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ABSTRACT 
 

This thesis investigates intentional and unintentional human actions during multi-finger 

isometric force-moment production tasks. In the first study, a multi-finger isometric force-moment 

task was used for studying the nature of force and moment unintentional drift, and the force-

moment stabilizing synergies. In this experiment subjects were utilizing visual feedback to maintain 

a certain amount of force and moment. At some point after subjects had stabilized their performance 

at the target, either force, or moment, or both feedbacks were turned off. The finger forces were 

studied under the uncontrolled-manifold and referent configuration hypothesis. This study showed 

that the absolute value of force and moment drops without visual feedback. However, drifts in 

individual finger forces could be in different directions; in particular, fingers that produced 

moments of force against the required total moment showed an increase in their forces. The 

force/moment drift was associated with a drop in the index of synergy stabilizing performance 

under visual feedback. The drifts in directions that changed performance (non-motor equivalent) 

and in directions that did not (motor equivalent), were of about the same magnitude. The results 

suggest that control with referent coordinates is associated with drifts of those referent coordinates 

toward the corresponding actual coordinates of the hand – a reflection of the natural tendency of 

physical systems to move toward the minimum of potential energy. The interaction between drifts 

of the hand referent coordinate and referent orientation led to counter-directional drifts in individual 

finger forces. The results also demonstrate that the sensory information used to create multi-finger 

synergies is necessary for their presence over the task duration. 

In the second study, subjects performed a set of force-moment tasks with different levels 

of force and moment. These data were used to compute a cost function using the analytical inverse 

optimization method. Then, the subjects were asked to produce accurate force-moment tasks with 

a non-preferred sharing among the fingers. This was done by asking the subjects to reduce the 

middle finger force to half of its magnitude during the comfortable task performance. Adding this 

new constraint to an ongoing task resulted in a drop of variance within the uncontrolled manifold 

leading to a decline in the synergy index. Then, the visual feedback was removed for one, two, or 

all three of the main variables (force, moment, and middle finger force). The studies showed that 

the observed drift in performance variables was due to two processes, a drift of the referent 

coordinate toward the actual coordinate leading to a decrease in the finger forces, and a movement 

in the space of finger forces in a direction that did not affect the performance, but it reduced the 

cost of performing the task. Overall, these results fit naturally the scheme of hierarchical control 

using changes in referent coordinates for relevant variables. 

 

 

  



iv 

 

 

TABLE OF CONTENTS 

List of Figures….. ............................................................................................................... vii 

List of Tables ......................................................................................................................  x 

Acknowledgements .............................................................................................................  xi 

Chapter 1  Introduction ....................................................................................................... 1 

1.1 Goals of This Study ................................................................................................ 2 
1.1.1 Exploring the interpretation of the unintentional drift for a four-finger 

total force-moment task ................................................................................ 3 
1.1.2 Unintentional drift of the performance variables and the cost drift in the 

presence of a new constraint ......................................................................... 3 
1.1.3 Structure of variance and motor equivalence in the presence of a new 

constraint ..................................................................................................... 4 
1.2 Related Publications .............................................................................................. 4 

Chapter 2  Literature Review............................................................................................... 5 

2.1 Motor Variability ................................................................................................... 5 
2.2 Uncontrolled Manifold Hypothesis ........................................................................ 5 
2.3 Referent Configurations and Equifinality ............................................................... 8 
2.4 Motor Redundancy and Optimization ..................................................................... 8 
2.5 The Human Hand .................................................................................................. 9 

2.5.1 Anatomy of the Human Hand ...................................................................... 9 
2.5.2 The Interdependence of Finger Forces ......................................................... 11 

Chapter 3  Methodology ...................................................................................................... 13 

3.1 Enslaving and Finger Modes .................................................................................. 13 
3.2 Analysis of Variance of Finger Forces and Modes.................................................. 14 
3.3 Analysis of Motor Equivalence .............................................................................. 15 
3.4 Analytical Inverse Optimization (ANIO)................................................................ 15 

Chapter 4  On the Nature of Unintentional Actions .............................................................. 18 

4.1 Methods ................................................................................................................ 20 
4.1.1 Subjects....................................................................................................... 20 
4.1.2 Apparatus .................................................................................................... 20 
4.1.3 Experimental procedure ............................................................................... 21 
4.1.4 Data processing ........................................................................................... 22 
4.1.5 Enslaving and Finger Modes ....................................................................... 23 
4.1.6 Analysis of Force and Moment Drift............................................................ 24 
4.1.7 Analysis of Variance of Finger Forces and Modes ....................................... 24 
4.1.8 Analysis of Motor Equivalence .................................................................... 25 
4.1.9 Statistics ...................................................................................................... 25 



v 

 
4.2 Results................................................................................................................... 26 

4.2.1 General patterns of performance .................................................................. 26 
4.2.2 Analysis of the structure of variance ............................................................ 29 
4.2.3 Analysis of motor equivalence ..................................................................... 31 

4.3 Discussion ............................................................................................................. 33 
4.3.1 Origins of unintentional change in performance ........................................... 34 
4.3.2 Two types of unintentional force change ...................................................... 36 
4.3.3 Synergies stabilizing intentional and unintentional actions ........................... 37 
4.3.4 Direction of force drift in an abundant system.............................................. 38 
4.3.5 Concluding comments ................................................................................. 39 

Chapter 5  Optimality and stability of intentional and unintentional actions: I. Origins of 

drifts in static performance .......................................................................................... 41 

5.1 Methods ................................................................................................................ 43 
5.1.1 Subjects....................................................................................................... 43 
5.1.2 Equipment ................................................................................................... 43 
5.1.3 Experimental procedure ............................................................................... 44 
5.1.4 Data processing ........................................................................................... 46 
5.1.5 Analysis of the drift in performance variables .............................................. 47 
5.1.6 ANIO and computation of the cost function ................................................. 47 
5.1.7 Statistical analysis ....................................................................................... 48 

5.2 Results................................................................................................................... 48 
5.2.1 Analytical Inverse Optimization (ANIO) ..................................................... 48 
5.2.2 Drifts in task-related performance variables ................................................. 49 
5.2.3 Drifts in finger forces .................................................................................. 53 
5.2.4 Cost value drifts .......................................................................................... 54 

5.3 Discussion ............................................................................................................. 55 
5.3.1 Factors that define unintentional changes in performance ............................ 56 
5.3.2 Hierarchical control with referent coordinates .............................................. 58 
5.3.3 Is optimization real? .................................................................................... 59 
5.3.4 Concluding comments ................................................................................. 60 

Chapter 6  Optimality and stability of intentional and unintentional actions: II. Structure 
of variance and motor equivalence ............................................................................... 61 

6.1 Methods ................................................................................................................ 63 
6.1.1 Subjects....................................................................................................... 63 
6.1.2 Apparatus .................................................................................................... 63 
6.1.3 Experimental procedure ............................................................................... 64 
6.1.4 Data processing ........................................................................................... 65 

6.2 Results................................................................................................................... 67 
6.2.1 Motor equivalence analysis ......................................................................... 69 
6.2.2 Analysis of the structure of variance ............................................................ 72 

6.3 Discussion ............................................................................................................. 74 
6.3.1 Synergies and the number of constraints ...................................................... 74 
6.3.2 Stability and its reflections in motor equivalence and structure of variance .. 76 
6.3.3 Stability during unintentional drift in performance ....................................... 76 
6.3.4 Concluding comments ................................................................................. 78 



vi 

 
Chapter 7  Discussion ......................................................................................................... 79 

7.1 References ..................................................................................................... 82 
 

 



vii 

 

LIST OF FIGURES 

Figure 2-1. Clouds of data points measured in several trials for producing a total force of 40 N. (A) the data 

points may form a circular cloud about a certain average sharing of total force between the two fingers. 

Alternatively, the data point may form an ellipse elongated along the line F1+F2=40 (the dashed slanted line, 

B) or elongated perpendicular to this line (the solid slanted line, C). Variance along the dashed line does not 

affect total force (good variance, VGOOD) while variance along the solid line does (bad variance, VBAD). This 

figure was taken from the book Synergy by Mark Latash 2006, page122…………………………………….6 

Figure 4-1. A: The production of a magnitude of total force (FTOT) with a set of fingers (I – index; M – 

middle; R – ring, and L – little) in isometric conditions is associated with setting a referent coordinate (RC) 

for the fingertip and a magnitude of apparent stiffness k. Given the constant actual coordinate of the effector 

(AC), FTOT = k(RC – AC). B: The production to a magnitude of the moment of force, MTOT is associated with 

a shift of the referent orientation of the plane of fingertip coordinates (RO) away from its actual orientation 

(AO) scaled with an apparent stiffness coefficient (kO): MTOT = kO(RO – AO)…………………………….19 

Figure 4-2. An illustration of the experimental setup. A: The monitor presented total force (FTOT) and total 

moment (MTOT) feedback. B: The hand configuration of the sensors………………………………………..21 

Figure 4-3. The time series of the normalized FTOT and MTOT for a representative subject in a trial when no 

feedback was presented after 5 s. PR – pronation; SU - supination. Phase-1 was defined as the time interval 

470-480 ms; Phase-2 was defined as the time interval 2470-2480 ms. Note the downward drift in both FTOT 

and MTOT magnitudes……..…………………………………………………………………………………23 

Figure 4-4. The averaged across subjects time series of normalized FTOT and MTOT for the left hand (panels 

A and C) and the right hand (panels B and D) with standard error shades. Note the larger drop in FTOT in the 

right hand for both initial moment magnitudes (PR – pronation, SU – supination). Both hands showed a larger 

MTOT drift for the initial SU moment………………………………………………………………………. 27 

Figure 4-5. The changes in FTOT and MTOT, ∆FTOT and ∆MTOT (both normalized by the initial values) for each 

hand and moment condition. Averaged across subjects values are shown with standard error bars. Note the 

larger ΔFTOT in the right hand (panel A) with no effect of the moment direction (PR – pronation; SU – 

supination). The drift in MTOT was much larger for the SU moments (panel B)……………………………28 

Figure 4-6. The changes in the individual finger forces (A) and modes (B) for each moment condition (PR 

– pronation; SU – supination). Averaged across subjects values are shown with standard error bars. Positive 

values correspond to an increase in the finger force (mode) while negative values indicate a drop in the finger 

force (mode). Note that positive values were typical for “moment antagonist” fingers, i.e. those producing 

moment against the required moment direction……………………………………………………………..29 

Figure 4-7. Two components of the normalized variance across trails, within (VUCM) and orthogonal (VORT) 

to the UCM for the right hand. Averaged across subjects values are shown with standard error bars. The 

results of the analysis for Phase-1 and Phase-2 for both hands and both moment conditions are shown in the 

force space (A) and the mode space (B). The analysis was performed for the Jacobians computed with respect 

to FTOT (JF), MTOT (JFM), and both {FTOT; MTOT} (JFM). In Phase-1, across conditions and analyses, there were 

synergies stabilizing both FTOT and MTOT (VUCM>VORT, for all Jacobians) while there were no such synergies 

in Phase-2. Similar results were observed for the left hand. PR – pronation; SU – supination……………..30 



viii 

 
Figure 4-8. The magnitudes of the z-transformed index of synergy (∆VZ) for the mode (A) and force (B) 

space analyses are shown at Phase-1 (open bars) and Phase-2 (black bars) for all the hand and moment 

conditions. Averaged across subjects values are shown with standard error bars. Note that ∆VZ > 0 in Phase-

1 but not in Phase-2. The panels show the results for the {FTOT; MTOT}-based Jacobian (JFM). Similar results 

were obtained for the analyses with respect FTOT-based (JF) and MTOT-based (JM) Jacobians. PR – pronation; 

SU – supination………………………………………………………...........................................................31 

Figure 4-9. The motor equivalent (ME) and non-motor equivalent (nME) components of the vector of mode 

(panels A and C) and force (panels B and D) difference between Phase-2 and Phase-1. Averaged across 

subjects values are shown with standard error bars for the left hand (panels A and B) and the right hand 

(panels C and D). Both ME and nME components were normalized by the square root of corresponding 

degrees of freedom. Note the larger nME for the right hand compared to the left hand and for the SU 

(supination) condition compared to the PR (pronation) condition………………………………………….32 

Figure 4-10. An illustration of the production of FTOT and MTOT with changing RC and RO. After a drift in 

RC and RO (the right panel), a drop in the magnitude of both FTOT and MTOT is expected. Note consistent 

changes in the forces of “moment agonist” fingers (force reduction) while changes in the forces of “moment 

antagonists” may depend on the relative rate of the RC and RO drifts. They can lead to an increase in the 

forces of those fingers……………………………………………………………………………………….36 

Figure 5-1. Experiment setup. (a) The complete setup. All subjects were tested with this setup. Their arm 

comfortably fixed to the platform and they were pressing on the force sensor to follow the visual feedback 

shown on the screen in front of them. (b) A sample of the visual feedback that was shown to subjects. The 

small hollow circle indicates a {MTOT, FTOT} combination. The x-axis and y-axis are total moments, and total 

force, respectively. The tank in the middle of the screen is the feedback on middle finger force. The level is 

the value that subjects must reach before Phase-2. The dotted cross is being controlled by subjects’ {MTOT, 

FTOT} production, and must be held within the circle. (c) Hand placement on the sensors…………………44 

Figure 5-2. A sample of total force profile. In this figure, the three important phases described in the context 

was show in a total force profile……………………………………………………………………………..46 

Figure 5-3. A typical trial observed when only FTOT feedback was preserved after Phase-2. (a) FTOT signal. 

No drift was expected as the feedback was provided on this task variable. (b) MTOT signal was shown in this 

panel, and as expected MTOT value decreases unintentionally by time in the absence of visual feedback. (c) 

FMID signal. FMID increases in the absence of visual feedback………………………………………………50 

Figure 5-4.  (a) Mean and standard error representing ΔFTOT across trials for all Moment and Feedback 

conditions. The difference between FTOT in Phase-3 and Phase-2 were considered as ΔFTOT. Similarly, in (b) 

the ΔMTOT was computed as the difference between MTOT in Phase-3 and Phase-2. Three different colors 

show various Moment conditions……………………………………………………………………………52 

Figure 5-5. Drift in finger forces represented by mean and standard error. Index, middle, ring and little finger 

forces were computed as the difference between the finger force value in Phase-3 and Phase-2……………54 

Figure 5-6. Mean and standard error representing ΔCANIO across trials for all Moment and Feedback 

conditions. ΔCANIO was computed by subtracting the CANIO at Phase-2 from the value at Phase-3. Three 

different colors show various Moment conditions…………………………………………………………..55 



ix 

 
Figure 6-1. The setup. A: The subject’s position. B: Visual feedback defined total force and total moment 

target, {FTOT, MTOT}, as the intersection of two lines. The “tank with water” in the middle of the screen 

presented the feedback on the middle finger force. C: Hand placement on the sensors…………………….63 

Figure 6-2. A typical example of FTOT, MTOT, FMID was presented in (a) and (b) for FMID and FTOT+MTOT 

feedback condition, respectively. Each of these time series were normalized to their targeted value at Phase-

1. In (c) the ME and nME components computed considering Force-Moment Jacobian for the same subject 

and tasks was shown for two time intervals (ΔPhase12 and ΔPhase23). (d) shows the average value for the 

variance components (VUCM and VORT) on Force-Moment Jacobian in Phase-1 and Phase-2………………68 

Figure 6-3. A typical example of FTOT, MTOT, FMID was presented in (a) and (b) for FMID and FTOT+MTOT 

feedback condition, respectively. Each of these time series was normalized to their targeted value at Phase-

1. In (c) the ME and nME components computed considering Force-Moment Jacobian for the same subject 

and tasks was shown for two-time intervals (ΔPhase12 and ΔPhase23). (d) shows the average value for the 

variance components (VUCM and VORT) on Force-Moment Jacobian in Phase-1 and Phase-2……………….70 

Figure 6-4. Averaged ME and nME components across all subjects for ΔPhase12 and ΔPhase23 for different 

moment conditions. Force-Moment Jacobian was used for all the conditions………………………………71 

Figure 6-5. Averaged ME and nME components across all subjects for ΔPhase23. A Jacobian reflecting 

constraints with the feedback that remained on the screen throughout the trial (JVISION) was used for each 

feedback condition in the top row. However, the reverse was done in the bottom row, ME and nME 

components were computed with respect to the Jacobian reflecting constraints without feedback (JNO-VISION) 

between Phase-2 and Phase-3. As a result, we are observing large nME components in the bottom row. Both 

of the components were normalized by the corresponding dimension of the space in which they were 

computed…………………………………………………………………………………………………….73 

 

 

 



x 

 

LIST OF TABLES 
Table 2-1. Mechanoreceptors properties …………………………………………………………………...11 

Table 4-2. Results of statistical analysis ……………………………………………………….…………..33 

 

 



xi 

 

ACKNOWLEDGEMENTS 
 

Firstly, I would like to express my sincere gratitude to my advisor Prof. Mark Latash for 

the continuous support of my Master study and related research, for his patience, motivation, and 

immense knowledge. His guidance helped me in all the time of research and writing of this thesis. 

I could not have imagined having a better advisor and mentor for my Master study.  

Besides my advisor, I would like to thank the rest of my thesis committee: Prof. Vladimir 

Zatsiorsky, Prof. Stephen J. Piazza, and Prof. Robert L. Sainburg, for their insightful comments 

and encouragement, but also for the questions which incented me to widen my research from 

various perspectives. 

Last but not the least, I would like to thank my family: my parents and my sister for 

supporting me spiritually throughout writing this thesis and my life in general. 



1 

 

 

 

 

Chapter 1 

 

Introduction 

It has been observed that turning off the visual feedback while a person is producing a constant 

total force in isometric condition with the help of visual feedback leads to a drift in force without the subject 

being aware of the force drop. The drift is sometimes as large as 30% percent of the initial force level over 

20-30 s. This phenomenon has been studied in two main ways. First, this phenomenon has been interpreted 

as a reflection of a limitation of working memory with the possible contribution of fatigue (Slifkin et al. 

2000, Vaillancourt and Russell 2002). A few recent studies questioned this interpretation (Ambike et al. 

2015; Jo et al. 2015), in particular, based on an observation that resting for a similar time interval does not 

result in a consistent change in the force level reproduced without visual feedback after the rest interval.  

An alternative explanation has been suggested based on an approach to human motor action as 

reflections of natural motion of a physical/physiological system (including both neural and muscle elements 

and the external forces) toward its most stable state corresponding to the minimum of potential energy 

(Latash 2010; Ambike et al. 2015). ). According to this view, the phenomenon of unintentional drift can be 

interpreted based on two concepts. The first concept suggests that the control of the voluntary actions is 

performed by changing the referent configurations (RCs) of the involved effectors (Feldman and Levin 

1995; Feldman 2015). For example, when squeezing an object in the hand, the RC of the hand is situated 

inside the squeezed object. The squeezing force is then determined by the distance between the actual 

configuration of the hand (AC) and RC.  The second is the idea of synergic control of redundant systems 

(note that all natural actions involve redundant sets of effectors, Bernstein 1967) based on the principle of 

abundance (Latash 2012). Within this scheme, producing a constant force by an effector is associated with 

setting its RC (and possibly apparent stiffness, Latash and Zatsiorsky 1993) and keeping it unchanged with 

the help of visual feedback. When the feedback becomes unavailable, RC drifts toward the actual 

coordinates and causes a slow decrease of the produced force. This hypothetical mechanism has been 

referred to as RC-back-coupling (Reschechtko et al. 2014; Ambike et al. 2015; Zhou et al. 2015). For 

instance, force production by a finger in isometric conditions is associated with setting a referent coordinate 

for the fingertip and a magnitude of apparent stiffness (k, which is also a reflection of shifts in spatial RCs 

for the participating muscles) (Pilon et al. 2007; Feldman 2015; Ambike et al. 2016b). Given the constant 

actual coordinate of the effector (AC), force magnitude F = k(RC – AC). A slow drop in force means that 

RC drifts toward AC (for simplicity, we do not consider here possible changes in k). 
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The concepts of RC and synergic control were used to explain the overall change in the salient 

performance variable and its stability as reflected, for example, in the structure of inter-trial variance within 

the space not affecting the performance (UCM) and orthogonal to that space (ORT). In this study, we focus 

on the third characteristic of actions by abundant systems, namely the average across trials sharing of the 

salient performance variable among the elements. We consider only the systems where effects of the 

individual variables on the performance variable are additive, such as producing a total force and a total 

moment with four fingers. Sharing has been addressed based on optimality principles (reviewed in Prilutsky 

and Zatsiorsky 2002). Recently, a method of analytical inverse optimization (ANIO) has been introduced 

(Terekhov et al. 2010) that allows computing a cost function based on observed behavior of a redundant 

system over a broad range of task constraint values.  

