THE PORTICUS OF EUMACHIA IN THE FORUM OF POMPEII

A Thesis in
Architecture
by
Valerio Dario

© 2016 Valerio Dario

Submitted in Partial Fulfillment
of the Requirements
for the Degree of

Master of Architecture

May 2016
The thesis of Valerio Dario was reviewed and approved* by the following:

James Gill Cooper
Associate professor
Thesis Advisor

Alexandra Staub
Associate professor

Denise Costanzo
Assistant professor

Mehrdad Hadighi
Professor, Stuckeman Chair of Integrative Design
Head of the Department

*Signatures are on file in the Graduate School
ABSTRACT

The Porticus of Eumachia is one of the largest, most important and yet misunderstood public buildings of the Forum of Pompeii. Its size, architecture and quality of décor stand among other near public, civic and religious monuments, and it is the materialization of the political and ideological campaign of the priestess Eumachia to glorify the imperial family and divulgate the program of publica magnificentia perpetuated in Rome by the emperor Augustus. The Building of Eumachia is thus based upon a model that was at its peak of diffusion in the Capital: the porticus. The city of Rome provides numerous exceptional examples of monumental porticus, from the period of the Late Republic, and especially from the Early Empire. This thesis aims to reconsider the Porticus of Eumachia under the light of such political and ideological relationships, but also providing an architectural interpretation of the building, re-examining its components, spatial qualities and formal aspects, in order to propose a new image of its former glorious appearance. The reconstruction is based on thorough field research, drawing, sketching and analyzing architectural fragments and various parts of the building, along with an accurate study of the literary and artistic sources from the time of the excavations, occurred between the end of the nineteenth and the beginning of the twentieth century.
TABLE OF CONTENTS

List of Figures .. v

Acknowledgements .. ix

Chapter 1 Introduction ... 1
Chapter 2 The city of Pompeii ... 1
Chapter 3 The Forum of Pompeii ... 15
Chapter 4 The typology of the porticus during the Late Republic and the Early Empire ... 26
Chapter 5 The Porticus Eumachiae in the Forum of Pompeii 50
 Description of the site ... 51
 Architectural fragments ... 61
 On-field data and observations ... 71
Chapter 6 Material from the past ... 113
Chapter 7 Hypotheses for a reconstruction ... 139
 Formal characteristics and spatial qualities .. 159
Chapter 8 Conclusions ... 208
Appendix Catalogue of the architectural fragments .. 210
Glossary ... 228
Bibliography .. 237
LIST OF FIGURES

Figure 2-1	The Bay of Naples	.. 9
Figure 2-2	The city of Pompeii	.. 10
Figure 2-3	Hypothetical configuration of the Forum during the sixth century B.C.	.. 11
Figure 2-4	The perimeter of the Altstadt	.. 12
Figure 2-5	Districts of Pompeii	.. 13
Figure 2-6	The traces of the tabernae under the chalcidicum of Eumachia after the excavation by Maiuri in 1935	.. 14
Figure 3-1	Map of the excavations in 1819	.. 23
Figure 3-2	Map of the excavations in 1898	.. 24
Figure 3-3	The Forum of Pompeii, aerial view	.. 25
Figure 4-1	Map of the Circus Flaminius in Rome	.. 41
Figure 4-2	Plan of the Theatre of Pompey	.. 42
Figure 4-3	The Porticus Philippi on the Forma Urbis Romae	.. 43
Figure 4-4	The Porticus Metelli	.. 44
Figure 4-5	The plan of the Porticus Octaviae	.. 45
Figure 4-6	The Porticus Liviae and the Thermae Traiani from the Forma Urbis Romae	.. 46
Figure 4-7	The complete plan of the Porticus Liviae	.. 47
Figure 4-8	The Theatre of Balbus from the Forma Urbis Romae	.. 48
Figure 4-9	The plan of the Theatre and the Crypta of Balbus	.. 49
Figure 5-1	Components of the Forum of Pompeii	.. 77
Figure 5-2 Plan of the Porticus of Eumachia, manual survey 78
Figure 5-3 Inscription upon the secondary access on Via dell’Abbondanza ... 79
Figure 5-4 Porticus of Eumachia, façade .. 80
Figure 5-5 Porticus of Eumachia, main façade, north exedra 81
Figure 5-6 Geometrical curvature of the apses in the chalcidicum 82
Figure 5-7 Porticus of Eumachia, main façade, central portal 83
Figure 5-8 Porticus of Eumachia, main façade, south exedra with marble revetments in-situ... 84
Figure 5-9 The reading of an edict between two equestrian statues, National Archaeological Museum of Naples, fresco 85
Figure 5-10 Porticus of Eumachia, south façade on Via dell’Abbondanza ... 86
Figure 5-11 Porticus of Eumachia, south façade .. 87
Figure 5-12 Porticus of Eumachia, east façade ... 88
Figure 5-13 Porticus of Eumachia, northeastern corner 89
Figure 5-14 Porticus of Eumachia, north façade 90
Figure 5-15 Porticus of Eumachia, wedge-shaped rooms between the chalcidicum and the inner porticus... 91
Figure 5-16 Porticus of Eumachia, porter’s lodge by the main entrance ... 92
Figure 5-17 Porticus of Eumachia, interior, east stylobate 93
Figure 5-18 Porticus of Eumachia, interior, window on the south wall.... 94
Figure 5-19 Porticus of Eumachia, interior, detail of the window sill....... 95
Figure 5-20 Porticus of Eumachia, interior, west wall............................ 96
Figure 5-21 Porticus of Eumachia, interior, east wall, grand central apse... 97
Figure 5-22 Porticus of Eumachia, interior, east wall, north minor apse . 98
Figure 5-23 Porticus of Eumachia, interior, northwestern access to the crypta... 99
Figure 5-24 Porticus of Eumachia, ramp on the back access on Via dell’Abbondanza ... 100
Figure 5-25 Porticus of Eumachia, frescoes in the porter's lodge by Via dell’Abbondanza ... 101
Figure 5-26 Porticus of Eumachia, frescoes behind the statue of Eumachia in the eastern exedra of the crypta 102
Figure 5-27 Sketch of the intercolumniation of the chalcidicum colonnade ... 103
Figure 5-28 Sketch of the inner porticus ... 104
Figure 5-29 Sketch of the east wall... 105
Figure 5-30 Orientation of the statue bases in the eastern apse 106
Figure 5-31 Sketch of one of the window's sill on the wall between the porticus and the crypta ... 107
Figure 5-32 Sketches of the statue niches on the west wall of the porticus.. 108
Figure 5-33 Sketches of the porter's lodge door and of the wedge-shaped service rooms entrance ... 109
Figure 5-34 Fragment of a tufa capital of pilaster in-situ 110
Figure 5-35 Sketches of the projecting steps of the east side of the porticus.. 111
Figure 5-36 Sketch of the porter's lodge by the secondary entrance on Via dell’Abbondanza ... 112
Figure 6-1 Bechi's plan of the Eumachia Building 119
Figure 6-2 Bechi’s First-Style decoration on the outer walls of the Eumachia Building ... 120

Figure 6-3 Bechi’s statue of Eumachia ... 121

Figure 6-4 Bechi’s false door flanking the niche of the statue of Eumachia ... 122

Figure 6-5 Von Agyagfalva’s Corinthian capital and frieze from the Eumachia Building ... 123

Figure 6-6 Mazois’s Corinthian order pertinent to the Eumachia Building ... 124

Figure 6-7 Mazois’s plan of the Eumachia Building ... 125

Figure 6-8 Mazois’s longitudinal section of the Eumachia Building................................. 126

Figure 6-9 Mazois’s cross section of the Eumachia Building ... 127

Figure 6-10 Mazois’s exterior wall and Corinthian cornices of the Eumachia Building ... 128

Figure 6-11 Mazois’s false door and Third-Style decoration of the crypta ... 129

Figure 6-12 Mazois’s Third-Style decoration on the walls of the crypta ... 130

Figure 6-13 Gell’s Third-Style on the ramp of the crypta ... 131

Figure 6-14 Gell’s niche of Eumachia and the false door ... 132

Figure 6-15 Rossini’s details of the Corinthian order and cross section of the Eumachia Building ... 133

Figure 6-16 Rossini’s east façade of the interior court ... 134

Figure 6-17 Rossini’s chalcidicum of Eumachia Building ... 135

Figure 6-18 Mau’s plan of the Eumachia Building ... 136

Figure 6-19 Mau’s cross section and longitudinal section of the Eumachia Building ... 137
Figure 6-20 Mau’s west façade of the inner court 138
Figure 6-21 Mau’s east façade of the inner court 138
Figure 7-1 First hypothesis of the inner colonnade 167
Figure 7-2 Second hypothesis of the inner colonnade 168
Figure 7-3 Third hypothesis of the inner colonnade 169
Figure 7-4 Plan according to the Vitruvian solution 170
Figure 7-5 Longitudinal section according to the Vitruvian solution 171
Figure 7-6 Cross section according to the Vitruvian solution 172
Figure 7-7 Longitudinal section according to the alleged spring of the apse’s semidome at 3.15 meters .. 173
Figure 7-8 Cross section according to the alleged spring of the apse’s semidome at 3.15 meters ... 174
Figure 7-9 Comparison between Mau’s plan and Dobbins’s plan 175
Figure 7-10 Detail of the east apse according to the true dimensions of the fragments ... 176
Figure 7-11 Plan of the building according to the true dimensions of the fragments .. 177
Figure 7-12 Cross section toward the east front of the colonnade according to the true dimensions of the fragments 178
Figure 7-13 Longitudinal section according to the true dimensions of the fragments .. 179
Figure 7-14 Cross section toward the west front of the colonnade according to the true dimensions of the fragments 180
Figure 7-15 West wall decorations according to the true dimensions of the fragments ... 181
Figure 7-16 East wall decoration according to the true dimensions of the fragments .. 182
Figure 7-17 Hypothesis of two levels on the south and east facades.... 183
Figure 7-18 Scheme of the elements of the orders.............................. 184
Figure 7-19 Cross section toward east, definitive solution.................. 185
Figure 7-20 Tridimensional view toward the eastern front................. 186
Figure 7-21 Tridimensional view toward the western front............... 187
Figure 7-22 Cross section toward west, definitive solution................. 188
Figure 7-23 Overall plan, definitive solution..................................... 189
Figure 7-24 Longitudinal section, definitive solution.......................... 190
Figure 7-25 Modular scheme of the building..................................... 191
Figure 7-26 Detail showing the geometrical proportions of the east apse.. 192
Figure 7-27 South façade, definitive solution..................................... 193
Figure 7-28 East façade, definitive solution....................................... 194
Figure 7-29 Decoration of the east wall of the porticus, definitive solution... 195
Figure 7-30 Decoration of the west wall of the porticus, definitive solution... 196
Figure 7-31 Tridimensional view of the Chalcidicum......................... 197
Figure 7-32 Chalcidicum, definitive solution....................................... 198
Figure 7-33 Tridimensional view of the longitudinal corridor of the crypta... 199
Figure 7-34 Tridimensional view of the east corridor of the crypta...... 200
Figure 7-35 Decoration of the east wall of the crypta, definitive solution... 201
Figure 7-36 Plan of the first phase of the Eumachia Building............. 202
Figure 7-37 Porticus of Pompey. Highlight on the alternation of apses and niches .. 203

Figure 7-38 Porticus of Octavia. Highlight on the alternation of apses and niches ... 204

Figure 7-39 Porticus of Livia. Highlight on the alternation of apses and niches ... 205

Figure 7-40 Crypta Balbi. Highlight on the east side of the complex 206

Figure 7-41 Basilica of Herculaneum, overall plan ... 207
I am very thankful to Prof. James Cooper, my advisor and counselor, for dedication and enthusiasm, and for the opportunity to be involved in the study of the Forum of Pompeii, one of the most significant archaeological sites in the world, and perhaps one of the richest repositories of information regarding ancient Roman architecture, urbanism and archaeology.

Thanks to Prof. John Dobbins, great scholar and generous instructor, whose knowledge about ancient Pompeii is perhaps unequal; and thanks to the Pompeii Forum Project for having me as part of the team, and for the great chance to study the issues and problematics related to the Forum of Pompeii. I hope to continue these studies far into the future.

I sincerely thank Prof. Sandra Staub and Prof. Denise Costanzo for their wise advice and support.

Thanks also to Prof. Mehrdad Hadighi, Department Head of the Stuckeman School of Architecture, for his interest and enthusiasm regarding my thesis research, and for his constant availability and support over the course of the two years I have spent at Penn State University.

Finally, I would like to thank my family and friends for their enthusiastic and unwavering support.
Res a r d u a v e t u s t i s n o v i t a t e m d a r e , n o v i s a u c t o r i t a t e m ,

 o b s o l e t i s n i t o r e m , o b s c u r i s l u c e m , f a s t i d i t i s g r a t i a m ,

 d u b i i s f i d e m .

A difficult enterprise it is therefore to make old stuff new, to give
authorities to novelties, to polish and smooth that which is worn
and out of use, to set a gloss and luster upon that which is dark, to
grace things disdained, to procure belief to matters doubtful.*

C a i u s P l i n i u s S e c u n d u s , N a t u r a l i s H i s t o r i a . P r a e f a t i o , 1 5 .

Chapter 1

Introduction

The Eumachia Building in the Forum of Pompeii is a quintessential example of the multi-purpose building type, the porticus, in the realm of urban architecture in the early Roman Empire. In numerous ancient cities, buildings of this type served a multitude of purposes both private and public within the urban fabric. The Porticus of Eumachia in the Forum of Pompeii is a public building, which perfectly serves its function as a mercantile facility.

The architecture of the last phase of the Porticus Eumachiae clearly reflects the model of the magnificent Porticus of the Capital. Yet, its comprehension can be extended beyond its geometrical design and architectural composition. It also represents the social stratification of the Roman society, since the priestess Eumachia, in the dedication of her building, recalls the figure of Livia in Rome, thus exposing herself as a patron of the city of Pompeii. The monumentality of the building is explicated through its rich materials, décor, and intrinsic architectural complexity, and
it stands as a material representation of the social status of one of the most prominent figures of the Pompeiian citizenry.

Thanks to its exceptional state of conservation, the Forum of Pompeii represents an extraordinary source of historical and archaeological data. Over the last few centuries, extensive studies and excavations have been undertaken by numerous scholars, with the aim to answer questions regarding individual buildings and their role within the urban whole, as inextricable component of the socio-political structure and culture of the ancient city. The surviving architecture, along with many fragments of art and decoration, provide a multitude of information for a thorough investigation of many of the questions stated above.

The Porticus of Eumachia, initially built during the reign of Augustus at the end of the first century B.C., was largely destroyed and buried by the eruption of Mount Vesuvius in 79 A.D., along with the rest of the city. Seventeen years before its ultimate destruction, the Eumachia Building was badly damaged by a severe earthquake. It was then re-designed and rebuilt as a significant component of an extensive reconstruction of the east side of the Forum. This project included most of the buildings on that

\[1\] DOBBINS 2007, pp. 172-173.
side, and the ruins reflect a consistent design concept, shared materials, building techniques, decorative motifs, and spatial organization. The excavation and documentation of these buildings was carried out primarily in the last decades of the nineteenth century and during the first half of the twentieth.

The primary aim of this thesis is to provide a new reconstruction of the Porticus of Eumachia, and thereby glean a better understanding of its purposes and role in the civic life of Pompeii. A critical component of this work has been a thorough study of previous scholarship, reconstructions, and most critically, on and off-site analysis.
Chapter 2

The city of Pompeii

The city of Pompeii, located in the Bay of Naples, lies about approximately twenty-six kilometers southeast of this regional capital. The city of Naples and seventeen kilometers from Herculaneum. Mount Vesuvius (el. 1281 meters) stands between the cities of Naples and Pompeii, while the ancient city of Herculaneum, also destroyed by the Vesuvian eruption, lies approximately halfway between (Figure 2-1).

Evidence suggests that an archaic Latin tribe, the Samnites, were the first to establish a permanent settlement on the site of Pompeii in the sixth century B.C. However, pottery shards from the late Iron Age (ninth century B.C.) found below the contemporary city to the south of the ancient Pompeii, confirm that the larger Vesuvian region had been occupied for many centuries previous. The archaic Samnites built extensive fortifications

around three sides of the city, whereas the southwestern side was protected by the Sarno River\(^2\). The city was most likely a seaport on the Bay, and an active point of distribution of agricultural products cultivated in the countryside (Figure 2-2).

By the end of the sixth century B.C., the city filled out the area within the fortifications. The urban layout was rational and well conceived, and reflected the influence of Hellenized cultures already settled in southern Italy. Indeed, some of the most important buildings belong to this period, including the Triangular Forum and its Doric Temple, and the Temple of Apollo within the open space that would become the civic forum (Figure 2-2). At this point in the city’s history, this space was irregular and surrounded by a variety of freestanding buildings, at the center of the so-called Altstadt\(^3\), which is clearly identifiable within the south–west quadrant of the extended Roman city. The Altstadt was bisected by the main streets

\(^2\) The eruption of Vesuvius extended the ancient coastline by approximately half a kilometer.

