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ABSTRACT 
 

More than 60% of the original oil in place (OOIP) is left in the ground after the primary and 

secondary recovery processes. With the introduction of enhanced oil recovery (EOR), that 

number goes down to about 40% of the OOIP. Carbon dioxide (CO2) injection is one of the most 

effective EOR methods in naturally fractured reservoirs. The fracture network provides a faster 

means for fluid flow due to its high conductivity but it is also the cause of premature 

breakthrough of the injected fluids. However, if employed efficiently, fractures can help push the 

injected CO2 to the reservoir boundaries so that a large portion of the reservoir fluid interacts with 

the injected CO2. Zones swept by miscible CO2 reported the lowest residual oil saturation. 

Continuous CO2 injection is becoming more and more preferred to the popular cyclic pressure 

pulsing. Continuous CO2 injection has no down time and could potentially provide better CO2 

interaction with the reservoir fluid which provides a higher recovery.  

In this research, artificial neural networks (ANNs) are used to construct robust proxy models with 

highly predictive capabilities for naturally fractured reservoirs undergoing continuous CO2 

injection. The main purpose of this research is to shed more light and understanding on 

continuous CO2 injection in naturally fractured reservoirs and provide a tool that empowers 

engineers to make decisions on the fly while evaluating uncertainty and mitigating risk rather 

than wait months or years to do so.  

In light of the above, various ANN designs and configurations undergo development and 

evolution to ultimately be able to provide valuable insights regarding reservoir performance, 

history matching, and injection design for naturally fractured reservoirs undergoing CO2 

injection. Initial ANN designs targeted specific reservoirs using specific fluid compositions from 

the literature. The designed ANNs were able to provide predictions with a low degree of error. 

ANN designs went over many complex adjustments, variations, and enhancements until final 
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configurations were reached. The final ANN designs developed in this research surpass 

previously developed ANNs in similar projects with its capability to handle a huge range of 

reservoir properties, relative permeability, capillary pressure, and fluid compositions under 

uncertainty. 

The reservoir simulation model used in this research is a two-well, two-layer, miscible 

compositional simulation model working in a dual-porosity system. Critical parameters affected 

the accuracy and predictability of the ANN designs and they were an essential part of the final 

ANN configurations. The parameters that a major effect on continuous CO2 injection are 

reservoir fluid composition, fracture permeability, well spacing, bottomhole flowing pressure 

(BHFP), thickness, and CO2 injection amount under miscible conditions had the highest impact 

on recovered oil. 

The final ANN designs were encompassed inside a graphical user interface that equipped the 

ANN with uncertainty evaluation capabilities. The ease to use nature of the GUI allows anyone to 

use the developed ANNs in this research, as well as provide a simple intuitive interface to 

manipulate input data, run simultaneous sensitivity and uncertainty analysis.  

The developed ANNs in this research bring us a step closer to achieving real-time simulation for 

naturally fractured reservoirs undergoing CO2 injection. The correlations embedded in the ANNs 

were able to overcome reservoir fluid, relative permeability, and capillary pressure limitations 

that existed in the previous ANN studies.  
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Chapter 1  
 

INTRODUCTION 

In the past decade, the world witnessed a technology leap that continues to grow and evolve every 

single day. This jump in technology has changed the way we do things in all aspects of life. 

Enhanced oil recovery (EOR) methods have become the main focus for the oil and gas industry 

lately. While there are many different types of EOR techniques, the success of these projects 

depends on careful consideration and evaluation of their design.  

Carbon Dioxide (CO2) injection is a popular EOR technique when it comes to fractured 

reservoirs. Continuous CO2 injection has yet to show its full potential due to it being 

overshadowed by cyclic pressure pulsing. Continuous CO2 injection is the less popular and less 

researched form of CO2 injection.  

Conventional oil reservoirs go through different recovery techniques that are applied to 

accommodate reservoir changes and maximize recovery. There are three main recovery methods; 

primary, secondary, and enhanced. During primary recovery, natural drive mechanisms, such as 

solution gas drive, gas cap drive, and gravity drainage, are responsible for releasing the 

reservoir’s natural energy to produce oil. Primary recovery method has a unique pressure decline 

signature at the start of the field production. Secondary recoveries are employed when natural 

drive mechanisms are exhausted and there is not enough energy to produce the hydrocarbons. 

This method depends on the injection of a fluid to re-pressurize the reservoir using an artificial 

drive. Enhanced oil recovery (EOR), also known as tertiary oil recovery, is then used to recover 

more hydrocarbons as a last resort.  
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In the recent years, EOR methods have become very important due to their major contribution to 

recovery and the number of fields going through this stage. While there are different techniques, 

careful and thorough studies must be conducted in order to choose the most appropriate way to 

maximize recovery. CO2 flooding is one of the most important EOR methods. It basically 

depends on injecting CO2 in the reservoir under miscible or immiscible conditions which would 

then interact with the reservoir fluid and enhance its mobility. The most popular form of CO2 

injection is cyclic pressure pulsing, also known as huff ‘n’ puff. Another important, but less used, 

CO2 injection technique is the continuous CO2 injection. It is often less used due to the amount of 

CO2 required to be injected during the project duration. Continuous CO2 injection undergoes one 

stage with no down-time unlike cyclic pressure pulsing that typically requires three stages and 

have extensive down-time. The process is described by a dedicated injector that continuously 

injects CO2 while a dedicated producer is on full production from the other end as can be seen in 

Figure 1-1. Many projects have shown that continuous CO2 injection can be very rewarding 

especially when alternating with water in a process called Water Alternating Gas (WAG). WAG 

was initially a method proposed to improve gas injection sweep. The first CO2 injection 

application was in the 1950s, while the first WAG application was reported from Canada in 1957 

(Christensen et al., 1998).  

The purpose of this study is not to approve or disapprove of which EOR method or CO2 injection 

method is better than the other. While this EOR method will definitely and absolutely not work 

for significant types of reservoirs and reservoir fluids, it would be very beneficial to know how, 

when, and where it might work. This can be done through the coupling of smart technology and 

EOR techniques. One of the products of this coupling is a tool that is capable of providing 

decisions on the fly that conventionally takes months or years to make. In this dissertation, a 

comprehensive research is conducted on the performance of continuous CO2 injection in naturally 

fractured reservoirs, its applicability, and limitations.  
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Figure 1-1: Conceptualized continuous CO2 injection model in this study 

 

 

The chapters of this dissertation are prepared in a sequential order as the following:  

 In Chapter 2, a literature review is conducted to highlight the most important milestones 

around carbon dioxide injection, continuous carbon dioxide injection, naturally fractured 

reservoirs, and artificial neural networks.  

 Chapter 3 describes the problem statement and the scope of this research.  

 Chapter 4 explains the artificial neural networks theory and the back propagation 

algorithm used in this research.   
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 Chapter 5, detailed methodology is described in this section regarding all the components 

in this research from data generation and validation to constructing the artificial neural 

network models.  

 Chapter 6 contains detailed descriptions about all the variables used to construct the 

various artificial neural networks in this research. 

 Chapter 7 shows the development of the artificial neural networks starting from very 

basic artificial neural network designs to very complicated ones. Also, full details and 

description about each design is included as well as the blind testing results.  

 Chapter 8 shows a step by step reservoir mechanism analysis for a sample case along 

with plots and illustrations of the mechanism in the particular example and expected 

artificial neural network behavior in terms of reservoir performance. 

 Chapter 9 describes the graphical user interface (GUI) and provides a quick guide on how 

to use the GUI for any of the developed ANNs.  

 Chapter 10 contains discussion and concluding remarks about this work as well as future 

work suggestions for enhancements. 
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Chapter 2  
 

LITERATURE REVIEW 

EOR recovery methods are implemented when primary and recovery methods are exhausted in 

order to recover as much additional production as possible. While there are many EOR methods 

with different mechanics, CO2 injection is considered to be one of the most important ones. The 

aim behind CO2 injection is basically to lower oil viscosity due to interaction between CO2 and 

the reservoir fluid. CO2 injection is not new as there are studies done using CO2 injection as a 

mean to improve mobility dating back to 1950s. Different CO2 injection methods were used in 

different scenarios such as cyclic pressure pulsing, and continuous CO2 injection. This chapter 

covers previous CO2 injection studies as well as other relevant components that are crucial to this 

project from 1950s until today.  

2.1 Continuous Carbon Dioxide (CO2) Injection 

Since its initial use back in the early 1950’s and its wide growth between the 1970s and 1980s, 

field and laboratory experiments have proven the strong applicability of carbon dioxide as a 

major displacement component (Murray et al., 2001). Carbon dioxide injection encompasses 

different ways to inject CO2 to improve mobility during tertiary recovery, each with its own 

unique mechanism and applications. Cyclic pressure pulsing depends on injecting CO2 for a 

specific period of time and then shut-in, followed by production from the same injection well and 

so forth. CO2 could also be injected continuously from one well while a dedicated producer is on 

production throughout the whole process. Continuous CO2 injection is sometimes alternated with 

water in a method known as water alternating gas (WAG) and all gas injection methods in general 

could be done under either miscible or immiscible conditions.  
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Cyclic pressure pulsing has been the most popular method of CO2 injection than continuous 

injection for various reasons such as not requiring large amount of carbon dioxide.  However, 

many studies in the literature have shown that continuous CO2 injection is better in certain 

scenarios. So, when designing a CO2 EOR project, it is very important to evaluate all the factors 

equally. Zhou et all, showed that cyclic CO2 injection performed better for tight formations and 

required relatively low investment while continuous CO2 injection has higher recovery at early 

stages but was highly situational due to the high amount of CO2 it requires.  (Zhou et al., 2012) 

In the 1960’s, CO2 was used as a way to improve water flooding displacement efficiency in 

highly fractured reservoirs. The importance of CO2 as an injected fluid appears at high reservoir 

pressure and temperature where CO2 is injected in a critical state to mix with the reservoir fluid 

and form a single low viscosity and low interfacial tension fluid. Since CO2 has higher mobility 

than water and oil, it can contact areas that were previously bypassed by previous primary and 

secondary recovery methods. Surguchev et al. (1992) reported that swept residual oil zones are 

the lowest when displaced by miscible injected gas thus leading to high oil recoveries.  

In 1964, a pilot test by Holm and O’Brien (1970) reported 53%-82% more oil production using a 

large slug of CO2 alternating with carbonated water. The first CO2 commercial EOR project, and 

the world’s largest miscible project, was initiated in January 1972 at Snyder Field in Scurry 

County in West Texas. (Langston et al., 1988).  

Since its remarkable success back then, the number of CO2 projects has been growing 

progressively and many applications and techniques were developed for different conditions.  

2.2 Miscibility  

Miscibility is considered as the key phenomenon when it comes to carbon dioxide injection. 

Surguchev et al. (1992) referred to the pressure of the maximum curvature on an oil recovery vs 
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pressure plot as miscibility, while Holm (1986) described miscibility as “the ability of two or 

more substances to form a single homogenous phase when mixed in all proportions”. Miscibility 

between fluids could be achieved by either first contact miscibility (FCM) or multiple contact 

miscibility (MCM). When an injected fluid mixes in all proportions with another fluid to form a 

single mixture, then the process is called FCM. The process is called MCM when the fluids 

require more mixing before they become miscible. Otherwise, if the fluids don’t mix at all, the 

process is called immiscible.  

Miscibility has a huge impact on the success of EOR projects. EOR miscible injection projects 

reported very high oil recoveries in contrast to immiscible injection where large amounts of 

residual oil remained. There are four types of miscibility that could develop inside the reservoir 

between the injected fluid and the reservoir fluid:  

1) First Contact Miscibility Injection 

2) Dynamic Miscibility Injection due to Vaporizing Drive (MCM) 

3) Dynamic Miscibility Injection due to Condensing Drive (MCM) 

4) Immiscible Injection 
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2.2.1 First Contact Miscibility  

An injection process is called first contact miscible when injected gas mixes with the reservoir 

fluid at all proportions and forms a single mixture. Figure 2-1 shows an illustration on a ternary 

diagram for a first contact miscibility process where injected gas has pure 100% light component. 

Typically, first contact miscibility occurs at high reservoir temperature and pressures.  

 

Figure 2-1: First Contact Miscibility 

2.2.2 Dynamic Miscibility Due to Vaporizing Drive (Multiple Contact Miscibility) 

Multiple contact miscibility occurs when the fluids require more mixing before they become 

miscible. For multiple contact miscibility due to vaporizing drive miscibility, reservoir fluid has 

to fall on the right hand side of the critical tie line on the ternary diagram. The injected gas at the 

trailing edge mixes with the reservoir oil at the leading edge. This partial mixture has a new vapor 

composition (V1) and new liquid composition (O1). Since vapor has very high mobility, V1 goes 

2-Phase Region 

Reservoir Fluid 

Critical Tie-Line 

Injected Gas 

100% Intermediate 
Component 

100% Heavy 
Component 

100% Light 
Component 

1-Phase Region 
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to the leading edge while O1 lags behind at the trailing edge. Now, at the leading edge, the new 

vapor composition mixes with reservoir oil to and forms a newer partially mixture with vapor 

composition (V2) and liquid compositions (O2). The process repeats itself until a vapor 

composition becomes miscible with the reservoir oil at the leading edge, figure 2-2. Figure 2-3: 

Vaporizing Drive Miscibility shows a typical multiple contact miscibility due to vaporizing gas 

drive on a ternary diagram.  

Trailing Edge   Leading Edge 

Injected Gas (IG) +      Reservoir Fluid (RF) 

IG +  (O1 +     V1)   + RF 

  +      (O2  + V2) + RF 

  +       +  (O3  +  V3) + RF 

  +     +   (Oc +  Vc) + RF 

 

 

Figure 2-3: Vaporizing Drive Miscibility 

Figure 2-2: Multiple contact miscibility due to vaporizing drive 
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2.2.3 Dynamic Miscibility Due to Condensing Drive (Multiple Contact Miscibility) 

In multiple contact miscibility due to condensing drive, injected fluid falls on the right hand side 

of the critical tie line on the ternary diagram. The injected gas at the trailing edge mixes with the 

reservoir oil at the leading edge. This partial mixture has a new vapor composition (V1) and new 

liquid composition (O1). Since it has very high mobility, V1 goes to the leading edge while O1 

lags behind at the trailing edge. With additional injection, Injected gas at the trailing edge mixes 

with the partial mixture liquid composition O1 which leads to a newer partial mixture with newer 

vapor (V2) and liquid compositions (O2). The process repeats itself until a liquid composition 

becomes miscible with the injected gas at the trailing edge, Figure 2-4. Figure 2-5 shows a typical 

multiple contact miscibility due to condensing gas drive on a ternary diagram.  

Note: One of the major differences between vaporizing drive and condensing drive multiple 

contact miscibility is where the mixing happens. In vaporizing drive, the mixing happens at the 

leading edge between the partial mixture vapor composition and the reservoir fluid. While in 

condensing drive, the mixing happens at the trailing edge between the injected gas and the partial 

mixture liquid composition.  

 

Trailing Edge   Leading Edge 

Injected Gas (IG) +      Reservoir Fluid (RF) 

IG +  (O1 +    V1)   + RF 

IG+   (O2 + V2)   +  + RF 

IG+   (O3 + V3)  + + + RF 

IG+ (Oc +  Vc)   + + + + RF 

 Figure 2-4: Multiple contact miscibility due to condensing drive 
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Figure 2-5: Condensing Drive Miscibility 

 

Minimum Miscibility Pressure Determination 

Experimentally, there are many tests that are used to determine miscibility behavior such as 

raising bubble and slim tube experiments. Raising bubble experiment depends on the visual 

observation of the disappearance between fluids to determining miscibility. In slim tube 

experiment, a 40 feet spiral tube is filled with glass beads or some other materials and then 

saturated with reservoir oil. CO2 is then injected at various incremental pressure steps while 

recording oil recovery at every pressure after injecting 1.2 PV of CO2. Oil recovery is then plotted 

against injection pressure. Miscibility is then determined as the break over point on the plot (Orr, 

1982).  

Outside the traditional laboratory experiments, Mogensen et al (2009) divided MMP 

determination methods into: 

1) Empirical correlations.  
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2) 1D compositional simulation. 

3) Analytical gas flooding theory based on the method of characteristics combined with key-

tie-line. 

4) Mixing-cell models. 

Empirical Correlations typically use temperature, plus fraction molecular weight, and light 

component mole fraction. Cronquist (1977) used C5+ as the main parameter to determine MMP 

while Yellig and Metcalfe (1980) developed a temperature based correlation. Johnson and Pollin 

(1981) focused on injected gas properties in their correlation while Yuan et al. (2005) had more 

emphases on the intermediate components C2-C6.  

The analytical solution provided by the method of characteristics (MOC) defines the path 

between the injection composition and the reservoir fluid composition (Orr, 2007). In a multi-

component system, the key tie-line method was developed by Johns and Orr (1996), Wang and 

Orr (1997) and Jensen et al. (1998). The key tie-line method depends on three types of key tie-

lines (Mogensen et al, 2009): 

1) Tie-line through the initial reservoir fluid composition 

2) Tie-line through initial injection composition.  

3) Crossover tie-lines.  

Ahmadi and Johns (2008) extended their previous MOC and came out with the mixing-cell 

models.  

2.3 Naturally Fractured Reservoirs 

Naturally fractured reservoirs constitute the majority of oil and gas reservoirs in the world. 

Although fractures provide major highways for fluid flow, the impact of their existence is yet to 
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be fully understood. Nelson (2001) defined a reservoir fracture as “a naturally occurring 

macroscopic planar discontinuity in rock due to deformation or physical diagenesis”. The 

formation of fractures through brittle or ductile rock failure plays a major positive or negative 

effect on fluid flow (Nelson, 2001). While a very large percentage of hydrocarbon reservoirs are 

fractured, not all fractured reservoirs act as fractured reservoirs. For a reservoir with naturally 

occurring fractures to be qualified as a fractured reservoir, the fractures must have a significant 

impact on fluid flow (Nelson, 2001). 

Barenblatt et al. (1960) introduced the dual-porosity model in 1960 to model matrix and fracture 

flow using transfer functions. Warren and Root then introduced the famous Sugar-Cube-Model, 

which is an idealized version of Barenblatt’s work (Warren and Root, 1963), Figure 2-6. Warren 

and Root described their shape factor as: 

𝑊𝑎𝑟𝑟𝑒𝑛 & 𝑅𝑜𝑜𝑡 𝑆ℎ𝑎𝑝𝑒 𝐹𝑎𝑐𝑡𝑜𝑟 𝜎 =
4𝑛(𝑛 + 2)

𝐼2
 

Where: 

Ϭ is the Shape Factor 

I is the characteristic lengths 

n is the set of normal fractures 

 

In 1976, Kazemi et al. suggested a modification to the Sugar-Cube-Model to account for two-

phase flow which Thomas et al. (1983) extended to a three-phase model. Kazemi’s shape factor is 

described by: 

𝐾𝑎𝑧𝑒𝑚𝑖′𝑠 𝑆ℎ𝑎𝑝𝑒 𝐹𝑎𝑐𝑡𝑜𝑟 𝜎 = 4 [
1

𝐿𝑥
2 +

1

𝐿𝑦
2 +

1

𝐿𝑧
2

] 

Where: 

Ϭ is the Shape Factor 
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Lx is the fracture spacing in the x-direction 

Ly is the fracture spacing in the y-direction 

Lz is the fracture spacing in the z-direction 

 

 

Figure 2-6: Warren and Root Sugar-Cube-Model (Warren and Root, 1963) 

  

Most of the recent studies are an extension of the work that was initiated by Barenblatt back in 

the 1960’s. Dykhuizen (1990), Zimmerman et al. (1993), and Sarma and Aziz (2004) introduced 

modifications to improve the fluid flow between the matrix and the fracture among a few others.  

Fractures in a fractured reservoir affect every recovery stage. They provide high permeability 

zones that very often cause anomalies and unexpected reservoir performance. That is one of the 

mains reasons why naturally fractured reservoirs are generally not considered to be good 

candidates for EOR. The complications added by the fractures and the fracture network highly 

impacts the fluid performance allowing fluids to breakthrough much earlier than desired and 

lower the sweep efficiency. However, with proper modeling and understanding of fractures, they 

could improve the efficiency of CO2 injection by providing a large contact surface for the injected 

gas.  
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2.4 Artificial Neural Networks (ANNs) 

Artificial neural networks first saw the light with the coupling of neurophysiological knowledge 

and networking. They are intelligent systems that were created in an attempt to mimic the 

biological nervous system through transmitting impulses and signals between cell bodies. These 

biological systems differ between living organisms, for example, humans have very complex 

neural networks compared to other organisms. The human brain contains an average of 100 

billion neurons that are interconnected through synapses. A biological neuron consists of 

(Mohaghegh, 2000):  

 Cell body 

 Axon: Carry cell bodies signals. 

 Synaptic connections 

 Dendrites 

 

Figure 2-7: A biological Neuron as illustrated by Mohaghegh (2000). 

 

Artificial neural networks are different than regular networks and simulation algorithms. One 

striking difference between ANNs and regular networks is that ANNs work without any regard to 

the system or the process in a model best known as black box. What that means is that only inputs 
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and outputs matter to the ANN without needing any other piece of information (Graupe, 2007). 

Typical algorithms follow a sequential approach, while ANNs excel in that area as they follow a 

parallel method. Parallel methods are better, faster, and are very forgiving where mistakes can be 

adjusted without stopping and repeating the whole process like sequential methods (Graupe, 

2007).  

2.5 Carbon Dioxide Injection Artificial Neural Networks 

There are a limited number of CO2 ANN projects in the literature. Surguchev et al. (2000) 

provided a basic screening tool for EOR processes. In his study, only 12 input parameters were 

studied for gas injection, steam injection, and cyclic water flooding. Parada (2008) created an 

ANN based tool-box for screening and designing IOR methods. One of the methods inside the 

tool-box was miscible CO2 injection.  Artun (2008) designed a CO2 and N2 cyclic pressure 

pulsing (huff’’n’puff) tools in fractured reservoirs using ANN. Artun’s work was followed 

closely and his work marks the starting point for this research but using a different CO2 injection 

technique.  
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Chapter 3  
 

PROBLEM STATEMENT 

Enhanced oil recovery projects such as continuous CO2 injection and Water Alternating Gas 

(WAG) injection are often considered to be not very good candidates in naturally fractured 

reservoirs. That is because of the early breakthrough of injected fluids due to poor 

implementation in the highly conductive fracture system. While that is not always true, it remains 

a major concern when conducting such projects. For any CO2 injection project, miscibility plays 

the main role in determining the injection method and all the injection design parameters.  

To have a successful EOR design, major efforts and through investigation are to be fully utilized. 

For any continuous CO2 or WAG project, the following questions should be addressed in the 

early stages of the project. Is it going to be a miscible or immiscible gas injection as the 

mechanisms are completely different in both designs. What amounts of gas to inject, or gas and 

water in case of WAG, and what is the water to gas ratio as well as deciding whether these gas 

and water amounts are fixed or vary per month.  

It is the responsibility of the reservoir engineer to study each of the parameters and design an 

appropriate design that is economically viable and fits the project appropriately. Reservoir 

engineers normally study all the available recovery techniques for a particular reservoir ahead of 

time. Then, based on the reservoir unique characteristics some methods are excluded and the 

other methods are extensively exhausted. A cheap and very effective method to do that is through 

numerical reservoir simulators.  

