for 15 h. The reaction solution was added to water (5 mL), extracted with ethyl acetate (3 x 5 mL), washed with brine, dried over Na$_2$SO$_4$, filtered, and concentrated in vacuo. The crude product was purified by flash
chromatography using 17% ether in hexanes as the eluent to yield 50 mg (52%) of 270 as a colorless oil. IR (CDCl$_3$) 3692, 3458, 1712 cm$^{-1}$; 1H NMR (300 MHz, CDCl$_3$) δ 8.07 (s, 1H), 7.89 (d, $J = 7.8$ Hz, 1H), 7.23 (m, 7H), 7.10 (m, 1H), 5.66 (d, $J = 3.1$ Hz, 1H), 5.52 (d, $J = 10$ Hz, 1H), 4.44 (dd, $J = 9.7$, 3.1 Hz, 1H), 1.38 (s, 9H), 1.19 (s, 9H), 0.85 (s, 9H), -0.08 (s, 3H), -0.40 (s, 3H); 13C NMR (75 MHz, CDCl$_3$) δ 169.8, 155.2, 136.9, 131.2, 131.0, 129.2, 129.0, 127.9, 127.0, 126.4, 126.3, 123.1, 119.9, 110.5, 81.6, 79.2, 70.8, 61.0, 28.3, 28.1, 25.8, 18.0, -4.7, -5.7; ESI m/z (relative intensity) 621.2 (M + Na, 100%); HRMS calcd for C$_{32}$H$_{46}$N$_2$O$_5$SiS 621.2794 (M + Na), found 621.2795.

$^{(4'S,5'R)}$-tert-Butyl 5'-($^{(tert-Butyldimethylsilyloxy)}$)-2'-oxo-2-(phenylthio)spiro[indole-3,6'-[1,3]oxazinane]-4'-carboxylate (271). A solution of 270 (3 mg, 0.005 mmol) in CH$_2$Cl$_2$ (1 mL) was cooled to -78 °C. 2, 6-Lutidine (2 μL, 0.017 mmol) followed by PhI(CN)OTf (3 mg, 0.008 mmol) were added and the reaction solution was slowly warmed to room temperature over 45 min and stirred there for 15 h. The reaction solution was added to water (3 mL), extracted with ethyl acetate (3 x 5 mL), washed with brine, dried over Na$_2$SO$_4$, filtered, and concentrated in vacuo. The crude product was purified by flash chromatography using 50% Et$_2$O in hexanes as the eluent to yield 2 mg (74%) of 271 as a colorless oil. IR (CDCl$_3$) 3691, 1737 cm$^{-1}$; 1H NMR (400 MHz, CDCl$_3$) δ 7.73 (m, 2H), 7.54 (m, 3H), 7.39 (m, 3H), 7.12 (td $J = 7.1$, 1.6 Hz, 1H), 5.93 (s, 1H), 4.71 (m, 1H), 4.68 (d, $J = 2.6$ Hz, 1H), 1.60 (s, 9H), 0.80 (s, 9H), 0.00 (s, 9H), 0.85 (s, 9H), -0.08 (s, 3H), -0.40 (s, 3H).
1H NMR (100 MHz, CDCl$_3$) δ 179.4, 166.2, 154.2, 152.4, 135.8, 135.0, 131.1, 130.3, 129.9, 127.6, 127.0, 125.6, 120.2, 85.5, 77.6, 69.5, 58.3, 30.1, 26.3, 18.5, -4.0, -4.6; ESI m/z (relative intensity) 604.1 (M + Na); HRMS calcd for C$_{28}$H$_{36}$N$_2$O$_5$SiS 563.2012 (M + Na), found 563.2018.

6.3 Enantioselective Pummerer reaction development

General Procedure for the Pummerer Rearrangement. 2,6-Lutidine and then trifluoromethanesulfonic anhydride were added to a solution of the indicated sulfoxide in the specified solvent at the temperature listed. TLC analysis generally showed consumption of the sulfoxide within 20 min. Water was added and the cooling bath was removed, allowing the reaction solution to warm to room temperature. The two layers were separated and the aqueous layer was extracted with ethyl acetate. The combined organic layers were dried over Na$_2$SO$_4$, filtered, and concentrated in vacuo. The crude product was used without purification unless otherwise indicated.

General Procedure for Determination of the Enantiomeric Excess of Samples. The enantiomeric excess of the samples was established using 1H NMR and the chiral shift reagents (S)-(+)2,2,2-trifluoro-1-(9-anthryl)ethanol (TFAE) and europium(III) tris[3-(trifluoromethylhydroxymethylene)-(+)camphorato] ((+)- Eu(tfc)$_3$). The indicated shift reagent was gradually added to the sample to achieve optimal peak separation of the two enantiomers.
Methyl 4-(5-Methoxy-1H-indol-3-yl)butanoate (282). TMSCH₂N₂ (25 mL, 2.0 M in hexanes, 50 mmol) was added slowly to crude 5-methoxyindole 3-butyric acid (30.39 g, 130 mmol) in benzene (150 mL) and methanol (150 mL). The reaction solution was concentrated in vacuo, and the crude product was purified by flash chromatography using 25% ethyl acetate in hexanes as the eluent to yield 4.21 g (13%, 2 steps – known decarboxylation step included) of 282 as a yellow solid. mp 136 - 138 °C; IR (CDCl₃) 3490, 1740 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.25 (d, J = 8.8 Hz, 1H), 7.06 (d, J = 2.3 Hz, 1H), 6.97 (s, 1H), 6.85 (dd, J = 8.8, 2.3 Hz, 1H), 3.86 (s, 3H), 3.67 (s, 3H), 2.80 (t, J = 7.4 Hz, 2H), 2.43 (t, J = 7.4 Hz, 2H), 2.08 (m, 2H); ¹³C NMR (75 MHz, CD₂Cl₂) δ 174.5, 154.1, 131.1, 128.1, 122.9, 115.4, 114.1, 112.1, 100.8, 56.0, 51.7, 33.9, 25.6, 24.8; ESI m/z (relative intensity) 248.1 (M + H, 100%); HRMS calcd for C₁₄H₁₈NO₃ (M + H), 248.1287, found 248.1282.

Methyl 4-(2-Bromo-5-methoxy-1H-indol-3-yl)butanoate. Methyl ester 282 (3.44 g, 13.9 mmol) was dissolved in CH₂Cl₂ (140 mL). N-bromosuccinimide (1.36 g, 8.5 mmol) was added and the reaction solution was stirred for 20 min at room temperature. One additional portion of N-bromosuccinimide (0.15 g, 0.84 mmol) was
added and stirring was continued for 15 min at room temperature. The reaction solution was concentrated in vacuo, and the crude product was purified by flash chromatography using 25% ethyl acetate in hexanes as the eluent to yield 2.94 g (100%) of the bromide as a yellow solid. mp 54 - 56 °C; IR (CDCl₃) 3476, 1741 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 8.44 (s, 1H), 7.15 (d, J = 8.7 Hz, 1H), 7.00 (d, J = 2.4 Hz, 1H), 6.85 (dd, J = 8.7, 2.4 Hz, 1H), 3.87 (s, 3H), 3.68 (s, 3H), 2.79 (t, J = 7.3 Hz, 2H), 2.42 (t, J = 7.3 Hz, 2H), 2.09 (m, 2H); ¹³C NMR (75 MHz, CD₂Cl₂) δ 174.5, 154.1, 131.1, 128.1, 122.9, 115.4, 114.1, 112.1, 100.8, 56.0, 51.7, 33.9, 25.6, 24.8; ESI m/z (relative intensity) 326.0 (M + H, 100%), 328.0 (¹¹Br, 95%); HRMS calcd for C₁₄H₁₇BrNO₃ (M + H), 326.0392, found 326.0387.

tert-Butyl 2-Bromo-3-(4-(tert-butyldimethylsilyloxy)butyl)-5-methoxy-1H-indole-1-carboxylate (298). The bromide (2.66 g, 8.26 mmol) was dissolved in CH₂Cl₂ (100 mL). DMAP (1.40 g, 11.5 mmol) and BOC₂O (2.41 g, 11.1 mmol) were added and the reaction solution was stirred for 70 min at room temperature. The reaction solution was added to water (100 mL), extracted with CH₂Cl₂ (3 x 50 mL), dried over Na₂SO₄, filtered, and concentrated in vacuo to yield 3.44 g (98%) of the BOC-protected indole as a colorless oil.

DIBAL (25.4 mL, 1.0 M in hexanes, 25.4 mmol) was added to a solution of the crude BOC-protected indole (3.07 g, 8.84 mmol) in CH₂Cl₂ (60 mL) and THF (60 mL) at
-78 °C. The reaction solution was warmed to room temperature and stirred for 15 h at room temperature. The reaction solution was added to sat. NH₄Cl (300 mL), and filtered to remove the aluminum salts. The layers were separated, and the aqueous layer was extracted with CH₂Cl₂ (3 x 100 mL). The combined organic layers were washed with brine, dried over Na₂SO₄, filtered, and concentrated in vacuo to yield the alcohol which was used without purification.