The present study was primarily motivated by the fact that none of the studies of four finger 

isometric force-moment production tasks in the concept of unintentional drifts have focused on the direction 

of the change in total force and moment magnitudes. The change in force and moment sometimes reported 

in studies concerning other questions. The other important motivation was that human actions have been 

mainly studied in biomechanics and motor control within the optimization concepts. That is human actions 

have been considered to be optimal and follow optimization criterion. However, by observing the 

phenomenon of unintentional drift in performance variables, it seems that we are facing a violation from 

the optimality.  

1.1 Goals of This Study 

There are two main goals for this study: the first is to examine the RC-back coupling interpretation 

of the unintentional drift for a four-finger isometric force-moment production task. In this part, the direction 

of the spontaneous drift in the space of finger forces was also explored. The second is to investigate if the 

unintentional drift is leading to minimization of a cost function defined using ANIO. Moreover, the effect 

of an additional constraint (prescribing force by the middle finger) was also investigated as part of the 

second goal. The following specific hypotheses were studied. 
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1.1.1 Exploring the interpretation of the unintentional drift for a four-finger total force-moment 

task 

1- We expected that drifts of RC toward the actual coordinate (AC) and of referent orientation (RO) 

toward the actual orientation (AO) would lead to a parallel drop in both total force (FTOT) and total 

moment (MTOT) magnitudes. 

2- Depending on the role of individual fingers in the MTOT production, some fingers are expected to 

show a drift toward lower forces (fingers that contribute to MTOT production in the initial condition) 

while others may show a drift to higher forces (fingers that act against the instructed MTOT, 

“moment antagonists”, Zatsiorsky et al. 2002) 

3- Several recent studies have shown that synergies stabilizing salient performance variables persist 

during unintentional movements (or force changes) in response to a transient external perturbation 

(Wilhelm et al. 2013; Zhou et al. 2014). While no studies explored synergies during spontaneous 

force drift, we hypothesized that synergies would indeed persist during FTOT and MTOT drifts. 

4- A spontaneous drift in a performance variable, FTOT, and MTOT is expected to lead to an increase in 

the corresponding variance component in the ORT space (VORT) compared to the condition with 

feedback. 

1.1.2 Unintentional drift of the performance variables and the cost drift in the presence of a new 

constraint 

1- Unintentional changes in performance variables during continuous static task without visual 

feedback are duo to two processes. First, there is RC-back-coupling leading to a drift of the RC 

towards the actual coordinate of the effector. Second, there is a drift within the UCM toward a 

minimum of the cost function reflected in coordinated drifts of the elemental variables. 

2- We predicted that FTOT would drop (similarly to Vaillancourt and Russell 2002; Ambike et al. 

2015a) while MTOT drift would depend on the initial magnitude and direction of MTOT and directed 

toward its zero magnitude corresponding to the horizontal actual orientation of the hand. 

3- Considering a new constrain on the middle finger force, after visual feedback had been turned off, 

the forces drift towards their preferred sharing pattern. 
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1.1.3 Structure of variance and motor equivalence in the presence of a new constraint 

1- Stability of performance variables would be selective even when the magnitudes of those variables 

drift unintentionally. 

2- We also explored whether the stability of a variable depended on the number of explicit task 

constraints. 

1.2 Related Publications 

The procedures and data in this thesis have been described in three journal articles. The 

exploration of the RC-back-coupling interpretation of the unintentional drift for a four-finger isometric 

total force-moment production task is in the press in Journal of Neurophysiology under the title of “On 

the Nature of Unintentional Action: A Study of Force/Moment Drift during Multi-Finger Task” by 

Behnoosh Parsa, Daniel J. O’Shea, Vladimir M. Zatsiorsky, Mark L. Latash. The Unintentional drift of 

the performance variables and the cost drift in the presence of a new constraint is in the press in  Journal 

of Experimental Brain Research under the title of “Optimality and stability of intentional and 

unintentional actions: I. Origins of drifts in static performance” by Behnoosh Parsa, Alexander 

Terekhov, Vladimir M. Zatsiorsky, Mark L. Latash. The Structure of variance and motor equivalence in 

the presence of a new constraint is in the press in Journal of Experimental Brain Research under the title 

of “Optimality and stability of intentional and unintentional actions: II. Motor equivalence and 

structure of variance” by Behnoosh Parsa, Vladimir M. Zatsiorsky, Mark L. Latash. 

  



5 

 

 

 

 

Chapter 2 

 

Literature Review 

2.1 Motor Variability 

It was first emphasized by Bernstein 1947 that repetition of the same movement never leads to same actions, 

and he named this phenomenon “repetition without repetition”. However, this aspects of motor variability 

have been viewed by researchers in many ways. Some viewed it as an existing “noise” in human actions 

which makes it harder to be studied. Later at the end of the nineteenth century, researchers started to view 

this phenomenon with more appreciation. Woodworth, for instance, performed a series of studies on the 

relations between accuracy requirements and speed of movement (reviewed in Newell and Vaillancourt 

2001). 

More recently, researchers started to study motor variability to explore synergies in human actions 

(Latash 2006). A system has synergy when its elements compensate each other’s shortcomings when they 

are performing a particular task. A critical component to a synergy is that it can change its functioning in a 

task-specific way, in other words, it forms a new set of rules for its elements to work together for performing 

a different task. The hand can open can lids, turn a screwdriver, write with the pen, and play music. 

As it was mentioned, one of the features of synergy is that effects of deviations in the contribution 

of one of the elements are compensated by adjustments in the contributions of other elements. This gives 

the system flexibility to stabilize important performance variables. Hence, an analysis of patterns of 

variability of elements of a system may reveal if its elements are working with a synergy and what that 

synergy is trying to accomplish. A promising computational method to analyze variability within elemental 

variables for studying synergy has been developed by Gregor Schoner (1995) and tested experimentally 

(Scholz and Schoner 1999). They called this approach the uncontrolled manifold (UCM) hypothesis. 

2.2 Uncontrolled Manifold Hypothesis 

Numerous elements involved in performing a task are not a source of computational problems for the 

nervous system but a useful, flexible apparatus that requires proper organization (Latash 2006). This is 

known as the principle of abundance presented by Gelfand and Tsetlin (1966) to describe essential 

properties of structural units like the human body. If we introduce the organization of human actions by a 
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hierarchical structure the notion of “principle of abundance” indicates that within the hierarchical 

organization, a functional goal is formulated by an upper level of the hierarchy, but this formulation does 

not suppress the freedom of the elements at the lower level of the hierarchy. 

The question is how the elements of a structural unit organize their action to fulfill a goal set by 

CNS. According to the principle of abundance, biological systems control their essential functions using 

hierarchically organized multi-level structure, and in the case of facing a redundant problem, it chooses a 

family of solutions solving the problem within an acceptable margin of error. This seems to conflict with 

the optimization approaches addressing the mathematical problems of redundancy; however, researchers 

believe in this method say that they think those families of the solution is derived by an optimal criterion 

by the nervous system (Latash 2006). 

To quantify the behavior of these families of the solution and find criteria for studying the synergy 

occurring in human action, Schoner introduced the uncontrolled manifold hypothesis. To illustrate this 

hypothesis, imagine we asked a person to produce 40 N force by two fingers (F1 and F2). Figure 2-1 shows 

three possible outcomes of such experiment. In the left panel, the data distributed evenly between the two 

fingers (a circular distribution). This means if one finger introduces an error in total force production, the 

other finger will, with equal probability, reduce the error or amplify it. Therefore, we can say that there is 

no synergy between two fingers that try to stabilize their total force production. In panel B, data distribution 

forms an ellipse elongated along the F1 + F2 = 40 N line. In such distribution if one finger produces more 

force the other finger is more likely to produce less force. Therefore, this relationship reduces the probability 

of the occurrence of an error in the total force. In another word, the co-variation of finger forces distributed 

in this way stabilizes the total force value and may be interpreted as a force-stabilizing synergy.   

 

Figure 2-1. Clouds of data points measured in several trials for producing a total force of 40 N. (A) the data points 

may form a circular cloud about a certain average sharing of total force between the two fingers. Alternatively, the 

data point may form an ellipse elongated along the line F1+F2=40 (the dashed slanted line, B) or elongated 

perpendicular to this line (the solid slanted line, C). Variance along the dashed line does not affect total force (good 

variance, VGOOD) while variance along the solid line does (bad variance, VBAD). This figure was taken from the book 

Synergy by Mark Latash 2006, page122. 
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Another possible elliptical distribution is shown in panel C. this ellipse is elongated along a line 

with positive slope, which means if one finger accidentally produces more force the other finger tends to 

produce a higher force than its average contribution. This is no force-stabilizing synergy; however, it can 

be a different synergy stabilizing total moment generated by the two fingers about a pivot located between 

the points of force application as it is depicted in Figure 2-1.  

To quantify synergies, several indices have been used based on the amounts of variance per 

dimension (per degrees of freedom) within the UCM and within its orthogonal complement. Normalizing 

the variance by dimension is necessary to make these indices comparable across subspaces of different 

dimensionalities. In the example above, the dimensionality of each subspace is unity. The variances 

computed within the UCM, and ORT has been named differently such as VGOOD and VBAD, goal-equivalent 

and non-goal-equivalent, and VUCM and VORT, respectively. In the following chapters, I am going to call 

these VUCM and VORT. 

The index that I used in the following studies is (VUCM - VORT)/VTOT, where VTOT is the sum of the 

two variance components. I did not divide these terms by their dimensionality, but they should be divided. 

This index can be positive, zero, or negative. It being positive reflects a synergy stabilizing the performance 

variable corresponding to the UCM used for the analysis. When it is zero or negative we do not have a 

synergy; however, for the contrary case we can say that it might be a synergy with respect to another UCM 

or in another word, it is a synergy stabilizing another performance variable which was not asked from 

subjects to perform.  

I would like to summarize the features of UCM hypothesis through the following points: 

1- This hypothesis assumes a multi-level hierarchical control. The controller uses an apparently 

redundant set of elements to ensure stable performance with respect to a task and the elements 

that are either united or not united into an apt synergy. 

2- We can examine the presence of synergy and its strength by an index defined by relative 

magnitudes of VUCM and VORT. As these variances represent the extent of the variability 

observed in the performance variables, the presence of synergy does not necessarily ensure 

high accuracy. While a non-synergetic behavior might be very accurate. 

3- This method is based on the assumption that the system of interest is behaving linearly, or it is 

possible to approximate it with a linear relation. Therefore, we are limited in designing 

experiments in that we have to make them very simple. 
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2.3 Referent Configurations and Equifinality 

The Referent Configuration (RC) Hypothesis (Feldman 2009) provides a physical representation for 

observations in human actions. This hypothesis is based on the assumption that human actions must be 

controlled by the modifications in some specific parameters in the system. This is not a far fetched 

assumption as we see the interaction forces and moments emerge in all physical systems as a consequence 

of a set of physical parameters they have.  

On the other hand, the Referent Configuration (RC) Hypothesis can be viewed as a generalization 

of the EP hypothesis from a single muscle up to an arbitrarily large muscle actuated system engaged in the 

intentional movement. The RC hypothesis conceptualizes the high-level neural variables set by the motor 

system as relating to referent body configurations which are task-specific. In an assumed hierarchical 

system, the few-to-many mappings lead to other RCs at lower levels, down to that of individual alpha-

motoneuronal pools, where the relevant RC is equivalent to the threshold of the tonic stretch reflex, as in 

Feldman’s lambda-model (1986).  

The actualization of the RC will lead either to the movement toward the RC or force production (if 

movement toward the RC is blocked); hence, both movement and force production are outcomes of the 

same neural processes. Therefore, accepting this assumption means that as long as the RC is held constant 

(the subject of this experiment is to continue the task in the same way they were doing it before the visual 

feedback was turned off), a system will produce the same force-moment as it was before the feedback goes 

off. However, recent studies (Ambike et al 2014a; Ambike et al 2014b; Wilhelm et al 2013; Zhou et al 

2014b), have showed systematic violations of equifinality that point toward the utility of an addition to the 

RC Hypothesis according to the notion of “RC back-coupling,” (Reschechtko et al 2014) a phenomenon in 

which the Referent Configuration seems to move toward the body’s actual configuration. 

2.4 Motor Redundancy and Optimization 

As was briefly mentioned, there are usually more effector than the physical (mathematical) relations that 

describe the task performed by humans. The approaches that have been considered to deal with this problem 

can be categorized into three groups: reducing the number of effectors or in other word simplifying the 

problem, using various optimization methods to find the best solution solving the problem (Foster et al. 

2004, Jiang and Mirka 2007, Herzog and Binding 1992, Buchanan et al. 2004, Buchanan et al. 1996, Berret 

et al. 2011), and using inverse optimization methods trying to find the best rule for finding that optimal 
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solution (Liu et al. 2005, Bottasso et al. 2006, Siemienski 2006, Mombaur et al. 2010, Terekhov et al. 2010, 

Terekhov and Zatsiorsky 2011, Zou et al. 2012). 

All of these methods are useful in their way; however, the latter seems very promising to find a 

mathematical logic behind the human decision making. The goal of an inverse optimization method is to 

approximate a cost function that given the constraints reproduces the observed optimal solutions. Because 

of the complexity of the inverse optimization problems usually they are solved using numerical methods 

(Liu et al. 2005, Bottasso et al. 2006, Siemienski 2006, Mombaur et al. 2010). Achieving a global solution 

for an inverse optimization problem has never been easy and required stochastic approaches, such as 

simulated annealing and genetic algorithm, which cost a considerable time for a complex problem of human 

movement. However, under some circumstances, a simplified problem can be defined that is analytically 

solvable (Terekhov et al. 2010, Terekhov and Zatsiorsky 2011, Park et al. 2010 and 2012). 

2.5 The Human Hand 

The human hand is important complex parts of the body responsible for many important daily actions. In 

almost all of our daily activities, we rely on the dexterity and help the hands provide for us. Moreover, the 

human hand is also redundant system but in the case of isometric force-moment production as we are 

studying here it shows a limited degree of redundancy, which is very helpful especially when we were 

implementing the ANIO. By using hand force-moment production, we could form a problem which obeyed 

the acceptable form for the Analytical Inverse Optimization Method. The following sections characterize 

the anatomy of the human hand with some considerations which must be made when we are investigating 

finger force production as a result of these anatomical features. 

2.5.1 Anatomy of the Human Hand 

In this subsection, I described the related skeletal, and muscular properties of the human hand. 

2.5.1.1 Skeletal Anatomy of the Hand 

The forearm, wrist, and fingers of the human hand are formed from 29 bones. The distal aspects of 

the radius and ulna, as well as the eight carpal bones (two rows of four bones), form the wrist. The wrist 

allows movement in two planes: flexion/extension (range of motion: 70°-90° of flexion and 65°-85° of 

extension) and abduction/adduction (15°-25°/25°- 45° respectively). Both of these movements occur 
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between the distal aspect of the radius and the proximal row of carpal bones. Each finger has three joints. 

From proximal to distal these joints are the: metacarpalphalangeal (MCP), proximal interphalangeal (PIP), 

and distal interphalangeal (DIP) joints. The MCPs permit movement in two planes: flexion/extension (85°-

100°/0-40° respectively) and abduction/adduction. As MCP joints deviate from the neutral position in one 

plane of motion, their range of motion (ROM) in the other plane of motion decreases (Schultz et al. 1987). 

In contrast to the two planes of motion afforded by the MCPs, the PIPs and DIPs can only flex and extend 

plane; PIPs can move from full extension to 90°-120° of flexion while DIPs can move from full extension 

to 80°-90° of flexion. The preceding information is summarized from Napier (1980). 

2.5.1.2 Muscles of the Hand 

Hand has extrinsic and intrinsic muscles named according to their function and where they are 

located. Extrinsic muscles originate outside of the hand and insert inside of it; intrinsic muscles originate 

and insert within the hand. The intrinsic muscles are responsible for precise movements of fingers while 

the extrinsic muscles produce the more potent, gross movements (Freivalds, 2004). The extrinsic muscles 

of the hand can be differentiated according to anterior and posterior musculature. The anterior muscles are 

finger flexors, and the posterior muscles are finger extensors. The experimental task presented here 

explicitly concerns finger flexion only. The extrinsic flexors are flexor digitorum profundus (FDP) and 

flexor digitorum superficialis (FDS). The muscle bellies of FDP and FDS do no reside in the hand but rather 

insert into the digits using long tendons; this method of connection reduces the bulk of the hand. FDP 

tendons are connected to the distal phalanges and can be used to flex the fingers without loading while FDS 

tendons insert into the medial phalanges and are recruited for tasks which require additional force 

production. Additionally, the FDP is composed of two divisions: radial and ulnar. Disregarding the thumb, 

the index finger is the most independent of the four fingers; some of the independence of the index finger 

can be attributed to the fact that the radial FDP connects only to it while the ulnar division of the FDP 

connects to the middle, ring, and little fingers. The intrinsic muscles of the hand are grouped topologically 

according to the digits they move: thenar muscles for an extension, ab- and adduction of the thumb; 

hypothenar for little finger flexion and adduction; and midpalmar muscles for MCP flexion and ab- and 

adduction. Each of these groups is composed of multiple muscles for each digit. 

2.5.1.3 Mechanoreceptors  

Mechanoreceptors are responsive to any kind of mechanical stimuli such as pressure or skin 

deformation. They differ in size, receptive field, the rate of adaptation, location in skin, and physiological 

properties. There are four types of mechanoreceptors: Meissner’s corpuscles, Pacinian corpuscles, Merkel’s 

disks, and Ruffini endings. 
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Mechanoreceptors are generally specialized to certain stimuli. Merkel’s disks and Ruffini endings 

detect contact forces, while, Meissner’s corpuscles and Pacinian corpuscles sense vibration. The special 

resolution shows the number of receptors found in the locus, and it depends on the skin location. The size 

of the receptive field depends on how deep in the skin the particular receptor type lies, the deeper the 

receptor lies, the larger the receptive field. Type-I receptors have large receptive fields and low spatial 

resolution, while type-II receptors have small receptive fields and good spatial resolution. 

Receptors are divided into two categories based on their speed of adaptation. Slowly adapting (SA) 

receptors detect contact stimulus; for example, pressure and skin stretch. Rapidly adapting (RA) receptors 

detect only short pulses such as initial contact and vibration. 

In the brain, the sensation is determined by the combined input from all type of receptors. In the 

following table, the properties of the four mechanoreceptors are summarized. 

Table 2-1. Mechanoreceptors properties. 

Receptors Rate of 

adaptation 

Location  Receptive 

field 

Stimulus 

frequency  

Function  

Merkel’s 

disks 

SA-I Shallow 2-3 mm 0-30 Hz Pressure; edges and intensity 

Ruffini 

endings 

SA-II Deep >10 mm 0-15 Hz Directional skin stretch, tension 

Meissner’s 

corpuscles 

RA-I Shallow 3-5 mm 10-60 Hz Local skin deformation, low-frequency 

vibratory sensations  

Pacinian 

corpuscles 

RA-II  Deep >20 mm 80-400 Hz Unlocalized high-frequency vibration; 

tool use 

2.5.2 The Interdependence of Finger Forces 

The interdependence of finger forces is a well-known phenomenon. This phenomenon is called 

enslaving (Li et al. 1998; Zatsiorsky et al. 2000). Enslaving results from the anatomy of the human hand. 

The described shared musculature among the fingers, as well as friction between connective tissues, is 

partially responsible for this unintentional force production. Moreover, there are neural reasons for 

enslaving: the cortical representation of the digits is not completely differentiated. However, enslaving has 

been shown to change over long time periods with training (Slobonov et al. 2002), healthy aging (Shinohara 

et al. 2003, 2004), and with onset of neurological disorder (Park et al. 2012), enslaving has generally been 
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assumed to be stable over short periods of time. Based on this assumption, a definition of finger modes 

(Zatsiorsky et al. 2008; Danion et al. 2003) was introduced to present a hypothetical elemental variable 

which reflects the motor system’s intended finger force recruitment, rather than the actual peripheral output 

of the system which reflects enslaving. In the first study presented in this thesis both finger forces and 

finger, modes were analyzed. 
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Chapter 3 

 

Methodology 

In this chapter, I will briefly discuss the main computational methods used in the following chapters.  

