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Abstract: 
Much of what is known about visual attention has been obtained through the use of static 

stimuli. This masters sought to develop an experimental method that allows researchers to investigate 

how attention samples information from multiple dynamic features. The core attribute of this method is 

presenting participants with a stimulus smoothly changing in orientation and color. Participants then 

report, on a continuous scale, the orientation and color of the stimulus at the time it was cued. This 

basic framework can be adapted to a variety of paradigms. To refine this technique as well as 

demonstrate its usefulness, it was applied to two similar but separate research interests of the visual 

attention community. The first looked to build upon the extensive attentional cueing literature by 

examining the time course of attention when it is deployed to a rapidly updating stimulus as opposed to 

a briefly presented, static target. The second application investigated how attention samples 

information from multiple dynamic features of the same object. For this second application, three 

statistical models were built to simulate results under theories of simultaneous, sequential, and 

independent attentional sampling of features. Comparing simulated data with that of actual participants 

the parameter space for each model was constrained. The ultimate goal of this thesis in choosing two 

different fields of research to explore was to demonstrate the diverse set of problems this experimental 

paradigm could potentially aide in as well as discover some important limitations of the method. 
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Chapter 1: Introduction to the method. 
 Attention is the collection of mechanisms by which the visual system extracts relevant 

information from the complex environment around us. This complexity comes not only from the 

multitude of possible stimuli in our visual field but also from the fact that these stimuli can often change 

in time. The goal of the current research is to develop a new experimental method which will allow us to 

understand how the visual system is able to select information from a particular moment in time. To do 

this, a paradigm has been developed which uses continuously updating shapes that change in both 

orientation and color. The presentation of two dynamic features creates a versatile paradigm that can 

be adapted for multiple purposes in exploring the temporal qualities of attention. In order to test the 

effectiveness of this method as well as its limitations, it was applied to two popular areas of research 

within the visual attention community: attentional cueing and the encoding of multiple features.   

1.1 Past methods. 

The current thesis works looks to develop an experimental method to better understand how visual 

attention selects information in time. The typical method used to answer this question is to trigger the 

deployment of attention with some salient event, the onset of a cue, and measure the increased 

performance in reporting a subsequent target at that same location. This attentional benefit has been 

studied extensively both with central cues (Posner, 1980; Posner, Snyder & Davidson, 1980) and those at 

the location of the target (Müller & Rabbitt, 1989; Yeshurun & Carrasco, 1999). To see whether this 

attentional benefit is applied uniformly after the cue or has a maximal benefit at some time point, 

experiments have used locational cueing paradigms, and varied the stimulus onset asynchrony (SOA) 

between the cue and the target (Cheal & Lyon, 1991; Gottlob, Cheal, & Lyon, 1999). These experiments 

plotted target report accuracy as a function of SOA and found that the attentional benefits on 

performance increase sharply after 0ms (simultaneous presentation of the cue and target), peak around 

100ms, and then begin to slowly decline at greater lags. These differences in accuracy across lag show 

that attention does not uniformly benefit the successful encoding of targets during a given time window 

after cue onset. Instead, there is some nontrivial amount of time for attention to be deployed (around 

100ms) and after which, its benefits to task performance begin to wane.  

This cueing method used to map out the time course of attentional deployment, while effective, has 

some limitations. With the only metric available being accuracy there are restrictions into how much 

insight one can gain into the mechanisms at play. In these paradigms the cue and the target (and mask, 

if used), are the only stimuli presented to the visual system and so this paradigm does not allow us to 
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look at how attention pulls relevant information out of a stream of input that changes over time.  In 

order to apply findings to how the brain handles real world visual tasks, this component of attention 

seems essential to explore. Rapid Serial Visual Presentation (RSVP) provides a tool to explore how 

pertinent information is selected in time.  

RSVP studies have demonstrated that the visual system is very adept at pulling out relevant 

information in the midst of continued input. Participants can accurately identify targets in a stream of 

distractors based on both featural (Maki, Couture, Frigen, & Lien, 1997; Joseph, Chun & Nakayam, 1997) 

and categorical (Chun & Potter, 1995; Raymond, Shapiro, & Arnell, 1992) criteria, even when stimuli are 

presented as quickly as 13ms per image (Potter, Wyble, Hagmann, McCourt, 2014). From a 

methodological standpoint the benefit of RSVP is that in presenting a series of stimuli in sequence, 

experimenters can control when an individual stimuli is perceived (Broadbent & Broadbent, 1987; 

Shiffrin & Gardner, 1972). This provides the possibility of temporal manipulations, unavailable when 

presenting stimuli in an array, as is typical in visual search paradigms (Wolfe, 1999; Treisman & 

Gormican, 1988).  

Though, similarly to attentional cueing paradigms, the typical measurement used for RSVP is 

accuracy, the continued presentation of stimuli can cause a variety of specific report errors. Different 

types of inaccurate trials provide more information into how the attentional system operates by 

elucidating the ways in which it can fail.  One such error that has been seen in RSVP tasks is the 

reporting of illusory conjunctions (Lawrence, 1971; Broadbent & Broadbent, 1986). Illusory conjunctions 

have been described as instances when participants report an erroneous combination of presented 

features (Treisman & Gelade, 1980). This error presents itself in the RSVP tasks by participants reporting 

a target to have the features (e.g. color or identity) of a neighboring distractor, usually plus or minus 2 

positions from the target in the stream at 100ms SOA (McLean, Broadbent & Broadbent, 1987; Chun, 

1997; Vul, Nieuwenstein & Kanwisher, 2008). This specific type of error can shed some light on how 

features of an object are sampled and, as RSVP offers explicit control over when such features are 

presented, studies to employ this paradigm have been able to measure how far in time these incorrectly 

selected features are from the triggering of attention (i.e. the onset of the target).  

Botello & Suero (2001) developed a model to explain the occurrence of illusory conjunctions. Their 

model supposes two mechanisms at play during an RSVP task: one which extracts the key feature, or 

dimension by which a target is defined (e.g. color), and another which extracts the response feature that 

is to be reported later (e.g. identity). When a key feature is extracted, attention is focused so as to 
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identify the target’s response feature. If this focusing stage is completed in time, the key feature is 

bound to the correct response feature. However, if the focusing process is not completed in time, the 

key feature is bound to whichever response feature has the strongest representation in the second 

extraction mechanisms. These representations are weighted such that stimuli presented at points 

further in the past will be weakened in order to make room for incoming information, likewise stimuli 

that have not had an opportunity to complete processing with also have weak representations. This 

system makes it most likely that key features will be mis-bound to response features of stimuli 

presented in the positions just before or just after the target. In manipulating the parameters to suit the 

given task, this model has been shown to successively simulate patterns seen in behavioral data (Botello 

& Suero, 2001). Importantly what this model offers is a more detailed account of how attention selects 

information in time than can be offered through the presentation of a cue and single target alone. 

To explore the time course of attention further, other studies have employed the use of a second 

target within an RSVP stream (Raymond, Shapiro, & Arnell, 1992; Chua, Goh, & Hon, 2001). In doing so it 

was discovered that one’s ability to encode a second target (T2) when presented in a time window 

around 200ms after the first (T1) is impaired, a phenomenon known as the attentional blink (Raymond, 

Shapiro & Arnell, 1992; Di Lollo, Kawahara, Ghorashi, & Enns, 2005). Not only does the triggering of 

attention by the first target cause general impairment of reporting the second during this period, but it 

has also been shown that when attention does attempt to select a second target, it samples later in time 

than it did the first (Vul, Nieuwenstein & Kanwisher, 2008). This insight again was made possible through 

the continued presentation of stimuli before and after each target. The extended delay in attention to 

T2 during the attentional blink was measured by an increase in post-target intrusion errors (reporting 

distractors presented after the target) for T2 as compared to T1. These results suggest that not only is 

there a variable time course of attention but perhaps it can be additionally influenced by the encoding 

of previous targets. 

The reporting of a second target is not however always impaired by the first. When T2 is presented 

immediately after T1, performance in reporting T2 is improved and thought to be evidence of attention 

carrying over from one target to the next (Chun & Potter 1995; Bowman & Wyble 2007; Olivers & 

Meeter 2008). This effect is commonly referred to as lag-1 sparing and has been seen to not only 

eliminate the impairment of T2 reporting seen during the attentional blink but sometimes cause T2 

accuracy to exceed that of T1 (Potter, Staub & O’Connor, 2002; Wyble, Potter, Bowman, 2009).  One 

explanation for this, proposed by the Episodic Simultaneous Type, Serial Token (eSTST) model (Wyble, 
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Bowman & Nieuwenstein 2009), is that attention is deployed late to the first target and so the second 

arrives in time to receive the benefits. This attentional boost to T2 processing results in a higher 

probability of correct report, whereas T1, experiencing interference from T2 processing, is reported 

correctly less often than it would be if presented alone. The use of RSVP and the interaction between T1 

and T2 processing allows researchers to tease apart scenarios of fast and slow attentional deployment 

and the subsequent consequences on encoding. Lag-1 sparing has been instrumental in understanding 

how attention operates in time. Not only does it shed some light on when attention is deployed but it 

also shows evidence that attentional benefits can be spread from one target to the next. In fact, lag-1 

spreading has been shown to not only extend to a second target but also to a third or fourth (Di Lollo, 

Kawahara, Ghorashi, & Enns, 2005; Olivers, Van Der Stigchel & Hulleman, 2007). While performance is 

not as good at later targets compared to earlier, sparing was still seen out to the fourth target. This 

sparing is categorized as an improvement in accuracy when all intervening stimuli are targets compared 

to when a distractor stimuli was inserted between the first and last target. This suggests that attention, 

once deployed, can be held at a location for an extended period of time, given the continued 

presentation of task relevant information. Importantly these findings of lag-1 sparing spreading to 

multiple subsequent targets also illustrate that the attentional blink cannot be a product of the limits of 

encoding capacity because report accuracy is improved in conditions with more targets to be 

remembered (Nieuwenstein & Potter, 2006).  However while report accuracy is improved through this 

spreading of sparing, there is also an increase in temporal swaps. When participants report both targets 

correctly they are more likely to swap the order in which targets appeared at lag-1 than later lags (Chun 

& Potter, 1995). This suggests that the attentional blink may be a necessary suppression of attention 

during the encoding of T1, to preserve the temporal order of sequential targets, an account formalized 

in the eSTST model (Wyble, Bowman & Nieuwenstein 2009). 

