
The Pennsylvania State University

The Graduate School

SUPPORTING MULTI-MISSIONS IN WIRELESS SENSOR

NETWORKS

A Dissertation in

Computer Science Engineering

by

Changlei Liu

c© 2010 Changlei Liu

Submitted in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

August 2010

The dissertation of Changlei Liu was reviewed and approved∗ by the following:

Guohong Cao

Professor of Computer Science and Engineering

Dissertation Advisor, Chair of Committee

Thomas F. La Porta

Distinguished Professor of Computer Science and Engineering

Director of Networking and Security Research Center

Sencun Zhu

Assistant Professor of Computer Science and Engineering

Runze Li

Professor of Statistics

Raj Acharya

Professor of Computer Science and Engineering

Department Head of Computer Science and Engineering

∗Signatures are on file in the Graduate School.

Abstract

The recent advances in sensing devices, embedded computing and wireless com-
munication technology has sparked the emergence of the wireless sensor networks.
However, most of the sensor networks nowadays only target for a single mission,
and may not be cost effective from the resource management point of view. There-
fore, in this dissertation, we focus on the design of multi-mission sensor network
which is envisioned to support multiple applications of diverse requirements with
a single network.

To support multiple missions, several challenges naturally arise. The first chal-
lenge comes from the fact that the missions or the mission requirements may change
over time. Therefore, the network needs to be enriched with the adaptation ca-
pability to explicitly handle the mission switch. Second, since sensor network
has limited resources, e.g., energy, sensing, bandwidth, etc, these resources have
to be shared by the multiple missions. An efficient resource allocation scheme,
therefore, should maximize the total profit by taking account into all the mission
requirements. Third, since mission-driven sensor network is usually deployed in
the harsh, unattended, dynamic environment, it is important to monitor the sensor
status, based on which decisions about the mission switch can be made. While
more challenges can be listed here, in this dissertation, we primarily focus on these
three aspects, namely, mission switch, resource allocation, and network monitor-
ing. Each of the aspects is examined under different contexts within an integrated
framework, and briefly summarized in the following.

First, we study the mission switch in a surveillance application. As mission
switches, e.g., the network is commanded to last for a longer time, some sensors
may have to sleep longer during each duty cycle. Then the original sensor deploy-
ment may not be able to satisfy the coverage and lifetime requirements at the same
time, and the coverage may need to be traded for network lifetime. To deal with
this tradeoff, we propose the concept of spatial-temporal coverage, in contrast to

iii

the traditional area coverage. Our goal is to schedule the sensor activity to maxi-
mize the total spatial-temporal coverage during a specified network lifetime. Both
centralized and distributed heuristics are proposed, with the approximation factor
of the centralized algorithm proved to be 1

2
.

Second, we explore the resource allocation in the landmine networks and in-
vestigate how to accomplish multiple missions with the minimum resources usage.
Specifically, we have studied a multi-target defense scenario, where our mission
is to destroy the multiple intruding targets using the minimum cost pre-deployed
landmines. Due to the NP Complexity of the problem, we have proposed a greedy
algorithm and a layering algorithm, whose approximation ratios are derived.

Third, we have proposed the multi-poller based monitoring architecture for mis-
sion driven sensor networks. Compared with the single poller scheme, the multi-
poller scheme significantly reduces the false alarm rate, while keeping the similar
bandwidth consumption. To construct the monitoring architecture, we formulate
a many-to-many poller-pollee assignment problem and present three distributed
algorithms (i.e., random, deterministic, and hybrid). We have also explored the
hop-by-hop aggregation opportunity between the poller and pollee, and formulate
the optimal aggregation path problem. We solve this NP-hard problem by design-
ing an opportunistic greedy algorithm, which achieves an approximation ratio of
5
4
. As far as we know, this is the first proved constant approximation ratio applied

to the aggregation path selection schemes over the wireless sensor networks.

iv

Table of Contents

List of Figures viii

Acknowledgments xii

Chapter 1
Introduction 1
1.1 Challenges of Multi-Mission Wireless Sensor Network 3
1.2 Focus of This Dissertation . 4

1.2.1 Spatial-Temporal Coverage Optimization with Mission Switch 5
1.2.2 Multi-Target Defense in Landmine Networks 5
1.2.3 Network Monitoring for Mission Driven Sensor Networks . . 6
1.2.4 Organization . 7

Chapter 2
Spatial-Temporal Coverage Optimization With Mission Switch 8
2.1 Introduction . 8
2.2 Problem Formulation . 11

2.2.1 Maximize The Spatial-Temporal Coverage 11
2.2.2 Minimize The Coverage Redundancy 14

2.3 Centralized Algorithm Design . 17
2.4 Distributed Algorithm Design . 21

2.4.1 Local Optimization . 22
2.4.2 Convergence Property . 26
2.4.3 Distributed Protocol Design 27
2.4.4 Discussions and Future Work 31

2.5 Performance Evaluations . 32
2.5.1 Determine The Optimization Threshold δ 33

v

2.5.2 Comparing POP With Other Schemes 34
2.6 Related Work . 38
2.7 Conclusions . 40

Chapter 3
Multi-Target Defense in Landmine Networks 41
3.1 Introduction . 41
3.2 Related Work . 44
3.3 Problem Formulation . 45
3.4 Algorithms and Their Performance Bound 49

3.4.1 Greedy Algorithm . 49
3.4.2 Layering Algorithm . 50
3.4.3 Performance Bound . 53

3.5 Distributed Implementation . 56
3.6 Performance Evaluation . 60

3.6.1 Comparison of Different Algorithms 60
3.6.2 Effect of The Relaxation Factor 62

3.7 Conclusions . 64

Chapter 4
Network Monitoring For Mission Driven Sensor Network 65
4.1 Introduction . 65
4.2 Architecture and Problem Formulation 67

4.2.1 The Multi-Poller Structure 67
4.2.2 Architecture . 68
4.2.3 Problem Formulation . 69

4.3 The Round Robin Based Multi-Poller Scheme and Its Performance
analysis . 70
4.3.1 The Round Robin Based Multi-Poller Scheme 70
4.3.2 The False Alarm Rate . 72

4.4 Distributed Poller-Pollee Assignment Algorithms 76
4.4.1 The Randomized Algorithm 77
4.4.2 The Deterministic Algorithm 77
4.4.3 The Hybrid Algorithm . 80
4.4.4 Poller Re-election In Case Of Failure 83

4.5 The Optimal Aggregation Path Problem 86
4.5.1 The Problem Formulation 86
4.5.2 A Greedy Algorithm And Its Approximation Ratio 87
4.5.3 Estimate The Lower And Upper Bound In Practice 92

4.6 Performance Evaluations . 93

vi

4.6.1 Parameter Setting . 93
4.6.2 Comparison of Single Poller and Multi-Poller Schemes 95
4.6.3 Comparison of Different Distributed Algorithms 96
4.6.4 Effect of Poller Reelection 98

4.7 Related work . 100
4.8 Conclusions . 101

Chapter 5
Conclusions and Future Work 102
5.1 Summary . 102
5.2 Future Directions . 103

Appendix A
The NP Proof of Problem maxCov 106

Appendix B
The NP Proof of Problem OptPH 108

Bibliography 110

vii

List of Figures

1.1 Spatial-temporal correlation among multi-missions, with each cylin-
der denoting a mission in the space and time domain 2

2.1 A surveillance example with three sensors. 10
2.2 An example to illustrate how to calculate the redundancy for k-

redundant elementary regions. 12
2.3 An example to illustrate the line traverse algorithm. The piecewise

curve depicts the relationship between R[0] and s[0].end. There are
total 14 crucial points, at which the slope k of the curve changes. . 24

2.4 An example to illustrate the POP protocol 28
2.5 Relationship between the coverage redundancy and δ (homogeneous) 33
2.6 Relationship between the convergence time and δ (homogeneous) . . 33
2.7 Comparison of coverage redundancy (homogeneous) 34
2.8 Comparison of convergence time (homogeneous, ν = 1

5
) 35

2.9 Comparison of event detection probability (homogeneous) 35
2.10 Comparison of event detection probability (homogeneous) 36
2.11 Comparison of coverage redundancy (heterogeneous) 36
2.12 Comparison of convergence time (heterogeneous) 36
2.13 Comparison of network lifetime with CCP (heterogeneous, ν = 2

5
) . 37

2.14 Comparison of coverage redundancy with CCP (heterogeneous, ν = 2
5
) 37

3.1 (a) A small smart-mine network, with the square denoting the tar-
gets, and the circle denoting the smart-mine. (b) the corresponding
bucket-tub model, with the bucket set denoting the mine and the
empty tub denoting the target. 42

3.2 the ESTC outdoor blast model (Q = 8 kilogram) 46
3.3 An example of the greedy algorithm 50
3.4 Illustration of the layering algorithm (a) the general case, where a

given graph G is decomposed into L + 1 layers. (b) a special case,
taking Fig. 3.3 as an example . 52

viii

3.5 An example to illustrate the local greedy algorithm. (a) the bucket
graph corresponding to Fig. 3.1. (b) the bucket graph after node
s1 is elected in the first iteration. (c) the bucket graph after nodes
s3, s5 are elected in the second iteration. 59

3.6 effect of number of mines n (m = 50) 61
3.7 effect of number of mines n (m = 100) 61
3.8 effect of number of targets m (n = 500) 61
3.9 effect of the number of targets m (n = 1000) 61
3.10 effect of the relaxation factor R in the fast greedy algorithm (n =

500,m = 50) . 62
3.11 effect of the relaxation factor R in the layering algorithm (n =

500,m = 50) . 62
3.12 effect of the relaxation factor R in the fast greedy algorithm(n =

1000,m = 100) . 63
3.13 effect of the relaxation factor R in the layering algorithm (n =

1000,m = 100) . 63

4.1 Basic and extended poller-pollee structure 68
4.2 Different monitoring infrastructures: (a) centralized (b) distributed

(c) distributed and fault tolerant, where circles denote pollees, squares
denote pollers, arrows denote the paths followed by packets, p-arrow
represents the path to the primary poller and s-arrow represents the
path to the secondary poller. Each solid line denotes a physical link,
and each dashed line represents a logical path that may consist of
multiple physical links. 69

4.3 Asynchronous operation at poller and pollee, with the arrow denot-
ing the status reporting . 70

4.4 Continuous-time markov chain link model 73
4.5 False alarm rate (fl = 0.1) . 76
4.6 False alarm rate (fl = 0.2) . 76
4.7 A numerical example. The deterministic algorithm (above) runs

in three rounds, exchanging 22 messages. The hybrid algorithm
(below) has a randomized phase and two deterministic phases, ex-
changing 10 messages. 79

4.8 The relationship between probability ρ and the message overhead . 82

ix

4.9 The candidate set of new pollers can be reduced to a few temporary
pollers. In the diagram, the centered node is the failed poller, the
other nodes are its neighboring pollees, and the circle delineates
its neighborhood. (a) the best case where only one node (with
the smallest id) is elected as the temporary poller. (b) the worst
case where up to five temporary pollers can be elected. (c) two
temporary pollers may not be able to reach one another in two
hops due to the lack of an intermediate node. 83

4.10 An example to illustrate the benefit of aggregation: (a) without
aggregation (b) aggregation path I (c) aggregation path II, where
each line denotes a physical link, and each arrow denotes a packet
transmission over one hop (packet-hop) 86

4.11 Worst-case topology with the best strategy (above) and worst strat-
egy (below). (a) 2-level connected tree, s = 2. (b) 3-level connected
tree, s = 4. (c) k-level connected tree, s = 2(k − 1). 87

4.12 The derived bound is tight for 2-level-trees: the best strategy (above)
and worst strategy (below). The number by the link indicates the
number of packets transmitted over this link. 91

4.13 Proof of the performance bound by dividing the energy consump-
tion into two parts. (a) the original connected tree (b) the upper
part consists of the links above level-(L-1), with the nodes at level-
L and level-(L+1) expanded onto level-(L-1). (c) the lower part
consists of the links below level-(L-1), with the nodes at level-(L-1)
and above shrunk into a single virtual node. 93

4.14 The effect of k1 on the number of pollers and the number of pollees
that cannot find ω pollers (n=1000) 94

4.15 The effect of probability ρ on the message overhead in the hybrid
algorithm (k1 = 1, k2 = 1) . 94

4.16 The effect of probability ρ on the message overhead in the hybrid
algorithm (k1 = 1, k2 = 3) . 94

4.17 Comparison of single and multi-poller scheme (with link failure fl =
0.1) . 96

4.18 Energy comparison of single and multi-poller scheme (without failure) 96
4.19 Snapshots of poller-pollee distribution, where the star denotes the

poller and the dot denotes the pollee: (a) randomized algorithm,
ρ = 0.2, (b) hybrid (randomized + deterministic) algorithm, ρ =
0.2, k1 = 1, k2 = 2 . 97

4.20 Distribution of the distance between pollers and pollees: (a)randomized
algorithm (b) hybrid algorithm . 97

4.21 Comparison of random algorithm with hybrid algorithm 98

x

4.22 Comparison of deterministic algorithm with hybrid algorithm 98
4.23 Comparison of false alarm rate in case of poller failure 99
4.24 Snapshots of poller-pollee distribution: (a) after running the ran-

domized algorithm (n=150, p=0.1, k=4, ω = 1). (b) after some
pollers fail. (c) after the failed pollers are replaced. 99

B.1 A tree topology to show the problem optPH is NP-hard. (a) initial
topology: each node sends a report to the poller (b) transformed
topology: each ni, i = 1...l sends ki reports to the poller, with
nA, nB sending nothing. 108

xi

Acknowledgments

First of all, I would like to express my sincere gratitude to my advisor Prof. Guo-
hong Cao, for his consistent support and supervision. During my Ph.D study, he
has spent considerable time and effort in training me as a more matured researcher.
It is because of his unreserved assistance that I could go through many difficult
times as a Ph.D student. Without his illuminating instruction, the completion of
my Ph.D study would not be possible.

High tribute shall be paid to Prof. Tom La Porta, Prof. Sencun Zhu, and
Prof. Runze Li, who are among my thesis committee. It is my great privilege to
have these wonderful professors in my committee. Without their generous help
and encouragement, the dissertation could not have reached the present form.

I am also greatly indebted to my fellow labmates who share with me the various
resources and give me valuable comments during my Ph.D stage. It is a pure joy to
work with them to overcome some difficult research problem. Special gratitude goes
to the brothers and sisters in the local and abroad church. Their prayer upholds
me and their love impels me. I also thank NSF (CNS-0916171) for funding this
work.

My gratitude also extends to my family, who have been assisting and caring
me all my life. Rather than giving, I have received too much from them. I owe a
special debt of gratitude to them.

Last but not the least, I offer my sacrifice of thanksgiving to the Lord Jesus
Christ. He is my creator, saver, and shepherd. His glory is the reason of my
existence and my ultimate goal to do the research. Praise Him for what he has
done, is doing, and will do in my life. “He restores my soul, and leads me in the
path of righteousness for His name’s sake.” (Psalm 23:3)

xii

Dedication

To my parents.

xiii

Chapter 1
Introduction

With the advances in micro-electro-mechanics and wireless communication, wire-

less sensor technology has become more and more common and permeated the

various areas of our life. Although each single sensor is constrained in its capability

(i.e., sensing, communication, and processing), numerous sensors can collaborate

with each other by forming a network to achieve purposes that a single sensor

cannot provide. Compared with other types of networks (e.g., IP network, cellula

network, ad hoc network), sensor network has its unique challenges. First, unlike

the infrastructure based network, the sensor nodes need to self-organize themselves

into a multi-hop network, which places critical demand for distributed design. Sec-

ond, sensor nodes are prone to failure since they usually operate in an unattended,

harsh environment, and they may run out of battery. This raises the serious issue

on fault tolerance. Finally, since sensors are usually untethered and powered by

limited battery, energy efficiency is a crucial and challenging issue.

Most of the sensor networks envisioned so far only target for a single mission

and are often designed for some particular application. Therefore, the concept

of multi-mission sensor network is developed to capture the notion that multiple

missions, each with its own requirement, may share common sensors to achieve

different goals. From resource management point of view, it may be more cost

effective for the wireless sensor network to support multiple missions instead of a

single mission.

The term “mission” can be defined in several ways. A narrow definition is based

on the type of applications performed. For example, in a fire disaster relief system,

2

the mission of the sensor network is to detect the fire event in a timely manner

as well as to find a safe route for the people to depart the building. By contrast,

a broader definition of mission is based on the objective of the assigned task.

The objective, for example, could be the mission duration/lifetime, the degree of

coverage, the preciseness of localization, or some other specific metrics.

Figure 1.1. Spatial-temporal correlation among multi-missions, with each cylinder
denoting a mission in the space and time domain

Depending on whether multi-missions coexist in spatial or temporal domain,

they may have different relationship. Fig. 1.1 shows some possible relationship in

the 3-D space with X and Y axis denoting the spatial area and T axis denoting

the time. Each disk denotes the spatial area of a mission at a particular instant.

As mission progresses in time, a cylinder is formed in the spatial and temporal

domain. For example, mission II progresses from time t0 to t1, and mission IV

progresses from t1 to t2. It can be seen that mission I and mission II correlate in

both spatial and temporal domain because they overlap in both time and space.

Mission II and mission IV correlate in spatial domain but not in the temporal

domain.

3

1.1 Challenges of Multi-Mission Wireless Sensor

Network

As the multi-mission sensor network is a special type of wireless sensor networks,

the aforementioned challenges of sensor network also apply to the multi-mission

sensor networks, i.e., distributed operation, fault tolerance, energy constraint.

However, due to its mission-oriented design, it also has its own unique challenges,

as summarized in the following.

The first challenge is the mission switch. In the example of fire disaster relief

system, the initial mission is to detect the occurrence of the fire event. But after

a fire is detected, the mission shall switch from the event detection to the safe

route discovery. Multi-mission sensor network, therefore, needs to be enriched

with the adaptation capability to handle the mission switch. The preplanning

kind of strategy is not sufficient here. Another example is in the area surveillance,

where the network may be required to last for a longer duration than its initial

design. Since it may not be possible to deploy more sensors, some sensors have to

sleep longer to extend the network lifetime, which may adversely affect the degree

of coverage. Therefore, sometimes the coverage has to be traded for lifetime.

The second challenge is the resource allocation. Because of the limited sensor

resources, multiple missions may compete for the same subset of sensors. Each

mission has a demand which measures its need of sensing resources, and associates

with a profit which represents how important it is. Thus, the objective of the

resource allocation is to maximize the total network profit with the limited sensor

resources. For example, in a sensor embedded landmine network, a single mission

is to destroy one target. But with multiple intruding targets, the multi-mission is

to destroy all the targets. Things become much more complicated in the multi-

target defense scenario, since each landmine may contribute to the destructive

effect of multiple targets, and the destruction of a single target may require the

involvement of multiple landmines. It turns out to be a complex task to determine

the minimum-cost subset of landmines to be activated through the distributed

collaboration among the landmines.

The third challenge comes from the dynamic, unattended, energy constrained

nature of the sensor operation. As sensors could fail or run out of battery any time,

4

the mission goal may not be met all the time. Therefore, it is important to monitor

the network condition and sensor status such that we can continually evaluate

the progress of mission completion. On the other hand, in a harsh, unattended

environment, the monitoring architecture itself should be fault tolerant, and the

monitoring overhead should not constitute a significant part of the total bandwidth

consumption. Therefore, we need to consider issues such as energy efficiency, fault

tolerance, distributed operation when constructing the monitoring architecture.

Fourth, besides the basic sensing and communication task, in many applica-

tions, the multi-mission sensor network is often associated with a physical process

whose consequence determines how well the mission is accomplished. In such case,

there is a close interaction between the sensing process and physical process, where

the sensed information (e.g., environmental condition, target attribute) is fed as

a parameter into the physical process, based on which the optimal action of the

physical process can be decided. For example, in a sensor embedded land-mine

network, the physical process refers to the landmine explosion, whose destructive

effect depends on many factors such as the type/model of the target and mine,

the distance between the target and mine, etc. The sensing process can obtain

some of these information for the physical process for the online strategy planning.

However, in most cases, to figure out the interaction between the physical process

and sensing process and find the corresponding optimal strategy is not easy.

1.2 Focus of This Dissertation

In this dissertation, we have addressed the challenges as elaborated in Section

1, and investigate the issues that are critical to the normal operation of multi-

mission sensor network. Specifically, we focus on three important aspects, namely,

mission switch, resource allocation, network monitoring, and explore these issues

in different application contexts. In the following, we give a brief overview of our

problems and contributions, within the context of three case-studies.

5

1.2.1 Spatial-Temporal Coverage Optimization with Mis-

sion Switch

Mission-driven sensor networks usually have special lifetime requirements and the

requirement could change on demand. For example in a surveillance application,

during the course of its operation, the network may be required to last for a longer

time than its initial design. Since it may not be possible to deploy additional

sensors, the current sensor density may not be able to satisfy the new lifetime and

coverage requirement at the same time. Then, the coverage may need to be traded

for network lifetime.

The coverage issue in sensor networks has been studied extensively [1, 2, 3, 4,

5, 6], where scheduling algorithms are proposed to maximize the network lifetime

while maintaining some predefined coverage degree. But different from existing

works, we study how to schedule sensor nodes to maximize coverage under the

constraint of network lifetime. Our work, which is the reverse of the existing

formulation, is thus complementary to the current literature.

Specifically, we study how to schedule sensors to maximize their coverage dur-

ing a specified network lifetime. Unlike sensor deployment, where the goal is to

maximize the spatial coverage, our objective is to maximize the spatial-temporal

coverage by scheduling sensors’ activity after they have been deployed. Since the

optimization problem is NP-hard, we first present a centralized heuristics whose

approximation factor is proved to be 1
2
, and then propose a distributed parallel op-

timization protocol (POP). In POP, nodes optimize their schedules on their own

but converge to local optimality without conflict with one another.

1.2.2 Multi-Target Defense in Landmine Networks

With the integration of sensor technology, researchers have developed the modern

landmine, so called smart-mine, where the landmine is endowed with the capability

of sensing, computation, and communication. While most existing work mainly

focuses on the single smart-mine design, we investigate the networking opportu-

nities that the sensor technology can bring to the next generation landmine and

develop the framework of multi-target defense in landmine networks.

In the single target defense, the mission is to destroy a single target. But in

6

the multi-mission (i.e., multi-target) defense scenario, the goal is to destroy all the

intruding target. Resource allocation in this case is much more complicated since

the explosion of a single landmine can affect multiple targets. To address this issue,

we utilize the recent result in the impact engineering [7, 8, 9, 10], which states that

the destructive effect of a mine explosion on a target depends on many factors

such as the type/model of the target and mine, the distance between the target

and mine, etc. Based on these inter-disciplinary result, we examine the interaction

between the sensing process and physical explosion process, and try to fill the gap

between the mine industry and impact engineering via sensor technology.

Specifically, we have formulated a minimum-cost mine selection problem, and

transform it using a novel bucket-tub model. Due to the problem complexity, we

have proposed two classes of approximation algorithms, i.e., greedy algorithm and

layering algorithm, whose approximation ratios are derived. To facilitate different

mines to negotiate with each other in a distributed manner, we also present a

local greedy algorithm, which produces the same solution set as the global greedy

algorithm.

1.2.3 Network Monitoring for Mission Driven Sensor Net-

works

For multi-mission sensor networks deployed in the unattended, harsh environment,

the knowledge of sensor statuses such as liveness, node density and residue energy,

is critical for maintaining the normal operation of the network. Based on these

information, timely evaluations can be made regarding the ongoing missions, and

prompt actions can be taken in response to the status change. As a result, a sound

monitoring architecture is fundamental to the multi-mission sensor network, and

crucial during the process such as resource allocation, mission switch, etc.

In this dissertation, we have made multifold contributions regarding network

monitoring. First, we propose a multi-poller based architecture to monitor the sen-

sor status. Combined with a round robin based scheduling scheme, the multi-poller

based scheme can reduce the false alarm rate significantly while keeping similar

bandwidth consumption as the single poller scheme. Second, we propose three dis-

tributed algorithms to construct the multi-poller monitoring architecture, namely,

7

random, deterministic, and hybrid algorithm. Third, we explore the hop-by-hop

aggregation opportunity during the transmission of status report and propose an

opportunistic greedy algorithm. Despite the NP complexity of the problem, the

algorithm proposed can achieve an approximation ratio of 5
4
. As far as we know,

this is the first proved constant approximation ratio applied to the aggregation

path selection schemes over the wireless sensor networks.

1.2.4 Organization

The remainder of the dissertation is organized as follows. Chapter 2 studies the

mission switch in a surveillance application. Chapter 3 explores the resource allo-

cation issue in the embedded landmine network. Chapter 4 focuses on the network

monitoring for mission driven sensor network. Chapter 5 finally concludes and

presents the future work.

Chapter 2
Spatial-Temporal Coverage

Optimization With Mission Switch

2.1 Introduction

In wireless sensor networks, there is a tradeoff between network lifetime and sensor

coverage. To achieve a better coverage, more sensors have to be active at the same

time, then more energy would be consumed and the network lifetime is reduced.

On the other hand, if more sensors are put into sleep to extend the network lifetime,

the coverage will be adversely affected. The tradeoff between network lifetime and

sensor coverage cannot be simply solved at the deployment stage, because it is hard

to predict the network lifetime requirement, which depends on the application and

may change as the mission changes. For example, in a surveillance application, the

initial mission is to monitor the battle field for 6 hours. As the battle goes on, the

commander finds that the battle may have to last for 10 hours. Then, the mission

of the sensor network is changed, which requires the network to last for 10 hours.

Since it may not be possible to deploy more sensors, some sensors have to sleep

longer during each duty cycle to extend the network lifetime. As a result, sensor

coverage needs to be traded for network lifetime.

The coverage issue in sensor networks has been studied extensively [1, 2, 3,

4, 5, 6], where scheduling algorithms are proposed to maximize the network life-

9

time while maintaining some predefined coverage degree1. However, if the same

coverage degree is maintained all the time, the lifetime requirements may not be

satisfied as network condition and mission change. For example, the sensor den-

sity may drop over time, and the coverage requirement may vary according to the

application’s demand. Different from existing works, we study how to schedule

sensor nodes to maximize coverage under the constraint of network lifetime. This

reverse formulation is especially useful when the number of nodes is not enough to

maintain the required coverage degree for a specified time period, as shown in the

above example.

In this chapter, we aim to resolve the conflict between the static status of

sensor deployment and the dynamic nature of mission requirements. As mission

dynamically changes, the lifetime and coverage requirement may not be satisfied at

the same time. Then the coverage needs to be traded for the network lifetime. Our

work is thus complementary to the existing work, which can apply when the sensor

density is sufficient to sustain both the lifetime and coverage requirement. To fulfill

this goal, we have to consider coverage in both spatial and temporal domain. In

particular, we define a new spatial-temporal coverage metric, in contrast to the

traditional area coverage. The spatial-temporal coverage of each small area is

defined as the product of the area size and the length of period during which the

area is covered. Then our objective becomes how to schedule the sensor’s on-

period to maximize the global spatial-temporal coverage, calculated as the sum

of individual spatial-temporal coverage over all the areas. This new formulation

arises naturally from the mission critical applications with the network lifetime

constraint and differentiates itself from most existing works which only consider

the spatial domain.

Consider a surveillance example shown in Fig. 2.1(a). Three sensors monitor

a rectangular area, where the overlap between sensor 1 and senor 2 is four units,

and the overlap between sensor 2 and sensor 3 is one unit. Suppose the network

is required to provide full coverage and operate for 10 hours. Since the battery

lifetime is 6 hours for each sensor, the coverage and lifetime requirement cannot be

satisfied. Most existing coverage-oriented algorithms in such a case would activate

the three sensors simultaneously for 6 hours, without considering the network

1The area is k-covered if every point in the area is covered by k sensors at the same time.

