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Abstract

Molecules may be uniquely identified through the inelastic light scattering process known as
Raman scattering. The Raman scattered intensities are often weak, but may be enhanced by
several orders of magnitude—through the process known as surface-enhanced Raman scattering
(SERS)—by placing the molecules near the surface of metallic nanoparticles. Through SERS, we
can detect the scattering from a single molecule, which means that the technique is useful for
the ultra-sensitive detection of chemical and biological agents. However, the SERS signals are
often very different from the signals of normal Raman scattering, as they now reflect the various
interactions of the molecule(s) with the nanoparticle. Understanding these spectral changes are,
therefore, vital in both identifying the probed molecule, and in understanding and extracting
information of the molecule’s interaction with the surface. To understand these changes, we have
developed the dressed-tensors formalism that takes into account the interaction of the molecule
with the inhomogeneous local electric fields from the nanoparticle. With this method, we show
that the field gradient contribution to the spectral changes often reflect the relative orientation of
the molecule with respect to the surface. This result, coupled with the dynamics of the probed
molecule, suggests that the translational and rotational motions of a single molecule may be
tracked through its SERS spectral changes. We have also extended this method to describe other
types of surface-enhanced spectroscopies, namely Raman optical activity (ROA), which is sensitive
to chiral structures and used to probe the behavior of biomolecules in solution, and circular
dichroism (CD), which is often used to investigate the secondary structure of proteins. For surface-
enhanced ROA (SEROA), we find that spectral changes are highly sensitive to the local electric
field gradient, the orientation of the molecule, and the surface plasmon frequency width, giving
insight into why mirror-image SEROA is yet to be observed for enantiomers. We also find that
the spectral signatures of plasmonic CD are similarly complicated. However, this electromagnetic
fields description of the enhancement is insufficient at describing the spectral changes for certain
chemical systems. We find that, at low temperatures and for single or few molecules, the observed
shift of particular normal modes may be reflective of the specific binding interactions of the
molecule with the surface. In the case of resonant single molecule SERS of rhodamine-6G, we
show that the relative intensity fluctuations are independent of the orientation of the molecule,
but may rather describe picometer changes in its excited state geometry. These results indicate
that we need a rigorous method to account for the quantum mechanical interactions between the
molecule and the surface. To this end, we have developed an exact subsystem density functional
theory (DFT) method that can exactly reproduce the supermolecular energies and densities
of a wide range of systems, including covalently bonded subsystems. We have also extended
this method to the time-dependent DFT regime, and show that we can accurately reproduce
supermolecular excitation energies of strongly coupled subsystems. The spectral changes observed
in SERS contain a lot of information of the molecule-nanoparticle interactions, and the methods
developed here have allowed—and will continue to allow—us to interpret these changes.
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Chapter 1 |
Introduction

The interaction of electromagnetic radiation with a molecule may yield spectroscopic signatures
that can characterize the the molecule and its surrounding environment. One such spectroscopic
technique is Raman scattering,1 which is the inelastic light scattering process that occurs when a
molecule absorbs a photon with frequency ωL and scatters a photon with frequency ωs = ωL±ων ,
where ων is the frequency of a vibrational normal mode. This difference in the incident and
scattered frequencies allows Raman scattering to uniquely characterize molecules based on their
vibrational signatures.2

In the 1970s, it was discovered that the Raman intensities of molecules on the surface of
roughened electrodes may be enhanced by many orders of magnitude, and the technique was
subsequently named surface-enhanced Raman scattering (SERS).3–5 The mechanisms responsible
for SERS are often grouped into two categories, the chemical mechanism (CM) and the
electromagnetic mechanism (EMM). The large enhancement seen in SERS is primarily due
to the EMM, which describes the effects of the large local electric fields generated near the surface
of plasmonic nano-structures.6–9 These local fields are generated when light shines on metallic
nano-structures and causes the loose conduction electrons to oscillate collectively, thus creating
a plasmon.10,11 The CM also contributes to the enhancement, and it describes all other effects
due to the interactions between the molecule and the nanoparticle. Since the discovery of SERS,
the study of the interactions between light and molecules near plasmonic nano-structures have
opened an entire sub-field of surface-enhanced spectroscopies.12,13

Of these spectroscopies, SERS has remained the most popular, showing near exponential
growth over the past two decades.14 This is due to the fact that SERS has now become a
reliable technique,15–17 with enhancements that are strong enough to detect single molecules.18,19

Because of this, the technique has seen use in real-time glucose sensing for diabetes testing,20,21

real-time detection of drugs and chemical and biological warfare agents,22,23 ultra-sensitive DNA
detection,24–26 and non-destructive art analysis.27–29 The chemical sensitivity of SERS has also
been coupled with the spatial resolution of scanning tunneling microscopes and atomic force
microscopes, fitted with plasmonically active noble metal tips,30,31 in a technique known as
tip-enhanced Raman scattering (TERS).32,33 This technique has even shown the ability to observe
the vibrations of a single molecule.34

However, the spectral signatures observed in SERS are often very different from the spectral
signatures in normal Raman scattering for the same molecule.35 An example of this is shown in
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Figure 1.1. Comparison between (a) normal Raman scattering and (b) SERS on rough silver under
vacuum for pyridine. Taken from Ref. 35.

Figure 1.1, where observed spectral differences include large changes in the relative intensities
of vibrational modes, as well as the observation of Raman inactive modes.35–38 The changes in
the spectral signatures of SERS reflect the interactions of the molecule(s) with the plasmonic
nanoparticle, and are due to both the CM and EMM.12,39–42 Therefore, understanding these
spectral changes is important for identifying the probed molecular specie(s), and can be a powerful
tool in elucidating the nature of the interactions of molecules with metal surfaces. Yet, there is a
lack of efficient theoretical tools that can account for these observed spectral changes.

In this dissertation, theoretical methods based on both the CM and EMM of SERS are
developed in order to help us understand these spectral changes. In particular, we have developed
a rigorous and efficient method to account for the inhomogeneity of the local electric field
responsible for the EMM, and the results show how the SERS spectral changes contain information
of the molecule’s orientation with respect to the nanoparticle’s surface. With this method, it
is also possible to show that the translational and rotational motions of a single molecule can
be obtained from its SERS spectrum. We have also extended this method to describe other
forms of surface-enhanced spectroscopies, including surface-enhanced Raman optical activity and
plasmonic circular dichroism. In order to account for the CM of SERS, we have begun development
of an exact subsystem method that accounts for the quantum mechanical interactions between
different subsystems. We show that this method can correctly reproduce supermolecular results
for both ground and excited states properties. Finally, we show that spectral changes observed
from experimental collaborations reflect changes in the molecular properties that are due to the
molecule interacting with the plasmonic surface.

Overview of Dissertation
In the following, a brief outline of each chapter will be presented. Chapters 2, and 4 through 12
are all adapted from published work. Chapters 10, 11 and 12 contain only the theoretical analyses
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of experimental collaborations; full experimental details for these chapters may be found in Refs.
43–45.

Chapter 2: Overview of the Electromagnetic Theory of Surface-Enhanced Raman
Scattering
The theoretical principles of Raman and surface-enhanced Raman scattering are
introduced. The mechanisms of surface-enhanced Raman scattering are discussed,
including three detailed models of the electromagnetic mechanism: Silberstein’s
equations; the Gersten-Nitzan model; and the image field effect. These models serve
as precursors to the dressed-tensors formalism in Part II.

Chapter 3: Overview of Other Theoretical Methods Used
An in-depth review of the theoretical methods used in this dissertation is presented.
This review includes the topics of density functional theory and time-dependent
density functional theory for isolated systems, as well as their subsystem counterparts.
These topics are presented as they give background and context to the theories
presented in Part II, as well show the state-of-the-art of the methods developed in
Part III.

Chapter 4: Determining Molecular Orientation With Surface-Enhanced Raman
Scattering Using Inhomogeneous Electric Fields
An origin-independent formalism describing the effects of the local electric-field
gradient in surface-enhanced Raman scattering is presented—this formalism is hence-
forth referred to as the dressed-tensors formalism. The formalism predicts that the
inhomogeneous electric field near the metal surface of plasmonic nanoparticles leads
to observation of Raman-inactive modes, and allows molecular orientation to be
determined from surface-enhanced Raman scattering.

Chapter 5: Simulating Ensemble-Averaged Surface-Enhanced Raman Scattering
Molecular dynamics simulations are combined with the dressed-tensors formalism in
order to simulate some 18 million SERS spectra. It is found that the preferential
binding location and orientation of the molecules, the choice of electrodynamics
method, and the inclusion of field gradient effects influence both the enhancement
distribution and the spectral signatures. It is also found that both the translational
and rotational motions of a pyridine molecule near a nanoparticle junction may be
effectively tracked through its surface-enhanced Raman spectrum.

Chapter 6: Simulating Surface-Enhanced Raman Optical Activity Using Atomistic
Electrodynamics-Quantum Mechanical Models
The dressed-tensors formalism, and the extension of the discrete interaction
model/quantum mechanical method with velocity gauge local fields, are presented
for surface-enhanced Raman optical activity. It is shown that the observed mode
intensities and signs of surface-enhanced Raman optical activity are highly sensitive
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to the nature of the local electric field and gradient, the orientation of the molecule,
and the surface plasmon frequency width.

Chapter 7: Plasmonic Circular Dichroism of 310- and alpha-Helix Using a Discrete
Interaction Model / Quantum Mechanics Method
The discrete interaction model/quantum mechanical method is used to simulate
the plasmonic circular dichroism of the 310- and α-helix conformations of a short
alanine peptide. The results show that the specific interactions of the molecule with
the nanoparticle can lead to large changes to the circular dichroism spectrum in
both the molecular and plasmonic regions, which complicates the interpretation of
the results.

Chapter 8: Frozen Density Embedding with External Orthogonality
An implementation of external orthogonality into the frozen density embedding
framework using the level-shift projection operator method is presented. It is
shown that the exact ground state energies and densities may be reproduced
through iterative freeze-and-thaw cycles for a number of systems, including a charge
delocalized benzene molecule starting from atomic subsystems.

Chapter 9: External Orthogonality in Subsystem Time-dependent Density Func-
tional Theory
A method that extends a subsystem density functional theory method with external
orthogonality into the time-dependent density functional theory regime is presented.
The method therefore removes the need for approximations to the kinetic energy
potential and kernel, and it is shown that it can accurately reproduce the super-
molecular results for weakly and strongly coupled subsystems, and for systems with
strongly overlapping densities.

Chapter 10: The Tip-enhanced Raman Scattering of H2TBPP Monolayer
The chemical information that is contained in the spectral signatures ofmeso-tetrakis-
(3,5-ditertiarybutylphenyl)-porphyrin tip-enhanced Raman scattering obtained from
different Q-band excitations is analyzed. Results indicate that these spectral
signatures reflect excitations of specific vibronic transitions of the molecule lying
flat on a Ag(111) surface.

Chapter 11: The Origin of Relative Intensity Fluctuations in Single-Molecule Tip-
Enhanced Raman Spectroscopy
An explanation of the relative intensity fluctuations observed in single-molecule
Raman experiments is described utilizing both single-molecule tip-enhanced Raman
spectroscopy and time-dependent density functional theory calculations. Theoretical
calculations provide convincing evidence that the fluctuations are not the result of
diffusion, orientation, or local electromagnetic field gradients but rather from subtle
variations of the excited-state lifetime, energy, and geometry of the molecule.
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Chapter 12: Binding Orientation of Rhodamine-6G From Tip-Enhanced Raman Spec-
troscopy
Low-temperature tip-enhanced Raman spectral signatures are shown to be differ-
ent from room-temperature tip-enhanced, and low and room-temperature surface-
enhanced Raman scattering. These differences include narrowed and shifted vibra-
tional lines, revealing additional chemical information about adsorbate-substrate
interactions. In the case of rhodamine 6G on Ag(111) surfaces, it is found that these
spectral differences are reflective of the binding orientation of the molecule on the
surface.

Chapter 13: Summary and Outlook
The findings of this dissertation are summarized, and several potential future projects
using the methods described within are proposed.

In addition to these chapters, there are nine appendices.

Appendix A: Fixed-frame and Orientationally-averaged Raman Scattering
The theory of Raman scattering introduced in Chapter 2 is expanded upon,
including the details of orientational averaging and light polarization.

Appendix B: Summary of the Dressed-tensors Formalism
The dressed-tensors formalism of Part II, including detailed derivations of the
field gradient terms, is summarized.

Appendix C: Origin-dependence of Multipole Moments and Higher Order Polariz-
abilities
The origin dependence of the various multipole moments and polarizabilities used
in the dressed-tensors formalism is presented.

Appendix D: Supporting Information for: Determining Molecular Orientation With
Surface-Enhanced Raman Scattering Using Inhomogeneous Electric
Fields
Supporting information for Chapter 4 is given.

Appendix E: Supporting Information for: Simulating Ensemble-Averaged Surface-
Enhanced Raman Scattering
Supporting information for Chapter 5 is given.

Appendix F: Supporting Information for: Simulating Surface-Enhanced Raman Op-
tical Activity Using Atomistic Electrodynamics-Quantum Mechanical
Models
Supporting information for Chapter 6 is given.

Appendix G: Supporting Information for: Frozen Density Embedding with External
Orthogonality
Supporting information for Chapter 8 is given.
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Appendix H: Supporting Information for: External Orthogonality in Subsystem
Time-dependent Density Functional Theory
Supporting information for Chapter 9 is given.

Appendix I: Potential Energy Distributions for all Normal Modes of Rhodamine-
6G
The potential energy distributions for all the normal modes of the rhodamine 6G
molecule analyzed in Chapter 12 is given.
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Chapter 2 |
Overview of the Electromagnetic Theory of Surface-
Enhanced Raman Scattering

Chulhai, D. V.; Hu, Z.; Moore, J.E.; Chen, X.; Jensen, L. “Theory of Linear and Nonlinear Surface-
Enhanced Vibrational Spectroscopy” Annu. Rev. Phys. Chem. 2016, 67, 541–564. (excerpts within)

2.1 Raman Scattering
The inelastic scattering of light—that is to say the scattering of light with a change in frequency—
by molecules is called Raman scattering, named for its discoverer Sir Chandrasekhara V. Raman.1

This scattered light carries with it the vibrational signatures of the molecule, and occurs both at
frequencies less than that of the incident light for Stokes scattering, and at frequencies greater
than the incident light for anti-Stokes scattering.

The Raman effect may be understood using several theoretical treatments.2 The simplest
of these is purely classical; the incident light is treated as an oscillating electric field, and the
molecule consists of a single classical vibrator. The scattering of light by this molecule will be
described by an induced oscillating dipole µ, defined as

µ = α ·E (2.1)

where E is the incident electric field and α is the polarizability of the molecule. The frequency
by which µ oscillates will depend on on the oscillations in both α and E. We will define the
time-dependence of E as

E = E0 cos(ωIt) (2.2)

where E0 is the amplitude of our incident electric field oscillating at frequency ωI . The time-
dependence of α will be defined as

α = α0 + αp cos(ωpt) (2.3)

where α0 is the time-independent part of the molecule’s polarizability, and αp is the amplitude
of the change of the polarizability of the molecule with vibrational frequency ωp. As we will
see, this αp term has to be non-zero in order to observe Raman scattering. If we solve for the
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Figure 2.1. Schematic of the quantum phenomenon of Rayleigh, and Raman Stokes and anti-Stokes
scattering

time-dependence of the induced dipole, we get

µ = α0 ·E0 cos(ωIt) + 1
2αp ·E cos [(ωI − ωp)t] + 1

2αp ·E cos [(ωI + ωp)t] (2.4)

The first term on the right-hand-side of Equation 2.4 is responsible for Rayleigh scattering, which
is the scattering of light without change in frequency that causes the blue color of the sky.46 The
second and third terms are responsible for Raman Stokes and anti-Stokes scattering, respectively.
We see that each of these terms carries some information about the vibration of the molecule
through αp and ωp.

This classical theory of Raman scattering, however, does not provide any information on how
αp is related to the properties of the molecule or to the frequency of the incident light. In the
quantum mechanical theory of Rayleigh and Raman scattering, a simplified illustration of which
is given in Figure 2.1, these processes may be described as the absorption followed by emission of
a photon by the molecule. As such, this emitted photon contains information of the ground and
excited electronic (and vibrational) states of the molecule and, in the case of Raman scattering,
can reveal much about the character and identity of the molecule.

In the quantum theory of Raman scattering, αp is obtained from the transition polarizability—
also referred to as the polarizability derivative or the Raman polarizability in different parts of
this dissertation—of the molecule. This general transition polarizability (ααβ)fi may be defined
as2,47,48

(ααβ)fi =
∑
r 6=i,f

[
〈f |µ̂α|r〉〈r|µ̂β |i〉
ωri − ωI − iΓr

+ 〈f |µ̂α|r〉〈r|µ̂β |i〉
ωrf + ωI + iΓr

]
(2.5)

where the Greek subscripts are Cartesian directions, i and f are the initial and final (vibronic)
states, and r is some general state with an inverse lifetime of Γr and with energy differences
of ωri and ωrf between the initial and final states, respectively. In all cases considered in this
dissertation, we will assume that both i and f belong to the same electronic state, that is the
ground electronic state, but to different vibrational states; we will therefore use (ααβ)fi = (ααβ)p
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interchangeably, where p describes the vibrational transition. This transition polarizability is
a rather difficult property to calculate exactly, and often we approximate (ααβ)p depending
on the frequency of the incident light. If the frequency is far from any molecular excitations,
the Raman scattering is described as far-from-resonance or non-resonant. In such cases, the
non-resonant Raman scattering (NRS) transition polarizability may be obtained, using Placzek’s
theory of polarizability, from the derivatives of the frequency-dependent electronic polarizability
with respect to normal mode coordinates, as49–51

(ααβ)p = 1√
2ωp

(
∂ααβ
∂Qp

)
0

(2.6)

where ααβ is the electronic polarizability, and p is the vibrational transition with normal mode
coordinates Qp and frequency ωp. Obtaining the electronic polarizabilities from time-dependent
density functional theory (TDDFT) is reviewed in Chapter 3.

The calculation of the transition polarizability is less straightforward when ωI is on or near
resonance with electronic (or vibronic) transitions, termed resonance Raman scattering (RRS).52–61

RRS is often two to six orders of magnitude larger in intensity than NRS,62,63 and the spectrum
now reflects vibrations that strongly couple to the resonant excited state—this often makes
the spectral signatures from RRS very different from what is observed in NRS for the same
molecule. There are two general approaches used to calculated the RRS transition polarizabilities
used in this dissertation. The first such theory uses a Placzek-like approximation to obtain the
transition polarizabilities from the derivatives of the electronic polarizability on resonance, similar
to Equation 2.6.50 This theory relies on a the inclusion of a general lifetime-broadening parameter
Γ for all electronic excited states, and is valid if only short-time dynamics are relevant. This
Placzek-like approximation is particularly useful since it is valid for both NRS and RRS, and
implicitly includes all excited states in the calculation of the electronic polarizability. We use this
method for calculating the transition polarizabilities in Chapters 4, 5, and 6.

The second method for calculating the RRS transition polarizabilities is based on the
expressions derived by Albrecht and co-workers.52–54,64 In this method, we invoke the Born-
Oppenheimer approximation to separate the vibronic states (i, r and f in Equation 2.5) into
products of electronic and vibrational states. The electronic transition dipole moments are then
expanded in a Taylor series, resulting in the Franck-Condon (or A-term), the first Herzberg-
Teller (or B-term), and other higher expansion contributions to the transition polarizability
(ααβ)FI = Aαβ +Bαβ + · · · . These terms are defined as

Aαβ =
∑
R,r

(µ0r
α )eq(µr0β )eq 〈F0|Rr〉〈Rr|I0〉

(εRr − εI0)− ωI − iΓr
(2.7)

and
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Bαβ =
∑
R,r

(µ0r
α )eq

∑
a

(
∂µr0β
∂Qa

)
〈F0|Rr〉〈Rr|Qa|I0〉

(εRr
− εI0)− ωI − iΓr

+
∑
R,r

∑
b

(
∂µ0r

α

∂Qb

)
(µr0β )eq 〈F0|Qb|Rr〉〈Rr|I0〉

(εRr
− εI0)− ωI − iΓr

(2.8)

where a and b are normal modes with coordinates Qa and Qb, uppercase letters are vibrational
states and lowercase letters are electronic states, µ0r is the electronic transition between the
ground state and electronic state r, and ε is the energy of a state. I and F are the initial and
final vibrational states. In this theory, we usually only consider one or a few electronic states r
that are thought to be important for the RRS at a given frequency. The vibrational overlaps in
Equations 2.7 and 2.8 may be calculated by assuming that the excited state vibrational Hamiltonian
are accurately described by displacing the ground state harmonic oscillator vibrational Hamiltonian
along each normal mode coordinate, called the independent mode displaced harmonic oscillator
(IMDHO) model.65 This method for calculating the transition polarizabilities is particularly useful
when there are modes that strongly couple to the excited state(s) that is being examined (that
is, vibronic effects), or when only a few states contribute to the RRS; we use this method in
Chapters 10, 11, and 12.

Finally, the intensity of the Raman scattered light may be calculated from the transition
polarizabilities using

〈Ip〉 = Kp

45
(
45α2

p + 7γ2
p + 5δ2

p

)
(2.9)

where α2
p, γ2

p and δ2
p are invariants of the transition polarizabilities for vibrational mode p. This

equation assumes linearly polarized light and a scattering angle of 90◦; the invariants for other
polarizations and scattering angles may be found in Ref. 2. The transition polarizabilities need
not be symmetric and therefore the tensor invariants are given by2,66,67

α2
p = 1

9(ααα)p(α∗ββ)p (2.10)

γ2
p = 3

4
[
(ααβ)p(α∗αβ)p + (ααβ)p(α∗βα)p

]
− 1

2(ααα)p(α∗ββ)p (2.11)

δ2
p = 3

4
[
(ααβ)p(α∗αβ)p − (ααβ)p(α∗βα)p

]
(2.12)

The Einstein summation convention is assumed for repeated Greek indices. For Stokes scattering
with an experimental set-up as described above, the parameter Kp is given by68

Kp = π2

ε20
(ν̃0 − ν̃p)4 1

8π2cν̃p

1
1− exp[−hcν̃p/kBT ] (2.13)

where ν̃0 and ν̃p are the frequencies (in wave numbers) of the incident light and of vibrational
mode p, respectively. A more thorough presentation of the orientationally averaged Raman
expression is given in Appendix A.
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2.2 Surface-Enhanced Raman Scattering

Figure 2.2. Schematic of a plasmon interacting with an electric field. Taken from Ref. 10.

When small metallic nano-structures are irradiated by light, the oscillating electric field may
cause the “loose” conduction electrons to oscillate coherently. A schematic of this is illustrated in
Figure 2.2 for a small metallic sphere. This collective oscillation is called a plasmon resonance,
and depends on the material(s) of the nanoparticle (NP), its shape and size, and the frequency
of the incident radiation.10 These oscillations also generate strong oscillating electric fields at
the surface of the NPs, often in very small spatially localized regions called “hot-spots”. This
ability of plasmonic metal NPs to localize light well below the diffraction limit offers unique
opportunities for enhancing the spectroscopy of molecules situated at or near these hot-spots.69

By taking advantage of carefully designed nanostructures, it becomes possible to enhance and
localize the near-field with resolutions that are starting to reach the length-scale of molecules.34

The enhancement of a large variety of linear spectroscopies, such as surface-enhanced infra-
red absorption (SEIRA), surface-enhanced Raman scattering (SERS), tip-enhanced-Raman
scattering (TERS), and surface-enhanced Raman optical activity (SEROA), as well as nonlinear
spectroscopies, such as surface-enhanced hyper-Raman scattering (SEHRS), surface-enhanced
coherent anti-Stokes Raman spectroscopy (SECARS), surface-enhanced femto-second stimulated
Raman scattering (SE-FRSR), and surface-enhanced sum-frequency generation (SESFG), have
been demonstrated.69–72 In particular, the strong near-field provided by these nano-antennas
supplies sufficient enhancement that vibrational spectroscopy at the single-molecule level is
possible. Using the bi-analyte method,18,19 where two molecules or isotopologues with distinct
vibrational signatures are used, single-molecule sensitivity has been demonstrated for SERS,18,19

TERS,30 SEHRS,73 and SECARS.74

Of these surface-enhanced spectroscopies, SERS is currently the most widely used.13,24,75–80

It was first discovered in 1974 by Fleischmann, Hendra and McQuillan,3 and later correctly, and
independently, identified in 1977 by Jeanmaire and Van Duyne4, and Albrecht and Creighton.5

This spectroscopic technique, owing to the large enhancements afforded by the near field of
plasmonic NPs, is one of a few that can, currently, simultaneously detect and provide the chemical
fingerprint of single molecules.18,19,81–84 This makes SERS an important tool in the areas of
biological,24–26,85–92 and chemical sensing.22,23,93–97 The popularization of SERS is also due, in
no small part, to the advances in nanofabrication15–17,98–100 and an increased understanding of
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the properties of plasmonic NPs,10,101–103 which has increased our understanding of chemistry
at—and even beyond—the limit of single molecules.34,44,45,104–106

After nearly 40 years, the enhancement of SERS is now (almost) universally accepted to arise
from two main mechanisms.12,41 The first is the electromagnetic mechanism (EMM) caused by the
enhanced near-field generated by exciting the plasmon. The second mechanism is loosely called
the chemical mechanism (CM) and lumps together all other changes to the molecule’s geometric
and electronic structure that arises from binding to the metal surface. Although there has been a
great deal of controversy over their relative importance, it is by now well established that the
EMM is responsible for the bulk of the enhancement, while the CM only contributes a little to
the total enhancements. As our understanding of the enhancement mechanisms are being refined,
it remains a significant challenge to explain in detail the specific spectral changes that occur in
surface-enhanced spectroscopies.12,41,107 The reason for this is that although the EMM dominates
the enhancement, the CM often dominates the spectral changes. A prime example of this is the
SERS of p-aminothiophenol (ATP) adsorbed on silver, where certain strong bands not present in
the normal Raman spectrum of the molecule are observed.108 This was initially ascribed to a
resonance Raman mechanism involving a metal-molecule charge-transfer (CT) state,108 however,
it was later proposed using theoretical simulations109 and demonstrated experimentally110 that
the band arose from a new chemical species formed during the SERS experiments. It therefore
remains a significant theoretical challenge to correctly describe the spectral changes that occur in
surface-enhanced vibrational spectroscopies through these mechanisms.

In order to understand the differences between the EMM and the CM, we will re-write
Equation 2.9 as

IRaman
p ∝

∣∣∣∣∂αM∂Qp
·E0

∣∣∣∣2 , (2.14)

where αM is the molecule’s electric dipole-dipole polarizability, Qp is the normal mode coordinates
for vibrational transition p, and E0 is the perturbing incident electric field. In SERS, where
the molecule is adsorbed on to a plasmonic NP, this polarizability αM should now reflect the
polarizability of the total molecule-NP system (hereinafter represented as αtot). In order to
understand the mechanisms of SERS, we often like to separate the contributions to ∂αtot

∂Qp
, which

has led to confusion and disagreement, into what is commonly referred to as the EMM and the
CM. This separation is often made because surface plasmons, the driving force behind the SERS
EMM, are accurately described using classical electrodynamics (ED)—though ideally one would
treat the entire molecule-NP system using first principles.111,112 In reality, the clear separation of
this total polarizability into these two distinct contributions is not always possible.

We will proceed to discuss the EMM and CM by re-writing the SERS intensity as

ISERSp ∝
∣∣∣∣∂αM’

∂Qp
· F(ωS)F(ωI) ·E0

∣∣∣∣2 , (2.15)

where F(ωI) and F(ωS) are the enhancement of the incident and scattered fields, respectively,
and constitute the EMM. The αM’ term describes the contribution to the total molecule-NP
polarizability not accounted for by the EMM. All effects that contribute to the changing of the
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Figure 2.3. Illustration of the mechanisms of SERS. Abbreviations: ES, excited state; GS, ground state;
VIRT, virtual state.

free-molecule polarizability αM to αM’, such as changes to the electronic and geometric structure
of the molecule, constitute the CM. A schematic of this is illustrated in Figure 2.3. In the next
section, we will review a selection of the theoretical models used to simulate the EMM of SERS.

2.3 Theoretical Models of the Electromagnetic Mechanism
The EMM (sometimes referred to as the plasmonic theory) of SERS dates back to the late 1970s
through the 1980s.113–119 It originates from the classical interaction between the molecule and
NP, solved using ED. As such, this mechanism can be derived without knowledge of the electronic
structure of the molecule or the NP. The EMM has been reviewed a number of times (see for
example Refs. 13,39,79,120). Here we will review the EMM theory by discussing two equivalent
classical models (Silberstein’s equations and the Gersten-Nitzan model), each with increasing
complexity in the description of the molecule and NP. These models form the basis for the
dressed-tensor formalism that is developed in Part II, and used throughout this dissertation. We
also briefly introduce a hybrid classical-quantum mechanical method to describe SERS, which is
expanded upon in Chapters 6 and 7 to describe other surface-enhanced spectroscopies.

2.3.1 Silberstein’s equations

The simplest derivation of the EMM can be made using Silberstein’s equations,121,122 which is
the solution of the addition of two isotropic polarizabilities. In these equations, we assume that
the molecule and the NP are two point polarizable objects, with isotropic polarizability αM and
αNP, respectively, separated by some distance R. According to Silberstein’s equations, the total
system polarizability is given by

αtot‖ = αM + αNP + 4αMαNP/R3

1− 4αMαNP/R6 (2.16a)

and
αtot⊥ = αM + αNP − 2αMαNP/R3

1− αMαNP/R6 (2.16b)
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where αtot‖ and αtot⊥ are the components of the total polarizability parallel and perpendicular
to the separation axis, respectively. We now take the derivative with respect to normal mode
coordinate Qp, assuming that the polarizability of the NP is not affected by the normal modes of
the molecule (∂α

NP

∂Qp
= 0), which leaves the Raman polarizabilities as41

∂αtot‖

∂Qp
= ∂αM

∂Qp

(
1 + 2αNP/R3)2

(1− 4αNPαM/R6)2 (2.17a)

and
∂αtot⊥
∂Qp

= ∂αM

∂Qp

(
1− αNP/R3)2

(1− αNPαM/R6)2 (2.17b)

Ignoring the terms in the denominators of Equation 2.17, which are contributions to the
“image field” effect and will be discussed later, we are left with the parallel and perpendicular
components of the local electric field enhancement (E‖ and E⊥), respectively. These lead to the
following expressions for the SERS intensity:

ISERS‖ ∝
∣∣∣∣∂αM∂Qp

∣∣∣∣2 ∣∣E‖∣∣4 (2.18a)

and

ISERS⊥ ∝
∣∣∣∣∂αM∂Qp

∣∣∣∣2 |E⊥|4 (2.18b)

which gives the familiar |E|4 EMM enhancement factor.
Using Silberstein’s equations to simulate the SERS spectrum is equivalent to scaling the

Raman spectrum by the |E|4 factor, with the largest enhancement for polarization along the
NP-molecular axis. However, this scaling ignores the rich information that may be available in the
observed SERS spectrum. Therefore, this method is only appropriate for molecules approximately
described by isotropic polarizabilities, such as in Albrecht A-term scatterers, for example, where
the polarizability is diagonal dominated and the relative mode intensities are not due to the
tensorial nature of the polarizability-field interactions.44 In all other cases, one would need a
more rigorous method to account for the tensorial nature of the molecular polarizability and the
local electric field in order to simulate the SERS mode selectivity.

2.3.2 Gersten-Nitzan model

Gersten and Nitzan119 first outlined the electromagnetic theory of SERS, which takes into
consideration the tensorial nature of the interactions. In this derivation, we start by writing the
induced dipoles for both the molecule and NP as

µM = αM · (E0 + T(2) · µNP) (2.19a)

and
µNP = αNP · (E0 + T(2) · µM) (2.19b)
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where R is the vector between the systems, and T(x) are the interaction tensors,123,124 generally
defined as

T(x)(R) = ∇x 1
|R| . (2.20)

Solving Equation 2.19 leads to the effective polarizabilities of the molecule and NP, and finally
to the following expression for the total Raman polarizability:

∂αtot

∂Qp
=
(

I− αM ·T(2) · αNP ·T(2)
)−1
· ∂α

M

∂Qp
·
[
I + T(2) · αNP ·T(2)

·
(

I− αM ·T(2) · αNP ·T(2)
)−1
· αM

]
·
(

I + T(2) · αNP
)

+
(

I− αNP ·T(2) · αM ·T(2)
)−1
· αNP ·T(2) · ∂α

M

∂Qp

·
[
I + T(2) ·

(
I− αNP ·T(2) · αM ·T(2)

)−1
· αNP ·

(
I + T(2) · αM

)]
,

(2.21)

where I is the identity matrix.
We may ignore terms of the form α ·T(2) · α ·T(2), which have been argued to be negligible in

Ref. 41 since they are approximately R−3 (in Ref. 119, they are referred to as the image field
effect, which we will discuss later). This leads to

∂αtot

∂Qp
≈
(

I + αNP ·T(2)
)
· ∂α

M

∂Qp
·
(

I + T(2) · αNP
)
. (2.22)

This equation is different from Equation 1.10 in Ref. 119, and contains the additional term
αNP · T(2) · ∂α

M

∂Qp
· T(2) · αNP, which is the major SERS term and is responsible for the |E|4

enhancement. One can easily see that Equation 2.22 is similar to Equation 2.17, with the tensoral
nature of αM, T(2), and αNP taken into account. This equation has been the most relevant when
describing the EMM in SERS and leads directly into the dressed-tensor formalism developed in
Part II of this dissertation.

2.3.3 Image field effect

The image field is an EMM effect resulting from the
(
I− α ·T(2) · α ·T(2))−1 terms in the

Gersten-Nitzan equation (or the denominator in Silberstein’s equations), and was considered
by some early theories to be the major contributing factor in SERS.113,125–127 This effect is the
result of the fields reflected back and forth between the NP and the molecule, ad infinitum.

The Gersten-Nitzan model could be Taylor expanded to include the image field effect as follows

∂αtot

∂Qp
=

∞∑
i,j=0

(
I + αNP ·T(2)

)
·
(
αM ·T(2) · αNP ·T(2)

)i
· ∂α

M

∂Qp

·
(

T(2) · αNP ·T(2) · αM
)j
·
(

I + T(2) · αNP
)
.

(2.23)
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The case where i = j = 0 gives the Gersten-Nitzan formula without image effects, all other terms
describe some order of the reflected field in the image field effect. Since the terms that depend on
i (or j) scale as

(
R−3)i, one can see that the image field depends strongly on distance between

the molecule and the NP, and quickly becomes insignificant for i, j > 1. While the image field
writen in this way quickly becomes impractical for simulating the image field effects, it allows for
an easier understanding of the effect: the incident field induces a dipole in either the molecule or
the NP, which reflects between the two systems k times before driving the Raman activity, after
which the scattered fields is reflected j times before being detected in the far field.

This Taylor expansion form of the image field effect breaks down in the case where
αMT(2)αNPT(2) ≈ 1, and a more explicit incorporation of the image field is required. In the work
of Masiello and coworkers,128,129 the term “plasmon-dressed” is used to refer to the image field
modified polarizability—and is not the same as the dressed-tensor formalism described later in
this dissertation. Their model describes the image field coupling between the molecule (from
first principles) and NP (from classical ED) using Green’s function theory. Many other hybrid
quantum mechanical (QM) / classical ED methods incorporate the image field effect,130–140 often
using a continuum model of the NP system. However, a method that include the image field effect
(along with the EMM field enhancement) using an atomistic description of the NP system(s) has
also been presented.107,123,141–144 We will briefly review this method in the next subsection.

2.3.4 The discrete interaction model/quantum mechanical method

The discrete interaction model/quantum mechanical (DIM/QM) method107,123,141–144 is a hybrid
classical polarizable molecular mechanical / quantum mechanical method developed to describe
surface-enhanced Raman scattering. This method describes the EMM of SERS by coupling
the TDDFT quantum mechanical description of the molecule with the classical electrodynamics
response of the nanoparticle. This is achieved, in the polarizability interaction model (PIM),
by describing the atoms in the classical system as a collection of polarizable Gaussian charge
distributions that were parametrized against a set of TDDFT calculations. These classical atoms
interact with a nearby molecule through the DIM embedding operator V̂ DIM and the local field
operator V̂ loc. These operators are added to the time-dependent Kohn-Sham equations described
in Equation 3.23, and are defined as

V̂ DIM (r, ω) =
∑
j

∑
m

µindm,α(ω)T (1)
α (rm − rj) (2.24)

and

V̂ loc(r, ω) =
∑
j

∑
m

µextm,α(ω)T (1)
α (rm − rj) (2.25)

where µind and µext are the induced and external DIM dipoles, i, j, . . . are QM electrons, and
m,n, . . . denote DIM atoms. T (1) is the first-order interaction tensor between a QM electron and
a DIM atom, defined in Equation 2.20. In most cases, these interaction tensors are screened by
the error function,141 which is equivalent to smearing out the point-dipole description of the DIM
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atoms into Gaussian distributions. We explore the effects of this smearing of the DIM dipoles on
the SERS enhancement in Chapter 5.

The DIM dipoles µind can be thought of as an image field effect, described in the preceding
subsection, and is due to the dipoles induced in the nanoparticle system by the ground state
charge density of the QM molecule. The µext dipoles, on the other hand, can be thought of as
the perturbation of the nanoparticle system, responsible for the strong EMM fields, due to an
external perturbation. These DIM dipoles may be obtained by solving a set of 3N complex linear
equations

A(ω)µ(ω) = E(ω) (2.26)

where we have dropped the ind and ext superscripts for simplicity. For µind, E is the electric
field due to the ground state charge density of the molecule, and for µext, E is the external
perturbation. The components of the A matrix are given as

Amn,αβ(ω) =

α−1
m,αβ(ω) m = n

−T (2)
αβ (rn − rm) m 6= n

(2.27)

where α(ω) is the aforementioned parametrized DIM atomic polarizability, taken to be isotropic,
and T (2) is the second order interaction tensor.

This method, as mentioned, has been developed to describe SERS,107,144 and we use it in
Chapter 4 as a benchmark for the dressed-tensor formalism. We also expand upon the DIM/QM
method in Chapters 6 and 7 to describe SEROA and plasmonic circular dichroism, respectively.
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Chapter 3 |
Overview of Other Theoretical Methods Used

3.1 Kohn-Sham Density Functional Theory
In quantum mechanics, all information regarding a given system of electrons is contained in its
wave function Ψ(r1, . . . , rN ). This function depends on the spatial coordinates r—within the
Born-Oppenheimer approximation the nucleii are considered to be fixed and we have ignored the
spin variable for simplicity—of each of the N electrons in the system. We may (approximately)
solve for Ψ using Hartree-Fock or post-Hartree-Fock methods, but they are often prohibitively
expensive owing to the 3N spatial coordinates of the system of electrons. Density functional theory
(DFT) seeks to reduce the complexity of this problem by solving for the electron density ρ(r), a
function of just 3 spatial coordinates. Solutions utilizing the electron density had been in use
since 1927,145,146 but it was not until 1965 that Hohenberg and Kohn demonstrated their validity
through two theorems.147 The first theorem showed that the ground state wave function—and
therefore all properties that depend on it—may be uniquely determined by the ground state
electron density. The second theorem states that the exact ground state electron density may
be found by minimizing the total-energy functional Etot[ρ]. Unfortunately, this functional is not
known, which leads to approximations for any practical applications of DFT.

One such widely used approximation is the Kohn-Sham (KS) method.148 In this method, we
use a reference system of non-interacting electrons that is defined to possess the same electron
density as our system of interest. This allows us to separate the total-energy functional into

Etot[ρ] = ENN + Ts[ρ] + Ene[ρ] + J [ρ] + Exc[ρ] (3.1)

where ENN is the nuclear-nuclear Coulomb energy, Ts is the kinetic energy of our non-interacting
electrons, Ene is the nuclear-electron Coulomb energy, and J is the classical electron-electron
Coulomb energy. The term Exc is the exchange-correlation (XC) energy and it contains the
corrections to the kinetic energy due to interacting electrons, the corrections to the electron-
electron Coulomb energy from self-interaction, the electron-electron exchange energy, and the
electron-electron correlation energy. We may then describe these non-interacting electrons using
some number Norb of orthogonal KS orbitals φKS ; the density of this system is therefore

ρ(r) =
Norb∑
i=1

ni|φKSi (r)|2 (3.2)
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where ni are the occupation numbers of these orbitals. This would, in turn, allow for exact
definitions of Ts, Ene and J using

Etot[ρ] = ENN +
Norb∑
i=1

ni

〈
φKSi

∣∣∣∣−∇2

2

∣∣∣∣φKSi 〉
+
∫
νnuc(r)ρ(r)dr + 1

2

∫
ρ(r)ρ(r′)
|r− r′| drdr′ + Exc[ρ]

(3.3)
where νnuc(r) is the nuclear Coulomb potential. Since ρ is dependent on φKS , we can minimize
the total energy with respect to φKS—under the constraint that all φKS are orthonormalized
and that the density integrates to the correct number of electrons—leading to one-electron-like
equations, termed the Kohn-Sham equations:

[
−∇2

2 + νnuc(r) +
∫

ρ(r′)
|r− r′|dr′ + δExc[ρ]

δρ(r)

]
φKSi (r) = εiφ

KS
i (r); i = 1, · · · , Norb

ĥKSφKSi (r) = εiφ
KS
i (r)

(3.4)

where ĥKS is the KS operator.
To solve for Equation 3.4, we usually expand our KS orbitals using some set of—not necessarily

orthogonal—atomic orbitals (AOs) χ as

φi(r) =
Nao∑
α

Cαiχα(r) (3.5)

where C is the molecular orbital (MO) coefficient matrix, Nao is the number of AOs used,
and the Greek subscripts are AO indices. Consequently, we can express Equations 3.4 using
matrices expressed within this AO basis, where the matrix C determines the density matrix P
via P = CCT . The overlap between AOs S is defined as

Sαβ = 〈χα|χβ〉 (3.6)

and the “Fock matrix” F in AO basis is defined as

Fαβ = 〈χα|ĥKS |χβ〉 (3.7)

If we enforce the conditions that our MOs should be orthogonal, and that our density should
integrate to the correct number of electrons, we end up with the following eigenvalue equations

(F− εiS) Ci = 0 (3.8)

where εi corresponds to the energy of the ith KS orbital. We should recognize that F is dependent
on P (which in turn is dependent on C), and therefore these equations need to be solved
self-consistently.

KS-DFT is still exact in principle, however, approximations are needed for the XC energy
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functional Exc. The simplest approximation to Exc is the local density approximation (LDA),
where the functional has been derived from a homogeneous electron gas and is only dependent
on the local value of the electron density ρ(r).148–152 Improvements to the LDA functional, in
the class of functionals called the generalized gradient approximations (GGAs), may be obtained
by considering the gradient of the electron density ∇ρ(r).153–157 Other classes of functionals
include hybrid functionals, which include an amount of the exact Hartree-Fock exchange energy,
and range-separated hybrid functionals, where the electron repulsion operator is partitioned into
a short range interaction described by DFT exchange and a long range interaction described
by Hartree-Fock exchange. Each of these functionals offers different advantages in the areas
of efficiency and accuracy for various ground and excited state properties.158–161 Despite the
use of approximate XC functionals, the combined efficiency and accuracy of KS-DFT has made
it the method of choice for describing the electronic ground and excited state properties of
molecules.162–171

3.2 Subsystem Density Functional Theory

3.2.1 Frozen density embedding

In chemistry, we are often interested in understanding the behavior of a particular active site in
some complex environment. Using the example of surface-enhanced spectroscopies, we may be
interested in understanding how the quantum system of the molecule is affected by the (quantum)
interactions with the plasmonic nanoparticle—which is particularly useful in understanding the
chemical mechanism of SERS. To do this, we reduce the computational complexity of the systems
that we are interested in by considering more manageable subsystems.172–174 One such theory
that includes the quantum interactions between each individual component of the supersystem is
subsystem density functional theory (subsystem DFT).175–178 This subsystem theory partitions
the total system into individual subsystems on the basis of the electron density ρ(r), while
describing each individual subsystem—and their interactions with each other—using DFT.

In subsystem DFT, considering only two subsystems A and B, the total density ρtot(r) is
divided as

ρtot(r) = ρA(r) + ρB(r) (3.9)

where ρA(r) and ρB(r) are the densities of subsystems A and B, respectively. There need not be
any restrictions to how this partition is made, however, one often restricts these densities so that
they integrate to an integer number of electrons—which will be assumed for the remainder of
this chapter. Similarly, the nucleii of the total system will also be partitioned into subsystem
components. This allows the total energy Etot to be written as a functional of both ρA and ρB , as
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Figure 3.1. Schematic illustration of (a) conventional KS-DFT, (b) subsystem DFT, and (c) FDE for
aminocoumarin C151 surrounded by 20 water molecules. Taken from Ref. 178.

Etot[ρA, ρB ] = ENN +
∫
{ρA(r) + ρB(r)}

{
νAnuc(r) + νBnuc(r)

}
+ 1

2

∫
{ρA(r) + ρB(r)} {ρA(r′) + ρB(r′)}

|r− r′| drdr′

+ Ts[ρA] + Ts[ρB ] + Tnadds [ρA, ρB ] + Exc[ρA] + Exc[ρB ] + Enaddxc [ρA, ρB ]

(3.10)

where Tnadds and Enaddxc are the the non-additive non-interacting kinetic energy and the non-
additive XC energy, respectively. These terms are required as there is no guarantee that the
Ts and Exc functionals are additive with respect to the density—we will discuss this point with
regards to the non-interacting kinetic energy later—and are defined as

Tnadds [ρA, ρB ] = Ts[ρA + ρB ]− Ts[ρA]− Ts[ρB ] (3.11)

and

Enaddxc [ρA, ρB ] = Exc[ρA + ρB ]− Exc[ρA]− Exc[ρB ] (3.12)

One may then minimize Etot with respect to the density of each subsystem, where once again
KS-DFT may be used to describe each subsystem.

One of the more popular applications of subsystem DFT has been frozen density embedding
(FDE).179 In FDE, one subsystem is identified as the active system (for the remainder of this
chapter, we will assume this to be subsystem A) and is described by KS-DFT, while all others
(subsystem B) are treated as the environment. The total energy is then minimized only with
respect to the KS orbitals of subsystem A, while the density of subsystem B (ρB) is kept frozen.
A schematic of the differences between KS-DFT, subsystem DFT, and FDE is shown in Figure 3.1.
This minimization leads to the following embedded KS equations[

−∇2

2 + νKSeff [ρA; r] + νembeff [ρA, ρB ; r]
]
φAi (r) = εiφ

A
i (r) (3.13)

where φAi are the KS orbitals of subsystem A, and νKSeff and νembeff are the effective KS and
embedding potentials, respectively, defined as
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νKSeff [ρA; r] = νAnuc(r) +
∫

ρA(r′)
|r− r′|dr′ + δExc[ρ]

δρ(r)

∣∣∣∣
ρ=ρA

(3.14)

and

νembeff [ρA, ρB ; r] = νBnuc(r) +
∫

ρB(r′)
|r− r′|dr′ + νnaddT [ρA, ρB ; r] + νnaddxc [ρA, ρB ; r] (3.15)

Here, we have introduced the non-additive kinetic potential (NAKP) νnaddT and the non-additive
XC potential νnaddxc defined as

νnaddT [ρA, ρB ; r] = δTs[ρ]
δρ(r)

∣∣∣∣
ρ=ρtot

− δTs[ρ]
δρ(r)

∣∣∣∣
ρ=ρA

(3.16)

and

νnaddxc [ρA, ρB ; r] = δExc[ρ]
δρ(r)

∣∣∣∣
ρ=ρtot

− δExc[ρ]
δρ(r)

∣∣∣∣
ρ=ρA

(3.17)

These are simply the functional derivatives of the non-interacting kinetic and non-additive XC
energy functionals, respectively, defined in Equations 3.11 and 3.12.

While the general subsystem DFT theory is exact in principle, the FDE theory only remains
exact under specific conditions. To examine these conditions, we will consider ρtargetA , which
is the target density of the active subsystem A that reproduces the exact total density of the
system ρexacttot for any given frozen ρB ; that is ρtargetA (r) = ρexacttot (r)− ρB(r). In order to describe
subsystem A using KS-DFT, ρtargetA must be νs-representable—that is, it must be representable
as the density of the ground state of a reference system of non-interacting electrons. Only then
can the minimization of the total energy with respect to ρA (or φA) be exact, within the limit of
exact functionals. The νs-representable ρtargetA requires that ρtargetA (r) ≥ 0 everywhere in space.
This condition is difficult to fulfill, particularly if ρB is obtained from a simple isolated molecular
calculation on subsystem B. In such cases, some have argued that the FDE functional is no longer
variational.180,181

However, it was shown that any minimized ρA can be thought of as the density that minimizes
the total energy for any given environment density ρB .182,183 In such cases, FDE yields an upper
bound of the total energy. This total energy may be improved by an iterative “freeze-and-thaw”
process, where the total energy is iteratively minimized with respect to each subsystem density.
Therefore, FDE remains exact assuming that ρB is carefully selected or that one performs
freeze-and-thaw cycles when starting with an approximate ρB. The former case often requires
a DFT calculation on the supersystem, from which an accurate ρB may be obtained. This is
useful for understanding the behavior of a particular active site in a complex environment, but
requires that one is able to perform a DFT calculation on the supersystem. The freeze-and-thaw
case may use any approximate starting ρB; this is particularly useful when one is unable to
perform a DFT calculation on the supersystem, but the method still requires multiple subsystem
calculations. Alternatively, one could reformulate the FDE equations such that the active system
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A is represented by a “density orbital”, instead of its density.180 This would allow ρtargetA to
become negative—allowing for an exact theory outside of the aforementioned conditions—though
no practical implementations of this method have ever been presented.

3.2.2 Kinetic energy density functionals and external orthogonality

In Equations 3.12 and 3.11, we introduced the non-additive XC (Enaddxc ) and kinetic (Tnadds )
energies, and stated that these are needed since the functionals that describe these energies are
not necessarily additive with respect to the density. Using this definition, the total XC energy
remains exact—within the XC energy functional approximation used—and we will not discuss
the implications of the Enaddxc further. As discussed earlier, the exact (non-interacting) kinetic
energy in KS-DFT may be found from a set of orthogonal KS orbitals, written as Ts[{φ}]. In
the subsystem formalism, each individual subsystem is described by its own set of orthogonal
KS orbitals, and therefore their exact kinetic energies may be found; these may be succinctly
written as Ts[{φA}] and Ts[{φB}] for the A and B subsystems respectively. However, since there
is no set of orthogonal orbitals to describe the supersystem, and there is no guarantee that the
KS orbitals of subsystem A are orthogonal to those of subsystem B, we cannot express the total
kinetic energy as the sum of the kinetic energies of the individual subsystems. The Tnadds term is,
therefore, the additional kinetic energy of the supersystem not accounted for by the sum of each
subsystem’s kinetic energy. This also means that Tnadds vanishes if the orbitals of A and B are
orthogonal, a condition that is termed “external orthogonality” or EO.