3.1 Enslaving and Finger Modes 

Even when a person tries to press down with one fingertip, other fingers produce involuntary force that has 

been called a lack of individualization or enslaving (Kilbreath and Gandevia 1994; Zatsiorsky et al. 2000; 

Schieber and Santello 2004). This phenomenon is due to both peripheral connections among the fingers 

such as shared muscles and inter-digit tendinous connections, and neural factors such as overlapping 

cortical representations for individual fingers (Leijnse et al. 1993). Various computational methods have 

been presented to quantify the enslaving. In this thesis a linear regression of FTOT against individual finger 

forces was performed: 

 F𝑖,𝑗 =  F𝑖
0 + 𝑘𝑖,𝑗 × FTOT,𝑗            (3-1) 

where i, j are indicating fingers (I – index, M – middle, R – ring, and  L – little), FTOT,𝑗 is the total 

force produced by all fingers when finger j was the instructed finger, and F𝑖,𝑗  is the force produced by finger 

i when j was the instructed finger. The values of 𝑘𝑖,𝑗  arranged into the 4×4 enslaving matrix, E. The intercept 

values, F𝑖
0 were very small and not analyzed here. The inverse of E was used to compute hypothetical 

central commands to fingers, modes (Danion et al. 2003): 

 𝐦 = [𝐄]−1𝐅             (3-2) 

where 𝐦 and 𝐅 are 4×1 vectors of finger modes and forces, respectively. The neural controller is 

assumed to be able to change finger modes one at a time, while this is not true for finger forces.  The matrix 

of enslaving effects, [E] contains forces of individual fingers in separate trials with an individual finger 

trying to produce maximal force in each trial (a detailed description can be found in Latash 2006, chapter 

4). 
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3.2 Analysis of Variance of Finger Forces and Modes 

Before describing the quantitative analysis of synergy, I would like to introduce two important terms that 

are going to be used for many times in this thesis: elemental variables and performance variables. 

Elemental variables are variables produced by apparent elements of a multi-element system. The 

assumption is that the controller can change the elemental variables individually. The term performance 

variable will be used to describe a goal variable that is produced by elemental variables; moreover, 

performance variables play an important role for a group of tasks. For instance, total force can be considered 

as a performance variable becaasuse it is the sum of four finger forces (elemental variables).     

Assume a redundant task such as finger pressing force-moment production; it involves four 

effectors and two constraints, {MTOT, FTOT}. As the relation between performance and elemental variables 

is linear, these two constraints can be considered as the Jacobian matrix. The solution space or, it is better 

to say, the null space of the Jacobian is two-dimensional in this example. This space is also called the 

uncontrolled manifold (UCM; Scholz and Schoner 1999).  

The inter-trial variance in the space of elemental variables in the directions orthogonal to UCM 

(VORT; variance that affects performance) and within UCM (VUCM; variance that keeps performance 

unchanged) can be computed at each instance of time. In the three studies presented here these quantities 

were computed at different phases corresponded to a time interval [t - 0.3, t - 0.2]s. Note that t can be any 

arbitrary instance of time. This analysis can only be done if sufficient repletion of a same task is available 

(usually more than twenty trials). The variance indices computed at each phase must be normalized by the 

dimensionality of the corresponding space, which for this example would be two. This normalization makes 

the comparison of the two variances possible. A detailed description of the analysis can be found in Latash 

et al. 2001; Scholz et al. 2002.    

Various scales have been presented for quantifying the synergy (Latash 2006). The index of 

synergy (∆V) used in this thesis was defined as the difference between VUCM and VORT normalized by total 

variance (VTOT), also quantified per dimension:  

 ∆𝑉 =
𝑉𝑈𝐶𝑀

𝑛𝑈𝐶𝑀
⁄ −

𝑉𝑂𝑅𝑇
𝑛𝑂𝑅𝑇

⁄

𝑉𝑇𝑂𝑇
𝑛𝑇𝑂𝑇

⁄
           (3-3) 

where VTOT stands for total variance which is the sum of the two variances. n with subscripts, stand for the 

dimensionality of the corresponding spaces. Since ∆V by its computation is bounded, for statistical analysis 

ΔV values were log-transformed using the modified Fisher’s z-transform (Solnik et al. 2013).  
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3.3 Analysis of Motor Equivalence 

The analysis of motor equivalence (ME) is another useful tool for studying the stability of a complex 

system. To describe the outcome of this analysis with a simple example; assume someone is asked to 

produce a level of total force by two fingers, then for any reason the total force is changed to a new level. 

Mathematically, the sufficient way to make this change is by taking the shortest possible movement in the 

space of finger forces (orthogonal to the UCM); however, this is not what usually happens. ME analysis 

quantifies the amount of displacement occurs along and orthogonal to the UCM. Therefore, one can see 

what the tendency of the system is in reaching a new condition.  

To do ME analysis we need to have our task defined in the matrix form: 

 CF = P                          (3-4)  

where, C is the constraint matrix defining the task, F is the vector of finger forces (elemental variables in 

our analysis), and P is the vector of performance variables. Changes in the elemental and performance 

variables: 

 J∆F = ∆P              (3-5)  

where ∆F is the vector of changes in the finger force between two phases. Since equations 3-4 and 3-5 are 

linear, the Jacobian (J) of the system is the same as the C matrix. 

Performance remains unchanged (∆P = 0) if the change in elemental variables occurs in the null 

space of the J [e = null(J)]. Hence, the projection of ∆F onto the null-space is defined as the ME component, 

while the projection of ∆F orthogonal to the null-space is defined as the nME components. ME and nME 

components should be normalized by the square root of the corresponding space dimensionality to make 

the comparison possible (cf. Mattos et al. 2011). This analysis can be done in both mode and force space. 

3.4 Analytical Inverse Optimization (ANIO) 

The purpose of this method it to use the data collected during an experiment for approximating a 

hypothetical objective function for the explored range of the elemental variables (see Martin et al. 2013). 

Mathematical proofs and computational details can be found in Terekhov et al. 2010; Terekhov and 

Zatsiorsky 2011. In this study, we determined the cost function explaining the distribution of the normal 

component of finger force in the force-moment production task. 𝑔𝑖(𝐹𝑖
𝑛) The constraints were the prescribed 

total force and total moment, {FTOT, MTOT} combination. Thus, the ANIO problem was defined in the 

following way:  
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𝑎𝑟𝑔𝑚𝑖𝑛
𝐹𝑛

𝐽 = ∑ 𝑔𝑖(𝐹𝑖
𝑛)4

𝑖=1         (3-6) 

𝐹1
𝑛 + 𝐹2

𝑛 + 𝐹3
𝑛 + 𝐹4

𝑛 = 𝐹𝑇𝑂𝑇         (3-7) 

𝑟1𝐹1
𝑛 + 𝑟2𝐹2

𝑛 + 𝑟3𝐹3
𝑛 + 𝑟4𝐹4

𝑛 = 𝑀𝑇𝑂𝑇        (3-8) 

where  𝐹𝑛 = [𝐹1
𝑛, 𝐹2

𝑛, 𝐹3
𝑛, 𝐹4

𝑛]𝑇  is the vector of normal finger forces (𝐹𝑖
𝑛 ≥ 0, 𝑖 = 1, … ,4); the numbers 1 to 

4 stand for the index, middle, ring, and little finger, respectively, 𝑔𝑖 is an arbitrary continuously 

differentiable function (𝑔𝑖 belongs to Cn with n ≥ 1 in the feasible region); r = [r1, r2, r3, r4]
T is the vector of 

moment arms, which was [-0.045, -0.015, 0.015, 0.045]T meters in this experiment. Pronation (PR) was 

considered as the negative moment. The equations can be written in matrix form: 

𝐶𝐹𝑛 = 𝑏          (3-9) 

where, 

𝐶 = [
1
𝑟1

1
𝑟2

1
𝑟3

1
𝑟4

]          (3-10) 

 

𝑏 = [
𝐹𝑇𝑂𝑇

𝑀𝑇𝑂𝑇

]          (3-11) 

First, we verified that the problem was not “splittable” (Terekhov et al. 2010), which means that 

our optimization problem could not be represented as a set of smaller optimization problems solved 

independently. Second, we tested whether the experimental data are distributed in a plane using PCA (see 

Methods) as it was observed in several earlier studies (Park et al. 2010; Niu et al. 2012a,b). If this was true, 

then the unknown cost function had to be a second-order polynomial (Terekhov et al. 2010; Martin et al. 

2013).  

The third step was computing the coefficients of the objective function within the class of second-

order polynomials:  

𝐽𝑎 =
1

2
∑ 𝑘𝑖(𝐹𝑖

𝑛)24
𝑖=1 + ∑ 𝑤𝑖𝐹𝑖

𝑛4
𝑖=1        (3-12) 

where, 𝐽𝑎 is the objective function reconstructed from the data, 𝑘𝑖 is the 𝑖𝑡ℎ  quadratic term coefficient, and 

𝑤𝑖 is the 𝑖𝑡ℎ linear term coefficient. Indices i = 1, 2, 3, and 4 refer to the index, middle, ring, and little 

finger, respectively.  

Writing the Lagrange principle for the problem ⟨𝐽𝑎, 𝐶⟩ in matrix form we get: 

�̂�𝐽𝑎′
= 0          (3-13) 

where, 

�̂� = 𝐼 − 𝐶𝑇(𝐶𝐶𝑇)−1𝐶         (3-14) 

�̂� is a matrix of rank 2, and 𝐽𝑎′
is a vector consisting of partial derivatives of 𝐽𝑎 (gradient vector). 

Substituting Eqs 7 in 8 gives the plane of optimal solutions: 
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�̂�𝐾𝐹𝑛 + �̂�𝑤 = 0         (3-15) 

where 𝐾 is the diagonal matrix of quadratic coefficients, and 𝑤 is the vector of linear coefficients. Rank of 

�̂� is 2; therefore, equation 3-14 defines a plane in the four-dimensional space. ANIO finds the coefficients 

by minimizing the dihedral angle (D-angle) between the optimal plane defined by equation 3-15 and the 

experimental data plane determined by the first two PCs (see Martin et al. 2013). The objective functions 

were constructed for each participant separately. The “fmincon” function (“active-set” algorithm) from the 

Matlab optimization toolbox was used to minimize the D-angle. The coefficients of the objective function 

were normalized by the square root of the sum of squared quadratic coefficients (as in Terekhov and 

Zatsiorsky 2011; Martin et al. 2013). Equation 3-12 was used to compute the cost values (CANIO) within the 

phase of interest.  
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Chapter 4 

 

On the Nature of Unintentional Actions 

If a person is instructed to produce a constant force magnitude in isometric conditions by an effector 

(e.g., pressing with a finger) with the help of visual feedback, turning the feedback off results in a slow 

consistent drift of the force, typically to lower magnitudes (Slifkin et al. 2000; Vaillancourt and Russell 

2002; Shapkova et al. 2008). This drop in force can reach large magnitude, up to 30% of the initial force 

level over 20-30 s, without the subject being aware of the force drop. This phenomenon has been interpreted 

as a reflection of a limitation of the working memory with the possible contribution of fatigue (Slifkin et 

al. 2000, Vaillancourt and Russell 2002). A few recent studies questioned this interpretation (Ambike et al. 

2015; Jo et al. 2015), in particular, based on an observation that resting for a similar time interval does not 

result in a consistent change in the force level reproduced without visual feedback after the rest interval.  

An alternative explanation has been suggested based on an approach to human motor actions as 

reflections of natural motion of a physical/physiological system (including both neural and muscle elements 

and the external forces) toward its most stable state corresponding to the minimum of potential energy 

(Latash 2010; Ambike et al. 2015). According to this view, force production by a finger in isometric 

conditions is associated with setting a referent coordinate (RC) for the fingertip and a magnitude of apparent 

stiffness (k, which is also a reflection of shifts in spatial RCs for the participating muscles) (Pilon et al. 

2007; Feldman 2015; Ambike et al. 2016b). Given the constant actual coordinate of the effector (AC), force 

magnitude F = k(RC – AC). A slow drop in force means that RC drifts toward AC (for simplicity, we do 

not consider here possible changes in k). 

The main purpose of this study has been to explore this interpretation using a task of four-finger 

accurate production of a combination of total force (FTOT) and total moment (MTOT). Assume that the 

fingertips perform a pressing task, and all the points of force vector application are in a horizontal plane. 

MTOT production with respect to an axis may be viewed as a shift of the referent orientation of the plane of 

fingertip coordinates (RO) away from its actual orientation (AO) scaled with an apparent stiffness 

coefficient (kO): MTOT = kO(RO – AO). This is illustrated in Figure 4-1. Based on the suggested 

interpretation, we expected that drifts of RC toward AC and of RO toward AO would lead to a parallel drop 

in both FTOT and MTOT magnitudes (Hypothesis 1). As a result, depending on the role of individual fingers 

in the MTOT production, some fingers are expected to show a drift toward lower forces (fingers that 

contribute to MTOT production in the initial condition) while others may show a drift to higher forces (fingers 

that act against the instructed MTOT, “moment antagonists”, Zatsiorsky et al. 2002) (Hypothesis 2). 
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Figure 4-1. A: The production of a magnitude of total force (FTOT) with a set of fingers (I – index; M – middle; R – 

ring, and L – little) in isometric conditions is associated with setting a referent coordinate (RC) for the fingertip and 
a magnitude of apparent stiffness k. Given the constant actual coordinate of the effector (AC), FTOT = k(RC – AC). 

B: The production to a magnitude of the moment of force, MTOT is associated with a shift of the referent orientation 

of the plane of fingertip coordinates (RO) away from its actual orientation (AO) scaled with an apparent stiffness 

coefficient (kO): MTOT = kO(RO – AO). 

 

We also explored whether multi-finger synergies stabilizing FTOT and MTOT in the initial state (under 

visual feedback) persist during the process of unintentional FTOT and MTOT drift. The word synergy has been 

used in the literature in different meanings (reviewed in Latash and Zatsiorsky 2015). We use this word to 

imply task-specific neural organization of abundant sets of elements (Gelfand and Latash 1998; Latash 

2012) that ensure the stability of a salient performance variable (Latash et al. 2007). Several recent studies 

have shown that synergies stabilizing salient performance variables persist during unintentional movements 

(or force changes) in response to a transient external perturbation (Wilhelm et al. 2013; Zhou et al. 2014). 

While no studies explored synergies during spontaneous force drift, we hypothesized that synergies would 

indeed persist during FTOT and MTOT drifts (Hypothesis 3).  

We used the framework of the uncontrolled manifold (UCM) hypothesis (Scholz and Schöner 

1999) to quantify multi-finger synergies stabilizing FTOT and MTOT before and at the end of the time interval 

without visual feedback. The UCM hypothesis allows quantifying inter-trial variance within a space leading 

to no changes in a particular performance variable (VUCM) and in the orthogonal subspace where this 

variable changes (VORT). The inequality VUCM > VORT has been used as a signature of a synergy stabilizing 

the performance variable (Latash et al. 2002). A spontaneous drift in a performance variable, FTOT, and/or 

MTOT is expected to lead to an increase in the corresponding VORT compared to the condition with feedback 

(Hypothesis 4). No data allow predicting changes in VUCM; so, this was an exploratory goal. 

We also explored the direction of the spontaneous drift in the spaces of finger force and finger 

modes (hypothetical commands to fingers, Latash et al. 2001; Danion et al. 2003). Two components of the 

drift were quantified, along the UCM (motor equivalent, ME) and ORT (non-motor equivalent, nME) 

(Mattos et al. 2011, 2014). The expected drift in FTOT and MTOT suggests a corresponding consistent nME 
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drift; however, ME drift by definition has no effect on performance. We had no predictions with respect to 

its magnitude; this was an exploratory goal. 

4.1 Methods 

4.1.1 Subjects 

Nine right-handed male (age: 21.44±0.18 years, weight: 77.71±2.67 kg, height: 176.39±2.67 cm) 

participated in this study voluntarily after signing a consent form. All subjects were healthy, and none of 

them reported any history of neuropathy. The procedures were approved by the Office for Research 

Protections of the Pennsylvania State University. 

 

4.1.2 Apparatus 

Four six-component Nano-17 sensors (ATI Industrial Automation, Garner, North Carolina, USA) 

were mounted on an aluminum plate clamped to a table. Sensors were covered with sandpaper with the 

friction coefficient of 1.4-1.5 (Savescu et al. 2008). A 19’’ monitor was placed on the table about 60 cm in 

front of the subjects and used for visual feedback. A scheme of the experiment setup is depicted in Figure 

4-2. 

A 12-bit analog-to-digital converter (PCI-6031, National Instruments, Austin, TX) was used for 

digitizing twenty-four analog signals (four sensors × six components) at 100 Hz. Data acquisition software 

was written in Labview 2010.  
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Figure 4-2. An illustration of the experimental setup. A: The monitor presented total force (FTOT) and total moment 
(MTOT) feedback. B: The hand configuration of the sensors.  

4.1.3 Experimental procedure 

The subject sat comfortably at the table and placed the fingertips of a hand on the force sensors. 

The sensor position was adjusted in the anterior-posterior direction for the hand anatomy to ensure comfort. 

Two Velcro straps were used to secure the hand and forearm position during the experiment. Both hands 

were tested in a random order. 

Before each trial, the subject was asked to relax the hand with the fingertips on the sensors; then 

the sensor readings were set to zero so that during data collection only the actively generated downward 

finger forces were recorded. 

The experiment was done in three parts for each hand. Part-1 involved maximal voluntary 

contraction by all four fingers (MVC-4) and by the index finger alone (MVC-I). In each MVC task subjects 

had 6 s to reach maximal force with the instructed finger(s), and then they relaxed. There were 30-s rest 

intervals between trials. Both MVC tasks were repeated twice, and the maximum value across the two trials 

was used to set further tasks. The maximal force from individual fingers in the MVC-4 task was also 

measured.  

Part-2 of the experiment involved accurate force ramp tasks performed by individual fingers. Each 

ramp task was 10 s long; it started with zero force and ended with 40% of the maximal individual finger 

forces observed in the MVC-4 task. The ramp started 2 s after the trial initiation and took 6 s to reach the 

final level. The subjects saw both the ramp template and the actual force by the instructed finger on the 
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screen. One trial was performed by each finger. The data from this part were used later to quantify the finger 

force interdependence (enslaving, Zatsiorsky et al. 2000). 

Part-3 was the main part of the experiment. The y-axis on the screen showed the total force (FTOT) 

produced by the four fingers while the x-axis showed the total moment (MTOT) by the normal forces 

computed with respect to the axis passing in the anterior-posterior direction in-between the sensors for the 

middle and ring fingers. The pronation (PR) moment was considered negative, and the supination (SU) 

moment was considered positive. When the hand was relaxed, the cursor stayed at the mid-bottom of the 

screen. Two targets were used with FTOT always equal to 20% of MVC-4 and MTOT equal to 1.5PR or 1.5SU. 

One PR or SU was defined as 7% of the moment produced by MVC-I given its nominal level arm of 4.5 

cm (as in Park et al. 2013).  

Each trial started with the hand relaxed. Then the subject was given 5 s to reach the specified target. 

After 5 s, the visual feedback was turned off (the cursor became invisible), and the subject was required to 

keep performing the task for 20 s more. The instruction to subjects was to continue performing the task 

(“keep doing what you have been doing”) throughout the trial. Twenty-two trials for each of the two targets 

were performed with 10-s rest intervals. There were 1-min rest intervals between the conditions. The two 

hands were tested in a random order, and the tasks were presented for each hand in a block-random order. 

Prior to data collection, each subject performed five practice trials to get familiar with the experiment.  

4.1.4 Data processing 

All finger forces were low-pass filtered at 5 Hz using a zero lag, fourth-order Butterworth filter. 

All force and moment variables were normalized by the task magnitude, i.e. by 20%MVC for force 

variables and by |1.5PR| for moment variables. Two phases were defined for Part-3 of the experiment: 

Phase-1 corresponded to the time interval 4.7–4.8 s; Phase-2 was defined as the time interval 24.7–24.8 s. 

These two intervals were chosen to reflect the steady states under the original two constraints (Phase-1) 

and at the end of the trial (Phase-2). Figure 4-3 illustrates the two phases using the FTOT time series from a 

representative trial by a typical subject. 
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Figure 4-3. The time series of the normalized FTOT and MTOT for a representative subject in a trial when no feedback 

was presented after 5 s. PR – pronation; SU - supination. Phase-1 was defined as the time interval 470-480 ms; 
Phase-2 was defined as the time interval 2470-2480 ms. Note the downward drift in both FTOT and MTOT magnitudes. 

4.1.5 Enslaving and Finger Modes 

When a person is instructed to press with one finger, other fingers of the same hand also produce 

force. This phenomenon is called enslaving or lack of finger individuation (Kilbreath and Gandevia 1994; 

Zatsiorsky et al. 2000; Schieber and Santello 2004). Single-finger ramp tasks (Part-2) were used to quantify 

enslaving. For each trial, linear regression of FTOT against individual finger forces was performed: 

F𝑖,𝑗 =  F𝑖
0 + 𝑘𝑖,𝑗 × FTOT,𝑗          (4-1) 



24 

 

 

 

 

where i, j are indicating fingers (I – index, M – middle, R – ring, and  L – little), FTOT,𝑗 is the total 

force produced by all fingers when finger j was the instructed finger, and F𝑖,𝑗  is the force produced by finger 

i when j was the instructed finger. The values of 𝑘𝑖,𝑗  arranged into the 4×4 enslaving matrix, E. The intercept 

values, F𝑖
0 were very small and not analyzed here. The inverse of E was used to compute hypothetical 

central commands to fingers, modes (Danion et al. 2003): 

 𝐦 = [𝐄]−1𝐅          (4-2) 

where 𝐦 and 𝐅 are 4×1 vectors of finger modes and forces, respectively. The neural controller is assumed 

to be able to change finger modes one at a time, while this is not true for finger forces.   