\(^3\) DOBBINS 2007, pp. 12-16; pp. 82-90. As the German name suggests, this area is traditionally identified as the most ancient part of the city, namely the nucleus of the archaic and Samnite settlement.
of Via dell'Abbondanza and Via Stabiana, with the later forum located at their crossing (Figure 2-3).

At some point between the sixth and fourth century BC, the cultivated land beyond the Alstadt's palisades was usurped by a grand urban expansion project to the north and east and encircled by a monumental stone wall. In the two centuries that followed, the city flourished and saw the construction of a number of important civic buildings, including the Stabian Baths, the Sanctuary of Apollo, the Temple of Jupiter, and the civic buildings on the south side of the Forum.

In 89 B.C. the city of Pompeii was absorbed into the Roman Empire during the military campaigns of the dictator Sulla. Under the Romans, civic and public spaces were expanded and regularized. Early Roman additions included the Basilica and the Comitium on the south side of the Forum, the Theatre and the Palaestra nearby the Triangular Forum, and the grand

4 This theory is confirmed by archaeological evidence and urban design considerations. It is possible to recognize five main urban axes of the new-built area (Via di Mercurio, Via Stabiana, Via di Nola, Via dell'Abbondanza and Via di Nocera) that respond to a precise geometrical design. For instance, Via Stabiana was subdivided into three equal parts (in which it crosses Via di Nola at north and Via dell'Abbondanza at south), whereas Via dell'Abbondanza crossed Via di Nocera exactly in its midpoint. DOBBINS 2007, pp. 86-90.
Amphitheatre at the east end of the city. Other buildings belonged to the religious sphere, such as the Sanctuary of Venus by Porta Marina, which faced the sea from the promontory at the mouth of the Sarno. The Temple of Jupiter was converted into the Temple of the Capitoline Triad (Jupiter-Juno-Minerva), and private insulae were transformed into public estates to address communal necessities.

The Roman city of Pompeii was subdivided into four main regions (Figure 2-4): the civic district, with the Forum and the main public buildings; the eastern district, with recreational spaces for outdoor activities, including the Amphitheater and the Grand Palaestra, and monumental villas and gardens; the cultural district at the south end, with the Theatre, the Odeion, the Palaestra and the Triangular Forum; and finally, the northern district, which was predominantly residential, but included numerous commercial venues and the Central Baths. All four districts were connected to one another by

5 The increasing population of the city faced several problems related to public services. For instance, in its early years as a Roman colony, the city needed further thermal facilities besides the Stabian Baths, and this led to the construction of the more technically advanced Forum Baths.
an efficient road network. The focal point of the entire city continued to be the Forum.

During the last decades of 1 century B.C., at the beginning of the Empire, the city continued its transformation, mostly due to the support of wealthy members of the community who paid for the construction of numerous buildings\(^6\). The urban setting continued to develop at a rapid pace. A new grandiose Palaestra was erected near the Amphitheater, in lieu of six former insulae.

On the east side of the Forum, a new ensemble of buildings, which included the Sanctuary of the Genius of Augustus and the Eumachia were built on the sites of old tabemae and private residences\(^7\) (Figure 2-6). In addition, the Macellum (or principal meat and fish market) was likely built at that time in the northwest corner of the Forum. Structures that already

\(^6\) For instance, the Temple of Fortuna Augusta was dedicated and paid by a local magistrate, whereas the Sanctuary of the Genus Augustus on the east side of the Forum was built at the expense of the priestess Mamia. DOBBINS 2007, pp. 119-126.

\(^7\) Excavations made by Maiuri in 1935 rediscovered traces of seven tabemae under the chalcidicum of Eumachia; in particular, the archaeologist was attentive in specifying that in front of the tabemae there were no traces of any colonnade whatsoever (p. 61). This suggests that the old shops belong to the pre-Sullan period. MAIURI 1973, pp. 53-63.
existed on the Forum were embellished and aggrandized as well. The forum olitorium, the Temple of Apollo and the three civic buildings were enhanced and restored. However, this project was not limited to the restoration of only civic buildings. It also included the aggrandizement of the urban fabric and “equipment”. The two arches flanking the Temple of Jupiter were initially built to either side of the front of the temple’s podium. At the end of the Augustan period, just the Arch of Drusus to the east side of the temple was demolished and rebuilt at the northern extremity of the Forum. This is a perfect example of urban and architectural projects in provinces that consciously referenced similar developments in the Imperial Capital. Such projects that emulated the grand buildings and public spaces of Rome occurred in countless cities across the Empire. In this case,

8 The city was also supplemented with a new water supply system at this time. This included the creation of new aqueducts, castellae aquae and public fountains, often located at the intersections of main thoroughfares for the convenience of the public. These places were also enriched with small shrines, porticoes and colonnades, which played a very important role in urban life. DOBBINS 2007, pp. 131-135.

9 The esteemed scholar William MacDonald refers to such constructions as triumphal arches, tetrakionion, quadrifons, ornamental fountains as “urban equipment” to differentiate them from buildings per se. MACDONALD 1986, pp. 74-107.
the decision to replace the arches (although only the Arch of Drusus had been actually moved) was in response to the design of the Forum of Augustus in Rome10

The 62 A.D. earthquake compromised the integrity of countless buildings all over the city. The majority of buildings required restoration, and the government took advantage of this unfortunate event to enhance and rebuild several public buildings in the city, and especially in the Forum11. In the northern district, the Central Baths was built on the site of destroyed private residences. The east side of the Forum underwent a huge reconstruction project: new columns of white marble replaced the tufa colonnade in front of the Macellum; furthermore, the Sanctuary of the Genius of Augustus and the Eumachia Building were largely reconstructed.

11 The huge quantity of precious materials found in various parts of the city, belonging to the period between 62 and 79 A.D., is testament to the amount of funds allocated to the activities of reconstruction and embellishment of the city. It is arguable that such amount of money came not only from the local aristocracy, but also from the central government of Rome.
Between the Macellum and the Sanctuary of Augustus, the Imperial Cult Building replaced old private properties12.

12 DOBBINS 1994, p. 630.
Figure 2.1 The Bay of Naples. Image courtesy of IGM (Istituto Geografico Militare, img. a 0002367).
Figure 2-2 The city of Pompeii (from Dobbins 2007, Map 2).
Figure 2-3 Hypothetical configuration of the Forum during the sixth century B.C. (image modified by the author after Dobbins 2007, Map 2).
Figure 2.4 The perimeter of the Altstadt (after Dobbins 2007, Map 3).
Figure 2.5 The districts of Pompeii (from Dobbins 2007, fig. 10.1, p. 130).
Figure 2-6 The traces of the tabernae under the chalcidicum of Eumachia after the excavation by Maiuri in 1935 (from Maiuri 1973, fig. 20).
Chapter 3
The Forum of Pompeii

The first works of excavation in the Forum began in the first years of the nineteenth century. Caroline Bonaparte promoted and financed the excavations under the supervision of Michele Ar dici and Antonio Bonucci, who unearthed part of the Forum and of the Amphitheatre. The diggings continued regularly until the end of the first quarter of the century, when financial problems due to the fall of the Napoleonic Empire forced the works to slow down1 (Figure 3-1).

1 The defeat of Napoleon at Waterloo in 1815 caused a drastic collapse of financial resources committed to archaeological excavations in the French Empire. Additionally, the royal family did not own enough estates to manage independently the excavations at Pompeii and its surroundings. For a complete chronology of the excavations, see DOBBINS 2007, pp. 28-38. Also DE VOS 1982, pp. 18-19; CARRINGTON 1936, pp. 3-14; MAU 1900, pp. 25-30.
In 1863 the excavations resumed\(^2\) under the supervision of the archaeologist Giuseppe Fiorelli, who promoted a new methodology that called for a progressive excavation from ground level downwards in progressive analysis of stratification, along with the drafting of a daily journal. Numerous drawings, paintings and photographs representing the ongoing process of unearthing were produced as well\(^3\). The legacy left by Fiorelli was grounded upon the concepts of systematic excavation and preservation in-situ of the structures unearthed. Thankfully, numerous superintendents followed his example \(^4\) (Figure 3-2).

\(^2\) Although the works were temporarily stopped, the fame of Pompeii spread all over Europe. The romance of the ruins inspired hundreds of poets, artists and illustrators, who produced numerous pieces of literature, drawings and theatrical plays during the second half of the XIX century.

\(^3\) Fiorelli was the first to envision the subdivision of the city in regiones and their respective insulae, still used today. He also developed the technique of filling with plaster the cavities left by people’s bodies, animals and organic materials remained buried within the layers of lapilli. DOBBINS 2007, pp. 34-35.

\(^4\) This was an important step toward the development of a modern and scientifically relevant archaeological methodology, since the excavators of the nineteenth century were concerned about the recovery of artifacts, rather than information. DOBBINS 1994, p. 634.
At the beginning of the twentieth century, the esteemed archaeologist Amedeo Maiuri was appointed superintended and under his initiative many works commenced by his predecessors were continued, and he greatly expanded the scope of excavations within the city. He was responsible for a systematic excavation below the 79 A.D. level, which led to an understanding of the morphology of the Forum in the four centuries before the Imperial era.

The archaeological evidence and of materials gathered in two centuries of excavations has allowed subsequent generations of scholars to formulate a greater understanding of the morphology of the Forum, from the Samnite period to 79 A.D. Since the archaic period, the primary purpose of the Forum was probably commercial, but evidence discovered below several buildings confirms that it included religious and civic structures as well. In the pre-Roman period the shape of the Forum was rather irregular like the Forum Romanum in the Capital. Some of the extant buildings seen in the Forum actually replaced earlier buildings of identical functions and similar forms on the same sites. For example, the Temple of Apollo, which date back to the Samnite period, was rebuilt at least twice before 79 A.D., whereas the adjacent Basilica was undoubtedly preceded by a building of completely different form and function. On the east side of the Forum
consisted in a row of simple tabernae, and the area now occupied by the Comitium was a residential buildings5.

After the conquest by Sulla, several buildings were built within the Forum, including the Comitium and the Basilica; the mensa ponderaria, whose purpose was to comply with the necessities of close commercial facilities, was built near the Sanctuary of Apollo. The Forum itself was regularized by the introduction of a double-story Doric tufa colonnade6, which was initially built in front of the Basilica, the three civic buildings and the Comitium. It eventually continued in front of the Sanctuary of Apollo on the west side, and it turned eastward in correspondence to the façade of the Comitium7. The new colonnade introduced a new axis of the Forum, which is oriented from north to south.

5 DOBBINS 2007, pp. 169-72.

6 The tufa colonnade is conventionally called “Popidian” after the quaestor Popidius who promoted its realization. The second story of the colonnade was accessible from several accesses, including one aside the Basilica, and another flanking the easternmost of the three south civic buildings. DOBBINS 2007, p. 153.

7 An accurate analysis of the structures around the Forum has demonstrated their relationship with the south colonnade. For example, the wedge-shaped chalcidicum of the Basilica presents correspondences with the tufa colonnade, the gateway of Porta
During the Augustan regime, the row of tabernae on the east side of the Forum was substituted by several public buildings, including the Porticus of Eumachia, the Sanctuary of the Genius of Augustus, the Macellum, and the predecessor of the Imperial Cult Building. It is likely that both local administration and private citizens provided money for the construction of the new east wing.

Marina, and the southeastern corner of the Sanctuary of Apollo. Additionally, the rear of row of columns in front of the Comitium shows correspondences with the façade of the building. Hence, it is possible to argue that the Popidian colonnade and the facades of the buildings behind it are part of a common design project. DOBBINS 2007, pp. 169-172.

Some modifications occurred also on the west side, where the Forum Olitorium was built on the site of older residences. The Temple of Jupiter was likely interested by works of modifications during the same time. See Chapter 2, footnote 7.

The axes of the Eumachia and of the Macellum are not orthogonally oriented to the axis of the Forum. The two buildings maintained the same topographical arrangement of pre-existing structures, but the presence of the new colonnade led to the creation of trapezoidal-shaped bands before the Macellum and between the chalcidicum and the porticus of the Eumachia. The Sanctuary of Augustus, although belonging to the same time, has its façade parallel to the axis of the Forum, but here the swerve is visible in the alley behind the building.
After the earthquake of 62 A.D., the Forum and its dependencies demanded a comprehensive plan of reconstruction. The entablature blocks left on the ground in front of the Sanctuary of Apollo prove that the west wing was in the process of replacing the old tufa structures of the late-republican arrangement10. A row of limestone columns stands in front of the Eumachia as well11. The facades of all the buildings of the east side were united in a cohesive design that might have been the work of just one architect, or possibly a team of professionals.

The process of renovation of the colonnades was combined with a complete restoration of the accesses to the Forum. By this time, three main entries were present: the north access from Via del Foro, the southwest access from Via di Porta Marina, and the southeast entry from Via dell’Abbondanza12. Two grandiose spaces welcomed the visitor from Via

10 The new limestone colonnade, characterized by a Tuscan order at the lower level and an Ionic order for the upper story, was meant to replace completely the precedent tufa configuration.

11 These columns are the result of a restoration made by Maiuri in 1935, and they most likely had the same Tuscan-Ionic configuration as the colonnade on the west side.

12 The colonnades by the gates of Via di Porta Marina and Via dell’Abbondanza have an intercolumniation wider than that arranged for the colonnade of the Forum.
dell'Abbondanza and Via del Foro. The chalcidicum of the Eumachia was adorned with polychrome marbles, and statues were placed upon pedestals facing the façade of the building.13 The façade, the east wall of the interior porticus and the northeastern corner of the Eumachia were severely damaged by the earthquake, and they necessitated works of reconstruction.14 A statue gallery was set in front of the Macellum as well, where the northern access from Via del Foro was characterized by two monumental arches that connected the street to the open space.15 On the south side, the facades of the three civic buildings were unified, whereas

13 The ending part of Via dell'Abbondanza was also characterized by the rhythmic facades of the Eumachia and the Comitium.

14 Maiuri, during his excavation of the chalcidicum of Eumachia, recognized two different foundations of the façade in addition to the walls of the pre-roman tabernae. Albeit their materials and building techniques belong to two different phases, they reflect the same geometrical articulation of the wall. Thus, the reconstruction after the earthquake did not modified the original layout of the main façade. MAIURI 1973, pp. 91-2; DOBBINS 1994, pp. 655-6.

15 The lower level of the colonnade in front of the Macellum presents a Corinthian order made of Luna marble.

16 DOBBINS 2007, pp. 173-5.
the Sanctuary of Apollo and the Basilica did not undergo any significant transformation.

At the time of the eruption, the Forum was likely animated by hectic activities. The request for capitals committed to the works of reconstruction might have reached the central government of the Empire, which might have decided to assist the city of Pompeii with economic support and labor forces\(^\text{17}\) (Figure 3-3).

The will to realize new buildings attests the determination of public and private promoters to look at architectural models that were deeply rooted in the social, political and ideological life of that time. It is not a case, thus, that the design of the Eumachia was modeled on the well-known typology of the porticus, whose numerous examples scattered across the whole Empire.

\(^\text{17}\) In fact, due to the extensive works, the local benefactors and the Pompeian treasury might not have had enough funds to support the effort. In any case, after the earthquake the city had enough resources available to start the works, as it is possible to attest all over the city. This scenario contrasts the diffused theories of the twentieth century, which affirmed that Pompeii, at the time of the earthquake, was suffering of economic crisis. DOBBINS 1994, p. 634, and footnote 10.
Figure 3.1 Map of the excavations in 1819. Image courtesy of IGM (Istituto Geografico Militare, img. c.007139).
Figure 3-2 Map of the excavations in 1898. Image courtesy of IGM (Istituto Geografico Militare, img. ca b0006625).
Figure 3-3 The Forum of Pompeii today, aerial view (from Dobbins 2007, fig. 12.2, p. 152).
Chapter 4

The typology of the porticus during the Late Republic and the Early Empire

A brief survey of the porticus built from the Late Republican period to the Early Empire will serve to illustrate the degree to which the latest development in Rome influenced buildings in the provincial cities, whose architects consciously quoted models in the Capital. This imitation is difficult to understand in contemporary contexts, although this references are important to comprehend the will of provincial personalities to communicate their political and social affinities.

The typology of the porticus, in its Roman acceptation, is considered to be an adaptation of the Greek stoa\(^1\), which consists of a covered promenade with one or more rows of columns\(^2\). Sometimes, it is linked to adjacent buildings, and it can be composed of one or multiple wings. This

\(^2\) PLATNER 1929, p. 419; RICHARDSON 1992, p. 310.
typology has inherent versatility, since it often represented a congenial solution to many different urban or architectural problems. Through trade, commerce and military confrontations, the various Latin tribes of central Italy were exposed to Greek architecture and urban planning principles. Over the course of the last three centuries of the Roman Republic, the porticus became a common building type in the provincial cities and in the capital.

