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ABSTRACT 

Parasitic plants are plants that form a parasitic association with their host using a 

connecting organ called the haustorium, a novel feeding structure through which parasites 

withdraw nutrients such as carbon and nitrogen from the conducting tissues of the host. 

Orobanchaceae is the only family containing species with the full spectrum of parasitic 

capabilities, including one nonparasitic autotrophic genus, Lindenbergia, and more than 90 

genera (>2000 species) of parasites with varying degrees of photosynthesis and host dependence. 

To understand the genetic changes that led to a parasitic lifestyle, a transcriptome sequencing 

project was initialized to interrogate multiple stages of growth and development of three parasitic 

plants that span the range of parasitic dependence. Around 180 genes are upregulated during 

haustorial development following host attachment in at least two species, and these are enriched 

in proteases, cell wall modifying enzymes, and extracellular secretion proteins. The majority of 

parasitism genes were duplicated before the divergence of Orobanchaceae and Mimulus, a related 

nonparasitic plant. This suggests that gene duplication plays a role in the origin of parasitism. A 

comparative analysis of these genes’ homologs in sequenced nonparasitic plant genomes revealed 

that parasitic plants make haustoria by co-opting genes from root and floral development. Gene 

duplication, often taking place in a nonparasitic ancestor of Orobanchaceae, followed by 

regulatory neofunctionalization, was an important process in the origin of parasitic haustoria. 

Horizontal gene transfer (HGT), acts as another evolutionary force contributing to parasite 

adaptation. At least 42 gene families accounting for 52 transfers – largely via genomic integration 

- result in functional transcripts that were primarily involved in translation, defense responses, 

transposable element (TE), and other diverse roles. Three lines of evidence indicate an adaptive 

role of HGT in parasite evolution - (i) A majority of HGT genes are upregulated in haustoria-

related tissues in the most parasitic Phelipanche aegyptiaca; (ii) A higher frequency of HGTs are 

observed in parasites with a higher degree of parasitism; (iii) A portion of genes detected to have 

evolved some adaptive sites under positive selection. The study of strigolactone (SL) pathway in 

parasitic plants reveals that parasitic plants still retain genes in SL synthesis. Two SL biosynthesis 

genes and D14 (the receptor) are upregulated in haustorial structures, indicating a possibility of 

SL in haustoria development.  
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1.1 Introduction to parasitic plants 

1.1.1 Parasitic plants – classification and morphology 

Parasitic plants are plants that have the ability to form specialized feeding structures 

called haustoria that allow them to extract water and nutrients from their host (Kuijt 1969). 

Almost 1% of all flowering plants are parasitic plants, including 4,500 species within 28 families 

(Thorne 2002). Parasitism has evolved independently at least 11 times during angiosperm 

evolution (Barkman, et al. 2007). Depending on the tissue to which the parasite attaches, they can 

be classified as either root or stem parasites. Root parasites contain pests from the family of 

Orobanchaceae, such as Striga and Phelipanche, whereas examples of stem parasites are 

represented by Cuscuta (dodder) and mistletoes (the family of Loranthaceae). Parasitic plants can 

also be classified as hemiparasites (if they retain some photosynthetic capability, and thus are at 

least partly autotrophic) or holoparasites (if they are entirely heterotrophic) (Kuijt 1969; 

dePamphilis and Palmer 1990; Heide-Jørgensen 2013b). A majority (90%) of parasitic plants are 

hemiparasites, and root parasites account for 60% of all parasitic plants (Heide-Jørgensen 2013b). 

Additionally, parasitic plants can be classified by their degree of host dependence. Facultative 

parasites must retain photosynthetic abilities and are opportunistic parasites that are able to 

complete their life cycle without attaching to a host (Kuijt 1969; Westwood, et al. 2010) whereas 

obligate parasites must form a host attachment in order to complete their life cycle. A 

holoparasite is often an obligate parasite (such as Phelipanche), whereas a hemiparasite can be 

either facultative (Triphysaria) or obligate (Striga). 

Morphologies of parasitic plants also differ significantly from autotrophic plants. They 

often have characters such as shortened vegetative stem, reduced leaves, simplified 

inflorescences, and conversion from few, large seeds to numerous, small seeds (from facultative 

parasites to obligate parasites). For instance, in stem parasitic Cassytha and Cuscuta, the 

vegetative tissues are reduced to only stem and scale leaves. In Hydnora, a basal angiosperm, 

however, leaves are completely absent. In fact, the above ground vegetative tissues of this 

parasitic plant contain only flower tissues that are thick and succulent in texture with three 

openings. 
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1.1.2 Parasitic Orobanchaceae 

Among all the parasitic lineages, Orobanchaceae is the only family containing species 

with a complete spectrum of parasitic capabilities from facultative to obligate parasitism and from 

hemiparasites to holoparasites (Westwood et al. 2010). Being the largest family of parasitic 

plants, it also includes a basal nonparasitic lineage (Lindenbergia), and thus this family is an ideal 

group for investigating the evolution of parasitism. Three other parasites in this family include 

Triphysaria versicolor (facultative hemiparasite), Striga hermonthica (obligate hemiparasite), and 

Phelipanche aegyptiaca (obligate holoparasite). T. versicolor has a wide host range including 

monocots and dicots (Estabrook and Yoder 1998; Jamison and Yoder 2001), and common hosts 

used in the laboratory include Medicago and maize. S. hermonthica and S. asiatica specializes on 

grasses including rice, maize, sorghum, and millet (De Groote, et al. 2008; Parker 2009), whereas 

S. gesneroides is a dicot feeder growing on cowpea (Timko, et al. 2007). P. aegyptiaca also has a 

wide host range that is nonetheless limited to dicots such as legumes, tomato, and Arabidopsis 

(Carlon, et al. 2005; Schneeweiss 2007; Parker 2009). 

1.2 Biology of parasitic plants 

1.2.1 Germination of parasitic plants 

 Parasitic plants have different requirements for germination. In facultative parasitic 

Triphysaria, they can germinate independent of a host and it is believed that they retain all the 

pathways for germination (Westwood et al. 2010). Obligate parasites such as Striga and 

Phelipanche, have to rely on a host for germination(Brown, et al. 1949; Brown, et al. 1951; 

Westwood et al. 2010). The germination stimulant later was discovered as Strigolactone (SL) 

(Butler 1995), a hormone synthesized and released by the roots of their host plants. It is thought 

that host-dependent germination is a novel adaptation and represents an evolutionary advantage 

for these parasitic plants, considering that germination without a host would still result in death in 

the absence of a host.                                                                                                                                                            
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1.2.2 The haustorium 

 The presence of a haustorium is a unique feature and hallmark of parasitic plants, and 

Kuijt called the haustorium the “essence of parasitism” (Kuijt 1969). It was considered by Kuijt 

to be a modified root that forms a physiological and morphological link connecting the 

conducting tissues of the parasite and its host. The haustorium derives from root or radicles. In 

Triphysaria, for instance, the haustorium develops after seedlings have established 

autotrophically, and its haustorium as an extension of lateral root or adventitious root is termed a 

lateral haustorium. In Striga and Phelipanche, however, the haustorium that develops from the 

apex of the primary root is a terminal haustorium; in these two species there are both terminal and 

lateral haustoria. In general, terminal haustoria are the largest and can often support the parasite 

throughout its life cycle, whereas lateral haustoria often last for a few months (Heide-Jørgensen 

and Kuijt 1995). The haustorium formation involves two processes, initiation and penetration. 

Haustorial initiation is caused by inducing factors from host root exudates and morphologically 

speaking, is characterized by the presence of a bulge on the root tip and the formation of 

haustorial hairs. In facultative Triphysaria, haustorial initiation occurs without a host, whereas in 

Striga and Phelipanche, their haustorial initiation, which comes after germination induced by host 

signals, occurs with close contact to a host.  

1.2.3 Haustorium initiation and early development 

 Haustorium initiation requires chemical and physiological stimuli from a compatible host 

in most Orobanchaceae (Baird and Riopel 1984). The process of initiation that happens on 

parasite root (hemiparasites) or radicles (holoparasites) is attributed to host root exudates or 

purified inducing factors from the host. In general, the common haustorial inducing factor (HIF) 

used in a laboratory is 2,6-dimethoxybenzoquinone (DMBQ) (Keyes, et al. 2000). Haustorium 

initiation involves the cessation of tip growth (Baird and Riopel 1984; Riopel and Baird 1987), 

interruption of cell replication (Torres, et al. 2005), swollen tip regions (Bandaranayake and 

Yoder 2013a), and the elongation of epidermal cells into long haustorial hairs that later allow for 
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grasping of the host root (Baird and Riopel 1985). In addition to the morphological changes, 

experiments with Triphysaria roots transformed with an auxin-responsive reporter showed that 

auxin was also involved in this process (Tomilov, et al. 2005), as well as cell wall loosening 

enzymes such as expansins that are transcriptionally regulated during this period  

(O'Malley and Lynn 2000; Wrobel and Yoder 2001; Torres et al. 2005).  

 The study of haustorium initiation in T. versicolor has allowed for the identification of 

genes in the redox signal transduction pathway – TvQR1 and TvQR2 (Bandaranayake, et al. 

2010). Both of these genes show upregulated expression in response to DMBQ, and silencing of 

TvQR1 using RNAi results in reduced numbers of haustoria (Bandaranayake et al. 2010). 

Biochemical analyses showed that TvQR1 encodes an NADPH-dependent single electron 

quinone oxidoreductase that generates semiquinones that further form reactive oxygen species 

(ROS) in the presence of oxygen (Bandaranayake et al. 2010). The generated ROS are predicted 

to initiate the morphological changes associated with haustorial development, such as cortical cell 

expansion and haustorial hair elongation (Foreman, et al. 2003). As these semiquinones are toxic, 

the two-electron reduction enzyme TvQR2 acts as a detoxification enzyme to eliminate the 

semiquinones (Bandaranayake et al. 2010). 

1.2.4 Haustorium penetration and development 

 The production of haustorial hairs allowing the parasite to anchor to the host root surface 

provides the first crucial step for the development of the attachment organ. The cells are then in 

preparation for penetration. For instance, the intrusive cells within haustoria of Rhamphicarpa 

fistulosa show dense cytoplasm, enlarged nucleoli, numerous mitochondria, and rough 

endoplasmic reticulum (Neumann, Vian, Weber and Sallé 1999). To penetrate the host vascular 

tissues, the parasite haustorium utilizes a combination of mechanical and enzymatic processes. 



 

 6 

Evidence of host cells that are pushed aside by Orobanche spp. intrusive cells and the dissolution 

of the middle lamella between host cells supported the mechanical invasion of host cells (Joel and 

Losner-Goshen 1994b). In P. aegyptiaca, the endodermis of the host root vasculature is disrupted 

by the parasite in order to establish vascular connections, supported by dissolution of Casparian 

strips in the endodermis (Joel DM 1998). The penetration of host vascular tissues by P. 

aegyptiaca is contributed to by a list of pectolytic, cellulolytic and proteolytic enzymes (Shomer-

Ilan 1992, 1993, 1999), as well as a series of cell wall-degrading enzymes including cellulases, 

polygalacturonases, xylanases and proteases (Joel DM 1998) in the tubercle. 

1.2.5 Physiology of parasitic plants 

Parasitic plants often have higher transpiration rate compared to their host (Ehleringer 

and Marshall 1995; Jiang, et al. 2003). Therefore, parasites such as Striga and mistletoes are often 

found in open, sunny habitats with unlimited access to sunlight where shading is avoided. In fact, 

most root-hemiparasitic plants inhabit temperate regions, in particular, Mediterranean climates or 

African countries. Orobanchaceae are most diverse in South Africa, Mediterranean, East Asia, 

and western America (Bennett and Mathews 2006; McNeal, et al. 2013b).   

A high transpiration rate is found in Striga, the stomata of which remain open even under 

stress conditions or under high levels of ABA (Smith and Stewart 1990), to drive the transfer of 

nutrients from their host. In addition, parasitic plants upregulate their ABA in response to host 

attachment, and this can be 18-fold higher than the barley host upon attachment of Rhinanthus 

minor (Jiang et al. 2003). In addition, they also regulate the synthesis of ABAs of their hosts. For 

instance, S. hermonthica induced two-fold higher levels of ABA in its sorghum host leaf tissue 

and xylem sap (Taylor, et al. 1996). Although ABA is known to induce stomatal closure, parasitic 

plants seem to have evolved a reduced sensitivity to ABAs. This is thought to contribute to 

greater water flow into the parasite (Jiang, et al. 2004). 
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1.2.6 Nutrient transfer 

 Haustoria of parasitic plants transport high flows of xylem contents including water and 

minerals from their hosts (Ehleringer and Marshall 1995). Transfer of nutrients is driven by 

lowering their water potential relative to their hosts, which is contributed by accumulating high 

levels of osmotic compounds such as sugar alcohols (mannitol) (Ehleringer and Marshall 1995), 

or maintaining open stomata especially in many hemiparasites (Jiang et al. 2003). Notably, 

stomata of hemiparasites Rhinanthus and S. hermonthica keep open stomata when they are 

attached to hosts (Jiang et al. 2003), even if their host is under severe water stress (Smith and 

Stewart 1990).  Interestingly, the free-living Rhinanthus has closed leaf stomata, but the stomata 

remain open when it attaches to a host (Jiang et al. 2003). Holoparasites, such as Phelipanche, 

remain underground for a long term before the emergence of above-ground vegetative structures 

and have reduced leaf; thus cannot achieve a high transpiration rate. But accumulation of high 

levels of mannitol may be the primary driving force for effective transfer of xylem contents in 

many parasites (Harloff and Wegmann 1993).  

 Although xylem connections of haustoria are mainly responsible for the transfer of 

inorganic compounds, haustoria also mobilize carbon compounds from their host via clear 

phloem connections. Hemiparasites that can fix carbon via their own photosynthesis parasitize 

their hosts mainly for the uptake of nitrogen and water. In holoparasites, however, the 

significantly reduced levels of photosynthesis require them to parasitize for both nitrogen and 

carbon. In general, the percentage of carbon uptake in hemiparasites is estimated to be up to 30% 

(10% in facultative hemiparasite Triphysaria and 60-70% in emerged obligate holoparasite Striga 

hermonthica) (Irving and Cameron 2009), whereas in Phelipanche which has a complete loss of 

photosynthesis, carbon uptake from the host is 100%. In underground Striga that has not 

produced green tissues for photosynthesis, their dependence on carbon from host is also 100%. 

Although mature emerged S. hermonthica obtained 60%-70% of its carbon from its host (Press, et 

al. 1987), this can vary a lot among different species of Striga and among different hosts. In S. 

hermonthica, the carbon uptake from millet can be up to 80%, whereas in S. gesnerioides on 

cowpea, the uptake can be as extreme as 99% (Press 1995). In holoparasites with a complete 

carbon dependence on their hosts, the sugar levels accumulated in haustorial tubercles ranges 

from 6- to 8-fold higher than in their hosts (Aber, et al. 1983).  

 The photosynthetic product that holoparasites obtain from their host can vary in different 

forms of sugar. For instance, in P. ramosa, sucrose is converted to other compounds such as 



 

 8 

hexoses, mannitol and starch (Draie, et al. 2011), presumably acting to increase the osmotic 

potential of the parasite. Tubercles of O. foetida primarily accumulate and convert sugar to 

storage compounds like starch when attached to faba bean (Abbes, et al. 2009). Mannitol is a 

sugar alcohol that has the advantage of improving the osmotic potential for parasites to drive the 

flow of xylem contents. The level of mannitol can be accumulated from 34% in O. hederae stems 

(Abbes et al. 2009) up to 77% in S. asiatica leaves. Interestingly in S. hermonthica, its xylem 

sap contained 58% of mannitol, but none was detected in its sorghum host (Press and Graves 

1991). 

1.3 Parasite control 

1.3.1 Problems and germination-based approaches 

The ability of the haustorium to efficiently transfer host resources results in substantial 

yield loss to several economically important crop plants. For example, in sub-Saharan Africa, 

witchweed (Striga spp.) infests over 50 million hectares of arable farmland cultivated with corn 

and legumes, causing annual yield loss estimated to exceed $10 billion USD (Scholes and Press 

2008). Two characters make Striga and Phelipanche notorious weeds and challenging for 

eradication. First, they are root parasites that attack crops underground, and often have already 

caused severe damage to host plants before farmers notice their emergence above the soil. 

Second, they produce up to a million tiny seeds that remain in the soil and are difficult to remove.  

Because of this, their infestations of staple crops can result in substantial or near complete yield 

loss, exacerbating problems of low food security.  

The dependence of detrimental parasitic weeds, Striga and Phelipanche, on SLs from 

their hosts allows the development of control strategies that target their germination. The first 

strategy is suicidal germination, the induction of their germination in the absence of a host by 

application of synthetic analogs of SL in the soil (Kondo, et al. 2007; Mwakaboko and 

Zwanenburg 2011). The second approach includes trap crops, which is the introduction of non-

host crops that can produce for instance, increased levels of germination stimulants (Chittapur, et 

al. 2000). The genes responsible for SL synthesis have been identified and include CCD7, CCD8, 
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MAX1, and D27 (Al-Babili and Bouwmeester 2015). Plants overexpressing these genes are 

expected to produce higher levels of SLs to act as trap crops. The third approach involves the use 

of herbicides that produce reduced levels of SLs resulting in decreased parasite germination. For 

instance, because SL biosynthesis includes some enzymes common in carotenoid biosynthesis 

(Matusova, et al. 2005; Lopez-Raez, et al. 2008), some inhibitors targeting carotenoid 

biosynthesis have been used on rice to cause decreased Striga germination and infection 

(Sergeant, et al. 2009; Ito, et al. 2010; Jamil, et al. 2010). Other approaches can be applied 

according to the characteristic of SL induction by low nutrient conditions such as low nitrogen 

and phosphate. Thus the application of fertilizers could be useful in resulting in reduced SL 

production (Yoneyama, et al. 2009; Jamil, et al. 2011). 

1.3.2 Known parasitism genes 

Identifying genes with key roles in parasitism may reveal novel strategies to control 

weedy agricultural pest species (Aly, et al. 2011; Alakonya, et al. 2012; Bandaranayake, et al. 

2012; Westwood, et al. 2012; Bandaranayake and Yoder 2013b; Bandaranayake and Yoder 

2013c; Ranjan, et al. 2014). Despite decades of research, only a few genes have been previously 

characterized with specific roles in the parasitic process in Orobanchaceae. One quinone 

oxidoreductase gene (TvQR1) is necessary for haustorium initiation through redox bioactivation 

of haustorial inducing factors (HIFs) in Triphysaria (Bandaranayake et al. 2010; Ngo, et al. 

2013). Additionally, TvPirin is upregulated by HIFs (or by contact with host roots) and putatively 

functions as a positive regulator of other genes needed for haustorial development 

(Bandaranayake et al. 2012). Finally, mannose 6-phosphate reductase (M6PR) in Phelipanche 

aegyptiaca (a root parasite) was also shown to be involved in parasite metabolism. Silencing of 

the parasite M6PR gene by RNAi from the host resulted in decreased mannitol concentration in 

the haustorium tubercle and increased tubercle mortality, thus clarifying the role of mannitol in 

parasitism (Aly, et al. 2009).  

Although not in the Orobanchaceae, experimental characterization also supports the role 

of two parasitism genes in Cuscuta: 1) a cysteine protease in the stem parasite, Cuscuta reflexa 

(Bleischwitz, et al. 2010), and 2) a SHOOT MERISTEMLESS-Like (STM) gene in C. pentagona 

(Alakonya et al. 2012). STM encodes a KNOTTED-like homeobox transcription factor (TF) with 
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a known role in promoting cytokinin biosynthesis in the shoot apical meristem. Silencing of the 

STM gene in Cuscuta by the production of small RNA by host plants resulted in reduced 

haustorial development and increased growth of infected host plants (Alakonya et al. 2012). 

Possible strategies by targeting these candidate genes with roles in haustoria development can be 

developed to control these parasitic weeds. 

1.3.3 Parasite and host defense – the arms race 

 Plant often use two levels of innate immune response mechanism to resist pathogens 

(Jones and Dangl 2006). The first level of defense responses is called pathogen-triggered 

immunity (PTI) that recognize the pathogen-associated molecular patterns (PAMPs) or microbe-

associated molecular patterns (MAMPs) (Boller and He 2009). PTI includes receptor-like kinases 

that activate host defense pathways (Boller and Felix 2009; Ronald and Beutler 2010). On the 

other hand, to evade host surveillance mechanisms, plant pathogens have evolved specific 

effectors that suppress host defense responses associated with PTI in order to invade host cells 

(Abramovitch, et al. 2006; Bent and Mackey 2007; Torto-Alalibo, et al. 2009). Correspondingly, 

host plants have evolved a second level of defense mechanism against these pathogens, called 

effector-trigger immunity (ETI) (Tameling and Joosten 2007). This includes a second-class of 

receptor proteins, typically containing a nucleotide-binding site (NBS), and a leucine-rich repeat 

(LRR) domain, also called R proteins (Takken, et al. 2006; Caplan, et al. 2008). It is now clear 

that the effect of R protein in certain hosts expressed in response to effectors from parasitic 

plants, such as in S. gesneroides-cowpea (Li and Timko 2009),  and O. crenata-sunflower 

(Molinero-Ruiz, et al. 2006; Letousey, et al. 2007) interactions, acts as gene-for-gene resistance. 

 

            Parasitic plants are likely to be perceived by hosts as pathogens because their invasions of 

host vascular tissues are similar to many pathogens. So how can parasitic plants cope with host 

defense responses? Several hypotheses were suggested to provide potential mechanisms for 

parasites to overcome host defenses. The first possibility is that the host may fail to recognize the 

parasite as an alien as the intrusive growth of the haustoria mimics pollen tube growth (Lev-

Yadun 2001). A similar hypothesis is that parasitic plants modulate host expression in a way that 

is similar to nodulation, based on the upregulation of nodulation-related genes in the host 

(Hiraoka, et al. 2009). A third possibility for failure of the host to recognize the parasite as alien 
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may be due to strikingly similar defense mechanisms that the parasite and host both use because 

both are plants. Lines of evidence of compatible hosts failing to respond against parasite attack 

come from the lack of ROS either from the parasite or host side (Mor, et al. 2008). The last 

hypothesis is that parasites may repress the host defense responses. Some evidence supports the 

idea of host recognizing parasitic plants as pathogens. In incompatible or resistant Striga-host and 

Orobanche-host interactions, localized cell death of host cells and an HR-like rapid necrosis at 

the attachment interface were observed (Lane, et al. 1993; Mohamed, et al. 2003; Gurney, et al. 

2006). An HR response acted as a mechanism to block parasite invasion. This indicates that the 

host responds to parasitic plants in a way similar to its response to common plant pathogens. In 

Arabidopsis, expression of defense related genes encoding pathogenesis-related proteins, cell wall 

reconstruction proteins, and components of jasmonate, ethylene, phenylpropanoid biosynthesis 

pathways were induced by the attack of O .(Phelipanche) ramosa (Dos Santos, et al. 2003). 

Resistant hosts, compared to susceptible hosts, show increased lignification of cell walls with 

histological staining (Irving and Cameron 2009). In addition, differentially upregulated 

transcription levels of genes encoding peroxidase, an enzyme with known roles in cell wall cross-

linking, occurred between resistant and susceptible pea against O. crenata infection (Perez-de-

Luque, et al. 2006). Furthermore, a resistant sunflower differentially upregulated genes involved 

in ROS detoxification (a methionine synthase, a glutathione S-transferase and a quinone 

oxidoreductase) to respond to the observed oxidative burst during the incompatible interaction 

with O. crenata (Dos Santos et al. 2003). On the other hand, to establish successful connections, 

parasitic plants have developed several mechanisms to regulate host defenses against parasite 

attack. For instance, parasitic plants secrete peroxidases (Antonova and TerBorg 1996) or 

phenolic compounds that may repress host defense responses (Mayer 2006). The upregulated 

levels of ABA in hosts by parasitic plants, similar to that in many fungal and bacterial pathogens 

(Cao, et al. 2011), could contribute to the observed lack of salicylic acid (Hiraoka and Sugimoto 

2008) associated with defenses in S. hermonthica-Sorghum and Orobanche-Arabidopsis 

interactions (Dos Santos et al. 2003; Griffitts, et al. 2004).  
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1.4 Evolution of novel traits 

1.4.1 Haustorium as a good model to study the evolution of novel traits 

 The evolution of the haustorium represents a remarkable innovation for parasitic plants, 

and one that has occurred independently at least 11 times based on the phylogenetic distribution 

of parasitic plants across all flowering plants (Barkman et al. 2007). Compared to their 

autotrophic free-living ancestor, parasitic plants show a gain of a novel organ. How a plant 

transitions to a heterotrophic lifestyle by losing its photosynthetic capability and adapts to the 

environment has been a mystery. Because haustorium is the novel organ of parasitic plants that 

differentiates from autotrophic plants, we believe studying genes upregulated in haustorial tissues 

should allow us to understand how the novel haustorium structure has evolved. 

1.4.2 Mechanisms for the origin of novel traits 

 Throughout evolutionary time, numerous complex adaptations have evolved in 

organisms. Beetles have evolved horns to combat male competitors (Moczek 2005), birds have 

evolved wings to fly (Ostrom 1979), and moths have evolved with decorated wings with eyespots 

to deter predators (Stevens 2005). Adaptation in optimization of shape or phenotype of the 

organism to best utilize the environment provides an advantage to the organism’s fitness (Moczek 

2005). The evolution of novel traits is believed to involve multiple ecological, developmental, 

and genetic mechanisms.  At least five genetic mechanisms have been shown to contribute to the 

evolution of novel traits – regulatory networks, gene duplication, recruitment of pre-existing 

machinery, positive selection, and horizontal gene transfer.  
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1.4.3 Gene duplication and regulatory networks (origin of flower) 

 It has been suggested that novel traits may have evolved by recruiting not only single 

genes, but also pleiotropic cis-regulatory elements, and even network modules (Monteiro and 

Podlaha 2009). The origin of the flower and its subsequent diversification have contributions 

from gene duplication (Kramer, et al. 1998) and regulatory networks (Liu, et al. 2010) in the plant 

MADS-box gene family, which encode a large number of transcription factors that regulate 

downstream genes controlling for floral shape and floral organ identity (Becker and Theissen 

2003). The Amborella genome (Amborella Genome Project 2013) and the analyses by Jiao et al 

(2011) revealed an ancient whole genome duplication that happened in the ancestor of all 

angiosperm lineages which gave rise to many genes that finally functioned in flower 

development. Genetic studies gave rise to the classic ABC model, identifying roles of classes A, 

B, and C genes of the MADS-box family in specifying the identities of four floral organs in 

different whorls of a flower – sepal, petal, stamen, and carpel (Coen and Meyerowitz 1991). Class 

A genes specify sepal (the first whorl), class A and B genes specify petal (the second whorl), 

class B and C specify stamen (the third whorl), class C genes specify carpel (the fourth whorl) 

(Coen and Meyerowitz 1991). Gene duplication in the MADS-box family has been the driving 

force in the diversification of floral shapes of diverse angiosperm lineages (Kramer et al. 1998). 

In addition, protein-protein interactions of many MADS-box proteins are often needed before 

they bind to the regulatory regions of their downstream genes (Liu et al. 2010). Several lines of 

evidence also show that MADS-box interaction are also required to determine the transition of 

vegetative organs to floral organs (Honma and Goto 2001; Li, Yu, et al. 2015). Furthermore, the 

hetero-dimer interaction of MADS-box proteins present in Amborella - the earliest surviving 

branch of angiosperms - but absent in the nonflowering gymnosperms, provides another 
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mechanism of regulatory network for the origin of flowers in diverse angiosperms (Amborella 

Genome Project 2013).  

1.4.4 Homeobox domain-mediated regulation of leaf development 

 A similar example illustrating transcription factor-mediated regulation of complex plant 

traits has been demonstrated with another gene, the KNOTTED-LIKE HOMEODOMAIN 

(KNOX) gene. The homologous Hox genes in animals control many aspects of development of 

homologous appendages. Diversification of arthropods with numerous morphological innovations 

has been attributed to changes in Hox genes and their targets (Weatherbee, et al. 1999). In plants, 

KNOX gene expression plays a role in the maintenance of shoot apical meristem and its formation 

of homo- or hetero-dimers has been shown to determine leaf initiation (Hake, et al. 2004) and the 

determination of simple or compound leaf (Champagne and Sinha 2004; Piazza, et al. 2005). 

These lines of evidence collectively support the role of gene duplication and regulatory networks 

in diversification and evolution of novel complex traits.  

1.4.5 Co-option of existing genes and gene family expansion 

 The development of horns in horned beetles has involved the co-option of the pre-

existing appendage patterning genes (Moczek 2005), the mechanism of which also underpinned 

many other developmental traits, such as insect distal limbs (Panganiban, et al. 1994), the center 

of butterfly eyespots (Carroll, et al. 1994; Brakefield, et al. 1996). The genome sequences of 

diverse avian species shed light on the evolution of many traits in birds. The increased gene copy 

numbers of opsin genes in birds relative to mammals may be associated with enhanced avian 

vision (Zhang, Li, et al. 2014). Around two-fold increase in copy number in birds compared to 
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reptiles was observed for β-keratin gene family, a family involved in constructing structural 

proteins unique to the epidermal appendages of birds and reptiles (Zhang, Li, et al. 2014).  

1.4.6 Mutation-driven positive selection 

 Positive selection has also been shown to play an important role in the evolution of novel 

traits. The earliest example of positive selection was seen in four non-synonymous substitutions 

in a hemoglobin gene where one amino acid difference was associated with enhanced affinity to 

oxygen, and allowed bar-headed geese to fly across the Himalayas (Petschow, et al. 1977). 

Similarly, recent genetic variations in humans show selective sweeps in two hypoxia-related 

genes associated with adaptation in the high altitude Himalayas region (Peng, et al. 2011). 

Another example is shown in honey bees where worker-biased proteins show signatures of 

positive selection (Harpur, et al. 2014), providing stronger evidence for the role of adaptive 

evolution in driving worker traits. It is worth mentioning that positive selection as the driving 

force of evolution was proposed by Darwin in his Origin of Species (Darwin 1859); however, 

Nei’s mutation theory focused on mutation as a prime driving force for evolution (Nei 2013a). In 

his theory, Nei emphasized the importance of mutation, which is the first step that has to occur 

before selection acts on it (Nei 2013a). Without mutation, positive selection simply cannot exert 

its role. In this sense, “mutation-driven positive selection” should be a more accurate term than 

simply “positive selection”.  

1.4.7 Haustoria origins – the exogenous model (HGT) 

 The evolution of novel traits has also been impacted by horizontal gene transfer (HGT) 

(Jain, et al. 2003; Dagan, et al. 2008), especially in the evolution of many prokaryotic genomes in 



 

 16 

which large proportions of their genomes are driven by HGT through processes such as 

transformation, conjugation, and transduction (Bapteste, et al. 2009). Many important traits 

involve the establishment or expansion of ecological niches such as the acquisition of antibiotic 

resistance (Davies and Davies 2010) and pesticide degradation (McGowan, et al. 1998) which 

were both impacted by HGT. The earlier hypothesis by Atsatt proposed a model of haustorial 

evolution based on horizontal gene transfer (Atsatt 1973). His rationale was that morphologies of 

haustoria resemble nodules and crown galls; he hypothesized that haustoria resulted from plant 

responses to endophytic microorganisms that have the ability to invade plant roots. A theory 

similar to this hypothesis is the endosymbiotic theory in which the eukaryotic organelles evolved 

from endosymbionts. Similarly, Kuijt also proposed that haustoria originated from mycorrhizal 

fungi that bridged roots of different plants (Kuijt 1969). Both of their hypotheses seem to propose 

that the ability of parasitic plants to attack their hosts was acquired by HGT from endosymbiotic 

bacteria or fungi. Interestingly, several expressed sequences from an endosymbiotic bacterium 

present in animal-parasitic nematodes and arthropods – Wolbachia – were found in a plant-

parasitic nematode R. similis (Haegeman, et al. 2009), indicating that HGT from a bacterial 

endosymbioint may be one origin of parasitism in plant-nematodes. 

