
The Pennsylvania State University

The Graduate School

Department of Electrical Engineering

OPTICAL FREQUENCY SELECTIVE SURFACE DESIGN USING A

GPU ACCELERATED FINITE ELEMENT BOUNDARY INTEGRAL METHOD

A Dissertation in

Electrical Engineering

by

Jason A. Ashbach

© 2016 Jason A. Ashbach

Submitted in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

May 2016

The dissertation of Jason Ashbach was reviewed and approved* by the following:

Douglas H. Werner
Professor of Electrical Engineering
Dissertation Advisor
Chair of Committee

Timothy Kane
Professor of Electrical Engineering

George Kesidis
Professor of Electrical Engineering

Lyle N. Long
Distinguished Professor of Aerospace Engineering

Kultegin Aydin
Professor of Electrical Engineering
Head of the Department of Electrical Engineering

*Signatures are on file in the Graduate School

iii

ABSTRACT

Periodic metallodielectric frequency selective surface (FSS) designs have historically

seen widespread use in the microwave and radio frequency spectra. By scaling the dimensions of

an FSS unit cell for use in a nano-fabrication process, these concepts have recently been adapted

for use in optical applications as well. While early optical designs have been limited to well-

understood geometries or optimized pixelated screens, nano-fabrication, lithographic and

interconnect technology has progressed to a point where it is possible to fabricate metallic screens

of arbitrary geometries featuring curvilinear or even three-dimensional characteristics that are

only tens of nanometers wide.

In order to design an FSS featuring such characteristics, it is important to have a robust

numerical solver that features triangular elements in purely two-dimensional geometries and

prismatic or tetrahedral elements in three-dimensional geometries. In this dissertation, a periodic

finite element method code has been developed which features prismatic elements whose top and

bottom boundaries are truncated by numerical integration of the boundary integral as opposed to

an approximate representation found in a perfectly matched layer. However, since no exact

solution exists for the calculation of triangular elements in a boundary integral, this process can

be time consuming. To address this, these calculations were optimized for parallelization such

that they may be done on a graphics processor, which provides a large increase in computational

speed.

Additionally, a simple geometrical representation using a Bézier surface is presented

which provides generality with few variables. With a fast numerical solver coupled with a low-

variable geometric representation, a heuristic optimization algorithm has been used to develop

several optical designs such as an absorber, a circular polarization filter, a transparent conductive

surface and an enhanced, optical modulator.