Instead of expressing the kinetic energy as a functional of the KS orbitals, we could express
the (non-interacting) kinetic energy as a functional of the electron density. These kinetic energy
density functionals (KEDFs) have seen wide use in orbital-free (OF) DFT methods—an alternative
to the more common KS-DFT—which circumvents the need for non-interacting reference systems
by expressing the total energy as a pure density functional. These approximations to the KEDF
often fail to describe any orbital structure in the electron density and their applications are
limited. However, in FDE we already know most of the kinetic energy through Ts[{φA}] and
Ts[{φB}], and only the non-additive component need to be estimated using approximate KEDFs

Ts[ρtot] = Ts[{φA}] + Ts[{φB}] + Tnadds [ρA, ρB ] (3.18)

where Tnadds has been defined in Equation 3.11. For this reason, most available KEDFs are often
sufficient for FDE applications. The simplest KEDF used in such applications is the local density
approximation (LDA) to the KEDF termed the Thomas-Fermi (TF) functional, defined as

TTFs [ρ] = CTF

∫
ρ5/3(r)dr (3.19)

where CTF = 3
10 (3π2)2/3. One may also use the generalized gradient approximations (GGAs) to

the KEDF, generally defined as184

TGGAs [ρ] = CTF

∫
ρ5/3(r)F [s(r)]dr (3.20)
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where s(r) is the reduced density gradient

s(r) = 1
2(3π2)1/3

|∇ρ(r)|
ρ(r)4/3 (3.21)

and F [s(r)] denotes the GGA enhancement factor. For the Thomas-Fermi LDA functional, this
factor is simply 1. Other enhancement factors may be found in Ref. 184, with one of the most
popular GGA KEDF used in FDE applications being the PW91k functional.185,186

There have been a handful of studies on the accuracy of these KEDFs for FDE applications,
and it was found that the GGA KEDFs improve over the TF LDA KEDF for hydrogen bonded
systems, though there was no particular GGA that outperformed the others.184 In general, it was
found that these KEDFs offer reasonable results for weakly bonded systems, such as for hydrogen
bonded systems, systems with weak dative bonding, or ionic bonds.184,187 However, they all fail
for subsystems with covalent character. To rectify this, there have been methods developed to
accurately calculate the embedding potentials.188,189 These reconstructed potentials often require
a KS-DFT calculation on the supersystem.

However, there has been an argument made by Henderson and co-workers that FDE, in the
limit of non-orthogonal inter-subsystem KS orbitals (or lack of EO), is not an exact theory.190,191

In their argument, they stated that the total electron density cannot be written as a sum of
subsystem densities, or

ρtot(r) 6= ρA(r) + ρB(r) (3.22)

if the orbitals that describe A and B are not orthogonal. Since we cannot partition the density
in this way, we cannot express Tnadds and Enaddxc as in Equations 3.11 and 3.12. Later, Jacob
and co-workers showed that this inequality only holds true for densities ρA and ρB expressed
in limited, linearly independent basis sets. For subsystems described using complete or linearly
dependent basis sets, the density sum equality holds for subsystems with non-orthogonal KS
orbitals, and the FDE non-additive energies are exactly defined by Equations 3.11 and 3.12.

One may circumvent these arguments of the inequality of density sums by ensuring that EO is
enforced between subsystems. This ensures that the density sum equality holds—meaning that the
definition of Enaddxc is correctly defined in Equation 3.12—while removing the need for approximate
KEDFs. Methods that enforce EO have been in use for decades, and have seen use in frozen-core
approximations,192 model potentials,193 the Phillips-Kleinman pseudopotential approach,194 and
in the methods of Stoll and co-workers,195 Mata and co-workers,196 Henderson,197 Hoffmann and
co-workers,191 and Miller and co-workers.198–200 Miller and co-workers198–200 and Hoffmann and
co-workers191 have shown that the supersystem KS-DFT may be exactly obtained from subsystem
DFT, providing that there is EO. Hoffmann and co-workers191 included EO as an additional
constraint in the construction of Lagrangian, while the method of Miller and co-workers,198–200

along with the reconstructed potential approach of Neugebauer and co-workers,188,189 all require
that the supersystem KS-DFT results are known a priori. Therefore, there is a need for a subsystem
DFT method with EO, within the FDE framework, that does not require the supersystem KS-DFT
as starting point. We develop such a method in Part III of this dissertation.
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3.3 Subsystem Response Theory

3.3.1 Time-dependent density functional theory

The KS-DFT method presented in Section 3.1 is inherently a ground state theory. In order
to determine excited state properties, such as excitation energies and polarizabilities, we need
to employ the time-dependent (TD) extension to the KS equations, commonly referred to as
time-dependent density functional theory (TDDFT). Runge and Gross showed, in an analogy
to the ground state theorems presented by Hohenberg and Kohn,147 that the time-dependent
electron density may be uniquely determined by the time-dependent potential of the system.201

This means that TDDFT, in the limit of exact functionals, is a formally exact theory.
In TDDFT, we solve for the time-dependent KS equations

[
−∇2

2 + νnuc(r) +
∫

ρ(r′, t)
|r− r′|dr′ + δExc[ρ, t]

δρ(r) + δνext(r, t)
]
φKSi (r, t) = i

∂

∂t
φKSi (r, t) (3.23)

where we have included the time-dependence in the Coulomb and XC energies, and have introduced
a time-dependent external perturbation δνext. This perturbation, within the dipole approximation,
may be written as

δνext(r, t) = µ̂F (t) = µ̂ [F0 + Fω cos(ωt)] (3.24)

where µ̂ is the dipole operator and F (t) is an electric field. In order to solve these equations, we
will re-write the one electron operator as ĥ = ĥ0 + δνext. We can then use perturbation theory to
solve for the linear response of the density δρ, where we assume the density may be expanded as

ρ(r, t) = ρ0(r, t) + δρ(r, t) (3.25)

where ρ0 is the unperturbed density. This linear response of the density may be found from the
response of the system due to the external perturbation, written as

δρ(r, t) =
∫ ∫

χ(r, r′, t− t′)δνext(r′, t′)dr′dt′ (3.26)

where χ is the unknown response function of the system.
In order to simplify these expressions, we will switch to frequency-space and expand the

density response using the ground state KS orbitals using

δρ(r, ω) = 2
∑
ia

δPia(ω)φi(r)φa(r) (3.27)

where subscripts i and a denote occupied and virtual KS orbitals, respectively, and δP is the
linear response density matrix. The factor of 2 in Equation 3.27 is due to the fact that we are
considering only closed-shell systems, which will be assumed for the remainder of this chapter. In
this orbital space, Equation 3.26 may be written as
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δPia(ω) = χia(ω)δνextai (ω) (3.28)

where, once again, the response function χ is unknown.
Analogous to ground state KS-DFT, we will consider the response function χs of a system of

non-interacting electrons, which is defined as

χsai(ω) = ωia

(ω + iΓ)2 − ω2
ia

(3.29)

where ωia is the orbital energy difference ωia = εa − εi, and Γ is a damping factor that has
the meaning of the inverse of the lifetime of the excited states. This damping factor prevents
a singularity when ω = ωia. To account for the interactions between electrons, we re-write
Equation 3.28 as

δPia(ω) = χsia(ω)δνai(ω) (3.30)

where the change in potential δνai = δνelai+δνextai has contributions from the change in the electron
potential δνelai and the external perturbation δνextai . Assuming a linear response of the potential
with respect to the change in the density, the matrix elements of δνelai are given as

δνelai = 2
∑
jb

∫
dr
∫
dr′
[
φi(r)φa(r)

(
1

|r− r′| + fxc(r, r′, ω)
)
φj(r′)φb(r′)

]
δPjb(ω)

= 2
∑
jb

(
KCoul
ia,jb +KXC

ia,jb(ω)
)
δPjb(ω)

(3.31)

where fxc and KXC are the XC response kernel (in real space and orbital space), and KCoul is
the Coulomb response kernel.

It should be noted that, like the XC energy functional, the XC response kernel is also unknown
and must be approximated. This kernel is a nonlocal functional of both space (it depends on
both r and r′) and time (depending on both t and t′), which makes it particularly difficult and
expensive to calculate. A commonly used approximation is to remove the time dependence in
fxc, termed the adiabatic approximation, where fxc may be defined as the second functional
derivative of the XC energy functional with respect to the density. For all applications in this
dissertation, we also assume that fxc is also local in space and is derived from the LDA XC energy
functional—this kernel is termed the adiabatic local density approximation (ALDA).

We can now express Equation 3.30 as

δPia(ω) = χsia(ω)

δνextai (ω) + 2
∑
jb

Kia,jbδPjb(ω)

 (3.32)

where we have grouped both response kernels together into K. We observe that δP is on both
sides of Equation 3.32, and therefore this equation needs to be solved self-consistently. Solutions
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of δP allows us to define the electronic polarizability ααβ as

ααβ(−ω;ω) = −Tr
[
HαδPβ(ω)

]
(3.33)

where the sub- and superscript Greek letters are Cartesian directions, and H is the dipole moment
matrix, given as

Hα
pq = 〈φp|µ̂α|φq〉 (3.34)

where p and q are general orbital indices. These electronic polarizabilities may then be manipulated,
using the short-time approximation, in order to obtain the transition polarizabilities needed to
describe Raman scattering—as discussed in Chapter 2.

We may use the linear response of the density to obtain other response properties, for instance
the quadrupole-dipole polarizability A may be defined as

Aαβ,γ(−ω;ω) = −Tr
[
QαβδPγ(ω)

]
(3.35)

where Q is the quadrupole moment matrix, obtained from

Qαβpq = 〈φp|θ̂αβ |φq〉 (3.36)

θ̂ is the (traceless) quadrupole moment operator defined as

θ̂αβ = 1
2 (3r̂αr̂β − δαβ r̂αr̂β) (3.37)

Similarly, we may also consider an external perturbation that is inhomogeneous and expressible
as δνext(r, t) = θ̂F (t). This would allow us to define the dipole-quadrupole polarizability A as

Aα,βγ(−ω;ω) = −Tr
[
HαδPβγ(ω)

]
(3.38)

and the quadrupole-quadrupole polarizability C as

Cαβ,γδ(−ω;ω) = −Tr
[
QαβδPγδ(ω)

]
(3.39)

These polarizabilities are all needed for the dressed-tensor formalism with field gradient effects
explored in Part II of this dissertation. There are other linear response polarizabilities that may
be defined in a similar manner, using the appropriate quantum mechanical operator, some of
which are used and defined in Chapters 6 and 7.

We may also re-write Equation 3.32 into the following matrix form202,203

[
Ω− ω2]F = −S−1/2δvext (3.40)

where F = S1/2δP, and the elements of the matrices S and Ω are defined as

Sia,jb = δabδij
ωia

(3.41)
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and

Ωia,jb = δabδijω
2
ia + 2

√
ωiaKia,jb

√
ωjb (3.42)

This will allow us to solve for the excitation energies of the system. If ω corresponds to an
excitation energy, the density response δP will diverge, and the term

[
Ω− ω2]−1 will have a

singularly. We can therefore find these singularities by solving the following eigenvalue equations

[
Ω− ω2

k

]
Fk = 0 (3.43)

where ωk is an excitation energy and Fk is the corresponding eigenvector.

3.3.2 Subsystem time-dependent density functional theory

Like the ground state properties, we may also partition the response of a system into subsystem
components—referred to as subsystem TDDFT.204,205 In such a theory, we assume that the total
density response of the supersystem δρtot may also be separated into subsystem components206

δρtot(r, t) = δρA(r, t) + δρB(r, t) (3.44)

where δρA and δρB are the density response of subsystems A and B, respectively. Using these
definitions, we can re-write Equation 3.32 to account for these subsystem responses as

δPA(ω) = χs(ω)
[
δvext(ω) + 2KA,AδPA(ω) + 2KA,BδPB(ω)

]
(3.45)

with a similar expression for δPB . The response kernel KA,A describes the changes to the potential
on subsystem A due to δρA, while KA,B describes the changes in the potential on subsystem A

due to δρB .
There are two ways in which we can solve these subsystem response equations. The first, called

uncoupled subsystem response theory, assumes that the density response of subsystem B has no
effect on subsystem A, and we can therefore ignore the KA,B term. This is analogous to ground
state FDE, where we once again assume that subsystem B—describing some environment—is
frozen. In this case, we only need to consider the KA,A response kernel. Like conventional
TDDFT, this kernel will have contributions from the Coulomb and XC kernels. However, this
kernel also needs to consider the changes to the non-additive XC and kinetic potentials as well.
This kernel may therefore be written—in real space rather than orbital space for simplicity—as

KA,A(r, r′) = 1
|r− r′| + δ2Exc[ρ]

δρ(r)δρ(r′)

∣∣∣∣
ρ=ρtot

+ δ2Ts[ρ]
δρ(r)δρ(r′)

∣∣∣∣
ρ=ρtot

− δ2Ts[ρ]
δρ(r)δρ(r′)

∣∣∣∣
ρ=ρA

(3.46)

This uncoupled subsystem formalism has been successfully applied,205,207–210 and approximately
accounts for the environment or subsystem B in the following ways: through the changes in
the ground state orbitals and orbital energies of subsystem A; and through the changes in the
potential on A due to the non-additive kernels.
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However, studies have shown that there are cases when these effects are insufficient at describing,
even qualitatively, the response of the active subsystem A.210 In such cases, the responses of both
subsystems need to be coupled. This is analogous to the freeze-and-thaw method for ground state
FDE, where now we iteratively solve for δPA and δPB until our results are self-consistent. In
such cases, the response kernel that couples one subsystem to another is defined as

KA,B(r, r′) = 1
|r− r′| + δ2Exc[ρ]

δρ(r)δρ(r′)

∣∣∣∣
ρ=ρtot

+ δ2Ts[ρ]
δρ(r)δρ(r′)

∣∣∣∣
ρ=ρtot

(3.47)

Using these definitions, we can then solve for the excitation energies or polarizabilities as described
in Section 3.3.1.

Subsystem TDDFT, like subsystem DFT, requires the use of approximate KEDFs. The kinetic
energy kernel in the ALDA is often used, where the kernel is described as

δ2Ts[ρ]
δρ(r)δρ(r′) = 10

9 CTF ρ
−1/3(r)δ(r− r′) (3.48)

This non-additive kinetic energy kernel, like the ground state NAKP, is an approximate treatment
for the non-orthogonality of the KS orbitals between systems. However, one would still expect that
these approximate functionals will fail when the subsystems are strongly coupled.206 In such cases,
one may want to enforce EO between subsystems. Methods that the effects of non-orthogonal
orbitals in TDDFT have been presented before,211,212 but not within the general framework of
subsystem TDDFT. We will continue to explore the implications of EO in subsystem TDDFT in
Chapter 9.
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Part II

The Dressed-Tensors Formalism
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Chapter 4 |
Determining Molecular Orientation With Surface-
Enhanced Raman Scattering Using Inhomogeneous
Electric Fields

Chulhai, D. V.; Jensen, L. “Determining Molecular Orientation with Surface-Enhanced Raman Scattering
Using Inhomogenous Electric Fields” J. Phys. Chem. C 2011, 117, 19622–19631

Abstract
The inhomogeneous electric field near the metal surface of plasmonic nanoparticles allows molecular
orientation to be determined from surface-enhanced Raman scattering (SERS). We illustrate this
by simulating the effects of the field-gradient on the SERS spectrum of benzene and pyridine. To
do this, we present an origin-independent formalism describing the effects of the local electric-field
gradient in SERS. Using this formalism, we found that the field-gradient led to observation
of Raman-inactive modes in benzene and allowed for extraction of orientation information
from the SERS spectra of both benzene and pyridine. It was also observed that the SERS
electromagnetic enhancement factor, when considering field-gradient effects, depends on the
field-gradient magnitudes and is only approximately described by |E|4 for certain modes. The
field-gradient mechanism may also lead to a weakening of intensities as compared to a homogeneous
local field. Thus, inclusion of field-gradient effects are crucial in understanding relative intensity
changes in SERS.
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4.1 Introduction
It is well known that the Raman scattering of molecules adsorbed onto metal surfaces that support
plasmon resonances may be enhanced, a phenomenon that is referred to as surface-enhanced
Raman scattering (SERS)13,24,75,76. In some cases, enhancement may be large enough (> 108) for
resolution of single molecules, an effect referred to as single-molecule SERS (SMSERS)9,19,81–84.
While the basic theory of SERS has been known for a while13,39,40, the intricate details of
the enhancement mechanisms are still being debated due to the complicated nature of the
metal-molecule interface12,41,42.

The SERS enhancement mechanisms may be broadly placed into two categories: the chemical
mechanism (CM) and the electromagnetic (EM) mechanism. Enhancement under the CM may be
further classified into a charge transfer (CT) mechanism where the incident light is in resonance
with a charge transfer excitation between the metal-molecule system, a nonresonant chemical
(CHEM) mechanism due to nonresonant interactions between the metal-molecule system, and
a molecular resonance mechanism where the incident beam is in resonance with a molecular
excitation12,41. The EM mechanism arises from the strong local electric field at the metal surface
due to excitation of the surface plasmon7,12,13,39–41,79. This mechanism is largely independent
of the molecule and known to be the major contributor to the SERS enhancement with an
approximate enhancement factor of |E|4, where E is the local field enhacement41,119,213.

Theoretical work144,214 has shown that the magnitude of the local electric field can vary
greatly over the space of a few nanometers. This feature of the local electric field, termed
the local electric field-gradient (FG), is strongest for small nanoparticles and surface features
described by small radii of curvature (near sharp tips, for example). In these systems, one
should expect a significant contribution to the EM mechanism from the FG. This concept was
first considered in the early 1980s in order to account for the observation of vibrational modes
in the SERS of benzene and related molecules that are forbidden in normal Raman scattering
(NRS).35–38 Moskovits and coworkers35–38 have argued that large FGs will contribute to the
induced dipoles through the electric dipole-electric quadrupole polarizability (A) tensor (an effect
that is sometimes referred to as quadrupolar-SERS or SEQRS). Since then, FG effects have
been largely ignored until recently where descriptions of surface-enhanced Raman optical activity
(SEROA), SERS through near-field optical microscopes (NSOM), and SMSERS necessitated
such contributions. Janesko and Scuseria215 have considered the local field and gradient from
dipolar and quadrupolar spheres in generating dressed-polarizability tensors in order to describe
SEROA. Jahncke and coworkers216,217 have considered local fields that are functions of the normal
coordinate of vibration in order to describe NSOM-SERS. Apkarian and coworkers106 considered
the FG and magnetic field around a nano-dumbbell in order to track the trajectory of a single
molecule. Recently, Takase and co-workers demonstrated that FG effect can induce otherwise
forbidden transition in SERS of carbon nanotubes.218,219

In this chapter, we derive an origin-independent formalism necessary to describe SERS due
to inhomogeneous local electric fields. This formalism is similar to the dressed polarizability
formalism presented by Janesko and Scuseria to describe SEROA, although their approach
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was origin-dependent.215 Origin-independence was achieved by recognizing that the fields and
molecular properties need to be expanded around a common origin. We then used the local field
and FG from a dipolar sphere in order to simulate the SERS spectra of benzene and pyridine.
Early SERS on benzene37,220 attributed the observation of normally forbidden modes to a FG
effect, and selection rules for such observations were derived35,36. Here we verify these selection
rules using the FG SERS formalism and show how it may be used to predict relative orientation
of molecules with respect to the substrate surface. For pyridine, in addition to information
about molecular orientation, we also show that the local FG may give rise to effects that are
generally associated with a CM mechanism. Finally, we show that these FG effects are naturally
included in simulations that account for the atomistic structure of the metal nanoparticle such as
the recently developed atomistic discrete interaction method / quantum mechanics (DIM/QM)
method.123,143,144 Our results show the importance of the FG mechanism in interpreting SERS
spectra.

4.2 Theory

4.2.1 SERS in an inhomogeneous electric field

The oscillating induced dipole, µ, responsible for Raman scattering of a molecule in the vicinity
of a metal nanoparticle is given by

µα = ααβEβ + 1
3AαβγEβγ +GαβBβ + · · · (4.1)

where α, A, and G are the electric dipole-dipole, electric dipole-quadrupole and electric dipole-
magnetic dipole polarizabilities respectively. In order to describe Raman scattering, these
polarizabilities should be understood to represent the transition polarizability tensors, i.e.
derivatives of the polarizability tensors with respect to the vibrational normal mode. The
fields perturbing the molecule are due to an incident plane wave field E(0) (described by frequency
ω and propagation vector ni) and an inhomogeneous local field Eloc, and may be written as

Eα(r, t) =
(
E(0)
α + iκ|r|E(0)

α + · · ·+ Eloc
α

)
e−iωt (4.2a)

Eαβ(r, t) =
(
iκniβE

(0)
α + · · ·+ Eloc

αβ

)
e−iωt (4.2b)

Bα(r, t) =
(
κ

ω
εαβγn

i
βE

(0)
γ + · · · − i

ω
εαβγE

loc
γβ

)
e−iωt (4.2c)

where Eα, Eαβ , and Bα are the total electric field, electric FG and magnetic field perturbing the
molecule respectively, and κ = ω/c. The Einstein summation convention is employed for repeated
indices.

For particles significantly smaller than the wavelength of light, we can ignore contributions
on the order of κ and higher. Using these fields, we re-write the induced dipole in terms of a
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modified polarizability tensor α′, defined as

µindα = ααβE
(0)
β + ααβE

loc
β + 1

3AαβγE
loc
βγ −

i

ω
GαβεβγδE

loc
γδ (4.3a)

=
[
ααγ

(
δβγ + F loc,β

γ

)
+ 1

3AαγδF
loc,β
γδ − i

ω
GαγεγδεF

loc,β
δε

]
E

(0)
β (4.3b)

= α′αβE
(0)
β (4.3c)

where F loc,α
β(γ) describes the local field (gradient) enhancement in the β (γ) direction resulting from

polarization in the α direction. This equation ignores terms on the order of κ and higher. At the
same order, F loc

αβ is symmetric (F loc,γ
αβ = F loc,γ

βα ) and there is no contribution to the local magnetic
field; we will therefore ignore terms that are dependent on this field. Similarly, the quadrupole
induced by an incident and local fields may be defined as

θindαβ =
[
Aδ,αβ

(
δγδ + F loc,γ

δ

)
+ 1

3Cαβ,δεF
loc,γ
δε

]
E(0)
γ (4.4a)

= A ′γ,αβE
(0)
γ (4.4b)

where A and C are the molecule’s electric quadrupole-dipole and electric quadrupole-quadrupole
polarizabilities respectively.

The fields from the radiating dipole and quadrupole may also be enhanced by the plasmonic
nanoparticle at the Raman-shifted frequency. This leads to an effective scattering polarizability
tensor α′′ expressed as

α′′αβ =
[
δαγ + F loc,α

γ (ωS)
]
α′γβ + 1

3F
loc,α
γδ (ωS)A ′β,γδ

=
[
δαγ + F loc,α

γ (ωS)
]{

αγδ

[
δβδ + F loc,β

δ (ωL)
]

+ 1
3AγδεF

loc,β
δε (ωL)

}
+ 1

3F
loc,α
γδ (ωS)

{
Aε,γδ

[
δβε + F loc,β

ε (ωL)
]

+ 1
3Cγδ,εζF

loc,β
εζ (ωL)

} (4.5)

where F loc(ωL) and F loc(ωS) are the local field enhancements at the incident and Raman-shifted
frequencies. The effective polarizability described here is similar to the dressed-polarizability
tensor formalism of Janesko and Scuseria215, with the inclusion of the quadrupole induced by the
local field gradient (which is of the same order in κ) through the C-tensor. From Eq. 4.5, it is
easy to show that we recover the free molecule polarizability tensor α′′αβ = ααβ within the limit
of no local fields. In the formalism presented here, the polarization of the metal nanoparticle due
to interactions with the molecule is neglected since these effects are generally small.144

The local fields from the nanoparticle (Eqs. 4.3 and 4.5) are applied at some fixed point in the
molecule. This point, chosen for convenience, is the center-of-mass of the relevant molecule for
results shown in this chapter. However, the resulting expression is origin-dependent since there
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are no mutual cancellations of origin-dependent contributions from the A, A and C-tensors for
fields coupled into the polarizability tensors. This is because these tensors describe the multipoles
induced at the origin of the coordinate system of the molecule (QM ) due to a field or FG, whereas
the local fields are calcualted in a separate substrate coordinate system (QS). In order to maintain
orgin-independence, we need a common-origin description of the local fields. This is achieved
through a Taylor expansion of the fields about the center-of-mass (or about the vector in QM that
describes the change in gauge origin). The derivation and proof of this common-origin solution is
available in Appendix D. This expansion of the local field coupled into the polarizability tensors
leads to an origin-invariant expression of the effective dipole required for correctly describing
inhomogeneous field effects in SERS.

Electric-field gradient effects are expected to be important for nanoparticles with a small radii
of curvature such as atomic roughened surfaces, nano particles with sharp tips and junctions
between different nanoparticles. To model this and obtain analytical expressions for the fields, we
assume for simplicity a dipolar sphere model for the metal nanoparticle. Such a model neglects
nonlocal and quantum effects which are expected to be of importance for nanostructures with
small dimensions.221–223 Such effects are likely to reduce the strength of the local field and thus
will affect the ratio between the electric field and the FG. While the simple dipole model will not
provide an accurate description of the absolute enhancements it can be used to determine the
relative importance of the electric fields and FG. Furthermore, while the fields and field gradients
in this work are obtained using the dipole approximation, the formalism presented remains valid
for any fields obtained from complex geometries using classical electrodynamics simulations. In
this dipolar model, the polarizability αS of the metal nanoparticle depends on the radius of the
sphere a and a function g of the frequency and dielectic constant and can be written as αS = a3g.
Assuming a point-dipole approximation, the fields at the surface of the sphere (for |R| = a) may
be expressed as E ∼ α/|R|3 = g and is independent of the sphere’s radius. The FG at the surface,
using the same model, is ∇E ∼ α/|R|4 = g/a and is therefore dependent on the radius of the
sphere. Larger spheres have smaller FG magnitudes than those for smaller spheres. We use this
relationship to examine the SERS FG effects where a decrease on the sphere’s radius results in an
increase in its FG while the magnitude of the local field at the surface remains unchanged. It
should be noted that the radius is used in this chapter to vary the field gradient to field strength
ratios and is therefore a representation of the curvature of the local surface roughness responsible
for these FG ratios; it is not the actual size of the metal nanoparticle. Also, for a dipolar model,
it is easy to show that Bloc

α = − i
ω εαβγF

loc
γβ ∝ 1/c, which implies that local magnetic fields are 2-3

orders of magnitude weaker than the local electric FG (and within the quasi-static approximation,
Bloc = 0 for κ = 0). As such, we have ignored contributions from the local magnetic field in the
derivation of Eq. 4.5 and in simulations in this chapter.

4.3 Computational Details
All calculations presented in this work were performed using a local version of the Amsterdam
Density Functional (ADF) program package.165,224 The Becke-Perdew (BP86) XC-potential153,154
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and an even-tempered quadruple-ζ slater type basis set with three polarization functions (ET-
QZ3P) from the ADF basis set library were used unless stated otherwise. The vibrational
frequencies and normal modes were calculated analytically within the harmonic approximation,
where the BP86 functional results in harmonic frequencies of pyridine close to experimental results
without the use of scaling factors225. Frequency dependent α, A and C-tensors were calculated
using the AOResponse module implimented in ADF, with a excited state lifetime of Γ = 0.1
eV50,63,111,225,226. Tensor derivatives were calculated by numerical three-point differentiation with
respect to Cartesian displacements.

Polarizability of the isotropic spheres were calculated using experimental frequency-dependent
complex dielectric functions of silver at 354 nm, and is ε = −1.9858 + 0.2854i.227 We’ve also
simulated fields from substrates using the discrete interaction model (DIM)141,142 which uses
atomistic electrodynamics. This model has been combined with time-dependent density functional
theory (TDDFT) which also allows us to simulate linear-response properties of molecule/substrate
complexes in what is termed the DIM/quantum mechanics (DIM/QM) method123,143,144. All
simulated spectra have been broadened by a full width at half-maximum (fwhm) of 20 cm−1.

The averaged Raman intensity may be calculated from the effective polarizability tensor similar
to that of traditional Raman scattering. For linearly polarized incident light and a scattering
angle of 90◦, this is given as

〈Ip〉 = Kp

45
(
45α′′2p + 7γ′′2p + 5δ′′2p

)
(4.6)

where α′′2p , γ′′2p and δ′′2p are invariants of the effective polarizability derivatives with respect to
vibrational mode p, (α′′)p. The effective polarizability derivatives need not be symmetric and
therefore the tensor invariants are given by2,66,67

α′′2p = 1
9(α′′αα)p(α′′∗ββ)p (4.7)

γ′′2p = 3
4
[
(α′′αβ)p(α′′∗αβ)p + (α′′αβ)p(α′′∗βα)p

]
− 1

2(α′′αα)p(α′′∗ββ)p (4.8)

δ′′2p = 3
4
[
(α′′αβ)p(α′′∗αβ)p − (α′′αβ)p(α′′∗βα)p

]
(4.9)

For Stokes scattering with an experimental set-up as described above, the parameter Kp is given
by68

Kp = π2

ε20
(ν̃0 − ν̃p)4 h

8π2cν̃p

1
1− exp[−hcν̃p/kBT ] (4.10)

where ν̃0 and ν̃p are the frequencies of the incident light and of the pth vibrational mode
respectively.

In order to describe the fields originating from a model substrate we will consider a sphere of
isotropic, frequency-dependent polarizability αS(ω) located in some coordinate system QS . This
polarizability is given as
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αS(ω) = a3 ε(ω)− 1
ε(ω) + 2 (4.11)

where ε(ω) is the material’s complex, frequency-dependent relative dielectic function and a is the
radius of the sphere. The local field enhancement factors from this dipolar sphere are given as

F βα (ω; R) =
(

3RαRγ
|R|5

− δαγ
|R|3

)
αSγβ(ω) (4.12a)

F δαβ(ω; R) =
(
−15RαRβRγ

|R|7
+ 3(δαβRγ + δαγRβ + δβγRα)

|R|5

)
αSγδ(ω) (4.12b)

where R describes the vector separating the molecule and dipolar sphere. The common-origin
expression of the local fields needed to maintain origin-invariance is included in Appendix D.

4.4 Results and Discussion

4.4.1 Enhancement factors in an inhomogeneous electric field

The EM enhancement in SERS is usually approximated as |E′|2|E|2, where |E|2 is the local
field enhancement of the incident field and |E′|2 is the radiated field enhancement41,119,213. For
simplicity, E and E′ here represent the appropriate components of the local fields which depend
on the relative orientation of the molecule with respect to these fields. For small Raman shifts, we
may assume that E′ ∼ E, from which we obtain an approximate enhancement factor of EF ∼ |E|4.
This factor, however, ignores the effects of an inhomogeneous local field or the presence of local
magnetic fields. In traditional Raman scattering, we consider a plane-wave of frequency ω with
electric FG and magnetic field contributions on the order of iκ and κ/ω, respectively. As such, the
A and G-tensors contribute negligibly to the induced dipoles and can safely be ignored (except in
cases of Raman optical activity). However, near metal surfaces, the local electric FG is expected
to be on the same order as the local electric field (see Eq. 4.2) and there would be a significant
contribution to the induced dipoles from the A-tensor as well36.

We have shown in Eq. 4.5 that by considering an inhomogeneous local field on the
surface of a metal nanoparticle, we obtain an effective polarizability tensor of the form
α′′ ∼ α + A + A + C. The SERS intensities are proportional to the square of this effective
polariability, or ISERS ∝ |α′′|2 ∼ |α+A+ A +C|2. This results in terms that resemble |α|2, |A|2,
|A |2, |C|2, as well as a number of coupling terms (see Table 4.1). The |α|2 and |A|2 terms can
be thought of as being the Raman intensities resulting from dipoles induced by electric fields
and FGs, whereas the |A |2 and |C|2 terms are from the quadrupoles induced by the fields and
FGs, respectively. The remaining terms describe the interference between these types of induced
multipoles. Scattering from induced magnetic dipole moments due to the local field and gradient
are ignored in this formalism since they scatter on the order of κ, but will become important in
descriptions of SEROA215. The appropriate enhancement factors for these various contributors
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Table 4.1. The terms contributing to the SERS intensity and their relevant enhancement factors

Term Enhancement

|α|2 |E′|2 · |E|2

|A|2 |E′|2 · |∇E|2

|A |2 |∇E′|2 · |E|2

|C|2 |∇E′|2 · |∇E|2

Re(αA†) |E′|2 · E · ∇E
Re(αA †) E′ · ∇E′ · |E|2

Re(αC†) E′ · ∇E′ · E · ∇E
Re(AA †) E′ · ∇E′ · E · ∇E
Re(AC†) E′ · ∇E′ · |∇E|2

Re(A C†) |∇E′|2 · E · ∇E

E and E′ are the field enhancement at the incident and Raman-shifted frequencies whereas ∇E and ∇E′ are the
field gradient enhancement at the incident and Raman-shifted frequencies, respectively.

to the SERS intensity are given in Table 4.1, where E and ∇E are the field and FG enhancement
factors respectively. This suggests that modes that are α-tensor (Raman) active are enhanced
as |E|4. |E|2|∇E|2 is the appropriate enhancement factor for modes that are A-tensor active,36

while |∇E|4 is the relevant enhancement factor the |C|2 terms. The interference terms may also
contribute by either enhancing or weakening of the SERS intensities through the enhancement
factors shown in Table 4.1.

4.4.2 SERS of benzene

SERS of benzene often serves as a model system for understanding adsorption of aromatic
molecules on metal surfaces. This is also the prototypical system for investigating FG effects in
SERS since vibrational modes normally forbidden in Raman scattering are observed for benzene
on rough metal surface.35–38 A typical SERS spectrum is shown in Figure 4.135,37,38,220,228–230.
In addition to the Raman-active a1g (ν1 and ν2), e1g (ν10) and e2g (ν6, ν7, ν8 and ν9) vibrational
modes, Raman-inactive a2u (ν11), e1u (ν18, ν19 and ν20) and e2u (ν16 and ν17) modes are sometimes
observed. The appearance of these modes have generally been attributed to a FG effect rather than
a lowering of molecular symmetry or image charge effects35–38. The selection rules for these FG
modes have also been considered35,36. Briefly, it states that modes that belong to representations
that include a cubic transformation will be FG-active since the A-tensor transforms as the product
of three translations. Benzene’s high symmetry (D6h) means that the modes that are enhanced
by a local field (a1g, e1g, and e2g) are distinct from those that are enhanced by the local FG (a2u,
b1u, b2u, e1u, and e2u)36. Included in the FG-active modes are the IR-active a2u and e1u modes,
but we will not differentiate between FG-active/IR-active and FG-active/IR-inactive modes since
the selection rules for IR are not, in general, related to those for FG SERS.
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Figure 4.1. SERS spectrum of benzene on silver colloids excited at 488 nm. Indicated are the symmetry
subgroup (assuming D6h symmetry) as well as the Raman selection rule, either Raman-active (R) or
inactive (IA). Exerimental spectrum taken from Ref. 37

Figure 4.2. Contributions to the SERS of benzene flat on a surface from the local electric field (|α|2,
top), the dipole-quadrupole terms (|A|2 + |A |2, middle), and the quadrupole-quadrupole term (|C|2,
bottom).

We aim to show the FG surface selection rules by considering the contributions to the SERS of
benzene, enhanced by the local electric field and gradient, in two different orientations. The local
electric field contribution to the SERS spectrum of benzene parallel to the surface of the sphere
(flat orientation) is described by the |α|2 term (shown in Figure 4.2 top) and resembles that of
benzene’s NRS spectrum. The relative intensity of the observed modes may be explained using
surface selection rules with a greater enhancement of the a1g(αzz) mode at 990 cm−1 (ν1). (The
surface normal runs along the z-axis for benzene parallel to the surface). The FG contribution
to the SERS spectrum described by the |A|2 + |A |2 terms leads to predicted FG-active modes.
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Figure 4.3. Contributions to the SERS of benzene perpendicular to a surface from the local electric
field (|α|2, top), the dipole-quadrupole terms (|A|2 + |A |2, middle), and the quadrupole-quadrupole term
(|C|2, bottom).

For benzene in the flat orientation, the Raman-inactive ν11 and ν18 are observable (Figure 4.2
middle). The relative intensities of these modes are as expected when considering FG surface
selection rules with ν11 [a2u(Azzz)] being more intense than ν18 [e1u(Azzx,Azzy)]. These surface
selection rules are also seen when the plane of the benzene ring is perpendicular to the substrate
surface (vertical orientation, Figure 4.3 middle) where the Raman-inactive ν14, ν15 and ν19 are
observable. Each of these modes contain large Ayyy and/or Axxx components and are therefore
expected to be enhanced for large FGs along the plane of the benzene ring. The |C|2 contributions
to the SERS intensity are plotted in the bottom spectra of Figures 4.2 and 4.3. While this term
describes a field-gradient effect (the enhancement of the near field of an oscillating quadrupole
induced by a field gradient), it selects modes that are typically Raman-active (ν1 and ν10 in a
flat orientation and ν1, ν6 and ν9 in the vertical orientation). The local electric field-enhanced
SERS of benzene in the vertical orientation (Figure 4.3 top) is very similar to the NRS and
the field-enhanced SERS of flat benzene with small changes in relative intensities. Therefore,
inclusion of the FG mechanism is essential for assignment of molecular orientation based on
relative intensities. The |α|2, |A|2 and |C|2 contributions in Figures 4.2 and 4.3 were normalized,
and their relative contributions to the observed SERS spectrum depend on the ratio of ∇E/E.
The interference terms are not shown. These terms are only significant when the appropriate
polarizability tensor gradients describe the same mode. The Raman-active and FG-active modes
in benzene are distinct, leading to little interference between the dipoles induced by the α and A
or α and A tensors. In general, the Re(αA†) contribution for benzene is six orders of magnitude
weaker than its |α|2 and |A|2 contributions.

As we have shown, FG surface selection rules can give information about the relative orientation
of the molecule with respect to the substrate surface (similar to the SERS suface selection rules).
Alternatively, relative intensities of these FG modes can give information about the nature of the
local electric field in the vicinity of the molecule. Based on these arguments one can deduce, for the
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Figure 4.4. Simulated SERS of benzene titled at 10◦ with respect to the surface (orientation shown in
inset). The radius of the substrate was taken to be 10 bohrs to reproduce the relative intensities seen in
Figure 4.1.

experimental spectrum in Figure 4.137, an averaged ensemble orientation where benzene is tilted
at some small angle. Indeed, we are able to reproduce the relative intensities of the FG modes in
Figure 4.1 by assuming a tilt of ∼ 10◦ of the plane with respect to the surface, shown in Figure 4.4.
We are able to correctly reproduce the experimental spectrum seen in Figure 4.1 with the modes
in the region of 1100-1600 cm−1 being weaker than those in the experimental spectrum. These
modes may be weaker by comparison due to an over-estimation of the enhancement of ν1. The
ν10 out-of-plane CH bending mode is particularly interesting since this is a Raman-active mode.
However, in the model presented here, this mode is enhanced by a field-gradient effect through the
|C|2 term and is not observed for a homogeneous local field. The evidence presented here confirms
that lowering of molecular symmetry is not required in order to observe Raman-inactive modes.
Indeed, the intensity of modes that become Raman-active as a result of symmetry relaxation
is generally very weak, and therefore a symmetry relaxation argument is usually insufficient to
describe the intensities seen for Raman-inactive modes in experimental SERS.

4.4.3 SERS of pyridine

Another model system typically explored using SERS is pyridine adsorbed onto metal surfaces,
where there is competition between the tendency to adsorb flat due to interactions with the
π-system or upright (vertical) through interactions with the lone pair on the nitrogen. Pyridine
possess C2v symmetry which means that, unlike benzene, there are no distinct FG modes; all modes
are both Raman and FG-active. The observation of FG modes, however, can give information
about the relative orientation of the pyridine molecule with respect to the surface through FG
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Figure 4.5. SERS of pyridine with the plane of the ring a) perpendicular, and b) parallel to the surface
showing how the absolute intensities of each mode changes as we decrease the radius of the sphere from
40 bohrs (purple spectra) to 15 bohrs (red spectra), with the spectra enhanced by the local field only
(black spectra) also shown.

surface selection rules. The exact orientation of pyridine on a metal surface is dependent on
factors such as coverage, temperature, substrate, and electrochemical potential35,231–236. While
there is evidence that pyridine binds through its nitrogen lone pair4,237–239, scanning tunneling
microscopy (STM) experiments234–236 suggest that pyridine is primarily flat (or tilted) at low
temperatures and coverages. For pyridine oriented vertically and considering only the local field
enhancement, one would expect the a1(αzz) modes to be the most intense, followed by the b2

modes with the b1, a2 and a1(αxx,αyy) modes predicted to be very weak or unobservable. In
the SERS spectrum of pyridine in this orientation (Figure 4.5a) enhanced by the local field only
(black spectrum), we observe that the most intense peaks are the a1 ring breathing modes ν1

and ν12, with contributions from ν6a, ν8a, ν9a (a1) and ν6b and ν9b (b2). These are also the most
intense modes in the NRS and the SERS spectra of pyridine flat on the surface (Figure 4.5b).

We then looked at the SERS spectra of pyridine with FG effects included. In order to visualize
the changes caused by the FG terms in the spectra, we increase the ∇E/E ratio by decreasing
the radius of the model substrate (from 40-15 bohrs for the spectra shown in Figure 4.5). This
gives us a clear picture of the modes that are enhanced (or weakened) by the FG mechanism.
For pyridine perpendicular to the surface (Figure 4.5a), we observe the largest enhancement
due to the FG mechanism in ν19a with contributions from ν1, ν3, ν6a, ν12, ν14, and ν18b. The
most intense of these FG-enhanced modes (ν14 and ν19a) are also the modes enhanced by the FG
mechanism for benzene in the same orientation (Figure 4.3 middle). Their relative intensities
are therefore similarly described using FG surface selection rules, with the a1(Azzz) mode (ν19a)
being more intense followed by the b2(Ayzz) modes (ν3 and ν14). In this orientation, we also
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Figure 4.6. The major contributors (in addition to the |α|2 term) to the FG SERS spectrum of pyridine
perpendicular to the surface of a 10 bohr radius sphere. The interference terms may result in either
enhancement or weakening of modes.

observe weakening of ν2 and ν15 due to the FG mechanism. This is due to the interference
between the multipoles induced by local fields and FGs described by the interference terms. The
contribution from the Re(αA†) and Re(αA †) terms (labeled as Re(αA†) in Figure 4.6), for
pyridine in this (vertical) orientation, is only an order of magnitude weaker than the |α|2 term
and is the same order of magnitude as the |A|2 terms and therefore contributes significantly to
the observed spectrum (see Figure 4.6). This term weakens the intensity of ν3, ν6a, ν12 and
ν15, while enhancing ν6b, ν14 and ν19a. The |A|2 term, on the other hand, enhances ν3, ν14, ν15,
ν18b and ν19a. The Re(αC†) contribution, which describes the interference between the dipoles
induced by an electric field and the quadrupoles induced by an electric field gradient, shows an
enhancement of ν1, ν6a, ν12, and ν15 and a weakening of ν9a. This suggests that ν6a, ν9a, ν12 and
ν15 are either enhanced or weakened depending on the ratio of ∇E/E. The results also indicate
that the relative intensities of ν6a and ν6b and of ν1 and ν12 may change due to FG contributions.
Understanding the relative behavior of ν1 and ν12 is particularly important since they are the
characteristic modes of pyridine and their relative intensities change with change from NRS to
SERS and also with change in electrode potential.

FG surface selection rules lead to a very different picture for pyridine lying flat on the surface
(Figure 4.5b). In this orientation, the most intense FG modes are ν4 and ν11 (b1), with ν10a and
ν10b also observable. Surface selection rules predict that b1(Axxx) modes would be most intense
for large FG perpendicular to the plane of the pyridine ring (x-axis). We also observe negligible
contribution from the interference terms in this orientation, with intensities that are two orders
of magnitude weaker than the |α|2 and |A|2 terms. As such, we observe no weakening of modes
in the presence of strong FGs.
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Figure 4.7. The SERS of pyridine on cold-deposited rough silver under vacuum35 (top), and the
simulated NRS and SERS spectra assuming a tilt angle of 25◦ with respect to the surface of a 15 bohr
diameter sphere with contributions from only the local electric field, and both the local electric field and
gradient.

The effects of the FG mechanism on the SERS of pyridine simulated in this chapter have
been observed on electrodes at high negative potentials240–242 and on low temperature roughened
surfaces under vacuum35. Moskovits et al.35 observed contributions from ν4, ν11, ν14, ν15, ν19a,
and ν19b in the SERS spectra of pyridine on cold-evaporated silver surfaces, which were absent
in the SERS spectra of pyridine on silver colloids. The appearance of these modes have been
attributed to the FG effect due to surface roughness. We have shown that a FG contribution to
the EM mechanism is required to observe these modes (Figure 4.7) and that the relative intensity
of ν4 and ν11 observed35 suggests that pyridine is (nearly) flat on the surface for the majority
of molecules in the ensemble. Figure 4.7 (top) shows the experimental data for pyridine on
cold-deposited silver under vacuum35 which we are able to reproduce (Figure 4.7 bottom) using
the FG mechanism, by assuming a tilt angle of 25◦ and a high ∇E/E ratio (a 10 bohr dipolar
sphere). We are able to reproduce most of the relative intensities observed with the exception of ν1

and ν12 (which is incorrectly described using the BP86 functional243,244) as well as the intensity
of ν15. This argument of an (almost) flat orientation of pyridine on roughened silver electrode was
also made by Creighton considering surface selection of the α-tensor240, and by STM experiments
at low temperatures and coverages234–236. These modes disappear at higher temperatures35 even
though STM results show that pyridine remains in a flat or tilted orientation234 indicating that
observation of these modes may be due to roughness on an atomic level. The observation of
these effects in the SERS spectra for pyridine on silver electrodes at high negative potentials
may also be partially explained using FG arguments. Experiments have shown that increasing
negative electrode potentials result in increase in the intensitiy of ν4, ν9a and ν11 (among others)
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and decrease in ν12
241,242. These are all behaviors that are also observed (with the exception of

ν9a) under a FG mechanism (see Figure 4.5). The intensity of ν4 and ν11 in particular suggests
a (nearly) flat orientation in these experiments. Predicting orientation change with electrode
potential using the FG mechanism is difficult, but one can show the relative behavior of all modes
(with the exception of ν9a) if a small (fixed) tilt angle is assumed and the ∇E/E ratio is increased
with increasing potential. Therefore, the behavior of these modes as seen in experiments are likely
not entirely due to the CM mechanism and may be partially explained by an EM FG mechanism.

4.4.4 Field-gradient effects in atomistic models

The SERS spectra of benzene and pyridine simulated in this work (Figures 4.2, 4.3, 4.4, 4.5 and
4.7) suggest that radii of curvature on the order of 10-40 bohrs is needed to produce observable
FG effects. These small radii of curvature indicates surface roughness on the order of a few
atoms (previously suggested after observation of these forbidden modes in pyridine only at low
temperatures35). This implies that an atomistic model may be required for a better description
of the FG resulting from surface roughness. Quantum mechanical simulations of SERS based on
the dipole-dipole polarzability for a supermolecule system (molecule plus small part the metal
nanoparticle) already account implicitly for the FG effects.41,245 However, this has not been
demonstrated explicitly since such simulations also include contributions from the CM mechanism.

Figure 4.8. SERS spectrum of benzene sitting flat on the vertex of an Ag2057 icosahedron (inset)
simulated with a) the DIM/QM method, b) local field from the DIM system, and c) local field and
gradient from the DIM system. The systems were excited at 488 nm which is far from the plasmon
resonance of the Ag2057 cluster and results in enhancement of the NRS spectrum by a factor of ∼10.
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We will show that FG contributions are included in a supermolecule dipole-dipole polarzability
using the DIM/QM model, which retains a detailed atomistic structure of the nanoparticle
and provides a natural bridge between the electronic structure methods and the macroscopic
electrodynamics description. Furthermore, since CM effects are not included in the DIM/QM
model the spectral changes are only due to interactions between the molecule and an inhomogeneous
electric field. We will examine the extreme case of benzene sitting flat on the vertex of an Ag2057

icosahedron (inset in Figure 4.8). The small radius of curvature at the tip of the icosahedron
ensures that the FG perpendicular to the plane of the ring in the vicinity of the molecule is
very pronounced, and one would expect large enhancement of ν11. Figure 4.8a shows the SERS
spectrum simulated using the DIM/QM method, whereas Figures 4.8b and c show the same
system with the local field and gradient coupled in separately using Eq. 4.6. The local fields in
Figures 4.8b and 4.8c are calculated using the DIM method and should be identical to those used
in Figure 4.8a with the only difference being the way in which they are coupled. Figure 4.8a
shows contributions from ν11 and ν19, which are Raman-inactive but FG-active. The intensities
of Raman-active ν6, ν8, ν9 and ν10 are very weak. We are therefore only able to simulate these
Raman-inactive modes after including the FG from the icosahedron (Figure 4.8c). It should also
be noted that DIM/QM interaction144 results in shifting of vibrational frequencies, as seen in
Figure 4.8, which is not captured using Eq. 4.6. While benzene sitting flat on a surface tip may be
unphysical, it clearly shows that the supermolecule polarizability calculated using the DIM/QM
method includes contributions from local electric FG. In addition to this, DIM/QM allows us to
account for the shift in vibrational frequencies due to substrate/molecule interactions.

Theoretically, the CM mechanism is elucidated from full QM calculations where the substrate
is also treated using QM. However, since these results also contain effects of the FG, it becomes
difficult to separate the two mechanisms based on these types of calculations. As we have shown
in this chapter, a lot of the effects typically attributed to the CM mechanism for pyridine may
also be explained by a FG mechanism.

