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Abstract 
 
A methodology has been implemented to minimize the total power consumption of a 
rigid hingeless rotor.  The baseline rotor has a 20ft radius with both 10% root cutout and 
blade solidity and operates at a CT of 0.007 in hover.  The rotor is optimized at five 
advance ratios, 0.0, 0.1, 0.2, 0.3, and 0.4.  A free wake model is developed with a lifting 
line to model the wing.  The input of the code can be either the desired circulation or 
pitch distribution.  A gradient based optimizer built around the free wake analysis allows 
the distribution to be modified at 15 radial by 36 azimuthal elements.  A perturbation 
contour is added to the original distribution to obtain an improved distribution and then a 
new perturbation contour is found in an iterative process.  This process repeats until the 
change in power is less than one percent for a given perturbation contour.  The resulting 
optimized contours yield savings in hover of 30.0% with more modest gains of a few 
percentage points in forward flight.  The main source of power savings is a reduction in 
induced power at all speeds.  The lift distributions tended to move lift production inboard 
although this would be accomplished in different regions of the disk depending on the 
flight speed.  The optimized solutions also responded to sharp and discrete features in the 
wake.  Effects of trailing vortices near the disk can be seen in the downwash and the 
optimized twist distribution seeks to follow these features.  The lift and twist distributions 
vary with significant non-linearity both radially and azimuthally.  There is also little 
coherence radially between the magnitude and phase of respective harmonics composing 
these distributions. 
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1a   core growth coefficient 
c  blade chord (m,ft) 

DC   vehicle drag coefficient 

dc   sectional drag coefficient 

lc   sectional lift coefficient 

parasiteD  vehicle parasite drag (N,lbs) 
d  sectional drag (N/m,lbs/ft) 

rF   blade force component in the radial direction (N,lbs) 

zF   blade force component in the z-direction (N,lbs) 
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H  vehicle lateral force (N,lbs) 
l
r
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l  sectional lift (N/m,lbs/ft) 

xM   vehicle pitching moment (N·m,lbs·ft) 
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n  iteration variable 
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s  position vector on vortex filament (m,ft) 
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inducedu   x-component of the induced velocity (m/s,ft/s) 

localu   x-component of the velocity relative to the blade section (m/s,ft/s) 
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V  vehicle longitudinal force (N,lbs) 

inducedV
r

  velocity induced by vorticity (m/s,ft/s) 

localV
r

  velocity relative to the blade element (m/s,ft/s) 

∞V
r

  free stream velocity or flight speed (knots,m/s,ft/s) 

inducedv   y-component of the induced velocity (m/s,ft/s) 

localv   y-component of the velocity relative to the blade section (m/s,ft/s) 



 x 

v′   y-component in the rotor disk plane (m/s,ft/s) 
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inducedw   z-component of the induced velocity (m/s,ft/s) 

localw   z-component of the velocity relative to the blade section (m/s,ft/s) 
w′   z-component in the rotor disk plane (m/s,ft/s) 
 
 
αaero  aerodynamic angle of attack (radians,degrees) 
αgeo  geometric angle of attack (radians,degrees) 
αshaft  vehicle shaft angle of attack (radians,degrees) 
Γ  sectional circulation vector (m2/s,ft2/s) 
δ  vortex core growth rate 
θ  blade twist  (radians,degrees) 
θcol  collective pitch  (radians,degrees) 
θc1  longitudinal cyclic pitch (radians,degrees) 
θs1  lateral cyclic pitch (radians,degrees) 
θtip  blade twist at the tip (radians,degrees) 
λ  inflow ratio 
μ  advance ratio 
π  3.14159 
ρ  density of air (kg/m3,slug/ft3) 
σ  rotor solidity 
υ  kinematic viscosity 
Ψ  rotor angle (radian,degrees) 
Ω  angular velocity (radians/s,degrees/sec) 
 
 
Abbreviations: 
ANM   Analytical/Numerical Matching 
ATB   Active Twist Blade 
BVI   Blade Vortex Interaction 
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   Dynamics 
CAMRAD II  Comprehensive Analytical Model of Rotorcraft Aerodynamics and 
   Dynamics II 
CDI   Continuum Dynamics Inc. 
CFD   Computational Fluid Dynamics 
HHC   Higher Harmonic Control 
IBC   Individual Blade Control 
MiTE   Miniature Trailing-Edge Effectors 
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Chapter1:    Introduction 

 

Selecting a blade twist for a helicopter requires settling on some compromise 

effective from hover up to the desired forward flight speed.  Deciding how to make this 

decision is challenging as the ideal blade geometry in hover varies a great deal from that 

which is best in forward flight.  For example, CDI1 has developed an ideal twist 

distribution in hover based on minimizing the induced power which has resulted in 25 

degrees of non-linear twist characterized by a "twist bucket" at the tip to accommodate 

passage of the previous trailing vortex filament moving in close proximity to the blade.  

For forward flight Cattopadhyay et al.2 has suggested that much less twisted blade is 

appropriate.  For an advance ratio of 0.3, they found a non-linear pitch with a maximum 

of 6° of twist to be optimum.  Keys et al.3 have demonstrated the difficulty negotiating 

this compromise by testing two blades differing only in the magnitude of their linear 

twist: -11.5˚ verses -17.3˚.  In hover, they found a 2.4% reduction in power using the 

higher twist but in forward flight, there tended to be about a 5% increase in required 

power.  Currently, according to Leishman4, most helicopter blades have been designed to 

incorporate a negative linear twist between eight and 15°.   

Contrasting sources of power consumption over the flight regime drives this 

difference in ideal rotor twist distributions.  The major contribution to power 

consumption at low advance ratios is induced drag while at higher speeds the induced 

power drops off and the parasite power of the vehicle becomes the larger contributor4.  

Throughout the traditional flight regime, the profile power of the rotor disk tends to 

increase only modestly with increasing advance ratio relative to the changes in parasite or 

induced power.  Since parasite drag is largely a function of the vehicle and the induced 

drag tends to be a larger portion of the power consumption than that of the profile drag, 

many recent studies have looked to minimize rotor induced power while ignoring profile 

drag1, 5, 6, 7, 8. 

 Improvements in both material technology and computational performance are 

allowing for better prediction and manufacturing of tailored rotor blades for higher 

performance rotors.  While many aspects of a rotor blade will affect its power 

consumption, taper, sweep, anhedral, rotor speed, airfoil, etc., only the circulation 



 2 

distribution will be varied in this study.  Among the techniques posed for obtaining more 

ideal lift distributions is a passive one, tailoring the blade such that its twisting 

deformations improve the performance of the blade over that of an untailored blade.  By 

varying the blades mass and stiffness distribution Blackwell and Merkley9 showed 

analytically it was possible to tailor the dynamic response to gain power reductions.   

Active methods have also been employed to obtain an improved twist distribution.  In 

one of the seminal works on higher harmonic control, Stewart10 showed that second 

harmonic control can be used to reduce flapping and to avoid stall by redistributing the 

disk loading toward the retreating side of the disk.  Recent work by Cheng and Celi11  

using more contemporary analysis have confirmed that second harmonic control can be 

used to reduce power consumption by very modest amounts, on the order of 1-2%, as 

well as increase thrust or reduce required rotor angular velocity depending on the 

parameter of interest.   

Besides the traditional actuation at the root, one method to achieve twist control is 

through actuators embedded in the skins of a rotor blade to allow for twist control down 

the span of the blade.  One example of this is the NASA/ARMY/MIT active twist rotor 

blade12 which is a 1.4 meter blade with a -10° pretwist made of fiberglass and actuated by 

layers of PFC (Piezoelectric Fiber Composite) embedded in the airfoil skins.  This blade 

in a bench test at one and 10 Hz was able to produce a twist rate of about 1°/m, Bernhard 

et al. 13  Wind tunnel tests of this rotor at the NASA Langley Transonic Dynamics Tunnel 

demonstrated power decreases of between 1.1 and 1.9% using only second harmonic 

control, Sekula,14 and Wilber.15    With the advent of smart material actuation, flaps are 

also becoming a viable concept, which was not the case several years ago as the control 

systems would have been prohibitively heavy and intrusive16.  Flaps allow for Individual 

Blade Control (IBC) rather than a harmonic control over the entire blade system.  The 

University of Maryland17 has built a Froud Scaled Model blade which exhibited ± 6° of 

flap deflection at 4/rev.  Although their focus was on vibration reduction, trailing edge 

flaps could, in principle, be used to obtain a more efficient lift distribution.  Fulton and 

Ormiston18 have demonstrated similar deflections for a model helicopter in hover.   

Miniature Trailing-edge Effectors (MiTE) are an example of active control where 

a tiny flap (only a few percent of the chord) can be deployed near the trailing edge of the 
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rotor blade.  They are deployed perpendicular to the body usually near the trailing edge to 

increase lc  for a minimal actuation force penalty.  They can vary the amount of 

deployment allowing for smooth actuation variation.  They could be distributed and 

actuated in spanwise segments thus allowing for changing the spanwise lift distribution.  

Kinzel et al.19 have produced CFD results and validated them with experimental data 

obtained at the NASA Ames Compressible Dynamic Stall Tunnel of a VR-12 airfoil with 

MiTE’s.  Maughmer et al. 20 extended this work for application to helicopter flight using 

the data collected in the CFD models to create an unsteady airfoil model for a blade 

element analysis with deployable Gurney flaps.   Results demonstrate that at high speeds 

where the retreating blade begins to stall, the deployment of the flaps decreases required 

power by eliminating stall.  At low speeds, there are no differences as the blades are not 

near stall and therefore the MiTE’s are not deployed.   

Blade morphing is a method of changing the airfoil characteristics through 

altering the airfoil shape.  It has the potential to reduce drag because the conformable 

surface does not require seams or hinges which can cause higher drag and within limits 

can conform to a set of more ideal shapes as it moves around the rotor disk.  Anusonti-

Inthra21 looked at conformable rotor airfoils for reducing vibration using distributed 

piezoelectric actuators.  He was able to create a structure which produced 4.24° of trailing 

edge deflection while the structures shape remaining insensitive to the aerodynamic loads 

it experienced, less than 0.24° aerodynamically induced deflection.  This resulted in 

about a 25% increase in lift and 11% increase in drag in full deflection over that of an 

undeflected airfoil.  These technological advancements will allow for much greater 

flexibility in obtaining a desired lift distribution and should allow for reductions in power 

consumption.   

Given all these developing capabilities, it is important to understand what the 

ideal lift distribution should be.  The goal of this study is to determine the ideal lift 

distribution to minimize power consumption through a range of advance ratios and to 

understand the component powers and sources of power reduction.  This is valuable for 

both understanding the upper limit of a helicopter’s performance and how the above 

mechanisms should be applied.   
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1.1  Optimization 

 Historically there have been many attempts to find the minimum power required 

for a given flight scenario.  Among the earliest was finding the optimum lift distribution 

to minimize the induced drag of a fixed wing aircraft accomplished by Munk22.  He 

demonstrated that for a fixed wake of trailing vorticity shed parallel to the free stream 

velocity behind a wing with no roll-up at the tips that the lift distribution which yields a 

constant downwash over the entire span of the wing produces the least induced drag.  It is 

found that this constant downwash distribution is the result of an elliptical spanwise 

loading.  For an untwisted planform with an ideal constant airfoil cross-section, an 

elliptical chord distribution yields an elliptical lift distribution and constant downwash23.  

This solution, despite these assumptions remains a very good approximation of ideal 

distribution for high aspect ratio wings.  Betz24 describes a similar condition for a “lightly 

loaded” screw propeller.  This is a prescribed helical wake where the free stream flow is 

axial relative to the rotor disk.  The phrase "lightly loaded" implies that there is no 

contraction of the wake – therefore the near-wake geometry is the same as the far-wake, 

which is only a valid assumption for low thrust coefficients.  In this case, he found that 

the lift distribution which consumed the least power due to induced drag was that which 

produced a helical far-wake and therefore constant induced axial flow.  Thus, the same 

condition as Munk described for a fixed wing aircraft, a constant induced downwash or 

inflow.  Although Betz described the condition for minimum induced power, he did not 

provide the actual circulation distribution which would produce this condition.  Prandtl 

described a method for approximating the flow-field around this “screw propeller”.  This 

method is a two-dimensional approximation looking at the r-Z plane (his solution 

assumes the flow is unchanging in the azimuth) and treats the helical sheets cutting 

through this plane as discrete lines of vorticity emanating from the axis of the screw to a 

point equivalent to the radius of the blades of the propeller.  The flow field describes the 

"leakage" of fluid or induced flow around the edge of the helical wake and provides the 

circulation distribution over the propeller blades.  Goldstein25 found an exact analytic 

solution for the condition Betz described.  Using Bessel functions, he was able to 

describe the flow field in the far-wake analytically and therefore the circulation 

distribution necessary to create it.  This analytic solution, while impressive, does not 
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provide much information for analyzing a helicopter.  The wake in forward flight is 

obviously skewed making the propeller wake incompatible.  However, even for hover, 

there is both the question of wake contraction and the formation of the tip vortices.  The 

strong tip vortices of a helicopter typically descend much slower than the rest of the 

wake.  They basically serve as the interface between the internal downwash and external 

induced upwash26.  In Goldstein’s solution all the trailing vorticity retreats at the same 

rate, which would tend to occur with higher free stream axial velocity.  The circulation 

gradient also does not change as rapidly at the tips for a propeller and are therefore not as 

strong.  Therefore Goldstein's solution becomes increasingly in error as the free stream 

axial flow decreases, and it is not valid for hover where all the axial flow is induced27.  In 

climb this solution is increasingly valid with increased speed of assent. 

 Another approach apart from the wake models just considered are the solutions 

provided by Blade Element-Momentum Theory (BEMT).  Using this method, Gessow28 

showed that a constant downwash in hover will occur with a twist distribution of, 

r
w

r
Rr ind

efftip Ω
+=⋅= αθθ )( .      (1.1.1) 

This distribution yields a constant effective angle of attack αeff and constant downwash.  

He also demonstrated that minimum blade profile power can be obtained using the 

following chord distribution, 

r
Rcrc tip ⋅=)( ,        (1.1.2) 

where by the airfoil is operating at 
odc  at every point on the blade.  This method also 

leads to the ideal torque coefficient, 

od
T

Q cCC ⋅+=
92

23 σ ,       (1.1.3) 

This solution provides a good reference value but under predicts any likely obtainable 

value.  Harris and McVeigh29 suggest a reasonable upper limit for figure of merit of 0.85.   

The problem with the BEMT conclusion is that it is based on an actuator disk which 

spreads the effect of the blades evenly all the way around the azimuth.  It also does not 

satisfy the boundary condition that the circulation go to zero at the blade tips, thus 

yielding an infinite span-wise circulation slope at the tips of the rotor blades. 
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Prouty30 also used an actuator disk to model a helicopter in forward flight.  He 

resolved the wake of an infinite blade model into a single sheet of trailing vorticity which 

looks much like the wake a fixed wing aircraft would create. In fact, like a fixed wing 

wake, the wake would be unchanging in the longitudinal direction since it is shed from an 

infinite number of blades.  The induced velocity could then be found by integrating the 

effects of the vorticity laterally through the wake.    The induced velocity vary laterally, 

but, ignoring fore/aft variation across the disk, this method naturally leads to the same 

result as the fixed wing solution for minimum power consumption, an elliptical lift 

distribution with a constant downwash.  He used this formulation as the basis for an 

induced power efficiency factor that would serve the same purpose as Oswald’s 

Efficiency Factor in the fixed wing arena.  

Harris and McVeigh29 explored the application of lifting line theory to rotorcraft 

and the production of uniform inflow.  They noted a discrepancy between BEMT’s 

prediction that a uniform bound circulation strength down the span of the blade will yield 

a constant downwash and the non uniform inflow produced by a helical tip vortex which 

would represent the result of constant circulation strength.  They also compare the ideal 

solution for fixed wing aircraft with a potential for rotorcraft.  They suggested that a rotor 

blade in hover with ideal twist should compare closely with that of a fixed wing aircraft 

with ideal lift distribution.  This is because the local velocity the blade experiences 

increases proportionally to radius while ideal twist is inversely proportional thus having a 

canceling effect resulting in the same near-wake on the blade as an untwisted fixed wing 

in forward flight.  There are secondary effects such as the curvature of the shed wake and 

the interaction with other blades’ wakes which do alter the solution.  Therefore, to first 

order effects, the ideal solution should be similar to that of a fixed wing. 

Theodorsen31 used Betz’s principle for minimum induced power for propellers to 

model the “static propeller” or hovering helicopter.  His principle basically states that in 

the far-wake, the induced axial velocity of the wake must be constant everywhere.  In 

hover, the symmetry of the scenario allows the optimization problem to be posed as one 

equation and one constraint.  Written as a ratio, the solution where by the ratio of the first 

derivative of the power by circulation and thrust by circulation, 

Γ∂
∂

Γ∂
∂ TP , is constant at all 
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points along the blade is therefore the ideal.  This equation implies that there is no region 

of the blade where extra benefit could be gained by changing the circulation.  Using this 

method with a blade element formulation of power and thrust, he found that not only is 

the downwash constant in the far-wake but also at the disk.  Having come to this 

conclusion and knowing the far-wake solution from Goldstein, he was able to calculate 

the radial contraction of the wake with axial distance and thus fully describing the wake.  

His ideal solution has a contracting wake with a uniform downwash at any given 

horizontal cross-section, but later results have shown that this does not reflect an ideal 

geometry of a typical helicopter wake. 