After their introduction to the capital city, the porticus was used exclusively for utilitarian purposes. They were often built for commercial

\[3 \text{ GROS 1996, p. 95.}\]

\[4 \text{ The typologies of porticus and peristylium have definitely been accepted as derivations of Hellenistic models. The main difference consisted in the presence of the atrium in the Italic dwellings, whereas in the Greek houses is testified an extensive use of the peristylium. Eventually, during the second century B.C., the porticus became a basic part of the Italic dwelling, being antithetically to the atrium, which overlooked an open space – usually toward the rear of the house –, and it comprehended the exclusive rooms of the residence. Essentially, the porticus differs from the peristylium since the former can be composed of one, two or three row of columns around an open space (if it creates an enclosed porticus on all four sides, it is rather called quadriporticus), whereas the latter is exclusively considered as a rectangular enclosed portico that surrounds a vegetable garden, or hortus. For a complete discourse on the topic, see MAIURI 1946, pp. 306-22.}\]
activities adjacent to public spaces. A well-known example was the Porticus Aemilia extra Porta Trigeminam, which was built adjacent to an emporium near the banks of the Tiber5. This structure was made of perishable materials, and was conceived to be as temporary as the commercial activity to which it was linked6. The Porticus Aemilia a Porta Frontinalis, built in 193 B.C. by the same Aemilii, was sited in proximity to the Altar of Mars by the Campus Martius, and provided shelter for censors who had to move from the Campus to the Forum Romanum7. These porticoes were still relatively modest and consisted of a single row of columns (Figure 4-1).

5 RICHARDSON 1992, p. 311. This porticus was built by the aediles M. Aemilius Lepidus and L. Aemilius Paullus in 193 B.C. Due to its ephemeral condition, it went under substantial restoration right after its realization. See also RICHARDSON 1976, pp. 58-9.

6 There are numerous examples of minor porticoes associated with commercial activities. For example, the Porticus Fabaria (PLATNER 1929, p. 422; RICHARDSON 1992, p. 313) was built adjacent to the Aventine Hill, as a component of the market in the trade and sale of beans, while the Porticus Margaritaria (PLATNER 1929, p. 423; RICHARDSON 1992, p. 314) was built for the commercial trade of jewelers. The Porticus Minucia Frumentaria (PLATNER 1929, pp. 424-6; RICHARDSON 1992, pp. 315-6) was a place for the distribution of grain in the time of Claudius. All of the porticoes, from the greatest to the most humble, were built alongside tabernae, markets, and other commercial facilities.

7 RICHARDSON 1992, pp. 311-2.
The first Fora of Rome, developed in the late republic, closely followed the model of Hellenistic stoai and agorai, although their purposes were rather different. For instance, the architecture and spatial composition of the Forum Iulium, built by Caesar and completed by Augustus, was conceived as an updated and “Hellenized” version of the old Forum Romanum. This multipurpose Forum consisted of a long double colonnade on three sides, enclosing a rectangular space whose focal point was Temple of Venus Genetrix.

The Porticus Octavia, vowed and built by the commander Gnaeus Octavius in 168 B.C., represents a significant milestone in the evolution of the porticus in the city of Rome. Unlike the simple and modest porticus that were built in the early republic, it was the first examples of an enclosed porticus around a central open space. Nonetheless, its topographical location is still unknown and currently under debate.

8 It provided a new Curia for the assemblies of the senate, and a row of tabernae was used also as governmental offices. Thus the forum became a space for commercial, civic, political, and religious activities. SENSENEY 2011, pp. 422-3.

9 Idem, p. 421.

10 On the discussion about the location of the porticus, see RICHARDSON 1976, pp 56-80; and SENSENEY 2011, pp. 421-41. Interestingly, Richardson locates the Porticus Octavia in
The theatre complex built by the consul Gnaeus Pompeius Magnus in 55 B.C. included a large porticus that stood in proximity to the Circus Flaminium. The porticus provided shelter for the spectators during rainy days, and provided a pleasant space where people could meet and spend their time. The porticus consisted of a rectangular colonnade with a single row of columns around the central garden. This is another application of the typology for the purpose of public entertainment and leisure. The peripheral walls were articulated with rectangular exedrae and circular the same area of the Porticus Metelli, which in turn will became the Porticus Octaviae at the end of the first century B.C., since the ancient sources describe the Porticus Octavia near the Circum Flaminium (RICHARDSON 1976, pp. 59-61). Octavius sought to be remembered as a great commander, and he decided to build a single-winged portico near the temples of Hercules Musarum, Jupiter Stator and Juno Regina. Few decades later, the commander Q. Caecilius Metellus Macedonicus built a triple-winged porticus on the three remaining sides of the area, creating an enclosed quadriporticus that delimited the whole complex (p. 61). In 33 B.C., Augustus restored the porticus, citing explicitly the Porticus Octavia, and few years later Augustus’ sister Octavia promoted the reconstruction of the whole structure (pp. 61-2). After the restoration, the complex was remembered as Porticus Octaviae after the sister of the emperor. On the other hand, Senseney argues that the Porticus Octavia was actually organized around the nearby Temple of Neptune (p. 425), which was adjacent the Porticus Philippi. It is remarkable how the porticus was always associated to a temple, an aedes, or a different type of religious structure.
apses screened off by columns. The wings of the porticus were enriched with paintings and works of art, whereas outside the south wall there might have been a row of tabernae (Figure 4-2)11.

Another early Roman example of this typology is the Porticus Philippi. Although it is named after L. Marcius Philippus, who was consul in 38 B.C., the porticus appears to have been built at the beginning of the second century. In 187 B.C. indeed, M. Fulvius Nobilior built and dedicated a Temple to Hercules Musarum in the same location where the porticus stands, and he also provided instructions for the construction of a colonnade around it12. The Porticus Philippi was thus an enclosed colonnade around the Temple of Hercules. It was composed of a double row of columns on each side, and the perimeter walls were characterized by an alternation of

11 RICHARDSON 1992, pp. 318-9; PLATNER 1929, pp. 428-9. The porticus is also reproduced on the marble plan of the Forma Urbis (RODRIGUEZ ALMEIDA 1981, pl. 32). Here too, the porticus was part of a system, along with the theater, that included the temple of Venus, located on the apex of the summa cavea of the theater itself.

12 ACKROYD 2000, pp. 571-572. The author provides a convincing argument in favor of the fact that M. F. Nobilior was the promoter of both the porticus and the temple. See also RICHARDSON 1977, pp. 355-61.
circular apses and rectangular exedrae. Both the porticus and the temple are shown on the marble plan of the Forma Urbis Romae (Figure 4-3) in their configuration after 38 B.C. Similarities between this porticus and the adjacent Porticus Octaviae are rather evident.

The Porticus Metelli is considered the predecessor of the Porticus Octaviae. It was built around 140 B.C. by the commander Cecilius Metellus after his victory against the Macedonians, and it consisted of an open space around the Temples of Juno Regina and Jupiter Stator. The latter was presumably built by Metellus himself. The porticus was built in peperino stone and adorned with columns crowned by Ionic capitals, and it

13 The porticus likely hosted commercial activities, since the sources mention a market of wigs and hair goods that took place in the wings of the colonnade. See RICHARDSON 1977, p. 361; and RICHARDSON 1992, p. 318.

14 RODRIGUEZ ALMEIDA 1981, pl. 23.

15 SENSENEY 2011, pp. 425-6; PLATNER 1929, p. 424. Richardson does not agree with the assumption that the Temple of Jupiter was erected by Metellus, stating that the temple was already there at the time of the erection of the porticus (see RICHARDSON 1992, p. 315).

preserved the plan of the subsequently built Porticus Octaviae17 (Figure 4-4). The design and architectural details of the Porticus Metelli suggest that it recalled explicitly the type of the Hellenistic stoa, and it appears to have been one of the first multi-winged porticos in Rome18.

Built over the Porticus Metelli, the Porticus Octaviae was one of the best known in Rome at the end of the first century B.C., and it too is represented on the Forma Urbis19 (see Figure 4-3). It was composed of a double row of columns on four sides, and two monumental Corinthian propylaea were placed by the main entrances at the limits of the longitudinal axis20. The north wall was characterized by two rectangular exedrae and a central circular apse, which were all screened off by pairs

17 When built, the colonnades were already enriched with precious pieces of art brought back to Rome by Metellus from Greece as war booty, such as the group of bronze statues Turma Alexandri, made by Lysippus, which represented the dead companions of Alexander the Great. RICHARDSON 1992, p. 317; SENSENEY 2011, p. 426; RICHARDSON 1976, p. 61.

18 RICHARDSON 1992, p. 315; SENSENEY 2011, p. 426.

19 RODRIGUEZ ALMEIDA 1981, pl. 23.

20 Richardson (1992, p. 317) affirms that during the renovation of the porticus, the two enclosed temples of Juno and Jupiter were rebuilt as well.
of columns (Figure 4-5). Apparently Octavia, sister of Augustus, paid for the restoration of the porticus at her own expense, and she introduced a curia, a schola, and a library dedicated to her son Marcellus.

In the first years of the Empire, the Augustan renovations in the Capital included many different regions. Vedius Pollio, a supporter of Augustus during the Late Republic, bequeathed to the emperor his grand estate on the Oppius. He requested Augustus to build a public monument on the side of his former residence, where then the emperor built a monumental porticus, which was dedicated in 7 B.C. by his wife Livia. The restoration introduced the employment of foreign marble for the decorations of structures.

21 There is another debate about the actual financier of the porticus. Some scholars (PLATNER 1929, p. 427; RICHARDSON 1992, p. 317) affirm that the restoration was paid entirely by Octavia, whereas others (ZANKER 1988, pp. 144-5) state that the real financier was Augustus, who later dedicated the porticus to his sister, respecting his ideological program of publica magnificentia. In any case, this porticus too was adorned with numerous pieces of art, and the restoration introduced the employment of foreign marble for the decorations of structures.

22 Here too, different activities took place inside the porticus. It is recorded that the Senate used to convene its meetings in this new curia of the Porticus Octaviae. RICHARDSON 1992, p. 317; PLATNER 1929, p. 427.
sources relate this monument to a shrine to Concordia also built by Livia. Thus, the complex soon became known as Porticus Liviae. As represented in the Forma Urbis (Figure 4-6), the Porticus is characterized by a rectangular plan with a double colonnade on four sides, and the peripheral walls are articulated in circular apses flanking a central rectangular exedra, which were delineated by a screen of columns. The access to the complex was located on the north side, toward the Clivus Suburanus, and the difference in height was negotiated with a flight of steps (Figure 4-7). As Octavia built her Porticus in her name and in that of his son Marcellus, here Livia

23 Flory 1984, pp. 311-2. Here too we have different interpretations of the source, which is the Fasti by Ovidius. Flory assumes that the shrine to Concordia actually must be sought within the porticus itself, whereas other scholars (Platner 1929, p. 423; Richardson 1978, pp. 266-7) do not seem to recognize it from the Forma Urbis (Rodriguez Almeida 1981, pl. 8). In fact, Richardson suggests seeking for the shrine in another location, but in his opinion, it was the entire Porticus Liviae to be “dedicated to Concordia, probably Concordia Augusta” (Richardson 1992, p. 314). For a complete discussion on the subject, see Flory 1984, pp 309-10 (especially notes 5 and 6) and Richardson 1978, pp. 262-7.

24 Once again, the same architectural forms seen in the Porticus Philippi, Porticus Pompeii, and Porticus Octaviae are here proposed.

25 Panella 87, p. 613.
dedicated the building on her behalf of that of his son Tiberius, who was also involved in many other building activities at Rome during the same period. The arrangement of the Porticus respected some pre-existent streets around the site, which necessitated an irregular perimeter. In order to maintain symmetry and geometrical regularity within the space of the porticus, wedge-shaped elements were introduced at the narrow ends of the rectangular porticus, negotiating these differences in geometry, which allowed for the inclusion of tabernae. The architecture of the Eumachia building in Pompeii would include the same elements in order to solve a similar problem.

The Augustan program of civic renovation included also the area of the Circus Flaminium where, in 13 B.C., the commander Comelius Balbus inaugurated a theatre and its adjacent porticus. The large porticus, built

26 For instance, the sources report the dedication of another temple to Concordia by the Forum Romanum in Tiberius’s name and in that of his dead brother Drusus (FLORY 1984, p. 323).

27 PANELLA 1987, p. 616.

28 Furthermore, in proximity to the porticus, the sources mention the so-called Macellum Liviae. FLORY 1984, p. 327.
behind the scaena of the theatre, was identified as the Crypta Balbi29. The complex stood behind the Porticus Octaviae and the Porticus Philippi, nearby the Porticus Minucia Frumentaria30 (Figure 4-8). With regard to the Crypta, the archaeological evidence shows a perimeter composed of three wings, enclosing a rectangular courtyard, whose fourth side was the scaena of the theatre31. The porticoes were characterized by arcades placed on bricks piers, whereas the central corridor was probably divided in two parts by another row of piers. The double porticus arrangement is here presented in another form (Figure 4-9). The fact that the word Crypta appears in the name of the complex, suggests characteristics that require further explanation. Each wing was enclosed on the outside by a wall without any openings. The interior was unusual for its use of arcuate walls in lieu of columns. The wide piers and narrow openings of this wall only

29 As for the Theatre of Pompey, the rear porticus provided shelter for the spectators in case of rain, or it was used as public garden when no events were scheduled. MANACORDA 2001, p. 27

30 Idem, p. 23.

31 In the middle of the courtyard there was a structure that might be identified as the Temple of Vulcanus, although only a single fragment of the Forma Urbis presents such feature. MANACORDA 2001, p. 24.
communicated with the central courtyard. The covered spaces of the porticus more closely resembled interior corridors rather than open and airy colonnades. Hence the use of the term Crypta32. On the street, the perimeter walls show a sequence of projecting pilasters that have no correspondence with the inner row of piers. A grand semicircular apse placed at the center of the eastern wing was screened off by a row of columns, and likely hosted a group of sculptures33. A second story of the structure datable to the Early Empire was found during the excavations, nearby commercial activities that stood in the immediate vicinity to the complex34.

32 MANACORDA 2001, p. 26. About the terms crypta and cryptoporticus, Coarelli determines the Hellenistic origin of the words, since already in use in Greece in the third century B.C. as regarded the architectural typology of covered corridors closed on all sides. Furthermore, the epigraphic evidence shows that these terms were often related to precise typologies of buildings, such as aedes, chalcidicum, exedra, peristylia, and porticus (COARELLI 1973, pp. 9-11; and related Appendix 1, pp.13-14).

33 MANACORDA 2001, pp. 25-7. The author underlines the similarity between this apse and the ones flanking the colonnades of the Forum Augusti, along with the affinities with the Building of Eumachia in Pompeii.

34 The excavations confirmed a second phase of the building, probably datable around the second half of the second century A.D., where the central row of piers in the corridors
The Augustan political and ideological program of renovation of the Urbe had the primary goal to increase public facilities and communal spaces, but also to restrain the privata luxuria showed off by some of the most eminent citizens35. The restoration of existent monuments and the transformation of private residences in public amenities underlines the will to return large parts of the city to the population36. The choice of the typology of the porticus for the building built by Livia fits appropriately in this program, albeit during the first decades of the first century A.D. large areas on the Oppius were still occupied by large private estates37. The Roman public porticus were enriched by collections of objects of art (paintings and

was obliterated in order to create a single passageway. MANACORDA, ibidem; COARELLI 2014, pp. 281-3.

35 ZANKER 1988, p. 136.

36 FLORY 1984, p. 327.

37 Not far from the Porticus Liviae, the famous Gardens of Maecenas were still standing at those times. ZANKER 1988, p. 137. It is remarkable though that the Romans attempted to find the answer to their problems by looking at Hellenistic models. As in domestic architecture, where the model of the Greek peristyle around a hortus-garden gradually took place of the local atrium, the public realm sought to “rustic” solutions in order to propose pleasant realities. WARD-PERKINS 1981, pp. 201-2.
sculptures were often part of war booties from military campaigns), which were often arranged in naturalistic scenarios full of exotic plants and herbal essences. A further observation can be made about the almost constant presence of religious structures in the proximity of porticus. When this is relationship not confirmed by archaeological evidence, epigraphic and literary sources provide the proofs38.

38 FLORY 1984, p. 309. It is the case of the Porticus Liviae. Despite there are no archaeological confirmation of the presence of the shrine to Concordia within the complex, Ovid and Strabo would actually confirm it. The association between the porticus-peristylium typology and sacred structures is also attested in domestic architecture, where the shrine of the Larii (the protector gods of the house) is moved from the atrium to the rear peristyle. MAIURI 1946, p. 318.
Figure 4-1 Map of the Circus Flaminius in Rome (after Olinder 1974, figure 6).

1) Theatre of Pompey
2) Porticus of Pompey
3) Theatre of Balbus
4) Crypta of Balbus
5) Porthicus Philippi
6) Porticus Octaviae
Figure 4-2 Plan of the Theatre of Pompey (from Canina 1850).
Figure 4-3 The Porticus Philippi on the Forma Urbis Romae (from Rodríguez Almeida 1981, Tav. XXIII).
Figure 4-4 The Porticus Metelli (from Senseney 2011, p. 426, figure 7).
Figure 4-5 The plan of the Porticus Octaviae (from Coarelli 2014, p. 271, figure 67).
Figure 4-6 The Porticus Liviae and the Thermae Traiani from the Forma Urbis Romae (from Rodríguez Almeida 1981, Tav. VIII).
Figure 4-7 The complete plan of the Porticus Liviae (after Panella 1987, p. 638, figure 9).
Figure 4-8 The Theatre of Balbus from the Forma Urbis Romae (from Rodríguez Almeida 1981, Tav. XXII).
Figure 4-9 The plan of the Theatre and the Crypta of Balbus (from Manacorda 2001, p. 24, figure 15).
Chapter 5

The Porticus Eumachiae in the Forum of Pompeii

Between the last years of the first century B.C. and the first decades of the first century A.D., the program of publica magnificentia promoted by Augustus in Rome was reflected on the Forum of Pompeii1. The provincial citizenry emulated the imperial Fora of the Capital through renovations works within the Forum, and promoted the construction of dedicatory building by local residents. At this time, besides the construction of the Eumachia, epigraphical evidence attests the dedication of the Sanctuary of the Genius Augustus by the priestess Mamia, the erection of the Temple of Fortuna Augusta by the magistrate M. Tullius, and the renovation of the theatre by M. Holconius Rufus2.