iv

TABLE OF CONTENTS

LIST	OF	FIGURES	...	viii	

LIST	OF	TABLES	...	xiv	

ACKNOWLEDGEMENTS	...	xv	

Chapter	1	Introduction	and	Technical	Approach	...	1	

Introduction	..	1	

Statement	of	the	Problem	...	1	

Technical	Approach	...	2	

Original	Contributions	...	3	

Overview	...	4	

Chapter	2	Mathematical	Foundations	for	the	Periodic	Finite	Element	Boundary	

Integral	for	Electromagnetic	Problems	..	6	

Background	...	6	

The	Time-Harmonic	Form	of	Maxwell’s	Equations	...	8	

Boundary	Conditions	...	8	

Surface	Equivalence	...	11	

Uniqueness	...	12	

Linearity	..	13	

Surface	Equivalence	...	14	

The	Finite	Element	Method	..	16	

Discretization	of	a	Domain	into	a	Finite	Element	Mesh	...	18	

v

The	Weak	Form	of	a	Differential	Equation	...	20	

Discretization	of	the	Weak	Formulation	..	21	

Boundary	Conditions	in	the	Finite	Element	Method	..	26	

Periodic	Boundary	Conditions	..	34	

Calculation	of	the	Scattered	Field	...	37	

Overview	..	39	

Chapter	3	Programming	Considerations	for	the	Finite	Element	Boundary	

Integral	Method	..	41	

Background	..	41	

Mesh	Generation:	Brick	Versus	Prismatic	Elements	..	42	

Accelerated	Calculation	of	the	Boundary	Integral	Using	the	Adaptive	Integral	

Method	..	47	

Generation	of	Triangular	Meshes	Using	Delaunay	Triangulation	49	

Using	Bézier	Surfaces	for	the	Generation	of	Arbitrary	Meshes	50	

Mesh	Optimization	Using	Covariance	Matrix	Adaptation	Evolution	Strategy	60	

General	Purpose	Graphics	Processing	Unit	Programming	69	

Modification	of	the	Triangular	Boundary	Integral	for	GPU	Applications	75	

GPU	FEBI	Benchmark	Tests	..	80	

Iterative	Methods	to	Solve	a	FEBI	System	...	83	

Material	Parameters	and	Design	Ideas	...	84	

Chapter	4	Metamaterial	Absorber	for	the	Near-IR	with	Curvilinear	Geometry	

Based	on	Bézier	Surfaces	...	86	

vi

Introduction	...	86	

Design	Approach	for	Broadband	Absorbers	..	86	

Design	Results	..	90	

Conclusion	..	97	

Chapter	5	An	Oblique-Angle	Infrared	Circular	Polarization	Filter	Using	a	Bézier	

Surface	Representation	...	98	

Introduction	...	98	

Mesh	Design	...	99	

Mesh	Design	Using	a	Bézier	Surface	...	99	

Optimization	of	Bézier	Surfaces	Using	the	Covariance	Matrix	Adaptation	

Evolutionary	Strategy	..	100	

Optimization	for	Circular	Polarization	...	100	

A	Circular	Polarization	Filter	at	𝟒. 𝟑	𝝁𝒎	..	101	

A	Circular	Polarization	Filter	Optimized	for	the	Telecommunications	Band	103	

Conclusion	..	105	

Chapter	6	A	Highly	Transparent	Conductive	Surface	Design	Based	on	an	Optical	

Frequency	Selective	Surface	..	106	

Introduction	...	106	

Designing	an	Optimized	Nanowire	..	108	

Optical	Frequency	Selective	Surfaces	from	Nanoscale	Interconnect	Technology	..	108	