Presenting stimuli sequentially in the same location has allowed researchers to better understand 

the time course of attentional deployment than attentional cueing could provide alone. By having 

multiple stimuli both before and after targets, we are better able to assess when attention is selecting 

information, rather than just whether it was successful at selecting the target or not. RSVP has also lead 

to the discovery of phenomenon such as the attentional blink, lag-1 sparing and temporal swap errors, 

all of which not only help pull apart the temporal dynamics of attention but also lend insight into how 

attentional selection interacts with the later stage processing such as encoding. However while this 

methodology continues to provide great advancements in the understanding of temporal attention, it is 

not without its limits.  Presenting sequential stimuli offers the ability to measure attention in discrete 
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time steps which necessarily lacks the temporal granularity of a continuous display. Additionally these 

paradigms do not answer the question of how attention behaves when an object remains on the screen. 

We know that the continued display of targets will hold attention at a given location, however all of 

these targets presented in RSVP are distinct objects from one another. The question not explored in 

these experiments is how attention selects information from a particular moment in time when the 

object continues to stay on the screen but is changing in one or more features. To gain this finer 

temporal resolution, studies have employed the use of continuous displays where objects appear to 

move smoothly from one state to another. 

Carlson, Hogendoorn & Verstraten (2006) used continuously updating single hand clocks to measure 

the time it takes to deploy attention when a target is cued centrally versus peripherally.   Participants 

were instructed to attend to a circle of clocks around fixation whose hands were rotating in random 

phase from one another at 1 hertz. The clocks were cued either peripherally (the grey rim of one of the 

clocks turned red) or centrally (a line, extending from fixation, pointed towards one of the clocks). At the 

end of the trial, participants had to manipulate a clock hand to report the perceived time when the cue 

appeared. That perception was compared to the actual state at the time of the cue and the difference 

was attributed to a lag in the deployment of attention. This original study found that participants 

showed a 140ms lag when a clock was cued peripherally versus a 240ms lag when cued centrally 

(Carlson, Hogendoorn & Verstraten, 2006). The 100ms difference in deployment seems to represent the 

additional amount of time needed to decipher the central cue. These findings may have important 

implications in how we perceive our environment as the time lag in our selection in information appears 

to be dependent on how attention is directed to an object. 

The discrepancy in lag between endogenous attention (symbolically directed with a central cue) and 

exogenous attention (directly triggered to the target location with a peripheral cue) in Carlson et al., 

(2006) is similar to results seen with static stimuli which find that the attentional benefits for 

endogenous cues peak at about 300ms compared to the 100ms peak for exogenous cues (Cheal & Lyon, 

1991). The exact amount of lag not matching across experiment could be due to the fact that static 

stimuli only allow experimenters to test discrete time points where as the continuous display offers 

more precision in measurement. Considering the vast differences across paradigms, the similarity in 

results speaks to the robustness of the effect. To test the endogenous attentional lag more directly, one 

study again used a circle of clocks around fixation, but instead of using a central cue to test the speed of 

endogenous attention, they used the exogenous peripheral cue of the original experiment (clock rim 
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turning red) and asked participants to report the earliest time perceived on a second clock located a 

given number of positions away (Chakravarthi & VanRullen, 2011). With this technique, experimenters 

knew exactly where attention was initially focused and therefore how many positions it had traveled to 

select information from the second clock. To isolate the time required for the shift, this lag in perception 

was compared to the average lag in reporting the time of an exogenously cued clock alone (no-shift 

trials). This study found a difference between endogenous and exogenous cues in attentional selection 

times of about 150ms, similar to previous work (Carlson et al., 2006). Additionally, they measured 

exogenous shifts of attention in another block by cueing one of the clocks with a peripheral cue (just as 

in the endogenous block) and then having participants report the time of second, peripherally cued 

clock. The results showed that endogenous shifts were more dependent on the distance traveled 

(92ms/step) than were shifts triggered by exogenous cues (6ms/step) (Chakravarthi & VanRullen, 2011). 

Continuous display paradigms not only provide insight into the time of attentional deployment but also 

show that spatial shifts affect attention’s temporal latency. 

 In the original clock experiment, the lags in attentional deployment to central and peripheral cues 

were also compared to a baseline condition where a clock position was centrally cued before the start of 

the trial. During the trial, that clock was then peripherally cued (Carlson, Hogendoorn & Verstraten, 

2006). In these trials participants knew where to attend in advance of the cue and showed no mean shift 

of report errors. In other words, there was no systematic delay in attentional selection in this baseline 

condition. This result was surprising given the optical illusion of the flash-lag effect (FLE) (Mackay, 1958; 

Nijhawan, 1994). The FLE occurs when a stimulus is flashed at the end of a moving object. The flashed 

stimulus, despite occurring at the same spatiotemporal position as the moving object, is perceived as 

lagging behind. This temporal mismatch in perception persists even when one tries to attend directly to 

the moving stimulus and so one would not predict the lack of perceptual lag seen in Carlson et al.’s 

(2006) baseline condition. Kanai, Carlson, Verstraten, & Walsh, (2009) using a single clock display also 

found no delay in attentional selection but only when the cue was a pre-existing grey rim around the 

clock that briefly turned red, as was the case in the original experiment. When the clock was cued by the 

appearance of red rim, not previously part of the clock, there was a significant delay in participants’ 

report. They attributed this difference to the processing time difference between a feature update (the 

pre-existing rim turning red) and the initiation of a new object (a red rim newly appearing). These 

continuous displays make subtle difference in attentional selection time apparent and enable 

experiments to see how attentional deployment interacts with other mechanisms such as creating new 

mental representations of objects.  
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Though this lack of attentional lag in the baseline condition may only be evident when the cue is a 

feature change, it still illustrates an ability of the visual system, under certain conditions, to pre-allocate 

attention to a relevant location. Studies looking at neurophysiological components of attentional shifts 

find evidence for this as well with endogenous cues (Woodman, Arita, & Luck, 2009). Expanding on 

these results a subsequent experiment was run where any number of clocks (6 possible) could be pre-

cued before the start of each trial (Hogendoorn, Carlson, VanRullen, & Verstraten, 2010). The pre-cues 

were 100% valid in that one of the pre-cued clocks was definitely going to be peripherally cued later in 

the trial. Therefore cues could range from completely informative (one clock pre-cued) to completely 

uninformative (all six pre-cued). They found small incremental increases in the lag of attention 

(measured as the mean shift of report errors) as more clocks were pre-cued. However in plotting the 

precision of report (measured by the standard deviation of report errors), a one-off cost was found 

between monitoring one clock versus more than one. These results indicate that while multiple foci can 

be monitored in parallel, having to monitor more than one location has a constant detriment to the 

precision with which attention selects information in time and a delay to attentional deployment 

dependent on the number of positions monitored.  

The clock experiments discussed here provided the inspiration for the proposed method of this 

thesis work. Through the use of continuous display, this collection of clock experiments have teased 

apart subtle differences in how attention selects information and ultimately how this selection process 

affects our conscious perception of the world around us. With discrete stimuli, the discovery of such 

differences would be dependent on the experimenter presenting information at just the right time point 

in order to capture the effect. However, while much has been gained from these clock displays, there 

are a number of limitations with such stimuli. Firstly, it is not entirely evident how the attentional 

system is tracking the changes in the clock. It could be that the clock is processed as a single object and 

the movement of the hand is processed as a change in its configuration. However it could also be that 

the hand itself is tracked, in which case participants could be monitoring its orientation or location. 

Other work using continuous displays have used Gabor patches to look at isolated features such as 

color, orientation or spatial frequency (Blaser, Pylyshyn & Holcombe, 2000; Howard & Holcombe, 2007). 

While these studies were designed to look at object-based tracking and memory precision, they 

illustrate insights to be gained in changing specific features in time.   