Reservoir simulators have become the first step in any study regardless of its purpose. Consistent 

and representative simulation models that are thoroughly constructed always yield better reliable 

answers than those that are poorly built. Various analysis and designs are tested using the 

reservoir simulation model, and then an efficient design is suggested. For full field scale models, 
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it is often very difficult to explore every single possible scenario due to time, computational 

power, and human power limitations.  

Artificial neural networks are capable of correlating inputs and outputs and finding non-linear 

relations through complicated systems. For that reason, ANNs are often used to overcome the 

heavy computational requirements through proxy-models. However, developing a reliable robust 

proxy model that is capable of mimicking full field models requires careful design, development, 

and optimization of the best scenario that would maximize efficiency.  

In this study, proxy-based models are designed and used for continuous CO2 and WAG injection. 

Keeping that in mind, the aim of this research is to gain good understanding of continuous CO2 

injection in naturally fractured reservoirs as well as concluding if and when continuous CO2 

injection is the answer. Also, an optimized universal proxy-model for continuous CO2 and WAG 

injection using ANN would be provided for certain reservoirs and fluid compositions.  
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Chapter 4  
 

ARTIFICIAL NEURAL NETWORKS THEORY 

Every system faces challenges of various natures and shapes. The best way to overcome these 

challenges is through disintegrating it into smaller parts. Hence, networks and networking come 

into play. Every network, regardless of its nature, consists of nodes and connectors. The nodes 

typically get the inputs and process them to compute outputs while connectors basically carry 

everything between nodes in different directions. Figure 4-1 shows a simple illustration of a 

network consisting of nodes and connectors.  

 

 

 

 

 

Artificial Neural Networks are considered superior networks due to their powerful adaptive 

capabilities. The ANN nodes are conceived as artificial neurons, hence the name.  

The ANN strength lies in the fact that they learn from data and then use what they learn which 

makes ANNs intelligent systems. ANN capabilities include describing a system by a set of inputs 

and outputs without needing any information about the system itself and this is called a black 

box, Figure 4-2.While a lot of researchers do not like the black box model idea, this is a very 

powerful tool. This means that, any number of inputs of a specific system can be used to relate 

any number of outputs of a different system that have no connection whatsoever. However, such 

ANN mapping have no use at all. For example, an ANN can be built using inputs from a phone’s 

Figure 4-1: A Simple Network of Nodes and Connectors 
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component and outputs from an oil well as long as inputs and outputs are described in numbers. 

The ANN will not distinguish between any specification of any input or output; it only tries to 

find relationships between them. Also, the outputs don’t have to look like or behave in any 

specific way. ANN’s capabilities in drawing non-linear and complex relationships made them the 

tool of the decade. 

 

 

 

 

Since artificial neurons were inspired from the biological nervous system, the way it works also 

tries to mimic a biological neuron but in a much basic way. So, an artificial neuron works by 

receiving inputs (inputs could be outputs coming from another artificial neuron) these inputs are 

then multiplied by weight functions and then summed. Now, on the inside of the artificial neuron, 

the previous summation is then processed through an activation function and transferred as an 

output to another artificial neuron (Gershenson, 2014).  
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Figure 4-2: Black Box Model Concept 

Figure 4-3: A Feedforward Typical Artificial Neuron Mechanism 
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Typically, any ANN has three components: architecture (connection design between neurons), 

inputs weights method (also known as the training algorithm), and the activation functions (or 

transfer functions). Table 4-1 shows the most common transfer functions used in ANN.  

 

Table 4-1: Common Transfer Functions in Artificial Neural Networks (Hagan et al., 1996) 

Name Function 

Hard Limit 
a = 0    n < 0 
a = 1    n ≥ 0 

Symmetrical Hard 
Limit 

a = -1    n < 0 
a = +1    n ≥ 0 

Linear a = n 

Saturating Linear 
a = 0    n < 0 

       a = n    0 ≤ n ≤ 1 
a = 1    n ≥ 0 

Symmetric Saturating  
Linear 

a = -1    n < -1 
       a = n    -1 ≤ n ≤ 1 

a = 1    n ≥ 1 

Log-Sigmoid 

 

Hyperbolic Tangent  
Sigmoid 

 

Positive Linear 
a = 0    n < 0 
a = n    n ≥ 0 

Competitive 
a = 0     neuron with max n 
a = n        all other neurons 

 

It is important to note that any basic ANN, there are input neurons forming the input layer, hidden 

neurons engulfed in the hidden layer, and output neurons displaying the output layer. In many 

advanced systems, there could be more than one hidden layer in the middle each with its separate 

neurons.  Figure 4-4 shows a system with an input layer, 2 hidden layers each with different 

number of neurons, and an output layer.  

 

 

𝑎 =  
1

1 + 𝑒−𝑛
 

𝑎 =  
𝑒𝑛 − 𝑒−𝑛

𝑒𝑛 + 𝑒−𝑛
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Artificial Neural Networks Mathematical Model 

 

Nielsen (2015) provided an overview of the simple mathematical models as well as advanced 

ANN concepts in his online book.  

The concept of artificial neurons were developed back in the 1950s-1960s by Frank Rosenblatt 

were they were known as perceptrons (Nielsen, 2015). A perceptron produces a simple input by 

using several inputs.  

 

 

 

 

 

 

Rosenblatt calculated the output by introducing weights to each of the inputs based on their 

importance. The output of the artificial neuron would be either 0 or 1 and is assigned based on the 

value of the weighted sum of the inputs and their respective weights in relation to a predefined 

value known as the threshold value (Nielsen, 2015).  

Input Layer Output Layer 

I1 

I2 

I3 

I4 

I5 

Hidden Layers 

Figure 4-4: An ANN with Two Hidden Layers 
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𝒊𝒇 ∑ 𝒘𝒋𝒙𝒋

𝒋

 ≤ 𝑻𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅  →  𝑶𝒖𝒕𝒑𝒖𝒕 =  𝟎 

𝒊𝒇 ∑ 𝒘𝒋𝒙𝒋

𝒋

 > 𝑻𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅  →  𝑶𝒖𝒕𝒑𝒖𝒕 =  𝟏 

The basic perceptron’s mathematical model makes decisions by weighing up all the provided 

inputs. The perceptron’s mathematical model can be applied to real life situations (Nielsen, 

2015).  

In feed-forward configurations, there is no way to calibrate the weights other than starting over 

with new weights and manually adjust the new weights.  

Perceptrons Network 

 

 

 

 

 

 

 

 

 

 

 

 

ANNs are often used to solve complex problems through various layers of perceptrons: 

1) Each perceptron in the first layer performs as previously shown in in the simple 

perceptron model.  

OUTPUT 
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First Layer  

Second Layer  

Third Layer  

Figure 4-6: Example of a complex Network of Perceptrons 
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2) Perceptrons in the second layer also follow the basic model. However, outputs from first 

layer perceptrons are summed appropriately and used as inputs of the second layer and 

new weights are assigned to them before sending them to the next layer.  

3) Perceptrons in advanced layers make more complex conclusions than the ones in the 

previous layers.  

The complex network learns and converges gradually through applying small changes to the 

weights or biases of perceptrons so that only a small change in output would happen (Nielsen, 

2015). Figure 4-7 shows the desired network changes that would allow for the network to learn. 

The optimal value for the weight is one that minimizes the mismatch with the actual outputs.  

 

 

 

 

 

 

 

 

 

 

 

Newer perceptron models replaced the basic one as the simple model couldn’t handle complex 

network changes and often caused the entire network to misbehave (Nielsen 2015). One of the 

famous models is the sigmoid neuron which is capable of handling small changes and performs in 

 OUTPUT + Δ Output 
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w + Δ w  

Figure 4-7: A small change in weight cause a small change in the Output (Nielsen 2015) 
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the right direction. The main difference between a perceptron and a sigmoid neuron is the output 

where it is not 0 or 1 anymore, but is represented by a function (Nielsen, 2015).  

 

𝝈 (𝒘. 𝒙 + 𝒃) 

𝝈(𝒛) =
𝟏

𝟏 + 𝒆−𝒛
 

 

The Back Propagation Algorithm 

 

There are many different types of ANNs which often have different names. However, there are 

some that are considered to be the main ones, such as back propagation which is considered the 

most common one.  

The main target of the back propagation algorithm method is to minimize the total squared error 

produced by the network through the gradient descent algorithm.  

The back propagation algorithm works in a simple way. It requires a set of inputs that are linked 

to real outputs as the network learns by example. At the start, the ANN is initialized through the 

inputs with randomly assigned weights. Then, everything is processed through the network to be 

processed through the activation functions to produce some outputs. The ANN then compares the 

calculated outputs against the real outputs and calculates a mean-squared error. The mean-

squared error is sent backward through the network and adjusts the weights in each layer. The 

ANN starts over using the newly adjusted weights and the process repeats itself until it reaches 

the desired threshold. Figure 4-8, Figure 4-9, and Figure 4-10 show the mechanism of a back 

propagation algorithm. 
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It is important to note that forward-feed ANNs go in one direction, from input layer to hidden 

layers to output layer. The complexity of the design allows for outputs to be tied closely to the 
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Figure 4-8: Step 1, Data Feed-forward 

Figure 4-9: Step 2, Error Propagation Backward 

Figure 4-10: Step 3, Feed-forward with Adjusted Weights 
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inputs allowing the network to recognize trends and patterns along with inputs as well as novel 

behaviors that were not seen before. In a feed-back type ANN, the process goes back and forth 

between nodes and connections in a loop until it finds an equilibrium point. The strength of this 

non-linear dynamic system lies within its ability to optimize and find the best set of 

interconnected factors for any set of inputs.  

The following steps summarize the back propagation algorithms steps: 

1) Weights are assigned randomly for all the inputs.  

2) Input layer sends its values and their corresponding weights to the first hidden layer 

where each neuron sums the incoming signals.  

𝑧𝑖𝑛,𝑗=𝑤𝑜𝑗+∑ 𝑥𝑖𝑤𝑖𝑗
𝑛
𝑖=1

 

 

3) The desired activation function is applied on every neuron in the first hidden layer.  

𝑧𝑗 = 𝑓(𝑧𝑖𝑛,𝑗) 

4) The previous steps continue through all the hidden layers until they reach the output 

layer. 

𝑦𝑖𝑛,𝑘=𝑤𝑜𝑘+∑ 𝑧𝑖𝑤𝑗𝑘
𝑝
𝑗=1

 

5) Similar to step 3, the desired activation function is applied on every neuron on the output 

layer.  

𝑦𝑘 = 𝑓(𝑦𝑖𝑛,𝑘) 

6) Now that the ANN completed the feed-forward algorithm, the backpropagation part starts 

by calculating the difference (error) between the calculated value yk and the actual target 

output tk. The error then is used to find weight adjustments and bias corrections.  

𝑒𝑘 = 𝑡𝑘 − 𝑦𝑘 

𝛿𝑘 = 𝑒𝑘𝑓′(𝑦𝑖𝑛,𝑘) 
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∆𝑤𝑗𝑘 = 𝛼𝛿𝑘𝑧𝑗 

∆𝑤𝑜𝑘 = 𝛼𝛿𝑘 

7) The last step in the backpropagation algorithm is to find the new weights for the input 

layer and the output layer. 

𝐼𝑛𝑝𝑢𝑡 𝐿𝑎𝑦𝑒𝑟          𝑤𝑖𝑗
′ = 𝑤𝑖𝑗 + ∆𝑤𝑖𝑗 

𝑂𝑢𝑡𝑝𝑢𝑡 𝐿𝑎𝑦𝑒𝑟          𝑤𝑗𝑘
′ = 𝑤𝑗𝑘 + ∆𝑤𝑗𝑘 

8) The algorithm repeats itself until it reaches the specified tolerance.  

 

 

Neuro-Simulation 

 

In the absence of huge data sets consisting of inputs and outputs, neuro-simulation becomes a 

viable solution for constructing an ANN provided it is done and defined correctly. In this project, 

a commercial simulator with heavy computational requirement is used to provide data sets for 

constructing the ANN. Data sets generated are directly related to the problem in hand. On the 

other hand, data validity and accuracy in depicting real life fields become an issue. So, to 

overcome any problems that could potentially jeopardize the accuracy of the ANN, thorough 

setup for data generation algorithms are tested and parameter ranges cover a wide range of real 

life reservoirs.  

Initially, a simple base case for a specific reservoir is constructed, and then it would be modified 

and adjusted to fit the problem in hand. Next, sensitivity analysis and grid size analysis are 

performed. Finally, appropriate ranges for the parameters are used in order to generate enough 

data sets to build the ANN. Once the ANN is constructed, tested, and verified, no more data are 

required for it. It can be used right away for the goal it was constructed to do given that its error is 

within the acceptable range during construction.  
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Chapter 5  
 

METHODOLOGY 

This chapter will go over the methodology and process in this dissertation. A well-established, 

multi-purpose, and cross-discipline tool is employed to correlate reservoir properties and injection 

design to reservoir performance. In this section, reservoir model construction as well as data 

availability and generation will be shown since it is the main part of building a solid ANN.  

 

5.1 Reservoir Model Construction 

 

In this section, all the steps for constructing the reservoir model and parameters for generating 

more reservoir cases are explained. In this step, heavy computational power is required and it is 

used to generate data sets that eventually shape the ANN. Since no real data that cover the whole 

spectrum of the problem at hand are available, this part of the project becomes critically 

important in understanding the data sets and how they are generated. 

Reservoir simulators are used extensively in the oil and gas industry. Instead of going with trial 

and run in the field and lose millions of dollars for lost opportunities, reservoir simulation 

becomes a game-changing tool if used wisely. In the oil and gas industry, we deal with challenges 

that we do not see. The best technology today can get us very close to explaining the processes 

occurring in the subsurface, but falls short a lot of time and we have to deal with a lot of 

uncertainty. Reservoir simulation is not an answer, but it is a tool that enables us to evaluate all 

the possible scenarios and act accordingly.  



 

30 

 

To be able to construct a reservoir model there are a lot of parts that have to be thoroughly 

studied and then provided for the simulator. The main parts of any reservoir simulator include the 

unique rock properties for the specific reservoir in question as well as the fluid properties. Then, 

there are some additional parameters that are imposed by engineers to account for various 

decisions concerning the reservoir and its development.  

In this project, a specific design is studied relating continuous carbon dioxide injection in 

naturally fractured reservoirs. So, before jumping to construct a reservoir model, there are some 

essential parts that have to be explained in details such as grid size, reservoir layering, miscibility, 

fluid composition, relative permeability, injection design, and if gas injection is alternating with 

water.  

 

5.1.1 Compositional Reservoir Modeling Vs. Black Oil Modeling 

 

Reservoir simulators are composed of two parts; the governing physics of flow in porous media 

and the computational power that is capable of conducting numerous calculations in a timely 

manner. Reservoir modeling can typically be divided into compositional or black-oil simulation.   

In black-oil modeling, reservoir fluid is modeled as three components; water, oil, and gas. On the 

same note, gas can be present in the oil phase as a dissolved gas and oil can be vaporized in the 

gas phase. Oil, water, and gas formation volume factors (Bo, Bw, Bg) as well as solution-gas ratio 

(Rs) describes the fluid phase behavior in black-oil formulation.  

In compositional modeling, reservoir fluid is represented by the hydrocarbon components and any 

impurities. Compositional formulation is used when the reservoir fluid experiences compositional 

changes which are described by different models of cubic equation of state. Every component is 

described distinctively from the other ones and this results in a very long computational time than 
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the typical black-oil modeling since flash calculations are conducted at every time-step at every 

grid block.  

Black oil formulation application differs from compositional formulation application. For 

example, black-oil modeling is typically used to describe primary recovery mechanisms and 

water flooding projects while carbon dioxide injection, especially miscible injection, is modeled 

compositionally.  

In this research, heavy-computational compositional formulation is used to run all the reservoir 

simulation cases that formed the ANN’s database.  

 

5.1.2 Grid Size Sensitivity 

 

Before carrying any simulation cases, simulation grid dimensions must be carefully selected to 

avoid grid size error. This exercise is simple, yet very important when conducting any reservoir 

simulation runs. The idea of this exercise is to run different grid dimensions but on the same 

reservoir size. So, the goal would be to go as fine as possible until we reach a point where going 

with smaller grids doesn’t account for much difference at all. Why not go with the smallest grid 

possible from the start? Because every time we go with finer grids, runs take more time to 

complete, so a balance between grid size error and computational time is required.  

In this step, a single 3-layer simulation case was used to test various grid dimensions ranging 

from 16x16 ft. to 264x264 ft. in a drainage area of 1 acre. Figure 5-1 displays the comparisons 

between the grid dimensions. It would be ideal to run with the smallest grid size but that would 

impact the run time of every case. So, since grid size error stabilizes around 44 ft. and below it 

would be used as the optimal grid size for the final ANNs.  
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Figure 5-1: Grid Sensitivity Analysis 

  

5.1.3 Reservoir Layering 

 

Reservoir layering is an important topic when it comes to reservoir simulation. A 1-layer model is 

not capable of depicting certain mechanisms such as gravity effects. In this project, CO2 is 

injected continuously in a miscible process and fluid composition changes throughout the 

injection duration. When CO2 comes in contact with reservoir fluid, it could lead to higher 

recovery if it is injected in the bottom layers rather than the top layers of the oil zone. Also, 

production scenario will differ if the well is producing only from the top layers or the bottom 

layers, or it is completed in all the layers.  

On a similar note, most reservoirs exhibit vertical and lateral heterogeneities due to historical 

depositional events. However, with limited computational powers and geological data, lateral 

heterogeneities are very difficult to capture.  Vertical heterogeneities can be taken into account 

using different layers and different properties for each individual layer. At the same time, limited 

computational powers play the main role in determining how many layers the model should have. 
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In this project, two, three, and four layers were tested and then two layers were selected as they 

provided enough complexity and with a reasonable simulation running time.  

 

5.1.4 Reservoir Fluids 

 

During the first stage of the project, fluid data from the literature were used to test the impact of 

different fluid ranges under continuous CO2 injection. The fluids used were real fluids from real 

reservoirs and the data were available in the literatures. The reservoir fluids used initially to 

follow an approach similar to Parada (2008) and Artun (2008). Table 5-1 shows some of the 

fluids used by Parada (2008) as well as a modified version of the fluid that was used by Hindi 

(Hindi et al, 1992).  

Table 5-1: Fluid Compositions Used in the Literature for Similar Projects 

Component 

PVT 1 
Black Oil 
[McCain, 

1990) 

PVT 2 
Volatile Oil 

[Papp et 
al, 1998) 

PVT 3 
Black Oil 

[Rathmell, 
1971) 

PVT 4 
SPE 24185 

[Hindi et al, 
1992]* 

PVT 5 
Parada 
Heavy 

Oil 

CO2 0.91 0.51 3.2 4.15 0.11 

N2 0.16 1.8 0.03 0.42 0.69 

CH4 36.47 46.8 27.81 18.13 10.78 

C2H6 9.67 8.09 8.21 9.41 0.12 

C3H8 6.95 10.91 5.99 8.04 0.42 

IC4 1.44 4.26 0.31 1.46 0.3 

NC4 3.93 6.86 4.1 4.33 0.32 

IC5 1.44 3.71 1.3 1.74 0.29 

NC5 1.41 3.81 2.3 2.4 0.26 

C6 4.33 4.73 4.62 3.68 0.64 

C7+ 33.29 8.52 42.13 46.24 86.09 

MW 218 156 223 221 532 

SG 0.8515 0.782 0.875 0.874 0.925 
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Figure 5-2: Phase Envelopes for PVT1, PVT2, PVT3, PVT4, and PVT5 reservoir fluids 

 

Although reservoirs with very heavy oils are not typically good candidates for CO2, including 

them would highlight at which fluid composition is CO2 injection applicable and under which 

conditions.  

In the literature, CO2 ANN projects were always created for specific fluid compositions which 

severely limit the project’s applicability. In this project, after gaining enough understanding about 

the project and the behavior and performance of the five different fluid compositions, the final 

ANN would be constructed for any fluid composition including any impurities that could be 
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present in the reservoir fluid such as H2S. A high range of heavy hydrocarbons are used where 

heavy hydrocarbons up to 20 atoms (FC20) are included which are then lumped as part of C7+ 

composition.  

Phase envelopes provide essential information for any project. They can be constructed once a 

fluid samples are available. Phase envelopes relate reservoir fluid composition with reservoir 

temperature and pressure. They can then provide reservoir fluid state at any temperature and 

pressure. Phase envelopes play a major role in carbon dioxide injection projects. At any 

temperature and pressure inside the phase envelope, the fluid exhibits two phases while anywhere 

else outside the phase envelope is a one phase region.  

 

5.1.5 Wettability, Capillary Pressure, and Relative Permeability 

 

Interfacial tension (IFT) forms between immiscible fluids and is a good miscibility indicator. For 

example, the higher the IFT between two fluids, the less likely for them to become miscible and 

vice versa.  

For any rock, when immiscible fluids come in contact with the rock surface, one fluid adheres 

more to the surface than the other. The fluid with the stronger attraction is called the wetting 

phase, and the other fluid is the non-wetting phase. Wettability is a rock property that can be 

determined by measuring the contact angle between water and the rock surface. A system is 

considered to be water-wet if the contact angle is less than 90
o
 and oil-wet if the contact angle is 

more than 90
o
. Figure 5-3 shows a schematic of water-wet and oil-wet systems.  
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Figure 5-3: Wettability for Different Systems 

Capillary pressure occurs across the interface between two immiscible fluids due to the IFT and 

can be defined as the pressure of the non-wetting phase minus the pressure of the wetting phase. 

Generally, water is considered to be the wetting phase in an oil-water system while oil is 

considered the wetting phase in a gas-oil system.  

 

𝑃𝑐 = 𝑃𝑁𝑜𝑛𝑤 − 𝑃𝑤 

 

Capillary pressure curves are typically represented by either S-Shaped such as Van-Genuchten or 

convex like Brooks-Corey (Li et al, 2013). While there is a slight difference between the two 

methods in the way they show entry pressure, in this research Brooks-Corey model and 

correlations are used to generate different curves for every single case.  

 

 

Figure 5-4: Capillary Entry Pressure Representation for Van-Genuchten (Left) and Brooks-Corey 

(Right) as represented by Li et al. (2013) 

 

Relative permeability is one of the main building blocks for reservoir simulation or any reservoir 

engineering study. It provides irreplaceable information that relates all the flowing fluids in the 

Water  
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system to the reservoir rock, hence, its importance in reservoir performance and behavior 

predictions.  

Different rock types have different relative permeability curves and the shape of the relative 

permeability curve is affected by many factors such as reservoir tightness, wettability, and IFT.  

In enhanced oil recovery projects, interfacial tension effect becomes very important especially in 

miscible gas injection projects. The decrease in IFT between the fluids means that the fluid 

properties are becoming the same, which is typically an indication of miscibility. Typically, at 

very low IFT, the relative permeability shape approaches straight lines (X-shape) and at high IFT 

the curves gain more curvatures as fluids properties become more distinctively apart.  

NOTE: In this research, the effect of IFT and wettability are not modeled explicitly, their effect is 

included implicitly as part of the final ANN. This is included in the main data set that is used to 

construct the ANN where every single case has a completely different set of relative permeability 

and capillary pressure curves.  
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Chapter 6  
 

ARTIFICIAL NEURAL NETWORK DESIGN PARAMETERS AND DATA 

GENERATION 

Data are the most important part of any project. The debate is always about the abundance, 

quality, and accuracy of the data. For ANN projects, good quantitative data are the heart of the 

project. So, a good project requires good data that are representative to the problem that is being 

studied.  