4.5 Conclusion
In this work we derived an origin-independent SERS expression which includes the effects of
the FG. We used this expression to simulate the SERS spectra of benzene and pyridine on
model substrates and examined the effects of the FG. We found that we are able to correctly
describe observed Raman-inactive modes in the SERS spectrum of benzene without lowering of
molecular symmetry and that our results verified surface selection rules previously outlined for
FG effects in SERS. We were also able to reproduce experimental results assuming a 10◦ tilt of
the benzene plane with respect to the surface. For pyridine, we found that FG effects may lead
to both enhancement and weakening of modes (the exact behavior is dependent on the FG to
field strength ratio) and that we are able to describe modes observed in a low temperature, low
coverage experiment by assuming a tilt angle of 25◦. Also for pyridine, we observed that the
FG mechanism correctly describes effects that are generally associated with the CM mechanism.
Enhancement under the FG mechanism required surface roughness of atomic dimensions and we
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showed that the DIM/QM (atomistic) method accounted for these effects in the calculation of
the polarizability of the molecule-substrate complex. Electromagnetic hotspots in the junction
between nanoparticles are typically only a few nm in dimensions and thus should have a small
radii of curvature. Since hotspots are responsible for the largest enhancements in SERS we expect
that FG effects should be considered. The results presented here demonstrate the importance of
FG effects in understanding relative SERS intensities.
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Chapter 5 |
Simulating Ensemble-Averaged Surface-Enhanced
Raman Scattering

Chulhai, D. V.; Chen, X.; Jensen, L. “Simulating Ensemble-Averaged Surface-Enhanced Raman Scattering”
J. Phys. Chem. C 2016, DOI:10.1021/acs.jpcc.6b02159

Abstract
The ability to simulate surface-enhanced Raman scattering (SERS) is a vital tool in elucidating
the chemistry of molecules near the vicinity of plasmonic metal nanoparticles. However, typical
methods do not include the dynamics of the molecule(s) of interest and are often limited to
a single or few molecules. In this work, we combine molecular dynamics simulations with the
dressed-tensor formalism to simulate the SERS spectra of Ag nanoparticles coated with a full
monolayer of pyridine molecules. This method allows us to simulate the ensemble-averaged SERS
spectra of more realistic large scale systems, while accounting for the organization of molecules
in the hotspots. Through these simulations, we find that the preferential binding location and
orientation of the molecules, the choice of electrodynamics method, and the inclusion of field
gradient effects influence both the enhancement distribution and the spectral signatures. We also
show that both the translational and rotational motions of a pyridine molecule near a nanoparticle
junction may be effectively tracked through its SERS spectrum.
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5.1 Introduction
One of the unique properties of plasmonic metal nanoparticles is their ability to enhance and
concentrate the electromagnetic field at the surface of the particle. This leads to a large
enhancement of the optical properties of molecules in the vicinity of the metal surface, which
can be exploited in surface-enhanced spectroscopic techniques such as surface-enhanced Raman
scattering (SERS).13,24,75,76 Since its discovery3 and identification4,5, SERS has become a multi-
disciplinary tool.13,75,77–80 The large enhancement due to the metal particles enables the detection
and identification of single molecules,19,81–84 and a recent study has demonstrated that it is
possible to achieve sub-nm resolution from the Raman imaging of individual molecules.34

The enhancement mechanism of SERS is now well understood, and results from a combination of
the electromagnetic mechanism (EMM), due to the strong local field, and the chemical mechanism
(CM), due to the specific interactions between the molecule and the surface.12,13,24,41,75,76,246–248

The bulk of the enhancement comes from the EMM and it can be shown that SERS enhancement
scales roughly as |Eloc|4, where Eloc is the local field experienced by the molecule.213,249,250

However, a combination of the CM and the EMM is what leads to the observed SERS spectrum,
which is often impossible to interpret without input from simulations. Thus, SERS provides
unique opportunities and challenges for simulations due to the complex interplay between the
CM and the EMM.

Typically, SERS may be simulated using either full quantum mechanical, using some small
model metal cluster12,41,225,243,251,252, or hybrid quantum/classical107,130–140,253, where the
molecule is described by quantum mechanics and the nanoparticle by classical electrodynamics,
methods. The choice of method is determined by what is being explored—a full quantum
mechanical description is needed to describe the quantum interactions between the molecule and
nanoparticle necessary for describing the CM, while the hybrid methods are excellent at describing
the EMM of SERS—and each has proved insightful in understanding the chemistry of molecules
near metal substrates. However, these descriptions rarely extend beyond a single molecule. A full
quantum mechanical description of the SERS of a large ensemble of molecules on a nanoparticle
substrate is, at the present time, prohibitively expensive. Hybrid methods, on the other hand,
could allow for the study of the effects of the EMM on ensemble SERS systems.

In addition, experiments have shown the ability to temporally track the SERS spectrum of
a single molecule.19,30,44,106,254 These single-molecule spectra are often characterized by large
changes in both the SERS intensity and spectral signatures,19,44,254–257 and these changes have
been attributed to either the motion of the molecule about the hot-spot, or the change in the
geometry of the excited state structure. While theory has shown that the orientational information
of a single molecule may be reflected in its SERS spectrum,106,258 there has not yet been any
SERS model that naturally incorporates the dynamics of the molecule.

In this chapter, we will simulate the SERS spectra of several nanoparticle systems coated
with a full monolayer of molecules by combining molecular dynamics (MD) simulations with the
dressed-tensor formalism of SERS. Prior studies have demonstrated that the dressed-polarizability
formalism124,215,258 is an efficient method of simulating SERS spectra in inhomogeneous electric
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fields by decoupling the calculations of the molecular properties from the calculation of the local
field. The combination of these—MD simulations and dressed-tensors—models have allowed us to
generate and analyze nearly 18 million SERS spectra. By calculating the SERS spectra of every
molecule on the metal nanoparticles, we will be able to quantify the enhancement distributions,
as well as simulate the ensemble-averged SERS spectrum, of these coated nanoparticles. This
method will also allow us to explore how different aspects of the theoretical model affect the SERS
of ensemble systems, such as including electron smearing, the explicit locations and orientations of
attached molecules, and the gradient of the local electric field. This combined method also enables
us to track the dynamics of a single molecule, and we will show how the molecule’s translational
and rotational motions are reflected in its SERS spectrum.

5.2 Computational Details

5.2.1 Molecular dynamics simulations

The pyridine (pyr) coated Ag nanoparticles used in this chapter were obtained from MD simulations
using the Large-scale Atomic/molecular Massively Parallel Simulator (LAMMPS)259,260. The
inter- and intra-molecular interactions of the pyr molecules were described by the general
AMBER force field (GAFF)261,262. The force field responsible for the Ag-pyr interactions
was parametrized through the embedded-atom-method (EAM) potential modified by a Morse
potential and DFT-D2263–265. Full details on the optimization of this force field are included as
Supporting Information.

In the initial structure, all pyr molecules were aligned perpendicular to the Ag(111) surface
in order to generate a compact monolayer, and the coated nanoparticle was then immersed into
a cubic box filled with pyr molecules. The surface coverage was set to ∼5.5 molecules/nm2 266.
After the energy minimization, the whole system was slowly heated to 100 K and subsequently
equilibrated to yield a condensed ligand shell around the Ag cluster. Then, NVE ensemble with a
integration time step of 1 fs was employed, incorporated with velocity-rescale thermostat. The
temperature was increased from 100 K to 800 K and annealed to 300 K gradually leading to the
desorption of the excess ligands away from the Ag nanoparticle surface. Finally, the whole system
was equilibrated under NVT at 300 K for 1 ns with an integration time step of 1 fs; the last 500
ps of which were used in the SERS simulations. During the MD simulations, the Ag nanoparticle
was kept frozen to reduce computational cost.

5.2.2 The dressed-tensors formalism

The dressed-polarizability formalism,124,215,248,258 which previously was shown to accurately
simulate the SERS of pyr,258 was used for all SERS simulations. In this formalism, the molecular
transition polarizabilities are dressed as
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where α(k), A(k), A(k), and C(k) are the electric dipole-dipole, dipole-quadrupole, quadrupole-
dipole, and quadrupole-quadrupole transition polarizabilities, respectively, for normal mode k,
and the Einstein summation convention is assumed for repeated Greek subscripts. The respective
polarizabilities for each molecule being described were rotated to match their corresponding
orientation in the nanoparticle reference frame. The Floc terms are the local field enhancement
matrices, where the superscripts describe the incident field direction and the subscripts describe
the resulting field (or gradient) direction(s); for simplicity, these field enhancement matrices are
assumed to be identical at both the incident and scattered frequencies.

These field enhancement matrices were calculated using two different atomistic electrodynamics
methods: the discrete interaction model (DIM),267 and the discrete dipole approximation
(DDA).268,269 In DIM, a Gaussian charge distribution is used to describe the atoms, and
thus the interaction tensor is renormalized, which effectively screens the interactions at short
distances.142,267,270 In comparison, the bare unscreened interaction tensor is adopted in the DDA
model, as the atoms are being treated as point charges. The screening of the interaction at short-
range is essential for correctly describing the near field both in the vicinity of the nanoparticle and
in the junction between nanoparticles.267 To simplify the calculations of the field enhancement
matrices, we have not included coordination dependence in DIM.267

5.2.3 Quantum mechanical calculations

All quantum mechanical calculations presented in this work were performed using a local version
of the Amsterdam Density Functional (ADF) program package.165,224 For the parameterization
of the MD force field, the Becke-Perdew (BP86) XC-potential153,154 and the triple-ζ with one
polarization function (TZP) Slater type basis set from the ADF basis set library (keeping the
1s–3d core frozen for Ag) were used. Scalar relativistic effects were taken into account by adopting
the zeroth-order regular approximation (ZORA)271–273 and dispersion effects were accounted for
by the DFT-D3 approach274.

For the properties needed for the dressed-tensor simulations, the BP86 XC-potential153,154 and
an even-tempered quadruple-ζ slater type basis set with three polarization functions (ET-QZ3P)
were used. Vibrational frequencies and normal modes were calculated analytically within the
harmonic approximation, where the BP86 functional results in harmonic frequencies of pyr close
to experimental results without the use of scaling factors225. Frequency dependent (at ω = 343.5
nm) α, A, A, and C tensors were calculated using the AOResponse module implemented in ADF,
with an excited state lifetime of Γ = 0.1 eV50,63,111,225,226. The short-time approximation55 was
used to obtain transition polarizabilities, where tensor derivatives were calculated using numerical
three-point differentiation with respect to Cartesian normal mode displacements.
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5.3 Results and Discussion

5.3.1 Advantages and limitations

The dressed-tensor formalism is a hybrid quantum/classical method for simulating SERS; it uses
polarizability tensors calculated with quantum mechanics to describe the molecule(s), and field
enhancement matrices calculated with classical electrodynamics to describe the electromagnetic
response of the nanoparticle. The polarizability tensors of any molecule of interest need to be
calculated only once. The method may be applicable for both off- and on-resonance Raman
scattering, providing that the relevant quantum mechanical description of the molecule is used to
obtain the polarizability tensors. The field enhancement matrices need to be calculated for every
individual molecule’s position, but these are relatively inexpensive. This method also naturally
separates the theories used to calculate the molecular polarizabilities and the local electric fields,
which allows for the exploration of the effects of different electrodynamics methods. Coupling
with MD simulations, which can provide a reasonable description of the dynamics of large scale
systems, allows for either the efficient simulation of the ensemble-averaged SERS spectrum of
realistic systems or the tracking of single molecules in motion via their SERS spectra.

However, we should point out that the method employed in this chapter also has its limitations.
For each individual SERS spectrum, we only considered the interactions between the plasmonic
substrate and the probe molecule in our simulations. All interactions with solvent molecules
were ignored; although, one could include solvent molecules explicitly in the MD simulations,
or consider their effects as a dielectric medium in the classical electrodynamics simulations.
Additionally, we only considered the classical interactions between individual molecules and the
plasmonic nanoparticle. All other molecule-nanoparticle interactions—not including the MD
force field and classical electrodynamics field interactions—and all molecule-molecule interactions
outside of the MD force field were ignored. This results in identical vibrational frequencies
and transition polarizabilities for all molecules, requiring only one set of quantum mechanical
calculations, and therefore significantly reduces the computational cost. It was also shown that
there are charge-transfer (CT) transitions near the 343.5 nm excitation used in this chapter,275

and these may significantly alter the resulting SERS spectrum. Accounting for these CT effects is
beyond the limitations of the dressed-tensor formalism, though it was previously found that the
SERS signatures resulting from the field gradient effects often resemble signatures attributed to a
CT mechanism.258 Finally, the SERS spectra were generated from trajectories of 500 ps; while
this is much too short of a time-scale to capture the full dynamics in macroscopic SERS systems,
the results still give insight into how the dynamics of these molecules affect their SERS spectra.
This is particularly important since recent experimental studies have shown the ability to track
the motion of single molecules via their SERS spectrum19,30,254,276

5.3.2 Analyzing hot-spots

We continue our discussion by considering how the hot-spots from different nanoparticle substrates
affect the resulting SERS enhancement distribution. Figure 5.1 shows three Ag nanoparticle

53



a)

b)

c)

1

5

10

1

5

10

1

20

40

60

80

Figure 5.1. The local field enhancement along a cut plane for (a) the sm. monomer, (b) the lg. monomer,
and (c) the dimer systems.

substrates: a small monomer icosahedron of 2869 atoms (hereinafter, sm. monomer); a large
monomer icosahedron of 33153 atoms (hereinafter, lg. monomer); and a dimer system made up of
two icosahedron monomers of 33153 atoms each. In this figure, we also show the local electric
fields on a cut plane for the indicated incident field direction. Such figures are usually used to
map the hot-spots in various substrates, and from this figure we observe that the properties of the
hot-spots in these three substrate systems are very different. The hot-spots are near the vertices
in the sm. monomer, near the vertices and edges in the lg. monomer, and in the junction between
the monomers in the dimer system. The magnitude of the local electric field is also very different
in these systems, as is expected, and is ∼ 4 times larger in the dimer system than in the monomer
systems. This image is very useful in determining the locations of—and the enhancement expected
from—these hot-spots, though it neglects any information from the associated molecule(s).

An alternative method of mapping locations of hot-spots is presented in Figure 5.2. In this
figure, we show a single snapshot in the MD trajectory for each of the three systems, where
we color the individual molecules by their enhancement factors; the lowest enhancements are
colored blue and the highest red. An advantage of this method is that it takes both the size
and preferential binding orientation of the molecules into consideration. The information gained
on the location of the hot-spots from Figure 5.2 are similar to those obtained from Figure 5.1;
the largest enhancements occur near the vertices for the sm. and lg. monomer systems, and in
the junction for the dimer system. However, the binding distance of the molecules and their
orientations, which are both important determining factors, give us a better estimate of the
enhancement we can expect for a pyr molecule in these hot-spots. Furthermore, it provides direct
information about both the spatial distribution of and the organization of the molecules within
the hot-spot, something that cannot be gained from the field-enhancement plots in Figure 5.1.

Additionally, we can use the statistics of the calculated enhancements over the entire MD
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Figure 5.2. Individual molecules colored by their enhancement factors for (a) the sm. monomer, (b) the
lg. monomer, (c) the dimer, and (d) a zoomed in region of the dimer system.

trajectory to quantify the hot-spot. In ref. 277, a truncated Pareto distribution (TPD) was used
to fit the tail of the enhancement distribution in order to describe the nature of the hot-spot
using three parameters. According to the TPD analysis, we can fit the tail of the enhancement
distribution, on a log-log scale, to a straight line:

p(G) = A ·G−k (5.2)

where G is the SERS enhancement and p(G) is the enhancement probability density. A and
k are two of the three parameters used to describe the hot-spot: A is a representation of the
(spatial) size of the hot-spot, while k describes the sharpness of the hot-spot or how quickly, in
spatial terms, the hot-spot decays. Note that our definitions of A and k are slightly different
from those in ref. 277, and therefore the numbers obtained in this chapter should not be directly
compared to those in the aforementioned paper. In particular, this interpretation of A and k
assumes the description of a single hot-spot,277 which does not apply to our monomer systems
as seen from Figure 5.1. We will therefore only use these parameters as a way to quantify the
general enhancement distribution (over all hot-spot regions) in our systems. In our analyses, we
find that the margin of error is ± 1 for A and ± 0.05 for k; these errors span the variations in A
and k that may be obtained from choosing different enhancement bin sizes—all data presented
were obtained with a (log) enhancement bin size of 0.2. The third parameter used to describe a
hot-spot is the maximum measured enhancement Gmax.

In Figure 5.3, we show the TPD analyses of the three nanoparticle systems; the values of A,
k, Gmax, and the average enhancement (Gavg) for these systems are included in Table 5.1. We
observe very large A and k values—68 and 0.90, respectively—for the sm. monomer. These values
result from a lack of a well-defined long-tail distribution of enhancement factors for this system,

55



p
ro

b
a
b
il
it

y
 d

e
n
s
it

y
, 
p
(G
)

enhancement, G

Figure 5.3. TPD analyses of the sm. monomer, lg. monomer, and dimer systems.

system log[Gavg] log[Gmax] A k
sm. monomer 2.302 3.604 67.7 0.90
lg. monomer 3.104 4.953 8.0 0.54
dimer 4.318 6.949 7.0 0.53

Table 5.1. TPD enhancement distribution results from the different nanoparticle systems

and indicate a very large, but also very sharply decaying hot-spot—assuming that the system
is comprised of a single hot-spot region. However, from Figure 5.2, we observe that there is no
single hot-spot in this system; the largest enhancements are centered around the many vertices
of the nanoparticle, giving the statistics of one very large hot-spot. Additionally, the difference
between Gmax and Gavg is small, resulting in a large k value and giving the impression that these
hot-spots are quickly decaying.

With an understanding of how the A and k values reflect the nature of the hot-spot regions,
we will now look at the TPD results from the lg. monomer and dimer systems. Both these
systems have similar enhancement distributions, with A values of 8 and 7 for the lg. monomer
and dimer systems, respectively, and with k values of 0.54 and 0.53, respectively. These values
are within their expected margins of error, suggesting that the enhancement distributions from
these two very different substrate systems are, in fact, the same. However, both A and k describe
the spatial distribution of the enhancements; since the dimer system is made up of two of the
lg. monomer nanoparticles, one should expect the enhancement distributions—outside of the
hotspot created by the junction in the dimer system—to be similar for both systems. The Gavg
and Gmax of these systems, on the other hand, are very different, and results from the larger
enhancements in the dimer junction dominating its average enhancement. These enhancement
distributions are also reflected in how much each molecule contributes to the ensemble SERS
signal in each system,278 the results of which are shown in Table S2 of the Supporting Information.
They indicate that ∼90% of the signal is contributed by ∼33%, ∼14% and ∼1% of the molecules
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in the sm. monomer, lg. monomer and dimer systems, respectively.

5.3.3 Distribution and spectral dependence on theoretical models

To understand how the theoretical model affects the resulting enhancement distribution and
spectrum, we will examine three particular aspects: (1) electrodynamics method used in simulating
the local electric field (that is, the DIM or DDA methods); (2) sampling method used (MD
simulations or random sampling); and (3) field extension used in dressed-tensor formalism
(homogeneous local field or both homogeneous field and its gradients). We will briefly examine
how each of these influence both the SERS distribution, via the TPD results, and the resulting
spectrum in the dimer nanoparticle system.

5.3.3.1 The impact of the electrodynamics method on the SERS distribution

Classical electrodynamics are typically used to simulate the optical properties of metallic
nanoparticles, but resent studies have shown that such a description fails for smaller (<10
nm) nanoparticles.12,279–283 The failure of classical electrodynamics for these nanoparticles is due
to a lack of treatment of the smearing of the electronic charge distribution over the particle surface;
this effect is correctly captured in quantum mechanics and nonlocal electrodynamics.267,284,285

This nonlocal effect is also thought to be important for simulating the local fields for nanoparticle
dimers whose separations are <1 nm,12,282 distances that are sometimes referred to as the
tunneling regime. However, it is not yet clear to what extent the screening of the electric fields
impact the SERS distribution of systems outside of this regime.

model log[Gavg] log[Gmax] A k
DIM (MD; E) 4.32 6.95 7.0 0.53
DIM (MD; E+FG) 4.37 6.96 7.2 0.53
DDA (MD; E) 4.47 7.16 13.7 0.51
DDA (MD; E+FG) 4.71 7.58 9.8 0.47
DIM (random; E) 3.05 6.63 7.2 0.69
DIM (random; E+FG) 3.06 6.72 7.7 0.69
DDA (random; E) 3.13 6.68 42.1 0.80
DDA (random; E+FG) 3.16 7.29 41.9 0.80

Table 5.2. TPD enhancement distribution results from the different models

Examining how each of the DIM141,142 and DDA268 electrodynamics methods affect the
TPD results should give us insight into the importance of nonlocal effects in these systems.
The key difference between these two methods is that while the DDA method describes the
interaction between point-dipole objects, the DIM method describes the interaction between
Gaussian distribution of charges. Results from these methods are included in Table 5.2, with
the corresponding graph shown as Figure S2 in the Supporting Information. The DDA method,
at least for a homogeneous local electric field, results in uniformly larger field enhancements for
(almost) all molecules when compared to the DIM method. This is reflected in the near parallel
lines in Figure S2 and in their different A values (7.0 and 13.7) but equivalent k values (0.53 and
0.51) for the DIM and DDA methods, respectively. This is not surprising since most molecules
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are bound to the surface and should, in the DIM method, experience near uniform screening of
the local electric field when compared to the DDA method.

The results in Table 5.2 are also shown assuming either a homogeneous local field (E) or
both a homogeneous local field and its gradient (E+FG). Note that the dimer system includes
two atomically sharp tips, separated by 1 nm, and therefore magnifies the effects of the field
gradient. We observe that the enhancement distribution for the DIM method is the same whether
or not we take field gradients into consideration, with similar A, k, Gavg and Gmax values. But
in the DDA method, while both field expansions result in similar k values (of ∼0.5), it results in
very different A , Gavg and Gmax values. These differences are also due to the Gaussian charge
distribution in DIM resulting in a screening of the electric fields at closer distances, which is where
the field gradient is strongest, minimizing its overall impact. These results indicate that it is in
fact the field gradient contributions to the local electric field that determines the enhancement
distribution in the DDA method, while the enhancement distribution in the DIM method is
primarily determined by its homogeneous local electric field contributions.

5.3.3.2 The effect of sampling methods on the SERS distribution

A previous study dedicated to quantifying the enhancement distribution of SERS hot-spots277

assumed that the molecular positions about the hot-spot were randomly sampled. The estimation
of enhancement factors from local field plots, such as in Figure 5.1, also implicitly assumes random
positioning of the molecule somewhere in the hot-spot region. However, the molecule’s finite size
and preferential binding orientation with respect to the surface influences its SERS enhancement.
One should, therefore, expect that the SERS distribution of a particular molecule to also be
dependent on its preferential binding location and orientation. In order to understand the extent
of this dependency, we will compare the SERS distributions obtained from both MD and random
sampling.

The data obtained from random sampling are also included in Table 5.2, with its graphical
comparison with the MD sampled data shown in Figure S3 of the Supporting Information. The
most obvious result from the random sampling methods is perhaps the much smaller Gavg values,
which are due to the probe molecules being randomly dispersed throughout the system rather than
preferentially binding to the surface as observed in the MD simulations; on average, the molecules
are farther away from the surface with random sampling. The smaller enhancement values from
the random sampling—both Gavg and Gmax—are also due, in part, to the random orientation
of the molecules. The pyr molecules from the MD sampling show a tendency for binding in an
“upright” orientation, with the plane of the pyr ring perpendicular to the surface. This would
lead to larger enhancements since the local field vector is also, at least in the hot-spot regions,
perpendicular to the surface; as was previously shown,258 pyr shows the strongest enhancements
for local field vectors parallel to the plane of the molecule. The screening of the local fields (in
the DIM method) also impacts the enhancement distribution differently with random sampling,
which is illustrated in Figure S3 of the Supporting Information. As discussed earlier, the MD
sampled distribution simulated with the DDA method can be seen as a uniform increase in the
enhancement of (nearly) all molecules in the system when compared to the enhancement simulated
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with the DIM method. This is not the case with the randomly sampled methods, since only the
molecules closer to the substrate surface would be more enhanced by the DDA method—these
are the fields most screened in the DIM method—resulting in larger A and k values.

5.3.3.3 The SERS spectral signatures with field gradients

Figure 5.4. Ensemble SERS spectra calculated using the DIM and DDA methods with MD sampling,
the DIM method with random sampling, and taken from experiment35. I, II and III indicate regions
where the modes are most affected by the field gradient.

It is known that the local electric field at the surface of plasmonic nanoparticles may vary
by orders of magnitude over the space of a few nanometers.140,214,258 This gradient of the local
electric field is strongest for surface features described by small radii of curvature, such as near
sharp tips. They also result in a change of the Raman selection rules and often in the enhancement
of Raman forbidden modes,35–38,258 where ref. 258 has explicitly shown that the relative intensity
of the field gradient modes may help to predict the orientation of the molecule(s) with respect
to the surface. However, previous theoretical studies involving field gradients124,215–217,258 have
only considered single molecules, either in fixed orientations or orientationally averaged with
respect to the nanoparticle surface. In order to understand how these field gradients influence
the ensemble-averaged SERS spectrum, we will study the dimer nanoparticle system with its
atomically sharp tips and strong field gradients.

In Figure 5.4, we show the resulting ensemble-averaged spectrum simulated using the DIM
and DDA methods with MD sampling and using the DIM method with random sampling. We
only show the spectra with field gradients included; this is because the (normalized) spectra are
near identical when simulated with a homogeneous electric field. The data for the experimental
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spectrum was taken from ref. 35, and is for pyr on roughened cold-evaporated silver under vacuum.
This experimental spectrum clearly shows the enhancement of unexpected Raman modes that are
attributed to large field gradients due to atomic-scale surface roughness. We also highlight three
regions—I, II, and III—in Figure 5.4, which are regions where the modes are most affected by the
field gradient. The modes in regions I and II are (usually) enhanced when pyr binds in an upright
orientation, while those in region III are usually seen when pyr binds in a “flat” orientation, that
is, when the plane of the pyr ring is parallel to the surface.258

In all three simulated cases in Figure 5.4, the ratio of the modes in regions I and II are larger
than those in region III, while the opposite is true for the experimental spectrum. This is because
the MD simulations resulted in the pyr molecules binding in an upright orientation, whereas the
experimental data suggests that the pyr molecules are more flat; an angle of ∼ 25◦ between the
molecular plane and the surface was calculated in ref. 258. Additionally, while the field gradient
effects are clearly more significant in the DDA method than in the DIM method—due to the
screening of the field gradient at closer distances in the DIM method—the relative intensity of
the field gradient modes in the different regions remain the same in both methods. The random
sampling method, on the other hand, shows very weak enhancements of the modes in the three
regions. This is to be expected since fewer molecules are closer to the surface where the field
gradients are stronger. Overall, one needs to be careful when comparing the intensities of the
field gradient modes in the simulated spectra to those seen experimentally, as factors such as
location, orientation, and screening of the electric field all influence the intensity of these modes.

5.3.4 Tracking single molecules

We also used the results from the MD simulations of the dimer system to track the SERS spectrum
of a single molecule over the course of 100 ps, which is shown in Figure 5.5. This figure also
includes the relative positions and orientations of this molecule at 400, 421, 436, 456, and 500
ps. This particular molecule was selected because it underwent the largest change in intensity
over its calculated trajectory. Similar large changes in the SERS intensity have been observed in
experiments, and are generally attributed to the diffusion of molecules across hot-spots.19,30,254

The spectral changes we observe are of two types: intensity changes over a longer time scale (5–20
ps); and intensity changes on a shorter time-scale (∼1 ps). We find that it is the translational
motion of the molecule about the hot-spot that is responsible for the intensity changes over
the longer time-scale. This is illustrated in Figure 5.5, and shows weaker intensities when the
molecule is farther away from the dimer junction (at 400–418, 422–445 and 470–500 ps) and
stronger intensities when the molecule is closer to the junction (at 418–422 and 445–470 ps).

In order to study the spectral changes over the shorter 1 ps time-scale, we will examine the
SERS of the molecule in the region between 450–460 ps in Figure 5.6. This figure also includes the
relative orientation of the molecule with respect to the dimer junction at each time step. These
images clearly show that the spectral changes at the 1 ps time-scale are due to the rotational
motion of the molecule. We observe that the intensity is lowest when the molecule flat on the
surface—as seen at 450, 455, 457, and 459 ps. In these orientations, the field gradient modes that
indicate at flat pyr molecule (at 738 and 922 cm−1) are also sometimes visible; the spectrum at
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400 ps

421 ps

436 ps

456 ps

500 ps

Figure 5.5. The SERS spectra of a single molecule over 100 ps (left) with its position and orientation
relative to the dimer junction at selected times (right).

459 ps is too weak to see these signatures. The brighter spectra indicate when the plane of the
pyr molecule is perpendicular to the surface, or parallel to the local field vectors, and are of two
types: an “upright” orientation, when the N-atom is pointing towards (or away from) the surface;
and a “side” orientation, when the N-atom is pointing in a direction parallel to the surface. These
two orientations are also distinctly seen in the spectral features through the intensity of the field
gradient modes. The side orientations are clearly indicated by strong field gradient modes at
1060, 1135 and 1271 cm−1 (at 451–454 ps), while the upright orientation is indicated by strong
field gradient modes at 865 and 1458 cm−1 (at 456 and 458 ps). The regular Raman modes at
597, 649, 977, 1019, 1200 and 1570 cm−1 showed no distinct changes in relative intensity with
respect to rotational motion.

Of course, there are lots of factors that would determine whether such rotational information
may be obtained from SERS spectra. Some of these include obvious experimental challenges such
as slowing rotational motion and having nanoparticle substrates designed with strong local electric
field gradients. Additionally, the pyr molecule’s Raman scattering was simulated off-resonance of
any molecular excitations. It was shown that, when considering only the EMM mechanism of
SERS, molecules on resonance that exhibit Franck-Condon (or A-term) scattering do not exhibit
the same rotational asymmetry in its polarizability tensors44, and therefore these rotational
signatures may only be seen for Herzberg-Teller (or B-term) scatterers or non-resonant molecules.
Yet, Figure 5.6 clearly shows that the rotational motion of a single molecule may be captured by
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Figure 5.6. Single-molecule SERS spectra over 10 ps, showing how the orientation is reflected in the
resulting spectrum

its SERS spectrum providing that the appropriate conditions are met.

5.4 Conclusion
In this chapter, we have combined MD simulations with the dressed-tensor formalism to simulate
the SERS of ensemble systems over short time-scales. We have used the results obtained to
examine the hot-spots of three model systems—a sm. monomer, a lg. monomer and a dimer
nanoparticle system—by examining their respective enhancement distributions. We also showed
that the location and orientation of the molecule, as well as whether or not field gradients
were included in the simulations, all affected both the SERS enhancement distribution and the
spectrum. We found that screening of the local electric fields was still important for a 1 nm dimer
junction, and it also softened the effects of the field gradient, which is in better agreement with
the weak field gradient effects seen experimentally. Finally, we presented the SERS trajectory of
a single molecule, and showed how both translational and rotational information were reflected in
its SERS spectrum. This chapter presents a comprehensive theoretical description of SERS on
large scale systems, and explicitly show how single-molecule motion may be tracked via SERS
spectroscopy.
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Chapter 6 |
Simulating Surface-Enhanced Raman Optical Activ-
ity Using Atomistic Electrodynamics-Quantum Me-
chanical Models

Chulhai, D. V.; Jensen, L. “Simulating Surface-Enhanced Raman Optical Activity Using Atomistic
Electrodynamics-Quantum Mechanical Models” J. Phys. Chem. A 2014, 118, 9069–9079

Abstract
Raman optical activity has proven to be a powerful tool for probing the geometry of small organic
and bio-molecules. It has therefore been expected that the same mechanisms responsible for
surface-enhanced Raman scattering may allow for similar enhancements in surface-enhanced
Raman optical activity (SEROA). However, SEROA has proved to be an experimental challenge
and mirror-image SEROA spectra of enantiomers have so far not been measured. There exists
a handful of theories to simulate SEROA, all of which treat the perturbed molecule as a point-
dipole object. To go beyond these approximations, we present two new methods to simulate
SEROA: the first is a dressed-tensors model that treats the molecule as a point-dipole and point-
quadrupole object; the second method is the discrete interaction model / quantum mechanical
(DIM/QM) model which considers the entire charge density of the molecule. We show that
while the first method is acceptable for small molecules, it fails for a medium-sized one such
as 2-Bromohexahelicene. We also show that the SEROA mode intensities and signs are highly
sensitive to the nature of the local electric field and gradient, the orientation of the molecule,
and the surface plasmon frequency width. Our findings give some insight into why experimental
SEROA, and in particular observing mirror-image SEROA for enantiomers, has been difficult.
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6.1 Introduction
Raman optical activity (ROA) measures the difference in the Raman intensities involving light
of two different polarization states. The most common, incident circular polarization (ICP),
measures the difference in Raman intensities due to right- and left-circularly polarized incident
light. ROA measures vibrational optical activity, and is therefore able to detect structural
information as it relates to the chirality of molecules.286–288 Following the first theoretical
treatments289–291 and experimental observations292,293, ROA has been routinely used to assign
absolute configurations294 of small chiral molecules and measure enantiomeric excess. The method
can also be easily performed in aqueous environments, which makes it a powerful tool in modern
biochemistry.287,295 ROA may be used to study both the structure and dynamics of biomolecules
in situ (for a recent overview, see ref. 295).

However, ROA is hindered by low signal intensities, which may be three or more orders of
magnitude weaker than the already weak normal Raman scattering (NRS). These intensities
may be enhanced by several orders of magnitude through surface-enhanced Raman scattering
(SERS)-like mechanisms, termed surface-enhanced Raman optical activity (SEROA). SEROA is a
unique technique in that it combines the powerful structural information of ROA with the strong
enhancements known for SERS. However, the technique has proved to be difficult, with only a
few experimental studies reported to date.296–301

There have been only a handful of theoretical treatments of SEROA. The earliest models were
those by Efrima302,303, who suggested that large ROA intensities may be observed for systems
with large electric field-gradients and different phases of the field and field-gradient. Hecht and
Barron304,305 explored the effects of a surface fixed with respect to the laboratory frame. More
recently, Janesko and Scuseria215 proposed a “dressed-tensors” approach, where the molecular
polarizabilities are “dressed” to account for the electromagnetic fields. Bouř and co-workers306,307

later re-formulated this in matrix form that allows one to easily account for multiple substrates.
Johnson and co-workers308,309, expanding on the work done earlier by Kerker and co-workers for
SERS,116 used extended MIE theory to simulate the ROA excitation profiles of molecules near
plasmonic nanoshells. These theories all treat the molecule as a point-polarizable dipolar object
- either considering only the dipoles induced due to electric field gradients and magnetic fields,
or the electric quadrupoles and magnetic dipoles induced due to electric fields only - where the
relevant polarizabilities were calculated using quantum mechanics (QM) (or other appropriate
methods) for the molecule in the absence of the nanoparticle. However, this approximation is
expected to fail for molecules close to the nanoparticle surface where field-gradients are significant.
For such systems, we assert that higher order terms describing the molecule are required.

Ideally, one should consider the molecule as a continuous charge distribution interacting
with the plasmonic nanoparticle. This is accounted for naturally in full QM treatment of both
the molecule and nanoparticle. We previously explored both the chemical and electromagnetic
effects of SEROA using time-dependent density functional theory (TDDFT) by accounting for
the finite lifetime of the excited states.310 Janesko and Scuseria used TDDFT to further explore
the chemical effects in SEROA by approximating the nanoparticles as Au2 clusters.311 In that
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work, they showed that orientational averaging leads to a “wash-out” of the SEROA intensities.
These methods, however, are intractable for realistically-sized nanoparticles (>1000 atoms). For
such systems, a classical electrodynamics treatment of the nanoparticle(s) is warranted.

In this work, we present two methods that overcome the limit of assuming a point-dipole
approximation of the molecule. The first is the discrete interaction model (DIM) / QM
method,107,123,143,144,312 where we treat the nanoparticle atomistically as a collection of interacting
atomic polarizabilities. This method allows the entire charge density of the molecule to interact
with the classical nanoparticle, with the response of the entire complex calculated within linear
response (LR) TDDFT. DIM/QM have previously been used to simulate SERS107,144 and here
we extend this model to also describe SEROA. The second method is an extension of the dressed-
tensors formalism215,258, where we consider both the local electric field-gradient emanating from
the nanoparticle, as well as a point-dipole and point-quadrupole expansion of the molecule. We will
then explore the changes these different approximations have in the resulting SEROA spectrum,
including enhancement factors, orientational averaging, and the effects of the plasmon frequency
width. Finally, we conclude by highlighting the implications of the results presented here for
experimental SEROA.

6.2 Theory

6.2.1 General ROA theory

The measured Raman optical activity depends on the experimental setup, and reflects a different
relation between molecular properties. For spectra presented in this chapter, we will consider
excitations off-resonance of any molecular transitions but on resonance with plasmonic modes. We
will also (initially) ignore the difference in the frequencies of the incident and Raman-scattered
radiation. Under such conditions, the ROA intensity for incident circular polarization (ICP)
experimental setup with a back-scattered geometry is given by the far from resonance (FFR)
expression287,313,314

IRp (π)− ILp (π) = Kp

[
24β(G′)2

p + 8β(A)2
p

45c

]
(6.1)

where c is the speed of light, β(G′)2
p is the anisotropic invariant of the product of the electric

dipole-dipole (αp) and the electric dipole-magnetic dipole (G′p) polarizability transition tensors,
and β(A)2

p is the anisotropic invariant of the product of the electric dipole-dipole and electric
dipole-quadrupole (Ap) transition tensors. These invariants are defined as

β(G′)2
p = Im

(
i
3αpαβG

′p∗
αβ − αpααG

′p∗
ββ

2

)
(6.2)

β(A)2
p = Re

(
1
2ωα

p
αβεαγδA

p∗
γ,δβ

)
(6.3)

where εαγδ is the Levi-Civita (anti-symmetric) tensor, ω is the angular frequency of the incident
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light and Re and Im denotes the real and imaginary parts, respectively. The parameter Kp

depends on the incident and scattered light and is defined as

Kp = π2

ε20
(ν̃in − ν̃p)4 h

8π2cν̃p

1
1− exp[−hcν̃p/kBT ] (6.4)

The Raman intensity for the same experimental setup is

IRp (π) + ILp (π) = Kp

[
45α2

p + 7β(α)2
p

45

]
(6.5)

where α2 and β(α)2 are the isotropic and anisotropic invariants of the electric dipole-dipole
polarizability, defined as

α2
p = 1

9Re
(
αpααα

p∗
ββ

)
(6.6)

β(α)2
p = Re

(
3αpαβα

p∗
αβ − αpααα

p∗
ββ

2

)
(6.7)

The polarizability transition tensors αp, Ap, and G′p are approximated using a Placzek-like
polarizability theory (we adopt a short-time approximation accounting for the finite lifetime of
the excited states that are valid both on- and off-resonance.)50,315–319 Within the Placzek-like
approximation, the transition tensors are expanded in a Taylor series around the equilibrium
geometry and can be expressed as geometric derivatives of the molecular properties as

αpαβ =
(
∂ααβ
∂Qp

)
0

(6.8)

Apα,βγ =
(
∂Aα,βγ
∂Qp

)
0

(6.9)

G′
p
αβ =

(
∂G′αβ
∂Qp

)
0

(6.10)

where Qp is the normal mode of the pth vibration, and the unsuperscripted tensors are the
electronic polarizability tensors.

6.2.2 DIM/QM in the modified velocity gauge

The DIM/QM method107,123,143,144,312 represents the nanoparticle atomistically, allowing for the
modeling of the influence of the local environment on the optical properties of the molecule, while
treating the molecule as a charge density using density functional theory (DFT). The atomic
resolution of the DIM method is therefore able to consider complex surfaces and nanoparticle
geometries. The calculation of the electric dipole-dipole polarizability response in DIM/QM has
been implemented in ADF using damped LR-TDDFT.123,143,144 In this work, we implemented
DIM/QM in the velocity gauge accounting for the perturbation due to the local electric fields
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and the finite lifetime of the excited states. We also extended the DIM/QM framework to be
able to calculate the electric dipole-quadrupole and electric dipole-magnetic dipole response
tensors, including origin-dependent contributions from the local electric field, in order to calculate
origin-invariant SEROA.

In order to modify the DIM/QM operators, we will start by considering the sum-over-states
(SoS) expressions of the polarizability response tensors. However, it should be noted that actual
response calculations were carried out using LR theory. The SoS expression for the DIM/QM
electric dipole-dipole polarizability tensor in the length gauge (LG) is

αtotαβ(ω) = 〈〈µ̂totα ; µ̂totβ 〉〉ω+iΓ (6.11a)

= 2
∑
n 6=0

ωn0〈ψ0|µ̂totα |ψn〉〈ψn|µ̂totβ |ψ0〉
ω2
n0 − (ω + iΓ)2 (6.11b)

where ψ0 and ψn are the electronic ground and excited state wave functions, ~ωn0 = En − E0 is
the corresponding excitation energy, and Γ is a damping factor to account for the finite lifetime
of the excited states. µ̂tot is the total dipole operator, defined as

µ̂totα (ω) = µ̂QM
α + V̂ loc

α (ω) (6.12)

where µ̂QM is the dipole operator of the molecule and V̂ loc is the frequency-dependent local field
potential induced due to an external perturbation. It is defined as

V̂ loc
α (rj , ω) = −

∑
m

rjm,βµ
(α)
m,β(ω)

|rjm|3
(6.13)

where µ(α) are the dipoles induced in the DIM system due to an external perturbation in the α
Cartesian direction, and m sums over each DIM atom.

We extend this to include the total electric dipole-quadrupole (Atot) and electric dipole-
magnetic dipole (G′tot) response of the molecule-nanoparticle complex. These are defined as

Atot
α,βγ(ω) = 〈〈µ̂totα ; θ̂totβγ 〉〉ω+iΓ (6.14a)

= 2
∑
n 6=0

ωn0〈ψ0|µ̂totα |ψn〉〈ψn|θ̂totβγ |ψ0〉
ω2
n0 − (ω + iΓ)2 (6.14b)

G′
tot
αβ(ω) = Im

[
〈〈µ̂totα ; m̂tot

β 〉〉
]
ω+iΓ (6.15a)

= −2
∑
n6=0

(ω + iΓ)Im
[
〈ψ0|µ̂totα |ψn〉〈ψn|m̂tot

β |ψ0〉
]

ω2
n0 − (ω + iΓ)2 (6.15b)

where θ̂tot and m̂tot are the total DIM/QM quadrupole and magnetic dipole operators respectively.
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In DIM/QM, only the dipole operator is modified by the local fields. However, the A- and
G′-tensors depend on the dipole operator and the choice of origin. θ̂tot and m̂tot are therefore
modified as

θ̂totαβ = θ̂QM
αβ + 3

2RβV̂
loc
α + 3

2RαV̂
loc
β − δαβRγ V̂ loc

γ (6.16)

m̂tot
α = m̂QM

α − ω

2 εαβγRβV̂
loc
γ (6.17)

where R is the vector describing the molecule’s center-of-nuclear-charge.
However, magnetic properties (such as G′) become origin-dependent under incomplete basis

sets. Origin-invariant magnetic properties may be obtained using gauge-including atomic orbitals
(GIAOs), which include a magnetic field-dependent phase factor.320–322 Alternatively, response
calculations may be performed in the velocity gauge323,324 by employing the modified velocity
gauge (MVG) formalism of Pedersen and co-workers.325 In MVG, the static limit of the velocity
gauge response needs to be subtracted from the frequency-dependent limit as325

〈〈ÂLG; B̂LG〉〉ω = 1
ω2

[
〈〈ÂV G; B̂V G〉〉ω − 〈〈ÂV G; B̂V G〉〉0

]
(6.18)

where ÂLG and B̂LG are general LG operators and ÂV G and B̂V G are their corresponding velocity
gauge (VG) representations. When considering the finite lifetime of the excited states, the response
tensors are complex and the MVG expression becomes

〈〈ÂLG; B̂LG〉〉ω+iΓ = 1
(ω + iΓ)2

[
〈〈ÂV G; B̂V G〉〉ω+iΓ − 〈〈ÂV G; B̂V G〉〉0

]
(6.19)

The derivation of the MVG expressions within damped response theory is described in Appendix
F.

For consistency, we formulate all DIM/QM response tensors in the MVG formalism. The VG
dipole operator of the molecule-nanoparticle complex is

µ̂tot,VGα (ω) = ∇̂QM
α + V̂ loc,VG

α (ω) (6.20)

where V̂ loc,VG is the VG form of the local field operator, defined as

V̂ loc,VG(r, ω) = 1
2

(
∇̂2V̂ loc,LG(r, ω)

)
+
(
∇̂αV̂ loc,LG(r, ω)

)
∇̂α (6.21)

The operators θ̂VG and m̂VG may be found in ref. 324. See Appendix F for derivation of V̂ loc,VG.
The total quadrupole and magnetic dipole VG operators (θ̂tot,VG and m̂tot,VG) are also modified
by the local fields using eqs. 6.16 and 6.17 and V̂ loc,VG. The MVG polarizability tensors can now
be written using µ̂tot,VG, θ̂tot,VG, and m̂tot,VG and using eq. 6.19. This MVG implimentation of
DIM/QM therefore allows us to simulate gauge-invariant SEROA.
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6.2.3 Dressed-tensors formalism

We extend the dressed-tensors formalism of Janesko and Scuseria215 to include the quadrupoles
induced by an electric field, gradient and magnetic field. This is an extension of a formalism
that we recently presented to describe SERS due to inhomogeneous local fields.258 We start by
considering the dipole induced in the molecule due to all perturbing electric field, electric field
gradient, and magnetic field. The dipole induced in the molecule is

µindα = ααβE
in
β + ααβE

loc
β (Ein) + 1

3Aα,βγE
′in
βγ + 1

3Aα,βγE
′loc
βγ (Ein) +G′αβB

in
β (6.22)

where α, A and G′ are the electric dipole-dipole, electric dipole-quadrupole and electric dipole-
magnetic dipole polarizabilities, respectively. E, E′ and B are the perturbing electric field, electric
field gradient, and magnetic field. The superscripts “in” and “loc” refer to the fields from the
incident laser or the plasmonic local fields. Similarly, the induced quadrupole may be written as

θindαβ = Aγ,αβE
in
γ + Aγ,αβE

loc
γ (Ein) + 1

3Cαβ,γδE
′in
γδ + 1

3Cαβ,γδE
′loc
γδ (Ein) +Dαβ,γB

in
γ (6.23)

and where A , C and D are the electric quadrupole-dipole, electric quadrupole-quadrupole, and
electric quadrupole-magnetic dipole polarizabilities, respectively.

The local fields, for a dipolar substrate, depend only on the incident electric field and may be
defined as

Eloc
α (Ein

β ) = T (2)
αγ (R)αNPγβ (ωI) (6.24a)

= Eβα(R, ωI) (6.24b)

E′locαβ (Ein
γ ) = T

(3)
αβδ(R)αNPδγ (ωI) (6.25a)

= F γαβ(R, ωI) (6.25b)

where αNP(ωI) is the polarizability of the nanoparticle at the incident frequency ωI , and R is the
vector describing the separation of the nanoparticle and the molecule. T (x) are the interaction
tensors defined as T (x)(R) = ∇x(1/|R|).123

The dipoles and quadrupoles induced in the molecule may also induce dipoles in the plasmonic
nanoparticle at the Raman-shifted frequency ωS . Therefore, the total dipole induced in the
molecule-nanoparticle complex oscillating at ωS is

µtotα = µindα + αNPαβ (ωS)T (2)
βγ (R)µindγ + 1

3α
NP
αβ (ωS)T (3)

βγδ(R)θindγδ (6.26a)
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= µindα + Eαβ (R, ωS)µindβ + 1
3F

α
βγ(R, ωS)θindβγ (6.26b)

For simplicity, we will define Fαβ = δαβ + Eαβ and assume αNP(ωS) ∼ αNP(ωI). This allows us
to ignore the frequency dependence of F . The complete expression for the total induced dipoles
becomes

µtotα =
(
Fαγ αγδF

β
δ + 1

3F
α
γ Aγ,δεF

β
δε + 1

3F
α
γδAε,γδF

β
ε + 1

9F
α
γδCγδ,εζF

β
εζ

)
Ein
β

+ 1
3

(
Fαδ Aδ,βγ + 1

3F
α
δεCδε,βγ

)
E
′in
βγ

+
(
Fαγ G

′
γβ + 1

3F
α
γδDγδ,β

)
Bin
β

(6.27)

We may now consider the dressed electric dipole-dipole polarizability αDαβ , which describes
the total dipoles induced in the α direction due to an incident electric field in the β direction.
This is found as

αDαβ = Fαγ αγδF
β
δ + 1

3F
α
γ Aγ,δεF

β
δε + 1

3F
α
γδAε,γδF

β
ε + 1

9F
α
γδCγδ,εζF

β
εζ (6.28)

Similarly, we take ADα,βγ to describe the total dipoles induced in the α direction due to an
incident electric field gradient in the βγ directions, and G′Dαβ to describe the total dipoles induced
in the α direction due to an incident magnetic field in the β direction. These dressed tensors are
found as

ADα,βγ = Fαδ Aδ,βγ + 1
3F

α
δεCδε,βγ (6.29)

G′Dαβ = Fαγ G
′
γβ + 1

3F
α
γδDγδ,β (6.30)

We can also make the far from resonance approximation for the molecular polarizability
tensors: Ai,jk = Ai,jk, Cij,kl = Ckl,ij , G′ij = −Gji, and Dij,k = −Dk,ij , which (along with
αNP(ωI) ∼ αNP(ωS)) leads to ADi,jk = A D

i,jk and G′Dij = −GD
ji . As such, the SEROA intensity of

the complex may be found using FFR theory in eq. 6.1 and the dressed polarizability tensors.
The dressed-tensors formalism in eqs. 6.28–6.30 are all origin-dependent, since the tensors

A, G′, A , C, and D all depend on the choice of origin. However, we have found that a Taylor
expansion of the local fields about the origin of the molecular frame (see ref. 258) accounting for
the translation of some reference point (the CoNC in this case) leads to origin-invariant dressed
tensors. This expansion is equivalent to defining the molecular origin as the CoNC. We have
included the origin-dependence of the C- and D-tensors in Appendix F.

We also wish to point out that the electric field due to a point quadrupole is of the same order
as the electric field gradient due to a point dipole, since both involve the T (3) interaction tensor.
As such, a quadrupolar expansion of the molecule must be considered when accounting for the
local electric field gradient. In this chapter, we will not generally differentiate between these two
mechanisms, and may use either term to collectively describe them.
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6.3 Computational Details
All calculations presented in this work were performed using a local version of the Amsterdam Den-
sity Functional (ADF) program package.165,224,326 The Becke-Perdew (BP86) XC-potential153,154

and a triple-ζ Slater-type basis set with two polarization functions (TZ2P) from the ADF basis
set library were used unless stated otherwise. The vibrational frequencies and normal modes
were calculated numerically within the harmonic approximation, where the BP86 functional
results in harmonic frequencies of small molecules close to experimental results without the use
of scaling factors225. Frequency dependent response tensors were calculated using a modified
version of the AOResponse module implemented in ADF, with an excited state lifetime of Γ = 0.1
eV50,63,111,225,226. Tensor derivatives were calculated by numerical three-point differentiation with
respect to Cartesian displacements. All simulated spectra have been broadened by a Lorentzian
with a full-width at half-maximum (fwhm) of 20 cm−1.

Nanoparticles in this chapter, unless stated otherwise, have been simulated using the discrete
interaction model (DIM)141,142, which treats the nanoparticle atomistically using classical
electrodynamics. Icosahedral structures, which approximates spherical nanoparticles, were built
from silver (111) unit cells. In this chapter, the polarizability interaction model (PIM) flavor
of DIM was used, where the system is described as a collection of interacting polarizabilities.
The frequency-dependent complex dielectric function of silver was obtained from Johnson and
Christy227.

6.4 Results and Discussion

6.4.1 SEROA with DIM/QM

Figure 6.1. Orientation of (2S,3S)-trans-dimethyloxirane (DMO) on a Ag2057 icosahedron. The distance
between the CoNC of DMO and the nearest silver atom is 4.0 Å (7.6 a0). The Ag2057 cluster is ∼4 nm in
diameter.

In order to test the origin-invariance of the DIM/QM calculated spectra, we examined
the SEROA of (2S,3S)-trans-dimethyloxirane (DMO) on a Ag2057 cluster for the molecule
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Figure 6.2. The SEROA of DMO on a Ag2057 cluster excited at 343 nm for the molecule (a) at the
center of nuclear charge, and (b) translated a vector (5,3,1) Å, calculated using MVG. The spectrum in c
is the difference between a and b. Spectra have been offset for clarity.

centered at its center of nuclear charge (CoNC) (see Figure 6.1 for orientation) and for the
same system translated a vector (5,3,1) Å. The system was excited at 343 nm, which is the DIM
simulated plasmon resonance of the silver cluster chosen, and would therefore produce the largest
enhancements to the SERS and SEROA spectra. The SEROA of these systems are presented in
Figure 6.2, where the Figure 6.2a is the CoNC SEROA and Figure 6.2b is the SEROA of the
translated complex. Figure 6.2c is the difference between these two spectra, which clearly shows
that the calculated spectra are origin-invariant (a requirement of any observable), even though the
individual tensor components of A and G′ remain origin-dependent. Origin-invariance is obtained
through mutual cancellation of origin-dependent contributions.