The proposed method builds upon the idea of these clocks with some important modifications 

inspired by Blaser, Pylyshyn & Holcombe (2000) and Howard & Holcombe (2007). The current paradigm 



8 
 

uses a solid ‘T’ shape that rotates continuously. This allows the experimenter to isolate effects on 

perceived orientation from location. In addition to rotation, the shape’s surface is also changing through 

a 360 degree cyclical color vector. Incorporating a second changing dimension allows us to investigate 

how attention deploys to different features of the same object and how these features might interact 

with each other when they are, or are not, task relevant. The benefit of using color as the second 

feature is that, while objects do not typically change color in our visual field, color has the added 

advantage of following an arbitrary trajectory in color space. That is to say, any slice through color space 

could be substituted for the color vector chosen here. It also means that while the mind may have 

expectations for the next time step in rotation as a form of momentum or inertia (Freyd & Finke, 1984), 

rotation in color space is unlikely to exhibit representational momentum as it does not have a pre-

learned path. The distinct qualities of orientation and color paired together provide more insight into 

object processing than either would alone. 

The set-up of this paradigm is unique in that it presents a coherent stimulus that updates every 

27ms or roughly 40hz. For comparison, films are typically presented at 24hz and so the framerate 

presented here is well above the threshold for viewers to perceive the stimulus as continuously 

changing. This rapid refresh rate allows for enhanced granularity when measuring the time course of 

attention. Past experiments have used a similarly short stimulus onset asynchrony (SOA) with RSVP 

(Potter, Wyble, Hagmann, & McCourt, 2014), however the method introduced here has the benefit of 

presenting what is perceived as one, coherent object, changing through time rather than a 

discontinuous series of images.   This allows participants to possibly build dynamic mental 

representations of the stimuli (Freyd, 1987). Continuously moving objects also resemble real-world 

vision scenarios when the eyes are stationary and provide a nice complement to RSVP results. 

The rapidly updating shape that changes in color and rotation is the bare bones of the paradigm 

proposed here. On this foundation a variety of paradigms can be built to explore a multitude of 

questions within the domain of visual attention and memory updating. This proposed paradigm will also 

be paired with mixture modeling analysis to allow the experimenter to explore qualities of the entire 

distribution of report errors, rather than just analyzing the means. To demonstrate these capabilities, 

two applications have been selected. These applications will demonstrate the benefits of this new 

method as well as explore its capabilities and limitations. 
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1.3 Reporting color and orientation 

Participants report orientation and color in the same manner throughout all of the proceeding 

experiments. To report color participants are presented with a central shape, a cross comprised of two 

oppositely oriented T-shapes. This cross shape was chosen so as to eliminate as much orientation 

information as possible when color is the requested dimension, while keeping a similar shape to the 

remembered stimuli. Participants are told to move the mouse from side to side to adjust the color of the 

cross until it matches their memory. The color of the cross is set to be dependent on the horizontal 

coordinates of the mouse so as the participant moves the mouse from side to side the cross moves 

through the 360 degree color vector. At the start of each report the mouse value is set to the center of 

the screen. This ensures that the shape can move through one and a half cycles of the color vector in 

either direction before hitting the limit. This also means that the same color (green) is presented at the 

start of every trial. By doing this, participants understand that this starting color is unrelated to the color 

of the target at the time of the cue. Any bias towards this initial color would appear as uniform in the 

error distribution and can be discarded in the mixture modeling analysis. 

Orientation was reported in much the same way except that participants were presented with a 

grey T-shape. Again, this was chosen so that when orientation was being reported, color information 

was eliminated. Participants moved the mouse horizontally back and forth to rotate the shape until it 

matched with that in memory. Just as in color report, the mouse was set to the center of the screen so 

as to avoid any boundary effects by allowing a full one and a half rotations to either side. For both 

features, participants clicked the mouse to select color or orientation. 

1.4 Analysis 

The data analyzed here will be report errors in either feature. Report errors are calculated as the 

shortest difference between the true feature value at the time of the cue and the feature value reported 

by the participants. Because the shortest distance is used, this means that all errors fall between -180 

and 180 degrees. Analysis was done using mixture modelling that fits a von Mises and a uniform 

component (Zhang & Luck 2008) to the data. The incorporation of the uniform component allows us to 

approximate of how many responses were informed reports versus random guesses and thereby more 

accurately measure the variance and mean shift of report error in either feature.  

This mixture modeling is done by performing a grid search through an array of possible parameter 

values to see which yield the greatest log-likelihood when fitted to the real data. There are three 
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parameters to fit: the proportion of trials in the uniform component, the mean and the standard 

deviation of the von Mises. Due to the fact that these distributions are of temporal errors, one might 

expect skewness. There was not any evidence of this however in the pilot data and so it was decided to 

not include skewness in the fitted parameters, in accordance with previous literature (Fougnie & 

Alvarez, 2011; Zhang & Luck, 2008) 

1.5 Measuring sensory and memory noise 

Because this method of reporting color and orientation is most likely novel for many participants, 

the first two blocks of all experiments were used for training (Figure 1). The first block was a perception 

test where participants had to match the color and orientation of a T-shape as it remained on the 

screen. The second block was a working memory matching task where the T-shape was briefly 

presented and then participants had to match its color and orientation from memory. This block was 

specifically designed to measure the noise in working memory in addition to the sensorimotor noise 

measured in the perceptual matching task. 

These blocks were present in the first experiment only and the results were then assumed to 

represent sensory and sensory+memory noise for all of the following experiments.  Eliminating these 

two blocks allowed us to increase the trial counts.  Subjects instead saw only two trials of the sensory 

and memory tasks in later experiments.   

 

Figure 1. Example display screens of the perceptual and working memory matching blocks 
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Chapter 2: Investigating the time course of attentional deployment 

2.1 Introduction 
The first application of the proposed method was to look at the cue-to-target SOA at which 

attentional benefits are the largest. The majority of studies in this area use locational cues followed by 

abrupt onset visual arrays (Cheal & Lyon, 1991; Gottlob, Cheal, & Lyon, 1999). To measure the onset of 

attention, researchers have analyzed the probability of reporting a target accurately while varying the 

time between cue and array onset. The results of such experiments seem to converge on the most 

effective cue-to-target SOA being about 100ms (Cheal, Lyon & Gottlob, 1994; Kröse, & Julesz, 1989; 

Nakayama & Mackeben, 1989). The probability of a participant reporting a target correctly rises as the 

cue-to-target SOA increases, peaking at around 100ms post-cue and then begins to decline again. While 

these results have been replicated in multiple studies, they have all used similar presentation and 

reporting methods, leaving two important areas to be explored. The first area of interest for this 

experiment is whether the time of maximal attention will be consistent across static and dynamic 

stimuli. The second area will be to see whether the time point of greatest accuracy in reporting a target 

will coincide with the time point of greatest precision in the memory of that target. 

Testing the time course of attention on static versus dynamic stimuli. The majority of attentional 

cueing literature has relied on the presentation of abrupt onset stimuli. This means that, as opposed to 

dynamic stimuli, after the target disappears there is no further input to the visual system. RSVP 

paradigms on the other hand continue to show stimuli after target onset, and have also shown similar 

cueing benefits (Wyble, Potter & Bowman, 2009). However these stimuli are distinctly categorical with 

discrete differences between targets and distractors. What a dynamic paradigm offers that has not been 

explored with previous methodologies is how the attentional system behaves when a target is not 

replaced by a mask or a distractor, but instead changes smoothly in time. It could be that cueing a 

dynamic stimuli would result in both orientation and color report error distributions to have a mean 

shift forwards in time by 100ms thus matching the peak benefit of attention in typical accuracy 

measures with static stimuli. This would mean that on average, participants were reporting the state of 

the shape 100ms after the cue’s onset. However another possibility is that if attention “locks-on” to an 

object, it has difficulty disengaging as that object remains on the screen, continuously changing. It is 

predicted that in this eventuality, the mean shift of the error distributions will be actually greater than 

the 100ms estimate by static stimuli. The proposed paradigm offers a tool to compare how attention is 
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able to grab information from a moment in time (with dynamic stimuli) versus how it operates when 

that moment is exclusively presented (the static stimuli). 

Measuring attentional benefits with precision versus accuracy.  Attentional cueing experiments 

often rely on a singular binary measurement—accuracy. Participants are either able to report a target or 

not. The method introduced here allows us to measure precision instead of accuracy. It was predicted 

then that the variance of the response error distribution in both orientation and color will be 

significantly reduced in the 100ms SOA condition compared to the others (Figure 2). This result, if found, 

would show that not only is 100ms post-cue the time at which one is most likely to successfully encode a 

target, but also encode it with the greatest precision. As the mixture modeling techniques should help in 

isolating informed responses from random guesses, we will be able to look not only at how often 

participants missed the targets at shorter and longer SOAs, but also examine the quality of their 

memory when they were able to select some information.  

 Two experiments were run to explore this areas of attentional cueing. The first included the 

perceptual and memory matching blocks as well as a static and a dynamic block. However participants 

reported difficulty in maintaining focus on the task for an entire hour and so all four blocks were fit into 

a half hour session, resulting in only eight trials per condition for the static block. To measure the effects 

of increased difficulty a second experiment was run. In the second experiment the perceptual matching 

and dynamic stimulus block were dropped in order to maximize the number of trials in the static block. 

Figure 2. Predicted report error distributions for a target presented at different SOAs. It is 

hypothesized that there will be a significant reduction in error variance at 100ms as opposed to 

other lags, indicative of an attentional benefit on the precision of target memory. 
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This experiment’s static block also included a mask post target onset in order to enhance the difficulty of 

the task. 

2.1 Methods 

Participants. Data from thirteen subjects were collected for the first experiment and twelve for the 

second experiment. All subjects were volunteers from the Pennsylvania State University psychology 

subject pool. Informed consent was obtained for each participant prior to each study in accordance with 

the IRB office of Penn State.  Participants all had normal or corrected-to-normal vision and were 

between the ages of 18 and 23 years old.  