1 DOBBINS 1994, p. 631.

2 These buildings are related to each other by the use of the same materials and building techniques. Idem, pp. 653-4.
Description of the site

The Porticus Eumachiae was built at the end of the first century B.C. on the east side of the Forum (Figure 5-1). The chalcidicum characterizes the west side of the building, while the Vicolo di Eumachia flanks the porticus from east; the south wall is on Via dell’Abbondanza, which connects the Forum with the eastern districts, and on the north, the narrow Vicolo degli Scheletri separates the Eumachia from the Sanctuary of the Genius of Augustus3 (Figure 5-2).

The inscription on the entablature of the Forum colonnade in correspondence of the chalcidicum declares that the priestess Eumachia dedicated the building in her name and in that of her son, and paid for the construction of the chalcidicum, the porticus, and the crypta4. The same inscription is repeated above a secondary entrance on Via dell’Abbondanza (Figure 5-3).

3 This alley used to open onto the Forum in its original configuration, before the earthquake repairs of 62. DOBBINS 1994, p. 639. See footnote 6 below.

4 The inscription cites: “Eumachia L. f. sacerdos publica, nomine suo et M. Numistri Frontonis fili chalcidicum, cryptam, porticus Concordiae Augustae Pietati sua pequinia fecit eademque dedicavit” (CIL, X, 810).
The chalcidicum is a space of about 38.73 by 11.76 meters, and stands between the Forum colonnade and the main façade of the building, which is articulated in an alternation of curvilinear apses and rectangular exedrae (Figure 5-4). A small staircase by the north corner leads to summit of the podium of the north exedra\(^5\) (Figure 5-5), which is flanked by a curvilinear apse on the south side, which presents traces of preparation mortar for marble revetments. The curvature of the apse is not complete, since its geometrical center is projected toward the chalcidicum (Figure 5-6). The apse on the south side presents the same characteristics\(^6\). The exedra and the apse are separated by a small niche, which once presumably hosted the statue of either Aeneas or Romulus\(^7\).

\(^5\) The small doorway in opustestaceum and its doorjambs are connected with the façade of the adjacent Sanctuary of Augustus. Their unitary structure is the result of the post-62 reconstruction of the east side of the Forum. This wall also obliterated the western limit of the Vicolo degli Scheletri toward the Forum. DOBBINS 1994, pp. 639-40.

\(^6\) Bechi (1820, p. 13) describes the alleged original aspect of the façade on the base of his discoveries during the excavations. His observations about the geometries are not particularly accurate (“due grandi [nicchie] ovali...”).

\(^7\) Information about the decorative program of the chalcidicum were found in fragmentary inscriptions by the main façade. DOBBINS 1994, p. 649.
The main gate, placed in the middle of the façade, is framed by a marble frieze with floral and zoomorphic motifs (Figure 5-7). The south side of the façade proposes symmetrically the same arrangement described above (Figure 5-8). A row of statue bases built in tufa and limestone stands at the bottom of the colonnade toward the façade of the structure, and they were part of the sculptural program that embellished the chalcidicum and the east access to the Forum (Figure 5-9).

8 DE VOS 1982, p. 40; DOBBINS 1994, p. 649. The decorations of this frieze are similar to that of the Ara Pacis Augustae in Rome, and its manufacture has been related to professionals from the Capital. After the restoration post-62, the span of the gate increased considerably, and the comice was necessarily replaced out of the axis of the entryway.

9 The façade underwent extensive restoration after the earthquake of 62, but the new design retraced the same forms and articulations of the original Augustan wall, also re-proposing the same materials and building techniques. DOBBINS 1994, pp. 655-6. Also see chapter 3, note 14.

10 MAU 1902, p. 114; DOBBINS 1994, p. 649. A “reading of an edict between two equestrian statues” is depicted on an ancient Pompeiani fresco displayed at the National Archaeological Museum of Naples. The place represented may be either the chalcidicum of the Eumachia or the space before the Macellum. The latter option is probably the more correct, since the fresco shows white Corinthian columns similar to those standing in front of the market. Upon the sculpture bases depicted on the painting before the columns are
The south wall on via dell'Abbondanza is articulated in twenty-four bays, which are separated by stepped pilasters made of alternating courses of tufa blocks (Figure 5-10); the center of each bay is in opus incertum, and traces of stucco are still visible on the lower half of the wall. The bays are framed by alternate triangular and curvilinear pediments, and each pilaster was crowned with a stucco Corinthian capital. The three westernmost bays present traces of extensive reconstruction. After the earthquake of 62, they were rebuilt in opus testaceum with a span narrower than the other twenty-one bays of the façade. The first two bays from east are also different from the others since they are the secondary entrance, equestrian statues, thus an analogous theory of sculptures might have been placed in the chalcidicum of Eumachia as well (Museo Archeologico di Napoli. Sala LXXVIII, La pittura popolare, n. inv. 9068).

11 Small traces of these capitals are still visible on the east façade, and the stucco had white marble dust on its outer coat. DOBBINS 1994, pp. 650-1.

12 Two seams that identify three different construction periods are still visible running over the whole south wall. The lower third is the original structure, made of opus incertum; the mid third represents the repairs after the earthquake of 62; the upper third is the result of modern restorations. DOBBINS 1994, p. 655.
which connects the crypta directly to Via dell’Abbondanza, and the adjacent porter lodge13 (Figure 5-11).

The east façade on the Vicolo di Eumachia has the same features of the south wall. It has thirteen bays separated by pilasters, and on their upper half a decorative motif in First-Style, which is composed of two courses of ashlar blocks made in relief with stucco, is still visible in some points14 (Figure 5-12). The whole northeastern comer between the Vicolo di Eumachia and Vicolo degli Scheletri was completely rebuilt in opus testaceum after the earthquake of 62 A.D. (Figure 5-13)15.

13 Via dell’Abbondanza has a declivity of about 2 degrees toward east. The difference between the level of the Forum and that of the street at the intersection between Via dell’Abbondanza and the Vicolo di Eumachia is about 2.33 meters.

14 DOBBINS 1994, p. 650.

15 This alley has a slope of about 2 degrees that goes toward south. The difference between the level at the southeastern comer and that at the northeastern comer is about 1.40 meters.
The north wall on the Vicolo degli Scheletri is simply made of rubblework, and its core shows fragments of tufa, limestone and lava16 (Figure 5-14).

A wedge-shaped space between the Forum colonnade and the façade was built to negotiate the different orientation of the Eumachia (Figure 5-15)17. A porter lodge takes place on the south side of the main entrance18, in which traces of a narrow staircase are still visible against the east wall19 (Figure 5-16). On the north side, a small room introduces a narrow

16 A long horizontal seam starts from the corner between Vicolo di Eumachia and Vicolo degli Scheletri and runs all over the north wall. It is aligned with the upper line of a long course of bricks that spans from the northeastern corner. The building techniques above and below the seam are different, and probably the upper part is the product of the reconstruction post-62.

17 See Chapter 3, footnote 9.

18 The lodge’s threshold still preserves recesses and holes for wooden doorjambs.

19 A terracotta vase lies under the staircase, and it has been interpreted as a container for urine used in the Eumachia, which once was believed to be a fullonica. DEVOS 1982, p. 41. DOBBINS 1994, p. 653, and footnote 53.
corridor that run behind the main façade, and ends up onto the Vicolo
degli Scheletri20.

The inner courtyard was surrounded by a colonnade standing on a
marble stylobate, datable to the period between 62 and 79 A.D., which is
placed on top of a more ancient lava stylobate21. Both the stylobates run
symmetrically around the four sides of the court, and a projecting body
emphasizes the center of the east side. Two steps connect the courtyard
with the level of the porticus. A lava gutter runs along the north, west and
south sides of the stylobate, and turns for few meters by either sides of the
east front, where it meets the projecting steps at the center of the façade
(Figure 5-17).

The north and south walls of the portico are made of opus incertum22.
Eleven windows are open on each wall, and their dimension in width stand

20 In the last room of this corridor, Mau (1892, p. 119) affirms to recognize traces of a
wooden staircase that led to a mezzanine, supposedly at the height of 4 meters. Today
such traces are rather arduous to identify, although the room is still well preserved.

21 DOBBINS 1994, p. 651, and pp. 659-60.

22 DOBBINS 1994, p. 656. These walls have been extensively repaired after the earthquake
of 62 A.D. In fact, it is possible to recognize a horizontal seam that separate the original
between 1.40 and 1.50 meters (Figure 5-18). Each window hosts marble sills with recesses for wooden jambs and shutters23 (Figure 5-19).

The west wall of the porticus recalls the features of the main façade in the chalcidicum, since it presents an alternation of small statue niches and large rectangular exedrae24 (Figure 5-20).

The design of the east wall is characterized by a large central semicircular apse screened off by two piers (Figure 5-21). On the sides, two smaller apses are arranged in correspondence of the longitudinal wings of the colonnade (Figure 5-22). The whole wall was rebuilt in opus testaceum after the earthquake of 62 A.D.25. The large apse is placed in opus incertum from the reconstruction made in rubblework, including several architectural tufa fragments.

23 Some of the sills do not present holes for latches. This is because some of them are actually the product of modern replacements. DOBBINS 1994, p. 98, and footnote 50.

24 There are correspondences between the statue niches on the west wall and those on the façade; this conformity involves the inner exedrae and the outer apses as well. Faint traces of a stucco decoration in First-Style, similar to the one on the east façade on the Vicolo di Eumachia, are still visible on the rear surface of the west statue niches.

25 Maiuri excavated the east side of the porticus during his campaign in 1940. The foundations of the minor lateral apses showed no trace of transformations, whereas those
correspondence of the projecting steps of the stylobate26. The aura of magnificence was intensified by the presence of a group of sculptures that once enriched the interior of the apse, which stood on three pedestal placed against the rear wall27.

Behind the porticus, the crypta runs on the south, east, and north side of the complex. The windows on the longitudinal corridors are the only openings toward the courtyard, whereas the east corridor takes light and air from two small irregular light courts flanking the central apse28. Two entrances to the crypta are located on either side of the west branch of the porticus. The south entrance presents a marble threshold with recesses of the central apse once formed a rectangular exedra in lieu of the post-62 segmental structure. MAIURI 1973, p. 92 and figure 45; DOBBINS 1994, p. 651.

26 The whole east wall received decorations of marble revetments. Although there are few traces of preparation mortar on the brick surface, tangs and wedges for marble veneers are still visible throughout the wall. DOBBINS 1994, pp. p. 652, and pp. 658-9.

27 In 1820, fragments of marble sculptures have been found within the apse, and they plausibly belong to the statues of Livia, Concordia and Pietas. These characters well reflect the dedication of the building made by Eumachia and her affinity to the Augustan program of publica magnificentia. DOBBINS 1994, p. 652, and footnote 47.

28 MAU 1900, p. 116.
for jambs and latches. A marble socle runs at the bottom of the walls of the crypta 29 (Figure 5-23). By the center of the eastern corridor, a rectangular exedra hosted the statue of Eumachia, which was donated by the fullones along with a votive inscription 30. A third access to the crypta was located at the corner between Via dell'Abbondanza and the Vicolo di Eumachia. This entrance and the adjacent porter lodge occupy the last two bays of the south wall, and the crypta, which is above the street level, was reached through a ramp (Figure 5-24). On the walls of the porter lodge are still visible traces of Third-Style frescoes (Figure 5-25). Decorations in the same Style adored the interiors of the crypta as well (Figure 5-26).

29 The western wall of the south corridor shows traces of reconstructions and redecorations. The inner wall juxtaposes the outer wall of the façade, and its opus incertum includes tufa fragments and broken tiles. The returns of the wall and the doorjambs of the south access to the crypta are made in opus vittatum, and they were sheathed with decorated stucco. Similar traces of reconstruction can be seen by the northern entrance to the crypta as well. Dobbins 1994, pp. 656-7.

Architectural fragments

In the interior courtyard, seventeen architectural marble fragments make it possible to identify two Corinthian orders that composed the architecture of the porticus (see Appendix). The corpus of fragments is constituted of three attic column bases, four column drums, four architrave-friezes, and six comices.

The attic base n. 1 (Appendix, card 1) presents a canonical profile composed of a lower torus about 4 centimeters high, a scotia in the middle, about 3.5 centimeters high, and an upper torus 3 of centimeters. The moldings are separated by two listels, each about 1.5 centimeters high. The base stands upon a squared plinth 8 centimeters high, which sides are about 48.5 centimeters long; the lower torus has a radius of about 24 centimeters, whereas the upper torus preserves a diameter of 42 centimeters and a circumference of about 135 centimeters. A recess for the dowel and the respective logline for the molten metal are visible at the center of the waiting bed of the base. The whole height of the fragment corresponds to about 21.5 centimeters.

The attic base n. 2 (Appendix, card 2) presents almost the same dimensions of the base n. 1, with differences of few millimeters as regards the molded profile. The total height of the base is 21.5 centimeters, but it is
impossible to measure the radius of the waiting bed due to the presence of the fragment n. 4, which was cemented upon the base during the works of restorations occurred after the excavations. In any case, it is possible to measure the upper circumference, which is about 139 centimeters; thus, the upper diameter can be rounded off to 44 centimeters circa. The plinth at the bottom has the same dimensions of the plinth of base n. 1.

The attic base n. 3 (Appendix, card 3) does not differ much from the bases n. 1 and n. 2, having comparable dimensions of plinth, molded profile and upper diameters. This base too has a central recess for a metal dowel and the logline for the iron on its waiting bed; the sign of the diameter of the column drum that once took place upon the base is still readable, and preserves a radius of about 20 centimeters.

The column drum n. 4 (Appendix, card 4) is cemented upon the attic base n. 2; it is the lower extremity of a column, and it has 24 flutes about 4 centimeters wide, separated by listels of 1.5 centimeters. The lower part of the element is broken, and almost half of the imoscapus is missing, but part of the lower listel of about 2 centimeters, placed right below the cymbium, is still visible. Although severely damaged, its lower diameter can still be approximated, considering the first complete circumference preserved at
about 25 centimeter from the lower extreme, which results of about 40 centimeters. The fragment preserve a maximum height of 49 centimeters.

The fragment n. 5 (Appendix, card 5) is a column drum that corresponds to the upper half of the entire column. It preserve a height of 204 centimeters, with 24 flutes about 4 centimeters wide and listels of 1.5 centimeters. By the sommoscapus, the fragment preserves an upper torus about 3 centimeters high, and a lower listel 1 centimeter high. The waiting bed preserves a diameter of about 45 centimeters, along with a logline and a central dowel recess, where ancient traces of iron are still visible. The lower diameter measures about 46 centimeters, and a hole for another dowel – which once connected the two halves of the column – is visible on the laying bed of the fragment.

The column drum n. 6 (Appendix, card 6) represents the lower half of a column. It preserves a height of 156 centimeters, with an upper diameter of about 36 centimeters, and a lower diameter of about 40 centimeters. It shows the canonical 24 flutes about 4 centimeters wide and separated by listel of 1.5 centimeters, and by the imoscapus, it shows another listel about 2 centimeters high. The laying bed shows the recess for the dowel, whereas the waiting bed preserves the usual dowel hole and the logline for the liquid iron.
The fragment n. 7 (Appendix, card 7) is the upper part of an engaged column; despite its fragmentary state, it is still possible to read some important information. The rear of the piece presents a flat surface about 40 centimeters wide, which projects about 9 centimeters from the curvature of the drum; interestingly, its shape narrows toward the bottom, creating a peculiar trapezoidal form. The fragment preserves a maximum height of 68 centimeters, and it presents precise geometrical constructions, since the edge of the flat face is tangential to the curvature of the drum. An upper torus about 3.5 centimeters high and a lower listel of 1.5 centimeters take place by the sommoscapus. The waiting bed, although badly damaged, still shows the canonical dowel recess and logline. The drum presents the usual 24 flutes separated by listels.