Mathematical	Description	of	the	Unit	Cell	...	109	

Simulation	Results	and	Discussion	..	112	

vii

Conclusion	..	122	

Chapter	7	Enhanced	Electro-Absorption	Modulation	Using	an	FSS	123	

Introduction	...	123	

Properties	of	a	SiGe	Absorption	Modulator	..	124	

Silicon-Germanium	Physical	Properties	..	124	

The	Electro-Absorption	Effect	..	124	

Design	and	Simulation	..	125	

Conclusion	..	128	

Chapter	8	Conclusions	and	Future	Work	...	130	

Conclusions	..	130	

Future	Work	...	131	

References	...	133	

Appendices	..	137	

Appendix	A		Mesh	Generation	Code	for	the	CGAL	Library	137	

Appendix	B	Bézier	Surface	and	Alpha	Shape	Code	in	Matlab	152	

Appendix	C	GPU	Boundary	Integral	Calculation	..	159	

viii

LIST OF FIGURES

FIGURE	1-1:	DIAGRAM	OF	A	FREQUENCY	SELECTIVE	SURFACE	COMPOSED	OF	A	PERIODIC	METALLIC	

SCREEN	THAT	HAS	BEEN	PRINTED	ON	A	DIELECTRIC	SUBSTRATE.	..	3	

FIGURE	2-1:	ELECTROMAGNETIC	INTERACTION	WITH	SPHERE	CAN	BE	SOLVED	USING	SCATTERING	

THEORY.	THE	VECTOR	INCIDENT	UPON	THE	SPHERE	DESCRIBES	AN	ELECTRIC	FIELD,	E,	AND	A	

MAGNETIC	FIELD,	H,	TRAVELLING	IN	THE	S	DIRECTION.	...	7	

FIGURE	2-2:	AN	FSS	WITH	COMPLICATED	GEOMETRY	MUST	BE	SOLVED	USING	A	NUMERICAL	METHOD.	..	7	

FIGURE	2-3:	A	COMPLETELY	ARBITRARY	ELECTROMAGNETIC	SYSTEM.	..	9	

FIGURE	2-4:	A	CRUDE	REPRESENTATION	OF	THE	SURFACE	EQUIVALENCE	PRINCIPLE,	WHICH	REPLACES	A	

FULL	MATERIAL	SYSTEM	WITH	EQUIVALENT	SOURCES.	...	14	

FIGURE	2-5:	A	SIMPLE	DIAGRAM	OF	AN	ELECTROMAGNETIC	INTERACTION	WITH	A	BOUNDARY.	15	

FIGURE	2-6:	EXAMPLE	MESHES	REPRESENTING	A	CIRCLE.	ON	THE	LEFT,	A	TRIANGULAR	MESH	IS	USED	

REQUIRING	170	TRIANGLES.	ON	THE	RIGHT,	THE	MESH	IS	BUILT	FROM	SQUARE	PIXELS	USING	900	

PIXELS.	THE	EDGES	ARE	DRAWN	FOR	EMPHASIS.	...	19	

FIGURE	2-7:	TRIANGLE	ELEMENT	FOR	USE	WITH	TRIANGLE	EDGE	ELEMENTS.	...	22	

FIGURE	2-8:	A	SINGLE	PRISMATIC	ELEMENT.	...	24	

FIGURE	2-9:	A	SCHEMATIC	ARRANGEMENT	FOR	AN	ABSORBING	BOUNDARY	CONDITION.	27	

FIGURE	2-10:	A	SCHEMATIC	ARRANGEMENT	FOR	A	PERFECTLY	MATCHED	LAYER.	29	

FIGURE	2-11:	A	SCHEMATIC	IMAGE	OF	THE	PERIODIC	FINITE	ELEMENT	BOUNDARY	INTEGRAL	PROBLEM.	30	

FIGURE	2-12:	AN	EXAMPLE	OF	TWO-DIMENSIONAL	PERIODIC	UNIT	CELLS.	...	34	

FIGURE	2-13:	AN	ARBITRARY	OBJECT	UPON	WHICH	A	PLANE	WAVE	IS	INCIDENT.	38	

FIGURE	3-1:	A	SINGLE	UNIT	CELL	OF	AN	ARBITRARY	FREQUENCY	SELECTIVE	SURFACE	THAT	HAS	BEEN	

BUILT	USING	BRICK	ELEMENTS.	...	42	

FIGURE	3-2:	A	PIXEL	BASED	UNIT	CELL	THAT	FEATURES	METALLIC	ELEMENTS	THAT	TOUCH	ON	THE	

CORNER.	..	44	

ix

FIGURE	3-3:	A	MAZE-LIKE	BRICK	ELEMENT	METALLIC	SCREEN.	...	45	

FIGURE	3-4:	TRIANGULAR	ELEMENTS	ELIMINATE	SITUATIONS	WHERE	METALLIC	CORNERS	ARE	TOUCHING.

	...	46	

FIGURE	3-5:	AN	EXAMPLE	AIM	GRID.	THE	NEAR-FIELD	CONTRIBUTIONS	ARE	CALCULATED	AS	NORMAL	

WHEREAS	THE	FIELDS	SEVERAL	GRIDS	AWAY	ARE	ANALYZED	IN	BULK.	...	48	

FIGURE	3-6:	(A)	A	SURFACE	PLOT	OF	THE	CONTROL	POINTS	INPUTTED	INTO	A	BÉZIER	SURFACE	

ALGORITHM.	(B)	THE	BÉZIER	SURFACE	THAT	RESULTED	FROM	THE	INPUTTED	CONTROL	POINTS	IN	

(A).	...	53	

FIGURE	3-7:	THE	DIFFERENCE	BETWEEN	A	CONVEX	AND	CONCAVE	HULL	IS	SHOWN.	(A)	THE	POINT	

COLLECTION	USED	TO	GENERATE	THE	HULLS.	(B)	AN	EXAMPLE	OF	THE	CONVEX	HULL.	(C)	AN	

EXAMPLE	OF	A	CONCAVE	HULL.	..	56	

FIGURE	3-8:	THREE	ALPHA	SHAPES	FOR	A	POINT	COLLECTION.	AS	ALPHA	GROWS,	THE	ALPHA	SHAPE	

APPROACHES	A	CONVEX	HULL.	...	58	

FIGURE	3-9:	A	BÉZIER	SURFACE	FOLLOWING	THRESHOLDING	HAS	BEEN	INPUTTED	INTO	AN	ALPHA	SHAPE	

ALGORITHM.	THE	POINTS	USED	IN	THE	FINAL	MESHING	ALGORITHM	ARE	EXTRACTED	FROM	THIS	

ALPHA	SHAPE	FOR	EFFICIENT	MESHING.	...	59	

FIGURE	3-10:	A	FLOWCHART	THAT	DESCRIBES	THE	GENERAL	EVOLUTIONARY	PROCESS	USED	IN	A	GENETIC	

ALGORITHM.	..	61	

FIGURE	3-11:	A	FLOWCHART	THAT	DESCRIBES	THE	EVOLUTIONARY	PROCESS	OF	THE	CMA-ES	ALGORITHM.