The crude alcohol was dissolved in CH₂Cl₂ (115 mL). Imidazole (1.28 g, 17.3 mmol) and TBSCl (1.47 g, 9.8 mmol) were added and the reaction solution was stirred for 15 h. The reaction solution was added to water (100 mL), extracted with CH₂Cl₂ (3 x 50 mL), dried over Na₂SO₄, filtered, and concentrated in vacuo. The crude product was purified by flash chromatography using 50% benzene in hexanes as the eluent to yield 2.33 g (74%, 2 steps) of 288 as colorless oil. IR (CDCl₃) 1724 cm⁻¹; ¹H NMR (360 MHz, CDCl₃) δ 7.93 (d, J = 9.1 Hz, 1H), 6.87 (m, 2H), 3.81 (s, 3H), 3.62 (t, J = 6.2 Hz, 2H), 2.69 (m, 2H), 1.64 (m, 11H), 1.58 (m, 2H), 0.84 (s, 9H), 0.00 (s, 6H); ¹³C NMR (90 MHz, CDCl₃) δ 156.1, 149.4, 131.4, 130.0, 123.4, 116.4, 112.7, 109.3, 101.3, 84.6, 63.1, 55.8, 32.7, 28.4, 26.1, 25.3, 25.2, 18.5, -5.1; ESI m/z (relative intensity) 534.1 (M + Na, 100%), 536.1 (¹¹Br, 95%); HRMS calcd for C₂₄H₃₈NO₄BrSi (M + Na), 534.1651, found 534.1461.

(S₃)-3-(4-(tert-butyldimethylsilyloxy)butyl)-5-methoxy-2-(phenylsulfinyl)-1H-indole (289). Bromide 288 (550 mg, 1.10 mmol) was dissolved in THF (30 mL), and
cooled to – 78 °C. \(t \)-BuLi (3.64 mL, 1.7 M in pentane, 6.2 mmol) was added and the reaction solution was stirred for 5 min. A solution of (4R,5S, \(S_6 \))-4-methyl-5-phenyl-3-\([p\)-phenyl]\)-2-isoaxazolidinone (967 mg, 3.2 mmol) in THF (60 mL) was added and the reaction solution was stirred at -78 °C for 2 h, warmed to room temperature, and stirred for 36 h. The reaction solution was added to sat. \(\text{NH}_4\text{Cl} \) (50 mL), extracted with \(\text{CH}_2\text{Cl}_2 \) (3 x 50 mL), washed with brine, dried over \(\text{Na}_2\text{SO}_4 \), filtered, and concentrated in vacuo. The crude product was purified by flash chromatography using 50% ether in hexanes as the eluent to yield 303 mg (60%) of 289 as a white solid. mp 122 – 124 °C; \(\alpha \)^{25}_{D} - 60.2 (c 1 \(\text{CH}_2\text{Cl}_2 \); IR (\(\text{CDCl}_3 \)) 3446 cm\(^{-1} \); \(^1\)H NMR (300 MHz, \(\text{CDCl}_3 \)) \(\delta \) 8.49 (s, 1H), 7.59 (m, 2H), 7.43 (m, 3H), 7.13 (d, \(J = 8.9 \) Hz, 1H), 6.92 (d, \(J = 2.4 \) Hz, 1H), 6.87 (dd, \(J = 8.8, 2.4 \) Hz, 1H), 3.77 (s, 3H), 3.65 (m, 2H), 2.95 (m, 2H), 1.82 (m, 2H), 1.68 (m, 2H), 0.82 (s, 9H), 0.00 (s, 6H); \(^{13}\)C NMR (100 MHz, \(\text{CDCl}_3 \)) \(\delta \) 153.3, 142.6, 131.8, 131.4, 129.9, 128.4, 126.4, 123.8, 121.5, 115.0, 112.0, 100.2, 61.8, 54.8, 31.8, 26.3, 24.9, 23.2, 17.3, -6.3; ESI \(m/z \) (relative intensity) 480.1 (M + Na, 100%); HRMS calcd for \(\text{C}_{25}\text{H}_{35}\text{NO}_3\text{SiS} \) (M + Na), 480.2005, found 480.2007.

(S\(_S\))-4-(5-methoxy-2-(phenylsulfinyl)-1\(H \)-indol-3-yl)butan-1-ol (290).

Sulfoxide 289 (303 mg, 0.66 mmol) was dissolved in THF (20 mL). TBAF (994 \(\mu \)L, 1M in THF, 0.99 mmol) was added, and the reaction solution was stirred for 15 h at room temperature. The reaction solution was added to water (10 mL), extracted with \(\text{CH}_2\text{Cl}_2 \)
(3 x 10 mL), dried over Na₂SO₄, filtered, and concentrated in vacuo. The crude product was purified by flash chromatography using ether and then 2% methanol in ether as the eluent to yield 165 mg (73%) of 290 as a white solid. mp 105 – 106 °C; [α]²⁵_D - 54.1 (c 0.14 CH₂Cl₂); IR (CDCl₃) 3248 cm⁻¹; ¹H NMR (360 MHz, CDCl₃) δ 9.20 (s, 1H), 7.65 (m, 2H), 7.55 (m, 3H), 7.21 (d, J = 8.9 Hz, 1H), 7.00 (d, J = 2.4 Hz, 1H), 6.94 (dd, J = 8.9, 2.4 Hz, 1H), 3.84 (s, 3H), 3.70 (t, J = 6.4 Hz, 2H), 3.01 (t, J = 7.3 Hz, 2H), 2.01 (s, 1H), 1.89 (m, 2H), 1.72 (m, 2H); ¹³C NMR (90 MHz, CDCl₃) δ 154.4, 143.4, 132.7, 132.6, 131.0, 129.4, 127.4, 124.8, 122.2, 116.1, 113.0, 101.3, 62.6, 55.9, 32.5, 27.0, 24.0; ESI m/z (relative intensity) 344.1 (M + H, 55%), 366.1 (M + Na, 100%); HRMS calcd for C₁₉H₂₂NO₃S (M + H), 344.1320, found 344.1301.

(SS)-4-(5-Methoxy-2-(phenylsulfinyl)-1H-indol-3-yl)butanal (291). Alcohol 290 (295 mg, 0.86 mmol) was dissolved in CH₂Cl₂ (25 mL). Tetrapropylammonium perruthenate (124 mg, 0.35 mmol) and N-methyl morpholine N-oxide (352 mg, 3.00 mmol) were added and the mixture was stirred for 1 h at room temperature. The reaction solution was filtered through a plug of silica gel and concentrated in vacuo. The crude product was purified by flash chromatography using ether as the eluent to yield 226 mg (77%) of 291 as a pale yellow oil. IR (CDCl₃) 3441, 1728 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 9.78 (s, 1H), 8.66 (s, 1H), 7.95 (m, 2H), 7.57 (d, J = 7.3 Hz, 1H), 7.53 (m, 2H),
7.33 (d, J = 9.8 Hz, 1H), 7.05 (m, 2H), 3.85 (s, 3H), 2.99 (m, 2H), 2.53 (m, 2H), 1.99 (m, 2H); \(^1\)C NMR (90 MHz, CDCl\(_3\)) \(\delta\) 202.2, 154.5, 143.5, 133.2, 132.6, 131.2, 129.6, 127.3, 125.1, 121.1, 116.4, 113.5, 101.0, 56.0, 43.4, 23.6, 23.2; APCI \(m/z\) (relative intensity) 343.1 (M + H, 100%); HRMS calcd for C\(_{19}\)H\(_{20}\)NO\(_3\)S (M + H), 342.1164, found 342.1174.

\((S)_3\)-5-(5-Methoxy-2-(phenylsulfinyl)-1H-indol-3-yl)pentan-2-one (293). Aldehyde 291 (55 mg, 0.16 mmol) was dissolved in THF (4 mL). Methyl magnesium bromide (77 \(\mu\)L, 3.0 M in ether, 1.4 mmol) was added and stirred for 45 min at room temperature. The reaction solution was added to sat. NH\(_4\)Cl (5 mL), extracted with ethyl acetate (3 x 5 mL), dried over Na\(_2\)SO\(_4\), filtered, and concentrated in vacuo to yield 54 mg (95%) of the crude alcohol.

The crude alcohol (54 mg, 0.15 mmol) was dissolved in CH\(_2\)Cl\(_2\) (4 mL). Tetrapropylammonium perruthenate (11 mg, 0.031 mmol) and N-methyl morpholine N-oxide (32 mg, 0.27 mmol) were added and the mixture was stirred for 1 h at room temperature. The reaction solution was filtered through a plug of silica gel and concentrated in vacuo. The crude product was purified by flash chromatography using 50% ethyl acetate in hexanes as the eluent to yield 28 mg (52%) of 293 as a white solid. The enantiomeric purity of the sample was found to be > 98% ee using (S)-(+)2, 2, 2-trifluoro-1-(9-anthryl)ethanol as an \(^1\)H NMR shift reagent. mp 154 – 156 °C; \([\alpha]^{25}_D\) -
139.8 (c 0.7 CH₂Cl₂); IR (CDCl₃) 3444, 1712 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 8.92 (s, 1H), 7.66 (m, 2H), 7.48 (m, 3H), 7.21 (d, J = 7.9 Hz, 1H), 7.04 (d, J = 2.1 Hz, 1H), 6.94 (dd, J = 7.9, 2.4 Hz, 1H), 3.85 (s, 3H), 3.02 (m, 2H), 2.54 (m, 2H), 2.14 (s, 3H), 2.04 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 208.8, 154.6, 143.6, 133.0, 132.8, 131.2, 129.6, 127.5, 125.0, 121.6, 116.5, 113.3, 101.2, 56.0, 42.9, 30.3, 24.6, 23.6; ESI m/z (relative intensity) 356.1 (M + H, 100%); HRMS calcd for C₂₀H₂₂NO₃S (M + H), 356.1320, found 356.1315.