The architrave-frieze n. 8 (Appendix, card 8) preserves its complete length of 228 centimeters. The two lateral faces differ slightly for arrangements and dimensions of the moldings. The outer front is composed of an upper smooth surface 25 centimeters high, which represents the frieze

31 The choice to create such particular shape is understandable, since the column tends to increase its diameter toward its lower part; the trapezoidal surface, on the contrary, decreases its width toward the bottom, balancing the swerve between the engaged column and the element – most likely a pier – against which once it stood.
that was most likely colorfully painted. A slightly curved profile of about 3 centimeters introduces a lower listel, about 2 centimeters high. Below that, a cyma reversa, about 3 centimeters high and projecting 4 centimeters, crowns the lower side of the architrave, which is composed of two bands, the upper of 9 centimeters, the lower of 6 centimeters. The inner front presents almost the same sequence of moldings; the differences are represented by the lack of the architrave bands, replaced by a single smooth band about 20 centimeters high, and the more elevated position of the cyma reversa. Both the upper and the lower faces of the fragment are 33 centimeters wide, which represents the thickness of the element. The lower face presents a central semicircular molding – about 172 centimeters long – that is distant 28 centimeters from the edges of the element. The upper face is relatively smooth, and presents only a small recess for the lifting lever once used to move the element upon the columns. Both the side faces present signs of anathyrosis, with a smooth band about 9 centimeters wide. The height of the element is 46.3 centimeters.

The fragment n. 9 (Appendix, card 9) is also complete. It is an architrave-frieze 228 centimeters long with the same moldings present on the fragment n. 8, which are articulated in two lower bands about 7 and 10 centimeters high, a projecting cyma reversa, which is decorated an
egg-and-dart molding in relief about 7 centimeters high, and an upper band about 22 centimeters high. It was not possible to move the fragment in order to analyze its lower face, but it is presumably decorated with the canonical central semicircular molding. The height of the piece is about 45.5 centimeters.

The element n. 10 (Appendix, card 10) is another architrave-frieze. It twins with the piece n. 8, since it shares with it the same high, length, and articulation of the moldings on both the fronts and the lower face.

The fragment n. 11 (Appendix, card 11) is an external convex angular lintel, whose front, back and lateral faces are still well preserved. It is broken in its length, which is conserved for about 219 centimeters. The front has two bands at the bottom, about 8.5 and 13.5 centimeters high, and above them there is a cyma reversa decorated an egg-and-dart molding in relief, about 5 centimeters high. On the upper part, another smooth band about 13.5 centimeters high is still visible. The decorated cyma reversa turns on the side of the fragment, although not entirely preserved. Two remarkable features about this piece deserve a closer investigation. The first regards the thickness of the fragment: it is only 19.5 centimeters thick, exactly half of the thickness we would expect from an architrave belonging to the entablature supported by the bigger columns described above (n. 5 and
n. 7). The lower face of the element shows the usual central semicircular molding, which is in this case only half carved; in other words, it is a quarter of the complete semicircular molding. Furthermore, it is distant about 47 centimeters from the edge of the fragment, allowing room for only one Corinthian capital. The second noteworthy feature is the frieze. On the other three architrave-friezes, an upper smooth band runs for the whole length, and it was most likely painted. On the other hand, the fragment n. 11 presents a recess of about 7.5 centimeters in correspondence of the canonical upper band. This recess still preserves holes for small metal dowel – whose traces are still in-situ – that must have supported slabs of a different material, probably polychrome terracotta, which constituted the real frieze of the piece, but whose remains are now lost. This distinct frieze turns on the side of the fragment as well.

The fragment n. 12 (Appendix, card 12) is a Corinthian comice, whose preserved length is about 102 centimeters. The front presents a theory of moldings that is composed of an upper cyma recta about 5.5 centimeters high, a listel of 1 centimeter, a cyma reversa of about 3.5 centimeters, and a taenia of 3.5 centimeters. In the middle, the dripstone is characterized by a canonical geison projecting about 7 centimeters; below that, a sequence of 22 dentils, each 3 centimeters wide and 2.5
centimeters high, runs for the length of the piece. Finally, a lower cyma reversa, about 4 centimeters high, concludes the theory of mouldings. An anathyrosis characterizes the right face of the element, with a smooth band running around the edge. A beam socket, about 20 centimeters wide, 17 centimeters long and 13 centimeters deep, is visible from the back and from the left face of the fragment. At the bottom of the rear side, a broken moulding – likely an ovolo – runs for its whole length. The upper face of the cornice is 46 centimeters wide, whereas the lower side has a dimension of about 27 centimeters. The fragment is 23 centimeters high.

The fragment n. 13 (Appendix, card 13) is a broken Corinthian comice, about 25 centimeters high, with the upper face about 61 centimeters wide, and the lower face about 32.5 centimeters wide. Starting from the top, the front presents: a taenia of 4 centimeters; a listel of 1 centimeter; a cyma reversa about 5 centimeters high; a dripstone with a geison that projects about 7 centimeters; a series of almost 17 complete dentils; a listel of 1 centimeter; and finally a further cyma reversa of 5 centimeters at the bottom of the face. This comice preserves a partial length of 84 centimeters; it has not a crowing cyma recta at the top of the front, nor a beam socket at the rear.
The Corinthian comice n. 14 (Appendix, card 14) twins with the comice n. 13 as regards the sequence of moldings, but they differ for many aspects. The comice n. 14 preserves its complete length, which is about 177 centimeters. It has a theory of 35 dentils on the front, and it presents a beam socket – about 17 centimeters long, 15 centimeters wide, and 16 centimeters deep – on the rear face. This comice is lacking of any cyma recta at the top of the front.

The fragment n. 15 (Appendix, card 15) is an external convex angular comice. It is broken on both the sides, but the corner presents some interesting features. The thickness preserved is about 24.5 centimeters; the laying bed is a rectangle whose dimensions are 34 by 97 centimeters; the waiting bed has a maximum length preserved of about 125 centimeters. From the bottom, a cyma reversa of about 5 centimeters is carved with a of egg-and-darts motif. A series of dentils run around the whole perimeter of the piece, introducing a theory of modillions decorated with palms on relief; in alternation with the brackets, flowers in relief characterize the dripstone of the comice. The part above the modillions is composed of two short taeniae about 2 centimeters high, which are separated by a small cyma reversa about 2 centimeters high. The comice does not present any beam socket on the rear sides, nor a crowing cyma recta on the top.
The fragment n. 16 (Appendix, card 16) is an external convex angular raking cornice. It is the most decorate and monumental fragment pertaining to the inner colonnade and it gives a sense on how spectacular the architecture of the interior porticus must have been. The upper part is characterized by a short taenia of 2 centimeters; then, a cyma recta, 5 centimeters high and decorated with a palm-and-darts motif in relief, introduces a sequence of small moldings composed of a smooth listel of about 2 centimeters, a cyma reversa of 4 centimeters, and a taenia of 4 centimeters. The area below is characterized by a theory of sloping modillions richly decorated with palms in relief and about 9 centimeters high, which are separated by flowers in high relief. Thus, a row of dentils run over the edge of the element, and a cyma reversa, decorated with a leaf-and-dart motif in relief, concludes the sequence of moldings. The upper cyma recta solely turns sideways, since the bottom of the fragment is actually the laying bed that once stood upon the upper face of the lower comice. The element is broken at its extremity, and preserves a length of about 287 centimeters, whereas its thickness is about 37 centimeters. On the upper face, a long groove, about 4 centimeters deep and 5 centimeters wide, runs for 274 centimeters from the broken edge, and turns for about 25 centimeters toward the short side. It is possible that this recess once hosted a decoration made of a light material, plausibly iron. This
The hypothesis is sustained by the fact that behind the groove there are several small holes filled with iron, still in-situ, which might have been the back supports of such decoration.

The last fragment n. 17 (Appendix, card 17), is another external convex angular raking cornice. It is the corner of the symmetric part of the n. 16, and it shows the very same sequence of moldings and decorations. It has been severely damaged, but still it is possible to recognize the reliefs of the front and the groove on the upper face, along with a small hole filled with iron identical to those present on the fragment n. 16.

On-field data and observations

A majority of the structures and fragments preserved within the Eumachia belong to its post-62 phase. The corner between the Forum and Via dell’Abbondanza is a remarkable urban focal point. The Eumachia is the first building that could be seen when approaching the Forum from Via Marina. The south wall on Via dell’Abbondanza, with its rhythmic bays and
stucco decorations, leads to the chalcidicum, whose visual impact must not be underestimated32.

An analysis of the building components was necessary to comprehend its structural, architectural, and esthetic qualities. The on-field activities produced a conspicuous amount of data. Architectonically, the investigation of the forms of the Eumachia Building underwent gradual analyses in order to envision its plausible final aspect.

The chalcidicum required accurate analyses in order to interpret the relationships between its surviving structures and the ones of the porticus. These relationships can be often misleading due to the reconstruction occurred during the excavations33. Few fragments of the tufa colonnade are still in-situ, and they give a rather precise sense of the process that was ongoing before the eruption of 79 A.D.34. Some observations have been made considering the anastylosis of the colonnade of the chalcidicum and

32 DOBBINS 1994, p. 648.

33 Maiuri mentions the restoration of the colonnade during the search for the archaic tabernae under the level of the chalcidicum. MAIURI 1973, p. 54, footnote 5.

34 The entablatures on the west side would demonstrate that the Forum was still under completion between 62 and 79 A.D.
the statue pedestals at the base of the columns. Interestingly, some intercolumniations of the chalcidicum approximate those of the inner porticus of the Eumachia (Figure 5-27).

The proportions of the rectangular court of the porticus present a ratio of 1:2 (about 39.87 x 20.28 meters), which would attest the conscientiousness of the architect in charge (Figure 5-28), which may be appreciated also through the articulation of the east façade. The recognition of the height of the dome spring could indeed provide the overall proportion of the wall (Figure 5-29).

Some technical inquiries regarded the identification of the wedges of the marble revetments on the east brick façade, whose decorative setup must have been impressively rich35. Further geometrical investigations involved the statuary group of the central apse, whose lateral pedestals

35 It is worth noticing that the dimensions of the surviving structures respect the standardized roman foot, which is about 0.297 meters. For instance, the walls of the crypta are based on the sesquipedales (1½ feet = about 0.45 meters); the dimension of the marble slabs of the stylobate corresponds to the bipedales (2 feet = about 0.60 meters), which is also the dimension of the post-62 eastern brick wall; the central apse, due to structural reasons, has walls about 0.90 meters thick, which corresponds to about 3 roman feet; the two piers that screen off the apse are based on the bipedales as well. GIULIANI 1990, p. 158.
are oriented at 45° with respect to the horizontal threshold of the room (Figure 5-30). The elevation of the façade has thus been hypothesized on the base of the information gathered. The enquiry continued on the walls between the crypta and the porticus, studying windows and sills (Figure 5-31). The west wall was analyzed along with the four small statue niches engraved on its surface, which also present signs of tangs and marble wedges (Figure 5-32). A quick sketch of the returns by the main entrance, characterized by the doors of the wedged intermediary space hosting service rooms and the porter lodge, was necessary to recognize different building techniques and modern insertions (Figure 5-33).

The inner stylobate has been one of the most critical part to be inspected. It has been possible to recognize its two different phases, and a careful study of its characteristics provided further information about the relationship between the dowel recesses on the blocks and the dimension of the entablatures found inside the building. Indeed, since the fragments of the architrave-friezes preserve all the same length of 2.28 meters (see Appendix - cards 8, 9, 10), it was crucial to find an analogue intercolumniation on the stylobate. The lower layer of tufa blocks of the first phase shows a pattern of dowels at 2.28 meters apart, which corresponds to the length of the marble entablature of the second phase. This means
that the post-62 marble colonnade kept the same pace of the old tufa portico, whereas the orders were changed from Doric to Corinthian, as some fragments still in-situ would confirm36 (Figure 5-34). The marble sheathing would have been placed upon the tufa blocks in order to support the new marble colonnade, but it is possible that the arrangement of the marble slabs is the result of the early-nineteenth century restorations37. Anyway, the compatibility between the intercolumniation of 2.28 and the whole length of the preserved stylobate was still to be solved. In order to relocate the returns of the west colonnade it was necessary to resort to some technical advices. A pilaster base against the north wall of the porticus would suggest a frontal pier at the northwestern corner of the colonnade, and another pier must have been placed on the opposite corner. Once envisioned the west border of the porticus, the length of the longitudinal stylobate was subdivided into equal parts, but the results still continued not to match with the dimension of the architrave-friezes preserved.

36 DOBBINS 1994, pp. 659-60.

37 Ibidem.
The presence of two piers at the western corners would suggest that two or more engaged columns, akin to the fragment found in-situ (see Appendix, card 7), might have been placed against them. If the length of the stylobate is subdivided starting from the midpoint of the western engaged column, the intercolumniation is exactly 2.28 meters. Further conjectures have been made as regards the central projection of the eastern stylobate as well (Figure 5-35).

The place where the Third-Style frescoes are best preserved is the porter lodge by the entrance on Via dell’Abbondanza (see Figure 5-25). The thresholds of this room still present the recesses for doorjambs and latches (Figure 5-36).

At any rate, numerous incisions, sketches and drawings made during the excavations and published at the end of the nineteenth century represent another inestimable source for the envision of the decorative apparatus of the Porticus Eumachiae.
Figure 5-1 Components of the Forum of Pompeii: 1) central open space; 2) Porticus of Eumachia; 3) Sanctuary of the Genius Augustus; 4) Imperial Cult Building; 5) Macellum; 6) Temple of Jupiter; 7) Forum Olitorium; 8) Sanctuary of Apollo; 9) Basilica; 10) Civic Buildings; 11) Comitium; a) west access from Via di Porta Marina; b) east access from Via dell’Abbondanza; c) north access from Via del Foro (after Dobbins 2007, Map 3).
Figure 5-2 Plan of the Porticus of Eumachia, manual survey (drawing by the author).
Figure 5-3 Inscription upon the secondary access on Via dell’Abbondanza (photo by the author).
Figure 5-4 Porticus of Eumachia, main façade (photo by the author).
Figure 5-6 Geometrical curvature of the apses in the chalcidicum (drawing by the author).
Figure 5-7 Porticus of Eumachia, main façade, central portal (photo by the author).
Figure 5-8 Porticus of Eumachia, main façade, south exedra with marble revetments in situ (photo by the author).
Figure 5-9 The reading of an edict between two equestrian statues, National Archaeological Museum of Naples, fresco (n. inv. 9068).
Figure 5-10 Porticus of Eumachia, south façade on Via dell’Abbondanza. (Photo by James Cooper).
Figure 5-11 Porticus of Eumachia, south façade, secondary access with the porter’s lodge (photo by the author).
Figure 5-12 Porticus of Eumachia, east façade, First-Style stucco decoration in one of the bays of the wall (photo by the author).
Figure 5-13 Porticus of Eumachia, northeastern corner (photo by the author).
Figure 5-14 Porticus of Eumachia, north façade on Vicolo degli Scheletri (photo by the author).
Figure 5-15 Porticus of Eumachia, wedge-shaped rooms between the chalcidicum and the inner porticus (drawing by the author).
Figure 5-16 Porticus of Eumachia, porter’s lodge by the main entrance (photo by the author).
Figure 5-17 Porticus of Eumachia, interior, east stylobate (photo by Aaron Levitt).
Porticus of Eumachia, interior, window on the south wall between the porticus and the crypta (photo by the author).
Figure 5.19 Porticus of Eumachia, interior, detail of the window sill (photo by the author).
Figure 5-20 Porticus of Eumachia, interior, west wall (photo by the author).
Figure 5-21 Porticus of Eumachia, interior, east wall, grand central apse (photo by the author).
Figure 5-22 Porticus of Eumachia, interior, east wall, north minor apse (photo by the author).
Figure 5-23: Porticus of Eumachia, interior; northwestern access to the crypta; see the pilaster base against the wall in the lower right corner (photo by the author).
Figure 5-24 Porticus of Eumachia, ramp on the back access on Via dell’Abbondanza (photo by the author).
Figure 5-25: Porticus of Eumachia: frescoes in the potter's lodge by Via dell'Abbondanza (photo by the author).
Figure 5.26 Porticus of Eumachia; frescoes behind the statue of Eumachia in the eastern exedra of the crypta (photo by the author).
Figure 5.27 Sketch of the intercolumniation of the chalcidian colonnade (with James Cooper).
Figure 5-28 Sketch of the different possibilities about the inner porticus (drawing by the author).
Figure 5-29 Sketch of the east wall elevation (drawing by the author).
Figure 5-30 Orientation of the statue bases in the grand eastern apse (drawing by the author).
Figure 5.31 Sketch of one of the window’s sill on the wall between the porticus and the crypta (drawing by the author).
Figure 5-32 Sketches of the statue niches on the west wall of the porticus (drawing by the author).
Figure 5-33 Sketches of the main porter’s lodge door and of the wedge-shaped service rooms entrance (drawing by the author).
Figure 5-34 Fragment of a tufa capital of pilaster in situ laying on the south wall of the porticus (photo by the author).
Figure 5.35 Sketches of the projecting steps in the middle of the east side of the porticus (drawing by the author).
Figure 5.36 Sketch of the porter's lodge by the secondary entrance on Via dell'Abbondanza (drawing by the author).
Chapter 6

Material from the past

At the beginning of the nineteenth century, the excavations of the Forum run under the supervisions of the superintendent Michele Arditi and the architect Antonio Bonucci\(^1\). The excavators were assisted by draftsmen who documented the discoveries made on weekly bases. The drawings comprehended overall plans, elevations, and sections of several buildings, which now offer essential information related to their original characteristics, since numerous evidence, frescoes and wall paintings are now lost.