4.1.6 Analysis of Force and Moment Drift 

Changes in total force (∆FTOT) and total moment (∆MTOT) over the time without visual feedback 

were computed as the differences in the averaged values of FTOT and MTOT over Phase-2 and Phase-1 in 

each trial. Further, these values were converted into fractions of the task magnitudes of FTOT and MTOT. 

4.1.7 Analysis of Variance of Finger Forces and Modes 

Each task was redundant: It involved four effectors and two constraints, {MTOT, FTOT}. Hence, the 

solution space for each task was two-dimensional; it has been addressed as the uncontrolled manifold 

(UCM; Scholz and Schoner 1999). We quantified the inter-trial variance in the space of finger forces and 

the space of finger modes in the directions orthogonal to UCM (VORT; variance that affects performance) 

and within UCM (VUCM; variance that keeps performance unchanged). The UCM was estimated as the null-

space of the corresponding Jacobian matrix. VUCM and VORT were computed over each set of 22 trials using 

averaged over Phase-1 and Phase-2 finger force data in each trial, for each phase, each subject, and each 

condition separately. A detailed description of the analysis can be found in Latash et al. 2001; Scholz et al. 

2002. Each variance index was normalized by the dimensionality of the corresponding space, which was 

always two.   

An index of synergy (∆V) was defined as the difference between VUCM and VORT normalized by 

total variance (VTOT), also quantified per dimension:  

 ∆V =
VUCM

2⁄ −
VORT

2⁄

VTOT
4⁄

         (4-3) 
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This computation makes ∆V bounded between –2 to +2; therefore, for statistical analysis ∆V values 

were log-transformed using the modified Fisher’s z-transform (Solnik et al. 2013). The described analysis 

was performed for sets of trials performed by each subject, each hand, and each initial target location 

separately.  

4.1.8 Analysis of Motor Equivalence 

This analysis quantified changes in the mode and force vectors (∆m and ∆F) between Phase-2 and 

Phase-1 within the UCM and ORT spaces. The vector component within the UCM results in no change in 

the corresponding performance variable and is called motor equivalent (ME). The component within ORT 

affected the performance variable and is addressed as non-motor equivalence (nME) (Mattos et al. 2011, 

2014). These components were quantified in each trial and then averaged across the 22 trials within a set 

for each subject, each hand, and each condition separately. The analysis was performed with respect to 

three performance variables, FTOT, MTOT, and {MTOT, FTOT} combined. The UCM and ORT spaces were 

defined as the null-space and its orthogonal complement for the corresponding Jacobian matrices. The 

analysis was performed with respect to three possible Jacobians [force (JF), moment (JM), and force-moment 

(JFM)]. ME and nME components were normalized by the square root of the dimensionality of the respective 

spaces (cf. Mattos et al. 2011). 

4.1.9 Statistics 

The data are presented in the text and figures as means ± standard errors unless stated otherwise. 

Two-way analysis of variance with repeated measures (ANOVA) was used to test the effects of Moment 

(PR and SU) and Hand (Left and Right) on the main outcome variables such as drifts in ∆FTOT, ∆MTOT, 

variance components (VUCM and VORT), index of synergy (∆VZ), and ME and nME components quantified 

within the mode and force spaces (factor Space). A two-way multivariate analysis of variance with repeated 

measures (MANOVA) was used to test the effect of Moment (PR and SU) and Hand (Left and Right) as 

within-subject factors, and Finger (I, M, R, L) as between-subject factors on the drifts in individual finger 

forces. In all of the analyses, significant effects of ANOVA and MANOVA were further explored using 

pairwise contrasts with Bonferroni adjustments. All the data sets were checked for normality and sphericity 

using the Mauchly criterion. In cases of sphericity violations, the Greenhouse-Geisser correction was 

applied. The critical p-value in all of the analysis was set at 0.05.   
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4.2 Results 

4.2.1 General patterns of performance 

In the MVC four-finger task, peak force values (MVC-4) were 84.22±9.06 and 75.03±5.99 N for 

the right and left hand, respectively. In the MVC index finger tasks, MVC-I was 41.48±4.66 and 41.95±4.09 

N for the right and left hand, respectively. 

Both FTOT and MTOT showed consistent drifts after the visual feedback was turned off; the drifts 

were seen in both initial moment condition, PR and SU. The drifts were consistently in the direction of a 

drop in the magnitude of both FTOT and MTOT. Typical examples of the drifts in FTOT and MTOT for an 

individual subject are shown in Figure 4-3. Note the similar FTOT drifts for the PR and SU conditions, and 

the counter-directional drifts in MTOT depending on the initial MTOT level. 

The drifts of both FTOT and MTOT were, on average, larger during tasks performed by the right hand. 

This is illustrated in Figure 4-4 using averaged across subjects data with error shades. While the drift in 

FTOT was not significantly different between the moment conditions, the absolute magnitude of the drift in 

MTOT was significantly larger for the SU condition.  

Figure 4-5 illustrates these findings using the averaged across subjects differences in FTOT and MTOT 

(∆FTOT and ∆MTOT) between Phase-2 (end of trial) and Phase-1 (just before turning visual feedback off). 

On average, ∆FTOT was 23.03% ± 4.71% and 25.69% ± 5.32% for the left-hand PR and SU conditions, 

respectively. For the right-hand PR and SU conditions, ∆FTOT was significantly higher, 33.52% ± 6.33% 

and 32.92% ± 6.79, respectively (effect of Hand, F[1, 8] = 10.067, p < 0.05, without an effect of Moment). In 

contrast, there were no significant effects of Hand on ∆MTOT, while the magnitude of ∆MTOT was 

significantly larger for the SU condition (47.56% ± 7.65% and 68.60 ± 7.61% for left and right hands, 

respectively) compared to the PR condition (18.59% ± 6.46% and 29.83% ± 6.45% for left and right hands, 

respectively) (effect of Moment, F[1, 8] = 53.349, p < 0.001). 
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Figure 4-4. The averaged across subjects time series of normalized FTOT and MTOT for the left hand (panels A and C) 

and the right hand (panels B and D) with standard error shades. Note the larger drop in FTOT in the right hand for 

both initial moment magnitudes (PR – pronation, SU – supination). Both hands showed a larger MTOT drift for the 

initial SU moment. 
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Figure 4-5. The changes in FTOT and MTOT, ∆FTOT and ∆MTOT (both normalized by the initial values) for each hand 

and moment condition. Averaged across subjects values are shown with standard error bars. Note the larger ΔFTOT in 

the right hand (panel A) with no effect of the moment direction (PR – pronation; SU – supination). The drift in MTOT 

was much larger for the SU moments (panel B). 

 

Drifts in the individual finger forces showed a more complex pattern that depended strongly on the 

initial moment condition and the role of the fingers in producing the initial moment. In particular, the index 

and middle fingers, which produced the PR moment, showed a decrease in force in the PR condition and 

an increase in force under the SU condition. The pattern was reversed for the ring and little fingers. This 

overall pattern was consistent in the force and mode spaces as illustrated in Figure 4-6. 

 A two-way MANOVA with Hand × Moment as within subject factor and Finger as a between-

subject factor on ∆Ffinger confirmed a significant effect of Moment (F[1, 32] = 7.453, p < 0.01) and Moment × 
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Finger interaction (F[3, 32] = 17.442, p < 0.001). Pairwise contrasts revealed the significant difference 

between the index and all other fingers (p < 0.05). Similar patterns were observed in Mode space as 

illustrated in Figure 4-6B. 

 

 

Figure 4-6. The changes in the individual finger forces (A) and modes (B) for each moment condition (PR – 

pronation; SU – supination). Averaged across subjects values are shown with standard error bars. Positive values 

correspond to an increase in the finger force (mode) while negative values indicate a drop in the finger force (mode). 

Note that positive values were typical for “moment antagonist” fingers, i.e. those producing moment against the 

required moment direction.   

4.2.2 Analysis of the structure of variance 

The structure of variance was analyzed in both finger force and mode spaces at both Phase-1 and 

Phase-2. In Phase-1, VUCM > VORT across conditions. Figure 4-7 illustrates these results for the analysis 

performed with respect to {FTOT; MTOT} (JFM Jacobian, see Methods). At the end of the force drift, in Phase-

2, VORT was larger than in Phase-1, while VUCM changes were inconsistent across hands and initial 

conditions. A three-way ANOVA with repeated measures with factors Hand (right and left), Space (UCM 

and ORT), and Phase (Phase-1 and Phase-2) were run on both mode and force data. For PR, the only 
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significant effect was for the interaction Plane ×Phase (F[1, 8] = 32.465, p < 0.001). For SU, Phase and 

Plane × Phase interaction effects were significant (F[1, 8] = 6.594, p < 0.05; and F[1, 8] = 23.741; p < 0.001]. 

The analysis for JF and JM showed similar results. 

 

Figure 4-7. Two components of the normalized variance across trails, within (VUCM) and orthogonal (VORT) to the 

UCM for the right hand. Averaged across subjects values are shown with standard error bars. The results of the 

analysis for Phase-1 and Phase-2 for both hands and both moment conditions are shown in the force space (A) and 

the mode space (B). The analysis was performed for the Jacobians computed with respect to FTOT (JF), MTOT (JFM), 
and both {FTOT; MTOT} (JFM). In Phase-1, across conditions and analyses, there were synergies stabilizing both FTOT 

and MTOT (VUCM>VORT, for all Jacobians) while there were no such synergies in Phase-2. Similar results were 

observed for the left hand. PR – pronation; SU – supination. 

 

Analysis of the changes in the two variance components, ∆VUCM, and ∆VORT, between Phase-1 and 

Phase-2 was run in both force and mode spaces. A two-way ANOVA indicated a larger change in VORT 

compared to the change in VUCM in both spaces (F[1, 8] > 23.7, p < 0.001). 

 The log-transformed index of multi-finger synergy, ∆VZ is illustrated in Figure 4-8 for the analysis 

with respect to JFM. In Phase-1, ∆VZ was consistently positive reflecting VUCM > VORT. In contrast, in Phase-

2, ∆VZ was close to zero because of the increase in VORT. The effect of Phase was strongly significant in 

both force and mode spaces (F[1, 8] > 65.94; p < 0.001). The three-way repeated measure ANOVA Hand × 
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Moment ×Phase also showed a significant Moment ×Phase interaction in both spaces (F[1, 8] > 61.04; p < 

0.001) reflecting the bigger phase-related difference for the PR condition. The analysis for JF and JM showed 

similar results. 

 

Figure 4-8. The magnitudes of the z-transformed index of synergy (∆VZ) for the mode (A) and force (B) space 
analyses are shown at Phase-1 (open bars) and Phase-2 (black bars) for all the hand and moment conditions. 

Averaged across subjects values are shown with standard error bars. Note that ∆VZ > 0 in Phase-1 but not in Phase-

2. The panels show the results for the {FTOT; MTOT}-based Jacobian (JFM). Similar results were obtained for the 

analyses with respect FTOT-based (JF) and MTOT-based (JM) Jacobians. PR – pronation; SU – supination. 

4.2.3 Analysis of motor equivalence  

The analysis of two components of the finger force drift, ME, and nME, was done using three 

different Jacobians reflecting three distinct performance variables, FTOT, MTOT and the combination of both 

{FTOT; MTOT}. The results for the ME and nME components are depicted in Figure 4-9. For the JFM- and JM-

based analyses, the nME component was consistently larger for the SU moment (Moment × Space 

interaction; F[1, 8] > 12.7, p < 0.01), while for the JF-based analysis the nME component was approximately 

the same for both moment conditions. Note also the larger ME and nME components for the right hand 

(effect of Hand significant for the JM- and JF-related analyses; F[1, 8] > 5.45; p < 0.05). The effect of Hand 

was typically larger for the nME component as reflected in the Hand ×Space interactions significant across 

all three Jacobians (F[1, 8] = 13.21, p < 0.01). 

A complete description of the results of three-way repeated-measures ANOVAs with Hand × 

Moment ×Space in presented in Table 1. Note that the analyses were run with respect to three Jacobians 

(JF, JM, and JFM) and two spaces (force and mode). 
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Figure 4-9. The motor equivalent (ME) and non-motor equivalent (nME) components of the vector of mode (panels 

A and C) and force (panels B and D) difference between Phase-2 and Phase-1. Averaged across subjects values are 

shown with standard error bars for the left hand (panels A and B) and the right hand (panels C and D). Both ME and 

nME components were normalized by the square root of corresponding degrees of freedom. Note the larger nME for 

the right hand compared to the left hand and for the SU (supination) condition compared to the PR (pronation) 

condition.  
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Table 4-1. Results of statistical analysis 

 

 

Results of the three-way ANOVA, Hand × Moment × Space of deviations in the force and mode 

spaces between Phase-1 and Phase-2 performed with respect to three Jacobians, JF, JM, and JFM. Significant 

effects are in bold. 

4.3 Discussion 

 

The first two hypotheses have been supported by the data. Indeed, after the visual feedback had 

been turned off, there was a consistent drop in both FTOT and MTOT magnitude as predicted by Hypothesis 

1. Note that the direction of MTOT drift depended on its initial quantity: The drift was in the direction of PR 

for the initial SU task and the direction of SU for the initial PR task. Individual fingers showed drifts in 

different directions depending on their role in the production of the initial MTOT. “Moment agonists” (i.e., 

fingers that produced moments of force in the direction of required MTOT) typically showed a force drop, 

while “moment antagonists” (cf. Zatsiorsky et al. 2002) demonstrated a force increase as predicted by 

Hypothesis-2. The results were more ambiguous with respect to Hypotheses 3 and 4 that predicted changes 

in the inter-trial variance in the spaces of finger force and finger modes (hypothetical commands to fingers, 

Danion et al. 2003) analyzed within the UCM hypothesis (Scholz and Schöner 1999). Indeed, the 

component of inter-trial variance leading to a change in the task-related performance variables, VORT, 

increased at the end of the time interval without visual feedback (in support of Hypothesis 4). Synergies 

stabilizing those variables disappeared or became much weaker thus falsifying Hypothesis 3. This was 
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associated with no consistent change in the component of inter-trial variance that did not affect task-related 

performance variables, VUCM; in fact, VUCM showed a tendency to drop. The exploration of the magnitude 

of the ME and nME drifts (drifts within the UCM and ORT sub-spaces) has suggested no consistent 

differences in the magnitude of the ME and nME deviations. This result has important implication for an 

earlier hypothesis on the origin of the unintentional force drift (Ambike et al. 2015, 2016a) discussed later 

in this section. 

4.3.1 Origins of unintentional change in performance 

Some studies have shown that humans show spontaneous changes in performance when they are 

instructed to “continue doing what you have been doing”, in particular when they do not have the benefit 

of visual feedback on performance. For example, when a person is asked to walk toward an obstacle and 

step over it, repeating the task leads to a slow drop in the clearance between the foot and the obstacle, 

particularly pronounced for the trailing foot, and sometimes the trailing foot hits the obstacle (Heijnen et 

al. 2012, 2014). Force production in isometric conditions leads to a slow drop in force when the subject is 

deprived of visual feedback; this is observed for moderate force levels that are not expected to lead to 

fatigue (Slifkin et al. 2000; Vaillancourt and Russell 2002; Ambike et al. 2015). These spontaneous changes 

in performance have been explored in only a handful of studies despite their potential importance for 

understanding the system for movement production demonstrated, for example, by studies that showed a 

significantly faster performance drift in patients with Parkinson’s disease (Vaillancourt et al. 2001; Jo et al. 

2015). 

Early studies invoked limitations of working memory as a possible reason for the force drop without 

visual feedback (Slifkin et al. 2000; Vaillancourt and Russell 2002). This interpretation has been criticized 

because problems with memory are expected to lead to higher variance in the performance but not 

necessarily to its unidirectional drift. Besides, no consistent force drift was reported in a pilot study when 

the subjects were asked to memorize a force level and then to reproduce it after resting for 20 s, which is a 

typical time of force drop in continuous force production trials (Jo et al. 2015). This observation suggests 

that memory limitation, by itself, was not the defining factor in the unintentional force drop. 

An alternative explanation has been formulated within the physical approach to motor control 

(Kugler and Turvey 1987; Latash 2010, 2014). This approach assumes that the central nervous system 

(CNS) manipulates parameters of physical laws to perform intentional actions. The system for movement 

production behaves like any physical system; in particular, it shows a natural tendency to move toward a 
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state with minimal potential energy (and maximal stability). As described in the Introduction, force 

production may be viewed as a consequence of defining a referent coordinate (RC) for the effector, which 

is different from its actual coordinate (AC). The difference between the two translates into active force 

toward RC. If the effector is released, it moves toward RC. If AC cannot move (e.g., in isometric 

conditions), a natural drift of RC toward AC is expected (coined “RC-back-coupling”, Zhou et al. 2014) 

reducing the difference between RC and AC and moving the system toward a state with lower potential 

energy. If visual feedback is available, the subject corrects the drift and no net force change in observed. 

Without the benefit of visual feedback, a drift of RC toward AC takes place resulting in a force drop. 

This interpretation allows making non-trivial predictions with respect to unintentional force drifts 

in an abundant system such as four fingers producing total force and/or total moment. In particular, MTOT 

production is associated with a difference between the fixed actual orientation (AO) of the plane of fingertip 

contacts and its referent orientation (RO) (Latash et al. 2010; see Figure 4-1). A drift of RO toward AO is 

expected to lead to a drop in MTOT magnitude associated with a drop the forces of “moment agonist” fingers 

and an increase in the forces of “moment antagonist” fingers. This pattern, which is not predicted by any 

alternative hypotheses, was observed in the experiment. 

Figure 4-10 illustrates the production of FTOT and MTOT with changing RC and RO. Note the 

different effects of the RC and RO drift on individual fingers resulting in different changes in the finger 

forces. Of course, this is a cartoon offering only one of the many possible solutions because of the 

abundance of the four-finger system with respect to the {FTOT; MTOT} task. The hypothesized RC and RO 

drifts are shown in the right panel. Note that a drift in RC contributes to a drop in all finger forces. In 

contrast, a drift in RO is expected to contribute to a drop in the forces of “moment agonist” fingers and an 

increase in the forces of “moment antagonists”. Actual finger forces are expected to depend on the relative 

rate of the RC and RO drifts. In our study, the relative drop in MTOT was consistently higher than the drop 

in FTOT (Figure 4-5) suggesting a relatively larger drift in RO compared to RC. This is expected to lead to 

an increase in the forces of “moment antagonist” fingers as illustrated in the right panel of Figure 4-10. Of 

course, this is a simplified analysis; in particular, it does not consider possible drifts in the apparent stiffness 

coefficients, k (see Introduction). 
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Figure 4-10. An illustration of the production of FTOT and MTOT with changing RC and RO. After a drift in RC and 

RO (the right panel), a drop in the magnitude of both FTOT and MTOT is expected. Note consistent changes in the 

forces of “moment agonist” fingers (force reduction) while changes in the forces of “moment antagonists” may 
depend on the relative rate of the RC and RO drifts. They can lead to an increase in the forces of those fingers. 

 

Our computation of MTOT was performed with respect to the midpoint between the middle and ring 

fingers. This is potentially biased some of the results because the point of application of the resultant force 

during natural four-finger pressing tasks is shifted toward the middle finger reflected in the typical sharing 

patterns of total force among the fingers (Li et al. 1998). This factor could bring about some of the observed 

effects of initial moment of force, in particular, the larger drift for the SU moment compared to the PR 

moment (Figure 4-5). 

4.3.2 Two types of unintentional force change 

Another example of unintentional movements and force changes was demonstrated in studies that 

applied smooth transient perturbations during a static task while the subjects were instructed not to react to 

the perturbations (“do not interfere”, Feldman 1986; Latash 1994). Such experiments involved hand 

positional tasks and transient changes in the force acting on the hand (Zhou et al. 2014, 2015) as well as 

multi-finger force production tasks and transient positional perturbations applied to one of the fingers 

(Wilhelm et al. 2013; Reschechtko et al. 2014, 2015) with the “inverse piano” device (Martin et al. 2011). 

In these experiments, if the application and removal of a perturbation were interrupted with a dwell time, 

the final position (force level) undershot the initial level, i.e. equifinality was violated (cf. Kelso and Holt 

1980; Schmidt and McGown 1980; Latash and Gottlieb 1990; Lackner and DiZio 1994). The drift in the 

final position (force) was fast and large: It could reach up to 50% of the original change in position (force) 

induced by the perturbation with the typical times of 1-2 s. Within the idea of control with RCs, these 
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observations suggest a much faster RC drift compared to the one assumed to happen during spontaneous 

force drifts, similar to those described in the current study.  