N-Methoxy-4-(5-methoxy-1H-indol-3-yl)-N-methylbutanamide (300). 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (761 mg, 4.90 mmol) was added in small portions over 3 h to a solution of _N,O_-dimethyl hydroxyl amine hydrochloride (388 mg, 4.00 mmol), DMAP (490 mg, 4.02 mmol), and 5-methoxy-3-indolebutyric acid (880 mg, 3.61 mmol) in CH₂Cl₂ (36 mL). The reaction solution was stirred for 15 h at room temperature. The reaction solution was added to water (30 mL), extracted with CH₂Cl₂ (3 x 30 mL), washed with sat. NaHCO₃ (25 mL) and brine, dried over Na₂SO₄, filtered, and concentrated in vacuo. The crude product was purified by flash chromatography using 33% ethyl acetate in hexanes as the eluent to yield 603 mg (60%) of 300 as a brown oil. IR (thin film) 3410, 1641 cm⁻¹; ¹H NMR (360 MHz, CDCl₃) δ 8.46 (s, 1H), 7.19 (d, J = 8.7 Hz, 1H), 7.04 (d, J = 2.3 Hz, 1H), 6.91 (d, J = 1.9 Hz, 1H), 6.82 (dd, J = 8.7, 2.4 Hz, 1H), 3.83 (s, 3H), 3.60 (s, 3H), 3.16 (s, 3H), 2.85 (t, J
\[\text{N-Methoxy-4-(5-methoxy-2-(phenylthio)-1H-indol-3-yl)-N-methylbutanamide (301).} \]

Phenylsulfenyl chloride (2.86 mL, 24.7 mmol) was added to a solution of 300 (5.85 g, 21.2 mmol) in 1.0 M HCl in 1,4-dioxane (100 mL). The reaction solution was stirred for 30 min at room temperature. The reaction solution was added to 1 M KOH (150 mL) and extracted with EtOAc (3 x 100 mL). The combined organic fractions were washed with brine, dried over Na\textsubscript{2}SO\textsubscript{4}, filtered, and concentrated in vacuo. The crude product was purified by flash chromatography using 50% ether in hexanes as the eluent to yield 6.56 g (81%) of 300 as a yellow oil. IR (thin film) 3426, 1638 cm-1; 1H NMR (300 MHz, CDCl\textsubscript{3}) \(\delta \) 8.93 (s, 1H), 7.33 (m, 5H), 7.22 (d, \(J = 1.4 \) Hz, 1H), 7.16 (d, \(J = 7.3 \) Hz, 1H), 7.09 (dd, \(J = 7.9, 1.5 \) Hz, 1H), 3.91 (s, 3H), 3.57 (s, 3H), 3.17 (s, 3H), 2.99 (t, \(J = 7.4 \) Hz, 2H), 2.51 (t, \(J = 7.0 \) Hz, 2H), 2.09 (m, 2H); 13C NMR (75 MHz, CDCl\textsubscript{3}) \(\delta \) 171.3, 137.7, 132.5, 129.1, 128.1, 127.0, 126.4, 125.6, 123.1, 122.0, 114.1, 112.0, 100.1, 61.1, 60.5, 55.9, 31.0, 25.2, 24.5; ESI \(m/z \) (relative intensity) 407.1 (M + Na, 100%); HRMS calcd for C\textsubscript{21}H\textsubscript{24}N\textsubscript{2}O\textsubscript{3}S (M + Na), 407.1405, found 407.1427.
Methyl magnesium bromide (17 mL, 3.0 M in ether, 51 mmol) was added to a solution of 301 (5.56 g, 17.1 mmol) in THF (150 mL) and the reaction solution was stirred at room temperature for 1 h. The reaction solution was added to sat. NH₄Cl (100 mL), extracted with ethyl acetate (3 x 100 mL), dried over Na₂SO₄, and concentrated to yield 4.732 g (82%) of 302 as a yellow solid.

8,8-Dichlorocamphorsulfonyloxaziridine (2.50 g, 8.4 mmol) was added to a solution of 302 (3.71 g, 10.9 mmol) in CH₂Cl₂ (150 mL), and the reaction solution was stirred at room temperature for 15 h. The reaction solution was concentrated, and the crude product was purified by flash chromatography using 50% ether in hexanes as the eluent to yield 2.727 g (92%) of 293 as a white solid. The enantiomeric purity of the sample was found to be >98% ee using (S)-(+-)2, 2, 2-trifluoro-1-(9-anthryl)ethanol as an ¹H NMR shift reagent. The spectral data from 293 matched those described earlier for 293, prepared by the route detailed in Figure 5.5. [α]²⁵D - 139.8 (c 0.7 CH₂Cl₂).
(S₃)-5-Methoxy-2-(phenylsulfanyl)-3-(4-(triisopropylsilyloxy)pent-4-enyl)-1H-indole (274). Diisopropylamine (3.45 mL, 24.6 mmol) was dissolved in THF (60 mL) and cooled in an ice bath. n-Butyllithium (3.32 mL, 1.93 M in hexanes, 25.0 mmol) was added, and the mixture was warmed to room temperature and stirred for 30 min. The solution of lithium diisopropylamide was added to a solution of ketone 293 (2.0 g, 5.6 mmol) in THF (60 mL) at -78 °C, and stirred at -78 °C for 1 h. 1,3-Dimethyl-3, 4, 5, 6-tetrahydro-2(1H)-pyrimidinone (15 mL) was added, followed by TIPSCl (3.32 mL, 15.5 mmol) after 10 min. The reaction solution was slowly warmed to room temperature over 2.5 h, and then was added to sat. NH₄Cl (60 mL), extracted with CH₂Cl₂ (3 x 60 mL), dried over Na₂SO₄, filtered, and concentrated in vacuo. The crude product was purified by flash chromatography using 50% ethyl acetate in hexanes as the eluent to yield 1.91 g (66%) of silyl enol ether 274 as a yellow oil. [α]²⁵D -47.7 (c 0.77 CH₂Cl₂); IR (CDCl₃) 3457, 1624 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 10.09 (s, 1H), 7.67 (m, 2H), 7.43 (m, 3H), 7.24 (d, J = 8.9 Hz, 1H), 6.96 (d, J = 2.2 Hz, 1H), 6.90 (dd, J = 8.9, 2.4 Hz, 1H), 4.11 (m, 1H), 4.09 (m, 1H), 3.82 (s, 3H), 3.05 (m, 2H), 2.25 (m, 2H), 2.05 (m, 2H), 1.11 (m, 21H); ¹³C NMR (75 MHz, CDCl₃) δ 159.0, 154.1, 143.7, 133.5, 131.8, 130.8, 129.3, 127.0, 125.0, 122.5, 116.1, 113.5, 100.9, 89.6, 55.8, 36.9, 28.7, 24.1, 18.2, 12.7; ESI m/z (relative intensity) 534.2 (M + Na, 100%); HRMS calcd for C₂₉H₄₁NO₃SSi (M + Na), 534.2474, found 534.2461.
(S)-5'-Methoxyspiro[cyclohexane-1,3'-indoline]-2',3-dione (316). Silyl enol ether 274 (39 mg, 0.076 mmol) was cooled to -110 °C in ether (18 mL). 2,6-Lutidine (26 \(\mu \)L, 0.19 mmol) followed by trifluoromethanesulfonic anhydride (26 \(\mu \)L, 0.15 mmol) were added and the reaction solution was stirred at -110 °C for 1 h. Water (20 mL) was added to the reaction solution, and the mixture was warmed to room temperature. The layers were separated, and the aqueous phase was extracted with ethyl acetate (3 x 10 mL), dried over Na\(_2\)SO\(_4\), filtered, and concentrated in vacuo. The thioimidate was recovered as a yellowish-orange residue which was used immediately.

The crude thioimidate and mercury (II) chloride (32 mg, 0.12 mmol) were stirred for 16 h at room temperature in acetonitrile/water (4 mL, 1/1). Water (5 mL) was added to the reaction solution, the layers were separated, and the aqueous phase was extracted with ethyl acetate (3 x 5 mL), dried over Na\(_2\)SO\(_4\), filtered, and concentrated in vacuo. The crude product was purified by flash chromatography using ether as the eluent to yield 6.0 mg (33%, 2 steps) of 316 as a tan solid. The enantiomeric purity of the sample was found to be > 98% ee using (S)-(+)2, 2, 2-trifluoro-1-(9-anthryl)ethanol as an \(^1 \)H NMR shift reagent. mp 178 – 180 °C; [\(\alpha \)]\(^{25}\)_D -30.873 (c 0.30 CH\(_2\)Cl\(_2\)); IR (CDCl\(_3\)) 3438, 1720 cm\(^{-1}\), \(^1 \)H NMR (400 MHz, CDCl\(_3\)) \(\delta \) 9.17 (s, 1H), 6.86 (d, \(J = 8.2 \) Hz, 1H), 6.75 (m, 2H), 3.75 (s, 3H), 2.71 (d, \(J = 14.4 \) Hz, 1H), 2.59 (m, 2H), 2.39 (m, 2H), 2.13 (m, 2H), 1.88 (d, \(J = 9.9 \) Hz, 1H); \(^{13} \)C NMR (100 MHz, CDCl\(_3\)) \(\delta \) 209.2, 181.1, 155.9, 134.4, 133.5, 112.7,
111.4, 110.9, 56.0, 51.9, 46.4, 40.7, 32.8, 21.7; ESI m/z (relative intensity) 246.1 (M + H, 100%); HRMS calcd for C_{14}H_{15}NO_{3} (M + H), 246.1130, found 246.1120.