Moffitt and Bissell27 demonstrated a corrected solution with the inclusion of a 

term in the power equation missing from Theodorsen’s formulation which accounted for 

changes in power due to changes in induced velocity.  They describe the optimum lift 

distribution around the rotor disk in hover based on minimizing total power.  They 

numerically performed a formal optimization to minimize total power while maintaining 

a given thrust.  Their approach used a wake geometry model based on empirical data 

governed by a few major parameters.  Profile drag was modeled using higher order 

algebraic expressions.  This wake geometry (which reflects measurements taken by 

Langrebe26) creates a quickly contracting wake most of which occurs within one 

revolution.  Sheets of vorticity in the wake descend at a rate which varies linearly with 

radial distance from the hub.  The tip vortices descend slower and their descent rate is a 

function of the peak circulation.  This solution is compared with experimentally obtained 

data from the blades of the UH-60.  They found that the anticipated constant downwash 

only occurs on the inner 75% of the blade.  The outer 25% reflects the region of the blade 

which is strongly influenced by the tip vortices descending slowly and remaining close to 

the disk.  They also found that the ideal circulation distribution was not flat but had a 

large spike at the tip.  The twist is not far from the ideal BEMT twist in hover but with a 

twist bucket at the tip.  They also looked at the optimal twist distribution in forward flight 

imagining that the blade could twist azimuthially in an unconstrained fashion.  This 

model uses a rigid helical wake.  They found continued improvement with forward flight 

speed over the baseline rotor on the order of 10%.  In comparing the major differences 

between the baseline and optimized solutions, they note that the optimized solution tends 
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toward a more symmetric loading fore and aft as well as eliminating the negative lift on 

the advancing tip. 

Prior to Moffitt27, Blackwell and Merkley32 explored ideal loading in forward 

flight to design an aeroelastically conformable rotor.  In order to accomplish this, they 

first had to determine the ideal twist distribution which they would attempt to match.  

Consideration was given to several possible ideal rotors include maximum L/D, 

maximum lc , or minimum cd, but minimizing the ratio of rotor torque to lift was settled 

upon.  This solution was determined using calculus of variations.  Because of the 

difficulty in minimizing the induced drag, it was excluded from the calculations.  Two 

advance ratios were considered, 0.3 and 0.4.  The results of this analysis were twist 

distributions for each speed that varied azimuthally and radially.  Compared to the 

baseline rotor modeled after the UH-60A, the major change is a lessening of twist on the 

advancing side where the blade would be producing negative drag and more twist on the 

retreating side were the blade is in need of high angle of attack.  In stalled regions, the 

twist is lowered so as not to stall.  Contour plots of the relative angle of attack between 

the optimum and baseline solution display a smoother contour for the optimum which 

lacks large spikes, presumable beyond the stall angle, which are present in the baseline.  

Results of the conformable rotor are discussed in section 1.3.  

Bennett33 demonstrated the applicability of formal optimization theory to aid in 

the design of helicopter components.  He briefly described optimization theory and 

presented four example cases.  Included in the optimization examples are the designs of a 

blade flexure, mast, and blade mass distribution and the twist distribution for hover.  The 

baseline rotor used the NACA 0012 airfoil.  The hover optimization minimized power 

while varying the pitch at 10 radial stations.  The constraints were that the thrust must 

equal a specified value and that the twist not exceed 30° anywhere on the blade.  The 

analysis was performed using BEMT and used airfoil data to capture viscous effects.  The 

solution obtained closely resembled that of the ideal twist distribution describe by 

BEMT. 

Walsh et al. 34 looked at formal optimization using HOVT (a strip momentum 

theory analysis) and the Rotorcraft Flight Simulation Computer Code C-81 which is a 

forward flight analysis to design an optimal blade.  A single point optimizer, the 
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Constrained Function Minimization (COMMIN) code, was used to minimize power 

while maintaining certain constraints.  As well as maintaining a specified thrust 

coefficient, the rotor was required to maintain certain performance standards outside of 

hover.  First, in forward flight, the required power was not to exceed the engine power.  

Second, airfoil stall was not permitted except in the reverse flow region.  Finally, the 

capability of performing a certain pull-up maneuver with the engine power was 

maintained.  The blade geometry variables included blade radius, taper radius, root chord, 

tip chord, and maximum twist (which are assumed linear from tip to root). They 

compared using this formal optimization with the conventional design process which they 

describe as iterating between chord and twist distributions.  The formal optimization 

results they obtained were described as being similar to those obtained by the 

conventional design approach, but much more efficiently in both time and man-power. 

Hall and Yang35 developed an approach for forward flight similar to that of 

Goldstein in that it relies on a non-contracting wake or the "lightly-loaded" assumption.  

It couples a near-wake solution where the forces, moments, and power are calculated 

with a far-wake solution where the circulation can be determined numerically from the 

geometry just as Goldstein did analytically in axial flight.  With the sheets serving as the 

boundary conditions for predicting the flow between the shed helical vortex sheets, a far-

wake velocity distribution was found numerically.  Again this relies on a prescribed wake 

with a certain prescribed inflow and models the rotor as flying at zero shaft-angle.  Based 

on this model and subject to the constraints of balancing the vertical forces and the 

rolling and pitching moments, the optimal lift distributions for minimum induced power 

were found.  The lift distributions tended to be smoother than a baseline rotor and 

demonstrated a sharp but smooth drop to zero at the tip.  The peak thrust values were on 

the retreating sides at 200° and 340°.  These contours also demonstrate symmetry fore 

and aft.  When a limit in airfoil lc  is imposed, the peak values move further toward the 

blade tips on the retreating side.     

 Bliss36 et al. created a free wake code they called Evaluation of Helicopter 

Performance using Influence Coefficients (EHPIC) which is designed to find optimal 

solutions in hover and axial flight.  There are several different possible objective 

functions, which include gross thrust, hover figure of merit, axial propulsive efficiency, 
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or profile, induced or total power.  The code uses a lifting surface method to find and 

model the bound circulation.  This lifting surface method uses influence coefficients 

through which the effects of perturbations of circulation and wake collocation point 

positions are converged through several iterations.  Airfoil data are used to model the 

profile drag.  The wake is a Eularian-style relaxed wake which employs curved vortex 

filaments to model the trailing vorticity.  The code allows for the vortices to merge into a 

larger one at the tip just as the sheet rolls up in nature which generally results in the 

merging of vortices between the first and second blade passage.  Inboard vortices are 

larger than the tip vortex to reflect the fact that the inboard vortices really represent 

sheets.  Convergence is defined as when the root sum square of every position 

perturbation over a given loop is below an arbitrarily specified value.   

The EHPIC37 code was coupled with an optimizer and is presented by 

Quackenbush et al.  Initial studies with the EHPIC code once attached to an optimizer 

have been presented.  The initial work was to demonstrate that one could use a free wake 

for optimization.  Optimization was performed with the variables of twist, taper, 

anhedral, and sweep at 15 radial segments.  Initial results performed with just two trailing 

filaments suggested this was possible and the two filament models showed large 

reductions in power as compared to baseline models.  One demonstrated effect on the 

circulation and twist distributions in hover was a bump near the tip due to close 

blade/vortex interaction.  The circulation distribution also tends to be flatter inboard.  

They moved on to a more realistic models with a tip vortex and 3 inboard large core 

vortices with 2-3 turns of free wake.  Initial results still tended to flatten the circulation 

distribution over the span of the blade with almost all of the performance improvements 

due to reduced induced drag.  Finally, an initial constraint on airfoil stall limiting lc max to 

0.8 is included in one trial which demonstrates a reduced circulation inboard near the root 

where the blade reduced its angle to prevent stall. They generally found that compared to 

twist distributions of current helicopters, the optimized twist distribution tends to flatten 

the circulation distribution except for a twist bucket at the tip like that exhibited on the 

UH-60, which they describe as moving the blade out of the way of the forming tip 

vortices.   
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 Davis et al. 38 have performed an optimization for the blades of a Variable 

Diameter Tilt Rotor (VDTR) using a modified version of EHPIC for a dual point 

objective function.  For this case, an objective function is formed by a weighted average 

of the power in cruise and hover.  This weighting factor is varied from zero to one to 

analyze the full range from forward flight to hover and anywhere in between.  

Optimization used 16 variables for chord, twist, and sweep for a total of 48 variables.  

Optimizing for twist and chord, they show the ability to improve performance over the 

entire flight regime while sweep has little effect because of the low tip mach numbers in 

hover and axial flight. 

Several works in recent years have focused on a multi-disciplinary approach to 

optimization where a blade might be optimized for minimum power but subject to 

constraints and variables over a wide range of disciplines.  This work recognizes that the 

aerodynamics of a blade can not be decoupled from its structural response and vehicle 

effects and should be designed with these effects in mind.  Mantay and Adelman39 

discussed a NASA/Army joint effort to create a comprehensive optimization code to 

increase performance while decreasing vibration and noise.  The objective function to be 

minimized is a weighted summation of horsepower and oscillatory loads transmitted to 

the hub.  Design variables included gross blade dimensions, including blade radius, taper 

radius, root chord, tip chord and twist, as well as the mass distribution while constraints 

included operational requirements such as not exceeding possible engine power, as well 

as limiting airfoil stall and trimming the vehicle.  Aerodynamic analysis was 

accomplished using inflow models in hover and climb and CAMRAD’s wake model in 

forward flight.  The result of this work is a blade design with significant power 

improvements though no specific description of the lift or circulation distributions is 

provided.   

 Chattopadhyay et al.2 performed a multilevel optimization where by several cost 

functions are decoupled and optimized independently in succession.  The first level 

optimizes for minimum power constrained to a constant thrust and minimum solidity.  

Level two sought to reduce static and vibratory loads while step three took the blade 

stiffness coefficients calculated on level two and sought to minimize the blade weight.  
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The aerodynamic model has seven variables which are coefficients of two cubic shape 

functions for chord and twist, 
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which generally limited the results to a rather smooth profile.  In an earlier work, 

Chattopadhyay40 performed a similar analysis using a the shape functions, 
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The chord is a rectangle distribution with a curved-off tip while the variable α defines 

whether the chord distribution has a contour with a positive or negative curvature.  For 

blade stiffness the blade geometry was varied at 10 radial stations where the thickness is 

varied on all side elements of the cross-section.  The analysis was performed using tools 

contained in CAMRAD.  The aerodynamic model includes a uniform inflow model and 

trimmed the helicopter using a wind-tunnel trim data.  Optimization is conduced using 

the CONMIN optimization code.  The blade is optimized for one design point at an 

advance ratio of 0.3.  Results showed that compared to a straight rectangular blade with 

linear twist, a 19.8% improvement in power coefficient is obtained.  The optimized blade 

has a nearly linear chord distribution but a very non-linear distribution in twist with a six 

degree range from root to tip. 

 Zibi41 also performed a similar study for optimal blade design for high speed 

forward flight (μ=0.463).  His analysis also used CONMIN with an aeroelastic 

performance code R85 developed by Eurocopter.  The objective was to minimize power 

by varying airfoil, twist and rotor planform.  Constraints included limiting loading on the 

pitch links.  Results showed a trend toward maximizing chord when an airfoil is 

operating at a high L/D and including tip sweep to reduce drag divergence due to high 

Mach numbers at the tip. 

 Two authors have recently published studies minimizing rotor induced power 

using a free-wake.  Rand7,8 describes a methodology for finding the optimal circulation 

distribution using a prescribed wake code as well as the free vortex wake code in 

CAMRAD II.  The blade is modeled as a lifting-line.  He sites the weak coupling 
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between the wake geometry and the circulation strength as justification for initially using 

a prescribed wake code.  His methodology used a gradient based optimization to 

minimize induced power while maintaining a thrust coefficient of 0.0088 and zero hub 

moments while the shaft angle of attack is always set to zero.  The wake is modeled with 

a single peak for the tip vortex and therefore, the work is limited to advance ratios of less 

than 0.25 because above that the blade circulation on the tip on the advancing side begins 

to go negative causing counter-rotating vorticity in that tip region.  The circulation is 

modeled using Fourier coefficients around the azimuth for which Rand asserts that few 

harmonics are required to model this effectively.  For the hover case, once the lift 

distribution is found, one can find the minimum profile drag chord distribution but this 

can not be easily accomplished in forward flight.  Data are presented for two cases (hover 

and an advance ratio of 0.25) but no generalizations were drawn from the results.  In 

hover, they found that the circulation was basically flat up from the root up to the tip 

where the circulation drops off to zero.  The forward flight data no longer demonstrated 

the forward/aft symmetry seen in Hall35, despite similar flight conditions although it is 

pointed out that these contours are smoother than a baseline rotor’s respective circulation 

distributions.  Performance data from hover to an advance ratio of 0.25 showed that the 

optimized induced power was, as expected, always less than the reference rotor but above 

the ideal.    

Wachspress, Quackenbush, and Solomon1 also used a free wake to study induced 

drag solutions in forward flight and hover.  Using their method of influence coefficients 

in the EHPIC code, they found the twist to minimize the total power on a helicopter in 

hover for helicopters of varying numbers of blades.  The contours included the “twist 

bucket” but not the peak reflected in the circulation as predicted by Moffit27.  They 

suggest that since the induced power is the much larger component in hover, including 

the profile power does not significantly change the twist distribution.  Circulation 

contours tended to be largely flat with a slight slope which changes as a function of the 

number of blades.   

They also used a relaxed wake model, the CHARM code, to compare several 

cases in forward flight.  The forward flight cases were performed with a shaft angle of 

zero and trimmed to zero flapping in most cases.  To explore only the induced power, 
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they subtracted off the ram power and what they termed the rotor parasite power which 

for a shaft angle of zero is the product of flight speed and longitudinal rotor force.  There 

were three parts the forward flight section.  The first was a parametric study of linear 

washout.  Since the contour drag was excluded, optimum washout tended to be very high, 

between 20° and 30°.  Effects like stall and compressibility were added but had little 

effect because they only affected the theoretical lift-curve slope.  The second part 

assigned the circulation directly in mode shapes that varied linearly with radial position 

and either did not vary azimuthally or did so on the first and second harmonic.  These 

demonstrated lower power consumption for slopes which decreased with radial position 

(tending toward an elliptical distribution) and optimal one and two per revolution 

circulations had minimums at 90 and 75 as well as 225 respectively.  The third part 

applied higher harmonic pitch controls over a first harmonically trimmed rotor.  Only two 

advance ratios were presented and second and third harmonic inputs were found to be 

beneficial with the three per revolution being more effective at 0.2 and two per revolution 

at 0.4.  At 0.4, forth and fifth harmonics were basically found to be ineffective to 

detrimental depending on the phase angle.    

Sun et al. 42 have introduced a method which coupled a 2-D CFD approach with a 

free-wake code with curved elements.  The CFD is used to capture the unsteady effects of 

the airfoils as well as optimize them for a particular blade.  The airfoils are optimized by 

using a perturbation contour super-imposed on current airfoil contours and seek to 

maximize the period averaged L/D.  Then the free wake method is used to optimize the 

twist and chord distributions.  This procedure is performed at an advance ratio of 0.25 

and produces a 2.64% decrease in thrust to torque ratio. 

Within this list of optimization techniques, all can be broadly characterized as 

either a parametric study where component variables are systematically varied verses 

methods which used some optimality condition to solve for a distribution.  Optimizing a 

distribution will be used because it is not limited to specific mode shapes or gross 

variables but only by the size of the discritization of the model. 
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1.2  Airloads Prediction 

 There are generally three categories of models used for helicopter performance 

prediction.   In order of historical development, they are inflow models, wake models, 

and other CFD approaches.  The relative merits and drawbacks of each are briefly 

described below as well as an elaborate survey of wake models, the method chosen for 

this study.  

 

1.2.1  Inflow Models 

This method was introduced by Froude and Rankine in the form of momentum 

theory.  Initially these made use of basic control volume conservation laws to determine 

inflow, thrust, and rotor power.  These models traditionally treated the blades as an 

actuator disk which has no thickness but sustained a finite pressure difference across the 

disk, thus producing thrust.  Momentum theory is applicable to forward flight as well as 

hover.  Glauert provided a formula for the inflow at a given advance ratio based on the 

inflow through the disk due to flying forward at an angle of attack as well as the induced 

inflow.  Unfortunately momentum theory can only capture gross effects in the wake.  

Blade element (or strip) theory can be applied to extend the accuracy of momentum 

theory to account for radial variation. 

While in hover, Blade Element-Momentum Theory (BEMT) allows for prediction 

of inflow, thrust, and power distributions, in forward flight, one must prescribe an inflow 

distribution in order to obtain the forces and moments.  The simplest model assumes a 

constant inflow though many have proposed different potential models ranging from 

linear to trigonometric forms.  These models have become quite sophisticated today.  

Mangler43 used a Fourier series to more accurately model the inflow distribution.  Peters 

et al. 44 have extended this work on a similar track, modeling the rotor inflow using 

Legendre's equations in elliptical coordinates.  This satisfies the continuity equation as 

Legendre’s equations are solution to Laplace’s equation in elliptical coordinates.  Using 

this method, one can capture the unsteady pressure on the rotor blades rather than over 

the entire disk. 
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1.2.2  Computational Fluid Dynamic Models  

 A second possibility and an increasingly viable method for modeling helicopter 

performance is through CFD approaches.  With current computational resources, fully 

three-dimensional Euler or Navier-Stokes (N-S) models are not yet feasible for design 

optimization.  Leishman4 suggests these models are still very grid dependent and too slow 

for full design work, although they have been valuable for studying some features such as 

tip vortex formation.  Some hybrid methods may soon be feasible for optimization.  