In 1820, the architect and archaeologist Guglielmo Bechi\(^2\) published a short essay entitled “Del calcidico e della cripta di Eumachia”. He described the chalcidicum, the inner porticus, and the spaces of the

\(^1\) See chapter 3, p. 15, and footnote 1.

\(^2\) He later became the Director of the Excavations at Pompeii during the years 1851 and 1852.
crypta, although his reports are mostly based on an alleged original aspect of the structure. He provided an accurate plan of the building (Figure 6-1), on which all the areas are labeled as described on the inscription found by the Forum colonnade (see Figure 5-3). He also provided drawings of the south wall (Figure 6-2). Finally, Bechi represented the statue of Eumachia in the east corridor of the crypta, and the incision on its base (Figure 6-3); a symmetrical reproduction of the door that led to the ramp toward Via.

3 For example, when illustrating the marble stylobate of the porticus, Bechi suggested that “si discende per uno scalino marmoreo” (p. 15), giving his own interpretation of a plausible original marmoreal aspect of the colonnade. He kept the same approach for the chalcidicum and the crypta (p. 16). BECHI 1820, pp. 12-20. See also DOBBINS 1994, p. 659, and footnote 70.

4 On the plan, Bechi labeled the central court as “impluvium fullonica”, since he assumed that the building was a workplace for washing and cleaning of textiles, and headquarter of the fullones who dedicated the statue of Eumachia (BECHI 1820, p. 66). His opinion was supported by the alleged vats found in the central court, which were thought to be tubs for the washing of clothes; contemporary theories, however, are more inclined to consider these vats as places where workers used to prepare the mortar for the reconstructions post-62 (DOBBINS 1994, pp. 660-1).

5 Bechi does not specify whether the decoration represented belongs to the south or east façade of the building.
dell’Abbondanza is painted on the north side of the priestess’s niche (Figure 6-4).

The Hungarian writer and illustrator Ludwig Goro Von Agyagfalva published in 1825 the volume “Wanderungen durch Pompeii”, in which he shows details of the orders of both the Eumachia and the Basilica (Figure 6-5). In his plate, a representation of a Corinthian capital of the Porticus Eumachiae is similar to the stucco capital of the outer pilasters drawn by Bechi few years back. On the same plate is depicted a frieze with a theory of spirals of acanthus leaves, which is crowned with a cyma reversa and a dart-and-leaf motif.

At the beginning of the second quarter of the same century, Francois Mazois was about to publish the first volumes of his monograph “Les Ruines de Pompéi”. In a plate of the third volume, he represented a Corinthian pertinent to the Eumachia. Mazois also illustrated a reconstruction of the whole order, using the same elements – bases, architrave-friezes, and comices – still visible in-situ today (Figure 6-6). He also hypothesized a reconstruction of the building, providing a plan (Figure 6-7), a cross section

6 Mau will make a reference to this Corinthian capital, which actually belongs to an engaged column, in his future publications (MAU 1892, p. 125).
(Figure 6-8), and a longitudinal section (Figure 6-9). On another plate, Mazois drafted the outer wall and the bracket comice of the Corinthian order, along with the angular raking block above it (Figure 6-10). He also represented the Third-Style frescoes on the rear ramp of the crypta and the false door flanking the statue of Eumachia (Figure 6-11). Another representation of the Third-Style frescoes of the crypta is shown on a separate plate (Figure 6-12).

These frescoes are also illustrated in the book by William Gell “Pompeiana”, published in 1832. Gell depicted the Third-Style of the rear ramp (Figure 6-13) and the niche with the statue of Eumachia, along with its adjacent false door (Figure 6-14). The representation of the frescoes corresponds almost exactly with those published by Mazois7.

Evidence of a Corinthian capital is also displayed in the work by the architect, etcher and painter Luigi Rossini, entitled “Le Antichità di Pompei delineate sulle scoperte fatte sino a tutto l'anno 1830”, and released in 1831. A cross section of the Eumachia is on the plate LIV, adjacent to a

7 The plates of the book “Pompeii”, written and illustrated by Thomas Henry Dyer in 1867, proposed again the statue of Eumachia and the false door of the crypta (DRYER 1867, p. 121). The wall paintings are drawn exactly as in the books cited above.
Corinthian order composed of a column, a capital, and an entablature. Its characteristics are similar to the one drawn by Mazois few years back (Figure 6-15). Another almost identical Corinthian capital is illustrated upon the central pedestal of the east apse (Figure 6-16). A drawing of the chalcidicum (Figure 6-17) shows several crustae in the south apse of the façade (of which only two survive, see Figure 5-8) and the statue bases toward the Forum colonnade.

At the end of the twentieth century, August Mau published the short article “Osservazioni sull’edifizio di Eumachia in Pompei” (1892). He gave a thorough reconstruction of the building, which may provide, albeit with some incongruences, a good starting point for a new reinterpretation of the Eumachia. Mau illustrated carefully the marble fragments found in-situ, and offered several hypotheses for the reconstruction of both the colonnade of the chalcidicum and the inner porticus. The Plate IV presents the plan of the building (Figure 6-18). The solution proposed by Mau for the inner porticus is different from those drew by Bechi (see Figure 6-1) and Mazois (see Figure 6-7). The Plate V (Figure 6-19) shows the longitudinal section of the building. The east wall, characterized by a semi dome over the central apse, recalls the hypothesis suggested earlier by Mazois (see Figure 6-8). Yet, Mau here introduced for the first time a two-story
colonnade. The cross section illustrates the angular conflict between the longitudinal wings and the west branch of the porticus, the latter represented more monumental than the other three sides.

Mau offered additional illustrations of the reconstruction in his book “Pompeii, its life and art” (1902). Here, he showed both the western (Figure 6-20) and eastern (Figure 6-21) façade of the courtyard. The latter is characterized by the central projecting body of the east colonnade covered with a flat roof, whereas the structure behind it, crowned by a monumental pediment that comprehends the grand apse. Its dimension is almost twice the height of the colonnade in front of it.

All of these documents are significant for a new reconfiguration of the Porticus Eumachiae, especially when just few fragments survived, and the structure is in a precarious state of conservation.
Figure 6-1 Bechi’s plan of the Eumachia Building (from Bechi 1820, Pl. I) (image from “La Fortuna Visiva di Pompeii”, http://pompei.sns.it/prado_front_end/index.php?page=Home&id=4452)
Figure 6-2 First-Style decoration on the outer walls of the Eumachia Building (from Bechi 1820, Pl. III) (image from "La Fortuna Visiva di Pompeii", http://pompei.sns.it/prado_front_end/index.php?page=Home&id=4454)
Figure 6-3 The statue of Eumachia (from Bechi 1820, Pl. IV) (image from "La Fortuna Visiva di Pompeii", http://pompei.sns.it/prado_front_end/index.php?page=Home&id=4225)
Figure 6-4 The false door flanking the niche of the statue of Eumachia (from Bechi 1820, Pl. VI) [image from "La Fortuna Visiva di Pompeii", http://pompei.sns.it/prado_front_end/index.php?page=Home&id=4456]
Figure 6-5 Corinthian capital and frieze from the Eumachia Building, and Composite brick capital from the Basilica (from Goro Von Agyagfalva 1825, Pl. XVI) (image from "La Fortuna Visiva di Pompeii", http://pompei.sns.it/prado_front_end/index.php?page=Home&id=4451)
Figure 6-6 Corinthian order pertinent to the Eumachia Building (from Mazois 1838, Pl. XXV)
Figure 6-7 Mazois’s plan of the Eumachia Building (from Mazois 1838, Pl. XXII)
Figure 6.8 Longitudinal section of the Eumachia Building (from Mazo’s 1838, Pl. XXIII)
Figure 6.9 Cross section of the Eumachia Building (from Mazois 1838, Pl. XXIV)
Figure 6-10 The exterior wall and the Corinthian comices of the Eumachia Building (from Mazois 1838, Pl. XXVIII)
Figure 6-11 The false door and the Third-Stile decoration on the rear ramp of the crypta (from Mazois 1838, Pl. XXVI) (image from “La Fortuna Visiva di Pompei”, http://pompei.sns.it/prado_front_end/index.php?page=Home&id=3370)
Figure 6-12 Third-Style decoration on the walls of the crypta (from Mazois 1838, Pl. XXVII) (image from "La Fortuna Visiva di Pompeii", http://pompei.sns.it/prado_front_end/index.php?page=Home&id=3385)
Figure 6-13 Third-Style on the ramp of the crypta (from Gell 1832, vol. I, Pl. VIII) (image from "La Fortuna Visiva di Pompeii", http://pompeisns.it/prado_front_end/index.php?page=Home&id=3551)
Figure 6-14 The niche of Eumachia and the false door (from Gell 1832, vol. I, Pl. IX) (image from "La Fortuna Visiva di Pompeii", http://pompei.sns.it/prado_front_end/index.php?page=Home&id=3552)
Figure 6-15 Details of the Corinthian order and cross section of the Eumachia Building (from Rossini 1831, Pl. LIV) (image from "La Fortuna Visiva di Pompeii", http://pompei.sns.it/prado_front_end/index.php?page=Home&id=4335)
Figure 6-16 East façade of the interior court (from Rossini 1831, Pl. LIII) (image from "La Fortuna Visiva di Pompeii", http://pompei.sns.it/prado_front_end/index.php?page=Home&id=4240)
Figure 6-17 The chalcidicum of Eumachia (from Rossini 1831, Pl. XLV) (image from "La Fortuna Visiva di Pompeii", http://pompei.sns.it/prado_front_end/index.php?page=Home&id=4233)
Figure 6-18 Mau’s plan of the Eumachia Building (from Mau 1892, Pl. IV)
Figure 6.19 Cross section and longitudinal section of the Eumachia Building (from Mau 1892, Pl. V)
Figure 6-20 West façade of the inner court (from Mau 1900, fig. 48)

Figure 6-21 East façade of the inner court (from Mau 1900, fig. 49)
Chapter 7

Hypotheses for a reconstruction

With respect to the material evidence found in-situ, and after an accurate literary research, it is finally possible to suggest a new hypothesis for a reconstruction of the last phase of the Porticus Eumachiae. The marble fragments provide enough material to envision a plausible architectural configuration of the inner porticus, from which is also possible to conceive the entirety of the building.

The first analyses involve the interior courtyard. The defaced condition of the east stylobate, along with the lack of the west front, make the comprehension of the inner colonnade rather complex. Calculations have been made considering rows of free standing columns along the longitudinal branches of the porticus. Dividing in seventeen parts the two sides of the colonnade, the intercolumniation is about 2.30 meters, which is close the length of the architraves preserved. An arrangement of eighteen columns well works with the disposition of the windows on the rear walls, since the openings are accurately framed by pairs of columns. The west
front was initially divided into eight parts in order to get an intercolumniation that would approximate that of the long sides (about 2.33 meters), but the subdivision of the stylobate in an even number of parts implies a central column, which is not acceptable. On the east facade, four piers were allegedly located at the four corners of the central projection, so that the engaged columns would have been placed between the first two piers toward the center, in order to reduce the span between them (Figure 7-1).

Another attempt was made to reduce the intercolumniation of the long sides, dividing the stylobate into eighteen parts. In this case, the intercolumniation obtained is about 2.18 meters. There are no fragment preserved with this length, thus this option shall not be considered acceptable. Additionally, with nineteen columns on the long sides, the correspondences with the windows of the crypta are irremediably lost (Figure 7-2).

A third hypothesis considered ten columns on the west front. With this arrangement, the possibility to have a central column is forestalled, and the intercolumniation obtained would be about 2.18 meters, which is the same acquired displacing nineteenth columns on the long sides of the porticus. In any case, the preserved length of 2.28 meters of the architraves would suggest a different solution (Figure 7-3).
The presence of four piers at the corners of the central body of the east side can be easily belied considering the absence of any trace of piers at the corners of the stylobate. The arrangement of the marble slabs would rather suggest the presence of conventional freestanding columns by the comers. Furthermore, a pier would need a foundation made of tufa, lava, or rubblework, not a marble stylobate. Hence, the engaged columns might not have been placed on the east side, leaving the front of the west wall as the only other plausible option. A pilaster base set against the north wall of the crypta suggested the presence of a pier in front of it, which formed the northwestern corner of the stylobate (see Figure 5-23). The southwestern corner must have had the same solution. This arrangement suggests the presence of engaged columns against such two piers. In fact, dividing the longitudinal colonnade into seventeen parts considering an engaged column and a freestanding column at either ends, the intercolumniation obtained measures exactly 2.28 meters. The preserved elements of the entablature well fit in this arrangement, which reliability is further supported by the exact location of the windows in correspondence of the space between the columns.

The short branches of the porticus deserved further examinations. The structure of the east stylobate would suggest four columns on each return
toward the central projecting body. In such configuration, the windows flanking the central apse are arranged between the columns in front of them. Furthermore, the third column from the corner is aligned with the spur wall of the apse. The relevant mid span of the projecting body would still suggest two pairs of columns on each corner. Eight columns, two of which engaged, might have framed the west front of the porticus (Figure 7-4).

The elevation was initially conceived consisting of a double story colonnade, with the west front greater than the other sides. The consultation of literary sources has been necessary to provide adequate dimensions and proportions for the components of the porticus. For a Corinthian column, Vitruvius suggests a height of $9\frac{1}{2}$ or $9\frac{3}{4}$ times the dimension of the lower diameter of the column. With these guidelines, the lower columns of the north, east, and south colonnades would present a height of almost 3.93 meters, which is based on a module of 0.4 meters; the upper columns of these sides would have a height of 2.68 meters, with the module of about 0.273 meters. According to Vitruvius, the height of the lower columns of the west side would have been about 4.81 meters, considering a module of 0.504 meters; its upper story would have had

1 Vitruvius Pollio, De Architectura, book IV.
columns 3.54 meters high, being the module of about 0.37 meters (Figure 7-5).

The overall scheme achieved following Vitruvius’s directions provides an intrinsic modularity that well works with the architecture of the east façade. The front results subdivided into four proportionally consistent portions. Starting from the midpoint of the projecting steps, each quarter would correspond to a specific component of the façade: the first module coincides with the third column from the corner; the second quarter determines the edge of the longitudinal stylobate; the third part corresponds to the wall of the porticus; the fourth module defines the peripheral wall of the crypta. The same modularity, proposed vertically, seems to define the two stories of the east porticus (Figure 7-6).

A variation on the “Vitruvian” solution would be based on the spring of the semi dome of the east apse, allegedly located at 3.15 meters above the ground level. The height of the columns of the first level of the north, east and south side was related to such dimension. The colonnade is shorter than the one seen with the Vitruvian solution, because the columns are only

2 This variation maintains the same plan seen for the “Vitruvian” solution described above.
8½ modules high (Figure 7-7). The vertical modularity of the east façade now corresponds to 1.5 modules (Figure 7-8). Nevertheless, the spring at 3.15 meters would not seem to represent the radius of a sphere hypothetically inscribed in the grand central apse of the east colonnade, nor it finds any correspondence with the structure of the east side of the porticus.

The last two solutions, which considered two different types of columns for the north, east and south sides, and another set two of different columns for the west front, have been based on the reconstruction proposed by Mau in his “Osservazioni”. The German archaeologist suggested a similar architectural layout, but he started from different observations.

Mau based his reconstruction on the assumption that the marble slabs of the east stylobate were in-situ, whereas recent analyses have proven that they had been actually replaced after the excavations, and later accepted as ancient. Mau hence assumed that the three column

3 This proportion was applied to the columns of both levels on all the four sides of the colonnade, which only differ in the width of their modules.

bases on this stylobate are in-situ as well\(^5\). Yet, if the slabs are actually not in-situ, much less are the bases standing upon them.

Mau then hypothesized a double colonnade running on the north, east, and south side of the portico, considering the column shafts and bases found nearby as part of the actual colonnade, together with the comics and architrave-friezes preserved. He thus provided a broad set of dimensions of the three sides using these elements\(^6\), and speculated about the missing parts considering proportional assumptions in order to obtain the entire height of the orders.

Mau also affirmed to have recognized the foundation of the west front, which appeared to be larger than that of the other sides. Unfortunately, the traces are now hardly detectable\(^7\). This element, together with the pilaster base on the north wall and the decorations on

\(^5\) MAU 1892, p. 120. Interestingly, few pages later, he contradicted himself stating that some “marble slabs […] were already placed cracked, which means that the base lying [upon those slabs] was positioned after the excavations” (p.136).

\(^6\) MAU 1892, p. 126.

\(^7\) From the texts provided, it seems that Mau actually saw these foundations. Unfortunately, today it is not possible to get any dimension from the blocks that formed the foundations. MAU 1892, p. 124.
the west wall, led him to the conclusion that the west front was greater than the others8. For the description of the west branch, Mau could use only two column shafts that actually belonged to a bigger order9. In conclusion, the plan provided by Mau based on manual surveys differs in dimensions and proportions from the one achieved using laser surveys and total stations (Figure 7-9).