In the oil and gas Industry, real data are typically a big concern mainly due to confidentiality and 

political problems. In the literature, most authors and researchers do not publish their full data 

with their findings making it almost impossible to reproduce especially in EOR projects where 

reservoirs undergo primary and secondary recovery techniques.  

To construct an ANN that is reliable and capable of giving good predictions, extensive data 

beyond any available real data must be present. Also, constructing an ANN for a problem that is 

not well researched, hardly any data is available. To overcome this major issue, data generation 

techniques must be used. However, if this method is not used correctly, the quality of the ANN 

would be as good as the data used to construct it. In this section, we will go over how data was 

generated for this project and some of the techniques used to ensure validity, applicability, and 

reality of the data.  

 

6.1.1 Matrix Porosity & Matrix Permeability 

 

Reservoirs around the world have different rock properties. In terms of matrix permeability, 

reservoirs range from extremely tight ~ 10
-4

 md to high ~100 md. In this study, only low matrix 

permeability reservoirs (1+ md) and above are included as tight reservoirs and below are not 
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typically good candidates for enhanced oil recovery projects. A wide range is used to cover a 

large number of rock groups. For example, the matrix porosity range used in this study starts from 

10% porosity, sandstone porosity, which is considered about the economical limit for developing 

an oil well.  

It is important to note that the base model has two layers and the data design parameters 

generation accounts for each layer’s independency from the other layers. For example, the first 

layer could have a permeability of 200 md while the second layer could have 10 md for 

permeability. This will allow the ANN to be exposed to different reservoir types and fluid 

behaviors with that flexibility imposed in generating the data sets. Mixed with fracture properties, 

that would make the data sets feeding the ANN even more complex.  

 

6.1.2 Fracture Porosity & Fracture Permeability 

 

In fractured reservoirs, fractures contribute significantly to fluid flow. They don’t have much 

storage at all, but typically they have very high conductivity. Different reservoirs have different 

fracture densities, conductivity, and contrast with matrix permeability. A large number of 

reservoirs are naturally fractured, but the effects of fractures differ from one reservoir to another. 

For example, a reservoir could have many small fractures that are not connected or cemented 

fractures that would have no impact on fluid behavior. On the other hand, some carbonate 

reservoirs are infested with networks of connected fracture corridors that impact the reservoir 

fluid behavior completely, hence the term “fracture dominated flow”.  

In this design parameter, and to account for various fracture scenarios, the conductivity of the 

fractures varies from very low to very high. The data generation algorithm varies so that the 
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contrast between matrix permeability and fracture permeability is very low and fractures won’t 

have much impact on fluid flow (relative permeability is different between fractures and matrix).  

Also, fracture density varies to form highly fractured reservoirs or reservoirs with low fracture 

density.  

 

6.1.3 Reservoir Temperature 

 

Reservoir temperature affects reservoir fluid composition and state. In a lot of ANN designs, 

reservoir temperature is generally fixed when it comes to data generation. Initial ANN designs in 

this research had the reservoir temperature fixed as well as fixed fluid compositions. However, 

the latest ANN designs include variations in reservoir temperatures and fluid compositions. The 

effect of reservoir temperature change can be seen on the phase diagram for any specific 

composition which then describes, along with reservoir temperature, the fluid state at that specific 

point. Figure 6-1 shows different reservoir fluid states at different temperatures and pressures.  

 
Figure 6-1: P-T Diagram showing different fluid States at various pressures and temperatures 
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6.1.4 Reservoir Pressure  

 

Similar to reservoir temperature, initial reservoir pressure has more impact. It affects reservoir 

production as well as the overall development scheme. In this project, initial reservoir pressure 

affects the type of continuous CO2 injection whether it would be a miscible injection or 

immiscible injection at that specific temperature.  

 

6.1.5 Well Spacing 

 

Well spacing is a very important parameter when it comes down to oil recovery. Well spacing 

differs per reservoir and it is a challenging task to find the optimum well spacing for a particular 

reservoir. While this study does not go through all factors to determine an optimum well spacing, 

it does go over a huge range of well spacing and ultimately creates a sensitive relationship that 

helps determine an optimum spacing for a given reservoir properties. This is a very important 

feature, which is to determine if one well can do the job of 2 or 3 other wells for the given 

reservoir. 

In this research, well spacing of 17 acres is tested all the way to 217 acres.  

 

6.1.6 Fluid Composition 

 

Fluid composition is a major part of any reservoir study. It determines many factors and affects 

production based on fluid state at any reservoir pressure and temperature.  

In this section, varying fluid composition generation technique is used to generate different fluid 

composition for every specific case that contributes to the overall data sets. The generation 
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algorithm changes the composition of every component within the reservoir fluid to get a new 

fluid every time. It is almost impossible to have the same composition for different cases.  

What makes this part of the project very important is that, in the previous ANN designs in the 

literatures, ANN were built for specific compositions due to the fact that it is very difficult to 

change the reservoir composition and its properties a hundred times, let alone 3,000 times or 

more.  

Initially, ANNs were designed based on 5 specific compositions, each composition had 11 

components. While it was for testing purposes, it was actually limiting to only have 5 specific 

compositions. What makes it difficult to generate new compositions as part of the data sets are 

the heavy components that are typically lumped to compose the C7+. Compositional fluids are 

described by their components from Methane up to Hexane and include all the heavy components 

lumped as part of Heptane plus (C7+). Reservoirs fluids also contain non-hydrocarbon 

components such as Nitrogen (N2), Hydrogen Sulfide (H2S), and Carbon Dioxide (CO2). Every 

single component has known properties such as molecular weight (MW), critical temperature 

(CT), critical pressure (CP), acentric factor (ω), and binary interaction coefficients. These 

properties are of particular importance due to their part in building the phase behavior model 

through the Equation of State (EOS). EOS is an analytical representation of any system that 

relates pressure, temperature, and volume of that system. For example, ideal gas law is a simple 

equation of state. Constructing and running 11-component fluid through compositional simulator 

requires heavy computational power, adding to that the changing composition due to carbon 

dioxide injection, and convergence issues that arise when conducting simulation makes the 

problem require much higher computational power than available for such a study.  

Table 5-1 shows a black oil fluid as described by McCain (McCain, 1990). The table shows the 

molar composition of each component in the mixture as well as the critical properties, acentric 
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factor, and molecular weight. The only difference between this mixture and any other mixture 

would be some additional components, different molar composition, and different C7+ lumped 

components that would yield to different properties.  

Table 6-1: McCain's Black Oil Fluid Composition 

Component 
Molar 

Composition 

Pc  

(psia) 

Tc 

(
o
R) 

ω 
Mw 

(lbm/lbml) 

CO2 0.0031 1069.87 547.56 0.23 44.01 

N2 0.16 492.31 227.16 0.04 28.01 

C1 36.47 667.20 343.08 0.01 16.04 

C2 9.67 708.34 549.72 0.10 30.07 

C3 6.95 615.76 665.64 0.15 44.10 

IC4 1.44 529.05 734.58 0.18 58.12 

NC4 3.93 551.10 765.36 0.19 58.12 

IC5 1.44 490.84 828.72 0.23 72.15 

NC5 1.41 489.38 845.28 0.25 72.15 

FC6 4.33 477.03 913.50 0.28 86.00 

C7+ 33.29 247.29 1360.76 0.63 218.00 

 

In order to make the ANN a universal one, and not just for 5 specific compositions, a 

compositional fluid generating algorithm is implemented. The algorithm only takes care of 

lumping the heavy components and getting their corresponding properties. For this purpose, Lee’s 

Mixing Rules (Lee et al. 1979) are used to lump all hydrocarbon components above C7+.  

∅𝑖 = 𝑧𝑖/ ∑ 𝑧𝑖

𝐿

 

𝑀𝐿 = ∑ ∅𝑖𝑀𝑖

𝐿

 

𝑉𝑐𝑙 = ∑[∅𝑖𝑀𝑖𝑉𝑐𝑖/𝑀𝐿]

𝐿
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𝑃𝑐𝑙 = ∑[∅𝑖𝑃𝑐𝑖]

𝐿

 

𝑇𝑐𝑙 = ∑[∅𝑖𝑇𝑐𝑖]

𝐿

 

𝜔𝐿 = ∑[∅𝑖𝜔𝑖]

𝐿

 

Where: 

 ϕi is the normalized mole fraction of the component i in the lumped fraction. 

 ML is the Molecular Weight of the lumped C7+ fraction. 

 VCL is the Critical Volume of the lumped C7+ fraction. 

 PCL is the Critical Pressure of the lumped C7+ fraction. 

 TCL is the Critical Temperature of the lumped C7+ fraction. 

 ωCL is the Acentric Factor of the lumped C7+ fraction. 

 

The next part would be to implement Lee’s mixing rules in the generation algorithm. This 

algorithm gives flexibility and much more utility as it includes a full library up to HC20 for the 

user to input their mixture. At the same time, it allows the simulator to run with around 11 

components rather than 25 components including non-hydrocarbon components and impurities. 

The steps below summarize how the algorithm works.  

1) All hydrocarbon components and their properties up to HC20 as well as H2S, N2, and CO2 

are loaded in the generation algorithm’s library.  

2) A mixture is automatically generated based on ranges given to the algorithm.  

3) Lee’s mixing rules are applied to lump any component above C6.  
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In order to verify the method we are using, and to ensure the accuracy of the algorithm, WinProp, 

commercial software developed by Computer Modeling Group Ltd. (CMG), is used to compare 

them to the current algorithm.  

Table 6-2: A Synthetic 25 Component Mixture 

Comp 
Molar 

Composition 

Pc 

(atm) 
Tc(K) ω 

MW 

(lbm/lbmol) 

Vci 

(m
3
/kmol) 

H2S 0.001 88.2 373.2 0.1000 34.08 0.0985 

CO2 0.003 72.8 304.2 0.2250 44.01 0.094 

N2 0.0002 33.5 126.2 0.0400 28.01 0.0895 

C1 0.4 45.4 190.6 0.0080 16.04 0.099 

C2 0.05 48.2 305.4 0.0980 30.07 0.148 

C3 0.06 41.9 369.8 0.1520 44.10 0.203 

IC4 0.07 36 408.1 0.1760 58.12 0.263 

NC4 0.1 37.5 425.2 0.1930 58.12 0.255 

IC5 0.03 33.4 460.4 0.2270 72.15 0.306 

NC5 0.06 33.3 469.6 0.2510 72.15 0.304 

FC6 0.08 32.46 507.5 0.2750 86.00 0.344 

FC7 0.05 30.97 543.2 0.3083 96.00 0.381 

FC8 0.01 29.12 570.5 0.3513 107.00 0.421 

FC9 0.01 26.94 598.5 0.3908 121.00 0.471 

FC10 0.01 25.01 622.1 0.4438 134.00 0.521 

FC11 0.01 23.17 643.6 0.4775 147.00 0.574 

FC12 0.01 21.63 663.9 0.5223 161.00 0.626 

FC13 0.01 20.43 682.4 0.5596 175.00 0.674 

FC14 0.01 19.33 700.7 0.6048 190.00 0.723 

FC15 0.01 18.25 718.6 0.6512 206.00 0.777 

FC16 0.01 17.15 734.5 0.6837 222.00 0.835 

FC17 0.001 16.35 749.2 0.7286 237.00 0.884 

FC18 0.001 15.65 760.5 0.7574 251.00 0.93 

FC19 0.002 15.06 771 0.7901 263.00 0.973 

FC20 0.0018 14.36 782.9 0.8161 275.00 1.027 

 

Table 6-2 shows a synthetic 25-component mixture that was used to verify the lumping method 

for C7+ between CMG and Lee’s mixing rules used in this research. Table 6-3 shows the same 

mixture but with lumping all the heavy components above C6 into C7+ using CMG.  
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Table 6-3: A Synthetic 25-Components Mixture represented by 12 Components (WinProp) 

Comp 
Molar 

Composition 

Pc 

(atm) 
Tc(K) ω 

MW 

(lbm/lbmol) 

Vci 

(m
3
/kmol) 

H2S 0.001 88.20 373.2 0.1000 34.08 0.0985 

CO2 0.003 72.80 304.2 0.2250 44.01 0.094 

N2 0.0002 33.50 126.2 0.0400 28.01 0.0895 

C1 0.4 45.40 190.6 0.0080 16.04 0.099 

C2 0.05 48.20 305.4 0.0980 30.07 0.148 

C3 0.06 41.90 369.8 0.1520 44.10 0.203 

IC4 0.07 36.00 408.1 0.1760 58.12 0.263 

NC4 0.1 37.50 425.2 0.1930 58.12 0.255 

IC5 0.03 33.40 460.4 0.2270 72.15 0.306 

NC5 0.06 33.30 469.6 0.2510 72.15 0.304 

FC6 0.08 32.46 507.5 0.2750 86.00 0.344 

FC7+ 0.1458 24.18 633.304 0.4582 143.62 0.555 

 

Table 6-4: A Synthetic 25-Components Mixture represented by 12 Components (Lee's Mixing) 

Comp 
Molar 

Composition 

Pc 

(atm) 
Tc(K) ω 

MW 

(lbm/lbmol) 

Vci 

(m
3
/kmol) 

H2S 0.001 88.20 373.2 0.1000 34.08 0.0985 

CO2 0.003 72.80 304.2 0.2250 44.01 0.094 

N2 0.0002 33.50 126.2 0.0400 28.01 0.0895 

C1 0.4 45.40 190.6 0.0080 16.04 0.099 

C2 0.05 48.20 305.4 0.0980 30.07 0.148 

C3 0.06 41.90 369.8 0.1520 44.10 0.203 

IC4 0.07 36.00 408.1 0.1760 58.12 0.263 

NC4 0.1 37.50 425.2 0.1930 58.12 0.255 

IC5 0.03 33.40 460.4 0.2270 72.15 0.306 

NC5 0.06 33.30 469.6 0.2510 72.15 0.304 

FC6 0.08 32.46 507.5 0.2750 86.00 0.344 

FC7+ 0.1458 25.01 623.93 0.4582 143.61 0.615 

 

Table 6-3and Table 6-4 show that there is a very marginal difference between the lumped C7+ 

components generated by WinProp (CMG) and Lee’s mixing rules. Therefore, the Lee’s mixing 

method is sufficient enough to be used to lump any composition.  
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The generation algorithm used in this research uses a large list of heavy components (up to HC20). 

When using Lee’s mixing rule to lump the heavy components, we are using a component (C7+) to 

represent 14 heavy hydrocarbons which gives an error. The proper way to lump heavy 

components is to lump the similar ones together. This error mainly affects the cricondentherm at 

very high temperature and not the cricondenbar due to its association with heavy components 

lumping. Since component lumping is used in this research to minimize the intensive iterative 

process and equilibrium calculation for all components, and since it only affects the 

cricondentherm when including very heavy components at higher than usual saturations, this 

error will be taken into consideration when using the final ANN. Figure 6-2 shows the error 

between the 25-components mixture described previously and its 11-components mixture 

representation with lumped C7+ component.  

 

Figure 6-2: Comparison between Synthetic Mixture Representation (25 and 11) 

Table 6-5 shows the ranges that are assigned to each component. Notice that all components up to 

FC6 are assigned a minimum value that is never a zero. This is done to avoid complications when 

generating various mixtures as the presence or disappearance of some components would not be 

optimal. So, when a fluid composition is generated, there will always be 12 components, H2S, 
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CO2, N2, C1, C2, C3, IC4, NC4, IC5, NC5, FC6, and lumped C7+. Assigning zero compositions for 

components heavier than FC6 doesn’t affect the number of components since it would be lumped 

as part of C7+ and the number of components would still be 12 components.  

Table 6-5: Components Ranges for Data Generation 

Parameter Min Max Units Notes 

H2S 0.01 0.5 %   

CO2 0.5 5 %   

N2 0.5 2 %   

C1 10 50 %   

C2 10 30 %   

C3 0.5 10 %   

IC4 0.5 5 %   

NC4 0.5 5 %   

IC5 0.5 5 %   

NC5 0.5 5 %   

FC6 0.5 5 %   

FC7 0.5 10 % 

Lumps into 

C7+ 

FC8 0 10 % 

FC9 0 10 % 

FC10 0 10 % 

FC11 0 10 % 

FC12 0 10 % 

FC13 0 10 % 

FC14 0 10 % 

FC15 0 10 % 

FC16 0 10 % 

FC17 0 10 % 

FC18 0 10 % 

FC19 0 10 % 

FC20 0 10 % 

6.1.7 Relative Permeability and Capillary Pressure Generation 

Relative Permeability: Variations in relative permeability and capillary pressure were not 

considered in previous ANN studies of this nature. Typically, only one curve is used to describe 

all kinds of reservoirs. In this research, an intensive algorithm is incorporated to automatically 

generate different relative permeability curve and capillary pressure. It is almost impossible for 
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two different cases to share same set. In this section, we will go over how relative permeability 

and capillary pressure curves are generated and used.  

The modified Brooks-Cory correlations, also known as power-law, are used to generate relative 

permeabilities of oil, water, and gas. Note that these equations are the exact equations used by 

CMG to generate relative permeability curves, so, no verification is needed. 

  

𝐾𝑟𝑜𝑤 = 𝐾𝑟𝑜𝑐𝑤 ∗ (
𝑆𝑜 − 𝑆𝑜𝑟𝑤

1 − 𝑆𝑤𝑐𝑜𝑛 − 𝑆𝑜𝑟𝑤
)

𝑁𝑜𝑤

 

𝐾𝑟𝑤 = 𝐾𝑟𝑤𝑖𝑟𝑜 ∗ (
𝑆𝑤 − 𝑆𝑤𝑐𝑟𝑖𝑡

1 − 𝑆𝑤𝑐𝑟𝑖𝑡 − 𝑆𝑜𝑖𝑟𝑤
)

𝑁𝑤

 

𝐾𝑟𝑜𝑔 = 𝐾𝑟𝑜𝑔𝑐𝑔 ∗ (
𝑆𝑙 − 𝑆𝑜𝑟𝑔 − 𝑆𝑤𝑐𝑜𝑛

1 − 𝑆𝑔𝑐𝑜𝑛 − 𝑆𝑜𝑟𝑔 − 𝑆𝑤𝑐𝑜𝑛
)

𝑁𝑜𝑔

 

𝐾𝑟𝑔 = 𝐾𝑟𝑔𝑐𝑙 ∗ (
𝑆𝑔 − 𝑆𝑔𝑐𝑟𝑖𝑡

1 − 𝑆𝑔𝑐𝑟𝑖𝑡 − 𝑆𝑜𝑖𝑟𝑔 − 𝑆𝑤𝑐𝑜𝑛
)

𝑁𝑔

 

The modified Brooks-Corey correlations are simple to use once all the variables are known. The 

following steps show how these correlations are used:  

1) The model is assigned values (within the specified range for each parameter) for:  

a. Water relative permeability at Irreducible Oil Saturation (krwiro). 

b. Oil relative permeability at connate water saturation (krocw).  

c. Oil relative permeability at connate gas saturation (krogcg). 

d. Gas relative permeability at connate liquid saturation (krgcl). 

e. Connate water saturation (Swcon). 

f. Critical water saturation (Swcrit). 

g. Residual oil for water-oil table (Sorw). 

h. Irreducible oil for water-oil table (Soirw). 

i. Residual oil for gas-liquid table (Sorg). 
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j. Irreducible oil for gas-liquid table (Soirg) 

2) The relative permeability generation algorithm considers various system types through 

the exponents Nw, Now, Nog, and Ng. The following shows the exponents used for the 

systems considered in this study:  

a. Exponents <0.7 indicates channeling 

b. Exponents = 1 indicates the presence of fractures in a fractured system 

c. Exponents = 3 indicates a well sorted rock 

d. Exponents = 3.5 indicates a poorly sorted rock 

e. Exponents = 4 indicates a cemented system 

3) Brooks-Corey equations are used to calculate relative permeability at the connate water 

saturation (water-oil table), or residual oil saturation (gas-liquid table).  

4) Saturation increases (or decreases depending on which phase is considered) and new 

relative permeabilities are calculated using the correlations.  

Figure 6-3 illustrates the end points for water-oil relative permeability table and gas-oil relative 

permeability tables along with the corresponding values for the relative permeabilities at these 

end points.  
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Figure 6-3: End points Saturations for Water-Oil and Gas-Oil Relative Permeability 

 

Capillary Pressure: There are many methods that provide means to generate capillary pressure 

curves such as Brooks-Corey, Thomeer, J-Leverett, and many others. Since modified Brooks-

Corey correlations were used previously for relative permeability curves, their correlations for 

capillary pressures are used.  

 

𝑃𝑐𝑜𝑤 = 𝑃𝑐𝑒𝑤 ∗ 𝑆𝑤
∗ (−

1
𝛾

)
 

 

𝑆𝑤
∗ = (

𝑆𝑤 − 𝑆𝑤𝑖𝑟𝑟

1 − 𝑆𝑤𝑖𝑟𝑟
) 
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6.1.8 Initial Reservoir Water Saturation: 

 

To accommodate various reservoirs, initial reservoir water saturation is used as a variable. 

Training data sets have different initial reservoir water saturation. No complex algorithm is 

required to vary the initial reservoir water saturation within a specified range.  

 

6.2.1 Artificial Neural Network Process: The Whole Picture 

 

We previously showed a general ANN, its concept, its components, and its methodology. We also 

showed the various building blocks for continuous CO2 injection. Next, we are going to show 

how everything mixes together to form the ANN for continuous CO2 injection.  

For any ANN, all you need is data with inputs and outputs. If enough, representative field data 

were available, ANN could be constructed in a relatively short time. On the other hand, 

representative universal data are extremely difficult to find anywhere, even in the literature. For 

example, we know the properties of carbonate reservoirs, but we don’t have production data for 

wells producing from carbonate reservoirs. So, we did the next best thing, generated our own data 

that covers a very wide range of reservoirs and fluids.  

One of the outcomes of this research is to construct an ANN with predictive capabilities that can 

distinguish different reservoir behaviors. The two different reservoir mechanisms depend on the 

miscibility conditions. This is very difficult to achieve since the ANN only sees inputs and 

outputs without any additional information about the process itself, unless we create two different 

ANNs, one for miscible conditions and the other one runs under immiscible conditions which 

adds another limitation to the final product.  
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Figure 6-4: Two Phase Region on a Phase Diagram 

 

Figure 6-4 shows the phase envelope for PVT 1. The whole injection process is ruled by the 

phase envelope and a minimum miscibility pressure. At high reservoir pressure above the two 

phase region, the process is miscible, but as soon as the pressure drops below into the two phase 

region, the process becomes immiscible. Highest oil recovery is achieved when the process is 

miscible where injected CO2 mixes with oil and forms a single mixture that is lighter than the 

original mixture and more mobile. In an immiscible process, injected CO2 only partially dissolves 

in the oil while the rest stays in the gas phase. While a miscible process recovers more oil, it 

requires a much higher reservoir pressure than an immiscible process.  

In order to create an ANN that is capable of predicting both behaviors, data across the whole 

phase envelop must be provided for all the various reservoir mixtures. Note that every time there 

is a new reservoir fluid, its phase envelope could be completely different than the one before it. 

So, we can solve the problem by:  

1) Provide thousands of cases that cover the whole phase envelope.  