Figure 6.3 shows the SEROA of DMO on Ag2057 calculated using DIM/QM with and without
local field enhancements. The DIM/QM spectrum in Figure 6.3a contains only the “image field”
effect, which accounts for the mutual polarization of the two sub-systems. This results in minor
changes to the ROA spectrum. The local field contribution on the other hand (Figure 6.3b),
commonly referred to as the electromagnetic (EM) enhancement mechanism in SERS, results in
large enhancements of the ROA signal. The current implementation of DIM/QM ignores most
effects related to the “chemical mechanism”. The small “image field” effect along with an absence
of chemical effects, suggests that the dressed-tensors formalism should agree with the results
simulated using DIM/QM, providing that an acceptable multipolar expansion of the molecule is
considered.
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Figure 6.3. The (a) ROA and SEROA of DMO on Ag2057 without enhancement from local fields, and
(b) with enhancements from local fields.

6.4.2 SEROA using dressed tensors

In order to test the quadrupolar expansion of the dressed-tensors formalism, we simulate the
SEROA of DMO on Ag2057 (orientation the same as in Figure 6.1) with dressed tensors and
compare it to the results obtained using DIM/QM. These results are shown in Figure 6.4, where we
graph the unenhanced ROA (Figure 6.4a), the dressed-tensors dipolar-expansion (Figure 6.4b), the
dressed-tensors quadrupolar expansion (Figure 6.4c), and the DIM/QM (Figure 6.4d) simulated
SEROA of DMO. For a small molecule like DMO, the dressed-tensors formalism reproduces the
DIM/QM spectrum reasonably well once the field-gradient (quadrupolar) contributions are taken
into consideration. This suggests that even for a molecule as small as DMO, one needs to consider
a quadrupolar expansion as well as the inhomogeneous nature of the local electric field to correctly
simulate the response of the system.

Since the dressed-tensors formalism may be used to accurately describe the SEROA of DMO,
we used it to explore a number of SERS and SEROA phenomena. One such application is
exploring the effects of orientational averaging due to strong local fields. Janesko and Scuseria
have explored the effects of the chemical mechanism on orientationally averaged SEROA.311 In
that paper, they showed that the chemical effect leads to a weakening of SEROA intensities
when compared to those of a fixed molecule-substrate orientation. We observe the same effects
in SEROA due to the EM mechanism both with and without field-gradient effects. Because the
SEROA mode selectivity and intensity signs all depend on the specific molecule/nanoparticle
orientation, we define the SERS and SEROA enhancement factors as

EF SERS/SEROA =
∑
p |I

SERS/SEROA
p |∑

p |I
NRS/ROA
p |

(6.31)

where p sums over all modes in the region of the molecule under consideration (400-1800 cm−1).
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Figure 6.4. The ROA (a), and the SEROA (b, c and d) spectra of (2S,3S)-trans-DMO on a Ag2057
cluster excited at 343 nm. The spectra in b and c were simulated using the dressed-tensors formalism,
where b neglects all terms due to a local electric field-gradient. The spectrum in d was simulated using
DIM/QM with the same substrate and orientation as the complexes in b and c.

In orientational averaging, we assume that the molecule may bind in any orientation with respect
to the surface with equal probability of sampling all orientations. Figure 6.5 shows the SERS
enhancements as a function of the separation of the molecule and nanoparticle for both a fixed-
orientation and orientationally-averaged molecule, while Figure 6.6 shows the same for the SEROA
enhancements. From Figure 6.5, we observe that both the inclusion of the field-gradient effects
as well as orientational averaging lead to larger SERS enhancement. This is expected since
the field-gradient effect leads to relaxed Raman selection rules,35–38,258 leading to more modes
becoming Raman-active. The effect is increased upon orientational averaging since it allows more
orientations to be sampled where specific modes are preferentially enhanced. For SEROA, however,
we observe that while a fixed orientation leads to SEROA signals that are more intense than
those of unenhanced ROA, the changes in mode signs and intensities lead to weakened SEROA
intensities upon orientational averaging (compared to the intensities of a fixed-orientation). This
effect is independent of the nature of the local electric field or multipolar expansion assumed
for the molecule. We also observe EF SEROA < 1 (SEROA intensities that are weaker than
unenhanced ROA, see Figure 6.6) upon orientational averaging. These weakening factors are
found for orientationally averaged systems with very small perturbing local electric fields, and
results from sign changes in the SEROA intensity for different orientations. The results show that,
like the chemical mechanism311, the EM enhancement mechanism also results in weaker SEROA
intensities upon orientational averaging. Therefore, SEROA experiments should be performed on
fixed-orientation molecules to maximize observed intensities.
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Figure 6.5. The SERS enhancement for DMO on Ag2057 as a function of the separation of the molecule
from the nanoparticle. Enhancement shown for fixed orientation (fixed) and orientationally averaged
(averaged) systems, assuming a homogeneous local electric field (E) or a local electric field and gradient
(E,FG). The x-axis measures the separation of the CoNC and the nearest silver atom (in atomic units).

Figures 6.5 and 6.6 also give us insight into the SERS and SEROA enhancement factor
dependence on the local field gradient magnitudes. It is well established41,119,213 that the SERS
enhancement may be approximated as |E|4, where E is the local field enhancement. Similarly,
using the terms from the dressed-tensors and DIM/QM formalisms, one obtains an approximate
SEROA enhancement factor of E3. Because the field gradient varies with the distance R from the
surface as R−4, the SERS enhancement dependence on the field gradient varies as R−16, whereas
the SEROA field gradient enhancement varies as R−12. This implies that the field gradient is
only significant in SERS for molecules very close to the nanoparticle surface, while in SEROA,
the field gradient has a greater effect over larger distances. For fixed orientation DMO separated
16 a0 (8.5 Å) from the Ag2057 cluster, we observe significant contribution to the SEROA from the
field gradients but vanishingly small contributions to the SERS spectrum. These relationships
change with orientational averaging, where we observe that most field gradient effects in SEROA
are negated upon averaging.

6.4.3 SEROA dependence on plasmon width

For simplicity, we have so far used the ωS = ωI approximation, which is valid for broad plasmons.
If we consider the change in the polarizability of the nanoparticle at the incident and Raman-shifted
frequencies (which is especially important for nanoparticles with narrow plasmon widths), then the
FFR ROA theory is no longer applicable. Even if we are not exciting (near) a molecular transition,
using αNP (ωS) 6= αNP (ωI) results in different dressed Roman- and script-type polarizability
transition tensors. Under these conditions, we therefore apply the unrestricted ROA formalism
outlined by Nafie314. For backscattered Raman and ICP-ROA, these unrestricted intensities are
given by
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Figure 6.6. The SEROA enhancement for DMO on Ag2057 as a function of the separation of the
molecule from the nanoparticle. Enhancement shown for fixed orientation (fixed) and orientationally
averaged (averaged) systems, assuming a homogeneous local electric field (E) or a local electric field and
gradient (E,FG). The inset shows the enhancement region between 0–1 (weakening) that occurs for an
orientationally averaged system.

IRp (π) + ILp (π) = Kp

[
45α2

p + 7βS(α)2
p + 5βA(α)2

p

45

]
(6.32)

IRp (π)− ILp (π) = Kp

45c
[
90αG′p + 14βS(G′)2

p + 10βA(G′)2
p + 2βS(A)2

p − 2βA(A)2
p

+90αGp − 10βS(G )2
p + 10βA(G )2

p + 6βS(A )2
p − 2βA(A )2

p

] (6.33)

where the symmetric (βS) and anti-symmetric (βA) anisotropic invariants are all defined in ref.
314.

The dressed-tensors formalism allows us to easily account for the changes in the nanoparticle’s
polarizability, and we are able to define dressed Roman- and script-type tensors as

ADα,βγ = Fαδ (ωS)Aδ,βγ + 1
3F

α
δε(ωS)Cδε,βγ (6.34a)

A D
α,βγ = Aδ,βγF

α
δ (ωI) + 1

3Cβγ,δεF
α
δε(ωI) (6.34b)

G′
D
αβ = Fαγ (ωS)G′γβ + 1

3F
α
γδ(ωS)Dγδ,β (6.35a)

GD
αβ = GαγF

β
γ (ωI) + 1

3Dα,γδF
β
γδ(ωI) (6.35b)

We may still assume that there are no molecular transitions near the excitation frequency, where
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the FFR equalities hold true for the “undressed” molecular tensors (Ai,jk = Ai,jk, Cij,kl = Ckl,ij ,
G′ij = −Gji, and Dij,k = −Dk,ij).

Figure 6.7. The difference in (a) SERS and (b) SEROA of DMO accounting for the difference in
polarizability of the substrate at ωI and ωS for a plasmon fwhm of 0.5 eV.

We used these dressed tensors and the unrestricted equations to simulate the SERS and
SEROA of DMO using a Drude model for the plasmon of a dipolar sphere. The model plasmon
has a fwhm of 0.5 eV and we excite the system at the plasmon resonance (343 nm or 3.61 eV). We
simulate the SERS and SEROA under two conditions: the first assumes that ωS = ωI , and the
second accounts for the difference in ωS and ωI . The results show that the effects are negligible
in SERS (see Figure 6.7a), with the intensities at higher wavenumbers being less enhanced (the
scattered fields are only weakly able to excite the plasmons). However, the results are much more
complex for SEROA (Figure 6.7b). We find that spectrum looks very different when accounting
for the plasmon width. This difference is seen at both low and high wavenumbers with changes in
both intensity and sign of individual modes. In general, we see that accounting for the difference
in incident and Raman-shifted frequencies resulted in a general increase in the SEROA intensities,
this is the opposite of what is observed in SERS. This is because the Roman- and script-type
tensors are different; the Roman-type tensors (describing the dipoles due to an incident field
gradient or magnetic field) are enhanced at ωS , whereas the script-type tensors (describing the
quadrupoles or magnetic dipoles due to an incident electric field) are enhanced at ωI . These
differences mean that there is not a perfect cancellation of terms in the unrestricted formalism and
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the larger intensities are due to the additional terms that are not present in the FFR equation.
This effect, therefore, is specific to the scattering geometry, molecule and its orientation, and the
plasmon width, and would require careful control when trying to reproduce experimental data.

6.4.4 SEROA of bromohexahelicene

Figure 6.8. The orientation of (+)2Brhh (left) and (-)2Brhh (right) on the Ag21k cluster.

To test the limitations of our two methods, we simulated the SEROA of the two enantiomers of
2-Bromohexahelicene (2Brhh) on a 10 nm diameter (21127 atoms) silver icosahedron (Figure 6.8
shows their respective orientations). We chose 2Brhh because simulations of its ROA were recently
shown to reproduce experimental results quite accurately327 (see Figure F.1 in Appendix F for
the ROA of (+/-)2Brhh). Additionally, observing mirror-image SEROA for enantiomers has been
an on-going experimental challenge. We aim to add to this discussion by simulating the SEROA
of both enantiomers of 2Brhh on silver nanoparticles. The DIM/QM simulations also demonstrate
the method’s ability to simulate the SEROA of a medium-sized molecule on a realistically-sized
nanoparticle with atomic resolution.

Figure 6.9 shows SEROA simulation of the enantiomers of 2Brhh on Ag21127 using the dressed-
tensors (Figure 6.9a) and DIM/QM (Figure 6.9b) methods. We observe large differences in
total SEROA intensities using the three methods. The dressed-tensors dipolar approximation
resulted in intensities that are ∼ 55 times weaker than those from the DIM/QM method. The
dressed-tensors quadrupolar approximation, while producing relative intensities that are very
similar, resulted in a two-fold increase in intensities over those from the dipolar approximation.
This implies that both terms contribute about equally to the total SEROA intensities. However,
the large intensity differences between the dressed-tensors and DIM/QM methods suggest that
higher order multipoles need to be considered for a medium-sized molecule like 2Brhh. Such
expansions would require higher order polarizability responses in its dressed-tensors expression,
which would quickly become infeasible. For such systems, a method that considers the entire
charge density of the molecule (like DIM/QM) is required.

Even though the dressed tensors resulted in spectra that are an order of magnitude different
from those by DIM/QM, the two methods still reproduced spectra with similar relative intensities
in the 1200 and 1350 cm−1 regions. The major observed differences are the shift in vibrational

78



Figure 6.9. SEROA of (+/-)2Brhh simulated using (a) the dressed tensors with (solid lines) and without
(dashed lines) the quadrupolar expansion, and (b) the DIM/QM method.

frequencies (caused by the molecule interacting with the surface through the DIM/QM force
field144), the large intensities of the three modes ∼ 1600 cm−1, and the break in mirror-image
SEROA for the two enantiomers at ∼ 1070 cm−1. The modes at 1065 and 1084 cm−1 are in-plane
C-H bending modes in the region near the bromine atom, whereas the modes at 1559, 1578 and
1611 cm−1 are all C-C stretches. The changes in relative intensities observed for these modes
are due to the geometry changes caused by the DIM/QM force field. We explored the effects
of these geometry changes by considering the ROA of the DIM/QM optimized 2Brhh, while
ignoring polarization and plasmonic effects from the DIM system. The results (see Figure F.2 in
Appendix F) show large changes in the relative intensities of these modes when compared to the
modes ∼ 1350 cm−1 and to the corresponding modes in the gas-phase optimized structure.

The spectra in Figure 6.9 all produced (near) mirror-image SEROA for the two enantiomers of
2Brhh. We may further explore the limitations of observing mirror-image SEROA for enantiomers
due to the EM mechanism using the dressed-tensors formalism. This is important since mirror-
image SEROA of enantiomers have not yet been shown experimentally. We have found that mirror-
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Figure 6.10. SEROA for the two enantiomers of 2Brhh on a flat surface calculated using the dressed-
tensors formalism for (a) structures that preserve mirror symmetry, and (b) structures that break mirror
symmetry. The (+)-2Brhh enantiomer in b has been rotated an Euler angle (15◦, 15◦, 15◦) compared to
that in a.

image SEROA may only be observed when the mirror symmetry for the molecule-nanoparticle
complex is preserved. We show an example of this in Figure 6.10, where we simulate the SEROA
of the two enantiomers of 2Brhh on a flat surface. To model the flat surface, we considered an
electric field and gradient component perpendicular to the surface. The orientations shown in
Figure 6.10a preserves mirror symmetry and results in mirror-image SEROA. Any deviation
from such orientations or change in the local electric field strengths for one enantiomer but not
the other leads to a break in the mirror symmetry of the complex and very different SEROA
spectra, as shown in Figure 6.10b where the (+)-2Brhh enantiomer was rotated through a small
Euler angle of (15◦, 15◦, 15◦). These results imply that in order to observe mirror-image SEROA,
one needs to ensure that the molecules of both enantiomers bind in geometries that preserves
their mirror symmetry on surfaces that supports local electric fields that are (near) identical.
These experimental conditions are difficult to fulfill, giving us some insight into why observing
mirror-image SEROA for enantiomers continues to be a challenge.

6.5 Conclusion
In conclusion, we have developed two methods to simulate SEROA which go beyond the point-
dipole approximation of the molecule. The first is a point-dipole and point-quadrupole dressed-
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tensors approximation which is valid for small molecules, but which fails to describe the SEROA
of large molecules. The second DIM/QM method describes the molecule as a complete charge
distribution, while accounting for an atomistic description of the nanoparticle, and may be used
for large molecules and nanoparticles. The DIM/QM method have been implemented using the
MVG so as to ensure gauge-invariant results. We have used these methods to explore some
phenomena as it relates to SEROA, and have found that for a fixed orientation, the field-gradients
induces significant change in the SEROA spectrum and are effective over larger surface-molecule
separation than in SERS, but these effects are minimized with orientational averaging. We also
showed that orientational averaging and the EM mechanism leads to weakened SEROA intensities,
and may even lead to SEROA intensities that are weaker than those of unenhanced ROA. We
have found that the SEROA mode intensities and signs are highly sensitive to the molecular
orientation, local electric field and gradient strengths, and plasmon widths, all of which makes
experimental SEROA challenging.
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Chapter 7 |
Plasmonic Circular Dichroism of 310- and alpha-
Helix Using a Discrete Interaction Model / Quan-
tum Mechanics Method

Chulhai, D. V; Jensen, L. “Plasmonic Circular Dichroism of 310- and α-Helix Using a Discrete Interaction
Model / Quantum Mechanics Method” J. Phys. Chem. A 2014, 119, 5218–5223

Abstract
Plasmonic circular dichroism (CD) of chiral molecules in the near field of plasmonic nanoparticles
(NPs) may be used to enhance molecular CD signatures or to induce a CD signal at the plasmon
resonance. A recent few-states theory explored these effects for model systems, and showed an
orientation-dependence of the sign of the induced CD signal for spherical NPs. Here, we use the
discrete interaction model / quantum mechanical (DIM/QM) method to simulate the CD and
plasmonic CD of the 310- and α-helix conformations of a short alanine peptide. We find that the
interactions between the molecule and the plasmon lead to significant changes in the CD spectra.
In the plasmon region, we find that the sign of the CD depends strongly on the orientation of
the molecule as well as specific interactions with the NP through image dipole effects. A small
enhancement of the CD is found in the molecular region of the spectrum, however, the molecular
signatures may be significantly altered through interactions with the NP. We also show that the
image dipole effect can result in induced plasmonic CD even for achiral molecules. Overall, we
find that the specific interactions with the NP can lead to large changes to the CD spectrum that
complicates the interpretation of the results.
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7.1 Introduction
Circular dichroism (CD) is an optical technique that measures the difference in the absorption of
left- and right-circularly polarized light. It is also commonly referred to as electronic CD (ECD)
when associated with the electronic absorption spectrum of a molecule. CD is most commonly
used to identify the secondary structure of proteins, such as differentiating between α-helix,
β-sheet, and random coil,328 or even between the 310-helix and the α-helix.329,330 Plasmonic CD
is a term generally used to describe the measure of CD signals of plasmonic nanoparticles (NPs)
either by themselves or in the presence of chiral molecules. Applications of plasmonic CD range
from the enhancement of CD signals in chiral molecules331 to the design of novel devices.332,333

There are a number of mechanisms by which a plasmonic NP (or collection of NPs) may
induce or enhance a CD signal.334 CD signals may be observed for NPs with chiral shapes,335 for
a collection of NPs in a chiral arrangement,336 for NPs built from chiral crystal structures, or
for achiral NPs interacting with chiral molecules.331,337,338 For a recent review on the types of
plasmonic CD, see ref. 334. In this chapter, we will focus on the enhancement of CD signals of
chiral molecules due to the near field (local field) effect of achiral plasmonic NPs.

Govorov and co-workers339,340 developed a few-states theory to simulate the plasmonic CD of
model systems. In this method, the plasmonic CD may be written as339

CDmolecule-NP =
∑
n

(
an · Im

[
(P̂ · ~µn) · ~mn

]
+ bn · F(~µn, ~mn)

)
(7.1)

where n sums over all excited states with transition electric and magnetic dipoles ~µn and ~mn,
and where the coefficients an and bn depend on the geometry and material of the NP(s), on the
energy of the incident light frequency, and on excited state n. P̂ is the local field enhancement
matrix, and the function F depends on the material of the NP(s) and the geometry of the complex.
The first term in eq. 7.1 is a local field enhancement of the transition dipole moment, and is
responsible for enhancing CD signatures at the molecular resonances. The second term is primarily
responsible for the induced CD signal at the plasmon resonance. This theory was applied to model
chiral systems (including a 4-state α-helix model) near spherical monomer and dimer NPs, where
an opposite-sign behavior of the CD signals induced at the plasmon resonance was observed for
orthogonal transition dipole moments.339,340 While successful in describing the plasmon included
CD, this model neglects specific interactions between the molecule and the nanoparticle. Recent
work by Li et al.341 used a quantum mechanics capacitance molecular mechanics (QMCMM)
model to study the CD of helicon molecules adsorbed on metal surfaces. This work showed that
the CD depends strongly on the orientation of the molecule relative to the surface. The QMCMM
model accounted for the specific interactions between the molecule and the surface, but did not
include plasmon effects in the simulations. Thus, there is a need for models that account for both
the specific interactions with the metal surface and the plasmon response of the NP to accurately
model plasmonic CD.

In this chapter, we will explore the plasmonic CD near (quasi-)spherical NPs for realistic
molecular systems by adapting the discrete interaction model / quantum mechanics (DIM/QM)
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method107,123,124,143,144,258,312 to describe the CD of the molecule-NP complex. This method
couples a (time-dependent) density functional theory ((TD)DFT) description of the molecule with
an atomistic electrodynamics model of the NP. The TDDFT description allows us to go beyond
the few-states model description of a molecule, while the atomistic description of the NP allows
us to simulate surface defects and arbitrarily shaped NPs. DIM/QM has previously been used to
simulate a variety of plasmon-molecule interactions such as surface-enhanced Raman scattering
(SERS)107,144 and surface-enhanced Raman optical activity (SEROA).124 We will explore the
CD and plasmonic CD of the 310- and α-helix conformations of Alanine20 (Ala20) near a 17 nm
diameter (quasi-)spherical silver NP. This choice of system is similar to the model system studied
by Govorov339,340 and thus will allow for a qualitative comparison with the predictions from that
simple few-states model.

7.2 Theory
The CD spectrum, in terms of ∆ε (in units of 1 mol−1 cm−1), is given as342

∆ε(ω) = [θ(ω)]
3298.8 (7.2)

where [θ(ω)] is the frequency-dependent molar ellipticity of the molecule. This term (in units of
deg cm2/dmol) may be obtained from the imaginary part of the complex frequency-dependent
optical rotation parameter β̃(ω) (in atomic units) as

[θ(ω)] = 1.343× 10−6ν̄2Im
[
β̃(ω)

]
(7.3)

where ν̄ = ω/(2πc) is the frequency in wave numbers. The optical rotation parameter, β̃, is
obtained from

β̃(ω) = − 1
3ω
∑
α

G̃′αα (7.4)

where G̃′ is the imaginary part of the electric dipole–magnetic dipole response tensor, broadened
by a phenomenological damping factor. We point out that, unlike ref. 342, we define β̃ in terms
of G̃′ and not G̃, where G̃′ = iG̃.

We recently implemented the calculation of G̃′ within the DIM/QM method124 in order to
simulate the SEROA of molecules. This implementation of G̃′ in the DIM/QM framework was
done in the modified velocity gauge (MVG)325 in order to calculate the gauge origin-independent
tensors needed for SEROA. It should be noted that β̃ depends on the trace of G̃′, which should
be origin-independent for a finite basis set in any gauge. Briefly, the DIM/QM implementation of
G̃′ is as follows
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G̃′αβ(ω,Γ) = 2
(ω + iΓ)2

∑
n 6=0

ωn0Im
[
〈0|µ̂tot,VGα |n〉〈n|m̂tot,VG

β |0〉
]

ωn0 − (ω + iΓ)2

−
Im
[
〈0|µ̂tot,VGα |n〉〈n|m̂tot,VG

β |0〉
]

ωn0


(7.5)

where Γ is a damping factor that has the meaning of the inverse of the lifetime of the excited
states.226 The operators µ̂tot,VG and m̂tot,VG are the total electric dipole and magnetic dipole
operators in the velocity gauge (VG). In DIM/QM, these operators are modified by the local
fields (generated by the NP at incident frequency ω) perturbing the molecule, and are defined as

µ̂tot,VGα = µ̂QM,VG
α + V̂ loc,VG

α (7.6a)

m̂tot,VG
α = m̂QM,VG

α − ω

2 εαβγRβV̂
loc,VG
γ (7.6b)

where the Einstein summation convention is assumed for repeated indices, the superscript “QM”
indicates the quantum mechanical operators, and R is the vector describing the molecule’s center
of nuclear charge. The operator V̂ loc,VG is the local field operator in the VG, defined as

V̂ loc,VG
α (r, ω) = 1

2

NNP∑
i

T
(3)
ββγ(r−Ri)µ(α)

i,γ (ω) +
NNP∑
i

T
(2)
βγ (r−Ri)µ(α)

i,γ (ω)∇̂β (7.7)

The index i runs over all classical atoms located at Ri, where µ(α)
i (ω) is the dipole induced at

atom i due to an external perturbation in the α Cartesian direction at incident frequency ω. The
tensors T (x)(R) are the interaction tensors defined as T (x)(R) = ∇x(1/|R|).123

7.3 Computational Details
All calculations presented in this work were performed using a local version of the Amsterdam Den-
sity Functional (ADF) program package.165,326,343 The Becke-Perdew (BP86) XC-potential153,154

and a triple-ζ Slater-type basis set with one polarization function (TZP) from the ADF basis set
library were used. The core orbitals (C[1s], N[1s], O[1s]) were frozen. Structures for the 310- and
α-helix conformations of the (S)-Ala20 polypeptide were obtained from Jacob and co-workers.344

Frequency-dependent response tensors were calculated using a modified version of the AOResponse
module implemented in ADF, with an excited state inverse lifetime of Γ = 0.1 eV50,63,111,225,226.
The absorption and CD spectra were then generated within the 170–400 nm window, with a 0.1
eV resolution. An icosahedral structure of 104,223 silver atoms (Ag104k) was used to approximate
a ∼17 nm diameter spherical NP, where the frequency-dependent complex dielectric function of
silver was obtained from Johnson and Christy227. For the DIM/QM simulations the polarizability
interaction model (PIM) form of DIM was used, where the NP is described as a collection of
interacting polarizabilities.107
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7.4 Results and Discussion
We chose to study the 310- and α-helix peptide in order to understand how the CD of molecules
is perturbed by interactions with a plasmonic NP. The α-helix is characterized by a hydrogen
bond between the residues i and i+ 4, whereas the 310-helix has hydrogen bonds between the
residues i and i+ 3. This difference in the hydrogen bond network makes the 310-helix longer
than the α-helix for identical residue sequences. The gas-phase optimized structures used in this
chapter were taken from the work of Jacob and co-workers.344 The dihedral angles of the central
residues in the α-helix were found to be (φ = −60◦, ψ = −42◦), which is close to the dihedral
angles of an ideal α-helix of (φ = −57◦, ψ = −47◦). For the 310-helix, the dihedral angles of
(φ = −63◦, ψ = −19◦) were also found to be in good agreement with that of an ideal 310-helix
of (φ = −74◦, ψ = −4◦). As discussed in the introduction, CD can in certain cases be used to
distinguish between these two types of helical structures.329,330

Figure 7.1. Simulated absorption spectra of the 310- and α-helix conformations of Ala20, and of the
Ag104k NP. Also included is an example of the absorption of an α-helix (taken from ref. 345).

In Figure 7.1, we show the absorption spectra of the 310- and α-helix conformations of Ala20.
Both systems produce very similar absorption spectra, with maxima at 180 nm and smaller
features at 190, 230 and 250 nm. The maxima at 180 nm with the corresponding shoulders at 190
and 230 nm are in good agreement with what is observed experimentally (see, for example, ref.
345), and correspond to a ππ∗ and two nπ∗ transitions, respectively. The differences in excitation
energies between experiment and simulation are likely due to an absence of solvent effects. The
absorption at 250 nm is not observed in experiments and may be attributed to either spurious
low-lying excited states346 or the single geometry for each helical structure sampled here; the
latter being more likely because of the significant oscillator strength of the 250 nm transition.
Ideally, one should Boltzmann average over all low-energy conformations of the molecule, which
is beyond the scope of this work. Kaminský and co-workers have shown that averaging over MD
simulations is necessary to achieve converged band profiles.347 We also include the absorption
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spectrum of the Ag104k NP in Figure 7.1. The absorption spectrum of the NP is dominated
by a strong band at 344 nm, which is characteristic of the plasmon resonance in spherical Ag
NP’s. Since this band does not overlap with any of the molecular transitions, it allows us to
examine both the changes in the molecular CD signatures and the nature of the CD induced at
the plasmon resonance.

Figure 7.2. Simulated CD spectra of α- and 310-helices. Also included are the experimental CD spectra
of the α- and 310-helix conformations of a polypeptide between 200–250 nm (taken from ref. 330).

We plot the CD spectra of the two helical structures of Ala20 in Figure 7.2. The absorption
maxima at 180 nm correspond to large positive CD in both molecules, whereas the absorption
shoulders at 190 and 230 nm result in negative CD intensity. The ellipticity ratio between the
230 and 190 nm CD bands ([θ]230/[θ]190) is proposed to be about 0.4 for the 310-helix and about
1.0 for the α-helix.329,330,345,348 We observe the same trend, with this ratio estimated as 0.1 for
the 310-helix and 1.0 for the α-helix simulated here. In general, the calculated CD spectra for
both the 310- and α-helices are in good agreement with experimental results, with the exception
of the CD band at 250 nm which, like the absorption observed in this region, is not observed
experimentally.

In Figure 7.3, we show the parallel and perpendicular orientations of the helices with respect
to the Ag104k NP. The helices are arranged with their N terminus towards the silver surface
in the perpendicular configurations. We have also included in Figure 7.3 the magnitude of the
perturbing electric fields at the plasmon resonance frequency (344 nm), where |E| = |Eext + Eloc|,
for an external perturbation perpendicular to the surface of the NP. This shows that, on average,
the parallel orientations “feel” a much larger electric field than the perpendicular orientations. It
is also clear from the figure that the electric field varies significantly over the dimensions of the
helices, especially, for the perpendicular orientations. Therefore, it becomes crucial to account
for the inhomogeneous electric field perturbing the helices. We showed previously124,258 that the
DIM/QM local field operator (used in eq. 7.7) accounts for this inhomogeneous nature of the
local electric field through dipolar-multipolar (NP-molecule) interactions.
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Figure 7.3. Orientations of the 310- and α-helix conformations of Ala20 with respect to Ag104k.
Eext marks the direction of the external perturbing field (at the plasmon resonance, 344 nm), and
E = Eext + Eloc, where Eloc is the local electric field.

Figure 7.4. Simulated absorption spectra for 310- and α-helices on Ag104k for both the perpendicular
(perp.) and parallel (para.) orientations.

Figure 7.4 shows the absorption spectra of the two Ala20-Ag104k complexes, where the
absorption at ∼350 nm gives us an indication of the coupling strength between the molecule
and the plasmon excitation in the NP. We point out that the absorption simulated here is the
molecular contribution to the absorption of the metal-molecule complex, and it contains both the
absorption induced into the molecule by the NP and that induced into the NP by the molecule.
It is important to note that the molecular contribution to the total absorption can be both
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negative and positive (only the total absorption of the system has to be positive) as it contains
both constructive and destructive terms.143 For both helices in both orientations, the molecular
absorption spectra show a negative band at 344 nm and a positive band at 354 nm. These features
would lead to a red-shift of the plasmon excitation if the NP was covered with the molecules. We
observe that the parallel orientations are more strongly coupled to the NP than the perpendicular
orientations, which is expected based on the average local electric fields “felt” by the helices in
these orientations as illustrated in Figure 7.3. We also observe that both helices have similar
coupling strengths for the perpendicular orientations, whereas in the parallel orientations, the
α-helix is more strongly coupled than the 310-helix. This may also be explained in terms of
average fields “felt” by the helices, where the ends of the longer 310-helix extend into regions of
much weaker local electric fields.

Figure 7.5. Simulated CD spectrum (isolated) and plasmonic CD spectrum for α-helix on Ag104k in
both the perpendicular (perp.) and parallel (para.) orientations.

Figure 7.5 shows the CD spectrum and plasmonic CD spectrum of the α-helix. We observe
that, in the region below 300 nm, there is a small enhancement (about a factor of 2) over the
isolated CD signal. This is because the NP has a non-zero absorption in this region, resulting
in small local electric fields that couple into (and enhance) the molecule’s transition dipole
moments. However, the enhancement factors are not identical for the two orientations (at the
same incident frequency). The seemingly erratic behavior of the plasmonic CD may be attributed
to a combination of a shift in excitation energies123, a preferential enhancement of transition
dipoles parallel to the local electric fields, and an orientation-dependent rotation of the transition
electric dipoles with respect to the transition magnetic dipoles (discussed below). These lead
to a very complicated plasmonic CD in the region below 300 nm, thus making it difficult to
retain molecular signatures. We see this in Figure 7.5, where the plasmonic CD signatures of the
parallel orientation is unrecognizable as being those from an α-helix, and the ellipticity ratio for
the perpendicular orientation (0.6) is very different from that of the isolated molecule (1.0). We
also observe a non-zero CD signal at the plasmon frequency (344 nm), which is of comparable
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strength to the CD of the isolated molecule. We observe that, as predicted by the few-states
model in ref. 339, the signs of these induced CD at the plasmon resonance are different for the
parallel and perpendicular orientations of the α-helix.

Figure 7.6. Simulated CD spectrum (isolated) and plasmonic CD spectrum for 310-helix on Ag104k in
both the perpendicular (perp.) and parallel (para.) orientations.

We plot the CD spectrum and plasmonic CD spectrum of the 310-helix in Figure 7.6. The
plasmonic CD spectra behave similarly to those of the α-helix in the region below 300 nm; we
observe a small enhancement of the CD signals, the CD molecular signatures of the 310-helix is
unidentifiable in the parallel orientation, and the ellipticity ratio in the perpendicular orientation
(0.5) is very different from that of the isolated molecule (0.1). However, unlike what was observed
for the α-helix, we observe the same sign for the CD signals induced at the plasmon resonance.
This seems, at first, contradictory to the prediction of the few-states model in ref. 339. However,
the DIM/QM method varies from that method in three important ways, any of which may have
resulted in this difference: First, the functional form of the major contributing term for the
CD induced at the plasmon in ref. 339 was derived for a spherical NP. The atomistic DIM/QM
method allows any arbitrarily shaped NP to be simulated. While this opposite-sign relation
may hold true for orthogonal transition electric dipoles near spherical NPs, the behavior may be
more complex for other NP shapes. However, we used icosahedral NPs which are approximate
spherical and is therefore less likely an explanation for the same-sign CD observed. Second, the
functional form of the metal-molecule interaction has been truncated at the dipole-dipole limit in
ref. 339. As we have shown,124,258 the DIM/QM method implicitly includes interactions with
higher order multipoles, which may have led to the differences observed here. Third and finally,
the same-sign CD signal observed here may be due to the “image field” effect, absent in the model
in ref. 339. The image field is the perturbation by the “image” dipoles induced in the NP by
the charge distribution of the molecule (both in the ground state and excited state), and may
cause a rotation of the transition dipoles of the molecule. This, in turn, may lead to a change in
the angle between the transition electric and magnetic dipoles. In ref. 339, the angle between
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~µ0n and ~mn0 is fixed for all orientations, and may only be effectively changed through the local
field enhancement matrix (which is not the term responsible for inducing CD at the plasmon
resonance). In DIM/QM, this angle will be dependent on the orientation of the molecule through
the image field perturbation, and result in differences in the CD spectra for the parallel and
perpendicular orientations (even without the plasmonic local fields). In fact, we observe image
field induced CD signals that are 3.5 times larger (1.4 versus 0.4 M−1 cm−1) for the 310-helix
versus the α-helix at the plasmon resonance frequency for the parallel orientations.

Figure 7.7. Simulated CD spectrum and plasmonic CD spectrum of achiral pyridine on Ag147 showing
the effects of the image and local fields.

To further explore this effect, we show an example of the image field rotating ~µ0n with respect
to ~mn0 in Figure 7.7, where we plot the plasmonic CD spectrum of pyridine (pyr) on a Ag147

NP. We chose pyr because it is a small achiral molecule with strong oscillator strengths. Being
achiral, ~µ0n is orthogonal to ~mn0 for all n, and we observe zero CD signal for the isolated molecule.
We then calculated the “plasmonic” CD of the gas-phase C2v optimized (achiral) pyr on Ag147,
without the contributions from the local fields (that is, only the image field effect is considered).
We observed a non-zero CD in the region of strong absorption (∼170 nm), indicating that the
angle between ~µ0n and ~mn0 has changed. This implies that while pyr is achiral, the molecule and
it’s image field together are not, and we may observe plasmonic CD for achiral molecules attached
to achiral NPs. One would expect that, for a perfectly reflecting surface, this would not be true
since we have introduced a mirror-plane symmetry into the molecule-image complex. The observed
image field induced CD signals are small, and the inclusion of the local fields enhances these
signals by a factor comparable to that observed for Ala20 on Ag104k in the same spectral region.
The region of the CD spectrum around the plasmon resonance of the Ag147 cluster also shows
significant induced plasmonic CD. The fact that multiple bands are seen around the plasmon
excitation in the CD spectrum is simply due to the small size of the Ag147 cluster, which leads to
a splitting of the plasmon excitation.
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7.5 Conclusion
In conclusion, we have used the DIM/QM method to calculate complex optical rotation tensors,
enabling us to simulate the plasmonic CD spectrum of molecule-NP complexes. We used this
method to calculate the plasmonic CD of the 310- and α-helical conformations of Ala20 on ∼17
nm diameter icosahedral NPs. We observe small plasmonic enhancement of the CD signatures of
the molecules, and these signatures are sometimes unrecognizable for specific orientations. In
both helical structures, we observe a CD signal induced at the plasmon resonance. However, we
do not observe opposite-sign CD signal at the plasmon frequency for orthogonal orientations of
the 310-helix. We propose that this observation is likely due to an “image field” effect, and show
that this effect is also able to induce a CD signal for achiral molecules attached to achiral NPs.
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Part III

An Exact Subsystem Density
Functional Theory
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Chapter 8 |
Frozen Density Embedding with External Orthogo-
nality

Chulhai, D. V.; Jensen, L. “Frozen Density Embedding with External Orthogonality in Delocalized Covalent
Systems” J. Chem. Theory Comput. 2015, 11, 3080–3088

Abstract
Frozen density embedding (FDE) has become a popular subsystem density functional theory (DFT)
method for systems with weakly overlapping charge densities. The failure of this method for
strongly interacting and covalent systems is due to the approximate kinetic energy density
functional (KEDF) – though the need for approximate KEDFs may be eliminated if each
subsystem’s Kohn-Sham (KS) orbitals are orthogonal to the other, termed external orthogonality
(EO). We present an implementation of EO into the FDE framework within the Amsterdam
Density Functional program package, using the level-shift projection operator method. We
generalize this method to remove the need for orbital localization schemes and to include multiple
subsystems, and we show that the exact KS-DFT energies and densities may be reproduced
through iterative freeze-and-thaw cycles for a number of systems, including a charge delocalized
benzene molecule starting from atomic subsystems. Finally, we examine the possibility of a
truncated basis for systems with and without charge delocalization, and found that subsystems
require a basis which allows them to correctly describe the supermolecular delocalized orbitals.
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8.1 Introduction
A combination of the calculation expense of large systems and the fact that most chemistry is
centered around a smaller subsystem has led to the development of subsystem methods.349 In these
methods, each subsystem may be either treated with the same or different theoretical descriptions.
Among the most common subsystem approaches are combined quantum mechical/molecular
mechanics methods,172,350,351 which enable one to focus on the region of interest using quantum
mechanics while having an approximate classical description of the environment. Another
approach that has gained popularity recently is subsystem density functional theory (subsystem
DFT),175–178 in which each subsystem is treated using Kohn-Sham (KS) DFT.

Subsystem DFT allows for intuitive partitioning of the supermolecular system via the real-
space electron density ρ(r). This supermolecular system density is divided into the region of
interest (the active/embedded subsystem, hereinafter ρI(r)) and the environment (hereinafter
ρII(r)). The total energy functional is then minimized under the constraint of a fixed number of
electrons for each subsystem. The most common implementation of subsystem DFT is frozen
density embedding (FDE),179 in which one subsystem (ρII(r)) is kept frozen while the total
energy is minimized with respect to changes in the other subsystem density (ρI(r)). Minimization
of total energy with respect to the supermolecular density is achieved through freeze-and-thaw
cycles, where the roles of subsystems I and II are iteratively interchanged.

FDE is exact in principle, though approximations for the exchange-correlation (XC) functional
and the kinetic energy density functionals (KEDF) have to be made for practical calculations. In
particular, the KEDF contributes to the embedding potential via the nonadditive kinetic potential
(NAKP) defined as

νT [ρI , ρII ; r] = δTs[ρ]
δρ(r) −

δTs[ρI ]
δρI(r) (8.1)

where Ts is the KEDF. Available approximations to the KEDF are acceptable only for FDE
subsystems with weakly overlapping densities, but break down in the region of strongly overlapping
densities and subsystems with a covalent character.184,187,188 These failures are generally attributed
to the non-exactness of available KEDFs, although it has been shown that inter-subsystem KS
orbitals orthogonality is needed to ensure that the density sum relationship of subsystems
(ρ(r) = ρI(r) + ρII(r)) is upheld.190 Therefore, even for the exact KEDF, the resulting NAKP
may still lead to incorrect results unless subsystem KS orbitals are both internally (with respect
to orbitals of the same subsystem) and externally (with respect to orbitals of the other subsystem)
orthogonal. In addition, external orthogonality (EO) ensures that νT = 0 and therefore removes
the dependence on approximate KEDFs.352

Methods that enforce EO between subsystems have been in use for decades, such as in
frozen-core approximations192, the Phillips-Kleinman pseudopotential approach194, and the
methods of Stoll and co-workers195, Mata and co-workers196, and Henderson197. Manby, Miller
and co-workers recently introduced EO into subsystem DFT and wave function theory in DFT
embedding through the use of a level-shift projection operator.198–200 This method requires that
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the supermolecular KS-DFT results are known a priori, and requires further MO localization
schemes. For both covalent and non-covalent systems, they showed that this method reproduces
the supermolecular KS-DFT energies exactly in the supermolecular basis198,200 and accurately in
a truncated basis.199. Hoffman and co-workers implemented a method where EO is included as a
constraint to the coupled KS Lagrangian,191 which consequently removes the need for an initial
supermolecular calculation. For non-covalent systems of varying interaction strengths, they showed
that the supermolecular KS-DFT energies, densities, and potential energy curves are exactly
reproduced by their subsystem formalism in the supermolecular basis, and well approximated in
an extended monomer basis.

In this chapter, we present a flexible implementation of EO into the FDE framework208,353

in the Amsterdam density functional (ADF) program suite.165,326,343 We generalize the Miller
and co-workers projection operator method198,199 to include any starting subsystem KS orbitals
represented in any basis set. This allows one, in the spirit of conventional FDE, to start
with monomer subsystem KS orbitals and iterate through successive freeze-and-thaw cycles to
achieve converged results, similar to the constrained Lagrangian approach191. We show that this
implementation exactly reproduces the KS-DFT energies and densities for a number of systems
of varying density overlaps. This projection operator method is more easily extended to describe
multiple subsystems, and we show that the exact KS-DFT density of a charge delocalized benzene
molecule can be obtained from isolated atomic starting subsystems. We also examine the effects
of basis set truncation for a number of covalent systems, including systems with large charge
delocalization, in order to assess the viability of a truncated basis in subsystem DFT for such
systems.

8.2 Theory
The FDE Kohn-Sham equation (sometimes called the Kohn-Sham equation with constrained
electron density179) is given as

[
−∇

2

2 + νKS
eff [ρI ; r] + νemb

eff [ρI , ρII ; r]
]
φIi (r) = εiφ

I
i (r); i = 1, . . . , NI (8.2)

where ρI and ρII are the embedded (I) and frozen (II) subsystem densities (with NI and NII
number of electrons), respectively, φI are the KS orbitals for subsystem I, νKS

eff is the KS effective
potential for subsystem I, and νemb

eff is the effective embedding potential due to the frozen ρII ,
written as

νemb
eff [ρI , ρII ; r] = νnucII (r) +

∫
ρII(r′)
|r− r′|dr′ + V nadd

XC [ρI , ρII ; r] + νT [ρI , ρII ; r] (8.3)

where the first and second terms on the right hand side are the nuclear and electron Coulombic
potentials, respectively, V nadd

XC is the nonadditive contribution to the XC potential, and νT is the
NAKP defined eariler.
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The NAKP is present because the KS orbitals of subsystem II are not necessarily orthogonal
to those of subsystem I. In the case where these subsystems are mutually orthogonal, then νT = 0
and we do not require approximate KEDFs. In this work, we enforce EO by implementing the
level-shift projection operator introduced in ref. 198. We expand on this method by allowing for
any starting subsystem MOs, any level of basis set overlap between subsystems, and iterative
freeze-and-thaw cycles. This removes the need for a starting supermolecular calculation and MO
localization. We modify the Fock matrix of the embedded system in the AO basis using the
projection operator as

fEOαβ = f
FDE(νT =0)
αβ + µP IIαβ (8.4)

where α and β are the AO indices of subsystem I. The first term on the right hand side is the
conventional FDE Fock matrix without a NAKP contribution, and µPII is a term which raises
energy of the ith orbital in subsystem II to εIIi + µ, where µ is a scaling parameter and PII is
the projection operator of subsystem II. The orbitals are forced to be perfectly orthogonal in the
limit µ→∞, however a large number (104 < µ < 108) is usually used in practical applications.
The projection operator is defined as

P IIαβ = 〈χIα|
{∑
i∈II
|φIIi 〉〈φIIi |

}
|χIβ〉

=
∑
τ,υ

〈χIα|χIIτ 〉γIIτυ〈χIIυ |χIβ〉

=
[
SI,IIγIISII,I

]
αβ

(8.5)

In this equation, {χI} and {χII} are the set of AOs describing subsystems I (with AO indices α
and β) and II (with AO indices τ and υ), respectively, {φII} is the set of KS orbitals of subsystem
II (with density matrix γII), and SI,II/SII,I are the overlap matrices between the AOs of the
two subsystems. The density matrix γII is symmetric and

(
SI,II

)T = SII,I , which ensures that
the projection operator, and therefore the modified Fock matrix, is Hermitian. Since {χI} and
{χII} may span any subset of the supermolecular basis set {χS}, we will refer to the case where
{χI} ∩ {χII} = ∅ as the monomer basis implementation (FDE(EO,m)), {χI} = {χII} = {χS} as
the supermolecular basis implementation (FDE(EO,s)), and {χI} ∩ {χII} = {χO} 6= {χS} as an
extended monomer implementation (FDE(EO,e), where {χO} 6= ∅ describes the overlap region).

We also extend this projection operator to describe multiple frozen subsystems, where
ρII(r) =

∑
i∈II ρi(r). In such a calculation, each frozen subsystem will be comprised of its

own set of KS orbitals, spanning their own AO basis, and we rewrite eq. 8.4 as

fEOαβ = f
FDE(νT =0)
αβ + µ

(∑
i∈II

P iαβ

)
(8.6)

This ensures that subsystem A is mutually orthogonal to each frozen subsystem. Note that
this does not necessarily ensure orthogonality between different frozen subsystems. Mutual
orthogonality between all subsystems is achieved through freeze-and-thaw cycles, ensuring that
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each subsystem is orthogonal to all others.

8.3 Computational Details
All calculations presented in this work were performed using a local version of the Amsterdam
Density Functional (ADF) program package,165,326,343 with the Becke-Perdew (BP86) exchange-
correlation (XC) potential.153,154 The QZ4P basis set was used for the water dimer, FHF−,
BH3NH3, ethane and benzene systems, while the TZ2P basis set was used for all other systems.
All geometries were first optimized using the BP86 XC functional. The Thomas-Fermi (TF) local
density approximation to the NAKP145,146 was used for all conventional FDE calculations. For
all external orthogonality calculations, the subsystems’ KS orbitals are orthogonalized using a
level-shift parameter of µ = 106 Eh. This was found to be reasonable since values > 107 Eh

generally lead to numerical instabilities and values < 102 Eh were insufficient at achieving external
orthogonality.198 All density manipulations were performed numerically on a cubic grid of 0.1
Å spacing, with the densities calculated using pyADF354. Other ADF specifications include:
integration threshold = 8.0; self-consistent field energy convergence criterion = 10−8.

The typical workflow using our implementation of EO into the FDE framework (FDE(EO))
within ADF is as follows: (1) Identify the subsystems of the supermolecular system. (2) Determine
which atoms constitute the overlap region. (3) Calculate (and save) the KS orbitals of each
subsystem, using “ghost” or empty AOs for atoms that are not a part of this subsystem but
are included in the overlap region. (4) Perform an FDE(EO) calculation using the KS orbital
information for each starting subsystem.

8.4 Results and Discussion

8.4.1 Exact KS-DFT results

Table 8.1. Energy errors for FDE(cft) using the TF NAKP and EO methods.

System Method KE / Eh XC / Eh Coulomb / Eh Total / Eh
H2O–H2O

TF -0.005 475 74 0.002 046 65 -0.001 073 68 -0.004 502 77
EO -0.000 000 03 0.000 000 01 0.000 000 05 0.000 000 03

F–H–F− TF 0.031 478 52 0.000 197 19 -0.059 215 52 -0.027 539 81
EO 0.000 000 49 -0.000 000 06 -0.000 000 18 0.000 000 25

BH3NH3
TF -0.044 359 39 -0.015 477 93 0.042 474 37 -0.017 362 95
EO 0.000 000 20 -0.000 000 01 0.000 000 04 0.000 000 23

C2H6
TF† -3.811 613 27 0.246 893 16 4.540 666 11 0.975 946 00
EO 0.000 000 06 0.000 000 01 0.000 000 05 0.000 000 12

†These values were obtained after 50 freeze-and-thaw cycles.

We show that the EO method within the FDE framework with converged freeze-and-thaw
(cft) cycles exactly reproduces the supermolecular Kohn-Sham results by comparing the energies
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and densities of four systems that vary in their amount of density overlap. These systems
were previously used to explore the effectiveness of a reconstructed NAKP,188 and include
hydrogen bonded systems (water dimer and FHF−), a doner-acceptor system (BH3NH3), and
a covalent system (ethane). In Table 8.1, we show the energy differences between FDE
with converged freeze-and-thaw iterations (using the TF NAKP and EO) and that of the
supermolecular KS-DFT calculation for these systems. For these methods, the total XC
energy is taken as the sum of the XC energy of the individual subsystems plus that of the
nonadditive XC energy (EXC[ρI , ρII ] = EXC[ρI ] + EXC[ρII ] + Enadd

XC [ρI , ρII ]). By definition,
this is the XC energy of the sum of densities ρI + ρII . The total non-interacting KE for
the EO method is taken as the sum of the non-interacting KE of the individual subsystems
(TEO
S [ρI , ρII ] = TS [{φI}] + TS [{φII}]), whereas for the TF method the nonadditive KE is also

added (TTF
S [ρI , ρII ] = TS [{φI}] +TS [{φII}] +T nadd

S [ρI , ρII ]. For the TF method, the error in the
KE varies from -5.4 mEh in the water dimer to -3.8 Eh in the case of ethane. This is expected
since the TF (and generally most NAKPs) approximation is only accurate in the limit of weakly
overlapping densities. This leads to incorrect densities and consequently large errors in the XC
and Coulomb energies for the systems with a stronger covalent character. However, fortuitous
cancellation of errors often results in a total energy error that is always smaller than that of the
non-interacting KE. When EO is enforced, all energies are numerically identical (within 0.5 µEh)
to those of the KS-DFT results. The projection operator DFT-in-DFT embedding was shown to
produce sub-µEh energy errors for systems where the subsystems were obtained from localization
of the MOs of the supermolecular system,198 whereas these results show that the same level
of accuracy is obtained from isolated starting subsystems using the iterative freeze-and-thaw
method.