 There are many cases in eukaryotic organisms where parasitic or pathogenic capability 

was enabled by HGTs of bacteria genes. Parasitic nematodes secrete cell wall-degrading enzymes 

whose sequences are more similar to fungi and bacteria than to animals, indicating a potential 

HGT origin for these sequences in the nematode (Smant, et al. 1998). There are at least 46 

proposed cases of HGTs that have contributed to the colonization of their plant hosts for 

pathogenic fungi and oomycetes (Soanes and Richards 2014). These HGT genes encode proteins 

associated with processes involved in invasion, degradation (for instance, beta-galactosidase, 

involved in the breakdown of hemicellulose and pectin (Zhuang, et al. 2006)), and manipulation 

of their host (antioxidative enzymes that scavenges ROS from the host (Klotz and Loewen 2003), 
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cytochrome P450 that break down phytoalexins, which are antifungal toxins (Maloney and 

VanEtten 1994). In addition, adaptive roles of specific HGT events have been demonstrated in 

several noteworthy examples. A bacterial hydrolase was horizontally transferred to an insect pest 

of coffee that allowed its digestion of coffee berry (Acuna, et al. 2012). Horizontal transfer of a 

chimeric photoreceptor (neochrome) from bryophytes to ferns enabled ferns to adapt to low-light 

conditions (Li, et al. 2014a).  

1.4.8 Haustoria origins – the endogenous model (gene recruitment) 

 Haustoria, developmentally speaking, are more similar to roots than to any other plant 

structure. Terminal haustoria develop at the tip of the embryonic radicle, and lateral haustoria 

develop as extensions from lateral roots or adventitious roots. On the other hand, haustoria have 

an important role in obtaining nutrients from their host; their role in transferring carbon from the 

host is analogous to the action of the leaf vein that moves sugar from mesophyll cells into phloem 

cells of minor veins (Westwood 2013). In this sense, phloem loading activity particularly in 

obligate parasites are common in both leaf and haustoria.  

 Research efforts (Aly et al. 2009; Bandaranayake et al. 2010; Alakonya et al. 2012; 

Bandaranayake et al. 2012) on parasitic plants have identified a set of candidate genes that play a 

role in haustorium initiation and development, for instance TvQR1 and TvQR2 in haustorial 

initiation. Additionally, TvPirin is upregulated by HIFs (or by contact with host roots) and 

putatively functions as a positive regulator of other genes needed for haustorial development 

(Bandaranayake et al. 2012). Finally, mannose 6-phosphate reductase (M6PR) in Phelipanche, a 

root holoparasite, was also shown to be involved in parasite metabolism (Aly et al. 2009).  
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 As these genes are also found in autotrophic plants, it is believed that these genes have 

evolved a role in parasitism by neofunctionalization of existing genes that play roles irrelevant to 

parasitism. Thus, it is believed that recruiting genes involved in other aspects of plant 

development could act as one origin of parasitism.   

1.5 Horizontal gene transfer 

 Horizontal gene transfers from endosymbiotic bacteria or invasive microorganisms may 

provide one mechanism of haustorial origin, but horizontal transfers of genetic material from host 

plants may play an additional important role in parasite evolution. The intimate contact with host 

plants allowing the exchange of molecules including nucleic acids, acts as one mechanism 

resulting in horizontal transfers of mitochondrial genes (Davis, et al. 2005; Mower, et al. 2010; 

Xi, et al. 2013), plastid genes (Park, et al. 2007b), and nuclear genes (Yoshida, Maruyama, et al. 

2010) in parasitic plants.  In the following text, we review the currently published research 

progress on HGT in plants that has been published to date.  

1.5.1 Mitochondrial HGT 

Mitochondrial genes are particularly subject to horizontal transfer in plants, with the 

strongest example evidenced by the frequent transfers of mitochondrial DNA up to the whole 

mitochondrial genome in Amborella (Bergthorsson, et al. 2004; Rice, et al. 2013). Quite 

remarkably, repeated horizontal transfers have been demonstrated in cox1 (cytochrome oxidase 

subunit 1) intron, a group I mobile element encoding a self-splicing endonuclease that can 

catalyze its movement from intron-containing to intron-less genes found primarily in organellar 

genomes and nuclear rRNA genes (Lambowitz and Belfort 1993). Since its probable first 
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horizontal landing into the basal angiosperm Peperomia from a distant fungal donor (Adams, et 

al. 1998), its explosive cross-species transfer has invaded increasingly many lineages of flowering 

plants more than 1,000 times during angiosperm evolution (Cho, et al. 1998). The widespread 

transfer of mitochondrial genes between distantly related flowering plants include ribosomal 

protein genes – rps2, rps11, and respiratory genes – atp1 (Bergthorsson, et al. 2003). These 

mitochondrial HGTs result in the recapture of genes lost from functional transfer to a nucleus, the 

creation of a duplicated copy in the presence of a vertical copy, or a chimeric gene by 

recombination (Bergthorsson et al. 2003). Several lines of evidence suggest that gene conversion 

between the parasitic copy and the host copy for mitochondrial HGTs (Archibald and Richards 

2010; Mower et al. 2010) may be one mechanism to produce chimeric mitochondrial genes (Hao 

and Palmer 2009; Hao, et al. 2010).  

1.5.2 HGT in parasitic plants 

In addition to the mitochondrial HGTs, increasing evidence of HGT have been reported 

in parasitic plants. This includes the massive transfer of 16 mitochondrial (mt) genes in the 

parasitic Rafflesia (Davis and Wurdack 2004; Nickrent, et al. 2004; Barkman et al. 2007; Xi, et 

al. 2012a; Xi et al. 2013), and several genes in various parasitic lineages including 

Apodanthaceae (atp1) (Nickrent et al. 2004; Barkman et al. 2007), Cuscuta (Convolvulaceae, 3 

mt genes) (Mower et al. 2010), Mitrastemonaceae (combined phylogeny of three mt genes: atp1, 

cox1, matR) (Nickrent et al. 2004; Barkman et al. 2007). The plastid genome is more “immune” 

to HGT: despite the widespread transfers of mitochondrial genes in the large Amborella genome 

from various sources, there is no evidence supporting HGT in its plastid genome (Rice et al. 

2013). Nevertheless, a significant number of examples have been identified in parasitic plants 

including 2 plastid genes in Orobanchaceae (Park et al. 2007b; Li, et al. 2013) and 29 plastid 
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genes in Rafflesiaceae (Xi et al. 2013). These lines of evidence collectively support an identified 

number of 20 mt genes and 31 plastid genes in lineages of parasitic plants. In addition to the 

frequent transfer from hosts to parasitic plants, transfers from parasite to host have been reported. 

These includes two cases of mt transfers from parasitic sandlewood (Santalales) to a fern (Davis 

et al. 2005) and two mt transfers involving atp1 gene from parasitic plants Orobanchaceae and 

Convolvulaceae to the host Plantago (Mower, et al. 2004). 

The instances of nuclear transfer in parasitic plants are relatively few; so far strong 

evidence include three nuclear genes in Orobanchaceae from their hosts – one unknown Striga 

gene from grasses (Yoshida et al. 2010), one legume-specific albumin 1 in P. aegyptiaca (Zhang, 

et al. 2013a) and one Brassicaceae-specific strictosidine synthase-like gene in both P. aegyptiaca 

and Cuscuta (Zhang, Qi, et al. 2014b). Although Xi et al (2012a) claimed the identification of 47 

nuclear HGTs in Rafflesia, they lack strong phylogenetic evidence for support.  

1.5.3 HGT of non-plant origin 

In addition to plant-plant transfers, horizontal transfers involving 57 nuclear genes have 

been identified in Physcomitrella from various donors including bacteria, fungi, and viruses (Yue, 

et al. 2012). These genes include auxin biosynthesis gene (YUCCA family monooxygenase), and 

stress-responsive genes (HAD-family hydrolase), and genes involved in metabolism (glutamine 

synthetase) and nutrient mobilization (subtilase) that are important to plant colonization of land 

(Yue et al. 2012). Although the phylogenetic trees clearly show the placement of Physcomitrella 

genes as sisters of distant lineages (bacteria for instance), caution needs to be taken especially 

since there are not many basal land plant genomes in support of sufficient taxon sampling. 
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1.5.4 Models for HGT 

 In light of these findings, Wang et al (2014) reviewed four models to explain the 

mechanisms of HGT in plants. The first model is the “intimate physical contact”, as supported by 

frequent transfers in diverse lineages of parasitic plants. The second model is “mitochondrial 

fusion”, inspired by the widespread transfers of genomic pieces in the giant Amborella 

mitochondria genome (Rice et al. 2013). The third model is the “weak-link model” proposed by 

Huang (2013) who suggested certain stages of the moss life-cycle such as zygotes, embryos, or 

spores, may represent a weak link that allows easier access of foreign genes to germline cells. The 

fourth model is “illegitimate pollination” assuming that pollen grains can germinate on the stigma 

of another species from which it is otherwise reproductively isolated, allowing the integration of 

the pollen DNA with egg cells during pollen tube elongation (Wang et al. 2014). This model 

could explain transfers between closely related species such as gene transfer between different 

genera of Poaceae (Diao, et al. 2006). The last model is through “transfer agents” such as aphids, 

bacteria, viruses, or fungi (Gao, et al. 2014), for instance transfers mediated by transformation 

potent - Agrobacterium tumefaciens in plants (Intrieri and Buiatti 2001), or invasive 

retrotransposons moved by a virus to bridge distantly related species (Roulin, et al. 2008; Roulin, 

et al. 2009; Gao et al. 2014).  

1.5.5 HGT – where do we go from here? 

  HGT in several species seem to indicate a role in land plant evolution (Wang et al. 

2014), with the strongest example from the horizontal acquisition of a neochrome in ferns (Li et 

al. 2014a) and 57 HGTs of genes with functions related to plant colonization to land in moss (Yue 

et al. 2012). Parasitic plants are known as an exemplary model for HGT discovery; however, 
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identification of nuclear HGT is still in its infancy. Considering that there are more than 10 

independently evolved lineages of parasitic plants with varying extents of parasitic dependence 

and structural integration of parasite and host tissue (Barkman et al. 2007), it is worth identifying 

all nuclear HGTs in these parasitic lineages and exploring whether HGT plays a role in the 

evolution of parasitism. Important goals for researchers in the future are to examine if a set of 

homologous genes are shared among multiple parasitic lineages, which will shed light on whether 

HGT involving particular genes may contribute to a common mechanism of parasitism.   

1.6 A transcriptomic and phylogenomic approaches to study parasitic plants 

1.6.1 Driving questions for research on parasitic plants 

 One motivation that drives us to carry out research of parasitic plants is to provide a 

series of approaches for parasitic weed control (Westwood et al. 2012; Gressel and Joel 2013). In 

light of existing research advances on parasitic plants, we are also interested in genomic changes 

that led to the transition to a parasitic lifestyle. In particular, we are focused on two processes of 

parasite development: haustorial initiation and development. We hope to characterize genes that 

are important to these two stages, and by relating possible roles of their orthologs in existing 

studies, we hope to select a handful of candidate genes for functional characterization. In 

addition, we are interested in understanding what evolutionary forces have been involved in 

driving parasite evolution. As discussed in the previous context, are there gene duplications either 

from genome duplications or small-scale duplications in the history of parasitic plants? Increasing 

examples of HGT have been identified in several lineages of parasitic plants, how extensive has 

HGT been in the parasitic Orobanchaceae? How frequent and important is HGT to the 
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development of a parasitic lifestyle? In addition to haustoria related stages, an important feature 

of obligate parasites is the requirement of host signals (SLs) for germination. Studying the 

evolution of SLs in parasitic plants may also guide us to develop approaches for parasitic weed 

control.  

1.6.2 Sequencing technologies allow the capture of transcriptomes and genomes 

Thanks to the rapid advancement of sequencing technologies, we are able to target the 

genome and transcriptome of several parasitic plant taxa. Traditional sequencing technology was 

based on Sanger sequencing, which led to the sequence and map of the human genome in 2001 

(Lander, et al. 2001). Later on to mitigate the high cost, laborious prep, and radioactive labeling, a 

series of affordable next-generation sequencing approaches were developed that included 454 in 

2005 (which later was bought by Roche), and Solexa in 2006 which has now been largely 

abandoned in favor of Illumina (Liu, et al. 2012). The third-generation sequencing technologies 

are the single-molecule real-time (SMRT) technologies developed by Pacific Bioscience (PacBio) 

(Rhoads and Au 2015) and Bionano (Antón, et al. 2015). Illumina has unique features of 

producing high throughput and accurate reads with an average length of 250 bp (up to 500 bp 

today) (Turner 2014). PacBio is famous for its long fragment molecule up to 40 kb which can 

bridge repeats in a genome, and works well when combined with Bionaono that produces single 

molecule maps with an average sequence length up to hundreds of kilobases to megabases (Antón 

et al. 2015). Error rates vary widely among the different technologies with longer sequences 

generally having a much higher per base error rate. Efforts on developing algorithms to handle 

billions of reads from next-generation sequencing technologies have also generated various de 

novo transcriptome assembly softwares including Trinity (Haas, et al. 2013), SOAPdenovo (Xie, 

et al. 2014), and CLC Workbench software (CLC Bio-Qiagen, Aarhus, Denmark). By breaking 
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the transcripts into small fragments called reads, one can sequence these molecules and generate a 

whole catalog of all the expressed genes (including splice variants) in each developmental stage 

of a plant. By generating a reference assembly (containing all reads from different libraries) and 

read mapping, one can get each transcript’s expression level across all stages. In terms of 

sequencing genomes, however, a combination of these technologies is needed to complement the 

shortcomings of each other (Pendleton, et al. 2015). Illumina’s advantage of generating short 

accurate fragments can produce accurate contigs, which can be combined to scaffolds using 

PacBio to bridge repeats. BioNano’s ability to generate even longer fragment can be used to 

construct a physical map (instead of providing direct sequence information). These efforts could 

finally lead to downstream analyses including differential expression analyses, gene annotation, 

and phylogenetic analyses, etc.  

1.6.3 The power of phylogenomic approaches (polyploidy (gene duplication) and HGT) 

 The capture of sequence information for the protein-coding genes in a genome can lead to 

many phylogenomic analyses. Phylogenomics is a tool to study evolution of genes and gene 

families using phylogenetic trees. It is based on the fact that all species have a common ancestor; 

thus studying the phylogeny of each gene can provide inference on species phylogeny. 

Phylogenies can reveal evolutionary events in a gene family, such as gene duplication, gene loss, 

rapid rate of evolution, etc.  

Polyploidy Plant genomes have a rich history of polyploid events, and most major lineages 

of flowering plants have undergone one or more whole genome duplication (WGD) events in 

their history.  For instance, the poplar genome (Populus trichocarpa) revealed at least two WGDs 

(Tuskan, et al. 2006); Vitis has had a triplication event (1 WGD) (Jaillon, et al. 2007); one or two 

WGDs have been inferred in the rice genome (Paterson, et al. 2004); the Striga asiatica genome 
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also revealed one WGD after its divergence with its close relative Mimulus guttatus (Yoshida et 

al., submitted)1. WGD can also give rise to species diversification, which can provide raw 

material for the action of selection to facilitate innovations of important traits (Rensing, et al. 

2007) and enhanced adaptation to diverse environment conditions (Fawcett, et al. 2009). For 

instance, tetraploid Arabidopsis plants, compared to the diploid ones, exhibited significantly 

higher levels of potassium uptake and salt tolerance (Chao, et al. 2013). Evidence shows that 

polyploidy can result in epigenetic reprogramming causing tissue-specific differential expression 

of duplicate pairs (Adams and Wendel 2005). Fawcett et al (2009) suggested that these changes 

may contribute to hybrid vigor and increase phenotypic variation allowing rapid adaptation to 

new ecological niches. By building large-scale phylogenetic trees for all the protein-coding genes 

in a species’ genome, Jiao et al (2011) inferred two ancient WGDs – one in the common ancestor 

of all flowering plants, the other in the common ancestor of all seed plants (Amborella Genome 

Project 2013; Li, Baniaga, et al. 2015).  

HGT  Phylogenetic analyses can also reveal HGT events. The use of a phylogenomic approach 

allowed Xi et al (2013) to claim widespread HGTs in parasitic Rafflesia from its host 

Tetrastigma. Although he didn’t show clear phylogentic evidence for each tree as strong support, 

the use of a phylogenomic approach in inferring HGT was clearly implementable. This was done 

by first selecting a number of sequenced plant genomes, which represents lineage from each clade 

and also provides enough resolution for HGT inference. Then a species tree can be constructed by 

using a concatenated matrix containing the single-copy genes across these taxa (Duarte, et al. 

2010; Wickett, et al. 2014). Alternatively, one can use coalescent-based methods such as ASTRA 

to reduce bias from incomplete lineage sorting (Mirarab, et al. 2014). The selected sequenced 

genomes are used to construct an orthogroup classification so that each gene from HGT focal taxa 
                                                        
1 Satoko Yoshida, Seuungill Kim, Eric K Wafula et al. 2015. Genome sequence of 

Striga asiatica provides insight into the evolution of plant parasitism. Nature plant 
(submitted). 
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can be classified into each orthogroup (gene family) by BLAST (McGinnis and Madden 2004) or 

Hidden Markov Model (HMM) (Eddy 2011a). Finally phylogenetic trees for each gene are 

constructed using either a maximum likelihood- or Bayesian-based approach. A vertical gene tree 

is shown as sisters of genes from its closely related taxa, whereas a gene from HGT focal taxa 

nested within a distantly related donor clade is inferred as resulting from HGT. 

1.6.4 Overview of PPGP 

 The Parasitic Plant Genome Project (PPGP) was initiated to identify the key genes and 

evolutionary changes important for the establishment of a parasitic lifestyle (Westwood et al. 

2010; Westwood et al. 2012).  The PPGP used a transcriptome sequencing approach (RNA-seq) 

to interrogate multiple stages of the growth and developmental stages of parasitic plants. The 

study group is the family of Orobanchaceae, the only family that has a complete spectrum of 

parasitic capabilities – including one autotrophic free-living Lindenbergia philippensis, and three 

representative parasites Triphysaria versicolor, Striga hermonthica, and Phelipanche aegyptiaca.  

The stages include important stages of haustoria initiation and host attachment and invasion 

(stage 3 and stage 4). By applying a de novo transcriptome assembly approach (a combined 

assembly of reads from all stages of a parasitic plant), we constructed a complete catalog of all 

the transcribed sequences from each stage of each parasite. Followed by read mapping, 

differential expression, and clustering analyses, we identified genes that are specific to haustoria 

development. In light of a phylogenomic approach, gene trees containing all the transcribed 

sequences from all the four Orobanchaceae species were built to infer gene duplications and 

HGT. These findings were combined with expression data and gene annotations to infer the 

possible roles of gene duplication and HGT in parasite evolution. Candidate genes were selected 

for functional characterization using RNAi in the parasitic plant. As small-interfering RNAs 
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targeting parasite genes transformed into the host can move into the parasite through haustorium 

– leading to successful silencing of genes in parasitic T. versicolor (GUS) (Tomilov, et al. 2008), 

P. aegyptiaca (M6PR (Aly et al. 2009), CCD7 and CCD8 (Aly, et al. 2014)), and dodder (STM) 

(Alakonya et al. 2012), the approach using host-induced gene silencing (HIGS) can also be 

applied to engineer parasite-resistant crops. 
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Chapter 2 
 

Identification of parasitism genes and the origin of the haustorium2 

  

                                                        
2 This chapter has been published as: 
Zhenzhen Yang, Eric K. Wafula, Loren A. Honaas, Huiting Zhang, Malay Das, Monica Fernández-Aparicio, Kan 
Huang, Pradeepa C.G. Bandaranayake, Biao Wu, Joshua P. Der, Christopher R. Clarke, Paula Ralph, Lena Landherr, 
Naomi S. Altman, Michael P. Timko, John I. Yoder, James H. Westwood, and Claude W. dePamphilis (2014) 
Comparative transcriptome analyses reveal core parasitism genes and suggest gene duplication and repurposing as 
sources of structural novelty. Mol Biol Evol. doi: 10.1093/molbev/msu343 
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2.1 Introduction to novel traits 

Throughout evolutionary history, organisms have evolved a variety of sophisticated novel 

traits for survival and reproduction. For instance, insects have evolved wings for flying, and 

plants have evolved different patterns of floral shapes and colors to maximize the attraction of 

insects and other animals for pollination.  The origin of such novel traits has been of longstanding 

interest to evolutionary biologists, and a wide range of approaches has been used to gain insights 

into the origin of specific traits. For example, examination of the sensory functions of cilia, the 

secretory structure of sponges, an early diverging group of multicellular animals, provided 

insights into the origin of the sensory system of metazoans (Ludeman, et al. 2014). Phylogenetic 

histories of genes known to be involved in eye development and phototransduction revealed that a 

greater variety of eye types as found in pancrustacean arthropods, appeared to be associated with 

a higher rate of gene duplication (Rivera, et al. 2010). Mutation and gene duplication have played 

an important role in generating complex pathways for refined eye development (Gehring 2011; 

Nei 2013b), which resulted in many different eye types including the camera eye, the compound 

eye and the mirror eye (Salvini-Plawen L 1961). The complete genome analysis of the basal 

angiosperm Amborella trichopoda, the sister species to all other extant flowering plants, revealed 

that a whole genome duplication led to the creation of many novel genes and functions associated 

with floral development and evolution, ultimately contributing to the diversification of flowering 

plants (Amborella Genome Project 2013).  

As seen in the above case studies, gene duplication is frequently associated with the 

evolution of novel functions (Stephens 1951; Nei 1969; Ohno 1970; Kaessmann 2010; Liberles, 

et al. 2010). The most extensively documented proposal for the evolution of novel gene function 

is the classic gene duplication model proposed by Ohno (Ohno 1970) and extended by Force, 

Lynch, and many others (Force, et al. 1999; Lynch and Conery 2000; Tirosh and Barkai 2007; 

Liberles et al. 2010). Following gene duplication, one copy may retain its original function, while 

the other copy diverges, and can have a variety of different fates, including pseudogenization 

(Lynch and Conery 2000), hypofunctionalization (Duarte, et al. 2006), subfunctionalization, or 

neofunctionalization. Subfunctionalization is due to complementary loss of some of the functional 

attributes that are initially shared by the new paralogs following duplication, while 

neofunctionalization can occur when one of the paralogs evolves a new expression pattern or 

sequence attribute and acquires a new function (Force et al. 1999; Lynch and Conery 2000; 

Tirosh and Barkai 2007; Liberles et al. 2010). Subneofunctionalization was proposed to describe 
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processes that involved both (He and Zhang 2005). Polyploidy duplicates all of the genes in the 

genome at once (Otto and Whitton 2000), providing ample opportunities for the function of 

paralogous gene copies to diverge (Crow and Wagner 2006; Nei 2013b), especially in plants, 

where both angiosperms (Jiao et al. 2011; Amborella Genome Project 2013) and seed plants (Jiao 

et al. 2011) have been hypothesized to be ancestrally polyploid, and a large number of more 

recent polyploidy events have been detected (Schlueter, et al. 2004; Cui, et al. 2006; Soltis, et al. 

2009; Jiao, et al. 2012; Vanneste, et al. 2013). Thus, novel gene creation through single gene 

duplications, large-scale genome duplication, and neofunctionalization may all play significant 

roles in the origin of a novel function.  

For plants, the evolution of parasitism is one of the most extraordinary examples of 

evolution of novel traits, as parasitic plants have evolved the ability to form a connection that 

allows it to feed off plants of other species, allowing some parasites to completely abandon 

photosynthesis, one of the hallmarks of life for most plants. Parasitism is enabled by specialized 

feeding structures known as haustoria (Kuijt 1969; Heide-Jørgensen 2013b), which have evolved 

independently at least 11 times in angiosperm evolution (Barkman et al. 2007; Westwood et al. 

2010). Most haustorial parasitic plants invade host roots, while some are able to form haustorial 

connections with stems, and rarely, leaves. 

The origin of parasitism in plants has been proposed to follow two general mechanisms. 

The first considers the striking morphological similarity between some parasitic plant haustoria, 

root nodules, and crown galls; it was thus proposed that parasites may have evolved through 

endophytic association or horizontal gene transfer of genes from bacteria or other microorganisms 

that could confer parasitic ability (Atsatt 1973). The second mechanism, termed the endogenous 

model (Bandaranayake and Yoder 2013b), was that parasitic functions may have evolved through 

neofunctionalization from plant genes encoding nonparasitic functions. These mechanisms are 

not necessarily mutually exclusive, and both may have been important to the evolution of 

parasitism.    

In this study, we have focused on seeking evidence relevant to the endogenous model for 

the origin of parasitism. We utilized differential expression analysis and expression clustering to 

identify upregulated genes associated with haustorium initiation, development, and physiology. 

Through identification of a core set of parasitism genes shared by multiple species of parasites, 

our results also shed light on the evolutionary mechanism(s) that led to the origin of the 

haustorium in the Orobanchaceae. As the haustorium is a novel structure at the core of the 
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parasitic process, comparative analysis of the genes and gene expression patterns of both parasitic 

and nonparasitic plants enabled us to propose its genetic origins.  

2.2 Results 

2.2.1 Assembly statistics and coverage  

For each of the three parasitic plants in this study (Triphysaria versicolor, Striga 

hermonthica, and Phelipanche aegyptiaca), we generated 11 to 14 stage-specific libraries 

(Westwood et al. 2012), plus additional whole-plant normalized libraries using RNA from all 

developmental stages in each species (Figure 2-1). Additionally, a whole-plant normalized library 

of Lindenbergia philippensis was sequenced to represent the nonparasitic sister lineage of the 

parasites. A grand total of 2,995,494,710 Illumina reads and 3,153,353 Roche 454 GS-FLX reads 

were generated. Hybrid assemblies combining all sequencing data for each species resulted in 

unigene numbers ranging from 117,470 in Striga to 131,173 in Triphysaria (table 2-1). Average 

unigene length varied between 581 bp (Triphysaria) and 745 bp (Striga), while average N50 

lengths ranged from 789 bp to 1183 bp with the N50 unigene counts ranging from 21,356 to 

24,729. To evaluate the completeness of our transcriptome sequence datasets, we examined the 

frequency of capture of three known conserved sets of plant genes in the transcriptome 

assemblies, namely the universally conserved orthologs (UCOs) (Kozik, et al. 2008; Der, et al. 

2011; Williams, et al. 2014), conserved single copy genes from COSII (Fulton, et al. 2002; Wu, et 

al. 2006; Williams et al. 2014) and the set of conserved single copy genes in PlantTribes2 (Wall, 

et al. 2008) (http://fgp.bio.psu.edu/tribedb/10_genomes/). The UCO list was obtained from the 

Compositae genome project (http://compgenomics.ucdavis.edu/compositae_reference.htp) and 

COSII gene list was obtained from SolGenomics 

(http://solgenomics.net/documents/markers/cosii.xls). The single copy gene list containing 970 

single copy orthogroups from PlantTribes2.0 (http://fgp.bio.psu.edu/tribedb/10_genomes/) were 

identified as single copy in the seven angiosperm genomes included in the classification: 

Arabidopsis thaliana Columbia (version 7), Carica papaya (version 1), Populus 

trichocarpa (version 1), Medicago truncatula (version 1), Oryza sativa (version 5), Sorghum 

bicolor (version 1) and Vitis vinifera (version 1). The Arabidopsis thaliana proteins from each of 
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the three conserved single copy gene lists was used as the query in tblastn search of each 

transcriptome assembly. A gene was considered detected if it returned a hit with an E-value 

smaller than 1e-10 and at least 30 amino acids long. Results from this analysis shown in table 2-2 

indicate that gene coverage ranged from at least 90% in Phelipanche  (PlantTribes single copy 

analysis) to 100% (UCO analysis) in Triphysaria combined assemblies. These results suggested 

that our assemblies have excellent gene coverage and are very likely to capture the large majority 

of the expressed genes in a transcriptome. Additionally, to validate the accuracy of the de novo 

transcriptome assemblies, we used RT-PCR to amplify a total of 33 contigs spanning a range of 

assembly sizes in the three parasitic species.  The estimated sizes from the amplified cDNAs 

agree well with the expected sizes from the de novo transcriptome assemblies (R2 for the three 

species of Triphysaria, Striga, and Phelipanche range from 0.973 to 0.999), suggesting a high 

degree of accuracy in the de novo assemblies (supplementary fig. S1) (Yang, et al. 2015). Seven 

of the Triphysaria sequences were selected for validation sequencing and matched precisely the 

predicted length of the contig and differed from the reference assembly by at most a few SNPs, as 

would be expected for allelic variants in an outcrossing species. To conclude, we have produced 

high-quality large scale transcriptome assemblies that serve as a valuable resource for 

comparative studies of parasitic plant gene content and expression.   
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Figure 2-1. An illustration of stages of each parasitic plant used in the Parasitic Plant Genome 

Project (Westwood et al. 2012) in this study. The sketches were contributed by Huiting Zhang.  

Drawings are based on original photographs, as shown in Nickrent et al. (1979), Musselman and 

Hepper (1986), Zhang (1988), and Rumsey and Jury (1991). Additional sequences from the 

parasite-host interface (Honaas, et al. 2013) were also used to study haustorial-specific gene 
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expression (Stage 4).  Abbreviations:  H (host); P (parasite); V (vasculature); R (root); S (shoot); 

HIF (haustorium inducing factor); N/A (not applicable).   

 

 

 

 

Table 2-1.Transcriptome assembly statistics in the post-processed combined assembly for each 

study species. 

Species Assembly 

ID 

Number 

of contigs 

Assembl

y size 

(Mbp) 

Number of 

N50 contigs 

N50 contig 

length (bp) 

Mean 

contig 

length (bp) 

Triphysaria versicolor TrVeBC3 131,173 76.20 24,729 789 580.91 

Striga hermonthica StHeBC3 117,470 87.53 21,356 1,183 745.17 

Phelipanche aegyptiaca PhAeBC5 129,450 83.80 21,552 1,010 643.48 

Table 2-2.Transcriptome gene capture statistics in three parasitic species. 

Gene set Total TrVeBC3 TrVeBC3 

proportion 

(%) 

StHeBC3 StHeBC3 

proportion 

(%) 

PhAeBC5 PhAeBC5 

proportion 

(%) 

COSII single 

copy 

220 216 98.18 214 97.27 201 91.36 

PlantTribes2.

0 single copy 

970 949 97.84 952 98.14 869 89.59 

UCO 357 357 100.00 356 99.72 354 99.16 

2.2.2 Validation of genes with known roles in Orobanchaceae parasitism  

We validated the expression data from RNA-seq using expression profiles of two genes 

that are known to play a role in parasitism: TvQR1 (Bandaranayake et al. 2010; Ngo et al. 2013) 

and TvPirin (Matvienko, et al. 2001; Bandaranayake et al. 2012; Ngo et al. 2013). Both genes are 

upregulated in Triphysaria roots exposed to the HIF (quinone 2,6 dimethoxy-1,4-benzoquinone; 

DMBQ) (stage 2) compared to roots without exposure (stage 1). All BLASTn alignments of the 

TvQR1 gene with an E-value cutoff of e-10 or smaller were used to construct the putative full-
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length transcript representing TvQR1. The expression level of TvQR1 in each stage was calculated 

as the combined expression of all the unigene hits within TrVeBC3_12199 trinity component that 

contributed to the construction of the full-length reference (TrVeBC3_12199.1 to 

TrVeBC3_12199.9). For profiling gene expression we also used three libraries made from host-

parasite interfaces of haustoria from the three parasitic plants (Honaas 2013). The interface 

tissues from the three parasitic plants were targeted by a laser-capture microdissection approach 

(Honaas 2013; Honaas et al. 2013). Reads from stage 4 interface libraries were mapped onto the 

combined assemblies to quantify the gene expression in the interface. The RNA-Seq data for the 

gene TvQR1 showed high and specific expression for root tissue (stage 1 and stage 2) but low 

expression levels in other tissues (haustoria, seed, and above ground tissue). When root tissue was 

treated with DMBQ (stage 2), the expression of TvQR1 increased relative to roots without any 

treatment (stage 1) (Figure 2-2), which is consistent with results obtained in previous studies 

(Bandaranayake et al. 2010). These results confirm the expected expression for TvQR1 (Figure 2-

2). 