2) Feed the data to the ANN in stages (Smart feed):  

a. Provide only miscible data sets to the ANN (above the two phase region) 
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b. Provide only Immiscible data sets to the ANN (inside the two phase region).  

c. Combine a and b. 

In this research, we are using a smart feed option since we are trying to reduce the number of 

cases provided due to the heavy compositional simulation requirement. An actual phase diagram 

is constructed using phase behavior module (PBM) prior to conducting any reservoir simulation.  

If the initial reservoir pressure and temperature fall outside the two phase region, then the 

algorithm does nothing and those values would be forwarded to the simulator to run the case. 

However, if the initial reservoir pressure and temperature happen to fall within the two phase 

region, then the algorithm adds pressure increments until the two boundary of the phase envelope 

is felt. After that, a random value of reservoir pressure is assigned between the pressure value at 

the given temperature and a pressure much higher than reservoir pressure to ensure that we are in 

the 1 phase region only. Figure 6-5  illustrates how the algorithm works on PVT1 composition. It 

is also important to note that this process of detecting where the phase boundary and adjusting the 

initial reservoir pressure is done on every single case in order to generate outputs that are only 

relevant to miscible CO2 injection.  

 
Figure 6-5: Smart Feed Algorithm 
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Figure 6-6: Smart Feed or PVT 1, 2, 3, 4, and 5 for Miscible CO2 Injection 

Figure 5-6 shows an example of 5 fluid compositions with initial reservoir distribution pressures 

for given temperatures. Note that Figure 5-6 is just an illustration as to where the data are located 

with smart feed and not an actual scenario as every single case has a different composition.  

This process of smart feed pre-simulation is a lengthy process and takes much longer time as it is 

done on every single case. Without smart feed, data generation takes around 30 seconds to 

generate as much as 6,000 cases. With smart feed, data generation takes around 6 hours.  

The following steps summarize how the algorithm works, from the very beginning until the case 

is about to be submitted to the simulator. 

1) Rock properties are chosen from a given range. 

2) Fluid composition is chosen from a given range. Up to component HC20. 

3) Fluid components above C7+ are lumped, and their properties are calculated. 

4) Relative permeability curves are generated using Modified Brooks-Corey. 

5) Capillary pressure curves are generated using Brooks-Corey. 

6) Phase diagram construction. 

7) Check initial reservoir pressure within the phase envelope. 

a. If initial PI is above the two phase region, then proceed to step 8.  
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b. If Initial reservoir pressure falls within the two phase region, then phase behavior 

stability analysis are done to find the boundary of the phase envelope at the given 

temperature. 

i. At fixed T, initial reservoir pressure is increased gradually. 

ii. Stability analysis and check if new pressure with temperature (there is no 

temperature change) are located within the phase envelope. If yes, repeat 

the pressure increase at the fixed temperature until phase envelope 

boundary is reached.  

8) Apply a random number between the top of the phase envelope and a higher pressure 

value to ensure that the database is for miscible cases only.  

9) Case is then ready to be submitted to the simulator.  

The data generation part of this research is an intensive part. It is very essential to the success of 

this project that everything is defined thoroughly and carefully. Otherwise, it would be very 

difficult to find a correlation for the topic at hands.   

 

6.2.2. Minimum Miscibility Correlation Validation 

 

 

In order to make sure that the data acquired through the developed algorithm is consistent and 

falls in the miscible region, it is compared against a slim-tube derived correlation. For the 

algorithm to be successful, the MMP correlation’s pressure must be less than the pressures that 

are assigned to every single case.  

Alston et al. (1983) developed a CO2 MMP correlation as a function of C5+ molecular weight, 

reservoir temperature, and volatile to intermediate mole fraction ratio. The developed correlation 

reported acceptable MMP predictions for CO2. For pure CO2 MMP, Alston et al (1983) reported 

the following equation:  
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𝑃𝐶𝑂2−𝐿𝑂 = 8.78𝑥10−4(𝑇𝑅)1.06(𝑀𝑐5+)1.78(𝑥𝑣𝑜𝑙/𝑥𝑖𝑛𝑡)0.136 

 

Alston’s correlation includes a correction factor for reservoirs with (xvol/xint) that is very different 

from unity. Most reservoirs have (xvol/xint) close to unity (Alson et al., 1982), so the same 

equation can be used without the correction term: 

 

𝑃𝐶𝑂2 = 8.78𝑥10−4(𝑇𝑅)1.06(𝑀𝑐5+)1.78 

 

Table 6-6: A Sample of 5 Compositions for Alston’s MMP Correlation shows a sample of 5 

compositions to find the minimum miscibility pressure using Alston’s correlation. The MMP 

values acquired using Alston’s correlation are compared against the values acquired previously 

through phase behavior diagram. Note that the values acquired through the phase diagram were 

assigned randomly above the minimum miscibility pressure. So, as long as the phase diagram 

values are not less than Alston’s correlation MMPs, the methodology used is consistent. If the 

MMP values using Alston’s method are higher, then those cases are removed from the data set. 
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Table 6-6: A Sample of 5 Compositions for Alston’s MMP Correlation 

 Component 
Case 1 

Composition 

Case 2 

Composition 

Case 3 

Composition 

Case 4 

Composition 

Case 5 

Composition 

H2S 0.0004 0.0008 0.0003 0.0008 0.0035 

CO2 0.0406 0.0270 0.0070 0.0309 0.0469 

N2 0.0152 0.0056 0.0127 0.0146 0.0112 

C1 0.3729 0.1824 0.4163 0.2936 0.2299 

C2 0.1000 0.0863 0.0655 0.0712 0.0976 

C3 0.0275 0.0650 0.0904 0.0683 0.0575 

IC4 0.0278 0.0382 0.0229 0.0453 0.0306 

NC4 0.0374 0.0410 0.0116 0.0228 0.0118 

IC5 0.0065 0.0475 0.0120 0.0276 0.0299 

NC5 0.0150 0.0251 0.0191 0.0197 0.0115 

FC6 0.0445 0.0474 0.0101 0.0058 0.0382 

FC7 0.0722 0.0797 0.0691 0.0930 0.0168 

FC8 0.0656 0.0189 0.0537 0.0339 0.0862 

FC9 0.0238 0.0991 0.0403 0.0208 0.0210 

FC10 0.0592 0.0277 0.0007 0.0003 0.0610 

FC11 0.0184 0.0086 0.0968 0.0682 0.0312 

FC12 0.0700 0.0279 0.0470 0.0597 0.0998 

FC13 0.0031 0.0625 0.0018 0.0636 0.0890 

FC14 0 0.0214 0.0227 0.0249 0.0263 

FC15 0 0.0198 0 0.0348 0 

FC16 0 0.0680 0 0 0 

FC17 0 0 0 0 0 

FC18 0 0 0 0 0 

FC19 0 0 0 0 0 

FC20 0 0 0 0 0 

C7+ 0.3122 0.4337 0.3321 0.3993 0.4314 

Temp, 
0
F 190 154 174 215 293 

 

 

Table 6-7 shows the oil volatile fraction (C1+ N2) and the intermediate oil fractions (C2, C3, IC4, 

NC4, CO2, and H2S). These two terms are then used to find which equation to be used as 

mentioned previously.  
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Table 6-7: Volatile and Intermediate Fraction Calculation for the 5 Sample Compositions 

  Case 1 Case 2 Case 3 Case 4 Case 5 

xvol 0.3881 0.1880 0.4289 0.3083 0.2411 

xint 0.2337 0.2582 0.1977 0.2393 0.2478 

xvol/xint 1.661 0.728 2.170 1.288 0.973 

 

Table 6-8: MMP Values Comparison using Alston's Correlation and the PB Method 

  Case 1 Case 2 Case 3 Case 4 Case 5 

Alston MMP, psia 1,194 1,082 1,260 1,701 2,237 

PB MMP, psia 2,956 1,362 3,755 2,179 3,729 

 

Table 6-8 shows that the MMP values used earlier are consistent with the phase diagram method. 

This methodology was applied on every single case in the data base that went into building all the 

various ANNs. There were a few cases that had lower MMP than Alston’s correlation and these 

cases were removed from the data set.  
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Chapter 7  
 

ARTIFICIAL NEURAL NETWORK DEVELOPMENT 

In this section, the development and evolution of various ANN designs are shown. Initially, basic 

ANN designs for a specific composition and reservoir are shown, and then more complicated and 

more generalized ones are presented.  

During the early stages of the project, some simple ANN configurations were created with as 

little as 8 neurons. Many parameters and configurations were tested in order to reach a 

satisfactory ANN that is capable of delivering accurate results that handles a simple purpose.  

The major work and development in this section are focused around reservoir fluid composition 

and how to enable the ANN to handle any reservoir fluid composition. There was extensive 

testing, tweaking, and manipulations with the ANN around the actual study goal, continuous CO2 

injection. Also, early configurations were designed for specific reservoir fluids (5 compositions 

that varied between light to heavy oil) and some designed witnessed the water alternating gas 

approach (WAG).  

The main design for continuous CO2 stayed the same throughout the various ANNs. However, 

earlier designs included WAG which the most recent designs don’t include, but the ANNs 

structure takes into account the possibility of WAG presence and could be added as part of the 

main ANN network at later stages. The WAG option has a different index and parameters related 

to it. The additional parameters describing the WAG process were water injection rate, WAG 

ratio, and WAG cycle. For a WAG ratio of 0:1, the process has no water and it proceed as a 

continuous CO2 injection. For a WAG ratio of 1:1 and higher, the process would switch to a 

WAG injection rather than continuous CO2 injection. 
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6.1 Forward Artificial Neural Networks Proxy (Performance Prediction) 

The first ANN development in this project is related to reservoir performance evaluation. This 

forward proxy requires the user to input all the reservoir properties and the desired injection 

design parameters. The proxy would then provide oil, and gas production profiles which directly 

reflect reservoir performance response for the input parameters and the desired injection design. 

This network design allows the user to check various injection designs as well as study the impact 

of uncertainty on reservoir properties.  

Initial forward designs varied from simple, specific-compositions, specific-reservoirs, to complex 

universal designs. The simple designs were constructed to learn more about the ANNs and the 

various behaviors for different input parameters.  

Note that bottom-hole flowing pressure (BHFP) in this design is used to control miscibility in all 

the ANNs in this research.  
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L2 

Figure 7-1: Reservoir Simulation Model Concept 
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ANN Design # 1: Continuous CO2/WAG Injection, 2-Compsitions, Miscible, Specific Reservoir, 

1 Relative Permeability and 1 Capillary Pressure Curve 

 

 

 

 

 

  

 

 

 

 

 

ANN design #1 is one of the major initial designs that were constructed with the goal of proof-of-

concept.  Table 7-1 shows the initial design parameters for ANN design #1.  

Table 7-1: Design #1 ANN design parameters 

ANN Type Feed-Forward with Back Propagation 

# of Hidden Layers 3 

# of Neurons in Hidden Layers [55,50,44] 

Transfer Functions Logsig, Logsig, Tansig 

# Input Neurons 8 

# outputs Neurons 122 

ANN Target Tolerance 5.E-05 

Total Number of Cases 350 

% Train Cases 85 

% Validation Cases 10 

% Blind Testing Cases 5 

 

Res. Properties 

Fixed Properties 

Specific Res. 

Fluid Properties 

PVT1, PVT3 

Injection Design 

WAG Ratio 

WAG Cycle 

CO2 Inj. Rate 

Water Inj. Rate 

Res. Performance 

Oil Production Profile. 

Figure 7-2: Forward ANN design #1 inputs and outputs 
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This design is considered one of the very basic designs for a specific reservoir, relative 

permeability curve, and capillary pressure curve using two reservoir fluid compositions. One of 

the features tested within this design was the WAG as an additional option apart from the main 

continuous CO2 injection focus.  

Design Description:  

This is a 20x20x2 reservoir model with grid dimension of 66x66 feet. This grid size was chosen 

for testing purposes and does not reflect the grid size sensitivity that was done later on to find 

appropriate grid dimensions that suits the project and its timeline. The model is a dual porosity, 

dual permeability fractured model using Gilman and Kazemi shape factor. In this design, CO2 is 

continuously injected from a dedicated well, while production is done from another dedicated 

production well. However, CO2 could be injected alternating with water from the dedicated CO2 

injector.  

ANN Design Ranges:  

Table 7-2 shows the design parameters specific for this ANN. 

Table 7-2: Design parameters for ANN Design #1 

Parameter Value  Units/Notes 

Grids 20x20x2 

Grid Dimensions 60 ft 

Kxm = Kym 20 md 

Kzm 1 md 

φm 18 % 

Kxf = Kyf 1000 md 

Kxz 10 md 

Injection Type Miscible 

WAG Ratio 0-3 0 = Continuous CO2 Injection 

WAG Cycle 1-6 Months 

Water Injection Rate/D 500-3000 Bbls/D 

Gas Injection Rate/D 50,000-600,000 SCF/D 

Simulation Cases 350   

Fluid Compositions 2   
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Design Reservoir Fluids:  

Two black oil compositions were used in this ANN. Table 7-3 shows the fluid compositions for 

PVT1 and PVT3 that were used in this ANN.  

Table 7-3: Reservoir Fluid PVT1 and PVT3 Used in ANN Design#1 

Component 

PVT 1 

Black Oil 

[McCain, 1990) 

PVT 3 

Black Oil 

[Rathmell, 1971) 

CO2 0.91 3.2 

N2 0.16 0.03 

C1 36.47 27.81 

C2 9.67 8.21 

C3 6.95 5.99 

IC4 1.44 0.31 

NC4 3.93 4.1 

IC5 1.44 1.3 

NC5 1.41 2.3 

FC6 4.33 4.62 

C7+ 33.29 42.13 

MW 218 223 

SG 0.8515 0.875 

 

Design Analysis and Results 

This simple ANN design used a dataset of 350 cases. Miscible continuous CO2 and WAG 

injection were tested. Different WAG cycles and ratios were tested under fixed injection rate. 

This design is reported to highlight the starting point where current existing ANN studies 

conclude. The performance of the design is measured by how well it performed against blind 

testing data. Figure 7-3 through Figure 7-7 show the blind testing cases and provide an indication 

of the overall performance of the ANN. Note that the plots have a different scale reflecting the 

different responses for the various injection parameters under miscible condition. The average 

overall errors and average errors post injection are reported on the plots.  
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Figure 7-3: Forward ANN#1 Blind Testing Cases 1, 2, 3, 4 

 
Figure 7-4: Forward ANN#1 Blind Testing Cases 5, 6, 7, 8 

Err = 100% 

Err Post Inj = 100% 

Err = 2.65% 

Err Post Inj = 3.06% 

 

Err =14.81% 
Err Post Inj = 17.04% 

 

Err =4.88% 

Err Post Inj = 0.94% 

 

Errr =1.94% 

Err Post Inj = 0.18% 

 
Err =3.33% 
Err Post Inj = 8.25% 

 

Err =0.06% 

Err Post Inj = 1.91% 
 

Err =4.33% 
Err Post Inj = 5.82% 
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Figure 7-5: Forward ANN#1 Blind Testing Cases 9, 10, 11, 12 

 
Figure 7-6: Forward ANN#1 Blind Testing Cases 13, 14, 15, 16 

Err =5.48% 

Err Post Inj = 7.53% 

 

Err =12.35% 

Err Post Inj = 14.88% 
 

Err =1.03% 

Err Post Inj = 1.97% 

 

Err =6.55% 
Err Post Inj = 10.77% 

 

 

Err =11.99% 
Err Post Inj = 19.15% 

 

 

Err =1.66% 

Err Post Inj = 2.71% 

 

 

Err =8.66% 

Err Post Inj = 14.75% 
 

 

Err =1.53% 

Err Post Inj = 2.38% 
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Figure 7-7: Forward ANN#1 Blind Testing Cases 17, 18 

 

Design Error Analysis:  

The individual average overall errors and average errors post injection are reported on the blind 

testing cases. The average overall error and average error post injection for all the blind testing 

cases are reported in Table 7-4. However, this average error is biased by blind testing case #1 

which doesn’t produce anything because of low CO2 injection but the ANN predicts some 

production for this case.  

Table 7-4: Average overall and post injection errors for all the blind testing cases for ANN design #1 

Avg Overall Error % 10.23 

Avg Error Post Inj % 12.66 

 

Table 7-5 shows the average errors excluding blind testing case#1 and increasing the overall 

accuracy by around 5%.  

Table 7-5: Average overall and post injection errors for all the blind testing cases excluding case #1 

Avg Overall Error % 4.95 

Avg Error Post Inj % 7.52 

 

Errors alone should not be the only ANN performance indicator as they could easily be 

misleading. For example, if the target permeability is 2 md, and the predicted value by the ANN 

is 4 md, the error is 100% and the case is flagged as not good. However, the impact of the 2 md 

Err =0.02% 

Err Post Inj =0.19% 
 

 

Err =3.63% 

Err Post Inj = 6.36% 
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difference between the actual and predicted values is most likely negligible. On the same note, 

the error between 7,000 md actual and 7,500 md predicted is 7.14%. However, the difference is 

500 md and might contribute to a different behavior than actual.  

This initial ANN design is considered good based on two factors: 

1) Average error post injection per blind testing case. 

2) Overall shape and trend of each blind testing case.  

While some blind tests reported average errors above 10%, the overall errors were low and the 

overall trends for most of the cases were captured successfully. In general, this design was good 

as a starting point were existing ANN studies of this nature concluded.  
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ANN Design # 2: Continuous CO2/WAG Injection, 5 Fluid Compositions, Miscible, Universal 

Rock Properties, 1 Relative Permeability and 1 Capillary Pressure Curve 

 

 

 

 

 

  

 

 

 

 

 

ANN Design #2 is an evolved design. Initially, only two compositions were used in previous 

designs. Also, this design includes a wide range of reservoir rock parameters as well as varying 

monthly CO2 and water injection rates and varying monthly water injection rate (in case of 

WAG). Table 7-6 summarizes the network design for ANN design #2. 

Table 7-6: Design #2 ANN design parameters 

ANN Type Feed-Forward with Back Propagation 

# of Hidden Layers 4 

# of Neurons in Hidden Layers [55,50,44,35] 

Transfer Functions Logsig, Logsig, Tansig, Logsig 

# Input Neurons 11 

# outputs Neurons 122 

ANN Target Tolerance 5.E-05 

Total Number of Cases 2000 

% Train Cases 85 

% Validation Cases 10 

% Blind Testing Cases 5 

 

Figure 7-8: Forward ANN design #2 inputs and outputs 

Res. Properties 

Km ,Kf , ϕm, ϕf, 
Fracture Spacing 
Well Spacing 

Fluid Properties 

PVT1, PVT2, 

PVT3, PVT4, 

PVT5 

 

Injection Design 

WAG Ratio 

WAG Cycle 

CO2 Inj. Rate 

Water Inj. Rate 

Res. Performance 

Oil Production Profile. 
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Design Description:  

This is a 20x20x2 reservoir model with grid dimension of 66x66 feet. This grid size was chosen 

for testing purposes and does not reflect the grid size sensitivity that was done later on to find 

appropriate grid dimensions that suits the project and its timeline. The model is a dual porosity, 

dual permeability fractured model using Gilman and Kazemi shape factor. In this design, CO2 is 

continuously injected from a dedicated well, while production is done from another dedicated 

production well. However, CO2 could be injected alternating with water from the dedicated CO2 

injector.  

ANN Design Parameter Ranges:  

Table 7-7 shows the design parameters specific for this ANN. 

Table 7-7: Design parameters for ANN Design #2 

Parameter Value  Units/Notes 

Grids 20x20x2 

Grid Dimensions 66 ft 

Kxm = Kym 20-200 md 

Kzm 0.01*Kxm md 

φm 10-40 % 

Kxf = Kyf 1,000-10,000 md 

Kzf 0.01*Kxf md 

φf 1 % 

Injection Type Miscible 

WAG Ratio 0-3 0 = Continuous CO2 Injection 

WAG Cycle 1-6 Months 

Water Injection Rate/D 500-6000 Bbls/D 

Gas Injection Rate/D 600,000-1,500,00 SCF/D 

Simulation Cases 3000   

Fluid Compositions 5   

Fracture Spacing 10-40   

Reservoir Size 40 - 500  Acres 
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Design Reservoir Fluids:  

In this ANN, five oil compositions ranging from volatile oil to very heavy oil were used in. Table 

7-8 shows the five fluid compositions used in ANN design #2.  

Table 7-8: Reservoir Fluids PVT1 through PVT5 Used in ANN Design#2 

Component 

PVT 1 

Black Oil 

[McCain, 

1990) 

PVT 2 

Volatile Oil 

[Papp et al, 

1998) 

PVT 3 

Black Oil 

[Rathmell, 

1971) 

PVT 4 

SPE 24185 

[Hindi et al, 

1992]* 

PVT 5 

Parada 

Heavy 

Oil 

CO2 0.91 0.51 3.2 4.15 0.11 

N2 0.16 1.8 0.03 0.42 0.69 

C1 36.47 46.8 27.81 18.13 10.78 

C2 9.67 8.09 8.21 9.41 0.12 

C3 6.95 10.91 5.99 8.04 0.42 

IC4 1.44 4.26 0.31 1.46 0.3 

NC4 3.93 6.86 4.1 4.33 0.32 

IC5 1.44 3.71 1.3 1.74 0.29 

NC5 1.41 3.81 2.3 2.4 0.26 

FC6 4.33 4.73 4.62 3.68 0.64 

C7+ 33.29 8.52 42.13 46.24 86.09 

MW 218 156 223 221 532 

SG 0.8515 0.782 0.875 0.874 0.925 

 

Note: PVT #4 is modified version of fluid used by Hindi et al. The modified version was used to 

have the same components for all the five reservoir fluid compositions to provide basis for 

comparisons. 

Design Analysis and Results 

What differentiates this ANN from the previous one is that, it has much more neurons than the 

previous ANN. This ANN accounts for a wide range of reservoirs as well as 3 additional 

compositions and flexible monthly injection rates. For that reason, around 3000 simulation cases 

were used to build the data set that eventually went into the ANN. Note that around one half of 

the 3,000 cases had to be removed after quality-checking the data set as they either didn’t run, 
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didn’t produce post injection, or stopped in the middle of simulation. 85% of the cases were used 

to train the network, 10% for validation, and the last 5% were used later for blind testing.  

Figure 7-9 through Figure 7-13  show a sample of the blind testing cases and provide an overall 

performance of the ANN. The cases in this sample range between good and bad among the 5 PVT 

compositions. Note that the plots have different scales to reflect all the various inputs of the 

ANN. 

(Note: Appendix E shows all of the 56 blind testing cases.)  

  
Figure 7-9: Forward ANN#2 Blind Testing Cases 1, 2, 3, 4 

 

It is important to keep in mind that the oil production profiles in ANN design #2 produced much 

higher rates than the previous design. Also, the early decline period contribute significantly to the 

overall errors.   
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Figure 7-10: Forward ANN#2 Blind Testing Cases 5, 6, 7, 8 

 
Figure 7-11: Forward ANN#2 Blind Testing Cases 13, 14, 15, 16 
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Figure 7-12: Forward ANN#2 Blind Testing Cases 13, 14, 15, 16 

 
Figure 7-13: Forward ANN#2 Blind Testing Cases 17, 18, 19, 20 
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Design Error Analysis:  

This design has a lot of new features that differentiates it from its previous version. The added 

features did impact the accuracy of the overall model. The main error contributors are the flexible 

varying monthly injection CO2 and water (in case of WAG). Also, three additional reservoir 

fluids as well as a wide range of reservoir properties are included. The individual average overall 

errors and average errors post injection are reported on the blind testing cases. The average 

overall error and average error post injection for all the blind testing cases are reported in Table 

7-4. Similar to ANN design #1 the average error is biased by some blind testing cases #1 which 

do not produce post injection but the ANN predicts some production for these cases.  