Table 8.2. Integrated absolute density difference (∆abs, in e) for FDE(TF,s,cft), FDE(EO,s,2ft) and
FDE(EO,s,cft) methods.

System Active TF TF+cft EO EO+2ft EO+cft

H2O–H2O
I 0.1019 0.0371 0.1168 0.0001 0.0000
II 0.1166 0.0784 0.0000

F–H–F− F–H 0.5736 0.1154 0.5936 0.0021 0.0000F− 0.7174 0.4544 0.0021

BH3NH3
BH3 0.7433 0.4724 0.8357 0.0110 0.0000NH3 0.6423 0.3693 0.0033

C2H6
CH+

3 1.7171 †4.0116 1.8818 0.0711 0.0000CH−3 1.3109 †3.9072 0.7973 0.0145

†These values were not converged after 50 freeze-and-thaw cycles.

We compare the density error between the FDE methods and that of the KS-DFT density
using the integrated absolute density difference188,352,355–357 (∆abs =

∫ ∣∣ρKS(r)− ρFDE(r)
∣∣ dr) for

the four systems in Table 8.2. We include results for regular FDE and FDE(cft) for both methods,
as well as FDE with two freeze-and-thaw cycles (2ft) for the EO method. For the water dimer,
subsystem I is the water molecule whose hydrogen atom is involved in a hydrogen bond with
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the oxygen lone pair of subsystem II. The ∆abs values for the FDE(TF,s) method starting with
each subsystem I and II are 0.10 and 0.12 e, respectively. These are both acceptable values for
∆abs,188,357 and we will therefore use ∆abs < 0.15 e as our ∆abs threshold. Our results with the
TF NAKP closely resemble those from an earlier study188 with the PW91k NAKP185, and we
will therefore not examine them in detail. In summary, the TF NAKP can only describe the water
dimer (both regular FDE and FDE(cft) approaches) and FHF− (only the FDE(cft) approach)
systems, but fails for the BH3NH3 and ethane systems. In addition, the iterative freeze-and-thaw
method failed to converge for the strongly interacting (covalent) ethane system,184 and the results
shown in Table 8.1 were taken after 50 cycles. Using the bare FDE method with EO, that is,
without freeze-and-thaw, we found that the ∆abs values were comparable to those obtained with
the TF NAKP. This is expected since the error is dominated by the frozen subsystem. However,
we observe numerically identical densities in the FDE(cft) calculations. We also include the results
from the FDE(2ft) method to show that this convergence of density is rapid, requiring an average
of 16 iterations for the ethane molecule and 7 iterations for the other systems with a convergence
criterion of 10−8 Eh. For all systems, FDE(EO,2ft) was sufficient to yield acceptable density
errors with ∆abs comparable to (and often significantly better than) those of the water dimer
with FDE(TF,ctf). As the results indicate, the supermolecular KS-DFT densities are exactly
obtained from iterative freeze-and-thaw calculations with EO, and yields acceptable density errors
for covalent systems in as few as two freeze-and-thaw cycles.

Figure 8.1. The density difference (integrated over the perpendicular axis not shown) for a benzene
molecule, using (a) the sum of subsystem densities, (b) FDE(TF,s,30ft), and (c) FDE(EO,s,30ft). The
molecular coordinates and location of the H− and H+ subsystems are shown in (d).

We also show that the EO method allows for multiple subsystems and any arbitrary
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partitioning of the density by reconstructing the exact KS-DFT density of benzene from atomic
subsystems. In Figure 8.1, we show the density difference integrated over the perpendicular axis
(∆ρ =

∫ (
ρKS − ρFDE) dz, in units of ea−2

0 ) of a benzene molecule for the FDE(TF, s, 30ft) and
FDE(EO, s, 30ft) methods, each starting from atomic subsystem densities. In order to construct
closed-shell subsystems, the six H atomic subsystems are instead represented as three H− and
three H+ ions, with their respective positions given in Figure 8.1d. These positions are reflected as
the large positive and negative regions in the difference density in Figure 8.1a, with a calculated
∆abs = 11.6373 e. The TF NAKP only slightly improves upon the sum of subsystems description,
with a ∆abs = 8.2793 e (Figure 8.1b). This model is not expected to be qualitatively correct for
such a system, and seems to push the electron density towards the carbon and hydrogen nucleii,
and away from the benzene ring. With the EO method, however, we clearly see (Figure 8.1c)
that the density is identical to that of the KS-DFT density, with a ∆abs value of 0.0001 e. The
benzene system shown here was only converged to ∼ 10−7 Eh after 50 freeze-and-thaw iterations,
which may be due to the delocalized nature of the system and the number of subsystems used.
These results show the robustness of our implementation of the EO method, and that it allows
one to arbitrarily (limited to closed-shell subsystems in the current implementation) divide any,
even delocalized, supermolecular system.

8.4.2 Effects of basis set truncation

To reduce the cost of the FDE(EO) method it is therefore desirable to truncate the number of AOs
in the overlap region of each subsystem. We study the effects of different levels of a truncated basis
set on a series of alkene compounds, with 6 to 20 carbon atoms and 1 to 9 conjugated double bonds.
The compounds with one double bond are of the general form CH3(CH2)nCH=CH(CH2)nCH3 (n
= 1,2,3,4,5), where each subsystem is CH3(CH2)nCH. These systems are hereinafter referred to
as the “alkane-like” systems. The compounds with multiple conjugated double bonds are of the
general forms CH2(CH)nCH2 (n = 4,8,12,16) or CH3(CH)nCH3 (n = 6,10,14,18), with identical
starting subsystems of the form CH2(CH)n (n = 2,4,6,8) or CH3(CH)n (n = 3,5,7,9), respectively.
The optimized geometry of these systems are included in the Supporting Information. We chose
these systems since they enable one to cut across a covalent (double) bond to obtain two identical
closed shell starting subsystems. These hydrocarbon chains allow for the exploration of EO in a
truncated basis for systems with localized (in the alkane-like systems) and delocalized (in the
conjugated alkenes) electrons.

We compare the energy (|∆E| = |EKS-DFT − EEO|), density (∆abs), and dipoles (|∆µ| =
|µKS-DFT − µEO|) to that of the supermolecular KS-DFT results in Figures 8.2, 8.3, and S1 in
the Supporting Information, respectively. These figures show the results after 5 freeze-and-thaw
iterations (5ft); we found that increasing to 10 iterations provided no significant improvements on
these properties. In these figures, m denotes the FDE(EO,m) method and ex denotes a level of
the extended monomer basis expansion, where x denotes the number of carbon atoms and its
associated hydrogen(s) whose AOs are included in the overlap region. We show an example of this
truncation naming convention for one subsystem of C16H20 in Figure 8.4. It should be clear from
this that e3 denotes the supermolecular basis in the six carbon chains, e4 is the supermolecular
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Figure 8.2. |∆E| in the FDE(EO,5ft) method with different levels of basis set overlap for (a) alkane-like
systems, and (b) conjugated alkenes. The dashed line is the energy difference threshold of 10 mEh.

basis in the eight carbon chains, and so on.
Based on the (acceptable) total energy errors obtained with the FDE(TF,cft) method for the

water dimer and FHF− systems (in Table 8.1), we will consider values of |∆E| < 10 mEh as our
energy difference threshold. This is represented as the dashed line in Figure 8.2. We observe
that only the supermolecular basis yields acceptable energies for the conjugated alkenes (with the
exception of e8 for C18H20 and e9 for C20H24), whereas different levels of the extended monomer
basis yields acceptable energies for the alkane-like systems. In addition to the supermolecular
basis, the e3 basis results in acceptable energies for C8H16; the e4 for C10H20; e4 and e5 for
C12H24; and e4, e5, and e6 for C14H28. These results indicate that an e4 level of truncation (which
corresponds to including AOs from all nucleii < 5.7 Å away for these systems) is required to
obtained acceptable energies in alkane-like systems (without electron delocalization). However, for
the delocalized conjugated alkenes, only the supermolecular basis results in acceptable energies.

Similar results are obtained for density difference (Figure 8.3), with a threshold value of
∆abs < 0.15. Only the supermolecular calculations results in acceptable density errors in the
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Figure 8.3. ∆abs for the FDE(EO,5ft) method with different levels of basis set overlap for (a) alkane-like
systems, and (b) conjugated alkenes. The dashed line is the ∆abs threshold of 0.15 e.

conjugated alkene systems. For the alkane-like systems, a number of truncated basis yielded
acceptable densities: the e2 for C6H12, e3 for C8H16, e4 for C10H20, e4 and e5 for C12H24, and e4;
e5; and e6 for C14H28. For dipoles (Figure S1), with an acceptable threshold of |∆µ| < 0.25 D,
the same level of basis set truncation yields acceptable for the alkane-like systems, while the only
the supermolecular basis (and e4 truncation for C10H12) yields acceptable dipole errors for the
conjugated alkenes. We note that e7 for C16H20 and e4 for C18H20 appear as outliers in the trend
of improving energy, density and dipole errors with increasing levels of basis set truncation. The
reason for this is uncertain, and may be due to the quality of the starting subsystem. We point
out that most of the conjugated alkenes starting subsystems were converged to ∼ 0.1 Eh after
100 SCF iterations, yet this does not seem to affect the results of the FDE(EO,5ft) calculations
(except for the two truncations mentioned above).

The large errors in some levels of the extended basis truncation may be attributed to the
µ-dependence of these truncated systems, as was explored in ref. 199, where |∆E| changes of two
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Figure 8.4. An example of the basis set truncation used for one subsystem of C16H20.

orders of magnitude and greater were observed for µ values ranging between 102–108. In that
paper, it was found that projecting only the MOs that are localized within the AO space of the
active subsystem removes the µ-dependence, and subsequently led to a reduction in the energy
error of the truncated systems. In Figure 8.5, we plot the energy differences of the different levels
of basis set truncations for the two 10-Carbon (C10H20 and C10H12) systems. We observe no
strong dependence of |∆E| on the µ-parameter for any of the extended monomer basis truncation,
with very little change between µ values of 104–108. The only exception to this is in the monomer
basis truncations, for which there are no MO localization counterpart since there are no common
AOs describing both subsystems. We will continue to explore the reasons for the large errors seen
in some levels of the extended monomer basis truncation, particularly as it relates to the results
seen for the conjugated alkenes, in the remainder of this chapter.

The failure of an FDE(EO) method with an extended monomer truncated basis for the
conjugated alkenes may be attributed to three factors: (1) insufficient overlap basis to achieve
orthogonality between subsystems, (2) insufficient (mutual) polarization of subsystems, and (3)
insufficient AO space for subsystems to accurately reproduce supermolecular MOs. We propose
that the extent of subsystem MO orthogonality obtained may be assessed through the value of
the “overlap energy”, defined as

Eovrlp[φI , φII ] = µtr
(
γIPII

)
(8.7)

This value was shown to be the first order perturbative correction to the total energy of the
system,198 and we will use it as a measure of the extent of orthogonality attained between
subsystem MOs. Mathematically, this value measures the overlap between the subsystem MOs,
and is exactly zero for perfectly orthogonal MOs. We explore the overlap energy at successive
freeze-and-thaw iterations for an alkane-like system (C14H28 in Figure 8.6a) and a conjugated
alkene (C18H20 in Figure 8.6b). In this figure, a half cycle corresponds to the thawing of the
initially frozen subsystem, and an Eovrlp value of 10−6 Eh is effectively zero with µ = 106 Eh. In
the C14H28 system, we found that the e4, e5, and e6 truncation were sufficient at reproducing
acceptable energy, density and dipoles errors (Figures 8.2, 8.3, and S1), but only the e5 and e6
truncation were suffcient at producing perfectly orthogonal MOs. The e4 truncation was sufficient
to enforce orthogonality of one subsystem MOs with respect to the other, but not the other way
around. Note that, although the initial subsystems are identical, we choose one subsystem to be
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Figure 8.5. The dependence of the |∆E| on the µ-parameter for different levels of truncations in (a)
C10H20, and (b) C10H12.

the starting active subsystem, which can lead to asymmetrical results. For the C18H20 system,
the e7 and e8 truncations were sufficient at achieving orthogonality between subsystem MOs.
This suggests that a lack of EO is not the reason for large energy, density and dipole errors
observed for this molecule at these truncation levels. We can also rule out insufficient polarization
since increasing to 10 freeze-and-thaw cycles did not improve on these errors. Therefore, we
can conclude that the inability of the e7 and e8 truncations of this system to reproduce the
KS-DFT energy, density and dipole is due to an inability of the spatially limited subsystem basis
at describing the delocalized supermolecular MOs.

There are other ways in which one may truncate the basis set of the overlap region, while
maintaining the spatial distributions of AOs. We examined the effects of reducing the quality of
overlapping AOs, from TZ2P to DZP, while maintaining a TZ2P description of remaining AOs.
This was done by simply changing the basis type of the ghost atoms in the overlap region. We
show these results in Figure 8.7, along with the results of supermolecular basis and the extended
monomer basis that is one level below the supermolecular basis (that is, e2 for C6H8, e3 for C8H12,
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Figure 8.6. Eovrlp at successive freeze-and-thaw cycles for (a) C14H28 and (b) C18H20.

e4 for C10H12, and so on). This DZP truncation yields acceptable energy and density errors for
all systems, while large dipole errors were only observed for the C18H20 and C20H24 systems. The
dipole errors for these alkene chains are particularly sensitive to the chain length, since they rely
on the addition of large dipole vectors of the individual subsystems to yield the (almost) zero
dipole vector of the supermolecular system. These results clearly show that reducing the quality
of the overlap basis is a better basis set truncation strategy in delocalized systems, rather just
including the set of nearby AOs.

Additionally, the DZP truncation is much more efficient in reducing the number of AOs when
compared to the extended monomer strategy. The DZP truncation resulted in a 25 % reduction
of the supermolecular AOs for all systems, whereas the extended monomer basis resulted in an
8 % reduction for the C20H24 system to a maximum of 20 % reduction for the C6H8 system
(see Figure S2 in the Supporting Information). We note that a further reduction to a SZ basis
set for the overlap region resulted in errors that were comparable to the extended monomer
strategy. This reduction in AOs results in a significant reduction in computation time (Figure S3
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Figure 8.7. Results from the supermolecular basis (sup.), truncated basis with DZP overlap (DZP), and
the extended monomer basis that is one level below that of the supermolecular basis (ext.) showing the
(a) absolute energy difference, (b) integrated density difference, and (c) absolute dipole difference for the
conjugated alkenes.

in the Supporting Information), and is more efficient than the ineffective extended monomer-
type truncation. However, we point out that these methods are still more expensive than the
supermolecular KS-DFT calculations. The effectiveness of these embedding methods will therefore
depend on eliminating the need for iterative freeze-and-thaw cycles and/or increasing the number
of basis functions truncated. Olsen and co-workers358 have implemented a strategy that eliminates
the need for mutual polarization through iterative freeze-and-thaw cycles by using a classical
polarizable force field. Additionally, one may employ the dual truncation strategy of reducing the
number of atoms in the overlap region as well as the quality of these overlap AOs when working
with non-covalent systems or covalent systems with localized charge distributions.

8.5 Conclusion
In this chapter, we presented an EO implementation into the FDE framework within ADF.
This method is a generalized form of the level-shifting projection operator method of Miller and
co-workers, extended to include any (and multiple) starting subsystem KS orbitals. We showed
that the KS-DFT densities and energies are exactly reproduced with iterative freeze-and-thaw
cycles for a number of systems with a range of overlapping density strengths. We also showed
that the exact density of a charge delocalized system (benzene) is exactly reconstructed from
atomic subsystems. Finally, we examined the limits of a truncated basis for such a method and
found that, while including only the nearest AOs works well for alkane-like systems, only the
supermolecular basis reproduced the exact supermolecular KS-DFT results in charge delocalized
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systems. For such systems, we found that reducing the quality of the overlap basis to be a more
effective and efficient strategy.
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Chapter 9 |
External Orthogonality in Subsystem Time-depen-
dent Density Functional Theory

Chulhai, D. V.; Jensen, L. “External Orthogonality in Subsystem Time-dependent Density Functional
Theory” Phys. Chem. Chem. Phys. 2016, DOI:10.1039/c6cp00310a

Abstract
Subsystem density functional theory (subsystem DFT) is a DFT partitioning method that is exact
in principle, but depends on approximations to the kinetic energy density functional (KEDF).
One may avoid the use of approximate KEDFs by ensuring that the inter-subsystem molecular
orbitals are orthogonal, termed external orthogonality (EO). We present a method that extends a
subsystem DFT method, that includes EO, into the time-dependent DFT (TDDFT) regime. This
method therefore removes the need for approximations to the kinetic energy potential and kernel,
and we show that it can accurately reproduce the supermolecular TDDFT results for weakly and
strongly coupled subsystems, and for systems with strongly overlapping densities (where KEDF
approximations traditionally fail).
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9.1 Introduction
The computational limitations of modeling large systems, along with the fact that most of
chemistry is centered around a smaller subsystem or active site, have led to the development
of subsystem methods.349 One very popular subsystem method is subsystem density functional
theory (subsystem DFT).175–178 Subsystem DFT is a partitioning method that separates the
supermolecular system via the real-space electron density (ρ(r)), where each subsystem is treated
using Kohn-Sham (KS) DFT and is exact in the limit of exact functionals. In such a method, the
total energy of the system is minimized under the constraint that the number of electrons for each
subsystem remains fixed. The most common subsystem DFT scheme is frozen density embedding
(FDE),179 where the total energy is minimized with respect to one active/embedded subsystem
(ρA(r)) while the remaining environment subsystem(s) (ρB(r)) is “frozen”. Minimization of
the total energy with respect to all subsystem densities is achieved through freeze-and-thaw
cycles, where the roles of subsystems A and B are iteratively interchanged. The excited states
formulation of FDE within the time-dependent DFT (TDDFT) framework, sometimes referred to
as subsystem TDDFT or FDE-TDDFT, has also been developed.204–206 There have been two
general implementations of FDE-TDDFT: the first only accounts for the changes in the orbitals
and orbital energies that stem from the embedding potential—the response of the environment
is neglected—termed “uncoupled” FDE-TDDFT or FDEu; the second includes coupling to the
environment response and is termed “coupled” FDE-TDDFT or FDEc.

Although FDE is an exact theory, approximations to the exchange-correlation (XC) functional
and the kinetic energy density functional (KEDF) have to be made for practical applications.
Available KEDFs are acceptable only for subsystems with weakly overlapping densities, and have
been shown to fail for other systems.184,187,188 Similarly, the subsystem TDDFT response depends
on approximations for the XC and kinetic energy kernels. Alternatively, one may circumvent the
need for approximate KEDFs by ensuring that the KS orbitals are both internally (with respect to
the KS orbitals on the same subsystem) and externally (with respect to the KS orbitals of the other
subsystems) orthogonal. Methods that enforce external orthogonality (EO) include frozen-core
approximations,192 model potentials,193 the Phillips-Kleinman pseudopotential approach,194 and
the methods of Stoll and co-workers,195 Mata and co-workers,196 and Henderson.197 In particular,
Manby, Miller and co-workers,198–200 Hoffmann and co-workers,191 and the authors of this paper359

have shown that the supermolecular KS-DFT ground-state density and energy may be exactly
obtained from subsystem DFT, providing that there is EO. More recently, Neugebauer and co-
workers188,189 have eliminated the need for approximate KEDFs through the use of reconstructed
potentials, and extended this into the subsystem TDDFT regime. Using this method, they have
shown that accurate local excitation energies (when compared to supermolecular TDDFT) may
be obtained through a subsystem TDDFT method.189

Recently, we presented a method that enforces EO in conventional FDE calculations, which
we termed FDE-EO,359 that is based on the level-shift projection operator method of Manby
and co-workers.198–200 The FDE-EO method represents a flexible implementation of EO, since
one can start with any approximate solution of the individual subsystems, and iterate through
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freeze-and-thaw cycles in order to obtain the converged supermolecular KS-DFT results; the
supermolecular KS-DFT results do not need to be known a priori. The FDE-EO method proved
to be very robust, and reproduced supermolecular KS-DFT ground-state densities and energies
for systems ranging from weakly interacting to covalently bonded.

In this paper, we expand the FDE-EO method into the subsystem TDDFT regime. We
do this by examining the first order response of the EO level-shift projection operator, and
explore its behavior on a selection of model systems. These model systems have been chosen in
order to test the FDE-EO response formalism in the limits where traditional subsystem TDDFT
methods start to fail, in particular, in the limit of strongly overlapping densities and systems with
charge-transfer-like excitations. The rest of this paper is organized as follows: we first present
a brief background on subsystem TDDFT and the FDE-EO method, before describing the the
FDE-EO subsystem response method; we then examine the behavior of the µ-parameter on
the excitation energies; Finally, we apply the FDE-EO subsystem response method to the LiH,
He-dimer, 2-aminopyridine–methanol, and benzaldehyde-dimer model systems.

9.2 Theory

9.2.1 Subsystem TDDFT

In this subsection, we will briefly outline the supermolecular and subsystem TDDFT methods.
More detailed derivations may be found in refs 206 and 203. We use the subscripts i, j, . . . for
occupied molecular orbitals (MOs), subscripts a, b, . . . for virtual MOs, subscripts p, q, . . . for
general MOs, and subscripts α, β, . . . for atomic orbitals (AOs). We have also dropped the spin
indices for simplicity, and present results using only closed-shell restricted subsystems. The theory
is presented here for two subsystems, A and B, but is easily generalizable to multiple subsystems.

In the TDDFT framework, the excitation energies may be obtained from the following set of
eigenvalue equations

ΩFk = ω2
kFk (9.1)

where ωk corresponds to an excitation energy of the system with the corresponding eigenvector
Fk. The four-index matrix Ω is defined as

Ωia,jb = δijδabω
2
ia + 2

√
ωiaKia,jb

√
ωjb (9.2)

where the coupling matrix K in turn is defined as

Kia,jb(ω) =
∫
dr
∫
dr′φi(r)φa(r)

[
1

|r− r′| + fxc(r, r′, ω)
]
φj(r′)φb(r′) (9.3)

The first term in brackets in eqn 9.3 is the Coulomb kernel, while fxc is the XC kernel and is
often approximated by the adiabatic local density approximation (ALDA). This coupling matrix
determines the change in electronic potential (δν) due to a change in electron density (δP ) through
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Kia,jb = δνai
δPjb

(9.4)

For the subsystem theory, we will consider subsystems A and B (ρtot(r) = ρA(r) + ρB(r)). In
subsystem DFT, the total potential on active subsystem A due to an environment subsystem B is

νA(B)(r) = νnuc(r) +
∫
ρtot(r′)
|r− r′| + νxc[ρtot; r] + νT [ρtot; r]− νT [ρA; r] (9.5)

where the terms on the right-hand side of eqn 9.5 are the nuclear potential, the Coulomb potential,
the XC potential, and the two terms that constitute the non-additive kinetic potential (NAKP),
respectively. νT is the kinetic potential, which is taken as the functional derivative of the KEDF.

Like the ground-state density, the density response is also partitioned into subsystem
contributions (δρtot(r) = δρA(r) + δρB(r)). The corresponding change in potential due to
the respective density responses are

δνA(B)(r)
δρA(r′) = 1

|r− r′| + fxc[ρtot; r, r′] + fT [ρtot; r, r′]− fT [ρA; r, r′] (9.6)

and

δνA(B)(r)
δρB(r′) = 1

|r− r′| + fxc[ρtot; r, r′] + fT [ρtot; r, r′] (9.7)

where the first two terms in both eqns 9.6 and 9.7 are the Coulomb and XC kernel (evaluated for
the total system density). fT is the kinetic energy kernel, where once again the ALDA form, the
second functional derivative of the Thomas-Fermi (TF) KEDF, is most commonly used.

These results allow us to separate the coupling matrix K into two parts: a part that depends
only on the response of the same subsystem (KA,A ≡ δvA

δρA
), and a part that depends on the

response of the other subsystem (KA,B ≡ δvA

δρB
). This, in turn, allows us to partition the eigenvalue

equations (eqn 9.1) into (
ΩA,A ΩA,B

ΩB,A ΩB,B

)(
FA
k

FB
k

)
= ω2

k

(
FA
k

FB
k

)
(9.8)

For FDEu, one only needs to solve the eigenvalue equations that depend only on the response of
one subsystem (ΩA,AFA

k = ω2
kFA

k and ΩB,BFB
k = ω2

kFB
k ).205,206 If the responses of the respective

subsystems are strongly coupled, which are needed for FDEc calculations, then one needs to solve
the full eqn 9.8.206 An approximate method for the solution of eqn 9.8 has been presented in ref
206, where the coupled solutions may be approximated from an incomplete set of solved FDEu
eigenvalues and eigenvectors. We employ the same strategy in this paper for the solution of the
coupled excitations for the larger systems (2-aminopyridine–methanol and benzaldehyde-dimer).
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9.2.2 The FDE-EO method

The FDE-EO method used in this paper was initially presented in ref 359, and was based on earlier
work by Manby and co-workers.198 In such a method, the MOs of subsystem B are projected
on to subsystem A using a level-shift projection operator. The FDE-EO Fock matrix is then
modified with this projection operator (hereinafter called the EO “potential”, V EO) as

FEO
αβ = F

FDE(νT = 0)
αβ + V

EO,A(B)
αβ (9.9)

where FFDE(νT = 0) is the conventional FDE Fock operator in AO basis with the NAKP set to
zero (there is still a contribution from the non-additive XC potential).

The EO potential is defined as359

V
EO,A(B)
αβ = µ

∑
γ,δ∈B

SA,B
αγ PB

γδS
B,A
δβ (9.10)

where µ is a scaling parameter, SA,B
αγ is an AO overlap matrix element between subsystems A and

B, and PB
γδ is a density matrix element of subsystem B.

In our implementation of the FDE-EO method, one only needs to start with approximate KS
orbitals for each subsystem. This is done by performing a ground-state KS-DFT calculation on
each isolated subsystem, which could be done in either the monomer basis or the supermolecular
basis using “ghost” orbitals. One then performs an FDE calculation, projecting the orbitals of all
the frozen MOs on to the active/embedded subsystem. This process is repeated through iterative
freeze-and-thaw cycles until the total energy of the system is self-consistent.

9.2.3 The EO coupling matrix

The EO potential can also be expressed in the MO basis (†see the ESI for derivation) as

V EO,A(B)
pq = µ

∑
r,s∈B

SA,B
pr PB

rsS
B,A
sq (9.11)

where SA,B
pr is an element of MO overlap matrix between subsystems A and B, and PB

rs is a density
matrix element for subsystem B in MO basis. We can now use the EO operator in MO basis to
derive the EO coupling matrix KEO;A,B as

KEO;A,B
(ia)A,(jb)B

= δV
EO,A(B)
ia /δPB

jb

= µSA,B
ij SB,A

ba

(9.12)

This EO contribution to the coupling matrix is then added to the Coulomb and XC kernel
contributions as presented in eqn 9.3. Since the same approximation to the XC kernel is used in
both the subsystem and supermolecular TDDFT, we will not consider the effects of the particular
choice of XC kernel in this paper. We also point out that the EO coupling matrix for a subsystem
with itself is zero, since KEO;A,A = δV EO,A(B)/δPA = 0.
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For perfectly orthogonal inter-subsystem MOs, the term SA,B
pq = 0. However, this is only

true for µ → ∞. For finite µ, we find inter-subsystem (occupied) MO overlaps on the order
of SA,B

ij = O(µ−1). We find it beneficial to calculate the MO overlaps analytically using
SA,B
ij = [(CA)TSA,BCB]ij , where CA/B are the MO coefficient matrices for subsystems A/B, and

SA,B is the AO overlap matrix between subsystems A and B. Additionally, since only the occupied
MOs are projected on to each other subsystem, there is no guarantee that the inter-subsystem
virtual MOs are orthogonal. In fact, we find similar virtual orbital space (possibly varying only in
sign) for subsystems described using the supermolecular basis. Therefore, the EO coupling term
in eqn 9.12, since it is scaled by µ, becomes significant in the coupled response. One may also
think of the EO coupling matrix as a first order correction to the coupled response due to a finite
µ, similar to that of the ground-state energy,198 which should vanish for perfectly orthogonal
inter-subsystem MOs.

9.3 Computational Details
The TDDFT extensions of the FDE-EO method have been implemented into a modified version of
the Amsterdam Density Functional (ADF) program package.165,326,360 All calculations presented
in this work were performed using the Vosko–Wilk–Nair (VWN)151 form of the local density
approximation (LDA) XC potential. The triple-ζ with one polarization function (TZP) basis set
from the ADF basis set library361 was used for all systems except the helium-dimer, where a
double-ζ (DZ) basis set was used. Geometry optimizations for the 2-aminopyridine–methanol
system and the benzaldehyde monomer were also performed with the above described level of
theory. All monomer subsystems have been expanded in the supermolecular basis for all subsystem
DFT calculations. The Thomas-Fermi (TF) LDA to the NAKP145,146 and the TF ALDA to the
kinetic energy kernel were used for all conventional FDE calculations. For all FDE-EO calculations
(except where stated), the subsystems’ KS orbitals are orthogonalized using a level-shift parameter
of µ = 106 Eh. All absorption stick spectra were broadened by Lorentzians with a full-width at
half-maxima (fwhm) of 0.1 eV.

9.4 Results and Discussion

9.4.1 Dependence on µ-parameter

We will first examine the nature of the µ-parameter and its effects on both the ground and excited
state properties of a system. Since we are enforcing external orthogonality, the results should
agree exactly with that of the supermolecular KS-DFT. However, this is true only in the limit
of infinite µ. In practical applications, errors are introduced from the finite value of µ. For the
ground-state energy, it has been shown198 that the error introduced due to a finite µ may be
corrected (to first order using perturbation theory) by µTr[PAVEO,A(B)], where PA and VEO,A(B)

are the density matrix of subsystem A and the projection operator of subsystem B onto A (in AO
basis) introduced earlier. This term has been used as a measure of the orthogonality achieved
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between subsystems359 and has been termed the “overlap energy”. When corrected with this
overlap energy, it was found that the total energy from the EO method agrees with that from
KS-DFT (to within 10−11 Eh) for 102 ≤ µ ≤ 107 Eh.198
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Figure 9.1. Stability of (a) the absolute energy difference (with respect to a supermolecular KS-DFT
result), and (b–e) excitation energies of the four transitions of a He-dimer with respect to the µ-parameter.

Using a model He-dimer system with a 1 Å separation, we plot both the absolute ground-state
energy difference (between the EO method and supermolecular KS-DFT) and the excitation
energies as a function of the value of the µ-parameter in Fig. 9.1. Fig. 9.1a shows both the
uncorrected and corrected (with the overlap energy) absolute energy differences. For the
uncorrected energies, we find sub-microhartree (µEh) differences for all 105 ≤ µ ≤ 109 Eh.
When corrected with the overlap energy, this range extends to 102 ≤ µ ≤ 109 Eh, spanning seven
orders of magnitude.

We also show the transition energies of the four excited states of the He-dimer (S1, S2, S3,
and S4) in Fig. 9.1b–e. These subsystems are strongly coupled (a point that will be discussed
later in this paper) and the results shown here have been calculated using the FDEc-EO method.
As previously mentioned, the FDEc-EO method (using the EO coupling matrix in eqn 9.12)
can also be thought of as a correction to the response due to a finite µ. Additionally, since
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the inter-subsystem occupied MO overlaps are dependent on the choice of µ-parameter for the
ground-state calculation, the same value of µ must be used for both ground-state and coupled
excited states calculations. Using the FDEc-EO method, we find that the excitation energies are
stable (to within 0.002 eV) for the range 103 ≤ µ ≤ 106 Eh (spanning three orders of magnitude).

For all the remaining calculations in this paper, we will use µ = 106 Eh, since this value lies
within the stable ranges for both ground-state and excited state energies, as well as producing
the smallest correction to the ground-state energy.

9.4.2 LiH

In order to study the effect of the EO method on the excitation of uncoupled subsystems, we
examined the LiH molecule. This model system is made up of two closed-shell subsystems with
two electrons each (Li+ and H−). This construction leads to inter-subsystem excitation energies
that are well separated—all excitations for the Li+ subsystem are greater than 48 eV with the
current level of theory. We note that the ground-state properties of this system are incorrectly
described by the FDE-TF method; we find FDE-TF energy errors (compared to KS-DFT) of
0.04 Eh at 6 Å separation, which increases to 0.12 Eh at 1 Å. For the FDE-EO method, we
find ground-state (uncorrected) energies that are within 0.1 µEh of the KS-DFT results for all
separation distances. Therefore, the LiH system represents a model (uncoupled) system for which
conventional FDE-TF fails, but for which FDE-EO is able to describe correctly.

In Fig. 9.2, we plot the five lowest excitation energies of the H− subsystem of LiH (excitations
S2 and S3 are degenerate) against inter-subsystem separation using three methods: supermolecular
TDDFT, FDEu-TF, and FDEu-EO. These five excitations are all less than 10 eV, and are therefore
uncoupled from the Li+ subsystem excitations. We also performed the coupled calculations using
both the FDEc-TF and FDEc-EO methods, but since the excitations are uncoupled, those results
are near identical to the uncoupled results and we do not include them here. We observe that the
FDEu-TF method shows no qualitative agreement with the supermolecular TDDFT results, even
at 6 Å separation. This is due to the incorrect electronic structure of the ground-state system
obtained by the FDE-TF method, as evidenced by the large ground-state energy errors (> 0.01
Eh). One should naturally expect that if conventional FDE fails for the ground-state electronic
structure of a system, so too will its TDDFT extension. It was previously found that the kinetic
potential for the frozen subsystem is incorrect at large inter-subsystem separations,362 leading to
badly described orbitals (and consequently incorrect response properties), and a correction was
thus presented. We found that this correction had little effect on the LiH system (see Fig. S1†)
for the distances examined. At longer separation distances, an unrestricted formalism is needed
to correctly describe the supermolecular system—which is beyond the scope of this work.

For the FDEu-EO method, on the other hand, we observe good quantitative agreement with
supermolecular TDDFT results at all separation distances. At 1 Å separation, the mean absolute
error (MAE) for the excitation energies using the FDEu-EO method (for all 40 excitations) is 0.01
eV, which decreases to 0.0004 eV at 6 Å. Note that the only contributions to the response kernel
in the FDEu-EO method are the Coulomb and XC kernels, and therefore the correct response of
these uncoupled systems depend entirely on the accuracy of the ground-state electronic structure.
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Figure 9.2. Excitation energies of the five lowest transitions of LiH with respect to inter-atomic
separation. Energies are plotted for the supermolecular TDDFT, the FDEu-TF, and the FDEu-EO
methods.

9.4.3 He-dimer

We study the case of a strongly coupled model system in Fig. 9.3, where we plot the excitation
energies of the He-dimer against inter-atomic separation. This system is constructed from two
atomic He subsystems with two electrons each. We chose a small basis set (DZ) so that we could
correctly monitor all excitations; in the DZ basis, each monomer has one (local) excitation at
59.06 eV in the monomer basis, and three excitations in the supermolecular basis (at 27.58, 59.06,
and 151.61 eV at 4 Å separation). The transition at 59.06 eV is a local excitation (which is the
same as the transition observed with the monomer basis) and the transitions at 27.58 and 151.61
eV are charge-transfer-like in nature. We acknowledge that these monomer excitations (in the
supermolecular basis) are weakly dependent on atomic separation due to the size of the basis
set chosen (DZ) and basis set superposition error. In the supermolecular system, there are four
excitations. At 4 Å separation, these are: degenerate charge-transfer-like excitations at 50.88
eV, and degenerate local excitations at 59.08 eV. This model system was chosen because the
inter-subsystem response couplings are strong, and we observe excitation energy splits of 5.88 and
4.88 eV for the charge-transfer-like and local sets of excitations, respectively, at 1 Å separation
using the supermolecular TDDFT method.

We now examine the excitations using the different subsystem TDDFT methods. In the
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Figure 9.3. Excitation energies of a He-dimer as a function of atomic separation.

subsystem methods, there are a total of six excitations (three from each subsystem in the
supermolecular basis), two of which should be fictitious due to the available orbital space. In the
EO method, these fictitious excitations are shifted to very high energies (on the order of O(µ)
Eh) since the orbitals involved in these transitions are not orthogonal to all the occupied orbitals
of supersystem. The methods based on the approximate TF KEDF make no such correction, and
as such, we find that these methods fail to correctly describe the charge-transfer-like excitations
even at large inter-atomic separations. The local degenerate excitations at ∼59.06 eV, however, is
correctly described by both the FDEu-TF and FDEu-EO methods, as expected, with an MAE of
0.0001 eV. But as the inter-atomic distance decreases, the TF methods start to fail (see Fig. 9.3)
and result in errors of 2.49 and 4.99 eV for the two coupled local excitations at 1 Å separation.
The FDEc-EO method, on the other hand, correctly captures both the local and charge-transfer
excitations, with an MAE (for all excitations) of 0.2 eV at 1 Å separation, which improves to 0.07
eV at 1.6 Å separation. We should point out that the EO contribution to the inter-subsystem
coupling matrix, and not the Coulomb or XC kernels, is responsible for the strong coupling
observed; we show the results of this system without including the EO coupling matrix in Fig. S2†.
We acknowledge that an MAE of 0.2 eV (at 1 Å) is still very large; this error may be due to
numerical inaccuracies (since the occupied MO overlaps are O(µ−1) and is being scaled by µ), or
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to eqn 9.12 being a correction to first order only in the subsystem response with near-orthogonal
orbitals caused by a finite µ.

We also observe in Fig. 9.3 that the excitation energies obtained from the FDEu-EO method are
not degenerate at <2.0 Å separations, while the FDEu-TF excitation energies remain degenerate.
This is because, at these distances, the occupied MOs involved in these “degenerate” excitations
start to overlap and are no longer orthogonal. In order to maintain orthogonality between all
occupied MOs, the EO method therefore shifts the energy of these occupied orbitals relative to
each other, causing the excitation energies for their respective transitions to shift. Since this is not
accounted for in the TF KEDF, the FDEu-TF excitation energies remain degenerate. The further
splitting between the FDEu-EO and FDEc-EO methods (and indeed, between the FDEu-TF and
FDEc-TF methods) is then due to the coupling between the two sets of excitations.

9.4.4 2-aminopyridine–methanol

a) b)

Figure 9.4. Isosurface plots of the (a) π and (b) π∗ orbitals (value = ± 0.03 a.u.) involved in the
2-aminopyridine–methanol transition analyzed in this paper.

-0.2 0.0 0.2 0.4 0.6 0.8 1.0

Figure 9.5. Excitation energy of the lowest singlet π → π∗ transition in the 2-aminopyridine–methanol
system as a function of hydrogen bond displacement.
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As a test on a more realistic weakly-coupled system, and to compare our results with that
of the reconstructed NAKP method,189 we examined the lowest singlet π → π∗ transition
in a 2-aminopyridine–methanol system. The system is divided into a 2-aminopyridine and a
methanol subsystem, where the orbitals that contribute to the analyzed transition are shown in
Fig. 9.4. This transition is therefore a local excitation centered on the 2-aminopyridine subsystem.
Significant solvent effects have been observed for this transition in earlier studies.189,363 Fig. 9.5
plots the energy of this transition with respect to the hydrogen bond displacement (from the
equilibrium geometry) while keeping the individual subsystem geometries fixed; a displacement of
0 Å represents the equilibrium hydrogen bond length of 1.77 Å. In ref 189, the subsystem excitation
energy of this transition has been analyzed using FDEu for the excited state response with the
TF, PW91k,185,186 and a reconstructed kinetic potential188 for the ground-state calculation. In
that paper, it was found that the PW91k NAKP resulted in an error of 0.03 eV at the equilibrium
distance (in the monomer basis), compared to 0.02 eV for the TF NAKP and 0.003 eV for the
reconstructed potential.189

We find that, at the equilibrium geometry, the FDE-TF/FDEu-TF methods (in the
supermolecular basis) resulted in an error of 0.03 eV with respect to the supermolecular TDDFT
results; this is consistent with the results obtained in ref 189. The results from the FDEc-TF
method are also near-identical to those of the FDEu-TF method (Fig. 9.5), suggesting that this
system is uncoupled using this level of theory. The FDEu-EO and FDEc-EO methods resulted
in errors of 0.009 and 0.002 eV at the equilibrium geometry, respectively; these errors are also
comparable to those obtained with the reconstructed potential, though we should point out that
we use the supermolecular basis compared to the monomer basis in ref 189. At a displacement
of -0.2 Å, the observed errors are 0.01 and 0.001 eV for the FDEu-EO and FDEc-EO methods,
respectively. A noteworthy observation is that this transition is (weakly) coupled to the methanol
response, as evidenced by the small differences between the excitation energies obtained from
the FDEu-EO and FDEc-EO methods, whereas the FDEu-TF/FDEc-TF methods show it to be
uncoupled; the lowest excitation in the methanol subsystem is at 5.3 eV.

9.4.5 Benzaldehyde-dimer

a) b)

Figure 9.6. Isosurface plots of the (a) π and (b) π∗ orbitals (value = ± 0.03 a.u.) involved in the local
transition of the benzaldehyde subsystems examined.

We also examined the strongly coupled local transitions in a benzaldehyde-dimer. The
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benzaldehyde-dimer system is made up of two identical benzaldehyde subsystems, separated by
the axis that runs perpendicular to the benzene ring. This system has been previously used to
test the implementation of the coupled subsystem excitations method presented in ref 206. The
local excitation examined is the lowest π → π∗ transition with a significant oscillator strength
(f = 0.23), which is found at 4.921 eV (in the monomer basis). The π and π∗ orbitals involved in
this local transition are shown in Fig. 9.6 for the benzaldehyde monomer.

Figure 9.7. Excitation energies of the coupled π → π∗ local excitation as a function of the benzaldehyde-
dimer inter-planar separation.

We plot the excitation energies for for these coupled transitions as a function of the benzene-
plane separation in Fig. 9.7. In the supermolecular TDDFT results, we observe that there is a
weak coupling between these transitions at 10 Å, with a splitting of the excitation energies of 0.014
eV; this splitting increases to 0.210 eV at 3 Å separation. For the uncoupled methods, we again
find that the excitations for the FDEu-TF methods are degenerate, while those in the FDEu-EO
method are split—the occupied orbitals in the FDE-EO method are shifted in energy in order to
maintain orthogonality when there is significant overlap between the MOs. For the FDEc-TF
method, we find good qualitative agreement with respect to the supermolecular TDDFT results,
which was also found from the studies in ref 206. However, good quantitative agreement is only
found for separations of 6 Å and greater. At 6 Å separation, we observe errors of 0.003 and 0.001
eV for the upper and lower transitions, respectively, which are reduced to less than 0.0001 eV
at 10 Å. For separations of 5 Å and below, the FDEc-TF method over-estimates the coupling,
with an energy splitting of 0.355 eV (compared to 0.210 eV in supermolecular TDDFT) at 3 Å.
The explanation of this over-estimation in ref 206 was due to the coupling of charge-transfer-like
excitations in the supermolecular TDDFT results, which were not accounted for in the FDEc-TF
method since the subsystems were calculated in the monomer basis. We used the supermolecular
basis for all subsystem calculations, which should account for these charge-transfer-like excitations,
however, as was observed in the case of the He-dimer, these charge-transfer-like excitations are
incorrectly described due to an incorrect description of the ground-state electronic structure using
FDE-TF. The over-estimation of the coupling, therefore, represents a more general failure of the
TF approximation to the NAKP and the kinetic energy kernel. Using the FDEc-EO method, we
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observe good quantitative agreement at all distances, with errors of 0.022 eV and 0.021 eV for
the upper and lower transitions, respectively, at 3 Å separation, which are reduced to 0.005 and
0.001 eV at 4 Å, and to less than 0.0001 eV at 10 Å. Interestingly, the energy splitting between
the transitions at 3 Å using the FDEc-EO method is 0.211 eV compared to 0.210 eV in the
supermolecular TDDFT calculations.

Figure 9.8. Absorption spectra of the benzaldehyde calculated using the supermolecular TDDFT,
FDEc-TF, and FDEc-EO methods at 6 Å (top) and 3 Å (bottom) separations.

We also considered the accuracy of the FDEc-TF and FDEc-EO methods in calculating the
oscillator strengths of the respective transitions. In Fig. 9.8, we plot the absorption spectra
of the benzaldehyde-dimer (where the sticks spectra have been broadened by Lorentzians with
fwhm of 0.1 eV) at 3 and 6 Å separation. We note good agreement from both methods for the
absorption spectra below 5 eV. We will consider the oscillator strength of the previously described
π → π∗ transition (examined in Fig. 9.7), which has an oscillator strength of f = 0.27 at 3 Å
and f = 0.45 at 10 Å. In the FDEc-TF method, we observe errors in the oscillator strengths of
0.10 and 0.01 at 3 and 10 Å separations, respectively. The FDEc-EO method performs better
at closer distances with an error of 0.04 at 3 Å, but is comparable at farther separations with
an error of 0.02 at 10 Å. Over all distances, both methods yielded MAEs of 0.04. Above 5 eV,
the absorption spectra vary significantly from that of the supermolecular TDDFT results. One
would expect that at these higher energies, there are a lot of strongly coupled excitations, and
there may be an insufficient number of uncoupled excitations calculated from each subsystem to
correctly reproduce the supermolecular TDDFT results.

9.5 Conclusion
We have extended the FDE-EO ground-state method, which enforces inter-subsystem MO
orthogonality through the use of the level-shifting projection operator, into the TDDFT regime.
This TDDFT formulation also depends on a µ-parameter, and we have found stable excitation
energies for parameters varying three orders of magnitude (103–106). Like conventional subsystem
TDDFT methods, we show that the FDE-EO TDDFT extension can also be separated into
“uncoupled” (FDEu-EO) and “coupled” (FDEc-EO) methods, ignoring or accounting for the
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response of other subsystems, respectively. We show that these methods can accurately reproduce
the supermolecular TDDFT results, particularly where conventional subsystem TDDFT methods
fail (such as in systems with strongly overlapping densities or with charge-transfer-like excitations)
by exploring the LiH, He-dimer, 2-aminopyridine–methanol, and benzaldehyde-dimer systems.
While the method in this paper does not improve on computational costs, it does represent an
accurate subsystem formulation of TDDFT that does not depend on approximate KEDFs.
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Part IV

Using Theory to Elucidate
Experimental Observations
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Chapter 10 |
The Tip-enhanced Raman Scattering of H2TBPP
Monolayer

Chiang, N.; Jiang, N.; Chulhai, D.V.; Pozzi, E.A.; Hersam, M.C.; Jensen, L.; Seideman, T.; Van Duyne,
R.P. “Molecular-Resolution Interrogation of a Porphyrin Monolayer by Ultrahigh Vacuum Tip-Enhanced
Raman and Fluorescence Spectroscopy” Nano Lett. 2015, 15, 4114–4120. (adapted from)

Abstract
Tip-enhanced Raman scattering (TERS) of a self-assembled porphyrin monolayer on Ag(111)
is studied using an ultrahigh vacuum scanning tunneling microscope (UHV-STM). Through
selectively exciting different Q-bands of meso-tetrakis-(3,5-ditertiarybutylphenyl)-porphyrin
(H2TBPP), chemical information regarding different vibronic excited states is revealed by a
combination of TERS and time-dependent density functional theory simulations. It is found that
the TERS spectra reflect specific vibronic excitations for a monolayer of flat-lying H2TBPP.
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10.1 Introduction
Porphyrins are of great interest in the fields of chemistry, physics, biology, and medicine due to
their natural abundance and distinct electronic, photonic, and catalytic properties.364 Ordered
porphyrin adlayers formed by selfassembly have been extensively investigated in the past.365–370

The most widely used technique for studying such self-assembled porphyrin systems is scanning
tunneling microscopy (STM),368–372 with more recent emphasis placed on experiments done under
ultrahigh vacuum (UHV) conditions.373–376 However, STM alone is insufficient at revealing much
of the rich chemical information on these systems. A combination of optical spectroscopy and
STM allows one to overcome this limitation.

Raman scattering is a spectroscopic technique that uses photon excitation, and is capable of
studying vibrational, rotational, and other low-frequency modes of molecules. The introduction
and subsequent growth of surface-enhanced Raman spectroscopy (SERS) has helped scientists
overcome the detection related issue of low Raman cross-sections for organic molecules.4,80 In
SERS, the incident and Raman scattered light is amplified by the localized surface plasmon
resonance (LSPR) supported on nanostructured noble metal substrates. Amplification occurs
through large enhancements to the electromagnetic (EM) fields377 that are capable of reaching
single-molecule sensitivity under favorable circumstances.19,30,81

Similarly, Raman scattering from only a few molecules on a surface can be enhanced by a
highly confined EM field created by optically exciting the LSPR of the tip-sample junction in an
STM, or an atomic force microscope (AFM), with plasmonically active noble metal tips.30,31 This
technique is known as tip-enhanced Raman scattering (TERS).32,33 UHV and low-temperature
environments have also been incorporated into TERS to increase the stability of molecules and
to obtain spectra with higher signal-to-noise ratios.32,45,378,379 Recent advances in TERS have
shown the capability of single-molecule imaging379 as well as improving spatial resolution below 5
nm.380,381 For example, Dong, Hou, and co-workers have reported an impressive subnanometer
TERS image of a single molecule.34

In this chapter, we present a series of TERS spectra, recorded under UHV conditions, of a
self-assembled meso-tetrakis(3,5-ditertiarybutylphenyl)- porphyrin (H2TBPP) monolayer grown
on a single crystal Ag(111) surface. Excitation wavelengths were chosen to coincide as closely as
possible with the different Q-band vibronic transition energies. The spectroscopic differences in
the obtained TERS spectra are explained by time-dependent density functional theory (TDDFT)
simulated resonance Raman spectra (RRS), and surface-enhanced resonance Raman scattering
(SERRS), resulting from these different vibronic transitions.

10.2 Computational Details
The optimized geometry and normal modes of H2TBPP were obtained with the B3LYP/6-311G*
level of theory using NWChem.382,383 Vibrational frequencies were scaled by a factor of 0.98
to account for missing anharmonicity in the simulations. The resonance Raman scattering of
H2TBPP was simulated using a time-dependent wave packet formalism.384 The Franck-Condon
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factors and the transition dipole derivatives (needed for the Herzberg-Teller contributions) were
obtained from three-point numerical differentiation of the excited states energies and transition
dipoles, respectively, along mass-weighted normal mode coordinates. The excited states lifetime
parameters for a high-temperature Brownian oscillator solvent model385,386 were optimized to
best match the solution-phase absorption spectrum. All simulated Raman spectra were broadened
by Lorentzians with full width at half maxima of 7.0 cm−1.

The dressed-polarizability formalism,215,258 as outlined in Part II, was used to simulate SERRS,
where the molecular polarizabilities are dressed as

α
D,(k)
αβ = Ea

loc,γ(ωS)α(k)
γδ Eβ

loc,δ(ωL) (10.1)

where α(k) is the transition polarizability for normal mode k, and Eloc represents the local
field enhancement matrices at the incident (ωL) and scattered (ωS) frequencies. These matrices
generally depend on the orientation of the molecule with respect to the surface. However, on the
basis of the STM images (Figure 1), results for parallel orientations (porphyrin rings parallel to
the surface) best represent the experimental data.