The only significant hit for gene TvPirin in the assembly was contig TrVeBC3_1063.1, 

which included the full-length CDS and 5’ and 3’ UTR regions. As expected (Matvienko et al. 

2001; Bandaranayake et al. 2012), this gene showed the highest expression in stage 1 and stage 2 

(root tissue), with the expression in stage 2 (root treated with DMBQ) higher than stage 1 

(untreated root) (Figure 2-2). Post-attachment root tissue (6.3) also showed relatively high 

expression levels for TvPirin, suggesting that this gene is highly expressed in roots. Given the 

consistency in expression validation as well as assembly validation (supplementary Figure S1) 

(Yang et al. 2015) , our RNA-Seq assemblies should be able to provide good estimates of gene 

expression in the species within this study.  
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Figure 2-2. Gene expression profiles from RNA-seq data for two previously characterized 

parasitism genes in Triphysaria (QR1, left, and Pirin, right). The two genes were shown to be 

upregulated in stage 2 relative to stage 1 by RT-PCR, which was confirmed by RNA-Seq data. 
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2.2.3 Differential gene expression and clustering to identify haustorial genes  

A differential expression (DE) analysis for the common stages present in all three 

parasitic plants (stages 0, 1, 2, 3, 4, 6.1 and 6.2) was performed to identify differential expression 

patterns for any pairwise comparison among the seven stages. Next, we conducted two clustering 

analyses using K-means clustering and self organizing maps (SOM clustering) to identify clusters 

of coexpressed genes with high expression in post-attachment haustorial stages (3 and/or 4) for 

each parasitic plant. Clusters of coexpressed genes that exhibited significantly higher gene 

expression in post-attachment haustorial stages were extracted from the K-means cluster analysis 

for each species.  We refer to these upregulated genes in post-attachment haustorial stages as 

“haustorial genes”.  A boxplot and expression heat map for each cluster of haustorial genes in 

each species was used to visualize the specific expression patterns for each of the parasitic plants 

(Figure 2-3A & B). DE analyses and clustering approaches were performed for expression of 

both unigenes and a more inclusive putative transcript definition, the “component-orthogroup” 

(supplementary data 1, 2).  The latter is defined as a representative sequence for a Trinity 

component containing all associated unigenes (e.g., splice forms, alleles, subassemblies), so long 

as they are assigned to the same orthogroup (i.e., clusters of homologous genes representing 

narrowly defined gene lineages) in the gene family classification used by the (Amborella Genome 

Project 2013). The unigenes and component-orthogroups identified by SOM clustering are shown 

in the supplementary section (supplementary data 3). 

The organ/stage of the parasite sampled is shown along the x-axis. Labels on the X-axis refer to 

stage (see Figure 2-1) and ‘u’ means that this facultative parasite was growing  ‘unattached’ to 

any host (for instance, 6.1u means unattached stage 6.1).  The y-axis gives expression values as 

fragments per kb per million reads (FPKM) on a log2 scale. 
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Figure 2-3. Gene expression clustering (A) and heatmap (B) of upregulated genes in post 

attachment haustorial stages 3 & 4 (“haustorial genes”) in parasitic Orobanchaceae. (A) One 

cluster of highest expression in post attachment haustorial stages with K-means clustering in each 

species (511 in Triphysaria, 958 in Striga and 126 in Phelipanche). Expression in each stage is 

represented by a boxplot. The upper whisker of the boxplot indicates the highest expression value 

for features within each cluster, the lower whisker, the lowest expression value, and the middle 

line, the median expression. The upper and lower edges of the box represent the 75th and 25th 

percentile, respectively. Expression of genes in the post attachment haustorial stages is 

highlighted in green. A description of the focal stages is shown on the lower right. (B) - Gene 

expression heat map of component-orthogroups with upregulated expression in post attachment 

haustorial (stage 3 and/or 4) stages identified by K-means and hierarchical clustering in 

Triphysaria, Striga, and Phelipanche. The color-intensity in the heat map represents expression 

value (log2FPKM).  
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Genes that are differentially upregulated in developmentally similar stages of haustorial 

development, and are evolutionarily conserved across species, are likely to play an important role 

in parasitism. We examined three species in Orobanchaceae that exhibit varying levels of host 

dependence and photosynthetic ability. These species serve as divergent biological replicates; 

shared gene sequences that show conserved upregulation in parasitic structures are likely to be 

important to the parasitic process. We used orthogroups to associate homologous (and putatively 

orthologous) genes across the Orobanchaceae species in this study (see Materials and Methods, 

supplementary data 4, 5). The final list of candidate haustorial genes was defined as the union of 

orthogroups represented by upregulated unigenes or component-orthogroups from each species. 

We also identified unique orthogroups and orthogroups present in only two of the three species. 

Both K-means clustering and SOM clustering were used to identify genes with high and specific 

expression after attachment to a host (supplementary data 3, 6). As a result, we identified 185 

orthogroups that contained genes (874 unigenes and 488 component-orthogroups) highly 

expressed of at least two of the species (Figure 2-6). Forty orthogroups were identified that show 

their highest level of expression during haustorial development of all three parasitic plants. It is 

important to note that most of the two-way shared haustorial genes are likely to represent a true 

set of haustorial genes, because at least 70% of these two-way shared orthogroups also contain 

genes with increased expression in haustorial stages in the third species (supplementary data 7). 

2.2.4 Shared haustorial genes are enriched for proteolysis and extracellular region 

localization 

 To determine whether the haustorial genes are enriched for specific molecular processes 

or biochemical pathways, we took the highly expressed unigenes belonging to an orthogroup 

shared by at least two species and aligned them with BLASTx to the TAIR database (Lamesch, et 

al. 2012). Best hits in Arabidopsis (E-value ≤ e-10) were used as the input for a DAVID 

enrichment analysis (Huang, et al. 2009) for enriched Pfam domains, GO molecular functions 

(MFs), biological processes (BPs), and cellular components (CCs) (supplementary data 8). All 

three parasites share enrichment for the Pfam term serine carboxypeptidase. In addition, the 

haustorial genes in Triphysaria and Striga are significantly enriched for eukaryotic aspartyl 

protease, peroxidase and leucine-rich repeat N-terminal domains (table 2-3, supplementary data 3 

and 8). There was a similar high level of enrichment for eukaryotic aspartyl protease and leucine-
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rich repeat N-terminal domains in Phelipanche, but this was not significant after correcting the P-

value for multiple testing. The smaller number of haustorial genes in Phelipanche limited the 

power to detect significantly enriched terms. Finally, pectate lyase was significantly enriched 

among shared genes in Triphysaria. 

 

 

The largest GO BP category in terms of the number of genes (supplementary data 8) is 

“proteolysis”, represented by genes encoding aspartyl protease or serine-type peptidase and 

subtilase, followed by oxidation-reduction processes, such as peroxidases, and protein 

phosphorylation, such as kinases. There are also two genes involved in transport activity; one is 

an oligopeptide transporter and the other is a glutamate-receptor protein. Moreover, six genes 

Table 2-3. Enriched Pfam domains in the shared set of haustorial unigenes identified by either K-

means or SOM clustering in Triphysaria, Striga and Phelipanche. Significance levels for 

category enrichment relative to background are given as Bonferroni-adjusted P-values. NA means 

enrichment information for the particular term is not identified by the test, NS means non-

significant. 

 

Pfam Term 

§  

Triphysaria Striga Phelipanche 

F

Fold 

change 

Bonferroni-

adjusted 

P-value 

F

Fold 

change 

Bonferroni-

adjusted 

P-value 

Fold 

change 

Bonferroni-

adjusted 

P-value 

Serine 

carboxypeptidase 

24.0 5.08E-07* 

§  

24.0 

§  

4.26E-08* 39.1 3.58E-05* 

§  

Eukaryotic 

aspartyl protease 

39.6 2.64E-06* 0.7 

§  

9.94E-08* 41.4 NS 

Peroxidase 22.4 7.56E-11* 14.0 3.80E-05* 

§  

NA NA 

Leucine rich 

repeat N-terminal 

domain_2 

6.1 1.67E-02* 

§  

7.4 1.07E-04* 6.7 NS 

§  

FAD_binding_4 

§  

16.1 3.85E-02* 23.1 6.99E-06* NA NA 

Pectate lyase 41.2 2.02E-06* 

§  

5.9 

§  

NS 

§  

NA NA 
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involved in cell wall modification were identified, including three genes encoding pectate lyase or 

pectate lyase-like proteins, one encoding pectin methylesterase inhibitor, one encoding cellulase, 

and one encoding carbohydrate-binding X8 protein. GO MF terms such as “serine-type peptidase 

activity” and “aspartic-type endopeptidase activity” were significantly enriched (table 2-4). The 

KEGG pathway terms “phenylalanine metabolism” and “methane metabolism” and 

“phenylpropanoid biosynthesis” were also significantly enriched in the haustorial upregulated 

gene set. In addition, other enriched GO terms, such as “cellular response to hydrogen peroxide” 

and “cellular response to reactive oxygen species (ROS)”, support the suggestion by Torres et al 

(2006) that ROS may be an important signaling intermediate during the parasitic plant-host plant 

interaction.  
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Table 2-4. Enriched GO cellular component (GO-CC), biological process (GO-BP) and molecular 

function (GO-MF), KEGG pathway, and tissue expression terms among shared set of haustorial 

unigenes identified by either K-means or SOM clustering in Triphysaria, Striga, and 

Phelipanche. Significance levels for category enrichment relative to background are given as 

Bonferroni-adjusted P-values. NA means enrichment information for the particular term was not 

identified by the test, NS means non-significant. P-value less than 0.05 is marked with an 

asterisk. 

Term 

§  

§  

Triphysaria Striga Phelipanche 

Fold  

change 

Bonferroni-

adjusted 

P-value 

Fold 

change 

Bonferroni-

adjusted 

P-value 

Fold 

change 

§  

Bonferroni-

adjusted 

P-value 

GO-CC: external encapsulating 

structure 

5.3 3.65E-12* 5.1 1.65E-12* 3.6 NS 

GO-CC: cell wall 5.2 1.69E-11* 5.0 7.09E-12* 3.7 NS 

GO-CC: extracellular region 3.5 4.53E-11* 3.3 3.97E-10* 2.8 NS 

GO-BP: proteolysis 3.4 1.92E-06* 4.4 7.51E-14* 4.9 3.88E-05* 

GO-BP: cellular response to 

hydrogen peroxide 

18.0 1.87E-09* 10.2 4.18E-03* NA NA 

GO-BP: cellular response to 

reactive oxygen species 

16.1 7.26E-09* 9.1 8.65E-03* NA NA 

GO-MF: serine-type peptidase 

activity 

13.3 4.35E-13* 15.8 9.14E-21* 21.9 3.01E-10* 

GO-MF: aspartic-type 

endopeptidase activity 

15.0 2.59E-06* 18.3 7.31E-11* 15.7 NS 

GO-MF: electron carrier activity 3.6 6.71E-04* 2.8 4.98E-02* NA NA 

KEGG: Phenylalanine 

metabolism 

14.2 8.68E-10* 

§  

10.6 7.95E-06* 

§  

NA NA 

KEGG: Methane metabolism 14.0 9.99E-10* 10.5 8.77E-06* NA NA 

KEGG: Phenylpropanoid 

biosynthesis 

10.9 1.62E-08* 8.2 6.07E-05* NA NA 

Tissue_specificity: Specifically 

expressed in root cap cells 

49.7 7.06E-01 

(NS) 

47.2 7.68E-01 

(NS) 

NA NA 

Tissue_specificity: Expressed in 

flowers, but not in leaves 

33.2 8.40E-01 

(NS) 

NA NA NA NA 

 



 

 42 

 Significant enrichment of genes with the GO CC category “external encapsulating 

structure”, “cell wall”, and “extracellular regions” were found in both Triphysaria and Striga 

(table 2-4). A concordant pattern of enrichment was observed for these categories in Phelipanche, 

though, like the domain analysis, the conservative test, corrected for multiple comparisons, did 

not find these enrichments significant in this species. Future research with experimental evidence 

is needed to determine if the extracellular predictions for these candidate haustorial genes hold 

true or not, and whether the proteins they encode affect the parasite-host interactions.  

2.2.5 Two examples illustrating haustorial gene expression evolution  

To further understand the evolutionary origin of some of these haustorial-related genes, 

we examined patterns of gene expression in orthologs in three nonparasitic model plant or crop 

species: thale cress (Arabidopsis thaliana), barrel medic (Medicago truncatula), and tomato 

(Solanum lycopersicum). To illustrate this approach, we present a detailed analysis of the pectate 

lyase and peroxidase gene families, which were identified by the presence of enriched Pfam 

domains in Triphysaria (pectate lyase) or in both Triphysaria and Striga (peroxidase). Following 

an early, possibly angiosperm-wide duplication in the pectate lyase gene family (fig 2-4A), a 

subsequent gene duplication gave rise to two paralogous gene lineages shared by Mimulus and 

members of Orobanchaceae. One paralogous gene in parasitic Orobanchaceae and their orthologs 

in Arabidopsis and tomato show principal expression levels in floral tissues (supplementary data 

21; (Goda, et al. 2004; Sun and van Nocker 2010)); the other paralog took on abundant 

expression in the haustorium of parasitic Orobanchaceae (Figure 2-4A). The more recent gene 

duplication in a common ancestor of Mimulus and Orobanchaceae gave rise to two Striga genes, 

one having peak expression in haustorial tissue and the other in flower (Figure 2-4A). 

Conservation of principal gene expression in floral tissues of non-parasites and the maintenance 

of a floral-expressed ortholog in Striga strongly suggests that the haustorial expression of this 

gene was co-opted from an ancestral gene acting in flowers, and was recruited to haustoria 

following gene duplication through regulatory neofunctionalization. Alternatively, because the 

ancestral gene may have been expressed in both floral tissue and root, a two-step process in 

which the ancestral gene first subfunctionalized and then shifted to haustoria would be an 

example of subneofunctionalization (He and Zhang 2005). 
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Figure 2-4. Gene family phylogeny and gene expression profile of two orthogroups showing co-

option of haustorial genes from flower and root. A) shift of gene expression from flower to 

haustorium following gene duplication, and B) shift of gene expression from root to haustorium 

without gene duplication. Gene duplication events relevant to the origin of parasite genes are 

shown on the tree with blue rectangular bars. Sequence names are color-coded to represent 

different lineages: basal angiosperms (blue), monocots (yellow), basal eudicots (purple), rosids 
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(red) and asterids (green). Parasite genes are highlighted with yellow background and green 

foreground. The expression of parasite genes and nonparasite genes in Arabidopsis, Medicago, 

and Tomato are shown using heat maps. Green and red lines are connecting genes from the 

phylogeny to the heatmap for nonparasitic genes (except in Arabidopsis orthogroup 1131 where 

genes are labeled as PLLs) and parasitic genes. The tissue with the highest expression was labeled 

in red. The color intensity in heatmaps refers to expression measurements with an RNA-Seq 

approach in parasites and tomato, and with microarrays in Arabidopsis and Medicago. Int or int 

means “interface” tissue of haustoria (~ stage 4) (Honaas 2013), and hau means “haustoria”.  

 

 

 

In contrast to the pectate lyase gene, a peroxidase gene family shows a shift of gene 

expression from roots in all related nonparasitic model species to haustorial tissue of parasitic 

plants without gene duplication (Figure 2-5B). The peroxidase gene highly expressed in roots of 

Arabidopsis was characterized to be involved in the production of ROS (Kim, et al. 2010), stress 

response (Llorente, et al. 2002) and pathogenic responses (Ascencio-Ibanez, et al. 2008).  

2.2.6 Identifying haustorial initiation genes and “parasitism genes”  

Genes that are upregulated in response to the haustorial initiation factor (HIF) DMBQ 

might also play an important role in parasitism. For example, TvQR1, which is upregulated 

following DMBQ exposure, encodes a quinone reductase that acts early in the HIF signaling 

pathway (Bandaranayake et al. 2010). Stage 1 in the tiny-seeded Striga and Phelipanche 

(Westwood, 2012) consists of whole germinated seedlings, while in the much larger-seeded 

species (Triphysaria) stage 1 is comprised of excised radicles of germinated seedlings. Upon 

treatment of stage 1 seedlings or roots with DMBQ or a host root, the plants progress to stage 2 

(haustorial initiation). DESeq was used to identify “haustorial initiation genes” (HIGs), defined 

here as unigenes and component-orthogroups that have significantly higher gene expression in 

stage 2 compared to stage 1 (supplementary data 9).  

Triphysaria HIGs were enriched for GO MF terms such as “magnesium ion binding”, 

“calcium ion binding”, “calcium-transporting ATPase activity”, “calcium ion transmembrane 

transporter activity”, and “cation-transporting ATPase activity” (supplementary data 10). The co-
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occurrence of putative functions of calcium ion transport and ion binding with ATPase activity 

suggest a possible involvement of a Ca2+ATPase (Brini and Carafoli 2011) in the regulation of the 

haustorium initiation pathway. In Striga, however, a distinct set of enriched GO MF terms was 

detected, including “nucleotide binding”, “ATPase activity”, and “ATP-dependent helicase 

activity”. This may suggest a different picture associated with HIF exposure between facultative 

and obligate parasitic plants.  

By combining the list of shared upregulated genes in haustoria (Figure 2-5, 

supplementary data 5) with HIGs (Figure 2-6, supplementary data 11), we define a joint set of 

genes in these parasites that we call “parasitism genes”. Parasitism genes are defined by having 

enhanced expression in parasitic structures, and likely playing a role in parasite biology, as 

opposed to parasite-specific sequences which are defined only by their joint presence in parasitic 

and absence from nonparasitic plants (see below).  In total, we identify 1809 parasitism genes in 

these three parasitic species that are assigned to 298 orthogroups that were shared by at least two 

species. As most of the parasitism genes shared by two parasitic plants also show upregulated 

pattern in the third species (supplementary data 7), this set of genes upregulated in parasitic 

process constitutes a shared set of parasitism genes in Orobanchaceae. There are almost 300 gene 

families shared by at least two species that have genes upregulated in the parasitic processes. 

 
 

Figure 2-5. Venn diagram illustrating the number of orthogroups with upregulated expression in 

stage 3 and/or stage 4 (by K-means and SOM) in Triphysaria, Striga, and Phelipanche.  

 

 

The number of orthogroups containing HIGs varied widely in the three parasites (2285 in 

Striga, 17 in Phelipanche, and 249 in Triphysaria). While the low number of HIGs in 

Triphysaria Striga

Phelipanche

375 98 655

40
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Phelipanche could be a result of lower power to detect differential expression (fewer replicated 

libraries and a smaller total volume of data; supplementary data 12), we also observed that a large 

number of genes are highly upregulated in Phelipanche stage 1, suggesting that Phelipanche may 

automatically begin haustorial initiation without HIF exposure, which was reported by a previous 

study where haustorial initiation, as an exception, doesn’t require the application of HIF (Joel and 

Losner-Goshen 1994a). To examine this possibility, we expanded the list of HIGs by including 

genes highly expressed in stage 1 (a cluster of upregulated expression in stage 1 relative to any 

other stages 0, 2, 3, 4, 6.1, and 6.2) of Phelipanche and performed another Venn diagram 

analysis. In this expanded set, there are eight additional orthogroups including HIGs that were 

shared by all three parasitic plants as well as an additional 65 orthogroups shared by two species 

(Figure 2-6 – number in parenthesis). An examination of the eight orthogroups revealed genes 

coding for the following functions: cytochrome P450, heat shock protein 70, ribosomal protein, 

peptidase C48, oleosin, ATPase, pyruvate kinase and integrase. This is consistent with the 

possibility that Phelipanche starts haustorial initiation at an earlier stage (stage 1) than other two 

hemiparasites. Alternatively, because haustorium development in response to HIFs in 

Phelipanche is not as evident as in Striga or Triphysaria (Joel and Losner-Goshen 1994a), there 

may actually be fewer HIGs in Phelipanche.  

 
Figure 2-6. HIGs: Orthogroups containing genes upregulated in root or seedlings following 

haustorial initiation factor (HIF) exposure (stage 2) compared to germinating seedlings (stage 1) 

in Triphysaria, Striga and Phelipanche. The numbers in parenthesis are the corresponding set of 

Triphysaria Striga

Phelipanche

142 (136)

2 (8)

0 (8)
6 (65) 

9 (277)

105 (97) 2174 (2115)
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orthogroups when including genes that are highly expressed in stage 1 (relative to any other 

stages of stage 0, 2, 3, 4, 6.1, and 6.2 – by K-means clustering) of Phelipanche.  

 

2.2.7 A majority of parasitism genes evolved through gene duplication  

We next explored the possibility that these putative parasitism genes evolved via gene 

duplication. We utilized an automated tree-building pipeline (Jiao et al. 2011; Amborella Genome 

Project 2013) to construct gene families for 114 orthogroups containing parasitism genes with a 

manageable number of genes to score for gene duplications (orthogroup number ranging from 

1000 to 9999). Each orthogroup contained homologs from 22 other plant species used in the 

construction of the classification (Amborella Genome Project 2013), plus the genes from 

Orobanchaceae identified here. Manual inspection of the gene tree phylogenies was performed to 

find parasite genes that may have been missing in one or more “whole plant” combination 

assemblies. We also manually examined each alignment (and resulting tree) for frame shift and 

translation errors that could result in extremely long (> 10x others) branches. These errors were 

corrected when possible, or the sequence was eliminated from the matrix to avoid spurious 

topologies. Together, these gene family phylogenies give us a broad view of how parasitism 

genes evolved. 

 Of the 114 orthogroups (supplementary data 13) containing parasitism genes, gene 

duplications were detected in 58 trees at ≥ 50% bootstrap support and 38 trees at ≥ 80% bootstrap 

value support. By mapping the duplication events observed in parasitic plants onto phylogenetic 

species trees, and examining bootstrap support values for key supporting nodes, we determined 

when the putative parasite paralogs were duplicated (supplementary data 14). A detailed scheme 

illustrating various duplication events for when parasitism genes were duplicated is shown in 

supplementary data 15. The greatest proportion of duplicated gene families supported a gene 

duplication event that occurred in a common ancestor of Mimulus and Orobanchaceae (but not 

seen in Solanaceae, other asterids, or rosids) (table 2-5). 

 

Table 2-5. Phylogenetic placement of gene duplications observed in gene families with shared 

parasitism genes. 
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Duplicated lineages 
Orthogroups with duplication 

BS≥ 80% BS≥ 50% 

Parasite-wide 9 (23.68%) 13 (22.41%) 

Orobanchaceae-wide 4 (10.53%) 9 (15.52%) 

Orobanchaceae+Mimulus 21 (55.26%) 28 (48.28%) 

EuAsterid1-wide 1 (2.63%) 1 (1.72%) 

Asterid-wide 1 (2.63%) 1 (1.72%) 

Core-eudicot-wide 5 (13.165) 8 (13.79%) 

Eudicot-wide 3 (7.89%) 8 (13.79%) 

Total 38 (100%) 58 (100%) 

 

As with the parasite genes in general, most of the duplicated parasitism genes detected in 

this analysis were annotated with terms related to peptidase activity (such as aspartyl protease, 

serine carboxypeptidase) and cell wall modification processes (pectate lyase, pectin 

methylesterase inhibitor, carbohydrate-binding X8 protein and glycosyl hydrolase). In addition, 

three transcription factors (homeodomain-like transcription factor, ethylene responsive 

transcription factor and LOB domain-containing protein), genes with transporter activity (cationic 

amino acid transporter, major facilitator family protein, NOD26-like intrinsic protein and an 

oligopeptide transporter), a peroxidase, and a leucine-rich repeat-containing protein were also 

derived from scorable gene duplications. 

2.2.8 Regulatory neofunctionalization and origin of the haustorium from root and flower  

Tissue expression clustering - To obtain a global view of transcriptional profiles 

throughout parasite growth and development in each species, expression values for each unigene 

were clustered by tissue and stage expression levels using complete linkage and correlation 

distances using the pvclust routine in R (Racine 2012) (supplementary data 16). The expression 

clustering in each of the three parasitic plants (Figure 2-7) shows that overall, gene expression 

from vegetative and reproductive above-ground tissues is quite different from the below-ground 

structures. In both Striga and Triphysaria, above-ground stage 6.1 (vegetative structures) 

clustered with above-ground stage 6.2 (reproductive structures; floral buds), and were separated 

from the remaining tissues with 100% bootstrap support. In contrast, pre-emergent shoots 
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occurring underground (stage 5.1) in Phelipanche clustered with above-ground shoots (stage 6.1), 

and the two shoot transcriptomes clustered with floral buds (stage 6.2). It is notable that 

Phelipanche and Striga both produce pre-emergent shoots (stage 5.2), but the overall expression 

patterns of this stage in the two species is somewhat different. The fact that Striga pre-emergent 

shoots (stage 5.1) do not cluster with emergent shoots (stage 6.1), but are more similar to other 

below-ground stages (haustorium - stage 4 and pre-attachment roots - stage 5.2), may be due to 

the fact that photosynthetic activity in Striga shoots only becomes active after emergence, while 

Phelipanche is not capable of photosynthetic activity at all.  
Cluster analysis (Figure 2-7) also shows that in all three species haustorial gene 

expression is overall most similar to root expression. In Triphysaria and Phelipanche, expression 

patterns from both stage 3 and stage 4 haustorial tissues cluster with roots. [Roots from 

Triphysaria were taken from germinated seedlings (stages 1 and 2), while roots for Phelipanche 

were from the late post attachment stage, but prior to shoot emergence from the soil (stage 5.2).] 

In Striga, a late stage 4 haustorial tissue is most similar to roots prior to the above-ground 

emergence of shoots, a scenario similar to Phelipanche.  
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Figure 2-7. Overall similarity of transcriptional profiles of all stages in three parasites. Numerical 

values represent supports as estimated by the approximately unbiased (on left, in red) and 

bootstrap (on right, in blue) as described in the methods. Clustering was performed with complete 

linkage and correlation distance. Haustoria tissues (from stages 3 and 4) are labeled in green, 

while root tissues (from stages 1, 2, and 5.2) are labeled in orange.  

 

 

Expression of orthologs of parasite genes in nonparasitic models - The pattern we see of 

haustorial expression being most similar to root is consistent with the longstanding hypothesis 

that the haustorium was derived from a modified root (Kuijt 1969; Musselman and Dickison 
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1975; Joel 2013). However, it is also possible that individual genes functioning in the haustorium 

have been recruited from genes normally expressed in other plant organs. To investigate this 

scenario, we compared gene expression of candidate parasitism genes with extensive gene 

expression data from multiple tissues and organs of Arabidopsis thaliana, Medicago truncatula, 

and tomato to examine the evolution of expression patterns across large evolutionary distances. 

When we trace the haustorial gene expression back to orthologous genes in nonparasitic plants, 

we found significantly higher organ-specific expression in root and floral tissue, than in leaf, 

seed, or hypocotyl (Figure 2-8 and supplementary data 22).  

 In all three nonparasitic model plant species, the orthologs of haustorial genes are 

expressed most highly in root and floral (or fruit) tissues, suggesting that these were the major 

sources of genes recruited to the haustorium. For both Medicago and tomato, root is the most 

frequent source, which is consistent with the similarity between root and haustorial expression in 

the parasites (Figure 2-7), In Arabidopsis, orthologs of haustorial genes are also commonly 

upregulated in roots, but even more are upregulated in pollen. It is possible that the slightly 

different picture obtained from the three nonparasitic plants might be due to differences in tissue 

sampling in the nonparasitic model species. For example, floral tissue sampling is less extensive 

in tomato and Medicago than in Arabidopsis. 

 
Figure 2-8. Haustorial genes in parasitic species were recruited from root, flower and other 

tissues. Values on the Y-axis show the number of orthogroups containing haustorial genes as 

identified from expression analysis of nonparasitic model species Arabidopsis, Medicago and 

tomato. Tissues on the X-axis represent the principally expressed tissue for orthologs of 

upregulated haustorial genes in Arabidopsis (light black), Medicago (grey), and tomato (black) 
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are shown in, grey, and black, respectively. Floral tissues are highlighted with stars on top of the 

bars.  

 

2.2.9 Parasitism genes show signatures of adaptive evolution or relaxed constraint in 

parasitic lineages  

To examine whether altered selection patterns play a role in the evolution of parasitism, 

we utilized the branch model in PAML for hypothesis testing. We labeled the parasite genes as 

the foreground and the remaining genes as the background, and then identified genes that show 

accelerated evolution (dN/dS ratio) in parasitic lineages compared to the background. We focused 

on parasitism genes identified in our analyses. The branch model implemented in PAML was 

used to identify orthogroups that show a significantly higher dN/dS ratio in parasitic lineages 

compared to nonparasitic lineages. Twenty-seven orthogroups were found to have greater dN/dS 

in parasitic lineages compared to nonparasitic lineages, whose GO biological processes include 

proteolysis, cell wall modification, oxidation-reduction process, transport, protein glycosylation, 

cytokinin metabolic process and ubiquitin-dependent protein catabolic process (supplementary 

table S1). To examine if there are sites that have evolved under positive selection, the branch-site 

model was performed on orthogroups that show an elevated dN/dS ratio in foreground parasite 

lineages relative to background nonparasitic lineages. Nine orthogroups were found to contain 

sites under positive selection. They include two orthogroups encoding aspartyl protease and one 

orthogroup each encoding serine carboxypeptidase, expansin, glycosyl transferase, pectin 

methylesterase inhibitor, PAR1 protein, and C2H2 and C2H2 zinc finger family protein 

(supplementary data 17), respectively.  

We then compared the dN/dS ratio of haustoria-specific genes with nonhaustorial specific 

genes. The dN/dS ratio was calculated by selecting orthologous pairs across three different 

parasitic species by best blast hit based on an E-value cutoff of e-10 (PaSh: between P. 

aegyptiaca and S. hermonthica, PaTv: between P. aegyptiaca and T. versicolor TvSh: between T. 

versicolor and S. hermonthica). dN and dS were calculated separately by codeml in PAML 

(supplementary data 18). The distribution for genome-wide dN/dS values was represented with a 

symmetric violin plot from each pairwise species comparison. This overall distribution was made 

by calculating the dN/dS ratio for the orthologous pairs from all unigenes from each species pair. 
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The distributions of all haustorial gene pairs (in red) and a randomly chosen equally-sized set of 

nonhaustorial gene pairs (in blue) were represented by a dotplot and a density plot. In all three 

cases, the peaks of the density plots for the haustorial genes are above the peak for nonhaustorial 

genes. The haustorial genes exhibit significantly greater dN/dS ratio compared to the 

nonhaustorial genes for all three pairwise species comparisons (Wilcoxon rank, P-value < 0.01) 

(Figure 2-9).  

 
Figure 2-9. Haustorial genes show evidence of adaptive selection or relaxed selective constraint. 