Anusonti-Inthra45 produced a fully coupled hybrid particle VTM-CFD model where a 

three dimensional Navier-Stokes (N-S) CFD mesh is built around a blade to only a few 

chord lengths away from the blade in any direction.  The N-S CFD region is effective in 

capturing vorticity production and blade loading as well as the effects of unsteadiness, 

compressibility, and stall which inviscid methods can not capture.  The particle Vortex 

Transport Method (VTM) is a larger over-laid grid, extending three to five rotor radii 

from the axis of rotation, which takes the vorticity produced in the N-S region and 

determines how the wake will evolve.  This induced velocity is also fed back into the N-S 

model as a boundary condition for the next time step.  The particle VTM method has the 

benefit of requiring fewer grid points than the N-S and does not diffuse the vorticity away 

as N-S approaches tend to do.  Bhagwat et al.46 have also created a hybrid approach 

between HELIX-IA, a Vorticity Embedding (VE) method; and TURNS, a RANS CFD 

approach.  The CFD mesh is again encapsulated with the VE grid as in the above method.  

They noted the importance of capturing the descent rate of the tip vortex between its 

formation to the first blade passage for which there is a difference between that predicted 

by HELIX-IA alone and the hybrid method.  Beyond the first blade passage, trailing 

vortex descent rates are consistent.  For now, these methods remain too computationally 

intensive for this work. 

 

Vortex Wake Models: 

 A final methodology and the one chosen for this research is wake modeling. 

Wake models attempt to capture the effects of interactions between the rotor blades and 

their wakes.  These models can be broadly generalized as either prescribed wake models 

where the wake follows a course tracked out by the rotor blades through space or whose 
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position is empirically described by models such as that created by Landgrebe26 and 

Egolf,47, 48 or a free (or force-free) wake, where the wake is allowed to distort in the 

presence of the velocity field it creates.  These models are founded on Helmholtz's 

Theorem which states that a vortex filament in an inviscid flow can not end in a flow and 

therefore a vortex in a flow field must form a closed path or end at a physical barrier.  In 

the case of a wing or rotor blade, any change in circulation on the wing must be shed into 

the wake which trails behind it.  This wake of vorticity induces a flow field which is 

super-imposed over the free stream velocity and affects the aerodynamic forces produced 

by the blade.   

 Prescribed wakes are less numerically intensive but require the user to make 

assumptions about how the wake will deform.  The wake geometry and the velocity field 

it induces influence the bound circulation and therefore, the more accurate the wake is, 

the more accurately the forces will be predicted.  Prescribing a wake geometry is not a 

simple task, as the geometry is complicated and is a function of many variables.  For 

example, in hover, there is a significant amount of wake contraction and the trailed sheets 

quickly roll-up into the tip vortices.  Approaches to prescribing wakes have varied from 

ignoring these affects, as Hall35 and Goldstein25 have done using the lightly-loaded rotor 

assumption, to incorporating some empirical observations into the wake model as 

Landgrebe26 and Moffitt27 have done.  No matter the model, prescribed wake models can 

not be used for performance optimization unless the model makes some provision for 

changes in wake geometry as the circulation distribution changes.  Otherwise any 

optimization will exploit the fixed geometry and load the blade in a non-physical manner.  

Landgrebe's model,26 for example, takes into account the changing descent rate of the tip 

vortices depending not only on the thrust coefficient but also the blade twist.  Ultimately 

though, any inaccuracies in the model will be reflected in the optimized solution, so there 

is an incentive to use as accurate of a model as possible. 

 Increases in computational speeds have recently made free wake optimization 

more feasible.  Free wake methods are attractive because they incorporated a flexible 

wake geometry in the solution and therefore remove the limitations imposed by the 

prescribed-wake models.  Of the free wake models, there are two approaches, time 

marching and relaxation.  Time marching methods usually begin with a prescribed wake 
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or no wake at all.  Over successive time steps, new vortex filaments are shed into the 

wake at the trailing-edge of the rotor blade while the entire wake convects through the 

velocity field.  In a steady problem, eventually this method will converge to a periodic 

solution.  Time marching (or Lagrangian) methods have the advantaged of being capable 

of modeling unsteady problems including maneuvering flight, although they have the 

disadvantage of traditionally being unstable in and near hover.  Relaxation (or Eularian) 

techniques begin with a prescribed wake as an initial guess and this is allowed to "relax" 

until the individual vortex filaments are tangent to the flow at control points throughout 

the flow field.  This wake tends to be more stable in hover depending on the chosen 

algorithm.  Below is a brief description of various free wake codes which have been 

described in the literature. 

Scully, 49,50,51 Clark and Leiper,52 and Landgrebe53 all laid some early ground 

work for free wake codes.  Scully’s work is of particularly note as it formed the 

foundation of early versions of existing comprehensive codes such as the CAMRAD 

series and UMARC.  Scully wrote an iterative relaxation free wake analysis for hover 

which tracks the motion of a single trailing vortex at the tip.  The inboard sheet is 

modeled as one prescribed vortex at the mid-span of the blade with the possibility of shed 

vortices.  The shed vorticity is basically ignored for his analysis making the assumption 

that, at the low advance ratios used in his study, lift does not change drastically around 

the azimuth and therefore minimal vorticity is shed into the wake.  The tip vortex is 

composed of 15° linear segments with a circular arc filament used to capture the self 

induced velocity on a point itself.  In a later version of the code, provisions for inboard 

sheets were made instead of using a vortex filament.  The possibility to model linear 

variation across the filaments and sheets were also included.  In hover six to 12 turns of 

free wake are added to a semi-infinite vortex cylinder to fulfill the conservation of mass 

boundary condition.  In forward flight, he used two to four rotations.  In order to help 

stabilize the distortion (relaxation) routine, the previous distortion velocity is averaged 

with the current value.  He also employed an artificially large vortex cores to smooth the 

blade loading.   

 Clark and Leiper52 devised a relaxation full-span free-wake code for hover 

performance integrated with lifting line theory that employs empirical airfoil data and 
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blade flapping.  The trailing filaments are spaced unevenly along the span to collect more 

at the tip.  The code uses straight vortex filaments to approximate the curved contracted 

helical filaments in the near-wake.  Lacking data on viscous core thickness, the tangential 

vortex velocity is ignored for any region over 400 feet per second.  In the far-wake, 60° 

segments of a vortex ring form steps for 30 revolutions below two free turns.  A 

predictor-corrector method is used to find the new position of the vortices.  It averages 

the current value with the future to increase stability.  Convergence was judged visually 

by examining figures drawn by computer-aided graphics.  

 Landgrebe53 applied a time marching free wake methodology to forward flight.  

The model only predicted the wake distortion and was not coupled with a performance 

prediction code.  This code is a lifting line method that prescribes the bound circulation 

and the initial wake geometry.  The wake is modeled using the trailing filaments due to 

spanwise variation, but ignores the shed filaments due to the variation in lift as the blades 

move around the disk, suggesting this is only a secondary effect.  This is justifiable since 

the shed vorticity will be much smaller than the trailing vorticity at low advance ratios.  

The vortex core is treated as 1% of the blade radius irrespective of wake age.  Within the 

core, induced velocity is assumed to be zero.  The wake was divided into 15° increments 

with up to 10 radial segments of trailed vorticity and five rotor revolutions.  The code 

uses a first order explicit Lagrangian relationship to determine the change in position 

over a single time step.  These equations are, 

( ) RtVux i /cos Δ⋅+=Δ ∞ α ,      (1.2.1a) 

Rtvy i /Δ⋅=Δ ,       (1.2.1b) 

( ) RtVwz i /sin Δ⋅+=Δ ∞ α ,      (1.2.1c) 

tipVRt /ψΔ⋅=Δ .       (1.2.1d) 

Convergence is determined when a fixed periodic geometry is reached.  In each time step, 

there was a limit to the induced velocity allowed to help stabilize the code.  To increase 

speed, the far-wake is calculated once initially and this value remains constant for the rest 

of the calculation.  Landgrebe found that the computational cost of several trailing 

filament was too much for the time and that reasonable results could be obtained without 

the inboard trailers.   
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 The Comprehensive Analytical Model of Rotorcraft Aerodynamics and 

Dynamics54 (CAMRAD) was the first version of a continually evolving rotorcraft 

performance prediction code written by Johnson.  This code couples a blade dynamics 

and aerodynamics model which can be applied to several helicopter configurations; rigid, 

gimbaled, or teetering.  The bound vorticity is modeled with segments having a linear 

distribution of circulation.  The code has many options for modeling the aerodynamics.  

For example there are several wake modeling options: one can use a simple assumed 

prescribed geometry, provide data from experimental measurements, or calculate a free 

wake.  This free wake model includes the explicit iterative relaxation approach taken 

from Scully.  It models only the tip vortex as free.  The inboard local wake can be 

modeled with rectangular sheets of varying numbers or as a prescribed vortex lattice.   

When using the sheets, directly behind the blade there are many slightly overlapping 

rectangular sheets over the span of the blade, but the number of sheets decreases while 

their size increases with distance from the blade finally reducing to just one in the far-

wake.  The inboard sheets can also be used to model the tip roll-up as the tip sheet is 

allowed to roll back on the others. 

 Sadler55,56 wrote a time marching lifting line approach which uses elements with a 

linear circulation distribution to represents the bound circulation.  The solution begins 

impulsively from rest and a vortex lattice wake made of linear filaments begins to form 

behind the wing.  To save on computational time, the shed filaments of the vortex lattice 

are ignored after a specified distance leaving only the trailing filaments.  To find the 

velocity at the junction between two elements, the two elements are modeled as segments 

of a circular arc so that a self-induced velocity component may be found.  The vortex 

core model is a Rayleigh velocity profile where the peak velocity is specified as a certain 

percentage of the rotor tip speed.  This parameter was varied to match different 

experimental results.  This model also includes vortex stretching, vortex spreading - 

which is essentially using a extra-large core size for the inboard shed and trailing 

vorticity since they actually represent more diffuse sheets of vorticity which do not 

demonstrate extreme peak values, as well as limiting the largest possible velocity in those 

"sheet" profiles.  The core radius of the inboard lines is half the sheet radius.  The 

distortion of the wake is determined using forward explicit Euler integration.    
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 Berry57 created a time marching free wake method in an attempt to model surface 

pressures on the fuselage of a helicopter in forward flight with blade flapping and 

lagging.  The model uses a vortex lattice surface to model the blades and wake while the 

fuselage surface is made of a constant strength source panels.  The wake starts 

impulsively and is allowed to convect with the induced flow field.  Since the wake is a 

vortex lattice, it captures the unsteadiness due to shed vorticity of the flow.  No details 

are provided to describe how the deformation is calculated. 

Egolf47,48 used a time marching approach which modeled the bound circulation as 

a lifting line and the wake using a vortex lattice method to model the wake, built up from 

shed quadrilaterals of constant vorticity.  These boxes, by forming a closed path, satisfy 

Helmholtz's Theorem by leaving no vortex filaments ending in the flow field, and 

therefore model the shed as well as the trailing vorticity.  The wake is then essentially a 

time history of the circulation produced at the rotors as they move away.  In order to 

model the wake motion, an explicit Euler time integration is used.  The viscous core 

vortex size is based on a percentage of the box width which was either 10 or 30% of the 

width, the difference having little effect on the results.  He also used 24 shed lattices with 

a more densely packed array near the tip to capture the physics of the tip roll-up.  Three 

revolutions of filaments using 7.5° segments were used.  A convergence criteria of less 

than 2% change in the period averaged thrust coefficient per revolution was used.  

 Bliss et al. 58 introduced the application of a parabolic arc curved filaments rather 

than a straight-line or circulation arc vortex filaments for modeling the rotor wake.  These 

Basic Curved Vortex Elements (BCVE) allow for modeling the rotor wake with fewer 

elements than is necessary for the straight line filaments and therefore require less 

computation time.  Along with these elements, it was necessary to devise a method of 

determining curvature and orientation of the elements.  Curved elements necessitate the 

use of two types.  Because the elements are curved it induces a velocity on itself.  For a 

straight line this value is either zero because all the points composing the filament fall on 

the center of the viscous core or is indeterminate if using the inviscid solution.  Therefore 

they applied Self Induced Vortex Elements (SIVE).  The SIVE is accomplished by 

performing the integral from either end of the filament toward the control point on the 

curve.  Using a specified cut-off distance around the control point allows one to obtain a 
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finite value as the integrals approach the singularity at the control point.  One 

disadvantage of this method is that it is computationally more time consuming to 

calculate the induced velocity than it is for a straight line segment.  These elements were 

incorporated as a subroutine to Boeing’s B-65 rotor air loads computer program while 

converting it from a prescribed to free wake code.  This method uses a predictor-corrector 

time-stepping approach to their solution.  The far-wake is rigid to allow for proper 

convergence.  Convergence is based on the position of the collocation points remaining 

constant between iterations.   

 Quackenbush et al. 59 describe a new methodology which employs a method of 

influence coefficients in the modeling of a lifting surface with a wake.  This code known 

as EHPIC is a Eularian approach using curved filaments only for hover and axial flight.  

This method is very similar to that of a lifting-surface method, where one can find 

influence coefficients which relate the circulation at any point on a lifting surface with an 

induced velocity at every point on that surface.  Looking at planes perpendicular to the 

tangent of the curve at its collocation point, they sought a solution by which there is no 

velocity in the normal or binormal directions at the collocation point on any filament.  

This means the filament is tangent to the flow.  In the same manner as the lifting surface 

method, one can write an influence matrix which relates position perturbations in the 

normal and binormal directions of a vortex filament to the produced velocity perturbation 

at every point.  This relationship is of course not linear, but for small changes it remains 

close.  Since there is interaction between the lifting surface and the wake, influence 

coefficients can also be found for their respective perturbation on each other and can be 

combined in one matrix system, 
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where Δq and Δw are perturbation velocities, Δx is a perturbation position of the wake, 

γΔ is the perturbation circulation on the lifting surface, and the Q’s are the influence 

coefficients.   Since the response of the wake is non-linear, it takes several iterations to 

converge to a correct solution.  This model originally used up to seven trailing filaments 

to model the wake, rather than sheets of vorticity, which were placed at the centroid of 

vorticity for each blade section.  The lifting surface used a row of vortex quadrilaterals 
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with control points at the center to model the rotor.  The far-wake was modeled with 

helical filaments trailing off the ends of the free wake portion of the wake.  EHPIC does 

not converge to steady solution but averages solution reflecting a real flow.   

 Bliss and Miller60,61 introduced a methodology called Periodic Inversion, with the 

goal of addressing instability of many free-wake methodologies in hover and low 

advance ratios.  This method uses the perturbation version of the governing partial 

differential equation and transforms the problem to a Eulerian form.  This method uses a 

full span of trailing vortex filaments but no shed filaments.  Collocation points remain at 

a fixed temporal position behind the blade and are forced to converge to positions where 

vortex filaments are tangent to the pathlines of the flow.  This model was formalized by 

writing the differential equation, 
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where ζ  is the temporal variation or the wake age in the vortex pathline and ψ  is the 

physical angle following the blade path.  Rewriting Equation 1.2.1 in perturbation form, 

one obtains, 
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where the velocity is linearized by expanded it in a Taylor Series to the first order.  This 

partial differential equation was reformulated using the Lax-Wendroff finite difference 

scheme to form a second order finite difference equation in both space and time.  

Immediately behind the blade a boundary condition is applied which is that the trailing 

vortices are attached to the blade.  A second boundary condition enforcing the periodicity 

of the wake must also be applied.  Convergence is defined as when the root-sum-square 

of the displacement of all the collocation points is below a specified value.  This 
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approach does lead to more stable solutions than pervious methods.  They also implement 

a methodology described as Analytical/Numerical Matching (ANM) which allows for 

faster computation of induced velocity by using a numerically efficient approximate 

value of the induced velocity far-a-field of the curved elements.  Then it was corrected 

for filaments that were close in proximity to the point of interest.  This is a cost savings 

as it is numerically more time consuming to calculate the more exact curved vortex 

solution every time.  Employing this method they were able to predict the transition 

between the largely symmetric, slightly skewed helical wake at low advance ratios to the 

fully-developed unsteady-asymmetric skewed wake with characteristic tip roll-up which 

occurs at slightly higher advance ratios. 

 CAMRAD II62,63 is the most recent version of Johnson’s series of helicopter 

performance codes.  This is a time-accurate relaxation scheme updated from Scully's 

original method which uses trapezoidal integration to obtain the distortion of the wake.  

In order to get around the problem of finding the velocity at two time steps as needed for 

this algorithm, it updates only the bound vortex formed directly behind the rotor without 

recalculating the rest of the solution.  To increase the stability of this scheme he uses a 

variable relaxation factor that can be applied averaging the pervious values to a current 

value. 

 Crourse64 and Bagai65,66 took a different direction with their relaxation technique.  

Instead of in an implicit solution like that used in the Periodic Inversion method, they 

solved the PDE directly with a pseudo-implicit finite difference predictor-corrector 

approximation.  Bagai uses a third order accurate semi-implicit predictor-corrector 

method to find the new position after each relaxation step.  The goal of Bagai's research 

was to formally explore the stability of several schemes as well as show the grid sizing 

necessary to obtain grid independence.  This method uses a small number of azimuthal 

steps of vortex trailers to model the local wake while the far-wake consists of a single 

trailing vortex placed near the blade tip at the centroid of vorticity.  There is also a 

provision made for the root vortex which they found to be of little importance.  The local 

inboard wake is modeled with the vortex trailers prescribed in the TPP and extend 30° 

behind the wake.  There is no shed vorticity in the wake but the unsteady result is 

modeled using an indicial response method.  As a compromise between using a lifting-
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line approach to find the bound circulation, which can not capture some effects like 

sweep or tip effects, and a lifting surface, which is more computationally intensive, the 

Weissinger-L method is employed which essentially uses a lifting line at the quarter 

chord but enforces a flow tangency boundary condition at the three-quarter chord.  This 

allows the bound circulation to reflect effects like sweep while not requiring a significant 

amount of time beyond a conventional lifting line.  The bound circulation is found using 

the Newton-Raphson method.  The wake geometry is solved using the finite difference 

equation.  Convergence is based on the root-sum-square of the displacement of the 

collocation points between two successive iterations.  This code was later employed to 

model maneuvering flight using velocity source terms to model the maneuvering 

velocities67. 