Interpretation was suggested for the two types of RC drift within the framework of the UCM 

hypothesis (Scholz and Schöner 1999). Note that the UCM-based framework is applicable even to 

apparently non-redundant tasks, such as force production by a single finger because all natural tasks are 

abundant at other, hidden, levels of analysis (e.g., at the level of muscle involvement). The interpretation is 

based on the idea that different stability within the UCM and ORT sub-spaces (Schöner 1995) is associated 

with various typical times of natural relaxation processes within these sub-spaces, fast in the more-stable 

ORT and slow in the less-stable UCM (Ambike et al. 2015). Spontaneous slow drifts are expected to happen 

primarily within the UCM while perturbation-induced fast drifts are supposed to originate in ORT. A degree 

of coupling between the two sub-spaces was hypothesized leading to drifts in ORT (such as FTOT and MTOT 

changes) induced by the slow process in the UCM.  

This hypothesis received indirect support in an experiment with cyclical force production (Ambike 

et al. 2016a). Cyclical force production may be viewed as a combination of setting a steady midpoint RC 

coordinate and a cyclic oscillation of RC about that point (cf. Hogan and Sternad 2007). The oscillation, by 

definition, happens within the ORT subspace for total force, and its drift is expected to be fast. The midpoint 

does not move intentionally, and hence, its drift is expected to be slow. These predictions have been 

confirmed: Turning visual feedback off led to a slow drift in the mid-point of the force range (similar to the 

one observed in our study) and a much faster drifts in the peak-to-peak amplitude of force changes 

resembling the fast drifts induced by perturbations (e.g., in Zhou et al. 2014; Reschechtko et al. 2014). We 

will return to this hypothesis in relation to our current data further in the Discussion. 

4.3.3 Synergies stabilizing intentional and unintentional actions 

An earlier study of intentional and unintentional hand movements produced by transient 

perturbations with dwell time has shown that the unintentional actions are associated with multi-joint 

synergies stabilizing salient performance variables such as hand coordinate and orientation (Zhou et al. 

2015). While unintentional movement led to larger VORT computed with respect to the final hand coordinate 

compared to intentional movements (a predictable result given that intentional movements were performed 

to a visual target), the inequality VUCM > VORT held for both types of movement. This inequality also held 

for the analysis with respect to FTOT produced by the four fingers measured after the drift induced by a 

finger positional perturbation with a dwell time (Wilhelm et al. 2013; Reschechtko et al. 2014, 2015). 
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Given those results, we expected to see multi-finger synergies stabilizing both FTOT and MTOT after 

the drift in our current study. Unexpectedly, no synergies stabilizing FTOT and MTOT were seen at the end of 

the trial (Phase-2), while such synergies were consistently strong early in the trial when visual feedback 

was available (Phase-1). The analysis of the two variance components, VUCM, and VORT, has shown that the 

force drift led to a large increase in VORT without much of a change in VUCM; as a result, the two variance 

indices became close to each other in magnitude, and the synergy index (∆V) became close to zero.  

These observations suggest that synergies stabilizing performance in tasks performed under visual 

control are crucially dependent on visual information. Our subjects had the benefit of haptic and 

proprioceptive information throughout the trial, but it was obviously insufficient to organize {FTOT; MTOT}-

stabilizing synergies. Note that the importance of feedback loops for synergic control has been assumed in 

several models based on different theoretical approaches to synergies (Todorov and Jordan 2002; Latash et 

al. 2005; Martin et al. 2009). Our observations suggest that, at least in the studied conditions, synergies 

without visual information disappear. 

It is possible that the formulation of the task biases subjects toward using specific sensory systems 

to ensure stable performance. Since our task was presented under visual feedback, the subjects were biased 

to use primarily this sensory channel to organize {FTOT; MTOT}-stabilizing synergies. This is a testable 

hypothesis. For example, subjects can be trained to produce certain force levels under haptic/proprioceptive 

information only. After the training is over, they can be asked to keep the remembered force over 30 s. The 

hypothetical RC-back-coupling may be expected to lead to drift in FTOT while FTOT-stabilizing synergies 

may be expected to persist throughout the trial. 

4.3.4 Direction of force drift in an abundant system 

We also explored the magnitude of the drift in the space of finger forces (and finger modes, Danion 

et al. 2003) in directions that span the UCM and in directions that span the ORT. The former led to ME 

motion of the system while the latter led to nME motion (Mattos et al. 2011, 2014). While the nME motion 

was expected to reflect the drift in the task-specific salient variables, FTOT, and MTOT, ME drift, by definition, 

had no effect on performance and could be of any magnitude. In our experiments, ME drift was typically 

of about the same magnitude as nME drift (Figure 4-9). In other words, the drift had about equal components 

in the UCM and ORT sub-spaces. 

Within the aforementioned hypothesis that slow drift originates in the UCM space (Ambike et al. 

2015), the observations of about equal ME and nME deviations suggests a very strong coupling between 
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relaxation processes within the UCM and ORT spaces. This conclusion seems to be at odds with the basic 

assumptions of the UCM hypothesis and numerous observations of much larger variance within UCM 

compared to variance within ORT (reviewed in Latash et al. 2007; Latash 2008).  

To reconcile the current results with the body of experimental data supporting the main assumptions 

of the UCM-hypothesis (reviewed in Latash et al. 2007; Latash 2012), we invoke the notion of hierarchical 

control with RCs (Latash 2010). The drift in performance, e.g. in FTOT, suggest a drift at the highest level 

of the hierarchy, at which FTOT results from a combination of two commands reflected in RC and k (apparent 

stiffness) defined for a virtual finger (VF, an imagined digit with the same resultant force as all the actual 

digits combined, Arbib et al. 1975). A recent study has shown large inter-trial variations in RC and k that 

kept variance of FTOT very low (Ambike et al. 2016b). During the slow FTOT drift, a larger drift is expected 

within the UCM for FTOT in the {RC; k} space compared to the drift in ORT. This is a testable prediction 

that we plan to check in a future study. At the next level of the hierarchy {RC; k} for the VF are distributed 

among {RC; k} pairs for individual fingers. This transformation may lead to larger or smaller ME 

displacements compared to the nME displacements, or about equal displacements observed in our 

experiment. 

While studying effects of hand dominance was not a goal of our study, some of the effects allow 

interpretation within the dynamic dominance hypothesis (Sainburg 2005, 2014). According to this 

hypothesis, the dominant hand and its neural control are specialized for dealing with quick action, while 

the non-dominant hand is specialized for steady-state tasks. A number of earlier studies demonstrated higher 

synergy indices during steady-state accurate force production tasks in the left hand of right-handed persons 

compared to similar tasks performed by the right hand (Park et al. 2012; Jo et al. 2015). Some of our results 

confirm higher stability of performance by the left (non-dominant) hand. In particular, the right hand 

showed a larger drift in both FTOT and MTOT (Figure 4-5), although only the former effect was statistically 

significant. Along similar lines, there were larger magnitudes of both nME and ME motion in the right hand 

(Figure 4-9). Both results can be interpreted as a sign of lower stability of performance by the right hand. 

4.3.5 Concluding comments 

To summarize, our results confirm the hypothesis that unintentional changes in force/moment 

observed after turning visual feedback off, represent consequences of a drift of referent coordinates for the 

effector. This framework allowed predicting non-trivial observations such as counter-directional changes 

in the individual finger forces in the force/moment production tasks. Some of the results, such as the lack 
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of synergies stabilizing total force and a total moment after the drift and the similar magnitudes of drift in 

the ME and nME directions, suggest important new hypotheses that can be tested in future studies. Overall, 

this study illustrates the richness of the theoretical framework offered by the combination of the UCM 

hypothesis and the hypothesis on the control of movements with shifts in spatial referent coordinates 

(Latash 2010; Feldman 2015).  

  



41 

 

 

 

 

Chapter 5 

 

Optimality and stability of intentional and unintentional actions: 

I. Origins of drifts in static performance 

The unintentional drift of performance is a well-documented phenomenon. It is observed during 

both unperturbed continuous trials (Slifkin et al. 2000; Vaillancourt and Russell 2002), in response to 

transient force perturbations (Wilhelm et al. 2013; Zhou et al. 2014), and over repeated trials (Heijnen et 

al. 2012). For example, when a person is asked to maintain accurate constant force by an effector under 

visual feedback, and then the feedback is removed, a slow drift in force, typically to lower values, is 

observed (Vaillancourt and Russell 2002; Shapkova et al. 2008). A similar, but much faster, drift is 

observed when the effector is subjected to a transient perturbation (Wilhelm et al. 2013; Reschechtko et al. 

2014). If a person is asked to walk toward an obstacle, step over it, and continue walking, over repeated 

trials the clearance between the foot and the obstacle gets smaller (particularly for the trailing foot), and 

sometimes the foot touches the obstacle (Heijnen et al. 2012, 2014). Earlier studies offered interpretations 

of these phenomena based on a variety of concepts such as limitation of the working memory, boredom, 

inattention, minimization of energy expenditure, and fatigue. 

Recently, we have offered an alternative interpretation for unintentional drifts in performance based 

on two concepts. The first concept suggests that the control of the voluntary actions is performed by 

changing the referent configurations (RCs) of the involved effectors (Feldman and Levin 1995; Feldman 

2015). For example, when squeezing an object in the hand, the RC of the hand is situated inside the squeezed 

object. The squeezing force is then determined by the distance between the actual configuration of the hand 

(AC) and RC.  The second is the idea of synergic control of redundant systems (note that all natural actions 

involve redundant sets of effectors, Bernstein 1967) based on the principle of abundance (Latash 2012). 

Within this scheme, producing a constant force by an effector is associated with setting its RC (and possibly 

apparent stiffness, Latash and Zatsiorsky 1993) and keeping it unchanged with the help of visual feedback. 

When the feedback becomes unavailable, RC drifts toward the actual coordinates and causes a slow 

decrease of the produced force. This hypothetical mechanism has been referred to as RC-back-coupling 

(Reschechtko et al. 2014; Ambike et al. 2015; Zhou et al. 2015).  

  When the task involves a redundant set of effectors, the effector space can be decomposed 

into two subspaces based on the effect that the effectors have on the performance variable. The uncontrolled 

manifold (UCM, Scholz and Schöner 1999) subspace is such that when the change of the effector 

commands belong to this subspace, these changes have no effect on the performance variable. The 

subspace, orthogonal to the UCM, (ORT) is in opposite, the one through which the effectors can change 
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the performance variable.  During steady-state tasks, processes in the UCM are usually less stable as 

compared to ORT (reviewed in Latash et al. 2002, 2007). As a result, slower drift is expected within the 

while faster drift is expected within ORT. When the system is perturbed leading to a change in the salient 

performance variable, e.g. total force, the perturbation by definition affects the ORT space resulting in a 

fast RC-back-coupling process and fast change in the performance variable. During continuous steady-state 

tasks, relaxation processes are slow reflecting the lower stability of the UCM. A degree of coupling between 

the two sub-spaces has been hypothesized leading to the slow total force drift observed during continuous 

tasks (Ambike et al. 2015).  

The concepts of RC and synergic control were used to explain the overall change in the salient 

performance variable and its stability as reflected, for example, in the structure of inter-trial variance within 

the UCM and ORT spaces. In this study, we focus on the third characteristic of actions by abundant systems, 

namely the average across trials sharing of the salient performance variable among the elements. We 

consider only the systems where effects of the individual variables on the performance variable are additive, 

such as producing a total force and total moment with several fingers. Sharing has been addressed based on 

optimality principles (reviewed in Prilutsky and Zatsiorsky 2002). Recently, a method of analytical inverse 

optimization (ANIO) has been introduced (Terekhov et al. 2010) that allows computing a cost function 

based on observed behavior of a redundant system over a broad range of task constraint values.  

Our main hypothesis is that unintentional changes in performance variables during continuous 

static tasks without visual feedback are due to two processes. First, there is the aforementioned RC-back-

coupling leading to a drift of the RC towards the actual coordinate of the effector. Second, there is a drift 

within the UCM toward a minimum of the cost function reflected in coordinated drifts of the elemental 

variables. We tested the main hypothesis in multi-finger isometric pressing tasks that required the accurate 

production of a combination of total moment and total force, {MTOT; FTOT} (similar to Park et al. 2010, 

2013).  

To test the first set of predictions, we quantified the drifts in FTOT and MTOT observed when the 

subjects continued performing such tasks without visual feedback. We predicted that FTOT would drop 

(similarly to Vaillancourt and Russell 2002; Ambike et al. 2015a) while MTOT drift would depend on the 

initial magnitude and direction of MTOT and directed toward its zero magnitude corresponding to the 

horizontal actual orientation of the hand. To test the second set of predictions, we required our subjects to 

vary their preferred sharing of the task among the four fingers using visual feedback. Namely, we asked 

them to produce the same {MTOT; FTOT} combination but with the force of the middle finger (FMID) reduced 

by 50%. After visual feedback had been turned off, we expected the forces to drift towards their preferred 

sharing pattern corresponding to a minimum of the cost function reconstructed using the ANIO method. 
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Since no perturbations were used, we expected all the processes to be relatively slow with characteristic 

times of 10-20 s (cf. Ambike et al. 2015a,b). To explore the interaction among the hypothesized processes, 

we quantified the drifts in performance under a variety of visual feedback conditions, from no feedback at 

all to feedback presented selectively on only a subset of the three constraints, FTOT, MTOT, and FMID. We 

expected consistent drifts in the no-feedback variables only. 

5.1 Methods 

5.1.1 Subjects 

Six male and five female subjects (age 27.27 ± 5.44 years, mass 74.18 ± 14.73 kg, height 171.18 ± 

8.30 m), all right-handed, volunteered to participate in the study. All subjects were healthy and without any 

history of neuropathy or any other upper-limb disorders. Nine subjects performed the experiment entirely. 

For technical reasons, for one of the conditions, the data for two subjects were unavailable (see later in 

Methods). All the procedures were approved by the Office for Research Protection of the Pennsylvania 

State University. 

 

5.1.2 Equipment  

Four force transducers (Nano-17 sensors, ATI Industrial Automation, Garner, NC, USA) were 

mounted on an aluminum plate, which was attached to a wooden board. The whole setup was fixed with a 

clamp to a table (Figure 5-1). The sensors were covered with sandpaper,  the friction coefficient with human 

fingerpads is approximately 1.4-1.5 (Savescu et al. 2008). Visual feedback was shown on a 19’’ monitor 

placed at the eye level, about 0.6 m away from subjects. 

Twenty-four analog signals (4 sensors × 6 components) were digitized at 100 Hz by a 12-bit analog-

digital converter (PCI-6031, National Instruments, Austin, TX). The programs for visual feedback and data 

collection were written in LabVIEW 2010. Off-line analysis was done using MATLAB 2014.  
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Figure 5-1. Experiment setup. (a) The complete setup. All subjects were tested with this setup. Their arm 

comfortably fixed to the platform and they were pressing on the force sensor to follow the visual feedback shown on 

the screen in front of them. (b) A sample of the visual feedback that was shown to subjects. The small hollow circle 

indicates a {MTOT, FTOT} combination. The x-axis and y-axis are total moments, and total force, respectively. The 

tank in the middle of the screen is the feedback on middle finger force. The level is the value that subjects must 

reach before Phase-2. The dotted cross is being controlled by subjects’ {MTOT, FTOT} production, and must be held 

within the circle. (c) Hand placement on the sensors. 

5.1.3 Experimental procedure 

During the test, subjects sat in a chair at the table and placed the right-hand fingertips on the sensors. 

Two Velcro straps were used to maintain a steady hand and forearm position (Figure 5-1). The wooden 

plate was covered with a soft sponge layer for comfort. Sensor position in the anterior-posterior direction 

was adjusted for subject’s hand anatomy. 

At the beginning of every trial, the experimenter asked the subject to place the fingertips on the 

sensors and relax the hand. The sensor readings were set to zero so that during data collection only the 

downward active force of the fingers was recorded. 

The vertical axis on the visual feedback monitor screen showed the total pressing force (FTOT, the 

sum of the pressing forces of all four fingers), and the horizontal axis showed the total moment of force 

(MTOT) computed about the anterior-posterior axis passing in-between the sensors for the ring and middle 

fingers (Figure 5-1). Note that MTOT was a nominal moment value computed based on the vertical force 

magnitudes that did not take into account possible effects of the shear forces. As shown in Figure 5-1, 

subjects controlled the cursor position by adjusting FTOT and MTOT. (MTOT, FTOT) = (0, 0) corresponded to a 

cursor location in the mid-bottom of the screen. Pronation (PR) moment was considered negative while 

supination (SU) moment was positive.  
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The experiment consisted of three parts. The first part involved the maximum voluntary contraction 

(MVC) by all four fingers (MVC-4) and by the index finger alone (MVC-I). During these trials, the subjects 

were given a feedback on the force produced by all four fingers (in MVC-4), or by the index finger (in 

MVC-I). Subjects performed two trials at each task with at least 30 s between the trials; the trial with the 

maximal value of the instructed force was chosen to set further tasks.  

The second part involved data collection for analytical inverse optimization (ANIO). In this part, 

the subjects were required to press with the four fingers in a natural way, with minimal effort, to reach a 

target shown on the screen corresponding to a combination of MTOT and FTOT, {MTOT; FTOT}. To set tasks, 

we defined the unit of MTOT as 7% of MVC-I multiplied by the index finger nominal lever arm (0.045 m). 

Nine total force levels (5-45% of MVC-4 with steps of 5%), and seventeen-moment levels (0-4PR and 0-

4SU with steps of 0.5) were used resulting in a total of eighty-one {MTOT; FTOT} combinations that filled a 

triangular shape with {(4PR, 45%MVC), (0, 5%MVC), (4SR, 45%MVC)} as vertices (as in Park et al. 

2013). Subjects had 6 s to reach the target and stay there. There were 10-s intervals between trials, and 

additional 1-min rest periods after each 10-trial block. 

The third part involved the main task. During this task, subjects were required to press with four 

fingers to reach the presented {MTOT; FTOT} target in a natural way, as in the second part. Three targets were 

used with FTOT always equal to 20% of MVC-4, while MTOT was 1.5PR, 0, or 1.5SU.  

All the subjects were able to reach the prescribed {MTOT; FTOT} target within 3 s. After 5 s from the 

trial initiation, an additional feedback was shown on the screen as a tank chart located in the middle of the 

screen (not interfering with the original feedback on {MTOT; FTOT}). The additional feedback showed the 

force of the middle finger, FMID. The subjects were required to reduce FMID to 50% of the average FMID level 

they had been producing over the 4.5–5 s time interval from the trial initiation (computed online). They 

were given 10 s to reach a new steady finger force combination that would satisfy the original {MTOT; FTOT} 

constraint and the new FMID constraint. 

At that time (15 s into the trial), visual feedback was manipulated. There were seven feedback 

conditions: no feedback on any of the three variables (None), feedback on FTOT only, feedback on MTOT 

only, feedback on FMID only, feedback on FTOT and FMID (FTOT+FMID), feedback on FTOT and MTOT 

(MTOT+FTOT), and feedback on MTOT and FMID (MTOT+FMID). For nine of the subjects, an eighth condition 

was also used, in which all the feedback remained on the screen until the end of the trial (All). For technical 

reasons, data for the remaining two subjects for the “All” condition were unavailable. The subjects were 

always instructed to continue pressing with the same finger forces: “keep doing what you have been doing”. 

The conditions were presented in a fully randomized order. Three trials were performed under each 

condition. 
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Before starting the data collection, subjects performed ten practice trials to get acquainted with the 

main task. Conditions for the practice trials were selected randomly. No data were recorded in those trials.  

A 10-s break was enforced between trials to prevent fatigue. After every ten trials, a one-minute 

break was given. Subjects were encouraged to ask for more rest during the experiment as needed. None of 

the subjects reported fatigue after the experiment. 

5.1.4 Data processing 

All data analysis was done in MATLAB software. The finger forces were low-pass filtered at 5 Hz 

using a zero lag, fourth-order Butterworth filter. Three phases were selected in each trial for data analysis. 

Phase-1 corresponded to the time interval between 4.7 and 4.8 s; Phase-2 corresponded to the time interval 

between 14.7 and 14.8 s, and Phase-3 corresponded to the time interval between 29.7 and 29.8 s. These 

three 100-ms long time intervals were selected to reflect the steady states under the original two constraints, 

{MTOT; FTOT}, under the combination of three constraints, {MTOT; FTOT} and FMID, and at the end of the trial. 

Figure 5-2 illustrates these three phases for a sample trial using the FTOT time series. 

 

 

Figure 5-2. A sample of total force profile. In this figure, the three important phases described in the context was 

show in a total force profile.  
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5.1.5 Analysis of the drift in performance variables 

The drift in the main performance variables, FTOT, MTOT, and FMID was estimated as the difference 

in the values of these variables averaged over Phase-3 and Phase-2 (∆FTOT, ∆MTOT, and ∆FMID, 

respectively). For each subject, the average drift values were computed across three repetitions over each 

condition separately. For across-subjects comparisons, the drifts in all performance variables and finger 

forces were normalized by the corresponding average values within Phase-2. 