(1S)-5'-methoxy-1'-(4,7,7-trimethyl-3-oxo-2-oxabicyclo[2.2.1]heptane-1-carbonyl)spiro[cyclohexane-1,3'-indoline]-2',3-dione (320). Sodium hydride (60% dispersion on mineral oil, 18 mg, 0.45 mmol) was added to oxindole 316 (50 mg, 0.20 mmol, 40% ee) in THF (6 mL), and stirred for 90 min at room temperature. (1S,4R)-(-)-camphanoyl chloride (69 mg, 0.33 mmol) was added and the reaction solution was stirred for 15 h at room temperature. The reaction solution was added to water (10 mL), extracted with CH_{2}Cl_{2} (3 x 10 mL), dried over Na_{2}SO_{4}, filtered, and concentrated in vacuo. The crude products were purified by flash chromatography using 40% ethyl acetate in cyclohexane as the eluent to yield 24 mg (28%) of the major diastereomer and 17 mg (20%) of a mixture of diastereomers (2:1 major:minor). Crystals of major diastereomer 320 that were suitable for X-ray crystallographic analysis were obtained by vapor diffusion crystallization with THF and hexane. mp 74 °C; [α]_{D}^{25} - 99.7 (c 0.25 CH_{2}Cl_{2}); IR (CDCl_{3}) 1790, 1716 cm^{-1}; ^{1}H NMR (500 MHz, CDCl_{3}) δ 7.72 (d, J = 8.9 Hz, 1H), 6.84 (dd, J = 8.9, 2.6 Hz, 1H), 6.75 (d, J = 2.6 Hz, 1H), 3.81 (s, 3H), 2.93 (m, 1H), 2.7 – 2.5 (m, 4H), 2.2 – 1.7 (m, 7H), 1.29 (s, 3H), 1.10 (s, 3H), 0.93 (s, 3H); ^{13}C NMR (125 MHz, CDCl_{3}) δ 208.0, 178.0, 177.9, 170.9, 157.6, 133.6, 131.5, 115.5, 113.2,
m/z (relative intensity) 448.2 (M + Na, 100%); HRMS calcd for C_{24}H_{27}NO_6 (M + Na) 448.1736, found 448.1721.

5-Methoxy-3-(4-((trimethylsilyl)methyl)pent-4-enyl)-1H-indole (283). Cerium (III) chloride (12.43 g, 50.7 mmol) was stirred for 15 h in THF (50 mL). The mixture was cooled to -78 °C, and (trimethylsilylmethyl)lithium (53.5 mL, 1.0 M in pentane, 53.5 mmol) was added and stirring was continued at -78 °C for 1 h. Ester 282 (2.4 g, 9.7 mmol) in THF (100 mL) was added, the reaction solution was slowly warmed to room temperature, and held there with stirring for 15 h. The reaction solution was then added to water (100 mL), extracted with ethyl acetate (3 x 75 mL), dried over Na_2SO_4, filtered, and concentrated in vacuo. A colorless oil was recovered which was dissolved in CH_2Cl_2 (400 mL). Silica gel was added and stirring was continued for 2 h. The reaction solution was concentrated in vacuo and the residue purified by flash chromatography using 40% ether in hexanes as the eluent to yield 1.00 g (35%) of the allylsilane as a yellow oil. IR (CDCl_3) 3482, 1630 cm^{-1}; ^1H NMR (400 MHz, CDCl_3) δ 7.81 (s, 1H), 7.19 (d, J = 6.7 Hz, 1H), 7.04 (d, J = 2.2 Hz, 1H), 6.91 (d, J = 1.4 Hz, 1H), 6.85 (dd, J = 6.8, 2.3 Hz, 1H), 4.63 (s, 1H), 4.54 (s, 1H), 3.85 (s, 3H), 2.73 (t, J = 7.5 Hz, 2H), 2.09 (t, J = 7.4 Hz, 2H), 1.88 (m, 2H), 1.55 (s, 2H), 0.00 (s, 9H); ^13C NMR (100 MHz, CDCl_3) δ 153.9, 147.8, 131.7, 128.1, 122.2, 116.7, 112.1, 111.9, 107.2, 101.1, 56.1, 38.3, 28.3, 27.0, 25.0,
-1.1; ESI m/z (relative intensity) 324.2 (M + Na, 10%); HRMS calcd for C₁₈H₂₇NOSi (M + Na) 324.1760, found 324.1769.

tert-Butyl 5-Methoxy-3-((trimethylsilyl)methyl)pent-4-enyl)-1H-indole-1-carboxylate (284). Indole 283 (333 mg, 1.11 mmol) was dissolved in CH₂Cl₂ (25 mL). BOC₂O (325 mg, 1.5 mmol) and DMAP (183 mg, 1.5 mmol) were added and the reaction solution was stirred for 70 min at room temperature. The reaction solution was added to water (25 mL), extracted with CH₂Cl₂ (3 x 25 mL), dried over Na₂SO₄, filtered, and concentrated in vacuo. The crude product was purified by flash chromatography using 20% ether in hexanes as the eluent to yield 326 mg (73%) of 284 as a colorless oil. IR (CDCl₃) 1721, 1601 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 8.01 (s, 1H), 7.34 (s, 1H), 6.98 (d, J = 2.5 Hz, 1H), 6.95 (dd, J = 9.0, 2.5 Hz, 1H), 4.65 (s, 1H), 4.58 (s, 1H), 3.88 (s, 3H), 2.68 (t, J = 7.7 Hz, 2H), 2.12 (t, J = 6.7 Hz, 2H), 1.91 (m, 2H), 1.67 (s, 9H), 1.57 (s, 2H), 0.03 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 155.9, 150.0, 147.4, 131.8, 123.2, 121.2, 116.1, 115.8, 112.8, 107.5, 102.2, 83.2, 55.9, 38.1, 28.4, 27.3, 27.0, 24.7, -1.1; ESI m/z (relative intensity) 424.2 (M + Na, 100%); HRMS calcd for C₂₃H₃₅NO₃Si (M + Na) 424.2284, found 424.2250.
(S₅)-5-Methoxy-2-(phenylsulfinyl)-3-(4-((trimethylsilyl)methyl)pent-4-enyl)-1H-indole (275). Allylsilane 284 (880 mg, 2.19 mmol) was cooled to -78 °C in THF (60 mL). s-BuLi (3.5 mL, 1.4 M in cyclohexane, 4.9 mmol) was added and the stirred for 5 min. A solution of (4R,5S, S₆)-4-methyl-5-phenyl-3-[p-phenyl]-2-isooxazolidinone (2.88 g, 9.6 mmol) in THF (120 mL) was added, the solution was stirred at -78 °C for 2 h, warmed to room temperature, and stirring was continued for 15 h. The reaction solution was added to sat. NH₄Cl (100 mL), extracted with CH₂Cl₂ (3 x 100 mL), washed with brine, dried over Na₂SO₄, filtered, and concentrated in vacuo. The crude product was purified by flash chromatography using 50% ether in hexanes as the eluent to yield 650 mg (70%) of 275 as a white solid. mp 102 – 103 °C; [α]²⁵_D - 54.8 (c 0.17 CH₂Cl₂); IR (CDCl₃) 3447, 1764 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 8.79 (s, 1H), 7.67 (m, 2H), 7.49 (m, 3H), 7.22 (d, J = 8.9 Hz, 1H), 7.00 (d, J = 2.3 Hz, 1H), 6.94 (dd, J = 8.9, 2.3 Hz, 1H), 4.65 (d, J = 1.8 Hz, 1H), 4.58 (m, 1H), 3.84 (s, 3H), 2.99 (t, J = 8.3 Hz, 2H), 2.12 (t, J = 7.6 Hz, 2H), 1.99 (m, 2H), 1.55 (s, 2H), 0.01 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 154.5, 147.1, 131.1, 129.9, 129.6, 128.9, 126.1, 126.1, 125.3, 125.0, 116.2, 113.2, 107.6, 101.4, 56.0, 38.2, 29.3, 27.1, 24.2, -1.1; ESI m/z (relative intensity) 448.2 (M + Na, 100%); HRMS calcd for C₂₄H₃₁NO₂SSi (M + Na) 448.1742, found 448.1735.
\((S)_9\)-5-Methoxy-1-methyl-2-(phenylsulfinyl)-3-(4-(trimethylsilyl)methyl)pent-4-enyl)-1H-indole (276). Allylsilane \(275\) (26 mg, 0.064 mmol) was cooled in an ice bath in THF (2 mL). Lithium bis(trimethylsilylamide) (63 \(\mu\)L, 1.0 M in THF, 0.063 mmol) was added, and the reaction solution was stirred at 0 °C for 30 min. Methyl iodide (18 \(\mu\)L, 0.29 mmol) was added and the reaction solution was warmed to room temperature and stirred for 3 h. The reaction solution was then added to water (2 mL) and extracted with \(\text{CH}_2\text{Cl}_2\) (3 x 3 mL), dried over \(\text{Na}_2\text{SO}_4\), filtered, and concentrated in vacuo. The crude product was purified by flash chromatography using 50% ether in hexanes as the eluent to yield 15 mg (56%) of \(276\) as a colorless oil. \([\alpha]_{\text{D}}^{25}\) - 60.9 (c 0.38 \(\text{CH}_2\text{Cl}_2\)); IR \(1721\) (\(\text{CDCl}_3\)) cm\(^{-1}\); \(^1\)H NMR (300 MHz, \(\text{CDCl}_3\)) \(\delta\) 7.51 (m, 5H), 7.14 (d, \(J = 8.9\) Hz, 1H), 7.07 (d, \(J = 2.3\) Hz, 1H), 7.03 (dd, \(J = 8.9, 2.3\) Hz, 1H), 4.67 (s, 1H), 4.59 (s, 1H), 3.87 (s, 3H), 3.47 (s, 3H), 3.08 (t, \(J = 7.9\) Hz, 2H), 2.16 (t, \(J = 7.4\) Hz, 2H), 1.98 (m, 2H), 1.56 (s, 2H), 0.01 (s, 9H); \(^{13}\)C NMR (75 MHz, \(\text{CDCl}_3\)) \(\delta\) 154.4, 147.2, 145.5, 143.7, 135.0, 130.2, 129.4, 126.2, 125.2, 125.1, 116.7, 110.8, 107.7, 101.6, 56.1, 38.3, 31.0, 30.1, 27.1, 24.3, -1.1; ESI \(m/z\) (relative intensity) 462.2 (M + Na, 100%); HRMS calcd for \(\text{C}_{25}\text{H}_{33}\text{NO}_2\text{SSi (M + Na) 462.1899, found 462.1891.}\)
(S)-5'-Methoxy-3-methylene-2'-(phenylthio)spiro[cyclohexane-1,3'-indole]