10

Figure 2.1. A surveillance example with three sensors.

lifetime constraint. However, we trade the coverage for lifetime by dividing the

mission duration of 10 hours into ten cycles, and within each cycle, each sensor

is active for 6/10 = 0.6 hour. Then the scheduling issue becomes how to place

the 0.6 hour in each cycle so that the spatial-temporal coverage of the overlapping

regions are maximized. Fig. 2.1(b) shows two solutions. From the spatial coverage

point of view, the two schedules make no difference because each sensor covers the

same area for the same length of time in different schedules. But from the spatial-

temporal perspective, schedule I is better because the four-unit overlapping region

is covered for a full cycle in schedule I but for only 0.6 cycle in schedule II. The

spatial-temporal coverage of the overlapping regions in schedule I is 4×1+1×1 = 5

and is 4× 0.6 + 1× 1 = 3.4 in schedule II.

The above example shows that different schedules may result in different cov-

erage redundancy. Although the optimal solution for this example can be easily

found (schedule I is actually the optimal solution), in a complex network setting

where thousands of sensors are arbitrarily deployed, we need a systematic way to

address the problem. Our contribution in this chapter can be summarized as fol-

lows. First, we formalize the sensor scheduling problem in the spatial and temporal

dimension, with the objective to maximize the spatial-temporal coverage with net-

work lifetime constraint. We further prove that it is equivalent to minimize the

coverage redundancy under certain conditions. Second, we prove the problem is

NP-hard and propose a centralized greedy algorithm with an approximation fac-

tor of 1
2
. Third, we propose a distributed heuristic, POP (parallel optimization

protocol), where nodes optimize their schedules on their own but converge to local

11

optimality without conflict with one another.

The rest of the chapter is organized as follows. Section II presents the problem

formulation. Section III shows the problem complexity and proposes a centralized

approximation algorithm. Section IV presents the distributed heuristic. Perfor-

mance evaluations are done in Section V. Section VI gives related work and Section

VII concludes the chapter.

2.2 Problem Formulation

When the sensor density is not sufficient to satisfy both the lifetime and coverage

requirements, the coverage has to be traded for lifetime. In such a case, the sensors

have to make their best efforts to provide the coverage while meeting the lifetime

constraint. To achieve this, we divide the network lifetime L into cycles and turn

on each sensor within each cycle for a period proportional to its battery life. We

further designate that the same schedule repeats in each cycle, such that the sleep

schedule can be implemented, e.g., using the Power Saving Mode (PSM) of 802.11.

Then the purpose of the scheduling is to place the on-periods within each cycle,

such that the total spatial-temporal coverage can be maximized. We formalize

it as a maxCov problem in subsection 2.2.1, and then transform it to a minRed

problem in subsection 2.2.2 whose objective is to minimize the overall coverage

redundancy.

2.2.1 Maximize The Spatial-Temporal Coverage

Problem MaxCov: Given a unit-disk graph G(N,E) with n nodes, the battery

life of each sensor Bi, i = 1...n, and a mission lifetime of L, where Bi ≤ L, we

want to calculate an “on” schedule per cycle for each sensor such that the overall

spatial-temporal coverage is maximized.

To quantify the overall spatial-temporal coverage (or coverage, for short), we

first define elementary region as the minimum region formed by the intersection

of a number of sensing disks. Notice that different points belonging to the same

elementary region are covered for the same length of time. Therefore, the spatial-

temporal coverage of each elementary region can be calculated as the product of

12

its area size and the length of time during which the region is covered by at least

one sensor. Note that for each elementary region, the area size is fixed after the

sensors are deployed, but the coverage time varies depending on the different sensor

schedule.

Further define the k-redundant elementary region as the elementary region

formed by the intersection of k sensors, where k ≥ 2. For example in Fig. 2.2(a),

there are seven elementary regions and four of them are redundant elementary

regions, whose area sizes are a1 = a2 = a3 = a4 = 1. a1, a2, a3 refer to the 2-

redundant elementary region and a4 refers to the 3-redundant elementary region.

The non-redundant elementary regions are covered by only a single sensor, such

as those elementary regions other than a1, a2, a3, a4 in Fig. 2.2. Since the coverage

time of the non-redundant elementary region is the same as the “on” period of

that sensor, its spatial-temporal coverage is constant irrespective of the sensors’

schedule. Therefore, to devise a better “on” schedule per cycle for each sensor, we

only need to focus on the redundant elementary regions to maximize their total

spatial-temporal coverage.

Figure 2.2. An example to illustrate how to calculate the redundancy for k-redundant
elementary regions.

Given the schedule in Fig. 2.2(b), the spatial-temporal coverage of the 2-

redundant elementary region can be calculated similar to that of Fig. 2.1. For

example, the spatial-temporal coverage for a1 is the product of the area of a1 and

the time during which a1 is covered by either s1 or s2, or both, i.e., 1 × 1 = 1.

Similarly, the coverage for a2 and a3 are 1× 1 = 1 and 1× 0.6 = 0.6, respectively.

For the 3-redundant elementary region a4, we need to find out the length of time

during which it is covered by at least one of the three sensors, which is 1 time unit

13

in Fig. 2.2. Therefore, the total spatial-temporal coverage over all the redundant

elementary regions in Fig. 2.2 is 1 + 1 + 0.6 + 1 = 3.6.

In general, we can formalize the problem in the form of mathematical program-

ming. Before giving the formulation, we first define some notations that will be

used throughout the chapter.

• N,E: the node set and the edge set of the graph

• si, N(i): sensor i and the neighbor set of sensor i, i.e., N(i)={j | sensor sj

is the neighbor of sensor si}

• I: the index set of the redundant elementary regions, i.e., I={i | region i is

a redundant elementary region}

• I(m): the index set of the redundant elementary regions within the sensing

disk of sensor m

• A(i): the index set of sensors whose intersection of sensing disks forms the

ith redundant elementary region, with |A(i)| denoting its cardinality.

• ai: the area size of the ith redundant elementary region

• Ti: the time during which the ith redundant elementary region is covered by

at least one sensor

• L, l: L is the network lifetime, and l is the length of the cycle, so there are
L
l

number of cycles, assuming L
l

is an integer. l should not be too small so

that the switch overhead between the on/off state is negligible.

• Bi, bi: Bi is the battery life of si, and bi is the length of si’s on-period per

cycle. Since there are L
l

number of cycles, we have bi × L
l

= Bi.

• si.start, si.end is the start and end of si’s on-period respectively, where

si.end− si.start = bi

• C: the total coverage of all the redundant elementary regions.

14

With these notations, we can calculate the total coverage as the sum of the

product of area size and coverage time, over all the redundant elementary regions.

Thus our objective function and constraints are:

Max C =
∑
i∈I

ai × Ti (2.1)

ST: 0 ≤ si.end ≤ l, i ∈ N (2.2)

bi = Bi × l

L
, i ∈ N (2.3)

si.end− si.start = bi, i ∈ N (2.4)

The purpose of the above optimization is to determine the variables si.end

(or si.start) to maximize the spatial-temporal coverage subjecting to the con-

straints 2.2, 2.3, 2.4. In the objective function, ai is the area size of the ith

redundant elementary region, which could be in arbitrary shape, and Ti is the

time during which the ith redundant elementary region is covered by at least one

sensor, which depends on the schedules of all the neighboring sensors. Constraint

(2.2) shows that the on-period may fall on the boundary of the cycle, so si.end

ranges from 0 to l. Constraint (2.3) requires that each node’s on-period within a

cycle is proportional to its battery life. Constraint (2.4) establishes the relationship

between si.end, si.start and the length of its on-period.

2.2.2 Minimize The Coverage Redundancy

In this section, we consider the coverage maximization problem from another per-

spective and propose a new formulation. In the previous section, the objective is to

maximize the total spatial-temporal coverage, which desires the total coverage time

of each redundant elementary region to be as large as possible. Alternatively, we

can achieve the same goal by minimizing the schedule overlap of the sensors that

monitor the same redundant elementary region. Toward this direction, we pro-

pose another metric, spatial-temporal coverage redundancy, whose value depends

on the area size, the overlapping “on” periods, and the the number of sensors that

monitor the area in each period. With the concept of spatial-temporal coverage

redundancy (or coverage redundancy for short), the problem of “maximizing cov-

15

erage under the constraint of network lifetime” becomes “minimizing the coverage

redundancy under the constraint of network lifetime” (called minRed problem).

We can prove that the two objectives are equivalent under certain condition.

We first use Fig. 2.2 as an example to illustrate how to calculate the cover-

age redundancy of the redundant elementary regions. For instance, the coverage

redundancy for a1 is the area of a1 times the schedule overlap of s1 and s2, i.e.,

1×0.2 = 0.2. Similarly, the redundancy for a2 and a3 are 0.2 and 0.6, respectively.

The coverage redundancy of a4 consists of two parts, i.e., the part of time when

a4 is covered by exactly two sensors, and the part of time when it is covered by

exactly three sensors. Intuitively, the two parts should have different contribu-

tion to the coverage redundancy, because more resources will be wasted as more

sensors overlap in time. To reflect this, we assign different weight to different pe-

riods during which the same region is monitored by different number of sensors.

In particular, a4 is solely monitored by s1 and s2 for 0 unit of time, by s1 and

s3 for 0.4 unit of time, by s2 and s3 for 0 unit of time, all of which are assigned

weight 1. On the other hand, a4 is solely monitored by s1, s2 and s3 for 0.2

unit of time, and it is assigned weight 2. Then, the total coverage redundancy

is the weighted sum of the product of area size and time overlap over all the re-

dundant elementary regions. For example, in Fig. 2.2, the total redundancy is

(0.2) + (0.2) + (0.6) + (1× 1× 0 + 1× 1× 0.4 + 1× 1× 0 + 3× 1× 0.2) = 2.

To study the problem from the perspective of coverage redundancy, we need to

define more notations in addition to those used in the previous section.

• tji (S), S ⊆ A(i): the time during which the ith redundant elementary region

is covered by exactly j sensors that include all the sensors in S. S can be

empty set ∅.

• aiaj: the area overlap (i.e., the size of the overlapping area) between si and

sj

• sisj: the time overlap (i.e., the length of the overlapping on-period) between

si and sj

• R: the coverage redundancy of the whole network

16

With these notations, the problem minRed is formulated as follows, with the

objective to minimize the total coverage redundancy.

Min R =
∑
i∈I

|A(i)|∑
j=2

w(j)× ai × tji (∅) (2.5)

ST: 0 ≤ si.end ≤ l, i ∈ N (2.6)

bi = Bi × l

L
, i ∈ N (2.7)

si.end− si.start = bi, i ∈ N (2.8)

In the objective function, the total coverage redundancy is calculated as the

weighted sum of the product of area overlap and time overlap, first over the possi-

ble coverage degrees within each region and then over all the redundant elementary

regions. Specifically, tji (∅) is the time during which the ith redundant elementary

region is covered by exactly j sensors, which depends on the schedules of the j sen-

sors. Intuitively, a larger j contributes more redundancy, so the weight factor w(j)

is used in the objective function to reflect this, which should be a monotonically

increasing function of j. In the following, we can prove that this new objective

function (Eqn. 2.5) is equivalent to the previous objective function (Eqn. 3.1) with

a properly set weight factor.

Theorem 1. With the same graph, network lifetime requirement, and battery con-

straints, the objective to maximize the total spatial-temporal coverage is equivalent

to minimize the total spatial-temporal coverage redundancy when setting the weight

factor to be w(j) = j − 1.

Proof. We first rewrite the objective of total coverage, i.e., Eqn. 3.1, by decompos-

ing the coverage time Ti into a multitude of sub-periods according to the different

coverage degree.

C =
∑
i∈I

ai × Ti =
∑
i∈I

|A(i)|∑
j=1

ai × tji (∅) (2.9)

Then we add the two objective functions together, i.e. Eqns. 2.5 & 2.9. Since

w(j) = j − 1, we have

17

C + R =
∑
i∈I

|A(i)|∑
j=1

j × ai × tji (∅) (2.10)

Note that a set of sensors A(i) monitor the elementary region ai, and each

sensor k ∈ A(i) is active for bk period of time per cycle. So each active period bk

can be decomposed into sub-periods according to the different coverage degrees of

region ai, i.e., bk =
|A(i)|∑
j=1

tji (sk). Therefore, if we sum up bk, k = 1, ..., |A(i)|, each

tji (∅) would be counted exactly j times. Then we have

∑

k∈A(i)

bk =

|A(i)|∑
j=1

j × tji (∅) (2.11)

Combining Eqn. 2.10 and Eqn. 2.11, we have C + R =
∑
i∈I

ai

∑
k∈A(i)

bk, which is

a constant value. This implies that maximizing the total coverage C is equivalent

to minimizing the total coverage redundancy R.

2.3 Centralized Algorithm Design

In this section, we first prove that the maxCov problem is NP-hard and then

propose a centralized greedy algorithm whose approximation factor is 1
2
.

Theorem 2. The problem maxCov is NP-hard. (The proof is given in Appendix

A.)

Despite the problem complexity, we propose the greedy heuristics for the prob-

lem maxCov, with the pseudo code listed in Algorithm I. Assume the area size

ai is known for each elementary region i. The algorithm is executed in iterations.

During each iteration, it calculates the maximal additional spatial-temporal cover-

age ∆Ci that each sensor si can provide based on the existing schedule and picks

the sensor with the largest ∆Ci. Each time a new sensor is picked, the existing

schedule within a cycle is augmented by placing the active period of the selected

sensor in the optimal position of the cycle (i.e., where the sensor can provide the

18

maximum coverage). This process will be repeated iteration after iteration, until

no more sensors can be picked to increase the total spatial-temporal coverage.

Define ∆Ci =
∑

j∈I(i)

aj × ∆Tj, as the sum of the product of area size aj and

additional coverage time ∆Tj over all the redundant regions covered by sensor si.

The process of deriving an optimal schedule is to calculate the maximum ∆Ci for

each sensor si by choosing the right si.start. Given an existing schedule among

sensor i’s neighbors whose on-periods are determined by its si.start (or si.end), it

turns out that it takes just O(|N(i)|) computational effort to derive max{∆Ci},
where |N(i)| is the number of the neighbors of sensor si. The linear computational

efficiency results from the observation that the maximum ∆Ci is achieved when

si.start is at one of the end points of the active periods of si’s neighbors. This is

because when si.start moves between two neighboring end points the value of ∆Ci

changes (i.e., increases or decreases) linearly. Therefore, we first identify the end

points, i.e., sj.start and sj.end, for each neighbor j of si, and then select si.start

among those end points where ∆Ci can be maximized.

Algorithm 1 Greedy Algorithm
Input: graph G(N, E), mission lifetime L, the battery life Bi, i = 1...n, the area of each

redundant elementary region ai, i ∈ I
Output: a subset of sensors Sgre with their schedules determined, the overall spatial-temporal

coverage Cgre

Procedure:
1: S0 = N, Sgre = ∅
2: while S0 6= ∅ and ∆Ck 6= 0 do
3: for each i ∈ S0 do
4: identify all the end points of the active periods among the neighbors whose schedule has

been determined. Use Se to denote the collection of these end points. Se = Se + {0}
5: calculate ∆Ci = max

si.start∈Se

|A(i)|∑
j=2

aj ×∆Tj , and the corresponding si.start that achieves

the optimal schedule
6: end for
7: find the sensor sk that can provide the maximum coverage, i.e., ∆Ck = max

i∈S0
∆Ci

8: if ∆Ck 6= 0 then
9: S0 = S0 − {sk}, Sgre = Sgre + {sk}, Cgre+ = ∆Ck.

10: update the current schedule by adding the on-period of sk

11: end if
12: end while
13: Output Sgre, and Cgre.

To analyze the performance of the algorithm, we cannot simply borrow the

19

techniques from the traditional coverage model in the spatial domain. Due to the

unique challenges of coverage issue in the spatial-temporal domain, the algorithm

not only needs to select sensors but also needs to determine their corresponding

schedules. In addition, the scheduling decision needs to be made in a continuous

space while there are infinite possibilities to place the on-period in a cycle. As a

result, some traditional modeling approach such as the set cover model [12] cannot

be simply applied. Therefore, we need new techniques to analyze the algorithm

complexity.

Theorem 3. Algorithm 1 achieves an approximation factor of 1
2

for the maxCov

problem.

Proof. Suppose there are total n sensors picked in the greedy algorithm. Sensor

sg
i is picked in the ith iteration, which provides ∆Cg

i additional coverage with

its active period placed at the optimal position of the cycle. Use the vector

V g
i = (vg

i1, v
g
i2..., v

g
i|I|) to denote the coverage provided by sg

i , with each compo-

nent corresponding to each redundant elementary region. Since there are total |I|
redundant elementary regions, there are |I| components for each vector. Each vg

ij

denotes the time periods during which the region j is covered by sg
i . For example,

vg
ij = {[1, 3], [5, 6]} means region j is covered by sensor sg

i during the periods [1,3]

and [5,6]. It can be seen that each period in vg
ij is determined by a start time

and an end time, with no overlap between the different periods. If region j is not

covered by sensor sg
i , set vg

ij = [0, 0]. Further use |vg
ij| to denote the total length

of time during which region j is covered by sg
i . For example, if vg

ij = {[1, 3], [5, 6]},
then |vg

ij| = 3.

Define the norm of the vector V g
i in the form of a weighted sum, i.e., |V g

i | =
|I|∑

j=1

aj×|vg
ij|, where the weight is the area size aj. For example, if V g

i = ({[1, 3], [5, 6]},
[0, 0], {[2, 4]}), then |V g

i | = 3a1 + 2a3. It can be seen that |vg
ij| denotes the total

spatial-temporal coverage provided by sg
i .

Further suppose V g
i and V g

j are two different vectors, then define the vector

addition/substraction as follows:

V g
i + V g

j = (vi1 ∪ vj1, vi2 ∪ vj2, ..., vi|I| ∪ vj|I|) (2.12)

20

V g
i − V g

j = (vi1 − vi1 ∩ vj1, ..., vi|I| − vi|I| ∩ vj|I| (2.13)

Thus, the total coverage vector generated by the greedy algorithm is V g =
n∑

i=1

V g
i , and the total coverage is

Cgre =
n∑

i=1

∆Cg
i = |V g| = |

n∑
i=1

V g
i | (2.14)

Suppose there are total m iterations in the optimal algorithm, and during each

iteration one sensor is picked. Then we rearrange the order of sensors selected in

the optimal algorithm, such that if a sensor is also chosen by the greedy algorithm,

it is chosen in the same iteration in both the algorithms. Since the schedule of

each sensor remains intact, changing the order of sensors selected will not affect

the outcome of the optimal algorithm. Similar to the greedy algorithm, we also

define the notations so
i , V

o
i , |V o

i |, vo
ij, |vo

ij|, ∆Co
i , V

o, Copt for the optimal algorithm.

In the ith iteration, the greedy algorithm picks sensor sg
i and enhances the total

coverage by ∆Cg
i . Thus we have ∆Cg

i = |V g
i −

i−1∑
j=1

V g
j |. According to the definition

of the greedy algorithm, during each iteration it picks the sensor that can provide

the maximum additional coverage, thus |V g
i −

i−1∑
j=1

V g
j | ≥ |V o

i −
i−1∑
j=1

V g
j |, where V o

i

is the coverage vector of the sensor so
i picked in the same iteration by the optimal

algorithm. In other words, the greedy algorithm picks sg
i instead of so

i because sg
i

can provide more additional coverage than so
i . On the other hand, V g ⊇

i∑
j=1

V g
j for

∀i = 1...n. Therefore we have

∆Cg
i ≥ |V o

i −
i−1∑
j=1

V g
j | ≥ |V o

i − V g|, ∀i = 1...n (2.15)

Since n sensors are picked in the greedy algorithm and m sensors are picked

in the optimal algorithm, to make the above equation also hold when m < n, let

V o
i = ([0, 0], ..., [0, 0]) for ∀i ∈ (m,n]. Then adding all the inequalities denoted by

Eqn. 2.15 gives

n∑
i=1

∆Cg
i = Cgre ≥

n∑
i=1

|V o
i − V g| (2.16)

21

Note that the spatial-temporal coverage of each sensor is denoted by a vector

and each component of a vector is a collection of time periods. Then based on the

vector analysis and the addition/substraction defined in Eqns. 2.12 & 2.13, it is

not hard to see

n∑
i=1

|V o
i − V g| ≥ |

n∑
i=1

(V o
i − V g)| ≥ |

n∑
i=1

V o
i | − |V g| (2.17)

As Copt = |
n∑

i=1

V o
i | and Cgre = |V g|, combining Eqn. 2.16 and Eqn. 2.17 gives

Cgre ≥ Copt − Cgre (2.18)

The above relationship shows that the approximation ratio of Algorithm 1 is
1
2
.

The centralized algorithm has theoretical favor, as it gives a constant factor

performance bound. However, it is not practical as it is difficult to enumerate

and compute each ai and let each node have such global knowledge. Thus in the

next section, we propose the distributed heuristics based on the local coverage

redundancy.

2.4 Distributed Algorithm Design

From the above discussion, we know that in a complex network of large scale,

it is computational infeasible to enumerate each elementary area ai and list each

period tji (∅) during which area i is covered by exactly j sensors. Therefore, in the

distributed design, we focus on the pairwise sensors and let each node minimizes its

own local coverage redundancy, defined as the sum of pairwise redundancy with its

neighbors. Although the global optimal is computationally infeasible to achieve,

we can design a class of algorithms in which each node is able to achieve the local

optimal if certain conditions can be satisfied. The basic idea is to let each node first

generate a random schedule independently. Then, each node adjusts its schedule

individually to minimize the local coverage redundancy with its neighbors, until

22

everyone converges to its local optimality. The seemingly simple idea has several

challenges.

• How to do the local optimization? Does it have polynomial time algorithms

to achieve the local optimal?

• If each sensor adjusts the schedule individually, is the algorithm able to

converge?

• How to eliminate conflicts caused by simultaneous adjustments of the neigh-

boring nodes?

The following subsections will address these challenges one by one.

2.4.1 Local Optimization

Without loss of generality, suppose sensor s0 has |N(0)| neighbors. The local

optimization problem at s0 can be formalized as follows:

Given the area overlap between s0 and its neighbors (i.e., a0ai, i ∈ N(0)), the

individual schedule of its neighbors, we want to decide s0’s own schedule, such that

the local sum of the coverage redundancy with its neighbors R[0] =
∑

i∈N(0)

a0ai×s0si

can be minimized.

It can be seen that the local coverage redundancy (i.e., R[i] =
∑

j∈N(i)

aiaj×sisj)

is much easier to calculate than the global redundancy (Eqn. 2.5). Suppose two

sensors si and sj, whose sensing radius are r and the distance between them is d.

Their area overlap and time overlap can be simply computed by:





aiaj = 2r2 arccos(d
2r

)− d
√

r2 − d2

4
, if d < 2r;

aiaj = 0, if d ≥ 2r;

s0sj = max{min(s[i].end, s[j].end)

−max(s[i].start, s[j].start), 0}

(2.19)

Each node has its own reference cycle. The cycles at different nodes are not

required to be synchronized. Each node only needs to know the relative position of

its neighbor’s on-period. This can be easily achieved via exchange of hello packets

with its neighbors.

23

Note that si’s schedule per cycle is solely determined by the start of its on-

period si.start and the end of its on-period si.end, where si.end − si.start = bi.

Then the objective of local optimization at s0 is to decide s0.end (or s0.start)

within its own reference cycle such that R[0] is minimized. However, because

s0.end could be any value between 0 and l, it is not realistic to enumerate all the

possibilities. In our solution, we only focus on some crucial points, which could

jointly determine the redundancy R[0] at every possible value of s0.end.

Line Traversal Algorithm: s0 first selects its own reference cycle and places

each neighbor’s schedule (i.e., on-period) in the cycle. Then s0’s on-period traverses

from the left of the cycle (i.e., s0.end = 0) to the right of the cycle (i.e., s0.end = l),

during which the local redundancy R[0] over the whole range can be recorded. In

the end, the points corresponding to the minimum R[0] are identified and selected

as s0’s schedule. For example, in Fig. 2.3, s0 has s1, s2, s3 as neighbors, whose

schedules are given. For ease of illustration, assume bi = bj, i, j = 0...3. However,

the algorithm is not limited in the homogeneous case but allows the heterogeneous

battery states at different nodes. Fig. 2.3 shows the relationship between R[0] and

s0.end by executing the line traversal algorithm.

The algorithm is based on the observation that the coverage redundancy R[0]

increases/decreases linearly as s0.end traverses from left to right, and the slope k

shifts only at some crucial points, which corresponds to the following four cases.

• Case I: the end of s0’s on-period enters the start of si’s on-period, i.e.,

s0.end = si.start, then the slope increases by a0ai, i.e., k = k + a0ai.

• Case II: the end of s0’s on-period leaves the end of si’s on-period, i.e.,

s0.end = si.end, then the slope decreases by a0ai, i.e., k = k − a0ai.

• Case III: the start of s0’s on-period enters the start of si’s on-period, i.e.,

s0.start = si.start, then the slope decreases by a0ai, i.e., k = k − a0ai.

• Case IV: the start of s0’s on-period leaves the end of si’s on-period, i.e.,

s0.start = si.end, then the slope increases by a0ai, i.e., k = k + a0ai.

We use Case I as an example to illustrate why the slope k is updated in such

a way. When the end of s0’s on-period enters the start of si’s on-period (such as

24

at point P3 in Fig. 2.3), the time overlap between s0 and si starts to increase as

s0.end traverses to the right. Thus, the slope of R[0] will increase by a0ai, i.e.,

k = k + a0ai, where a0ai is the area overlap between s0 and si.

Since the on-period may fall on the boundary of the cycle, we let s0.end traverse

from 0 to l, and count the coverage redundancy R[0] over the range [−b0, l]. Because

each crucial point corresponds to one of the above four cases and s0 has N(0)

neighbors, there are 4 ∗N(0) crucial points, denoted as Pj, j = 1...4N [0]. Adding

two points s0.end = 0 and s0.end = l, denoted as P0, P4N [0]+1, there are total

4N [0] + 2 crucial points. Since the slope k only changes at the crucial points, the

relationship between R[0] and s0.end can be presented by a piecewise curve, as

seen from Fig. 2.3. Note that some crucial points may overlap. For example in

Fig. 2.3, P1 and P2 overlap because s0.end enters b2 and s0.start leaves b1 at the

same time; P4 and P5 overlap because s0.end leaves b2 and s0.start enters b2 at

the same time. We use R[0][j] to denote the coverage redundancy at Pj and use

k[j] to denote the slope between points Pj and Pj+1, then we have the following

recursive relationship.





R[0][j + 1] = R[0][j] + k[j](Pj+1 − Pj)

R[0][0] = 1
2

∑
i∈N(0)

a0ai × s0si.
(2.20)

l0

b1

b3

b1
b2

-b0

b0

b0

b0

b0

b0

b0

b0 b0 b0

b0

R[0]

t

Node 2
Node 1Node 1

Node 3

Cycleb0/2

P0

P1,P2

P3

P4,P5 P6

P7,P8

P9

P10,P11

P12

P13

Figure 2.3. An example to illustrate the line traverse algorithm. The piecewise curve
depicts the relationship between R[0] and s[0].end. There are total 14 crucial points, at
which the slope k of the curve changes.