5.1.6 ANIO and computation of the cost function  

The Analytical Inverse Optimization (ANIO) method (Terekhov et al. 2010) was used for 

approximating the cost function. The method used the data collected in the second part of the study, that is, 

during accurate production of 81 different {MTOT; FTOT} tasks. For each trial, we computed the average 

finger forces during the time interval {5.7 s; 5.9 s} from the trial initiation. We tested the planarity of the 

collected data sets within each subject using principal component analysis (PCA). Based on previous 

studies, we used the criterion of  >80% of the variance explained by the first two PC vectors. All the 

subjects, except one, produced data sets that satisfied this criterion (see Table 1). This allowed using a 

second-order polynomial of finger forces as a cost function (Terekhov et al. 2010; Park et al. 2011): 

21
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where i stands for fingers (index, middle, ring, and little), ki and wi are coefficients selected to 

provide the best fit to the original data. Further, the cost functions were used to compute optimal solutions 

for the same {MTOT; FTOT} tasks for each subject. For consistency, we used this equation also for the data 

of the only subject who failed to satisfy the 80% criterion. The dihedral angle (D-angle) between the plane 

of optimal solutions for the same {MTOT; FTOT} combinations and the plane of original data (spanned by 

PC1 and PC2) was computed. The D-angle is a metric reflecting the goodness of fit provided by the 

computed cost function. A more detailed description of the method can be found in the Section 3.4.  

Equation 5-1 was further used to compute the cost values (CANIO) within Phase-2 and Phase-3 for 

the data collected during the main part of the experiment. The change in CANIO was computed between the 

two phases (∆CANIO). The average values of ∆CANIO across the three repetitions at each condition were used 

for statistical purposes. 
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5.1.7 Statistical analysis 

Data are presented in the text and figures as means ± standard errors unless stated otherwise. To 

test the first hypothesis, a two-way repeated measure ANOVA was run on ∆FTOT, ∆MTOT, and ∆FMID, 

separately with the factors Feedback (None, FTOT, MTOT, FMID, FTOT+FMID, FTOT+ MTOT, MTOT+FMID, and 

All) and Moment (PR, ZE, and SU). To include the “All” condition, the analysis was repeated for nine 

subjects who had performed all of the conditions; however, the main effects were studied for 11 subjects 

without including the “All” feedback condition. To test the second hypothesis, the same ANOVA design 

was applied to ∆CANIO.  

Furthermore, to study changes in finger forces during the main task, a two-way MANOVA with 

repeated measures was used with the factors Finger (index, middle, ring, and little), Feedback and Moment. 

In all of the analysis, significant effects of ANOVA and MANOVA were further explored using pairwise 

contrasts with Bonferroni adjustments.  

All the data sets were checked for normality and sphericity using the Mauchly criterion. In cases 

of sphericity violations, the Greenhouse-Geisser correction was applied. The critical p-value in all of the 

analysis was set at 0.05. 

5.2 Results 

5.2.1 Analytical Inverse Optimization (ANIO) 

Principal component analysis (PCA) applied to the individual finger force data collected over the 

sets of 81 trials with different combinations of total moment and total force, {MTOT; FTOT}, led in all 

subjects, except one, to well over 80% of total variance accounted for by the first two PCs (Table 1). Only 

subject #4 failed to satisfy the 80% criterion while the average value across subjects was 87.4±1.43%.  

For consistency, we applied ANIO to the data of all subjects including subject #4. The second 

column in Table 1 shows the coefficients (ki) at the second-order terms of the cost function; see Equation 

(1) in Methods. Note that all these coefficients were positive, which is an important criterion for 

applicability of ANIO (Terekhov et al. 2010; Terekhov and Zatsiorsky2011). The positive ki values mean 

that ANIO found a solution for the inverse optimization problem.  
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The dihedral angle (D-angle), the goodness of fit index (see Methods) was, on average 5.49±1.25°. 

Two subjects showed larger values of the D-angle (>10°); one of them was subject #4 who also showed the 

lowest percentage of variance accounted for by the two PCs. 

5.2.2 Drifts in task-related performance variables 

All the subjects were able to perform the {MTOT; FTOT} tasks, even after the additional constraint 

on FMID had been added. Figure 5-2 shows the individual finger time series during a typical trial with an 

initial pronation moment, as well as the computed performance variables related to the task constraints, 

FTOT, MTOT, and FMID. During the early portion of the task (until Phase-1), the subject achieved a certain 

finger force combination that satisfied the {MTOT; FTOT} constraint. By Phase-2, the subject was able to 

reduce FMID by 50% (as required by the task) while still producing the same {MTOT; FTOT} combination. 

After the visual feedback on all three performance variables, FTOT, MTOT, and FMID, was turned off, the 

finger forces showed consistent drifts leading to a drop in FTOT, a drop in the magnitude of MTOT, and an 

increase in FMID (see Phase-3 in Figure 5-2). 

Keeping visual feedback on some of the performance variables helped the subjects to avoid drift in 

those variables, while drifts in the variables without visual feedback persisted. Figure 5-3 illustrates a 

typical trial with the initial moment into supination. After Phase-2, visual feedback on FTOT only was 

preserved, while the feedback on MTOT and FMID was turned off. The Figure shows a consistent level of 

FTOT throughout the trial, while the magnitude of MTOT drifts to lower values and the magnitude of FMID 

drifts toward higher values. 
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Figure 5-3. A typical trial observed when only FTOT feedback was preserved after Phase-2. (a) FTOT signal. No drift 

was expected as the feedback was provided on this task variable. (b) MTOT signal was shown in this panel, and as 

expected MTOT value decreases unintentionally by time in the absence of visual feedback. (c) FMID signal. FMID 

increases in the absence of visual feedback. 

 

Overall patterns of the drifts in the three task-related variables are illustrated in Figure 5-4. Panel 

A of Figure 5-4 shows the averaged across subjects magnitude of the drift in FTOT (∆FTOT) from Phase-2 to 

Phase-3 as a function of feedback condition. Note the very low drift magnitudes when FTOT feedback was 

present and large consistent drifts to lower FTOT values (negative ∆FTOT) when FTOT feedback was turned 
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off. The drift in FTOT showed only minor changes with the initial MTOT magnitude, but it showed smaller 

values when MTOT feedback was present. 

Two-way ANOVA, Moment × Feedback, on ∆FTOT over the time of modified feedback confirmed 

a significant effect of Feedback (F[2.574, 25.741] = 22.394, p < 0.001). Pairwise contrasts confirmed that the 

drop was larger in conditions without FTOT feedback (on average, 12.76 ± 1.68% of the target FTOT), 

compared to conditions when FTOT feedback was kept over the whole trial (on average, 0.19 ± 0.037% of 

the target FTOT, p < 0.001). It also confirmed larger magnitudes of ∆FTOT for the “None” and “FMID” 

condition (no feedback on FTOT and MTOT) compared to the “MTOT” and “MTOT+FMID” conditions (p < 0.05).  

 

The drift in MTOT depended strongly on both the initial MTOT value and feedback. As illustrated in 

panel B of Figure 5-4, this drift was very small and inconsistent when feedback on MTOT was available 

throughout the trial. The drift was large when MTOT feedback was unavailable for both initial PR (black 

bars) and SU (gray bars) MTOT values. The difference in the sign of ∆MTOT in the PR and SU conditions 

reflected the fact that MTOT drifted toward zero value. The average decrease in MTOT in the absence of visual 

feedback was 11.84%±6.45%, 1.56%±0.59%, and 24.83%±4.84% of the original value in PR, ZERO, and 

SU moment condition, respectively. When the feedback was shown, these values decreased to 

1.20%±0.69%, 0.15%±0.03%, and 2.63%±0.94% of the original value, respectively. 

Two-way ANOVA, Moment × Feedback, on ∆MTOT confirmed a significant effect of Moment 

(F[1.324, 13,236] = 28.314 p < 0.001) and a significant Moment × Feedback interaction (F[3.668, 36.684] = 11.374, p 

< 0.001). The effect of Moment reflected significant differences within each pairs of the three levels, PR, 

SU and ZERO (p < 0.05). The interaction reflected the different magnitudes of the drift between conditions 

with and without MTOT feedback (p < 0.001). Effect of Feedback was not significant because of the opposite 

effects depend on the initial moment. 
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Figure 5-4.  (a) Mean and standard error representing ΔFTOT across trials for all Moment and Feedback conditions. 

The difference between FTOT in Phase-3 and Phase-2 were considered as ΔFTOT. Similarly, in (b) the ΔMTOT was 

computed as the difference between MTOT in Phase-3 and Phase-2. Three different colors show various Moment 

conditions. 
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5.2.3 Drifts in finger forces  

The regularities in the drifts of FTOT and MTOT were reflected also in drifts of the individual finger 

forces. Panel B of Figure 5-5 illustrates the drifts in the middle finger force, FMID. In trials, when visual 

feedback on FMID was provided, no consistent drifts in FMID were observed. In contrast, when FMID feedback 

was unavailable, FMID showed a consistent tendency to increase. These effects were the strongest in the SU 

tasks (gray bars in Figure 5-5B) and weakest in the PR tasks (black bars in Figure 5-5B). In the absence of 

feedback on FMID, 20.89%±8.27%, 31.01%±4.73%, and 64.21%±12.17% increase in FMID was observed in 

the PR, ZERO, and SU conditions, respectively. 

Two-way ANOVA, Moment × Feedback, on ∆FMID confirmed significant effects of both Moment 

(F[2, 20] = 11.028, p < 0.001) and Feedback (F[2.710, 27.102] = 13.582, p < 0.001). There was also a significant 

Moment × Feedback interaction (F[4.644, 46.439] = 3.143, p < 0.05).  

Pairwise comparisons confirmed the larger ∆FMID for SU compared to both PR and ZERO 

conditions (p < 0.05). The effect of Feedback reflected larger drift values for conditions without feedback 

on FMID compared to conditions with FMID feedback (p < 0.05). The interaction reflected the smaller effects 

of Moment on ∆FMID for the “None” condition as compared to other conditions without FMID feedback (p < 

0.05). 

In contrast to the ∆FMID patterns, the forces produced by the other three fingers (index, ring, and 

little) typically showed drifts toward smaller values (panels A, C, and D of Figure 5-5). These drifts were 

smaller for the trials under “All” and “FTOT+MTOT” visual feedback conditions and larger under the “None” 

and “FMID” conditions. These observations were supported by a significant effect of Feedback (F[3.624,144.962] 

= 15.910, p < 0.001). There was also a significant effect of Moment reflecting the tendency of more positive 

(less negative) values of force changes for the SU tasks (F[2, 80] = 7.964, p < 0.001), particularly pronounced 

for the index finger (Moment × Finger interaction, F[6, 80] = 6.880, p < 0.01). Other significant effects, 

including the three-way interaction Moment × Feedback × Finger (F[17.649, 235.316] = 2.895, p < 0.01) reflected 

the complex pattern of individual finger force adjustments. Since these effects were not directly related to 

the specific hypotheses and their discussion, we do not present these results. 
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Figure 5-5. Drift in finger forces represented by mean and standard error. Index, middle, ring and little finger forces 

were computed as the difference between the finger force value in Phase-3 and Phase-2 

5.2.4 Cost value drifts 

To test the second hypothesis on the drift within the UCM toward a minimum of the cost function, 

we quantified changes in the cost function, ∆CANIO over the time interval between Phase-2 and Phase-3 

(with modified visual feedback). Under most conditions, the cost function showed a drop as illustrated by 

the negative values in Figure 5-6. The largest magnitudes of ∆CANIO were seen under the “FMID” and “None” 

conditions while the smallest changes, close to zero, were observed under the “All”, “FTOT+MTOT” and 

“FTOT+FMID” conditions. These patterns did not show any clear effects of initial moment value. These results 

were reflected in the significant effect of Feedback in the Moment × Feedback ANOVA (F[1.347, 13.474] = 

5.550, p < 0.05). No other effects reached significance. 
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Figure 5-6. Mean and standard error representing ΔCANIO across trials for all Moment and Feedback conditions. 

ΔCANIO was computed by subtracting the CANIO at Phase-2 from the value at Phase-3. Three different colors show 

various Moment conditions. 

5.3 Discussion 

The results of our study provide support for the main hypotheses formulated in the Introduction. 

We suggested that two factors contributed to the observed drift in finger forces in the absence of visual 

feedback. First, drift of the referent coordinate (RC) for a salient task-specific variable toward its actual 

coordinate was assumed (cf. Ambike et al. 2015). The experiments showed a drift of total force (FTOT) to 

lower values across conditions without FTOT feedback. They also showed a drift of the total moment of force 

(MTOT) towards lower absolute values when no MTOT related feedback was shown; the direction of the drift 

depended on the initial MTOT magnitude. The idea of control with RC implies, in particular, that active force 

is approximately proportional to the difference between the referent and actual fingertip coordinates, while 

active moment is proportional to the difference between the referent and actual hand orientation (Latash et 

al. 2010). Given that the actual finger position and configuration were always the same, our current 

observations support the assumed RC drift toward actual fingertip coordinates and hand orientation. 

Second, we also assumed that a drift would happen within the uncontrolled manifold (UCM; Scholz 

and Schöner 1999) for the salient performance variables toward a state corresponding to minimum of the 

cost function defined in the space of elemental variables. The initial cost of the finger force combination 

computed based on the cost function reconstructed with analytical inverse optimization (ANIO, Terekhov 

et al. 2010) dropped across conditions. Moreover, we observed an atypical drift of the middle finger force 
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(FMID) to higher values in trials when the subjects reduced FMID intentionally as compared to the preferred 

finger force combination. Note that all earlier studies reported downward drifts of finger forces after turning 

visual feedback off unless the initial forces were very low (Slifkin et al. 2000; Vaillancourt and Russell 

2002; Ambike et al. 2015). 

5.3.1 Factors that define unintentional changes in performance 

Unintentional motor performance has been known for many years. One of the classical examples 

of the so-called Kohnstamm phenomenon (Kohnstamm 1915; Ivanenko et al. 2006): An unintentional 

motion of an extremity following a long-lasting strong isometric contraction. Unintentional changes in 

locomotion have been reported following walking on a rotating platform (the podokinetic effect, Weber et 

al. 1998; Scott et al. 2011) and under vibration applied to the leg muscles (Gurfinkel et al. 1998; Ivanenko 

et al. 2000).  

Recently, the phenomenon of unintentional finger force drop has been studied in experiments with 

accurate force production with the help of under visual feedback, when the feedback was later turned off 

(Slifkin et al. 2000; Vaillancourt and Russell 2002; Shapkova et al. 2008). Similar effects have been 

observed in grasping studies following a slow transient change in the aperture (Ambike et al. 2014), while 

faster unintentional changes in arm position and finger forces were reported in experiments with transient 

perturbations applied to the effectors (Wilhelm et al. 2014; Zhou et al. 2014, 2015). 

Some of the earlier studies invoked the notion of working memory limitations as the cause for the 

unintentional force drop (Vaillancourt et al. 2001; Vaillancourt and Russell 2002). This idea was challenged 

in later studies (Ambike et al. 2015; Jo et al. 2016) based on two observations. First, finger forces changed 

consistently across subjects while problems with working memory are expected to lead to inconsistent force 

production. Second, resting during a comparable time interval led to no consistent force drift. Ambike et 

al. (2015) also reported a force drift in the opposite direction, to higher values, but only in fingers that 

started the task with very low forces. These trends were weak (although statistically significant in some 

cases). While they remind the FMID drift to higher forces in our study, the initial FMID magnitudes in our 

experiment were typically higher (about 10% of the MVC force) than the values leading to finger force 

drift toward higher force reported by Ambike and colleagues (under 5% of that finger’s MVC force). 

Besides, the magnitude of the FMID drift in our study was of about the same magnitude as the more typical 

downward force drift in other fingers (Figure 5-5), while in the Ambike et al. study the upward force drift 

was an order of magnitude smaller than the typical downward drifts.  
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Several earlier studies (Ambike et al. 2014, 2015; Zhou et al. 2015) interpreted the unintentional 

force drift within the hypothesis assuming that the neural control of movements is based on shifts of referent 

spatial coordinates for salient variables (the RC-hypothesis, reviewed in Feldman 2015). Within the RC-

hypothesis, force production in isometric conditions is associated with setting RC for the effector that 

differs from its actual coordinate (AC). The difference between AC and RC produces force via a scaling 

coefficient, apparent stiffness (cf. Pilon et al. 2007). An unintentional drop in force means that RC moves 

towards AC and/or the apparent stiffness decreases; for simplicity, we consider only the former mechanism. 

Note that when RC = AC, the system produces no force, and muscle activation is minimal for the given 

effector configuration. This state may be viewed as the state with minimal potential energy of the effector. 

A hypothesis has been suggested that, when the CNS does not implement sensory-based corrections, the 

physical/physiological system participating in the task relaxes toward a state with minimal potential energy, 

i.e., AC attracts RC leading to a force drift toward smaller magnitudes. Our current results on the FTOT and 

MTOT drifts provide support for this idea. 

A novel hypothesis offered in this study is that, when an abundant set of effectors participates in a 

task, a drift toward preferred solution is expected in the space of elemental variables. We estimated 

preferred solutions using the analytical inverse optimization (ANIO) method (Terekhov et al. 2010) and 

then used the computed cost functions to estimate the changes in cost associated with the changing finger 

force combinations. Asking the subjects to perform the {FTOT; MTOT} tasks with a reduced contribution 

from the middle finger forced them to deviate from the naturally preferred solution corresponding to a 

minimum of the cost function. The observed downward drift of the cost supports the idea that a drift took 

place in the space of finger forces leading to more natural finger force combinations (closer to the minimum 

of the cost function). 

Taken together, our observations suggest superposition of two processes: a drift of RC toward AC 

and a drift in the space of finger forces directed at reducing the cost of the action. Figure 5-7 illustrates this 

idea for a two-finger task of producing a value of total force: F1 + F2 = FTOT. Assume that the subject has a 

preferred pattern of sharing FTOT between the two fingers, e.g., 50:50 (the large black dot), corresponding 

to a minimum of the cost function (shown with parabolic dashed lines). Other solutions for the task are 

possible shown by the lines with negative slope – UCMs for this task. The initial force level corresponds 

to a certain distance between RC and AC. Imagine now that the subject was asked to perform this task with 

an unusual force combination, i.e. lower contribution of finger #1 (the open circle). This point corresponds 

to a higher cost of the action (see the dashed circle, a projection of the point on the cost function). After 

visual feedback on both FTOT and F1 has been turned off, two processes will take place. First, RC will drift 

towards AC illustrated by the drift of the solution space (UCM) toward smaller FTOT values (compare the 
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thick and thinner UCM lines in Figure 5-7). At the same time, a drift in the {F1; F2} space will take place 

moving the actual finger force values closer to the bottom of the cost function. The resultant drift is shown 

as the dashed line with the arrow. Our observations suggest that the two processes proceed at comparable 

time scales, but this issue requires further investigation. Note that unintentional drifts at two time scales 

have been reported so far, slow (typical times of 10-20 s; Vaillancourt and Russell 2002; Ambike et al. 

2014, 2015) and fast (typical times of 1-2 s; Wilhelm et al. 2013; Zhou et al. 2014, 2015; Ambike et al. 

2016). 

5.3.2 Hierarchical control with referent coordinates 

The RC-hypothesis implies a hierarchical system of control with the RC for salient, task-specific 

variables defined at the highest level of the hierarchy. Further, this low-dimensional set of RCs maps on 

RCs at lower, higher-dimensional levels and defines RCs for limbs, joints, digits, and muscles. Such 

transformations are associated with synergic adjustments among RCs within abundant sets at lower levels, 

possibly via back-coupling loops (Latash et al. 2005; Martin et al. 2009). This scheme predicts relatively 

consistent behavior in the space of salient task-specific variables combined with a relatively variable 

behavior at the level of elements (Schöner 1995).  

This prediction has been tested in a number of studies within the UCM hypothesis (Scholz and 

Schöner 1999). Some of those studies (reviewed in Latash et al. 2007; Latash 2008) compared inter-trial 

variance within a space where salient variables do not change (within UCM, VUCM) and within a space 

where those variables change (orthogonal to the UCM, VORT). The inequality VUCM > VORT, where both 

indices quantified per dimension in the corresponding spaces, has been used as a signature of a synergy 

stabilizing those salient variables. Another group of studies quantified deviations along the UCM and along 

the ORT space during quick corrective actions (Mattos et al. 2011, 2014). Note that deviations along the 

UCM by definition cannot correct deviations of salient variables. Nevertheless, large such deviations have 

been observed reflecting the lower stability of the system within the UCM as compared to the ORT 

directions. 

In our study, we observed most consistent across subjects patterns of unintentional drifts in the 

task-related variables such as FTOT and MTOT when the corresponding feedback was turned off (Figure 5-4). 