 Washspress68 described CDI’s CompreHensive Analysis of Rotorcraft 

aeroMechanics (CHARM) code incorporating about 20 years of experience.  The goal 

was to build a code which removes the need to vary performance coefficients (such as 

vortex core size or placement) to capture rotorcraft performance.  The blade is modeled 

as a vortex lattice lifting surface which can be set up for any number of elements.  The 

wake is not a vortex lattice but is Constant Vorticity Contours (CVC), which does not 

require one-to-one correspondence between elements in the wake and surface.  These 

contours allows filaments to be focused where necessary; populating contours more 

densely in regions of large gradients, while a vortex lattice method requires a fairly 

uniform distribution of elements and thus more elements to maintain the same resolution.  

The previously developed curved elements are used to describe these contours and model 

the shed and trailing vorticity.  In the far-wake, the wake can accumulate into two single 

end vortices (root and tip).  Near-wake tip formation is not formed by merging trailing 

elements but is the result of the elements rotating about themselves.  In the far-wake, the 

vortex profile model is that of Scully’s or Vatistas’69 with n set to one.  They found that 

vortex stretching has a negligible effect and is therefore ignored in their data validation.  

Airfoil data is used to calculate forces and moments.  Convergence is defined as when 

fluctuations in the loads reach a specified value.     

 Bhagwat70 developed a time-marching approach to model the evolution of a rotor 

wake to explore issues of stability and accuracy.  The wake is modeled as a single tip 
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vortex.  This algorithm uses a predictor-corrector second-order backward finite difference 

(PC2B) to predict the new position of the wake elements and compared it with a 

Predictor-Corrector Central (PCC) finite difference algorithm.  A model differential 

equation which represented the velocity as an exponential term was represented with the 

above FDE’s.  The PC2B algorithm was found to be second-order accurate using 

linearized stability theory but since the velocity is non-linear, this does not ensure second 

order accuracy.  Bases on comparisons of a vortex ring with linear vortex segments, the 

suggestion is made that sectors of less than 5° are required to ensure less than 10% error.  

In comparisons of the two algorithms the PC2B demonstrated that errors in this algorithm 

will decay toward while the PCC is unstable.  He also showed that in order to ensure grid 

independence, the wake elements in the PC2B must be at least 5°.  This code 

demonstrates accurate and stable wake convergence.  Interestingly, although stability in 

the solution is usually beneficial, the authors cite that in some aspects, the unstable PCC 

model is actually more reflective of the experimental results.  They cite vortex pairing 

seen in experiments and the PCC solution but not in the PC2B solutions.  They also 

acknowledge the physical instability of a helicopter wake in hover.  This code was later 

applied to modeling maneuvering helicopters71.  These included successful modeling of a 

ramp increase in collective pitch as well as pitching and rolling in hover.        
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Chapter 2:    Analysis Methodology 

 

 This methodology is designed for a four blade single main rotor with a rigid in-

plane rotor. The code was designed to predict the performance of a rotor given the 

geometry and trimming with the conventional cyclic and collective pitch inputs or by 

used prescribing the circulation directly and allows the rotorcraft to trim by uniformly 

raising and tilting the circulation distribution.  By defining circulation, one can ignore the 

physical airfoil while being able to determine the lc and corresponding force distributions 

from this circulation.  The rational for doing this is to obtain a general solution similar to 

that of Munk for a fixed wing aircraft.  The blade is modeled as a lifting line which has 

the disadvantage of not capturing some of the second order effects due to chord-wise 

variation or tip vortex formation.  In pursuit of the general solution, the code allows one 

to vary the circulation at any point radially and azimuthally.  The twist is not constrained 

to maintain a rigid blade or limit the amount of twisting the blade undergoes. 
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2.1  Trim: 

 This model uses longitudinal trim, therefore the forces are balanced in the vertical 

and longitudinal directions and the pitching and rolling moments are equal to zero.   

 
Figure 2.1.1:  Trim of the Main Rotor 

 

Expressed in equation form, 

 0)sin()cos( =−⋅+⋅ WHT shaftshaft αα ,    (2.1.1a) 

 0)cos()sin( =−⋅−⋅ parasiteshaftshaft DHT αα ,     (2.1.1b) 

0=xM ,         (2.1.1c) 

0=yM .        (2.1.1d) 

where the parasite drag, Dparasite, is given by the equation, 

DParasite CSVD ⋅⋅⋅= ∞
2

2
1 ρ .      (2.1.2a) 

Here the area, S, is an equivalent flat plate area and CD is a corresponding drag 

coefficient to approximate the parasite drag experienced by the helicopter in flight 

excluding the rotor.  The weight is represented by W while the vertical and longitudinal 

forces and pitching and rolling moments in the rotor disk axis are respectively denoted by 

the variables T, H, Mx, My.   It is important to note that moments due to the offset of 
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vehicle center of gravity from the rotor hub are ignored are ignored in this analysis.  A 

consequence of using longitudinal trim is that the effects of lateral tilt and the tail rotor 

force are excluded from the model.  Including these would modify the lift distribution but 

most likely not significantly while their inclusion adds extra time to trim the helicopter. 

 

2.2  Kinematics: 

 To find the forces at any given blade section, one must know the local relative 

velocity to the airfoil section.  This includes the free stream velocity, the angular rotation 

of the blade, as well as the induced velocity, 

inducedlocal VrVV
rrrrr

+×Ω+= ∞ .      (2.2.1) 

Note that there are no flapping, lagging, pitching, bending, or twisting motions included 

here.  The blade is assumed to be a hingeless and completely rigid.  Since the goal is an 

ideal lift distribution, it is reasonable to ignore these effects.  This equation can be viewed 

in component form in the local non-inertial blade frame axis as, 
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where, 

 
induced

uu =' ,        (2.2.2d) 

 )sin()cos()('
shaftinducedshaftinduced wVvv αα +−= ∞ ,   (2.2.2e) 

 )cos()sin()('
shaftinducedshaftinduced wVvw αα +−−= ∞ .   (2.2.2f) 

For a given blade section, the induced velocity is found as a weighted average of the 

velocity at the two ends and the middle of that segment using the equation, 
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To find the forces, the local angle of attack of the airfoil section must be known as well 

as the lc  which is a function of angle of attack and Mach number.  The absolute or 

aerodynamic angle of attack, these are the same in this diagram since the airfoil is 

symmetric, is measured from the rotor Tip Path Plane (TPP) to the Zero Lift Line (ZLL) 
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of the airfoil section while the aerodynamic angle of attack must be given relative to the 

local velocity, 

 
Figure 2.2.1:  Respective Airfoil Coordinate Systems 

 

and therefore the aerodynamic angle of attack is given by, 
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where, 

)sin()cos( 11 Ψ⋅+Ψ⋅++= sccoltwistabs θθθθα .    (2.2.4b) 

The absolute angle of attack is the pitch distribution down the span of the blade at any 

given time.  The θcol, θ1c, and θ1s are the collective, lateral cyclic, and longitudinal cyclic 

pitch controls respectively.  The final term in figure 2.2.4a is the induced angle of attack 

which generally reduces the aerodynamic angle of attack relative to the absolute.  The 

local downwash, Wlocal, in composed of two parts, 
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Therefore it is not technically correct to call this last term purely induced.  The ram drag, 

the contribution of the free stream component, is a penalty for tilting the disk to propel 

forward.   

The lift on each section is directed perpendicular to the local velocity and is given 

by the equation, 

llocloc ccVVl ⋅⋅⋅⋅= )(
2
1 rr
ρ .      (2.2.5) 

Using this angle of attack and the local Mach number the profile drag coefficient, cd, can 

be found for any specific airfoil.  The corresponding profile drag is found using the 

equation, 
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Because the direction of the section lift and drag are functions of the local velocity.  They 

must be rotated to the rotor disk coordinate system in order to find the forces and 

moments on the disk.  Therefore the force distributions along the span of the blade are, 
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Note that any forces that may act radially due to a component of profile drag are being 

ignored.  The second equation in this pair includes the induced drag, which is the portion 

of the lift projected on the tip plane path.  In the case of an induced up wash, the sign of 

αind is reverse, this induced drag would be locally propulsive.  There is also a force 

induced downward due to the drag force being tilted with the induced angle of attack.  In 

analytic methods, this term is often ignored since it is the product of a relatively small 

force and small angle but computationally there is no need to ignore this.  The 

aerodynamic forces produced by the rotor blades at any instant in time are given by the 

equations, 
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where N is the total number of blades.  Finally the total power for the rotor disk is found 

by multiplying the torque by the angular velocity of the blades, 
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To examine just the induced power, one can simply ignore the drag coefficient, cd, by 

setting it equal to zero.  Spanwise integration along the blade is performed with 

trapezoidal integration across each discrete element.  The final forces, moments, and 

power for trim and reporting performance are averaged over one period.  Finally the 

forces, moments, and power are all non-dimensionalized by the following quantities, 
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When operating from a prescribed circulation distribution instead of the blade pitch, a 

different methodology described in section 2.4 is used. 
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2.3  Lifting-Line Model 

 This model is a variable prescribed/free wake analysis.  The model allows for a 

relaxed wake to a certain distance to capture the local wake effects and can then 

transition to a prescribed wake translating at average values at an arbitrary distance down 

the length of the wake. 

 In order to translate 2-D airfoil data into 3-D finite wing or blade aerodynamic 

quantities, the Lancaster-Prandlt72 lifting line model was used.  This method makes note 

of the fact that there is a pressure differential between the upper and lower surfaces of the 

rotor blade.  At the ends of the blades there is nothing to maintain a pressure difference 

and therefore air moves from under the blade to the top of it.  This process shifts the 

pathlines of the fluid particles across the top and bottom of the blade in opposite 

directions (toward the hub on the top; toward the tip on the bottom) so that in the shear 

layer behind the blade there is vorticity due to these merging layers of opposite lateral 

flow.  This is referred to as the trailing vorticity.  Toward the tips of the blade, the trailing 

vorticity tends to roll-up into strong tip vortices.  A lifting line models is predicated on 

the idea that the change in lift down the span of a blade or around the azimuth of a disk 

results in vorticity being shed into the wake.  This vorticity can be modeled as discritized 

finite vortex filaments.  The vortex filaments in turn induce velocity back onto the blades 

affecting the aerodynamic forces. 

According to Hemholtz Theory23, a line of vorticity can not end at an arbitrary 

point in a flow field but must end at a solid surface or form a closed path.  This condition 

can be usefully satisfied with a semi-infinite horseshoe vortex.   

 
Figure 2.3.1:  Trailing Semi-infinite Horseshoe Vortex 
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These horseshoes create a semi-infinite closed rectangular path which model the airfoil 

sectional bound vorticity as well as trailing vortices to infinity.  The horseshoe can be 

imagined to close again at infinity with the starting vortex, thus forming a closed path.  

 For modeling a flow with temporal variation one can employ a finite quadrilateral 

closed vortex path instead of using Prandlt's Horseshoe vortices.  The reasoning for this is 

the same as above but changes in the lift distribution azimuthally suit this method which 

accounts for these changes.  In figure 2.3.2, one can see that the top portion of the 

quadrilateral represents the bound vortex (or the blade) while the two sides represent the 

trailing vortices running along the local pathlines of the flow.  Finally, the bottom of the 

quadrilateral is a shed vortex equal to the strength of the attached vortex but acting in the 

opposite direction, therefore creating a “ring” of constant circulation.  

 
Figure 2.3.2:  Configuration of a Finite Vortex Quadrilateral:  By virtue of forming a closed 

path, this vortex element satisfies Helmholtz’s equation.  
 

Generally, the strength of the circulation on the blade changes azimuthally and therefore 

the strength of the shed vortex quadrilaterals will vary down the wake.  This means that 

not only is there an induced velocity due to the change in spanwise circulation but also 

due to the change with time or azimuth.   
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 As noted above, each vortex filament in the flow-field induces its own flow field 

and since these vortex filaments are a solution to the linear Laplace's equation, one can 

use the principle of superposition to find the total induced velocity at a given point due to 

every filament in the flow-field.  Thus many of these vortex rings can be used to build up 

the entire wake simply by adding all their solutions together.  The vortex filaments from 

adjacent vortex quadrilaterals overlap; the strength of a given filament is the difference 

between coinciding quadrilaterals as seen in the figure 2.3.3. 

 
Figure 2.3.3:  Wake Built-up of Several Vortex Quadrilaterals 

 

This is true of the shed filaments as well as the trailing filaments except at the edges of 

the wake where there are no overlapping trailers.  The bound filaments are full strength 

because they represent the blade where the vorticity is produced.  The circulation strength 

of a vortex filament within the wake is therefore,  

mnmnmeff ,,1, Γ−Γ=Γ + .       (2.3.1) 

 The finite straight-line vortex segments that form the more complex structure of 

the wake, produce an induce a flow-field which can be described using the Biot-Savart 

Law,23 
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For an arbitrary filament with end points 1ar  and 2ar , (equation 2.3.2) can be written as, 
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where rr  is an arbitrary point in space.  One can see from figure 2.3.4 below that the 

velocity is inversely proportional to the perpendicular distance from the filament and 

goes to infinity as the distance tends toward zero.  Obviously this singularity is not 

physical but is a product of a potential flow solution where the circulation is constant 

about any closed path that includes the vortex.  The model of a complex wake such as 

that produced by a helicopter with this solution will predict unbounded impulsive loading 

during close vortex interaction which will drive a non-physical solution.  To prevent this 

behavior, the vortex is modeled with a viscous rotational core.  The drawback of this 

approach is that the viscous core parameters have a very strong influence on the outcome 

and in determining these parameters one usually relies on some empirical assessment that 
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the wake is behaving as expected.  One model commonly used is represented by the 

equation, 
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as described by Vatistas69.  His experiments suggest that a value of n equals two matches 

the physical phenomenon, 
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If n equals one, one obtains the solution used by Scully and still applied in the CHARM 

program.  As n approaches infinity, one obtains the Rayleigh solution which transitions 

from a purely rotational core to a potential region with a discontinuity in the slope 

between them at the vortex core radius.  All of the possible values for n yield a model 

having a core linear distribution which transitions through some core radius to behave as 

the potential flow solution.  Thus the circulation grows with distance from the center until 

it reaches the potential solution and remains constant throughout the inviscid portion of 

the solution.  This distribution is shown in figure 2.3.4, 

 
Figure 2.3.4:  Vortex Velocity Profile:  Normalized radial velocity profile use to approximate the 

viscous core.  Velocity and radius normalized by the actual profile’s peak velocity and 
corresponding radius. 
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Using a core model is not only physically more realistic but resolves the numerical 

complication of having infinite velocity in the flow field.  One can see from the above 

diagram that the velocity is very non-linear which often leads to erratic behavior of the 

flow field.  To save computation time, the code uses the formulation reflected in equation 

2.3.3 (the inviscid solution) unless the point of interests falls within a perpendicular 

distance less than twice the core radius. 

 This viscous core will spread and the peak velocity will dissipate with time.  To 

model the vortex core growth, a growth rate model modified from Bagai65 was used,  

occ rtr += νδ4112.0 ,       (2.3.5a) 

where, 

ν
δ Γ

+= 11 a ,        (2.3.5b) 

and δ is the turbulent viscosity.  For the tip vortex, the coefficient a1 was set to 0.1 and 

the initial radius, ro is set to 10% of chord.  This core growth can be seen in figure 2.3.5.  

This model was originally modified from a Navier-Stokes solution for vortex dissipation 

described by Lamb and Oseen.  The root vortex is a source of some consternation 

because of the direction of the circulation.  They will tend to propel themselves up into 

the rotor disk.  If the cores are too small they will inflict severe impulsive forces on the 

blades in numerous BVI’s.  There is little experimental data demonstrating root core 

growth but experiments also don’t demonstrate large impulsive forces due to a root 

vortex either.  One can imagine that in the presence of the turbulent interaction with the 

hub the vortices’ cores might grow quite quickly.  Therefore core sizing and growth was 

chosen such that these impulsive forces do not exist on the disk as they are not seen in 

experimental data.  Ultimately it was decided to treat the inboard vortex the same way the 

inboard trailers are treated.  
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Figure 2.3.5:  Viscous Core Growth:  Viscous core size normalized by chord length. 

 

For the inboard trailing and shed filaments, the core model is different.  Most of 

what is shed on the inboard part of the blade remains diffuse sheets rather than a strong 

vortex as at the tip.  Therefore, a core size comparable to the one used for the tip vortex is 

not appropriate.  Using such small core sizes would contribute to wake instability and 

could create artificial BVI effects all around the disk and therefore unreasonable induced 

velocity profiles.  The equation for an infinite vortex sheet of span 2b and centered at y = 

0 is, 

( ) ( )
( ) ( ) ⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛

++++

+−+−
⋅

Γ
=

442

442

ln
8

o

o

rxbxb

rxbxb
b

u
π

,       (2.3.6) 

where 2·ro is the sheet width.  This is obtained by integrating the equation 2.3.4 over the 

span of a sheet.  One could use this equation to model the wake as rectangular wake 

panels or many other more complicated quadrilateral or triangular panels but, given the 

number of times this equation must be computed, it would be more time intensive than 

equation 2.3.4b.  One can see for an appropriate core sizing that a standard filament is an 

appropriate approximation for a sheet.  For this analysis inboard core radii are half the 

distance between the span of each segment and remain constant with wake age. 
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Figure 2.3.6:  Viscous Vortex Sheet Comparison (ft/s):  Comparison of a viscous vortex sheet 

(green) and a large core vortex (red). 
 