(307). Allylsilane 275 (70 mg, 0.16 mmol) was cooled to -78 °C in toluene (20 mL). 2,6-Lutidine (58 µL, 0.49 mmol) followed by trifluoromethanesulfonic anhydride (58 µL, 0.34 mmol) were added and the reaction solution was stirred at -78 °C for 30 min. Water (10 mL) was added to the reaction solution, and warmed to room temperature. The layers were separated, and the aqueous phase was extracted with ethyl acetate (3 x 20 mL), dried over Na₂SO₄, filtered, and concentrated in vacuo. The crude product was purified by flash chromatography using 10% ether in hexanes as the eluent to yield 23 mg (42%) of 307 as a colorless oil. [α]²⁵ D -33.6 (c 1 CH₂Cl₂); IR (CDCl₃) 1591 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.67 (m, 2H), 7.45 (m, 3H), 7.33 (d, J = 8.6 Hz, 1H), 7.08 (d, J = 2.5 Hz, 1H), 6.80 (dd, J = 8.5, 2.5 Hz, 1H), 4.96 (s, 1H), 4.69 (s, 1H), 3.78 (s, 3H), 2.71 (d, J = 13.2 Hz, 1H), 2.57 (m, 1H), 2.32 (m, 1H), 2.11 (m, 1H), 2.04 (m, 1H), 1.96 (m, 1H), 1.52 (m, 1H), 1.26 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 183.3, 156.4, 148.4, 145.4, 143.7, 134.5, 129.5, 129.1, 129.0, 119.8, 112.0, 111.8, 111.7, 60.3, 55.9, 41.6, 34.2, 33.9, 22.8; m/z (relative intensity) 336.1 (M + H, 100%); HRMS calcd for C₂₁H₂₁NOS (M + H) 336.1422, found 336.1396.

(S)-5'-Methoxy-3-methyleneSpiro[cyclohexane-1,3'-indolin]-2'-one (308).
From oxindole \textbf{316}. Tebbe’s reagent (800 \textmu L, 0.5 M in toluene, 0.4 mmol) was added to oxindole \textbf{316} (33 mg, 0.13 mmol) at -78 °C in THF (3 mL), and stirred at -78 °C for 1 h. The reaction solution was warmed to 0 °C and stirred at that temperature for 45 min. 1 M NaOH was added slowly until gas evolution ceased and the remaining mixture was stirred for 90 min and then filtered over Celite. The aqueous layer was removed, and the organic layer was dried over Na$_2$SO$_4$, filtered, and concentrated in vacuo. The crude product was purified by flash chromatography using 50% ether in hexanes as the eluent to yield 9 mg (27%) of \textbf{308} as colorless oil. [\[\alpha\]]$_{D}^{25}$ - 29.8 (c 0.45 CH$_2$Cl$_2$); IR (thin film) 3414, 1705 cm$^{-1}$; 1H NMR (360 MHz, CDCl$_3$) δ 7.63 (s, 1H), 7.06 (d, J = 2.5 Hz, 1H), 6.82 (d, J = 8.4 Hz, 1H), 6.76 (dd, J = 8.4, 2.5 Hz, 1H), 4.92 (d, J = 1.7 Hz, 1H), 4.69 (d, J = 1.5 Hz, 1H), 3.77 (s, 3H), 2.66 (d, J = 13.5 Hz, 1H), 2.53 (m, 1H), 2.29 (m, 1H), 2.27 (m, 1H), 2.05 (m, 3H), 1.82 (m, 1H); 13C NMR (75 MHz, CDCl$_3$) δ 181.7, 155.3, 144.3, 136.0, 133.2, 131.1, 129.1, 111.4, 109.7, 56.0, 50.1, 40.6, 34.2, 33.1, 22.6; ESI m/z (relative intensity) 266.1 (M + Na, 100%); HRMS calcd for C$_{15}$H$_{17}$NO$_2$ (M + Na) 266.1157, found 266.1180.

From thioimidate \textbf{307}. Thioimidate \textbf{307} (23 mg, 0.069 mmol) and ceric ammonium nitrate (38 mg, 0.069 mmol) were stirred for 15 h in acetonitrile/water (4 mL, 5/1) at room temperature. Water (5 mL) was added to the reaction solution, the layers were separated, and the aqueous phase was extracted with ethyl acetate (3 x 10 mL), dried over Na$_2$SO$_4$, filtered, and concentrated in vacuo. The crude product was purified by flash chromatography using 50% ether in hexanes as the eluent to yield 14 mg (82%) of \textbf{307} as colorless oil. [\[\alpha\]]$_{D}^{25}$ - 10.4 (c 0.74 CH$_2$Cl$_2$).
(S)-5'-Methoxy-1'-methyl-3-methylenespiro[cyclohexane-1,3'-indolin]-2'-one (309).

From oxindole 308: Oxindole 308 (14 mg, 0.058 mmol) was cooled in an ice bath in THF (3 mL). Lithium bis(trimethylsilylamide) (56 μL, 1.0 M in THF, 0.056 mmol) was added, and the reaction solution was stirred at 0 °C for 30 min. Methyl iodide (18 μL, 0.29 mmol) was added, the reaction solution was warmed to room temperature and stirred for 3 h. The reaction solution was added to water (2 mL) and extracted with CH₂Cl₂ (3 x 3 mL), dried over Na₂SO₄, filtered, and concentrated in vacuo. The crude product was purified by flash chromatography using 20% ethyl acetate in hexanes as the eluent to yield 9 mg (60%) of 309 as a colorless oil. The ee was determined to be 56% using (+)-Eu(tfc)₃. [α]²⁵ D - 35.2 (c 0.07 CH₂Cl₂); IR (thin film) 1708 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.09 (d, J = 2.4 Hz, 1H), 6.82 (dd, J = 8.5, 2.4 Hz, 1H), 6.77 (d, J = 8.5 Hz, 1H), 4.91 (d, J = 1.5 Hz, 1H), 4.67 (d, J = 1.5 Hz, 1H), 3.78 (s, 3H), 3.20 (s, 3H), 2.67 (m, 1H), 2.51 (m, 1H), 2.33 (m, 1H), 2.10 (m, 1H), 2.02 (m, 1H), 1.93 (m, 2H), 1.50 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 179.7, 155.4, 144.5, 136.6, 135.6, 113.4, 111.3, 111.2, 108.0, 56.0, 49.7, 40.7, 34.2, 33.0, 29.6, 22.7; ESI m/z (relative intensity) 280.1 (M + Na, 100%); HRMS calcd for C₁₆H₁₉NO₂ (M + Na) 280.1313, found 280.1287.

From sulfoxide 276: Allylsilane 276 (38 mg, 0.085 mmol) was cooled to -78 °C in acetonitrile (9 mL). 2,6-Lutidine (30 μL, 0.26 mmol) followed by trifluoromethanesulfonic anhydride (30 μL, 0.18 mmol) were added and the reaction
solution was stirred at -78 °C for 30 min. Water (5 mL) was added to the reaction solution and the mixture was warmed to room temperature. The layers were separated, and the aqueous phase was extracted with ethyl acetate (3 x 10 mL), dried over Na₂SO₄, filtered, and concentrated in vacuo. The crude product was purified by flash chromatography using 20% ethyl acetate in hexanes as the eluent to yield 13 mg (59%) of 292 as a colorless oil. The ee was determined to be 32% using (+)-Eu(tfc)₃. [α]²⁵_D - 4.3 (c 0.24 CH₂Cl₂)

tert-Butyl 2-Bromo-3-(4-(tert-butyldimethylsilyloxy)butyl)-1H-indole-1-carboxylate (294). Methyl ester 275 (15 g, 69 mmol) and N-bromosuccinimide (12.3 g, 69 mmol) were stirred in CH₂Cl₂ (300 mL) for 45 min at room temperature and the reaction mixture was concentrated.

The crude 2-bromoindole, DMAP (10.7 g, 88 mmol), and BOC₂O (18.46 g, 85 mmol) were stirred in CH₂Cl₂ (500 mL) for 70 min at room temperature. The reaction solution was added to water (200 mL), extracted with CH₂Cl₂ (3 x 200 mL), dried over Na₂SO₄, filtered, and concentrated in vacuo to give the BOC-protected indole as a brown oil.

DIBAL (280 mL, 1.0 M in hexanes, 280 mmol) was added to a solution of the crude BOC-protected indole in CH₂Cl₂ (300 mL) and THF (300 mL) at -78 °C. The reaction solution was warmed to room temperature and held there with stirring for 15 h.
The reaction solution was added to sat. NH₄Cl (600 mL) and filtered to remove the aluminum salts. The layers were separated, the aqueous layer was extracted with CH₂Cl₂ (3 x 200 mL), and the combined organic layers were washed with brine, dried over Na₂SO₄, filtered, and concentrated in vacuo to yield the alcohol (24.73 g) as an orange oil which was used without purification.