The above recursive relationship shows that the value of R[0] at the current

crucial point can be determined by its value at the previous point and the slope in

25

Algorithm 2 Line Traverse Algorithm
Input: Graph G, the schedules of s0’s neighbors si, i ∈ N(0);
Output: Node 0’s schedule, s0.end;
Procedure:
1: enumerate the set of crucial points in terms of the value of s0.end, χ = {x|x ∈∑

i∈N(0)

∪{si.start, si.end, si.start + b0, si.end + b0}, x ∈ [0, l]}
2: sort the crucial set χ in increasing order
3: R[0][0] = 1

2

∑
i∈N(0)

a0ai × s0si, P0 = 0, k[0] =
∑
i∈A

a0ai −
∑
i∈B

a0ai

/*the traversal starts at s0.end = 0. A,B denote the set of neighbors whose on-period spans
across 0 and −b0 (equivalently l − b0), respectively.*/

4: j = 1 /*the index of the crucial point*/
5: while χ 6= ∅ do
6: R[0][j] = R[0][j − 1] + k[j − 1](Pj − Pj−1)
7: if s0.end == si.start then
8: k[j] = k[j − 1] + a0ai

9: end if
10: if s0.end == si.start + b0 then
11: k[j] = k[j − 1]− a0ai

12: end if
13: if s0.end == si.end then
14: k[j] = k[j − 1]− a0ai

15: end if
16: if s0.end = si.end + b0 then
17: k[j] = k[j − 1] + a0ai

18: end if
19: χ = χ− {Pj}, j = j + 1
20: end while
21: R[0][i] = R[0][0] /*the traversal ends at s0.end = l */
22: connect the neighboring points piecewise by lines
23: select the optimal s0.end with the minimum R[0]

between. For example in Fig. 2.3, initially at P0, s0.end = 0, R[0] = 1
2
a0ai × s0s1

and k[0] = −a0a1. As s0.end moves right, R[0] decreases linearly until it hits P1. At

P1, s0.end enters b2 and s0.start leaves b2, so the slope k increases by (a0a1 +a0a2).

Then R[0] begins to increase linearly with k[1] = −a0a1 + a0a1 + a0a2 = a0a2 until

it reaches P2. Similarly, as s0.end continues to move right, the value of k varies at

the subsequent crucial points. When s0.end arrives at P13, the value of R[0] over

the whole range of [0, l] can be obtained, after which the same cycle is repeated.

With all the values of R[0] at different points, the minimum R[0] and its cor-

responding s0.end can be identified. In Fig. 2.3, at P1, P2, where s0.end = b0/2,

R[0] = 0 is the minimum. In this case, s0.end = b0/2 is the only optimal sched-

ule. However, in other cases, it is possible that the minimum R[0] is achieved

26

at multiple s0.end. Then, we can break the tie arbitrarily and pick any optimal

s0.end.

The complexity of Line Traverse Algorithm is only O(d), where d is the node

degree. Suppose a node has d neighbors, then there are at most 4 ∗ d + 2 cru-

cial points to be examined, and at each point only linear algebraic operation is

performed.

2.4.2 Convergence Property

In our distributed algorithm, each node locally optimizes its own schedule as long

as its schedule does not remain locally optimal. Since altering a node’s schedule

can affect the redundancy of its neighbors, the schedule adjustment at different

nodes may conflict with each other and the adjustment process may never end. For

example, if two neighboring nodes adjust their own schedules at the same time,

they may not be aware that their neighbor’s schedule has been changed and cannot

achieve local optimality. Next, we provide guidelines to guarantee that each node

can converge to its local optimality.

Theorem 4. Given a graph G and arbitrary schedules, a distributed algorithm will

terminate in a finite number of steps and after termination each node’s schedule

will converge to the local optimality, if

• no neighboring nodes optimize their schedules at the same time

• each node’s local adjustment continues as long as its local objective can be

improved for at least a predefined threshold δ.

Proof. First, we want to show that if the local objective improves (i.e., the re-

dundancy at a node decreases), the global pair-wise redundancy will improve

as well (i.e., the total redundancy decreases). Without loss of generality, sup-

pose a node s0 optimizes its local schedule. Because R[0] =
∑

i∈N(0)

a0ai × s0si,

we have ∆R[0] =
∑

i∈N(0)

∆R[i]. Further because the sum of the local redun-

dancy is Rs =
n∑

i=1

R[i], we have ∆Rs = ∆R[0] +
∑

i∈N(0)

∆R[i]. It is followed that

∆Rs = 2∆R[0], which shows that each time the local objective at s0 is improved

27

by ∆R[0], Rs is improved by 2∆R[0]. Second, it can be shown that the global pair-

wise redundancy is bounded, i.e., Rs ≤
n∑

i=1

∑
j∈N(i)

aiaj×min{bi, bj}, where ai, aj and

bi, bj are constant values. Therefore, the algorithm could terminate after a finite

number of steps if the stated conditions are satisfied, where the threshold δ could

be set arbitrarily small to approximate the local optimal point.

2.4.3 Distributed Protocol Design

Theorem 4 tells us that for a distributed protocol to converge, all three conditions

have to be satisfied. Before presenting our distributed protocol, let’s see two simple

algorithms.

• Random Algorithm: each node generates a random schedule individually.

• Serial Optimization Algorithm: each node first generates a random schedule,

based on which the schedule is locally optimized one by one. This serial

optimization process is repeated until no improvement can be made beyond

the predefined threshold δ.

Each of the above algorithms has its pros and cons. The random algorithm is

simple, distributed and has no message complexity. It can serve as a baseline for

comparison. The serial optimization algorithm uses the Line Traversal Algorithm

as a functional module to ensure that every node can achieve its local optimal-

ity, but it is centralized. In addition, for the serial algorithm to converge, many

iterations are needed until no improvement can be made. Therefore, the serial

algorithm takes a long time to terminate.

To retain the merit of the serial algorithm and remedy its weakness, we pro-

pose a parallel optimization protocol (POP). The basic idea of POP is to let many

nodes locally optimize their schedules (using Line Traversal Algorithm) in paral-

lel, so that it can converge much faster than the serial algorithm. According to

Theorem 4, a set of non-neighboring nodes can adjust their own schedules simul-

taneously without causing any conflict. From the algorithmic point of view, to

search for such set of non-neighboring nodes is equivalent to find an Independent

28

Iteration1

Iteration2

Iteration3

(1 3 4)
2
 5

5
(4 3 2)
1

5
(2 3 4)
1

Iteration

round

1
 2

3

5

4

Figure 2.4. An example to illustrate the POP protocol

Set [13], which is defined as a subset of nodes among which there is no edge be-

tween any two nodes. The set is a maximal independent set (MIS) if no more edges

can be added to generate a bigger independent set. To find the MIS, each node

independently determines whether it belongs to the set by comparing its weight

with its neighbors. If it has the best weight in the neighborhood, it elects itself as

belonging to the set, and then no other neighbors can be chosen. In general the

algorithm can be denoted as MIS(weight, criteria), where the weight can be id,

degree, energy, etc., and the criteria can be either smallest or largest. The criteria

is used to interpret the meaning of best weight, i.e., the smallest or the largest.

Algorithm II lists the pseudo code of the POP protocol which can be imple-

mented in a distributed manner. For clarity of presentation, we first introduce

the protocol in a centralized manner, and then give guidance to its distributed

operation. Initially, all nodes are unlabeled. Then, each node individually deter-

mines whether it belongs to the MIS by comparing its weight with the neighbors.

The labeled nodes locally optimize their schedules, after which the MIS algorithm

will continue to run among the remaining unlabeled nodes. We term the time

a round if during this period a MIS is found and local optimization is executed

in parallel at the nodes of the MIS. Several rounds comprise an iteration during

which the coalition of the MIS elected can have all the nodes labeled. The MIS

algorithm continues to run round after round and iteration after iteration until no

improvements can be made to any node’s schedule.

At the end of an iteration, all nodes’ labels are removed and a new iteration

starts with the criteria reversed, i.e., “smallest” becomes “largest” and vice versa.

Therefore, the iterations alternate between the increasing and decreasing order of

29

weight in executing the MIS algorithm. The criteria is reversed to facilitate the

distributed operation, so that the nodes belonging to the MIS in the last round of

previous iteration can start a new iteration.

Algorithm 3 parallel optimization algorithm
Input: a graph G(N, E)
Output: the local optimal schedule of each node, i.e., si.end, i = 1...n
Procedure:
1: each node generates a random schedule independently
2: discover neighbors and exchange the schedule with each other
3: initialize improve = Threshold, criteria = smallest, weight = id
4: while improve ≥ Threshold do
5: unlabel all the nodes /*start a new iteration*/
6: while there are still nodes unlabeled do
7: /*start a new round*/
8: run distributed algorithm MIS(weight, criteria)
9: run local optimization algorithm (i.e., line traversal algorithm) for each node of MIS,

record improve
10: end while
11: if criteria == smallest then
12: criteria = largest
13: else
14: criteria = smallest
15: end if
16: end while

Fig. 2.4 shows an example. In the first round, after MIS(id, smallest) is exe-

cuted, nodes s1, s3, s4 which have the smallest id among its neighbors, are selected

to form a MIS and optimize their schedules simultaneously without conflict. Then,

the MIS algorithm is executed for two more rounds among the remaining nodes,

during which the MIS obtained in the second and third round consists of s2 and

s5 respectively. So far all the nodes are labeled, so the first iteration ends. Af-

ter that, nodes are unlabeled again and the second iteration starts. The algorithm

MIS(id, largest) is executed with the criteria reversed, so that s5 (with the largest

id among its neighbors) can initiate the second iteration. Similar to the first iter-

ation, three rounds are needed in both the second and the third iteration. Note

that the last round of the previous iteration coincides with the first round of the

current iteration because their respective MIS is the same and there is no need

to optimize the schedule of the same MIS twice. Overall, 7 rounds are needed for

nodes to adjust their schedules in three iterations. This is much faster than the

serial algorithm which needs 5× 3 = 15 rounds.

30

It is straightforward to make Algorithm II distributed. Since both the MIS

algorithm and the local optimization algorithm are distributed, the issue here

is to let each node know when to elect itself to the MIS, when to start a new

iteration with the reversed criteria, and when to terminate. To achieve this,

we define a control packet in the format of msg(id, criteria, schedule). After a

node elects itself as belonging to the MIS and adjusts its schedule, it broadcasts

msg(id, criteria, schedule) to its neighbors. If the criteria is the “smallest” (or

“largest”), the neighbors with the larger (or smaller) id will have the sender la-

beled, and check the sender’s schedule to see whether it has changed. After a MIS

is elected, all the nodes in the MIS will be labeled by their neighbors. Therefore,

at least one unlabeled node’s id will become the smallest (or largest) among the

remaining unlabeled neighbors and thus eligible to adjust its own schedule.

To start a new iteration, the criteria needs to be reversed. If a elected node

finds itself to be the last node among its neighbors to be elected, it will realize

that it is his responsibility to reverse the criteria, and start a new iteration by

broadcasting an updated message. When other nodes receive the message with

the reversed criteria for the first time, they will realize that a new iteration starts,

so the labels of their neighbors are reset. A timer is set to control the termination

of the algorithm at each node. If the node cannot improve its schedule beyond the

predefined threshold δ after a few more iterations, it will exist and start using the

calculated schedule.

The message complexity of the POP protocol is O(n), which grows linearly

with the number of nodes. This is because each node in each iteration broadcasts

two messages: one is to exchange the id, criteria and schedule in the beginning,

while the other is to announce its labeled status after being selected to the MIS.

Therefore, the message complexity of each node is O(2T), where T is the number

of iterations required for the protocol to terminate. According to our experiments

in Section 2.5, T is a small constant with the typical parameter setting, e.g., T ≤ 5

when δ = 1, n ≤ 500 and battery/network lifetime ratio is 1
5
.

31

2.4.4 Discussions and Future Work

In this chapter, we assume the disk sensing model is used where the sensing range is

modeled by a disk and a point is covered if and only if it falls within the sensing disk

of one of the sensors. While the disk model provides valuable high-level guidelines,

it may not accurately reflect the performance in reality. Recently, some researchers

start to investigate the impact of link irregularity and the corresponding non-disk

model on the performance of the sensor networks [14], [15], [16, 17]. For example,

the work in [16] employ a empirical approach to estimate the sensing range. A

probability model is used in [17] to depict the coverage property of the sensor

network where the coverage probability of a point depends on the distance from

the monitoring sensors.

To adapt the POP protocol to the non-disk model, we can leave the big frame-

work intact but change the method to calculate the local coverage redundancy.

The algorithm still executes in iterations, but during each iteration each node cal-

culates the pair-wise coverage redundancy based on the specific non-disk model.

Taking the probability model as an example, the local coverage redundancy of

node s0 can be calculated by R[0] =
∑

i∈N(0)

∫ 2π

θ=0

∫ w

ρ=0
P (ρ, θ) × s0si, as compared

with R[0] =
∑

i∈N(0)

a0ai × s0si in the disk model. The new calculation is based

on the polar coordinate system, with the middle point of the line connecting the

pair-wise neighboring sensors as the pole. In particular, P (ρ, θ) is the coverage

probability calculated based on the specific model, w =
√

4r2−d2 sin θ2−d cos θ
2

and s0si

follows Eqn. 2.19. In general, extension of the coverage property to the non-disk

model is still an open issue in many situations. We leave the complete design and

evaluation to the future work.

Another issue worth of further investigation is the connectivity property of the

sensor network. Although in this chapter we consider network lifetime as a con-

straint and connectivity is not our focus, achieving continuous connectivity is still

valuable for the data delivery. It has been proved that when the communication

range is at least twice the sensing range, the full coverage implies the connectiv-

ity of the sensor network [4]. However, in our work we study the scenario where

the sensors may not be sufficient enough to sustain both coverage and lifetime, so

sometimes coverage has to be traded for lifetime, resulting in the partial coverage.

32

As far as we know, the condition under which the connectivity can be achieved in

the partially covered sensor network is still an open issue. Although we did not

solve it in this work, we point out this is an interesting issue for the future re-

search and have proposed a remedy solution in our previous work [18]. In [18], we

design a new set of routing protocols for the data delivery over the intermittently

connected network. In an intermittently connected network, the network may not

be physically connected at all instants, but the data can still be delivered to the

destination in a store-and-forward fashion.

2.5 Performance Evaluations

In this section, we evaluate the performance of the proposed POP protocol. In the

simulation, n sensors are randomly deployed in a 10×10 square area, with n varying

from 100 to 500. The sensing range is 1 unless otherwise specified. We specifi-

cally examine the scenario where the coverage and lifetime requirement cannot be

satisfied at the same time. For example, when n = 500 and the battery/network

lifetime ratio is 2
5
, the full coverage cannot be maintained throughout the network

lifetime using the algorithm in [4]. Both homogeneous and heterogeneous battery

states are considered. In the homogeneous case, every node has the same bat-

tery/network lifetime ratio ν, but in heterogeneous case νi is a random variable

uniformly distributed in [ν/2, 3ν/2] with ν as the average ratio. The experiments

are done over a customized C++ simulator.

Three schemes are evaluated, namely, random, serial, and POP, in terms of

coverage redundancy, convergence time, and event detection probability. As the

global coverage/coverage redundancy is infeasible to compute, we use the sum of

local coverage redundancy as an approximation. The randomized event is consid-

ered whose location of occurrence is uniformly distributed in time and space, and

whose length of occurrence e is normalized as the event/cycle ratio, i.e. e
l
. The

event detection probability is calculated by simulating 1000 randomized events.

To compare with the existing schemes, we implement an extended version of

the Coverage Configuration Protocol (CCP), which is shown to outperform other

schemes in most of the scenarios [4]. While the objective of the original CCP is to

select the minimum number of sensors to provide the full coverage, we extended

33

it to a continuously operational case where the sensor node may die of limited

battery. After a sensor dies, each sleeping sensor needs to decide whether it should

be activated to remedy the coverage hole based on the eligibility rule in [4]. We

evaluate CCP in terms of coverage redundancy and network lifetime. The network

lifetime is defined as the period during which half of the nodes fail.

2.5.1 Determine The Optimization Threshold δ

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

100

200

300

400

500

600

700

threshold δ

co
ve

ra
ge

 r
ed

un
da

nc
y

R

parallel (n=200, ratio ν=1:5)
parallel (n=200, ratio ν=2:5)
parallel (n=400, ratio ν=1:5)

Figure 2.5. Relationship between the coverage redundancy and δ (homogeneous)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
20

40

60

80

100

120

140

160

180

threshold δ

co
ve

rg
en

ce
 ti

m
e

(r
ou

nd
s)

parallel (n=200, ratio ν=1:5)
parallel (n=200, ratio ν=2:5)
parallel (n=400, ratio ν=1:5)

Figure 2.6. Relationship between the convergence time and δ (homogeneous)

δ is the threshold of improvement made at each step. It determines how accu-

34

rate the algorithm can approach the local optimality and how fast the algorithm

can converge. From Figs. 2.5, 2.6, it can be seen that δ affects the coverage redun-

dancy and the convergence time in different ways. As δ increases, the redundancy

will rise but the convergence time goes down. In other words, the objectives of

redundancy and convergence time conflict with each other from the perspective of

δ. To make the coverage redundancy better, a smaller δ should be used, but to

improve the convergence time, a larger δ should be employed. To balance coverage

redundancy and convergence time, we set δ to be 1 in the following experiments.

2.5.2 Comparing POP With Other Schemes

100 150 200 250 300 350 400 450 500
0

500

1000

1500

2000

2500

3000

3500

4000

4500

number of nodes n

co
ve

ra
ge

 r
ed

un
da

nc
y

R

random, ratio ν=1/5
serial, ratio ν=1/5
parallel, ratio ν=1/5
random, ratio ν=2/5
serial, ratio ν=2/5
parallel, ratio ν=2/5

Figure 2.7. Comparison of coverage redundancy (homogeneous)

Figs. 2.7, 2.8 show that the number of nodes n and the on-period/network

lifetime ratio ν affect the system performance in a similar way. Both coverage

redundancy and convergence time increase as more sensors are deployed or as

larger on-periods are used. In terms of redundancy, serial and POP have simi-

lar performance, and both outperform the random algorithm substantially. The

improvement gradually decreases as the number of nodes increases. For instance,

the performance improvement is over 100% when n = 200 but reduces to about

80% when n = 400. This is because as more sensors are deployed, it is more likely

that the random algorithm can produce a relatively good schedule. In terms of

convergence time, POP is much faster than the serial algorithm because parallel

35

100 150 200 250 300 350 400 450 500
0

500

1000

1500

2000

2500

number of nodes n

co
ve

rg
en

ce
 ti

m
e

(r
ou

nd
s)

serial, ratio ν=1/5
parallel, ratio ν=1/5
serial, ratio ν=2/5
parallel, ratio ν=2/5

Figure 2.8. Comparison of convergence time (homogeneous, ν = 1
5)

100 150 200 250 300 350 400 450 500
0.4

0.5

0.6

0.7

0.8

0.9

1

number of nodes n

ev
en

t d
et

ec
tio

n
pr

ob
ab

ili
ty

random, event/cycle=1/16
serial, event/cycle=1/16
parallel, event/cycle=1/16
random, event/cycle=1/4
serial, event/cycle=1/4
parallel, event/cycle=1/4

Figure 2.9. Comparison of event detection probability (homogeneous)

optimizations can take place at the same time. As shown in Fig. 2.8, irrespec-

tive of the number of nodes, the convergence time of POP is only 1
10

of the serial

algorithm.

Figs. 2.9, 2.10 compare the different schemes in terms of event detection prob-

ability. In Fig. 2.9 the X-axis corresponds to the number of nodes, and in Fig. 2.10

the X-axis corresponds to the event/cycle ratio. It can be observed that for all the

schemes the detection probability increases as the number of nodes increases. The

36

1 1.5 2 2.5 3 3.5 4 4.5 5
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

event/cycle ratio

ev
en

t d
et

ec
tio

n
pr

ob
ab

ili
ty

random, n=200
parallel, n=200
random, n=300
parallel, n=300

Figure 2.10. Comparison of event detection probability (homogeneous)

100 150 200 250 300 350 400 450 500
0

500

1000

1500

2000

2500

3000

3500

4000

4500

number of nodes n

co
ve

ra
ge

 r
ed

un
da

nc
y

R

random, ratio ν=1/5
serial, ratio ν=1/5
parallel, ratio ν=1/5
random, ratio ν=2/5
serial, ratio ν=2/5
parallel, ratio ν=2/5

Figure 2.11. Comparison of cov-
erage redundancy (heterogeneous)

100 150 200 250 300 350 400 450 500
0

500

1000

1500

2000

2500

number of nodes n

co
ve

rg
en

ce
 ti

m
e

(r
ou

nd
s)

serial, ratio ν=1/5
parallel, ratio ν=1/5
serial, ratio ν=2/5
parallel, ratio ν=2/5

Figure 2.12. Comparison of con-
vergence time (heterogeneous)

initial detection probability is below 50% when n = 100 but gradually approaches

1 as n increases to 500. Another observation is that the detection probability also

increases as the length of event increases. This can be understood since the longer

the event persists the easier it should be detected. Among the different schemes,

the serial algorithm and POP has almost the same performance, both of which

outperform the random algorithm. The improvement is about 15% in terms of

event detection probability.

Figs. 2.7, 2.8 study the performance of homogeneous cases. The same trend

exists in the heterogeneous case as shown in Figs. 2.11, 2.12.

37

100 200 300 400 500 600
2

2.5

3

3.5

4

4.5

5

5.5

6

number of nodes n

ne
tw

or
k

lif
et

im
e

Randomized algorithm
CCP protocol
POP protocol

Figure 2.13. Comparison of network lifetime with CCP (heterogeneous, ν = 2
5)

100 200 300 400 500 600
0

1000

2000

3000

4000

5000

6000

7000

number of nodes n

co
ve

ra
ge

 r
ed

un
da

nc
y

R

Randomized algorithm
CCP protocol
POP protocol

Figure 2.14. Comparison of coverage redundancy with CCP (heterogeneous, ν = 2
5)

Figs. 2.13, 2.14 compare the proposed schemes with CCP. In Fig. 2.13, it is

shown that CCP is not able to meet the lifetime requirement in the scenarios

simulated. However, as more sensors are deployed, it can support a longer network

lifetime. For example, when n = 600 it maintains almost 90% of the required

lifetime with the full coverage. By contrast, the randomized algorithm and POP

divide network lifetime into cycles and within each cycle the locations of their “on”

periods are different. Therefore, both the algorithms bear the lifetime constraint

in mind and can satisfy the lifetime requirement regardless of the node density,

as seen in Fig. 2.13. In Fig. 2.14, it is shown that CCP’s coverage redundancy is

38

consistently larger than that of POP. Compared with the randomized algorithm,

the performance of POP is close to the randomized algorithm when the number of

sensors is small, but substantially improves as more sensors are deployed. This is

because when sensor node density becomes larger, the network lifetime will increase

(as shown in Fig. 2.13), then the coverage redundancy will reduce as a result.

2.6 Related Work

The sensor coverage problem has been extensively studied in the literature. De-

pending on the subject covered, most existing works can be classified into area

coverage, point coverage, and barrier coverage [2]. In terms of area coverage,

many works focus on how to select the minimum number of sensors to preserve

the coverage degree (e.g., 1-degree or k -degree) [3, 4, 5, 6, 19, 20, 21], but they

provide no network lifetime guarantee. In [22], a centralized scheduling algorithm

is proposed to sequentially activate the sensor cover and guarantees a O(logn)

factor of the maximum network lifetime, where n is the total number of nodes.

Further in [23], a distributed scheduling algorithm is proposed which achieves a

O(logn ∗ lognB) performance factor, where B is the upper bound of the initial

battery. Besides coverage requirement, the connectivity property also attracts lots

of research attention. For example, when the coverage requirement can be satis-

fied, the conditions to achieve the communication connectivity have been derived

in [4, 24]. When the coverage requirement cannot be satisfied all the time, e.g.,

in presence of partial coverage, there are routing protocols proposed in [18] to en-

sure the delivery of the data to the sink in the store-and-forward fashion over the

intermittent link.

The model of point coverage is studied in [25, 1], with the objective to maximize

the network lifetime when only a given set of targets needs to be covered. The

model is NP-hard in general, so some greedy heuristics are proposed based on

the linear programming relaxation [25]. But with the assumption that one sensor

covers only one target a time, the optimal schedule can be derived based on the

technique of matrix decomposition [1]. In the special case, each target to be covered

is the sensor node itself, e.g., in the scenario of network monitoring. In [26, 27],

distributed algorithms are proposed to construct the monitoring architecture for

39

sensor networks where sensor nodes can monitor each other within a predefined

communication range.

The concept of barrier coverage is first proposed by [28], with the objective to

minimize the probability of undetected penetration through the barrier. In [29],

a global algorithm is proposed to determine whether a region is k-barrier covered.

Although it has been proved that given a sensor deployment, sensors cannot locally

determine whether the deployment provides global barrier coverage, a distributed

algorithm is proposed based on the concept of local barrier coverage [30] assuming

the intruders move along restricted crossing paths in rectangular areas. Later, the

restriction on crossing paths is removed in [31, 32] where the barrier construction

algorithm is proposed when the sensors are deployed according to a poison point

process [31] or along a line [32].

There also exist other coverage models for specific applications. For example,

trap coverage [33] is used to bound the diameter of the coverage holes; surface

model [34] is proposed for the coverage of complex surface in the 3-D space; double

mobility model [35] is used to cover the sea surfaces; alpha coverage model [36] is

designed for the vehicular internet access.

While all of the above works treat the lifetime as objective, we consider the

network lifetime as a constraint and aim to schedule each sensor’s on-period to min-

imize the total spatial-temporal coverage redundancy. This reverse formulation is

especially useful for mission-driven sensor networks, where the network lifetime

may have higher priority over coverage and the pre-deployed resources may not

meet the changing mission requirements all the time. Thus our work is comple-

mentary to the existing works, which can apply when the sensor node density is

sufficient to provide the preferred coverage degree for a specified length of time.

There are other application-driven scheduling algorithms, e.g., for minimum

latency routing [37, 38, 39], target tracking [40, 41, 42, 43], event detection [44], and

throughput optimization [45]. All these works support only a single mission and do

not treat network lifetime as the objective or constraint. By contrast, our objective

is to maximize the spatial-temporal coverage with the network lifetime as the

constraint. Our model is different from the traditional maximum coverage problem

in the spatial domain, which is known to have a (1 − 1/e)-approximation bound

[12]. This is because in the spatial-temporal domain, we not only need to select

40

sensors but also need to determine their corresponding schedules in a continuous

cycle. Therefore, the (1 − 1/e) ratio cannot be applied here. By contrast, we

model the spatial-temporal coverage as a vector and propose a 1
2
-approximation

algorithm for our problem.

2.7 Conclusions

As mission-driven sensor networks usually have stringent lifetime requirement,

sometimes coverage has to be traded for network lifetime. In this chapter, we

studied how to schedule sensor active time to maximize the spatial-temporal cov-

erage while meeting the lifetime constraint. While the optimization of the global

objective is NP-hard, we have proposed both centralized and distributed algo-

rithms with low complexity. It was proved that the centralized algorithm has an

approximation ratio of 1
2
, and the distributed parallel optimization protocol (POP)

can ensure each node to converge to local optimality without conflict with each

other. The computational complexity of POP is only O(d) per node, where d is the

maximum node degree, and its message complexity is O(n), which is linear with

the number of nodes. Theoretical and simulation results showed that POP sub-

stantially outperforms other schemes in terms of coverage redundancy, convergence

time, network lifetime and event detection probability.

Chapter 3
Multi-Target Defense in Landmine

Networks

3.1 Introduction

Traditional landmines are commonly triggered by the pressure of the moving target

(e.g., tank, vehicle, personnel) that steps on it. However, there are cases where the

ground surface is not suitable to bury the mine or the mine needs to be triggered

by the target within a certain distance. In these cases, the pressure-triggered mine

can no longer be used or bring optimal performance. In addition, the traditional

landmines lack of self-destruction capability and may linger as a threat for a long

time, causing the postwar disposal issue. Therefore, many ongoing efforts have

focused on developing the off-route mines that could be triggered by means such

as sound, magnetism and vibration, so that the mine could detonate even when it

is not touched. As far as we know, the work in [46] is the only published effort to

achieve this goal by integrating the latest sensor technology [47] into the landmine

design (so called smart-mine). In agreement with [46], we believe that the marriage

with sensor technology could bring new opportunities and even revolutionize the

entire mine industry. While [46] mainly focuses on the single sensor-enabled mine

design, in this chapter we take one step further and investigate the networking

opportunities that the sensor technology can bring to the next generation landmine.