Table 7-9: Average overall and post injection errors for all the blind testing cases for ANN design #2 

Avg Overall Error % 35.15 

Avg Error Post Inj % 25.78 

 

 
Figure 7-14: Sample blind test monthly oil rate comparison for ANN design #2 

Figure 7-14 shows a point by point comparison between the actual monthly oil production rates 

and the ones predicted by the ANN. The black line represents the best scenario possible. The 

closer the values from the black line, the better performance the ANN has.  
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Errors alone should not be the only ANN performance indicator as they could easily be 

misleading. Also, looking at the plot and capturing the overall trend is not enough. For example, 

some of the blind testing cases for this design show a close match, however, the small difference 

between the actual and predicted data contributed to a big error due to high oil production rates. 

This initial ANN design is considered satisfactory based on: 

1) Average error post injection per blind testing case. 

2) Overall shape and trend of each blind testing case.  

3) Impact of overall errors on the model accuracy. 

In this design, some blind tests reported average errors above 20%, but the overall trends for most 

of the cases were captured successfully. This design is considered satisfactory, but should be fine-

tuned more to improve the accuracy of the overall ANN. However, this design is a transitional 

design and it added a lot of value over the previous simple design. Considering all the new 

features in terms of 3 additional fluid compositions, varying injection rates for CO2 and water, 

and a range of reservoir properties, the ANN design was able to capture most behaviors 

sufficiently. The value this design adds is still limited due to the limitation imposed by having to 

choose between five fluid compositions and the specific relative permeability and capillary 

pressure curves.  
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ANN Design # 3: Continuous CO2 Injection, Universal Fluid Composition, Miscible, Universal 

Rock Properties, Universal Relative Permeability, Universal Capillary Pressure 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

ANN Design #3 is the most comprehensive and flexible design. It encompasses an extensive 

number of neurons that represents various reservoir parameters. However, this ANN does not 

include the WAG option which was a testing parameter in the previously constructed ANNs. 

WAG was not included in this ANN design due to couple issues that affected the number of cases 

needed. For example, loss of injectivity issue affected a lot of cases requiring to more data and 

affecting the overall results for both continuous CO2 and WAG since at the end, they both would 
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be part of a single ANN. Running WAG cases affected the run time and contributed to 

convergence problems. Table 7-10 shows the ANN design #3 network parameters.  

Table 7-10: Design #3 ANN design parameters 

ANN Type Feed-Forward with Back Propagation 

# of Hidden Layers 4 

# of Neurons in Hidden Layers [50,75,34,70] 

Transfer Functions Logsig, Logsig, Tansig, Logsig 

# Input Neurons 106 

# outputs Neurons 122 

ANN Target Tolerance 5.E-05 

Total Number of Cases 2000 

% Train Cases 85 

% Validation Cases 10 

% Blind Testing Cases 5 

 

Design Description:  

This is a 20x20x2 reservoir model with grid dimension of 44x44 feet. The 44x44 feet grids were 

selected even though the 30x30 showed less grid size error, however, the improvements over the 

44x44 were very minor but at the expense of run time. The 30x30 grids ran 25% slower than the 

44x44 feet grids. The grid size selection was studied in previous sections and the justification of 

this grid size was explained in previous sections.   

The model is a dual porosity, dual permeability fractured model using Gilman and Kazemi shape 

factor. In this design, CO2 is continuously injected from a dedicated well, while production is 

done from another dedicated production well. This design incorporates more features that lift the 

limitations on fluid composition, relative permeability, and capillary pressure.  
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ANN Design Parameter Ranges:  

Table 7-11: Design Parameters for ANN Design #3 

 

# Parameter Min Max Units Notes

1 Gas Inection Rate 6.E+05 2.E+06 SCF

2 Reservoir Temperature 120 300 OF

3 Reservoir Pressure 2000 6000 psia

4 Well Spacing 17 217 Acres

5 Fracture Perm 1000 10000 md

6 Fracture Spacing 10 40 Grid/Spacing

7 Matrix Porosity 10 40 %

8 Layer 1 Matrix Perm 20 200 md

9 Layer 2 Matrix Perm 20 200 md

10 Layer 1 Thickness 20 70 ft

11 Layer 2 Thickness 20 70 ft

12 Production Layers 1 2 Production from L1, or L2

13 H2S Composition 0.01 0.5 %

14 CO2 Composition 0.5 5 %

15 N2 Composition 0.5 2 %

16 C1 Composition 10 50 %

17 C2 Composition 10 30 %

18 C3 Composition 0.5 10 %

19 IC4 Composition 0.5 10 %

20 NC4 Composition 0.5 10 %

21 IC5 Composition 0.5 10 %

22 NC5 Composition 0.5 10 %

23 FC6 Composition 0.5 10 %

24 FC7 Composition 0.5 10 %

25 FC8 Composition 0 10 %

26 FC9 Composition 0 10 %

27 FC10 Composition 0 10 %

28 FC11 Composition 0 10 %

29 FC12 Composition 0 10 %

30 FC13 Composition 0 10 %

31 FC14 Composition 0 10 %

32 FC15 Composition 0 10 %

33 FC16 Composition 0 10 %

34 FC17 Composition 0 10 %

35 FC18 Composition 0 10 %

36 FC19 Composition 0 10 %

37 FC20 Composition 0 10 %

38 C7+ Composition 0 1 % Lumped Composition

39 BHFP 400 4500 psia

40 Krw at Irreducible Oil 0.4 1 Krwiro

41 Kro at Connate Water 0.4 1 Krocw

42 Krog at Connate Gas 0.4 1 Krogcg

43 Krg at connate Liquid 0.4 1 Krgcl

44 Connate Water Saturation 0.05 0.4 % Swcon

Lumps into C7+
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Design Reservoir Fluids:  

Handling variations in reservoir fluid compositions are always considered a limiting factor, 

especially for ANN-related projects. In previous studies, the whole fluid compositions would be 

referred with a particular name, for example, fluid 1, fluid 2, etc. Therefore, ANN studies were 

limited to a handful of reservoir fluids and all other fluids would be approximated, which really 

impacted the accuracy of such studies.  

This ANN design incorporates a unique feature that was not included before in previous ANNs 

nor used in similar studies the literature. This design uses a compositional algorithm that changes 

reservoir fluid composition in every case inside the data set. The impact of this compositional 

algorithm is very big. Previously, ANNs were designed using specific fluid compositions just like 

ANN design #1 and ANN design #2. Using specific compositions limits the ANN and hinders its 

functionality and purpose. However, the incorporated compositional algorithm makes the ANN 

usable regardless of the fluid composition which is one of the main factors in EOR projects. The 

algorithm takes into account components up to heavy hydrocarbon 20 (FC20), and then lumps all 

the heavy components above C7 as C7+.  

 

45 Critical Water Saturation 0.05 0.4 % Swcrit = Swcon

46 Residual Oil for Water-Oil 0.05 0.4 % Sorw

47 Irreducible Oil for Water-Oil 0.05 0.4 % Soirw = Sorw

48 Residual Oil for Gas-Liquid 0.05 0.3 % Sorg

49 Irreducible Oil for Gas-Liquid 0.05 0.3 % Soirg = Sorg

50 Connage Gas Saturation 0.05 0.3 % Sgcon

51 Critical Gas Saturation 0.05 0.3 % Sgcrit = Sgcon

52 RelPerm Expononents 0.7 4 Nw, Now, Nog, and Ng

53 Oil-Water Entry Capillary Pressure 5 30 psia

54 Oil-Gas Entry Capillary Pressure 5 30 psia

55 Gamma for Capillary Pressure 1 10

56 Initial Reservoir Water Saturation 10 40 %

57 Oil Production Profile Profile Output Parameters Target144
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Design Analysis and Results 

This design incorporates some new features that were not used in similar studies in the literature. 

Similar to previous designs, the main success category are the blind testing data For miscible 

injection cases, around 3000 simulation cases were needed to build the data set. However, after 

quality-checking the data set, around half the cases was removed as they either didn’t run, didn’t 

produce post injection, or stopped in the middle of simulation. 

 85% of the cases were used to train the network, 10% for validation, and the last 5% were used 

later for a blind test. The following plots are samples of the blind testing data and they provide an 

overall performance of the ANN. Note that the plots have different scale to reflect all the various 

inputs of the ANN.  

(Note: Appendix F shows all of the 58 blind testing cases.)  

 

 
Figure 7-16: Oil Production for Blind Test Cases 1, 2, 3, and 4 

Err =54.22% 

Err Post Inj = 13.85% 
 

 

Err =67.05% 
Err Post Inj =0.15% 

 

 

Err =23.08% 

Err Post Inj =4.2% 
 

 

Err =10.48% 

Err Post Inj =0.2% 
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Figure 7-17: Oil Production for Blind Test Cases 5, 6, 7, and 8 

 
Figure 7-18: Oil Production for Blind Test Cases 9, 10, 11, and 12 

 

Err =25.23% 

Err Post Inj =0.58% 
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Err =34.07% 

Err Post Inj =1.04% 
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Figure 7-19: Oil Production for Blind Test Cases 13, 14, 15, and 16 

 
Figure 7-20: Oil Production for Blind Test Cases 17, 18, 19, and 20 

 

Err =27.96% 
Err Post Inj =3.7% 

 

 

Err =58.2% 
Err Post Inj =2.61% 

 

 

Err =42.76% 
Err Post Inj =1.51% 

 

 

Err =47.32% 
Err Post Inj =2.06% 
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Err =21.25% 

Err Post Inj =5.09 

 

 

Err =38.85% 

Err Post Inj =7.46 

 

 

Err =8.38% 

Err Post Inj =2.45 
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ANN design Functional Links:  

This major design required a lot of fine tuning and improvements until it reached the final stage. 

In this design, functional links and data manipulation techniques were used. Taking the log of the 

outputs and providing the log of some of the inputs as part of the outputs seemed to help the 

network. Some simple functional links were added on a trial and error basis. However, some 

complex functional links were required. For those functional links, every input was studied 

against the target (oil production) for the entire dataset. One of the direct correlations was the 

cumulative CO2 injection. A correlation relating the cumulative of both oil and injected CO2 was 

then used as an input parameter. Figure 7-21 shows a general correlation between the amount of 

CO2 injection and the cumulative oil production in the dataset used for ANN design #3.  

 

 
Figure 7-21: Cumulative CO2 Injection vs. Cumulative Oil Production Correlation for ANN Design #3 

 

Another direct correlation is between cumulative oil production and the product of well spacing 

and cumulative CO2 injection, Figure 7-22. An equation was used as an input while on the output 

the product of well spacing and cum. CO2 injection is provided.  
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Figure 7-22: Cum. Oil Production vs Well spacing* Cum. CO2 Injection for ANN Design #3 

 

 
Figure 7-23: Cum. Oil Production vs CO2 Injection Duration for ANN Design #3 

 

 

Final data manipulation techniques and functional links are in show in Table 7-12 and Table 7-13 

respectively.  
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Table 7-12: Final Data Manipulation Techniques for ANN Design #3 

Data Manipulation Location 

Ln(L1 Matrix Perm.+L2 Matrix Perm.) Inputs 

Ln(Fracture Perm.) Inputs 

Ln(Well Spacing) Inputs 

Ln(L1 Thickness + L2 Thickness) Inputs 

1/Ln(Well Spacing) Outputs 

 

Table 7-13: Final Functional Links for ANN Design #3 

Functional Links Location 

Ln(Well Spacing*Cum. CO2 Inj.) Inputs 

Pi - BHFP Inputs 

Well Spacing * (L1 Thickness + L2 Thickness) Inputs 

2E-4*Cum. CO2 Injection + 1,865.4 Inputs 

(Cum. CO2 Injection*Well Spacing+3E8)/231793 Inputs 

 

Design Error Analysis:  

This design is considered second generation and much superior to the previous designs. It adds 

more complexity and functionality through incorporating compositional fluid, relative 

permeability, and capillary pressure algorithms to account for any reservoir fluid within the 

provided ranges.  

This design surpasses previously constructed ANNs and sets a new benchmark for similar studies 

in terms of functionality and usability. Previous designs were limited to specific reservoir 

properties, fluid composition, relative permeability, and capillary pressure while this design is 

universal to all of these properties.  

The individual average overall errors and average errors post injection are reported on the blind 

testing cases. The average overall error and average error post injection for all the blind testing 

cases are reported in Table 7-14. Similar to ANN design #1 and ANN design #2, the average 

overall error is biased significantly by the early decline period which is completely insignificant.  
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Table 7-14: Average overall and post injection errors for all the blind testing cases for ANN design #3 

Avg Overall Error % 33.43 

Avg Error Post Inj % 2.86 

 

Figure 7-24 shows a point-by-point comparison between the actual monthly oil production rates 

and the ones predicted by the ANN. The black line represents the best scenario possible. The 

closer the values from the black line, the better performance the ANN has.  

 

 
Figure 7-24: Sample blind test monthly oil rate comparison for ANN design #3 

 

 

The point by point comparison looks exaggerated and does not make sense if compared with the 

ANN design #2 point-by-point plot. ANN design #2 had much higher rates due to the dominance 

of the WAG technique in that design and the errors were masked by these high rates. On the other 

hand, ANN design #3 has low oil production rates contributed exclusively by continuous CO2. 
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For example, in Figure 7-24, the average difference of the red circles is around 30 STB, while the 

same difference in Figure 7-14 from ANN design #2 has a difference of around 3,000 STB. 

This design is a major milestone in this research. The strength of this ANN is embedded in its 

flexibility to accommodate a wide range of reservoir fluids, relative permeability data and 

capillary pressure data under any reservoir temperature. This design was enhanced and 

manipulated many times in order to come out with the current version as it has all the final 

features developed.  

This ANN design is a successful one, despite the fact that it has a large error on the early decline 

period which is completely insignificant for this project as the ANN will be used post injection to 

predict oil production. This final ANN design is considered very reliable based on: 

1) Average error post injection per blind testing case. 

2) Overall shape and trend of each blind testing case.  
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Modified ANN Design # 3B: Continuous CO2 Injection, Universal Fluid Composition, Universal 

Rock Properties, Universal Relative Permeability, Universal Capillary Pressure 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 7-15: Design #3B network Parameters 

ANN Type Feed-Forward with Back Propagation 

# of Hidden Layers 5 

# of Neurons in Hidden Layers [55,50,111,35,30] 

Transfer Functions Logsig, Logsig, Tansig, Logsig, Logsig 

# Input Neurons 97 

# outputs Neurons 144 

ANN Target Tolerance 5.E-05 

Total Number of Cases 2000 

% Train Cases 85 

% Validation Cases 10 

% Blind Testing Cases 5 

 

Res. Properties 

Km ,Kf , ϕm, ϕf, 
Thickness 

Fracture Spacing 

Res. Pressure 

Res. Temp 

Res. SW 

BHFP 

Relative Perm 

Cap. Pressure 

Fluid Properties 

Components: 

H2S, CO2, N2, 
C1, C2, C3, IC4 

NC4, IC5, NC5 

FC6, FC7, FC8, 

FC9, FC10, 

FC11, FC12, 

FC13, FC14, 

FC15, FC16, 

FC17, FC18, 

FC19, FC20 

 

Injection Design 

CO2 Inj. Rate 

CO2 Inj. Duration 

 

Res. Performance 

Oil Production. 

Gas Production. 

 

 

Figure 7-25: Forward ANN design #3B inputs and outputs 
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Previous ANN design #3 was the first of its kind where it incorporated various universal 

parameters and provided a reliable match. However, the target of ANN design #3 was limited to 

oil production. So, the aim of design #3B is to enhance the previous design and provide a match 

for gas production profile on top of the oil production profile.  

ANN Design Parameter Ranges:  

Table 7-16: Design Parameters for ANN Design #3b 

 

# Parameter Min Max Units Notes

1 Gas Inection Rate 6.E+05 2.E+06 SCF

2 Reservoir Temperature 120 300 OF

3 Reservoir Pressure 2000 6000 psia

4 Fracture Spacing 10 40 Grid/Spacing

5 Matrix Porosity 10 40 %

6 H2S Composition 0.01 0.5 %

7 CO2 Composition 0.5 5 %

8 N2 Composition 0.5 2 %

9 C1 Composition 10 50 %

10 C2 Composition 10 30 %

11 C3 Composition 0.5 10 %

12 IC4 Composition 0.5 10 %

13 NC4 Composition 0.5 10 %

14 IC5 Composition 0.5 10 %

15 NC5 Composition 0.5 10 %

16 FC6 Composition 0.5 10 %

17 FC7 Composition 0.5 10 % Lumps into C7+

18 FC8 Composition 0 10 %

19 FC9 Composition 0 10 %

20 FC10 Composition 0 10 %

21 FC11 Composition 0 10 %

22 FC12 Composition 0 10 %

23 FC13 Composition 0 10 %

24 FC14 Composition 0 10 %

25 FC15 Composition 0 10 %

26 FC16 Composition 0 10 %

27 FC17 Composition 0 10 %

28 FC18 Composition 0 10 %

29 FC19 Composition 0 10 %

30 FC20 Composition 0 10 %

31 C7+ Composition 0 1 % Lumped Composition

32 BHFP 400 4500 psia

33 Krw at Irreducible Oil 0.4 1 Krwiro

34 Kro at Connate Water 0.4 1 Krocw

35 Krog at Connate Gas 0.4 1 Krogcg

36 Krg at connate Liquid 0.4 1 Krgcl
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Design Description:  

Same as ANN design #3.  

Design Reservoir Fluids:  

Same as ANN design #3.  

Design Analysis and Results 

While this design retained the main structure and database of the original design, it required a 

complete reconfiguration of all the hidden layers and number of hidden neurons in order to match 

the oil and gas production profiles. Also in this design, the output data for the early decline and 

shut-in periods were removed which lowered the number of output neurons to almost half of what 

it used to be. Varying monthly CO2 injection rate while it added flexibility to the ANN, it also 

contributed significantly to fluctuations in oil productions, so ANN design #3B runs at a fixed 

monthly CO2 injection rate. 

37 Connate Water Saturation 0.05 0.4 % Swcon

38 Critical Water Saturation 0.05 0.4 % Swcrit = Swcon

39 Residual Oil for Water-Oil 0.05 0.4 % Sorw

40 Irreducible Oil for Water-Oil 0.05 0.4 % Soirw = Sorw

41 Residual Oil for Gas-Liquid 0.05 0.3 % Sorg

42 Irreducible Oil for Gas-Liquid 0.05 0.3 % Soirg = Sorg

43 Connate Gas Saturation 0.05 0.3 % Sgcon

44 Critical Gas Saturation 0.05 0.3 % Sgcrit = Sgcon

45 RelPerm Expononents 0.7 4 Nw, Now, Nog, and Ng

46 Oil-Water Entry Capillary Pressure 5 30 psia

47 Oil-Gas Entry Capillary Pressure 5 30 psia

48 Gamma for Capillary Pressure 1 10

49 Initial Reservoir Water Saturation 10 40 %

50 Oil Production Profile 72 Desired Oil Profile

51 Gas Production Profile 72 Desired Gas Profile

52 Well Spacing 17 217 Acres

53 Fracture Perm 1000 10000 md Target

54 Layer 1 Matrix Perm 20 200 md Target

55 Layer 2 Matrix Perm 20 200 md Target

56 Layer 1 Thickness 20 70 ft Target

57 Layer 2 Thickness 20 70 ft Target

58 Production Layers 1 2 Production from L1, or L2 Target
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Similar to ANN design #3, this design incorporates new features to accommodate a wide range of 

reservoir properties, fluid compositions, capillary pressure, and relative permeability. This design 

was capable of predicting oil and gas production profiles for the blind testing cases with a low 

degree of error.  

For miscible injection at fixed CO2 injection rate, around 2000 simulation cases were needed to 

build the dataset of which. 85% were used for training, 10% for validation, and 5% were used 

later for blind testing. However, after quality-checking the data, over half of the data were 

removed as they didn’t run, didn’t produce post injection, or stopped in the middle of simulation. 

Around 700 cases were used to build the dataset for this ANN. 

The following plots are samples of the blind tests and they provide an overall performance of the 

ANN. Note that the plots have different scale to reflect all the various inputs of the blind testing 

data. (Note: Appendix G shows all of the blind testing cases.)  

 
Figure 7-26: Oil and Gas Production for Blind Test Cases 1 & 2 

 

Oil Err =4.05% 

 

 

Gas Err =5.03% 
 

 

Oil Err =10% 

 

 

Gas Err =10% 
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Figure 7-27: Oil and Gas Production for Blind Test Cases 3 & 4 

 
Figure 7-28: Oil and Gas Production for Blind Test Cases 5 & 6 

Gas Err =2.01% 

 

 

Gas Err =3.56% 

 

 

Gas Err =2.24% 

 

 

Gas Err =3.75% 

 

 

Oil Err =1.47% 
 

 

Oil Err =0.03% 
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Oil Err =1. 97% 
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Figure 7-29: Oil and Gas Production for Blind Test Cases 7 & 8 

 
Figure 7-30: Oil and Gas Production for Blind Test Cases 9 & 10 
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Figure 7-31: Oil and Gas Production for Blind Test Cases 11 & 12 

 

 
Figure 7-32: Oil and Gas Production for Blind Test Cases 13 & 14 

Gas Err =5.25% 

 

 

Gas Err =3.65% 

 

 

Gas Err =7.48% 

 

 

Gas Err =3.79% 

 

 

Oil Err =4.65% 
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ANN design Functional Links:  

Similar to ANN design #3 required a lot of fine tuning and improvements until it reached the final 

stage. In this design, similar functional links and data manipulation techniques to ANN design #3 

were used. Figure 7-33  shows a general correlation between the amount of CO2 injection and the 

cumulative oil and gas production in the dataset used for ANN design #3B.  

 

Figure 7-33: Cumulative CO2 Injection vs. Cumulative Oil and Gas Productions for ANN Design #3B 

 

Another direct correlation is between cumulative oil production and the product of well spacing 

and cumulative CO2 injection, Figure 7-34. An equation was used as an input while on the output 

the product of well spacing and cum. CO2 injection is provided. Error! Reference source not 

ound.Figure 7-34 shows another direct correlation between cumulative oil and gas productions 

and the injection duration. 
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Figure 7-34: Cum. Oil and Gas Productions vs Well spacing* Cum. CO2 Injection for ANN Design #3B 

 

 
Figure 7-35: Cum. Oil and Gas Production vs CO2 Injection Duration for ANN Design #3B 

 

Final data manipulation techniques and functional links are shown in Table 7-17 and Table 7-18 

respectively.  
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Table 7-17: Final Data Manipulation Techniques for ANN Design #3B 

Data Manipulation Location 

Ln(L1 Matrix Perm.+L2 Matrix Perm.) Inputs 

Ln(Fracture Perm.) Inputs 

Ln(Well Spacing) Inputs 

Ln(L1 Thickness + L2 Thickness) Inputs 

1/Ln(Well Spacing) Outputs 

Gas Oil Ratio Outputs 

Removed Early Decline and Shut-in Data Outputs 

 

Table 7-18: Final Functional Links for ANN Design #3B 

Functional Links Location 

Ln(Well Spacing*Cum. CO2 Inj.) Inputs 

Pi - BHFP Inputs 

Well Spacing * (L1 Thickness + L2 Thickness) Inputs 

Well Spacing/Cumulative CO2 Injection Inputs 

2E-4*Cum. CO2 Injection + 1,865.4 Inputs 

(Cum. CO2 Injection*Well Spacing+3E8)/231793 Inputs 

Cum. CO2 Injection*((L1 Matrix Perm+L2 Matrix 

Perm)+ Matrix Porosity + Fracture Perm)/Fracture 

Spacing 

Inputs 

Ln(L1 Matrix Perm+L2 Matrix Perm)+ Matrix 

Porosity + 

 Fracture Perm)/Fracture Spacing 

Inputs 

 

 

Design Error Analysis:  

This design is very similar to its basic version (ANN design #3) with the a few minor differences. 