Symmetric violin plots show the genome-wide distributions of dN/dS values for comparisons of 

P. aegyptiaca (Pa), S. hermonthica (Sh) and T. versicolor (Tv). Red dots represent haustorial 

genes shared by all three species, while blue dots represent randomly selected non-haustorial 

genes from the relevant species. The density plots colored in red and blue represent the frequency 

distributions of the individual dN/dS values as seen in the dot distributions of haustorial and 

nonhaustorial genes.  
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2.2.10 The majority of the parasite-specific sequences have unknown functions  

The transcriptome assemblies allowed us to identify parasite-specific sequences 

(Yoshida, Ishida, et al. 2010), some of which may be associated with the role of parasitism. This 

was done by building a secondary OrthoMCL orthogroup classification of all of the genes and 

transcripts that were not assigned to the initial orthogroup classification of 22 plant genomes.  In 

addition to the singleton genes from the 22 genomes, we used in the secondary classification all 

of the unassigned transcripts from the three parasitic species and from Lindenbergia, Lactuca and 

Helianthus. This strategy, which includes multiple nonparasitic lineages closely related to the 

parasites, allows a highly sensitive means of distinguishing sequences found only in the parasitic 

Orobanchaceae.  We identified 84 novel orthogroups that contain sequences from all three 

parasitic Orobanchaceae species, but lack sequences from any nonparasitic plant (supplementary 

table S2). 178, 180, and 139 unigenes were found in these orthogroups from Triphysaria, Striga, 

and Phelipanche, respectively. The large majority of these sequences had no significant BLAST 

alignments to any of the nonparasitic species, while a few of the predicted peptide sequences (6, 

18, and 13 from Triphysaria, Striga, and Phelipanche, respectively) had hits to genes of unknown 

function in the annotation databases.  Most of the significant hits in the annotation databases 

corresponded to sequences that were transposon and retrotransposon related, such as GAG-pre-

integrase domain protein and retrotransposon gag protein (supplementary table S2). A sequence 

with homology to a homing intron endonuclease with two LAGLIDADG motifs (Belfort and 

Roberts 1997) was also among the sequences with annotations. One orthogroup contained 

sequences with distant homology to genes annotated as mitochondrial aconitase with a putative 

role in mitochondrial oxidative electron transport (Yan, et al. 1997). We also obtained the stage-

specific expression profiles for each of parasite specific genes. Six and four of the parasite 

specific unigenes in Striga and Triphysaria were also among the list of significantly upregulated 

haustorial genes (supplementary table S2). In addition, three parasite specific orthogroups 

contained genes from all three parasite species that exhibited a pattern of increased expression in 

the haustorial post attachment penetration stages (supplementary table S2).  

 



 

 55 

2.3 Discussion 

2.3.1 Summary of results 

The Parasitic Plant Genome Project has used large-scale transcriptome sequencing to 

interrogate multiple stages of parasite growth and development of three related parasitic plants 

spanning a wide range of parasite ability, enabling an integrated analysis of genes upregulated in 

parasitic processes in Orobanchaceae. The large comparative framework has made it possible to 

identify, for the first time, a set of genes we believe are essential or core to parasitism. These 

candidate parasitism genes will be a valuable resource for future functional studies as we strive to 

understand the genetic changes that led to the parasitic lifestyle, as well as those that resulted 

from the transition to heterotrophy. Among the core parasitism genes are specific members of 

gene families encoding cell wall modifying enzymes (cellulase, pectate lyases, glycosyl 

hydrolases, and pectin methylesterase), and peroxidase enzymes, proteins that are known to be 

involved in the parasite invasion process (Singh and Singh 1993b; Antonova and TerBorg 1996; 

Losner-Goshen, et al. 1998; Pe´rez-de-Luque 2013). We also identified a variety of genes 

(encoding proteases, transporters, regulatory proteins [transcription factors and receptor protein 

kinases], and others including many genes of unknown function) that are co-expressed in parasitic 

stages and may be important in haustorial development and function. Because homologs of these 

haustorially-expressed genes encode proteins also functioning in nonparasitic plants, this supports 

the endogenous mechanism for the origin of parasitism (Bandaranayake and Yoder 2013b). For 

this collection of genes, the evolution of regulatory sequences resulting in novel expression in the 

haustorium were likely essential to the evolution of parasitic functions.  By expanding our 

analyses to orthologous genes in non-parasitic model plants, we have gained insights into the 

evolution of parasitism and the source of genes that shifted expression to parasite tissues, and 

presumably function there. Although some genes have gained haustorial expression in the 

absence of detectable gene duplication, a majority of the parasitism genes originated following a 

gene duplication event.  



 

 56 

2.3.2 Cell wall degradation enzymes and the haustorium 

Enzymatic degradation of the host cell walls has been suggested to be important in the 

penetration of the parasite across the host root cortex as it attempts to reach and connect with host 

vascular tissues (Kuijt 1977). Baird and Riopel (1984) observed that the intrusive cells at the tip 

of the penetration peg of the haustorium contained a densely staining cytoplasm, indicative of 

high levels of cell wall hydrolytic activity.  Additionally, early histological studies observed that 

during penetration of the host endodermis by the haustoria of P. aegyptiaca, there was the 

dissolution of the middle lamella between host cell walls (Joel and Losner-Goshen 1994b) and 

degradation of the cutin of the Casparian strips (Joel, et al. 1998). Cell-wall degrading enzymes 

such as cellulase, polygalacturonase, and xylanase were found in the tubercles of P. aegyptiaca  

suggesting that they play a role in the penetration process necessary for establishing haustorial 

connections with the host vasculature (Pe´rez-de-Luque 2013). In the enriched set of upregulated 

prehaustorial and haustorial genes in dodder (Cuscuta pentagona), many genes encoding cell wall 

modifying enzymes were found including pectate lyases, pectin methylesterase, cellulases, and 

expansins (Ranjan et al. 2014).  

In our study, four glycosyl hydrolase and five pectate lyase (PL) genes were upregulated 

in haustorial tissues in at least two species of Orobanchaceae. GO enrichment analysis of the 

cellular component terms identified cell wall and extracellular localization annotation terms as 

being significantly enriched among the upregulated haustorial genes, suggesting that proteins 

encoded by these genes tend to be secreted where they could impact cell wall integrity of the 

parasite or the host. Consistent with this idea was the evidence of disintegration of the middle 

lamella in Striga gesnerioides attacking cowpea (Reiss and Bailey 1998). Glycosyl hydrolases 

were shown to have a role in hydrolysis and degradation of structural or storage polysaccharides, 

including cellulose and hemicellulose (Henrissat, et al. 1995). Pectic enzymes have long been 

recognized as important proteins in cell wall loosening or disassembly. Almost all cell-wall 

penetration processes, including pollen tube growth and bacterial or fungal pathogenic invasion, 

involve the modification of pectins that are integral for cell wall stability. For instance, studies 

reported the role of pectic enzymes in degrading the plant cell wall during the invasion process by 

bacterial or fungal pathogens (Delorenzo, et al. 1991; Volpi, et al. 2011). Similarly, a recent study 

identified a PL to be required for root infection by rhizobia during nodulation (Xie, et al. 2012). 

Additional evidence also supports a direct role of PLs in loosening of the cell wall in fruit 
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ripening (Marin-Rodriguez, et al. 2002). Thus, it is likely that PLs play a role in loosening or 

separating the host cell wall for invasion by parasitic plants.  

Immunological detection of pectin methyl esterase (PME) at the penetration site and de-

methylated pectins at the cell walls adjacent to the intrusive cells of Orobanche (Losner-Goshen 

et al. 1998) implies a role for pectin degradation in the haustorial penetration process. Three 

orthogroups (orthogroup 2875, 6176 and 19181) encoding putative pectin methylesterase 

inhibitors (PMEI) were identified to contain genes that were specific to haustorial tissue in at 

least two species of Orobanchaceae. It would be interesting to determine whether PMEs and 

PMEIs have distinct roles in parasite-host interactions. A previous analysis revealed another gene 

involved in cell wall modification, a beta-expansin, which was highly expressed in the haustorial 

interface between Triphysaria versicolor and its grass family host (Honaas et al. 2013).   

2.3.3 Proteases, transporters, and the haustorium 

 Genes involved in proteolysis, largely proteases and proteinases, account for a great 

proportion of transcripts upregulated in the haustorium and that are shared by at least two of the 

parasite species we investigated. The upregulated haustorial genes identified in this study include 

four genes encoding subtilisin-like serine protease similar to those required for virulence in 

bacterial pathogens (Kennan, et al. 2010). In addition, a subtilisin-like protein from soybean was 

reported to activate defense-related genes (Pearce, et al. 2010). In nonparasitic plants, serine 

proteases often play a role in various processes including protein degradation/processing, 

hypersensitive response, and signal transduction (Antao and Malcata 2005), but what roles they 

take on in Orobanchaceae parasites is not yet clear.  

In addition to serine protease, the eukaryotic aspartyl proteases are also enriched among 

upregulated haustorial genes. Aspartyl proteases (APs), a large gene family with members present 

in all living organisms, play central roles in protein degradation, processing, and maturation 

(Chen, et al. 2009). Plant APs are expressed in various organs including seed, root, grain, leaf, 

and flower (Chen et al. 2009). Also they play a role in seed germination, where they degrade 

seed-storage proteins to provide amino acids to growing plants (Higgins 1984). Other studies 

identified APs of blood-feeding malaria parasites to play a role in degrading hemoglobin proteins 

to amino acids for nutrition (Brinkworth, et al. 2001). In addition, a marked expansion within the 

AP gene family was found in the xylem-feeding hemiparasites, Triphysaria and Striga 
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hermonthica (Dorr 1997; Neumann, Vian, Weber and Salle 1999), but not in the phloem-feeding 

obligate parasite, Phelipanche (Aly et al. 2011), which has a lower rate of nutrient uptake from 

the xylem stream, suggesting that these proteins may play a pivotal role in nutrient mobilization 

only in the hemiparasites.  

Our analyses indicate that four APs show peak expression in haustorial tissue, while their 

orthologs in Arabidopsis and tomato (or paralogs in the parasitic plants) have peak expression in 

root and flower (supplementary fig. S2) (Yang et al. 2015).  This provides another line of 

evidence for gene recruitment to haustorial function, and suggests that this has occurred through 

regulatory neofunctionalization. A recent study reported that a rice aspartyl protease plays an 

indispensible role in pollen tube germination and growth, and that loss of function results in 

reduced male fertility (Huang, et al. 2013).  In addition, a secretome analysis (Kall, et al. 2007) of 

predicted peptides for upregulated haustorial genes revealed that haustorial genes are more likely 

than nonhaustorial genes to be extracellularly localized or contain a signal peptide structure 

(supplementary data 19). The fact that upregulated haustorial genes are enriched for proteases 

with signal peptides suggests that the evolution of parasitism may be associated with an 

expansion of the suite of secreted proteases to aid parasite attack and/or feeding 

Analysis of selective constraints showed that proteases with expression specific to 

haustoria in the parasites show a greater dN/dS as compared to their orthologous genes in 

nonparasitic plants. The greater dN/dS ratio for these upregulated haustorial proteases suggests 

either a relaxation of purifying selection or adaptive evolution of these protease-encoding genes 

associated with the evolution of parasitism. The fact that particular sites were indicated as 

evolving adaptively, especially in the functional domains, provides support for the latter 

hypothesis (supplementary data 17).  

We also found five genes encoding transporters upregulated in the haustorium that are 

shared by at least two species: one ABC transporter, two oligopeptide transporters, one zinc 

transporter, and one glutamate transporter. Upregulated genes encoding transporters including 

sugar transporter, amino acid transporter, and ammonium transporter were also identified to be 

enriched in haustorial tissue of the parasite Cuscuta (Ranjan et al. 2014). Interestingly, Striga 

hermonthica infection has been shown to increase amino acid levels in xylem sap of its Sorghum 

host, with glutamate being the predominant form of translocated nitrogen (Pageau, et al. 2003). 

The assimilation of host 15N-labeled nitrate into the parasite (Pageau et al. 2003), provided 

evidence for the potential role of a glutamate transporter in nitrogen translocation between the 

host and parasite. 
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2.3.4 Gene duplication and regulatory neofunctionalization – origin of parasitism  

 The identification of haustorium genes allowed us to gain new insights into the evolution 

of parasitism. We have used phylogenetic analysis to show that a majority of the genes with a 

putative role in parasite functions arose by gene duplication. Most of the duplications occurred in 

a nonparasitic common ancestor of the parasitic Orobanchaceae species and Mimulus (a 

nonparasitic plant in the related nonparasitic family Phrymaceae) (Schaferhoff, et al. 2010; 

Refulio-Rodriguez and Olmstead 2014). This suggests that either multiple independent gene 

duplications, or a whole-genome duplication event occurring before the divergence of Mimulus 

and Orobanchaceae (Wickett, et al. 2011), may have resulted in the diversification of genes 

important to haustorial development, and ultimately contributed to the rise of parasitic plants. In 

contrast, relatively few of the parasitism genes arose through duplications occurring in a more 

recent common ancestor of just the parasites or Orobanchaceae. The fact that the gene 

duplications that produced parasitism genes occurred in a nonparasitic ancestor, well before the 

origin of the parasitic Orobanchaceae about 32 my ago (Naumann, et al. 2013), is consistent with 

the idea that gene duplication does not immediately give rise to novel functions, as described 

recently by the WGD-Radiation Lag-Time Model (Schranz, et al. 2012). 

We mapped expression data from multiple stages of parasite development onto parasite 

genes and found that under most circumstances, the two copies derived from a gene duplication 

event show different expression profiles. In addition, we interrogated the expression profiles of 

orthologous genes from tomato, Medicago and Arabidopsis. By comparing the parasite 

duplicate’s expression with orthologous gene expression in these related nonparasitic plants, we 

gained insight into how parasitism genes evolved, both in gene sequence and gene expression. 

The fact that these parasitism genes shift their expression from root or flower in related 

nonparasitic plants to haustoria of parasitic plants, through gene duplication or otherwise (Figure 

2-4 and supplementary fig. S2), supports inferences of neofunctionalization in the evolution of 

parasitism (Conant and Wolfe 2008; Innan and Kondrashov 2010). While investigating the 

evolution of parasitism genes, we also found that a number of them play a role in symbiotic 

nodulation in non-parasites such as genes encoding ERF transcription factors (TFs) (Vernie, et al. 

2008), oligopeptide transporter (Nogales, et al. 2009), peroxidase, pectinesterase inhibitor 

(Young, et al. 2011; Zouari, et al. 2014), suggesting possible parallels between the evolution of 

parasitism and that of mutualism, both of which involve invasion of host tissues. Similar evidence 
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that Phelipanche aegyptiaca induced upregulation of genes involved in nodulation in Lotus 

japonicus supports this idea (Hiraoka et al. 2009).  

2.3.5 Origin of the haustorium involves co-option of root and/or flower genes 

 The results of this study shed light on the origin of haustoria in Orobanchaceae, where 

molecular phylogenetic studies have identified the nonparasitic Lindenbergia as sister to the 

parasitic Orobanchaceae and are thus consistent with a single origin of haustorial parasitism in 

Orobanchaceae (dePamphilis, et al. 1997; Olmstead, et al. 2001; Schneeweiss, et al. 2004; 

Bennett and Mathews 2006; Angiosperm Phylogeny Group 2009; McNeal, et al. 2013a). Two 

lines of evidence - global gene expression data in the parasites, and expression specificity in 

related nonparasitic plants - suggest that gene expression patterns in haustorial tissues are most 

similar to those of root. The second largest number of haustorial genes shows floral specific 

expression patterns in nonparasitic models. These observations suggest a possible mechanism of 

parasitism through neofunctionalization, where genes with a role in root and floral biology in 

non-parasite species were co-opted to haustorial function in parasite species.  

The root is a likely source for processes useful to subterranean haustorial structures. Both 

haustoria and roots operate underground, are physically adjacent, and haustoria are derived from 

apex of the primary root, sometimes from lateral root extensions (Heide-Jørgensen 2013a). 

Additionally, both haustoria and root are highly specialized organs for nutrient uptake and 

transfer. The recruitment of many haustorial genes from those normally expressed in floral tissue 

such as pollen is more surprising, but the idea that haustorial growth was similar to the intrusive 

growth of pollen tubes was explored recently (Thorogood and Hiscock 2010; Pe´rez-de-Luque 

2013). The authors propose that neighboring host cells recognize the parasite as alien without 

reacting against the “invasion”, similar to the way that plants recognizes intrusive growth of 

pollen tubes (Thorogood and Hiscock 2010; Pe´rez-de-Luque 2013). Specifically we found that 

genes, like pectate lyases that are used in polarized pollen tube growth to rapidly invade stylar 

tissue (Krichevsky, et al. 2007), are expressed during the invasion of host tissue by the growing 

parasitic haustorium. One possible explanation is that the penetration peg of the haustorium, 

which grows rapidly into the host tissue, may have co-opted genes from the polarized, invasive 

growth found in the pollen tubes of flowers (Sampedro and Cosgrove 2005; Krichevsky et al. 

2007; Honaas et al. 2013). It is also likely that some pectic enzymes involved in loosening the 
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pollen tube cell walls so that they can elongate into the female reproductive tissues (Taniguchi, et 

al. 1995) are recruited in the penetration and growth of the haustoria towards the host vascular 

tissue.  

2.3.6 Parasite-specific genes – mobile elements 

 Of the 84 parasite-specific orthogroups detected in our analysis, most contained 

sequences with no known function. However, almost all of the remaining sequences with an 

annotated Pfam domain have significant BLAST alignments with genes encoding proteins 

involved in the transfer of mobile elements, including retrontransposon gag protein, GAG-pre-

integrase domain and a LAGLIDADG homing endonuclease (supplementary table S2). 

Retrontransposon gag proteins are associated with the transposition of retrotransposons to 

telomere-associated structures in Drosophila (Rashkova, et al. 2002), while GAG-pre-integrase 

domain proteins are associated with chromosomal rearrangements by retrovirus insertion activity 

(Houzet, et al. 2003). Interestingly, some LAGLIDADG endonucleases (Belfort and Roberts 

1997) encoded by self-splicing group I introns are implicated in the highly mobile transfer and 

insertion of copies of the intron to specific target sequences. Intron homing by the LAGLIDADG 

endonuclease activity is implicated in the widespread horizontal gene transfer of the self-splicing 

group I intron in plant mitochondrial cox1 genes (Vaughn, et al. 1995; Cho et al. 1998; Barkman 

et al. 2007; Sanchez-Puerta, et al. 2008; Sanchez-Puerta, et al. 2011). Thus, both transposable 

elements and homing introns by the retrontransposon gag proteins, GAG-pre-integrase domain 

proteins, and LAGLIDADG homing endonuclease are involved in horizontal gene transfer 

(Daniels, et al. 1990; Rodelsperger and Sommer 2011), supporting the possibility of a 

mechanistic link between parasitism in plants and at least some horizontal gene transfers 

(Barkman et al. 2007; Xi et al. 2013; Zhang et al. 2013a).  

2.3.7 Conclusion 

 In this paper we have shown that parasitic plants have evolutionarily recruited many 

genes for haustorial development and host penetration from genes that were involved in other 

processes in related nonparasitic plants, primarily root or flower development. These candidate 
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parasitism genes are being functionally characterized to determine if they are essential to parasite 

function and survival. The observation that genes with similar GO classifications (cell wall 

modification process and transporters) are also upregulated in the haustoria of Cuscuta (Ranjan et 

al. 2014), increases the likelihood that these genes do play important roles in haustorial function.  

In Orobanchaceae, genes recruited from root or pollen tube development show evidence of 

potentially adaptive changes in elevated dN/dS ratios and sites with excess non-synonymous 

changes in parasitic lineages. The study of parasitic haustoria in Orobanchaceae indicates that two 

modes of regulatory neo-functionalization – either following gene duplication or in unduplicated 

orthogroup lineages – have provided the mechanism through which a novel structure has evolved.  

2.4 Materials and methods 

2.4.1 Tissues, libraries, and sequence data 

 Multiple stages of parasite development from the species Triphysaria versicolor, Striga 

hermonthica and Phelipanche aegyptiaca within Orobanchaceae were interrogated by 

transcriptome sequencing.  Detailed descriptions of the stages ranging from seed and seedling, 

though haustorial development to above ground tissues such as leaf, stem, and flowering, are 

illustrated by Westwood et al (2012) and in figure 1. Tissues from each stage were subjected to 

RNA extraction and library preparation, followed by subsequent Illumina paired-end sequencing 

(Honaas et al. 2013). Methods for Illumina and 454 paired-end mRNA-Seq library construction 

and sequencing are as described in Wickett et al (2011). Additional Illumina transcriptome 

sequences were also obtained from a single normalized library for each species using pooled 

RNAs of all stages. Finally, a normalized whole plant library was also constructed and Illumina 

sequenced, as above, for Lindenbergia philippensis, representing the nonparasitic sister group to 

the parasitic Orobanchaceae (dePamphilis et al. 1997; Young, et al. 1999; Olmstead et al. 2001; 

Schneeweiss et al. 2004; Angiosperm Phylogeny Group 2009; McNeal et al. 2013a). 
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2.4.2 Assembly, cleaning, and annotation (including gene family classification) 

 Duplicate reads in the Illumina sequence data were removed with CLC Assembly Cell 

version 3.2.0 (http://www.clcbio.com/products/clc-assembly-cell/). Adapters and bases with a 

quality score lower than Q20 were trimmed from the ends of the reads, and these reads were 

retained only if at least half of the sequence had quality ≥Q20. Raw Roche 454 sequence files in 

Standard Flowgram Format (SFF) were converted to FASTA and associated quality files along 

with clipping of sequence adapters and low-quality bases using sff_extract version 0.2.10 

(http://bioinf.comav.upv.es/sff_extract/). 

De novo assemblies of Illumina reads from each species were performed using Trinity 

release 2011-10-29 (Grabherr, et al. 2011) and de novo hybrid assemblies of combined 454 and 

Illumina reads were performed using CLC Assembly Cell version 3.2.0 with default parameters. 

Assembled transcripts from both assemblies were combined by assigning hybrid CLC transcripts 

to Trinity components that yielded the best bitscore with BLASTN (E-value = 1e-10). The 

resulting combined assemblies were filtered by removing contigs without coding regions (Iseli, et 

al. 1999) as well as redundant transcripts (Edgar 2010). The assemblies for parasite species 

(Triphysaria, Striga, and Phelipanche) were then cleaned to remove contaminant sequences using 

a three-step process: 1) the transcripts were screened against the NCBI non-redundant protein 

database using BLASTX (E-value = 1e-5) to remove non-plant transcripts, 2) the transcripts were 

then screened with BLASTN (E-value = 1e-10) against a collection of publicly available genomes 

and ESTs data sets from the experimental host plants (to identify and remove host transcripts), 

and 3) after performing this screen on each of the parasite species, BLASTN (E-value = 1e-10) of 

host candidate sequences were screened against the Orobanchaceae species (Lindenbergia, 

Triphysaria, Striga, and Phelipanche) databases (not including the parasite species being cleaned) 

to retain the transcripts that were much better matches to other Orobanchaceae family members 

than to the host plant. ORFs and protein sequences were predicted from the reconstructed 

transcript assemblies with ESTScan version 2.0 (Iseli et al. 1999). We experimented with 

different reference sequences to guide the ESTScan predictions, and other protein prediction 

programs such as GeneWise (Birney, et al. 2004). Finally we chose ESTscan with an Arabidopsis 

reference to obtain the best balance of length and protein number in the resulting protein set.  

The predicted protein sequences were used for BLASTP (E-value = 1e-5) searches 

against Swissprot, TAIR10 and trEMBL databases to assign putative functional annotations in the 

form of human readable descriptions using the automated assignment of human readable 
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descriptions (AHRD) pipeline (https://github.com/groupschoof/AHRD). AHRD uses similarity 

searches and lexical analysis for automatic assignment of human readable descriptions to protein 

sequences. These translated transcripts were also annotated with Pfam domains using 

InterProScan version 4.8 (McDowall and Hunter 2011), and identified domains were directly 

translated into Gene Ontology terms.  

2.4.3 Developing a component-orthogroup from each de novo assembly 

 Very large transcriptome sequence datasets, including those produced by this project, result 

in complex de novo assemblies including many splice variants and distinct alleles (Grabherr et al. 

2011). Due to the assembly complexity, we combined expression information for unigenes that 

were assigned to the same Trinity component and mapped to the same orthogroup (Wickett et al. 

2011). We call these unigenes from the same component and orthogroup a “component-

orthogroup”.  

2.4.4 Read mapping and expression normalization 

 High-quality non-redundant Illumina reads from individual stage-specific samples were 

independently mapped on each parasite’s post-processed transcripts using CLC Genomic 

Workbench version 6.0.4 (parameters: mismatch cost = 2, insertion cost = 3, deletion cost = 3, 

length fraction = 0.5, similarity = 0.8, min insert size = 100, and max insert size = 300). 

Transcript abundance was then estimated using the CLC Genomic Workbench RNA-Seq program 

with unique reads counted for their matching transcripts, and non-specifically mapped reads 

allocated on a proportional basis relative to the number of uniquely mapped reads. The numbers 

of reads mapped per library were normalized by the fragments per kilobase per million mapped 

reads (FPKM) (Mortazavi, et al. 2008) method that corrects for biases in the total transcript size, 

and normalizes for the total number of read sequences obtained in each sample library. The read 

counts and FPKM values of transcripts for each Trinity component classified as an orthogroup 

were summed up to obtain each component-orthogroup’s expression in each library. 
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2.4.5 PV-clustering of global transcriptional profile 

 To get an overall picture of the global gene expression profile, stages were clustered by the 

pvclust (Suzuki and Shimodaira 2006) command in R using the expression of all unigenes in each 

stage. Pvclust not only clusters stages, but also infers confidence support with approximately 

unbiased multi-scale resampling (AU) and bootstrap resampling (BP) values, obtained by 

resampling genes from the total population of unigenes. 

2.4.6 Identification of differentially expressed genes for candidate parasite gene assignment  

 We first used a differential expression analysis to limit the number of genes for candidate 

parasitism gene identification. DE analysis was performed within each species using DESeq 

package in R (Anders and Huber 2010), which utilizes the negative binomial distribution to 

model the read count data for variance estimation. Only the stages that were shared among the 

three parasite species were used in this analysis (stage 0, 1, 2, 3, 4, 6.1, and 6.2). DE analysis 

using pairwise comparison was undertaken to identify genes that were differentially expressed in 

at least two stages.  

2.4.7 K-Means clustering to identify putative parasite feature within each species 

 DE analysis resulted in a list of genes with varying expression patterns across the seven 

shared stages. K-means clustering was used to identify clusters of co-expressed features with high 

expression in haustoria tissue. The expression of the DE unigenes measured by log2FPKM in 

stage 0, 1, 2, 3, 4, 6.1 and 6.2 constituted an expression matrix as the input for clustering analysis. 

To determine the optimum number of clusters needed to identify a single cluster with high 

expression in haustorium tissue, an R script was developed to generate a series of pdf files to 

represent each cluster’s expression profile for a total number of specified clusters ranging from 2 

to 30. Each cluster contained a set of co-expressed genes whose expression in each stage was 

reflected in a boxplot with the median expression of the co-expressed genes connected by a line. 

The criteria used to find the appropriate number of clusters was the smallest number of clusters 
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that enabled the visualization of a haustorial-specific (stage 3 and or stage 4) cluster. This means 

that for a smaller cluster number, we cannot identify the haustoria-specific pattern; a large cluster 

number may split the haustoria-specific cluster into several clusters, but is unnecessary in terms 

of gene identification.  

2.4.8 Hierarchical clustering to identify putative parasite feature within each species 

 After the appropriate number of clusters was chosen, hierarchical clustering was used to 

identify genes with expression patterns of interest; that cluster was extracted with the cutree 

function in R. Each cluster’s expression profile was determined by plotting a heat map using the 

heatmap.2 function from the gplots package in R.  

2.4.9 Self organizing maps (SOM clustering) to identify patterns of haustorial-specific 

expression 

 SOM clustering was used to maximize the identification of genes that show a high and 

specific expression pattern. The analysis was performed on the web server with the unsupervised 

learning SOM clustering of GenePattern developed by the Broad Institute (Reich, et al. 2006). 

SOM clustering clearly reveals the overall pattern from the genome-wide gene expression data by 

reducing dimensionality of the original data. SOM clustering of GenePattern involved three steps: 

data preprocessing, SOM clustering and SOMClusterViewer. The expression matrix (log2FPKM) 

of the differentially expressed features was used as the input file for preprocessing, in which a 

row normalization and gene filtering were performed. The threshold and filter were performed 

with default parameters (floor: -3; ceiling: 18; min fold change: 1.5; min delta: 5). SOM 

clustering was performed by manually selecting the cluster-range. The default was chosen at the 

beginning and changed until the pattern with haustorial high and specific expression was 

revealed. The SOMClusterViewer displayed the expression profile of each cluster identified by 

SOM clustering. Finally for all three datasets from the three species, the cluster range was chosen 

at 6-8, which identified one or more clusters with high and specific expression in haustorial 

tissue. 
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2.4.10 Enrichment analysis – parasite genes versus whole plant background 

 The identification of a list of parasite genes allowed us to ask what biological functions 

are enriched compared to the whole plant background within each species. For each parasite gene, 

we obtained its BLASTx best hit in Arabidopsis and used these TAIR hits to identify Gene 

Ontology (GO) assignments (Ashburner, et al. 2000) and perform enrichment analysis.  

Arabidopsis was selected for this analysis because of its relatively complete GO-term annotation.  

Enrichment analysis was performed with DAVID using Bonferoni adjusted P-values for multiple 

tests (Huang et al. 2009) by comparing GO assignments for foreground (putative orthologs of 

parasite genes in Arabidopsis) vs. background (all genes from the Arabidopsis genome). Enriched 

components with statistical significance, with annotations including Pfam domains, Gene 

Ontology (GO) Molecular Function (MF), GO Biological Process (BP), GO Cellular Component 

(CC), and KEGG pathway, were identified for a set of shared parasite genes from each species. 

2.4.11 Phylogenies and Ka/Ks constraint analysis for parasite genes 

 Transcripts from the Orobanchaceae were assigned into orthogroups defined by 586,228 

protein-coding genes of 22 representatives of sequenced land plant genomes (Amborella Genome 

Project 2013) using OrthoMCL. The selected taxa includes nine rosids (Arabidopsis thaliana, 

Thellungiella parvula, Carica papaya, Theobroma cacao, Populus trichocarpa, Fragaria vesca, 

Glycine max, Medicago truncatula, Vitis vinifera), three asterids (Solanum lycopersicum, 

Solanum tuberosum, Mimulus guttatus), two basal eudicots (Nelumbo nucifera, Aquilegia 

coerulea), five monocots (Oryza sativa, Brachypodium distachyon, Sorghum bicolor, Musa 

acuminata, Phoenix dactylifera), one basal angiosperm (Amborella trichopoda), one lycophyte 

(Selaginella moellendorffii), and one moss (Physcomitrella patens).  Of the plants with sequenced 

genomes, Mimulus, an emerging asterid model plant of family Phyrmaceae, is the most closely 

related to Orobanchanchaceae (Schaferhoff et al. 2010; Refulio-Rodriguez and Olmstead 2014). 

Candidate orthogroups for unigenes from transcriptome assemblies of Lindenbergia, Triphysaria, 

Striga, Phelipanche, and two Asteraceae species, Lactuca sativa and Helianthus annuus, were 

identified by retaining BLASTP (McGinnis and Madden 2004) hits with E-value <=1e-5 for 

predicted peptide searches against the orthogroup-classified proteomes from those 22 sequenced 
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plant genomes. HMM (Eddy 2011a) searches of the translated transcripts were then performed on 

constructed candidate HMM orthogroup classification profiles, and orthogroups yielding the best 

bitscore were assigned to the transcripts. Once unigenes were found that had high and differential 

expression in haustoria, phylogenies were estimated for their corresponding orthogroups. Amino 

acid alignments of sequences within these orthogroups (including any translated transcripts that 

were assigned to the orthogroup as described above) were generated with MAFFT (Katoh and 

Standley 2013a) and the corresponding DNA sequences were forced onto the amino acid 

alignments using a custom perl script. DNA alignments were then trimmed with trimAL (Capella-

Gutierrez, et al. 2009) to remove sites with less than 10% of the taxa. Orthogroup alignments 

were required to contain transcripts with alignment coverage of at least 50%. Otherwise, the 

failing transcripts were removed from the orthogroup amino acids and DNA alignments, and the 

alignments were re-generated. This process was iterated until all of the sequences covered at least 

50% of the alignment. Finally, maximum likelihood (ML) phylogenetic trees of DNA alignments 

for orthogroups containing parasite sequence(s) were generated using RAxML (Stamatakis 2006) 

with the GTRGAMMA model. To evaluate the reliability of the branches on the tree, 100 

pseudosamples for the alignment were generated to estimate branch support using the bootstrap 

method (Felsenstein 1985).  