Research in the impact engineering [7, 8, 9, 10] shows that the destructive effect

42

of a mine explosion on a target depends on many factors such as the type/model

of the target and mine, the distance between the target and mine, etc. In this

regard, the sensor technology fills the gap between the mine industry and impact

engineering by providing information crucial for decision making. With the em-

bedded sensor, a mine is able to detect, classify the target, or even measure the

distance from the target. By forming a smart-mine network, different mines can

further exchange status information with each other, thus reaching agreement on

a globally efficient strategy. Fig. 3.1(a) shows a small smart-mine network of 2

targets and 5 smart-mines, where the link indicates whether the target is within

the explosion range of the mine. Based on the sensed distance information, each

mine can estimate the blast impact on its neighboring target. Then different mines

could exchange the information with one another and collaboratively decide who

need to be triggered. For example, if mine 1 is close enough to disable both tar-

gets, the other mines do not have to be triggered; otherwise, more mines need to

participate.

3

A

1

2

B 5

4

(a)

σ2aσ4a
σb

σ2b
σa

σ5b

σ3a
σ1a σ1b

Tub ta

V1b=-log2(1-σ1b)

(b)

V3a=-log2(1-σ3a)

V4a=-log2(1-σ4a)

V5a=-log2(1-σ5b)s5

V1a=-log2(1-σ1a)

V2b=-log2(1-σ2b)

V2a=-log2(1-σ2a)

ra=-log2(1-σa)

rb=-log2(1-σb)

Tub tbs4

s3

s2

s1

Figure 3.1. (a) A small smart-mine network, with the square denoting the targets, and
the circle denoting the smart-mine. (b) the corresponding bucket-tub model, with the
bucket set denoting the mine and the empty tub denoting the target.

In this chapter, we formulate the detonable mine selection problem based on

two observations. First, as a single mine may not be powerful enough to destroy

a single target, multiple mines may be used. Second, if several targets are within

the explosion scope of a mine, one explosion could destroy multiple targets at the

same time. Therefore, we need to consider the effects of multiple explosions on one

target as well as the effect of single explosion on multiple targets. Our objective is

43

to minimize the total cost of mines (i.e., the number of mines if each mine has the

same cost) subject to the constraint that all the targets should be destroyed with

a predefined probability. For example in Fig. 3.1(a), the objective is to select a

minimum number of mines to destroy the two targets with a given probability. To

resolve this problem, there are several challenges. For example, how to quantify

the destructive effect of the mine explosion on a target, how to set the criteria

based on which different mines are picked, and how to find a way to let different

smart-mines to negotiate with each other.

To address these challenges, we employ the results in impact engineering and

calculate the collaborative effect of multiple explosions. Due to the complexity of

the formulation, we transform the problem using a novel bucket-tub model and

prove that it is NP-hard. Based on the new problem formulation, we propose two

classes of approximation algorithms, i.e., greedy algorithm and layering algorithm.

It is proved that the layering algorithm can achieve an approximation ratio of α ·f ,

where α ≥ 1 is the tunable relaxation factor and f is the maximum number of

mines that a target is associated with. In other words, the cost of the layering

algorithm is bounded by α · f times the minimum cost of the optimal solution.

The greedy algorithm is shown to have an approximation ratio of
∑

j Rj, where

Rj is the coefficient in the related integer program. To facilitate different mines to

negotiate with each other in a distributed manner, we also present a local greedy

algorithm, which produces the same solution set as the global greedy algorithm.

By using parallel operations, the algorithm execution time can be significantly

reduced.

The rest of the chapter is organized as follows. Section II overviews the related

work. Section III formulates the problem and transforms it using a novel bucket-

tub model. Section IV proposes the greedy algorithm and layering algorithm, and

proves their approximation ratios. Section V shows how to implement the greedy

algorithm in a distributed manner. Performance evaluations are done in Section

VI and Section VII concludes the chapter.

44

3.2 Related Work

The recent advance in wireless sensor networks has brought new challenges and

horizons to many fields. In [46, 48], there are some ongoing efforts to integrate

the sensor into the military weapon system, with the purpose to improve the

military performance and reduce the civilian casualties. In [48], a sensor network-

based mobile countersniper system is introduced. Their purpose is to use soldier-

wearable networked sensors to localize the shooter and classify the weapons. In

[46], The authors discuss the feasibility of sensor-enabled landmine, so called smart-

mine. Compared with the traditional landmine, the smart-mine has distinguished

features such as the target discernment, ability to talk to the neighboring mine,

and self destruction after the war ceases. Different from [46], which mainly focus on

the feasible design of a single smart-mine, we investigate the advantage of forming

a sensor network and study how to minimize the landmine cost.

In the field of impact engineering, numerous research has been carried out to

study the effect of the buried mine explosion. Depending on the types of targets,

these works fall into several categories. In [9, 10], the authors study the blast

injury on human. It is shown that the distance between a person and the bomb

is one of the major factors in determining the survival probability. On the other

hand, predicting the blast effect on the armed vehicles or tanks has also received

lots of attentions in recent years. Many mathematical and experimental results

about the deformation or failure of a calmed plate subject to the explosive loading

are reported [7, 8]. There are a variety of models and each model uses different

criteria to describe the failure modes, mental properties, soil condition, mine char-

acteristics, rupture strain, etc. In all the models, the standoff distance from the

explosion point plays an important role in determining the blast impact on the

vehicles or tanks.

In this chapter, we make the first attempt to fill the gap between the mine

industry and the impact engineering by formulating the detonable mine selection

problem. With the explosion scope mapped to the sensing range, our problem

looks alike the sensor coverage problem, whose objective is to select the minimum

number of sensors to cover the whole field [4, 5, 24, 18]. However, the existing

techniques cannot be simply applied, because most work on coverage assumes a

45

disk-model, where a point is thought 100% covered if it is within the sensing disk

of a sensor. The simplified assumption makes the problem tractable but may not

be realistic. There is also some recent work based on the probability coverage

model [17]. However, in their work it is assumed that the sensors are densely

deployed (i.e., each point is covered by at least three sensors), and the coverage

probability of each point can be pre-computed independent of the targets. Besides

the economic issue of deploying a smart-mine network with high density, it is

infeasible to compute the target’s survival probability before the targets enter

the field. Thus, decision has to be made on the fly after a intruder is detected,

classified, and localized.

3.3 Problem Formulation

We consider a defense scenario where m intruders (targets) enter a field with n

smart-mines. Each smart-mine relies on the embedded sensors to cooperate with

each other to detect, classify, and localize the targets. By employing the results in

impact engineering, each mine is assumed to be able to estimate the consequence

of explosion on the intruding target. Following some literatures [9, 10], we use

the metric of failure probability to quantitatively measure the blast impact. The

failure probability reflects the chance that the target fails to function properly

after the explosion due to the consequence such as personnel casualty, flat tire, or

the tearing of the plate. For example, Fig. 3.2(a) shows the ESTC outdoor blast

model [9], where the failure probability (P) of the intruder is a function of range

and quantity of explosives. Fig. 3.2(b) further depicts the relationship between the

failure probability and standoff distance, when Q = 8 kilograms.

There are also other models available based on the metric of deformation factor,

which describes the concrete degree of the plate deformation that the explosive

force has caused to the metal-made targets such as tank and armored vehicle. We

leave its study to the future work.

We assume the distance between each target and mine is known, e.g., via

GPS or other localization schemes [49]. With the known distance, the failure

probability of the target can be estimated, e.g., via the mathematical model [9]

or experiential model [10]. With these assumptions, the detonable mine selection

46

5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

standoff distance R (meters)

fa
ilu

re
 p

ro
b

a
b

ili
ty

 P

(a) (b)

Figure 3.2. the ESTC outdoor blast model (Q = 8 kilogram)

problem (minMS) is formalized as follows.

Given a smart-mine network with n mines and m targets, a failure based blast

model, a set of probabilities σj, j = 1...m, we want to select the minimum-cost

subset of mines such that each target j can be destroyed with a probability beyond

σj.

The minMS problem can be expressed in the form of integer program.

Min C =
n∑

i=1

cixi (3.1)

ST: 1−
n∏

i=1

xi(1− σij) ≥ σj,∀j (3.2)

xi ∈ {0, 1}, i = 1...n (3.3)

ci ≥ 0, i = 1...n (3.4)

0 ≤ σij, σj ≤ 1, i, j = 1...n (3.5)

In the above model, ci, σij, σj are given variables, where ci is the cost of mine

i, σij is the failure probability of target j due to the explosion of mine i, and σj is

the threshold probability of target j. xi is the indicator variable to be determined.

xi = 1 if mine i is selected; xi = 0 otherwise. The purpose of the optimization is to

determine the variables xi to minimize the total cost C subject to the constraints

2-5. Constraint 2 states that the failure probability of target j resulted from the

47

aggregated blasts should exceed σj.

Constraint 3.2 can be transformed by applying the logarithmic operation. let

vij = −log2(1− σij), rj = −log2(1− σj), then Constraint 3.2 becomes

∑

{i|xi=1}
vij =

n∑
i=1

xivij ≥ rj,∀j (3.6)

Based on this transformation, the following theorem gives the hardness result.

Theorem 5. The problem of minMS is NP-hard.

Proof. The problem of minMS can be proved to be NP-hard via a reduction from

the set-cover problem [11], which can be stated as follows. Given a universe U =

{e1, ..., en} of n elements, a collection of subsets of U , S = {s1, ..., sk}, where the

cost of subset si is ci, i = 1...k, find a minimum cost subcollection of S that coves

all elements of U .

To see the reduction, let σij = 1
2

if mine i covers target j, and σij = 0 otherwise.

Then vij = 1 if mine i covers target j, and vij = 0 otherwise. Further let σj = 1
2
,

then rj = 1. Then Constraint 3.6 becomes
∑

{i|ej∈si}
xi ≥ 1,∀ej. With mine mapped

to the set and target mapped to the element, this is equivalent to say that for any

element ej, at least one set that covers ej is chosen, which is exactly the constraint

of the set cover problem. Therefore, the set-cover problem can be reduced to a

special case of minMS problem. Since the set cover problem is known NP-hard,

the minMS problem is also NP-hard.

The transformation not only helps establish the hardness result, but also pro-

vides us with a new perspective to view the minMS problem. While the original

Constraint 3.2 involves the multiplicative operation, which is complicated to solve,

we transform it to Constraint 3.6 after applying the logarithm operation, which

only needs additive operation. This motivates us to design a bucket-tub model to

solve the minMS problem based on the transformed constraint.

In the bucket-tub model, the whole network is represented by a bipartite graph,

with the mines on the left and the targets on the right. Each mine i is modeled as

a set of buckets each of which can supply vij = −log2(1− σij) volume of water to

target j, and each target j is modeled as an empty bucket which can hold up to

48

rj = −log2(1− σj) volume of water. The link between mine i and target j can be

seen as the channel through which the water could flow from the buckets to the

tubs. Then the problem becomes how to find the minimum-cost subset of bucket

sets on the mine side to fill up the empty tubs on the target side.

The following notations are defined for the bucket-tub model, and used through-

out the chapter.

• si: bucket set i.

• S: the collection of bucket sets, i.e., S = {si|i = 1...n}.

• tj: tub j.

• T : the collection of tubs, i.e., T = {tj|j = 1...m}.

• vij: the volume of water in si available for tub tj.

• vi: the total volume of water in si, i.e., vi =
m∑

j=1

vij.

• rj: the residue space of tub tj.

• ci: the cost of bucket set si.

In the bucket-tub model, vij = −log2(1 − σij), rj = −log2(1 − σj), where σij

and σj are the parameters of the original problem. Without loss of generality, it

is assumed that vij ≤ rj (otherwise, we can reduce vij to rj without affecting the

result), and
n∑

i=1

vij ≥ rj (otherwise, the requirement of the tub tj can never be

satisfied).

Fig. 3.1(b) shows the bucket-tub graph corresponding to Fig. 3.1(a). Each mine

is modeled by a set of buckets and each target is modeled by an empty tub. Each

bucket can provide via, vib volume of water to the tub ta and tb, whose residue

space is ra, rb, respectively. The purpose is to select the minimum-cost bucket sets

to fill the tubs ta, tb with water. In general, the problem can be reformulated using

the bucket-tub model as follows:

Given a bipartite graph G(S, T), where S = {si|i = 1...n}, T = {tj|j = 1...m},
together with the parameters vij, rj, ci, i = 1...n, j = 1...m, we want to find the

minimum-cost subcollection of bucket sets to fill all the tubs, i.e.,
n∑

i=1

xivij ≥ rj,∀j.

49

The new problem formulation could help us avoid the complex form of the origi-

nal formulation and motivates our design of the algorithms based on the bucket-tub

model in the next section.

3.4 Algorithms and Their Performance Bound

In this section, we present two approximation algorithms based on the bucket-

tub model, i.e., greedy algorithm, layering algorithm, and prove their performance

bound. We use Sgre, Slay to denote the solution set produced by each algorithm,

and use GRE, LAY to denote their corresponding cost, respectively. For example,

for the greedy algorithm GRE =
∑

si∈Sgre

ci. Here, the subscript takes the form of

si ∈ Sgre as an abbreviation of {i|si ∈ Sgre}, and the same form of abbreviation

will be applied in the remainder of the chapter.

3.4.1 Greedy Algorithm

Algorithm 4 Greedy Algorithm
Input: a bucket-tub graph G(S, T)
Output: a subcollection of bucket sets and its cost, i.e., Sgre and GRE
Procedure:
1: Sgre = ∅
2: while T 6= ∅ do
3: calculate ei = ci

vi
for each si, i = 1...n.

4: pick the most effective set sk with ek = minei, i.e., Sgre = Sgre + {sk}.
5: /*update rj and vij of the remaining bucket sets and tubs*/
6: for (j ∈ {j|vkj > 0})
7: rj = max(rj − vkj , 0)
8: for (i ∈ {i|vij > 0})
9: vij = min(vij , rj)

10: end for
11: end for
12: remove any tub whose residue space is 0, i.e., T = T − {tj |rj = 0}.
13: remove any bucket set whose connected tubs are all full, i.e., S = S − {si|vi = 0}.
14: end while
15: Output Sgre and GRE.

The greedy algorithm is executed in iterations. During each iteration, it picks

the most cost-effective bucket set, and fills its water to the connected tubs. We

use ei to denote the average cost of si, which is defined as ei = ci/
m∑

j=1

vij = ci/vi.

50

Then the most cost-effective set is the set with the minimum average cost. Each

time a set sk is chosen, rj and vij need to be updated (as in line 6-11 of Algorithm

1). The whole process is then repeated iteration after iteration, until all the tubs

become full. The pseudo code is summarized in Algorithm 1 .

Tub t1: r1=4

Tub t2: r2=4

Tub t3: r3=4

Tub t4: r4=4

V11=4
V12=2
V13=2

V22=3
V23=4

V32=2
V33=3
V34=4

Bucket set s1

Bucket set s2

Bucket set s3

Tub t1: r1=4

Tub t2: r2=2

Tub t3: r3=1

Tub t4: r4=0

V11=4
V12=2
V13=1

V22=2
V23=1

V32=2
V33=3
V34=4

Bucket set s1

Bucket set s2

Bucket set s3

Tub t1: r1=0

Tub t2: r2=0

Tub t3: r3=0

Tub t4: r4=0

V11=4
V12=2
V13=1

V22=3
V23=4

V32=2
V33=3
V34=4

Bucket set s1

Bucket set s2

Bucket set s3

(a) (b) (c)

Figure 3.3. An example of the greedy algorithm

Fig. 3.3 uses an example to illustrate the greedy algorithm. There are three

bucket sets and four empty tubs. Each bucket set has cost 1, with the volume

size and residue space as given in Fig. 3.3(a). According to Algorithm 1, in the

first iteration (Fig. 3.3b), s3 is chosen because it is the most effective set, i.e.,

e3 = 1
4+3+2

= 1
9
. Following that, ri, vij will be updated accordingly. For example,

r3 = 4 − 3 = 1, v23 = min(4, 1) = 1. In the second iteration, s1 is chosen because

e1 = 1
7

< e2 = 1
3
. Since s1, s3 together can fill the space of all the tubs (Fig. 3.3c),

the algorithm terminates with the total cost of 2.

3.4.2 Layering Algorithm

As shown in Fig. 3.4(a), the layering algorithm decomposes the given graph

into layers, and each layer is a bucket-tub graph by itself. At each layer, the cost

of any set is no greater than α · emin(k), where α ≥ 1 is the relaxation factor

and emin(k) is the minimum average residue cost at layer k. Denote the graph of

layer k by G(k). Similarly, the same method is used to extend the definition of

other variables. For example, the variables S(k), T (k), ci(k), vij(k), vi(k), rj(k) all

preserve the original definition, but specifically refer to layer k.

51

Algorithm 5 Layering Algorithm
Input: a bucket-tub graph G(S, T)
Output:a subcollection of bucket set and its cost, i.e., Slay and LAY
Procedure:
1: k = 0, G(0) = G,S(0) = S, T (0) = T, Slay = ∅
2: RCi(0) = ci,∀i ∈ {i|si ∈ S}
3: /*decompose graph into layers*/
4: while T (k) 6= ∅ do
5: identify the zero bucket set Zb(k) = {si(k)|vi(k) = 0}.
6: S(k + 1) = S(k)− Zb(k).
7: calculate emin(k) = minei(k) = minRCi(k)

vi(k) .
8: pick P (k) = {si|ei(k) ∈ [emin(k), α · emin(k)], α ≥ 1}.
9: S(k + 1) = S(k)− P (k).

10: /*update ci, vij , rj of the remaining bucket sets and tubs*/
11: for (i ∈ {i|si ∈ S(k)})
12: ci(k) = min(ci(k), α · emin(k)× vi(k))
13: RCi(k + 1) = RCi(k)− ci(k)
14: end for
15: for (j ∈ {j|vlj(k) > 0, sl ∈ P (k)})
16: rj(k + 1) = max(rj(k)− vlj(k), 0)
17: for (i ∈ {i|vij(k) > 0})
18: vij(k + 1) = min(vij(k), rj(k))
19: end for
20: end for
21: identify the zero tub set Zt(k) = {tj |rj(k) = 0}.
22: T (k + 1) = T (k)− Zt(k).
23: k = k + 1.
24: end while

25: Output Slay =
L−1∑
k=0

P (k) and LAY .

Algorithm 5 lists the pseudo code of the layering algorithm and Fig. 3.4(a)

shows its illustrative diagram. In the beginning, G(0) = G,S(0) = S, T (0) = T .

Following that, the layers are constructed one after another. For example, G(k+1)

is built upon G(k) as follows. First, remove from S(k) the bucket sets which have

zero volume of water, and use Zs(k) to denote the collection of such sets, i.e.,

Zs(k) = {si|vi(k) = 0, si ∈ S(k)}. Second, define RCi(k) = ci −
k−1∑
l=0

ci(l) to be the

residue cost of si at layer k, and ei(k) = RCi(k)
vi(k)

to be the average residue cost of si at

layer k. Then calculate the minimum average residue cost by emin(k) = mini
RCi(k)
vi(k)

.

Further identify and pick the collection P (k) = {si|ei(k) ∈ [emin(k), α·emin(k)], α ≥
1}, which are removed from S(k). Then we have S(k + 1) = S(k)− P (k)−Zs(k).

Third, calculate the cost of each bucket set si at layer k, i.e., ci(k) = min(ci(k), α ·

52

emin(k)×vi(k)). It is followed that the average residue cost of each set at layer k is

at most α ·emin(k). rj(k) and vij(k) are updated in a manner similar to the greedy

algorithm. Finally, remove from T (k) the collection of tubs with zero residue space,

denoted by Zt(k). Then we have T (k + 1) = T (k)−Zt(k). The entire process will

repeat layer after layer until the residue space of all the tubs is filled. Suppose

the graph is decomposed into total L + 1 layers, as shown in Fig. 3.4(a), then the

collection Slay =
L−1∑
k=0

P (k) will be the output.

From the above description, it can be seen that the cost of each bucket set is

decomposed into layers. Suppose a bucket set si stays in the bucket-tub graph

until layer k, then we have ci =
k∑

l=0

ci(l). At each layer l, we pick the sets whose

average residue cost falls below α · emin(l). Therefore, the relaxation factor α

determines how many bucket sets can be chosen per layer. When a larger α is

used, more bucket sets can be chosen at each layer, so the graph is decomposed

into fewer layers and involves less computation overhead. On the other hand, when

α increases, the approximation ratio of the algorithm will increase, as shown in

subsection 3.4.3. Therefore, an appropriate relaxation factor is required to strike

a balance between the computational burden and performance bound.

P(0) Zs(0) T(1) Zt(0)S(1)

S(2)

S(L)

Zs(L)

Zs(1)

Zs(L-1)

P(1)

P(L-1)

Zt(1)

Zt(L-1)

T(2)

T(L)

G(0)

G(1)

G(L-1)

G(L)

S(0) T(0)

T(2)={t1,t2,t3}

S(1)={s1,s2}{s3}

S(2)={s2}{s1}

Zs(2)={s2}

{t4}

T(1)={t1,t2,t3,t4}

(a) (b)

Zt(2)={t1,t2,t3}

Zt(L)

Figure 3.4. Illustration of the layering algorithm (a) the general case, where a given
graph G is decomposed into L+1 layers. (b) a special case, taking Fig. 3.3 as an example

Fig. 3.4(b) uses the same example of Fig. 3.3 to illustrate the layering algorithm,

assuming α = 1. In the beginning, G(0) = G. P (0) = {s3} because s3(0) has

the smallest average residue cost, i.e., emin(0) = e3(0) = 1
9
. Zs(0) = ∅. Then

c1(0) = emin(0) × v1(0) = 8
9
, c2(0) = 7

9
, and rj, vij is updated in the same way as

53

in Fig. 3.3(b). At layer 1, P (1) = {s1} because emin(1) = e1(1) =
(1− 8

9
)

7
= 1

63
. As

seen from Fig. 3.3(b), r4(1) = 0, thus Zt(1) = {t4}. Since T (3) = ∅, the graph

is decomposed into three layers, and the algorithm outputs Slay = P (0) + P (1) =

{s1, s3}. On the other hand, if we set α = 2, a similar calculation will show that

Slay = {s1, s2, s3} is the output, with only one layer constructed.

Although the layering algorithm looks more complicated than the greedy al-

gorithm, it has the same worst-case computational complexity O(n2 + mn). In

addition, it has a provable approximation ratio that relies only on the relaxation

factor and the maximum number of mines connected with a tub, as shown in the

next subsection.

3.4.3 Performance Bound

In this section, we will establish the performance bound for the layering algorithm

and greedy algorithm. We will first prove that the layering algorithm has an

approximation ratio of α ·f , where f is the maximum number of sets/mines that a

tub/target is associated with, and α is the tunable relaxation factor. After that, we

will show that the greedy algorithm has an approximation ratio of
∑

j Rj, where

Rj is the coefficient in the related integer program.

Lemma 1. In the layering algorithm, given a graph G(k) at layer k, where the

average residue cost of all the bucket sets falls into [emin(k), αemin(k)], α ≥ 1, there

is
∑

si∈S(k)

ci(k) ≤ α · f · OPT(G(k)), where OPT(G(k)) is the cost of the optimal

solution to G(k).

Proof. At layer k, because ei(k) ∈ [emin(k), αemin(k)], there is ci(k) = ei(k) ×
vi(k) ≤ α · emin(k)vi(k). Further because vij ≤ rj, and each tub is connected with

at most f buckets, there is
∑

si∈S(k)

vi(k) ≤ f · ∑
tj∈T (k)

rj(k). In other words, the total

volume of water that the buckets can provide is no greater than f times the total

space volume of the tubs. Then we have

∑

si∈S(k)

ci(k) ≤ α · f · emin(k)
∑

tj∈T (k)

rj(k) (3.7)

Use Sopt(k) to denote the collection of bucket sets chosen in the optimal solution

54

for G(k). It is followed that the total water provided by the buckets in Sopt(k) can

fill the tubs in T (k), i.e.,
∑

si∈Sopt(k)

vi(k) ≥ ∑
tj∈T (k)

rj(k). Then we have

OPT(G(k)) =
∑

si∈Sopt(k)

ci(k) ≥ emin(k)×
∑

tj∈T (k)

rj(k) (3.8)

Combining Eqn. 3.7 & 3.8 gives the lemma.

Lemma 2. Suppose S0 denotes an arbitrary solution to G, i.e., the bucket sets in

S0 can collaboratively fill the tubs in G. Then S0 ∩ G(k) is a solution to G(k) in

the layering algorithm.

Proof. Since S is a solution to G, for any tub tj in G,
∑

si∈S0

vij ≥ rj. We divide the

solution S0 in two parts, i.e., S0 = (S0∩G(k))+(S0−S0∩G(k)). In the following,

we will prove that the collection (
∑
l<k

P (l) + S0 ∩ G(k)) is a solution to G. Define

Q(j) = {si|si ∈ (S0 − S0 ∩G(k)), vij > 0} for each tj. We want to show that any

tub tj associated with Q(j) can be filled by the buckets in (
∑
l<k

P (l) + S0 ∩G(k)).

Given a tub tj, for any set si ∈ Q(j), there are only two possible cases, i.e.,

si belongs to some removed set (si ∈ Zs(l), l < k) or si belongs to some chosen

set (si ∈ P (l), l < k). If it is the former case, it implies that tub tj has already

been filled till layer l, i.e., rj(l) = 0. Thus without loss of generality, assume all

sets si ∈ Q(j) belong to the latter case, i.e., si ∈
∑
l<k

P (l). It is followed that

Q(j) ⊆ ∑
l<k

P (l) for each j. Then we have

∑

si∈
∑
l<k

P (l)

vij +
∑

si∈S0∩Gk

vij ≥
∑

si∈(S0−S0∩Gk)

vij +
∑

si∈S0∩G(k)

vij

=
∑
si∈S0

vij ≥ rj, for each j (3.9)

Eqn. 3.9 shows that the set (
∑
l<k

P (l)+S0∩G(k)) is a solution to G. Therefore,

S0 ∩G(k) must be a solution to G(k).

Theorem 6. The layering algorithm has an approximation ratio α ·f , i.e., LAY ≤
α · f ·OPT, where OPT is the cost of the optimal solution to G.

55

Proof. Use Sopt to denote the collection of bucket sets chosen in the optimal so-

lution to G. Because in the layering algorithm, each set decomposes its cost into

different layers, for any set si chosen at layer k we have

ci =
∑

l≤k

ci(l) =
∑

l≤k

emin(l)vi(l), for ∀si ∈ S(k) (3.10)

Suppose G is decomposed into L + 1 layers, as shown in Fig. 3.4(a). Then, the

total cost of the sets chosen by the layering algorithm is

LAY =
∑

si∈
∑

k<L
P (k)

ci =
∑

si∈
∑

k<L
P (k)

∑

l≤k

emin(l)vi(l) (3.11)

In Eqn. 3.11, the total cost is first summed vertically (over different layers),

and then horizontally (over different sets) in Fig. 3.4(a). Alternatively, we can

calculate by summing first horizontally (over different sets within a layer) and

then vertically (over different layers). Combining the fact that P (k) = Slay∩G(k),

we have

LAY =
∑

k<L

∑

si∈P (k)

ci(k) =
∑

k<L

∑

si∈(Slay∩G(k))

ci(k) (3.12)

Following the similar steps of Eqn. 3.10- 3.12, we now calculate the total cost

of the optimal solution. For any set si ∈ Zs(k) removed at layer k, because

ci(k) ≥ emin(k)vi(k) = 0, we have

ci =
∑

l<k

ci(l) + ci(k) ≥
∑

l<k

emin(l)vi(l), for si ∈ Zs(k) (3.13)

Therefore, the total cost of the optimal solution is

OPT =
∑

k≤L

∑

si∈(Sopt∩G(k))

ci(k) ≥
∑

k<L

∑

si∈(Sopt∩G(k))

ci(k) (3.14)

On the other hand, at layer k for any solution S0(k) to G(k), we have

∑
si∈Sopt

ci(k) ≤
∑

si∈S0(k)

ci(k) ≤
∑

si∈S(k)

ci(k) (3.15)

56

According to Lemma 2, both (Slay ∩ G(k)) and (Sopt ∩ G(k)) are solutions to

G(k). Thus, by Eqn. 3.15 and Lemma. 1, we get

∑

si∈(Slay∩G(k))

ci(k) ≤ α · f ·
∑

si∈(Sopt∩G(k))

ci(k) (3.16)

Finally, following Eqn. 3.12, 3.14 , 3.16, we have

LAY ≤ α · f ·OPT (3.17)

To establish the performance bound of the greedy algorithm, we can exploit

some approximation result on integer programming [50, 51]. However, to do this,

the coefficients in Constraint 3.6, i.e.,vij, rj have to be integers. Observe that when

vij and rj are multiplied by the same constant, the integer programming model in

Section 3.3 remains unchanged. Thus, we can safely scale the problem to convert

the coefficients to integers via some existing techniques such as [52]. Then we get

the following theorem.