At the light of such discussion, it is possible to propose a further solution for the reconstruction of the Eumachia, which is based on a careful

8 MAU 1892, pp. 126-30.

9 He hypothesized the height of the west front considering proportional relationships with the colonnades of the other three sides. He suggested different solutions for both the lower and the upper entablature of the west front, but still, especially by the northwestern and southwestern corners, he did not solve the conflicts between the orders in proximity to the angular piers. Some structural issues should also be noticed, such as the suspending walls over the thresholds between the longitudinal porticoes and the west branch, which would unload the weights by means of almost 4 meters long lintels. These load-bearing elements must have had a relevant section, and they must have been related to the thickness of both the longitudinal walls of the porticus and the piers, which are probably too thin for such purpose. Traces of sockets for such beams do not survive anywhere (see Figure 6-20 to see Mau's representation of the corner in question).
examination of each fragment and the analysis of the geometrical features of surviving structures.

The fragments found on site hint at the presence of only two different orders of columns. Their dimensions would suggest a bigger order, most likely located on the lower level, and a smaller order placed above. The shafts found by the east wall suggest their belonging to the bigger order, and their characteristics allow for a geometrical reconstruction of their plausible original shape, which reports a total height of 4.17 meters (Appendix, cards 5 and 7); considering the dimension of the imoscapus of these columns, which is of 0.47 meters, it is also possible to hypothesize the dimensions of the bases, which might have been about 0.25 meters high, and about 0.57 meters wide. The height of the capital, now lost, might have been of about 0.55 meters, which can be obtained considering the dimension of the sommoscapus of the columns, about 0.42 meters wide. The lower columns would thus present a complete height of about 4.97 meters. The entablature consist of an architrave-frieze similar to the angular sample found in-situ\(^{10}\) (Appendix, card 11), having a height of about 0.60

\(^{10}\) It is clear that the angular architrave-frieze described above (pp. 66-7) belongs to the projecting body of the east front. Given the intrinsic monumentality of such branch, the central entablature might have had a “special” frieze made of a different material,
meters, which stands below an intermediate comice akin to the exemplars without a crowning cyma recta (Appendix, cards 13 and 14), which are about 0.25 meters high. Thus, the entablature shows a height of 0.85 meters, which brings the full height of the lower order to about 5.82 meters.

Regarding the upper colonnade, three samples of column bases (Appendix, cards 1, 2, and 3), which are 0.20 meters high and 0.48 meters wide, survive in the inner porticus of the building. The column shafts of this level (Appendix, cards 4 and 6) present an imoscapus of about 0.38 meters, compatible with the bases found, and a sommoscapus of about 0.32 meters. This dimension would help to determine the proportion of the Corinthian capital, which would be about 0.435 meters high\(^ {11} \). The architrave-friezes (Appendix, cards 8, 9, and 10) preserve a height of 0.455 meters. To close, two different types of comices might have concluded the order. The projecting body of the east façade presents the entablature crowned by a modillion comice (Appendix, card 15) that has a height of

\[\text{whereas all the other sides presented “canonical” marble architrave-friezes enriched with colors and decorations.} \]

\(^{11}\) The proportions of the small Corinthian capital here described, although approximated, seems to closely correspond to the capital described by Mau in his “Osservazioni” (p. 125), which would have a height of about 0.40 meters.
0.245 meters. Above that, a raking comice (Appendix, cards 16 and 17), creates the pediment of the projecting branch. Both the angular and the raking comice belong to the same configuration, since they share analogous moldings and dimensions. Furthermore, placing the fragments at the corners of the projecting branch, the pediment is almost completed, since it lacks only the central keystone.

The two-story colonnade thus reaches the height of 10.03 meters. This dimension corresponds to the diameter of the sphere inscribed in the central apse of the east front (Figure 7-10). This highlights the accurate design that involves not only the eastern front, but also the whole porticus (Figure 7-11). The wings were double-height spaces, and wooden beams run between the colonnade and the rear wall of the porticos in order to ensure more stability to the structure. There was no walkable floor between the two stories, since beam sockets are preserved behind the intermediate comices only. If an intermediate floor ever existed, the

12 Had the raking comice been used in the way both Mazois and Mau suggested (see Figures 6-9 and 6-21), the pediment would have been rather impressive, more than 9 meters long, almost 2 meters high and with a slope of about 5 meters.

13 The beam sockets behind the intermediate comices would confirm this hypothesis. Mau too is of the same opinion (MAU 1892, p. 130).
lower entablature would have had sockets behind the architraves, which would have guaranteed enough space for the joists and the floor boards above them. On the other hand, the sockets behind the cornices testify the presence of beams that were installed for structural reasons only. Additionally, the beam sockets are about 2.15 meters apart, and this span is not suitable for a walkable floor. Rather, it would have been enough for the structure of the roof, which might have had wooden trusses at the same pace.

The double height of the porticus might have led to the creation of a crypta with the same spatial characteristic. It is rather difficult to demonstrate the presence of an intermediate walkable floor in the crypta, since traces of staircases can be found nowhere. In this scenario however,

\[14\] Mau suggested the presence of a second floor in the crypta by considering a staircase allegedly located in the northernmost room between the chalcidicum and the porticus (see Chapter 5, p. 57, footnote 20), and another staircase once placed in correspondence to the rear ramp that connects the crypta to Via dell'Abbondanza. Mau built this last hypothesis on the fact that in the plan of Mazois (see Figure 6-7), the wall toward the southeastern corner of the crypta shows an opening symmetrical to the niche on the opposite corner. This passage might have led to another ramp that connected the two levels of the crypta. If visited today, the wall does not show any openings; Mau justified this issue blaming modern repairs (MAU 1892, pp. 139-40). In any case, the plan drew by Bechi
the walls of the porticus should have had windows at the second story as well, and the roof would have extended above the whole structure until the perimeter walls (Figure 7-13).

The western elevation might have had two pairs of columns in front of the main portal, proposing symmetrically the arrangement hypothesized for the eastern colonnade (Figure 7-14). Both the east and west façades keep the same modularity that determines the arrangement of columns, stylobate edges, walls of the porticus, and perimeter walls of the crypta. The pilasters set against the west wall had the height of the columns of the porticus, and their entablature was located at the same level as well. The alignment between the columns and the pilasters is not quite accurate, yet (see Figure 6-1), which was drafted before Mazois, does not show any opening, being represented the porter lodge and the access to the street.

\[\text{(see Figure 6-1), which was drafted before Mazois, does not show any opening, being represented the porter lodge and the access to the street.}\]

\[\text{(see Figure 6-1), which was drafted before Mazois, does not show any opening, being represented the porter lodge and the access to the street.}\]

\[\text{15 It is the same modularity seen for the first hypothesis.}\]

\[\text{16 The presence of pilasters at the corners of the exedrae is testified by small recesses for marble revetments (see Figure 5-2, side sketches; see also Figure 5-32). The conformity to the whole decorative scheme is further supported by the area assigned to the pilaster bases, which level corresponds to that of the base on the north wall. Mau too noticed that the recesses are associated to the decorations (MAU 1892, p. 127).}\]
the small statue niches fall between pairs of columns17 (Figure 7-15). The east façade might have had a similar decorative scheme that framed the windows and the side apses, which lie in correspondence to the longitudinal colonnades. Furthermore, the presence of piers by the entrance of the central apse would suggest that an arch might have covered the central opening, whereas the flanks were simply closed by lintels18 (Figure 7-16). The second story of the porticus might have been decorated with paintings and colored stuccos.

The double-height of the crypta implicates the presence of two stories on the outer façades as well. The second level might have had the same articulation of the first floor, with Corinthian pilasters and alternate triangular and segmental pediments. This configuration might have easily exceeded the height of the Forum colonnade (Figure 7-17).

17 In one of these niches is still visible a First-Style decoration similar to that on the façade on the Vicolo di Eumachia. Hence, the interior statue niches might have been characterized by the same decorative motif as well.

18 This configuration might have been inspired by the northeastern extremity of the Forum of Augustus in Rome, where the entrance to the room of the colossus Augusti was likely arranged in the same way (see GROS 1996, fig. 101).
An accurate exam of the angular architrave-frieze (Appendix, card 11) evidences that the central molding on its lower part ends 0.47 meters before the edge19. This means that there is room for only one capital at the corner of the central branch of the east front. The structural implication might be explained considering the composite nature of the element. Its characteristics testify that it is half of a compound architrave-frieze. There must have been a second half, symmetrically equivalent to the one preserved, which also completed its decorative setup. Moreover, its height differs from that of a standard complete architrave-frieze. Hence, there might have been another component above the marble blocks that completed its vertical section, and which joint was concealed by the “special” frieze likely made of a different material that run over the perimeter. This combination of elements might have helped covering the span of almost 5 meters that runs from corner to corner of the projecting body of the east façade (Figure 7-18).

19 This molding is only half of the complete decoration. This implies that the block is half of the architrave-frieze located on the projecting body of the east façade.
The thickness of the wall of the porticus might have been too slight to support two levels on both sides, suggesting the presence of a single-story crypta (Figure 7-19). This configuration further highlights the architectural composition of the porticus: the width of the longitudinal colonnades are proportionally equivalent to that of the central projecting body, and the symmetrical scheme of the latter is emphasized by the eurhythmy of the columns and the voids (Figure 7-20).

The west façade has been restored considering eight columns, two of which are engaged, and whose intercolumniation approximate that of the east side (Figure 7-21, Figure 7-22).

The height of the single-story crypta would suggest that the irregular rooms flanking the eastern grand apse are actually light wells for the rear.

20 It should be also considered that this wall, which is only 0.45 meters thick, would have borne the loads of the intermediate beams of the porticus as well.

21 Furthermore, the width of the main access on the west wall is the same of that of the longitudinal wings of the porticus, meaning that the angular columns of the eastern projection are aligned with the piers flanking the main entrance.
corridor, which would have been otherwise without enough openings for the air exchange22 (Figure 7-23).

The longitudinal section shows the same modularity seen for the cross sections. In fact, both the east and west wings of the porticus have the same width, which is also shared by the eastern corridor of the crypta (Figure 7-24). Behind the projecting body of the east side, the arrangement of the columns recall the close-range disposition of the west corner.

The rigid modularity of the parts introduces a precise scheme that is applied to the whole structure. A module corresponding to 32 roman feet (about 9.60 meters) can be measured in every portion of the building. The longitudinal wings of the inner porticus are five modules long, whereas the length of the short wings corresponds to three modules; the long corridors of the crypta have a length of six modules, and the rear branch is four modules long. The wedge-shaped rooms between the porticus and the chalcidicum are half module wide and four modules long, and so is the rear ramp that connects the crypta to Via dell’Abbondanza. If regularized, the chalcidicum would be four modules long and one and a half modules

22 This purpose was also suggested by Mau (1902, p. 116).
wide. The length of the outer wall on Via dell’Abbondanza corresponds to eight and a half modules (Figure 7-25).

The spatial arrangement of the east portico is defined by further geometries. The sphere inscribed in the central apse has a radius of about 5 meters, which corresponds to the height of the columns of the lower order. The height of the lower entablature, combined with both the height of the columns of the second story and that of their architraves, is again 5 meters. Hence, the sphere has its geometrical center in correspondence to the summit of the lower columns, and its vertexes are the top of the upper columns and the floor of the porticus. This arrangement underlines the precise geometrical relationship between the two-story colonnade and the structure of the east wall. In plan, the circumference of the intrados of the sphere defines the edge of the stylobate of the inner row of columns, whereas its extrados describes the edge of the stylobate of the projecting body (Figure 7-26).

The façade on Via dell’Abbondanza confirms its articulation in twenty-four bays with alternated pediments and First-Style decorations. On

23 The remaining height of the upper entablature (frieze and comice) might have been in correspondence to the thickness of the dome, which was not visible from the porticus.
the background, the continuous perimeter wall of the two-story porticus stands out above the roof of the crypta. To the west, the façade is connected with the access to the Forum (Figure 7-27). The façade on the Vicolo di Eumachia shows a subdivision in thirteen bays. The structure of the dome stands on the background of the perimeter wall. The façade might have had a further pediment on the top of the central bay in order to emphasize the symmetry of the building and the groups of sculptures in the apse and in the crypta24 (Figure 7-28).

Numerous tangs and wedges for marble revetments are traces of the decorative setup of the porticus. The arrangement of the dowels would also suggest a scheme characterized by horizontal stringcourses and narrow vertical element, which might signify the employment of polychrome marbles25. Some portions of marble socles have been restored on the longitudinal walls of the portico, and most of the structures still show traces of setting-bed mortar. The decoration of the east wall might have had a

24 Two small rectangular windows by the first and third bay from south provide light and air to the ramp behind the façade. Their dimensions are the same of the false ashlars of the First-Style adornment.

similar arrangement, with colorful marble slabs separated by narrower vertical and horizontal strings. The three accesses to the apse might have been enclosed by arches, which probably recalled the front order in the use of pilasters set against the piers and supporting a projecting entablature. The walls of the second story might have been adorned with colorful paintings as well (Figure 7-29). The west façade would present pairs of pilasters by the corners of the rectangular exedrae and at either side of the main entrance, which might have had barrel vaults above them (Figure 7-30).

The chalcidicum shows traces of polychrome marble slabs in one of its apses. It is plausible that a First-Style decoration might have been proposed in the niches of the chalcidicum as well (Figure 7-31). The width of the entrance is similar to that of the lateral exedrae. The main façade thus presents a modular arrangement that is characterized by the alternation of exedrae, apses and statue niches (Figure 7-32).

26 Mau suggested the same configuration for the access to the apse (MAU 1892, pp. 137-8). He also described some decorative marble slabs that could have been part of the entablature set on the wall (p. 141). Unfortunately, these fragments are now lost.

27 See Figure 5-8.
The walls of the crypta were unquestionably decorated by Third-Style paintings, some of which are still visible in the porter’s lodge on Via dell’Abbondanza (Figure 7-33). The walls of the east branch of the crypta had an articulation of painted colored blocks divided by thin vertical element of a different shade. The decorative setup was characterized by a strict symmetry, which was made even more evident by the false door flanking the niche with the statue of the priestess (Figure 7-34). By the southwestern comer, a false niche might have been painted like the shallow recess at the other extremity of the corridor (Figure 7-35).

Formal characteristics and spatial qualities

The composition of the Porticus Eumachiae presents some features that have been chosen from a set of architectural forms. Typologically, the porticus follows a common language that proposes its forms in similar arrangements. It is possible to analyze such features considering the Eumachia as a product of emulation of Roman models, but also considering its legacy as a model for following architectures.
The excavations made by Maiuri in 1940 revealed the foundations of the eastern rectangular exedra that once stood in lieu of the grand apse28. The survey confirmed that the other structures did not undergo any other significant transformation. From these data is thus possible to define a plausible plan of the first phase of the Eumachia (Figure 7-36). We know nothing about the foundations of the piers that screened off the apse during the second phase, but it is probable that there weren’t any. The central exedra was about 6.30 meters wide, and its walls coincided with the outer edge of the stylobate of the projecting body in front of it.

It is also possible to delineate two principal features that characterize the spatial arrangement of the building. The first is the presence of curvilinear apses alternated to rectangular exedrae, which recurs both on the east front and on the façade of the chalcidicum. The second is the occurrence of the double circulation represented by the promenade around the porticoes and the corridors of the crypta. The greater porticus of the Capital are characterized by these same two features.

The Porticus of Pompey presents on its north and south walls an alternation of semicircular apses and rectangular exedrae, with an

\footnote{28 See above Chapter 5, p. 58, footnote 25.}
emphasis on the one in the middle. The longitudinal axis is underlined by the eastern propylaea, which is also flanked by two curvilinear apses. The plan presents a double walkway arranged around the colonnades of the central gardens (Figure 7-37).

In the Porticus Octaviae the northwestern longitudinal wall is composed of rectangular niches and segmental apses, which are all screened off by pairs of columns/piers. The structure is also characterized by two concentric rows of columns, running around the temples of Jupiter and Juno, which stood in the middle of the open court (Figure 7-38).

The Porticus Liviae is probably the most similar building to the Porticus Eumachiae. Its east wall is characterized by two segmental apses flanking a central exedra, and the west wall was most likely distinguished by the same articulation of forms. The double circulation is assured by the canonical double colonnade around the central courtyard (Figure 7-39).

The affinities between the Roman porticoes and the Eumachia can thus be grouped into three main categories: architectural, sacred/ideological, and functional. The architectural affinities has been

29 The geometry of the lateral apses consists of a reduced semicircle as the ones in the chalcidicum of the Eumachia.
explained introducing the models of the double circulation and the compresence of apses and exedrae together. The sacred/ideological affinity is underlined by the small shrines that were located within both the Roman structures and the Pompeiian complex. It can also be argued that in the Eumachia, the shrine took place on the east wall of the porticus, initially in the rectangular exedra, and then in the grand central apse. The surviving statue fragments of the Augustan virtutes would support such hypothesis. The location of the Aedes Concordiae and the nature of the central structure in the courtyard of the Porticus of Livia are still under debate, yet if compared to the Eumachia, it can be argued that they might have been located in one of the lateral rectangular exedrae. The third group includes the functional affinities. The relationship between the priestess Eumachia and the fullones is clear by the dedication left on her statue, but it is also testified her affiliation with the family of her husband, who was in the woolen industry. Thus, the Porticus Eumachiae might have easily been a commercial structure, but it also provided a courtyard used for informal promenades, or occasionally, a reserved place for business meetings. Moreover, the Forum of Pompeii was constantly flooded by

30 Furthermore, the Eumachii were involved in the commerce of ceramics and tiles. DOBBINS 2007, pp. 528-33.
commercial activities. The chalcidicum of Eumachia might have hosted numerous vendors, clients and customers, and the two podia in the lateral exedrae might have been used for auctions of goods. The crypta might have been the place for retailing of clothes, textiles and luxury goods, as the surveilled entrances and the reduced accesses to the corridors would suggest. The Porticus of Livia was related to commercial activities as well, since it was flanked by tabemae on its north and south wall, and the Macellum Liviae was not far from the complex.