In order to find the circulation strength of the bound vorticity at each new time (or 

azimuthal) step, the induced velocity and circulation are found simultaneously.  In order 

to do this, the velocity is broken into two components, one local velocity due to the newly 

formed vortex ring in one azimuthal step and that from the existing rings.  Since the 

structure of the local newly formed vortex rings are known (the ends lie on the blades or 

the edge of the wake element which just got swept behind), the only unknown in the way 

of obtaining the induced velocity is the circulation strength.  Therefore, the induced 

velocity is a linear function of the unknown circulation strength.  The set of equations to 

be solved is, 

IPPPrV zyxinduced ⋅⋅
Γ

= ,,
4

)(
π

rr
,     (2.3.7a)  

where, 
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1 MccV l α⋅⋅=Γ ∞       (2.3.7b) 

and, 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= −

loc

loc
twist u

w1tanθα .      (2.3.7c) 



 41 

One will note that wloc and uloc are functions of Vinduced, and therefore this is a 

transcendental system of equation.  If one is willing to make a small angle approximation 

as well as use an ideal airfoil, the above system of equations is linearized and can be 

solved outright as, 

 ,
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2
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ca

V
z

twist        (2.3.8) 

But keeping the non-linear system, as is done here, the circulation at each time step must 

be found iteratively.  

 

2.4  The Wake: 

 For both the relaxed and prescribed wakes, the initial shed wake is given, as a 

skewed helix attached to the rotor blade and trailing off to a number of specified 

revolutions.  The shape is given by the equation, 

tWrtVrtUUr inducedinducedinduced ⋅Ψ⋅+⋅Ψ⋅+⋅+= ∞ ),sin(),cos(r  (2.4.1a) 

where, 

Ω
Ψ

=t  .        (2.4.1b) 

Initially the wake is prescribed with arbitrary value of Vinduced applied uniformly. 

 Relaxing the wake has the added complexity of requiring the calculation of the 

velocity at every point in the wake to find the new position of the Lagrangian end points 

of each filament after each time-iteration.  Note that this will allow for vortex stretching.  

Despite this stretching, the circulation is assumed to be constant as others have found it to 

be insignificant and ignoring it reduces computation time1.  Along with finding the 

position of each filament at each time step, an entire new row of filaments is created at 

the trailing edge of the blades.  While a new row is created, the last row in the wake is 

dropped to maintain a constant number of shed vortex rings in the wake.  Between 

iterations, the new position of each end point is found with either the first order explicit 

Euler integration, 

112 )( rtrVr rrrr
+Δ⋅= ,       (2.4.2) 
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which is satisfactory at higher advance ratios where V∞ is the major component.  Or a 

second order corrector-predictor trapezoidal integration, 

112 )( rtrVr rrrr
+Δ⋅=′ ,       (2.4.3a) 

( ) 1122 )()(5.0 rtrVrVr rrrrrr
+Δ⋅+′⋅= ,     (2.4.3b) 

 A more accurate position is predicted using a second order accurate predictor-

corrector method.  This added accuracy comes with a second calculation of the induced 

velocity with each loop.  This approximately doubles the performance time and given the 

extensive time required for optimization this was only used for hover cases.  For hover, 

one must also apply several lengths of prescribed helical filaments or some other 

treatment to maintain the mass flow below the disk and stabilize the near wake flow-

field.  In this code, 20 revolutions of a trailing single tip filament placed below the disk. 

 

2.5  Aerodynamic Coefficients: 

 This code uses steady airfoil wind tunnel data.  When operating with the blade 

pitch as an input, this model reads the aerodynamic coefficients from tables as a function 

of angle of attack and Mach number.  The program applies a linear interpolation between 

points in both the angle of attack and Mach number directions.  When utilizing the code 

with circulation as the input, the look-up tables limit the lc to an attainable value and 

proceeds from the circulation, to the lift coefficient, angle of attack, and finally the airfoil 

drag coefficient.  In this way, the desired lc  and the induced angle of attack combine to 

determine the blade pitch.  There are potentially several possible angles which will yield 

a desired lc , figure 2.4.1.  To address this problem, the angle of attack is limited to being 

within the small range between the positive and negative stall angle.  This yields a single-

valued function with the minimum drag, but also allows for some extreme behavior in the 

reverse flow region which the blade may be operating at pitch angles of over 180°.  

Working in either mode, the compressibility is accounted for in the wind-tunnel 

data, which is measured for Mach numbers between zero and one.  The unsteadiness in 

the wake and its effects are captured by the shed vorticity in the wake but dynamic stall, 

non-circulatory forces, and rotational lift due to the blade pitching are ignored. 
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Figure 2.4.1:  Lift and Drag Coefficients for the NACA 0012:  Lift coefficient verses angle of 
attack for the NACA 0012.  The red line represents the multiple possible solutions for a given 
angle of attack.  At a lc of 0.95, there are 6 possible angles of attack with difference associated 

drag coefficients.  Data taken for a Mach number of 0.3. 
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2.6  Convergence Criteria: 

 The period averaged value of induced velocity is found across the disk and is used 

to monitor convergence of the solution.  Because of instability in this scheme in hover, a 

second averaging is used to calculate forces, moments, power, and average downwash in 

these cases.  After an initial period of time long enough to obtain a quasi-converged 

solution, the average of the periodic average after each time step is taken. 

 

2.7  Optimization Technique: 

 The optimization technique used for this analysis is a gradient based method to 

minimize the objective function, flight power, while satisfying the constraint equations, 

namely the longitudinal trim equations.  The constraint variables are the circulation 

distribution and the shaft-angle.  In order to optimize the circulation, it is perturbed at 

each point on the rotor disk.  Based on the change in power and trim variables, 

derivatives are calculated for each.  Applying the method of Lagrange Multipliers, 73 new 

values are extrapolated from the previous circulation distribution to a new distribution. 
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The values of λ are found at the arbitrary points (r1,θ1), (r2,θ2), and (r3,θ3) where λa, λb, 

and λc are equal to values such that the above equations are satisfied.  Then the 

perturbation value is found using the expression, 

nn ycxbnan MMTP ⋅+⋅+⋅+=Γ λλλδ ,     (2.6.2) 

at every point on the disk.  This new distribution is retrimmed and can be further 

optimized which is necessary since the problem is non-linear.  The solution was 

determined to be converged when a new perturbation contour provided less than 1% 

power decrease. 
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Chapter 3:    Validation 

 

Validation of a code of this nature is a time-intensive procedure.  Due to a limited 

amount of time for this project, validation with experimental results was not performed.  

It can be noted that the creation of this code is not a new concept and various forms of 

such codes have been validated and are used widely, CAMRAD, UMARC, CHARM, etc.  

Since this method is similar, it is reasonable to assume the results will be similar.  

Although no experimental comparisons are performed, it is valid to justify that the code 

is implemented correctly.  With this in mind, there are analytical and computational 

solutions to which the code can be compared.   

 

3.1  Accuracy: 

 The analytic solution for the velocity field induced by a vortex ring is known74.  

Looking at the induced velocity in the plane of a vortex ring centered at the origin with a 

radius of R, the solution can be expressed as, 
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where K(τ) and E(τ) are complete elliptic integrals of the first and second kind 

respectively. 

As seen in the figure 3.1 below, using 10° linear segments to approximate the ring, 

the velocity predictions match the exact solution closely.  Sandeep75 has demonstrated 

that compared to helical filaments (including skewed ones), vortex rings represent a 

limiting case demonstrating the largest error.  In general Sandeep demonstrated second 

order accuracy with decreased filament length.  This comparison is a prescribed wake and 

basically demonstrates that the code is predicting the induced velocity correctly given the 

vortex filaments’ positions and strengths.   

 
Figure 3.1:  Induced Velocity of a Vortex Ring:  Comparison of the exact solution of a vortex 

ring (solid line) and an approximate ring formed by 10 degree linear sectors (dots). 
 

To explore how accurate the predicted position of the relaxed wake will be, one 

can look at the stability of the system as done by Bhagwat70.  The differential equation 

governing the motion of the shed and trailing filaments is, 

)(tV
dt
rd rr
= .        3.1.1 

which is non-linear by virtue of the velocity term which is given by the Law of Biot-

Savart although altered to include a viscous core.  A first attempt to assess the accuracy 

of a FDE is to examine the order of the FDE relative to the PDE.  This code uses two 
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possible methods for calculating the new position of filaments.  The first is Euler 

integration which can be shown to be only first order accurate.  This is demonstrated by 

expanding the position vector, rn+1, in a Taylor Series about the point rn,  
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 This method is used in forward flight where the errors will be “washed” 

downstream with the free stream velocity, thus limiting the effects of the errors in 

calculating the solution.  Equation 3.1.3 is also used as the predictor step in the 

alternative two-step procedure.  The second step of this alternative method is essentially 

trapezoidal integration or a second order central difference.  Expansions about the point 

rn+1/2, rn and rn+1 are found to be, 
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taking the difference of these two expressions yields, 
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The velocity, ( )tVn
~

1+

r
, is the velocity at the time and corresponding position calculated by 

the Euler Predictor step.  From equation 3.1.6, it is seen that this is second order accurate 

and it is used only in hover.  The velocity term being non-linear, this analysis is not 

guaranteed to be of the order predicted but it is unlikely to perform better. 

 Now knowing the theoretical linear accuracy of the method, it is also valuable to 

ensure that the wake evolution is comparable with other existing applications to 



 48 

demonstrate that this code has been implemented correctly.  Below in figure 3.2 are 

comparisons of the inflow distribution between the same cases performed in CAMRAD 

II and the current code.  The helicopter configuration is the same as the baseline defined 

later in chapter 4.1.  The inflow distributions show very similar gross patterns and 

generally equivalent magnitudes.  Differences appear due to the proximity of trailing 

vortices to the rotor disk.  CAMRAD II solutions tended to have slightly higher shaft tilt 

angles which washes the vortices away from the disk plane more quickly.  This results in 

less prominent velocity variations at the disk providing a generally smoother appearance.  

 

 
       a.) Baseline: Inflow (AR=0.4)                          b.) CAMRAD II: Inflow (AR=0.4)         
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         c.) Baseline: Inflow (AR=0.3)          d.) CAMRAD II: Inflow (AR=0.3) 

 
         e.) Baseline: Inflow (AR=0.2)           f.) CAMRAD II: Inflow (AR=0.2) 

 
       g.) Baseline: Inflow (AR=0.1)           h.) CAMRAD II: Inflow (AR=0.1) 

Figure 3.2 a-h:  Induced Inflow Comparisons:  Comparisons of induced inflow distributions 
(ft/s) between the baseline results and CAMRAD II distributions. 
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3.2  Lattice Spacing 

It is also important to demonstrate how dependent the solutions are on the 

discritization of the problem.  In all cases where data is presented, the blade and wake are 

broken into 15 radial segments with 16 trailing filaments and the wake is divided into 10° 

azimuthal segments.  In order to demonstrate the dependence of solution on the lattice 

spacing, figure 3.3 shows the baseline solution described in chapter 4.1 against two 

alternatively denser grids. 

 
Figure 3.3:  Grid Dependence of the Baseline Rotor:  The circle doubles the azimuthal grid 

density while the asterisk doubles the radial grid density. 
 

Bhagwat70 cites the need for azimuthal variation of five degrees or less to ensure 

the accuracy of the solutions but in order to solve for the optimization gradients, the 

problem must be solved for each perturbation equivalent to the product of the number of 

spanwise and azimuthal elements.  This limits the allowable grid size.  Figure 3.3 

demonstrates that doubling the grid density azimuthally has very little difference in the 

solution.  Doubling the radial grid density does change the power coefficient by almost 

3%.  The greater increase in this case is attributable to better resolution of the spanwise 

formation and location of the tip vortex due to the higher trailing filament density. 
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Figure 3.4 shows the same results for optimized results at an advance ratio of 0.4.  

Again, the solution for doubling the azimuthal discretization makes little difference to the 

optimized solution.  For the increased radial density, there is a larger change in power 

coefficient again due to the increased resolution of the tip vortex.  These results justify 

the choice of the grid size used for this optimization study.  

 
Figure 3.4:  Grid Dependence of the Optimized Rotor:  The circle doubles the azimuthal grid 

density while the asterisk is double the radial grid density. 
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Chapter 4:    Results and Discussion 

 

4.1  Physical Model: 

The baseline configuration used for all of the results is presented below.  Table 

4.1.1 presents the characteristics of the baseline rotor.  For the optimized rotor, the 

circulation is allowed to vary continuously both radially and azimuthally as an 

unconstrained morphing rotor. 

 
Blades (N): 4 

Tip Radius (R): 20 ft 

Root Cutout (c): 10% 

Airfoil: NACA 0012 

Blade Solidity (σ): 0.1 

Linear Twist (θtw): -6° 

Tip Speed (Vtip): 600 ft/s 

Angular Velocity (Ω): 30 rad/sec 

Air Density (ρ): 0.0023769 slug/ft3 

Vehicle Weight (W): 7527.0 lbs 

Flat Plate Drag Coefficient (S·CD): 15 ft2 

Table 4.1.1:  Model Helicopter Properties 

 

 The rotor blades for all cases outside of validation were divided into 15 radial 

elements producing 16 trailing wake filaments.  One revolution of the wake was divided 

into 10° elements yielding 36 segments per revolution. 

 
Radial Discritization: 15 elements  

Azimuthal Discretization: 36 segments 

Table 4.1.2:  Helicopter Disk Discretiztion 

 

Discritized radial elements were divided using the formulas shown in table 4.1.3 

which describes the position of the end points of each element.  The forward flight 

discretization yields a uniform spacing while the hover elements are weighted toward the 

root and tip where there is more change in circulation expected. 
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Forward Flight: ( )[ ]xccRr ⋅−+⋅= 1  

15
15,15

14,...,15
1,15

0=x  

Hover: ( ) ( )[ ]xccRr sin1 ⋅−+⋅=  
15

15,15
14,...,15

1,15
0=x  

Table 4.1.3:  Spanwise Discretiztion of Blade Elements:  The r is the radial position, R is the 
rotor radius, and c is the fraction of the cutout distance to rotor radius 

  

Table 4.1.4 shows the length of wake used for each case.  Regions beyond the free 

wake move with an average downwash. 
 

Advance Ratio (μ) Length  Free Tip Length  Free Inboard Filament Length  

Hover 20 3 3 

Forward Flight 3 3 0.25 

Table 4.1.4:  Number of Spanwise Elements Used to Model the Wake:  (Number of Revolutions) 

 

 The tip vortex is modeled to grow according to the equation 2.3.5.  The inboard 

and shed filaments have a diameter equivalent to the average of the width of the blade 

radial element on either side of the trailing vortex. 

  

4.2  Results: 

 The results presented below compare the baseline rotor with its optimized 

solution.  The total power coefficients and its respective components are shown in figure 

4.2.1a.  The total power coefficient is broken into two components.  The first component 

is profile power caused by viscous effects on the blades.  The second is the inviscid 

power which is the result of rotating the lift and drag vectors.  Two sources of inviscid 

power are distinguished by the source of the inflow causing the relative force vector to 

tilt.  The first is the induced component which is the portion of power attributed to the 

velocity (or inflow) induced by producing lift, i.e. produced by the shed and trailing 

vorticity in the wake.  The second component caused by inflow present because the rotor 

disk is tilted by the amount of the shaft tilt angle into the direction of the on coming free 

stream velocity.  The component of the free stream now perpendicular to the lift at the 

rotor disk, equivalent to V·sin(α) as seen in figure 4.2.2, creates a pressure drag.  This 

component known as the ram power is approximated to be the product of the lift 
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produced across the disk and this perpendicular component of velocity.  This component 

is in part the cost to overcome the vehicle parasite drag in forward flight.  The in-plane 

longitudinal force produced by the rotor disk directed in the drag direction and its 

respective component of free stream velocity, equivalent to V·cos(α) as seen in figure 

4.2.2, produce what CDI1 have referred to as the rotor parasite power.  This provides the 

second portion balancing the power lost by the vehicle parasite power.  As defined in this 

effort, the vehicle parasite drag is always in line with the free stream velocity, thus 

requiring an equivalent force to be created by the thrust and longitudinal force toward the 

direction of flight.  The rotor parasite power described here comes from a momentum 

theory approximation using the gross parameters of rotor longitudinal force, shaft tilt 

angle, and flight speed.  The actual source of this power consumption results from both 

the profile and induced drag on the blade.  Changes in this parameter between the 

baseline and optimum reflect changes in both the profile and induced drag distributions.  

The reason for analyzing the power decomposition through the ram and rotor parasite 

powers rather than just attributing these two components to the vehicle parasite power is 

that they draw directly from the physics of the rotor disk.  These two components of 

power illustrate how the rotor compensates for the presence of the vehicle fuselage, 

whose force is transmitted through the rotor shaft and therefore affects the trim, but has 

no other direct effect on the rotor aerodynamics in this model. 
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a.) Power Coefficient 

 
 b.) Shaft Angle      c. Percent Change in Component Powers  

Figure 4.2.1 a-c:  Power Comparisons:  Comparison of the power coefficients and shaft angles 
between the optimum and baseline.  Dashed lines correspond with the baseline values and solid 

with the optimized solution.   c.) Percentages are of the baseline total Cp.   
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Figure 4.2.2:  Trim of the Main Rotor 

 

 As can be seen in figure 4.2.1a, the optimized total power is lower than the 

baseline at all advance ratios.  Looking at the components which form the total power, 

one can see that the profile power, when compared with the other sources, is relatively 

constant over the range of the advance ratios and shows minimal change between the 

optimized and baseline solutions.  The limited change between the baseline and 

optimized cases results from the major factors which influence the profile power 

remaining fixed in the optimization.  The rotor speed and flight speed were fixed leaving 

only the usually minor velocity component of induced flow to modify the relative 

velocity experienced by the rotor at any given point.  The rotor chord distribution, which 

certainly is not optimal, was also held constant.  Therefore, the only way to lower the 

profile power is to change the angle of attack which is highly constrained by the need to 

simultaneously produce lift.  The resulting profile power is actually higher for the 

optimized solution in some cases, which suggests the need for a specific lift distribution 

outweighs the push for lower profile drag given these constraints.   