The drifts in some of the individual finger forces were less consistent (Figure 5-5) suggesting that much of 

the finger force drifts took place within the UCM for FTOT and MTOT. This issue is analyzed in a companion 

study presented in Chapter 6. 



59 

 

 

 

 

5.3.3 Is optimization real? 

The original formulation of the problem of motor redundancy (Bernstein 1935) stated explicitly 

that the main problem of motor control was the elimination of redundant degrees of freedom. This could be 

done by adding constraints to the system (for example, self-imposed, intentional constraints, e.g. Hu and 

Newell 2011), or by using optimization approaches, i.e., looking for a solution from an infinite set that 

minimizes (or maximizes) a cost function. A number of cost functions have been explored (reviewed in 

Nelson 1984; Prilutsky and Zatsiorsky 2002), such as minimal time, minimal energy expenditure, minimal 

jerk, minimal fatigue, minimal discomfort, and many others. Researchers selected specific cost functions 

rather arbitrarily, typically reflecting their intuition and experience. 

Two questions emerge. First, can arbitrary choice of cost functions be avoided and replaced with a 

computational, data based, method? Second, are optimization approaches useful for analysis of natural, 

biological movements? 

An answer to the first question was offered by the ANIO method (Terekhov et al. 2010: Terekhov 

and Zatsiorsky 2011). This method allows computing a cost function based on experimental observations 

under certain assumptions, in particular that the cost function is additive with respect to outputs of the 

elements. A number of studies have shown that ANIO produces consistent cost functions that allow 

describing multi-finger tasks with better accuracy than typical cost functions used in the literature (Niu et 

al. 2012), and that this method is sensitive to fatigue, healthy aging, and neurological disorders (Park et al. 

2010, 2011b, 2012). Our current study makes another step in supporting applicability of ANIO to actions 

by abundant systems. As in the cited earlier studies, ANIO was able to reconstruct cost functions that 

generated solutions approximating the experimental data with good accuracy: The angle between the planes 

of actual solutions and ANIO-based solutions was, on average, about 5 degrees. Moreover, unintentional 

finger force changes after the visual feedback had been turned off led to a significant drop in the cost of the 

action based on the ANIO results. 

With respect to the second question, we view the drift of the cost (∆CANIO; see Figure 5-6) to 

lower values, as providing strong support for the idea that the CNS is indeed driven by some kind of an 

optimization process, i.e., it is naturally moved to solutions corresponding to minimum values of a cost 

function. Optimization does not have to be absolute, just “good enough” (Simon 1956; Loeb 1999). Our 

instruction to the subjects to drop FMID by 50% before the visual feedback was turned off (Phase 2) 

apparently took the subjects away from the “good enough” region. As a result, a drift leading to lower cost 

values was seen including, in particular, the non-trivial drift of FMID to higher values in contrast to the 

dominant downward trend in the other finger forces. 



60 

 

 

 

 

5.3.4 Concluding comments 

The main results of our study include support for the hypothesis on two sources of the observed 

unintentional finger force drift: The drift of RC towards AC and the drift of cost toward lower values. The 

speed of all the observed drifts was relatively slow, corresponding to earlier reports on the force drift in the 

absence of visual feedback (Vaillancourt and Russell 2002; Shapkova et al. 2008; Ambike et al. 2015). It 

suggested processes within a subspace characterized by relatively low stability of the elements, i.e. 

primarily within the UCM for the task. Since the effects were observed in the salient performance variables, 

these observations also suggest a degree of coupling between the UCM and ORT spaces, a hypothesis 

(Ambike et al. 2015, 2016) that is still in need of more direct experimental confirmation.  
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Chapter 6 

 

Optimality and stability of intentional and unintentional actions: 

II. Structure of variance and motor equivalence 

 

In this study, we address the famous problem of motor redundancy (Bernstein 1967): For all natural actions, 

the number of variables produced by elements involved in an action (elemental variables) is larger than the 

number of constraints. This results in an infinite number of possible solutions, and the problem has 

traditionally been formulated as: How does the central nervous system (CNS) select specific solutions for 

such tasks? Recently, this problem has been revisited based on the principle of abundance (Gelfand and 

Latash 1998; Latash 2012). According to this principle, the CNS does not select specific solutions, but 

families of solutions are facilitated equally able to solve the task. This results in different stability properties 

in different directions within the space of elemental variables.  

The related notion of task-specific stability introduced by Schöner (1995) suggests that the CNS 

acting in a multi-dimensional space of elemental variables can selectively stabilize processes in directions 

leading to changes in salient task-specific performance variables. For a given performance variable, the 

space of elemental variables may be viewed as composed of two sub-spaces, the uncontrolled manifold 

(UCM, Scholz and Schöner 1999) where the performance variable stays unchanged, and the orthogonal to 

the UCM (ORT) space where this variable changes. Processes in the ORT space are expected to show high 

stability leading to low variance across repeated trials, while processes within the UCM are expected to 

show low stability and high inter-trial variance, VUCM > VORT (each variance index is computed per degree-

of-freedom in the corresponding space). The notion of a synergy stabilizing a performance variable has 

been introduced, and a synergy index (∆V) has been used reflecting the normalized difference between 

VUCM and VORT (reviewed in Latash et al. 2007; Latash 2008). Note that the synergy index may be viewed 

as a proxy of stability of the selected performance variable. 

Different stability within different sub-spaces in a multi-dimensional space of elemental variables 

is also reflected in the phenomenon of motor equivalence (Mattos et al. 2011; Scholz et al. 2011). Any 

action leading to a change in a salient performance variable may be viewed as composed of two 

components, within the UCM and within ORT. Motion of elemental variables within the UCM by definition 

has no effect on the salient performance variable and is addressed as motor equivalent (ME). Motion within 

ORT changes the performance variable and is called non-motor equivalent (nME). Large amounts of ME 

motion have been documented in kinematic, kinetic, and electromyographic spaces in tasks that required 

quick corrections of performance variables in response to external perturbations (Mattos et al. 2011, 2013, 
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2015). These large ME motions have been interpreted as reflecting the low stability of processes within the 

corresponding UCMs. 

In this study, we explored stability of performance variables during their unintentional drifts. So 

far, only one experiment with multi-joint positional tasks and external transient perturbations addressed this 

issue (Zhou et al. 2015). This is the first study to explore indices of performance stability during 

unintentional drifts in performance in steady-state tasks. Our first hypothesis was that selective stability of 

performance variables would be observed even when the magnitudes of those variables drift 

unintentionally. We tested this hypothesis with respect to variables that showed no drift (because of the 

presence of visual feedback) and with respect to variables that drifted (because their visual feedback was 

turned off, Slifkin et al. 2000; Vaillancourt et al. 2002). In the experiments, the subjects were required to 

produce accurate total force and total moment of force {FTOT; MTOT} combinations and then to modify their 

preferred pattern of sharing the task among the four fingers by decreasing the middle finger force (FMID) by 

50% while producing the same {FTOT; MTOT} magnitudes. We used the ME and nME indices as quantitative 

proxies of stability; note that the more commonly used analysis of inter-trial variance was not possible 

given only a few trials per feedback condition. 

We also explored whether stability of a variable depended on the number of explicit task 

constraints. Earlier studies explored this issue indirectly by varying the number of explicitly involved 

elemental variables (e.g., Latash et al. 2001). They showed, in particular, that some performance variables 

showed higher stability indices (similar to ∆V) with an increase in the number of elemental variables. In 

our current study, no change in the number of elemental variables took place – the subjects always 

performed all tasks with four fingers of the right (dominant) hand. However, adding a constraint related to 

the required magnitude of FMID was expected to reduce the range of available solutions. Based on the 

aforementioned earlier studies, we hypothesized that indices of stability for {FTOT; MTOT} would drop after 

the subjects purposefully reduced FMID to 50% of its preferred value. 
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6.1 Methods 

6.1.1 Subjects 

Eleven subjects voluntarily participated in this study, five females and six males (age: 27.27 ± 5.44 

years, mass: 74.18 ± 14.73 kg, height: 171.18 ± 8.30 m). All our subjects were right-handed and healthy. 

All subjects signed the consent form approved by the Office of Research Protections of The Pennsylvania 

State University. 

6.1.2 Apparatus 

The setup is described in more detail in section 5.1.2 (Parsa et al. REF; see Figure 6-1). The subject 

sat in front of the monitor used to provide visual feedback and define tasks. The four fingers of the right 

hand were placed comfortably on six-component force sensors (ATI) while the right lower arm was fixed 

comfortably to the wooden plate with two sets of Velcro tapes (Figure 6-1A,C). The screen provided 

feedback on three variables (Figure 6-1B): The total normal force (FTOT) produced by the fingers (along the 

Y-axis), the total moment (MTOT) produced by the normal fingers forces with respect to a horizontal line in 

a sagittal plane passing in-between the middle and ring fingers, and the normal force produced by the middle 

finger (FMID) as the level in a tank-with-water graph (see Figure 6-1B) located in such a way that it did not 

interfere with the first two feedback signals. The latter feedback was used at particular times only (described 

later). 

 

Figure 6-1. The setup. A: The subject’s position. B: Visual feedback defined total force and total moment target, 

{FTOT, MTOT}, as the intersection of two lines. The “tank with water” in the middle of the screen presented the 

feedback on the middle finger force. C: Hand placement on the sensors. 
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Twenty-four analog signals (4 sensors × 6 components) were digitized by a 12-bit analog-digital 

converter (PCI-6031, National Instruments, Austin, TX) at 100 Hz. A Labview program was written for 

data acquisition and to provide visual feedback. All further data analyses were done using MATLAB 2014.  

6.1.3 Experimental procedure 

Subjects first placed their fingertips on the sensors and relaxed; then the sensor readings were set 

to zero; as a result only active downward forces were measured. The experiment consisted of three parts. 

The first two parts involved maximal force production trials (MVC) and trials with accurate production of 

various combinations {FTOT; MTOT} described in detail in Chapter 5. The data presented and analyzed in 

this study were collected in the third part.  

Each trial started with a {FTOT; MTOT} target shown on the screen (Figure 6-1B). FTOT was always 

equal to 20% of the four-finger MVC while MTOT could be 1.5PR, 0, or 1.5SU. A unit of the moment into 

pronation (PR) or supination (SU) was defined as 7% of the index finger MVC multiplied by the index 

finger nominal lever arm (0.045 m). The subjects were given 5 s to match the {FTOT; MTOT} task 

combination. 

Five seconds after the trial initiation, a third feedback on FMID appeared on the screen and subjects 

were instructed to adjust their middle finger force to match the level shown by the tank feedback without 

changing the {FTOT; MTOT} level. The target level for FMID was set at half of the average force this finger 

produced within the time interval 4.7-4.8 s from the trial initiation. The subjects were given 10 s to reach a 

new steady finger force combination that would satisfy the original {FTOT; MTOT} constraint and the new 

FMID constraint. 

At that time (15 s into the trial), visual feedback was manipulated. We had eight main conditions: 

no feedback on any of the three variables (None), feedback on one of the three performanca variables (FTOT; 

MTOT, or FMID), feedback on two of the performance variables (FTOT&FMID, MTOT&FTOT, and MTOT&FMID), 

and all the feedback remaining on the screen until the end of the trial (All). For technical reasons, data for 

two subjects for the “All” condition were unavailable. Under each condition, three trials were performed in 

a row with 10-s intervals.  
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6.1.4 Data processing 

Finger force data were low-pass filtered at 5 Hz using a zero lag, fourth-order Butterworth filter. 

We selected three phases in each trial for data analysis to represent three steady states: Under the original 

set of constraints, {FTOT; MTOT}, under the combination of three constraints, {FTOT; MTOT} and FMID, and at 

the end of the time with modified visual feedback. Correspondingly, Phase-1 was defined as the time 

interval between 4.7 and 4.8 s; Phase-2 corresponded to the time interval between 14.7 and 14.8 s, and 

Phase-3 corresponded to the time interval between 29.7 and 29.8 s.  

 

6.1.4.1 Analysis of motor equivalence 

The task constraints can be represented as a set of linear equations: 

FI + FM + FR + FL = 0.2MVC        (6-1) 

–0.045FI – 0.015FM + 0.015FR + 0.045FL = MTOT     (6-2) 

FMID = 0.5FMID*          (6-3) 

where FI, FM, FR, and FL stand for the index, middle, ring, and little finger forces; MTOT could be 

1.5PR, 1.5SU, or Zero depending on the task; and FMID*  is the middle finger force by the subjects at the 

end of Phase-1. We can rewrite the task in a matrix form: 

CF = P           (6-4)  

where, C is the constraint matrix defining the task, F is the vector of finger forces (elemental 

variables in our analysis), and P is the vector of performance variables. Changes in the elemental and 

performance variables: 

J∆F = ∆P          (6-5)  

where ∆F is the vector of changes in the finger force between two phases. It could be computed 

between Phase-2 and Phase-1 (∆F21) and between Phase-3 and Phase-2 (∆F32). Since equations 6-4 and 6-

5 are linear, the Jacobian (J) of the system is the same as the C matrix. 

Performance remains unchanged (∆P = 0) if the change in elemental variables occurs in the null 

space of the J [e = null(J)]. Hence, the projection of ∆F onto the null-space was defined as the ME 

component, while the projection of ∆F orthogonal to the null-space was defined as the nME components. 

ME and nME components were normalized by the square root of the corresponding space dimensionality. 

 

6.1.4.2 Analysis of inter-trial variance  

The UCM hypothesis (Scholz and Schöner 1999) allows the partitioning of the inter-trial variance 

within a redundant space of elemental variables into two components, one of them keeps salient 
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performance variables unchanged (VUCM) while the other component leads to changes in these variables 

(VORT). We pooled the data from all trials in Phase-1 and Phase-2 because in those phases the visual 

feedback was always available for the task-specific performance variables. At each time sample, the inter-

trial variance was computed within the null-space of J (which is the UCM for tasks with linear constraints) 

and within its orthogonal complement (ORT space). Further, an index of synergy (ΔV) was defined as the 

normalized difference between VUCM and VORT: 

∆𝑉 =
𝑉𝑈𝐶𝑀

𝑛𝑈𝐶𝑀
⁄ −

𝑉𝑂𝑅𝑇
𝑛𝑂𝑅𝑇

⁄

𝑉𝑇𝑂𝑇
𝑛𝑇𝑂𝑇

⁄
        (6-6) 

Where VTOT stands for total variance and n with subscripts, stand for the dimensionality of the 

corresponding spaces. Since ∆V by its computation is bounded, for statistical analysis ΔV values were log-

transformed using the modified Fisher’s z-transform (Solnik et al. 2013).  

 

6.1.4.2 Statistics  

We present the data in the text and figures as means ± standard errors unless stated otherwise. All 

data sets were tested for normality and sphericity using the Mauchly criterion, and in cases of sphericity 

violations, the Greenhouse-Geisser correction was used. We set the critical p-value at 0.05 for all the 

analysis. 

We tested the effects of adding a constraint on the ME vs. nME indices and the structure of inter-

trial variance computed for the {FTOT; MTOT} task between Phase-2 (two constraints) and Phase-1 (three 

constraints). Note that full feedback was available in both phases. The analysis of motor equivalence used 

repeated-measures ANOVA with factors Component (ME, nME), Phase (1 and 2), and Moment (PR, Zero, 

SU). The analysis of the z-transformed synergy index ∆VZ was done with a two-way ANOVA, Phase × 

Moment. We also explored the effects of adding the FMID constraint on the two variance components using 

an additional factor Variance (VUCM and VORT). The variance components and ∆VZ were also computed in 

Phase-2 with respect to all three constraints: FTOT, MTOT, and FMID. 

Changes in the ME and nME components under different feedback conditions were tested between 

Phase-3 and Phase-2. We computed the two components with respect to the Jacobian representing variables 

that received visual feedback (JVISION) as well as with respect to the Jacobian representing variables that 

stopped receiving visual feedback (JNO-VISION). Both analyzes are used three-way repeated-measures 

ANOVA with the factors Component (ME, nME), Moment (PR, Zero, SU), and Feedback (seven levels). 

The “All” condition was left out of the JNO-VISION analysis because J becomes empty while the “None” 

feedback condition was left out of the JVISION analysis because J becomes empty. Significant effects were 

further explored with pairwise comparison with Bonferroni corrections. 
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6.2 Results 

All the subjects were able to adjust their finger forces from Phase-1 to Phase-2 to accommodate the 

additional constraint (reduce FMID by 50%) while keeping the required magnitude of the total force and total 

moment, {FTOT; MTOT}. This change in the finger forces was associated with a large ME motion and 

minuscule nME motion reflecting the fact that accuracy of performance with respect to the original set of 

constraints was nearly unchanged. Turning visual feedback off resulted in drifts in the variables without 

feedback: FTOT and MTOT typically drifted toward lower absolute magnitudes, while FMID typically drifted 

toward higher magnitudes. Variables with preserved feedback showed no visible drifts. These findings were 

reflected in the relative magnitudes of ME and nME motion. 

Typical performance by a representative subject is illustrated in Figure 6-2 for the task involving 

pronation moment under two conditions, with feedback on FMID only (the top panels) and with feedback on 

FTOT and MTOT (the bottom panels). The lines in the left panels show averaged across three trials time series 

of FTOT, MTOT, and FMID. The right panels show the results of motor equivalence analysis (ME and nME) 

over all three phases and inter-trial variance analysis (VUCM and VORT) over Phase-1 and Phase-2. Details 

on the magnitudes of drifts are discussed in Chapter 5. Here we focus on changes in the ME and nME 

components and structure of variance. 
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Figure 6-2. A typical example of FTOT, MTOT, FMID was presented in (a) and (b) for FMID and FTOT+MTOT feedback 

condition, respectively. Each of these time series were normalized to their targeted value at Phase-1. In (c) the ME 

and nME components computed considering Force-Moment Jacobian for the same subject and tasks was shown for 
two time intervals (ΔPhase12 and ΔPhase23). (d) shows the average value for the variance components (VUCM and 

VORT) on Force-Moment Jacobian in Phase-1 and Phase-2. 
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6.2.1 Motor equivalence analysis 

The magnitudes of the ME and nME components computed with respect to the {FTOT; MTOT} set of 

constraints are shown in Figure 6-3. Averaged across subjects’ data with standard error bars are shown for 

the three tasks with different initial MTOT magnitudes, PR, Zero, and SU. The left side of each panel shows 

the results over the interval from Phase 1 to Phase 2 (∆Phase12), while the right side shows the results over 

the interval from Phase 2 to Phase 3 (∆Phase23). In all three panels, the magnitude of ME over ∆Phase12 is 

much larger than the magnitude of nME (F[2, 16] = 37.33, p < 0.001). The difference between the two 

components was smaller for the Zero MTOT condition (Component × Moment interaction; F[1, 8] = 5.15, p < 

0.05). The relative magnitudes of the ME and nME component differed depending on the available visual 

feedback over ∆Phase23 as illustrated in the right parts of Figure 6-3. Under conditions with feedback on 

both FTOT and MTOT, the nME component remained very low, much lower than the ME component. The 

difference between the two components became smaller if only one of the two original constraints received 

visual feedback, and nME became significantly larger than ME if feedback on FMID only was available 

(Component × Feedback interaction; F[2.40, 23.96] = 7.87, p < 0.01). 

These effects were consistent across MTOT conditions although the trials with MTOT = 0 were 

characterized by lower ME and nME magnitudes (F[2, 20] = 9.41, p < 0.001). A three-way ANOVA with 

repeated measures, Component × Moment × Feedback also confirmed significant effects of Component (F[1, 

10] =101.79, p < 0.001) reflecting the overall larger ME magnitudes, and Feedback (F[2.12, 21.19] = 5.507, p = 

0.011) reflecting many pairwise differences clear from Figure 6-3. 

Figure 6-4 contrasts the ME and nME components computed with respect to the Jacobian 

reflecting constraints with the feedback that remained on the screen throughout the trial (top row), and 

also with respect to the Jacobian reflecting constraints without feedback between Phase-2 and Phase-3 

(bottom row). This graph shows clearly that ME > nME for variables with feedback (top row) while the 

inequality reverses, nME > ME, for variables without feedback (bottom row). Note also the special set of 

data for the “All” condition in the top row: When all three variables remained specified throughout the 

trial, the subjects showed slight ME motion compared to all other conditions when at least one of the 

constraints was without the corresponding feedback. 
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Figure 6-3. A typical example of FTOT, MTOT, FMID was presented in (a) and (b) for FMID and FTOT+MTOT feedback 

condition, respectively. Each of these time series was normalized to their targeted value at Phase-1. In (c) the ME 

and nME components computed considering Force-Moment Jacobian for the same subject and tasks was shown for 

two-time intervals (ΔPhase12 and ΔPhase23). (d) shows the average value for the variance components (VUCM and 
VORT) on Force-Moment Jacobian in Phase-1 and Phase-2. 
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Figure 6-4. Averaged ME and nME components across all subjects for ΔPhase12 and ΔPhase23 for different 

moment conditions. Force-Moment Jacobian was used for all the conditions. 