2.4.12 Scoring gene duplications 

 Gene duplication events were scored by referring to each rooted gene tree. Genes from 

Physcomitrella and/or Selaginella were used as outgroups to root each tree; when these outgroups 

were not present in the orthogroup, Amborella and/or or monocots were used. Because our 

interest in this paper was focused on when parasitism genes evolved, we limited our analysis to 

gene trees that contain parasitism genes. Possible topologies showing gene duplications giving 

rise to parasitism genes are illustrated in supplementary data 15. Gene duplications were scored if 

a parasitism gene from one or more of the three parasitic species (Triphysaria, Striga and 

Phelipanche) were present in each duplicated clade, and if bootstrap values for key nodes met 

defined criteria. In addition, a sequence from at least one taxon had to be present in each 

duplicated clade. To illustrate, a Mimulus+Orobanchaceae-wide duplication (including 

nonparasitic Lindenbergia and three parasites- Triphysaria, Striga and Phelipanche), and shown 

as (((M1O1)bootstrap1, (M2O2)bootstrap2)bootstrap3), is required to meet the following criteria: 
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1) each clade defined by the nodes M1O1 and M2O2 contains at least one gene from the parasite 

taxa; 2) at least one taxon of Mimulus or Orobanchaceae has to be present in both clades defined 

by M1O1 or M2O2; 3) bootstrap2 and at least one of either bootstrap1 or bootstrap2 must be 

greater than or equal to the bootstrap stringency cutoffs of 50% or 80%. An example of a scored 

gene tree, with a supported gene duplication is given in supplementary figure S3. 

2.4.13 Selective constraint analysis 

 To perform the constraint analysis to infer adaptive or purifying selection, PAML (Yang 

1997, 2007) software based on maximum likelihood was utilized for hypothesis testing. The 

branch model in PAML was used to test if the foreground branch of interest has significantly 

different dN/dS ratio (omega, ω) compared to the background ω. The codeml tool in PAML was 

used to perform such analyses. To estimate significance of one particular hypothesis, a likelihood 

ratio test was used. The one–ratio model and branch model in codeml of PAML were used to test 

if the branch model fits the model significantly better than the one-ratio model. When the one-

ratio model is correct, the distribution of the likelihood ratio test statistic follows a chi-square 

distribution with the degrees of freedom being equal to the number of additional parameters in the 

branch model test. The test statistics was calculated by taking twice the difference between log 

likelihood-values from the two tests. These models were fitted to examine which model was more 

appropriate for the data. The branch-site model was further used when the branch-model 

identified significant differences between the foreground and background lineages. The branch-

site model was also used to identify sites under positive selection for the indicated foreground 

lineages. To perform the branch-site model, the codeml file was set to model = 2, NSsites=2. The 

null model was set to fix ω at 1, while the alternative model was set to estimate ω. Sites identified 

by PAML with a probability greater than 0.95 by Bayes Empirical Bayes (BEB) analysis were 

examined further through looking at the peptide alignment. 
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2.4.14 Expression of haustorial orthologs in nonparasitic species 

 We utilized the existing expression profile data for growth and developmental stages in 

Arabidopsis thaliana, Medicago truncatula and Solanum lycopersicum, which we refer to as 

Arabidopsis, Medicago and tomato in this analysis. The expression profiles for the Arabidopsis 

and Medicago genes were extracted from the PLEXdb database (Dash, et al. 2012) that contains 

microarray data [Arabidopsis, AT40: Expression Atlas of Arabidopsis Development 

(AtGenExpress); Medicago, ME1: The Medicago truncatula Gene Expression Atlas], while the 

data for tomato was from the digital expression (RNA-Seq) experiment (D007: Transcriptase 

analysis of various tissues in wild species S. pimpinellifolium, LA1589) in the Tomato Functional 

Genomics Database (Fei, et al. 2011). First, parasite genes with upregulated haustorial expression 

were identified, and their putative orthologs were obtained as the best blast hits within the same 

orthogroup in Arabidopsis, Medicago and tomato among the sequences. To find the expression 

information of the genes in Arabidopsis and Medicago used in the gene family analysis, we used 

the microarray expression information of probes for these genes by BLASTn. For tomato, 

expression for each gene was retrieved directly from the RNA-Seq database. To make the 

expression easily comparable across species, the expression values for similar tissues were 

averaged (supplementary data 20). In the Arabidopsis gene expression atlas, all vegetative_leaf 

and rosette_leaf were combined as “leaf”, the sepal, petal, stamen, and carpel were combined as 

“flower”, different root tissues (root7, root_MS1, root_GM) were combined as “root”. In the 

Medicago gene expression atlas, expression data for tissue responding to nod factors (Nod 4d, 

Nod 10d, Nod 14d) were combined as “nod”, root and root-0d as “root”, and seed 10d, seed 12d, 

seed 16d, seed 20d, seed 36d as “seed”. In the tomato RNA-Seq data, newly developed leaves and 

mature green leaflets were combined and labeled as “leaf”, flower buds 10 days before anthesis or 

younger and flowers at anthesis (0DPA) as “flower”, and fruit at10 DPA, 20 DPA, 33 DPA as 

“fruit”. We scored the expression for upregulated haustorial orthogroups based on the principally 

expressed tissue. To do this, we divided the expression of a gene in a given tissue by its summed 

expression across all tissues to obtain a normalized expression in each tissue. Then we identified 

genes as “principally expressed” in a tissue if its normalized expression was  ≥ 2 fold higher in 

that tissue than in any other. If similarly high expression was found in two tissues, both tissues 

were scored. Genes with broad expression in more than three tissues were not scored. In addition 

to this binary scoring of the principally expressed tissue for haustorial genes, we also scored each 

tissue quantitatively using the average of each tissue’s expression across all haustorial gene 
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orthologs. We excluded genes whose highest expressions across all tissues was in the lower 25th 

percentile. We then averaged expression of each tissue across all genes and ranked each tissue 

based on the expression. All orthogroups were subject to this step and finally each tissue type that 

supported a possible haustorial origin was scored by the number of upregulated haustorial 

orthogroups and the average expression across all orthogroups. 
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Chapter 3 
 

HGT in parasitic Orobanchaceae3 

  

                                                        
3 A modified version (more brief) of this chapter has been prepared for submission as:  
Zhenzhen Yang*, Yeting Zhang*, Eric Wafula, Loren A. Honaas, Paula E. Ralph, Sam Jones, Huiting Zhang, 

Naomi S. Altman, Michael P. Timko, John I. Yoder, James H. Westwood, Claude W. dePamphilis (2016) You are what 
you eat: Horizontal gene transfer is more frequent with increased heterotrophy and may contribute to parasite 
adaptation. Proc. Natl. Acad. Sci. U.S.A. 
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3.1 Introduction of HGT 

3.1.1 HGT in bacteria 

 Horizontal Gene Transfer (HGT), as opposed to vertical transmission where organisms 

inherit their genetic material from their parental generation, is any process in which an organism 

acquire genes from another organism without being that organism’s offspring (Richardson and 

Palmer 2007; Acuna et al. 2012).  The phenomenon was first reported in bacteria in the 1950s, 

when multidrug resistance emerged on a worldwide scale because antibiotic resistance traits were 

transferred across taxa instead of generated de novo within each taxon (Davies and Davies 2010).  

Over time, numerous examples of HGT have been identified in bacteria, and HGT is now known 

to be common in bacterial evolution. A substantial amount of HGT is associated with plasmid-, 

phage- or transposon-related sequences (Ochman, et al. 2000), whereas fewer well-documented 

cases of HGT among eukaryotes (Keeling and Palmer 2008) are known.  Many of these cases 

appear to result in short-lived, nonfunctional sequences (Feschotte and Pritham 2007; Keeling 

and Palmer 2008; Schaack, et al. 2010).  Consequently, the long-term evolutionary impact of 

HGT in multicellular eukaryotes remains largely unknown. 

 

3.1.2 Review of current methods for HGT identification 

To understand the long-term impact of horizontal gene transfer, we examine if many 

examples of HGTs exist to indicate a pattern in favor of certain functional groups. Three methods 

have been commonly used to detect and explore putative HGT events: an approach based on 

codon bias, the BLAST-based approach, and a phylogenomic approach. The approach relying on 

codon bias has mainly been used in prokaryotes where codon biases can be strong and differ 

markedly among organisms (Sueoka 1962; Tuller 2011). This approach was used to identify 

recent transfer events in prokaryotes based on the fact that a newly introduced gene into the 

recipient genome often has a different codon bias (because they often reflect the codon usage and 

nucleotide composition of the host genomes) compared to the native genes. The BLAST-based 

approach (Zhaxybayeva 2009) predicts HGT candidates when the top blast hits of the HGT focal 
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taxa derive from distantly related species instead of its close relatives. Past studies have relied on 

the best BLAST hit for HGT identification; however, as best BLAST hit does not guarantee the 

closest neighbor on the phylogenetic tree (Koski and Golding 2001), it has been prone to errors. 

Phylogenomic analyses involve the use of large-scale phylogenetic trees to identify supported 

incongruence between a well-resolved species tree and a gene tree (Galtier and Daubin 2008). 

This method is more straightforward as it provides direct phylogenetic evidences for HGT 

inference. The primary drawback is being computationally expensive and only a few studies have 

applied this approach on parasitic plants (Xi et al. 2012a; Xi et al. 2013).  

3.1.3 HGT in plants 

HGT events have been well documented in several autotrophic plants, most often 

involving the acquisition of mitochondrial sequences. These mitochondrial sequences include 

atp1, rps2 and rps11 genes transferred among different angiosperm species (Bergthorsson et al. 

2003). Transfers also occurred via repeated invasions of a group 1 homing intron of the cox1 gene 

in a wide range of angiosperm genera and species (Cho et al. 1998; Sanchez-Puerta et al. 2011), 

or involve the transfer of a group II intron in nad1 gene and its adjacent exons (exon b and exon 

c) from an asterid to the gymnosperm Gnetum (Won and Renner 2003). A notable example 

showing massive horizontal acquisition of mitochondrial sequences was recently reported in 

Amborella (Cho et al. 1998; Bergthorsson et al. 2004; Rice et al. 2013), the first emerging 

flowering plant. Amborella’s large mitochondrial genome not only contains numerous genes 

obtained from a wide range of other angiosperms and non-angiosperms, but entire mitochondrial 

genomes from distantly related moss and algal species. HGT events reported in other autotrophic 

plants include transfer of MULE transposons among grasses (Diao et al. 2006), and the evolution 

of C4 photosynthetic pathways via HGT among Panicoid species  (Christin, et al. 2012).  Most 

recently, researchers have discovered that ferns horizontally acquired a neochrome gene from 

hornworts (Li, et al. 2014b).  

The other major set of HGT events identified in plants involves parasitic plants. Parasitic 

plants invade their host plants’ tissues through either the shoots or roots with a haustorium (Kuijt 

1969), a novel organ for heterotrophic feeding, which allows parasitic plants to acquire nutrients 

and water from their host plants. The channel allowing the exchange of genetic and other 

biochemical compounds between parasites and their host plants increases the possibility of HGT 



 

 75 

events (Richardson and Palmer 2007).  Mitochondrial atp1 sequences have transferred from 

Tetrastigma to Rafflesiacae (Davis and Wurdack 2004). In another report, nad1 and matR were 

found to have transferred from Santalales to a fern (Davis et al. 2005).  Researchers also reported 

that four endoparasitic lineages acquired a mitochondrial atp1 from their host lineages, and 

repeated horizontal transfers of group I cox1 intron were discovered in parasitic plants (Barkman 

et al. 2007).  In addition to mitochondrial genes, a plastid gene was transferred from the parasitic 

Orobanche to Phelipanche (Park, et al. 2007a). Several transfers of nuclear genes were also 

discovered: a nuclear gene of unknown function from Sorghum bicolor to Striga hermonthica 

(Yoshida et al. 2010), a legume-specific albumin 1 from legumes to both genera of Phelipanche 

and Orobanche (Zhang, et al. 2013b), a Brassicaceae-specific strictosidine synthase-like gene 

from Brassicaceae to both Phelipanche aegyptiaca and Cuscuta australis (Zhang, Qi, et al. 

2014a).  

 With an increase in available genomic and transcriptomic data for plants, it is now 

possible to detect HGT events en masse using a comprehensive phylogenomic approach.  To 

identify HGTs in Rafflesia cantleyi, an endophytic holoparasite which lacks leaves and stems and 

only attaches to members of the grapevine family (Vitaceae), Xi et al (Xi, et al. 2012b) generated 

both transcriptomic data for both the parasite (Rafflesia) and its obligate host (Tetrastigma). A 

phylogenomic approach of constructing phylogenies from nine sequenced plant genomes plus the 

parasitic Rafflesia allowed Xi et al (Xi et al. 2012a) to conclude that Rafflesia horizontally 

acquired several dozen of its actively transcribed nuclear genes from Tetrastigma. Later, the same 

group reported massive mitochondrial gene transfer in the same species using a similar approach 

(Xi et al. 2013): 11 of 38 examined mitochondrial genes showed phylogenetic patterns suggestive 

of HGT. While Rafflesiaceae has a fairly narrow host plant range, other parasite lineages have 

much broader host preferences (Naumann et al. 2013). Thus, we are interested in discovering if 

other parasitic lineages that are widely distributed and interact with a wide range of host plants 

undergo HGT frequently and result in exchanges of genes across a much broader set of plants.  

 

3.1.4 Host range and HGT detection 

 The three parasitic plant species in Orobanchaceae have widely varied host plant 

preferences.  Triphysaria versicolor’s host plants range from monocots to dicots (Estabrook and 
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Yoder 1998; Jamison and Yoder 2001).  Striga hermonthica, and most other Striga species 

exclusively parasitize member of Poaceae (grasses) (De Groote et al. 2008; Parker 2009), while 

Phelipanche aegyptiaca parasitizes a range of dicot hosts from rosid and asterid angiosperm 

lineages, including the Solanaceae tomato, potato, eggplant, tobacco, crops in Fabaceae (beans 

and other legumes), Apiaceae and Asteraceae (Carlon et al. 2005; Schneeweiss 2007; Parker 

2009).  Because Striga hermonthica has a relatively narrow range of host plant species, a 

stringent BLAST-based screening for HGT candidates is feasible (Yoshida et al. 2010).  Zhang et 

al. (2013b) reported a unique gene, albumin1, identified in Phelipanche aegyptiaca and other 

related broomrape species with BLAST (Zhang et al. 2013b). However, for parasitic plants with a 

wide range of host plant species, such as Triphysaria versicolor, the previous BLAST-based HGT 

screening approach is less effective.  Furthermore, ancient HGT events may have taken place in 

an ancestor of the parasite in question that fed on host plants different from the current species. 

Therefore, a phylogenomic approach (Jiao et al. 2011; Xi et al. 2012b), which leverages genome 

scale data to analyze every parasite gene in a phylogenetic context, is an efficient and powerful 

approach to detect evidence of HGT.  

3.1.5 Objectives and overview of the analyses 

 In this study, with a goal of detecting functional transfers from the hosts to the parasites, 

we implemented a phylogenomic approach to detect cases of HGT in transcribed sequences in 

members of Orobanchaceae that together represent a wide range of parasitic ability, including the 

parasites Triphysaria versicolor, Striga hermonthica, and Phelipanche aegyptiaca, and the 

closely related nonparasitic Lindenbergia philippensis. Stringent screening plus careful 

verification were used to identify a number of high-confidence HGT events. The goals of this 

study will address the following questions:  1) How frequently has HGT resulted in expressed 

transgenes in the Orobanchaceae? 2) Do the HGT events detected involve only known host plants 

or other plant lineages? 3) What is the mechanism involved in the HGT event, e.g., has HGT 

occurred through an RNA intermediate or direct transfer of the genomic fragment? 4) Are any 

HGT events shared among the three parasitic species, suggesting transfers involving an ancestral 

parasite taxon? 5) Are there any HGT genes that appear to have a function related to parasitism? 

Through a comprehensive study of all possible HGT genes, we hope to shed light on whether 

HGT plays an adaptive role in parasite evolution.  
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3.2 Results 

3.2.1 The phylogenomic pipeline and the analytical schema for HGT detection 

 Most of the currently reported HGTs have been identified by a BLAST-based approach, 

which is mostly due to short running time of a single BLAST search. However, because the best 

BLAST hit does not guarantee the closest neighbor on the tree (Koski and Golding 2001), and the 

BLAST results have to be routinely verified by a phylogenetic tree, a phylogenomic approach is 

the main focus of this analysis. At first, large-scale phylogenetic trees were reconstructed for 

every unigene in four focal species of Orobanchaceae, including the nonparasite Lindenbergia 

philippensis, and three parasites -Triphysaria versicolor, Striga hermonthica, and Phelipanche 

aegyptiaca. A total of 13254 orthogroup trees that involves taxa from 22 sequenced plant 

genomes and two large EST datasets from Asteraceae (Lactuca sativa and Helianthus annuus), as 

well as the four Orobanchaceae taxa were used as the basis for HGT identification.  

Customized python scripts were applied to the 13,245 orthogroup phylogenies to 

automatically identify gene trees where the parasitic genes were unexpectedly placed within a 

putative donor clade. The phylogenetic position of Orobanchaceae is well established within the 

Lamiales (Young and dePamphilis; Olmstead et al; Soltis et al 17 gene) containing Mimulus 

guttatus (Phyrmaceae) (Olmstead et al. 2001; Soltis, et al. 2011), the closely related species with 

a sequenced genome (Hellsten, et al. 2013). Due to complexities of gene tree evolution such as 

gene loss, incomplete lineage sorting, as well as insufficient taxon sampling within this group, we 

searched for HGTs only from distantly related taxa in this study - rosids and monocots.  

Three models illustrate topologies indicative of HGTs we sought to detect (Fig. 1). With 

a goal of identifying unambiguous HGTs, we focused our search on rosid and monocot donors 

because of the relatively large number of finished genomes in these groups, and the greater 

genetic distance from our Orobanchaceae focal group. In all three models, we identified 

“ancestral” nodes, defined here as the node containing exclusively parasite genes and genes in the 

donor clade. The first model describes a scenario where genes from the parasitic plant or 

nonparasitic relative are strongly supported as nested within a donor clade (Figure 3-1A). The 

second model (Figure 3-1B) describes a case where the parasite’s genes are placed outside of the 

donor clade. In both cases, two nodes (with bootstrap >50) supporting the grouping of parasitic 
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genes with donor clades were required. The third model (Figure 3-1C) requires only one node 

supporting the placement of the parasite’s gene(s) as sisters of donor clades.  

3.2.2 52 high-confidence HGT events 

Custom scripts searching for topologies consistent with these three models resulted in the 

identification of a set of 192 gene trees with preliminary evidence for HGT (143 orthogroups 

from rosids and 49 orthogroups from monocots) from the three focal genera. Only one orthogroup 

(3861) was identified as including a potential HGT from the nonparasitic “control” species 

Lindenbergia, all others involved the parasitic species only.  We then applied a scoring scheme to 

assign these 192 candidate HGT trees to low-, medium-, and high-confidence groups based on 

tree characteristics including the bootstrap support for key nodes surrounding the inferred HGT 

event, sampling of the donor clades grouped with the HGT genes, and branch length 

heterogeneity (Figure 3-3-1D, see Table 3-1 for detailed criteria). The authenticity of each HGT 

tree in the medium- and high-confidence groups was then validated with follow-up analyses, 

including manual examination of branch lengths and sequence alignments, correcting any 

translation or alignment errors, and examining the phylogenetic stability with increased taxon 

sampling. We examined low coverage transcriptome sequences from eight more parasitic 

Orobanchaceae species, and also from related non parasitic species from the 1kp transcriptome 

project (Matasci, et al. 2014) four sequenced asterid genomes  (Phytozome) (Goodstein, et al. 

2012), and the Striga asiatica genome (Yoshida and Shirasu, pers. comm.) were also included 

(see Materials and methods “HGT validation by increased taxon sampling”). This resulted in a 

final set of 42 HGT orthogroups (Table 3-2), with the remaining 158 putative HGTs determined 

to be artifactual or merely low confidence (Figure 3-1E and Figure 3-2). The primary artifact (106 

out of 158) arose from insufficient taxon sampling (Figure 3-2A, B), especially of the order 

(Lamiales) that contains Orobanchaceae (Soltis et al. 2009). Other artifacts came from frame-shift 

errors (Figure 3-2D, E) and contamination, either from the experimental host (nine orthogroups) 

(Figure 3-2C) or from fungal contamination (one orthogroup). The topology and bootstrap values 

(bs) for the 42 HGT orthogroup trees strongly support the placement of parasitic genes within the 

donor clade, indicating a clear HGT origin (Figure 3-3A, 3-4A). 11 out of 42 trees suggested a 

polyphyletic origin of HGT genes (one or more transfers in a gene family), thus we used the 
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Shimodaira-Hasegawa (SH) test to evaluate whether more than one transfer was most likely 

based on the available data (Table 3-3). A single transfer could not be rejected for orthogroup 

3861 (Table 3-3). Interestingly, all the remaining trees did support more than one transfer (Table 

3-3), suggesting a propensity for certain gene families to include fixed horizontal transfers. A 

minimum of 52 horizontal transfer events were thus inferred from these 42 gene families. That a 

majority, fully 78%, of the candidates (67% of initial medium and high confidence) were 1) 

excluded due to low support, 2) identified as artifacts (via increased taxon sampling), or 3) 

identified as contamination from host or other organisms, illustrates the challenge of HGT 

discovery.  

 
 

Figure 3-1. Three models for phylogenomic identification of HGTs, and further examination of the 

preliminary-screened HGT candidates. Scheme 1, parasite genes (P) are nested inside donor clades (D); 

scheme 2, parasitic genes group outside of the donor clade; scheme 3, only one node of donor sequence is 

sister to parasitic genes. In this study, donor refers to distantly related monocot and rosid sequences. 

Ancestral node is defined to be composed of exclusively parasitic and donor sequences. In A1, at least two 

nodes within the ancestral node (including the ancestral) are required to have bootstrap support (BS) >=50, 

in A2, both the ancestral node and node 1 are required to have BS >=50. In scheme 2 (B), the ancestral 

node and at least one node within the ancestral node are required to have BS >=50. Scheme 3 (C), only the 
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node that supports the grouping of the parasitic gene and donor sequence is required to have BS>=50. 

“Non-DPs” refers to non-parasitic, non-donor sequences. (D) A number of 192 HGT orthogroup trees from 

the initial screening were classified into low-, medium-, and high-confidence categories based on a scoring 

scheme (table S2). Grey colors represent the HGT orthogroups identified in the monocots, darker grey 

represents the rosids. (E) The number of HGT-candidate orthogroups manually curated as true HGTs (light 

grey), artifacts resulting from insufficient taxon sampling, frame shift errors or tree inaccuracies (white), or 

fungal or host contamination (dark grey). 

 

Table 3-1. A scoring scheme used to score each phylogenetic tree based on bootstrap support, depth of 

donor clades, and long branches. 

Criterion1 Criterion2 Criterion3 Scoring 

Bootstrap 

support 

score Sampling depth score Branch length score Summed 

score 

confidence 

x=100 10 rich sampling in one 

inner node and strong 

support 

5 branch length 

not long 

3 x≤9 low 

90≤x<100 8 

80≤x<90 6 rich sampling in one 

inner node and low 

support 

3 branch length 

< 2 times of 

the average 

2 10≤x≤14 medium 

70≤x<80 4 

60≤x<70 3 

50≤x<60 2 mixed samples in 

inner nodes 

1 branch length 

>=2 times 

1 15≤x≤18 high 

x<50 1 

3.2.3 Transfers from ancestral host lineages 

A majority of these HGTs could be assigned to ancestral donors from known host 

lineages. All the HGTs from grass donors (Poaceae) were discovered in Striga (Table 3-1 and 
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Figure 3-3C), which (except for S. gesnerioides) are specialized parasites of Poaceae (Musselman 

1980). In Phelipanche, however, inferred donors reflected a wide range of dicot families with the 

majority from Rosaceae and Fabaceae, also consistent with feeding preferences for this plant and 

its congeners (Westwood et al. 2010) (Figure 3-3C). In 38 orthogroups, the transfer was inferred 

to be unique to one genus (15 are unique in Phelipanche, 8 are unique in Striga), or in two closely 

related genera (15 occurred both in Phelipanche and Orobanche).  

Any HGT events leading to the origin of parasitism would have occurred in a common 

ancestor of the parasites. Previously reported cases of HGT in microbial parasites or pathogens 

primarily encode cell wall-degrading enzymes of plants (Keeling 2009) and thus are implicated in 

host invasion. Surprisingly, although cell wall modifying enzymes are well represented in 

haustorial tissues (Yang et al. 2015), no such proteins were identified in our HGT search. Instead, 

numerous proteins involved in cell wall modification processes in the haustorium were attributed 

to gene duplications that occurred in an ancestor of all parasitic lineages of Orobanchaceae (Yang 

et al. 2015). Our HGT phylogenies, however, supported predominantly recent occurrences that 

were unique to individual genera. In only one case (orthogroup 218), the transfer was detected in 

almost all the parasitic taxa (Phelipanche, Striga, Triphysaria, Alectra) (Figure 3-3D), but the SH 

test indicated that this likely involved at least two (more recent) transfers instead of a single 

ancestral HGT event (Table 3-3).  Therefore, while gene duplications often preceded and 

underpin the origin of parasitism in Orobanchaceae (Yang et al. 2015). HGT events are more 

recent, and may have contributed to subsequent parasite adaptation (see below).   

3.2.4 Increased numbers of HGT with increased heterotrophic dependence 

The number of HGT events appears to increase in parasites with greater host dependence. 

In the free-living sister lineage to all parasitic Orobanchaceae, Lindenbergia, we detected only 
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one HGT. In T. versicolor, the facultative hemiparasite, two HGT events were found (Table 3-2). 

In Striga, the obligate hemiparasite, ten orthogroup trees support HGTs and seven were from 

grasses in the Poaceae family. A majority (34 orthogroups) of the HGTs were detected in 

Phelipanche, the obligate holoparasite with the strongest host dependence (Fig3-3C, D).  
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Figure 3-2. HGT artifacts due to insufficient taxon sampling (A-B), contamination (C), and frame-shift 

errors (D-E). RAxML-based maxiumum likelihood tree for orthogroup 20348 from the initial automated 

pipeline (A) shows the placement of a parasitic TrVeBC3_3854.9 gene (purple arrow) as sister of rosid 

clades composed of many Poplar sequences (Poptr), indicative of HGT. Increase of taxon sampling in the 

Lamiales order (green non-shading) and the rosid groups (red) converts the Triphysaria gene 

(TrVeBC3_3854.9) to be a vertically inherited gene which groups with its closely related parasitic taxa 

(green foreground, grey shading) in the Lamiales order. Contamination rather than HGT (orthogroup 8224) 

explains the placement of the Triphysaria gene (TrVeBC3_27583.1) with Glyma sequences (C), which is a 

close relative of its experimental donor – Medicago truncatula. (D-E) show an HGT artifact due to frame-

shift errors for orthogroup (20348). (D) – Purple branch shows a clade with long branch composed of three 

sequences – StHeBC3_5017.3, gnl_Medtr3.5_Medtr2g048470.1, and gnl_Poptr2.2_PACid_18207162. 

Striga sequence was screened as an HGT sequence because of strong placement with the rosid donor. 

Careful examination of the alignment revealed frame-shift errors of all these three sequences, and repair of 

this error resolved the Striga gene as a vertically inherited gene (E). The two rosid sequences from Poplar 

and Medicago also went to its expected position within the rosid clades without long branch (E). 
 

Table 3-2. Information of the 42 HGT orthogroups including the HGT recipient, donor, expression, dN/dS, 

functional category, and homology-based annotation. 

ortho

group 

recipi

ent 

donor intron expre

ssion 

dN/dS functional 

category 

annotation based on 

homology 

226 P Poptr Y/Y 1, 42 P defense cytochrome P450 
1685 P Gyma+Medtr Y/Y >2 P defense cysteine-rich receptor-like 

kinase 
2376 P Poptr+Theca Y/Y >2 RP defense Proteasome subunit alpha type 
14624 S Sorbi+Zea N/N -

5’UI 

NA P defense (disease 

resistance) 

BTB/POZ  

23343 P Theca - 52 P defense (disease 

resistance) 

disease resistance protein 
11841 P Frave Y/Y 51 SP defense  hyoscyamine 6-dioxygenase-

like 
1886 P Frave - 62 RP defense 

(immunity) 

Ankyrin repeat family protein 
11437 P Frave - >2 RP defense and 

nodule 

development 

Kelch modif related to 

galactose oxidase 

8888 P Frave - 2, 41 RP transcription Poly A polymerase 
18709 P Arath Y/Y int POS transcription nucleolin 2-like 
806 P Theca Y/Y int RP translation valyl-tRNA synthetase 
2270 P, S Theca Y/Y >2 RP translation methionyl-tRNA synthetase 
4067 P Frave Y/Y 41 RP translation tRNAHis guanylyltransferase 

10050 P Frave - 42 RP translation histidine-tRNA ligase 
13892 P Medtr Y/Y int P translation Ribosomal protein S13 
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17 P Betvu Y/Y 42, 

51, 62 

P nutrient transport ABC transporter C family 

member 3 

9613 P Glyma Y/Y 0 RP nodule 

development and 

cytokinin 

biosynthesis 

cytosolic purine 5-nucleotidase 

15246 P Medtr - 62 P defense-related 

(insect toxin) 

Albumin I (Zhang et al. 2013a) 

1226 P Poptr Y/Y 3, int RP diverse alpha/beta-Hydrolases 
10143 P Frave - 42 RP diverse Tubulin-specific chaperone D 
3861 P Glyma Y/Y >2 POS diverse  Poly(ADP-ribose) 

glycohydrolase  
4598 P Medtr - int RP diverse nuclear pore complex protein 
19696 P Poptr Y/Y 41, 62 SP diverse  ubiquitin-like-specific protease 

1 
16703 S Orysa Y/Y 52 P diverse  Zinc finger, GRF-type  
4572 P Frave - 3, 41 P diverse  FBD-associated F-box protein 
5896 S Glyma Y/Y 52, 61 P plastid-to-

nucleus signaling 

uroporphyrinogen-III synthase 

218 P, S, 

T 

Prunus Y/Y >2 P TE hAT transposon 
1021 P, T Frave+Malus Y/Y >2 P TE hAT transposon 
5002 P Prunus Y/Y int P TE hAT transposon 
12835 S Sorbi N/N 0 P TE Putative harbinger transposase-

derived nuclease 
14230 P Prunus Y/Y 42 P TE MULE transposase 
15149 P Frave Y/Y int P TE hAT transposon 
13512 P Frave - 51 POS unknown unknown 
13656 S Sorbi+Orysa - int SP unknown hypothetical protein 
14233 S Sorbi+Orysa - 61 SP unknown unknown 
14675 P Frave - 62 P unknown unknown 
18354 P Frave - int P unknown unknown 
18774 S Orysa Y/Y 0 P unknown unknown 
19297 S Bradi N/N-

3’UI 

NA P unknown unknown (Yoshida et al. 2010) 

20188 P Frave Y/Y int P unknown unknown 
20190 P Frave - int, 2 P unknown unknown 
23480 P Frave - int P unknown unknown 
recipient column: P – Phelipanche, S – Striga, T – Triphysaria; Intron column: “-” means not determined, Y/Y represents presence of 

intron in both donor and recipient gene, N/N represents absence of introns in both donor and recipient; 3’UI and 5’UI mean 3’/5’-UTR 

introns. Expression: int – interface, - >2 means highly expressed in more than two stages; dN/dS: P – purifying selection, RP – relaxed 

purifying selection, SP – stronger purifying selection; POS – positive selection; functional category: TE – transposable element.  
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Figure 3-3. RAxML-based Maximum likelihood (ML) trees supporting HGT in two orthogroups, donor 

families and recipient taxa inferred from the 42 HGT set. Orthogroup trees support one Phelipanche HGT 

from a eudicot donor (Frave–Fragaria vesca) (A), and a Striga HGT from a grass donor (Brachypodium) 

(B). A hypothetical tree illustrates the color-coding system for each angiosperm lineage represented in (A) 

and (B) is shown in (A) outlined with a box. (C) Mapping of parasitic recipient taxa onto inferred donor 

family (X-axis). Each genus in HGT recipient is followed with a three-letter code used in (D). Total 

number of HGT orthogroups inferred from each donor family are placed on top of each bar. Numbers 

within each bar represent number of orthogroups, the number of singletons is not shown due to space 

limitations. (D) Number of HGT orthogroups support transfers from shared and unique parasitic genera. 