   Turning to the inviscid power and its components the induced and ram powers, 

one can see that the inviscid power decreases until about an advance ratio of 0.2 and then 

begins to build again.  In general, the induced drag decreases with increased advance 

ratio until the final advance ratio breaks this trend.  The nature of this trend will be 

analyzed in the context of the lift and drag distributions including an exploration of the 
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last point.  The ram power increases with forward speed.  Informing an understanding of 

the ram power is the difference in the shaft tilt angle which can be seen to decrease for 

the optimized solution in figure 4.2.1 b.  By redistributing the lift and drag production, 

the rotor apparently does not need as large a shaft tilt angle to trim the optimized solution 

and therefore requires less ram power.  The rotor parasite power seems to grow with 

advance ratio, though in this case, the optimized rotor has higher power consumption. 

 To explore the issue of the shaft tilt angle and the associated change in the ram 

power term, it is illustrative to look at the trim equations.   
 

0)sin()cos( =−⋅+⋅ WHT shaftshaft αα ,      (4.2.1a)  

0)sin()sin( =−⋅−⋅ parasiteshaftshaft DHT αα ,      (4.2.1b) 

0=xM ,          (4.2.1c) 

0=yM .          (4.2.1d) 

 

One can see that equations 4.2.1 c and d simply require the vertical force, when 

integrated over the rotor disk, to yield zero roll or pitch moments.  This condition is 

applies to both the baseline and optimized solutions and does not provide any obvious 

source of power reduction.  For a given advance ratio, both the parasite drag (Dparasite) 

and weight (W) are assumed constant, while αshaft, H, and T are variable.  Equation 4.2.1b 

represents the force balance in the axis of the free stream velocity.  By taking the product 

of this entire expression by the free stream velocity, each term forms a component of 

power (ram, rotor parasite, and vehicle parasite respectively).   

 
 0)sin()sin( =⋅−⋅⋅−⋅⋅ ∞∞∞ VDVHVT parasiteshaftshaft αα      (4.2.2) 

 

As pointed out above, reducing the shaft tilt angle reduces the ram drag and power, but 

since the vehicle parasite drag, and therefore power, will be constant, the rotor parasite 

drag and power must increase to compensate.  Therefore, those components of power 

collectively can not be improved.  The vehicle drag would be required to decrease in 

order to reduce these terms.  The trade off between the ram and rotor parasite power does 

provide a source for transferring induced drag to profile power.  Although this does not 
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directly reduce the power consumption required for forward flight, it does reduce the 

amount of thrust that the rotor is required to produce to balance the weight by reducing 

the shaft tilt angle.  At least from a gross perspective, lowering the required thrust may 

lower the induced drag and power.  Therefore, retrimming the rotor is one source for 

power savings.  This potential source of power savings is lost in a purely inviscid 

optimization. 

 Figure 4.2.1c shows the change in power as a percentage of the baseline total 

power.  It is apparent from this figure that most power savings is inviscid and that 

changes in the profile power are actually slightly detrimental.  Since the inviscid power 

improvements are a few times larger than the profile power increases, there is obviously a 

second more important mechanism for reducing power which is to change the lift 

distributions.  This will be explored further below.   

  Figure 4.2.3 displays a component of the forces produced by the rotors.  The 

forces in any direction do not change significantly but figure 4.2.3 c alleviates one 

possible source of concern of this analysis.  Although there is no power consumption 

associated with the side force as there is no component of free stream velocity in the side 

component and any induced velocity is included in the inviscid power component, it does 

raise the concern of how the results would be different if a full vehicle trim were used.  A 

wind tunnel trim does not consider the lateral force or yawing moment and the code 

could exploit this fact and may therefore predict impossible power improvements.  Given 

only modest shifts in the lateral force, it is unlikely this is the case here.   
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 a.) Longitudinal Rotor Disk Force  b.) Vertical Rotor Disk Force   

 
          c.) Lateral Rotor Disk Force      

Figure 4.2.3 a-c:  Force Comparisons:  Comparison of the longitudinal, vertical, and lateral 
forces (lbs) between the optimum and baseline rotor.  Dashed lines correspond to the baseline 

values and solid to the optimized solution. 
 

 Presented below in figures 4.2.4 and 4.2.5, one can see the baseline and optimized 

lift distributions and the differences between them at different advance ratios.  One can 

generally say that there is a decrease in lift toward the blade tip with a corresponding 

increase in lift inboard for the optimized contours, especially on the advancing side of the 

disk.  This is especially clear in the difference contours.  The changes tend to be largely 

symmetric fore and aft on the disk at higher advance ratios while being more uniformly 

redistributed azimuthally as the advance ratio decreases.  These trends seem to change at 

an advance ratio of 0.4.  The shifting of lift inboard is pronounced on the advancing side 

where the higher advance ratios yield a high relative velocity.  An increase in the size of 

the reverse flow region on the retreating side reduces the potential for obtaining extra lift.  
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Therefore the rotors in both baseline and optimized cases must resort to producing more 

lift toward at the tips which lead to higher induced velocities and explains the reversal of 

the induced drag trend at 0.4.  The optimization also responded differently.  Now lift is 

increased fore and aft while decreasing in the center.  In hover, there is a shift of lift 

inboard over the baseline which concentrates much of its lift near the tips. 

 Comparing these results with previous results, both Moffitt and Bissell27 and Hall 

and Yang35 cite a more symmetric force distribution fore and aft.  This observation is 

different from Rand7,8 and the current results which do not see exact symmetry but do 

tend toward this direction.  The discrepancy here has to do with the difference in 

assumptions in the analysis.  A fixed wake analysis is used by Moffitt27 and Hall35 while 

Rand7,8 and the current results are relaxed wake methods.  A relaxed wake destroys the 

near symmetry of a fixed wake.  A second commonly cited effect of optimization which 

is not seen here is the reduction of a negative tip load.  Because the blade twist for the 

baseline configuration is so shallow the tip on the advancing side is rarely actually at a 

negative angle of attack.  

  
 a.) Baseline: Lift (AR=0.4)       b.) Optimum: Lift (AR=0.4) 
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 c.) Baseline: Lift (AR=0.3)       d.) Optimum: Lift (AR=0.3) 

 
 e.) Baseline: Lift (AR=0.2)        f.) Optimum: Lift (AR=0.2) 

 
 g.) Baseline: Lift (AR=0.1)         h.) Optimum: Lift (AR=0.1) 
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 i.) Baseline: Lift (AR=0.0)        j.) Optimum: Lift (AR=0.0) 

Figure 4.2.4 a-j:  Lift Distribution Comparisons:  Comparison of the lift distribution (lbs/ft) 
between the optimum and baseline.  The 2-D plots show eight radial slices separated by 45° and 

are oriented at shown below in figure 4.2.5.   
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 a.) Lift Difference (AR=0.4)        b.) Lift Difference (AR=0.3) 

 
 c.) Lift Difference (AR=0.2)       d.) Lift Difference (AR=0.1) 

 
e.) Lift Difference (AR=0.0) 

Figure 4.2.5 a-e:  Lift Distribution Differences:  Difference between the optimum and baseline 
lift distributions (lbs/ft).   
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 The circulation which is linearly proportional to the lift shows similar trends in 

figure 4.2.6 and 4.2.7.  The optimized circulation tends to increase toward the root and 

decrease at the tip relative to the baseline as does the lift.  Quackenbush,1 Moffitt27 and 

Rand,7,8 have demonstrated nearly flat circulation contours in hover.  Quackenbush1 and 

Moffitt27 demonstrate a peak in circulation due to near blade vortex interaction which 

induces an up wash on the blade.  Rand does not seem to display this phenomenon.  In 

the current results, the optimum hover solution is relatively flat up to the tip with a peak 

in circulation at the tip. 
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          a.) Baseline: Circulation (AR=0.4)  b.) Optimum: Circulation (AR=0.4) 

  
          c.) Baseline: Circulation (AR=0.3)  d.) Optimum: Circulation (AR=0.3) 

      
           e.) Baseline: Circulation (AR=0.0)  f.) Optimum: Circulation (AR=0.0) 

Figure 4.2.6 a-f:  Circulation Distribution Comparisons:  Comparison of the circulation 
distribution (ft/s2) between the optimum and baseline. 
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        a.) Circulation Difference (AR=0.4)  b.) Circulation Difference (AR=0.3) 

 
c.) Circulation Difference (AR=0.0) 

Figure 4.2.7 a-c:  Circulation Distribution Differences:  Difference between the optimum and 
baseline circulation distributions (ft2/s). 

 

 The total drag contours are shown below in figure 4.2.8.  One thing immediately 

obvious is the prominence of discrete features due to the vorticity in the wake.  The drag 

contours show a general trend matching the increases in lift with increased drag.  Drag 

tends to be reduced toward the blade tips at the expense of the higher drag inboard as can 

be seen in figure 4.2.9.  This trend lowers required power by concentrating more of the 

drag inboard where the rotor speed is lower, and since rotor power is the product of the 

drag and rotor speed, this clearly leads to less power consumption.  This trend is 

contradicted at an advance ratio of 0.4 again where the necessary lift can not be generated 

on the inboard portion of the retreating side.  For this case, the reduced power 

consumption comes from shifting drag inboard on the advancing side which more than 
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offsets increases in the drag at other points at the tip on the retreating side.  In hover, 

there is actually a substantial decrease in drag at the blade tips compared both to the 

baseline or even its own inboard portion.  Again, moving the drag inboard lowers the 

rotor power. 
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              a.) Baseline: Drag (AR=0.4)      b.) Optimum: Drag (AR=0.4) 

 
               c.) Baseline: Drag (AR=0.3)     d.) Optimum: Drag (AR=0.3) 

 
 e.) Baseline: Drag (AR=0.0)     f.) Optimum: Drag (AR=0.0) 

Figure 4.2.8 a-f:  Drag Distribution Comparisons:  Comparison of the drag distribution between 
the optimum and baseline (lbs/ft). 
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            a.) Drag Difference (AR=0.4)     b.) Drag Difference (AR=0.3) 

 
c.) Drag Difference (AR=0.0) 

Figure 4.2.9 a-c:  Drag Distribution Differences:  Difference between the optimum and baseline 
drag distributions (lbs/ft). 

 

 One can see from the similarity and relative scale between figure 4.2.9, 4.2.11, 

and 4.2.13 that most of the drag consumption, drag savings, and distinct features in the 

total drag contours are attributable to the inviscid drag, which is consistent with the 

power plots that appear in figure 4.2.1.  For the inviscid drag, the trends are the same as 

those described above for the total drag.  Since inviscid forces are the product of tilting 

the section force vector, the lift and drag, around the spanwise axis of the blades, regions 

of increased induced drag correspond to increased lift and/or inflow in those regions and 

vise versa for decreases in drag.  Some of the more discrete features in the optimized 

inviscid drag contours, especially at the advance ratio of 0.3, are caused by close 

interactions between the wake and the blades.  Since the shaft angle is decreased in the 
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optimum solution for all forward flight cases, the wake will not be washed down, away 

from the blades, as quickly.  As will be seen below, the inflow in the optimized cases 

demonstrates the features seen in the induced drag contours.  Interestingly for hover, the 

induced drag at the blade tip is near zero or slightly negative.  This implies that the blade 

tips are almost neutral or actually extracting power from the air.  This point will be 

further addressed below. 
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       a.) Baseline: Inviscid Drag (AR=0.4)  b.) Optimum: Inviscid Drag (AR=0.4) 

 
       c.) Baseline: Inviscid Drag (AR=0.3)  d.) Optimum: Inviscid Drag (AR=0.3) 

    
       e.) Baseline: Inviscid Drag (AR=0.0)  f.) Optimum: Inviscid Drag (AR=0.0) 

Figure 4.2.10 a-f:  Inviscid Distribution Comparison:  Comparison of the inviscid drag 
distribution (lbs/ft) between the optimum and baseline. 
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      a.) Inviscid Drag Difference (AR=0.4)             b.) Inviscid Drag Difference (AR=0.3) 

 
c.) Inviscid Drag Difference (AR=0.0) 

Figure 4.2.11 a-c:  Inviscid Drag Distribution Differences:  Difference between the optimum and 
baseline Inviscid drag distributions (lbs/ft). 

 

 The profile drag contours are much smoother over the surface of the disk than the 

inviscid component and correspond closely with changes in lift.  There is one exception 

which is in the reverse flow region where the optimization restricted the possible range of 

drag coefficients.  The code only allowed the airfoil on the optimized rotor to operate in 

the small angle of attack range between its lc  min and lc  max to eliminate the problem of 

the cl and cd being a multi-valued and with the idea that the high stall angle would 

produce excessive drag.  The implication of this decision is that the pitch of the blade can 

vary a full 360 degrees.  The effect of this can be seen especially well by comparing the 

reverse flow region of the disk for both cases at an advance ratio of 0.4, figures 4.2.12a 

and b.    Compared to the baseline case, stall has been almost completely eliminated in 
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the optimized case.  In order to accomplish this drag reduction, as noted above, the blade 

undergoes extreme, non-physical, twisting as it moves around the disk.  The only way to 

really approach this mode of flight would be to have a segmented rotor, and even so, the 

current model neglects some unsteady aerodynamics effects: dynamic stall, apparent 

mass and rotational effects, which would certainly degrade the performance of the 

optimal solution. 
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        a.) Baseline: Profile Drag (AR=0.4)  b.) Optimum: Profile Drag (AR=0.4) 

 
        c.) Baseline: Profile Drag (AR=0.3)  d.) Optimum: Profile Drag (AR=0.3) 

     
         e.) Baseline: Profile Drag (AR=0.0)  f.) Optimum: Profile Drag (AR=0.0) 

Figure 4.2.12 a-f:  Profile Drag Distribution Comparisons:  Comparisons of the profile drag 
distributions (lbs/ft) between the optimum and baseline.  Note this is on a different scale than 

previous drag contour plots. 
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       a.) Profile Drag Difference (AR=0.4)  b.) Profile Drag Difference (AR=0.3) 

 
c.) Profile Drag Difference (AR=0.0) 

Figure 4.2.13 a-c:  Profile Drag Distribution Differences:  Difference between the optimum and 
baseline profile drag distributions (lbs/ft). 

 

 

Given the way the reverse flow region was treated for the optimized solution, it is 

important to investigate the amount of power concentrated in the reverse flow region.  In 

figure 4.2.14 the percentage of the power in the reverse flow region relative to the total 

power appears.  Given the relative magnitude of these components, it is probably 

appropriate to assume that the treatment of the reverse flow region used here does not 

have a major influence on the calculated possible power savings and that most of the 

power savings could still be achieved without the same treatment of the reverse flow 

region.   
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Figure 4.2.14:  Percentage of Power in the Reverse Flow Region:  Percent difference of the power 

in the inflow region verses the total power. 
 

To further illustrate why the relative magnitude of the power in the reverse flow 

region is this small, the total power contours are displayed below in figure 4.2.15.  The 

reverse flow region is designated by the dashed circle.  To emphasize the difference 

between power consumption and propulsive power, which the reverse flow region will 

typically display, the color scale is skewed to emphasize this transition from consumption 

to propulsion.  One can see that the amount of power is rather insignificant compared to 

the total power.  Regions of propulsive power outside the reverse flow region are due to 

upwash through the disk from close passage of vortices.  These can be seen reflected in 

the induced drag as well.  

 
         a.) Baseline: Total Power (AR=0.4)  b.) Optimized: Total Power (AR=0.4) 
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        c.) Baseline: Total Power (AR=0.3)  d.) Optimized: Total Power (AR=0.3) 

 
        e.) Baseline: Total Power (AR=0.2)  f.) Optimized: Total Power (AR=0.2) 

 
        g.) Baseline: Total Power (AR=0.1)  h.) Optimized: Total Power (AR=0.1) 

Figure 4.2.15 a-h:  Total Power Distribution Comparisons:  Difference between the optimum and 
baseline profile drag distributions (lbs/s).  The reverse flow region is designated by the dashed 

circle. 
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 The pitch distribution shows extreme changes in the reverse flow region where 

the blade in moving through up to 360° changes to limit the relative angle of attack.  In 

figure 4.2.16 it can be seen that the pitch is responding to changes in the inflow around 

the disk.  The pitch for the optimized solution has the restricted range of lc , therefore, 

the pitch only varies from the inflow angle enough to obtain the desired lc  within the 

limits of the stall angles.  Even in hover, this solution diverges from the simple ideal of 

equation 1.1.1.   The hover case demonstrates a dip in the pitch at the tips for the 

optimum case.  Across the entire blade there is about 30° of twist in hover.  In forward 

flight, pitch variation is on the same level as for hover, excluding the reverse flow region 

where it is much higher, but is distributed in a very different pattern characterized by 

large azimuthal variation.   
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 a.) Baseline: Pitch (AR=0.4)    b.) Optimum: Pitch (AR=0.4) 

     
 c.) Baseline: Pitch (AR=0.3)    d.) Optimum: Pitch (AR=0.3) 

 
 e.) Baseline: Pitch (AR=0.0)    f.) Optimum: Pitch (AR=0.0) 

Figure 4.2.16 a-t:  Pitch Distribution Comparisons: Close-up comparison of the pitch 
distribution (degrees) between the optimum and baseline.  The reverse flow region is obscured 

by the scale. 
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 a.) Pitch Difference (AR=0.4)       b.) Pitch Difference (AR=0.3) 

 
c.) Pitch Difference (AR=0.0) 

Figure 4.2.17 a-c:  Pitch Distribution Differences:  Difference between the optimum and baseline 
pitch distributions (degrees).  The reverse flow region is obscured by the scale. 