31 This theory is currently accepted by the scholar community, although some different use have been suggested. For instance, the idea supported by Bechi (1820, pp. 79-82) that the building was used as fullonica was rejected by Mau (1892, pp. 141-2; and 1902, pp. 112-3), who thoroughly discredited the theory of the vats allegedly found in the central yard as tubs for the manufacturing of textiles; Moeller (1972, pp. 325-7) suggested that commercial activities occurred only in the chalcidicum, whereas the porticus and the crypta were intended for promenades where businessman could meet. Recently, Fentress (2005, pp. 225-9) suggested that the building was actually a slave market, where human goods were displayed in the crypta, and the costumers could choose their favorite exemplars through the windows of the porticus. Yet, this theory does not comply with the elegant decorations in Third-Style in the crypta, and much less with the statuary setup of the eastern corridor. In any case, the multi-purpose function suggested by Richardson (1978, pp. 266-71) and De Vos (1982, p. 41) seems to be the most plausible.
After the earthquake of 62 A.D., the architect in charge of the reconstruction of the Eumachia decided to change the east façade by substituting the rectangular exedra with the domed apse, but he did not alter any other component of the building, nor the internal circulation. This suggests that the post-62 architectural reference might have been a building of the same typology, but that was characterized differently.

Manacorda already noticed the similarity between the Crypta Balbi and the Porticus Eumachiae. The affinities between the buildings are expressed by the shared presence of a porticus and a crypta. The rear corridor of the Crypta Balbi was an enclosed space opened only toward the central courtyard. Initially, it had an intermediate row of piers that subdivided the corridor into two parts, reaffirming the theme of the double circulation, whereas at a later phase the space between the porticus and the perimeter wall was left empty. The outer wall was characterized by an articulation of shallow bays separated by pilasters, feature of the outer walls on the Eumachia as well, whereas a semicircular apse framed by a row of piers was on the east wall (Figure 7-40). Additionally, during his later phase, the Crypta Balbi likely had a second story of columns around its central

courtyard33. On the base of such formal similarities, it might be argued that the architect of the “second” Eumachia was probably considering the Crypta Balbi as the architectural model for the new east façade. The addition of a domed apse implies precise geometrical relationships among the east wall, the colonnade, and the whole structure of the building, whereas the rectangular exedra of the first phase might have been associated to a simple one-story colonnade. However, the quasi-total absence of architectural elements from the first phase makes difficult to accurately reconfigure the architecture of the Eumachia during its early years34. In the same way, the absence of architectural evidence or pictographic representations of the elevations of the Crypta Balbi and Porticus Liviae does not allow for any further observations about their architectural definition.

The Eumachia Building was clearly inspired in its forms and components by Roman porticus, but its own architectural qualities might have been models for following architectures. In the neighboring city of

33 Ibidem.

34 Only a tufa capital of pilaster survives, which would suggest that the older colonnade was Doric. Another evidence for a tufa first phase is the tufa blocks of the stylobate.
Herculaneum, the senator Marcus Nonius Balbus promoted the construction of the Basilica during the period of Claudius (41-54 A.D. circa). The plan of this building very closely recalls that of the Eumachia (Figure 7-41), since this one too had a chalcidicum enriched with polychrome marbles and sculptures. One of these bases still preserves a bronze hoof of an equestrian statue that once faced the façade of the building. On the inside, the walls and the apses of the porticus were adorned with frescoes. A recent study proposed a hypothetical reconstruction of the Basilica, suggesting a single-story colonnade around the central courtyard. If the design of the Basilica of Herculaneum was effectively inspired by the first phase of the Eumachia, its architectural configuration might hint for a plausible envision of the aspect of the early years of the Pompeiian porticus.

Figure 7-1 First hypothesis of the inner colonnade (drawing by the author).
Figure 7-2 Second hypothesis of the inner colonnade (drawing by the author).
Figure 7-3 Third hypothesis of the inner colonnade (drawing by the author).
Figure 7-4 Plan according to the Vitruvian solution (drawing by the author).
Figure 7-5: Longitudinal section according to the Vitruvian solution (drawing by the author).
Figure 7-6: Cross section according to the Vitruvian solution (drawing by the author).
Figure 7.7: Longitudinal section according to the alleged spring of the apse’s semidome at 3.15 meters (drawing by the author).
Figure 7-8 Cross section according to the alleged spring of the apse’s semidome at 3.15 meters (drawing by the author).
Figure 7-10 Detail of the east apse according to the true dimensions of the fragments (drawing by the author).
Figure 7-11 Plan of the building according to the true dimensions of the fragments (drawing by the author).
Figure 7-12 Cross section toward the east front of the colonnade according to the true dimensions of the fragments (drawing by the author).
Figure 7.14 Cross section toward the west front of the colonnade according to the reduced dimensions of the fragments (drawing by the author).
Figure 7.6 East wall decorations according to the true dimensions of the fragments [drawing by the author].
Figure 7.17 Hypothesis of two levels on the south and east facades (drawing by the author).
Figure 7-18 Scheme of the elements of the orders (drawing by the author).
Figure 7.19 Cross section toward east, delphine stateron (drawing by the author).
Figure 7-20: Tbidimensional view toward the eastern front [rendering by the author].
Figure 7-21 Tridimensional view toward the western front (rendering by the author).
Figure 7-22 Cross section toward west, definitive solution (drawing by the author).
Figure 7.23 Overall plan, definitive solution (drawing by the author).
Figure 7-25 Modular scheme of the building (drawing by the author).
Figure 7-26 Details showing the geometrical proportions of the east apse (drawing by the author).
Figure 7.28 East facade on Vico di Ermazilia, definitive solution (drawing by the...
Figure 7-29: Decoration on the east wall of the porticus, definitive solution (drawing by the author).
Figure 7.30: Decoration on the west wall of the peristyle. Definitive solution (drawing by the author).
Figure 7-31. Tridimensional view of the chalcidicum (rendering by the author).
Figure 7.33 Tridimensional view of the longitudinal corridor of the crypta (rendering by the author).
Figure 7.34 Tridimensional view of the east corridor of the crypta (rendering by the author).
Figure 7-36 Plan of the first phase of the Eumachia Building (before 62 A.D.) (drawing by the author).
Figure 7-37 The Porticus of Pompey, highlight on the alternation of apses and niches (drawing by the author, after Canina 1850).
Figure 7-38 The Porticus of Octavia, highlight on the alternation of apses and niches (drawing by the author, after Coarelli 2014).
Figure 7-39 The Porticus of Livia, highlight on the alternation of apses and niches (drawing by the author, after Panella 1987).
Figure 7-40 The Crypta Balbi, highlight on the east side of the complex (drawing by the author, after Manacorda 2001).
Figure 7.41 The Basilica of Herculaneum, overall plan (drawing by the author, after Najbjerg 2002).
Chapter 8

Conclusions

A new consideration of the Porticus Eumachiae in the city of Pompeii would confirm its architectural magnificence as a multipurpose structure, which based its genesis on the archetypes of the Roman Porticus and Fora. The choice of the porticus as a model through which combine commercial purposes with public services was not led by chance; rather, the priestess Eumachia intended to reaffirm her adhesion to the Augustan program of publica magnificentia, presenting herself as a benefactor of the city, as Octavia and Livia did in Rome before her. The example of Eumachia was followed by the priestess Mamia, who promoted the construction of the Sanctuary of the Genius of Augustus, and both were part of the program of enhancement of the east side of the Forum. The reconstruction post-62 of the inner colonnade of the Eumachia would testify an upgrade of materials and architectural forms, and several references to Roman models were constantly remarked. The architectural fragments of the portico, along with information gathered from past publications and excavation reports, allows us to envisage a new configuration of the colonnade that
relates to the post-62 structures by means of precise geometrical relationships. Additionally, the design of the building conceals a modularity that can be observed in each of its component. Traces of marble revetments and Pompeiiian Styles decorations would confirm that the building was rather close to its completion at the time of the eruption in 79 A.D. A further step in the analysis of the Forum might consist in the research of the modular scheme used in the Eumachia on adjacent structures. This would imply that just one architect was behind the reconfiguration of the whole east side of the Forum, whose plausible affinity with workshops from the Capital should not be overlooked.
Appendix

Catalogue of the architectural fragments
Glossary*

ABACUS The square slab crowning the capital and supporting the architrave; in the Ionic and Corinthian it is given concave sides and its moldings may be enriched.

ACANTHUS The multi-foliated plant which in stylized form is used to decorate the capital of the Corinthian order, and also to enrich moldings, especially the ovolo.

ACROTERIA The small pedestals at the apex and extremities of a pediment which provide a level base for statues or other ornaments.

AEDICULE The architectural surround to a niche or opening generally consisting of miniature columns supporting an entablature.

AGORA The public square or market place in a Greek city.

* The terms of the Glossary are taken from CHITHAM 1985 and slightly modified when needed.
ANTA, ANTAE The Greek equivalent of a pilaster, in particular the end of a wall treated as a pilaster and responding to an order of columns, but usually with the capital and base differently treated from theirs.

ANTHEMION A continuous bas—relief ornament of alternating palmette and lotus or honeysuckle, all in stylized form.

ARCADE A series of arches supported on piers or columns. When the space between the piers is filled in with a wall the arcade is said to be blind.

ARCH A curved structure composed of small bricks or stones, with radial voussoirs, which derives its stability from the wedge shape of the individual components. Arches may be circular, elliptical etc., and are capable of spanning larger openings than lintels.

ARCHITRAVE The lowest of the three main divisions of the entablature, often divided into a series of flat planes and separated from the frieze by a plain or molded band; a frame of similar profile round a door.

ARCHIVOLT An architrave molding to an arch, following its curve.

ARCUATED Having a system of construction dependent on the use of arches.
ASHLAR Masonry constructed of stones dressed to a rectangular shape and laid in courses, as opposed to rubble work which is uncoursed masonry of random shaped stones.

ASTRAGAL A small—scale molding of semi—circular section.

ATRIUM A courtyard within a building and therefore enclosed on all four sides, but with the center open to the sky, often with a surrounding Colonnade.

ATTIC BASE A column base composed of an upper and lower torus, separated by a scotia with fillets.

ATTIC STOREY An upper story above the comice of the principal order, and designed as part of the main elevation, sometimes with its own subsidiary order.

BASE The lowest element of a column or other architectural feature.

BASILICA A Roman building serving as a law court and assembly hall, to some extent derived from the Greek stoa, but totally enclosed; generally rectangular with nave and aisles, having an apse at one or both ends known as the tribune.

BAYS Compartments into which the interior or the exterior of a building is divided, separated by columns or pilasters and with transverse arches or
beams. Each bay encapsulates the smallest repetitive element of the building.

BRACKET A projecting member supporting a load, often formed of intersecting volutes and termed a console or modillion.

CAPITAL The uppermost element of the column, which visually gives support to the entablature.

CAVETTO A hollow molding, in profile either a quarter circle or a compound curve approximating to it. The cavetto generally links a plane or molding to a broader plane below it. When it is reversed, with the projecting plane uppermost, it is termed a cove.

CORNICE The uppermost, projecting element of the entablature. Its structural function is to throw water clear of the work beneath. Its major components are the crowning cyma, the corona and the supporting bed molding, but these are frequently elaborated with further ancillary moldings as well as brackets, dentils, etc.

CYMA, CYMATIUM A molding in the form of a reverse curve, used as the crowning component of a cornice and elsewhere.

CYMA RECTA A cyma molding having a concave curve uppermost, with a convex curve below.
CYMA REVERSA A cyma molding having a convex curve uppermost, with a concave curve below.

DADO The die or part of the pedestal of a column between its comice and base; the lower part of a wall when treated as a continuous pedestal with the dado rail or chair rail treated as the comice.

DENTILS Repetitive rectangular or tooth-like blocks worked on the bed molding of a comice of the Ionic, Corinthian or Composite orders.

DOME A curved Vault springing from a circular base, in section semi-circular (forming a hemisphere), segmental etc.

EGG AND DART A continuous decoration applied to the ovolo molding, consisting of alternative egg shapes and darts or arrow heads, but with many variations and derived forms.

ENGAGED COLUMN A column attached to a wall, but projecting by half its diameter or more, and therefore bolder in effect than a pilaster; also referred to as an attached column or an applied column.

ENTABLATURE The uppermost part of an order of architecture, supported by the column and consisting of architrave, frieze and comice.

EXEDRA A recess in a wall, normally semi-circular on plan, large enough to accommodate a seat along its perimeter.
Extrados The convex curve of the outer edge of an architrave or other molding applied to an arch.

Facade The external elevation of a building, and especially its front elevation.

Fluting Repeated concave channels that may be cut vertically into the face of the column in all orders. In the Doric order they are normally separated by an arris, and in the other orders by a fillet.

Forum A public square in a Roman city flanked by the principal religious and official buildings, corresponding with the Greek agora.

Frieze The central element of the entablature, lying below the comice and above the architrave, in the plane of the face of the column-head.

Impost The horizontal molding or group of moldings on a pier, serving as a capital, beneath the springing of an arch.

Interaxial The dimension between the centers of adjacent columns.

Intercolumniation The dimension of the clear space between adjacent columns: hence the interaxial = the intercolumniation minus I diameter.

Intrados The curved soffit of an arch.

Jams The sides of a door or window frame.

Keystone The central wedge-shaped voussoir of an arch.
Lintel A beam spanning an opening.

Modillions The repeated diminutive scroll brackets beneath the corona of the Corinthian cornice.

Module The basic unit of measurement for describing the proportions of the orders. Sometimes it is taken as the measurement of the column radius at its base, but more often as the base diameter of the column.

Niche A recess in a wall, often semi-circular in section, to accommodate a statue or other ornament.

Order The complete ensemble of column (or pilaster) and entablature, which may be extended upwards by means of blocking course, balustrade or attic, and downwards by means of pedestal and basement.

Ovolo A convex molding approximating to a quadrant. This molding is seldom inverted.

Palmette An ornament consisting of stylized palm fronds disposed in a fan shape.

Pediment A triangular or segmental section of wall above the cornice of an order, and forming the end wall of a pitched roof, thus similar to a gable but generally thought of as being much flatter in pitch. The pediment is
crowned by its own raking comice, and beneath it the main horizontal comice loses its cyma.

Peristyle A continuous Colonnade around an open court.

Pier The vertical mass of masonry between two door or window openings and in an implied order taking the place of the columns; a similar mass supporting the springing of an arcade.

Pilaster The rectangular shaft responding to a column, but attached to a wall. The pilaster may diminish like the column; its projection is never more than half its breadth, and normally substantially less. Sometimes the capital and base are identical with those of the column, but variations may also be employed.

Podium A solid platform or continuous pedestal, on which an order is raised; a shallow basement.

Raking Cornice The comice along the sloping upper edge of a pediment.

Scotia A concave molding approximating to two linked quadrants, the lower of greater radius than the upper, used to separate the tori of the attic base.
SPAN The clear distance between the piers or columns supporting a beam, arch or roof.

SPRING, SPRINGING The point generally on top of an impost or column capital, from which the curve of an arch is developed.

STOA An open space enclosed by colonnades, used by the Greeks as a public meeting place.

STORY A horizontal subdivision of a building occupying a single floor.

STUCCO A plaster or cement rendering to the face of a building, either plain or with molding and enrichments formed of the same material, often in imitation of stonework.

STYLOBATE The stepped podium supporting a theory of columns.

TORUS A convex molding of semi-circular profile, used especially in the bases of columns of all five orders.

TRABEATED A form of construction depending on flat beams spanning openings between piers or columns, without the use of arches.

TRIUMPHAL ARCH A free—standing structure, with a main central arch and subsidiary side arches, of a commemorative nature.
Bibliography

Bradley, Mark. “‘It All Comes out in the Wash’: Looking Harder at the Roman Fullonica.” Journal of Roman Archaeology 15 (January 2002): 20-44.

Brown, Frank Edward. Roman Architecture. The Great Ages of World

Supplementary series, ISSN 1063-4304; No. 50. Portsmouth, R.I.: *Journal of Roman Archaeology,* 2002.

Museo nazionale romano. *Roma: Dall’antichità Al Medioevo: Archeologia E Storia Nel Museo Nazionale Romano Crypta Balbi.* Milano: Electa,

Pompeii: Art, Industry, and Infrastructure. Oxford; Oakville, CT: Oxbow

Rossini, Luigi. Le Antichità di Pompei: delineate sulle scoperte fatte sino a tutto l’anno MDCCCXXX; Quest’opera e’ composta di LXXV. tavole. Scudelleri, 1831.

Senseney, John R. “Adrift toward Empire: The Lost Porticus Octavia in Rome and the Origins of the Imperial Fora.” Journal of the Society of