10.3 Correctly Describing the Tip-enhanced Raman Scattering
of H2TBPP
A typical porphyrin molecule exhibits multiple vibronic transitions in the near-UV and visible
region. At 419 nm, H2TBPP shows a strong transition to the third and fourth electronically excited
states, known as the Soret band (data not shown). It also has four weak absorption bands peaks
at 515, 549, 593, and 649 nm. These bands are denoted as Qy(1,0), Qy(0,0), Qx(1,0), and Qx(0,0),
respectively, which indicate transitions to the two lowest electronic excited states (Figure 10.1a).
The TDDFT-simulated absorption spectrum is in good agreement with the measured absorption
in ethanol, with the only exception being the Qy(1,0) band, which is slightly blueshifted. The
observed blue shift is likely due to Duschinksy rotations387 or frequency anharmonicity,388 absent
in the theory used here. However, we cannot rule out solvent and surface effects or interactions
with other molecules as possible sources for the observed discrepancy. Figure 10.1b shows the
tip-engaged and tip-retracted TERS spectra, along with the resonant SERS (SERRS) spectrum
of R6G. Figure 10.1c shows six of the normal modes that have significant contributions to the
spectra observed in Figure 10.1b.

Figure 10.2a shows a series of TERS spectra using different excitation wavelengths, along
with corresponding TDDFT calculated spectra. We account for the blue shift of the Qy(1,0)
transition in the TDDFT-simulated absorption spectrum (Figure 10.1a) by shifting the excitation
wavelengths in the TDDFT-simulated SERRS, thereby retaining relative overlap with this band.
Specifically, we used 508 and 525 nm as the excitation wavelengths in the TDDFT calculations
to remain congruent with the experimental data acquired with 514.5 and 532 nm excitations,
respectively. Table 10.1 shows the TDDFT calculated excited states properties, including the x-
(µ0n
x ) and y- (µ0n

y ) components of the transition dipole moments, and the homogeneous broadening
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Figure 10.1. (a) Absorption spectrum of 2.5 × 10−6 M of H2TBPP in ethanol (blue) and TDDFT
calculated spectrum (red). (b) UHV-TERS tip-engaged (red) and tip-retracted (black) spectra of H2TBPP
monolayer on Ag(111) with 532 nm excitation (0.1 V, 500 pA, 180 s) and SERS spectrum of H2TBPP
adlayer on AgFON substrate with 532 nm excitation (10 s). (c) Selected TDDFT calculated Raman
active normal modes of an H2TBPP molecule.

Table 10.1. TDDFT calculated excited states properies used for the simulation of the RRS and TERS
of H2TBPP

∆E useda (calc.) (eV) µ0n
x (D) µ0n

y (D) Γa (cm−1)
S1(Qx) 1.9097 (2.1765) 1.0343 0.0021 120.0
S2(Qy) 2.2584 (2.3247) -0.0009 1.1639 250.0
S3(Bx) 3.0765 (3.1352) -8.3296 -0.0097 700.0
S4(By) 2.9591 (3.2539) -0.0130 10.5358 300.0

aThe values of ∆E and Γ used best reproduced experimental data. For the high-temperature Brownian oscillator
solvent model, a value of κ = 0.1 was used for all states.

factor (Γ), used in the simulated plasmonically enhanced resonance Raman spectra.
The TERS spectra were similar for all excitations, except in the region from 1200–1400 cm−1.

Additionally, the 1010 cm−1 Raman mode was stronger when exciting the Qy(1,0) transition,
while the 819 cm−1 mode had the highest relative intensity when using 532 nm excitation. These
spectral differences are explained by the theory of resonance Raman spectroscopy as follows.
For the Q(0,0) bands (561 and 594 nm excitation), H2TBPP molecules were excited to the
ground vibrational state (ν = 0) of the corresponding electronically excited states, S1 for the Qx
transitions and S2 for the Qy transitions, as indicated in Figure 10.2, panel b. For the Q(1,0)
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transitions, the molecules were also excited to the first vibrational excited state of a specific
normal mode in that electronic excited state. A top-down waterfall plot (Figure 10.2c) shows a
TDDFT-simulated resonance Raman excitation profile in the region of the Qy(1,0) and the Qy(0,0)
transitions. The figure shows that each normal mode has a maximum at the Qy(0,0) excitation
(∼550 nm) and another maximum at the Qy(0,0) energy plus the energy of the corresponding
ν = 1 state. In the experimental results, the 532 nm excitation (525 nm in TDDFT calculation)
is closer to the ν = 1 resonance of the 819 cm−1 mode, while the 514.5 nm excitation (508 nm in
TDDFT calculation) is in better resonance with ν = 1 for the 1554 cm−1 mode.

TERS with 633 nm excitation, in resonance with the Qx(0,0) band, was not observed since
the fingerprint spectral region of the Raman signal was covered by the strong fluorescence of
H2TBPP. However, TDDFT simulated Raman excitation profile in the Qx region (Figure 10.3)
shows similar behavior as in the Qy region.

10.4 Conclusion
In conclusion, we have explained the differences in the UHV-TERS spectra of H2TBPP from
different excitation energies using a combination of the dressed-tensors theory with RRS transition
polarizabilities. We found that these spectral differences are due to being on resonance with
different vibronic transitions as we excite the Qy transitions of H2TBPP. We expect a similar
behavior for the Qx transitions, but the TERS at these frequencies were quenched by the strong
fluorescence of the molecule, and were not observed.
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Figure 10.2. (a) UHV-TERS spectra of H2TBPP adlayer on Ag(111) with 514.5, 532, 561, and 594 nm
excitation, and the corresponding TDDFT simulations of plasmonically enhanced Raman spectra with
polarization of the excitation parallel to the tip axis. (b) Schematics of the resonance Raman process
of H2TBPP. (c) TDDFT simulated excitation profile for resonance Raman spectra of H2TBPP with
excitation from 500–570 nm; the white lines are the corresponding Qy(1,0) and Qy(0,0) excitation energies
for each vibrational mode.
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Figure 10.3. TDDFT simulated excitation profile for the resonance Raman spectra of H2TBPP with
excitation from 570–680 nm; the white lines are the corresponding Qx(1,0) and Qx(0,0) excitation energies
for each vibrational mode.
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Chapter 11 |
The Origin of Relative Intensity Fluctuations in Sin-
gle-Molecule Tip-Enhanced Raman Spectroscopy

Sonntag, M.D.; Chulhai, D.; Seideman, T.; Jensen, T.; Van Duyne, R.P. “The Origin of Relative Intensity
Fluctuations in Single-Molecule Tip-Enhanced Raman Spectroscopy” J. Am. Chem. Soc., 2013, 135,
17187–17192. (adapted from)

Abstract
An explanation of the relative intensity fluctuations observed in single-molecule Raman experiments
is described utilizing both single-molecule tip-enhanced Raman spectroscopy and time-dependent
density functional theory calculations. Theoretical calculations provide convincing evidence
that the fluctuations are not the result of diffusion, orientation, or local electromagnetic field
gradients but rather are the result of subtle variations of the excited-state lifetime, energy, and
geometry of the molecule. These variations in the excited-state properties will provide information
on adsorbate-adsorbate and adsorbate-substrate interactions and may allow for inversion of
experimental results to obtain these excited-state properties.
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11.1 Introduction
In 1997, two independent reports observing single-molecule surface-enhanced Raman spectroscopy
(SMSERS) contributed to a renaissance in SERS.81,82 Nie and Emory reported the observation
of SERS spectra from single rhodamine 6G (R6G) molecules adsorbed on citrate-reduced Ag
nanoparticles that were electrostatically immobilized on glass in an ambient environment. Strong
intensity fluctuations occurred on the second time scale and were attributed to surface diffusion of
molecules into and out of the electromagnetic enhancing hot spot.254 Independently, Kneipp and
co-workers observed SMSERS of crystal violet (CV) in citrate-reduced Ag nanoparticle aggregates
in solution, the signal demonstrating a Poisson distribution of intensities corresponding to 0, 1, 2,
or 3 molecules in the hot-spot.

Similarly, reports of single-molecule tip-enhanced Raman spectroscopy (SMTERS) have
generated a tremendous amount of interest due to its ability to probe chemical information on the
nanometer scale.30,34,379,389,390 The combination of scanning tunneling microscopy (STM) with
Raman spectroscopy can overcome the low sensitivity and diffraction limited spatial resolution
associated with Raman spectroscopy as well as the limited chemical sensitivity associated with
STM. TERS employs the use of a nanometallic tip to both localize and enhance the incident
electric field.

After the initial SMSERS observations one of the major questions involved the nature of
the sporadic intensity fluctuations (i.e., blinking), specifically what is their origin. There have
been many reports studying blinking, demonstrating that the blinking dynamics are dependent
on temperature,254,255,391,392 excitation intensity,256,257 and environment.19,254,391 While the
blinking dynamics have been demonstrated to be dependent on temperature, no changes in the
relative intensities were observed during thermal heating of the sample during illumination.254

Additionally, the fluctuations themselves have been treated with many models.81,256,257,393–395

In general, it appears that blinking is caused by diffusion of the molecule on the surface into
and out of the hot spot. Previous work in both SMSERS and SMTERS utilized an isotopically
edited extension of the bianalyte technique, which demonstrates strong evidence of a diffusion
mechanism.19,30 To date, multiple papers on SMSERS have focused on fluctuations both in peak
intensity and spectral position, using statistical analysis to claim observance of single-molecule
behavior. Within the TERS literature, similar fluctuations in intensity have also been used as a
basis for identifying single-molecule behavior.389,390 Fluctuations in the line shape and spectral
position can also make characterization of samples difficult, as molecular decomposition and
photobleaching are possible.396,397

Although dramatic changes in the Raman intensity and frequency of the Raman modes
have been discussed at length (see above), more subtle changes are often evident in the Raman
spectrum of single molecules. Large relative intensity fluctuations between individual modes
within a single spectrum, along with changes in linewidths, have been observed during the
course of the experiment. There are several possible explanations for this behavior based on the
properties of the molecule and the hot-spot itself. For example, in ambient conditions, a water
meniscus forms in the tip-sample junction allowing the molecule to diffuse and sample different
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polarizations, orientations, enhancement factors, etc. In this chapter, we will explore the origin of
these relative intensity fluctuations. This information may be used to gain some insight into the
adsorbate-adsorbate and/or adsorbate-substrate interactions.

11.2 Computational Details
The time-dependent wave packet formalism of the resonance Raman scattering (RRS) tensor (α),
considering only the ground (G) and one resonantly excited (E) state, may be written as398 (see
also Equation 2.7)

(ααβ)p =
(
µGE
α

) (
µGE
β

)
× L[EEG, ωp,∆p,Γ] (11.1)

where Greek subscripts refer to Cartesian directions, µEG is the transition dipole moment between
the ground and resonantly excited state, L is a line shape function that depends on EEG (the
energy difference between G and E), ωp (the frequency of the of vibrational mode p), ∆p (the
mode-dependent displacement between ground- and excited-state potential minima in ground-
state dimensionless coordinates), and Γ (a spectral broadening parameter that is related to the
lifetime of E). This equation also assumes the Condon approximation (no vibrational coordinate
dependence on µEG). Within these approximations, the RRS spectrum may be simulated exactly
providing that µEG, EEG, ωp, ∆p, and Γ are known.

Simulations of the RRS of R6G were previously obtained using parameters calculated from a
time-dependent density functional theory (TDDFT) method as outlined previously.30 Geometry
optimization, normal modes, and excited-state energy calculations were performed in NWChem382

using the B3LYP/6-311G* level of theory. Vibrational frequencies were scaled by a factor of
0.98. Dimensionless displacements were obtained from a three-point numerical differentiation of
excited state energies along mass weighted vibrational coordinates. The lifetime parameter was
estimated from solution-phase R6G RRS experimental results and found to be ∼500 cm−1. These
parameters were shown to accurately simulate experimental ensemble RRS spectra of R6G.

In single-molecule observations, these parameters may vary reflecting the exact local
environment of the molecule. To examine this possibility, we fitted simulated spectra using a
least-squares method to experimental data allowing for small changes in the molecular parameters.
Both experimental and simulated spectra were normalized (to the mode at ∼1658 cm−1), and the
least-squares minimization was performed using a multidimensional downhill simplex algorithm399

allowing for variations in ∆p, EEG, and Γ. Calculated values (described above) were used as
starting points in the simplex algorithm, with values of EEG allowed to vary within ±25 nm of the
initial value (532 nm) and Γ between 50–1500 cm−1. The ∆p of 10 selected modes were allowed
to vary within ∼40% of their initial values. These modes (at p = 616, 772, 1195, 1298, 1356, 1515,
1561, 1579, 1607, and 1658 cm−1) were selected because they were the largest contributors to
the RRS spectrum in the region under examination (400–1800 cm−1). The ∆p of the remaining
modes were kept fixed at their calculated values.
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11.3 Results and Discussion
We show the time series plot of the TERS spectra of a single R6G molecule in Figure 11.1. This
plot clearly shows large changes in the relative intensities of the normal modes with time. Of
these modes, we highlight the vibrations at 608, 771, 1362, and 1651 cm−1 (see Figure 11.2). The
majority of these vibrations are concentrated on the xanthene ring; however each mode contains
slightly different normal mode character. It is possible that differing adsorption geometries could
cause certain modes to be preferentially enhanced or damped. A more complete understanding of
the relationship between different modes and the integrated intensities can be gained by examining
the intensity changes across the entire experimental data set.

We have shown, in Chapter 4, that the orientation dependence of molecules with respect to
the surface in SERS may be approximated using

ISERS ∝
∣∣Floc(ωL) ·RT · α ·R · Floc(ωS)

∣∣2 (11.2)

where Floc is the local field enhancement, α is the Raman tensor, and R is some rotation
matrix.34,106,400 The ωL and ωS indicate the incident and scattered frequencies, respectively.
This formalism can describe similar fluctuations observed in SMSERS experiments in which the
relative intensities and peak positions are the result of molecular reorientation inside the hot
spot.106,401 However, this approximation cannot be used to correctly describe the relative mode
intensities of the SERRS (TERRS) of Franck-Condon (A-term) scatterers resonantly excited to a
single excited state, such as R6G. In such molecules, the resonance Raman tensor α (calculated
using the time-dependent formalism presented in eq 11.1) depends on the line shape function L
which is independent of rotation; orientation-dependence stems from rotation of a vector (the
transition dipole) that, in the Condon approximation, is mode-independent.

While this results in orientation-independent relative intensities, the SERRS intensities
calculated using the above equation will, however, result in largest enhancements for transition
dipoles aligned with the local field vectors. Going beyond the Condon approximation, inclusion of
the first Herzberg-Teller (B) term results in some orientation dependence of the SERRS spectrum
for R6G, but its contribution is minor, with features that are 1–2 orders of magnitude weaker
than the total intensity, and therefore is an unlikely explanation for the fluctuations observed
in the SMTERS experiments. A similar argument could be made for field gradient effects since
the electric dipole-quadrupole tensor contains the same line shape function. A more rigorous
theoretical treatment would be required to account for fluctuations of individual modes in SERRS
and TERRS. In particular, one would need to determine the orientation- and site-dependent
coupling of the excited state (and therefore the properties that depend on this state, such as µEG,
EEG, ∆p, and Γ) with the plasmonic surface.

Alternatively, one may be able to “invert” experimental data in order to obtain these excited-
state properties.402,403 Generic algorithms may be used to accurately obtain these parameters
through nonlinear least-squares minimization, assuming that a good initial “guess” was first
made. In this chapter, we use the results of full TDDFT calculations as an initial guess in
a multidimensional downhill simplex algorithm399 in order to obtain optimized parameters.
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Table 11.1. Parameters used to reproduce experimental spectra obtained from least-squares minimization
of excited-state properties

parameter calcd 09 32 37 50 52 57
Γ (cm−1) – 545 1727 1159 654 601 489
EEG (nm) 534 542 557 527 524 522 538
∆616 -0.245 -0.294 -0.164† -0.205 -0.190† -0.274 -0.274
∆772 -0.163 -0.181 -0.155 -0.166 -0.201 -0.157 -0.186
∆1195 -0.098 -0.089 -0.111 -0.089 -0.093 -0.101 -0.093
∆1298 -0.141 -0.151 -0.193† -0.153 -0.196† -0.176† -0.160
∆1356 0.180 0.161 0.158 0.173 0.170 0.167 0.177
∆1515 -0.143 -0.162 -0.158 -0.169 -0.146 -0.146 -0.150
∆1561 0.145 0.140 0.130 0.158 0.117 0.130 0.126
∆1579 0.120 0.142 0.118 0.123 0.103 0.127 0.127
∆1607 0.047 0.052 0.065† 0.052 0.053 0.048 0.054
∆1658 -0.199 -0.168 -0.174 -0.151† -0.198 -0.177 -0.176

Calculated values were obtained using the B3LYP/6-311G* level of theory. Values that are more than 20% different
from the calculated values are labeled with a †.

Figure 11.3 shows the comparison between six frames of the experimental TERS and simulated
RRS with optimized parameters of R6G. These frames were chosen because they show intense
features at different regions in their respective spectrum. The spectra in Figure 11.3 show the
accuracy of the minimization algorithm, where we were able to simulate the relative intensities
of the 10 modes under consideration for each experimental spectrum. The values used for the
simulated spectra in Figure 11.3 are listed in Table 11.1. The top row indicates the particular
spectrum number in the experimental data set that is being modeled. Both the calculated and
optimized parameters are shown for each mode corresponding to the six spectra shown.

The results indicate that the large fluctuations in relative intensities observed experimentally
may be reproduced theoretically assuming small fluctuations in excited-state properties. In
particular, these large changes were reproduced assuming small changes (usually <20%) in the
dimensionless deltas. These changes are reasonable as they reflect changes in the excited-state
bond lengths of a picometer or less. These changes are averaged out in ensemble measurements
but become important in single-molecule observations. This implies that quantitative analysis of
the relative intensities from single-molecule experiments is difficult at best. By summing all of
the single-molecule spectra obtained in Figure 11.1, we obtain a spectrum, shown in Figure 11.4,
that resembles the ensemble spectrum in both SERS and TERS experiments in which the relative
intensities across the spectrum are roughly similar.30,404

11.4 Conclusion
We have determined an explanation of the large relative intensity fluctuations present in single-
molecule TERS spectra. In principle, these conclusions should also be generalizable to other
experiments such as single-molecule SERS; however, that data must still be examined. Theoretical
calculations have ruled out orientation and field gradient as the cause of these effects. Matching
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of the theoretical spectra to the experimentally obtained fluctuations was achieved by allowing
for small variations (<20%) in the lifetime, energy, and geometry of the excited state. The ability
to invert experimental measurements to obtain molecular properties of the excited state of the
molecule can provide detailed information on the interactions between adsorbates and the surface.

137



Figure 11.1. (A) Time series waterfall plot of spectra taken continuously under single-molecule conditions.
The false color represents signal intensity, where red is highest and blue is lowest. (B) Two representative
spectra illustrating the large changes in relative intensity along with the theoretical spectrum.
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Figure 11.2. Visual depiction of the normal modes of the four most intense vibrations in the TERS
spectrum of R6G

Figure 11.3. Plot of the experimental and theoretical spectra. The fluctuations can be reproduced by
allowing for small changes in the properties of the molecule. Different frames show certain regions of the
spectrum dominating the total intensity.
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Figure 11.4. Plot of ensemble (A) SERS and (B) TERS and (C) sum of the single-molecule TERS
spectra.
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Chapter 12 |
Binding Orientation of Rhodamine-6G From Tip-
Enhanced Raman Spectroscopy

Klingsporn, J.M.; Jiang, N.; Pozzi, E.A.; Sonntag, M.D.; Chulhai, D.; Seideman, T.; Jensen, L.;
Hersam, M.C.; Van Duyne, R.P. “Intramolecular Insight into Adsorbate–Substrate Interactions via Low-
Temperature, Ultrahigh-Vacuum Tip-Enhanced Raman Spectroscopy” J. Am. Chem. Soc. 2014, 136,
3881–3887. (adapted from)

Abstract
Tip-enhanced Raman spectroscopy (TERS) provides chemical information for adsorbates with
nanoscale spatial resolution, single-molecule sensitivity, and, when combined with scanning
tunneling microscopy (STM), Ångstrom-scale topographic resolution. Performing TERS under
ultrahigh-vacuum conditions allows pristine and atomically smooth surfaces to be maintained,
while liquid He cooling minimizes surface diffusion of adsorbates across the solid surface, allowing
direct STM imaging. Low-temperature TER (LT-TER) spectra differ from room-temperature TER
(RT-TER), RT surface-enhanced Raman (SER), and LT-SER spectra because the vibrational lines
are narrowed and shifted, revealing additional chemical information about adsorbate-substrate
interactions. As an example, we present LT-TER spectra for the rhodamine 6G (R6G)/Ag(111)
system that exhibit such unique spectral shifts. The high spectral resolution of LT-TERS provides
intramolecular insight in that the shifted modes are associated with the ethylamine moiety of
R6G. LT-TERS is a promising approach for unraveling the intricacies of adsorbate-substrate
interactions that are inaccessible by other means.
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12.1 Introduction
Understanding the nature of molecular adsorption geometries and the attendant adsorbate-surface
interactions is of fundamental importance in the development of technologies such as dye-sensitized
solar cells, organic photovoltaics, heterogeneous catalysts, and molecular electronics. Adsorbate-
surface interactions are inherently heterogeneous because of the number of crystallographically
distinct surface sites available as well as the various adsorbate-adsorbate interactions possible.
Scanning tunneling microscopy (STM) and atomic force microscopy (AFM) provide unprecedented
detail about these interactions at the single-molecule (SM) and single-site level for “flat” molecules.
Such direct high-resolution imaging is compromised for molecules that have complex 3D adsorption
geometries. Tip-enhanced Raman spectroscopy (TERS), on the other hand, is an established
tool for surface science that can probe the details of adsorbate-surface interactions for individual
molecules adsorbed at individual surface sites.

TERS, unlike surface-enhanced Raman spectroscopy (SERS), utilizes a controllable hot spot
formed at the tip-sample junction. This hot spot allows nanofocusing of the electromagnetic (EM)
field to provide nanoscale spatial resolution. The high EM field intensity at the tip-sample junction
provides enhancements of the Raman signals that are sufficient to provide ultrahigh sensitivity
down to the SM level.30,34,379,390,405 While most of the work in the TERS field has concentrated on
studies performed under ambient conditions,406–410 performing TERS in ultrahigh vacuum (UHV)
can minimize contamination and maximize STM spatial resolution. The first TERS experiment
performed in UHV379 showed SMTERS spectra that were dominated by a single vibrational
mode for brilliant cresyl blue (BCB) dye molecules deposited from solution on Au(111). The first
multivibrational mode UHV-TERS experiment, along with complete UHV sample preparation,378

was performed for copper phthalocyanine (CuPc) on Ag(111). The recent report of UHV-TERS
at 80 K for the meso-tetrakis(3,5- di-tert-butylphenyl)porphyrin (H2TBPP)/Ag(111) system has
further energized this field with its demonstration of sub-nanometer spatial resolution.34 However,
the effect of temperature on the TERS signal has not yet been quantified.

Here we present and analyze low-temperature (LT) (19 K), UHV (<2 × 10−11 Torr) TERS of
single molecules and clusters of rhodamine 6G (R6G) adsorbed and immobilized on a Ag(111)
surface. Previous LT Raman studies have demonstrated the additional advantage of reduced
line widths compared with room temperature (RT), which is evidently dominated by increased
vibrational dephasing times.411–413 Further, a UHV, near-field, variable-temperature SERS
study of R6G reported that the background signal narrowed and decreased at LT.414 We now
demonstrate analogous line width narrowing in TERS upon cooling to 19 K as well as informative
spectral shifts that are observed in LT-TERS compared with RT-TERS and SERS at both
temperatures. Analysis of these spectral shifts using the potential energy distributions (PEDs)
of their respective vibrational modes has provided additional information about the specific
structural moieties interacting with the Ag(111) surface. This insight has allowed us to postulate
a plausible adsorption geometry for R6G on Ag(111). Overall, LT-TERS of a small number of
molecules with minimal motional averaging is a significant advance in the study of molecules
interacting with surfaces.
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12.2 Computational Details
The resonance Raman scattering (RRS) of R6G was simulated using a time-dependent wave
packet formalism as was described briefly in Chapter 11 and in more detail elsewhere.30,398 Briefly,
optimized geometries, normal modes, and excitation energies were obtained at the B3LYP/6-
311G* level of theory using NWChem.382 Vibrational frequencies were scaled by a factor of
0.98. Dimensionless displacements were obtained from three-point numerical differentiation of the
excited-state energies along mass-weighted vibrational coordinates. Normal mode distributions
were calculated from mass-weighted normal mode vectors. The molecule was first divided into
seven regions (two ethylamine, two methyl, one ethyl ester, one phenyl, and one xanthene). The
vibrational PEDs were then determined by considering the magnitudes of the normal mode vectors
and the regions to which the corresponding atoms belong.

12.3 Spectral Shifts in LT-TERS
Because of the limited information given by STM, we turned to spectroscopy in order to elucidate
the nature of the adsorbate-substrate interactions. Figure 12.1 depicts LT-TERS, along with both
RT- and LT-SERS and RT-TERS of R6G. We also include the calculated spectrum of free R6G in
this figure. Several differences between LT-TERS and the other spectra can be clearly observed.
These differences permit some adsorbate-surface structural properties to be deduced. The focus
will be on the following: (1) the observed Raman line shapes; and (2) the unique spectral shifts
observed only in LT-TERS.

The observed Raman line shapes may be explained by three mechanisms: (1) the number of
molecules being observed; (2) the diffusion of molecules in and around the hot-spot; and (3) the
temperature-dependent Raman line width. In contrast to the TERS spectra, the SERS spectra
contain contributions from all of the molecules within the laser probe volume, resulting in a highly
ensemble-averaged signal. On the other hand, the TERS signal is due only to molecules within the
TERS enhancing region. The exact size of this enhancing region has been under debate, however,
we approximate that 109 molecules are probed in SERS.378 In contrast, if we consider a typical
Ag probe morphology,397 the TERS signal originates from no more than 104 R6G molecules.
However, as shown with SERS, a few molecules in the region of highest field strength (that is, the
hot spot) will dominate the signal.415 Under this assumption, the lower bound for the number
of R6G molecules in the TERS enhancing region would be only a few molecules. Because of
varied geometries and adsorption sites possible, one would expect a normal distribution of mode
frequencies, resulting in the observed broad, Gaussian-shaped bands in SERS spectra collected at
both temperatures (Figure 12.1). While RT-TERS drastically reduces the number of molecules in
comparison to SERS, the rapid diffusion of R6G molecules at RT results in motional averaging as
the molecules move in and out of the hot-spot—this also results in Gaussian-shaped bands for
RT-TERS. Finally, and perhaps most significantly, molecules are immobilized during LT studies,
and experience constant adsorption configurations. In addition, we expect that the stationary
molecules adopt one of a finite number of local minimum-energy configurations on the periodic
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Figure 12.1. Spectral comparisons for R6G on silver surfaces: (a) ambient SM RT-SERS on Ag colloids
(brown), (b) ambient SM RT-TERS on a smooth Ag film (black), (c) RT-UHV-SERS on AgFON (blue),
(d) RT-UHV-TERS on Ag(111) (red), (e) LT-UHV-SERS on AgFON (green), (f) LT-UHV-TERS on
Ag(111) (violet), and (g) TDDFT calculated Raman spectrum of free R6G.

substrate. As a result, the distribution of adsorption geometries and therefore individual mode
frequencies is decreased in LT-TERS. Additional narrowing in LT-TERS is afforded through the
intrinsic temperature dependence of the Raman line width. It has been shown that SMSERS line
widths are temperature-dependent through anharmonic coupling between the molecular vibrations
of the adsorbate and the phonons of the silver surface, resulting in an increase in the vibrational
dephasing relaxation time.411 A more detailed discussion on the line shapes from RT and LT
SERS and TERS may be found in Ref. 45 and its Supporting Information.

These effects all lead to line width narrowing in LT-TERS, which increases the information
content available in a collected spectrum. Although there is no standard definition of spectral
resolution in Raman spectroscopy,416 an intuitive one is that in a fixed spectral region, the number
of resolvable lines increases with decreasing line width. This is clearly observed in Figure 12.1,
in which 12 peaks are resolved in the range 1100–1450 cm−1 in LT-TERS compared with eight
peaks in RT-TERS.

Along with the observed line width narrowing, multiple LT-TERS peaks are shifted with respect
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Table 12.1. Major peaks for LT-TERSa and theoretically calculated frequencies and PEDs for the
moieties present in R6G

experimental theoretical
position shifted position methyl xanthene ethylamine phenyl ester
cm−1 Y/N cm−1 % % % % %
614 N 616 3.5 39.2 6 51.1 0.1
775 N 772 16.8 42.3 39.7 1.1 0.2
1132 Y 1129 13.5 27.5 40.5 16.1 2.4
1205 Y 1195 0.4 61.2 38.3 0.1 0
1274 N 1271 0.7 70 17.5 9.3 2.5
1327 Y 1321 3.8 11.7 84.4 0 0
1350 Y 1367 0.2 4.7 93.9 1.2 0
1423 N 1424 37.9 30.3 17.1 14.5 0.2
1527 Y 1515 11.8 28.2 58.1 1.8 0.1
1547 Y 1535 6.8 38.6 54.5 0 0
1579 N 1582 0.1 6.9 1.9 90.8 0.4
1608 N 1607 0 3.6 0 96.2 0.2
1652 N 1658 8.9 89.6 1.3 0 0.2

aFor each peak, the entry in the second column indicates whether the peak is shifted with respect to the other
spectra.

to both the RT-TERS and the RT/LT-SERS spectra shown in Figure 12.1. The eigenvectors for the
normal modes of interest are shown in Figure 12.2. Additionally, Figure 12.1 also compares both
RT/LT-SERS and -TERS spectra to previously reported SMTERS and SMSERS spectra.19,30

The SM spectra appear to remain consistent with the RT-SERS, LT-SERS, and RT-TERS spectra
but greatly differ from the LT-TERS spectra. Both blue and red mode shifts of up to 20 cm−1

are observed for multiple LT-TERS modes, while other modes remain un-shifted. The unique
spectral characteristics observed for LT-TERS combined with a careful theoretical interpretation
provide further insight into the molecular orientation of R6G on the Ag(111) surface. Table 12.1
summarizes the major peaks and indicates whether they are shifted in the LT-TERS spectrum,
and it also provides the corresponding theoretical PEDs (see Appendix I for the PEDs of all
normal modes).

The peaks located at 1132, 1205, 1327, 1350, 1527, and 1547 cm−1 in the LT-TERS spectrum
show frequency shifts compared with both RT/LT-SERS and RT-TERS. As shown by highlighted
cells in Table 12.1, all of these peaks have a unique similarity in that each mode is characterized
theoretically to have a PED that involves approximately localized vibrations on the ethylamine
moieties or on the xanthene ring and ethylamine moieties. For example, the peak observed at
1205 cm−1 is shifted with respect to the other spectra and has a PED showing 61% xanthene
character and 38% ethylamine character. The modes at 1132, 1327, 1350, 1527, and 1547 cm−1

also show large shifts and have PEDs showing large xanthene ring and/or ethylamine character.
The rest of the major peaks do not exhibit such shifts. Comparing these unshifted modes with
their PED values in Table 12.1 shows that they have either high phenyl ring character or are
highly delocalized modes with contributions from most of the internal coordinates of R6G. An
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616 cm−1 772 cm−1 1129 cm−1 1195 cm−1

1271 cm−1 1321 cm−1 1367 cm−1 1424 cm−1 1515 cm−1

1535 cm−1 1582 cm−1 1607 cm−1 1658 cm−1

Figure 12.2. Illustration of the eigenvectors of the normal modes of R6G examined in this Chapter

example of an unshifted, phenyl-ring-localized mode is the peak located at 1608 cm−1. The
unshifted xanthene-ring-localized mode at 1652 cm−1 is worthy of note. This mode only has 1%
ethylamine character and is therefore effectively decoupled from the Ag(111) surface. An in-depth
discussion of the characteristics of the R6G vibrations will not be presented here, as it has been
thoroughly covered previously.19,30,44

An alternative explanation for the observed peak shifts might lie in the strength of molecule–
molecule interactions. In other words, we consider the possibility that the dimers, trimers, and
larger aggregates observed in STM images of R6G on Ag(111) at LT may explain the shifted
peaks in LT-TERS. However, since one would expect similar aggregation properties in LTSERS
in this case, the absence of such shifts decreases the likelihood of this scenario. Furthermore,
because multiple R6G aggregation states are observed in the STM images, we would expect to
see either inhomogeneously broadened or many more peaks in LT-TERS as a result of varying
molecule–molecule interactions. We thus conclude that intramolecular interactions are not a
significant contributor to the peak shifts observed in LT-TERS.

Understanding the unique spectral characteristics observed for LT-TERS in comparison with
the other spectra presented here requires an interpretational hypothesis. We hypothesize that
the moieties in closest proximity to the surface exhibit the greatest perturbation in the observed
Raman frequency. Under this hypothesis, the orientation of R6G on the Ag(111) substrate can
be further understood on the basis of the unique spectral characteristics observed. Using the
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above hypothesis and the observation that all of the modes localized on the ethylamine moieties
or xanthene ring modes coupled to the ethylamine moieties exhibit spectral shifts, we propose
that the ethylamine moieties of adsorbed R6G interact with the Ag(111) surface. Therefore, the
molecule is likely oriented with the R6G molecule situated edgewise along its xanthene moiety
with its ethylamine substituents against the Ag(111) surface.

12.4 Conclusion
LT-TERS performed in UHV provides additional insight into the adsorption properties of molecules
on surfaces. According to the PEDs obtained by time-dependent density functional theory (TD-
DFT) calculations on the free R6G molecule, the spectral shifts observed in LT-TERS for certain
modes are attributed to their proximity and coupling to the surface. Specifically, we postulate
that R6G adsorbs to Ag(111) along its xanthene edge with the ethylamine moieties in close
proximity to the surface. Overall, we conclude that LT-TERS enables improved understanding
of adsorbate-substrate interactions and thus has the potential to influence the design of future
molecular devices.
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Summary and Outlook
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Chapter 13 |
Summary and Outlook

13.1 Dissertation Summary
This dissertation focused on developing new theoretical tools in order to describe and understand
the spectral changes observed in surface-enhanced Raman scattering (SERS) and other surface-
enhanced spectroscopies. The development of these new methods drew inspiration from each of
the main mechanisms of SERS, namely the electromagnetic mechanism (EMM), and the chemical
mechanism (CM). As such, this dissertation was presented in four parts, the first of which focused
on introducing the main ideas and theoretical models used throughout.

In the second part, “The Dressed-Tensors Formalism”, we developed methods to describe
SERS, surface-enhanced Raman optical activity (SEROA), and surface-enhanced circular dichroism
that were based on the EMM. It was demonstrated that the inhomogeneity of the local fields
generated by surface plasmons may significantly alter both the Raman and Raman optical activity
signatures, and, in the case of SERS, these signatures may contain information regarding the
relative orientation of the molecule with respect to the nanoparticle’s surface. For SEROA, we
found that the spectral signatures are highly sensitive to the inhomogeneity of the local fields,
the orientation of the molecule, and the surface plasmon frequency width, which all give insight
into why mirror image SEROA for enantiomers are yet to be observed. We found that the
surface-enhanced circular dichroism of the α- and 310-helices resulted in significantly complicated
molecular signatures, and the structure of the proteins could no longer be identified from the
spectra. We further showed that the dressed-tensors formalism can efficiently simulate the SERS
of ensemble systems, and, when coupled with molecular dynamics simulations, show that the
time-lapse of a single-molecule SERS spectrum may contain information of the translational and
rotational motions of the molecule.

The third part, “An Exact Subsystem Density Functional Theory”, focused on developing a
new theoretical method to understand the CM of SERS. This method considers the quantum
mechanical interaction between two subsystems—such as between a molecule and a plasmonic
nanoparticle—exactly within the limit of density functional theory (DFT), by the use of a
projection operator embedding method. We implement this new method within the frozen density
embedding (FDE) framework, and showed that it exactly reproduces the ground state energies
and densities of the supermolecular system. In particular, we showed that the method was
robust enough to exactly reproduce the supermolecular electron density of benzene, starting from
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atomic subsystems. We also extended this model into time-dependent DFT (TDDFT) in order to
describe the response properties of each subsystem, and showed that the theory reproduces the
supermolecular excitation energies of weakly and strongly coupled subsystems, and for subsystems
with strongly overlapping densities.

In the fourth part, “Using Theory to Elucidate Experimental Observations”, we used
theoretical models—including models developed in this dissertation—in order to describe the
spectral signatures observed from experimental SERS and tip-enhanced Raman scattering
(TERS). We showed that changes in the spectral signatures of a monolayer of meso-tetrakis(3,5-
ditertiarybutylphenyl)-porphyrin (H2TBPP) with respect to changes in the incident laser frequency
reflect the excitation of specific vibronic transitions in the molecule. We also noted that the
orientation dependence of the SERS spectrum as predicted in the first part of this dissertation
is only applicable for non-resonant and Herzberg-Teller scatterers. In the case of the single-
molecule TERS of Franck-Condon scatterers, we show that large changes in the relative intensity
of the signal may be due to picometer changes in the excited state geometry of the molecule.
Finally, we illustrated that, in low-temperature TERS studies, the molecule’s interactions with
the nanoparticle’s surface may induce shifts in the observed normal mode frequencies. We showed
that these shifts contain information of the binding orientation of the molecule, and in the case
of rhodamine-6G, we find that the molecule bind to the surface along its xanthene/ethylamine
moieties.

13.2 Future Directions for the Dressed-Tensors Formalism
As developed and explored in Part II of this dissertation, the dressed-tensors formalism is a very
efficient method of accounting for the effects of the local electric field responsible for surface-
enhanced spectroscopies. The method, as developed so far, has many potential applications in
describing the SERS or surface-enhanced Raman optical activity (SEROA) of single molecules
or even ensembles of millions of molecules. Below, we will present several potential theoretical
extensions and applications of the methods developed in Part II.

13.2.1 Field gradient effects in non-linear spectroscopies

The dressed-tensors formalism presented in Part II focused on accounting for an inhomogeneous
local field for the linear SERS and SEROA spectroscopies. We also, briefly, explored how
the formalism may be expanded to account for non-linear surface-enhanced spectroscopies in
Appendix B. There, we showed how the dressed-tensors with a homogeneous local field may
be applied to any general second and third order response tensors—however, these expressions
do not account for the gradient of the local field. Having a model to describe the various
surface-enhanced non-linear spectroscopies is particularly important as we have already seen
examples of surface-enhanced hyper-Raman scattering (SEHRS), surface-enhanced coherent anti-
Stokes Raman scattering (SECARS), surface-enhanced femto-second stimulated Raman scattering
(SE-FSRS), and surface-enhanced sum-frequency generation (SESFG). As such, developing the
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dressed-tensors formalism to include field gradients is sorely needed. Below, we show how this
may be done for a few of these non-linear surface-enhanced spectroscopies.

Perhaps the simplest extension of the dressed-tensor formalism would be to describe SECARS.
Coherent anti-Stokes Raman scatter (CARS) is a four photon process that depends on the third
order susceptibility tensor χ(3). In vibrationally resonant CARS, this tensor may be approximated
as products of the linear response polarizabilities ααβ , as

χ
(3)
αβγδ(−2ω1 − ω2;ω1,−ω2, ω1) ≈

∑
p

∂ααβ(ω1)
∂Qp

∂αγδ(ω1)
∂Qp

2
[ωp − (ω1 − ω2)− iε] + c.c. (13.1)

where ω1 and ω2 corresponds to the incident laser frequencies, p sums over all vibrational
states with frequency ωp, ε is the inverse lifetime of the vibrational states, and c.c. denotes the
complex conjugate. Because this non-linear susceptibility may be written as products of linear
polarizabilities, one would expect that the tensor may be dressed in the same way. Specifically,
the dressed χ(3) with field gradients may be obtained from dressed ααβ with field gradients as
outlined in Equations 4.5 and D.6.

In the case of SEHRS, which depends on the hyperpolarizability derivatives in the Placzek
approximation, the dressed hyperpolarizability βtot may be obtained as

∂βtotαβγ
∂Qp

=
[
δαδ + Fαδ

] ∂βµµµδ,ε,ζ

∂Qp

[
δβε + F βε

] [
δγζ + F γζ

]
+ 1

3

[
δαδ + Fαδ

] ∂βµµθδ,ε,ζη

∂Qp

[
δβε + F βε

]
F γζη

+ 1
3

[
δαδ + Fαδ

] ∂βµθµδ,εη,ζ

∂Qp
F βεη

[
δγζ + F γζ

]
+ 1

3F
α
δη

∂βθµµδη,ε,ζ

∂Qp

[
δβε + F βε

] [
δγζ + F γζ

]
+ 1

9

[
δαδ + Fαδ

] ∂βµθθδ,εη,ζκ

∂Qp
F βεηF

γ
ζκ

+ 1
9F

α
δη

∂βθµθδη,ε,ζκ

∂Qp

[
δβε + F βε

]
F γζκ

+ 1
9F

α
δη

∂βθθµδη,εκ,ζ

∂Qp
F βεκ

[
δγζ + F γζ

]
+ 1

27F
α
δη

∂βθθθδη,εκ,ζλ

∂Qp
F βεκF

γ
ζλ

(13.2)

where the superscripts µ and θ describe the dipole or quadrupole quantum mechanical operator
used to define the electronic hyperpolarizability β, and the field enhancement matrices F have
been defined elsewhere. The hyperpolarizabilities—and generally all other non-linear response
tensors—defined with the quadrupole operator are not freely available (as far as the authors are
aware) in any computational package, and would need to be implemented. Similarly, one will
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need to derive the dressed-tensors formalism and implement the codes needed to generate the
respective non-linear tensors, in order describe other non-linear surface-enhanced spectroscopies
with an inhomogeneous local field.

13.2.2 Octopole response in surface-enhanced Raman scattering

a

b

Figure 13.1. The inhomogeneity of the local field in a symmetric junction as described by a homogeneous
electric field, its first gradient, and its second gradient approximations. Boxes a and b represent the finite
size of some small molecule.

In Chapter 4, we considered the effects of the gradient of the local electric field perturbing
the molecule. We needed to do this since, over the finite size of the molecule, the value of the
local electric field could vary considerably. In Figure 13.1, we show a typical field distribution
expected from a symmetric dimer nanoparticle junction. Boxes a and b represent the finite size
of some small molecule, and we show how accurate a homogeneous field, the first field gradient,
and the second field gradient are at describing the local fields perturbing the molecule. We can
see that if the molecule is away from the center of the junction, the field gradient approximation
can accurately describe the local fields. However, if the molecule is nearer to the center of the
junction, such an approximation fails. This is particularly important since the fields are strongest
in the center of the junction, and molecules positioned here would contribute the most to the
SERS signal as shown in Chapter 5. As such, we may want to consider the second gradient of the
local field—which, in Figure 13.1, is shown to qualitatively reproduce the inhomogeneity of the
local field across a molecule in the center of the junction.

Inclusion of the second field gradient would include additional terms to Equations 4.5 and D.6
that are due to the octopole moment Ω linear response tensors. This dressed tensor formalism
may have terms that look like
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∂αtot

∂Qp
= E · χµµ ·E + 1

3E · χµθ · ∇E + 1
9E · χµΩ · ∇2E

+ 1
3∇E · χθµ ·E + 1

9∇E · χθθ · ∇E + 1
27∇E · χθΩ · ∇2E

+ 1
9∇

2E · χΩµ ·E + 1
27∇

2E · χΩθ · ∇E + 1
81∇

2E · χΩΩ · ∇2E

(13.3)

where we have simplified all the linear transition polarizabilities as χ, with superscripts µ, θ,
and Ω to symbolize the dipole, quadrupole and octopole operators used to obtained them. E,
∇E, and ∇2E are also simplified versions of the field, field gradient, and second field gradient
enhancement matrices. Such a term is rather complex, and would require that all of the octopole
linear transition tensors are also available.

13.2.3 Tip-enhanced Raman imaging of molecular vibrations

Recently, Dong, Hou and co-workers have observed TERS signals from a single molecule of
meso-tetrakis(3,5-ditertiarybutylphenyl) porphyrin (H2TBPP) that were spatially confined to
sub-nanometer length scales.34 They also found that the confinement of the TERS signals were
unique to the particular vibrational mode responsible for the scattering. There have been many
proposed mechanisms for this effect,417–420 which includes a highly (spatially) confined plasmon
field418–420 and strong field gradients.419 The models developed in Part II of this dissertation
are uniquely poised to solve this question. While the dressed-tensors formalism may not be able
to accurately describe a spatially confined plasmon field that is on the same length scale of the
molecule begin probed, the discrete interaction model / quantum mechanics method, developed
in Chapters 6 and 7 for optical activity, couples the local field into the quantum mechanical
operators—essentially, it accounts for all orders of the local field gradient. Therefore, it should be
able to answer whether the observed sub-nanometer TERS images were in fact due to a confined
plasmon field.

Preliminary results are shown in Figure 13.2. In this figure, we see that an atomically sharp tip
(Figure 13.2c), which produces a very confined plasmon field, results in TERS features that are on
the Ångstrom length scale and are reflective of the particular molecular vibration (Figure 13.2a).
A broader tip (Figure 13.2d) with a less confined field does not show the same types of features
(Figure 13.2b). Of course, water is a non-resonant Raman scatterer and these preliminary results
may not necessarily be applicable for the resonant H2TBPP molecule. In particular, the molecular
resonance probed in H2TBPP for TERS applications is often the Qy(1,0) vibronic transition.34,43

As such, one would need to carefully consider how the localized plasmonic fields couple into the
molecule’s excitation energies and transition dipole moment operators.

13.2.4 Molecule-molecule interactions in ensemble surface-enhanced Raman
scattering

In Chapter 5, we generated the ensemble-averaged spectrum of a full monolayer of pyridine
molecules on Ag nanoparticle systems. In these systems, we dressed each molecule’s polarizabilities
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a) b)
c)

d)

Figure 13.2. Sub-nanometer TERS intensities for (a) a confined plasmon field, and (b) a broad plasmon
field. The fields for a and b were generated by the TERS systems illustrated in c and d, respectively.
TERS intensities are plotted on a log scale.

by accounting for the local field from the bare nanoparticle. However, it was shown that molecules
binding to the surface of a nanoparticle can greatly disrupt the local field.267 In order to account for
these interactions—using the simplest approximation—we would need to account for the molecule-
molecule and molecule-nanoparticle interactions by either approximating the molecule, or its
individual atoms, as point-polarizable objects. Generating disrupted fields by this approximation
should be straight forward with the discrete interaction model, albeit computationally expensive
since one would require the fields for every time-step in the molecular dynamics simulations.
Obtaining disrupted fields in an efficient manner remains a challenge.

13.3 Future Directions for the Exact Subsystem Density Func-
tional Theory
In Part III, we presented an exact subsystem density functional theory (subsystem DFT), which
includes external orthogonality in the frozen density embedding method (FDE-EO), so that we
may be able to exactly model and analyze, through the use of subsystems, the chemical mechanism
(CM) of SERS. The method cannot yet model these mechanisms in a black box manner, and we
propose the following possible extensions and applications.
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13.3.1 Applications to few-states resonant Raman scattering

We show, in Chapter 9, that we are able to correctly reproduce the excitation energies and
transition dipole moments of strongly coupled systems using the subsystem DFT method. These
properties should be sufficient for calculating the transition polarizabilities needed to describe
resonant Raman scattering, using the method of Albrecht and co-workers.52–54,64 We should, in
theory, be able to analyze the effects of plasmon-exciton coupling,143,421–428 and charge-transfer
resonances12,75,243,251 in SERS with the methods developed herein.

13.3.2 Calculation of general response properties

The FDE-EO method developed so far is only able to calculate coupled subsystem excitations
(see Chapter 9 and Ref. 429). In order to simulate the Raman scattering and other linear and
non-linear spectroscopies, we need to extend the method to be able to calculate the polarizability
and other response tensors. The generalization of the frozen density embedding (FDE) method to
calculate these properties has been presented previously.204–206,430,431 Accounting for external
orthogonality (EO) in the the calculation of linear response properties may include substituting
the EO response kernel, as defined in Equation 9.12, with the non-additive kinetic response kernel
as presented in Ref. 431. Though, special care may be needed when calculating the diagonal
matrix S in Equation 9 of Ref. 431, as our inter-subsystem molecular orbitals are now (nearly)
orthogonal.

As far as the authors are aware, no subsystem formalism has yet been presented for non-linear
response properties within time-dependent density functional theory (TDDFT). It is therefore a
significant challenge to not only present a subsystem TDDFT method for non-linear response,
but to also extend this to in include EO.
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Appendix A|
Fixed-frame and Orientationally-averaged Raman
Scattering

A.1 Electric and Magnetic Multipole Radiation Fields
Light scattering from molecules can be assumed to originate from the radiation of time-varying
electric and magnetic multipole moments.313 These time-varying multipole moments are derived
from oscillating charge ρ and current J densities

ρ(t) = ρ(0)e−iωt

J(t) = J(0)e−iωt
(A.1)

where ω is the frequency of these oscillations. The scalar potential, φ, may be evaluated at some
vector R away, where t′ = t− |R − r|/c, as

φ(R, t) = 1
4πε0

∫
ρ(0)ei(κ|R−r|−ωt)

|R − r| dV ;κ = ω/c

= ei(κR−ωt)

4πε0R

(
Rαµ

(0)
α

R2 +
RαRβΘ(0)

αβ

R4 − iκRαµ
(0)
α

R

−
iκRαRβΘ(0)

αβ

R3 −
κ2RαRβ

∑
i eir

(0)
iα r

(0)
iβ

2R2 + · · ·
) (A.2)

where we have Taylor expanded the |R−r|−1 term, and expanded the charge density ρ(0) in terms
of the charge e, dipole µ, and quadrupole Θ contributions; the Einstein summation convention is
assumed for repeated indices. Similarly, for the vector potential A

A(R, t) = µ0
4π

∫ J(0)ei(κ|R−r|−ωt)

|R − r| dV

= − µ0
4πRe

i(κR−ωt)

(
εαβγRβm

(0)
γ

R2 + icκµ
(0)
α

n

− iκεαβγRβm
(0)
γ

R
+
icκRβ

∑
i eir

(0)
iα r

(0)
iβ

2nR2 +
cκ2Rβ

∑
i eir

(0)
iα r

(0)
iβ

2nR + · · ·
) (A.3)
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The radiated electric field, E, is then calculated from φ and A using

E = −δA
δt
−∇φ (A.4)

For large distances compared to the wavelength (R >> 1/κ) and using Rα = Rnα/n, this radiated
electric field becomes

Eα(R, t) ≈ ω2µ0
4πR ei(κR−ωt)

[(
µ(0)
α −

nαnβ
n2 µ

(0)
β

)
−1
c
εαβγnβm

(0)
γ −

iω

3c

(
nβΘ(0)

αβ −
nαnβnγ
n2 Θ(0)

βγ

)
+ · · ·

] (A.5)

In the case of light-induced scattering, such as in Rayleigh and Raman scattering, µ(0)
α , Θ(0)

αβ ,
and m

(0)
α are the induced oscillating electric dipole, electric quadrupole and magnetic dipole,

respectively. These may be expressed as functions of the molecule’s polarizabilities as

µ(0)
α = ααβ(Eβ)0 + 1

3Aαβγ(Eβγ)0 +Gαβ(Bβ)0 + · · ·

=
(
ααβ + iω

3c n
i
γAαγβ + 1

c
εγδβn

i
δGαγ + · · ·

)
E

(0)
β

(A.6)

Θ(0)
αβ = (A∗γαβ + · · · )E(0)

γ (A.7)

m(0)
α = (G∗αβ + · · · )E(0)

β
(A.8)

where ni is the unit vector describing the direction of incident light and we will use nd as the unit
vector describing the direction of scattered light. In this equation, ααβ , Aαβγ and Gαβ are the
molecule’s electric dipole-dipole, electric dipole-quadrupole, and electric dipole-magnetic dipole
polarizabilities, respectively, and E(0) is the electric field vector of the incident light. Using these
descriptions of the induced multipole moments, the electric field of the scattered radiation may
be expanded as

Edα(R, t) = ω2µ0
4πR ei(κR−ωt)

[
ααβ + iω

3c (niγAαγβ − ndγA∗βγα)

+ 1
c

(εγδβniδGαγ + εγδαn
d
δG
∗
γβ)− ndαndγ

{
αγβ

+ iω

3c (niδAγδβ − ndδA∗βδγ) + 1
c
εεδβn

i
δG
∗
γε

}
+ · · ·

]
E

(0)
β

= ω2µ0
4πR ei(κR−ωt)aαβE

(0)
β

(A.9)

where
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aαβ = ααβ + iω

3c (niγAαγβ − ndγA∗βγα)

+ 1
c

(εγδβniδGαγ + εγδαn
d
δG
∗
γβ)− ndαndγ

{
αγβ

+ iω

3c (niδAγδβ − ndδA∗βδγ) + 1
c
εεδβn

i
δG
∗
γε

}
+ · · ·

(A.10)

A.2 Stokes Parameters
The Stokes parameters may be used to completely describe any arbitrarily polarized light through
the vectors of its electric field.313 They are derived as follows: A plane monochromatic wave
traveling in the z-direction can be written as the sum of two coherent waves linearly polarized in
the x and y directions.