 

 As noted above, discrete features in the inflow, figure 4.2.18, make it evident that 

the rotor is responding to the close proximity of vortices.  In hover, the constant 

downwash predicted by Betz24 is largely seen inboard but there is a sudden drop and then 

an up wash at the tip which produces a large dip in the pitch distribution.  This is the disk 

taking advantage of a propulsive power produced by driving an up wash through a lifting 

surface.  This up wash is the result of the contracting wake below the rotor disk and this 

same phenomenon was seen by Moffitt and Bissell27 and others for hover.  One can see 

slightly higher inflow in the baseline due input to the higher shaft tilt angle. 
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 a.) Baseline: Inflow (AR=0.4)     b.) Optimum: Inflow (AR=0.4) 

 
 c.) Baseline: Inflow (AR=0.3)     d.) Optimum: Inflow (AR=0.3) 

  
 e.) Baseline: Inflow (AR=0.0)     f.) Optimum: Inflow (AR=0.0) 

Figure 4.2.18 a-f:  Inflow Distribution Comparisons:  Close-up comparison of the Inflow 
distribution (ft/s) between the optimum and baseline.  The reverse flow region is obscured by the 

scale. 
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           a.) Inflow Difference (AR=0.4)     b.) Inflow Difference (AR=0.3) 

 
c.) Inflow Difference (AR=0.0) 

Figure 4.2.19 a-j:  Inflow Distribution Differences:  Difference between the optimum and 
baseline Inflow distributions (ft/s). 

 

 In an effort to understand what terms are necessary to approach the optimized 

solution and what physical mechanisms might be used to attain them, the pitch and 

circulation contours in forward flight are decomposed into Fourier coefficients at various 

radial stations. The coefficients describe the equation, 

 ( ) ( )∑
=

−⋅=
N

n
nn nAf

0
cos φθθ ,      (4.2.3) 

where An and nφ  represent the amplitude and phase respectively.  The pitch distributions, 

which naturally only have harmonics up to one per revolution for the baseline, are shown 

below along with the optimized pitch distribution in figure 4.2.20.  The inboard sections 

of the blade in the reverse flow region (which appear on the blue side) show extreme 
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variability.   In the outboard regions (toward the red), the amplitude of the pitch decays 

with higher frequencies.  Ignoring the inboard sections of the blade where power 

consumption is lowest and where the reverse flow region is located, the pitch phases, 

figure 4.2.21, tend to be relatively coherent only for the 1st harmonic with a difference of 

10° across spanwise locations.  Some linearly skewed relationships do exist for some 

speeds but beyond three per revolution, ideal response is so incoherent to likely be 

unbeneficial.  Another interesting trend can be seen in the amplitude decomposition for 

the 0th harmonic.  For all advance ratios except 0.4, the initial pitch on the blade would 

have a higher washout than the shallow baseline configuration, but at 0.4 a nearly flat if 

not slightly positive slope on the twist seems required.  This may imply that the 

traditionally twisted rotor blade is particularly detrimental to high advance ratio flight.  In 

hover there is a steeper/non-linear slope.  

 

 
 a.) Baseline: Pitch Amplitude (AR=0.4)  b.) Optimum: Pitch Amplitude (AR=0.4) 
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 c.) Baseline: Pitch Amplitude (AR=0.3)  d.) Optimum: Pitch Amplitude (AR=0.3) 

 
 e.) Baseline: Pitch Amplitude (AR=0.0)  f.) Optimum: Pitch Amplitude (AR=0.0) 

Figure 4.2.20 a-f:  Fourier Decomposition of Pitch Magnitude:  Comparison of the pitch 
distribution for the baseline and optimum.  Blue represents the most inboard radial location and 

progresses toward the tip represented by red. 
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a.) Baseline: Pitch Phase (AR=0.4)  b.) Optimum: Pitch Phase (AR=0.4) 

            
 c.) Baseline: Pitch Phase (AR=0.3)  d.) Optimum: Pitch Phase (AR=0.3) 

 

Figure 4.2.21 a-d:  Fourier Decomposition of Pitch Phase:  Comparison of the pitch distribution 
for the baseline and optimum.  Blue represents the most inboard radial location and progresses 

toward the tip represented by red. 
 

Figures 4.2.22 and 4.2.23 show a similar decomposition of the circulation.  The 

relative decay of the circulation compared with the pitch is higher with most of its 

amplitude limited to the 0th-2nd harmonics.  As with the pitch, there is little coherence 

of phase between the radial positions, especially at higher harmonics.  In hover, the 

optimal circulation is flattened compared to the baseline which is consistent with 

other work suggesting a largely flat circulation profile as being ideal for hover. 
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a.) Baseline: Circulation Amplitude (AR=0.4) b.) Optimum: Circulation Amplitude (AR=0.4) 

 

c.) Baseline: Circulation Amplitude (AR=0.3) d.) Optimum: Circulation Amplitude (AR=0.3) 
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e.) Baseline: Circulation Amplitude (AR=0.0) f.) Optimum: Circulation Amplitude (AR=0.0) 

Figure 4.2.22 a-f: Fourier Decomposition of Circulation Magnitude:  Comparison of the 
circulation distribution for the baseline and optimum.  Blue represents the most inboard radial 

location and progresses toward the tip represented by red. 
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a.) Baseline: Circulation Phase (AR=0.4)  b.) Optimum: Circulation Phase (AR=0.4) 

 

c.) Baseline: Circulation Phase (AR=0.3)   d.) Optimum: Circulation Phase (AR=0.3) 

Figure 4.2.23 a-d: Fourier Decomposition of Circulation Phase:  Comparison of the circulation 
distribution for the baseline and optimum.  Blue represents the most inboard radial location and 

progresses toward the tip represented by red. 
 

Performance calculations with higher frequencies removed demonstrates the 

relative importance of these higher frequencies.  Two types of inputs were compared with 

the baseline, the circulation and the twist, both of which were systematically pared down 

from the decomposition above in figures 4.2.20 and 4.2.22 by removing the higher 

frequencies in the optimized curves at each radial position.  In doing so, radial variation 

was preserved but the frequency of azimuthal variation was reduced.  This was only done 

at an advance ratio of 0.3.  Interestingly, as can be seen in figure 4.2.24 for the case of the 

circulation as input, results were nearly constant until the second harmonics was removed 
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and even this was not very detrimental.  This implies that the desired circulation contour 

is very smooth azimuthally.  This also suggests that the problem as solved here was 

extremely inefficient as the circulation was perturbed at 36 azimuthal locations at each of 

the 15 radial stations to create a perturbation contour for each optimization iteration.  

Instead it appears only a few harmonics of azimuthal variation were required. 

 

 
Figure 4.2.24:  Power Coefficient:  Power coefficient for various pitch and circulation contours 

with harmonics equal to and higher than the ordinate value removed.  
    

For the filtered solutions where higher frequencies in the twist were 

systematically removed, the effects were seen more quickly.  Here the performance 

started to drift as the solutions approached the eighth harmonic.  The higher order terms 

are more important in the pitch for obtaining the same performance.  The difference in 

the behavior between the two inputs is a product of a complex relationship between them.  

A smooth circulation contour does not result in a smooth pitch distribution which has to 

change with a continually variable relative velocity distribution.  This difference between 

the circulation and twist decompositions implies that some of the more discrete features 

in the flow were required to be reflected in the pitch to obtain this ideal value.  For 

example, a smooth circulation distribution in the vicinity of a near vortex/blade 

interaction would lead to a velocity and pitch spike.  Thus, it appears that a smooth 

circulation contour is optimal but would be difficult to achieve. 
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The gradients for optimization were based on perturbing discrete points in the 

circulation distribution, 36 azimuthally and 15 radially.  Not only was this inefficient 

given that the solutions tended to be strongly periodic with only the first few harmonics, 

but this also has the potential of finding poor perturbation contours.  Since inviscid flow 

behavior is highly elliptical, signal point perturbations may not yield much information 

about how a contour built from these perturbations will behave.  Figure 4.2.22 shows that 

the ideal circulation had large components with higher harmonics 0th-5th, but 

performance with filtered inputs suggest that only the 0th and 1st are needed.  This again 

adds weight to the suggestion to use harmonic perturbations rather than signal point 

perturbations. 
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Chapter 5:    Conclusion 

 

5.1  Conclusions: 

 Efforts have been made to describe the generalized solution of an optimized lift 

distribution for reduced power consumption.  It was found that all of the power reduction 

was in the inviscid power often at the expense of higher profile power.  Changing the 

trim condition leads to a reduced shaft tilt angle in trim and a corresponding decrease in 

inflow and ram power which necessitates an increase in rotor parasite power negating the 

ram power reductions.  Although the net effect of this is neutral to the power 

consumption, it allows for a decrease in required thrust and therefore a decrease in the 

induced power.  Besides this effect, a greater reduction in the inviscid power is due to a 

redistribution of the lift and induced velocity at the rotor disk.  In general, a tread toward 

moving more lift or circulation inboard over the distribution of a conventionally twisted 

blade can be seen.  The optimized lift is relatively smooth but not the pitch.  The pitch 

chases contours in the induced flow to create this smooth lift contour.  The profile power 

plays a minor roll in reducing the power because of the constraints in this optimization.   

Higher harmonic control beyond three per revolution is unlikely to be a 

particularly effective method of reducing power because the phases of the higher 

harmonics are radially inconsistent.  Second order control has more potential as these 

frequencies remain more coherent.  Methods allowing radial variation in twist or lc  

would be necessary to obtain higher harmonics.  Even so, it is unlikely even a 

combination of mechanisms will produce the necessary deflections to match these 

contours.   

Some of the results and trends found here may differ from those found elsewhere 

because of the limited about stall or negative lift on the baseline rotor as a result of the 

low blade twist in the baseline model.  These are often the effects noted as having been 

alleviated in other studies or by mechanisms such as HHC.  The importance of trim is 

also apparent from this study.  Several of the studies cited repeatedly in this work have 

employed inviscid techniques to explore optimizing rotor power often assuming a shaft 

angle of zero.  Although it seems from this study that the profile power is less significant 

in reducing the total power, it plays an important role in determining the trim orientation 
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and thus the relative velocity field around the disk.  As such, it is questionable how 

practical it is to perform an inviscid optimization.  Inviscid studies usually performed 

with zero shaft tilt will probably display the same general trends in redistributing the 

circulation distribution as shown here but will exaggerate the impulsive loading of 

vortices which will shed closer to the blades in this orientation.  

The gradients for optimization were based on perturbing discrete points in the 

circulation distribution, 36 azimuthally and 15 radially.  Not only was this inefficient 

given that the solutions tended to only require the first few harmonics, but this also has 

the poor potential of finding perturbation contours.  Since inviscid flow behavior is 

highly elliptical, single point perturbations may not yield much information about how a 

contour built from these perturbations will behave.  Figure 4.2.22 shows that the ideal 

circulation has strong/large components with higher harmonics 0th -3rd, but performance 

with filtered inputs suggest that only the 0th and 1st are needed.  The fact that the method 

introduced these harmonics into the solution is reflective of there minimal impact on the 

solution as seen in the harmonic decompositions.  This again adds weight to the 

suggestion to use harmonic perturbations rather than single point perturbations. 

From this study, it also does not seem advisable to approach the problem of rotor 

design outside of the available flow control mechanisms.  As seen here, although power 

savings have been predicted, translating them to a meaningful system would prove 

difficult.  For example, placement of constrains on the pitch or use of a model specific to 

a flap device would yield more applicable solutions. 

 

5.2  Recommendations for Future Work: 

 The original impulse behind this effort was to find optimized circulation 

distributions for a helicopter in flight in a similar fashion to that performed by Munk for 

fixed wing and Rand for inviscid rotors with zero shaft-angle.  Unfortunately, unlike a 

fixed wing aircraft or a helicopter in hover, the profile drag can not be realistically 

separated from the determination of the optimal lift distribution.  Therefore this 

distribution based perspective lead to a less than ideal formulation of the problem.  Given 

a certain circulation strength, and therefore lc , there are often several possible angles of 

attack which can be selected.  The choice made here lead to the lowest angle of attack but 
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also unrealistic physical solutions.  In future efforts, it would be more appropriate to 

focus on a pitch based effort where solutions would maintain a physically realizable 

solution or a mechanism-based effort employing, for example, partial span trailing-edge 

flaps or distributed Gurney flaps.   

 The code could certainly be improved by including more features that better 

capture real rotor behavior.  The inclusion of flapping, lagging, bending, and twisting 

motions would improve the accuracy of the method.  Aerodynamic features like dynamic 

stall, apparent mass, and rotational effects would also improve the realism of the code 

and reduce some of the high variability in pitch response.  Another important alteration 

would be to perform a full vehicle trim rather than wind tunnel trim.  One should also 

consider the many time saving methods that are included in many of the existing 

comprehensive codes.  Of most significance is to perform this study with a relaxation 

rather than time marching code to increase the speed of each iteration. 

The optimization routine may not be yielding an absolute minimum power.  The 

optimizer used here is purely gradient based and therefore only has the capability to 

“slide” to the bottom of the valley it starts on.  In other words, the minimum value found 

here may be a function of the initial conditions, the baseline rotor configuration is this 

case.  One can imagine the several arrangements and deformations of the shed and 

trailing wake filaments could yield a very “bumpy” non-linear design space with many 

peaks and valleys.  Using some sort of evolutionary algorithm or another technique to 

account for this dependence on initial conditions would be valuable. 

It would be interesting to consider improving current predictions by using a non-

linear shed vortex sheet rather than discrete filaments.  These have been used in the fixed 

wing community as well as being an option in codes like CAMRAD II to model the 

inboard sheets of vorticity.  There are several advantages to this method including 

possibly requiring fewer panels than the corresponding filaments, but mainly, these 

panels yield much smoother velocity distributions than do discrete filaments which would 

“clean-up” the induced velocity and perhaps yield smoother pitch contours. 

From the above contour plots, it is clear that in many cases, the number of 

elements is insufficient to smoothly resolve the solution.  Although at higher advance 

ratios, this may be sufficient as is indicated by the grid dependence study performed at a 
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high advance ratio, the hover case is not well resolved.  Were this work to be pursued 

further, the grid density would need to be increased at least in hover. 
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Appendix A:    Comparisons of Baseline and Optimum Distributions 

A.1  Lift Distributions 

  
 a.) Baseline: Lift (AR=0.4)   b.) Optimum: Lift (AR=0.4) 

 
 c.) Baseline: Lift (AR=0.3)   d.) Optimum: Lift (AR=0.3) 

 
 e.) Baseline: Lift (AR=0.2)   f.) Optimum: Lift (AR=0.2)         
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 g.) Baseline: Lift (AR=0.1)   h.) Optimum: Lift (AR=0.1)          

 
 i.) Baseline: Lift (AR=0.0)   j.) Optimum: Lift (AR=0.0) 
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 k.) Baseline: Lift (AR=0.4)   l.) Optimum: Lift (AR=0.4) 

 
 m.) Baseline: Lift (AR=0.3)   n.) Optimum: Lift (AR=0.3) 

 
 o.) Baseline: Lift (AR=0.2)   p) Optimum: Lift (AR=0.2) 
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 q.) Baseline: Lift (AR=0.1)   r.) Optimum: Lift (AR=0.1) 

 
 s.) Baseline: Lift (AR=0.0)   t.) Optimum: Lift (AR=0.0) 

Figure A.1 a-t:  Lift Distribution Comparisons:  Comparison of the lift distribution (lbs/ft) 
between the optimum and baseline.  The 2-D plots show eight radial slices separated by 45° and 

are oriented at shown below in figure 4.2.5.   
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A.2  Azimuthal Positions of Two Dimensional Plots 
 

 
Figure A.2:  Azimuthal Position for 2-D Plots:  The solid cyan, blue, green, and red lines 

respectively represent at 90°, 135°, 180°, and 225°.  The dashed cyan, blue, green, and red lines 

respectively represent at 270°, 315°, 0°, and 45°. 
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A.3  Lift Difference Distributions        

 
 a.) Lift Difference (AR=0.4)   b.) Lift Difference (AR=0.3) 

        

 
 c.) Lift Difference (AR=0.2)   d.) Lift Difference (AR=0.1) 

 
e.) Lift Difference (AR=0.0) 
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 f.) Lift Difference (AR=0.4)   g.) Lift Difference (AR=0.3) 

  
 h.) Lift Difference (AR=0.2)   i.) Lift Difference (AR=0.1) 

 
j.) Lift Difference (AR=0.0) 

Figure A.3 a-j:  Lift Distribution Differences:  Difference between the optimum and baseline lift 
distributions (lbs/ft).   