Phelipanche_aegyptiaca_PhAeBC5_24772.1
gnl_Stras_v1.02_SGA1.0.scaffold105G00190
gnl_Stras_v1.02_SGA1.0.scaffold147G00190
gnl_Stras_v1.02_SGA1.0.scaffold35G00460

100

gnl_Stras_v1.02_SGA1.0.scaffold81G00250
gnl_Stras_v1.02_SGA1.0.scaffold79G00260
gnl_Stras_v1.02_SGA1.0.scaffold71G00860

gnl_Stras_v1.02_SGA1.0.scaffold80G00330
gnl_Stras_v1.02_SGA1.0.scaffold430G00030

LaSa_28322
LaSa_45833
LaSa_1379

LaSa_6044
94

LaSa_9873
LaSa_20530

LaSa_46312
HeAn_60209
HeAn_28195

82

LaSa_42718
LaSa_19173

LaSa_23853
LaSa_5170779

95

76

69

97

100

gnl_Medtr3.5_Medtr7g061520.1
gnl_Medtr3.5_AC235757_20.1

gnl_Medtr3.5_Medtr4g116690.1
gnl_Medtr3.5_Medtr4g116510.1

gnl_Medtr3.5_Medtr2g061140.1
gnl_Medtr3.5_Medtr6g055350.1

gnl_Medtr3.5_Medtr6g079030.1
gnl_Glyma1.01_PACid_16289845

gnl_Glyma1.01_PACid_1629005497
gnl_Medtr3.5_Medtr8g054330.1

96
98

100

gnl_Bradi1.2_Bradi1g54870.1
gnl_Bradi1.2_Bradi3g03300.1
gnl_Bradi1.2_Bradi2g57400.1
gnl_Bradi1.2_Bradi1g38060.1

89

74

gnl_Bradi1.2_Bradi5g16030.1
gnl_Bradi1.2_Bradi2g07670.1

100

gnl_Sorbi1.4_PACid_1969324

LOC_Os01g60580.1_Orysa_sativa
LOC_Os10g41350.1_Orysa_sativa
LOC_Os10g31130.1_Orysa_sativa

100

gnl_Bradi1.2_Bradi3g24430.1
gnl_Bradi1.2_Bradi1g64655.1
gnl_Sorbi1.4_PACid_1970319

68

gnl_Sorbi1.4_PACid_1983153

92

100

gnl_Bradi1.2_Bradi1g25296.1
gnl_Sorbi1.4_PACid_1958959 1.0

Striga_hermonthica_StHeBC3_10075.1 H

V

(A) 

# 
of

 o
rth

og
ro

up
s

17

(C)

19

9

0
4

8
12

15 15

8

3 2 1

5

1

5

10

15

20

25

30

8

3
2

3 12
2 1

3 2

5

2

7

10

7

Rosaceae

Fabaceae

Euphorbiaceae

Malvaceae

Salicaceae

Brassicaceae

Poaceae

9

1935

Phelipanche (Phe)

Orobanche (Oro)

Striga (Str)

Triphysaria (Tri)

Alectra (Ale)

Lindenbergia (Lin)

Phe
, O

ro Phe
 

Str

Phe
, S

tr

Phe
, T

ri

Phe
, O

ro,
 A

le

Lin
, P

he
, O

ro

Phe
, S

tr, 
Tri, 

Ale

Inferred HGT Donor

HGT recipient

# 
of

 o
rth

og
ro

up
s(D)

basal angiosperm
monocot
basal eudicot
asterid
rosid(B) 



 

 87 

3.2.5 Integration of genomic fragments  

Signatures of the donor molecule should persist in the genome, giving clues to the mechanism of 

transfer. For instance, a nuclear HGT reported in Striga supports a possible mRNA mediated 

transfer since the HGT lacked introns and seemed to contain a remnant poly-A tail, whereas the 

donor Sorghum gene lacked a poly-A tail (Yoshida et al. 2010). Documented translocation of 

Table 3-3. SH test to evaluate number of transfers in HGT trees by constraining multiple HGT genes to one 

monophyletic clade. 

orthogroup	   logL (original)	   logL (constrained)	   Significant (0.01)?	   # of transfers	  

218	   -106049.78	   -106490.58	   Y	   ≥ 2	  

1021	   -40178.73	   -40281.56	   Y	   ≥ 2	  

3861	   -42295.88	   -42296.95	   N	   1	  

5002	   -95429.05	   -95694.82	   Y	   ≥ 2	  

8888	   -35555.79	   -35813.86	   Y	   ≥ 2	  

11437	   -121967.75	   -122293.12	   Y	   ≥ 2	  

13512	   113878.47	   -114045.44	   Y	   ≥ 2	  

14233	   -88970.83	   -89052.98	   Y	   ≥ 2	  

18354	   -11889.45	   -11941.91	   Y	   ≥ 2	  

18774	   -48200.19	   -48661.65	   Y	   ≥ 2	  

19297	   -48200.19	   -48661.65	   Y	   ≥ 2	  

 

host RNA into Triphysaria (Tomilov et al. 2008) and Phelipanche (Aly et al. 2009), as well as 

the massive movement of host RNA into Cuscuta would support an RNA-based mechanism for 

HGT in parasitic plants (Kim, et al. 2014). In contrast, a horizontally-acquired albumin 1 gene in 

Phelipanche and related taxa (Zhang et al. 2013a) and horizontally acquired Brassicaceae-specific 

strictosidine synthase-like (SSL) genes contained introns in genomic sequences of both donor and 
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the parasites (Phelipanche and Cuscuta), all consistent with direct genomic transfers without an 

RNA intermediate (Zhang, Qi, et al. 2014b). To test the hypothesis of mRNA mediated transfer 

we examined the coding sequence structure (exon-intron boundaries) in the 42 HGT orthogroups. 

We had sufficient genomic data to examine 26 of the HGT orthogroups (Table 3-1), 

though three orthogroups contained HGT genes that lacked CDS introns in both donor 

and recipient. While these gene lacked CDS introns, 2 of these had introns in the UTRs. 

A gene in Orthogroup 14624 (BTB/POZ domain containing protein) was transferred from 

Sorghum bicolor into Striga hermonthica, and the 5’-UTR intron shows 87% sequence 

identity between the donor and recipient gene (CDS: 91%, 5’-UTR: 87%, 3’-UTR: 68%). 

In the other case, a gene in orthogroup 19297, a conserved 3'-UTR intron (3'-UTR intron: 

78%, CDS: 85%, 5’-UTR: 54%, 3’-UTR: 82%) is present in both the donor and recipient. 

It is noteworthy that this HGT event was previously identified by Yoshida et al. (2010) 

who speculated, in part, based upon a remnant poly-A tail in the cDNA, that this HGT 

event may have been mediated by an mature mRNA rather than a genomic 

fragment.  Our analyses identified the presence of a high identity intron in the 3’ UTR, 

suggesting that this event (like the majority of cases reported here) was mediated by a 

genomic fragment rather than an mRNA. Only one orthogroup (12835 – a Pong-

like transposable element), lacked intron in both the donor and recipient gene, and the 

non-conserved flanking region failed to provide evidence whether genomic or mRNA-

mediated transfer was supported. The remaining 23 HGT orthogroups contained genes 

whose donor and recipient contained CDS introns. We further reduced the list to 13 

orthogroups with full-length genes allowing us to examine similarities and differences in 

intron positions and sequences between donor and recipient. 
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Surprisingly, all 13 showed congruence of CDS structure between donor and recipient, 

suggesting a transfer of a genomic fragment containing the gene, rather than an mRNA 

intermediate. Intron positions are overall quite conserved (Table S5, S64, Fig. S3) (although with 

occasional intron loss, Fig. 3B), suggesting maintenance of intron structure for functional 

transcription.  To infer the intron origin, we constructed phylogenies using the intron sequences 

only and compared them to phylogenies constructed with exons only. Only three orthogroup 

phylogenies were well-resolved due to a high level of intron sequence divergence (orthogroup 

4067, 806, and 2270 -supplementary table S1). Reassuringly, the intron phylogenies were 

congruent with the CDS phylogenies, indicating the same donor lineage and providing strong 

support of a genomic fragment-mediated HGT (Figure 3-4 and Figure 3-5).  

 The strongest example, orthogroup 4067 (tRNA(His) guanylyltransferase - required for 

translation (Heinemann, et al. 2012)), not only exhibits strong CDS similarity with its inferred 

Fragaria donor (~74%) (Figure 3-3A), but the intron sequences maintain ~51% similarity (Figure 

3-3B, 3C), even higher than that between the vertically inherited parasite gene and its close 

relative in Mimulus (~21%) (Figure 3-3C). These results show that all of the resolvable HGT 

events were likely mediated by genomic fragments containing most or all of donor genes rather 

than by RT-mediated transfer.  

                                                        
4 All the supplementary data are not shown in this dissertation as there are too many, please refer to the 

submitted manuscript. 
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Figure 3-4. Genomic horizontal transfer of a tRNAHis guanylyltransferase from ancestor of Fragaria to 

Phelipanche parasites.  (A) A coding-sequence (CDS) tree by RAxML from represented species across 

angiosperm lineages, H: the parasitic HGT gene, D: inferred donor (in Fragaria), V: vertical parasitic gene, 

VR: related sequence of the vertical parasitic gene (in Mimulus). (B) Gene structure with four selected 

introns for the four sequences (H, D, V, VR). Yellow and green bars represent coding sequence, the vertical 

dashed lines represent the intron positions; the boxes represent introns. At least four conserved intron 

positions were shown on the gene structure; the third intron was lost in the HGT gene, the fourth intron on 

the graph (which is the seventh intron of the Mimulus gene) showed strong sequence similarity between the 

HGT gene and its donor (marked by red intron boxes with length within). (C) The seventh intron (marked 

red in B) sequence phylogeny of genes on the CDS tree: the HGT gene groups with its donor supported by 

98% bootstrap support (BS), whereas the vertically inherited genes group with its close relative (Mimulus 

sequence). (D) A heat map shows the pairwise sequence similarities for CDS (below diagonal) and the last 
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intron region (above diagonal) among the four genes (H, D, V, VR). CDS similarity between the HGT gene 

(H) and its donor sequence (D) is 74%, between the vertically inherited parasitic gene (V) and its relative 

(VR) is 78.8%; intron similarity for the former pair is 51.4%, for the latter is 21.2%. 

 

 

Figure 3-5. Intron phylogeny and intron-positions for several HGT orthogroups that encode tRNA 

synthetase/transferase. (A) and (B) RAxML-based ML trees of intron sequences in the corresponding cds 

tree of orthogroup 2270 (A) and orthogroup 806 (B). “H” symbol and yellow highlighting represent 

parasitic HGT genes, while “V” and green highlighting represent the parasitic vertically inherited genes. 

(C) Annotation of three HGT orthogroups, all encoding tRNA synthetase/tranferases involved in the 

attachment of the codon and tRNA anticodon. Also, the number of conserved intron positions (CIPs) in the 

forced cds alignment were also shown, 4067 is the orthogroup in main Figure 3-4 that also encodes tRNA 

transferase. 
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3.2.6 Functional HGT 

Tissue specific HGT expression   37 out of 49 HGT transgenes show an 

expression with maximum FPKM in any stage greater than 5, indicating that most are actively 

transcribed. In addition, 36 out of the 42 HGT orthogroups contain HGT genes from more than 

one parasitic taxon (Table 3-1) suggesting a conserved role in the parasite. The species with the 

most HGTs is P. aegyptiaca, and all candidates show tissue specific expression (Figure 3-6). 

Moreover, the expression profile of P. aegyptiaca HGT genes (Table 3-1) revealed a distinctive 

cluster of interface-specific expression (Figure 3-6), and an equal number with abundant 

expression in haustorial tissues. A subset of these genes encodes functions related to transcription 

and protein synthesis (Table 3-1), consistent with the role of metabolically active haustoria in 

loading host nutrients (characterized by large nuclei, organelle-rich cytoplasm and abundance of 

rough endoplasmic reticulum (Visser, et al. 1984; Pielach, et al. 2014)).  

 

HGTs are evolving under constraint For each of the HGT orthogroup phylogenies, 

we performed a branch test to estimate the level of constraint in protein sequences.  This 

compares the foreground HGT genes and the background orthogroup members. The same or even 

stronger levels of purifying selection in parasitic HGT genes observed in 27 orthogroups show 

that HGT-encoded proteins are under strong constraint (Table 3-1, 3-4), indicating a likely 

functional role in parasitic plants. Additional evidence comes from conservation of predicted 3-D 

structure for HGT proteins in comparison to their nonparasitic orthologs in Arabidopsis thaliana 

(Figure 3-7).  

 

In summary, four lines of evidence support a functional role for these horizontally 

acquired sequences in parasitic Orobanchaceae:   (i) HGT sequences are detected and commonly 
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conserved across species boundaries, (ii) the sequences are actively and differentially transcribed, 

frequently with a bias toward haustorial expression, (iii) the genes are evolving under purifying 

selection consistent with the conservation of functional protein structures, and (iv) surviving 

HGTs are obtained from ancestral host lineages suggesting that HGTs play a role in the parasite-

host interaction. 

 

Figure 3-6. A heat map shows the expression of HGT transgenes in Phelipanche aegyptiaca. Expression is 

shown with FPKM-transformed z-scores to ensure even signal intensity across stages. Rows represent HGT 

genes, columns represent stages (below) or tissues (above). Haustorial and interface tissues are colored in 

green. Genes were clustered on the left to show similarity. 
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Figure 3-7. Phylogeny of orthogroup 11841 and predicted 3D structure. The HGT genes identified are 

PhAeBC5_3756.1 in Phelipanche aegyptiaca and StHeBC3_55745.1 in Striga hermonthica.  For this 

particular orthogroup, the HGT gene was also identified in Orobanche fasciculate 

(OrFa_1kp_VYDM_130285) from the 1KP database. Additional Orobanchaceae orthologs were also found 

through our private dataset, including Orobanche californica (OrCaGB1_4009), Phelipanche ramosa 

(PhRaGB1_3602) and Phelipanche mutelii (PhMuGB1_6933).  HGT and vertical clade was labeled with  

“H” and “V” respectively on the phylogeny. (A). phylogeny of orthogroup 11841 supporting HGT; (B). 

Protein 3D structure of Anthocyanidin synthase from Arabidopsis thaliana (PDB ID: 1GP4); (C). Predicted 

protein 3D structure of PhAeBC5_3756.1. Color scheme: alpha helixes shown in red; beta sheets shown in 

yellow; loops shown in green. 
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Table 3-4. PAML analyses with branch test on codon alignment of 42 HGT orthogroups testing presence of 

purifying selection, relaxed constraint, or positive selection. 

Ortho ID dN dS Foreground ω background ω P-value Significant at 0.05 Selection 
806 0.09 0.33 0.27 0.14 < 0.00001 S RP 
1886 0.48 0.82 0.58 0.16 < 0.00001 S RP 
2270 0.09 0.28 0.31 0.14 < 0.00001 S RP 
2376 0.03 0.15 0.18 0.04 0.000108 S RP 
4067 0.10 0.24 0.43 0.20 0.000187 S RP 
8888 0.12 0.28 0.43 0.23 0.001553 S RP 
9613 0.51 1.03 0.50 0.14 < 0.00001 S RP 
10050 0.13 0.26 0.51 0.20 < 0.00001 S RP 
10143 0.10 0.21 0.46 0.20 < 0.00001 S RP 
1226 0.22 0.41 0.55 0.27 0.002847 S RP 
4598 0.22 0.56 0.39 0.27 0.016327 S RP 
11437 0.40 0.53 0.74 0.36 < 0.00001 S RP 
13512 0.29 0.17 1.65 0.34 < 0.00001 S POS 
3861 0.14 0.10 1.48 0.28 < 0.00001 S POS 
18709 0.19 0.17 1.16 0.22 0.000495 S POS 
19696 0.56 73.08 0.01 0.29 0.022212 S SP 
11841 0.03 0.20 0.14 0.26 0.03422 S SP 
13656 0.01 3.08 0.00 0.30 < 0.00001 S SP 
14233 0.32 1.16 0.27 0.48 0.005556 S SP 
5896 0.06 0.21 0.29 0.30 0.943628 NS P 
1685 0.06 0.21 0.29 0.27 0.811464 NS P 
17 0.21 0.78 0.27 0.23 0.054126 NS P 
218 0.07 0.54 0.12 0.20 0.431345 NS P 
226 0.12 0.51 0.24 0.27 0.449545 NS P 
1021 0.13 0.72 0.18 0.19 0.943886 NS P 
4572 0.13 0.42 0.31 0.47 0.054707 NS P 
5002 0.17 1.00 0.17 0.23 0.172164 NS P 
12835 0.11 0.68 0.16 0.18 0.731762 NS P 
13892 0.02 0.09 0.26 0.24 0.917998 NS P 
14230 0.28 2.22 0.13 0.16 0.331354 NS P 
14624 0.22 1.02 0.22 0.26 0.420936 NS P 
14675 0.49 1.22 0.40 0.47 0.705675 NS P 
15149 0.31 1.24 0.25 0.28 0.734189 NS P 
15246 0.06 0.10 0.65 0.24 0.139996 NS P 
16703 0.40 70.39 0.01 0.33 0.09305 NS P 
18354 0.54 1.01 0.54 0.62 0.908563 NS P 
18774 0.20 0.32 0.61 0.51 0.26167 NS P 
19297 0.08 0.14 0.61 0.51 0.26167 NS P 
20188 0.55 0.66 0.83 0.82 0.971238 NS P 
20190 0.19 0.22 0.88 0.91 0.946516 NS P 
23343 0.08 0.32 0.26 0.34 0.05642 NS P 
23480 0.22 0.26 0.56 0.84 0.218423 NS P 
Significance at 0.05 column: S – significant, NS – non-significant. Selection type column: P – purifying, SP – stronger  

purifying, RP – relaxed purifying, POS – positive selection 
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Evidence of adaptive evolution of HGTs Our observation of abundant haustorial 

expression in a majority of the HGT genes suggests a likely contribution of HGT to parasitic 

adaptation (evolution of haustoria). To corroborate this idea, we examined the possibility of 

adaptive signatures on protein sequences of these HGTs. Evidence of relaxed purifying selection 

and positive selection were observed for more than 15 HGT orthogroups (Table 3-4), 13 of which 

contain adaptive sites present in HGT parasite genes but absent in the closely related nonparasitic 

genome (Table 3-5) (Mimulus for instance). Of these, six orthogroups have genes encoding 

functions related to transcription and translation (orthogroup 8888, 18709, 806, 4067, 10050, 

13512), and four orthogroups contain genes with abundant haustorial expression (orthogroup 

1226, 8888, 18709, 806)  (Table 3-1). The signatures of adaptive sites and their retention as 

haustorial genes in the genome suggest that these changes in HGT proteins are largely under 

positive selection and may have provided novel functions contributing to increased parasite 

fitness. 

 

Table 3-5. PAML analyses with the branch-site model on codon alignment of 15 HGT orthogroups with 

greater dN/dS on HGT genes compared to the background, identifying the presence of sites under positive 

selection. 

HGT transgene IDs Orthogroup ID Sites identified having positive selection 

(P<=0.05) 

PhAeBC5_4239.1 OrMi2_4015 

PhRa5_26371 PhMu2_16115 

806* 556 D; 

PhAeBC5_11914.4 PhRa5_49596 

PhRa5_27280 PhMu2_10869 

PhMu2_12766 

1226* 135 E; 250 V; 
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PhAeBC5_15496.1 PhRa5_103413 

PhRa5_58721 

1886* 1 M; 39 E; 83 F; 84 S; 86 E; 92 K; 146 L; 

153 S; 170 T; 173 D; 176 C; 210 T; 214 

L; 230 T; 236 T; 247 R;  249 Q; 251 C; 

254 D; 256 V; 317 G; 318 K; 322 E; 330 

P; 347 S; 363 A; 403 G; 404 F ; 406 S; 

416 C; 421 G; 426 F; 428 G; 429 P; 438 

C; 444 W; 472 A;  485 A; 488 V; 493 A; 

500 G; 530 S; 533 E; 535 V; 581 D; 582 

L;  

StHeBC3_2868.1 PhAeBC5_3356.1 

PhRa5_6157 PhMu2_12619 

PhMu2_44156 PhMu2_20937 

PhMu2_5516 PhMu2_14031 

OrMi2_4206 StGe3_7730 StGe3_20099 

2270 NA 

PhAeBC5_270.3 StHeBC3_48088.1 

PhRa5_4383 PhMu2_6326 PhRa5_4382 

2376* 20 V; 

PhAeBC5_9914.1OrMi2_2808 

PhRa5_12205 PhMu2_12820 

PhMu2_11052 

3861* 23 S; 45 E; 68 A; 71 D; 93 L; 96 D; 97 D; 

254 D; 289 K; 301 V; 486 C; 543 W; 568 

P;  

PhAeBC5_9762.1 PhRa5_10084 

PhMu2_15393 

4067* 218 K; 

PhAeBC5_13756.1 PhMu2_15647 

PhRa5_33568 

4598 31 R; 32 P; 156 S; 159 G; 160 L; 169 K; 

187 L; 188 S; 233 Q; 235 K; 240 K; 244 

T; 247 E; 248 A; 249 M; 251 L; 253 P; 

282 L; 284 S; 379 K; 481 N; 495 E; 500 

G; 535 A; 536 T; 539 V; 540 A; 543 C; 

545 P; 547 N; 

Phelipanche_ramosa_PhRa5_6603 

Phelipanche_mutelii_PhMu2_37370 

Phelipanche_ramosa_PhRa5_6605 

PhAeBC5_15086.1 

Phelipanche_ramosa_PhRa5_6604 

8888* 209 Q; 538 D; 559 P; 
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PhAeBC5_16890.17 PhRa5_14643 

PhRa5_14643 

9613* 3 P; 4 S; 22 S; 26 R; 33 F; 42 K; 50 K; 53 

T; 55 N; 73 L; 74 P; 77 D; 78 A; 81 I; 82 

G; 85 L; 86 Q; 87 I; 90 E; 95 V; 96 E; 99 

F; 100 V; 101 H; 102 L; 104 F; 106 C; 

107 E; 109 K; 110 P; 112 H; 114 V; 116 

S; 121 S; 122 K; 123 P; 126 K; 127 F; 162 

T;  

PhAeBC5_4284.2 PhMu2_5340 

PhRa5_11783 PhMu2_31112 

10050* 472 S; 666 S; 709 G; 710 S; 763 F; 

PhAeBC5_14056.1 OrMi2_39134 

OrMi2_14052 

10143* 521 H; 599 G; 

PhAeBC5_1584.1 PhAeBC5_3740.1 11437* 1201 Y; 1242 E; 1287 T; 1417 A; 1637 G; 

PhAeBC5_1584.1 OrCa3_3600 

PhRa5_1522 PhMu2_40952 

13512* 367 R; 479 C; 480 R; 497 S;  520 S; 533 

F; 536 E; 547 L; 768 G; 831 N; 844 N; 

886 E; 1005 P; 1107 Y; 1129 L; 1174 K; 

1391 S; 

PhAeBC5_654.1 PhRa5_6642 18709* 664 C; 676 Y; 710 K; 715 S; 724 R; 

NA indicates no adaptive sites were identified. “*” after each orthogroup indicates presence of adaptive sites were identified only in 

parasitic lineages, not in a nonparasitic genome, such as Mimulus. 

3.2.7 Adjacent HGTs in two Striga species5 

 While we were seeking genomic evidence for HGT transgenes (StHeBC3_16619.1, 

orthogroup 14233), we identified another contig (StHeGnB1_80049, orthogroup 14624) as a high 

confidence HGT transgene. The latter is located 5’ upstream of the former on the same genomic 

contig (Figure 3-8). Both of these two HGT events showed a transfer from Sorghum to two 

parasitic Striga species, S. hermonthica and S. gesnerioidie (Figure 3-8A1 and Figure 3-8A2). As 

the monophelytic HGT clade doesn’t include S. asiatica, it suggests that these two events 

                                                        
5 This section is not present in the submitted HGT manuscript. 
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occurred in the ancestor of S. hermonthica and S. gesneroidie. Interestingly, each of these two 

orthogroups represents a monocot-specific gene family that lacked genes from any eudicot taxon. 

A further BLASTX analyses against NCBI non-redundant (nr) databases revealed that 

StHeGnB1_80049 has 90% similarity at the amino acid level and 91% at the nucleotide level 

with a Sorghum bicolor gene (SORBIDRAFT_10g026740/ Sb10g026740, top hit from NCBI 

Blast results). BTB superfamily domain was identified with the predicted peptide sequence and 

functional annotations of its homologs in monocots are speckle-type POZ protein, the ortholog of 

which in Arabidopsis encodes a disease resistance protein. In contrast, the best hit of 

StHeBC3_16619.1 is a hypothetical protein of unknown function in Setaria italica (sequence ID: 

XP_004978140.1) with 43% identity at the amino acid level.  

 Our sequence comparison analyses revealed a likelihood of genomic integration. For 

StHeGnB1_80049, both the donor (Sorghum bicolor - SORBIDRAFT_10g026740) and the 

recipient lacked introns; however, a TATA Box was identified upstream of HGT transgene 

StHeGnB1_80049. Interestingly, high DNA sequence similarity up to 88.54% between the Striga 

gene and the host genomic sequence was also extended to a 300 bp-long intergenic region of 

these two Striga transgenes (Figure 3-8C – light and dark yellow region between the recipient and 

donor). This showed the transfer likely happened on the genomic level. As low coverage DNA-

Seq failed to cover the coding sequences for StHeBC3_16619.1, we were unable to carry out the 

same analysis to infer the transfer mechanism. In conclusion, this example revealed two adjacent 

recipient genes from two different donor positions in the host genome.  

 Another example shows HGTs were derived from two adjacent genes in the donor 

genome. In the same orthogroup 14233, the Striga asiatica ortholog of StHeBC3_16619.1, 

gnl_Stras_v1.02_SGA1.0.scaffold994G00050, was placed within grass clade, supporting an HGT 

origin. The best NR hit of the S. asiatica gene in orthogroup 14233 is from Setaria italica, the 

same donor as the S. hermonthica gene StHeBC3_16619.1. To examine if all the HGT genes in 
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this orthogroup were the result of one transfer, we constrained the five sequences to form a 

monophyletic clade. The constrained tree with SH test proved to be significantly worse than the 

original tree (Figure 3-8A2) with P-value less than 0.01, suggesting two independent transfers, 

instead of one single transfer that happened in the ancestor of all three Striga species. 

Interestingly, another HGT gene in S. asiatica encoding an unknown protein from Satoko et al 

2016 had a best NR hit also from Setaria italica. BLASTN analyses of the Striga asiatica HGT 

genes into the Setaria italica genome revealed their donor sequences being adjacent to each other 

in chromosome 3 of the Setaria italica genome. The analyses showed that the unknown Striga 

asiatica HGT gene of orthogroup 14233 had homology with four genes in the donor genome - 

two genes in the donor genome are next to each other in chromosome 3, the other two are next to 

each other in chromosome 2 (Figure 3-8 A2 and C). Amino acid and DNA identity between the 

donor and recipient sequences are as high as 80.4% and 91.7%, respectively (Figure 3-8 A2 and 

C). The unknown gene phylogeny of Figure 3-8 A3 revealed four HGT genes in Striga asiatica, 

one in Striga hermonthica, and one in Striga gesneroides, suggesting the transfer happened in the 

ancestor of Striga genera from Setaria italica. These four genes are primarily homologous to 

Setaria italica gene Si021037m.g of chromosome 3, downstream of the donor genes of the Striga 

asiatica gene in orthogroup 14233. Indeed, the detailed BLASTN analyses showed that two HGT 

genes in Figure 6-8 A3 were chimeric HGT sequences showing homologies with two genes in 

chromosome 3 and chromosome 2 of the donor Setaria italica genome. The chimeric origin of the 

two Striga asiatica genes – both in red and yellow color, indicated a possible gene conversion 

event involved in the horizontal gene transfer events. The amino acid and DNA identity between 

the unknown gene in Figure 3-8 A3 and the donor genes are 61.8% and 91%. In both Figure 3-8 

A2 and A3 cases, the donor and recipient genes show presence of introns, indicating a likelihood 

of genomic transfers (orthogroup 14233, Si029853m.g and 

gnl_Stras_v1.02_SGA1.0.scaffold994G00050 both have intron sequence, the unknown gene in 
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Figure 3-8 A3 gene in both Striga asiatica and Setaria italica gene have multiple introns). In 

conclusion, this piece of analyses revealed another scenario of two adjacent donor genes in the 

HGT history, whereas the recipient sequences are not adjacent.  

 
Figure 3-8. RAxML-based ML trees and comparisons of HGT genes between parasite and its 

donor supporting two HGTs being adjacent in the recipient genome (A1, A2, B) and donor 

genome (A3 and C). ML trees of two orthogroups (14624 and 14233) support two HGT events 

likely to have occurred from grasses to an ancestor of Striga hermonthica and Striga gesneroides. 

HGT clades are highlighted in yellow and with “H”. (C), Two Striga hermonthica genes are 

located adjacent to each other on the same genomic contig (136486) in Striga genome. The 

comparison with BLASTN shows that these two genes (StHeGn_8049 and StHeBC3_16619.1) 

have homologies with two genes located on two different chromosomes in Sorghum bicolor 

(Sb10g026740 on chromosome 10 and Sb04g004000 on chromosome 4). StHeGn_80049 not 

only has homology with its donor sequence (Sb10g026740) in the genic region (lighter and dark 

red), but also in the right flanking region (light orange). 29 kb downstream of the Sb10g026740 is 

gene Sb10g026792 of 2.2 kb encoding a MULE-transposase (yellow). The downstream gene 

StHeBC3_16619.1 is an ortholog of gnl_Stras_v1.02_SGA1.0.scaffold994G00050 in the S. 

asiatica genome (A2), which together with the four genes in (A3) represent HGTs of adjacent 

genes in the donor genome. The S. asiatica gene in A2 is syntenic to four donor genes in Setaria 
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genome. Another gene family containing four S. asiatica genes is syntenic to two genes in Setaria 

genome. Two Setaria donor genes for the unknown gene in A2 are upstream of one donor gene 

encoding Alanine tRNA-synthetase of A3. Two of the S. asiatica genes in the recipient genome 

are chimeras, with contributions from two donor genes located in chromosome 2 and 3 of the 

Setaria genome. The HGT genes in the donor-recipient genome comparisons are marked with a 

blue arrow in phylogenies and syntenic comparisons. 