Theorem 7. The greedy algorithm has an approximation ratio of
∑

j Rj, where

Rj is the integer coefficient corresponding to rj after scaling the Constraint 3.6.

The proof of Theorem 7 directly follows the result of [51] which states that

applying the greedy heuristic to any integer program with the form of MIN(cx)

subject to Ax ≥ b and x ∈ {0, 1} has an approximation ratio of H(k), where

k =
∑

j bj.

3.5 Distributed Implementation

In this section, we will present a distributed implementation of the greedy algo-

rithm. The aforementioned greedy algorithm iteratively picks up the most cost-

effective set and updates the residue space of the tubs and the available water

in the buckets. We call it the global greedy algorithm, which requires centralized

knowledge. Nevertheless, based on a newly defined bucket graph, we could design a

local greedy algorithm which involves only the local message exchange and achieves

the same performance as the global version of the algorithm.

57

In a bucket graph, each node represents a bucket set. Two nodes have a link

with each other if the two bucket sets share a common neighboring tub in the

corresponding bucket-tub graph. For example, Fig. 3.5(a) shows the bucket graph

corresponding to the smart-mine network in Fig. 3.1(a). Although a bucket graph

should be composed only of the bucket sets and the links between them, in Fig. 3.5

we explicitly draw the targets (with residue space ra and rb) and use dashed lines

to depict the relationship between the bucket sets and tubs for a better illustration.

The weight over each dashed line, i.e., vij, denotes the water available in the bucket

set for the specific tub. In reality, all these information needs to be cached at each

node. The observation in the following lemma can help us design a local greedy

algorithm based on the bucket graph, which can be proved to produce the same

solution set as the global greedy algorithm.

Lemma 3. Given a bucket graph Gb, if a bucket set represented by a node is the

most cost-effective set among its neighbors, it will be part of the solution set chosen

in the global greedy algorithm.

Proof. Suppose a node s has the minimum average cost among its neighbors, de-

noted by N(s). Then no node among N(s) shall be picked before s is picked in the

global greedy algorithm. This is because the average cost ei = ci

vi
at each node i

is a non-decreasing function as other nodes are picked. Therefore, s remains to be

the most cost-effective among its neighbors. In addition, to fill the tubs associated

with s, at least one node among s and N(s) has to be picked. Thus, eventually s

will be chosen by the global greedy algorithm.

We assume the communication range of the sensor is at least twice the range of

the explosion1. Thus, two neighboring nodes in the bucket graph can communicate

directly. The local greedy algorithm is executed in iterations. During each itera-

tion, the nodes which have the smallest average cost among their neighbors will

elect themselves. Then, information about vij, rj is updated in a distributed man-

ner, after which another iteration will begin. From the algorithmic point of view,

the nodes elected per iteration constitute an Independent Set, which is defined as

a subset of nodes among which there is no link between any two nodes. The set

1The normal communication range of a sensor is around tens of meters; the explosion range
is less than ten meters for certain types of mine.

58

is a maximal independent set (MIS) if no more nodes can be added to generate a

bigger independent set [13]. Therefore, our algorithm is equivalent to find a MIS

by electing the most effective nodes among their neighbors in each iteration.

Algorithm 6 Distributed Greedy Algorithm
Input: node s, its neighbors N(s), and its connected tub set Ts

Output: election or non-election status
For Each Node s:
1: while Ts 6= ∅ do
2: if s has the smallest average cost among its neighbors then
3: s elects itself, broadcasts msg(s,ELE, cs), and exits.
4: end if
5: if msg(id, ELE, cost) is received then
6: update the residue space in Ts ∩ Tid, and remove the tubs with zero residue space from

Ts.
7: recalculate cs, and broadcast msg(s, UPD, cs). Go to 2
8: end if
9: if msg(id, UPD, cost) is received then

10: update the average cost of neighbor sid. Go to 2.
11: end if
12: end while
13: output the non-election status.

The pseudo code of the local greedy algorithm is listed in Algorithm 6. The

message format is defined as msg(id, type, cost), where id and cost are the fields

related to the sender, and type can be set to be ELE or UPD, which corresponds

to the election notice or the update report. An election notice is sent out when a

node finds itself to be the most cost-effective set among its neighbors (line 2-4).

When an election notice is received, the average cost of the receiver is updated in

a manner similar to the global greedy algorithm, after which an update report is

sent out (line 5-8). When an update report is received, the average cost of the

sender is simply updated to the cost value contained in the message (line 9-11).

Theorem 8. The local greedy algorithm is guaranteed to terminate, and upon ter-

mination, the same solution set is produced as in the global version of the algorithm.

Proof. At any instant, there is at least one node which has the smallest average cost

among its neighbors and thus is qualified to elect itself. Therefore, the algorithm

will not stop until the requirements of all the tubs are satisfied. In addition,

Lemma 3 assures that the same solution set will be produced as in the global

59

greedy algorithm upon termination, although the bucket sets may be picked in a

different order.

2

s1
s3

s4

s5

s2

2

0.5

3

3

3ra=4 rb=4

s3

s4

s5

s2

2

2

2ra=2 rb=2

s4
0

ra=0 rb=0

(a) (b) (c)

0.5 0.5 0.5

s2

0 0

Figure 3.5. An example to illustrate the local greedy algorithm. (a) the bucket graph
corresponding to Fig. 3.1. (b) the bucket graph after node s1 is elected in the first
iteration. (c) the bucket graph after nodes s3, s5 are elected in the second iteration.

Fig. 3.5 uses a small example to illustrate the local greedy algorithm. In

Fig. 3.5(a), there are five bucket sets (circle node), which are connected with

two targets (square node). Each bucket set has cost 1 and can provide vij volume

of water for each tub, as shown over the dashed arrows. Each tub has the empty

space of 4. In the first iteration, s1 elects itself since it has the smallest average

cost among its neighbors (tie is broken by id). Then vij, ra, rb are updated and

the algorithm continues to run among the remaining nodes (Fig. 3.5b). Similarly,

in the second iteration, s3, s5 elect themselves, after which the tubs become full

(Fig. 3.5c).

Like the layering algorithm, the election criteria in the local greedy algorithm

can also be relaxed to reduce the number of iterations required. We call it the

fast local greedy algorithm. Instead of electing only the nodes with the smallest

average cost among its neighbors, any node whose average cost falls in the range

of [emin, αemin] can be elected, where emin is the minimum average cost among the

neighbors and α ≥ 1 is the relaxation factor. To implement this, we need to change

the message format to msg(id, type, cost, emin) by adding a field on the minimum

average cost. Any node whose average cost is the local minimum will set up the

field emin accordingly. For other nodes that receive the election notice with emin

properly set, they will check whether their average cost belongs to [emin, αemin]

and decide whether to elect themselves. This way, more nodes will be elected per

60

iteration and less total iterations will be needed.

Algorithm 6 is a distributed implementation of the global greedy algorithm.

According to Theorem 8, the local greedy algorithm picks the same collection of

bucket sets as in the global greedy algorithm, without degrading the performance.

On the other hand, the fast greedy algorithm uses the relaxation factor to trade off

the performance for the lower message overhead and computational burden. Both

the algorithms have the worst case message complexity O(d) per node, where d is

the maximum number of neighbors among all the nodes in the bucket graph.

3.6 Performance Evaluation

In this section, we verify the effectiveness of the proposed algorithms through

simulations. In the simulation, n mines and m targets are randomly deployed

in a 10 × 10 square area, with n varying from 100 to 1000, and m varying from

10 to 100. The blast range and the sensing range are normalized to be 1. The

communication range is set to be 2, which is twice of the blast range and sensing

range. The cost of each mine is uniformly distributed between 1 and 4 units. To

emulate the destructive impact on the target, the blast model in Fig. 3.2 is used.

The threshold probability for each target is unified to be 0.9.

Besides the greedy algorithm and layering algorithm, two other simple heuris-

tics are evaluated, i.e., random algorithm and max-weight first algorithm. The

random algorithm arbitrarily picks the bucket set, while the max-weight first algo-

rithm picks the bucket set in which a single bucket has the largest volume of water

available for the connected tub. This is equivalent to select the mine which has

the shortest distance to the target. The experiments are done over a customized

C++ simulator and each point is a statistical average of 50 experiments.

3.6.1 Comparison of Different Algorithms

Figs. 3.6, 3.7 compare the cost of different algorithms with varying number of

mines, when the number of targets is 50 and 100, respectively. It is shown that the

greedy algorithm consistently performs best. The layering algorithm stays close to

the greedy algorithm when the relaxation factor R is 1. As the relaxation factor

61

100 200 300 400 500 600 700 800 900 1000
40

60

80

100

120

140

160

180

200

220

number of mines

to
ta

l c
os

t

random
max weight first
greedy
layer, R=2
layer, R=1

Figure 3.6. effect of number of mines
n (m = 50)

100 200 300 400 500 600 700 800 900 1000
0

50

100

150

200

250

300

number of mines

to
ta

l c
os

t

random
max weight first
greedy
layer, R=2
layer, R=1

Figure 3.7. effect of number of mines
n (m = 100)

10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

300

number of targets

to
ta

l c
os

t

random
max weight first
layering, R=2
greedy
layering, R=1

Figure 3.8. effect of number of targets
m (n = 500)

10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

300

350

number of targets

to
ta

l c
os

t

random
max weight first
layering, R=2
greedy
layering, R=1

Figure 3.9. effect of the number of tar-
gets m (n = 1000)

increases from 1 to 2, the performance of the layering algorithm becomes worse,

but still better than the max-weight first algorithm. Regarding the performance

of the random algorithm, a big gap can be observed compared with the other

algorithms.

Another observation is that increasing the number of mines may affect the trend

of different algorithms in different ways. As the number of mines increases, the cost

of the random algorithm tends to increase, due to its pure randomness. However,

increasing the number of mines beyond 200 (which is sufficient to destroy all the

targets) can cause the other algorithms to gradually decrease. This is because

all other algorithms exploit certain level of intelligence when selecting the mines.

62

Thus the more candidate mines available, the more likely a better solution can be

produced.

1 1.2 1.4 1.6 1.8 2
60

80

100

120

140

160

to
ta

l c
os

t

relaxation factor

1 1.2 1.4 1.6 1.8 2
0

10

20

30

40

50

nu
m

be
r

of
 r

ou
nd

s

total cost

number of rounds

Figure 3.10. effect of the relaxation
factor R in the fast greedy algorithm
(n = 500,m = 50)

1 1.5 2 2.5 3
50

100

150

200

to
ta

l c
os

t

relaxation factor

total cost

1 1.5 2 2.5 3
50

100

150

200

to
ta

l c
os

t

relaxation factor

1 1.5 2 2.5 3
0

20

40

60

nu
m

be
r

of
 l

ay
er

s

total cost

number of layers

Figure 3.11. effect of the relaxation
factor R in the layering algorithm (n =
500,m = 50)

Figs. 3.8, 3.9 further compare the cost of different algorithms with varying num-

ber of targets, when the number of mines is 500 and 1000, respectively. Regarding

the relative performance among different algorithms, the same conclusion can be

drawn as in Figs. 3.6, 3.7, with the random algorithm to be the worst and the

greedy algorithm to be the best. It can be noticed that the cost of all the algo-

rithms increases as the number of targets increases. However, the increase for the

random algorithm is roughly linear, but for the other algorithms it is sublinear.

This implies that a smarter algorithm such as the greedy algorithm is less affected

by the increasing number of targets, because it takes into account both the effect of

single explosion on multiple targets and collaborative explosions on a single target.

3.6.2 Effect of The Relaxation Factor

Relaxation factor R is an important parameter for the fast greedy and layering

algorithm. Figs. 3.10, 3.11, 3.12, 3.13 use double y-axes to study the effect of

relaxation factor R, with the left y-axis to denote total cost and the right y-axis to

denote number of rounds/layers. In particular, Fig. 3.10 shows the effect of R in

the fast greedy algorithm, when m = 50, n = 500. As R increases, the cost of the

fast greedy algorithm increases, but the number of its execution rounds reduces.

63

1 1.2 1.4 1.6 1.8 2
0

200

400

to
ta

l c
os

t

relaxation factor

1 1.2 1.4 1.6 1.8 2
0

50

100

nu
m

be
r

of
 r

ou
nd

s

total cost

number of rounds

Figure 3.12. effect of the relaxation factor R in the fast greedy algorithm(n = 1000,m =
100)

1 1.5 2 2.5 3
0

100

200

300

400

to
ta

l c
os

t

relaxation factor

1 1.5 2 2.5 3
0

20

40

60

80

nu
m

be
r

of
 l

ay
er

s

total cost

number of layers

Figure 3.13. effect of the relaxation factor R in the layering algorithm (n = 1000,m =
100)

For example, when R increases from 1.0 to 1.1, its cost rises from 73 to 84 while

its computation rounds reduce from 41 to 16. This is expected since the value of

the relaxation factor R reflects the strictness of the selection criteria. When the

criteria is relaxed, i.e., with larger R, more mines can be picked per round thus

less number of total rounds are required.

64

Fig. 3.11 shows the effect of R in the layering algorithm, when m = 50, n = 500.

Similar to Fig. 3.10, as R increases, the cost of the layering algorithm increases,

but the number of layers reduces.

Figs. 3.12, 3.13, where m = 100, n = 1000, lead to the same conclusion as

Figs. 3.10, 3.11. Since in both algorithms, the message overhead or the compu-

tational burden is proportional to the number of rounds/layers, R needs to be

appropriately set to strike a balance between different performance metrics.

3.7 Conclusions

This chapter explores the potential of networking the landmines via sensor tech-

nology. Specifically, we formulate a detonable mine selection problem, with the

objective to destroy the intruding target using the minimum cost. Due to its NP

complexity, we focus on the design of approximation solutions based on a novel

bucket-tub model, where mine is mapped to bucket set and target is mapped to

tub. Two classes of approximation algorithms are proposed, whose performance

bound away from the optimal result is given. Among them, it is shown that the

layering algorithm can achieve an approximation ratio that relies only on the max-

imum number of mines/buckets that a target/tub is associated with, and that the

greedy algorithm can be implemented in a pure distributed manner without de-

grading the performance. Theoretical analysis and extensive simulations verified

the effectiveness of the proposed algorithms.

Our work is among the first efforts towards filling the gap between the mine

industry and impact engineering. More interesting dimensions such as trying differ-

ent blast models, dealing with the mobile case by taking advantage of the target’s

mobility pattern can be investigated. As the landmine may linger in the field for a

long time, self monitoring and postwar disposal issues are also worth further study.

Chapter 4
Network Monitoring For Mission

Driven Sensor Network

4.1 Introduction

As sensor nodes usually operate in an unattended, harsh environment, they are

prone to failure and may run out of battery [47]. To make sensor network reliable

as well as adaptable, sensor status (such as liveness, density estimation, residue

energy, etc.) has to be closely monitored and made known to the sink, which can

promptly react to sensor status changes. For instance, to activate other sleeping

sensors if they exist, to deploy additional sensors or to dispatch mobile sensors to

a region where a significant percentage of sensors have failed.

In distributed systems, the only way to learn the status of a node is through

receiving messages from the node. For example, in IP networks, the poller-pollee

structure [53] has been widely used for network management, where some special-

ized nodes are called pollers and the other nodes are called pollees. Each poller

monitors its pollees by actively sending a “ping” message and then waiting for the

reply or by passively waiting for the pollees to send messages periodically.

Compared with wired networks, designing monitoring mechanisms for sensor

networks has several challenges. The first major issue is the false alarm, which

results from the failure characteristics of the wireless links. When a status report

is lost due to transient link interference/failure, the system may consider it as the

66

result of a node failure, thus a false alarm would be triggered. Second, instead of

over a fixed topology, sensors need to self-organize themselves into a monitoring

architecture in a distributed manner. Finally, since sensors are usually untethered

and powered by battery, energy efficiency is an important issue.

In this chapter, we propose solutions to address the challenge specific to sensor

networks, to design a fault tolerant, energy efficient monitoring system in a dis-

tributed manner. The whole architecture is build upon the poller-pollee structure,

where sensors self-organize themselves into two tiers, with pollees in the lower tier

and pollers in the upper tier. The pollees send status reports to the pollers along

multihop paths, during which the intermediate nodes do the aggregation to reduce

the message overhead. Each poller makes local decisions based on the received

aggregated packets, and forwards its decision towards the sink.

One weakness of the poller-pollee structure is that the poller or the communica-

tion link may fail, which could cause false alarms. To address this issue, each pollee

is associated with multiple pollers. Although using multiple pollers can be fault

tolerant, sending status reports to multiple pollers at the same time can signifi-

cantly increase the power and bandwidth consumption. We thus propose a novel

solution where the monitored sensor sends the status reports to different pollers in

a round robin manner. Status reports from different pollers can thus be combined

to reduce false alarm. For example, although the report through one poller is lost

due to transient communication link interference/failure, the sink may still receive

the pollee’s report from another poller in the next time interval. Through analysis,

we show that the round robin based multi-poller solution can significantly reduce

the false alarm rate compared to the single poller scheme.

When building the monitoring architecture, we focus on the fundamental trade-

off between the number of monitoring nodes (i.e., pollers) and the false alarm rate.

Most of the previous work targets at minimizing the number of pollers only, be-

cause selecting more pollers will enhance the difficulty of tracking the status of each

poller and thus increase the network management cost [53]. However, in a lossy

environment, the false alarm rate can be adversely affected by a smaller number

of pollers. For example, if the number of pollers is too small, some pollees will

be too far away from the poller, and then the chance of link transient failure will

be higher and the false alarm rate will be larger. To balance the tradeoff between

67

the number of pollers and false alarm rate, we propose a distributed deterministic

algorithm, which uses two parameters k1, k2 to guide a better distribution of poller

and pollee; i.e., no two pollers are less than k1 hops away from each other, and

no pollee is more than k2 hops away from its poller. This property enables us to

minimize the number of pollers while bounding the maximum false alarm rate. We

discuss how to set up these parameters and further reduce the message overhead

based on a randomized technique.

To increase the energy efficiency and reduce the monitoring overhead, we take

the hop-by-hop aggregation opportunities in sensor networks. When pollees, which

can be multiple hops away from the poller, send status reports to their pollers, the

status reports can be aggregated to reduce the number of packets needed. It is

nontrivial to determine which aggregation path should be used in order to achieve

better aggregation. In this chapter, we formulate the selection of the optimal

aggregation path to minimize the transmission energy as a NP-hard problem, and

prove that an opportunistic greedy forwarding scheme has an approximation ratio

of 5
4
. We also prove that if the pollee is within 2 hops of the poller, i.e., k2 = 2,

the bounded ratio is 1 + s−1
s2 .

The rest of the chapter is organized as follows. Section II presents the poller-

pollee based monitoring architecture. Section III proposed and analyzed the round

robin based multi-poller scheme. Section IV formulates the minimum poller selec-

tion problem and proposes the distributed algorithms. Section V focuses on the

optimal aggregation path problem, and studies the greedy algorithm with constant

approximation ratio. Performance evaluations are done in Section VI. Section VII

overviews the related work and Section VIII concludes the chapter.

4.2 Architecture and Problem Formulation

In this section, we present the multi-poller structure, based on which we build the

sensor monitoring system.

4.2.1 The Multi-Poller Structure

68

2reply/s

Pollee

Poller

(a)

2report/s

(b) (c)

1report/s 1report/s2poll/s

Poller Poller Poller

Pollee Pollee

Figure 4.1. Basic and extended poller-pollee structure

In distributed systems, the only way to learn the status of a node is through

receiving message from the node. We can have the monitoring node (i.e., poller)

send a “ping” message and then wait for the reply (Fig. 4.1a), or wait for the node

being monitored (i.e., pollee) to proactively send a message (Fig. 4.1b). As a sensor

network is a large distributed system, the poller and pollee structure can also be

used for monitoring the sensor network status. Since two messages are used in Fig.

1(a), whereas only one is used in Fig. 1(b), we prefer to having pollees send periodic

reporting messages to the poller to reduce energy consumption, and only resort to

ping-response messages when necessary. However, traditional poller-pollee struc-

ture like Fig. 4.1(a) and Fig. 4.1(b) is not resilient to node or communication failure

because each pollee is associated with only one poller. To tolerate these failures, we

extend the poller-pollee structure by associating each pollee with multiple pollers,

as shown in Fig. 4.1(c).

4.2.2 Architecture

Different monitoring architectures can be built on the poller-pollee structure (Fig. 4.1).

Given the scale of sensor networks, a centralized polling scheme, as depicted in

Fig. 4.2(a), is not scalable. Instead, Fig. 4.2(b)(c) has a two-tier distributed polling

structure where pollees send status reports to the pollers, which in turn generate

aggregated status reports and forward them to the sink.

As each pollee in Fig. 4.2(b) is monitored by only one poller, it is not resilient

to the poller failure or communication failure. To reduce the false alarm rate, we

apply the multi-poller concept to Fig. 4.2(c). For simplicity, each pollee only has

two pollers, referred to as the primary poller and the secondary poller. As shown

in Fig. 4.2(c), pollee 1 is monitored by poller 1 which is the primary, and poller 2

69

1

3

4

5

6

2

p
 p

p
 p

p

p

1

3

4

5

6

2

p
 p

p
 p

p

p

s
 s
s

s

s

(a)
 (b)
 (c)

s

BS
 BS
BS

Poller1

Poller2

Poller3

Poller1

Poller3

Poller2

Figure 4.2. Different monitoring infrastructures: (a) centralized (b) distributed (c)
distributed and fault tolerant, where circles denote pollees, squares denote pollers, arrows
denote the paths followed by packets, p-arrow represents the path to the primary poller
and s-arrow represents the path to the secondary poller. Each solid line denotes a
physical link, and each dashed line represents a logical path that may consist of multiple
physical links.

which is the secondary.

The communication path between the pollee and the sink consists of two parts:

pollee-to-poller and poller-to-sink. In this chapter, we focus on the reliability issue

of the pollee-to-poller part and leave the other part as future work.

4.2.3 Problem Formulation

We consider a network of n sensors, where all sensors are capable of being either

pollers or pollees. At first hand, we want to select the minimum number of nodes

as pollers so that the management cost of pollers can be minimized. On the other

hand, if the number of pollers is too small, some pollees will be many hops away

from a poller, thus increasing the false alarm rate. Therefore, our goal is to strike

a balance between the number of pollers and false alarm rate. Since the pollers

may also fail, we associate each pollee with ω ≥ 1 pollers. Each pollee maintains

pointers to the different pollers but sends status report to only one poller at a

time. When the poller fails, the associated pointers should be outdated and the

next poller on the list will be used.

We formulate the poller-pollee assignment problem minPL, with the objective

to minimize the number of pollers while limiting the maximum false alarm rate as

follows.

Given a network graph, the error rate of each link, determine (1) which nodes

70tPollee1Poller1 Poller2Sinkt t t time(b) the multi-poller scheme(a) the single-poller schemetPollee1 Poller1 timeSinkt t t
Figure 4.3. Asynchronous operation at poller and pollee, with the arrow denoting the
status reporting

are pollers and which nodes are pollees, (2) a many-to-many mapping where each

node is associated with ω pollers, to minimize the total number of pollers while

limiting the maximum false alarm rate of pollees.

Theorem 9. The problem minPL is NP-Hard.

Proof. The problem minPL can be proved to be NP-hard via a reduction from the

minimum k-hop dominating set problem [54], which can be seen as a special case of

minPL when ω = 1 and the link failure rate is constant. This is because according

to the result in the next section, different hop numbers between pollee and poller

correspond to different false alarm rates. Therefore, satisfying the constraint of

maximum false alarm rate is equivalent to limiting the maximum number of hops

from pollee to poller.

4.3 The Round Robin Based Multi-Poller Scheme

and Its Performance analysis

In this section, we present the round robin based multi-poller scheme, and give the

false alarm rate through analysis.

4.3.1 The Round Robin Based Multi-Poller Scheme

Recall that the multi-poller structure is proposed to deal with sensor and commu-

nication link failures. To reduce the communication overhead, we propose a round

71

robin based multi-poller scheme, where the monitored sensor sends the status re-

port to different pollers in a round robin manner. Status reports from different

pollers can thus be combined to reduce false alarm rate. For example, even the

report towards one poller is lost due to communication link failure during the cur-

rent polling interval, the report may still reach another poller through a different

link in the next polling interval. Based on the combined reports through different

pollers, the sink can thus make a better decision about the pollee status every

detection period.

Further let t denote the polling time interval at the pollee, and let ω denote

the number of pollers for each pollee. Suppose the sink needs time Td, referred to

as the detection time, to detect a pollee failure. The single-poller and multi-poller

scheme can be stated as follows:

• Single-poller scheme: each pollee sends a report to the same poller every

t; each poller collects the reports from its pollees every t and forwards the

compressed report to the sink every t; the sink evaluates the failure condition

every Td. It is required that t ≤ Td.

• Multi-poller scheme: each pollee schedules a report to different pollers every

t; each poller collects reports from each of its pollees every ωt and forwards

the compressed report to the sink every ωt; the sink evaluates the failure

condition every Td. It is required that ωt ≤ Td.

Status reports can be aggregated during the transmission from the pollee to

the poller. The poller, pollees, and the physical link between them form a tree. If

a node is at the edge of the tree, it is called an edge node; otherwise it is called

a non-edge node. Then in the above polling schemes, each non-edge pollee can

collect reports from each of its children and sends the aggregated report (including

its own) to the same poller every t;

Fig. 4.3 illustrates the single poller scheme and multi-poller scheme using an

example. In Fig. 4.3(a), pollee 1 sends reports to poller 1 every t; in Fig. 4.3(b),

pollee 1 sends reports to poller 1 or poller 2 every 2t in a round robin manner. The

sink receives two reports every 2t if it chooses detection time Td = 2t. With the

single poller scheme, if some communication link between pollee 1 and the sink has

72

some problem, the sink will have a false alarm on the status of pollee 1. However,

the false alarm may be eliminated by the use of an alternative poller in the multi-

poller scheme. In general, with the same detection time delay and the same amount

of traffic, the multi-poller scheme will have a much smaller false alarm rate on the

status of the pollee. It is possible that Td can be set to t in the single poller scheme

in the above example. Although this can reduce the failure detection time, based

on the results of [55] and our analytical results in the next section, the false alarm

rate with this change can be very high compared to increasing Td to 2t. Next, we

give formal analysis on the false alarm rate of these two schemes.

4.3.2 The False Alarm Rate

In this section we assume the detection time period Td is the same for both single-

poller and multi-poller scheme, and evaluate the false alarm rate in the presence

of link failures.

In wireless medium, the characteristics of node failure and link failure are quite

different. While the node failure may be permanent, the wireless link failure hap-

pens from time to time, and once occurs it will persist for a period of time. During

the transmission of messages, if an intermediate node is detected to fail, its down-

stream nodes can simply bypass it by choosing an alternative next hop. But the

same technique cannot be applied to the case of link failure, which is transient

in nature. Therefore we study the link failure and model it as a continuous-time

Markov chain, as adopted by some existing works [56, 57]. The following notations

are used in the analysis:

fl: link failure rate

h: number of hops from pollee to poller

F1(h, Td), Fw(h, Td): the false alarm rate for the single poller scheme, and the

multi-poller scheme, where the subscript w represents the number of pollers for

each pollee.