The modified design provides reservoir performance in terms of oil and gas, but on the account of 

the varying monthly injection rate that was present in the previous designs.  

The modified design pushes the limit even more by providing gas production on top of the oil 

production. The individual average overall errors and average errors post injection are reported on 
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the blind testing cases. The average overall oil and gas error and average error post injection for 

all the blind testing cases are reported in Table 7-19. This design is different from all the previous 

design in terms of removing all the early decline and shut-in data. So, the overall error for oil and 

gas are for the period post-injection.  

 

Table 7-19: Average overall and post injection errors for all the blind testing cases for ANN design #3 

Avg Oil Overall Error % 3.63 

Avg Gas Overall Error % 4.37 

 

One of the blind testing cases, Figure 7-26: Oil and Gas Production for Blind Test Cases 1 & 2 

was assigned a flat error of 10% for oil and gas. While the ANN predicts the rest of the profile 

reliably, the early prediction period is completely wrong. This behavior was not seen in any of the 

other blind testing cases. 

Figure 7-36 and Figure 7-37 show the point-by-point comparison between the actual monthly oil 

and gas production rates and the ones predicted by the ANN. The black lines represent the best 

scenario possible. The closer the values from the black line, the better performance the ANN has.  

 
Figure 7-36: Sample blind test monthly oil rate comparison for ANN design #3B 
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Figure 7-37: Sample blind test monthly gas rate comparison for ANN design #3B 

 

 

The point by point comparison plots look very good for both oil and gas productions. The oil 

production profile deteriorated a little bit, but the whole ANN gained good gas production 

capabilities. Similar to ANN design #3, the oil production rates are small, so the oil plot looks 

exaggerated.  

Final ANN designs have much more input neurons than initial designs which required a much 

higher number of cases to construct the database. The higher number of cases is essential so the 

problem does not become ill-posed which would impact the accuracy and validity of the final 

ANN designs.  

This design is another major milestone in this research. The strength of this ANN is embedded in 

its flexibility to accommodate a wide range of reservoir fluids, relative permeability data and 

capillary pressure data under any reservoir temperature. This design was enhanced and 

manipulated many times in order to come out with the current version as it has all the final 

features developed.  
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Design ANN-Weight Analysis:  

In order to understand the ANN and its response to various neurons throughout the network, some 

ANN-weight analyses were made. This weight analysis process is studied through looking at the 

weight of all the neurons from the input layer to the output layer of the configured ANN structure. 

Figure 7-38 shows an overview of all the weights in forward ANN design #3B.  

 
Figure 7-38: ANN design #3B Hinton Diagram between all the layers 
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The purpose of this procedure is to identify neurons that have weights close to zero so that these 

neurons can actually be taken out to optimize the network configuration. The weight effect of 

each neuron is displayed by a magnitude and a sign which is represented by green (+) or red (-).  

 
Figure 7-39: ANN design #3B Hinton Diagram between input and first layer neurons 
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Figure 7-39 shows the Hinton diagram between input and first hidden layer neurons. No apparent 

trend can be seen by the weights between these layers.  

 
Figure 7-40: ANN design #3B Hinton Diagram between first and second layer neurons 

Similar to Figure 7-39, Figure 7-40, Figure 7-41, and Figure 7-42  show the Hinton diagrams 

between the following layers. No apparent trends are observed by the weights between these 

layers. Note that the Hinton diagrams look different due to variations in number of neurons in 

each layer.  
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Figure 7-41: ANN design #3B Hinton Diagram between second and third (Above) and between third 

and fourth (Below) layer neurons 
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Figure 7-42: ANN design #3B Hinton Diagram between fourth and output layer neurons 
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In basic ANN configurations, weight influence could be observed and if there are no hidden 

layers in that particular ANN configuration, the weight influence between input and output 

neurons can be constructed. However, in complex configurations like in this research, such 

exercise could not help identify neurons of higher or lower weight influence.  
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6.2 First Inverse Artificial Neural Networks Proxy (History Match) 

The first inverse ANN development in this project provides insights regarding reservoir 

properties and is referred to in this project as the history match ANN. This inverse proxy uses 

often known reservoir properties, desired injection design parameters, and oil production profile 

in order for the proxy to assess and predict uncertain reservoir parameters.  

This design is used when a desired oil production profile is sought based on economic analysis 

that is set by the user. The production profile is then used as an input parameter as well as the 

known reservoir and parameters for a specific injection scheme.  

 

ANN Design # 1: Continuous CO2 Injection, Universal Fluid Composition, Miscible, Universal 

Rock Properties, Universal Relative Permeability, Universal Capillary Pressure 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 7-43: Universal First Inverse ANN Inputs and Outputs 
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Note that in the development of the 1
st
 inverse ANN, it was not essential to develop starter initial 

designs as initial forward ANN designs. A lot of lessons were learned from the forward ANN 

designs regarding data configuration, manipulation and generation as well as ANN construction.  

This inverse ANN design is the first inverse proxy to the ANN design #3B. This design is the 

broadest and is inclusive of all the previous designs when it comes to reservoir rock properties, 

fluid properties, relative permeability data, and capillary pressure data.   

Table 7-20:1st Inverse Design network parameters 

ANN Type Feed-Forward with Back Propagation 

# of Hidden Layers 3 

# of Neurons in Hidden Layers [35,15, 40] 

Transfer Functions Tansig, Tansig, Logsig 

# Input Neurons 52 

# outputs Neurons 10 

ANN Target Tolerance 5.E-05 

Total Number of Cases 2000 

% Train Cases 95 

% Validation Cases 2 

% Blind Testing Cases 3 

 

 

Design Description:  

This is a 20x20x2 reservoir model with grid dimension of 44x44 feet. The 44x44 feet grids were 

selected even though the 30x30 showed less grid size error, however, the improvements over the 

44x44 were very minor but on the expense of run time. The 30x30 grids ran 25% slower than the 

44x44 feet grids. The grid size selection was studied in previous sections.  

The model is a dual porosity, dual permeability fractured model using Gilman and Kazemi shape 

factor. In this design, CO2 is continuously injected from a dedicated well, while production is 

done from another dedicated production well.  
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ANN Design Parameter Ranges:  

Table 7-21: 1st Inverse ANN Design Parameters 

 

 

 

# Parameter Min Max Units Notes

1 Gas Inection Rate 6.E+05 2.E+06 SCF

2 Reservoir Temperature 120 300 OF

3 Reservoir Pressure 2000 6000 psia

4 Fracture Spacing 10 40 Grid/Spacing

5 Matrix Porosity 10 40 %

6 H2S Composition 0.01 0.5 %

7 CO2 Composition 0.5 5 %

8 N2 Composition 0.5 2 %

9 C1 Composition 10 50 %

10 C2 Composition 10 30 %

11 C3 Composition 0.5 10 %

12 IC4 Composition 0.5 10 %

13 NC4 Composition 0.5 10 %

14 IC5 Composition 0.5 10 %

15 NC5 Composition 0.5 10 %

16 FC6 Composition 0.5 10 %

17 FC7 Composition 0.5 10 % Lumps into C7+

18 FC8 Composition 0 10 %

19 FC9 Composition 0 10 %

20 FC10 Composition 0 10 %

21 FC11 Composition 0 10 %

22 FC12 Composition 0 10 %

23 FC13 Composition 0 10 %

24 FC14 Composition 0 10 %

25 FC15 Composition 0 10 %

26 FC16 Composition 0 10 %

27 FC17 Composition 0 10 %

28 FC18 Composition 0 10 %

29 FC19 Composition 0 10 %

30 FC20 Composition 0 10 %

31 C7+ Composition 0 1 % Lumped Composition

32 BHFP 400 4500 psia

33 Krw at Irreducible Oil 0.4 1 Krwiro

34 Kro at Connate Water 0.4 1 Krocw

35 Krog at Connate Gas 0.4 1 Krogcg

36 Krg at connate Liquid 0.4 1 Krgcl

37 Connate Water Saturation 0.05 0.4 % Swcon

38 Critical Water Saturation 0.05 0.4 % Swcrit = Swcon

39 Residual Oil for Water-Oil 0.05 0.4 % Sorw

40 Irreducible Oil for Water-Oil 0.05 0.4 % Soirw = Sorw
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NOTE: Oil and gas production profiles were also provided as part of the input parameters. The oil 

and gas production profiles used here were generated in the previous ANN designs #3 and 3B. 

This design shares the same dataset that forward ANN design #3 and #3B used but with different 

data configuration that suits the nature of the 1
st
 inverse model.  

Design Reservoir Fluids:  

The 1
st
 inverse design contains all the unique and new features of its forward ANN design 

(forward ANN design #3). This design uses a compositional algorithm that changes reservoir 

fluid composition in every case inside the data set. The algorithm takes into account components 

up to heavy hydrocarbon 20 (FC20), and then lumps all the heavy components above C7 as C7+.  

Design Analysis and Results 

One of the main observations regarding the inverse design configurations is that, they are actually 

more complex than the forward ANN designs. Initial simple ANN configuration would not come 

close to matching and required a lot of functional links and data manipulation. Even with the 

extensive use of functional links and data manipulation, the 1
st
 ANN design at its best form had 

some errors as high as 20% for some of the parameters. There are a few reasons that contributed 

41 Residual Oil for Gas-Liquid 0.05 0.3 % Sorg

42 Irreducible Oil for Gas-Liquid 0.05 0.3 % Soirg = Sorg

43 Connate Gas Saturation 0.05 0.3 % Sgcon

44 Critical Gas Saturation 0.05 0.3 % Sgcrit = Sgcon

45 RelPerm Expononents 0.7 4 Nw, Now, Nog, and Ng

46 Oil-Water Entry Capillary Pressure 5 30 psia

47 Oil-Gas Entry Capillary Pressure 5 30 psia

48 Gamma for Capillary Pressure 1 10

49 Initial Reservoir Water Saturation 10 40 %

50 Oil Production Profile 72 Desired Oil Profile

51 Gas Production Profile 72 Desired Gas Profile

52 Well Spacing 17 217 Acres

53 Fracture Perm 1000 10000 md Target

54 Layer 1 Matrix Perm 20 200 md Target

55 Layer 2 Matrix Perm 20 200 md Target

56 Layer 1 Thickness 20 70 ft Target

57 Layer 2 Thickness 20 70 ft Target

58 Production Layers 1 2 Production from L1, or L2 Target
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to the complexity of this ANN. First, there were no clear direct correlations between any of the 

input parameters and the target output parameters as can be seen in Figure 7-44 and Figure 7-45.  

 
Figure 7-44:L1 Thickness vs. cumulative oil and gas productions relationship 

 
Figure 7-45: L1 Thickness vs. cumulative oil and gas productions relationship 

Second, most of the target output parameters didn’t have a major impact on the overall 

performance or the injection process. Finally, the output parameters are not related to each other 

or follow a certain trend or behavior as is the case for the oil production profile for example. So, 

the output surface for this ANN is very rough and uneven.  
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Around 2000 simulation cases were used to build the data set. 95% of the cases were used to train 

the network, 2% for validation, and the last 3% were used later for a blind test. However, after 

quality-checking the data, over half of the data were removed as they didn’t run, didn’t produce 

post injection, or stopped in the middle of simulation. Around 700 cases were used to build the 

dataset for this ANN. The following tables are samples of the blind tests and they provide an 

overall performance of the ANN. (Note: Appendix H shows all of the 10 blind testing cases.)  

Note that CO2 injection rate parameter was replaced with cumulative CO2 injection and CO2 

injection duration as they are more representative of the CO2 injection amount and has a direct 

correlation with the oil production and some other parameters. 

Table 7-22 shows the output of the first blind testing case in comparison with the actual data.  

 
Table 7-22: 1st Inverse Blind Case #1 Output 

Blind Test Case 1 Output Comparison 

Property Actual ANN Error 

Frac Perm, md 5,343 4,954 7.28 

L1 Matrix Perm, md 175 191 9.14 

L2 Matrix Perm, md 35 45 28.57 

L1 Thickness, ft 64 60 6.25 

L2 Thickness, ft 40 34 15 

 

The first blind test is one of the best cases for the first inverse ANN. Most of the parameters were 

predicted by the ANN within an acceptable error, except for the thickness of the second layer.  

Table 7-23 shows the output of the second blind testing case in comparison with the actual data.  

 
Table 7-23: 1st Inverse Blind Case #2 Output 

Blind Test Case 2 Output Comparison 

Property Actual ANN Diff 

Frac Perm, md 9681 8063 16.71 

L1 Matrix Perm, md 109 97 11.01 

L2 Matrix Perm, md 124 103 16.94 

L1 Thickness, ft 55 49 10.91 

L2 Thickness, ft 37 45 21.62 
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The second blind test is one of the in-between cases for the first inverse ANN. Most of the 

parameters were predicted by the ANN at or around the acceptable error of 15% except for the 

thickness of the second layer.  

Table 7-24 shows the output of the second blind testing case in comparison with the actual data.  

 
Table 7-24: 1st Inverse Blind Case #3 Output 

Blind Test Case 3 Output Comparison 

Property Actual ANN Diff 

Frac Perm, md 7924 8349 5.36 

L1 Matrix Perm, md 33 45 36.36 

L2 Matrix Perm, md 165 140 15.15 

L1 Thickness, ft 32 40 25.00 

L2 Thickness, ft 38 33 13.16 

 

The third blind test is also one of the in-between cases for the first inverse ANN. Some of the 

parameters were predicted by the ANN at or around the acceptable error of 15% except for the 

thickness of the first layer and the matrix permeability of the first layer.  

 

ANN design Functional Links:  

As previously mentioned, this design would not get a close match without the use of functional 

links. Initial configurations without functional links had over 100% error for most of the 

parameters.  

Similar to forward ANN design #3B required a lot of fine tuning and improvements until it 

reached the final stage. In this design, similar functional links and data manipulation techniques 

to forward ANN design #3 and #3B were used.  

Table 7-25 shows the final data manipulation techniques used in this inverse ANN. Table 7-26 

lists the final functional links used for the first inverse ANN design.  

 

 



 

114 

 

Table 7-25: Final Data manipulation techniques for 1st Inverse ANN#1 

Data Manipulation Location 

Cumulative CO2 Injection Output 

Cumulative Gas Production Output 

Cumulative Oil Production Output 

Removed Early Decline and Shutin-Data Input 

 

Notice that Table 7-26 shows some of the functional links displaying some constants. Theses 

constants are not random numbers and were generated as part of a complex correlation that relate 

cumulative production and injection to some of the target output parameters as similarly used in 

previous forward ANN designs.  

Table 7-26: Final Functional Links used for 1st Inverse ANN 

Functional Links Location 

Ln(Gas Oil Ratio) Output 

Ln(Well Spacing*Cum. CO2 Inj.) Inputs 

Pi - BHFP Inputs 

(L1 Thickness + L2 Thickness)*Frac Perm Inputs 

Well Spacing/Cumulative CO2 Injection Inputs 

(L1 Matrix Perm+L2 Matrix Perm)* 

Matrix Porosity + Fracture Perm 
Output 

Cum. CO2 Injection/Fracture Spacing Inputs 

4932*Cum Oil Prod-4E6/Cum. Gas Inj. Inputs 

374573*Cum Oil Prod+2E8/Cum. Gas Inj. Inputs 

Ln(408896*Cum Oil Prod+1E8/Cum. Gas Inj.) Inputs 

 

 

Design Error Analysis:  

The first inverse ANN development in this project provides insights regarding reservoir 

properties and is referred to in this project as the history match ANN. This inverse proxy uses 

often known reservoir properties, desired injection design parameters, and oil production profile 

in order for the proxy to assess and predict uncertain parameters.  
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This design is used when a desired oil production profile is sought based on economic analysis 

that is set by the user. The production profiles are then used as input parameters as well as the 

known reservoir and parameters for a specific injection scheme.  

The first inverse ANN proxy couldn’t be configured the same way the forward prediction ANN.  

The impact of all the input parameters on the output parameters was studied and their 

relationships were used in a trial and error way as part of the base configuration of the first 

inverse ANN.  

The errors for all the blind testing cases are reported in Table 7-27.  

Table 7-27: 1st Inverse ANN Average Blind Test Error 

Blind Test Errors 

Property Avg. Error 

Fracture Perm 33.34 

L1 Matrix Perm 24.55 

L2 Matrix Perm 19.21 

L1 Thickness 14.11 

L2 Thickness 18.31 

 

 

Figure 7-46, Figure 7-47, and Figure 7-48 show the point-by-point comparison between the actual 

fracture perm, L1 matrix perm, L2 matrix perm, L1 thickness, and L2 thickness and predicted 

values by the ANN. The black lines represent the best scenario possible. The closer the values 

from the black line, the better performance the ANN has. In case of fracture permeability, some 

of the errors were masked by the huge range for this specific property which goes between 1,000 

md all the way to 10,000 md.  
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Figure 7-46: First Inverse ANN Performance Plot for Fracture Permeability 

 
Figure 7-47: First Inverse ANN Performance Plot for L1 & L2 Matrix Permeabilities 

 
Figure 7-48: First Inverse ANN Performance Plot for L1 & L2 Thicknesses 

  

0

5000

10000

0 5000 10000

A
N

N
 

Actual 

Fracture Perm 

0

50

100

150

200

0 50 100 150 200

A
N

N
 

Actual 

L1 Matrix Perm 

0

50

100

150

200

0 50 100 150 200

A
N

N
 

Actual 

L2 Matrix Perm 

0

20

40

60

80

0 20 40 60 80

A
N

N
 

Actual 

L1 Thickness 

0

20

40

60

80

0 20 40 60 80

A
N

N
 

Actual 

L2 Thickness 



 

117 

 

6.3 Second Inverse Universal Artificial Neural Networks Proxy (Injection Design) 

The second inverse ANN design, also known as the injection design ANN, uses the oil production 

profile as well as reservoir properties that are supplied by the user to provide a proper injection 

design scheme.  

This design helps the engineer to study and evaluate various injection designs for a desired oil 

production profile.  

 

ANN Design # 1: Continuous CO2 Injection, Universal Fluid Composition, Miscible, Universal 

Rock Properties, Universal Relative Permeability, Universal Capillary Pressure 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7-49: Universal Second Inverse ANN Inputs and Outputs 
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The second inverse ANN design is the second inverse proxy to the ANN design #3B. This design 

is the broadest and is inclusive of all the previous designs when it comes to reservoir rock 

properties, fluid properties, relative permeability data, and capillary pressure data.  Table 7-28 

shows the second inverse network parameters used in this ANN configuration.  

 

Table 7-28: Second Inverse Design Network Parameters 

ANN Type Feed-Forward with Back Propagation 

# of Hidden Layers 3 

# of Neurons in Hidden Layers [30,45, 20] 

Transfer Functions Logsig, Tansig, Logsig 

# Input Neurons 70 

# outputs Neurons 3 

ANN Target Tolerance 5.E-05 

Total Number of Cases 2000 

% Train Cases 85 

% Validation Cases 10 

% Blind Testing Cases 5 

 

Design Description:  

This is a 20x20x2 reservoir model with grid dimension of 44x44 feet. The grid size selection was 

studied in previous sections.  

The model is a dual porosity, dual permeability fractured model using Gilman and Kazemi shape 

factor. In this design, CO2 is continuously injected from a dedicated well, while production is 

done from another dedicated production well.  
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ANN Design Parameter Ranges:  

Table 7-29: 2nd Inverse ANN Design Parameters 

 

# Parameter Min Max Units Notes

1 Reservoir Temperature 120 300 OF

2 Reservoir Pressure 2000 6000 psia

3 H2S Composition 0.01 0.5 %

4 CO2 Composition 0.5 5 %

5 N2 Composition 0.5 2 %

6 C1 Composition 10 50 %

7 C2 Composition 10 30 %

8 C3 Composition 0.5 10 %

9 IC4 Composition 0.5 10 %

10 NC4 Composition 0.5 10 %

11 IC5 Composition 0.5 10 %

12 NC5 Composition 0.5 10 %

13 FC6 Composition 0.5 10 %

14 FC7 Composition 0.5 10 %

15 FC8 Composition 0 10 %

16 FC9 Composition 0 10 %

17 FC10 Composition 0 10 %

18 FC11 Composition 0 10 %

19 FC12 Composition 0 10 %

20 FC13 Composition 0 10 %

21 FC14 Composition 0 10 %

22 FC15 Composition 0 10 %

23 FC16 Composition 0 10 %

24 FC17 Composition 0 10 %

25 FC18 Composition 0 10 %

26 FC19 Composition 0 10 %

27 FC20 Composition 0 10 %

28 C7+ Composition 0 1 % Lumped Composition

29 BHFP 400 4500 psia

30 Krw at Irreducible Oil 0.4 1 Krwiro

31 Kro at Connate Water 0.4 1 Krocw

32 Krog at Connate Gas 0.4 1 Krogcg

33 Krg at connate Liquid 0.4 1 Krgcl

34 Connate Water Saturation 0.05 0.4 % Swcon

35 Critical Water Saturation 0.05 0.4 % Swcrit = Swcon

36 Residual Oil for Water-Oil 0.05 0.4 % Sorw

37 Irreducible Oil for Water-Oil 0.05 0.4 % Soirw = Sorw

38 Residual Oil for Gas-Liquid 0.05 0.3 % Sorg

39 Irreducible Oil for Gas-Liquid 0.05 0.3 % Soirg = Sorg

40 Connate Gas Saturation 0.05 0.3 % Sgcon

41 Critical Gas Saturation 0.05 0.3 % Sgcrit = Sgcon

42 RelPerm Expononents 0.7 4 Nw, Now, Nog, and Ng

43 C7+ Specific Gravity 0 20

44 Oil-Water Entry Capillary Pressure 5 30 psia

45 Oil-Gas Entry Capillary Pressure 5 30 psia

46 Gamma for Capillary Pressure 1 10

47 Initial Reservoir Water Saturation 10 40 %

Lumps into C7+
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This second inverse ANN design shares the same dataset that the first inverse and forward ANN 

design #3B used.  

 

Design Reservoir Fluids:  

The 2
nd

 inverse design contains all the unique and new features of its forward ANN design 

(forward ANN design #3B). This design uses a compositional algorithm that changes reservoir 

fluid composition in every case inside the data set. The algorithm takes into account components 

up to heavy hydrocarbon 20 (FC20), and then lumps all the heavy components above C7 as C7+.  

 

Design Analysis and Results 

The 2
nd

 inverse design for the forward ANN design #3 could not be developed the same way the 

forward and 1
st
 inverse designs did. One of the main reasons why that could not be achieved is 

due to the way the data was designed for the problem that is at hand. Initially, when the forward 

prediction model was developed, it was developed to allow for gas injection rate to vary every 

month between a huge gas injection range. The same flexibility that allowed gas injection rate to 

vary per month, created a very rough injection design surface with very sharp edges that is 

extremely difficult to correlate to. So, to overcome this issue, the target of this ANN design 

would be the cumulative gas injection rather than the monthly gas injection rate.  