The crude alcohol (24.73 g) was dissolved in CH₂Cl₂ (600 mL). Imidazole (10.89 g, 147.3 mmol) and TBSCl (12.44 g, 82 mmol) were added and the reaction solution was stirred for 15 h at room temperature. The reaction solution was added to water (300 mL), extracted with CH₂Cl₂ (3 x 250 mL), dried over Na₂SO₄, filtered, and concentrated in vacuo. The crude product was purified by flash chromatography using 10% ether in hexanes as the eluent to yield 23.08 g of 294 (72%, 4 steps) as a reddish-orange oil. IR (CDCl₃) 1738 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 8.12 (m, 1H), 7.52 (m, 1H), 7.35 (m, 2H), 3.69 (t, J = 6.1 Hz, 2H), 2.80 (t, J = 7.1 Hz, 2H), 1.72 (m, 11H), 1.68 (m, 2H), 0.92 (s, 9H), 0.07 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 149.3, 136.8, 129.2, 124.4, 123.7, 122.9, 118.5, 115.5, 108.9, 84.7, 63.0, 32.7, 28.4, 26.2, 25.4, 25.2, 18.5, -5.1; ESI m/z (relative intensity) 504.2 (M + Na, 100%), 506.2 (⁸¹Br, 95%); HRMS calcd for C₂₃H₃₆BrNO₃Si (M + Na) 504.1546, found 504.1539.

\[(S,)-3-(4-(\textit{tert}-\text{Butyldimethylsilyloxy})\text{butyl})-2-(\text{phenylsulfinyl})-1\text{H}-\text{indole} \]

(295). Bromide 294 (3.19 g, 6.6 mmol) was dissolved in THF (20 mL), and cooled to –
78 °C. t-BuLi (9.14 mL, 1.6 M in pentane, 15 mmol) was added and the reaction solution was stirred for 5 min at that temperature. A solution of (4R,5S, S_R)-4-methyl-5-phenyl-3-[p-phenyl]-2-isooxazolidinone (2.95 g, 9.8 mmol) in THF (400 mL) was added and the mixture was stirred at - 78 °C for 2 h, warmed to room temperature, and stirred for an additional 15 h. The reaction solution was added to sat. NH$_4$Cl (150 mL), extracted with CH$_2$Cl$_2$ (3 x 150 mL), washed with brine, dried over Na$_2$SO$_4$, filtered, and concentrated in vacuo. The crude product was purified by flash chromatography using 50% ether in hexanes as the eluent to yield 1.68 g (60%) of 295 as a white solid. mp 92 - 94 °C; [α]$^D_{25}$ - 30.6 (c 0.465 CH$_2$Cl$_2$); IR (thin film) 3446 cm$^{-1}$; 1H NMR (300 MHz, CDCl$_3$) δ 10.25 (s, 1H), 7.71 (m, 2H), 7.64 (m, 1H), 7.44 (m, 4H), 7.23 (m, 1H), 7.14 (m, 1H), 3.74 (m, 2H), 3.10 (m, 2H), 1.88 (m, 2H), 1.73 (m, 2H), 0.95 (s, 9H), 0.10 (s, 6H); 13C NMR (75 MHz, CDCl$_3$) δ 143.5, 138.0, 131.3, 130.7, 129.2, 128.6, 126.7, 124.9, 122.6, 120.1, 119.7, 112.4, 62.7, 32.7, 27.5, 25.9, 24.2, 18.2, -5.3; ESI m/z (relative intensity) 450.2 (M + Na, 100%); HRMS calcd for C$_{24}$H$_{33}$NO$_2$SiS (M + Na) 450.1899, found 450.1907.

![Diagram](image_url)

(S$_3$)-4-(2-(Phenylsulfinyl)-1H-indol-3-yl)butanal (297). Silyl ether 295 (1.68 g, 3.9 mmol) was dissolved in THF (200 mL). TBAF (4.5 mL, 1.0 M in THF, 4.5 mmol) was added and the reaction solution was stirred for 15 h at room temperature. The
reaction solution was added to water (50 mL), extracted with CH$_2$Cl$_2$ (3 x 50 mL), dried over Na$_2$SO$_4$, filtered, and concentrated in vacuo.

The crude alcohol from above was dissolved in CH$_2$Cl$_2$ (250 mL). Tetrapropylammonium perruthenate (281 mg, 0.80 mmol) and N-methyl morpholine N-oxide (402 mg, 3.4 mmol) were added and the mixture was stirred for 1 h. The reaction solution was filtered through a plug of silica gel and concentrated in vacuo. The crude product was purified by flash chromatography using ether as the eluent to yield 590 mg (49%, 2 steps) of 297 as a pale yellow oil. IR (thin film) 3215, 1719 cm$^{-1}$; 1H NMR (300 MHz, CDCl$_3$) δ 9.83 (s, 1H), 9.75 (m, 1H), 7.66 (m, 3H), 7.43 (m, 3H), 7.33 (m, 1H), 7.25 (m, 1H), 7.10 (m, 1H), 3.07 (m, 2H), 2.54 (m, 2H), 2.09 (m, 2H); 13C NMR (75 MHz, CDCl$_3$) δ 202.1, 143.4, 137.9, 132.3, 131.2, 129.6, 127.0, 125.2, 125.1, 121.4, 120.4, 120.3, 112.6, 43.4, 23.7, 23.4; ESI m/z (relative intensity) 334.1 (M + Na, 100%); HRMS calcd for C$_{18}$H$_{17}$NO$_2$S (M + Na) 334.0877, found 334.0878.

\[
\text{SS-5-(2-(Phenylsulfinyl)-1H-indol-3-yl)pentan-2-one (299).}
\]

From aldehyde 297: Aldehyde 297 (590 mg, 1.9 mmol) was dissolved in THF (45 mL). Methyl magnesium bromide (910 µL, 3.0 M in ether, 2.7 mmol) was added and the mixture was stirred for 1 h at room temperature. The reaction solution was added to sat. NH$_4$Cl (15 mL), extracted with ethyl acetate (3 x 15 mL), dried over Na$_2$SO$_4$, filtered, and concentrated in vacuo.
The crude alcohol was dissolved in CH$_2$Cl$_2$ (100 mL). Tetrapropylammonium perruthenate (135 mg, 0.39 mmol) and N-methyl morpholine N-oxide (193 mg, 1.65 mmol) were added and the mixture was stirred for 1 h. The reaction solution was filtered through a plug of silica gel and concentrated in vacuo. The crude product was purified by flash chromatography using ether as the eluent to yield 173 mg (28%, 2 steps) of 299 as a white solid. Spectral data matched those for the racemic mixture. The enantiomeric purity of the sample was found to be > 98\% ee using (S)-(+)-2, 2, 2-trifluoro-1-(9-anthryl)ethanol as an 1H NMR shift reagent. [α]$^\text{25}_D$ - 127.3 (c 1.16 CH$_2$Cl$_2$)

From ketone 304: 8,8-Dichlorocamphorsulfonyloxaziridine (4.18 g, 13.5 mmol) was added to a solution of the known ketone 30465 (4.83 g, 16.2 mmol) in CH$_2$Cl$_2$ (180 mL), and the reaction solution was stirred at room temperature for 15 h. The reaction solution was concentrated, and the crude product was purified by flash chromatography using 50% ether in hexanes as the eluent to yield 3.64 g (83%) of 299 as a white solid. The enantiomeric purity of the sample was found to be > 98\% ee using (S)-(+)2, 2, 2-trifluoro-1-(9-anthryl)ethanol as an 1H NMR shift reagent. Spectral data matched those for the racemic mixture.65 [α]$^\text{25}_D$ - 128.0 (c 1.0 CHCl$_3$)70
(S\textsubscript{3})-2-(Phenylsulfinyl)-3-(4-(triisopropylsilyloxy)pent-4-enyl)-1\textit{H}-indole (136). Diisopropylamine (5.68 mL, 40.5 mmol) was dissolved in THF (100 mL) and cooled in an ice bath. \textit{n}-Butyllithium (23.0 mL, 1.8 M in hexanes, 41.4 mmol) was added and the solution was warmed to room temperature and stirred for 30 min. This solution of lithium diisopropylamide was added to a solution of ketone 299 (3.0 g, 9.2 mmol) in THF (100 mL) at -78 °C, and stirred at -78 °C for 1 h. 1,3-Dimethyl-3, 4, 5, 6-tetrahydro-2(1H)-pyrimidinone (25 mL) was added, followed by TIPSCl (5.47 mL, 25.6 mmol) after 10 min. The reaction solution was slowly warmed to room temperature over 2.5 h. The reaction solution was added to sat. NH\textsubscript{4}Cl (100 mL), extracted with CH\textsubscript{2}Cl\textsubscript{2} (3 x 100 mL), dried over Na\textsubscript{2}SO\textsubscript{4}, filtered, and concentrated in vacuo. The crude product was purified by flash chromatography using 50% ethyl acetate in hexanes as the eluent to yield 3.1 g (70%) of silyl enol ether 136 as a yellow oil. Spectral data matched those for the racemic mixture.65 \([\alpha]25_D - 13.9 \text{ (c 0.77 CH}_2\text{Cl}_2);\]

(\textit{S})-Spiro[cyclohexane-1,3'-indoline]-2',3'-dione (318). Silyl enol ether 136 (43 mg, 0.089 mmol) was cooled to -110 °C in ether (21 mL). 2,6-Lutidine (31 \textmu L, 0.27 mmol) followed by trifluoromethanesulfonic anhydride (31 \textmu L, 0.18 mmol) were added
and the reaction solution was stirred at -110 °C for 2 h. Water (10 mL) was added to the reaction solution and the mixture was warmed to room temperature. The layers were separated, and the aqueous phase was extracted with ethyl acetate (3 x 10 mL), dried over Na₂SO₄, filtered, and concentrated in vacuo. The thioimidate was recovered as a yellowish-orange residue which was used immediately.