3.2.8 Absence of transfers from parasitic plants to their hosts6 

As intimate contact between the parasite and host is one mechanism for HGT, we also 

expect to observe transfers in the opposite direction – from parasite to host. Using a similar 

screening approach, we screened on phylogenetic trees to look for orthogroups in which the host 

sequences (rosid and monocot clades) strongly group within the parasitic clades. The initial 

screening yielded a total number of 35 orthogroup trees (17 in rosids and 18 in monocots), none 

of which made it through secondary careful validation. In fact, most of them were artifacts from 

lack of taxon sampling, and frame-shift errors (Figure 3-9), a feature of which is presence of a 

long-branch on the phylogenetic tree. Orthogroup 3542 shows a Vitis sequence 

(gnl_Vitvi12X_PACid_17832271) groups with Orobanchaceae clade with a long branch. Manual 

examination of the peptide alignment revealed frame-shift errors in two sequences 

(LiPhGnB2_1399.1 and OrAeBC5_1982.1), the frame-shift correction of which resulted in a 

vertical placement of the Vitis gene (Figure 3-9 (A) and (B)). In orthogroup 8060, a Carica 

papaya sequence (gnl_Carpa1.181_PACid_16424322) was nested within a parasitic clade with 68 

BS value, suggesting a parasite-to-host HGT (Figure 3-9 (C)). However, the C. papaya gene 

exhibited a long branch, which later proved to be caused by a frame-shift error (Figure 3-9 (D)). 
                                                        
6 This section is also excluded from the HGT manuscript due to limited space. 
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In other cases, increase in taxon sampling by adding more taxa in the donor clades all refuted the 

remaining parasite-to-host HGTs, either belonging to the case host-to-parasite transfers, or 

became vertical transmitted genes. In a nutshell, we have not identified a single transfer from 

parasitic Orobanchaceae to hosts. 

 

 

Figure 3-9. Falsely identified parasite-to-host HGTs due to frame-shift errors. (A) and (C), 

RAxML-based ML trees of two orthogroups, orthogroup 3542 (A) and orthogroup 8060 (C), 

indicating possible HGTs from parasite to host as one rosid sequences (in red) of each tree is 
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nested within the parasitic clade. (B) and (D), RAxML trees of the same gene set in (A) and (C) 

respectively, except the aberrant sequences were fixed by correcting frame-shift errors at the 

region from which bad alignment started to occur.  “H” and blue arrow pointed to the sequence 

identified to have undergone HGT from host to parasite. Blue arrows also point to sequences that 

had frame-shift errors. After frame-shift error correction in either the parasite sequences (A and 

B) or host sequence (C and D), the host “HGT” sequence became vertical (V). 

3.3 Discussion 

3.3.1 A stringent and robust phylogenomic approach for HGT identification 

Our analyses with explicit phylogenetic schema and stringent evaluation by the use of 

increased taxon sampling represent a novel and robust approach for HGT identification as it 

includes two of the published high-confidence HGT cases (Yoshida et al. 2010; Zhang et al. 

2013a). In addition, these 42 orthogroups include five orthogroups encoding transposable 

elements (TEs), which is consistent their invasive nature and their representation of HGT events 

in the recently sequenced genome of Striga asiatica. Three of them containing genes with 

abundant expression in haustorial tissues (orthogroup 5002, 14230, 15149) suggests a likely 

active role in parasites. This approach represents the first study of the use of a stringent and 

robust assessment for HGT identification at the genomic level in the plant kingdom. We believe 

that this approach has the potential for application in a large number of studies of other species. 
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3.3.2 Reasons for increased HGT with increase heterotrophic dependence 

We observed a clear pattern of a gradually increased number of HGT events from the 

hemiparasitic facultative T. versicolor, to hemiparasitic obligate S. hermonthica, to the 

holoparasitic obligate P. aegyptiaca. Several factors could account for the increasing number of 

HGTs in parasites with increased host dependence. First, the lifestyle of the obligate parasites 

results in a shorter distance between host tissues at the parasite-host interface and the germline 

cells, increasing the chance that genomic fragments will be integrated into the genome and passed 

to offspring. The seedlings of the obligate parasites, which require host plant induced germination 

stimulation, are in contact with host plants from a very young developmental stage, thus 

increasing the chances that undifferentiated cells will experience HGT events (Huang 

2013).There is also clear evidence for phloem connections between host and P. aegyptiaca (Aly 

et al. 2011), allowing for more HGTs along with the genetic exchange of nucleic acids via 

phloem (Kim et al. 2014). Finally, haustoria have a high metabolic rate associated with loading 

host nutrients (Visser et al. 1984; Pielach et al. 2014) and HGTs related to transcription and 

translation are highly expressed in this novel plant organ (Table 3-2). This increased host 

dependence and high metabolic flux may create a positive feedback loop where mobile nucleic 

acids are transferred to the parasite at a greater rate as a consequence of increased acquisition of 

host resources. 

3.3.3 A proposed adaptive role of HGT in parasitic plants 

 Adaptive roles for HGT have been indicated in many lineages. Notably in bacteria, HGT 

has significant impact in adaptation to ecological niches due to the frequent cases of HGT from 

transformation, conjugation, etc. In eukaryotes, only a few examples have been reported to 
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suggest HGT with an adaptive role. In plants, the efforts were previously focused on the 

identification of HGT events. With the increasing numbers being discovered, we were able to 

determine if there is a pattern for the potential role of HGT in parasitic plants.   

Our analyses of an interface-specific expression forming a clear cluster in the parasitic P. 

aegyptiaca, suggests that HGT may play an adaptive role for parasitic plants.  Previously reported 

cases of HGT in parasites or pathogens primarily encoded cell wall-degrading enzymes of plants 

(Keeling 2009) and thus are implicated in host invasion. Surprisingly, no such proteins were 

identified in our HGT search. Instead, a number of proteins involved in cell wall modification 

processes were attributed to gene duplications that happened in the ancestor of all parasitic 

lineages of Orobanchaceae (Yang et al. 2015). Events leading to the origin of parasitism should 

occur in an ancestor of parasites. Our HGT phylogenies, however, supported predominantly 

recent occurrences that were unique to individual genera. Therefore, gene duplications may 

precede and underpin the origin of parasitism, while HGTs contributed to further transition to an 

increased heterotrophic dependence. 

3.3.4 Genomic integration, functional inference, the tip of an iceberg 

 We found strong evidence supporting genomic integration for vast majority of the 

transfers in transcriptomes of three parasites. Only one event was indicative of an RNA-mediated 

event as the donor has two introns, whereas the recipient has no introns. Notably, our evidence 

from intron phylogenies provides stronger support for the mechanism of genome integration. 

Compared to mRNA-mediated transfers, genomic integration is more likely to result in genes 

with promoters that drive their active transcription. We proposed that a predominant genomic 

integration may account for the transcribed HGT sequences and it is likely that these 42 HGT 
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families just represented the tip of the iceberg. The sequencing of the genome in the near future 

should reveal more HGTs, many of which degrade with time and evolve as pseudogenes. 

3.3.5 HGT hotspot and possible transfer mechanisms 

Comparisons of the HGT CDS with the genomic sequences reveal two adjacent HGT 

genes in S. hermonthica genome. The nonadjacent positions of the donor genes in the Sorghum 

bicolor genome and the much lower sequence similarity between the downstream HGT recipient 

and donor gene indicate two separate transfers of Striga hermonthica genes from the donor 

Sorghum bicolor genome. Another example involves a Striga asiatica ortholog of the 

downstream Striga hermonthica gene, the donor sequence of which is adjacent to the donor 

sequence of a second S. asiatica gene (encoding an unknown protein), supporting two transfers 

from two adjacent genes in the donor Setaria italica genome. In Escherichia coli, evidence 

indicates that operons are more likely to be fixed than individual genes following HGT due to 

coregulation (Koonin and Wolf 2008). Future evidence of more expression data for the 

StHeGnB1_80049 may show whether they show similar expression indicating co-expression, 

which might be indicative of the mechanisms facilitating their survival in the genome. In the 

second case, the HGT donor genes are adjacent to each other in the genome but the different 

locations in the recipient genome and the different levels of similarity with donor sequences are 

more likely to infer two separate transfers as well.  

The two transfers involving adjacent donor or recipient genes indicate a likelihood of a 

HGT hotspot. The recurrent independent horizontal transfers in two related Striga species – two 

orthologous HGT genes in S. asiatica and S.  hermonthica in orthogroup 14233, may indicate a 

potentially functional role for this gene. Despite relatively little evidence supporting function, the 

annotation of this orthogroup based on sequence similarity supports an unknown protein, and the 
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expression of StHeBC3_16619.1 shows a shoot specific expression pattern. Interestingly, the S. 

hermonthica alanine tRNA-synthetase gene StHeBC3_11540.2 shows highest expression in 

interface tissues, a similar pattern to tRNA synthetase genes with abundant haustorial and 

interface expression in P. aegyptiaca. The fact that particular regions show higher frequency of 

transfer than other regions in the genome may indicate a potential role for HGT as an adaptive 

strategy for parasitic plants.  

TE could act as one mechanism of HGT -- especially in bacteria such mechanism has 

supported the transfer of adjacent DNA upstream of transposase genes (Toleman, et al. 2006). A 

previous bacteria-derived hydrolase in an insect pest of coffee revealed the HGT gene being 

flanked by two transposase genes (Acuna et al. 2012). To examine if a similar mechanism was 

also involved in plant horizontal gene transfer, we looked for evidence of transposases in the 

surrounding regions of the HGT genes in the donor genome. Only in the case of 

StHeGnB1_80049 (Figure 3-8 B), we identified a transposase located 29.4 kb downstream of the 

HGT donor gene in Sorhgum bicolor genome (other cases are much farther apart). With such a 

long distance between the HGT gene and TE in the donor genome, TE is unlikely to mediate gene 

transfer; we thus propose TEs may reside in the recipient genomes or a different mechanism may 

be involved in transferring eukaryotic genes. Future efforts that leverage whole genome 

sequencing of S. hermonthica and P. aegyptiaca could elucidate whether the neighboring regions 

of the adjacent HGT sequences contain sequences such as TEs or recombination hotspots that 

facilitated the HGT events.  

3.3.6 Conclusions 

In this study, we developed a phylogenomic-based pipeline that parsed large-scale 

phylogenetic trees for preliminary HGT identification, followed by careful validation with further 
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analyses and increased taxon sampling. Our criteria for HGT identification requires the focal gene 

to be nested within donor clades and supported by two strong nodes, instead of just being a sister 

of the donor sequence.  This proves to be stringent, but also robust to the challenges of genome 

scale HGT discovery - we identified 52 high confidence HGT events in three parasites in 

Orobanchaceae. Our analyses of intron sequences and structure support genomic fragment 

integration of HGTs, with only one transposon family supporting an RNA-mediated 

retroprocessing event. Although unexpected, considering the well documented mRNA transfer 

that occurs between the parasite and host, we hypothesize that transfers of genomic fragments 

will more often result in functional transfers than mRNA because genomic regions can contain 

intact promoters that may be recognized by the recipient plant species.  Cross-species promoter 

recognition is common in experimental transformation studies (Atkinson and Halfon 2014; Oo, et 

al. 2014), even among very distantly related plant species (Xu, et al. 2014).  Furthermore, because 

promoters from other eudicots may be more recognizable than promoters of Poaceae (if it 

involves enhancers), it could also help to explain why fewer functional transfers are observed in 

grass-feeding Striga species. These hypotheses could be tested experimentally by comparing the 

capacity of Orobanchaceae to recognize and transcribe sequences with foreign promoters (from 

other eudicots, from monocots) versus the likelihood of substantial transcription of a randomly 

inserted cDNA.  

Functional roles conferred by these HGT genes, for the first time, identified HGT as a 

mechanism contributing to the adaptive evolution of parasitic plants. Our methods likely have 

underestimated the number of HGT gene because (i) the phylogenomic-approach in this study 

relies on an farily complete and accurate construction of gene family phylogenies, (ii) large and 

complex gene families are not amenable to this approach, and (iii) we restricted our search of 

donor lineages to distantly related monocot and rosid groups for enhanced signal to noise ratio. 
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With the increasing availability of genome sequences and other genomic scale data, along with 

increasingly rigorous standards for discovery, many more examples of true HGT are likely to be 

revealed.  

3.4 Materials and methods 

3.4.1 Removal of contamination 

Sequences were cleaned by removing non-plant transcripts and host plant transcripts 

(Medicago or Zea for Triphysaria, Sorghum for Striga, and Arabidopsis for Phelipanche; 

(Westwood et al. 2010)) with BLASTN (E-value of 1e-10). 

 

3.4.2 Phylogenomic reconstruction of parasite gene trees 

Open reading frames (ORF) and protein sequences encoded by assembled transcripts 

were predicted with ESTScan version 2.0 (Iseli et al. 1999). 586,228 protein coding gene of 22 

representatives of sequenced land plant genomes were classified into 53,136 orthogroups using 

OrthoMCL (Li, et al. 2003). The selected taxa includes nine rosids (Arabidopsis thaliana, 

Thellungiella parvula, Carica papaya, Theobroma cacao, Populus trichocarpa, Fragaria vesca, 

Glycine max, Medicago truncatula, Vitis vinifera), three asterids (Solanum lycopersicum, 

Solanum tuberosum, Mimulus guttatus), two basal eudicots (Nelumbo nucifera, Aquilegia 

coerulea), five monocots (Oryza sativa, Brachypodium distachyon, Sorghum bicolor, Musa 

acuminate, Phoenix dactylifera), one basal angiosperm (Amborella trichopoda) (Project 2013), 
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one lycophyte (Selaginella moellendorffii), and one moss (Physcomitrella patens). Unigenes from 

Lindenbergia, Triphysaria, Striga, Phelipanche, and two Asteraceae species, Lactuca sativa and 

Helianthus annuus, were assigned into the 22-genome orthogroup classifications by BLASTP 

(Altschul, et al. 1997) with E-value ≤1e-5 and HMM (Eddy 2011c). This resulted in 13,125 

orthogroup phylogenetic trees containing at least one parasitic species in the phylogeny. 

Procedure used to generate orthogroup phylogenies, annotation, and expression quantification 

followed the same approach as Yang et al. (Yang et al. 2015). 

3.4.3 HGT screening on phylogenetic trees 

Customized Python scripts were developed to screen incongruent phylogenies. The 

python script utilized the tree-parsing functions available in the ete2 libraries (Huerta-Cepas, et 

al. 2010) to traverse one node at a time and extracted members of each node. To decrease the 

false positive rate for HGT discovery, the script searched for donors in distantly related rosid and 

monocot groups. Ancestral node was determined when traversing to a node whose left and right 

branches were exclusively composed of parasite and donor sequences. The script then examined 

all the inner nodes within the ancestral node for bootstrap support (BS) values that support the 

grouping of parasite and donor sequences. Three models of topology (Figure 3-1) represent HGTs 

with decreasing degrees of confidence. The script reported orthogroups that match any of them. 

After the automated screening, the HGT candidate orthogroups were further classified into three 

categories: low-confidence, medium-confidence, and high-confidence trees. The classifying 

criterion was based on a scoring scheme considering whether the donor clade contained at least 

two donor sequences, bootstrap values supporting the grouping of the parasite gene and donor 

sequences, and presence of long-branch clades. Each of these three factors was assigned a score, 

and the summed score indicates the confidence level of the HGT events and dictated the grouping 



 

 112 

of each category (Table 3-1).  The medium and high-confidence orthogroup trees were then 

examined carefully for possible sources of errors including contamination, long-branch 

attractions, and insufficient taxon sampling. Frame-shift errors were fixed by manually 

introducing 1-2 bp into sequences that caused long branches. 

3.4.4 HGT validation by increased taxon sampling 

For HGT validation, we added more taxa from related species, including five sequenced 

asterid genomes and 10 transcriptomes from 1kp in the Lamiales order (Matasci et al. 2014).  The 

genomes include: Beta vulgaris (beet), Actinidia chinensis (kiwifruit), Utricularia gibba, 

Sesamum indicum, and Striga asiatica (parasite in Orobanchaceae). The transcriptomes include: 

Strobilanthes dyeriana (Acanthaceae), Mansoa alliacea (Bignoniaceae), Sinningia tuberosa 

(Gesneriaceae), Salvia spp. (Lamiaceae), Olea europaea (Oleaceae), Epifagus virginiana  

(Orobanchaceae), Paulownia fargesii (Paulowniaceae), Antirrhinum majus (Plantaginaceae), 

Rehmannia glutinosa (Rehmannia), and Verbena hastata (Verbenaceae). Also, we added genes 

from eight additional parasite transcriptomes in the family of Orobanchaceae: Alectra vogelii, 

Orobanche californica, Orobanche minor, Phelipanche mutelii, Phelipanche ramosa, Striga 

gesneroides, Triphysaria eriantha, and Triphysaria pusilla. To make sure that all the HGTs were 

captured from these added taxa, we used HMM approach (Eddy 2011b) (hmmsearch with 1e-5). 

For lineage-specific HGT orthogroups, a superorthogroup tree was constructed to ensure the 

inclusion of all homologous sequences. 
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3.4.5 Intron analyses 

Intron positions were extracted to examine if they were conserved in multiple sequence 

alignment (MSA). For each orthogroup, the peptide sequences were aligned using MAFFT 

version 7 (Katoh and Standley 2013b), which were then forced onto coding sequences (CDS) to 

generate the CDS alignment. A customized Perl script was used to extract the intron positions in 

each coding sequence, and the corresponding positions were mapped onto the CDS alignment. 

For transcripts in the Orobanchaceae species, we used the genomic sequences from Triphysaria 

versicolor, Striga hermonthica, and Phelipanche aegyptiaca. Coding sequence was predicted for 

each transcript using ESTScan (Iseli et al. 1999), and was then aligned to genomic sequences 

using BLASTN with E-value cutoff of 1e-05. Manual curation was performed for each CDS-

genomic DNA alignment to make sure introns start with GT, and end with AG. To extract intron 

sequences for each gene from sequenced plant genomes, we used the gff file for the intron 

regions of each gene. Intron sequences of genes in sequenced genomes were extracted from 

genomic sequence in Phytozome 10 (Goodstein et al. 2012) using samtools (Li, et al. 2009) and 

betools (index command “samtools faidx”, fastaFromBed in bedtools (Quinlan and Hall 2010) 

was used by indicating the reference genome fasta using “-fi” and the gff file using “-bed”, which 

generated an output file using “-fo”). Intron sequences for parasite genes were obtained by 

blasting the coding sequence onto genomic sequences. For intron phylogenies, introns were 

concatenated to increase the number of informative sites for tree reconstruction with the same 

approach as building the tree of CDS.  
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3.4.6 Genome assembly of three parasites 

Genomic DNA sequencing data (Illumina data for T. versicolor, S. hermonthica and P. 

aegyptiaca) was de novo assembled using CLC Assembly Cell v 4.1 

(http://www.clcbio.com/products/clc-assembly-cell/):  

“novo_assemble -o contigs.fasta -p fb ss 180 250 -q -i reads1.fq reads2.fq”. 

3.4.7 Estimation of number of transfers  

We utilized a Shimodaira-Hasegawa (SH) test (Shimodaira and Hasegawa 1999) to 

estimate the number of transfer events from 42 HGT orthogroup trees. Trees in which HGT genes 

didn’t form a monophyletic clade were constrained to represent one event, and a RAxML tree 

with constrained HGT clade (indicated by parameter “-g” in RAxML) was produced. An SH test 

was performed in RAxML version 7.2.7 (Stamatakis 2006) to test if the constrained tree was 

significantly worse than the original tree. The SH test was executed with parameters “- t” 

followed by original tree and “-z” followed by the constrained tree. The ouput of the test returned 

the likelihood values and significance level at 0.05, 0.02, and 0.01. Significance result from the 

test supports more than one transfer, whereas insignificance indicates one transfer event.  
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Chapter 47 
 

Conclusions and future directions 

                                                        
7 Make sure you read the appendix chapter 2 before reading this chapter. 
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4.1 Conclusions 

 Using the comparative transcriptome analyses of three related parasitic plants within 

Orobanchaceae, we have identified a list of candidate parasitism genes that are important to 

haustorial initiation and development. Haustorium development involves a group of cell wall 

modification enzymes such as pectate lyase likely to establish vascular connections with the 

host, and a group of proteolytic enzymes likely to be involved in nutrient mobilization. The 

specific functions of these genes are under characterization, and may reveal how these genes 

contribute to the invasion and attachment processes. Gene duplication and neofunctionalization 

constitute two major evolutionary processes resulting in genes that are key to a parasitic 

transition. Haustorium development also involves the co-option of genes known to function in 

root and flower development. Horizontal gene transfer (HGT) represents another “signature” 

process of parasitic plants. More than 52 horizontal transfer events were detected, often from 

known host plant lineages, and with an increasing number of HGT events in species with the 

greatest parasitic dependence. Analyses of intron sequences in putative donor and recipient 

lineages provide evidence for integration of genomic fragments, which may carry along 

regulatory elements that increase the likelihood of functional transfers. HGT acquired genes are 

preferentially expressed in the haustorium - the novel organ of parasitic plants - indicating 

products of horizontally acquired genes are also contributing to the unique adaptive feeding 

structure of parasitic plants.

4.2 Future directions 

4.2.1 Studies based on experimental characterization 

 One of the primary goals of research on parasitic plants is to ultimately reduce their 

harm to crop plants. Using a transcriptome approach, our study identified a list of candidate 

genes, including cell-wall degradation enzymes, defense-related genes, proteases, etc (Yang et 

al. 2015). Establishing a feasible system to characterize their role in parasitic plants is 
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challenging and could benefit from opinions of experts from each field. There are a few current 

research directions that have been initiated but involve challenges and thus may need 

collaborative work. (i) The upregulated genes in haustorial tissues include cell wall modifying 

enzymes, such as expansins, pectate lyases, pectin methylesterase inhibitors (Yang et al. 2015). 

Studies revealed presence of cell-wall degrading enzymes including cellulose, 

polygalacturonase, xylanase and protease in haustoria of P. aegyptiaca (Singh and Singh 1993a). 

Immunocytochemical studies with specific antibodies show direct involvement of pectin 

methylesterase at the penetration site (Losner-Goshen et al. 1998), implicating a role in 

establishing a vascular connection with the host conducting tissues. The haustorial interface has 

one side that faces inside towards the parasite invading peg, and the other side that faces the host 

cells. How the parasites can degrade the cell walls of the host side without degrading the cell 

walls of its own side is worth further investigation. The use of in-situ studies and some 

microscopy technologies should allow a better understanding of this question. Current RNAi 

knock-out studies are underway; however, the study of possible phenotype in this process 

remains challenging. (ii) Transcriptome studies of three parasites revealed NBS-LRR disease 

resistance genes upregulated in haustorial stages (Yang et al. 2015). Considering the similarity 

of plant defense mechanisms between parasitic plants and their hosts, how they regulate host 

resistance is unclear. It is unknown if this gene acts to mimic host defense to evade the host 

immune attack or it acts as a counter-defense response. Future experiments may overexpress 

host R genes in parasites and see if that would result in enhanced parasitism on host. The 

knowledge of plant-fungal pathogenic interactions may also be applied in understanding the 

disease resistance mechanisms between parasitic plants and their hosts. In particular, the 

isolation of susceptible and resistant host lines in the field may be a good entry point. (iii) 

Current technology used in gene characterization used in the lab is primarily RNAi on hairy 

roots (composite roots) (Bandaranayake et al. 2010). CRISPR-Cas9 has advantages over RNAi 

in genome editing (Sander and Joung 2014) instead of post-transcriptional regulation. Both 

however, rely on an established transformation system. The development of transformation 

systems may need continuous efforts. Alternatively, host-induced gene silencing (HIGS) 

represents a unique strategy that can be applied on parasite-host interactions considering the 

movement of small RNA (Alakonya et al. 2012), mRNA (Kim et al. 2014), and big molecules 

up to 70kDa (Aly et al. 2011) from host to parasite. Currently, HIGS with RNAi has achieved 

success in Triphysaria versicolor (Tomilov et al. 2008), Phelipanche aegyptiaca (Aly et al. 

2009), Cuscuta pentagona (Alakonya et al. 2012), however, the use of HIGS with CRISPR-Cas9 
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has not been attempted. CRISPR-Cas9 also has its advantage in targeting multiple genes (Xie, et 

al. 2015), so it may have potential to be applied in parasitic plants for gene characterization. (iv) 

Current research progress on parasitic plants has allowed a better understanding of parasitism, 

which mainly has contributions from three processes: 1) host-induced seed germination, 2) 

haustorium initiation, and 3) haustorial development. All three processes involve the interaction 

between parasites and hosts. Investigation of the haustorium initiation process has achieved 

much success mainly because hairy root mutants with defects in haustorial hairs are easy to 

assay. In terms of seed germination, facultative parasites (Triphysaria) can germinate without 

stimulation from a host (Westwood et al. 2010), whereas obligate parasite Striga and 

Phelipanche have to rely on host strigolactone (SL) signal for seed germination (Hauck, et al. 

1992; Bouwmeester, et al. 2003; Yoneyama, et al. 2010). This has been shown to attribute to 

external SL receptors, represented by three publications in Science of last year (2015) (Conn, et 

al. 2015; Toh, et al. 2015; Tsuchiya, et al. 2015).  The research revealed the diversification of 

KAI2 (a karrikin receptor) in parasitic Striga, followed by divergent evolution, finally resulting 

in neofunctionalization as a SL receptor. Despite this progress, many more questions have not 

been resolved in this process. For instance, plant seed germination is regulated by several 

hormones such as gibberellin acid (GA) (Peng and Harberd 2002), but how SL signaling 

interacts with GA signaling in parasitic plants has been unclear. Also, it is unknown whether this 

process is related to host preference. S. hermonthica and S. asiatica are known as grass 

specialists (Musselman 1980); whether specific host recognition is regulated at the stage of 

interaction between host-derived SL and Striga SL receptors requires additional work.  The 

future work on parasitic plants should be able to differentiate which process of the three 

(germination, haustorium initiation, haustorial development) is involved in parasite-host 

resistance. 

4.2.2 Reveal genetic mechanisms underlying physiological differences of three parasites 

with comparative transcriptome analyses (PPGP2) 

 A second future research direction is inspired by the differences in physiologies among 

the three parasitic plants. It is worthwhile to investigate how comparative transcriptome studies 

allow us to identify the underlying mechanisms that control the differences. This should provide 

insights on how parasites progressively evolve. These insights can benefit parasitic weed 



 

 119 

control. Some questions that may gain insights from comparative transcriptome analyses 

include: (i) It is known that hemiparasitic Striga keep their stomata open when attached to host 

(Jiang et al. 2003), even the host is under severe water stress (Smith and Stewart 1990). This 

ensures that it reduces water potential in the parasite so as to drive the xylem flow from host to 

parasite. It is possible that the ABA receptor is less sensitive - could one clone the gene and 

examine if this is the causal gene? Is it possible to reduce nutrient transfer by increasing water 

potential of the parasitic Striga? In a holoparasite such as Phelipanche (which doesn’t have 

much leaf area to keep open stomata for efficient transpiration), however, xylem flow is thought 

to rely on the accumulation of osmotic compounds such as sugar alcohols (mannitol for 

instance) that decreases the water potential of parasites (Ehleringer and Marshall 1995). 

Previously mannose-6-phosphate receptor (M6PR) (Aly et al. 2009) has been shown to play a 

role in accumulation of mannitol in Phelipanche aegyptiaca. It is possible that hemiparasitic 

Striga and Triphysaria have different M6PR transcription profiles, or have fewer copies 

compared to Phelipanche. The PPGP2 transcriptomes with replicated libraries in each stage of 

the parasites may help us answer this question. This poses another aspect in weed control where 

the nutrient transfer mechanism could also be targeted to shut down nutrient transfer from host 

to parasite. (ii) Obligate holoparasitic Phelipanche (Aly et al. 2011) and Cuscuta (Kim et al. 

2014)(Convolvulaceae of Solanum) can form clear phloem connections with their host, whereas 

hemiparasitic plants often don’t. The focus on phloem formation in Phelipanche and Cuscuta 

may reveal genetic differences between holoparasites and hemiparasites in phloem formation. 

For instance, which transcription factors regulate phloem formation? APL is a phloem identity 

gene, and mutation causes the formation of xylem where phloem is supposed to form (Bonke, et 

al. 2003). It is possible that ectopic expression of APL in haustorial stages cause phloem 

connections with host in Phelipanche, whereas no APL expression is found in haustoria of 

Triphysaria and Striga. SUC2 is a phloem specific plasma membrane sucrose transporter 

(Gottwald, et al. 2000); another sucrose transporter, SUT1 (Slewinski, et al. 2010), is localized 

to the plasma membrane of sieve elements. Both of them are involved in efficient phloem 

loading. Considering much more host-derived carbon uptake of Phelipanche by phloem 

connections that are absent in Striga, and Triphysaria, haustoria upregulated SUC2 and SUT1 

may be absent in Triphysaria and Striga yet retained in Phelipanche. (iii) Both obligate parasitic 

Striga and Phelipanche have to rely on a host for germination. It has been shown that this is 

mediated by a number of SL receptors (more than 10 KAI2d copies) in Striga hermonthica 

(Conn et al. 2015). Two groups both characterize at least 10 SL receptors (KAI2d1, KAI2d2…) 



 

 120 

in Striga hermonthica, and found consistently that these show a wide range of SL sensitivity, 

implicated with a role in sensing host SLs of different concentrations (Toh et al. 2015; Tsuchiya 

et al. 2015).  Phelipanche aegyptiaca, also requires a host for seed germination, however, my 

analyses show it has only three KAI2d gene family members (my analyses): what could be the 

underlying reason? (iv) Parasitic plants need SLs for shoot branching (together with auxin), and 

the canonical SL receptor in non-parasitic Arabidopsis is D14, a paralog of KAI2 (karrikin 

receptor) (Nelson, et al. 2009). D14 is likely to be an internal SL receptor in parasitic plants, as 

phylogenetic history showed that it remains non-duplicated and has quite conserved sequence 

evolution in parasites (Conn et al. 2015). The duplication of KAI2 gave rise to three classes of 

KAI2, conserved KAI2 named as KAI2c, the intermediate KAI2 named as KAI2i, and the 

divergent KAI2d, which are essentially the external SL receptors responding to host SLs for seed 

germination (Conn et al. 2015; Toh et al. 2015; Tsuchiya et al. 2015). How could one 

characterize the role of KAI2c, D14, and KAI2d in parasitic plants in terms of the differentiation 

of internal and external SL signaling? Expression analyses reveal upregulated D14 expression in 

haustoria and interface tissues of all three parasitic plants; does this indicate additional role of 

SL in haustorium development? (v) Developmental stages of Triphysaria are quite similar to an 

autotrophic plant: the development of haustoria comes after the development of root (Westwood 

et al. 2010).  In Striga and Phelipanche, the haustoria occurred much early in development, and 

root (5.1) develops after haustoria; the occurrence of underground shoots (5.2) are also quite 

unique (Westwood et al. 2010). How the development of haustoria affect the development of 

underground roots and shoots is unknown and should attract researchers’ attention.   

4.2.3 Evolution of parasitic plants – phylogenetic inferences of species relationships and 

HGT 

 A third aspect of future directions is regarding the evolution of parasitic plants, 

including (i) The relationship of Triphysaria, Striga, and Phelipanche is still unclear. The 

phylogenetic relationship is important to infer which are the ancestral traits and which are the 

derived traits. Transcriptome sequencing of many species in each genus could help resolve the 

relationship of Orobanchaceae species. (ii) The genome sequence of Striga asiatica revealed two 

whole genome duplication events in addition to the eudicot-wide triplication (gamma) (Jiao et al. 
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2012): one in the common ancestor of Mimulus and Orobanchaceae, the other more recent8. It is 

unknown if the recent duplication occurred in the ancestor of all Orobanchaceae, or is unique to 

Striga asiatica. The genome sequence of future parasitic taxa could reveal this. In particular, the 

genome sequence of Phelipanche should be important to reveal losses of many genes as a fully 

evolved holoparasite, but also may reveal additional genes that it has acquired to make it 

advanced in heterotrophic feeding. (iii) Secondly, dozens of horizontal gene transfer events have 

been revealed in three parasitic plants of Orobanchaceae9. Identification of HGT in other 

parasitic lineages are also needed to indicate if HGT of same genes is repeatedly happening 

across independent parasitic lineages, which may shed light on additional roles of HGT in 

parasite evolution. (iv) Functional characterization of HGT genes is also needed to infer their 

specific roles in parasitic lifestyle. (v) The inference of HGT is currently focused on the 

transcribed genes, and all of the resolvable HGTs point to a transfer mechanism mediated by 

genomic DNA (manuscript in preparation). This suggests that more non-transcribed HGTs such 

as transposable elements (TEs) await discovery with a better genome annotation. (vi) Factors 

that facilitate HGT, and that drive HGT gene expression need further investigation. HGT 

mechanisms could involve TEs (Acuna et al. 2012), or recombination machinery (Lawrence and 

Retchless 2009). The fate of HGT genes can also be revealed with an understanding of all HGTs 

that occurred in parasite history. 