Each link is modeled as a two state markov chain (Fig. 4.4(a)). The transition

rate from state 0 (“on”) to state 1 (“off”) and from state 1 to state 0 is λ and

µ respectively. If the path between the poller and pollee is multihop, it can be

modeled by the higher dimensional markov chain. For example in Fig. 4.4(b), the

73

two-hop path (i.e., h = 2) is represented by four states with “11” denoting the

state at which both links fail. Further assume each pollee has ω pollers (ω ≥ 1),

and a packet is sent to each poller every ωt period. We are interested in the false

alarm rate Fw(h, Td), given h and the detection period Td.0 1λ

µ 10 11λ
µ

00 01λ

µ(b) h=2(a) h=1 λµ λµ

Figure 4.4. Continuous-time markov chain link model

• The continuous-time markov chain of a link (Fig. 4.4a): To solve the markov

chain in Fig. 4.4(a), its limiting probability π0, π1, i.e., the long-run propor-

tion of time that the process is in state 0 and state 1, can be calculated by

π0 = µ
λ+µ

, π1 = λ
λ+µ

. The transition probability pij(t), the probability that

the state is in j at time t provided that the current time is i, is given by:

p00(t) =
λ

λ + µ
e−(λ+µ)t +

µ

λ + µ
(4.1)

p10(t) =
µ

λ + µ
− µ

λ + µ
e−(λ+µ)t (4.2)

• The multihop path with single poller (Fig. 4.4b): Without loss of generality,

we assume Td/t is an integer and discretize the time using interval t. Then

F1(h, Td) can be calculated as follows.

1. When Td = t,

F1(h, t) = 1− π0(t)
h, for ∀h (4.3)

2. When Td = 2t, h = 2,

F1(2, 2t) = π1π0(1− p10(t)p00(t))

+π0π1(1− p00(t)p10(t))

74

+π1π1(1− p10(t)p10(t)) (4.4)

Above calculation numerates the three cases of false alarm in which the

two-hop path fails in both t intervals.

3. When Td = 2t, h = 3,

F1(3, 2t) =
1∑

i=0

1∑
j=0

1∑

k=0

πiπjπk(1− pi0(t)pj0(t)

pk0(t))− πh
0 (1− p10(t)p10(t)p10(t)) (4.5)

4. Eqn. 4.5 can be generalized to calculate F1(h, 2t)

5. In general, F1(h, Td) can be calculated by

F1(h, t) (P [s(t + t0) = 1|s(t0) = 1])
Td
t
−1

= F1(h, t)

[
(P [s(t + t0) = 1, s(t0) = 1])

P [s(t0) = 1]

]Td
t
−1

= F1(h, t)

[
F1(h, 2t)

F1(h, t)

]Td
t
−1

(4.6)

where s(t0) denotes the path state at t0, P [s(t+ t0) = 1|s(t0) = 1] is the

transition probability, and F1(h, t), F1(h, 2t) are given by 1), 4). Above

follows because the markov chain is homogeneous, i.e., its transition

probability does not depend on the starting time.

• Multihop path with multi-poller: Unlike the single poller scheme, the failure

of the multihop paths towards different pollers are independent. Therefore

Fω(h, Td) is given by:

Fω(h, Td) = (1− π0(t)
h)Td/t (4.7)

Because of the bursty nature of the wireless link failures, the monitoring of

sensor network could benefit from the multi-poller based scheme. The amount of

the benefits depends on the time correlation characteristics of the link failures.

On one extreme, if the link failures are not time-correlated, the performance of

75

the multi-poller based scheme is simply reduced to that of the single-poller based

scheme. The correlation characteristics of the transmission failures is studied in

[58] which uses the statistical tool to analyze the collected packet traces over the

real sensor testbed. In [58], wireless links are classified into three categories based

on the correlation characteristics, i.e., good link, intermediate link, and bad link,

where the bad links denotes the most correlated link. For our evaluation, we

consider the link quality as the intermediate level and set fl = 0.1, λ = µ = 1
4

in the markov chain model. For the bad link, the performance benefits should be

higher.

Fig. 4.5 shows the false alarm rate as a function of the number of hops from

poller to pollee when fl = 0.1. As can be seen, the false alarm rate increases as

h increases, since longer path is more vulnerable to failure. From the figure, we

can also see the importance of Td. As Td increases, the false alarm rate decreases.

For example, even for the single poller scheme, when h = 1, F1(h, t) = 0.1, but

F1(h, 2t) = 0.025; that is, doubling the detection time can reduce the false alarm

rate by as much as 75%. With a longer detection time, the sink can still receive the

next status report even if the previous status report has been lost. As a result, the

sink will have much less probability to generate a false alarm due to link failure.

This is consistent with the result of [55].

From the figure, we can see that the multi-poller scheme consistently outper-

forms the single poller scheme in terms of false alarm rate. For example, with

h = 1, F1(h, 2t) = 0.025, but F2(h, 2t) = 0.01, which represents a 60% false alarm

reduction. This is because the status report of the multi-poller scheme is trans-

mitted to the sink through different paths, and hence can tolerate longer period

of link failure at any path. Note that, due to the use of round robin scheme, the

multi-poller scheme still keep similar bandwidth consumption as the single poller

scheme.

Fig. 4.6 shows the false alarm rate when fl = 0.2. We can easily see the same

trend as that of Fig. 4.5. The only difference is that the false alarm rate increases

as the fl increases.

Discussion: To simplify the analysis, we assume the average link failure rate is

homogeneous. In some cases, different links could have large variation of quality.

Thus, there may be a need to introduce adaptive elements to the polling strategy

76

1 1.5 2 2.5 3 3.5 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

number of hops from poller to pollee (h)

fa
ls

e
al

ar
m

 r
at

e

F
1
(h, t)

F
1
(h, 2t)

F
1
(h, 4t)

F
1
(h, 6t)

F
2
(h, 2t)

F
2
(h, 4t)

F
2
(h, 6t)

Figure 4.5. False alarm rate (fl = 0.1)

1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

number of hops from poller to pollee (h)

fa
ls

e
al

ar
m

 r
at

e

F
1
(h, t)

F
1
(h, 2t)

F
1
(h, 4t)

F
1
(h, 6t)

F
2
(h, 2t)

F
2
(h, 4t)

F
3
(h, 6t)

Figure 4.6. False alarm rate (fl = 0.2)

and design weighted round robin based polling schemes. Note that our analysis

is the first step to fully understand the round robin based multi-poller scheme.

As the initial step, our analysis is based on a 2-state Markov model, but more

complex and realistic models such as Weibull model [59, 60] are also worth of

further investigation.

4.4 Distributed Poller-Pollee Assignment Algo-

rithms

In this section, we propose the distributed algorithms to solve the poller-pollee

assignment problem as formalized in subsection 4.2.3.

The construction of poller-pollee structure shares some similarity with the tradi-

tional clustering scheme, where a poller is similar to a cluster head. However, there

is fundamental difference between them. First, the traditional clustering schemes

are single-hopped, but the pollee should be within some bounded hops of its poller.

Second, with multihops between the poller and pollees, aggregation is used to re-

duce the monitoring traffic, which is not considered in clustering schemes. Third,

each pollee may be associated with ω ≥ 1 pollers to be fault tolerant, whereas

each cluster member only has one cluster head. Thus, the traditional clustering

scheme is only a special case of the single-hop poller-pollee structure with ω = 1.

Below, we first propose a distributed deterministic poller selection algorithm, and

77

then present a hybrid algorithm to further reduce the message overhead.

4.4.1 The Randomized Algorithm

The randomized algorithm is presented as a baseline for comparison. Each node

elects itself as a poller with probability ρ. Pollers then announce their poller status

within k hops. Sensor nodes that did not elect themselves as pollers will be pollees.

The randomized algorithm is very simple, yet it may produce some pathological

scenario where multiple pollers may cluster together in some area and no poller

exists in some other area. To address this problem, we propose a deterministic

algorithm.

4.4.2 The Deterministic Algorithm

Algorithm 7 Deterministic Poller Selection Algorithm
Input: a graph G(N, E), k1, k2

Output: a Poller Set Ser, a Pollee Set See

Procedure: Determine(k1, k2)
1: Initialize the status and the timer
2: Broadcast locally to get k1-hop neighborhood information
3: if timer not expired then
4: if id is the smallest among k1 hop unlabeled neighbors then
5: broadcast pollerID = id within k2 hops, exit
6: /*Ser = Ser ∪ {id}*/
7: end if
8: wait until a packet is received or the timer is expired
9: if pollerID received then

10: broadcast polleeID within k1 hops, exit
11: /*See = See ∪ {id}*/
12: end if
13: if polleeID received then
14: update the unlabeled List within k1 hops, reset timer and go to 4
15: end if
16: else
17: go to 5
18: end if

The proposed deterministic algorithm is based on the distributed maximal inde-

pendent set (MIS) algorithm [13]. An Independent Set is a subset of nodes among

which there is no edge between any two nodes. The set is a MIS if no more edges

can be added to generate a bigger independent set. In the deterministic algorithm,

78

the concept of MIS is extended to the multihop environment. Two parameters

k1, k2 are used to govern the distribution of the pollers and pollees, to ensure that

no two pollers are less than k1 hops from each other and no pollee is more than k2

hops from its poller. That is, the poller set Ser is a k1-hop MIS, in which no two

nodes are less than k1 hops away from each other.

Since parameters k1, k2 control the geometrical properties of the poller and

pollee distribution, they should be determined beforehand according to user’s de-

mand. First, given the constraint of false alarm rate, k2 can be determined, based

on the relationship between the false alarm and the hop distance such as in Fig. 4.5.

Thus, bounding the maximum false alarm rate becomes equivalent to bounding the

maximum distance from pollee to the poller. Second, after k2 is determined, k1 can

be selected. Although a large k1 could reduce the number of pollers selected but

some pollee may not find ω pollers within k2 hops. Therefore, an appropriate k1

should be chosen to strike a balance between the number of pollers and the number

of unlabeled nodes. This can be achieved by the experiments, as in Section 4.6.

Given k1, k2, Algorithm I lists the pseudo code of the deterministic poller selec-

tion algorithm. At the outset, each node needs to obtain the k1-hop neighborhood

information by a localized broadcast. Then the algorithm proceeds in rounds. In

each round, if a node has the smallest id among the k1-hop unlabeled neighbors, it

elects itself as belonging to the poller set Ser, and broadcasts pollerID = id within

k2 hops. Nodes that are not yet labeled but received the poller declaration will

label themselves as pollees, and broadcast polleeID = id within k1 hops. After

that, a new round will start, during which the algorithm is executed among the

remaining unlabeled nodes. This process repeats until all nodes are labeled either

as poller or pollee.

The upper diagram of Fig. 4.7 uses a small network of 11 nodes to explain

the deterministic algorithm, assuming k1 = k2 = 1. In the first round, node 1

and node 3 elect themselves as poller since their id is the smallest among the 1-

hop neighborhood, and their 1-hop neighboring nodes 2,4,6,7,8,10 are recruited as

pollees. Then the labeling process will repeat among the remaining nodes until

everyone is labeled. Thus, in the second round, node 5 is labeled as poller and

node 9 is labeled as pollee. In the third round, node 11 is labeled as poller.

The message complexity of Algorithm I can be computed as follows. Assume

79

1

11

10

27

5

4

3

8

9

6

11

10

27

5

4 8

9

6

1

3

11

10

27

4 8

9

6

1

3

5

10

27

4 8

9

6

1

3

5 11

poller

poller

poller poller poller

poller

pollerpoller

poller

1

11

10

27

5

4

3

8

9

6

1

11

10

7

5

4 8

9

2 6

3

poller poller

poller

1

11

10

5

4 8

9

2

3

poller

poller

67

1

104 8

9

2

3

poller

poller

67

5 11

poller poller

randomized phase D(k1, k2) D(k1, k2)Start of the hybrid algorithm

Start of the deterministic

algorithm
round 1: Ser={1,3} round 2: Ser={1,3,5} round 3: Ser={1,3,5,11}

Unlabeled node pollee poller

Figure 4.7. A numerical example. The deterministic algorithm (above) runs in three
rounds, exchanging 22 messages. The hybrid algorithm (below) has a randomized phase
and two deterministic phases, exchanging 10 messages.

there are n nodes. At first, each node needs to broadcast within k1 hops to get

the neighborhood information (line 2). After that, each poller needs to broadcast

within k2 hops (line 5) and each pollee needs to broadcast within k1 hops (line

10). Suppose k = k1 = k2, each node broadcasts within k hops exactly twice

during the execution of the algorithm. Further suppose d is the node density, and

r is the node communication range. The message complexity can be estimated by

O(2 ∗ n ∗ d ∗ (kr)2) = O(k2nd).

It is possible to set k1 as a fractional number. For example, when k1 = 1.2, it

means that each node chooses bk1c = 1 with probability 0.8 and chooses dk1e = 2

with probability 0.2. As k1 controls the distance between the neighboring pollers,

allowing k1 to be a fractional number will provide more flexibility to control the

number of pollers, which can be seen from Section 4.6. Then, Algorithm 1 needs

to be extended as follows. First, set k1
′ = bk1c with probability dk1e − k1 and

set k1
′ = dk1e with probability k1 − bk1c. Second, each node elects itself as poller

80

among the k1
′-hop unlabeled neighbors (line 4). Third, each node broadcasts id

within dk1e hops (line 5,10), but updates the unlabeled list within k1
′ hops (line

14).

4.4.3 The Hybrid Algorithm

Algorithm 8 Hybrid Poller Selection Algorithm
Input: a graph G(N, E), k1, k2, ρ
Output: a Poller Set Ser, a Pollee Set See

Procedure: Hybrid(k1, k2)
1: Initialize the node label, timer, Ser = φ, See = φ
2: generate a random number σ ∈ (0, 1)
3: if σ < ρ then
4: Ser = Ser ∪ {id}
5: end if
6: if id ∈ Ser /*node id is temporarily labeled as poller*/ then
7: execute the deterministic algorithm Determine(k1, k2)
8: /*Ser and See are updated*/
9: end if

10: if node id is unlabeled then
11: wait until a packet is received or the timer is expired
12: if pollerID received then
13: label itself as pollee /*See = See ∪ {id}*/
14: end if
15: end if
16: if id ∈ {N − Ser − See} /*node id is not labeled*/ then
17: execute the deterministic algorithm Determine(k1, k2)
18: end if

In the deterministic algorithm, each node needs to broadcast within k hops

twice, assuming k = k1 = k2. As k becomes larger, the message complexity in-

creases dramatically. To reduce this message overhead, we propose a hybrid algo-

rithm which combines the randomized algorithm and the deterministic algorithm.

As shown in Algorithm 8, the algorithm starts with a randomized phase, during

which each node labels itself as a temporary poller with a probability ρ. After

that, the deterministic algorithm is executed among the temporary pollers. If two

pollers are less than k1 hops away from each other, one of them will change its role

from poller to pollee and the other one will confirm itself as poller. After receiving

the confirmed pollerID, the unlabeled nodes within k2-hop range of the confirmed

poller will be recruited as pollees. To implement this, a field in the packet header

needs to be reserved to differentiate the confirmed pollerID from the temporary

81

pollerID. After receiving the confirmed pollerID, the unlabeled nodes change the

status to pollee. Finally, the deterministic algorithm is executed among the set of

unlabeled nodes, i.e., {N − Ser − See}, to have all the nodes labeled.

Compared with the deterministic algorithm, the hybrid algorithm has much less

message overhead. First, due to the use of the randomized phase, each node does

not have to make the initial k1 − hop broadcast. Second, when the deterministic

algorithm is executed for the first time (line 7), only the temporary pollers are

involved. Third, after receiving the confirmed pollerID, many unlabeled nodes

become pollees who are refrained from broadcast. Thus, only a small portion of

the nodes still remain unlabeled and execute the deterministic algorithm for the

second time (line 17). In the following, we give a detailed analysis of the message

overhead, based on which the optimal value of ρ can be derived to minimize the

message overhead.

For ease of illustration, we first assume k1 = k2 = k, and then extend it to

the general case of k1 6= k2. First, the randomized phase introduces zero message

overhead. As a result, on average a fraction ρ of the nodes are labeled as pollers

and execute the deterministic algorithm for the first round (line 7). Among the

nρ temporary pollers, a fraction of nodes, say, α, are confirmed as pollers, and

a fraction 1 − α of the nodes become pollees. During the execution of the first-

round deterministic algorithm, the nρα confirmed pollers will recruit unlabeled

nodes within k hops as pollee. After that, only a fraction, say, β, of the n(1− ρ)

unlabeled nodes still remain as unlabeled and execute the second round (line 17).

Therefore, the total number of nodes involved in the two rounds of the deterministic

algorithm is nρ+n(1−ρ)β, with all the other nodes recruited as pollee by the nρα

confirmed pollers. Further use M(k) to denote the message complexity of k-hop

broadcast. Since each participating node needs to broadcast twice within k hops,

the overall message complexity is:

2[nρ + n(1− ρ)β]M(k) (4.8)

β is the fraction of n(1−ρ) unlabeled nodes that do not fall in the k-hop range

of any of the nρα confirmed pollers. For a node n1, the probability that it falls

within the k-hop range of node n2 is πk2r2

a2 , where a2 denotes the area size. Thus,

82

0 0.2 0.4 0.6 0.8
1000

1500

2000

2500

3000

3500

the probablity ρ

th
e

n
u

m
b

er
 o

f
m

es
sa

g
es

n=1000
n=1500

Figure 4.8. The relationship between probability ρ and the message overhead

β = (1− πk2r2

a2
)nρα (4.9)

α denotes the fraction of nodes that are to be labeled as poller if nρ uniformly

distributed nodes run the deterministic algorithm. When two nodes are within k

hops, one of them will refrain from being a poller with half chance. Since there

are total nρ nodes, the probability for each node to become a poller is

α = (1− πk2r2

2a2
)nρ−1 (4.10)

Substituting Eqn. 4.10 and Eqn. 4.9 into Eqn. 4.8 will give us the message

complexity when k1 = k2.

Fig. 4.8 numerically evaluates the effect of varying the number of nodes n and

the probability ρ on the amount of message overhead, when a = 20, r = 1, k1 =

k2 = 1. It is shown that each curve has an optimal ρ corresponding to the minimum

message overhead. In addition, the optimal value of ρ reduces as the number

of nodes n increases. For example, ρ is about 0.2, 0.15, when n = 1000, 1500,

respectively.

Fig. 4.7 uses a simple network to compare the deterministic algorithm and hy-

brid algorithm. In the hybrid algorithm (lower diagram), the randomized phase

selects three nodes, i.e., nodes 2,3,6, as temporary pollers, among which the deter-

ministic algorithm is executed. Node 6 resigns from the role of poller and becomes

83

pollee because its id is larger than its neighbor node 2, which is also a poller. As

a result, nodes 2,3 are confirmed as pollers and broadcast locally to recruit nodes

1,7,9,4,8,10 as pollees. After that, only nodes 5,11 still remain unlabeled, among

which the second round of the deterministic algorithm is executed. In comparison

of the message overhead, the deterministic algorithm has 2 × 11 = 22 message

exchanges, but the hybrid algorithm only has 2× (3 + 2) = 10 message exchanges.

The message complexity is reduced by over 50% in this example. As k1, k2 become

larger and the network grows to a larger scale, the message saving will be more

significant.

After pollers are determined, each pollee needs to select up to ω pollers based

on the received announcements. The selection could be simply based on criteria

such as the distance to the poller. Each pollee maintains a list of pointers to the

ω pollers, and each pointer links to the routing entry (e.g., distance, next hop) of

a distinct poller. After a poller fails, each pollee will update its active poller list,

remove the stale entry and choose the next poller on the list. As more pollers fail,

new pollers can be elected using the algorithm in the next subsection.

4.4.4 Poller Re-election In Case Of Failure

Figure 4.9. The candidate set of new pollers can be reduced to a few temporary pollers.
In the diagram, the centered node is the failed poller, the other nodes are its neighboring
pollees, and the circle delineates its neighborhood. (a) the best case where only one node
(with the smallest id) is elected as the temporary poller. (b) the worst case where up
to five temporary pollers can be elected. (c) two temporary pollers may not be able to
reach one another in two hops due to the lack of an intermediate node.

84

Algorithm 9 Poller Re-election Algorithm
/*For each neighboring pollee of the failed poller with idfail*/

2: if a pollee has the smallest id among its neighbors then
label itself as temporary poller

4: broadcast Msg(idfail, idtemp = id, null, hop = 2)
while timer not expired do

6: receive Msg(idfail, idtemp, idlist,0)
if idtemp < id then

8: resign from poller and label itself as pollee
end if

10: end while
if confirmed as a poller when the timer expires then

12: announce the poller status within the k hops of the failed poller
end if

14: else
/*keep its status as pollee*/

16: while timer not expired do
receive Msg(idfail, idtemp, idlist, hop)

18: if some temporary poller among its neighbors is not listed in idlist and hop > 0 then
append the id of the unlisted temporary poller to idlist

20: broadcast Msg(idfail, idtemp, idlist, hop− 1)
end if

22: end while
end if

24: /*For each neighboring poller of the failed poller with idfail*/
broadcast Msg(idfail, idtemp = −1, null, hop = 2)

As more pollers fail, some pollee may not be able to find ω pollers within k

hops, so pollers need to be reelected. The reelection can be initiated by the sink,

because it knows the status of each node. Alternatively, it can be initiated by

the neighbor of the failed poller, to localize the reelection process. The pollee can

monitor the link status of its neighboring poller through overhearing at the MAC

layer, without adding extra overhead. For example, if the pollee does not hear any

transmission from the neighboring poller within a time period (e.g., Td), it infers

that the poller fails. Then, a new poller will be elected among the 1-hop neighbors

of the failed poller based on Algorithm 2.

Algorithm 2 is executed among the neighbors of the failed poller - nodes outside

of this range are not involved. Among the neighboring pollees of the failed node,

the pollees with the smallest id among their neighbors will first label themselves

as temporary pollers (line 2-3), from which a new poller will be selected. In this

way, the candidate set can be reduced from many possible neighbors to a few

temporary pollers. Figs. 4.9(a)(b) show that there are at least one and at most five

85

temporary pollers regardless of the total number of nodes involved. In Fig. 4.9(a),

each pollee has two neighboring pollees, but only node 1 has the smallest id among

its neighbors, thus being elected as the temporary poller. However, in Fig. 4.9(b),

where no two pollees are neighbors to each other, five temporary pollers are elected.

These temporary pollers can further negotiate with each other to decide the final

poller.

Each temporary poller starts a 2-hop constrained broadcast among the neigh-

bors of the failed node (line 4). The format of the broadcast message is defined

as Msg(idfail, idtemp, idlist, hop), where idfail is the id of the failed poller, idtemp

is the id of the temporary poller that generates the message, idlist records the id

of the other temporary pollers that have received this message, and hop defines

the broadcast range. When a temporary poller receives the message from another

poller, it examines the field idtemp. If idtemp is smaller than its own id, it will

resign from the role of temporary poller and label itself as pollee (line 7-9). When

a pollee receives the message, it checks the field idlist. If there is some neighboring

temporary poller that is not listed in idlist, the pollee will continue to forward

the message (line 18-21). Otherwise, it drops the message. Since the message is

circulated among the neighbors of the failed node, we set hop = 2. In most cases,

this can ensure the message to be delivered to the other temporary pollers, so

that there is only one temporary poller (i.e., with the smallest id) to be confirmed.

However, in some sparse networks such as Fig. 4.9(c), the message may not be able

to reach other temporary pollers due to the lack of intermediate node, so there may

be multiple pollers to be confirmed.

After the new poller is confirmed, it initiates a constrained broadcast within k

hops of the failed poller (line 11-13). Based on the received message, each pollee

can update the list of the active pollers and renew the pointers to them.

On the other hand, if the failed poller has some other alive poller as a neighbor,

there is no need to reselect a new poller among the pollees. The alive poller

can simply broadcast a message with idtemp = −1 to invalidate the status of the

temporary pollers (line 25).

86

4.5 The Optimal Aggregation Path Problem

4.5.1 The Problem Formulation

(a) (b) (c)

poller poller poller

Figure 4.10. An example to illustrate the benefit of aggregation: (a) without aggrega-
tion (b) aggregation path I (c) aggregation path II, where each line denotes a physical
link, and each arrow denotes a packet transmission over one hop (packet-hop)

After the poller-pollee relationship is established, each pollee starts to period-

ically send a report to its poller. Along the multihop path from pollee to poller,

each non-edge pollee collects reports from its downstream children and sends an

aggregated report (including its own) to the poller. For example in Fig. 4.10, a

pollee may have multiple paths to the poller, which results in different energy ef-

ficiency. Suppose the aggregation ratio (s) of the nodes in Fig. 4.10 is 2, which is

defined as the number of status reports that can be aggregated into one packet.

Each of the four pollees sends a report to the same poller periodically. Fig. 4.10(a)

shows that without aggregation, 4 packets will be needed for each period, with

a cost of 6 packet-hops. If the reports are aggregated along the path shown in

Fig. 4.10(b), all 4 reports can be packed into 3 packets, with a cost of 5 packet-

hops. If the aggregation path of Fig. 4.10(c) is used, only 2 packets are needed,

with a total of 4 packet-hops.

Assume transmitting one packet over one hop consumes one unit of energy.

The problem of finding the optimal aggregation path (optPH) can be formulated

as follows.

In a network graph, given the poller-pollee relationship, a constant aggregation

ratio, each node needs to send a report to its poller periodically. For each poller,

87

1 1

1 1

1 1

1 1

1 1

1 1

11 1 1

11

1

1 1

1

(k-1) nodes (k-1) nodes

Level 1

Level 2

Level k

Level k-1

1 2

1 1

1 2

1 2

1 2

1 2

1 1 1

11

1

1 1

2

(k-1) nodes (k-1) nodes

Level 1

Level 2

Level k

Level k-1

(b) (c)

1

(a)

Figure 4.11. Worst-case topology with the best strategy (above) and worst strategy
(below). (a) 2-level connected tree, s = 2. (b) 3-level connected tree, s = 4. (c) k-level
connected tree, s = 2(k − 1).

find the optimal aggregation paths from all its pollees, such that the total energy

consumption is minimized.

When the aggregation ratio s is infinite, it is called perfect aggregation. That

is, infinite number of reports can be aggregated into one packet. It is not hard to

see that the optimal solution of this special case is the minimum spanning tree.

For the general case where the aggregation ratio is finite, it can be proved that

the problem of optPH is NP-hard, which is consistent with the findings in [61, 62].

The proof is given in Appendix B.

Theorem 10. The problem of optPH is NP-hard.

4.5.2 A Greedy Algorithm And Its Approximation Ratio

Although the problem of selecting the optimal aggregation path is NP-hard, we

can design some heuristics. A simple greedy algorithm is to arbitrarily select the

88

next hop to forward, as long as it is on the shortest path to the poller, and oppor-

tunistically aggregate the status reports at the intermediate nodes. This seemingly

simple algorithm has surprisingly good performance, with a tight bound of 5
4
. That

is, the energy consumption resulted from the greedy algorithm will not be more

than 5
4

times the optimum solution. Before proving the approximation bound of

the greedy algorithm for the optPH problem, we first define some terminologies.