Stimuli. The stimuli used was a T-shape, 3.43 x 2.29 visual degrees in size, located at the center of the 

screen. The cue used was a white circle that was 5.14° in diameter. In the second experiment a mask 

was used to enhance difficulty of the task. Each mask was created layering thirty-five squares (3.43° x 

3.43°) of randomly selected color and orientation, positioned randomly within an 11.31° x 11.31° area. A 

hundred of these masks were generated prior to the experiment and one was selected for each trial. All 

stimuli were presented on a 17-in. CRT monitor (1024 x 768, 75 Hz) with MATLAB and Psychophysics 

Toolbox (Brainard, 1997).  

Procedure. In all experiments participants used a chin rest positioned 50 cm from the screen. In the first 

experiment participants first completed the perceptual (20 trials) and memory matching (20 trials) 

blocks and then the static (32 trials) and dynamic (32 trials) blocks. The order of these last two were 

counter balanced across subjects. In the static block participants clicked the mouse to begin each trial. 

They were presented with a fixation cross for 500 – 1000ms until it disappeared and was replaced by the 

cue (a white circle) for 54ms (Figure 3).  The target was a T-shape of random orientation and color that 

would appear for 27ms either simultaneously with the cue, 108ms, 189ms, or 297ms afterwards, 

depending on the condition. Trials for each lag were randomly intermixed throughout the block. Once 

the target disappeared participants were presented with a blank screen for 810ms. At the end of each 

trial, participants were asked to report the color and orientation of the target. The order participants 

reported each feature was counterbalanced within the block. 

 In the dynamic block participants again clicked the mouse to begin each trial and were 

presented with a single T-shape rotating and changing through a cyclical color vector at 4 degrees per 

27ms frame at the center of the screen (Figure 3). Similarly to the static case, a cue would appear for 

54ms, 500 to 1000ms from the start of the trial. The central shape would continue to change at the 
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same rate for another 810ms after the cue disappeared until the end of the trial. Again participants 

were asked to report both features at the time of the cue. 

 The second experiment did not contain a dynamic block in order to allow for more trials (56) in 

the static block. The paradigm was largely the same as the first experiment except in this version a mask 

appeared for 27ms in the same position as the target with an SOA of 54ms after the target. The range in 

SOAs was extended in the second experiment to see if an effect was evident at larger lags. The target 

could appear 0, 116, 350 or 500ms from the onset of the cue. Reporting features was the same as in 

experiment one.  

2.2 Results 

 A mixture model was fit to each subject’s data from the static condition in each of the 

experiments. A grid search was performed to fit the model, fixing the mean of the von Mises distribution 

to zero (as there was no a priori reason to expect a mean shift for a static stimulus and it allows for a 

more restricted parameter space). The von Mises’ standard deviation for each participant in each 

condition was then used as the independent variable for the following analyses in both experiments. 

In the first experiment, for the static condition a one-way repeated measures ANOVA across 

conditions revealed no significant difference in standard deviation between conditions in either 

orientation, F(3,36) = .52, p = .67, or color, F(3,36) = 1.18, p = .33 (Figure 4). It was predicted that the lag 

at which the reports showed the most precision with static stimuli would approximately match the 

mean shift of the dynamic feature reports. As none of the lags showed any difference from one another, 

no formal comparison to the dynamic case was made. However, the mean of the report error 

Figure 3. Static and dynamic conditions of experiment 1. Experiment 2 had only the static condition 

with addition of a mask and a wider range of SOAs between the cue and the target. 
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distribution for informed responses was shifted 24.03 degrees (SE = .94) for orientation report and 13.08 

degrees (SE = .81) for color (Figure 5). In units of time this means that participants, on average, were 

Figure 4. Report error distributions for color and orientation at each lag in for the static condition of 

experiment 1. Mean standard deviations are reported with standard errors in parentheses 

Figure 5. Report error distributions in both color and orientation for the dynamic condition of 

experiment 1. Mean and standard deviation averages reported for each distributions with standard 

errors in parentheses. 
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reporting the in orientation of the shape 162ms post cue onset and the color of the shape 88ms post 

cue onset.  

In the second experiment a mask was presented just after the target. This resulted in a slight 

increase in variability of report error across lag and feature, suggesting that the mask successfully made 

the task more difficult. However, despite this, there was still no difference in standard deviation across 

lag for either color, F(3,33) = .45, p = .72, or orientation, F(3,33) = 1.09, p = .36 (Figure 6).  

To ensure that these null results were not the product of a small trial count per participant, a 

permutation analysis was run as well on the second experiment’s data. The greatest difference in 

precision was hypothesized to occur between the simultaneous and 116ms SOA conditions, based on 

past research (Nakayama & Mackeben, 1989). Therefore the permutation analysis was conducted by 

randomly sampling 200 trials from the pooled trials of the 0ms and 116ms conditions (350 trials). These 

200 trials were evenly divided to form two distributions. The von Mises’ standard deviation was 

obtained from both and their difference was calculated. This was repeated a thousand times to form a 

null distribution of standard deviation differences. This null distribution is built under the assumption 

that there is no difference between the two conditions. The real difference was calculated between the 

two conditions’ standard deviation and was compared to the permuted null distribution. Neither the 

Figure 6. Report error distributions for each lag in color and orientation for experiment 2. Standard 

deviation averages reported with standard errors in parentheses. 
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difference in color (p = .37) nor orientation (p = .56) proved to be statistically significant, confirming the 

ANOVA results.  

2.3 Discussion 

 There has been an extensive amount of work which has shown that the presentation of a cue in 

the same location as a target results in an increase in target report accuracy (Egeth & Yantis, 1997; 

Sauseng et al., 2005). This attentional benefit has also been found to have some temporal variance. 

Specifically, this benefit to report accuracy is highest when the cue precedes the target by 100ms (Cheal, 

Lyon & Gottlob, 1994; Kröse, & Julesz, 1989). This study looked to elaborate on these results in two ways 

through the use of a new experimental method. The first was to test whether the same benefits in 

accuracy at a 100ms SOA would be seen in precision of memory, by using a continuous report scale. The 

second question addressed by this new method was whether the delay in the deployment of attention, 

extensively studied with static stimuli, would present itself with dynamic stimuli in the form of a mean 

shift in report errors. While the results were not as expected, the application of this new experimental 

method has provided an important foundation for continued research using dynamic stimuli and 

continuous report in the area of attentional cueing. 

The first question of interest for this experiment was how the time between cue and target 

would affect memory precision. It was predicted that by incorporating a continuous reporting method to 

an attentional cueing paradigm, we would see an enhancement in precision at the same SOA that past 

research had seen an enhancement in target accuracy. However, after testing this in two different 

experiments with two types of analyses, no difference was seen across SOAs. These results were 

surprising given the robustness of the results in past literature. There were a number of differences in 

this experiment, in addition to the reporting method, that might have led to this discrepancy between 

expected and actual results.  

 As this thesis is primarily focused on developing an experimental tool to explore the temporal 

qualities of attention, only one stimulus was used in these experiments to reduce the spatial 

component. However having multiple stimuli appear with the target may be necessary in order to obtain 

an attentional cueing effect. One study to successfully elicit a cueing effect presented targets embedded 

among a densely packed array of distractors (Nakayama & Mackeben, 1989). A possible difference 

between this paradigm and the one used here is the increase in task difficulty. However, the use of the 

mask in experiment 2 successfully increased difficulty in reporting the features of the target (as seen in a 

decrease in precision), yet revealed no cueing effects. Another difference which occurs when presenting 
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a target alone versus in an array is the criteria by which the visual system can select said target. When 

the target is the only stimuli to appear on the screen, the visual system can rely on stimulus onset, 

rather identity or feature criteria, to select a target. Abrupt onset is a salient event, known to trigger 

attention (Theewues, 1991; Yantis & Jonides, 1990). It could be that with only one stimulus, the saliency 

of abrupt onset provides such a strong attentional signal that it overwhelms any additional effect a cue 

might have had. If that were the case, the target would have to be presented simultaneously with other 

stimuli in order to see an effect of the cue.  

Past research has shown that this cueing benefit is evident in arrays with as few as two 

(Carrasco, Ling & Read, 2004) or four (Müller & Rabbitt, 1989) distractors. These results, combined with 

that of the current experiments, suggest that in order to elicit a cueing benefit, the saliency of abrupt 

onset has to be controlled for. By presenting multiple stimuli at the same time, participants can no 

longer rely solely on abrupt onset to trigger attention. Instead, they would need to use the cue in order 

to know which stimulus is the target. With this change, a difference in precision across lags might be 

seen. To test this, a follow-up experiment could be run using the same cue but instead of a single target 

presented at various SOAs, two shapes would appear—one at the location of the cue, and one on the 

opposite side of the screen. This task would require participants to attend to the cue in order to know 

which stimuli was the target, and possibly induce the predicted precision difference at 100ms SOA not 

seen in the experiments here. 

The second goal of the current research was to compare the lag in attention seen in the static 

condition with that in the dynamic. It was hypothesized that if attention behaves the same with static 

and dynamic stimuli, participants would on average report the state of the shape 100ms after the cue. 