 



 109 

A.4  Circulation Distributions 

    
            a.) Baseline: Circulation (AR=0.4)         b.) Optimum: Circulation (AR=0.4) 

  
            c.) Baseline: Circulation (AR=0.3)         d.) Optimum: Circulation (AR=0.3) 

      
            e.) Baseline: Circulation (AR=0.2)         f.) Optimum: Circulation (AR=0.2) 
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            g.) Baseline: Circulation (AR=0.1)         h.) Optimum: Circulation (AR=0.1) 

      
            i.) Baseline: Circulation (AR=0.0)         j.) Optimum: Circulation (AR=0.0) 
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            k.) Baseline: Circulation (AR=0.4)         l.) Optimum: Circulation (AR=0.4) 

 
            m.) Baseline: Circulation (AR=0.3)         n.) Optimum: Circulation (AR=0.3) 

 
            o.) Baseline: Circulation (AR=0.2)         p) Optimum: Circulation (AR=0.2) 
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            q.) Baseline: Circulation (AR=0.1)         r.) Optimum: Circulation (AR=0.1) 

 
            s.) Baseline: Circulation (AR=0.0)         t.) Optimum: Circulation (AR=0.0) 

Figure A.4 a-t:  Circulation Distribution Comparisons:  Comparison of the circulation 
distribution (ft/s2) between the optimum and baseline. 
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A.5  Circulation Difference Distributions 

       
         a.) Circulation Difference (AR=0.4)         b.) Circulation Difference (AR=0.3) 

     
         c.) Circulation Difference (AR=0.2)         d.) Circulation Difference (AR=0.1) 

 
e.) Circulation Difference (AR=0.0) 
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         f.) Circulation Difference (AR=0.4)         g.) Circulation Difference (AR=0.3) 

 
         h.) Circulation Difference (AR=0.2)         i.) Circulation Difference (AR=0.1) 

 
j.) Circulation Difference (AR=0.0) 

Figure A.5 a-j:  Circulation Distribution Differences:  Difference between the optimum and 
baseline circulation distributions (ft2/s). 
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A.6  Drag Distributions        

 
 a.) Baseline: Drag (AR=0.4)   b.) Optimum: Drag (AR=0.4) 

 
c.) Baseline: Drag (AR=0.3)   d.) Optimum: Drag (AR=0.3) 

 

       
 e.) Baseline: Drag (AR=0.2)   f.) Optimum: Drag (AR=0.2) 
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 g.) Baseline: Drag (AR=0.1)   h.) Optimum: Drag (AR=0.1) 

 
 i.) Baseline: Drag (AR=0.0)   j.) Optimum: Drag (AR=0.0) 
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 k.) Baseline: Drag (AR=0.4)   l.) Optimum: Drag (AR=0.4) 

 
 m.) Baseline: Drag (AR=0.3)   n.) Optimum: Drag (AR=0.3) 

 
 o.) Baseline: Drag (AR=0.2)   p) Optimum: Drag (AR=0.2) 
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 q.) Baseline: Drag (AR=0.1)   r.) Optimum: Drag (AR=0.1) 

 
 s.) Baseline: Drag (AR=0.0)   t.) Optimum: Drag (AR=0.0) 

Figure A.6 a-t:  Drag Distribution Comparisons:  Comparison of the drag distribution between 
the optimum and baseline (lbs/ft). 

 

 



 119 

A.7  Drag Difference Distributions 

    
 a.) Drag Difference (AR=0.4)   b.) Drag Difference (AR=0.3) 

     
 c.) Drag Difference (AR=0.2)   d.) Drag Difference (AR=0.1) 

 
e.) Drag Difference (AR=0.0) 
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 f.) Drag Difference (AR=0.4)   g.) Drag Difference (AR=0.3) 

 
 h.) Drag Difference (AR=0.2)   i.) Drag Difference (AR=0.1) 

 
j.) Drag Difference (AR=0.0) 

Figure A.7 a-j:  Drag Distribution Differences:  Difference between the optimum and baseline 
drag distributions (lbs/ft). 
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A.8  Inviscid Drag Distributions 

      
           a.) Baseline: Inviscid Drag (AR=0.4)  b.) Optimum: Inviscid Drag (AR=0.4) 

 
           c.) Baseline: Inviscid Drag (AR=0.3)      d.) Optimum: Inviscid Drag (AR=0.3)  

  
           e.) Baseline: Inviscid Drag (AR=0.2)      f.) Optimum: Inviscid Drag (AR=0.2) 



 122 

   
           g.) Baseline: Inviscid Drag (AR=0.1)      h.) Optimum: Inviscid Drag (AR=0.1) 

    
           i.) Baseline: Inviscid Drag (AR=0.0)       j.) Optimum: Inviscid Drag (AR=0.0) 
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           k.) Baseline: Inviscid Drag (AR=0.4)      l.) Optimum: Inviscid Drag (AR=0.4) 

 
           m.) Baseline: Inviscid Drag (AR=0.3)      n.) Optimum: Inviscid Drag (AR=0.3) 

 
           o.) Baseline: Inviscid Drag (AR=0.2)      p) Optimum: Inviscid Drag (AR=0.2) 
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           q.) Baseline: Inviscid Drag (AR=0.1)      r.) Optimum: Inviscid Drag (AR=0.1) 

 
           s.) Baseline: Inviscid Drag (AR=0.0)      t.) Optimum: Inviscid Drag (AR=0.0) 

Figure A.8 a-t:  Inviscid Distribution Comparison:  Comparison of the inviscid drag distribution 
(lbs/ft) between the optimum and baseline. 
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A.9  Inviscid Drag Difference Distributions 

 
          a.) Inviscid Drag Difference (AR=0.4)       b.) Inviscid Drag Difference (AR=0.3) 

         
          c.) Inviscid Drag Difference (AR=0.2)       d.) Inviscid Drag Difference (AR=0.1) 

 
e.) Inviscid Drag Difference (AR=0.0) 
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          f.) Inviscid Drag Difference (AR=0.4)       g.) Inviscid Drag Difference (AR=0.3) 

 
          h.) Inviscid Drag Difference (AR=0.2)       i.) Inviscid Drag Difference (AR=0.1) 

 
j.) Inviscid Drag Difference (AR=0.0) 

Figure A.9 a-j:  Inviscid Drag Distribution Differences:  Difference between the optimum and 
baseline Inviscid drag distributions (lbs/ft). 
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A.10  Profile Drag Distributions 

  
           a.) Baseline: Profile Drag (AR=0.4)        b.) Optimum: Profile Drag (AR=0.4) 

 
           c.) Baseline: Profile Drag (AR=0.3)        d.) Optimum: Profile Drag (AR=0.3) 

 
           e.) Baseline: Profile Drag (AR=0.2)        f.) Optimum: Profile Drag (AR=0.2) 
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           g.) Baseline: Profile Drag (AR=0.1)        h.) Optimum: Profile Drag (AR=0.1) 

     
           i.) Baseline: Profile Drag (AR=0.0)        j.) Optimum: Profile Drag (AR=0.0) 
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           k.) Baseline: Profile Drag (AR=0.4)        l.) Optimum: Profile Drag (AR=0.4) 

 
           m.) Baseline: Profile Drag (AR=0.3)       n.) Optimum: Profile Drag (AR=0.3) 

 
           o.) Baseline: Profile Drag (AR=0.2)        p) Optimum: Profile Drag (AR=0.2) 
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           q.) Baseline: Profile Drag (AR=0.1)        r.) Optimum: Profile Drag (AR=0.1) 

 
           s.) Baseline: Profile Drag (AR=0.0)        t.) Optimum: Profile Drag (AR=0.0) 

Figure A.10 a-t:  Profile Drag Distribution Comparisons:  Comparisons of the profile drag 
distributions (lbs/ft) between the optimum and baseline.  Note this is on a different scale than 

previous drag contour plots. 
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A.11  Profile Drag Difference Distributions 

 
           a.) Profile Drag Difference (AR=0.4)        b.) Profile Drag Difference (AR=0.3) 

 
           c.) Profile Drag Difference (AR=0.2)        d.) Profile Drag Difference (AR=0.1) 

 
e.) Profile Drag Difference (AR=0.0) 
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           f.) Profile Drag Difference (AR=0.4)        g.) Profile Drag Difference (AR=0.3) 

 
           h.) Profile Drag Difference (AR=0.2)        i.) Profile Drag Difference (AR=0.1) 

 
j.) Profile Drag Difference (AR=0.0) 

FigureA.11 a-j:  Profile Drag Distribution Differences:  Difference between the optimum and 
baseline profile drag distributions (lbs/ft). 
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A.12  Angle of Attack Distributions 

  
         a.) Baseline: Angle of Attack (AR=0.4)      b.) Optimum: Angle of Attack (AR=0.4)  

    
         c.) Baseline: Angle of Attack (AR=0.3)      d.) Optimum: Angle of Attack (AR=0.3) 

  
         e.) Baseline: Angle of Attack (AR=0.2)      f.) Optimum: Angle of Attack (AR=0.2) 
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         g.) Baseline: Angle of Attack (AR=0.1)      h.) Optimum: Angle of Attack (AR=0.1) 

 
         i.) Baseline: Angle of Attack (AR=0.0)      j.) Optimum: Angle of Attack (AR=0.0) 
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         k.) Baseline: Angle of Attack (AR=0.4)      l.) Optimum: Angle of Attack (AR=0.4) 

 
         m.) Baseline: Angle of Attack (AR=0.3)      n.) Optimum: Angle of Attack (AR=0.3) 

 
         o.) Baseline: Angle of Attack (AR=0.2)      p.) Optimum: Angle of Attack (AR=0.2) 
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         q.) Baseline: Angle of Attack (AR=0.1)      r.) Optimum: Angle of Attack (AR=0.1) 

 
         s.) Baseline: Angle of Attack (AR=0.0)      t.) Optimum: Angle of Attack (AR=0.0) 

Figure A.12 a-t:  Local Angle of Attack Distribution Comparisons:  Comparison of the local 
angle of attack distribution (degrees) between the optimum and baseline. 
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A.13  Angle of Attack Difference Distributions 

   
        a.) Angle of Attack Difference (AR=0.4)      b.) Angle of Attack Difference (AR=0.3) 

 
       c.) Angle of Attack Difference (AR=0.2)      d.) Angle of Attack Difference (AR=0.1) 

 
e.) Angle of Attack Difference (AR=0.0) 
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       f.) Angle of Attack Difference (AR=0.4)      g.) Angle of Attack Difference (AR=0.3) 

 
       h.) Angle of Attack Difference (AR=0.2)      i.) Angle of Attack Difference (AR=0.1) 

 
j.) Angle of Attack Difference (AR=0.0) 

Figure A.13 a-j:  Local Angle of Attack Distribution Differences:  Difference between the local 
angle of attack distribution (degrees) between the optimum and baseline. 
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A.14  Pitch Distributions 

      
 a.) Baseline: Pitch (AR=0.4)   b.) Optimum: Pitch (AR=0.4) 

     
 c.) Baseline: Pitch (AR=0.3)   d.) Optimum: Pitch (AR=0.3) 

      
 e.) Baseline: Pitch (AR=0.2)   f.) Optimum: Pitch (AR=0.2) 
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 g.) Baseline: Pitch (AR=0.1)   h.) Optimum: Pitch (AR=0.1) 

        

 
 i.) Baseline: Pitch (AR=0.0)   j.) Optimum: Pitch (AR=0.0) 



 141 

 
 k.) Baseline: Pitch (AR=0.4)   l.) Optimum: Pitch (AR=0.4) 

 
 m.) Baseline: Pitch (AR=0.3)   n.) Optimum: Pitch (AR=0.3) 

 
 o.) Baseline: Pitch (AR=0.2)   p) Optimum: Pitch (AR=0.2) 



 142 

 
 q.) Baseline: Pitch (AR=0.1)   r.) Optimum: Pitch (AR=0.1) 

 
 s.) Baseline: Pitch (AR=0.0)   t.) Optimum: Pitch (AR=0.0) 

Figure A.14 a-t:  Pitch Distribution Comparisons: Close-up comparison of the pitch distribution 
(degrees) between the optimum and baseline.  The reverse flow region is obscured by the scale. 
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A.15  Pitch Difference Distributions 

     
 a.) Pitch Difference (AR=0.4)   b.) Pitch Difference (AR=0.3) 

      
 c.) Pitch Difference (AR=0.2)   d.) Pitch Difference (AR=0.1) 

 
e.) Pitch Difference (AR=0.0) 



 144 

 
 f.) Pitch Difference (AR=0.4)   g.) Pitch Difference (AR=0.3) 

 
 h.) Pitch Difference (AR=0.2)   i.) Pitch Difference (AR=0.1) 

 
j.) Pitch Difference (AR=0.0) 

Figure A.15 a-j:  Pitch Distribution Differences:  Difference between the optimum and baseline 
pitch distributions (degrees).  The reverse flow region is obscured by the scale. 
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A.16  Inflow Distributions 

     
 a.) Baseline: Inflow (AR=0.4)   b.) Optimum: Inflow (AR=0.4) 

 
 c.) Baseline: Inflow (AR=0.3)   d.) Optimum: Inflow (AR=0.3) 

 
 e.) Baseline: Inflow (AR=0.2)   f.) Optimum: Inflow (AR=0.2) 
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 g.) Baseline: Inflow (AR=0.1)   h.) Optimum: Inflow (AR=0.1) 

  
 i.) Baseline: Inflow (AR=0.0)   j.) Optimum: Inflow (AR=0.0) 
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 k.) Baseline: Inflow (AR=0.4)   l.) Optimum: Inflow (AR=0.4) 

 
 m.) Baseline: Inflow (AR=0.3)   n.) Optimum: Inflow (AR=0.3) 

 
 o.) Baseline: Inflow (AR=0.2)   p) Optimum: Inflow (AR=0.2) 
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 q.) Baseline: Inflow (AR=0.1)   r.) Optimum: Inflow (AR=0.1) 

 
 s.) Baseline: Inflow (AR=0.0)   t.) Optimum: Inflow (AR=0.0) 

Figure A.16 a-t:  Inflow Distribution Comparisons:  Close-up comparison of the Inflow 
distribution (ft/s) between the optimum and baseline.  The reverse flow region is obscured by the 

scale. 
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A.17  Inflow Difference Distributions 

  
 a.) Inflow Difference (AR=0.4)   b.) Inflow Difference (AR=0.3) 

  
 c.) Inflow Difference (AR=0.2)   d.) Inflow Difference (AR=0.1) 

 
e.) Inflow Difference (AR=0.0) 



 150 

 
 f.) Inflow Difference (AR=0.4)   g.) Inflow Difference (AR=0.3) 

 
 h.) Inflow Difference (AR=0.2)   i.) Inflow Difference (AR=0.1) 

 
j.) Inflow Difference (AR=0.0) 

Figure A.17 a-j:  Inflow Distribution Differences:  Difference between the optimum and baseline 
Inflow distributions (ft/s). 
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Appendix B: Fourier Decomposition 

B.1:    Amplitude Fourier Decomposition of the Pitch Distributions 

 
        a.) Baseline: Pitch Amplitude (AR=0.4)      b.) Optimum: Pitch Amplitude (AR=0.4) 

 
        c.) Baseline: Pitch Amplitude (AR=0.3)      d.) Optimum: Pitch Amplitude (AR=0.3) 

 
        e.) Baseline: Twist Amplitude (AR=0.2)      f.) Optimum: Pitch Amplitude (AR=0.2) 
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        g.) Baseline: Pitch Amplitude (AR=0.1)      h.) Optimum: Pitch Amplitude (AR=0.1) 

 
        i.) Baseline: Pitch Amplitude (AR=0.0)      j.) Optimum: Pitch Amplitude (AR=0.0) 

Figure B.1 a-j:  Amplitude Fourier Decomposition of Pitch:  Comparison of the pitch 
distribution for the baseline and optimum.  Blue represents the most inboard radial location and 

progresses toward the tip represented by red. 
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B.2:    Phase Fourier Decomposition of the Pitch Distributions  

            
a.) Baseline: Pitch Phase (AR=0.4)       b.) Optimum: Pitch Phase (AR=0.4) 

 

            
c.) Baseline: Pitch Phase (AR=0.3)       d.) Optimum: Pitch Phase (AR=0.3) 

 
            e.) Baseline: Pitch Phase (AR=0.2)       f.) Optimum: Pitch Phase (AR=0.2) 
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            g.) Baseline: Pitch Phase (AR=0.1)       h.) Optimum: Pitch Phase (AR=0.1) 

 
Figure B.2 a-h:  Phase Fourier Decomposition of Pitch:  Comparison of the pitch distribution for 

the baseline and optimum.  Blue represents the most inboard radial location and progresses 
toward the tip represented by red. 
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B.3:   Amplitude Fourier Decomposition of the Circulation Distributions 

 

   a.) Baseline: Circulation Amplitude (AR=0.4) b.) Optimum: Circulation Amplitude (AR=0.4) 

 

   c.) Baseline: Circulation Amplitude (AR=0.3) d.) Optimum: Circulation Amplitude (AR=0.3) 

 

   e.) Baseline: Circulation Amplitude (AR=0.2) f.) Optimum: Circulation Amplitude (AR=0.2)



 156 

 

   g.) Baseline: Circulation Amplitude (AR=0.1) h.) Optimum: Circulation Amplitude (AR=0.1) 

 

   i.) Baseline: Circulation Amplitude (AR=0.0) j.) Optimum: Circulation Amplitude (AR=0.0) 

Figure B.3 a-j: Amplitude Fourier Decomposition of Circulation:  Comparison of the circulation 
distribution for the baseline and optimum.  Blue represents the most inboard radial location and 

progresses toward the tip represented by red. 
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B.4:    Phase Fourier Decomposition of the Circulation Distributions 

 

    a.) Baseline: Circulation Phase (AR=0.4)    b.) Optimum: Circulation Phase (AR=0.4) 

 

    c.) Baseline: Circulation Phase (AR=0.3)    d.) Optimum: Circulation Phase (AR=0.3) 

 

    e.) Baseline: Circulation Phase (AR=0.2)   f.) Optimum: Circulation Phase (AR=0.2)
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    g.) Baseline: Circulation Phase (AR=0.1)   h.) Optimum: Circulation Phase (AR=0.1) 

Figure B.4 a-h: Phase Fourier Decomposition of Circulation:  Comparison of the circulation 
distribution for the baseline and optimum.  Blue represents the most inboard radial location and 

progresses toward the tip represented by red. 
 
 

 