The crude thioimidate and mercury (II) chloride (36 mg, 0.13 mmol) were stirred for 72 h in acetonitrile/water (2 mL, 1/1) at room temperature. Water (2 mL) was added to the reaction solution, the layers were separated, and the aqueous phase was extracted with ethyl acetate (3 x 5 mL), dried over Na₂SO₄, filtered, and concentrated in vacuo. The crude product was purified by flash chromatography using ether as the eluent to yield 11 mg (58%) of 318 as a white solid. The enantiomeric purity of the sample was found to be > 98% ee using (S)-(+) -2, 2, 2-trifluoro-1-(9-anthryl)ethanol. Spectral data matched those for the racemic mixture.₆⁵ [α]^{25}_D -43.6 (c 0.105 CH₂Cl₂).

\[
\text{(1S)-1'-(4\text{,}7\text{,}7\text{-Trimethyl-3-oxo-2-oxabicyclo[2.2.1]heptane-1-carbonyl})spiro[cyclohexane-1,3'-indoline]-2',3-dione (322)}.
\]

Sodium hydride (60% dispersion in mineral oil, 20 mg, 0.5 mmol) was added to oxindole 318 (47 mg, 0.19 mmol, 68% ee) in THF (7 mL), and stirred for 30 min. (1S,4R)-(−)-camphanoyl chloride (75 mg, 0.35 mmol) was added and the reaction solution was stirred for 15 h. The
reaction solution was added to water (10 mL), extracted with CH₂Cl₂ (3 x 10 mL), dried over Na₂SO₄, filtered, and concentrated in vacuo. The crude products were purified by flash chromatography using 25% ethyl acetate in cyclohexane as the eluent to yield 27 mg (36%) of the major diastereomer, and 10 mg (13%) of a mixture of diastereomers (4:3 major: minor). Crystals of the major diastereomer suitable for X-ray crystallographic analysis were obtained by vapor diffusion crystallization with dimethoxyethane and hexane. mp 82 - 84 °C; [α]D²⁵ -73.2 (c 0.11 CH₂Cl₂); IR (KBr) 1792, 1717 cm⁻¹; H NMR (500 MHz, CDCl₃) δ 7.73 (d, J = 8.3 Hz, 1H), 7.35, (td J = 7.9, 2.6 Hz, 1H), 7.21 (m, 2H), 2.94 (m, 1H), 2.71 (d, J = 14.6 Hz, 1H), 2.55 (m, 2H), 2.39 (m, 2H), 2.24 (m, 1H), 2.14 (m, 1H), 2.06 (dd, J = 9.6, 3.8 Hz, 1H), 1.98 (m, 2H), 1.82 (m, 1H), 1.29 (s, 3H), 1.10 (s, 3H), 0.93 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 208.2, 178.2, 177.8, 171.6, 138.0, 132.2, 129.0, 125.5, 123.5, 114.2, 93.2, 57.5, 54.8, 51.4, 45.8, 40.5, 34.3, 31.0, 29.8, 21.2, 17.9, 16.8, 9.9; ESI m/z (relative intensity) 418.2 (M + Na, 100%); HRMS calcd for C₂₃H₂₅NO₆ (M + Na) 418.1630, found 418.1660.

3-(4-((Trimethylsilyl)methyl)pent-4-enyl)-1H-indole (286). Cerium (III) chloride (32.7 g, 133 mmol) was stirred for 15 h in THF (450 mL) at room temperature. This mixture was cooled to -78 °C, and (trimethylsilylmethyl)lithium (138 mL, 1.0 M in pentane, 138 mmol) was added and the solution was stirred for 1 h. Ester 285 (5.36 g, 24.7 mmol) in THF (200 mL) was added and the reaction solution was warmed to room
temperature and held there with stirring for 15 h. The reaction solution was added to water (200 mL), extracted with ethyl acetate (3 x 100 mL), dried over Na\textsubscript{2}SO\textsubscript{4}, filtered, and concentrated in vacuo. A colorless oil was recovered which was dissolved in CH\textsubscript{2}Cl\textsubscript{2} (500 mL). Silica gel was added and this mixture was stirred for 2 h, concentrated in vacuo, and purified by flash chromatography using 40% ether in hexanes as the eluent to yield 2.79 g (42%) of the allylsilane as a yellow oil. IR (thin film) 3482, 1602 cm-1; 1H NMR (300 MHz, CDCl\textsubscript{3}) δ 7.85 (s, 1H), 7.62 (m, 1H), 7.34 (d, \textit{J} = 7.9 Hz, 1H), 7.34 (m, 2H), 6.95 (s, 1H), 4.63 (m, 1H), 4.54 (m, 1H), 2.77 (m, 2H), 2.07 (m, 2H), 1.88 (m, 2H), 1.55 (s, 2H), -0.02 (s, 9H); 13C NMR (75 MHz, CDCl\textsubscript{3}) δ 147.7, 136.4, 127.7, 121.9, 121.3, 119.2, 119.1, 116.8, 111.3, 107.3, 38.3, 28.4, 27.0, 25.0, -1.1; ESI \textit{m/z} (relative intensity) 272.1 (M + H, 100%); HRMS calcd for C\textsubscript{17}H\textsubscript{25}NSi (M + H) 272.1835, found 272.1831.

\textit{tert-Butyl -3-(4-((Trimethylsilyl)methyl)pent-4-enyl)-1H-indole-1-carboxylate} (287). Indole 286 (2.79 g, 10.3 mmol) was dissolved in CH\textsubscript{2}Cl\textsubscript{2} (125 mL). BOC\textsubscript{2}O (3.0 g, 13.8 mmol) and DMAP (1.70 mg, 13.9 mmol) were added and the reaction solution was stirred for 70 min at room temperature. The reaction solution was added to water (50 mL), extracted with CH\textsubscript{2}Cl\textsubscript{2} (3 x 50 mL), dried over Na\textsubscript{2}SO\textsubscript{4}, filtered, and concentrated in vacuo. The crude product was purified by flash chromatography using 10% ether in hexanes as the eluent to yield 3.97 g (100%) of 287 as a colorless oil. IR (thin film)
1719, 1602 cm\(^{-1}\); \(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta\) 8.11 (bs, 1H), 7.51 (m, 1H), 7.35 (s, 1H), 7.31 (m, 1H), 7.23 (m, 1H), 4.63 (m, 1H), 4.55 (m, 1H), 2.69 (t, \(J = 8.0\ \text{Hz}, 2H\)), 2.09 (t, \(J = 7.4\ \text{Hz}, 2H\)), 1.90 (m, 2H), 1.64 (s, 9H), 1.53 (s, 2H), 0.00 (s, 9H); \(^{13}\)C NMR (75 MHz, C\(_6\)D\(_6\)) \(\delta\) 149.9, 147.1, 136.3, 131.2, 124.6, 122.6, 122.6, 121.3, 119.3, 115.8, 107.8, 82.7, 38.3, 28.1, 27.7, 26.9, 24.8, -1.2; ESI \(m/z\) (relative intensity) 394.2 (M + Na, 30%); HRMS calcd for C\(_{22}\)H\(_{33}\)NO\(_2\)Si (M + Na) 394.2178, found 394.2184.

\[(S_5)-2-(\text{Phenylsulfinyl})-3-(4-((\text{trimethylsilyl})\text{methyl})pent-4-enyl)-1H-\text{indole}\] (131). Allylsilane 287 (1.30 g, 3.5 mmol) was cooled to -78 °C in THF (100 mL). \(s\)-BuLi (5.6 mL, 1.3 M in cyclohexane, 7.3 mmol) was added and the solution was stirred for 5 min. A solution of \((4R,5S, S_\text{R})\)-4-methyl-5-phenyl-3-[\(p\)-phenyl]-2-isooxazolidinone (2.30 g, 7.6 mmol) in THF (200 mL) was added and the mixture was stirred at -78 °C for 2 h, warmed to room temperature, and stirred for an additional 15 h. The reaction solution was added to sat. NH\(_4\)Cl (100 mL), extracted with CH\(_2\)Cl\(_2\) (3 x 100 mL), washed with brine, dried over Na\(_2\)SO\(_4\), filtered, and concentrated in vacuo. The crude product was purified by flash chromatography using 50% ether in hexanes as the eluent to yield 1.177 g (85%) of 131 as a white solid. Spectral data matched those for the racemic mixture.\(^{65}\) \([\alpha]^{25}_D\) - 29.9 (c 0.37 CH\(_2\)Cl\(_2\)).
(S₃)–1-Methyl-2-(phenylsulfinyl)-3-(4-((trimethylsilyl)methyl)pent-4-enyl)-1H-indole (134). Allylsilane 131 (287 mg, 0.75 mmol) was cooled in an ice bath in THF (22 mL). Lithium bis(trimethylsilylamide) (1.31 mL, 1.0 M in THF, 1.31 mmol) was added, and the reaction solution was stirred at 0 °C for 30 min. Methyl iodide (340 μL, 5.5 mmol) was added, the reaction solution was warmed to room temperature and held there with stirring for 15 h. The reaction solution was added to water (20 mL) and extracted with CH₂Cl₂ (3 x 30 mL), dried over Na₂SO₄, filtered, and concentrated in vacuo. The crude product was purified by flash chromatography using 50% ether in hexanes as the eluent to yield 205 mg (67%) of 134 as a white solid. Spectral data matched those for the racemic mixture. [α]²⁵°D - 103.2 (c 1.36 CH₂Cl₂)

(5)-1'-methyl-3-methylene[spiro[cyclohexane-1,3'-indolin]-2'-one (312).

From allylsilane 131: Allylsilane 131 (40 mg, 0.10 mmol) was cooled to -78 °C in toluene (10 mL). 2,6-Lutidine (36 μL, 0.30 mmol) followed by trifluoromethanesulfonic anhydride (34 μL, 0.20 mmol) were added and the reaction solution was stirred at -78 °C for 30 min. Water (10 mL) was added to the reaction
solution, and the mixture was warmed to room temperature. The layers were separated, and the aqueous phase was extracted with ethyl acetate (3 x 10 mL), dried over Na$_2$SO$_4$, filtered, and concentrated in vacuo.