However if attentional mechanisms have difficulty “detaching” from an object, this delay in sampling 

may be even later. As there was no attentional benefit at any of the lags in the static condition, no 

comparison could be made. As objects in our visual field often remain there, it is important to relate 

results from the static literature to the dynamic case. Should future research show such an attentional 

benefit to precision in the static condition, say when multiple stimuli are presented with the target, this 

dynamic comparison can be attempted then. Understanding how the attentional system operates on 

dynamic versus static stimuli will allow us to better understand how the results of the attentional cueing 

literature apply to real-world vision.  

Though the expected results were not obtained in either of the two experiments, the 

application of this method to a question of attentional cueing provided valuable information both on 
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participants’ capabilities in using this reporting method as well as some possibly important presentation 

criteria necessary to replicate past results. As a whole, these results are an encouraging foundation for 

further research looking at the measurement of precision with attentional cueing as well as how 

attentional mechanisms operate with dynamic versus static stimuli. 



20 
 

Chapter 3: Accessing multiple dynamic features of the same object. 
Instead of looking at the general time course of attentional benefits as in the previous chapter, 

the next application of the proposed method will investigate how the sampling of multiple dynamic 

features of the object interacts with one another. Various studies that have looked at this in static 

images and have found results which indicate that the orientation and color of an object are encoded 

independently of one another (Nissen, 1985; Fougnie & Alvarez, 2011). They found that one’s ability to 

report one feature, had no influence on the probability of being able to report the other. This lack of 

conditional dependence has held even when participants attended to one specific target (Isenberg, 

Nissen, & Marchak, 1990) which was particularly surprising as Feature Integration Theory (FIT) would 

predict that attending to an object should bind multiple features together (Treisman & Gelade, 1980). In 

fact, evidence of independent processing has been seen even when only a single object is presented 

(Rangelov & Zeki, 2014).  

 Vul & Rich (2010) explored the idea of independent sampling of information in both space and 

time by manipulating noise and uncertainty. The reported target’s identity and color correlated in both 

space and time when noise was added however not at levels of higher uncertainty. The results of these 

studies converge to form convincing evidence that different channels of feature information are 

attended to or encoded independently of one another. However all of these experiments used abrupt 

onset of static stimuli either in array form (Isenberg, Nissen, & Marchak, 1990; Fougnie & Alvarez, 2011) 

or RSVP at 100ms (Vul & Rich, 2010). While these presentation methods can gauge the accuracy or 

precision (with continuous scale report) of feature memory, without continued, smoothly changing 

input to the visual system, it is not clear how these dimensions are being sampled in time and what, if 

any interaction between the two exists. Applying the proposed method to this question will give insight 

into how multiple features of the same object are sampled in time. 

3.1 Three possible models 

 Three models were built in order to formalize hypotheses about how attention might select two 

dynamic features of the same object: simultaneous, sequential, and independent sampling. It is not 

necessarily the goal of this experiment to definitively select one of these models as the way attention 

operates. Rather it is to test predictions with real data and find constraints for each of these models, 

ruling out impossible parameter values. Each model is built with the same two distributions though they 

differ in their implementation. The first is an ex-Gaussian distribution (a combination of a normal and an 

exponential distribution) that determines the time of deployment of attention. The ex-Gaussian is a 
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positively skewed distribution that is useful when modeling events that cannot occur before specific 

time points, such as reaction times (Whelan, 2010). In the present work, the lambda parameter of the 

exponential component has been fixed so that as the variance of the normal component increases, the 

skewed quality of the overall distribution is not lost. The second distribution is a normal distribution 

which is meant to account for both sensorimotor and work memory noise, the combination of which will 

hence be referred to as non-attentional latency noise. In all three models, the perceived feature value is 

selected from a normal distribution in feature space, centered at the actual value sampled by attention.  

It is important to note that the attention and non-attentional latency noise components of the model 

are not oriented along the same axis. The attentional distribution samples over some window of time 

after the cue whereas the non-attentional latency noise samples from a region of proximity in feature 

space.  

The difference between the three models lies in the implementation of the ex-Gaussian 

attentional sampling distribution (Figure 7). With simultaneous sampling, attention is deployed to both 

Figure 7. Depiction of simultaneous, independent and sequential sampling. Non-attentional latency 

(NAL) noise is added to each model though only depicted in the simultaneous model here. 
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features at the same point in time, determined by a single sample from an ex-Gaussian distribution. 

Then each feature is independently sampled from the non-attentional latency noise distribution, 

centered at the feature values from that common point in time.  With sequential sampling, on any given 

trial attention is deployed to one feature earlier than the other. Some research suggests that color is 

prioritized over orientation (Rangelov & Zeki, 2014) but as this trend was not seen in the pilot data, for 

now, the model has an even chance of selecting either feature as the first. The second feature is 

sampled under a second ex-Gaussian, the mean of which is shifted forward in time from the first 

deployment of attention by a free parameter delta. Values from either feature are then selected from 

the distribution of non-attentional latency noise centered at their respective points of attentional 

sampling. Lastly, the independent model is similar to sequential sampling except that delta here is equal 

to zero. This means that attention is deployed to each feature independently by sampling twice from an 

ex-Gaussian but there is no additional delay for the feature selected later. To match the guess rate 

exhibited in pilot data, all models sample features according to a uniform distribution on 5% of trials.  

3.2 Pilot study 

A pilot experiment was run prior to this thesis work to test a specific form of the paradigm and 

its data was used in order to form the predictions which motivated this chapter’s experiment. In this 

pilot study participants first completed the perception and working memory training blocks. Afterwards 

they performed three different blocks of trials in sequence: the both-feature, the orientation-only and 

the color-only conditions. The order of these blocks were counterbalanced between subjects.  

In each condition participants were told to keep their eyes on fixation and attend to the six 

shapes in the periphery. In the both-features condition the six shapes onset with randomly selected 

colors and orientation. Throughout the trial the shapes changed in color and rotation at a speed of 4 

degrees per 27ms frame. Half of the shapes rotated in each direction for both the color and rotation 

dimensions.  Between 2.7 and 5.4 seconds after the start of the trial, a white circle (the cue) flashed for 

two frames around one of the six shapes. The shapes continued to change on the screen at the same 

rate after the cue disappeared for another 810ms. At the end of each trial, participants were asked to 

report the color and the orientation of the shape at the time of the cue using the report method 

previously described.  In the orientation-only condition participants did the same task except all six 

shapes were colored grey and they were only ever asked to report the orientation. Conversely in the 

color-only condition the six shapes appear fixed at randomly selected orientations as they changed color 

throughout the trial. Participants then report only the color of the shape at the time of the cue.  
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3.3 Initial parameter constraints 

The data from the pilot experiment of the thesis proposal was then used to approximate 

parameters and generate testable predictions of the models. However, as the current experimental task 

is quite different from that of the pilot, these initial parameter constraints are placeholders, whose 

values will later be confirmed with data from the current experiment. The first parameter to fix is the 

standard deviation of the non-attentional latency noise distribution. This noise was characterized as 

variability added to report due to sensorimotor and memory encoding variability, both of which should 

be represented in the variance of report errors in the memory matching task. The memory matching 

data from experiment one in the attentional cueing application confirmed the same amount of 

variability in the report errors as was seen in the pilot data (approximately 16 degrees after accounting 

for guessing with the mixture model). That value was therefore used to fix the standard deviation of the 

non-attentional latency noise distribution. This leaves one parameter (attentional variance) to fit for 

both the simultaneous and independent models as well as a second (the delta between the two ex-

Gaussians) for the sequential model.  

Figure 8. Simulated data from the simultaneous and independent models with varying amounts of 

attentional latency variance. Depicted in red are simulations with too high a guess or correlation 

than evident in the actual data. 
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To restrict these spaces further, we looked at trials of the both-feature condition in the pilot 

stud. Plotting trial-by-trial scatterplots of color versus orientation error of pilot data shows no 

correlation between the two (r = .04, p > .05). The simultaneous model simulations demonstrate this 

lack of correlation only when the attentional distribution’s standard deviation is less than 20ms, as 

greater values produce a positive correlation (Figure 8). A small amount of variance in attentional 

deployment also fits with event related potential (ERP) research of the N2pc, a component thought to 

reflect spatial attention (Eimer 1996; Luck & Hillyard, 1994). The N2pc has been found to be a sharp, 

relatively narrow component in the grand average waveform, which requires that there is little 

variability in its onset trial to trial. Simulations from the Independent sampling model also resemble the 

pilot data at low attentional variance levels. While the same lack of correlation is seen under 

independent sampling regardless of the attentional variance, larger variances are ruled out due to the 

fact that they produce a higher proportion of random guessing when fitted with a mixture model than 

seen in the actual data.  

 The sequential model is the only one with two free parameters. Figure 9 shows the simulations 

as both attentional variance and the delta between the sampling of the first and second feature are 

Figure 9. Sequential model simulations of report errors in each feature, varying the attentional 

latency and delta. Plots in red are simulations that have higher correlations or guessing rates than 

present in real data. 
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varied. Unsurprisingly, with a very low delta the simulations in the sequential model are similar to those 

in the independent model. This is expected as the two are equivalent when delta is equal to zero. As the 

delta grows, a negative correlation and bifurcation of the data emerge. These two clusters continue to 

separate as attentional variance increases. Since no correlation is evident in the pilot data nor is there 

any evidence of separate clusters, we can restrict the sequential model’s parameters space to the 

smallest levels of attentional variance and delta. This means that if attention is sequentially deployed to 

features of the same object, the lag between the two must be less than or equal to 33ms in order to 

create the pattern of data seen in the pilot experiment.  