Around 2000 simulation cases were used to build the data set. 85% of the cases were used to train 

the network, 10% for validation, and the last 5% were used later for a blind test. Table 7-30 

48 Production Layers 1 3 Production from L1, or L2

49 Oil Production Profile Profile Output Parameters

50 Gas Production Profile Profile Output Parameters

51 Well Spacing 17 217 Acres Target

52 Cumulative CO2 Injection SCF Target

53 CO2 Injection Duration Days Target

72

72
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through Table 7-32 show a sample of the blind testing cases. (Note: Appendix I shows all of the 

blind testing cases.)   

Table 7-30: Blind Test # 1 and Blind Test # 2 for 2nd Inverse ANN 

  Blind T#1 Blind T#2 

  Actual ANN Error Actual ANN Error 

Cum. Gas Inj., MMSCF 57.58 57.35 0.40 10.00 10.15 1.50 

Injection Duration, D 46.00 37.58 18.30 15.00 12.69 15.40 

Well Spacing, Acres 59.00 64.89 9.98 37.00 32.74 11.51 

 

The first two blind tests show good predictability for the second inverse ANN. The error looks 

inflated for the injection duration. The model does a good job predicting the injection design 

parameters, Table 7-30.  

Table 7-31: Blind Test # 3 and Blind Test # 4 for 2nd Inverse ANN 

  Blind T#3 Blind T#4 

  Actual ANN Error Actual ANN Error 

Cum. Gas Inj., MMSCF 8.14 7.52 7.62 27.6 27.97 1.34 

Injection Duration, D 5.00 3.091 38.18 14.00 16.93 20.93 

Well Spacing, Acres 27.00 32.34 19.78 34.00 40.72 19.76 

 

The second two blind tests show satisfactory predictability regardless of the reported high error. 

The reported error is high because the values predicted are low. The difference between actual 

injection duration of 5 days and predicted duration of 3 days is around 40%. However, this value 

is overly exaggerated for both blind tests in Table 7-31.  

Table 7-32: Blind Test # 5 and Blind Test # 6 for 2nd Inverse ANN 

  Blind T#5 Blind T#6 

  Actual ANN Error Actual ANN Error 

Cum. Gas Inj., MMSCF 8.79 13.13 49.37 30.81 32.66 6.00 

Injection Duration, D 6.00 12.51 108.50 18.00 21.74 20.78 

Well Spacing, Acres 31.00 29.88 3.61 45.00 50.38 11.96 

 

The third set of blind tests show a bad prediction and a good prediction cases. Blind test #5 is 

predicted wrong, while blind test #6 provides a good match, Table 7-32 
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ANN design Functional Links:  

Similar to the first inverse ANN, this design would not get a close match without the use of 

functional links. Initial configurations without functional links had over 100% error for most of 

the parameters.  

The second inverse ANN required a lot of fine tuning and improvements until it reached the final 

stage. In this design, similar functional links and data manipulation techniques to forward ANN 

design #3B and first inverse designs were used.  

 

 
Figure 7-50: Cum. CO2 Injection vs. Cum Oil and Gas Productions 

 

Figure 7-50 shows a direct correlation between the amounts of oil and gas produced to the 

amount of CO2 injected. On the same note, Figure 7-51 and Figure 7-52 show some trends 

between cumulative oil and gas productions CO2 injection duration, and well spacing.  
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Figure 7-51: Injection Duration vs. Cum Oil and Gas Productions 

 

 
Figure 7-52: Well Spacing vs. Cum Oil and Gas Productions 

 

Table 7-33 shows the final data manipulation techniques used in this inverse ANN. Table 7-34 

lists the final functional links used for the first inverse ANN design.  
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Table 7-33: Final Data manipulation techniques for 2nd Inverse ANN 

Data Manipulation Location 

Removed Early Decline and Shut-in Data Input 

 

Notice that Table 7-34 shows some of the functional links displaying some constants. Theses 

constants are not random numbers and were generated as part of a complex correlation that relate 

cumulative production and injection to some of the target output parameters as similarly used in 

previous forward ANN designs.  

Table 7-34: Final Functional Links used for 2nd Inverse ANN 

Functional Links Location 

Pi - BHFP Inputs 

(L1 Thickness + L2 Thickness)*Frac Perm Inputs 

Ln(0.0018*Cum Oil Prod) Inputs 

Ln(0.0024*Cum Oil Prod) Inputs 

Ln(0.0036*Cum Oil Prod) Inputs 

Ln(0.0062*Cum Oil Prod) Inputs 

(63.521*Cum Oil Prod-89495)/Cum Oil Prod Inputs 

 Ln(0.0062*Cum Oil Prod)- 

Ln((63.521*Cum Oil Prod-89495)/Cum Oil Prod) Inputs 

Ln((63.521*Cum Oil Prod-89495)/Cum Oil Prod) Inputs 

 

Design Error Analysis:  

The second inverse ANN development in this project provides recommended continuous CO2 

injection design parameters and is referred to in this project as the injection design ANN. This 

second inverse proxy uses reservoir properties and the desired production profiles and in return, 

the ANN provides CO2 injection rate, CO2 injection duration, and the well spacing.  

This design is used to find appropriate injection design parameters for certain oil and gas 

production profiles for a given reservoir.  

The average overall errors for all the blind testing cases are reported in Table 7-35.  
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Table 7-35: 2nd Inverse ANN Average Blind Test Error 

Blind Testing Cases Overall Error 

Property Average Error 

Cum. Gas Inj., MMSCF 7.03 

Injection Duration, D 23.07 

Well Spacing, Acres 10.39 

 

 

Figure 7-53, Figure 7-54, and Figure 7-55 show the point-by-point comparison between the actual 

cumulative CO2 injection, CO2 injection duration, and well spacing and predicted values by the 

ANN. The black lines represent the best scenario possible. The closer the values from the black 

line, the better performance the ANN has. The overall blind tests show good model predictability 

for the three parameters. It is important to keep in mind that some of those high errors for 

injection duration are inflated errors for small numbers as previously displayed.  

 

 
Figure 7-53: Second Inverse ANN Performance Plot for Cumulative Injection 
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Figure 7-54: Second Inverse ANN Performance Plot for Injection Duration 

 

 

 
Figure 7-55: Second Inverse ANN Performance Plot for Well Spacing 
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Chapter 8  
 

RESERVOIR MECHANISM ANALYSIS 

This section shows the mechanism inside the reservoir for a sample run that was taken apart in 

details to ensure that the final ANN reflects our understanding of what goes inside the reservoir. 

One simulation case will be shown with all the components going inside the simulator and the 

output given from the simulator. It is important to note that these runs are taken from the data pile 

that were used in design ANN#3 that were generated using the data generation algorithm 

described in previous sections.  

The reservoir in hand has a good permeability in x and y direction. Vertical permeability is 

calculated as 1% of the horizontal permeability.  Therefore, fluid flow is limited in the vertical 

direction. Fracture permeability in this case act as major highways with their huge conductivity 

but extremely low storativity. Similar to vertical matrix permeability, vertical fracture 

permeability is also calculated as 1% of the fracture horizontal permeability. However, vertical 

fracture permeability is high allowing vertical fluids movement in the fracture networks.  

All the simulation cases in the data set start by depleting the reservoir from the specified reservoir 

pressure (4,672 psia) until the specified minimum bottom hole flowing pressure (4,172 psia) 

(BHFP). Miscibility is controlled through minimum BHFP where the reservoir is depleted until 

the desired miscibility conditions. The production well would then shut-in. CO2 injection would 

then start by injecting about 735,000 SCF/D while the producer is on the whole time. When 

pressure rises above the BHFP due to the injected gas, the producer starts to produce until 

operational conditions are reached and producer is then shut-in.  
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Reservoir Matrix Permeability, x, y, z respectively:  

 

   

Reservoir Fracture Permeability, x, y, z respectively:  

 

  

Reservoir Matrix Porosity and Fracture Porosity respectively:  

     

                    

Figure 8-1: Matrix and Fracture Properties for Sample Case 
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Table 8-1: Fluid Composition  

 

Figure 8-2: Phase Diagram for the Sample Case 

 

Other reservoir information:  

Initial Reservoir Pressure: 4,672 psia 

Initial Water Saturation: 29.9% 

Minimum Bottom Hole Pressure: 4,172 psia 

Continuous CO2 Injection Rate: 734,432 SCF/D  

Reservoir Production History: The reservoir starts production in 1/1/1986 and produced a 

maximum of 23698.1 bbls. The production well was then shut-in due to reaching operational 

condition (Minimum Bottom Hole Pressure of 4,172 psia). In 1/1/1990 EOR starts by injecting 

734,432 SCF/D CO2 continuously for 4 years.  

Figure 8-3 shows the oil production and gas injection profiles for the whole duration since the 

start of production in 1986 until the end of the EOR project in 1996 
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Figure 8-3: Oil and Gas Profiles for the Sample Case 
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Figure 8-4: Fracture Carbon Dioxide Saturation Starting at 1/1/1986, 1/1/1990, and 3/1/1990 

 

 

 

Figure 8-5: Fracture Carbon Dioxide Saturation Starting at 4/1/1986, 10/1/1990, and 11/1/1990 

 

 

 

Figure 8-6: Fracture Carbon Dioxide Saturation Starting at 12/1/1990, 1/1/1991, and 2/1/1991 
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Figure 8-7: Fracture Carbon Dioxide Saturation Starting at 3/1/1991, 4/1/1991, and 5/1/1991 

 

 

 

Figure 8-8: Fracture Carbon Dioxide Saturation Starting at 7/1/1991, 8/1/1991, and 9/1/1991 

 

 

 

Figure 8-9: Fracture Carbon Dioxide Saturation Starting at 10/1/1991, 11/1/1991, and 12/1/1991 
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Figure 8-4 through Figure 8-9 show the CO2 saturation inside the fractures. At 1/1/1986, reservoir 

pressure declines marking the start of the depletion period and then shut-in once minimum BHFP 

is reached. CO2 injection starts at 1/1/1990 and CO2 saturation starts to rise in the fractures. The 

saturation profile shows a gradual increase in the top layer followed by CO2 slumping through the 

highly conductive fractures to the bottom layer that pushes CO2 to the producer within 1 year of 

continuous injection. Fractures play different roles as they facilitate early breakthrough as well as 

exposing reservoir fluid to the injected CO2 fluid.  

In this research, continuous CO2 injection is done over a period of 4 years which is long enough 

for CO2 to breakthrough and reaches operational conditions for different reservoir types and 

fluids.  
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Chapter 9  
 

GRAPHICAL USER INTERFACE (GUI) 

The main objectives of this research were met when the different ANNs were 

successfully built and tested against the blind testing cases. However, the ANNs in their final 

forms are hardly useable by anyone other than the person who developed them. That is simply 

because of the way the ANNs are developed and the way the data were arranged and used. For 

example, if a user input a value in the first column for matrix porosity while that value is 

supposed to be set in another column, the outcome of the ANN will be completely wrong. So, in 

order to make these ANNs useable and accessible by any one, a graphical user interface was 

developed. The graphical user interface (GUI) uses the final forms of the forward, first inverse, 

and second inverse ANNs and present them to the user in a simple fill in the blanks type problem.  

This chapter highlights the major features in this project through the developed GUIs and 

provides a simple guide for the user.  

NOTE: The GUIs were built using MATLAB GUIDE (2012).  
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9.1.1 Main Interface Window 

The main interface window is the first window the user will see once the program is lunched. The 

user has 3 ANNs and 3 beneficial tools to choose between, Figure 9-1. The interface states next to 

each ANNs the type of data needed and it is as the following: 

1) Forward Model (TARGET: Oil and Gas Production Profiles):  

a. Rock Properties 

b. Fluid Composition 

c. Relative Permeability 

d. Capillary Pressure 

e. Injection Design 

2) First Inverse Model (TARGET: Uncertain Reservoir Properties): 

a. Known Rock Properties 

b. Fluid Composition 

c. Relative Permeability 

d. Capillary Pressure 

e. Injection Design 

f. Oil and Gas Production Profiles 

3) Second Inverse Model (TARGET: Injection Design Parameters) : 

a. Rock Properties 

b. Fluid Composition 

c. Relative Permeability 

d. Capillary Pressure 

e. Oil and Gas Production Profiles 
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The main interface window includes three essential tools to the engineer:  

1) Phase Behavior Model (PBM): Provides the phase diagram for any fluid.  

2) Lee’s C7+ Lumping Method: Lumps all compositions above C6 as part of C7+.  

3) Alston et al. MMP Correlation: Provides the user with a good estimate of the MMP for a 

particular fluid that is undergoing pure CO2 injection. However, Alston et al. (1983) 

reports around 7% error using the developed correlation.  

 

 

Figure 9-1: GUI Main Window 
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9.1.2 Forward ANN Window 

The forward ANN window is lunched from the main interface window. At first glance, the 

forward ANN GUI looks overwhelming. However, this actually highlights the strengths and 

flexibility of this ANN. For example, the user does not have to stick to any particular fluid, 

reservoir temperature, rock properties, relative permeability, capillary pressure, or injection 

design. Any reservoir engineer should be able to provide or estimate these data with ease.  

The forward ANN window has 156 input boxes, but the required data are only 52 for the base 

case. The other a104 input boxes were implemented to study uncertainty. Figure 9-2 highlights 

the inputs needed for the main case in question.  

 

 

Figure 9-2: Base Case Required Inputs for Forward ANN 
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Once all the inputs are provided, the user will hit “Run Forward ANN” button and the results will 

be displayed instantly on the right hand side of the window in the form of oil production rate, gas 

production rate, and cumulative productions, Figure 9-3. 

 

 

Figure 9-3: Forward ANN Output Area 

 

As mentioned previously, case #2 and case #3 were developed to add more functionality and 

usability to the ANN. The additional cases provide the engineer with sensitivity analysis on the 

fly. They also provide uncertainty analysis on any property or combined properties. The results 

are then displayed promptly on the right hand side of the GUI.  

Figure 9-4 shows an example of sensitivity analysis done on fracture permeability while Figure 

9-5 shows uncertainty analysis on some parameters. Notice the GUI plots the reference base case 

in black, while case #2 and case #3 are plotted in blue and red respectively.  
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Figure 9-4: Sensitivity Analysis on Fracture Permeability. All other properties are exactly like the base Case 
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Figure 9-5: Uncertainty Effect of Fracture Perm., L1 Matrix Perm, Matrix Porosity, Drainage Area, and BHFP 
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Additionally, two beneficial tools are integrated in all of the ANN windows. The first one resets 

all values and makes them equal to the base reference case. This is very important for sensitivity 

analysis and when running a single case, otherwise, the user would have to manually reset over 

100 values. The second tool is the C7+ lumping tool. So, the engineer would input the reservoir 

fluid compositions up to heavy hydrocarbon 20 and then press this button which would lump any 

component above C6 as part of C7+.  

Note: The tools implemented in all the windows work independently from all the other GUI 

windows.  

Figure 9-6 highlights the implemented tools in the forward, 1
st
 inverse, and 2

nd
 inverse ANN. 

 

 

Figure 9-6: Integrated Tools in All GUI Windows, Reset Button and C7+ Lumping Button 
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9.1.3 First Inverse ANN Window 

The first inverse ANN window is lunched from the main interface window. Similar to the forward 

ANN, the first inverse ANN GUI looks overwhelming at first glance.  

The first inverse window has 144 input boxes, but the required data are only 48 for the base case. 

The other 96 input boxes were implemented to study uncertainty. Figure 9-7 highlights the inputs 

needed for the main case in question. 

 

 

Figure 9-7: Base Case Required Inputs for 1st Inverse ANN 

 

Once all the inputs are provided, the user will hit “Run 1
st
 Inverse ANN” button and the results 

will be displayed instantly on the right hand side of the window. 
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Figure 9-8: 1st Inverse ANN Output Area 

Similar to forward ANN GUI window, case #2 and case #3 were developed to add more 

functionality and usability to the ANN. The additional cases provide the engineer with sensitivity 

analysis on the fly. They also provide uncertainty analysis on any property or combined 

properties. The results are then displayed promptly on the right hand side of the GUI.  

Figure 9-9 shows an example of sensitivity analysis done on reservoir pressure. The GUI reports 

the reference base case in black, while case #2 and case #3 are plotted in blue and red 

respectively.  

Figure 9-10 shows an example of uncertainty analysis done on reservoir pressure, matrix 

porosity, well spacing, and bottom hole flowing pressure. The GUI reports the reference base 

case in black, while case #2 and case #3 are plotted in blue and red respectively.  
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Figure 9-9: Sensitivity Analysis on Reservoir Pressure. All other properties are exactly like the base Case 
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Figure 9-10: Uncertainty Effect of Reservoir Pressure, Matrix Porosity, Drainage Area, and BHFP 
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9.1.4 Second Inverse ANN Window 

The second inverse ANN window is lunched from the main interface window. It follows the same 

general theme of the previous GUIs but with different objectives.  

The first inverse window has 153 input boxes, but the required data are only 51 for the base case. 

The other 102 input boxes were implemented to study uncertainty. Figure 9-11 highlights the 

inputs needed for the main case in question. 

 

 

Figure 9-11: Base Case Required Inputs for 2nd Inverse ANN 

 

Once all the inputs are provided, the user will hit “Run 2
nd

 Inverse ANN” button and the results 

will be displayed instantly on the right hand side of the window. 
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Figure 9-12: 2nd Inverse ANN Output Area 

 

Similar to previous ANN GUI windows, case #2 and case #3 were developed to add more 

functionality and usability to the ANN. The additional cases provide the engineer with sensitivity 

analysis on the fly. They also provide uncertainty analysis on any property or combined 

properties. The results are then displayed promptly on the right hand side of the GUI.  

Figure 9-13 shows an example of sensitivity analysis done on fracture permeability. The GUI 

reports the reference base case in black, while case #2 and case #3 are plotted in blue and red 

respectively.  

Figure 9-14 shows an example of uncertainty analysis done on fracture permeability, L1 matrix 

permeability, fracture spacing, matrix porosity, and bottom hole flowing pressure. The GUI 

reports the reference base case in black, while case #2 and case #3 are plotted in blue and red 

respectively.  
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Figure 9-13: Sensitivity Analysis on Fracture Permeability. All other properties are exactly like the base Case 
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Figure 9-14: Uncertainty Effect of Fracture Perm., L1 Matrix Perm, Fracture Spacing, Matrix Porosity and 

BHFP 
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Chapter 10  
 

SUMMARY AND CONCLUSIONS 

This research translates a complex, computationally-heavy, EOR project into a powerful 

uncertainty-equipped universal screening tool. In this research, complex correlations are develop 

for continuous CO2 injection in naturally fractured reservoir through the use of artificial neural 

networks. The correlations embedded in the artificial neural networks were developed gradually 

from a specific reservoir with specific reservoir fluid composition, capillary pressure, and relative 

permeability and ended with very complex artificial neural networks for a huge number of 

reservoirs with any reservoir fluid composition, any capillary pressure, and any relative 

permeability. These developed networks are second generation networks and are far superior to 

previous networks that were very limited to specific reservoir properties, fluids, capillary 

pressures, and relative permeabilities.  

The forward prediction network provides reservoir performance assessments on the fly rather 

than taking months using conventional methods. A particular reservoir might not be a good 

candidate for continuous carbon dioxide injection, but it shouldn’t take a very long time and 

exhausting every possible scenario to come up with that conclusion. The first inverse network 

helps the engineer history matching any reservoir by providing insights regarding uncertain 

reservoir parameters for various production profiles. The second inverse network aims to help the 

engineer in designing a proper injection scheme for any reservoirs and production profiles.  

The artificial neural networks along with established procedures  

The developed artificial neural networks mimic a two-well, two-layer, miscible compositional 

simulation model and provide reliable on the fly reservoir performance, history match insights, 

and injection design recommendations. A graphical user interface was developed encompassing 

all three networks as well as essential tools that are essential to the engineer when conducting a 
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carbon dioxide study. The GUI adds more to the project where it allows the engineer to study 

parameter sensitivity as well as the effect of uncertainty of single or multiple parameters using 

forward, first inverse, or second inverse ANNs. The critical parameters that affected the 

continuous CO2 injection the most are reservoir fluid composition, fracture permeability, well 

spacing, bottomhole flowing pressure (BHFP), thickness, and CO2 injection amount. 

The developed ANNs in this research set a new standard in terms by overcoming the limitations 

imposed by reservoir fluid composition, relative permeability, and capillary pressure.  

This research does not approve or disapprove the applicability of continuous carbon dioxide 

injection in naturally fractured reservoirs. However, the ANNs developed act pre-screening tools 

that help accelerate the decision making process. These pre-screening tools do not replace current 

industry standards, methodologies, or protocols but should be treated as complementary tools 

with predictive capabilities.   
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Recommendations 

 

This project provides a new benchmark for artificial neural network study. However, it can be 

further enhanced with the following: 

 The main scope of this research is continuous CO2 injection, but some of the initial ANN 

designs studied the applicability of water alternating gas and proved very promising.  

 The fluid composition in this research goes up to HC20, a further expansion to the list for 

much heavier HC would expand the range of fluid compositions this fluid could evaluate.  

 Every fluid composition in this study includes H2S, N2, and CO2 in very small 

percentages. While their effects at very small percentages are negligible, it would add 

more value to have the option to include them or not.  

 This study could include an even wider range of reservoir properties. 

 Different Well configurations could be studied. 

 The methodology developed here could be used on cyclic pressure pulsing and WAG, 

and all three methods could be developed under a single ANN.  

 The GUI could be enhanced with an optimization technique. 

 The developed ANNs in this research are only applicable to miscible injection. This 

could be further expanded to include near miscible condition or multiple contact 

miscibility cases which could affect WAG projects.  

 WAG relative permeability hysteresis effect.  