 

	  
 

 
  

                                                        
8 Satoko Yoshida, Seuungill Kim, Eric K Wafula et al. 2015. Genome sequence of Striga asiatica provides 

insight into the evolution of plant parasitism. Nature plant (submitted & revised version under review) 
9 Zhenzhen Yang*, Yeting Zhang*, Eric Wafula, Loren A. Honaas, Paula E. Ralph, Sam Jones, Huiting 

Zhang, Naomi S. Altman, Michael P. Timko, John I. Yoder, James H. Westwood, Claude W. dePamphilis (2016) You 
are what you eat: Horizontal gene transfer is more frequent with increased heterotrophy and may contribute to parasite 
adaptation. Proc. Natl. Acad. Sci. U.S.A. (in preparation) 
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Appendix A 
 

HGT in Striga asiatica10 

  

                                                        
10 I contributed this material for a publication by Yoshida et al. 2016 (Satoko Yoshida, Seuungill Kim, Eric 

K Wafula et al. 2015. Genome sequence of Striga asiatica provides insight into the evolution of plant parasitism. 

Nature plant (submitted & revised version  under review)). 
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A.1 Introduction 

A recently sequenced parasitic plant, Striga asiatica, provides us with opportunities to 

mine for HGT. In contrast to S. hermonthica with estimated genome size of 1.6 G, S. asiatica 

has a fairly small genome of only 400 Mb. Striga asiatica, similar to Striga hermonthica, is a 

grass specialist attached to specifically grasses including maize, rice, and sorghum. 

Two approaches were used to identify HGTs in S. asiatica. First is the phylogenomic 

approach developed for HGT identification in Orobanchaceae, the second is a blast-based 

analyses performed by Yoshida et al 201611. The phylogenomic approach looks for conflicts 

between a well-resolved species tree and a gene tree, and the detailed procedure was the same as 

described in Chapter 3 of this dissertation. A species tree including S. asiatica needs to be 

constructed using a number of single copy genes from a selected group of genomes.  

A.2 Phylogenomic-based approach 

A.2.1 Constructing a species tree using 26 sequenced plant genomes12 

A phylogenetic tree using 613 single copy genes from 26 selected plant genomes places 

S. asiatica in the expected group, a sister of Mimulus guttatus, the most closely related 

sequenced genome in the family of Phymaceae in the Lamiales order (Figure A-1). The 26 

genome include one moss - Physcomitreella patens, one lycophyte - Selaginella moellendorffii, 

one gymnosperm - Pinus teeda, one basal angiosperm – Amborella trichopoda, five grasses – 

Spirodella polyrhiza, Orysa sativa, Sorghum bicolor, Elaeis guineensis, and Musa acuminate, 

two basal eudicots – Aquilegia coerulea and Nulumbo nucifera, 10 rosid genomes – Vitis 

vinifera, Eucalyptus grandis, Medicago truncatula, Phaseolus vulgaris, Prunus persica, Carica 

papaya, Arabidopsis thaliana, Theobroma cacao, Populus trichocarpa, and Manihot esculenta, 

                                                        
11 Satoko Yoshida, Seuungill Kim, Eric K Wafula et al. 2015. Genome sequence of Striga asiatica provides 

insight into the evolution of plant parasitism. Nature plant (submitted). 

12 This section is taken from the submitted Striga asiatica genome paper, analysis of which was performed 
by Eric Wafula.  
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five asterid genomes – Beta vulgaris, Utricularia gibba, Solanum lycopersicum, Mimulus 

guttatus, and Striga asiatica (Figure A-1).  

 
Figure A-1. RAxML-based maximum likelihood species tree for 26 selected genomic taxa. 

Parasitic plant Striga asiatica is highlighted with a grey background. Taxa in other lineages were 

color-coded: black – Physcomitrella (moss), Selaginella (lycophyte), Pinus (gymnosperm), 

green – basal angiosperms, yellow – monocots, purple – basal eudicots, red – rosids, green – 

asterids. 

A.2.2 Phylogenomic screening 

Phylogenomic-based screening of HGT in S. asiatica followed the same schema as 

described in Chapter 3 of this dissertation. At first, 17052 DNA sequence-based phylogenetic 

trees for all the orthogroups (17052 orthogroups) containing protein-coding genes in the 

annotated S. asiatica genome were constructed with the forced CDS alignment using RAxML 
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version 7.2.7 (Stamatakis 2006)13. S. asiatica genes that fit three schema in Figure 3-1 monocot 

or rosid clades were screened as preliminary HGT candidates, which were manually evaluated 

by increased taxon sampling to identify true HGT genes. The script returned six candidate rosid-

derived HGTs (Figure A-2) and two monocot-derived HGTs (Figure A-3). Five of the six rosid-

derived HGTs were found to be artifacts from insufficient taxon sampling as NR-blast analyses 

resulted in the best BLAST from closely related taxa (Nicotiana and Mimulus in orthogroup 103, 

Sesamum in orthogroup 1365 and 2030, Mimulus in 2309, Mimulus and Sesamum in orthogroup 

13763), indicating the phylogenetic pipeline exhibited certain weaknesses from genes missing 

from the genome scaffold that were present in the NR database. Monocot-derived orthogroup 

13948 is also a false positive as top blast hits are all from Mimulus. Orthogroup 205 is likely to 

be a real HGT as top hits are from rosid family, which is consistent with it being placed within 

rosid clades. However, this tree needs extra validation as the S. asiatica sequence encodes only a 

74-AA protein, while homologs in other species are all over 300 AA. A similar case was 

observed in the monocot-derived HGT orthogroup 9369, where blast validation appears to agree 

with tree inference but the encoded protein product is only 58 AA long. Further examination is 

needed to confirm if this is due to contamination or a chimeric sequence assembly. 

                                                        
13 The phylogentic trees were built by Eric Wafula. 
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Figure A-2. Six rosid-derived preliminary HGT trees from phylogenomic screening. HGT clades 

are labeled with “H” and yellow highlighting, vertical clades are labeled with “V” and green 

highlighting. 
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Figure A-3. Two monocot-derived preliminary HGT trees from the phylogenomic screening.  

A.3 Validation of BLAST-predicted HGT 

As a good HGT tree requires correct sampling, careful tree construction, and proper 

rooting, a preliminary HGT tree needs to have several rounds of follow-up analysis to determine 

if there is convincing evidence in support for HGT. Here we present an example of an HGT with 

a preliminary tree and a good HGT tree to reflect such processes. The preliminary tree was an 

original tree without proper rooting and only one strong node (bootstrap support value of 100) 

supports the grouping of two S. asiatica genes as sisters of a Setaria gene (Figure A-4). Because 

our criteria for strong evidences of HGT require the gene from focal taxa to be nested within its 

donor clade, this tree is viewed with some skepticism. To improve the tree, we first extracted the 

sequences and corresponding orthogroup assignment in the 26-genome orthogroup 
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classification. Our orthogroup doesn’t reveal this as an HGT event because it doesn’t contain 

this putative Setaria donor sequence. By adding more homologous sequences from NR into 

orthogroup, we improved the tree significantly. Interestingly, the clade with the Striga HGT 

gene and its donor sequence shows a long branch, indicating its significant divergence from 

genes in other clades. Moreover, we also found this transfer was shared by S. hermonthica and S. 

gesneroides, indicating a transfer likely occurred in an ancestor of the two Striga species (Figure 

A-5). 

Conclusion  The above different set of genes by BLAST and phylogenomic approach 

suggest that BLAST and a phylogenomic approach can be complementary to each other. In their 

BLAST-based approach, the donor search was restricted to grasses, for which they had a rich 

sampling including many grass species. In addition, our phylogenomic-approach was focused on 

protein-coding genes only, whereas their BLAST-based approach involve the whole genome, 

with potential pseudogenes. Many HGTs from host to parasite could finally degrade as 

pseudogenes, especially if they failed to be properly transcribed after transferring into the 

recipient genome such as particular types of transposons. On the other hand, due to the 

computational cost of building large-scale phylogenetic trees, a database composed of a 

predefined number species has to be constructed, which could miss sequences from additional 

donor taxa. All of these suggest the phylogenomic-based approach could identity a different set 

from a BLAST-based approach. In the future HGT identification, a combination of both 

approaches is desirable.  

 

 
Figure A-4. Phylogenetic tree of a horizontally-transferred alanine-tRNA synthetase. The tree 

was drawn by the maximum likelihood method based on JTT-based model. Bootstrap values (%) 

were determined using 100 replicates and are shown for branches with more than 50% bootstrap 
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support. Red branches and red sequences represent S. asiatica HGT sequences, orange “R” 

indicates the rosid genes from strawberry, Medicago, and cucumber, respectively (up to down). 

 

 
Figure A-5. Maximum Likelihood tree of a transcribed gene encoding an unknown protein with 

the forced codon alignment using RAxML. The HGT clade (labeled “H”) identifies a transfer 

from an ancestor of Setaria to a shared ancestor of Striga asiatica, Striga gesnerioides, and 

Striga hermonthica. A vertically-transmitted lineage (“V”) is also identified. The divergent clade 

that involves the horizontal transfer is highlighted with a pink background, and contains 

sequences from diverse grasses annotated as an unknown protein, whereas the remaining genes 

encode an amino-tRNA synthetase. 
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Appendix B 
 

Evolution of strigolactone pathway in parasitic Orobanchaceae14  

                                                        
14 This is an expanded work based on phylogenetic analyses I performed for the Das et al 2015 paper, and 

three additional papers.  
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B.1 Introduction 

B.1.1 Strigolactone-dependent germination of Striga and Phelipanche 

Obligate parasitic plants such as Striga and Phelipanche rely on secondary metabolites 

produced by the host to stimulate seed germination. These metabolites have been shown to be 

the plant hormone strigolactones (SL), carotenoid-derived germination stimulant that also serve 

a vital function in regulation of several other growth processes in plants. In addition, 

germination of Striga and Phelipanche (or Orobanche) spp. seeds require a (pre) conditioning 

step, which involves exposure to suitable moisture and temperature for several days before they 

become responsive to SLs (Bouwmeester et al. 2003). 

B.1.2 Review of strigolactone pathway components and roles 

Strigolactone (SL) was first discovered as root-derived hormone that can induce seed 

germination of parasitic plants (Hauck et al. 1992). Later it was also shown to have other 

primary roles in stimulating hyphae branching of arbuscular mycorrhizal fungi (Akiyama, et al. 

2005) and inhibition of shoot branching (Gomez-Roldan, et al. 2008) . Studies of shoot 

branching mutants whose phenotype was complemented by the application of SL or GR24 (SL 

analog) revealed the identification of a complete catalog of genes in the SL pathway, for 

instance, MAX1 (more axillary growth) in Arabidopsis, which encodes a cytochrome P450 

(Booker, et al. 2005). Orthologs of this gene were also identified in other species – ramosus 

(rms) in pea (Morris, et al. 2001), drawf (d) /high tillering dwarf (htd) in rice (Zhang, van Dijk, 

et al. 2014), and decreased apical dominance (dad) in petunia (Drummond, et al. 2011). Other 

genes involved in SL biosynthesis include AtD27 (Carotene isomerase) (Waters, et al. 2012), 

CCD7 and CCD8 (carotenoid cleavage dioxygenase 7, 8) (Brewer, et al. 2009) and SL 

perception/signaling (AtD14 - α/β-Hydrolase (Chevalier, et al. 2014), MAX2 – an F-box protein 
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(Nelson, et al. 2011a)). Starting with the role of isomerization of β-carotene by D27, followed by 

CCD7 and CCD8 converting carotenoids to carlactone, SL synthesis was completed by MAX1 

which converts β-carlactone to the parent SLs of SL-like compounds. These four enzymes were 

shown sufficient to produce SLs in Nicotiana benthamiana (Beveridge and Kyozuka 2010; Al-

Babili and Bouwmeester 2015). The binding of SL with SL receptor (D14) changes the 

confirmation of D14, which causes its interaction with the F-box protein MAX2, further 

targeting D53 for degradation. Degradation of the negative regulator – D53, instead activates the 

downstream SL signaling (Al-Babili and Bouwmeester 2015). The elucidation of SL pathway 

components also provides further insights on the functional roles of SL in plant growth and 

development. In addition to shoot branching, SLs also regulate primary root length and lateral 

root density, stimulate root hair elongation (Snowden, et al. 2005), inhibit adventitious root 

(Sun, et al. 2014), increase stem thickness by interaction with auxin, and accelerate leaf 

senescence (Al-Babili and Bouwmeester 2015). 

B.1.3 Regulation of SL pathway 

The regulation of the SL pathway is a fine-tuned process involving the induction by 

nutrient status such as nitrogen and phosphorus levels (Bonneau, et al. 2013). In particular, 

phosphorus starvation will stimulate SL production, which presumably acts to stimulate plants to 

establish symbiosis with mycorrhizae by stimulating hyphae branching of arbuscular fungi. In 

addition, the production of SLs is also affected by other plant hormones (Akiyama and Hayashi 

2006). Interaction of SLs with auxin is believed to play a role in regulating shoot branching (Al-

Babili and Bouwmeester 2015). In addition, SLs stimulate parasitic seed germination by 

upregulating genes encoding enzymes involved in degrading ABA, which is known to be 

involved in seed dormancy (Liu, et al. 2013).  

B.1.4 Working hypothesis for SL-mediated germination of parasites 

As obligate parasitic plants, Striga and Phelipanche depend on host signals for 

germination; this suggests that they either have evolved a mechanism to differentiate internal 
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SLs from external SLs, or they have completely lost their SL pathway (Das, et al. 2015). To test 

the latter hypothesis Das et al (2015) investigated the SL pathway genes in parasitic plants, in 

which I contributed to the phylogenetic analyses of each gene. The result showed that these 

parasitic plants have retained all the pathway components, suggesting a still functional SL 

biosynthesis pathway. This also suggested the differentiation between internal and external SL 

recognition, the result of which was supported by at least three groups by investigating the SL 

receptors.  

B.2 Results and discussion 

B.2.1 Conservation of strigolactone biosynthesis genes in parasitic plants 

To test the first hypothesis, we examined each gene in the SL biosynthesis pathway. The 

four genes that are sufficient for the biosynthesis of SLs are D27, CCD7, CCD8, and MAX1. By 

identifying the gene in Arabidopsis, the use of 22 genome orthogroup classifications (Yang et al. 

2015) allowed us to extract orthogroups to which the Arabidopsis gene is assigned. We then 

optimized the orthogroup tree for each gene (Figure B-1). To our surprise, all the parasitic plants 

including the SL-dependent species – Striga and Phelipanche retain these four genes involved in 

SL biosynthesis in full length. In addition, they are expressed in life stages of parasitic plants 

(Das et al. 2015). We then performed selective constraint analyses on all these four genes, and 

two additional genes involved in SL signaling – D14 (SL receptor) and MAX2 (an F-box protein). 

They showed strong purifying selection, and one of the genes - CCD7 exhibited even stronger 

purifying selection than orthologs in the non-parasitic ancestral lineage. These results indicate 

that SL biosynthesis is still retained and functional in parasitic plants, and still evolving under 

strong purifying selection. SLs are primarily produced in root, and consistently, SL biosynthesis 

genes CCD7, CCD8, and D27 primarily express in underground roots (Das et al. 2015). SL 

receptor, KAI2, is predominantly expressed in above ground shoots and inflorescences (Das et al. 

2015), implicating a canonical role of SLs in shoot branching. This clearly suggests that SL 

biosynthesis and perception are essential in the parasite and are likely to be involved in plant 

growth and development such as shoot branching, as they are in nonparasitic plants. Additionally, 
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it suggests that losing the SL pathway is not the mechanism that parasites rely on to be able to 

distinguish host SL signals for germination.  This implies an alternative hypothesis – parasitic 

plants must have evolved mechanisms to differentiate internal and external SL signals.  

 

Figure B-1. RAxML-based maximum likelihood trees for four SL biosynthesis genes – CCD7, 

CCD8, D27, and MAX1 (Das et al. 2015). Genes in SL-dependent species – Striga and 
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Phelipanche are highlighted in blue, in Triphysaria, Lindenbergia, and Mimulus are highlighted 

in green. 

B.2.2 Review of SL receptor diversification in parasitic Striga 

In Arabidopsis, D14 encodes an SL receptor that controls shoot branching and seed 

germination (by regulating the biosynthesis of several hormones including ABA, GA (Toh, et al. 

2012), and ethylene (Sugimoto, et al. 2003)) whereas its paralog KAI2 encodes a karrikin 

receptor that stimulates seed germination by karrikin (Nelson et al. 2009), a butenolide present in 

smoke that stimulates seed germination for many plant species (Flematti, et al. 2004). However, 

karrikin-induced germination was inactive in parasitic weeds (Chiwocha, et al. 2009). Studies 

show the downstream signaling pathway induced by SL and karrikin shares some components 

such as an F-box protein MAX2 (Liu, et al. 2014). David Nelson’s group reported two rounds of 

gene duplication in KAI2 of Striga hermonthica - one happened in the lineage of asteridae clade, 

the other was a lineage-specific duplication unique to parasitic plants (Conn et al. 2015). The 

latter duplication gave rise to many S. hermonthica genes named as KAI2d  (and up to 11 

homologs. These KAI2d sequences were highly divergent and as a result appeare on long 

branches (Conn et al. 2015). Functional divergence of these karrikin receptors resulted in 

neofunctionalization that switches them from a karrikin receptor to SL receptor for germination 

(Conn et al. 2015). D14 in parasitic plants, however, remains single-copy as in its non-parasitic 

ancestors (Conn et al. 2015). Because KAI2ds act a similar role as KAI2’s paralog – D14 in both 

inducing SL-mediated seed germination, it’s considered as convergent evolution (Conn et al. 

2015). KAI2ds in parasitic plants, showed relaxed selective constraint compared to their non-

parasitic ancestral orthologs, and a subset of the codons exhibited positive selection (Conn et al. 

2015). Relaxed constraint of KAI2d has likely resulted in a switch of ligand binding from karrikin 

to SLs, as a germination-associated defect of Atkai2 mutant was rescued by parasite KAI2ds only 

in the presence of GR24, not karrikin (Conn et al. 2015). Host-dependent germination of parasitic 

plants appeared to rely on MAX2, an F-box protein that interacts with D14 in parasites (Al-Babili 

and Bouwmeester 2015). In fact, MAX2 is able to mediate both karrikin and SL dependent 

signaling (Nelson, et al. 2011b) by directing the negative regulators of SL signaling for ubiquitin-
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dependent proteasomal degradation (Zhou, et al. 2013) and its role is quite conserved across 

plants. MAX2 from Striga is able to complement the Arabidopsis max2 mutant phenotype of 

shoot branching (Liu et al. 2014).  

Later additional studies by Toh et al (2015) showed that these KAI2ds are responsible for 

the sensitivity of parasites to SLs (Toh et al. 2015). Tsuchiya et al (2015) showed that SL receptor 

is essentially a hydrolase that catalyses SLs into ring-like compounds and he designed a probe 

Yoshimulactone Green (YLG) which activates SL signaling and produces fluorescence, and can 

work both in vitro and in vivo to probe the activity of SL receptors (Tsuchiya et al. 2015). 

Moreover, they showed Striga ShHTL7 could complement the Arabidopsis Athtl-3 mutant 

phenotype. The mutant was defective in SL (GR24)-stimulated seed germination at high 

temperature (a phenomenon called thermoinhibition, which could be alleviated by GR24 in the 

presence of AtHTL3 (Toh et al. 2015)), proving its activity as SL receptor (Tsuchiya et al. 2015). 

His assay showed that multiple ShHTLs could recognize a structurally diverse array of SLs, 

whereas Toh et al (2015) showed they also diversified to show varying degrees of sensitivity to 

SLs (Toh et al. 2015). In particular, StHTL7 shows the highest sensitivity to SLs as it stimulated 

germination at picomolar concentrations for naturally occurring strigolactones (Toh et al. 2015). 

The diversification of SLs with varying degrees of SL sensitivity allows parasitic Striga to sense 

SLs of a wide range of concentration, a trait that can enhance parasite germination.  

B.2.3 Relevance of SL receptor diversification in internal and external SL recognition 

These studies repeatedly point to one conclusion that diversification of KAI2d in parasitic 

lineages (at least in Striga), the orthologs of Arabidopsis AtKAI2 plays a role in perceiving SLs 

produced by their hosts for seed germination. In this sense, these genes act as external SL 

regulators for seed germination. However, it is unknown which genes are involved in internal SL 

signaling involved in other processes such as shoot branching or root growth. The possible 

candidates are KAI2c or D14; which of the two genes is the internal SL receptor could likely be 

determined by careful analysis of their expression or through a functional complementation assay. 

Based on our expression analyses, the KAI2c in all three parasitic taxa show upregulated 
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expression in above-ground tissues (Figure B-5). D14, however, showed elevated expression in 

haustorial tissues of all three parasites, but high expression was found in only S. hermonthica and 

P. aegyptiaca (Figure B-2). This suggests that KAI2c is likely the canonical internal SL receptor.  

D14 in nonparasitic plants also acts as SL areceptor, and D14 shows strong purifying 

selection (Conn et al. 2015), indicating D14 in parasitic plants may still act as a SL receptor. 

KAI2ds, however, act as SL receptors to external SL signals. It thus has become clear that there is 

a differentiation of SL receptor responding to internal and external SLs in parasitic plants. Our 

study, however, shows that parasitic plants still retain all the pathway components for SL 

biosynthesis and perception (Das et al. 2015), suggesting that SLs may regulate other processes in 

addition to the canonical role of shoot branching and root growth. The pathway involving SL 

biosynthesis seems rather conserved between nonparasitic plants and parasitic plants (for 

instance, Striga SL biosynthesis genes (ShMAX2 for instance) could rescue Arabidopsis max2 

mutant (Liu et al. 2014)), whereas the downstream signaling is expected to differ significantly. 

This is suggested because there has been a diversification of SL receptors, and there are 

differences between D14 (the internal SL receptor) and external receptor ShKAI2d (or ShHTLs) 

responding to host signals. In Arabidopsis, D14 cannot rescue the Atkai2 mutant phenotype, 

indicating that they interact with different downstream components (Conn et al. 2015). It is 

known that D14 controls shoot branching phenotype, a role similar to auxin. It is possible that 

interaction of D14 and MAX2 activates genes that regulate auxin biosynthesis. As KAI2ds are 

involved in SL-mediated seed germination, it makes it possible to speculate that KAI2d’s 

interaction with other components may activate ABA-related genes that control seed dormancy.  

In short, we proposed in parasitic plants, D14 acts as an internal SL receptor regulating 

downstream signaling in shoot branching, perhaps in cooperation with the auxin signaling 

pathway. KAI2d, acts as a SL receptor to respond to exogenous SLs, for instance, those produced 

by their host. To test this hypothesis, one proposed experiment is functional complementation. It 

is expected that Striga D14 will complement the Atd14 mutant phenotype in shoot branching, 

whereas Striga KAI2d will not. On the other hand, the Atkai2 mutant phenotype of reduced 

germination rate at high temperature in response to GR24 is expected to be complemented by the 

Striga KAI2ds by application of SLs GR24, whereas it cannot be rescued by Striga D14. To 

further explore what downstream genes are involved in internal SL-regulated shoot branching, 
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and external SL-mediated seed germination, one may generate D14 and KAI2d mutants in 

parasites, and examine what downstream pathway genes could be affected. We predict the 

silencing of D14 may affect genes at least involved in auxin-signaling, while silencing of KAI2d 

may affect genes at least encoding ABA-degrading enzymes. 

B.2.4 Relevance of KAI2d (HTL) in host recognition and specificity 

These papers also suggest that multiple KAI2ds (or HTLs) could be involved in 

recognition of different hosts or contribute to host specificity. A recent study showed all Striga 

ShHTLs have high affinity to a type of SL called 5DS, which is produced by many grass hosts of 

Striga. This may explain why Striga is a grass specialist (Tsuchiya et al. 2015). In addition, 

differing levels of sensitivity to SLs of varying concentration may also be a strategy used by 

Striga to establish successful connection with hosts. Certain resistant Sorghum cultivars produce 

a reduced amount of SLs that failed to stimulate germination of parasites (Yoneyama et al. 2010).  

On the other hand, our analyses (Figure B-5) as well as a list of other studies reported 

around a dozen HTLs or KAI2ds in parasitic Striga (Conn et al. 2015; Toh et al. 2015; Tsuchiya 

et al. 2015). However, less than a dozen was present in Phelipanche (Figure B-5), which also 

exhibits host-dependent germination like Striga. Striga appears to recognize strigols produced by 

grass hosts, whereas Phelipanche or Orobanche recognizes orobanchol from a host for 

germination (Yoneyama et al. 2010). A synthetic SL GR24 is able to initiate germination of both 

Striga and Phelipanche (Matusova et al. 2005). It is unknown if different types of naturally 

occurring SL could induce specific parasites for germination. Future efforts could include 

performing a germination assay in which SLs produced from grasses (Striga’s host) are isolated 

and used to treat Phelipanche to measure the germination rate, and vice versa. An alternative 

hypothesis could be that multiple ShHTLs are required to initiate downstream germination 

signaling, whereas Pheliepanche PaHTLs have high sensitivity to SLs so that a small number of 

HTLs are enough to initiate germination. The study by Toh et al (2015) showed a comparison of 

key amino acids involved in ligand binding of multiple ShHTLs. He found that the more identical 

key amino acids determining the substrate binding activity of the enzyme (HTLs) shared between 
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ShHTL peptide sequence and AtHTL peptide sequence, the lower the sensitivity to SL. There 

appeared to be a correlation between key amino acid divergence (relative to Arabidopsis AtHTL 

(KAI2)) and SL sensitivity. He showed that the predicted peptide sequences of ShHTL7 are more 

divergent than the peptide sequences of Arabidopsis thaliana HTL (AtKAI2) in terms of key 

amino acids that determine the enzyme activity, and exhibit the highest sensitivity to SL based on 

a complementation-based germination assay. So one can compare all members of PaHTLs 

(PaKAI2ds) with Arabidopsis AtHTL and examine if there are more copies that are as divergent 

as ShHTL7 relative to AtHTL. An additional potentially useful experiment would be to 

overexpress all members of PaHTL (PaKAI2d) into Arabidopsis Athtl1 mutant followed by a 

GR24 induced germination assay, to examine if they show high levels of sensitivity to GR24.  

B.2.5 Transcriptional dynamic of KAI2 members among three parasites 

We also examined the expression of KAI2s in parasitic plants. Consistent with the new 

findings, the expression of KAI2ds indicates a role in germination and early seedling growth. In 

all three parasites (Triphysaria, Striga, and Phelipanche), KAI2ds show upregulated expression 

in early seedlings (stage 1 and stage 2) (Figure B-5). In addition, in both Striga and Phelipanche, 

its expression is also observed in stage 0 (Figure B-5), indicating its role in controlling seed 

germination of Striga and Phelipanche may differ from Triphysaria. Both Striga and Phelipanche 

depend on host SLs for germination, whereas Triphysaria could germinate independent of host 

germination stimulant, indicating fine spatial and temporal regulation of KAI2d could be 

important for SL-induced germination. 

Patterns of KAI2c and KAI2d expression also differ among the three parasitic plants. 

KAI2is, the intermediate KAI2s, are implicated to respond to both karrikins and SLs. Based on 

the predicted pocket structure of the encoded enzyme for KAI2i (Conn et al. 2015), as well as 

their upregulated expression in both stages 0 (germination) and 5.1 (shoots) (Figure B-5), KAI2is 

are predicted to play roles in both shoot branching and germination. It is unclear why 

Phelipanche doesn’t have the intermediate KAI2is. Studies by Toh et al (2015) showed that some 

copies of ShHTL show binding affinity to karrikin yet fail to induce germination, suggesting 
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binding to stimulant is not sufficient for a predicted biological role. We speculate that as an 

advanced holoparasite, it may have shed the intermediate genes. The upregulated expression of 

KAI2c in shoots and floral stages of Phelipanche and Striga (Figure B-5) indicate that it is not 

playing the canonical role in germination, but more similar to roles related to shoot branching, a 

role similar to D14 (the internal SL receptor). However, an additional expression in stage 1 

(Figure B-5) indicates facultative Triphysaria may still involve a role of KAI2c in regulating 

early seed germination.  

B.2.6 Parasitic D14s show abundant expression in interface and haustoria 

In addition to the reported roles of ShHTLs in germination, we also examined the 

expression profiles of SL-pathway components in parasitic plants by looking at their expression 

in parasitic developmental stages with the PPGP2 data (http://ppgp.huck.psu.edu/). In terms of 

D14, expression in underground shoots (5.1) and above-ground shoots (6.1) in Phelipanche and 

expression in above-ground shoots (6.1) in Striga indicate a role of this gene involved in shoot 

branching (Figure B-2). Interestingly, this gene also shows high expression in interface tissues of 

both Triphysaria and Phelipanche, as well as abundant expression in haustoria (stage 3) of Striga 

(Figure B-2). This indicates a likely role of the SL receptor involved in haustoria development. 

D14 is an SL receptor of internal SLs, indicating a likelihood of internal SLs transported to 

haustoria tissue. Future efforts could examine the expression of SL transporter (PDR12) in 

parasites to support whether SLs either from the parasite or host side can regulate haustorial 

growth. 

B.2.7 Haustorial expression of additional SL pathway genes implies a role of SL in 

haustorial development 

The comparison of gene expression for D14 and KAI2s revealed that D14, instead of 

KAI2s, show upregulated haustorial expression in parasites. As D14 is the internal SL receptor 

involved in shoot branching in nonparasitic species, its upregulation in haustorial tissues of 
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parasites suggests that D14 may have neofunctionalized to function in haustoria development. 

Thus, SLs that are known as a germination stimulant for parasitic seeds may have additional roles 

in haustoria development in parasitic plants. This idea is supported by additional evidence of 

upregulated haustoria or interface expression for CCD8 (Figure B-3) and MAX1 (Figure B-4), 

two of which are among the four enzymes required for SL production. Significantly, Aly et al 

(2014) showed knock down of P. egyptiaca CCD7 and CCD8 resulted in reduced tubercle growth 

by using host-induced gene silencing (HIGS) system in parasite-tobacco interactions. Their paper 

suggested a novel role of SLs involved in tubercle growth and development, however, they 

concluded a role of SLs in seed germination. On the other hand, haustoria growth towards the 

host may mimic the hyphae growth of arbuscular fungi towards their plant host, making a 

scenario for diverse process of SL regulating similar biological processes. Last but not least, the 

formation of shoots in underground soil seems a rather unexpected occurrence if we believe 

shoots are expected to occur above ground. We would also like to propose a possible link 

between the development of underground shoots and the production of SLs at the preceding 

tubercle stages, especially considering that SLs have a canonical role in regulating shoot 

branching (Gomez-Roldan et al. 2008). Future experiments are needed to examine which partner 

interacts with D14, which may lead to the identification of downstream signaling components 

involved in haustoria development.  
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Figure B-2. Expression of D14 in all three parasitic plants. Expression is shown with a heat map 

scaled for across-gene comparison, the intensity represents normalized z-scores from FPKM. 
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Figure B-3. CCD8 expression in parasitic plants. 
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Figure B-4. MAX1 expression in parasitic plants. 
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Figure B-5. Expression of KAI2s (KAI2c, KAI2i, KAI2d) mapping onto phylogeny in all three 

parasitic plants. Left part represents the KAI2 phylogeny from David Nelson’s paper, right are 

expression heatmaps for all unigenes encoding KAI2c (C), KAI2i (I) and KAI2ds (D) in all three 

parasites. Arrows link the expression with phylogeny. Expression is shown with a heat map, the 

intensity represents normalized z-scores from FPKM. 
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