From this initial fitting of each model we see that, given the correct parameter values, each of 

the models can account for the data pattern seen in the pilot study. Though one model has not been 

definitively selected over the others, this process has narrowed the range of possible values that the 

free parameters in each model could fall within. This initial pass at restricting the parameter space 

allows us to build experimental conditions, under which, simultaneous, sequential and independent 

sampling may differ from one another.  

Figure 10. Depiction of the predicted influence feature rate of change will have in the simultaneous 

model. As the rate of change speeds up, non-attentional latency noise distributions are pulled apart 

in feature space, making the temporal relationship between feature selection more evident. 
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3.4 Predictions 

As all three models have a common non-attentional latency noise component, to differentiate 

between them we need to separate the effects of attentional deployment from those of the non-

attentional latency noise. One way of doing this is to manipulate the rate of change of the object. When 

each feature of an object is changing slowly in time, the variance in report errors is largely driven by the 

non-attentional latency noise distribution. Thus, at a relatively slow rate, simultaneous sampling is 

indiscernible from independent or sequential. However, when there is a greater difference in feature 

values between time points, the method by which attention samples each feature becomes more 

evident (Figure 10). In the simultaneous model the rate of change increase effectively reduces the 

contribution of non-attentional latency noise relative to the variability in attentional deployment time. 

This makes the fact that both features were sampled at the same time point more evident over a 

collection of trials. Figure 11 shows the simultaneous model simulations as the rate of change increases 

for either feature. As both features increase in rate of change, a correlation between their report errors 

begins to emerge. The sequential and independent models do not show this pattern for increasing rates. 

This is as expected since, unlike the simultaneous model, in the sequential and independent models, 

attentional sampling is taken once for each feature. Therefore, regardless of how fast the features 

change, the time points at which they are sampled will remain independent random variables, without 

correlation.  

Figure 11. Simulated data under each model when orientation and color are changing at 4 degrees or 

8 degrees per frame. Green squares highlight the predicted scenarios tested in the current 

experiment. 
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3.4 Methods 

Participants. Twenty-eight undergraduate volunteers from the Pennsylvania State University subject 

pool participated in this study for course credit. All participants signed an informed consent form prior 

to participation in accordance with the Penn State IRB. Participants ranged in age from 18-21 and had 

normal or corrected to normal vision. 

Stimuli. The same stimulus was used as in the attentional cueing experiments as were the computers 

used to present them. In the two experimental blocks the shape either moved through feature space at 

a rate of 4 degrees or 8 degrees per 27ms frame. 

Procedure. Participants sat, using a chin rest, 50cm from the computer screen in a dimly lit room. First, 

two perceptual matching trials and two memory matching trials were completed. The next two blocks 

were of 30 trials each and presented participants a single T-shape rotating and moving through cyclical 

color vector at either 4 degrees or 8 degrees per 27ms frame. These blocks were counterbalanced across 

participants. Originally it was proposed that this experiment have three blocks, where shapes changed 

at either 4, 6 or 8 degrees per frame. However in order to increase trial count and power, the 

intermediary block was dropped. At the end of every trial participants, reported the orientation and 

color of the shape at the time of the cue, using the continuous scale method. 

3.4 Results 

 The correlation between report error in color and orientation in the 4 degrees per frame 

condition was non-significant (r =.03, p =.41) and closely replicated the results seen in the both-feature 

condition of the pilot study, which presented shapes using the same rate of change (Figure 12). To test 

whether there was a significant increase in the correlation when the rate of change was doubled, a 

permutation analysis was conducted. Two random samples of trials were drawn, irrespective of 

condition. Correlations were taken between the features of each sample and their difference was 

calculated. This process was repeated a thousand times to create a null distribution of correlation 

differences. The actuals correlation difference between conditions (.03) was then compared to the 

generated null distribution and found nonsignificant, p = .44.  
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In comparing the means of the two report error distributions there are two ways of looking at 

the data. The first is in units of time and the second is in units of degree (Figure 13). Given that the 

models proposed here sample both in time (under the attentional sampling distribution) and in degree, 

otherwise thought of as feature space (under the non-attentional noise distribution), the analysis run on 

the mean of report errors will be presented both ways. For both analyses, a mixture model was fit to 

each participant’s data individually in order to get a mean and standard deviation for informed 

responses (i.e. the von Mises distribution).  

Figure 12. Scatter plots of color report errors versus orientation report errors for the 4 degree and 8 

degree per frame condition 
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When measuring error in units of milliseconds, there was no significant difference in the means 

of color error distribution between the 4 degree per frame condition (M = 91.12, SE = 14.85) and the 8 

degrees per frame condition (M = 84.98ms, SE = 9.36), F(1,27) = .24, p = .62. However for orientation 

there was a significant difference between the means of the 4 degree per frame condition (M = 191.65, 

Figure 13. A) Report errors in orientation and color calculated in units of degree. B) Report errors in 

either feature in time (ms). 
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SE = 16.40) and the 8 degree per frame condition (M = 115.23, SE = 10.39), F(1,27) = 39.36, p < .001 

(Figure 14).  

Measuring error in degrees, the same analysis was run again and showed a significant difference 

in the mean of color report error for the 4 degree per frame condition (M = 13.50, SE = 2.20) and the 8 

degree per frame condition (M = 25.18, SE = 2.77), F(1,27) = 23.58, p < .001. Orientation showed a 

significant difference as well between the two conditions (M = 28.39, SE = 2.43 and M = 34.14, SE  =  

3.08, respectively), F(1,27) = 6.18, p = .02 (Figure 14).  

3.5 Discussion 

 Many studies have looked at how multiple features are encoded (Fougnie & Alvarez, 2011; 

Isenberg, Nissen, & Marchak, 1990) and maintained in working memory (Allen, Baddeley, & Hitch, 2006; 

Vogel, Woodman, & Luck 2001) with the use of static stimuli. In presenting only a single value for each 

feature dimension, researchers are only able to examine whether interference is caused on the level of 

memory precision and not at level of attentional sampling. Vul & Rich’s (2010) study using RSVP did 

show independent sampling in time for color and identity. However another possibility is that the 

discrete feature changes in an RSVP stream do not provide the granular measure needed to detect other 

modes of sampling. By smoothly changing a stimulus through two cyclical feature spaces, this study 

aimed to investigate how attention selects feature information at a given time point with a continuous 

measure to reveal potential patterns at a fine-grained time scale.  

Figure 14. Means of report error distributions per feature, per condition plotted in both degrees and 

time. * p < .05. 
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Three hypotheses of attentional sampling were formalized into statistical models of 

simultaneous, sequential and independent sampling. Simulated data from these models predicted that 

as the rate of change in both features increased, simultaneous sampling would produce a correlation 

between the two features’ report errors. It was hypothesized that the lack of correlation seen in pilot 

data could have been due to the fact that non-attentional latency noise overwhelmed the attentional 

sampling pattern, such that simultaneous sampling would look the same as sequential or independent. 

By increasing the rate of change, one increases the feature value differences at each point in time. It was 

thought that this would have the effect of pulling apart the non-attentional latency noise distributions 

on each trial, therefore producing a correlation between the two features under simultaneous sampling. 

As the sequential and independent models both sample each feature separately, no such correlation 

should emerge regardless of rate of change.  

The data in this experiment showed no emergent correlation in report errors when increasing 

the rate of change from 4 degrees to 8 degrees per frame.   One possible explanation for this sustained 

lack in correlation is that dynamic features of the same object are not sampled simultaneously. The 

model predictions under conditions of varying rates of change do not differentiate between 

independent and sequential sampling and so under this explanation for the results, we still are unable to 

definitively select one over the other. However, through the initial parameter restrictions, we are able 

to say that sequential sampling would only create the pattern of results seen in this experiment and in 

the pilot if the delta between the two sampling distribution was under 33ms. Though the data do not 

select a single model of sampling, they have found important constraints for the parameter space. The 

constraints can in turn be used to assess whether one can discern between independent or sequential 

sampling when their difference depends on such a small delta and given the limited granularity of 

available behavioral measures.  

Before completely ruling out the simultaneous model though, we have to consider whether any 

other predictions were not met by the data collected. The simulated data predicts that as the rate of 

change increases, the mean of report errors will shift in degree space, proportionately to the rate of 

change. In other words, the means will remain constant in time across conditions. This was seen in the 

report errors for color but not for orientation. While orientation did have a significant increase in degree 

mean, the difference was not enough to account for the doubled rate of change. In fact, translated into 

time, the mean shift of report errors was smaller in the 8 degree per frame condition than the 4 degree. 

This means that, on average, participants were reporting an earlier shape orientation when the rate of 
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change was faster than when it was slower. It is unclear with the current results what might have caused 

this. It could be that with faster rotation, participants increase their efforts in order to reduce the 

latency of selection and are therefore more rapid in their attentional response to orientation. However 

this would imply that their attentional system is unable to make the same adjustments when sampling 

color.  