E = Ex̂i + Ey ĵ (A.11)

A polarization state of such a wave can be represented by an ellipse. The ellipticity η is determined
by the ratio of the minor and major axes of the ellipse, b and a, through

tan η = b

a
(A.12)

The orientation of the ellipse is specified by the azimuth, θ, which is the angle between a and the
x-axis. The Intensity, I, degree of polarization, P , ellipticity, η, and azimuth, θ, are all expressed
through the stokes parameters

S0 = ExE
∗
x + EyE

∗
y = E(0)2

S1 = ExE
∗
x − EyE∗y = PE(0)2

cos 2η cos 2θ

S2 = −(ExE∗y + EyE
∗
x) = PE(0)2

cos 2η sin 2θ

S3 = −i(ExE∗y − EyE∗x) = PE(0)2
sin 2η

(A.13)

where

I = 1
2
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2
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2 + S2
3) 1

2

S0

θ = 1
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S2
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2
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S3

(S2
1 + S2

2) 1
2

)
(A.14)

We now consider a molecule at the origin of a right-hand coordinate system (x, y, z) with
unit vectors i, j, k. An incident light, with ni = k hits the molecule and is scattered according
to Equation A.9 some arbitrary angle ξ, where ξ is the angle between the scattered ray (taken
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to be in the yz-plane) and k (see Ref 313 Fig. 3.3). The scattered ray can be considered to be
in it’s own right-hand coordinate reference frame (xd, yd, zd) with unit vectors id, jd, kd. The
transformation between these two reference frames are therefore

id = i

jd = j cos ξ − k sin ξ

kd = k cos ξ + j sin ξ

(A.15)

The Stokes parameters of the scattered electric field, Ed in the (xd, yd, zd) system are

Sd0 = EdxdE
d∗
xd + EdydE

d∗
yd

Sd1 = EdxdE
d∗
xd − EdydE

d∗
yd

Sd2 = −(EdxdE
d∗
yd + EdydE

d∗
xd )

Sd3 = −i(EdxdE
d∗
yd − EdydE

d∗
xd )

(A.16)

For simplicity, here follows the derivation of the Sd0 parameter. In the (x, y, z) system, this
parameter is

Sd0 = EdxE
d∗
x + EdyE

d∗
y cos2 ξ + EdzE

d∗
z sin2 ξ

− (EdyEd∗z + EdzE
d∗
y ) sin ξ cos ξ

(A.17)

Also, from Equation A.9, we can write Ed in terms of the incident field E(0) as

EdαE
d∗
β =

(
ω2µ0
4πR

)2

aαγa
∗
βδE

(0)
γ E

(0)∗
δ

(A.18)

Recalling that E(0)
z = 0 and using the relationship AB+CD = 1

2 [(A+C)(B+D)+(A−C)(B−D)],
Sd0 now becomes
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(A.19)

We shall consider each of the terms respect to ξ in Equation A.19 separately, as they each reflect
different scattering angles. Using the relationships AB+CD = 1

2 [(A+C)(B+D)+(A−C)(B−D)],
AB∗ +BA∗ = 2Re(AB∗), and AB∗ −BA∗ = 2Im(AB∗) we can write
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(A.20)

for the ξ-independent terms. Similarly, we have
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for the cos2 ξ terms,
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for the sin2 ξ terms, and
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(A.23)

for the sin ξ cos ξ terms.
From the results in Equations A.20, A.21, A.22, and A.23, Equation A.19 becomes:
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(A.24)

The other Stokes parameters are
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− 2Re(axxa∗xy)S2 − 2Im(axxa∗xy)S3

− [(|ayx|2 + |ayy|2)S0 + (|ayx|2 − |ayy|2)S1

− 2Re(ayxa∗yy)S2 − 2Im(ayxa∗yy)S3] cos2 ξ

− [(|azx|2 + |azy|2)S0 + (|azx|2 − |azy|2)S1

− 2Re(azxa∗zy)S2 − 2Im(azxa∗zy)S3] sin2 ξ

+ 2[Re(ayxa∗zx + ayya
∗
zy)S0 + Re(ayxa∗zx − ayya∗zy)S1

−Re(ayxa∗zy + azxa
∗
yy)S2 − Im(ayxa∗zy + azxa

∗
yy)S3]cosξ sin ξ}

(A.25)

Sd2 =
(
ω2µ0
4πR

)2

{[Re(axxa∗yx + axya
∗
yy)S0 + Re(axxa∗yx − axya∗yy)S1

−Re(axxa∗yy + ayxa
∗
xy)S2 − Im(axxa∗yy + ayxa

∗
xy)S3] cos ξ

− [Re(axxazx + axya
∗
zy)S0 + Re(axxa∗zx − axya∗xy)S1

−Re(axxa∗zy + azxa
∗
xy)S2 − Im(axxazy + azxa

∗
xy)S3] sin ξ}

(A.26)

Sd3 =
(
ω2µ0
4πR

)2

{[Im(axxa∗yx + axya
∗
yy)S0 + Im(axxa∗yx − axya∗yy)S1

− Im(axxa∗yy − ayxa∗xy)S2 + Re(axxa∗yy − ayxa∗xy)S3] cos ξ

− [Im(axxazx + axya
∗
zy)S0 + Im(axxa∗zx − axya∗xy)S1

− Im(axxa∗zy − azxa∗xy)S2 + Re(axxazy − azxa∗xy)S3] sin ξ}

(A.27)

In the simplest case, we could assume that our molecule is in a fixed-frame with no rotations,
the incident light is un-polarized with S0 = (E(0))2 and S1 = S2 = S3 = 0, and we only consider
either forward or back-scattered light (ξ = 0,±π). The Sd0 parameter for the scattered radiation
simplifies to
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Sd0 = 1
2

(
ω2µ0
4πR

)2

(|axx|2 + |axy|2 + |ayx|2 + |ayy|2)E(0)2 (A.28)

We could further simply this by assuming that our molecule is a dipolar scatterer and substituting
aαβ = ααβ . This additional simplification would give us the fixed-frame Raman scattering Stokes
parameter for un-polarized incident light traveling in the z-direction.

A.3 Beyond the aαβ ≈ ααβ Approximation
Starting with the approximations made for Equation A.28, we may consider the expansion of
aαβ given in Equation A.10. We do this so as to include other approximations of aαβ , such
as when the Aαβγ and/or the Gαβ tensors contribute significantly to the scattering—these are
particularly important when considering effects such as Raman optical activity. We then extend
the approximation to the generalized scattering tensor aαβ as

aαβ = ααβ + iω

3c (Aαzβ −A∗βzα) + 1
c

(εγzβGαγ + εγzαG
∗
γβ) + · · · (A.29)

which gives us

axx = αxx + iω

3c (Axzx −A∗xzx) + 1
c

(Gxy +G∗yx) (A.30)

axy = αxy + iω

3c (Axzy −A∗yzx) + 1
c

(−Gxx +G∗yy) (A.31)

ayx = αyx + iω

3c (Ayzx −A∗xzy) + 1
c

(−Gyy −G∗xx) (A.32)

ayy = αyy + iω

3c (Ayzy −A∗yzy) + 1
c

(−Gyx −G∗xy) (A.33)

Since, for un-polarized Raman scattering, we only need to solve for |axx|2, |axy|2, |ayx|2, and
|ayy|2, we end up with

|axx|2 = {[αxx + iω

3c (Axzx −A∗xzx) + 1
c

(Gxy +G∗yx)]

· [α∗xx −
iω

3c (A∗xzx −Axzx) + 1
c

(G∗xy +Gyx)]}

≈ |αxx|2 + iω

3c (−αxxA∗xzx + αxxAxzx + α∗xxAxzx − α∗xxA∗xzx)

+ 1
c

(αxxG∗xy + αxxGyx + α∗xxGxy + α∗xxG
∗
yx)

= |αxx|2 + 2ω
3c [Im(αxxA∗xzx)− Im(αxxAxzx)]

+ 2
c

[Re(αxxG∗xy) + Re(αxxGyx)]

(A.34)
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|axy|2 = |αxy|2 + 2ω
3c [Im(αxyA∗xzy)− Im(αxyAyzx)]

+ 2
c

[Re(αxyGyy)−Re(αxyG∗xx)]
(A.35)

|ayx|2 = |αyx|2 + 2ω
3c [Im(αyxA∗yzx)− Im(αyxAxzy)]

+ 2
c

[Re(αyxG∗yy)−Re(αyxGxx)]
(A.36)

|ayy|2 = |αyy|∗ + 2ω
3c [Im(αyyA∗yzy)− Im(αyyAyzy)]

− 2
c

[Re(αyyG∗yx) + Re(αyyGxy)]
(A.37)

However, we may wish to include other elements of aαβ , which would be needed later when
we consider orientational averaging. We will, therefore, consider each term in the expansion of
aαβ separately. Consider the A terms in the expansion of a

aαβ ≈
iω

3c (niγAαγβ − ndγA∗βγα) (A.38)

Recall that we assumed that light is always traveling in the z-direction with respect to both the
molecular frame for incident light, and to the scattered frame for scattered light. Therefore

nix = niy = ndx = ndy = 0

niz = ndz = 1
(A.39)

Thus, Equation A.38 becomes

aαβ ≈
iω

3c (Aαzβ −Aβzα) (A.40)

We are only interested in the axx, axy, ayx and ayy components, but

axx = iω

3c (Axzx −Axzx) = 0

ayy = iω

3c (Ayzy −Ayzy) = 0
(A.41)

and

axy = iω

3c (Axzy −Ayzx)

ayx = iω

3c (Ayzx −Axzy)
(A.42)

For the A terms, Equation A.28 now becomes
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Sd0 = 1
2

(
ω2µ0
4πR

)2

(|axy|2 + |ayx|2)E(0)2

= 1
2

(
ω2µ0
4πR

)2(
ω2

9c2

)
(|Axzy −Ayzx|2 + |Ayzx −Axzy|2)E(0)2

=
(
ω2µ0
4πR

)2(
ω2

9c2

)
(|Axzy|2 −AxzyA∗yzx −AyzxA∗yzx + |Ayzx|2)E(0)2

(A.43)

For the G terms in the expansion of a

aαβ ≈
1
c

(εγδβniδGαγ + εγδαn
d
δGγβ) (A.44)

Using the result in Equation A.39, we expand this to get

aαβ = 1
c

(εγzβGαγ + εγzαGγβ) (A.45)

And for the axx and axy components, we get

axx = 1
c

(εγzxGxγ + εγzxGγx)

= 1
c

(εyzxGxy + εyzxGyx)

= 1
c

(Gxy +Gyx)

= −ayy

(A.46)

axy = 1
c

(εγzyGxγ + εγzxGγy)

= 1
c

(εxzyGxx + εyzxGyy)

= 1
c

(Gyy −Gxx)

= ayx

(A.47)

Therefore, the G terms in Equation A.28 now becomes

Sd0 = 1
2

(
ω2µ0
4πR

)2

(|axx|2 + |axy|2 + |ayx|2|ayy|2)E(0)2

=
(
ω2µ0
4πR

)2( 1
c2

)
(|Gxy +Gyx|2 + |Gyy −Gxx|2)E(0)2

=
(
ω2µ0
4πR

)2( 1
c2

)
(|Gxy|2 + |Gyx|2 +GxyG

∗
yx +GyxG

∗
xy

+ |Gyy|2 + |Gxx|2 −GyyG∗xx −GxxG∗yy)E(0)2

(A.48)

For the remaining term in the expansion of aαβ in Equation A.10

aαβ ≈ −ndαndγ
{
αγβ + iω

3c (niδAγδβ − ndδAβδγ) + 1
c
εεδβn

i
δGγε

}
(A.49)
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we only retain terms in azβ for ndα = ndz = 1. However, these terms are not required for the
solution of Equation A.28 and are therefore not considered. Thus, for the complete expression of
aαβ from Equation A.10 into Equation A.28, we get

Sd0 =
(
ω2µ0
4πR

)2 [(1
2

)
(|αxx|2 + |αxy|2 + |αyx|2 + |αyy|2)

+
(
ω2

9c2

)
(|Axzy|2 −AxzyA∗yzx −AyzxA∗yzx + |Ayzx|2)

+
(

1
c2

)
(|Gxy|2 + |Gyx|2 +GxyG

∗
yx +GyxG

∗
xy

+ |Gyy|2 + |Gxx|2 −GyyG∗xx −GxxG∗yy)
]
E(0)2

=
(
ω2µ0
4πR

)2{(1
2

)
(|αxx|2 + |αxy|2 + |αyx|2 + |αyy|2)

+
(
ω2

9c2

)
(|Axzy|2 − 2Re(AxzyA∗yzx) + |Ayzx|2)

+
(

1
c2

)
[|Gxy|2 + |Gyx|2 + 2Re(GxyG∗yx)

+ |Gyy|2 + |Gxx|2 − 2Re(GyyG∗xx)]
}
E(0)2

(A.50)

A.4 Isotropically-Averaged Raman Scattering
For isotropically-averaged Raman, we shall start with Equation A.28. We will use the
approximating aαβ ≈ ααβ and consider isotropic averaging, where

|αxx|2 =< αxxα
∗
xx >

= 1
15(αααα∗ββ + 2ααβa∗αβ)

= |αyy|2

(A.51)

|αxy|2 = 1
30(3ααβα∗αβ − αααα∗ββ)

= |αyx|2
(A.52)

Substituting Equations A.51 and A.52 into Equation A.28 results in

Sd0 =
(
ω2µ0
4πR

)2(7ααβα∗αβ + αααα
∗
ββ

30

)
E(0)2 (A.53)

Using the approximation aαβ ≈ ααβ and the anisotropic (α2) and anisotropic (β(α)2) invariants
of the polarizability tensor

α2 = 1
9αααα

∗
ββ

β(α)2 = 1
2(3ααβα∗αβ − αααα∗ββ)

(A.54)
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we get the following expression for Sd0

Sd0 =
(
ω2µ0
4πR

)2(45α2 + 7β(α)2

45

)
E(0)2 (A.55)

which is the isotropically averaged Raman scattering Stokes parameter.

A.5 Isotropic Averaging About the z-Axis
Because Equation A.28 was derived for forward and back-scattering, it remains invariant to
rotation about the z-axis. To show this, consider a rotation around the z-axis of φ degrees for the
general scattering tensor aαβ

a′αβ = RαγRβδaγδ

= RαxRβxaxx +RαxRβyaxy +RαxRβzaxz

+RαyRβxayx +RαyRβyayy +RαyRβzayz

+RαzRβxazx +RαzRβyazy +RαzRβzazz

(A.56)

where

R =

cosφ − sinφ 0
sinφ cosφ 0

0 0 1

 (A.57)

We shall now consider the Sd0 Stokes parameter, where the relevant |aαβ |2 terms are

|a′xx|2 = |axx|2 cos4 φ− axxa∗xy sinφ cos3 φ− axxa∗yx sinφ cos3 φ+ axxa
∗
yy sin2 φ cos2 φ

− axya∗xx sinφ cos3 φ+ |axy|2 sin2 φ cos2 φ+ axya
∗
yx sin2 φ cos2 φ− axya∗yy sin3 φ cosφ

− ayxa∗xx sinφ cos3 φ+ ayxa
∗
xy sin2 φ cos2 φ+ |ayx|2 sin2 φ cos2 φ− ayxa∗yy sin3 φ cosφ

+ ayya
∗
xx sin2 φ cos2 φ− ayya∗xy sin3 φ cosφ− ayya∗yx sin3 φ cosφ+ |ayy|2 sin3 φ cosφ

(A.58)

|a′xy|2 = |axx|2 sin2 φ cos2 φ+ axxa
∗
xy sinφ cos3 φ− axxa∗yx sin3 φ cosφ− axxa∗yy sin2 φ cos2 φ

+ axya
∗
xx sinφ cos3 φ+ |axy|2 cos4 φ− axya∗yx sinφ cos3 φ− axya∗yy sinφ cos3 φ

− ayxa∗xx sin3 φ cosφ− ayxa∗xy sin2 φ cos2 φ+ |ayx|2 sin4 φ+ ayxa
∗
yy sin3 φ cosφ

− ayya∗xx sin2 φ cos2 φ− ayya∗xy sinφ cos3 φ+ ayya
∗
yx sin3 φ cosφ+ |ayy|2 sin2 φ cos2 φ

(A.59)
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|a′yx|2 = |axx|2 sin2 φ cos2 φ− axxa∗xy sin3 φ cosφ+ axxa
∗
yx sinφ cos3 φ− axxa∗yy sin2 φ cos2 φ

− axya∗xx sin3 φ cosφ+ |axy|2 sin4 φ− axya∗yx sin2 φ cos2 φ+ axya
∗
yy sin3 φ cosφ

+ ayxa
∗
xx sinφ cos3 φ− ayxa∗xy sin2 φ cos2 φ+ |ayx|2 cos4 φ− ayxa∗yy sinφ cos3 φ

− ayya∗xx sin2 φ cos2 φ+ ayya
∗
xy sin3 φ cosφ− ayya∗yx sinφ cos3 φ+ |ayy|2 sin2 φ cos2 φ

(A.60)

|a′yy|2 = |axx|2 sin4 φ+ axxa
∗
xy sin3 φ cosφ+ axxa

∗
yx sin3 φ cosφ+ axxa

∗
yy sin2 φ cos2 φ

+ axya
∗
xx sin3 φ cosφ+ |axy|2 sin2 φ cos2 φ+ axya

∗
yx sin2 φ cos2 φ+ axya

∗
yy sinφ cos3 φ

+ ayxa
∗
xx sin3 φ cosφ+ ayxa

∗
xy sin2 φ cos2 φ+ |ayx|2 sin2 φ cos2 φ+ ayxa

∗
yy sinφ cos3 φ

+ ayya
∗
xx sin2 φ cos2 φ+ ayya

∗
xy sinφ cos3 φ+ ayya

∗
yx sinφ cos3 φ+ |ayy|2 cos4 φ

(A.61)
Adding Equations A.58, A.59, A.60, and A.61 and using the identity (sin4 φ+ 2 sin2 φ cos2 φ+

cos4 φ = 1), we get

|a′xx|2 + |a′xy|2 + |a′yx|2 + |a′yy|2 = |axx|2 + |axy|2 + |ayx|2 + |ayy|2 (A.62)

Thus showing that the fixed-frame Raman scattering described by Equation A.28 is also valid for
Raman scattering rotationally averaged about the z-axis.

A.6 Polarized Incident Light
In the case of polarized incident light S1, S2, and S3 are non-zero. We shall consider the case of
forward-scattered radiation (ξ = 0), where Equations A.24, A.25, A.26, and A.27 simplify to

Sd0 = 1
2

(
ω2µ0
4πR

)
[(|axx|2 + |axy|2)S0 + (|axx|2 − |axy|2)S1

− 2Re(axxa∗xy)S2 − 2Im(axxa∗xy)S3

+ (|ayx|2 + |ayy|2)S0 + (|ayx|2 − |ayy|2)S1

−Re(ayxa∗yy)S2 − 2Im(ayxa∗yy)S3]

(A.63)

Sd1 = 1
2

(
ω2µ0
4πR

)
[(|axx|2 + |axy|2)S0 + (|axx|2 − |axy|2)S1

− 2Re(axxa∗xy)S2 − 2Im(axxa∗xy)S3

− (|ayx|2 + |ayy|2)S0 + (|ayx|2 − |ayy|2)S1

+ Re(ayxa∗yy)S2 + 2Im(ayxa∗yy)S3]

(A.64)

Sd2 = −
(
ω2µ0
4πR

)
[Re(axxa∗yx + axya

∗
yy)S0 + Re(axxa∗yx − axya∗yy)S1

−Re(axxa∗yy + ayxa
∗
xy)S2 − Im(axxa∗yy + ayxa

∗
xy)S3]

(A.65)
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Sd3 = +
(
ω2µ0
4πR

)
[Im(axxa∗yx + axya

∗
yy)S0 + Im(axxa∗yx − axyayy)S1

− Im(axxa∗yy − ayxa∗xy)S2 + Re(axxa∗yy − ayxa∗xy)S3]
(A.66)

And for back-scattered geometry (ξ = ±π), we get

Sd0 (±π) = Sd0 (0)

Sd1 (±π) = Sd1 (0)

Sd2 (±π) = −Sd2 (0)

Sd3 (±π) = −Sd3 (0)

(A.67)

For linearly polarized light (P = 1, η = 0), these simplify further to

Sd0 = 1
2

(
ω2µ0E

(0)2

4πR

)
[(|axx|2 + |axy|2) + (|axx|2 − |axy|2) cos 2θ

− 2Re(axxa∗xy) sin 2θ + (|ayx|2 + |ayy|2)

+ (|ayx|2 − |ayy|2) cos 2θ −Re(ayxa∗yy) sin 2θ]

(A.68)

For polarization perpendicular to the scattering plane (zy-plane) θ = 0, π, and for polarization
parallel to the scattering plane θ = ±π2 . Therefore, the Raman intensity factor for linearly
polarized light perpendicular to the scattering plane is

Sd0 =
(
ω2µ0E

(0)2

4πR

)
(|axx|2 + |ayx|2) (A.69)

and for linearly polarized light parallel to the scattering plane, we get

Sd0 =
(
ω2µ0E

(0)2

4πR

)
(|axy|2 + |ayy|2) (A.70)
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Appendix B|
Summary of the Dressed-tensors Formalism

Chulhai, D. V.; Hu, Z.; Moore, J.E.; Chen, X.; Jensen, L. “Theory of Linear and Nonlinear Surface-
enhanced Vibrational Spectroscopy” Annu. Rev. Phys. Chem. 2016, 67, 541–564. (excerpts within)

B.1 Derivation of the Formalism
The dressed-tensor formalism,215,258 as presented and discussed in Part II of this dissertation,
is similar to the Gersten-Nitzan formalism (without image field effects), except the interactions
αNP ·T(2) and T(2) · αNP have been replaced by the field enhancement matrix F,

αtotαβ
∂Qk

=
[
δαγ + Fαγ (ωS)

] ∂αMγδ
∂Qk

[
δδβ + F βδ (ωL)

]
. (B.1)

The Einstein summation convention is assumed for repeated indices, where Greek indices represent
Cartesian directions. Fαβ is the unitless local electric field matrix describing the fields induced
in the β Cartesian direction due to a unit incident perturbation in the α Cartesian direction,
calculated at the incident laser (ωL) and Raman shifted (ωS) frequencies.

This equation removes the point-dipole approximation of the NP in Equation 2.22, and one
can simulate the field enhancements from complex NP geometries using any classical ED method.
It also makes it easier to increase the level of interaction between the molecule and NP. While
this change may appear trivial, the dressed-tensor formalism implicitly includes other advantages,
including: (a) a higher order multipole description of the NP, (b) multiple polarizable sources
(such as the description from a DDA-type calculation or multiple point-polarizable NPs), and (c)
inclusion of retardation effects. We will show how the field enhancement matrix accounts for each
of these effects in turn.

To show that the field enhancement implicitly includes contributions from a NP with higher
order multipoles, we shall consider a NP described by αNP, dipole-quadrupole (ANP), quadrupole-
dipole (A NP), and quadrupole-quadrupole (CNP) polarizabilities. The QM definition of these
tensors and how they relate to the induced multipoles are defined in Ref. 313, except that the
C-tensor is not defined with the 1/3 factor to maintain consistency with the definition of the
other polarizability tensors. All these response tensors will be frequency-dependent and complex,
which we will ignore for simplicity.

The induced multipoles in the NP due to an external field are µNPα = αNPαβE
0
β and
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θNPαβ = A NP
αβ,γE

0
γ . The ANP and CNP do not contribute to the induced multipoles in the quasistatic

limit since the field gradient of the incident field is effectively zero. The local field “felt” by the
molecule due to these multipoles is

Eloc
α = T

(2)
αβ µ

NP
β − 1

3T
(3)
αβγθ

NP
βγ =

(
T (2)
αγ α

NP
γβ −

1
3T

(3)
αγδA

NP
γδ,β

)
E0
β = F βαE

0
β . (B.2)

And similarly, the dipole induced in the NP at the Raman shifted frequency due to the induced
molecular dipole is

µNP,scatα =
(
αNPαγ T

(2)
γβ + 1

3A
NP
α,γδT

(3)
γδβ(−R)

)
µMβ = Fαβ µ

M
β . (B.3)

The relationship above has been achieved using −T (3)(R) = T (3)(−R), A NP
αβ,γ = ANP

γ,αβ , and
the fact that the far-field radiation of the quadrupole induced in the NP does not contribute
significantly to the scattering. Thus showing that the field enhancement matrix F implicitly
accounts for higher order multipole descriptions of the NP.

We will show that the field enhancement matrix also accounts for a multiple-dipole
approximation of the NP. In such cases, we assume that the NP consists of a series of N
point-polarizable objects with polarizability αNP,i at position ri (i ∈ N). The induced dipoles in
such a system may be solved as µNP,iα =

∑N
j

(
A−1)

ij,αβ
·E0,j

β , where A is the 3N×3N interaction
matrix defined elsewhere103,432. The local field is then written as

Eloc
α (rM) =

 N∑
i,j

T
(2)
i,αβ(rM − ri)

(
A−1)

ij,βγ

E0
γ = F βαE

0
β , (B.4)

where rM is the position of the molecular point-dipole, thereby defining the field enhancement
matrix at this point.

For the total dipole induced in the NP at the scattered field due to the induced molecular
dipole

µNP,scatα =

 N∑
i,j

(
A−1)

ij,αβ
T

(2)
j,βγ(rj − rM)

µMγ = Fαβ µ
M
β , (B.5)

thereby showing that the field enhancement matrix in the dressed-tensor formalism may also
describe multiple point-dipole NP systems.

Finally, to include retardation effects in the dressed-tensor formalism the T(2) interaction
matrix becomes the dipole relay tensor with retardation effects2,120, which still retains the
necessary symmetry (T (2)

αβ = T
(2)
βα and T (2)(R) = T (2)(−R)) to justify the above made claims for

the dressed-tensor formalism.
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B.2 Local Field Gradients
More recent changes to the EM have come through exploration of the local field gradi-
ents106,215–219,258. In most cases, the local field varies greatly over the dimensions of the
molecule144,214. This can often lead to the observation of Raman-inactive modes, as was observed
and briefly discussed in the early 1980s35–38.

The near-field gradients (in the quasi-static limit) are described by the T(3) interaction
tensor123,124, which leads one to write the induced dipole in the molecule (using the Gersten-
Nitzan model) as

µM =
[
αM ·

(
I + T(2) · αNP

)
+ 1

3A
M ·T(3) · αNP

]
·E0, (B.6)

where AM is the molecule’s electric dipole-quadrupole polarizability tensor.
One consideration of the effects of the local field gradients was proposed by Jahncke and

coworkers216,217, who suggested that the induced molecular dipole may be expanded as

∂µM

∂Qk
=
[
∂αM

∂Qk
·
(

I + T(2) · αNP
)

+ αM ·
∂
(
T(2) · αNP

)
∂Qk

+ 1
3
∂A

∂Qk
·T(3) · αNP

]
·E0. (B.7)

This is a modified form of Equation 3 from Ref. 216, rewritten in the style of the Gersten-Nitzan
model and assuming a point-dipole NP. The first term is effectively the SERS term (without field
gradients), the second term has been labelled as the “gradient-field Raman” term, while the third
is the traditional field gradient SERS term. It is in fact this third term that results, as originally
proposed35–38, from the local electric field gradient.

We can easily account for this term in the dressed-tensor formalism, assuming that the
molecule is described as a point-dipole with αNP and ANP tensors. This leads to the dressed-
tensor expression for the Raman polarizability as13,36,258

∂αtotαβ
∂Qk

=
[
δαγ + Fαγ (ωS)

]{∂αMγδ
∂Qk

[
δβδ + F βδ (ωL)

]
+ 1

3
∂AM

γ,δε

∂Qk
F βδε(ωL)

}
, (B.8)

where we have introduced the field enhancement matrix Fαβγ (in units of inverse length), describing
the field gradient in the βγ Cartesian direction due to an incident unit field in the α direction.

B.3 Point-Dipole / Point-Quadrupole Molecule
With large field gradients, one may argue that a point-dipole description is often insufficient at
describing the molecule. We will therefore describe the molecule as a point-dipole (described
by αM and AM) and a point-quadrupole (described by the quadrupole-dipole (A M) and the
quadrupole-quadrupole (CM) polarizabilities). One may write the induced quadrupole in the
molecule as

θM = A M ·
(

E0 + T(2) · µNP
)

+ 1
3C

M ·T(3) · µNP , (B.9)
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Figure B.1. The SERS surface selection rules from the α, A and C tensors for benzene for (a) a flat and
(b) vertical orientation. (c) Higher order tensors may assist in assigning binding orientations. Adapted
from Ref. 258 with permission.

and the induced dipole of the NP as

µNP = αNP ·
(

E0 + T(2)(−R) · µM − 1
3T(3)(−R) · θM

)
. (B.10)

Solving these equations as in Ref. 119, ignoring the image field effects, substituting
T(2)(R) = T(2)(−R) and T(3)(R) = −T(3)(−R), and replacing T(2) · αNP and T(3) · αNP with
the appropriate local field or gradient enhancement matrix F, we end up with the dressed-tensor
formalism258

∂αtotαβ
∂Qk

=
[
δαγ + Fαγ (ωS)

] ∂αMγδ
∂Qk

[
δβδ + F βδ (ωL)

]
+ 1

3
[
δαγ + Fαγ (ωS)

] ∂AM
γ,δε

∂Qk
F βδε(ωL)

+ 1
3F

α
γδ(ωS)

∂A M
γδ,ε

∂Qk

[
δβε + F βε (ωL)

]
+ 1

9F
α
γδ(ωS)

∂CM
γδ,εζ

∂Qk
F βεζ(ωL).

(B.11)

In Ref. 258, it was noted that the induced point-quadrupole interaction with the NP’s
polarizability occurs through T(3), which is the same level of interaction as the field gradients with
a point-dipole molecule, and therefore should be considered simultaneously. The dressed-tensor,
therefore allows one to easily account for higher order multipole description of the molecule as well
as higher order gradients of the local electric field. We note that these four terms are effectively
the same as those identified in the quadrupolar SERS theory of Polubotko433.

This field gradient theory of SERS is not separate from the main |E|4 EM of SERS but
rather a supplement to it. Importantly, the main SERS contribution is from the local fields and
the dipole-dipole polarizability. The 1/3 prefactor for the dipole-quadrupole terms and the 1/9
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Table B.1. EM enhancement factor contributions to the SERS intensity.

Terms Prefactor Enhancement

|α|2 1 |E|4

Re(αA†), Re(αA †) 1
3 E3 · ∇E

|A|2, |A |2, Re(AA †), Re(αC†) 1
9 E2 · (∇E)2

Re(AC†), Re(A C†) 1
27 E · (∇E)3

|C|2 1
81 |∇E|4

prefactor for the quadrupole-quadrupole term indicate that they will be minor modifications
to the SERS spectrum, and only significant for very large field gradient to field ratios or large
quadrupolar polarizabilities. It allows for the observation of Raman inactive modes in molecules
through an EM, rather than through symmetry lowering from adsorption to the surface—though
both effects may be relevant. This is illustrated in Figure B.1, where the A and C surface selection
rules are shown. The contributions to the EM enhancement (up to the T(3) interaction level) is
given in Table B.1, with their relevant prefactors. Each of the terms in Table B.1 may select
for specific modes within a molecule. The |α|2 term select for the the Raman-active modes in
the gas-phase molecules, and is the major contributing SERS term. The selection rules for the
|A|2 and |A |2 terms were also previously considered35,36, and selects for modes that belong to
representations that include cubic transformations.

B.4 Other Dressed Polarizability Tensors

B.4.1 Surface-enhanced Raman optical activity

The dressed-tensor SEROA formalism was first considered by Janesko & Scuseria215, where the
general theory was outlined, and later expanded in Chapter 6 of this dissertation to include the
T(3) level of interaction. Combining these two sets of dressed-tensor formalism gives the following
generalized expressions for the relevant tensor derivatives (the dressed dipole-dipole polarizability
remains the same as in SERS)

∂Atot
α,βγ

∂Qp
= 3Fαδ

∂αMδε
∂Qp

(∇F )βγε + Fαδ
∂AM

δ,εζ

∂Qp
(∇F )βγεζ + Fαδε

∂A M
δε,ζ

∂Qp
(∇F )βγζ + 1

3F
α
δε

∂CM
δε,ζη

∂Qp
(∇F )βγζη ,

(B.12)
∂A tot

αβ,γ

∂Qp
= (∇F )αβδ

∂αMδε
∂Qp

F γε + 1
3 (∇F )αβδ

∂AM
δ,εζ

∂Qp
F γεζ + (∇F )αβδε

∂A M
δε,ζ

∂Qp
F γζ + 1

3 (∇F )αβδε
∂CM

δε,ζη

∂Qp
F γζη,

(B.13)
∂Gtot

αβ

∂Qp
= Fαγ

∂GM
γβ

∂Qp
+ 1

3F
α
γδ

∂DM
γδ,β

∂Qp
, and (B.14)
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∂G tot
αβ

∂Qp
=
∂GM

αγ

∂Qp
F βγ + 1

3
∂DM

α,γδ

∂Qp
F βγδ. (B.15)

We have introduced the gradient field enhancement matrix ∇F, where (∇F )αβγ describes the field
in the γ direction due to an incident field gradient in the αβ directions (in units of length), and
(∇F )αβγδ is the unitless matrix describing the field gradient enhancement in the γδ directions due
to the incident field gradient in the αβ directions.

The equations in Ref. 215 contain placeholders for additional magnetic enhancement terms,
which we neglect here since they contribute negligibly to the local field and gradients for non-
magnetic NPs. Additionally, the ∇F terms are only important for quadrupolar NPs. The (∇F )αβγ
and (∇F )αβγδ enhancement terms are the T(2) and T(3) interactions from the multipoles in the
NP induced by an incident electric field gradient. For dipolar NPs, we obtain (∇F )αβγ = 0 and
(∇F )αβγδ = δαγδβδ, which results in the equations presented in Ref. 124. These equations are also
a generalized form of the equations by Johnson and coworkers308,309, where the T(3) interactions
were not included.

B.4.2 Nonlinear tensors

In spectroscopies such as hyper-Raman scattering and sum-frequency generation, we consider the
second order response tensors—which we will term β for simplicity. This tensor may be dressed as

∂βtotαβγ(ω1, ω2)
∂Qk

=
[
δαδ + Fαδ (ωs)

] ∂βMδεζ
∂Qk

[
δβε + F βε (ω1)

] [
δγζ + F γζ (ω2)

]
, (B.16)

where ω1 and ω2 are the relevant input frequencies, and ωs is the output frequency, that describe
the particular response tensor used.

Third order response tensors γ may be dressed as

∂γtotαβγδ(ω1, ω2, ω3)
∂Qk

=
[
Fαε (ωs) + δαε

] ∂γMεζηι
∂Qk

[
F βζ (ω1) + δβζ

] [
F γη (ω2) + δγη

] [
F δι (ω3) + δδι

]
(B.17)

We ignore contributions from the field gradient or a quadrupolar molecule for simplicity. The
dressed tensors written in this way allows for quickly accounting for the local fields in these
nonlinear spectroscopies and good estimations of expected enhancement factors.
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Appendix C|
Origin-dependence of Multipole Moments and High-
er Order Polarizabilities

C.1 Multipole Moments

C.1.1 Electric dipole and quadrupole

The charge q of a charge density ρ is defined as

q =
∫
V

ρdV (C.1)

and the electric dipole µ is defined as

µα =
∫
V

rαρdV (C.2)

where rα is the position vector r in the α Cartesian direction. Similarly, the primitive quadrupole
operator is defined as

qαβ =
∫
V

rαrβρdV (C.3)

These moments depend on the choice of coordinate origin. Consider a translation of the
coordinate origin O to some new origin O + R. This is equivalent to translating the position
vector r to r−R. The electric dipole now becomes:

µα(O + R) =
∫
V

(rα −Rα)ρdV

= µα(O)−Rαq
(C.4)

Similarly, for the primitive quadrupole moment

qαβ(O + R) =
∫
V

(rα −Rα)(rβ −Rβ)ρdV

= qαβ(O)−Rαµβ(O)−Rβµα(O) +RαRβq

(C.5)

We now define the traceless quadrupole moment θ as
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θαβ = 3
2qαβ −

1
2δαβqγγ (C.6)

where δ is the Kronecker delta, and the Einstein summation convention is employed for repeated
indices. The origin-dependence of θ is now

θαβ(O + R) = 3
2qαβ(O + R)− 1

2δαβqγγ(O + R)

= 3
2qαβ(O)− 1

2δαβqγγ(O)− 3
2Rβµα(O)− 3

2Rαµβ(O)

+ δαβRγµγ(O) + 3
2RαRβq −

1
2δαβRγRγq

= θαβ(O)− 3
2Rβµα(O)− 3

2Rαµβ(O) + δαβRγµγ(O)

+ 3
2RαRβq −

1
2δαβRγRγq

(C.7)

C.1.2 Magnetic dipole

The magnetic dipole m of a material is defined as

mα = 1
2

∫
V

εαβγrβ
∂rγρ

∂t
dV (C.8)

We will consider the time dependence of ρ to be ρ(r, t) = ρ(r)e−iωt. This is true for molecules
under the influence of an external electromagnetic field of angular freuquency ω. In such cases,
the magnetic dipole becomes

mα = 1
2

∫
V

εαβγrβ(−iωrγ)ρdV (C.9)

The origin dependence of the magnetic dipole is therefore

mα(O + R) = 1
2

∫
V

εαβγ(rβ −Rβ)(−iωrγ)ρdv (C.10)

= mα(O) + iω

2 εαβγRβµγ (C.11)

C.2 Polarizabilities
In deriving the origin dependence of the polarizability tensors, we will assume that all species are
electrically neutral and can therefore ignore the terms that depend on the specie charge q.

C.2.1 Electric dipole-dipole polarizability

We will write the polarizability response using the notation:

ααβ = 〈〈µα;µβ〉〉 (C.12)
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However, if we ignore the dependence on the specie charge q, the electric dipole (and therefore
the electric dipole-dipole polarizability) is independent of the choice of origin.

ααβ(O + R) = ααβ(O) (C.13)

C.2.2 Electric dipole-quadrupole polarizability

The electric dipole-quadrupole polarizability, A, may be written as

Aαβγ = 〈〈µα; θβγ〉〉 (C.14)

If we consider the origin-dependence of the quadrupole moment, we have

Aαβγ(O + R) = 〈〈µα; θβγ(O + R)〉〉 (C.15)

= 〈〈µα; θβγ(O)− 3
2Rγµβ −

3
2Rβµγ + δβγRδµδ〉〉 (C.16)

= 〈〈µα; θβγ〉〉 −
3
2Rγ〈〈µα;µβ〉〉 −

3
2Rβ〈〈µα;µγ〉〉+ δβγRδ〈〈µα;µδ〉〉 (C.17)

= Aαβγ(O)− 3
2Rγααβ −

3
2Rβααγ + δβγRδααδ (C.18)

Similar rules are obtained for the electric quadrupole-dipole polarizability, A

Aα,βγ(O + R) = 〈〈θβγ(O + R);µα〉〉 (C.19)

= Aα,βγ(O)− 3
2Rγαβα −

3
2Rβαγα + δβγRδαδα (C.20)

C.2.3 Electric quadrupole-quadrupole polarizability

The electric quadrupole-quadrupole polarizability C may be written as

Cαβ,γδ = 〈〈θαβ ; θγδ〉〉 (C.21)

Its origin-dependence may be found from
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Cαβ,γδ(O + R) = 〈〈θαβ(O + R); θγδ(O + R)〉〉

= 〈〈θαβ(O)− 3
2Rβµα −

3
2Rαµβ + δαβRεµε;

θγδ(O)− 3
2Rδµγ −

3
2Rγµδ + δγδRζµζ〉〉

= 〈〈θαβ(O); θγδ(O)〉〉 − 3
2Rβ〈〈µα; θγδ(O)〉〉 − 3

2Rα〈〈µβ ; θγδ(O)〉〉

+ δαβRε〈〈µε; θγδ(O)〉〉 − 3
2Rδ〈〈θαβ(O);µγ〉〉+ 9

4RδRβ〈〈µα;µγ〉〉

+ 9
4RδRα〈〈µβ ;µγ〉〉 −

3
2δαβRδRε〈〈µε;µγ〉〉 −

3
2Rγ〈〈θαβ(O);µδ〉〉

+ 9
4RγRβ〈〈µα;µδ〉〉+ 9

4RγRα〈〈µβ ;µδ〉〉 −
3
2δαβRγRε〈〈µε;µδ〉〉

+ δγδRζ〈〈θαβ(O);µζ〉〉 −
3
2δγδRζRβ〈〈µα;µζ〉〉 −

3
2δγδRζRα〈〈µβ ;µζ〉〉

+ δαβδγδRζRε〈〈µε;µζ〉〉

(C.22)

Therefore,

Cαβ,γδ(O + R) = Cαβ,γδ(O)− 3
2RβAαγδ(O)− 3

2RαAβγδ(O)

+ δαβRεAεγδ(O)− 3
2RδAγ,αβ(O)− 3

2RγAδ,αβ(O)

+ δγδRζAζ,αβ(O) + 9
4RδRβααγ + 9

4RδRααβγ

− 3
2δαβRδRεαεγ + 9

4RγRβααδ + 9
4RγRααβδ

− 3
2δαβRγRεαεδ −

3
2δγδRζRβααζ −

3
2δγδRζRααβζ

+ δαβδγδRεRζαεζ

(C.23)

C.2.4 Electric dipole-magnetic dipole polarizability

The electric dipole-magnetic dipole, G, polarizability is found from

Gαβ = Im [〈〈µα;mβ〉〉] (C.24)

The origin-dependence of the frequency-dependent G-tensor is found from

Gαβ(O + R) = Im [〈〈µα;mβ(O + R)〉〉]

= Im
[
〈〈µα;mα(O) + iω

2 εβγδRγµδ〉〉
]

= Gαβ(O) + ω

2 εβγδRγααδ

(C.25)

A similar expression may be derived for the magnetic dipole-electric dipole polarizability, G ,
defined as
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Gαβ = Im [〈〈mα;µβ〉〉] (C.26)

The G -tensor origin dependence is found from

Gαβ(O + R) = Im [〈〈mα(O + R);µβ〉〉]

= Im
[
〈〈mα(O) + iω

2 εαγδRγµδ;µβ〉〉
]

= Gαβ(O) + ω

2 εαγδRγαδβ

(C.27)

C.2.5 Electric quadrupole-magnetic dipole polarizability

The electric quadrupole-magnetic dipole polarizability, D, is defined as

Dαβ,γ = Im [〈〈θαβ ;mγ〉〉] (C.28)

The D-tensor origin-dependence is derived as

Dαβ,γ(O + R) = Im [〈〈θαβ(O + R);mγ(O + R)〉〉]

= Im
[
〈〈θαβ(O)− 3

2Rβµα −
3
2Rαµβ + δαβRδµδ;mγ(O) + iω

2 εγεζRεµζ〉〉
]

= Dαβ,γ(O) + ω

2 εγεδRεAδ,αβ(O)

− 3
2RβGαγ(O)− 3

2RαGβγ(O) + δαβRδGδγ(O)

− 3ω
4 εγεδRβRεααδ −

3ω
4 εγεδRαRεαβδ + ω

2 δαβεγεζRδRεαδζ
(C.29)

Similarly, we define the magnetic dipole-electric quadrupole, D , tensor as

Dα,βγ = Im [〈〈mα; θβγ〉〉] (C.30)

whose origin-dependence is found from

Dα,βγ(O + R) = Im [〈〈mα(O + R); θβγ(O + R)〉〉]

= Dα,βγ(O) + ω

2 εαδεRδAεβγ(O)

− 3
2RβGαγ(O)− 3

2RγGαβ(O) + δβγRδGαδ(O)

− 3ω
4 εαδεRδRγαεβ −

3ω
4 εαδεRδRβαεγ + ω

2 δβγεαδεRδRζαεζ

(C.31)
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Appendix D|
Supporting Information for: Determining Molecular
Orientation With Surface-Enhanced Raman Scat-
tering Using Inhomogeneous Electric Fields

D.1 Origin-Dependence of Terms

Figure D.1. The origin-dependence of the SERS spectrum for benzene translated 10Å along the z-axis
as compared to the SERS of benzene centered at the origin.

The electric dipole-quadrupole (A) and electric quadrupole-quadrupole (C) tensors depend
on the choice of origin. This leads to an effective polarizability, Eq. 5 of the main text, and
therefore a SERS spectrum that also depends on choice of origin. An example of this is shown in
Figure D.1, where we show the SERS of benzene titled 10◦ with respect to the surface of a 10
bohr sphere (similar to that of Figure 4 of the main text). In this Supporting Information, we
will examine the origin-dependence of the terms contributing to the effective polarizability and
propose and prove an origin-invariant solution.

D.1.1 Origin-dependence of the induced dipole

Consider the dipole induced by incident and local electric field and gradient. This may be written
as
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µindα =
[
ααγ

(
δβγ + F βγ (ωL)

)
+ 1

3AαγδF
β
γδ(ωL)

]
E

(0)
β (D.1)

where α is the electric dipole-dipole polarizability, A is the electric dipole-quadrupole polarizability,
Greek subscripts refer to Cartesian directions and the Einstein summation convention is employed
for repeated subscripts. δ is the Kronecker delta and F βγ (ωL) is the local electric field enhancement
in the γ Cartesian direction due to an incident field in the β direction at the incident frequency
ωL. The bracketed terms may be collectively referred to as a modified polarizability α′

α′αβ = ααγ
(
δβγ + F βγ

)
+ 1

3AαγδF
β
γδ (D.2)

This modified polarizability (and therefore induced dipole) depends on the choice of molecular
origin since the A-tensor is origin-dependent according to

Aαβγ(O + d) = Aαβγ(O) + 3
2dβααγ(O) + 3

2dγααβ(O)− dδααδ(O)δβγ

= Aαβγ(O) + 3
2dβααγ + 3

2dγααβ − dδααδδβγ

where O is the vector describing the origin in some general frame and d is a translation vector.
We may define the origin-dependence of the modified polarizability by considering the difference

α′αβ(O + d)− α′αβ(O) = 1
2

(
dγααδF

β
γδ + dδααγF

β
γδ

)
− 1

3dεααεδγδF
β
γδ (D.3)

By recognizing that the field gradient tensor is symmetric (F βγδ = F βδγ) and that all subscripts are
dummy variables, we can simplify this into

α′αβ(O + d)− α′αβ(O) = ααγ

(
dδF

β
γδ −

1
3dγF

β
δδ

)
(D.4)

The origin dependence of Eq. D.4 may be resolved by considering a common-origin expression
of the local fields. In other words, for the expression to remain orgin-independent, the local field
enhancements F βα also depends on the choice of origin according to

F βα (ωL; O + d) = F βα (ωL; O)−
(
dγF

β
βγ(ωL; O)− 1

3dαF
β
γγ(ωL; O)

)
(D.5)

This is equivalent to a Taylor expansion of the fields about the vector R (the vector describing
the separation of the molecule and substrate) accounting for the translation d. Figure D.2 shows
this common origin formalism, where the fields along RQQ (Taylor expanded abour R) is needed
to maintain origin-independence using the molecular tensors calculated for a molecule translated
some vector d from the origin of the molecular refrence frame QM . The third term in Eq. D.5 is
present because the traceless polarizability tensors are used throughout. This term ensures that

182



Figure D.2. Origin-independent SERS expression enhanced by a local field and gradient may be achieved
by expressing the fields from the coordinate system of the substrate (QS) into the coordinate system of
the molecule (QM ) through vector RQQ.

the field-gradient tensor is also traceless. The field gradient tensor is defined as traceless as per
Eq. 12b of the main text, and therefore this final term may be dropped.

D.1.2 Origin-dependence of the effective dipole

As explored in the main text, the effective dipoles contributing to SERS (µeff) described by the
effective scattering polarizability (α′′) originates from enhancement of the near fields of radiating
dipoles and quadrupoles according to

µeffα = α′′αβE
(0)
β

=
([
δαγ + Fαγ (ωS)

]{
αγδ

[
δβδ + F βδ (ωL)

]
+ 1

3AγδεF
β
δε(ωL)

}
+1

3F
α
γδ(ωS)

{
Aε,γδ

[
δβε + F βε (ωL)

]
+ 1

3Cγδ,εζF
β
εζ(ωL)

})
E

(0)
β

=
(
δαβ + Fαβ (ωS)

)
µindβ + 1

3F
α
βγ(ωS)θindβγ

(D.6)

where ωS is the Raman-shifted frequency, µind is the induced dipole due to the incident and local
fields as described by Eq. D.1, and θind is the induced quadrupole due to the incident and local
fields, defined as

θindαβ =
[
Aγ,αβ

(
δδγ + F δγ (ωL)

)
+ 1

3Cαβ,γεF
δ
γε(ωL)

]
E

(0)
δ (D.7)

where A is the electric quadrupole-dipole polarizability tensor and C is the electric quadrupole-
quadrupole polarizability tensor.

The quadrupole moment θ is dependent on the choice of origin according to

θαβ(O + d) = θαβ(O) + 3
2dβµα + 3

2dαµβ − dγµγδαβ (D.8)

and therefore the origin-dependence of µeff is

µeffα (O + d)− µeffα (O) = 1
2dβµ

ind
γ Fαγβ(ωS) + 1

2dγµ
ind
β Fαγβ(ωS)− 1

3dδµ
ind
δ δγβF

α
γβ(ωS) (D.9)
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= µindβ

(
dγF

α
βγ(ωS)− 1

3dβF
α
γγ(ωS)

)
(D.10)

This dependence is identical to that derived in Eq. D.4 and therefore the common origin
expression of the local field enhancement derived in Eq. D.5 needs to be applied to the local fields
at both the incident (ωL) and Raman-shifted (ωS) frequencies.