Within a polling domain, the shortest paths from all the pollees to the poller

of the domain form a tree, which may be partitioned into different levels. A

node is said to be at level i (i ≥ 0) if it is i hops away from the sink (i.e., the

poller). Therefore, the sink is the only node at level 0. A rooted tree is called a

level-connected tree if the nodes belonging to the neighboring levels are connected

with each other. Specifically, a k-level-connected tree is composed of the nodes

at level-i, i = 0, 1...k. Given a tree topology, the set of aggregation paths that

consume the least/most energy is called the best/worst paths, denoted as Hb and

Hw, respectively. Correspondingly, the aggregation strategy that can produce the

best/worst paths is called the best/worst strategy. Given a topology, the ratio of

energy consumption between the worst and best paths determines the performance

bound/ratio of the topology, denoted as δ. Denote the energy consumption of the

best path Hb and worst path Hw as Eb, Ew, then we have δ = Ew

Eb
. Given an

algorithm, the maximum performance bound/ratio among all possible topologies,

denoted as δmax, is called the approximation ratio of the algorithm. The worst-

case topology is the topology whose performance bound equates the approximation

ratio of the algorithm.

To have an intuitive idea about how to calculate the performance bound, we

first show some topologies in Fig. 4.11, whose performance bound is 5
4
. We can

later prove that δ = 5
4

is the maximum performance bound among all topologies,

so these classes of k-level-connected tree are actually the worst-case topology. In

Fig. 4.11, the worst-case k-level connected tree is constructed by having each level-

i, i = 1...k−1 with 2 nodes and level-k with 2(k−1) nodes, where Figs. 4.11(a)(b)

are the special cases when k = 2, 3 and Fig. 4.11(c) is the general case. Note that

in each level-connected tree, nodes at the neighboring levels are all connected with

each other. But for the clarity purpose not all the links are shown in Fig. 4.11, with

only the aggregation paths depicted. The number shown by each link indicates

89

the number of packet transmissions over that link. In Fig. 4.11, the upper diagram

represents the best aggregation paths, and the lower diagram represents the worst

aggregation paths. A further calculation shows that the energy consumptions of

the best and worst paths are 4(k−1) and 5(k−1) in Fig. 4.11(c). With s = 2(k−1),

we have δ = 5
4
.

In the rest of this section, we will prove that δ = 5
4

is the maximum per-

formance bound among all topologies, and thus the approximation ratio of the

greedy algorithm. As all the shortest paths constitute a tree and any tree topol-

ogy is a subset of some level-connected tree, we can restrict our attention to the

level-connected tree. The following theorem gives the approximation ratio for the

2-level-connected tree, which will be used to derive the approximation ratio for the

arbitrary level-connected tree.

Theorem 11. For a 2-level-connected tree, the approximation ratio of the oppor-

tunistic greedy algorithm is no greater than 1 + s−1
s2 , where s is the aggregation

ratio.

Proof. Given a 2-level-connected tree, the energy spent by sending the reports from

the level-2 nodes to the level-1 nodes is fixed, i.e., equal to the number of level-2

nodes. The problem optPH becomes how to minimize the energy spent between the

level-1 nodes and the root by packing the level-2 reports into a minimum number

of level-1 packets. We give the best and worst aggregation strategy as follows.

Best strategy : packing/sending every s− 1 level-2 reports into a single level-1

node until all level-1 nodes have a packet of s (including its own) reports con-

structed without residue room left. All the remaining level-2 reports are then

packed into a single level-1 node.

Worst strategy : packing/sending all level-2 reports into a single level-1 node.

Excluding its own report, each level-1 node has s − 1 vacancies in the first

packet. The best strategy tries to fully utilize all the vacancies, while the worst

strategy tries to use as many packets as possible by packing all status reports

aggressively into a single node. There may be other alternative best or worst

strategies, but it is sufficient to find one of them for our proof. Taking Fig. 4.12(b)

as an example, where s = 3, the best strategy packs every 2 level-2 reports into a

level-1 node, and the worst strategy packs all 6 level-2 reports into a single level-1

node. A simple calculation shows that δ = 11
9
.

90

Now assume level 1 has l1 nodes and level 2 has l2 nodes. Then the worst-case

topology must satisfy: (s− 1)(l1 − 1) < l2 ≤ (s− 1)l1. That is, all but one of the

level-1 nodes need to be fully packed. Otherwise, if l2 ≤ (s−1)(l1−1), some level-1

nodes become edge nodes without children in both the best and worst strategy, and

could be removed to increase the performance ratio. In other words, the original

topology is not the worst case topology when l2 ≤ (s − 1)(l1 − 1). On the other

hand, if l2 > (s− 1)l1, l2− (s− 1)l1 level-2 edge nodes can be removed to increase

the performance ratio. To see this, removing level-2 nodes deceases the number of

packets packed at level 1 by exactly d l2−(s−1)l1
s

e in the best strategy, but decreases

by at most d l2−(s−1)l1
s

e in the worst strategy. Thus, the original topology is not the

worst case topology when l2 > (s− 1)l1.

Therefore, we set l2 = (s − 1)l1 − i, i = 0...s − 2. It is followed that Eb =

l1 + l2, Ew = d l2+1
s
e+ (l1 − 1) + l2. Then,

δ − 1 =
Ew − Eb

Eb

=
d l2+1

s
e − 1

l1 + l2
≤

l2+1+(s−1)
s

− 1

l1 + l2

=
1

s

(s− 1)l1 − i

sl1 − i
≤ 1

s

(s− 1)l1
sl1

=
s− 1

s2
(4.11)

The performance ratio 1 + s−1
s2 is tight, which can be seen from Fig. 4.12.

Specifically, Figs. 4.12(a)&(b) show the worst-case topology when s = 2 and s = 3.

For arbitrary s, the worst-case topology can be constructed as in Fig. 4.12(c), where

level 2 has s nodes and level 3 has s(s− 1) nodes, then we have

δ = 1 +
d l2+1

s
e − 1

l1 + l2
= 1 +

d s(s−1)+1
s

− 1e
s(s− 1) + s

= 1 +
s− 1

s2
(4.12)

Theorem 12. The approximation ratio for the arbitrary level-connected tree is no

greater than 5
4
, i.e., δmax = 5

4
.

Proof. The theorem can be proved by the induction of L, the depth of the tree.

First, Theorem 11 shows that the base case for 2-level-connected tree is true, i.e.,

δmax = max(1 + s−1
s2) = 5

4
. Assuming the claim is true for k-level-connected tree,

∀k ≤ L, we want to prove that δmax = 5
4

for (L+1)-level-connected tree.

91

(a) s=2, =5/4

s-1 nodes s-1 nodes s-1 nodes

nin1 ns

Total s(s-1) nodes

nin1 ns

n1 n2 n3

n3n2n1

n1 n2

n1 n2

1 1 1 1 1 1 1 1

2 3 1
s 11 1

1

(b) s=3, =11/9 (c) =1+(s-1)/s²δ δ δ

poller poller poller

poller poller poller

11

1 1 1 1 1 1 1 1

1

1 1 1 1 1 1

1 1 1 1 1 1
1 1 1 1

Figure 4.12. The derived bound is tight for 2-level-trees: the best strategy (above)
and worst strategy (below). The number by the link indicates the number of packets
transmitted over this link.

As shown in Fig. 4.13(a), we divide the total energy consumption of the (L+1)-

level-connected tree into two parts, namely, the upper part consisting of the links

from level-(L-1) to level-0 (Fig. 4.13(b)) and the lower part consisting of the links

from level-(L+1) to level-(L-1) (Fig. 4.13(c)). Because the nodes below level-(L-1)

also contribute to the energy consumption of the upper part, we need to expand the

nodes below level-(L-1) onto level-(L-1). Then the level-(L-1) nodes in Fig. 4.13(b)

are the coalescence of level-(L-1), level-L and level-(L+1) nodes in Fig. 4.13(a). On

the other hand, The nodes at level-(L-1) and above have no contribution to the

energy consumption of the lower part, so they can be safely shrunk into one virtual

node. As shown in Fig. 4.13(c), the virtual node is the root of the 2-level tree. Use

Eup
w , Eup

b to denote the energy consumption of the worst path and the best path in

the upper part (Fig. 4.13(b)), and use Elow
w , Elow

b to denote the energy consumption

of the worst path and the best path in the lower part (Fig. 4.13(c)). It can be

seen that the above expanding and shrinking operation shall not reduce the gap

between the energy consumption in the best case and worst case.

Fig. 4.13(b) is a (L-1)-level-connected tree. By the inductive hypothesis, δmax =
5
4

for Fig. 4.13(b). Therefore

92

Eup
w − Eup

b ≤ (
5

4
− 1)Eup

b =
1

4
Eup

b (4.13)

Fig. 4.13(c) is a 2-level-connected tree. According to Theorem 11, δmax = 5
4

for

Fig. 4.13(c). Then we have

Elow
w − Elow

b ≤ (
5

4
− 1)Elow

b =
1

4
Elow

b (4.14)

Combining Eqn. 4.13 and Eqn. 4.14, we finally have

δ =
Eup

w + Elow
w

Eup
b + Elow

b

≤ 5

4
(4.15)

The bound of 5
4

is tight as seen from Fig. 4.11, where the worst-case topologies

are shown.

4.5.3 Estimate The Lower And Upper Bound In Practice

Although it is computationally infeasible to find the minimum value and the op-

timal aggregation path in practice, the upper bound Ew and the lower bound Eb

can be estimated based on experiments.

Suppose m experiments are performed, and among them min and max are the

minimum and maximum energy value, respectively. Then we have

Eb ≤ min ≤ max ≤ Ew (4.16)

Further because Ew

Eb
≤ δmax, there is

max ≤ Ew ≤ min ∗ δmax and
max

δmax

≤ Eb ≤ min (4.17)

This relationship tells us that the upper bound and lower bound fall within the

range of [max,min∗δmax] and [max
δmax

,min]. The more experiments to be performed,

the better chance that max and min can reflect the real maximum and minimum

point and the more likely that the range of the upper and lower bound could be

further narrowed down .

93

Level 1

Level L-1

Level L+1

Level L

u
p
p
e
r p
a
rt e
n
e
rg
y

lo
w
e
r p
a
rt e
n
e
rg
y

Level 1

Level L-1 (merging level-L and level-(L+1))

Level 2

Level 1

(a) (c)

(b)

Figure 4.13. Proof of the performance bound by dividing the energy consumption into
two parts. (a) the original connected tree (b) the upper part consists of the links above
level-(L-1), with the nodes at level-L and level-(L+1) expanded onto level-(L-1). (c) the
lower part consists of the links below level-(L-1), with the nodes at level-(L-1) and above
shrunk into a single virtual node.

4.6 Performance Evaluations

In this section, we use simulation to test the parameters and evaluate the proposed

algorithms. In the simulation, n sensors are randomly deployed in a 20×20 square

area. Each pollee is associated with up to ω pollers, which are used for fault

tolerance. Each sensor sends a status report to its poller every t, with the reports

aggregated at the intermediate nodes. The sensor transmission range is 1, and

transmitting one packet over one hop consumes one unit of energy. The link

failure is modeled as a continuous-time markov chain with an average failure rate

fl and a detection period Td. We set fl = 0.05 and Td = 2t without otherwise

specified. The experiments are done over a customized C++ simulator.

4.6.1 Parameter Setting

Three parameters need to be determined, k1, k2 for the deterministic algorithm

and ρ for the hybrid algorithm. In Section 4.3, Fig. 4.5& 4.6 gives the relationship

between the false alarm rate and the distance from the pollee to the poller when

the average link failure rate is known. As a result, given the constraint of the

maximum false alarm rate, k2 can be determined to limit the number of hops from

94

1 1.2 1.4 1.6 1.8
0

50

100

150

200

250

the value of k
1

th
e

nu
m

be
r

total number of pollers
pollees with less than 2 pollers
pollees with less than 3 pollers

Figure 4.14. The effect of k1 on
the number of pollers and the number
of pollees that cannot find ω pollers
(n=1000)

0.1 0.2 0.3 0.4 0.5 0.6
800

1000

1200

1400

1600

1800

2000

poller election probability ρ

th
e

nu
m

be
r

of
 m

es
sa

ge
s

n=1000
n=1500

Figure 4.15. The effect of probability
ρ on the message overhead in the hybrid
algorithm (k1 = 1, k2 = 1)

0.02 0.04 0.06 0.08 0.1 0.12 0.14
1000

2000

3000

4000

5000

6000

poller election probability ρ

th
e

nu
m

be
r

of
 m

es
sa

ge
s

n=1000
n=1500

Figure 4.16. The effect of probability ρ on the message overhead in the hybrid algorithm
(k1 = 1, k2 = 3)

the pollee to the poller. Suppose the false alarm rate is required to be less than

4%, then k2 ≤ 3 based on Fig. 4.5. We will set k2 = 3 in the following experiments

unless otherwise specified, based on which k1 and ρ are chosen.

Fig. 4.14 shows the effect of k1. As k1 increases, there will be less number of

pollers because k1 controls the distance between the neighboring pollers. However,

the number of pollees that cannot find ω pollers increases as k1 increases. For

example, as k1 increases from 1 to 1.8, the number of pollees that cannot find

3 pollers (ω = 3) increases from 0 to 210. This is because with less number of

pollers, it is less likely for a pollee to find ω pollers within k2 hops. As can be

95

seen, if k1 = 1, all pollees can find three pollers. However, if k1 = 1.8, over 20%

pollees cannot find three pollers. We thus set k1 = 1 in the following experiments,

without otherwise specified. Note that k1 may be a fractional number.

In the hybrid algorithm, each node first elects itself as poller with probability

ρ. Fig. 4.15 shows how the value of ρ affects the message overhead when k1 = k2 =

1. Compared with the analytical result in Fig. 4.8, the same trend is observed

in Fig. 4.15, where the message overhead first drops then rises as ρ increases.

The point with the least number of messages corresponds to the optimal ρ∗. For

example, when n = 1000, 1500, ρ∗ is around 0.25, 0.2 in the simulation, and around

0.2, 0.15 in the analysis. The little mismatch of the theoretical result may be

explained by the boundary effect of the finite field in reality. That is, in the

analysis it is assumed that the sensing range of a node falls within the field of the

deployment, but this is not true for the nodes on the boundary, which will affect

the accuracy of the analytical result.

Similarly, Fig. 4.16 shows the relationship between the message overhead and

ρ when k1 = 1, k2 = 3. It can be observed that at the optimal point, ρ∗ is

around 0.05, 0.03 when n = 1000, 1500, which is much smaller than the case when

k1 = k2 = 1. This is because with larger k2, a smaller number of pollers are able

to cover most of the unlabeled nodes. In the following, we will use the optimal ρ∗

corresponding to the different n, k1, k2.

4.6.2 Comparison of Single Poller and Multi-Poller Schemes

Fig. 4.17 compares the single poller scheme with the multi-poller scheme in pres-

ence of link failure. For fair comparison, the same detection period Td is used.

For example, Td = 4t implies that four reports are sent out within the detection

period Td. From Fig. 4.17, we have several observations. First, consistent with the

numerical result, the false alarm rate dramatically drops as the detection period Td

increases. This verifies the tradeoff between the detection delay and the false alarm

rate. Second, the reduction of the false alarm rate in the multi-poller scheme is

over 50% compared to that of the single-poller scheme, irrespective of the number

of nodes. As discussed below, the substantial performance improvement is at the

cost of a marginal increase of the bandwidth consumption (shown in Fig. 4.18).

96

800 900 1000 1100 1200 1300 1400 1500 1600
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

number of nodes (n)

fa
ls

e
al

ar
m

 r
at

e

ω=1,T

d
=2t

ω=1,T
d
=3t

ω=1,T
d
=4t

ω=2,T
d
=2t

ω=3,T
d
=3t

ω=4,T
d
=4t

Figure 4.17. Comparison of single and
multi-poller scheme (with link failure
fl = 0.1)

800 900 1000 1100 1200 1300 1400 1500 1600
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

number of nodes (n)

en
er

gy
 c

on
su

m
pt

io
n

single poller ω=1

multi−poller ω=2

multi−poller ω=3

Figure 4.18. Energy comparison of
single and multi-poller scheme (without
failure)

Fig. 4.18 studies the energy cost associated with the multi-poller scheme. It

costs 7% more energy when the number of pollers for each pollee increases from

1 to 2 or from 2 to 3. Based on our randomized algorithm, the primary path is

always the shortest path, but the secondary path may be a little bit longer. As a

result, packets may go through more hops to reach the secondary poller compared

to that of the primary poller, resulting in more energy consumption. However,

compared with the improvement on false alarm rate as shown in Figs. 4.17, the

energy increase is pretty small.

4.6.3 Comparison of Different Distributed Algorithms

In this section, we compare the geometrical property of the hybrid algorithm and

the randomized algorithm. Fig. 4.19 shows snapshots of the poller-pollee distri-

bution after running the randomized and hybrid algorithm among 100 nodes in a

5× 5 field. The whole network is connected but for clarity purpose we only show

the links within each polling domain. Fig. 4.19(a) shows that the randomized al-

gorithm produces a scenario where the poller may be isolated (e.g., node 79 in the

up-left corner), clustered together (e.g., node 86,39,45 on top), or the pollee (e.g.,

node 92 in the bottom-left corner) is too far away from its poller. However, af-

ter running the deterministic algorithm in Fig. 4.19(b), the hybrid algorithm fixes

these problems. For instance, in Fig. 4.19(b) there is on isolated poller and no

97

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

1

2

3

4

5

6

7

8

9

10

11

12

13

14
15

16

17

18

19

20

21

22

23

24
25

26

27

28

29

30

31
32

33

34

35
36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51
52

53

54

55

56

57

58

59
60

61

62

63

64

65

66

67

68

69

70
71

72
73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88
89

90

91

92

93

94

95

96

97

98

99

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

1

2

3

4

5

6

7

8

9

10

11

12

13

14
15

16

17

18

19

20

21

22

23

24
25

26

27

28

29

30

31
32

33

34

35
36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51
52

53

54

55

56

57

58

59
60

61

62

63

64

65

66

67

68

69

70
71

72
73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88
89

90

91

92

93

94

95

96

97

98

99

(a) (b)

Figure 4.19. Snapshots of poller-pollee distribution, where the star denotes the poller
and the dot denotes the pollee: (a) randomized algorithm, ρ = 0.2, (b) hybrid (random-
ized + deterministic) algorithm, ρ = 0.2, k1 = 1, k2 = 2

Hop 1: 14%

Hop 2: 62%

Hop 3: 24%Hop 1: 16%

Hop 2: 47%

Hop 3: 27%

Hop 4: 5%

Hop 5: 1%
Hop 6: 3%

(a) (b)

Figure 4.20. Distribution of the distance between pollers and pollees: (a)randomized
algorithm (b) hybrid algorithm

poller is within one hop of each other and no pollee is more than 2 hops away from

its poller.

Figs. 4.20, 4.21 further compare the hybrid algorithm with the randomized

algorithm in terms of statistical geometrical property and false alarm rate. For fair

comparison, we set ρ = 0.75, 0.065, k = 6, when n = 1000, 1500, in the randomized

algorithm, to select the same number of pollers as in the hybrid algorithm. As seen

in Fig. 4.20, the distance between pollers and pollees is bounded by 3 hops in the

hybrid algorithm, but spans up to 6 hops in the randomized algorithm. About 8%

of the pollees in Fig. 4.20(a) are more than 3 hops away from their pollers, so the

constraint of the false alarm rate cannot be met in the randomized algorithm.

Fig. 4.21 shows that the hybrid algorithm outperforms the randomized algo-

98

rithm in terms of the average false alarm rate, which is calculated by averaging

the sum of the false alarm rate over all the nodes. It can be seen that the average

false alarm rate of the hybrid algorithm is about 20% or 30% smaller than that of

the randomized algorithm, when n = 1000 or 1500, respectively.

Both the deterministic algorithm and the hybrid algorithm have provable dis-

tribution property – no poller is less than k1 hops away from each other, and no

pollee is more than k2 hops away from its poller. However, Fig. 4.22 shows that the

hybrid algorithm substantially reduces the number of messages. The reduction is

about 60% and 80%, when k1 = 1 and k1 = 2, respectively. The benefit is thanks

to the randomized phase adopted by the hybrid algorithm.

0.075 0.08 0.085 0.09 0.095 0.1
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

−3

the average link failure (T
d
=2t)

fa
ls

e
al

ar
m

 r
at

e

random, n=1000
random, n=1500
hybrid, n=1000
hybrid, n=1500

Figure 4.21. Comparison of random
algorithm with hybrid algorithm

800 1000 1200 1400 1600
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

the number of nodes

th
e

n
u

m
b

er
 o

f
m

es
sa

g
es

D(k
1
=2,k

2
=3)

Dk
1
=1,k

2
=3)

H(k
1
=2,k

2
=3)

Hk
1
=1,k

2
=3)

Figure 4.22. Comparison of determin-
istic algorithm with hybrid algorithm

4.6.4 Effect of Poller Reelection

Fig. 4.24(a) shows a snapshot of poller-pollee distribution after running the ran-

domized algorithm among 150 nodes in a 5 × 5 field. The whole network is con-

nected but for clarity purpose we only show the links within each polling domain.

In Fig. 4.24(b), poller 25 and 108 fail, so their pollees have to find alternative

pollers and the distance between the pollee and poller increases as a consequence.

It can be predicated that as more pollers fail, some pollees may not be able to find

ω pollers within k hops. Fig. 4.24(c) further shows the poller-pollee distribution

after pollers are reelected based on Algorithm II in Subsection 4.4.4. It can be

99

0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

the fraction of pollers that failed

fa
ls

e
al

ar
m

 r
at

e

 ω=2, T
d
=2t, no reelection

ω=3, T
d
=3t, no reelection

ω=2, T
d
=2t, reelection

ω=3, T
d
=3t, reelection

Figure 4.23. Comparison of false alarm rate in case of poller failure

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

4

16

17

24
25

30

35

60
64

65

98

108

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

4

16

17

24
25

30

35

39

40

45

46

47
53

60
64

65

66

72
74

77

78

84

86

98

100

104

108

111

112

122

129

130

145

148

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

16

17

24
25

35

60
64

65

98

108

(a) (b) (c)

Figure 4.24. Snapshots of poller-pollee distribution: (a) after running the randomized
algorithm (n=150, p=0.1, k=4, ω = 1). (b) after some pollers fail. (c) after the failed
pollers are replaced.

seen that poller 30, 4, which has the smallest id among the neighbors of the failed

poller, are reelected to replace the failed poller 25, 108, respectively. This way, the

density of the poller can remain roughly constant irrespective of the failure of the

poller.

Fig. 4.23 compares the false alarm rate with and without poller reelection in

the presence of poller failure. It can be seen that the false alarm rate increases as

more pollers fail, and the speed of increase is much faster if new pollers are not

reelected. For example, when 40% of the pollers fail, the reduction of the false

alarm rate will be about 30% when ω = 2, Td = 2t, and 60% when ω = 3, Td = 3t,

with poller reelection. This is because if new pollers are not reelected, some pollee

100

has to be associated with less number of pollers and the multi-poller scheme may

reduce to the single poller scheme.

4.7 Related work

While a lot of research in sensor network focuses on the field or target monitoring

[42, 15, 63], little attention has been given to the monitoring of sensor network

itself. In [55, 64, 65], distributed failure detectors were proposed independently for

wireless sensor networks, where each node is collaboratively monitored by its one-

hop neighbors. These schemes can only detect node failure, but more general status

such as link status, residue energy and coverage cannot be monitored. In [66, 67],

data aggregation had been used to obtain a global abstraction of the sensors’

residue energy, but only when specific continuous energy dissipation models are

assumed. More recently, a local monitoring infrastructure is proposed in [68]. But

their goal is to monitor the transmission over the wireless link for security purpose,

instead of from the perspective of fault tolerance. By contrast, our poller-pollee

based monitoring architecture can respond to queries about a variety of sensor

status tailored to the application demand.

The problem of selecting a subset of nodes to form a backbone has been ex-

tensively studied in different contexts, e.g., clustering [69, 70, 71, 72], connected

dominating set (CDS) [73, 54], backbone routing [74, 75], relay node placement

[76], etc. The objective of these works is to minimize the cardinality of the selected

subset of nodes, but ignore the constraint of false alarm rate, which is crucial in

wireless sensor networks. In addition, most of these works are limited in the selec-

tion of single-hop, single vantage point (e.g., cluster head, dominator). However,

our work focuses on multi-hop multi-poller monitoring architecture construction,

where some geometrical properties of the poller-pollee distribution can be guaran-

teed.

Aggregation path selection problem has been proposed in [61, 62, 77], wherein

some heuristics are developed but without performance guarantee. There are also

some other aggregation schemes that target for the different application scenarios

[78, 79, 80], but none of them guarantees constant approximation ratio. To the

best of our knowledge, our result is the first proved constant approximation ratio

101

applied to the aggregation path selection schemes for the wireless sensor networks.

Our work is also orthogonal to some related work in other contexts. For exam-

ple, energy consumption can be reduced by data compression [81, 82], opportunistic

forwarding [83]; communication error/failure can be reduced by robust aggrega-

tion [65], reliable routing [84], sensor activity scheduling [85]. When necessary, our

work can combine these schemes to further improve the performance.

4.8 Conclusions

In this chapter, we focused on the distributed design of monitoring for the mission

driven sensor network. We first proposed a multi-poller based monitoring archi-

tecture. Coupled with a round robin based scheduling scheme, the false alarm

rate can be reduced significantly while keeping the similar bandwidth as the single

poller scheme. Based on the multi-poller structure, we proposed fully distributed

algorithms to select the minimum number of pollers while bounding the false alarm

rate. Then a greedy aggregation scheme was proposed to reduce the messages over-

head due to monitoring. Theoretical analyses and extensive simulations showed

that the deterministic algorithm can flexibly control the poller-pollee distribu-

tion property to bound the false alarm rate, the hybrid algorithm can reduce the

message overhead significantly, and the greedy aggregation scheme decreases the

monitoring traffic with a constant approximation ratio of 5
4
.

Chapter 5
Conclusions and Future Work

5.1 Summary

Unlike most existing work on sensor network, which is only targeted for a single

mission, this dissertation develops an integrated framework for the multi-mission

sensor network. Several separate yet related aspects have been thoroughly explored

in the respective chapters, and summarized below.

In Chapter 2, we study the mission switch in the context of area surveillance.

In such application, the mission usually has a stringent lifetime requirement, which

could change over time. Due to the limited deployed sensors, the coverage require-

ment and lifetime constraint may not be able to be satisfied at the same time, and

thus the coverage has to be traded for network lifetime. To deal with this tradeoff,

we study how to schedule sensors to maximize their coverage during a specified net-

work lifetime. Unlike sensor deployment, where the goal is to maximize the spatial

coverage, our objective is to maximize the spatial-temporal coverage by scheduling

sensors’ activity after they have been deployed. Since the optimization problem

is NP-hard, we first present a centralized heuristics whose approximation factor

is proved to be 1
2
, and then propose a distributed parallel optimization protocol

(POP). In POP, nodes optimize their schedules on their own but converge to local

optimality without conflict with one another.

In Chapter 3, we explore the resource allocation issue in the landmine net-

works. Our study is based on a multi-target defense scenario, where our mission

is to destroy the multiple intruding targets using the minimum cost pre-deployed

103

landmine. Resource allocation in this case is especially complex since the explosion

of a single landmine can affect multiple targets and the destruction of a single tar-

get may require the involvement of multiple landmines. To deal with the problem

complexity, we focus on the design of approximation solutions based on a novel

bucket-tub model, where mine is mapped to bucket set and target is mapped to

tub. Two classes of approximation algorithms are proposed, whose approximation

ratio is derived. Among them, it is shown that the layering algorithm can achieve

an approximation ratio that relies only on the maximum number of mines/buckets

that a target/tub is associated with, and that the greedy algorithm can be imple-

mented in a pure distributed manner without degrading the performance.

In Chapter 4, we focus on the monitoring architecture design for the mission

driven sensor networks. Due to the dynamic nature of sensor status, a sound

monitoring architecture plays a major role in offering timely evaluation of the

mission status and is fundamental to the operation of multi-mission sensor net-

work. This motivates us to design the multi-poller based monitoring architecture.