For color, the lack of difference between the error means in time suggests that attention is 

deploying, on average, at the same moment in time, regardless of the rate of change. It makes sense 

then that when the rate of change is doubled, the temporal error mean remains fairly constant while 

there is a significant increase in the degree mean (approximately doubled). Orientation selection tells a 

different story however. Selection of orientation information is actually earlier in the faster condition 

than the slower one. One known difference between the two features is that one (orientation) has a 

pre-learned trajectory whereas color does not. This ability to build a mental representation in one and 

not the other could lead to different strategies in monitoring.  The small difference in degree error mean 

suggests that, unlike color, orientation is not being selected at a consistent time lag, but instead perhaps 

is being selected at a consistent rotation from the true value. Other studies have found participants to 

report the last presentation of stimulus in a position further along its trajectory than was actually 

shown, an effect referred to as representational momentum which has been found to influence both 

orientation and location report (Hubbard, 2005; Freyd & Finke, 1984).  It could be that the mean shift in 

orientation is due to representational momentum instead of, or in addition to, a lag in attentional 

deployment. The significant difference seen in the orientation degree error means could be the 

influence of the increased rate of change on the dynamic mental representation, as past work has 

shown that the effects of representational momentum increase with an increase in the velocity of the 

object (Finke, Freyd, & Shyi, 1986).  Many of the tasks used to find evidence of a dynamic mental 

representations have had participants report the state of the stimulus just before it disappeared (Finke, 

1987; Howard & Holcombe, 2008). It is therefore not entirely evident how these results translate into 

situations where the stimulus continues to change after the moment attention is triggered, such as in 

this experiment. One study that used a stimulus that remained on the screen had participants report the 

location of an object at the time a cue flashed around it (Eagleman & Sejnowski, 2000). The object 

moved continuously along a circular track before and the cue and then reversed direction at some time 

after the cue. Results indicated that the representational momentum that biased reports was based off 

of the trajectory of the object 80ms after the cue. These results suggest that mean shift in orientation 

errors could be some combination of both a dynamic mental representation as well as a lag in 
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attentional deployment. However it is important to note that the paradigm used in this thesis work is 

quite different from those used to test representational momentum and so more research is still 

required to investigate possible differences in the mechanisms which monitor and sample color and 

orientation feature information.
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Chapter 4: General Discussion 

 The goal of this thesis work was to develop and test a new experimental method for exploring 

temporal attention.  Past research has relied heavily on static displays and behavioral measures such as 

reaction time and accuracy (Coull, Frith, Büchel, & Nobre, 2000; Eriksen & Collins, 1969; Shulman, 

Remington & McLean, 1979). These studies have helped to explain how the visual attention system 

works. However, it is often the case in real-world vision that while our attention is captured by an object 

in a particular state, the object continues to change as we observe it rather than disappear from view or 

be replaced by a categorically different item. Because our visual environment offers such complexities, it 

is essential to understand how the brain is able to pick relevant information out of a continuous stream 

of input. Subjectively, it can often feel as if our visual systems have the ability to take a “snapshot” in 

time, similar perhaps to how we perceive the flash of static stimuli. However, this percept is more likely 

the product of an attentional sampling system that is actually extracting features of an object within a 

given window of time. To better understand how such a system might operate and what its 

consequences would be on conscious perception, it is important to develop paradigms using dynamic 

displays that offer the temporal granularity necessary to see how such sampling is done. 

  The skeletal model of this method is the presentation of a T-shaped stimuli that smoothly 

changes orientation and moves through a cyclical color vector. This display is coupled with a continuous 

reporting method that is analyzed using mixture modeling (Zhang & Luck, 2008). Both the display and 

the report method of this experimental paradigm are designed to provide a highly granular temporal 

scale with which to measure attentional selection of feature information. This skeletal design is flexible 

in that it can be built off of to explore many aspects of temporal attention. In order to understand this 

new method’s capabilities and to develop further research ideas, it was applied to two different aspects 

of research within visual attention.  

The first application was to use this new method to measure the time course of attentional 

benefits by testing the memory precision of stimuli presented at different lags after a cue. It was 

hypothesized that the same attentional benefits seen in target report accuracy at a 100ms SOA from the 

cue would translate into a decrease in the variance of report error distributions at the same lag, using a 

continuous report method. This decrease would indicate that not only are there attentional benefits to 

successful identification but also to the precision of the target memory when presented 100ms after a 

cue. It was further hypothesized that this lag at which report precision was maximal would coincide with 

the average selection time of feature information with a dynamic stimulus. No such effect of lag on 



35 
 

precision was seen in either experiment though. Therefore no subsequent comparison between static 

and dynamic stimuli could be made. 

The second application was to use this experimental method to test three hypotheses of how 

attention might sample multiple dynamic features of the same object. Three statistical models were 

developed to systematically investigate whether attention sampled color and orientation 

simultaneously, sequentially or independently. The simultaneous model supposed that attention 

samples information from both features at the same time, determined by an ex-Gaussian distribution 

after the onset of a cue. The sequential model on the other hand assumes that one feature will be 

sampled first and then the mean of the sampling distribution of the second feature will be shifted 

forward in time from that initial selection by some delta. The final model investigated here is the 

independent model which, like the sequential has a sampling distribution for each feature. However, in 

the independent sampling scenario there is no fixed temporal separation between these two 

distributions. All three of the models have the ultimate reported feature value selected from a normal 

distribution in feature space, centered at the feature value present at the time of attentional 

deployment. The variance of this normal distribution is meant to account for non-attentional latency 

variability and is approximated with the variance in the memory matching training task’s error report 

distribution, thought to represent both sensorimotor and working memory noise.  

Discovering how attention samples feature information from objects in our environment is an 

important step in understanding how exactly our conscious perception is built. Both the independent 

model and sequential model allow for the possibility that features can be sampled at different points in 

time. However the fact that participants report experiencing a clear percept of the shape with two 

feature values that never co-existed in time, implies that there may be some retro-active binding of 

features across time that takes place in later stages of processing, presumably to form a coherent 

perception. This mechanism would not be necessary under simultaneous sampling. If attention samples 

sequentially, this might imply that there is some prioritization in which features attention selects first. 

Additionally the size of the delta between the two sampling distributions may be indicative of some 

processing of the first feature that needs to take place before additional information can be gathered. 

The differences described in the three sampling models have important consequences for discovering 

not only how information is extracted, but may shed light on how feature values are processed 

subsequently. 



36 
 

In order to make testable predictions with the models, their parameter space first needed to be 

constrained. One parameter that all three of the models share is the standard deviation of the non-

attentional latency noise. This parameter was estimated with the standard deviation of report errors in 

the memory matching training block, as this should include both sensorimotor and working memory 

noise. The next parameter common to all three models was the standard deviation of the ex-Gaussian 

attentional deployment distribution. Data was simulated with a wide range of attentional variances. The 

simultaneous model showed a strong correlation between color and orientation report errors at higher 

levels of attentional variance that was not seen in the pilot data. Similarly, when attentional variance is 

higher, the sequential and independent models showed higher rates of guessing than was present in the 

pilot data. For this reason, the standard deviation of the attentional deployment distribution was fixed 

at 20ms. The last parameter left then is the delta parameter, present only in the sequential model. 

Simulated data showed that at greater levels of delta, the report errors of color and orientation showed 

a negative correlation and ultimately a bifurcation. As this was not seen in the pilot data either, it was 

determined that for a sequential model to be possible, the delta between the selection of the first 

feature and the average selection of the second would have to be under 33ms. Despite the display being 

different, the pattern of report errors was quite similar between the pilot and current experiment and 

so the initial constraints on the parameter space for each model were kept.  

To expose the differences between the sampling models that might not have been measurable 

due to the magnitude of non-attentional noise, data was simulated with each model under various rates 

of change for the two features. The simulations predicted that as the rate of change of a stimulus’ 

features increased, a correlation between the feature report errors would emerge only if attention was 

sampling both features simultaneously. To see whether such a pattern existed in real data, an 

experiment was conducted where participants reported color and orientation of a shape at the time of a 

cue when both features were changing at a rate 4 degrees or 8 degrees per frame. The data revealed no 

emergent correlation which suggest that feature information is sampled either independently or 

sequentially with less than a 33ms attentional delta. The data also revealed that participants were able 

to select earlier orientation values when the rate of change was faster than slower. This mean shift in 

attentional deployment time was not however seen in color. This difference between the two features 

may be indicative of different selection strategies to acquire color and orientation information. 

While the two areas of research discussed here are quite different from one another, together 

they have provided an important foundation of results from which this new paradigm can continue to 
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be developed for future applications. Importantly, there was a replication of results across the two 

experiments in the mean shift and standard deviation of report error distributions of both orientation 

and color. Though the research interests were different, the dynamic condition in the attentional cueing 

experiment and the 4 degrees per frame condition in the multiple speeds experiment were the exact 

same display and produced similar distribution parameters across experiments. Replicating findings 

obviously helps to validate the behavioral measurement but also helps to build a secure foundation on 

which hypotheses for further experiments can be built.  

4.1 Limitations to method 

In addition to demonstrating the capabilities of this method, the two applications explored for 

this thesis work also help to elucidate some its limitations. When exploring attentional cueing effects, 

the comparison of static and dynamic stimuli seemed straightforward to build. However there is an 

inherent difficulty in creating equivalent static and dynamic conditions. In dynamic conditions the 

“target” is the state of a stimulus at a particular moment in time (e.g. the time of a cue). This means that 

immediately before the target, the same location is occupied by a stimulus with very similar feature 

values. One potential problem in comparing across these two conditions then is that in the dynamic 

case, there is updating visual input from the target location, prior to the target, whereas in the static 

condition the target abruptly appears, a presentation known to trigger attention (Yantis & Jonides, 

1990). This difference in onset could have consequences for how the target is processed, outside of 

dynamic/static differences which we are interested in understanding. 