D.1.3 Proof of origin-invariance

In order to show that the previously derived common-origin expression of the local fields leads to
an origin-independent effective polarizability, we will consider the effective polarizability α′′ of
a molecule translated from the origin O by some vector d. This effective polarizability may be
written as

α′′αβ(O + d) =
[
δαγ + Fαγ (ωS ; O + d)

] {
αγδ(O + d)

[
δβδ + F βδ (ωL; O + d)

]
+1

3Aγδε(O + d)F βδε(ωL; O + d)
}

+ 1
3F

α
γδ(ωS ; O + d)

{
Aε,γδ(O + d)

[
δβε + F βε (ωL; O + d)

]
+1

3Cγδ,εζ(O + d)F βεζ(ωL; O + d)
}

(D.11)

We now explicitly include the origin-dependent contributions to the local fields and polariz-
ability tensors assuming that the field gradient tensor is traceless (Fαββ = 0).

α′′αβ(O + d) =
[
δαγ + Fαγ (ωS ; O)− dζFαγζ(ωS)

] {
αγδ(O)

[
δβδ + F βδ (ωL; O)− dεF βδε(ωL)

]
+1

3

[
Aγδε(O) + 3

2dδαγε(O) + 3
2dεαγδ(O)− dκαγκ(O)δδε

]
F βδε(ωL)

}
+ 1

3F
α
γδ(ωS)

{[
Aε,γδ(O) + 3

2dγαεδ(O) + 3
2dδαεγ(O)− dηαεη(O)δγδ

]
×
[
δβε + F βε (ωL; O)− dζF βεζ(ωL)

]
+ 1

3

[
Cγδ,εζ(O) + 3

2dζAε,γδ(O) + 3
2dεAζ,γδ(O)− dκAκ,γδ(O)δεζ

3
2dδAγεζ(O) + 9

4dδdζαγε(O) + 9
4dδdεαγζ(O)− 3

2dδdκαγκ(O)δεζ

+ 3
2dγAδεζ(O) + 9

4dγdζαδε(O) + 9
4dγdεαδζ(O)− 3

2dγdκαδκ(O)δεζ

−dκAκεζ(O)δγδ −
3
2dκdζακε(O)δγδ −

3
2dκdεακζ(O)δγδ + dκdηακη(O)δγδδεζ

]
×F βεζ(ωL; O)

}
(D.12)

The transformation used here for the C-tensor assumes a traceless tensor, where Cαα,βγ = 0 =

184



Cαβ,γγ . All tensors now depend only on O and we will ignore explicitly writing this dependence.
Also, the field gradient tensors are traceless and symmetric. This implies that all terms dependent
on a Kronecker delta will vanish and we can group terms that differ with exchange of the field
gradient indices. We are left with

α′′αβ(O + d) =
[
δαγ + Fαγ (ωS)− dζFαγζ(ωS)

] {
αγδ

[
δβδ + F βδ (ωL)− dεF βδε(ωL)

]
+
[

1
3Aγδε + dδαγε

]
F βδε(ωL)

}
+ Fαγδ(ωS)

{[
1
3Aε,γδ + dγαεδ

] [
δβε + F βε (ωL)− dζF βεζ(ωL)

]
+
[

1
9Cγδ,εζ + 1

3dζAε,γδ + 1
3dδAγεζ + dδdζαγε

]
F βεζ(ωL)

}
(D.13)

We can now expand this expression and group terms that depend on the translation d. This
leaves us with

α′′αβ(O + d) = [δαγ + Fαγ (ωS)]αγδ[δβδ + F βδ (ωL)]− [δαγ + Fαγ (ωS)]αγδdεF βδε(ωL)

− dζF βζγ(ωS)αγδ[δβδ + F βδ (ωL)] + dζF
β
ζγ(ωS)αγδdεF βδε(ωL)

+ 1
3 [δαγ + Fαγ (ωS)]AγδεF βδε(ωL) + [δαγ + Fαγ (ωS)]dδαγεF βδε(ωL)

− 1
3dζF

α
γζ(ωS)AγδεF βδε(ωL) + dζF

α
γζ(ωS)dδαγεF βδε(ωL)

+ 1
3F

α
γδ(ωS)Aε,γδ[δβε + F βε (ωL)] + Fαγδ(ωS)dγαεδ[δβε + F βε (ωL)]

− 1
3F

α
γδ(ωS)Aε,γδdζF

β
εζ(ωL)− Fαγδ(ωS)dγαεδdζF βεζ(ωL)

+ 1
9F

α
γδ(ωS)Cγδ,εζF βεζ(ωL) + 1

3F
α
γδ(ωS)dζAε,γδF

β
εζ(ωL)

+ 1
3F

α
γδ(ωS)dδAγεζF βεζ(ωL) + Fαγδ(ωS)dδdζαγεF βεζ(ωL)

= [δαγ + Fαγ (ωS)]αγδ[δβδ + F βδ (ωL)] + 1
3 [δαγ + Fαγ (ωS)]AγδεF βδε(ωL)

+ 1
3F

α
γδ(ωS)Aε,γδ[δβε + F βε (ωL)] + 1

9F
α
γδ(ωS)Cγδ,εζF βεζ(ωL)

= α′′αβ(O)

(D.14)

which is the origin-independent effective polarizability. This shows that an expansion of the local
field accounting for the translation of our molecular system, as derived in Eq. D.5, is sufficient to
maintain origin-invariance of the effective polarizability.

With this common-origin solution, the SERS spectra including the field-gradient contributions
becomes independent of the choice of origin as shown in Figure D.3. This Figure examines the
same systems as Figure D.1 with the correct expansion of the local fields. As is clearly shown,
the SERS spectra of the benzene translated 10Å along the z-axis is identical to that of benzene
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Figure D.3. The SERS spectrum for benzene translated 10Å along the z-axis (same as for Figure D.1)
using the common-origin expression of the local fields.

centered at the origin.
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Appendix E|
Supporting Information for: Simulating Ensemble-
Averaged Surface-Enhanced Raman Scattering

E.1 Ag-Pyridine Force Field Details
The force field responsible for the Ag-pyr interactions were parameterized through the embedded-
atom-method (EAM) potential modified by a Morse potential and DFT-D2263–265. In the
EAM-like potential, the total electron density is written in terms of Ag-Ag electron density and
Ag-N electron density.

ρβ(rij) =
Ag∑
i6=j

ρAg−Ag(rij) +
N∑
i6=j

ρN−Ag(rij). (E.1)

It is assumed that ρN−Ag is proportional to ρAg−Ag. Accordingly, a scaling factor f is applied to
evaluate ρN−Ag.

N∑
i6=j

ρN−Ag(rij) = fρAg−Ag(rij). (E.2)

The Morse potential is written as

φmorse(rij) = D0,Ag−L

[
e−2αAg−L(rij−r0,Ag−L) − 2e−αAg−L(rij−r0,Ag−L)

]
, (E.3)

where D0,Ag−L, αAg−L and r0,Ag−L are the parameters describing the short-range interactions
between Ag and pyridine molecules. The parameterization is carried out in the same way as
reported in our previous work267. The parameters of morse potential and the scaling factor are
collected in Table E.1.

Table E.1. Morse potential parameters and the scaling factor in electron-density function of EAM
potential.

D0,Ag−L (eV) αAg−L (Å−1) r0(Å) f
Ag-C 0.000497 1.099 5.286
Ag-N 0.115876 1.954 2.607 2.443
Ag-H 0.000569 1.191 4.722
Ag-Ha 0.000324 1.261 4.646

a H’s nearest to N
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The reference data used for the parametrization of the EAM-like potential were generated
from the DFT calculations. The model system consists of pyridine and a Ag56 cluster. Two
configurations were considered: pyridine both perpendicular and parallel to the Ag(111) facet. The
geometry optimizations were performed on the ADF program package224, using the Becke-Perdew
(BP86) XC-potential153,154 and the triple-ζ with one polarization function (TZP) Slater type basis
set from the ADF basis set library (keeping the 1s–3d core frozen for Ag). Scalar relativistic effects
were taken into account by adopting the zeroth-order regular approximation (ZORA)271–273 and
dispersion effects were accounted for by the DFT-D3 approach274.

The interaction energies as the function of the Ag-N distance obtained from DFT and the
force field are compared in in Figure E.1. The binding energies predicted by force field well match
with the DFT results, indicating the force field correctly describe the pyridine and Ag cluster
interactions.

Figure E.1. The interaction energy as a function of the Ag–N distance as calculated by DFT (in blue)
and the force field (in red) for pyr bound both (a) perpendicular and (b) parallel to the Ag(111) facet.
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E.2 Enhancement Distributions

enhancement sm. monomer lg. monomer dimer
% mol. % sig. % mol. % sig. % mol. % sig.

≤ 102 67 7 57 1 52 0.1
102–103 27 48 30 8 32 0.5
103–104 6 44 11 25 11 2
104–105 3 66 3 4
105–106 0.7 7
106–107 0.5 86

Table E.2. Signal contribution from the different nanoparticle systems

Figure E.2. TPD analysis for the DIM and DDA models with a homogeneous field (E) or both a field
and gradient (E+FG).
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Figure E.3. TPD analysis for actual and random sampling using both the DIM and DDA models.

enhancement DIM DDA DIM - random DDA - random
% mol. % sig. % mol. % sig. % mol. % sig. % mol. % sig.

≤ 102 52 0.1 20 0.03 81 2 59 2
102–103 32 0.5 47 0.6 16 4 34 7
103–104 11 2 22 2 2 6 6 12
104–105 3 4 8 9 0.4 11 1 20
105–106 0.7 7 2 19 0.1 35 0.2 29
106–107 0.5 86 0.6 68 0.02 43 0.02 30
> 107 0.002 0.7

Table E.3. Signal contribution from the different models
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Appendix F|
Supporting Information for: Simulating Surface-
Enhanced Raman Optical Activity Using Atomistic
Electrodynamics-Quantum Mechanical Models

F.1 ROA of 2BrHH

Figure F.1. ROA of the two enantiomers of 2Brhh calculated using the BP86-TZ2P level of theory.

F.2 Origin-Dependence of A, G’, C and D Response Tensors
The dipole of a neutral molecule is independent of the choice of origin. However, higher order
multipoles (and response tensors that depend on these multipole moment operators) all depend
on the choice of origin. The translation rules for the electric dipole-quadrupole (A), electric
dipole-magnetic dipole (G′), electric quadrupole-quadrupole (C), and electric quadrupole-magnetic
dipole (D) response tensors are all stated below. In each case, we translate the coordinate origin
O to some new origin O + R. This is equivalent to translating the position vector r to r−R.

Aαβγ(O + R) = Aαβγ(O)− 3
2Rγααβ −

3
2Rβααγ + δβγRδααδ (F.1)
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Figure F.2. ROA intensities of 2Brhh for the modes ∼ 1600 and 1064 cm−1 are increased relative to
those ∼ 1350 cm−1 using the DIM/QM force field (the intensities in this spectrum are calculated in the
absence of polarization and plasmon effects due to the nanoparticle) when compared to the gas-phase
geometry.

G′αβ(O + R) = G′αβ(O) + ω

2 εβγδRγααδ (F.2)

Cαβ,γδ(O + R) = Cαβ,γδ(O)− 3
2RβAαγδ(O)− 3

2RαAβγδ(O)

+ δαβRεAεγδ(O)− 3
2RδAγ,αβ(O)− 3

2RγAδ,αβ(O)

+ δγδRζAζ,αβ(O) + 9
4RδRβααγ + 9

4RδRααβγ

− 3
2δαβRδRεαεγ + 9

4RγRβααδ + 9
4RγRααβδ

− 3
2δαβRγRεαεδ −

3
2δγδRζRβααζ −

3
2δγδRζRααβζ

+ δαβδγδRεRζαεζ

(F.3)

Dαβ,γ(O + R) = Dαβ,γ(O) + ω

2 εγεδRεAδ,αβ(O)

− 3
2RβG

′
αγ(O)− 3

2RαG
′
βγ(O) + δαβRδG

′
δγ(O)

− 3ω
4 εγεδRβRεααδ −

3ω
4 εγεδRαRεαβδ + ω

2 δαβεγεζRδRεαδζ

(F.4)

In the above equations, we assume that the electric dipole-dipole tensor (α) is independent
of the choice of origin and the Einstein summation convention is employed for repeated indices.
Also, δ is the Kronecker dela, ε is the Levi-Civita tensor, ω is the angular frequency, and A is the
electric quadrupole-dipole polarizability tensor.
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F.3 Damping in the Modified Velocity Gauge

F.3.1 The modified velocity gauge

We start by considering the relationship 〈n|[Â, Ĥ]|0〉, where n and 0 are eigenstates of Ĥ, and Â
is some general operator. Because Ĥ is Hermitian, it can be shown that

〈n|[Â, Ĥ]|0〉 = 〈n|ÂĤ|0〉 − 〈n|ĤÂ|0〉

= ε0〈n|Â|0〉 −
(
Ĥ|n〉

)†
Â|0〉

= ε0〈n|Â|0〉 − εn〈n|Â|0〉

= −ωn0〈n|Â|0〉

(F.5)

where ωn0 = εn − ε0.
We can now use this relationship to transform between the length gauge (LG) and velocity

gauge (VG) operators. Consider the LG dipole operator r̂. Expressed in the VG, this becomes

〈n|r̂|0〉 = −〈n|[r̂, Ĥ]|0〉/ωn0

= − i

ωn0
〈n|p̂|0〉

(F.6)

where ip̂, the momentum operator, is the equivalent VG operator for the LG dipole.
We can now consider the polarizability response ααβ(ω) in the VG.323,324

ααβ(ω) = 〈〈µ̂α; µ̂β〉〉ω
= 〈〈r̂α; r̂β〉〉ω

=
∑
n

[
〈0|r̂α|n〉〈n|r̂β |0〉

ωn0 − ω
+ 〈0|r̂α|n〉〈n|r̂β |0〉

ωn0 + ω

]
= 2

∑
n

ωn0〈0|r̂α|n〉〈n|r̂β |0〉
ω2
n0 − ω2

= 2
∑
n

ωn0

(
i
ωn0
〈0|p̂α|n〉

)(
−i
ωn0
〈n|p̂β |0〉

)
ω2
n0 − ω2

= 2
∑
n

〈0|p̂α|n〉〈n|p̂β |0〉
ωn0(ω2

n0 − ω2)

(F.7)

Using the dentity

1
x(x2 − y2) = x

y2

(
1

x2 − y2 −
1
x2

)
(F.8)

we can re-write Eqn. F.7 as
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〈〈µ̂α; µ̂β〉〉ω = 2
∑
n

〈0|p̂α|n〉〈n|p̂β |0〉
ωn0(ω2

n0 − ω2)

= 2
ω2

∑
n

[
ωn0〈0|p̂α|n〉〈n|p̂β |0〉

ω2
n0 − ω2 − ωn0〈0|p̂α|n〉〈n|p̂β |0〉

ω2
n0

]
= 1
ω2 [〈〈p̂α; p̂β〉〉ω − 〈〈p̂α; p̂β〉〉0]

(F.9)

Eqn. F.9 is commonly referred to as the modified velocity gauge (MVG), where the “static
limit” is subtracted from the frequency-dependent response.324,325

We may also consider higher order response functions in the MVG by considering the following
operator relations.324

〈0|r̂|n〉 = 〈0|[r̂, Ĥ]|n〉/ωn0

= 〈0|ip̂|n〉/ωn0
(F.10)

〈0|r̂r̂|n〉 = 〈0|[r̂r̂, Ĥ]|n〉/ωn0

= 〈0|ip̂r̂ + ir̂p̂|n〉/ωn0
(F.11)

〈0|r̂r̂r̂|n〉 = 〈0|[r̂r̂r̂, Ĥ]|n〉/ωn0

= 〈0|ip̂r̂r̂ + ir̂p̂r̂ + ir̂r̂p̂|n〉/ωn0
(F.12)

The magnetic dipole operator (m̂) and magnetic quadrupole operator are identical in both
gauges.324

F.3.2 Finite lifetime effects in MVG

Earlier, we considered the response function (written below for two general operators Â and B̂) as

〈〈Â; B̂〉〉ω =
∑
n

[
〈0|Â|n〉〈n|B̂|0〉

ωn0 − ω
+ 〈0|Â|n〉〈n|B̂|0〉

ωn0 + ω

]
(F.13)

This equation has no solution on resonance (ω = ωn0), and leads to poles in the response
function. We may overcome this by considering a finite lifetime (1/γn) of the excited state, which
leads to

〈〈Â; B̂〉〉ω+iγn
=
∑
n

[
〈0|Â|n〉〈n|B̂|0〉
ωn0 − ω − iγn

+ 〈0|Â|n〉〈n|B̂|0〉
ωn0 + ω + iγn

]
(F.14)

A lifetime parameter for each excited state is unfeasible, and typically a single lifetime (1/Γ)
is used. We can re-write this as a single term, similar to that in Eqn. F.7 as

〈〈Â; B̂〉〉ω+iΓ =
∑
n

[
〈0|Â|n〉〈n|B̂|0〉
ωn0 − ω − iΓ

+ 〈0|Â|n〉〈n|B̂|0〉
ωn0 + ω + iΓ

]

= 2
∑
n

ωn0〈0|Â|n〉〈n|B̂|0〉
ω2
n0 − (ω + iΓ)2

(F.15)
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Using the gauge transformations (Â→ ÂV G and B̂ → B̂V G) and the identiy in Eqn. F.8, we
can obtain the MVG form of the response as was done in Eqn. F.9

〈〈Â; B̂〉〉ω+iΓ = 2
(ω + iΓ)2

∑
n

[
ωn0〈0|ÂV G|n〉〈n|B̂V G|0〉

ωn0 − (ω + iΓ)2 − 〈0|Â
V G|n〉〈n|B̂V G|0〉

ωn0

]

= 1
(ω + iΓ)2

[
〈〈ÂV G; B̂V G〉〉ω+iΓ − 〈〈ÂV G; B̂V G〉〉0

] (F.16)
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Appendix G|
Supporting Information for: Frozen Density Embed-
ding with External Orthogonality

G.1 System Geometries

Table G.1. Water dimer geometry (in Å).
subsystem I subsystem II

atom x y z atom x y z
O -1.4626 0.0000 0.0000 O 1.4626 0.0000 0.0000
H -1.7312 0.9302 0.0000 H 1.9309 0.3579 0.7697
H -0.4844 0.0275 0.0000 H 1.9309 0.3579 -0.7697

Table G.2. FHF− geometry (in Å).
FH subsystem F− subsystem

atom x y z atom x y z
F 0.0000 0.0000 1.1587 F 0.0000 0.0000 -1.1587
H 0.0000 0.0000 0.0000

Table G.3. BH3NH3 geometry (in Å).
BH3 subsystem NH3 subsystem

atom x y z atom x y z
B 0.0000 0.0000 0.8382 N 0.0000 0.0000 -0.8158
H -0.5864 -1.0157 1.1548 H 0.4765 -0.8252 -1.1862
H -0.5864 1.0157 1.1548 H 0.4765 0.8252 -1.1862
H 1.1728 0.0000 1.1548 H -0.9529 0.0000 -1.1862
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Table G.4. C2H6 geometry (in Å).
CH+

3 subsystem CH−3 subsystem
atom x y z atom x y z
C 0.0000 0.0000 0.7651 C 0.0000 0.0000 -0.7651
H 0.0000 -1.0222 1.1666 H 0.8853 -0.5111 -1.1666
H -0.8853 0.5111 1.1666 H 0.0000 1.0222 -1.1666
H 0.8853 0.5111 1.1666 H -0.8853 -0.5111 -1.1666

Table G.5. C6H12 geometry (in Å).
subsystem I subsystem II

atom x y z atom x y z
C -3.1595 -0.3535 0.0351 C 0.6165 0.2594 -0.0400
H -3.1754 -1.1510 -0.7229 H 0.7222 1.3357 -0.2323
H -4.0780 0.2386 -0.0819 C 1.9083 -0.5197 0.1097
H -3.1945 -0.8346 1.0241 H 1.9381 -1.3285 -0.6388
C -1.9086 0.5199 -0.1096 H 1.9250 -1.0195 1.0921
H -1.9408 1.3297 0.6377 C 3.1600 0.3521 -0.0367
H -1.9241 1.0183 -1.0928 H 4.0779 -0.2418 0.0744
C -0.6166 -0.2579 0.0421 H 3.1807 1.1466 0.7245
H -0.7219 -1.3344 0.2335 H 3.1915 0.8372 -1.0239

Table G.6. C8H16 geometry (in Å).
subsystem I subsystem II

atom x y z atom x y z
C -0.5764 -0.0196 -4.2325 C 0.6473 -0.3793 0.5416
H -1.4640 0.3376 -4.7742 H 0.6756 -1.4674 0.3942
H -0.5526 -1.1169 -4.3182 C 0.6194 0.0918 1.9688
H 0.3123 0.3729 -4.7505 H 0.6127 1.1936 1.9948
C -0.6019 0.4206 -2.7654 H 1.5461 -0.2279 2.4798
H -1.5144 0.0423 -2.2761 C -0.5819 -0.4528 2.7648
H -0.6578 1.5208 -2.7097 H -0.5780 -1.5546 2.7114
C 0.6257 -0.0595 -1.9677 H -1.5127 -0.1257 2.2730
H 1.5348 0.3101 -2.4767 C -0.5836 -0.0086 4.2309
H 0.6783 -1.1600 -1.9944 H -1.4521 -0.4117 4.7713
C 0.6257 0.4116 -0.5402 H -0.6190 1.0886 4.3135
H 0.5927 1.4996 -0.3924 H 0.3236 -0.3513 4.7521
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Table G.7. C10H20 geometry (in Å).
subsystem I subsystem II

atom x y z atom x y z
C 0.0855 0.7963 -5.0878 C 0.6551 -0.3168 0.5133
H 1.1425 0.6724 -4.8099 H 0.8182 -1.3865 0.3246
H -0.1514 1.8703 -5.0274 C 0.5973 0.0963 1.9579
H -0.0142 0.4921 -6.1401 H 1.5590 -0.1463 2.4425
C -0.8452 -0.0226 -4.1845 H 0.4764 1.1898 2.0253
H -1.8796 0.0812 -4.5506 C -0.5445 -0.5967 2.7292
H -0.5976 -1.0945 -4.2743 H -0.4254 -1.6914 2.6431
C -0.8134 0.3794 -2.7005 H -1.4963 -0.3522 2.2300
H -1.6203 -0.1476 -2.1655 C -0.6397 -0.2132 4.2150
H -1.0386 1.4570 -2.6108 H -1.5758 -0.6287 4.6225
C 0.5180 0.0813 -1.9814 H -0.7327 0.8834 4.3007
H 1.3356 0.6078 -2.5036 C 0.5342 -0.6972 5.0755
H 0.7407 -0.9960 -2.0508 H 1.4888 -0.2535 4.7565
C 0.5039 0.5014 -0.5377 H 0.6399 -1.7920 5.0177
H 0.3363 1.5704 -0.3490 H 0.3870 -0.4324 6.1328

Table G.8. C12H24 geometry (in Å).
subsystem I subsystem II

atom x y z atom x y z
C -0.0185 1.9689 -5.3535 C 0.5329 -0.3242 0.5389
H 0.7078 2.3769 -6.0718 H 0.6786 -1.4049 0.4054
H 0.0983 2.5311 -4.4149 C 0.4734 0.1618 1.9608
H -1.0273 2.1795 -5.7429 H 1.4386 -0.0496 2.4538
C 0.1907 0.4628 -5.1500 H 0.3485 1.2569 1.9725
H 0.1421 -0.0403 -6.1298 C -0.6596 -0.4973 2.7728
H 1.2107 0.2810 -4.7724 H -0.5347 -1.5930 2.7429
C -0.8384 -0.2018 -4.2170 H -1.6162 -0.2904 2.2656
H -0.6756 -1.2933 -4.2288 C -0.7606 -0.0187 4.2321
H -1.8466 -0.0407 -4.6364 H -1.6753 -0.4474 4.6771
C -0.8374 0.2806 -2.7555 H -0.9053 1.0754 4.2356
H -1.6875 -0.1833 -2.2290 C 0.4333 -0.3632 5.1415
H -1.0182 1.3683 -2.7174 H 0.2707 0.1181 6.1200
C 0.4524 -0.0438 -1.9753 H 1.3544 0.0884 4.7370
H 1.3109 0.4211 -2.4912 C 0.6527 -1.8662 5.3570
H 0.6297 -1.1316 -1.9890 H 1.4814 -2.0495 6.0565
C 0.4131 0.4437 -0.5533 H 0.8961 -2.3854 4.4179
H 0.2638 1.5238 -0.4192 H -0.2486 -2.3421 5.7752
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Table G.9. C14H28 geometry (in Å).
subsystem I subsystem II

atom x y z atom x y z
C 0.6824 2.2735 -6.4294 C 0.5178 -0.3216 0.5731
H 1.7278 2.2052 -6.0905 H 0.6394 -1.4122 0.5234
H 0.4567 3.3362 -6.5997 C 0.5068 0.2784 1.9520
H 0.6152 1.7576 -7.3998 H 1.4752 0.0726 2.4408
C -0.2723 1.6525 -5.4035 H 0.4193 1.3748 1.8779
H -0.2055 2.2196 -4.4603 C -0.6291 -0.2715 2.8375
H -1.3137 1.7638 -5.7535 H -0.5512 -1.3712 2.8820
C 0.0115 0.1666 -5.1401 H -1.5903 -0.0587 2.3413
H -0.0306 -0.3753 -6.1009 C -0.6676 0.3107 4.2617
H 1.0495 0.0540 -4.7814 H -1.5858 -0.0430 4.7586
C -0.9609 -0.5106 -4.1576 H -0.7703 1.4075 4.1934
H -0.7491 -1.5934 -4.1374 C 0.5484 -0.0078 5.1537
H -1.9860 -0.4102 -4.5531 H 0.4107 0.5069 6.1207
C -0.9412 0.0234 -2.7138 H 1.4550 0.4339 4.7081
H -1.7663 -0.4416 -2.1500 C 0.8087 -1.5012 5.4252
H -1.1495 1.1065 -2.7116 H 1.7426 -1.5883 6.0048
C 0.3743 -0.2385 -1.9532 H 0.9986 -2.0260 4.4738
H 1.2136 0.1865 -2.5312 C -0.3173 -2.2150 6.1845
H 0.5550 -1.3239 -1.8895 H -0.0503 -3.2603 6.3992
C 0.3817 0.3591 -0.5734 H -1.2560 -2.2279 5.6108
H 0.2548 1.4490 -0.5220 H -0.5229 -1.7191 7.1466

Table G.10. C6H8 geometry (in Å).
subsystem I subsystem II

atom x y z atom x y z
C -3.0670 -0.3214 -0.0670 C 0.5943 0.3283 0.0291
H -4.0109 0.2224 -0.0697 H 0.5913 1.4238 0.0304
H -3.1172 -1.4114 -0.1095 C 1.8844 -0.3239 0.0331
C -1.8842 0.3233 -0.0025 H 1.8786 -1.4183 0.0662
H -1.8776 1.4175 0.0391 C 3.0673 0.3233 -0.0025
C -0.5947 -0.3299 0.0151 H 3.1159 1.4135 -0.0379
H -0.5919 -1.4255 0.0088 H 4.0122 -0.2187 0.0088

Table G.11. C8H12 geometry (in Å).
subsystem I subsystem II

atom x y z atom x y z
C -4.4159 0.3378 0.0131 C 0.5969 0.3298 -0.0130
H -4.3294 1.4325 0.0247 H 0.5956 1.4252 -0.0124
H -4.9997 0.0306 0.8963 C 1.8847 -0.3224 -0.0036
H -5.0147 0.0496 -0.8665 H 1.8804 -1.4188 -0.0018
C -3.0719 -0.3224 -0.0036 C 3.0739 0.3214 0.0049
H -3.0636 -1.4184 -0.0046 H 3.0711 1.4174 0.0004
C -1.8855 0.3265 -0.0106 C 4.4144 -0.3461 0.0209
H -1.8851 1.4230 -0.0095 H 5.0130 -0.0636 -0.8607
C -0.5963 -0.3228 -0.0157 H 4.3219 -1.4402 0.0358
H -0.5939 -1.4182 -0.0137 H 5.0016 -0.0403 0.9023
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Table G.12. C10H12 geometry (in Å).
subsystem I subsystem II

atom x y z atom x y z
C -5.5488 -0.2968 0.0080 C 0.6003 0.3120 -0.0192
H -6.4845 0.2609 0.0127 H 0.5937 1.4070 -0.0160
H -5.6162 -1.3867 0.0227 C 1.8776 -0.3314 -0.0154
C -4.3525 0.3311 -0.0094 H 1.8868 -1.4266 -0.0116
H -4.3293 1.4260 -0.0203 C 3.0716 0.3311 -0.0094
C -3.0762 -0.3389 -0.0147 H 3.0632 1.4265 -0.0123
H -3.0869 -1.4340 -0.0223 C 4.3597 -0.3139 0.0196
C -1.8731 0.3068 -0.0099 H 4.3592 -1.4090 0.0154
H -1.8708 1.4021 0.0058 C 5.5419 0.3397 0.0609
C -0.5998 -0.3448 -0.0195 H 5.5851 1.4308 0.0706
H -0.5965 -1.4394 -0.0270 H 6.4892 -0.1975 0.0876

Table G.13. C12H16 geometry (in Å).
subsystem I subsystem II

atom x y z atom x y z
C -6.8885 0.3419 -0.0728 C 0.6022 0.3258 0.0897
H -6.7995 1.4363 -0.0737 H 0.5997 1.4208 0.0908
H -7.5116 0.0473 0.7876 C 1.8769 -0.3224 0.0686
H -7.4495 0.0431 -0.9736 H 1.8794 -1.4177 0.0714
C -5.5482 -0.3224 -0.0249 C 3.0765 0.3298 0.0271
H -5.5434 -1.4184 -0.0241 H 3.0752 1.4249 0.0216
C -4.3582 0.3232 0.0145 C 4.3585 -0.3224 -0.0249
H -4.3546 1.4197 0.0148 H 4.3552 -1.4188 -0.0166
C -3.0757 -0.3291 0.0515 C 5.5475 0.3229 -0.0922
H -3.0747 -1.4242 0.0484 H 5.5427 1.4188 -0.1023
C -1.8755 0.3225 0.0785 C 6.8860 -0.3431 -0.1607
H -1.8771 1.4178 0.0798 H 7.4280 -0.0548 -1.0765
C -0.6010 -0.3263 0.0903 H 6.7961 -1.4373 -0.1479
H -0.5991 -1.4213 0.0871 H 7.5274 -0.0395 0.6831
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Table G.14. C14H16 geometry (in Å).
subsystem I subsystem II

atom x y z atom x y z
C -8.0253 -0.2506 0.0699 C 0.6022 0.2962 -0.1200
H -8.1149 -1.3381 0.0308 H 0.5907 1.3911 -0.1146
H -8.9487 0.3255 0.1139 C 1.8755 -0.3407 -0.0986
C -6.8164 0.3542 0.0654 H 1.8897 -1.4359 -0.0947
H -6.7729 1.4477 0.1064 C 3.0732 0.3271 -0.0592
C -5.5529 -0.3348 0.0076 H 3.0583 1.4218 -0.0605
H -5.5795 -1.4291 -0.0212 C 4.3496 -0.3085 0.0046
C -4.3402 0.2958 -0.0161 H 4.3615 -1.4036 0.0148
H -4.3249 1.3907 0.0093 C 5.5439 0.3542 0.0654
C -3.0774 -0.3675 -0.0706 H 5.5395 1.4493 0.0547
H -3.0834 -1.4621 -0.0853 C 6.8256 -0.2976 0.1464
C -1.8693 0.2818 -0.0961 H 6.8159 -1.3924 0.1682
H -1.8707 1.3767 -0.0834 C 8.0135 0.3456 0.1949
C -0.6011 -0.3651 -0.1221 H 8.0685 1.4359 0.1754
H -0.5940 -1.4597 -0.1265 H 8.9542 -0.2006 0.2523

Table G.15. C16H20 geometry (in Å).
subsystem I subsystem II

atom x y z atom x y z
C -9.2739 -0.3141 0.5769 C 0.6156 -0.3666 -0.5073
H -9.6805 -0.0164 1.5577 H 0.6172 -1.4616 -0.4963
H -9.1981 -1.4092 0.5584 C 1.8778 0.2893 -0.4390
H -10.0232 -0.0062 -0.1707 H 1.8726 1.3844 -0.4526
C -7.9513 0.3380 0.3230 C 3.0836 -0.3516 -0.3041
H -7.9327 1.4336 0.3380 H 3.0905 -1.4463 -0.2790
C -6.7888 -0.3194 0.0923 C 4.3356 0.3134 -0.1383
H -6.7986 -1.4155 0.0777 H 4.3254 1.4084 -0.1649
C -5.5170 0.3208 -0.1095 C 5.5261 -0.3194 0.0923
H -5.5033 1.4158 -0.0938 H 5.5380 -1.4139 0.1247
C -4.3332 -0.3422 -0.2836 C 6.7726 0.3561 0.3342
H -4.3460 -1.4373 -0.2962 H 6.7551 1.4519 0.3010
C -3.0630 0.2963 -0.4097 C 7.9421 -0.2664 0.6191
H -3.0515 1.3912 -0.3970 H 7.9520 -1.3618 0.6511
C -1.8626 -0.3629 -0.4958 C 9.2368 0.4255 0.9096
H -1.8689 -1.4581 -0.4976 H 9.6140 0.1569 1.9103
C -0.5941 0.2833 -0.5294 H 9.1327 1.5177 0.8674
H -0.5922 1.3785 -0.5293 H 10.0216 0.1246 0.1963
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Table G.16. C18H20 geometry (in Å).
subsystem I subsystem II

atom x y z atom x y z
C -10.4842 0.2977 -0.2389 C 0.6032 -0.3477 0.2105
H -11.4160 -0.2626 -0.3026 H 0.5890 -1.4422 0.2122
H -10.5549 1.3873 -0.2340 C 1.8718 0.2885 0.1794
C -9.2872 -0.3277 -0.1683 H 1.8836 1.3838 0.1770
H -9.2614 -1.4226 -0.1738 C 3.0765 -0.3738 0.1330
C -8.0167 0.3437 -0.0835 H 3.0690 -1.4685 0.1325
H -8.0288 1.4389 -0.0807 C 4.3406 0.2730 0.0721
C -6.8124 -0.3001 -0.0061 H 4.3407 1.3683 0.0738
H -6.8081 -1.3954 -0.0057 C 5.5498 -0.3737 -0.0013
C -5.5472 0.3537 0.0707 H 5.5582 -1.4682 -0.0055
H -5.5465 1.4484 0.0749 C 6.8067 0.2952 -0.0845
C -4.3417 -0.3011 0.1300 H 6.7859 1.3902 -0.0878
H -4.3464 -1.3960 0.1241 C 8.0216 -0.3277 -0.1683
C -3.0750 0.3426 0.1797 H 8.0561 -1.4225 -0.1685
H -3.0660 1.4371 0.1788 C 9.2761 0.3722 -0.2625
C -1.8698 -0.3194 0.2090 H 9.2227 1.4662 -0.2724
H -1.8815 -1.4144 0.2090 C 10.4887 -0.2217 -0.3354
C -0.6009 0.3183 0.2198 H 10.5880 -1.3090 -0.3312
H -0.5873 1.4134 0.2209 H 11.4048 0.3630 -0.4028

Table G.17. C20H24 geometry (in Å).
subsystem I subsystem II

atom x y z atom x y z
C -10.2566 -0.1748 -3.1129 C 0.5891 -0.2332 2.1222
H -10.0833 0.0411 -4.1805 H 0.5318 -1.3270 2.1221
H -11.2821 0.1660 -2.8952 C 1.8798 0.3468 1.9709
H -10.2181 -1.2635 -2.9764 H 1.9426 1.4401 1.9681
C -9.2521 0.5277 -2.2536 C 3.0186 -0.3732 1.6858
H -9.2055 1.6187 -2.3451 H 2.9429 -1.4654 1.6617
C -8.3897 -0.0834 -1.4044 C 4.2567 0.1963 1.2729
H -8.4265 -1.1758 -1.3177 H 4.3384 1.2881 1.2883
C -7.3770 0.5939 -0.6388 C 5.2966 -0.5265 0.7373
H -7.3376 1.6852 -0.7218 H 5.2009 -1.6168 0.6987
C -6.4258 -0.0404 0.1145 C 6.4415 0.0456 0.1047
H -6.4641 -1.1332 0.1815 H 6.5363 1.1362 0.1345
C -5.3167 0.6091 0.7362 C 7.3603 -0.6664 -0.6190
H -5.2722 1.7008 0.6644 H 7.2586 -1.7559 -0.6638
C -4.2528 -0.0525 1.3023 C 8.4120 -0.0796 -1.4057
H -4.2947 -1.1459 1.3504 H 8.5123 1.0114 -1.3646
C -3.0338 0.5680 1.6992 C 9.2367 -0.7764 -2.2259
H -2.9868 1.6608 1.6459 H 9.1253 -1.8658 -2.2696
C -1.8789 -0.1206 1.9974 C 10.2815 -0.1748 -3.1129
H -1.9260 -1.2144 2.0250 H 10.0903 -0.4214 -4.1708
C -0.5928 0.4753 2.1195 H 11.2834 -0.5728 -2.8833
H -0.5405 1.5690 2.0927 H 10.3141 0.9187 -3.0199
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G.2 Energy, Density, and Dipole Differences

Table G.18. Energy difference (∆E, in mEh) between the KS-DFT and FDE(EO,5ft) methods with
different levels of basis set overlap.

System m e1 e2 e3 e4 e5 e6 e7 e8 e9 e10
n d

6 1 -2784 -517 -12 2
3 -1173 -851 -63 1

8 1 -2703 -636 -152 -7 1
3 -2234 -600 -144 -52 3

10 1 -2827 -757 -313 -65 -3 2
5 5354† -623 -220 -84 -45 1

12 1 -2882 -749 -376 -112 -5 2 2
5 5409† -654 -358 -150 -55 -22 4

14 1 -2951 -782 -405 -201 -1 2 2 2
7 121986† -723 -332 -165 -83 -40 -10 2

16 7 202558† -689 -349 -233 -154 -77 -36 -38 -4
18 9 529592† -678 -338 -249 -559 -86 -51 -24 -2 6
20 9 -2157.706 -654 -342 -250 -147 -143 -127 -45 -28 -4 8

n - number of carbon atoms; d - number of conjugated double bonds.
†One or more SCF cycles failed to converge during the freeze-and-thaw iterations.

Table G.19. Integrated absolute density difference (∆abs, in e) for the FDE(EO,5ft) method with
different levels of basis set overlap.

System m e1 e2 e3 e4 e5 e6 e7 e8 e9 e10
n d

6 1 4.74 2.23 0.11 0.00
3 6.98 2.54 0.61 0.00

8 1 5.65 2.29 0.93 0.08 0.00
3 6.56 2.40 1.17 0.58 0.00

10 1 6.00 2.72 2.00 0.66 0.06 0.00
5 16.00† 2.54 1.66 0.95 0.44 0.00

12 1 6.65 2.65 2.21 0.87 0.10 0.00 0.00
5 18.26† 2.72 2.44 1.47 0.69 0.37 0.00

14 1 6.82 2.77 2.23 1.47 0.12 0.01 0.00 0.00
7 44.99† 2.76 2.47 1.66 1.05 0.64 0.26 0.00

16 7 54.41† 2.86 2.54 2.45 1.76 1.04 0.46 0.55 0.01
18 9 67.99† 2.92 2.56 2.54 3.14 1.27 0.83 0.50 0.20 0.00
20 9 6.37 2.98 2.61 2.59 1.91 1.88 1.59 0.80 0.40 0.20 0.00

n - number of carbon atoms; d - number of conjugated double bonds.
†One or more SCF cycles failed to converge during the freeze-and-thaw iterations.
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Table G.20. Absolute dipole difference (|∆µ|, in D) for the FDE(EO,5ft) method with different levels
of basis set overlap.
System m e1 e2 e3 e4 e5 e6 e7 e8 e9 e10
n d

6 1 17.32 9.14 0.06 0.00
3 39.09 7.80 3.08 0.00

8 1 26.34 9.27 2.16 0.20 0.00
3 46.78 16.14 6.18 3.35 0.00

10 1 30.73 11.94 7.28 1.76 0.14 0.00
5 106.17† 22.49 12.19 7.23 0.08 0.01

12 1 43.31 12.41 9.49 1.16 0.21 0.00 0.00
5 121.73† 26.32 22.88 11.34 5.20 3.10 0.01

14 1 46.25 13.60 9.75 3.34 0.23 0.00 0.00 0.00
7 272.74† 33.11 29.84 16.62 10.39 6.54 2.70 0.00

16 7 311.68† 35.45 31.80 30.20 18.65 10.21 4.06 5.88 0.05
18 9 407.66† 43.75 38.98 38.28 10.28 15.44 10.15 6.25 2.60 0.01
20 9 64.86 41.79 37.43 36.98 23.31 23.19 18.78 8.87 3.72 2.54 0.04

n - number of carbon atoms; d - number of conjugated double bonds.
†One or more SCF cycles failed to converge during the freeze-and-thaw iterations.
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G.3 Extended Monomer Truncation

Figure G.1. |∆µ| for the FDE(EO,5ft) method with different levels of basis set overlap for (a) alkane-like
systems, and (b) conjugated alkenes. The dashed line is the dipole difference threshold of 0.25 D.
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G.4 DZP-Truncated Basis Data

Figure G.2. Number of basis functions for the fragments of the conjugated alkenes in the supermolecular
basis (sup.), the DZP truncated basis (DZP), and the largest extended monomer basis truncation (exp.).

Figure G.3. Computation time (on 8 processors) for the KS-DFT method, and various levels of basis
set truncations of the FDE(EO) method. FDE(EO,e) represents the largest extended monomer basis
truncation.
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Appendix H|
Supporting Information for: External Orthogonality
in Subsystem Time-dependent Density Functional
Theory

H.1 EO Operator in MO Basis
In the following derivation, χ are atomic orbitals (AOs), φ are molecular orbitals (MOs),
superscripts indicate the subsystem the particular matrix is describing (for only two subsystems,
A or B), and subscripts indicate particular elements of the respective matrix. Roman subscripts i,
j, . . . indicate occupied MOs; a, b, . . . indicate virtual MOs; p, q, . . . indicate general MOs; and
Greek subscripts α, β, . . . describe AOs. Bold-face fonts (e.g. A) indicate matrices in AO basis
and blackboard-bold fonts (e.g. A) indicate matrices in MO basis. The EO projection operator
for subsystem A in the environment of B is359

VEO,A(B) = SA,BPBSB,A (H.1)

where SA,B is the AO overlap matrix between subsystems A and B (SA,B
αβ = 〈χAα |χBβ 〉), and PB is

the density matrix of subsystem B, defined as

PB
αβ = CBnB(nB)T (CB)T (H.2)

In this definition, CB is the MO coefficient matrix for all occupied and virtual orbitals of subsystem
B and nB is a vector of the respective MO occupation numbers. We can therefore use this to
write the MO density matrix as PB = nB(nB)T . This allows us to write the EO operator in MO
basis as

VEO,A(B) = (CA)TSA,BCBPB(CB)TSB,ACA

= SA,BPBSB,A
(H.3)

where SA,B is the MO overlap matrix
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SA,Bpq =
[
(CA)TSA,BCB]

pq

=
(∑

α

〈χAα |CA
αp

)∑
β

CB
βq|χBβ 〉


= 〈φAp |φBq 〉

(H.4)

H.2 Long-Range Correction to the NAKP

Figure H.1. Excitation energies of the five lowest transitions in the LiH system with respect to subsystem
separation, showing the long-range correction to the NAKP (corr.).

H.3 Significance of the EO Kernel
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Figure H.2. Coupled excitation energies of the He-dimer showing the importance of the EO contribution
to the coupled response kernel.
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Appendix I|
Potential Energy Distributions for all Normal Modes
of Rhodamine-6G

Mode Methyl Xanthene Ethyl Phenyl Ester
(cm−1) (%) (%) (%) (%) (%)

391 0.7 3.3 8.6 11.1 76.4
396 15.6 18.3 55.1 11.0 0.0
421 13.7 33.2 48.6 3.1 1.4
431 1.2 11.6 8.7 75.4 3.1
445 2.6 9.2 87.7 0.2 0.2
447 9.5 10.3 79.9 0.2 0.0
454 9.7 16.2 72.0 2.1 0.0
456 4.0 45.1 21.6 27.6 1.7
462 6.2 41.5 52.2 0.0 0.1
502 1.0 8.9 5.8 36.0 48.3
517 18.6 9.5 70.1 1.0 0.7
531 19.6 26.1 11.7 42.4 0.1
549 21.6 27.7 24.4 26.2 0.0
559 32.4 27.3 39.6 0.6 0.1
610 7.4 42.6 34.1 15.9 0.0
616 3.5 39.2 6.0 51.1 0.1
632 0.4 66.8 3.7 25.7 3.4
666 0.7 19.3 1.3 72.2 6.5
669 22.5 71.7 5.8 0.1 0.0
694 27.3 69.7 1.9 1.0 0.2
700 3.5 9.8 2.1 72.2 12.3
703 2.6 45.2 1.0 44.0 7.2
707 9.4 89.7 0.7 0.1 0.0
724 3.8 20.4 59.5 15.4 0.9
736 7.8 13.9 12.4 63.9 1.9
748 0.4 94.3 1.8 3.2 0.3
759 1.2 12.3 84.7 1.6 0.2
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Mode Methyl Xanthene Ethyl Phenyl Ester
(cm−1) (%) (%) (%) (%) (%)

772 16.8 42.3 39.7 1.1 0.2
775 4.5 9.4 19.5 66.6 0.0
794 0.0 0.5 4.8 26.7 68.0
803 0.2 1.8 37.6 8.1 52.3
806 0.5 4.1 54.2 12.2 29.0
821 6.9 15.6 73.6 2.8 1.1
826 0.2 98.2 1.6 0.0 0.0
831 0.2 97.8 1.8 0.1 0.1
855 0.3 6.3 7.4 18.3 67.6
870 0.1 4.2 4.6 3.6 87.4
885 2.3 33.2 0.6 63.8 0.2
886 6.2 93.2 0.2 0.2 0.2
888 4.3 63.2 0.1 32.3 0.1
891 2.1 2.9 92.8 1.0 1.1
895 1.4 2.6 95.7 0.3 0.0
925 1.0 40.8 32.0 22.8 3.4
951 11.9 17.2 3.1 67.8 0.1
959 16.8 18.2 3.0 62.0 0.0
989 0.0 0.0 0.0 99.9 0.0
1009 92.8 6.8 0.2 0.1 0.0
1012 0.2 0.0 0.0 3.1 96.7
1019 77.9 14.7 7.1 0.3 0.0
1039 5.8 8.2 72.0 14.0 0.0
1048 33.9 3.2 4.0 58.2 0.7
1049 92.8 7.1 0.1 0.0 0.0
1052 4.6 14.8 80.4 0.1 0.0
1082 2.6 5.4 48.5 38.2 5.4
1089 1.2 3.0 73.1 19.8 2.9
1091 0.6 2.4 97.1 0.0 0.0
1118 0.2 0.8 0.9 7.2 90.9
1129 13.5 27.5 40.5 16.1 2.4
1138 3.8 22.4 73.7 0.0 0.0
1144 0.1 15.4 79.2 5.1 0.2
1150 0.0 0.3 0.1 92.4 7.2
1162 0.0 0.0 0.0 0.0 100.0
1164 24.0 42.6 33.4 0.0 0.0
1174 0.0 0.0 0.0 100.0 0.0
1182 4.0 81.2 14.7 0.1 0.0
1195 0.4 61.2 38.3 0.1 0.0
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Mode Methyl Xanthene Ethyl Phenyl Ester
(cm−1) (%) (%) (%) (%) (%)

1195 6.7 28.0 15.0 50.0 0.3
1247 0.8 88.8 10.4 0.0 0.0
1265 0.4 34.5 4.4 26.3 34.4
1271 0.7 70.0 17.5 9.3 2.5
1273 2.2 62.8 35.0 0.0 0.0
1274 0.1 10.1 0.4 89.3 0.2
1285 0.0 0.0 0.0 0.0 100.0
1298 1.0 34.9 60.9 2.4 0.8
1305 0.7 6.8 26.5 61.6 4.5
1310 0.1 15.2 84.7 0.0 0.0
1314 0.4 9.1 87.5 3.0 0.1
1321 3.8 11.7 84.4 0.0 0.0
1356 10.8 49.8 28.4 11.1 0.0
1367 0.2 4.7 93.9 1.2 0.0
1371 8.2 28.5 63.3 0.0 0.0
1380 3.3 22.8 73.9 0.0 0.0
1384 0.0 0.0 0.0 0.9 99.1
1399 0.4 0.1 99.6 0.0 0.0
1400 2.1 0.1 97.8 0.0 0.0
1403 92.2 1.3 6.2 0.2 0.0
1405 98.1 1.0 0.9 0.0 0.0
1412 0.0 0.0 0.0 0.5 99.5
1424 37.9 30.3 17.1 14.5 0.2
1441 37.8 11.6 47.9 2.7 0.0
1450 0.3 2.1 1.3 95.9 0.4
1471 39.0 5.8 55.2 0.0 0.0
1475 0.0 0.0 0.0 0.0 100.0
1477 57.7 0.3 42.0 0.0 0.0
1477 96.7 0.1 3.2 0.0 0.0
1479 29.4 0.7 69.9 0.0 0.0
1481 0.8 0.3 98.9 0.0 0.0
1482 0.7 0.3 98.8 0.0 0.1
1484 0.1 0.0 0.1 0.0 99.8
1490 35.9 26.3 37.8 0.0 0.0
1491 17.8 7.2 4.2 68.0 2.8
1497 33.6 1.6 63.2 1.5 0.1
1497 1.7 4.0 94.3 0.0 0.0
1497 47.1 6.8 41.9 3.9 0.3
1503 0.0 0.0 0.1 0.4 99.5
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Mode Methyl Xanthene Ethyl Phenyl Ester
(cm−1) (%) (%) (%) (%) (%)

1507 58.0 20.7 21.3 0.0 0.0
1515 11.8 28.2 58.1 1.8 0.1
1535 6.8 38.6 54.5 0.0 0.0
1561 1.3 73.0 24.2 1.5 0.0
1574 0.6 11.6 87.9 0.0 0.0
1579 1.8 11.5 86.1 0.5 0.0
1582 0.1 6.9 1.9 90.8 0.4
1607 0.0 3.6 0.0 96.2 0.2
1621 16.8 78.2 5.0 0.0 0.0
1658 8.9 89.6 1.3 0.0 0.2
1730 0.0 0.8 0.0 2.7 96.4

Table I.1: Theoretical potential energy distributions (PEDs) for
the vibrational modes of R6G molecule: R6G molecule is divided
into five regions, the xanthene ring, the phenyl ring, the methyl
groups attached to the xanthene ring (“Methyl”), the ethylamine
groups attached to the xanthene ring (“Ethyl”), and the ester group
attached to the phenyl ring (“Ester”). Depending on the normal
mode vectors, the contributions (in percentage) of each of these five
groups to the normal modes were calculated.
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