Coupled with a round robin based scheduling scheme, the multi-poller based mon-

itoring can reduce the false alarm rate significantly while keeping roughly the same

bandwidth as the single poller scheme. To construct the monitoring architecture,

we formulate a many-to-many poller-pollee assignment problem and present three

distributed algorithms (i.e., random, deterministic, and hybrid). We have also ex-

plored the hop-by-hop aggregation opportunity between the poller and pollee, and

formulate the optimal aggregation path problem. We solve this NP-hard problem

by designing an opportunistic greedy algorithm, which achieves an approximation

ratio of 5
4
. As far as we know, this is the first proved constant approximation

ratio applied to the aggregation path selection schemes over the wireless sensor

networks.

5.2 Future Directions

The multi-mission sensor network is an emerging area, full of opportunity for

research and development. This dissertation addresses several important aspects

associated with the multi-mission sensor network, i.e., mission switch, resource

allocation, network monitoring, but there are still many other issues worthy of

104

in-depth investigation. In the following, I’ll outline several interesting directions

that could be further explored.

1. Network Reprogramming and Code Dissemination: as the mission

switch or some event occurs, the network may need to be reprogrammed via

different parameters or replace the old code with the new one [86, 87, 88, 89].

This motivates the design of code dissemination protocol for multi-mission

sensor network [90, 91, 92, 93]. While most existing code dissemination meth-

ods solely rely on the network-wide broadcast, they are not suitable when

the dissemination area is not geometrically continuous. To resolve this chal-

lenge, new dissemination techniques and routing modules are required, which

could minimize the redundant retransmissions irrespective of the distribution

properties of the affected area.

2. Mission Oriented Congestion Control: in multimission sensor networks,

different missions not only compete for the sensor resource but also rival for

the bandwidth resource. This brings the necessity of congestion control.

Without a proper congestion control mechanism, the whole network perfor-

mance will be brought down and the individual mission goal will be endan-

gered. However, most existing work on congestion control is carried out at

the packet-level or flow level [94, 95, 96, 97]. There still lacks of literature

of congestion control at the mission level. This begets the challenges such as

how to clearly define mission oriented congestion control, how to identify the

mission to which the packet/flow belongs, how to release transilient conges-

tions and avoid longer-term congestions in the wake of resource constraint

and mission switch.

3. Multi-Missions in Intermittently Connected Networks: in the inter-

mittently connected networks, such as delay tolerant network [98, 99], mobile

phone network [100], the network is not connected all the time due to the

mobility and low density of active nodes. Multi-mission control in such envi-

ronment is particular challenging. The algorithmic design on various aspects,

e.g., resource allocation, mission switch, network monitoring, needs to take

into account the inherent nature of intermittent connectivity in such network,

which usually demands a fundamentally different design from the traditional

105

approach. For example, in our previous work [18], we have proposed a new

routing protocol when a large fraction of sensor nodes are in the sleeping

state, because the traditional approach such as the shortest path algorithm

cannot be applied here.

Appendix A
The NP Proof of Problem maxCov

Theorem. The problem of maxCov is NP-hard.

Proof. Theorem 1 tells that the problem maxCov can be transformed to the prob-

lem minRed. Therefore, we only need to prove problem minRed is NP-hard.

The minRed problem can be proved to be NP-hard via a reduction from the

graph k-coloring problem, which asks whether a given graph G can be colored

using k colors such that no two neighboring vertexes have the same colors [11].

Given an instance I of graph k-coloring problem, we can construct an equivalent

instance I ′ of minRed decision problem in polynomial time, such that instance I

has a solution if and only if instance I ′ has a solution. The decision problem can

be stated as follows : let the node battery life B and network life L satisfy L
B

= k.

In the same graph G of k-coloring problem, is there a node scheduling scheme such

that the total coverage redundancy is 0 in the minRed decision problem?

To see the equivalence of the two problems, we divide each cycle in instance I ′

into k = L
B

time slots, with each time slot mapped to a distinct color in instance

I. In essence, the instance I concerns about the assignment of one of the k colors

to each node while the instance I ′ concerns about the allocation of one of the k

time slots to each node. Then it can be observed that if there exists a k-coloring

scheme where each node is assigned a color different from that of its neighbors’,

there also exists a corresponding scheduling scheme where each node is allocated

a different time slot from that of its neighbors, with the total coverage to be 0.

On the other hand, suppose there is a scheduling scheme for instance I ′ where

107

the total coverage is 0, we can always find a solution to the instance I of graph

k-coloring problem. Since the “on” period may not exactly occupy a time slot,

we need first preprocess the schedule by aligning the on-period of each node with

its left time slot. By doing this, the total coverage remains 0 and the aligned

schedule is still the solution for instance I. After that, to construct a solution to

the instance I ′ simply becomes equivalent to “color” each vertex using one of the k

time slots, such that no neighboring vertexes have the same colors. In this regard,

the solution of instance I ′ readily produces a corresponding solution for instance

I.

To sum up, G can be k-colored if and only if there is a zero coverage redundancy

scheduling scheme for G, which means that the graph coloring problem can be

reduced to minRed decision problem in polynomial time. As the graph k-coloring

problem is NP-hard, the minRed decision problem is NP-hard. On the other hand,

the minRed optimization problem is at least as hard as its decision problem, and

thus is also NP-hard.

Appendix B
The NP Proof of Problem OptPH

Theorem 10. The problem of optPH is NP-hard.

Proof. For each poller, the paths from all its pollees form a tree. Since the overall

energy consumption is the sum of the energy consumption with respect to each

poller, we only need to focus on one such tree with the poller as root and all its

pollees as members.

The problem of optPH can be proved to be NP-hard via a reduction from the

subset sum problem. The subset sum problem over the finite field can be stated

as: given an integer s and a set of l integers, i.e., k1, k2...kl ∈ [0, s − 1], does any

nA

n1 nlni

nB

S-1 dedicated

children

S-1 dedicated

children

k1-1 dedicated

children

ki-1 dedicated

children
kl-1 dedicated

children

poller

(a) (b)

nA

n1 nlni

nB

poller

Figure B.1. A tree topology to show the problem optPH is NP-hard. (a) initial
topology: each node sends a report to the poller (b) transformed topology: each ni, i =
1...l sends ki reports to the poller, with nA, nB sending nothing.

109

subset sum to zero modulo s? Given an instance I of the subset sum problem,

we can construct an equivalent instance II of the optPH problem, whose topology

is shown in Fig. B.1(a). In Fig. B.1(a), level 0 consists only of the root, i.e. the

poller. Level 1 has two nodes, nA, nB, each of which has s− 1 dedicated children

(i.e., edge node). nA, nB also share l children in common, namely, ni, i = 1...l and

each ni has ki − 1 dedicated children. Every polling period, each node sends a

report towards the poller/root. The equivalence of instances I & II can be proved

by reducing Fig. B.1(a) to Fig. B.1(b). First, since all dedicated children have only

one parent, they can be summarized by their parent. Therefore, Fig. B.1(b) has

three levels, where at level 2, ni has (ki − 1) + 1 = ki reports to send, and at level

1, nA and nB have (s−1)+1 mod s = 0 reports to send, with s as the aggregation

ratio. Note that when nA and nB has total s reports, they could be packed into

one packet without residue room left. Therefore, changing the number of reports

at nA and nB from s to 0 does not affect the optimal aggregation path.

It can also be proved that instances I of the subset sum problem and the

instance denoted by Fig. B.1(b) are equivalent. This is because the objective in

Fig. B.1(b) is to select the next hop for ni, i = 1...l between nA and nB, such

that the minimum number of packets can be packed at level 1. Then, if a set of

aggregation paths satisfy that an integer number of whole packets can be packed

at either nA or nB, it must be an optimal solution. Therefore, there exists a subset

that sums to zero modulo s for instance I if and only if in the optimal solution of

Fig. B.1(b), nA or nB packs the reports into an integer number of whole packets,

which means that the subset problem can be reduced to the optPH problem. Since

the subset sum problem over the finite field is known to be NP-complete, it follows

that the optimization problem optPH is NP-hard.

Bibliography

[1] Liu, H., P. Wan, C.-W. Yi, X. Jia, S. Makki, and P. Niki (2005)
“Maximal lifetime scheduling in sensor surveillance networks,” in IEEE IN-
FOCOM.

[2] Cardei, M. and J. Wu (2005) “Energy-Efficient Coverage Problems in
Wireless Ad Hoc Sensor Networks,” Journal of Computer Communications
on Sensor Networks.

[3] Tian, D. and N. Georganas (2002) “A coverage-preserving node schedul-
ing scheme for large wireless sensor networks,” in ACM international work-
shop on Wireless sensor networks and applications.

[4] Wang, X., G. Xing, Y. Zhang, C. Lu, R. Pless, and C. Gill (2003)
“Integrated coverage and connectivity configuration in wireless sensor net-
works,” in ACM SenSys.

[5] Yan, T., T. He, and J. A. Stankovic (2003) “Differentiated surveillance
for sensor networks,” in ACM SenSys.

[6] Zhang, H. and J. C. Hou (2005) “Maintaining sensing coverage and con-
nectivity in large sensor networks,” Wireless Ad Hoc and Sensor Networks.

[7] Neubergera, A., S. Pelesc, and D. Rittela (2007) “Scaling the re-
sponse of circular plates subjected to large and close-range spherical explo-
sions. Part II: Buried charges,” International Journal of Impact Engineering.

[8] Jacoba, N., G. Nuricka, and G. Langdon (2007) “The effect of stand-
off distance on the failure of fully clamped circular mild steel plates subjected
to blast loads,” International Journal of Impact Engineering.

[9] Edmondson, N. (1992) Fatality probabilities for people in the Open when
exposed to blast, Tech. Rep. RANN/2/49/00082/90, SRD.

111

[10] (2002) Controlling risks around explosive stores: review of the requirements
on separation distances, Tech. rep., MBTB Limited, Health and Safety Ex-
ecutive, United Kingdom.

[11] Alsuwaiyel, M. H. (1999) Algorithms Design Techniques and Analysis,
World Scientific Publishing Company.

[12] Khuller, S., A. Moss, and J. Naor (1999) “The budgeted maximum
coverage problem,” Information Processing Letter, 70(1), pp. 39–45.

[13] Basagni, S. (1999) “A Distributed Algorithm for finding a Maximal
Weighted Independent Set in Wireless Networks,” in 11th International Con-
ference on Parallel and Distributed Computing and Systems (PDCS).

[14] Xing, G., R. Tan, B. Liu, J. Wang, X. Jia, and C.-W. Yi (2009) “Data
fusion improves the coverage of wireless sensor networks,” in ACM Mobicom.

[15] Liu, C. and G. Cao (2009) “Minimizing the cost of mine selection via sensor
networks,” in IEEE INFOCOM.

[16] Hwang, J., T. He, and Y. Kim (2009) “Exploring In-Situ Sensing Irreg-
ularity in Wireless Sensor Networks,” IEEE Transactions on Parallel and
Distributed Systems.

[17] Hefeeda, M. and H. Ahmadi (2009) “An Integrated Protocol for Main-
taining Connectivity and Coverage under Probabilistic Models for Wireless
Sensor Networks,” Ad Hoc & Sensor Wireless Networks.

[18] Su, L., C. Liu, H. Song, and G. Cao (2008) “Routing in Intermittently
Connected Sensor Networks,” in ICNP.

[19] Zou, Y. and K. Chakrabarty (2005) “A Distributed Coverage and Con-
nectivity Centric Technique for selecting Active Nodes in Wireless Sensor
Networks,” IEEE Tran. Computer.

[20] Kumar, S., T. H. Lai, and J. Balogh (2004) “On k-Coverage in a Mostly
Sleeping Sensor Network,” in ACM MOBICOM.

[21] Funkey, S., A. Kesselman, F. Kuhn, and Z. Lotker (2007) “Improved
Approximation Algorithms for Connected Sensor Cover,” Wireless Networks.

[22] Berman, P., G. Calinescu, C. Shah, and A. Zelikovsly (2005) “Effi-
cient energy management in sensor networks,” Ad hoc and sensor networks.

[23] Kasbekar, G. S., Y. Bejerano, and S. Sarkar (2009) “Lifetime and
coverage guarantees through distributed coordinate-free sensor activation,”
in ACM Mobicom.

112

[24] Bai, X., S. Kumar, D. Xuan, Z. Yun, and T. H. Lai (2006) “Deploy-
ing Wireless Sensors to Achieve Both Coverage and Connectivity,” in ACM
MOBIHOC.

[25] Cardei, M., M. Thai, Y. Li, and J. Wu (2005) “Energy-Efficient Target
Coverage in Wireless Sensor Networks,” in IEEE INFOCOM.

[26] Liu, C. and G. Cao (2009) “An Multi-Poller based Energy-Efficient Mon-
itoring Scheme for Wireless Sensor Networks,” in IEEE INFOCOM mini-
conference.

[27] ——— (2010) “Distributed Monitoring and Aggregation in Wireless Sensor
Networks,” in IEEE INFOCOM.

[28] Meguerdichian, S., F. Koushanfar, M. Potkonjak, and M. B. Sri-
vastava (2001) “Coverage Problems in Wireless Ad-hoc Sensor Networks,”
in IEEE INFOCOM.

[29] Kumar, S., T. H. Lai, and A. Arora (2005) “Barrier Coverage With
Wireless Sensors,” in ACM Mobicom.

[30] Chen, A., S. Kumar, and T. H. Lai (2007) “Designing localized algo-
rithms for barrier coverage,” in MOBICOM.

[31] Liu, B., O. Dousse, J. Wang, and A. Saipulla (2008) “Strong barrier
coverage of wireless sensor networks,” in ACM Mobihoc.

[32] Saipulla, A., C. Westphal, B. Liu, and J. Wang (2009) “Barrier Cov-
erage of Line-Based Deployed Wireless Sensor Networks,” in IEEE INFO-
COM.

[33] Balister, P., Z. Zheng, S. Kumar, and P. Sinha (2009) “Trap Cov-
erage: Allowing Coverage Holes of Bounded Diameter in Wireless Sensor
Networks,” in INFOCOM 2009, IEEE, pp. 136 –144.

[34] Zhao, M.-C., J. Lei, M.-Y. Wu, Y. Liu, and W. Shu (2009) “Surface
Coverage in Wireless Sensor Networks,” in INFOCOM 2009, IEEE, pp. 109
–117.

[35] Luo, J., D. Wang, and Q. Zhang (2009) “Double Mobility: Coverage of
the Sea Surface with Mobile Sensor Networks,” in INFOCOM 2009, IEEE,
pp. 118 –126.

[36] Zheng, Z., P. Sinha, and S. Kumar (2009) “Alpha Coverage: Bounding
the Interconnection Gap for Vehicular Internet Access,” in INFOCOM 2009,
IEEE, pp. 2831 –2835.

113

[37] Lu, G., N. Sadagopan, B. Krishnamachari, and A. Goel (2005) “De-
lay Efficient Sleep Scheduling in Wireless Sensor Networks,” in IEEE INFO-
COM.

[38] Cohen, R. and B. Kapchits (2007) “An Optimal Algorithm for Minimiz-
ing Energy Consumption while Limiting Maximum Delay in a Mesh Sensor
Network,” in IEEE INFOCOM.

[39] Keshavarzian, A., H. Lee, and L. Venkatraman (2006) “Wakeup
scheduling in wireless sensor networks,” in ACM Mobihoc.

[40] Ren, S., Q. Li, H. Wang, X. Chen, and X. Zhang (2007) “Design
and Analysis of Sensing Scheduling Algorithms under Partial Coverage for
Object Detection in Sensor Networks,” IEEE Transactions on Parallel and
Distributed Systems.

[41] Gui, C. and P. Mohapatra (2004) “Power conservation and Quality of
Surveillance in Target Tracking Sensor Networks,” in ACM MOBICOM.

[42] Zhang, W. and G. Cao (2004) “DCTC: Dynamic Convoy Tree-Based Col-
laboration for Target Tracking in Sensor Networks,” IEEE Transactions on
Wireless Communication, 3(5), pp. 1689–1701.

[43] ——— (2004) “Optimizing Tree Reconfiguration for Mobile Target Tracking
in Sensor Networks,” IEEE INFOCOM.

[44] Cao, Q., T. Abdelzaher, T. He, and J. Stankovic (2005) “Towards
optimal sleep scheduling in sensor networks for rare-event detection,” in
ACM/IEEE IPSN.

[45] Joo, C. (2008) “A local greedy scheduling scheme with provable perfor-
mance guarantee,” in ACM Mobihoc.

[46] Merrill, W., L. Girod, B. Schiffer, D. McIntire, G. Rava,
K. Sohrabi, F. Newberg, J. Elson, and W. Kaiser (2004) “Dynamic
Networking and Smart Sensing Enable Next-Generation Landmines,” IEEE
Pervasive Computing.

[47] Akyildiz, W. Su, Y. Sankarasubramaniam, and E.Cayirci, I. (2002)
“Wireless Sensor Networks: A Survey,” Computer Networks, 38(4).

[48] Volgyesi, P., G. Balogh, A. Nadas, C. Nash, and A. Ledeczi (2007)
“Shooter localization and weapon classification with soldier-wearable net-
worked sensors,” in MobiSys.

[49] Li, M. and Y. Liu (2007) “Rendered path: range-free localization in
anisotropic sensor networks with holes,” in MobiCom.

114

[50] Rajagopalan, S. and V. V. Vazirani (1999) “Primal-Dual RNC Approx-
imation Algorithms for Set Cover and Covering Integer Programs,” SIAM J.
Comput.

[51] Dobson, G. (1982) “Worst-Case Analysis of Greedy Heuristics for Integer
Programming with Nonnegative Data,” Mathematics of Operations Research.

[52] Cole, T. J. (1993) “Scaling and Rounding Regression Coefficients to Inte-
gers,” Applied Statistics.

[53] Li, L. E., M. Thottan, B. Yao, and S. Paul (2003) “Distributed Network
Monitoring with Bounded Link Utilization in IP Networks,” in INFOCOM,
San Francisco.

[54] Dai, F. and J. Wu (2006) “On Constructing k-Connected k-Dominating
Set in Wireless Networks,” JPDC.

[55] fan Hsin, C. and M. Liu (2002) “A distributed monitoring mechanism for
wireless sensor networks,” in WISE.

[56] Konrad, A., B. Y. Zhao, A. D. Joseph, and R. Ludwig (2003) “A
Markov-based channel model algorithm for wireless networks,” Wireless Net-
works, 9, pp. 189–199.

[57] Babich, F., O. E. Kelly, and G. Lombardi (2000) “Generalized Markov
modeling for flat fading,” IEEE Trans. Commun., 48, pp. 547–551.

[58] Lee, H., A. Cerpa, and P. Levis (2007) “Improving wireless simulation
through noise modeling,” in IPSN.

[59] Murthy, D. N. P., M. Xie, and R. Jiang (2004) Weibull Models, John
Wiley & Sons.

[60] Karner, W., O. Nemethova, and M. Rupp (2007) “Link Error Predic-
tion in Wireless Communication Systems with Quality Based Power Con-
trol,” in ICC.

[61] J.Park, S. and R. Sivakumar (2008) “Energy Efficient Correlated Data
Aggregation for Wireless Sensor Networks,” International Journal of Dis-
tributed Sensor Networks.

[62] Cristescu, R., B. Beferull-Lozano, and M. Vetterli (2005) “On
network correlated data gathering,” in IEEE INFOCOM.

[63] Ding, M. and X. Cheng (2009) “Fault tolerant target tracking in sensor
networks,” in MobiHoc, ACM, pp. 125–134.

115

[64] Rost, S. and H. Balakrishnan (2006) “Memento: A Health Monitoring
System for Wireless Sensor Networks,” in SECON.

[65] Gobriel, S., S. Khattab, D. Moss, J. Brustoloni, and R. Melhem
(2006) “RideSharing: Fault Tolerant Aggregation in Sensor Networks Using
Corrective Actions,” in SECON.

[66] Zhao, J., R. Govindan, and D. Estrin (2002) “Residual Energy Scans
for Monitoring Wireless Sensor Networks,” in WCNC.

[67] ——— (2003) “Computer Aggregates For Monitoring Wireless Sensor Net-
works,” in SNPA.

[68] Dong, D., Y. Liu, and X. Liao (2008) “Self-monitoring for sensor net-
works,” in MobiHoc.

[69] Younis, O. and S. Fahmy (2004) “Distributed Clustering in Ad-Hoc Sensor
Networks: A Hybrid, Energy-Efficient Approach,” in INFOCOM.

[70] Mhatre, V. and C. Rosenberg (2004) “Design Guidelines for Wireless
Sensor Networks Communication: Clustering and Aggregation,” in Ad Hoc
Networks Journal, vol. 2 of 1, pp. 45–63.

[71] Bandyopadhyay, S. and E. Coyle (2003) “An Energy-Efficient Hierar-
chical Clustering Algorithm for Wireless Sensor Networks,” in INFOCOM.

[72] Chatterjee, M., S. Das, and D. Turgut (2002) “WCA: A Weighted
Clustering Algorithm for Mobile Ad Hoc Networks,” in Cluster Computing.

[73] Wan, P.-J., K. M. Alzoubi, and O. Frieder (2004) “Distributed con-
struction of connected dominating set in wireless ad hoc networks,” Mobile
Networks and Applications, 9(2).

[74] Srinivas, A. and E. Modiano (2006) “Mobile backbone networks – con-
struction and maintenance,” in MOBIHOC.

[75] Wang, Y., W. Wang, and X.-Y. Li (2005) “Distributed low-cost backbone
formation for wireless ad hoc networks,” in MOBIHOC.

[76] Misra, S., S. Hong, G. Xue, and J. Tang (2008) “Constrained relay node
placement in wireless sensor networks to meet connectivity and survivability
requirements,” in INFOCOM.

[77] Chatterjea, S., T. Nieberg, N. Meratnia, and P. Havinga (2008) “A
distributed and self-organizing scheduling algorithm for energy-efficient data
aggregation in wireless sensor networks,” ACM Trans. On Sensor Network,
4(4), pp. 1–41.

116

[78] Fan, K.-W., S. Liu, and P. Sinha (2006) “On the Potential of Structure-
free Data Aggregation in Sensor Networks,” in INFOCOM.

[79] Zheng, R. and R. Barton (2007) “Toward Optimal Data Aggregation in
Random Wireless Sensor Networks,” in INFOCOM.

[80] Yu, B., J. Li, and Y. Li (2009) “Distributed Data Aggregation Scheduling
in Wireless Sensor Networks,” in INFOCOM.

[81] Pattem, S., B. Krishnamachari, and R. Govindan (2004) “The im-
pact of spatial correlation on routing with compression in wireless sensor
networks,” in IPSN.

[82] Ciancio, A., S. Pattem, A. Ortega, and B. Krishnamachari (2006)
“Energy-efficient data representation and routing for wireless sensor networks
based on a distributed wavelet compression algorithm,” in IPSN.

[83] Biswas, S. and R. Morris (2005) “ExOR: opportunistic multi-hop routing
for wireless networks,” in MOBICOM.

[84] Dong, Q., S. Banerjee, M. Adler, and A. Misra (2005) “Minimum
energy reliable paths using unreliable wireless links,” in MOBIHOC.

[85] Liu, C. and G. Cao (to appear) “Spatial-Temporal Coverage Optimization
in Wireless Sensor Networks,” IEEE Transactions on Mobile Computing.

[86] Hui, J. W. and D. Culler (2004) “The dynamic behavior of a data dis-
semination protocol for network programming at scale,” in ACM SenSys, pp.
81–94.

[87] Hagedorn, A., D. Starobinski, and A. Trachtenberg (2008) “Rate-
less Deluge: Over-the-Air Programming of Wireless Sensor Networks Using
Random Linear Codes,” in IPSN, pp. 457 –466.

[88] Levis, P., N. Patel, D. Culler, and S. Shenker (2004) “Trickle: a
self-regulating algorithm for code propagation and maintenance in wireless
sensor networks,” in USENIX NSDI, pp. 2–2.

[89] Kulkarni, S. and L. Wang (2005) “MNP: Multihop Network Reprogram-
ming Service for Sensor Networks,” in ICDCS, pp. 7 –16.

[90] Tsiftes, N., A. Dunkels, and T. Voigt (2008) “Efficient Sensor Network
Reprogramming through Compression of Executable Modules,” in IEEE
SECON, pp. 359 –367.

117

[91] Panta, R., I. Khalil, and S. Bagchi (2007) “Stream: Low Overhead
Wireless Reprogramming for Sensor Networks,” in IEEE INFOCOM, pp.
928 –936.

[92] Hyun, S., P. Ning, A. Liu, and W. Du (2008) “Seluge: Secure and DoS-
Resistant Code Dissemination in Wireless Sensor Networks,” in IPSN, IEEE,
pp. 445–456.

[93] Yu, Y., L. J. Rittle, V. Bhandari, and J. B. LeBrun (2006) “Support-
ing concurrent applications in wireless sensor networks,” in SenSys, ACM.

[94] Rangwala, S., R. Gummadi, R. Govindan, and K. Psounis (2006)
“Interference-aware fair rate control in wireless sensor networks,” in SIG-
COMM, ACM, pp. 63–74.

[95] Karenos, K., V. Kalogeraki, and S. V. Krishnamurthy (2008)
“Cluster-based congestion control for sensor networks,” ACM Trans. On
Sensor Network, 4(1), pp. 1–39.

[96] Hull, B., K. Jamieson, and H. Balakrishnan (2004) “Mitigating con-
gestion in wireless sensor networks,” in SenSys, ACM, pp. 134–147.

[97] Ee, C. T. and R. Bajcsy (2004) “Congestion control and fairness for
many-to-one routing in sensor networks,” in SenSys, ACM, pp. 148–161.

[98] Gao, W., Q. Li, B. Zhao, and G. Cao (2009) “Multicasting in delay
tolerant networks: a social network perspective,” in MobiHoc, ACM.

[99] Jones, E. P. C., L. Li, J. K. Schmidtke, and P. A. S. Ward (2007)
“Practical Routing in Delay-Tolerant Networks,” IEEE Transactions on Mo-
bile Computing, 6(8), pp. 943–959.

[100] Sarigöl, E., O. Riva, P. Stuedi, and G. Alonso (2009) “Enabling social
networking in ad hoc networks of mobile phones,” Proc. VLDB Endowment,
2(2), pp. 1634–1637.

Vita

Changlei Liu

Changlei Liu is a Ph.D Student at the Department of Computer Science and
Engineering, Pennsylvania State University. He received his M.Phil degree from
the University of Hong Kong and B.E degree from the University of Science and
Technology of China, both in Electronic Engineering. His research interest is in
the area of wireless sensor networks, mobile computing and distributed system.

Publications During The PhD Study:

• Changlei Liu, Guohong Cao, Spatial-Temporal Coverage Optimization for
Wireless Sensor Networks, Accepted by IEEE Transactions on Mobile Com-
puting (TMC), 2010.

• Changlei Liu, Guohong Cao, Distributed Monitoring and Aggregation in
Wireless Sensor Networks, 29th Annual IEEE Conference on Computer Com-
munications (INFOCOM’10), March 15-19, 2010, San Diego, USA.

• Changlei Liu, Guohong Cao, Minimizing the cost of mine selection via sen-
sor networks, 28th Annual IEEE Conference on Computer Communications
(INFOCOM’09), April 19–25, 2009, Rio de Janeiro, Brazil.

• Changlei Liu, Guohong Cao, An Multi-Poller based Monitoring Scheme for
Wireless Sensor Networks, 28th Annual IEEE Conference on Computer Com-
munications (INFOCOM’09) mini-conference, 2009, Rio de Janeiro, Brazil.

• Lu Su, Changlei Liu, Hui Song, Guohong Cao, Routing in Intermittently
Connected Sensor Networks, 16th Annual IEEE International Conference
on Network Protocols (ICNP’08), Oct 19–22, 2008, Orlando, Florida, USA.

• Changlei Liu, Guohong Cao, An Energy Efficient Fault Tolerant Monitoring
Architecture for Wireless Sensor Networks, ACM Mobile Computing Review
2008.