Dynamic stimuli are also different from static in that they continue to present information to the 

visual system after the “target moment”. While on the one hand this is exactly what we want to explore, 

it also presents the possible confound of masking. It is well known that visual masks have an influence 

on the attending to and encoding of targets (Enns & Di Lollo, 2000, Enns, 2004; Vogel, Woodman & Luck, 

2006) and similarly to masks, dynamic stimuli present non-target information in short succession after 

the target and in the same spatial location. However there is a difference in how the two are perceived. 

The dynamic case looks like one coherent shape continuously changing whereas a visual mask is a 

categorically different stimuli. However, it is not always immediately apparent how to tease apart the 

mechanisms involved in processing either.  

The applications of this method not only provided interesting results but illustrated some 

limitations that will require creative paradigms to solve when comparing dynamic and static stimuli. This 

comparison is an important one. Visual attention research has acquired a vast amount of knowledge 
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about how the visual system selects and stores information about static displays, however objects in our 

visual field are often changing in time. Learning what is the same and what is different between the two 

types of stimuli will help to better apply what is already known about visual attention, to real-world 

vision. 

4.2 Further methodological refinements 

 The purpose of this thesis work was to develop a new experimental method that could be used 

to study a wide range of questions within the field of temporal attention. It is important then to not only 

look at the results obtained to see what they tell us about attentional cueing or sampling methods but 

more generally to see what other possible questions they motivate. As this thesis work was largely 

exploratory in the use of a new method, these future applications and modifications are as valuable as 

the results obtained. 

 As there was so much evidence from the attentional cueing literature that shows the attentional 

enhancement in target accuracy at a 100ms SOA (Cheal, Lyon & Gottlob, 1994; Kröse, & Julesz, 1989; 

Nakayama & Mackeben, 1989; Wyble, Potter, Bowman, 2009), it was surprising when no enhancement 

in memory precision was seen at the same lag in the current experiments. One, possibly important, 

difference between this paradigm and others used in past cueing work is that here the target could only 

appear in one location. This was a conscious choice to limit the spatial component as the focus of this 

experiment was the time course of attention. However, it could be that when the sudden appearance of 

a stimulus is synonymous with target presentation (as is the case when a target is presented alone), the 

benefits of the cue are overwhelmed by the attentional capture effects known to be elicited by abrupt 

onset (Folk, Remington, & Wright, 1994; Jonides & Yantis; 1988). To test this, an important modification 

should be made where by the cue would appear in one of two possible locations, positioned on either 

side of fixation. At varying SOAs two shapes would onset simultaneously, one at the location of the cue 

and the other on the opposite side. This revised paradigm would require that participants use the cue in 

order to know which stimuli is the target. Such a change in task requirements and stimuli presentation 

could mean that attention is triggered by the cue and not the abrupt onset of the target and thereby 

create the typical cueing benefits seen in past work. 

There was also an unexpected finding in the second experiment which presented a single 

stimulus with different rates of change in that the average selection time of orientation in the 4 degree 

per frame and the 8 degree per frame condition were significantly different. This difference was not 

seen in color. One possible difference between these two features that might help account for 
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discrepancies is that rotation has a well-learned trajectory that can be predicted whereas the cyclical 

color vector selected here could be replaced with any other through color space. To make these 

features more equitable future editions of this method could incorporate multiple trajectories through 

both features. For color this modification would involve selecting multiple vectors in a two-dimensional 

color space such as CIE. However in order to offer the same unpredictability for orientation, shapes 

would have to be presented in three dimension, which allows them to rotate in at least two dimensions. 

This would mean that instead of a shape only having two options of clockwise or counter-clockwise 

rotation, there would be a variety of possible trajectories rotation could take. This addition to the 

method could provide an interesting way in which to explore how people are using expectation when 

monitoring dynamic stimuli. This work could build off what we already know about representational 

momentum (Freyd, 1987; Freyd & Finke 1984) by looking at trajectory predictability in multiple 

smoothly changing features. 

 Another surprising finding here was that in the dynamic condition of both applications, on 

average, color feature values were selected earlier than orientation. This result was surprising because 

in the pilot experiment the opposite pattern was found. One main difference in the displays of this 

thesis work and the pilot experiment was that the shapes in the pilot experiment were presented in the 

periphery where as in both applications here, the target was presented at the fovea. Obviously there are 

also other discrepancies between the task demands of the pilot experiment and the current work that 

would need to be ruled out, but the difference in latencies asks an interesting question of whether 

attentional selection of feature information differs depending on where in our visual field the object is 

located. We know that at the level of the retina there is a difference in color and form processing 

between the periphery and the fovea (Curio, Sloan, Kalina, & Hendrickson, 1990). Adapting this 

paradigm slightly would allow us to explore whether these differences are also seen at the level of 

attentional selection.   

4.3 Other questions to be answered with the method 
 Though not directly related to the results obtained here, this method also offers a way to 

answer a collection of other questions on temporal attention. As this thesis work and past literature 

(Carlson, Hogendoorn & Verstraten, 2006; Chakravarthi & VanRullen, 2011) has shown, dynamic displays 

offer the temporal granularity necessary to detect small attentional latency differences. The benefit that 

this method offers in addition to that is to look at the attentional latency to individual features. We 

know that as more objects are monitored, the time it takes attention to deploy increases (Hogendoorn, 
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Carlson, VanRullen, & Verstraten, 2010). However the paradigm used for that experiment looks at how 

objects as a whole are monitored rather than individual features. The paradigm proposed here would 

offer the ability to test how attentional latency varies to individual features depending on the number of 

objects monitored. Another possible manipulation would be to also look at whether or not objects that 

do not require monitoring for the task have an influence on attentional deployment. It could be that 

despite being told that they are task irrelevant, dynamic objects still demand attentional resources and 

affect the time of deployment to relevant stimuli. These results could indicate differences in how we 

attend to densely packed versus minimal scenes. 

 Additionally, the proposed method allows us to ask what the effects are in attending to and 

encoding one versus multiple features. The pilot experiment ran prior to this thesis began to explore this 

and found no difference in average attentional latency when participants had to report one feature or 

both of a given object. While the single feature conditions only asked participants to report one feature 

of the object it could be that the other is encoded as well, regardless of task relevance. If participants 

are automatically encoding the second feature then there will be no discernable cost between the single 

and both-feature conditions. It could be that this automatic encoding is specific to the features explored 

with the propose method. However, incorporating other dynamic features, such as shape, could easily 

be implemented. This experiment would allow us to see what cost, if any, there is to attending to and 

encoding multiple features as well as possibly giving insight into what features are automatically 

encoded. 

 Another area to investigate with this method is whether attentional latency is dependent on 

how an object is cued. Kanai, Carlson, Verstraten, & Walsh, (2009) found that there was less lag in the 

deployment of attention when an object was cued by a feature change (a clock’s grey rim turning red) 

versus when the object was cued by the appearance of a new stimulus (a red rim appearing around a 

clock that previously had no rim). However in such clock-report paradigms, it is not certain that the clock 

rim is actually processed as part of the clock or as a separate object. Even if the clock rim is encoded as 

part of the clock, it is not the part that needs to be processed for later use, as participants are reporting 

the position of the hand. With this new method we can test what the differences in attentional 

deployment are when targets are externally cued versus when the features themselves trigger 

attention. One possible way to test this would be to present participants with two T-shapes, rotating 

and moving through color space. Participants are then told that they will be asked to report the color 

and orientation of a shape when, for instance, the two shapes’ colors match. In this task the color of the 
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shape is its own cue instead of an external event such as the appearance of a ring. If the feature itself 

triggers attention perhaps deployment will be earlier. It would then be interesting to see if this earlier 

deployment is also extended to other features such as orientation. Whether or not a second feature is 

benefitted in being cued by the other will lend important insights into how multiple features are 

attended to and encoded. Such an experiment would require multiple trajectories which, as previously 

mentioned, is easily done in color space and can be built into the paradigm for orientation. 

4.4 Conclusion 
 This thesis aimed to develop a new experimental method to measure the temporal qualities of 

attention. This method was applied to two different areas of research within visual attention. The first 

looked to see whether memory precision measurements would reveal a similar time course to benefits 

in target report accuracy. While no significant difference was seen in precision as a function of time, the 

experiments did shed possible light on what conditions may be necessary in order to elicit a cueing 

effect. The second application used multiple rates of change in feature values of a dynamic stimulus in 

order to restrict models of attentional sampling. Though more work is need to decide conclusively, the 

results suggest that features of the same object are either sampled independently with a temporal 

variability of 20ms, or sequentially with a delta under 33ms. While the model predictions under these 

particular conditions do not allow us to decipher between the independent and sequential scenario, 

they do place important constraints on how simultaneous or sequential sampling models could possibly 

work. These findings have important implications for whether such a temporal variability or delta 

between the acquisition of two features is possible to measure with behavioral data.  Together these 

results add to our understanding of how attention pulls out relevant information in a continuous stream 

of visual inputs. These two applications of the new method provide a foundation for future research in 

temporal attention and highlight some important difficulties when relating static and dynamic stimuli. 
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