 ANN configurations in this research could be dynamically updated and calibrated with 

additional data coming from the field. This step requires retraining of the ANNs due to 

additional outputs that were not initially part of the main configurations.  
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Appendix A: Peng-Robinson EOS Derivation 
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�̃�3 − �̃�2𝑏 + 2�̃�2𝑏 − 2𝑏2�̃� − 𝑏2�̃� + 𝑏3 =
𝑅𝑇�̃�2 + 2𝑅𝑇𝑏�̃� − 𝑅𝑇𝑏2

𝑃
−

(𝑎 ∝ �̃� − 𝑎 ∝ 𝑏)

𝑃
 

�̃�3 + �̃�2𝑏 −
𝑅𝑇�̃�2

𝑃
− 3𝑏2�̃� −

2𝑅𝑇𝑏�̃�

𝑃
+

𝑎 ∝ �̃�

𝑃
+

𝑅𝑇𝑏2

𝑃
−

𝑎 ∝ 𝑏

𝑃
+ 𝑏3 = 0 

�̃�3 + �̃�2 (𝑏 −
𝑅𝑇

𝑃
) − �̃� (3𝑏2 +

2𝑅𝑇𝑏

𝑃
−

𝑎 ∝

𝑃
) +

𝑅𝑇𝑏2

𝑃
−

𝑎 ∝ 𝑏

𝑃
+ 𝑏3 = 0 

 Now, we convert that to cubic EOS in Z  

�̃� =
𝑅𝑇

𝑃
𝑍 

(
𝑅𝑇

𝑃
)

3

𝑍3 + (
𝑅𝑇

𝑃
)

2

(𝑏 −
𝑅𝑇

𝑃
) 𝑍2 −

𝑅𝑇

𝑃
𝑍 (3𝑏2 +

2𝑅𝑇𝑏

𝑃
−

𝑎 ∝

𝑃
) +

𝑅𝑇𝑏2

𝑃
−

𝑎 ∝ 𝑏

𝑃
+ 𝑏3 = 0 

𝑍3 + (
𝑃𝑏

𝑅𝑇
− 1) 𝑍2 − (

𝑃

𝑅𝑇
)

2

𝑍 (3𝑏2 +
2𝑅𝑇𝑏

𝑃
−

𝑎 ∝

𝑃
) + (

𝑃

𝑅𝑇
)

3 𝑅𝑇𝑏2

𝑃
− (

𝑃

𝑅𝑇
)

3 𝑎 ∝ 𝑏

𝑃
+ (

𝑏3𝑃

𝑅𝑇
)

3

= 0 

𝑍3 − (1 −
𝑃𝑏

𝑅𝑇
) 𝑍2 + 𝑍 (−

3𝑃2𝑏2

𝑅2𝑇2
−

2𝑃𝑏

𝑅𝑇
+

𝑃𝑎 ∝

𝑅2𝑇2) − (
𝑎 ∝ 𝑃2𝑏

𝑅3𝑇3
−

𝑃2𝑏2

𝑅2𝑇2
− (

𝑏𝑃

𝑅𝑇
)

3

) = 0 

𝑍3 − (1 − 𝐵)𝑍2 + 𝑍(−3𝐵2 − 2𝐵 + 𝐴) − (𝐴𝐵 − 𝐵2 − 𝐵3) = 0 
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𝐴 =
𝑎 ∝ 𝑃

𝑅2𝑇2
 

𝐵 =
𝑏𝑃

𝑅𝑇
 

 Apply criticality condition on Z-Cubic Equation 

(𝑍 − 𝑍𝑐)3 = 0 

𝑍3 − 3𝑍2𝑍𝑐 + 3𝑍𝑍𝑐
2 − 𝑍𝑐

3 = 0 

3𝑍𝑐 = 1 − 𝐵     →         𝐵 = 1 − 3𝑍𝑐 … … … .1 

3𝑍𝑐
2 = −3𝐵2 − 2𝐵 + 𝐴 … … … … . .2 

3𝑍𝑐
2 = (−3(1 − 3𝑍𝑐)2 − 2(1 − 3𝑍𝑐) + 𝐴) 

3𝑍𝑐
2 = (−3(1 − 6𝑍𝑐 + 9𝑍𝑐

2) − 2(1 − 3𝑍𝑐) + 𝐴) 

3𝑍𝑐
2 = (−3 + 18𝑍𝑐 − 27𝑍𝑐

2 − 2 + 6𝑍𝑐 + 𝐴) 

3𝑍𝑐
2 = (−5 + 24𝑍𝑐 − 27𝑍𝑐

2 + 𝐴) 

30𝑍𝑐
2 + 5 − 24𝑍𝑐 = 𝐴 

𝑍𝑐
3 = (𝐴𝐵 − 𝐵2 − 𝐵3) … … … … . .3 

𝑍𝑐
3 = ((30𝑍𝑐

2 + 5 − 24𝑍𝑐)(1 − 3𝑍𝑐) − (1 − 3𝑍𝑐)2 − (1 − 3𝑍𝑐)3) 

𝑍𝑐
3 = ((30𝑍𝑐

2 + 5 − 24𝑍𝑐)(1 − 3𝑍𝑐) − 1 + 6𝑍𝑐 − 9𝑍𝑐
2 − (1 − 3𝑍𝑐)3) 

𝑍𝑐
3 = 30𝑍𝑐

2 + 5 − 24𝑍𝑐 − 90𝑍𝑐
3 − 15𝑍𝑐 + 72𝑍𝑐

2 − 1 + 6𝑍𝑐 − 9𝑍𝑐
2 − 1 + 9𝑍𝑐 − 27𝑍𝑐

2 + 27𝑍𝑐
3 

−64𝑍𝑐
3 + 66𝑍𝑐

2 − 24𝑍𝑐 + 3 = 0 

𝑍𝑐 = 0.307401 

Now substitute back for the value of Zc to find B and A 

𝐵 = 1 − 3𝑍𝑐 = 1 − 3 ∗ 0.307401 = 0.077797 

𝐴 = 30𝑍𝑐
2 + 5 − 24𝑍𝑐 = 30(0.307401)2 + 5 − 24 ∗ 0.307401 = 0.457237 

𝐴 =
𝑎 ∝ 𝑃

𝑅2𝑇2
, 𝐵 =

𝑏𝑃

𝑅𝑇
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Appendix B: VLE Flash 

𝐾𝑖 =
𝑦𝑖

𝑥𝑖
 

𝑔(𝑓𝑛𝑔) = ∑
𝑐𝑖(𝐾𝑖 − 1)

1 + 𝑓𝑛𝑔(𝐾𝑖 − 1)
= 0

𝑁𝑐

𝑖=1

 

𝑓𝑛𝑔
𝑛𝑒𝑤 = 𝑓𝑛𝑔

𝑜𝑙𝑑 −
𝑔(𝑓𝑛𝑔

𝑜𝑙𝑑)

𝑔′(𝑓𝑛𝑔
𝑜𝑙𝑑)

 

|𝑓𝑛𝑔
𝑛𝑒𝑤 − 𝑓𝑛𝑔

𝑜𝑙𝑑| < 휀 

0 < 𝑓𝑛𝑔 < 1 

1

(1 − 𝐾𝑖𝑚𝑎𝑥)
< 𝑓𝑛𝑔 <

1

(1 − 𝐾𝑖𝑚𝑖𝑛)
 

𝑓𝑛𝑙 = 1 − 𝑓𝑛𝑔 

𝐿𝑖𝑞𝑢𝑖𝑑 % = 100 ∗ 𝑓𝑛𝑙 

𝐺𝑎𝑠 % = 100 ∗ 𝑓𝑛𝑔 

𝑥𝑖 =
𝑐𝑖

1 + 𝑓𝑛𝑔(𝐾𝑖 − 1)
 

𝑦𝑖 = 𝐾𝑖𝑥𝑖 =
𝐾𝑖𝑐𝑖

1 + 𝑓𝑛𝑔(𝐾𝑖 − 1)
 

 

The module starts by loading the initial reservoir temperature and pressure. Next, the model 

would try to find the gas molar fraction. At the start, an initial value of 0.999 is assigned to the 

gas molar fraction and Wilsons’ correlation is used to find a value for the equilibrium ratio (Ki). 

Then, substituting in the Rachford and Rice equation, a new value of gas molar fraction is 

acquired. The initial guess and the new value from the equation are then compared. If they are 

within the given tolerance, then the model converges and the gas molar fraction is found. If not, 

then the new gas molar fraction from the Rachford and Rice equation is then used while the 



 

161 

 

program loops and start with that value as its new starting point. This procedure repeats until the 

desired value is found (within the specified criteria).  

 

  

Load: 

Comp, Pci, Tci, 

MWi, ω, Vci, Sij 

Load: 

Reservoir P, 

Reservoir T 

Wilson’s 

Correlation Kis 

and initial fng 

Rachord & Rice 

Calculate fng 

1/(1-Kmax) < fng <1/(1-Kmin) 

Newton Rhapson SSM 

fng Converge 
Find fnl, xi, yi, 

Z-Liq, Z-Vap 

Update fng Yes No 

No 

Yes 
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Appendix C: Fugacity Module 

𝑓ℎ = 𝑓𝑔𝑖 

𝑓ℎ = 𝐹𝑢𝑔𝑎𝑐𝑖𝑡𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑖 − 𝑡ℎ 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑖𝑛 𝑡ℎ𝑒 𝑙𝑖𝑞𝑢𝑖𝑑 𝑃ℎ𝑎𝑠𝑒 

 

𝑓𝑔𝑖 = 𝐹𝑢𝑔𝑎𝑐𝑖𝑡𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑖 − 𝑡ℎ 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑖𝑛 𝑡ℎ𝑒 𝑣𝑎𝑝𝑜𝑟 𝑃ℎ𝑎𝑠𝑒 

 

𝜙𝑔𝑖 =
𝑓𝑔𝑖

𝑦𝑖𝑃
 

𝜙𝑔𝑖 =
𝑓𝑔𝑖

𝑦𝑖𝑃
 

 

𝑙𝑛𝜙𝑖 = − ln(𝑍 − 𝐵) +
𝐴

(𝑚1 − 𝑚2)𝐵
(

2 ∑ 𝐴𝑖𝑗𝑐𝑗
𝑛𝑐
𝑗=1

𝐴
−

𝐵𝑖

𝐵
) 𝑙𝑛 [

𝑍 + 𝑚2𝐵

𝑍 + 𝑚1𝐵
] +

𝐵𝑖

𝐵
(𝑍 − 1) 

 

𝐴 = ∑ ∑ 𝑐𝑖𝑐𝑗

𝑛𝑐

𝑗

𝐴𝑖𝑗

𝑛𝑐

𝑖

 

 

𝐴𝑖𝑗 = (1 − 𝛿𝑖𝑗)(𝐴𝑖𝐴𝑗)
0.5

 

 

𝐴𝑖 = Ω𝑎𝑖
𝑜 [1 + 𝑚𝑖(1 − 𝑇𝑟𝑖

0.5)]
2 𝑃𝑟𝑖

𝑇𝑟𝑖
2  

𝐵 = ∑ 𝑐𝑖𝐵𝑖

𝑛𝑐

𝑖=1

 

𝐵𝑖 = Ω𝑏𝑖
𝑜 𝑃𝑟𝑖

𝑇𝑟𝑖
 

 

Ω𝑎𝑖
𝑜 = 0.457235529 

 

Ω𝑏𝑖
𝑜 = 0.077796074 

 

 

 

 

 

 

 

 

 

 

 

 



 

163 

 

Appendix D: Phase Stability Module 

Vapor-Like Second Phase 

𝑌𝑖 = 𝑧𝑖𝐾𝑖 
 

𝐾𝑖 =
1

𝑃𝑟𝑖
𝐸𝑋𝑃 [3.37(1 + 𝜔𝑖) (1 −

1

𝑇𝑟𝑖
)] 

 

𝑆𝑉 = ∑ 𝑌𝑖

𝑛

𝑖

 

 

𝑦𝑖 =
𝑌𝑖

𝑆𝑉
 

 

𝑅𝑖 =
𝑓𝑧𝑖

𝑓𝑦𝑖

1

𝑆𝑉
 

𝐾𝑖
(𝑛+1)

= 𝐾𝑖
𝑛𝑅𝑖 

 

Convergence Check: 

∑(𝑅𝑖 − 1)2 < 1 ∗ 10−4

𝑛

𝑖

 

Trivial Solution Check: 

∑(𝑙𝑛𝐾𝑖)2 < 1 ∗ 10−4

𝑛

𝑖

 

 

Liquid-Like Second Phase 

 

 

𝑌𝑖 = 𝑧𝑖/𝐾𝑖 
 

𝑆𝐿 = ∑ 𝑌𝑖

𝑛

𝑖

 

𝑥𝑖 =
𝑌𝑖

𝑆𝐿
 

𝑅𝑖 =
𝑓𝑥𝑖

𝑓𝑧𝑖
𝑆𝐿 
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Appendix E: Forward ANN Design #2 Blind Testing Cases 
 

  
Figure AE- 1: Forward ANN#2 Blind Testing Cases 1, 2, 3, 4 

 
Figure AE- 2: Forward ANN#2 Blind Testing Cases 5, 6, 7, 8 
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Figure AE- 3: Forward ANN#2 Blind Testing Cases 13, 14, 15, 16 

 
Figure AE- 4: Forward ANN#2 Blind Testing Cases 13, 14, 15, 16 
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Figure AE- 5: Forward ANN#2 Blind Testing Cases 17, 18, 19, 20 

 
Figure AE- 6: Forward ANN#2 Blind Testing Cases 21, 22, 23, 24 
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Figure AE- 7: Forward ANN#2 Blind Testing Cases 25, 26, 27, 28 

 
Figure AE- 8: Forward ANN#2 Blind Testing Cases 29, 30, 31, 32 
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Figure AE- 9: Forward ANN#2 Blind Testing Cases 33, 34, 35, 36 

 
Figure AE- 10: Forward ANN#2 Blind Testing Cases 37, 38, 39, 40 
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Figure AE- 11: Forward ANN#2 Blind Testing Cases 41, 42, 43, 44 

 
Figure AE- 12: Forward ANN#2 Blind Testing Cases 45, 46, 47, 48 
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Figure AE- 13: Forward ANN#2 Blind Testing Cases 49, 50, 51, 52 

 
Figure AE- 14: Forward ANN#2 Blind Testing Cases 53, 54, 55, 56 
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Appendix F: Forward ANN Design #3 Blind Testing Cases 

 
Figure AF- 1: Oil Production for Blind Test Cases 1, 2, 3, and 4 

 

 
Figure AF- 2: Oil Production for Blind Test Cases 5, 6, 7, and 8 
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Figure AF- 3: Oil Production for Blind Test Cases 9, 10, 11, and 12 

 
Figure AF- 4: Oil Production for Blind Test Cases 13, 14, 15, and 16 
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Figure AF- 5: Oil Production for Blind Test Cases 17, 18, 19, and 20 

 
Figure AF- 6: Oil Production for Blind Test Cases 21, 22, 23, and 24 
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Figure AF- 7: Oil Production for Blind Test Cases 25, 26, 27, and 28 

 
Figure AF- 8: Oil Production for Blind Test Cases 29, 30, 31, and 32 
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Figure AF- 9: Oil Production for Blind Test Cases 33, 34, 35, and 36 

 
Figure AF- 10: Oil Production for Blind Test Cases 37, 38, 39, and 40 
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Figure AF- 11: Oil Production for Blind Test Cases 41, 42, 43, and 44 

 
Figure AF- 12: Oil Production for Blind Test Cases 45, 46, 47, and 48 
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Figure AF- 13: Oil Production for Blind Test Cases 49, 50, 51, and 52 

 

 
Figure AF- 14: Oil Production for Blind Test Cases 43, 54, 55, and 56 
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Figure AF- 15: Oil Production for Blind Test Cases 57, and 58 
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Appendix G: Forward ANN Design #3B Blind Testing Cases 

  
Figure AG- 1: Oil and Gas Production for Blind Test Cases 1 & 2 

 

 
Figure AG- 2: Oil and Gas Production for Blind Test Cases 3 & 4 
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Figure AG- 3: Oil and Gas Production for Blind Test Cases 5 & 6 

 
Figure AG- 4: Oil and Gas Production for Blind Test Cases 7 & 8 
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Figure AG- 5: Oil and Gas Production for Blind Test Cases 9 & 10 

 
Figure AG- 6: Oil and Gas Production for Blind Test Cases 11 & 12 
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Figure AG- 7: Oil and Gas Production for Blind Test Cases 13 & 14 

 
Figure AG- 8: Oil and Gas Production for Blind Test Cases 15 & 16 
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Figure AG- 9: Oil and Gas Production for Blind Test Cases 17 & 18 

 
Figure AG- 10: Oil and Gas Production for Blind Test Cases 19 & 20 
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Figure AG- 11: Oil and Gas Production for Blind Test Cases 21 & 22 

 
Figure AG- 12: Oil and Gas Production for Blind Test Cases 23 & 24 
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Figure AG- 13: Oil and Gas Production for Blind Test Cases 25 & 26 

 
Figure AG- 14: Oil and Gas Production for Blind Test Cases 27 
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Appendix H: First Inverse ANN Design Blind Testing Cases 

Table AH- 1: 1st Inverse Blind Case #1 Output 

Blind Test Case 1 Output Comparison 

Property Actual ANN 

Frac Perm, md 5,343 4,954 

L1 Matrix Perm, md 175 191 

L2 Matrix Perm, md 35 45 

L1 Thickness, ft 64 60 

L2 Thickness, ft 40 34 
 

Table AH- 2: 1st Inverse Blind Case #2 Output 

Output Blind Test Case 2 Output Comparison 

Property Actual ANN 

Frac Perm, md 9,681 8,063 

L1 Matrix Perm, md 109 97 

L2 Matrix Perm, md 124 103 

L1 Thickness, ft 55 49 

L2 Thickness, ft 37 45 

 

Table AH- 3: 1st Inverse Blind Case #3 Output 

Blind Test Case 3 Output Comparison 

Property Actual ANN 

Frac Perm, md 7,924 8,349 

L1 Matrix Perm, md 33 45 

L2 Matrix Perm, md 165 140 

L1 Thickness, ft 32 40 

L2 Thickness, ft 38 33 
 

Table AH- 4: 1st Inverse Blind Case #4 Output 

Blind Test Case 4 Output Comparison 

Property Actual ANN 

Frac Perm, md 6,508 7,117 

L1 Matrix Perm, md 196 174 

L2 Matrix Perm, md 196 182 

L1 Thickness, ft 46 40 

L2 Thickness, ft 23 30 
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Table AH- 5: 1st Inverse Blind Case #5 Output 

Blind Test Case 5 Output Comparison 

Property Actual ANN 

Frac Perm, md 6,221 5,486 

L1 Matrix Perm, md 133 127 

L2 Matrix Perm, md 87 103 

L1 Thickness, ft 45 41 

L2 Thickness, ft 23 30 

 
 

Table AH- 6: 1st Inverse Blind Case #6 Output 

Blind Test Case 6 Output Comparison 

Property Actual ANN 

Frac Perm, md 1,232 1,414 

L1 Matrix Perm, md 146 120 

L2 Matrix Perm, md 115 107 

L1 Thickness, ft 46 49 

L2 Thickness, ft 52 50 

 

 
Table AH- 7: 1st Inverse Blind Case #7 Output 

Blind Test Case 7 Output Comparison 

Property Actual ANN 

Frac Perm, md 5,498 5,401 

L1 Matrix Perm, md 83 115 

L2 Matrix Perm, md 167 143 

L1 Thickness, ft 51 57 

L2 Thickness, ft 62 59 

 

 
Table AH- 8: 1st Inverse Blind Case #8 Output 

Blind Test Case 8 Output Comparison 

Property Actual ANN 

Frac Perm, md 8,303 7,010 

L1 Matrix Perm, md 91 110 

L2 Matrix Perm, md 59 70 

L1 Thickness, ft 48 47 

L2 Thickness, ft 58 47 
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Table AH- 9: 1st Inverse Blind Case #9 Output 

Blind Test Case 9 Output Comparison 

Property Actual ANN 

Frac Perm, md 7,287 6,507 

L1 Matrix Perm, md 182 165 

L2 Matrix Perm, md 182 173 

L1 Thickness, ft 50 46 

L2 Thickness, ft 40 49 

 

Table AH- 10: 1st Inverse Blind Case #10 Output 

Blind Test Case 10 Output Comparison 

Property Actual ANN 

Frac Perm, md 5,713 5,285 

L1 Matrix Perm, md 140 126 

L2 Matrix Perm, md 102 109 

L1 Thickness, ft 69 55 

L2 Thickness, ft 44 46 
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Appendix I: Second Inverse ANN Design Blind Testing Cases 

Table AI- 1: Blind Test # 1 and Blind Test # 2 for 2nd Inverse ANN 

  Blind T # 1 Blind T # 2 

  Actual Data ANN Data Actual Data ANN Data 

Cum Gas Inj., MMSCF 57.58 57.35 10.00 10.15 

Injection Duration, D 46.00 37.58 15.00 12.69 

Well Spacing, Acres 59.00 64.89 37.00 32.74 
 

Table AI- 2: Blind Test # 3 and Blind Test # 4 for 2nd Inverse ANN 

  Blind T # 3 Blind T # 4 

  Actual Data ANN Data Actual Data ANN Data 

Cum Gas Inj., MMSCF 8.14 7.52 27.60 27.97 

Injection Duration, D 5.00 3.091 14.00 16.93 

Well Spacing, Acres 27.00 32.34 34.00 40.72 

 
Table AI- 3: Blind Test # 5 and Blind Test # 6 for 2nd Inverse ANN 

  Blind T # 5 Blind T # 6 

  Actual Data ANN Data Actual Data ANN Data 

Cum Gas Inj., MMSCF 8.79 13.13 30.81 32.66 

Injection Duration, D 6.00 12.51 18.00 21.74 

Well Spacing, Acres 31.00 29.88 45.00 50.38 

 

 
Table AI- 4: Blind Test # 7 and Blind Test # 7 for 2nd Inverse ANN 

  Blind T # 7 Blind T # 8 

  Actual Data ANN Data Actual Data ANN Data 

Cum Gas Inj., MMSCF 35.74 33.38 141.84 122.47 

Injection Duration, D 31.00 42.28 72.00 61.07 

Well Spacing, Acres 59.00 54.20 23.00 16.96 

 

 
Table AI- 5: Blind Test # 9 and Blind Test # 10 for 2nd Inverse ANN 

  Blind T # 9 Blind T # 10 

  Actual Data ANN Data Actual Data ANN Data 

Cum Gas Inj., MMSCF 26.85 24.32 73.28 65.67 

Injection Duration, D 39.00 34.67 45.00 53.16 

Well Spacing, Acres 45.00 48.52 56.00 61.11 
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Table AI- 6: Blind Test # 11 and Blind Test # 12 for 2nd Inverse ANN 

  Blind T # 11 Blind T # 12 

  Actual Data ANN Data Actual Data ANN Data 

Cum Gas Inj., MMSCF 15.61 15.52 34.31 33.80 

Injection Duration, D 11.00 10.13 27.00 24.19 

Well Spacing, Acres 20.00 22.01 61.00 47.22 

 

 
Table AI- 7: Blind Test # 13 and Blind Test # 14 for 2nd Inverse ANN 

  Blind T # 13 Blind T # 14 

  Actual Data ANN Data Actual Data ANN Data 

Cum Gas Inj., MMSCF 38.27 35.68 28.76 28.75 

Injection Duration, D 51.00 45.37 15.00 18.95 

Well Spacing, Acres 67.00 54.70 54.00 58.80 

 

 
Table AI- 8: Blind Test # 15 and Blind Test # 16 for 2nd Inverse ANN 

  Blind T # 15 Blind T # 16 

  Actual Data ANN Data Actual Data ANN Data 

Cum Gas Inj., MMSCF 48.46 49.64 76.78 73.68 

Injection Duration, D 70.00 65.04 40.00 34.57 

Well Spacing, Acres 53.00 55.18 68.00 67.48 

 

 
Table AI- 9: Blind Test # 17 and Blind Test # 18 for 2nd Inverse ANN 

  Blind T # 17 Blind T # 18 

  Actual Data ANN Data Actual Data ANN Data 

Cum Gas Inj., MMSCF 6.426 6.36 39.39 41.342 

Injection Duration, D 10.00 7.91 37.00 29.199 

Well Spacing, Acres 36.00 36.01 49.00 51.893 

 

 
Table AI- 10: Blind Test # 19 and Blind Test # 20 for 2nd Inverse ANN 

  Blind T # 19 Blind T # 20 

  Actual Data ANN Data Actual Data ANN Data 

Cum Gas Inj., MMSCF 19.74 18.461 54.89 51.369 

Injection Duration, D 14.00 18.191 51.00 56.181 

Well Spacing, Acres 47.00 49.974 54.00 55.507 
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