 

A three-way repeated measures ANOVA, Jacobian (feedback, no-feedback) × Moment × Feedback 

was run on ME and nME components separately. ANOVA on ME showed significant effects of Moment 

(F[2, 20] = 5.26, p < 0.05), Feedback (F[5, 50] = 8.49, p < 0.001), and Jacobian (F[1, 10] = 28.29, p < 0.001), and 

a significant interaction Moment × Jacobian (F[2, 20] = 15.11, p < 0.001). Pairwise contrast confirmed that 

the ME component was the largest when the feedback was provided on FMID only compared to conditions 

with feedback on other subsets of constraints (p < 0.05). It is obvious from Figure 6-4 that the nME values 

were much larger for the No-Feedback Jacobian than for the Feedback Jacobian (F[1, 10] = 33.55, p < 0.001). 

ANOVA showed no significant effect of Feedback while there was an effect of Moment (F[2, 20] = 7.29, p < 

0.005) reflecting larger nME magnitudes for the Zero MTOT condition compared to the PR condition.  
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6.2.2 Analysis of the structure of variance 

This analysis could only be run over Phase-1 and Phase-2 because only three trials were available 

for any given feedback conditions between Phase-2 and Phase-3. In both Phase-1 and Phase-2, strong 

synergies stabilizing the {FTOT; MTOT} combination were observed. These synergies were reflected in the 

much higher inter-trial variance component leading to no changes in {FTOT; MTOT} compared to the variance 

component leading to changes in {FTOT; MTOT}, VUCM > VORT (F[1, 9] = 35.76; p < 0.005). Adding the new 

constraint (FMID) led to very small effects on VORT; in contrast, there was a consistent drop in the magnitude 

of VUCM (Phase × Variance interaction, F[1, 9] = 12.05; p < 0.01). These results are illustrated in Figure 6-5. 

Note the very small VORT magnitudes (white bars) compared to the VUCM (black bars) and a drop in VUCM 

from Phase-1 to Phase-2.  

These results were reflected in the synergy index ΔV values that were consistently positive across 

conditions and phases. The synergy indices were larger in Phase-1 (on average, z-transformed values were 

1.85 ± 0.074 for Phase-1, and 1.56 ± 0.071 for Phase-2, F[1, 9] = 12.53, p < 0.01). The synergy indices were 

the largest for MTOT = 0 (Moment F[2, 18] = 6.423, p<0.01), and the difference between the phases was the 

smallest for MTOT = 0 (Moment × Phase interaction, F[2,18] = 3.65, p < 0.05).  

When the analysis in Phase-2 was run with respect to all three constraints (FTOT, MTOT, and FMID), 

both the VORT and VUCM values became significantly larger when normalized by dimensionality of the 

spaces (compare the data for “Phase-2” and “Phase-2*” in Figure 6-5; the data with * refer to the analysis 

with respect to all three constraints; p < 0.05). Note that VTOT was the same for the two analyses. The 

difference between the phases was due to the fact that the UCM is two-dimensional for the analysis with 

respect to {FTOT; MTOT}, and it is one-dimensional with respect to the three constraints. So, the total VUCM 

was in fact smaller for the analysis with respect to the three constraints, but the normalized values were 

larger. These results were reflected in the significantly larger ∆VZ indices computed with respect to the two 

original constraints in Phase-2 as compared to the ∆VZ indices computed with respect to all three constraints 

(1.55±0.38 vs. 0.93±0.41; F[1, 9] = 22.2, p<0.001). As in the earlier analysis of ∆VZ data, there was a 

significant effect of Moment (F[2, 18] = 14.0, p<0.001) and a significant Moment × Jacobian interaction (F[2, 

18] = 18.7, p<0.01) reflecting the largest values of ∆VZ for MTOT = 0 and the smallest difference between the 

two analyses for MTOT =0. 
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Figure 6-5. Averaged ME and nME components across all subjects for ΔPhase23. A Jacobian reflecting constraints 

with the feedback that remained on the screen throughout the trial (JVISION) was used for each feedback condition in 

the top row. However, the reverse was done in the bottom row, ME and nME components were computed with 

respect to the Jacobian reflecting constraints without feedback (JNO-VISION) between Phase-2 and Phase-3. As a result, 

we are observing large nME components in the bottom row. Both of the components were normalized by the 

corresponding dimension of the space in which they were computed. 

 

We also explored correlations between the indices of motor equivalence during the transition from 

Phase-1 to Phase-2 and the inter-trial variance indices available for Phase-2. This analysis was done across 

all subjects. The only consistently significant correlations were observed between the nME index and VORT 

(R2 ranged between 0.462 and 0.624; p < 0.05 for all three moment conditions). There were no significant 

correlations between VUCM and ME and between ME/nME and ∆VZ indices. 
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6.3 Discussion 

 

Our first hypothesis was that selective stability of performance variables would be observed even when the 

magnitudes of those variables drifted unintentionally. This hypothesis has been falsified in the analysis of 

motor equivalence (cf. Mattos et al. 2011, 2015). Indeed, under complete visual feedback (between Phase-

1 and Phase-2 and also under the “All” condition between Phase-2 and Phase-3), the finger force deviations 

led not only very small changes in the directions that changed the magnitudes of variables related to the 

task constraints (non-motor equivalent, nME). In contrast, finger force deviations were large in directions 

that led to no changes in those variables (motor equivalent, ME > nME). When the analysis was run for 

variables that stopped receiving visual feedback between Phase-2 and Phase-3, the ME deviations became 

smaller while the nME deviations increased leading to an inequality nME > ME. While quantitative analysis 

of the ME and nME indices has to be interpreted with care (cf. Scholz and Schöner 2014; also see later in 

the Discussion), the counter-directional changes in the two components suggest that visual feedback was 

crucial to ensure stability of the task-related variables.  

Our second hypothesis was related to changes in the structure of inter-trial variance after adding a 

new constraint to the ongoing task of producing a combination of total force and total moment, {FTOT; 

MTOT}. We hypothesized that the synergy index (reviewed in Latash et al. 2007) would drop after the 

subjects purposefully reduced FMID to 50% of its preferred value, and the results have supported this 

hypothesis. Indeed, while the inequality VUCM > VORT was present at both phases, during Phase-2, there was 

a significant drop in the synergy index (∆V). Further, we discuss implications of these results for stability 

of performance variables that are produced with or without appropriate visual feedback. 

6.3.1 Synergies and the number of constraints 

 Our understanding of synergies links this central concept in motor control (Babinski 1899; 

Bernstein 1947, 1967) to stability of performance (Schöner 1995). Stability is an absolutely crucial feature 

of functional movements because all such movements are performed in the presence of unpredictable, time-

varying neural states in the unpredictable and time-varying environment. This makes the current concept 

of synergy different from those used in clinical studies (DeWald et al. 1995) and in studies of motor 

behavior that imply under this term sets of performance variables produced by effectors that show parallel 

changes (d’Avella et al. 2003; Ivanenko et al. 2004; Ting and Mcpherson 2005). 
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 In earlier studies within the framework of the UCM hypothesis, inter-trial variance indices were 

used as proxies of stability (reviewed in Latash et al. 2002, 2007). To make the indices comparable between 

spaces with different dimensionalities, VUCM and VORT were normalized per dimension. We used the same 

method to compare variance indices between Phase-1 (when the subject performed the task under the two 

original constraints, FTOT and MTOT) and Phase-2 (when the third constraint related to FMID was added). 

Adding the third constraint forced the subjects to use a sub-space in the original UCM (in Phase-1) 

compatible with the required value of FMID. This naturally was expected to lead to a drop in VUCM, which 

was observed in the experiment, resulting in a drop in the synergy index ∆V.  

 Earlier studies with the production of accurate sine patterns of FTOT with 2, 3, and 4 fingers of a 

hand led to an unexpected result (Latash et al. 2001; Scholz et al. 2002): When the subjects performed the 

task with two fingers only, they showed a pattern of variance compatible with stabilization of MTOT although 

it was not specified as a performance variable, and the subjects had no visual feedback on MTOT. This led 

to lack of synergies stabilizing FTOT. Adding a third finger led to even stronger MTOT-stabilizing synergies 

without FTOT-stabilizing synergies. Only in the four-finger condition, the subjects showed stabilization of 

MTOT (stabilized over the whole cycle) and of FTOT (stabilized only within a narrow phase range 

corresponding to relatively high force magnitudes). Taken together, the results of those studies and of the 

current study confirm the idea that: (a) a new constraint is incorporated into the original solutions space 

leading to a reduction in the size of the solution space used by the CNS; and (b) reducing the number of 

elements leads to shrinking the solution space, which primarily affects stability of less salient variables. 

 Then analysis with respect to all three constraints in Phase-2 (data shown s Phase-2* in Figure 6-

5) showed a somewhat counter-intuitive picture: Both VUCM and VORT increased for the three-constraint 

analysis (as compared to the two-constraint analysis) while total variance obviously stayed the same. This 

was possible because of two factors, the different dimensionality of the UCM and ORT spaces in the two 

analyses and the very different magnitudes of the variance components (VUCM >> VORT). Indeed, VUCM 

dropped in the three-constraint analysis, while VORT increased by the same magnitude. Because of the 

normalization per dimension, the normalized magnitude of VUCM increased. On the other hand, the added 

variance to VORT was so much bigger as compared to its original magnitude that, even after normalization 

by the increased dimensionality of ORT, it remained significantly larger as compared to the two-constraint 

analysis. The data in Figure 6-5 show that comparing variance indices across tasks with different numbers 

of constraints may lead to seemingly controversial results. 
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6.3.2 Stability and its reflections in motor equivalence and structure of variance 

 The two methods of analysis used in this study, structure of variance and motor equivalence, have 

been used in earlier studies as proxies of stability with respect to task-specific, salient performance variables 

(reviewed in Scholz and Schöner 2014; Latash and Zatsiorsky 2015). The two indices (ME/nME and ∆V) 

are not 100% equivalent. This was shown in earlier studies that documented somewhat different behaviors 

of the two indices (Mattos et al. 2011, 2014). 

 In our study, two inequalities (VUCM > VORT and ME > nME) were seen consistently for the data at 

Phase-1 and Phase-2 when the subjects had full feedback on all the relevant variables. The two inequalities 

are both consistent with the idea of selective stabilization of the two performance variables related to the 

original set of constraints, {FTOT; MTOT}. Correlation analysis, however, revealed significant correlations 

between VORT and nME only. In other words, subjects who showed larger nME deviations during the 

transition from the two-constraint phase to the three-constraint phase were also the ones who showed larger 

VORT at the end of this transition. Large nME reflects larger violations of the original {FTOT; MTOT} 

constraints during the transition. These larger changes in {FTOT; MTOT} led to larger inter-trial variance in 

those variables (VORT), possibly reflecting the so-called signal-dependent noise (Newell; Wolpert REF). 

 The lack of correlations between ME and VUCM is non-trivial. Indeed, larger ME deviations imply 

larger changes of finger forces in directions that did not affect {FTOT; MTOT}. The idea of signal-dependent 

noise suggests that inter-trial variance in those directions should also be larger. This was not the fact, 

however: Correlations between VUCM and ME across MTOT conditions could be both positive and negative 

with the R2 values always under 0.11. So, by itself, signal-dependent noise was not a defining factor in the 

patterns of finger force changes and the respected variance indices. The relations between the outcome 

variables of the ME and variance analyses remain unclear and have to be explored in future studies. While 

both sets of indices seem to reflect stability of relevant performance variables (cf. Mattos et al. 2011; Scholz 

and Schöner 2014), they should be viewed as complementary rather than redundant. 

6.3.3 Stability during unintentional drift in performance 

 In Chapter 5, we present arguments in favor of a scheme that views unintentional drifts in 

performance as consequences of two processes. First, there is a drift of referent coordinates (RCs) for the 

salient task-specific variables toward their actual coordinates (ACs). This is a natural process expected in 

any physical system moving toward minimum of potential energy; it is expected within the hypothesis on 
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the neural control of movements with changes in RCs for salient variables (Latash 2010; Feldman 2015). 

Second, there is a drift of an abundant system toward states with smaller costs as defined within the ideas 

of optimal control: If a system is forced to perform using non-optimal contributions of elemental variables, 

it is expected to show a drift toward more optimal configurations. We modeled this situation by asking the 

subjects to produce {FTOT; MTOT} values using finger force combinations that differed from the preferred 

ones, namely with the middle finger force reduced by 50%. 

 Within this general scheme, both ME and nME drifts are expected. The consistent drifts in FTOT 

and MTOT in the absence of visual feedback (cf. Slifkin et al. 2000; Vaillancourt and Russell 2002; Parsa et 

al. 2016) are leading to nME deviations. The drifts within the UCM, directed toward finger force 

combinations with smaller costs, lead to ME deviations. A priori, we could not predict the relative 

magnitude of the two drifts. Based, of earlier studies and on the general scheme of hierarchical control with 

RCs (Latash et al. 2010; Ambike et al. 2015), we expected to see synergies stabilizing variables that showed 

consistent drifts after the relevant visual feedback had been turned off. The main result, however, falsified 

this hypothesis. Indeed, visual feedback manipulations led to the typical inequality ME > nME for the 

variables that continued to receive feedback, while the inequality reversed, nME > ME, for the variables 

without visual feedback (Figure 6-4). This was associated with changes in both ME and nME. Overall, the 

ME components decreased after the removal of visual feedback, while the nME components increased. 

 Unfortunately, because of the large number of feedback conditions, we could not collect enough 

trials per condition to perform the analysis of the structure of inter-trial variance in Phase-3. So, in this 

study, we have only ME data reflecting stability of the variables that continues to receive visual feedback 

vs. those that stopped receiving this feedback. The contrast between the two is striking. It suggests that 

visual feedback plays a very important role in ensuring stability of performance variables. While the result 

is compatible with several hypotheses on the origin of synergies (Todorov and Jordan 2003; Latash et al. 

2006; Martin et al. 2009), it suggests that the central back-coupling loops by themselves were unable to 

bring about stability of variables without the help of visual feedback. It is possible that the formulation of 

the task biased the subjects toward relying on visual feedback to ensure stable performance in our 

experiment. We plan to explore this possibility by using similar tasks performed primarily under 

somatosensory control and/or based on memory.  
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6.3.4 Concluding comments 

 To summarize, we learned the following main lessons from the results presented in this series of 

two papers (Chapter 5 and 6). Unintentional changes in performance can be seen in different performance 

variables – individual finger forces, total force, and total moment of force – following removal of the visual 

feedback. The variables showing the drift fail to show stabilization by the adjusted contributions of 

individual fingers, while variables that continue to receive visual feedback show signatures of selective 

stability. The drifts are consistent with two processes: (a) a drift of the referent coordinate for a variable 

toward its actual coordinate; and (b) a drift in the abundant space of elements toward configurations with 

lower cost. Adding a new constraint to an ongoing task results in a drop in the amount of variance within 

the original uncontrolled manifold leading to a drop in the synergy index. Overall, these results fit naturally 

the scheme of hierarchical control using changes in referent coordinates for relevant variables.  
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Chapter 7 

 

Discussion 

 

The study presented here tested seven specific hypotheses in three successive studies. Hypothesis 

1 predicted that as a result of RC-back-coupling FTOT and MTOT would drift in the absent of visual feedback. 

However, some fingers might experience an increase in force as they need to satisfy the moment condition 

(Hypothesis 2). Hypothesis 3 predicted that synergies would persist during FTOT and MTOT drifts. Hypothesis 

4 predicted that the drift in FTOT and MTOT would lead to an increase in the corresponding VORT compared to 

the condition with feedback. The similar effect on VUCM was explored. As an increase in VORT was 

expected, it was also hypothesized that nME would consistently drift (hypothesis 5). However, again the 

change in ME component was explored. 

In the second study, it was hypothesized that unintentional changes in performance variables during 

continuous static tasks without visual feedback are due to two processes: RC-back-coupling and a drift 

within UCM toward a minimum. Therefore, in addition to hypothesis 1 we hypothesized that in the case of 

having a good approximation for the cost function the value of it would decrease by time (hypothesis 6). 

Hypothesis 7 predicted that a selective stability of performance variables would be observed even when the 

magnitudes of those variables drift unintentionally. ME and nME indices were used as quantitative proxies 

of stability. It was also explored whether the stability of a variable depended on the number of explicit task 

constraints. 

Some of the hypotheses mentioned above have been supported, while some have not. This study 

showed the richness of both UCM hypothesis and the hypothesis of control of the actions by controlling 

unique coordinates in describing humans’ motor behavior. FTOT and MTOT drop in the absent of visual 

feedback while depending on the role of each finger in the initial moment condition they may decrease or 

increase. The drift at the moment itself depends on in the initial moment, but its absolute value falls. 

Observation of the drifts can also be interpreted based on the performance of the sensory system. In section 

2.5.1.3 the characteristics of mechanoreceptors were briefly described. We know that Merkel’s disks and 

Ruffini endings detect contact forces, and they are slowly adapting sensors. Therefore, they are playing an 

important role in the results of all experiments presented in this thesis. The drifts we observe can be a result 

of the Merkel’s disks and Ruffini endings slow adaptation to the pressure on the fingertips. It also is good 

to be noted is that as the sensory input never gets to zero the forces produced by fingers never reaches zero; 

however, this is theoretically possible if the actual coordinates reach the referent coordinates.  
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As VORT increases without visual feedback and VUCM, tend to drop the synergy stabilizing those 

performance variables disappears in the absent of visual feedback. Moreover, along with the drift in 

performance variables (orthogonal to UCM), there is another ongoing drift within UCM which is 

purposeful. It is a minimum cost for the set of {FTOT, MTOT} that is being experienced during the drift. This 

movement lets the system reach a preferred sharing while reaching the new RC. This phenomenon can also 

be observed if subjects get to a {FTOT, MTOT} target and staying there for a while; they eventually will find 

the best set of finger sharing for that task. 

More interesting is that when an additional constraint is added to a {FTOT, MTOT} task like the given 

feedback on FMID, it lead to a large ME component while taking any combination of the feedbacks away 

always result in an ME component less than that (Figure 6-2). Furthermore, it decreases the synergistic 

behavior within fingers by reducing VUCM. This is a case in point that shows not all precise performance 

are an indication of having high synergy. To put it in another word, the system needs to have enough 

freedom to be able to compensate for any disturbance and reach stability. Therefore, highly constraining it 

will affect this ability and result in lower synergies. 

Overall, what has been learned through this study is that observing promising results interpretable 

by UCM and RC hypotheses tells us that these can become useful quantitative tools for the measurement 

of people’s performance. This quantitative measure can be very helpful for rehabilitation purposes that still 

suffer from that lack of a precise measure to categorize their patients correctly. However, this needs a broad 

set of targeted experiments with a large control/patient subject population to be able to make reliable 

conclusions. 

On the other hand, bio-inspired robotics has become very popular recently. The focus of this field 

of science and engineering is to use the outcome of the neuroscience and motor control (the available 

models of human movement) for the design of their robots (Vitello et al. 2016, Ott et al. 2016, Huang and 

Wang 2016, Cauli et al. 2016). The findings from this line of research might be insightful for engineers, 

considering that the most significant challenge for a bi-pedal robot is maintaining its stability in the 

environmental disturbances. Variability gives the system more stable behavior. However, one should not 

overestimate this conclusion as designing a robot is very complicated and involves many different parts 

consisting hardware design, sensors, and software (including the controller). Therefore, some suggestions 

without a full knowledge of the underlying mechanisms might be tough if not possible to implement 

mathematically. 

Researchers have become more interested in using subject-specific models (Scheys et al. 2011 

Leitch et al. 2010, Winby et al. 2008). Although in almost all of these studies the primary goal was to 

determine the parameters of the musculoskeletal model as close as possible to subjects properties, this still 
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can indicate they tendency to design all parts of the model and mathematical methods for individual 

subjects. Having a subject-specific model is precious for the prediction of a musculoskeletal surgery. Or 

they can be used to investigate the optimal performance of an athlete for a particular competition. Our 

findings in this study demonstrate that ANIO can be helpful in finding a subject specific cost function.   

Another area that is having a well-defined model of human movement can be very essential is 

animation production. One way to make a human character more believable is by making it move in similar 

patterns as humans do. Therefore, it is critical to be able to define the relations between joints and the 

strategy used for solving the redundant problem of movement as similar to humans. Findings in this study 

showed that UCM hypothesis is a promising perspective that helps to reduce the dimensionality of the 

elemental variable by teasing out the variables affecting the performance from those can be let free. 

To be able to put the results of this study in practice one need to expand this study and use the same 

approach and test more complex movements. Therefore, I think the next experiment that worth doing could 

be on reaching tasks. To see if the same dual behavior (RC-back-coupling and the drift in cost) is still 

observed in the drift or not.  
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