The crude thioimidate 310 and ceric ammonium nitrate (55 mg, 0.10 mmol) were stirred in acetonitrile/water (4.2 mL, 6/1) for 15 h at room temperature. Water (5 mL) was added to the reaction solution, the layers were separated, and the aqueous phase was extracted with ethyl acetate (3 x 10 mL), dried over Na$_2$SO$_4$, filtered, and concentrated in vacuo.

The crude oxindole 311 (8 mg, 0.038 mmol) was cooled in an ice bath in THF (1 mL). Lithium bis(trimethylsilylamide) (40 μL, 1.0 M in THF, 0.040 mmol) was added and the reaction solution was stirred at 0 °C for 30 min. Methyl iodide (10 μL, 0.16 mmol) was added and the reaction solution was warmed to room temperature and held at that temperature with stirring for 3 h. The reaction solution was added to water (2 mL) and extracted with CH$_2$Cl$_2$ (3 x 3 mL), dried over Na$_2$SO$_4$, filtered, and concentrated in vacuo. The crude product was purified by flash chromatography using 20% ethyl acetate in hexanes as the eluent to yield 3.5 mg (18%, 3 steps) of 312 as a colorless oil. The ee was determined to be 58% using (+)-Eu(tfc). Spectral data matched those for the racemic mixture.65 [α]$^{25}_D$ - 19.9 (c 0.17 CH$_2$Cl$_2$)

From oxindole 318. n-Butyllithium (36 μL, 2.4 M in hexanes, 0.086 mmol) was added to methyltriphenylphosphonium bromide (29 mg, 0.081 mmol) in THF (1 mL) and the solution was stirred for 5 min. Oxindole 318 (18 mg, 0.073 mmol) in THF (1 mL) was added and stirred for 24 h, and then the solution was brought to reflux and held there for 24 h. The reaction solution was added to water (5 mL), extracted with CH$_2$Cl$_2$
(3 x 5 mL), dried over Na₂SO₄, filtered, and concentrated in vacuo. The crude product was purified by flash chromatography using 50% ether in hexanes as the eluent to yield 6 mg (33%) of 311 as a white solid.

Oxindole 311 (6 mg, 0.028 mmol, 68% ee) was cooled in an ice bath in THF (1 mL). Lithium bis(trimethylsilylamide) (31 μL, 1.0 M in THF, 0.031 mmol) was added and the reaction solution was stirred at 0 °C for 30 min. Methyl iodide (8 μL, 0.12 mmol) was added and the reaction solution was warmed to room temperature and stirred for 90 min. The reaction solution was added to water (2 mL) and extracted with CH₂Cl₂ (3 x 3 mL), dried over Na₂SO₄, filtered, and concentrated in vacuo to yield 6 mg (94%) of 312 as a colorless oil. The ee was determined to be 68% using (+)-Eu(tfc)₃.

From allylsilane 134: Allylsilane 134 (34 mg, 0.083 mmol) was cooled to -78 °C in acetonitrile (8 mL). 2,6-Lutidine (29 μL, 0.25 mmol) followed by trifluoromethanesulfonic anhydride (29 μL, 0.17 mmol) were added and the reaction solution was stirred at -78 °C for 30 min. Water (5 mL) was added to the reaction solution and the mixture was warmed to room temperature. The layers were separated, and the aqueous phase was extracted with ethyl acetate (3 x 5 mL), dried over Na₂SO₄, filtered, and concentrated in vacuo. The crude product was purified by flash chromatography using 20% ethyl acetate in hexanes as the eluent to yield 12 mg (63%) of 312 as a colorless oil. The ee was determined to be 46% using (+)-Eu(tfc)₃.
A colourless brick shaped crystal of agk1 (C24 H27 N O6) with approximate dimensions 0.10 x 0.30 x 0.35 mm, was used for the X-ray crystallographic analysis. The X-ray intensity data were measured at 142(2) K, cooled by Rigaku-MSC X-Stream 2000, on a Bruker SMART APEX CCD area detector system equipped with a graphite monochromator and a MoKα fine-focus sealed tube (λ = 0.71073Å) operated at 1600 watts power (50 kV, 32 mA). The detector was placed at a distance of 5.8 cm from the crystal.

A total of 1850 frames were collected with a scan width of 0.3° in ω and an exposure time of 10 seconds/frame. The total data collection time was about 8 hours. The frames were integrated with the Bruker SAINT software package using a narrow-frame integration algorithm. The integration of the data using a Orthorhombic unit cell yielded a total of 11198 reflections to a maximum θ angle of 28.38° (0.90 Å resolution), of which
4800 were independent, completeness = 94.9%, R_{int} = 0.0877, R_{sig} = 0.1219 and 3270 were greater than 2\sigma(I). The final cell constants: a = 6.986(7)Å, b = 11.755(11)Å, c = 25.40(2)Å, \alpha = 90°, \beta = 90°, \gamma = 90°, volume = 2086(3)Å³, are based upon the refinement of the XYZ-centroids of 3576 reflections above 20\sigma(I) with 2.361° < \theta < 28.074°. Analysis of the data showed negligible decay during data collection. Data were corrected for absorption effects using the multiscan technique (SADABS). The ratio of minimum to maximum apparent transmission was 0.290.

The structure was solved and refined using the Bruker SHELXTL (Version 6.1) Software Package, using the space group P2(1)2(1)2(1), with Z = 4 for the formula unit, C24 H27 N O6. The final anisotropic full-matrix least-squares refinement on F² with 284 variables converged at R1 = 9.81 %, for the observed data and wR2 = 27.82 % for all data. The goodness-of-fit was 1.053. The largest peak on the final difference map was 0.686 e⁻/Å³ and the largest hole was -0.460 e⁻/Å³. Based on the final model, the calculated density of the crystal is 1.355 g/cm³ and F(000) amounts to 904 electrons.
A colorless block shaped crystal of agk2 (C26 H29 N O5) with approximate dimensions 0.19 x 0.21 x 0.41 mm, was used for the X-ray crystallographic analysis. The X-ray intensity data were measured at 123(2) K, cooled by Rigaku-MSC X-Stream 2000, on a Bruker SMART APEX CCD area detector system equipped with a graphite monochromator and a MoKα fine-focus sealed tube (λ = 0.71073Å) operated at 1600 watts power (50 kV, 32 mA). The detector was placed at a distance of 5.8 cm from the crystal.

A total of 1850 frames were collected with a scan width of 0.3° in ω and an exposure time of 10 seconds/frame. The total data collection time was about 8 hours. The frames were integrated with the Bruker SAINT software package using a narrow-frame integration algorithm. The integration of the data using a Trigonal unit cell yielded a total of 23637 reflections to a maximum θ angle of 28.32° (0.90 Å resolution), of which 5756 were independent, completeness = 100.0 %, R_{int} = 0.0310, R_{sig} = 0.0230 and 5419 were
greater than 2σ(I). The final cell constants: \(a = 12.794(3)\text{Å}, \ b = 12.794(3)\text{Å}, \ c = 24.424(7)\text{Å}, \ \alpha = 90^\circ, \ \beta = 90^\circ, \ \gamma = 120^\circ, \ \text{volume} = 3462.2(13)\text{Å}^3 \), are based upon the refinement of the XYZ-centroids of 5435 reflections above 20σ(I) with 2.481° < \(\theta \) < 28.275°. Analysis of the data showed negligible decay during data collection. Data were corrected for absorption effects using the multiscan technique (SADABS). The ratio of minimum to maximum apparent transmission was 0.799.

The structure was solved and refined using the Bruker SHELXTL (Version 6.1) Software Package, using the space group P3(2)21, with \(Z = 6 \) for the formula unit, C26 H29 N O5. The final anisotropic full-matrix least-squares refinement on \(F^2 \) with 292 variables converged at \(R_1 = 5.62\% \), for the observed data and \(wR_2 = 16.26\% \) for all data. The goodness-of-fit was 1.057. The largest peak on the final difference map was 1.329 e/Å³ and the largest hole was -0.417 e/Å³. Based on the final model, the calculated density of the crystal is 1.253 g/cm³ and F(000) amounts to 1392 electrons.
Bibliography

57. Schreier, J. Undergraduate Honors Thesis

70. Vidulova, D. B., Ph.D. Thesis

85. The enantiomeric excess was determined by HPLC using an OJ-H column. The retention times using 93:7 hexanes: isopropylalcohol as the eluent: were 228.7 min for the (2R, 3S) enantiomer and 303.3 min for the (2S, 3R enantiomer).
86. The enantiomeric excess was determined by HPLC using an OJ-H column. The retention times using 93:7 hexanes:isopropylalcohol as the eluent: were 133.1 min for the (2S, 3S) enantiomer and 172.9 min for the (2R, 3R enantiomer).

87. The C(7) proton of the indole appears as a broad singlet due to hindered rotation caused by the nitrogen protecting group. A similar substrate was exposed to low temperature 1H NMR spectroscopy and this peak was found to resolve into two doublets.

88. The enantiomeric excess was determined by HPLC using an OJ-H column. The retention times using 96:4 hexanes:isopropylalcohol as the eluent: were 303.6 min for the (2S, 3S) enantiomer and 349.6 min for the (2R, 3R) enantiomer.
VITA
ANDREW KARATJAS

EDUCATION

Ph.D. Chemistry, The Pennsylvania State University, University Park, PA, August 2006.
Advisor: Professor Ken S. Feldman

Advisor: Professor Terry Newirth

PUBLICATIONS

PRESENTATIONS