	...	62	

FIGURE	3-12:	A	CMA-ES	OPTIMIZATION	EXAMPLE	IN	WHICH	THE	MINIMUM	OF	X2 + Y2 = R	MUST	BE	

FOUND	WITHIN	THE	BOUNDS	[-3, 3].	...	66	

FIGURE	3-13:	THE	RECOMMENDED	POPULATION	GROWTH	RATE	WITH	RESPECT	TO	NUMBER	OF	

VARIABLES	USING	CMA-ES.	...	67	

x

FIGURE	3-14:	AN	ARBITRARY	PARETO	FRONT	TO	DEMONSTRATE	THE	TRADEOFF	BETWEEN	DESIGN	

REQUIREMENTS.	..	68	

FIGURE	3-15:	SCHEMATIC	DIAGRAMS	OF	THE	WORK	FLOW	FOR	SOFTWARE	RAN	ON	THE	CPU	(A)	OR	A	

COMPUTE	DEVICE	SUCH	AS	A	GPU	(B).	...	69	

FIGURE	3-16:	A	TWO-BY-TWO	GRID	OF	AN	ARBITRARY	FSS	USED	TO	DEMONSTRATE	THE	GROWTH	IN	THE	

NUMBER	OF	DISCRETIZATION	UNKNOWNS.	THIS	SURFACE	EXTENDS	INFINITELY	IN	THE	HORIZONTAL	

AND	VERTICAL	DIMENSIONS.	..	76	

FIGURE	3-17:	A	CRUDE	DEMONSTRATION	OF	THE	EDGE	INTERACTIONS	IN	THE	BOUNDARY	INTEGRAL.	

INTERACTIONS	BETWEEN	EDGES	ARE	SHOWN	IN	RED.	IN	THE	TOP	RIGHT,	A	SELF-INTERACTION	IS	

SHOWN.	...	78	

FIGURE	3-18:	A	PERIODIC	PEC	RING	(IN	RED)	ON	A	DIELECTRIC	SUBSTRATE	(A)	HAS	BEEN	EVALUATED	(B)	

FOR	COMPARISON	BETWEEN	THE	COMMERCIAL	HFSS	AND	THE	PFEBI	IMPLEMENTATION.	81	

FIGURE	3-19:	AN	ARBITRARY	MESH	(A)	HAS	BEEN	EVALUATED	FOR	COMPARISON	BETWEEN	THE	

COMMERCIAL	HFSS	AND	THE	PFEBI	IMPLEMENTATION.	..	82	

FIGURE	3-20:	THE	COMPLEX	PERMITTIVITY	FOR	SEVERAL	OF	THE	MATERIALS	THAT	WILL	BE	CONSIDERED	

IN	THIS	DISSERTATION.	..	84	

FIGURE	4-1:	MESH	OF	THE	UNIT	CELL	SHOWING	AU	TRIANGLES	IN	RED	AND	NON-AU	TRIANGLES	IN	BLUE.

	...	89	

FIGURE	4-2:	ABSORPTIVITY	PLOT	FOR	DESIGN	IN	FIGURE	4-1	SHOWING	A	PEAK	VALUE	OF	96.9	%	AT	0.96	

µM	THE	DESIGN	FREQUENCY.	...	90	

FIGURE	4-3:	THE	BÉZIER	SURFACE	USED	FOR	MESH	GENERATION	OF	THE	WIDE-BAND,	WIDE-ANGLE	

ABSORBER.	SURFACE	VALUES	OVER	A	THRESHOLD,	SEEN	HERE	IN	LIGHT	GREEN	TO	RED,	ARE	

MESHED	AS	PD2SI.	VALUES	BELOW	THE	THRESHOLD	ARE	MESHED	AS	POLYIMIDE.	91	

FIGURE	4-4:	THE	FREQUENCY	RESPONSE	FOR	THE	OPTIMIZED	BÉZIER	SURFACE	OVER	THE	OPTIMIZED	

FREQUENCY	BAND.	..	92	

xi

FIGURE	4-5:	THE	FREQUENCY	RESPONSE	OF	THE	OPTIMIZED	SURFACE	WITH	THE	GROUND	PLANE	

REMOVED.	...	92	

FIGURE	4-6:	THE	FINITE	ELEMENT	FIELD	PLOTS	ABOVE	(A)	AND	BELOW	(B)	THE	SCREEN	AT	AN	INCIDENT	

FREQUENCY	OF	0.8	ΜM.	VALUES	CLOSE	TO	OR	ABOVE	0.5	V/M	THE	FIELDS	ARE	REDDER.	THE	FIELDS	

ALONG	THE	EDGES	ARE	AVERAGED	TO	GIVE	EACH	TRIANGLE	A	SOLID	COLOR	VALUE.	94	

FIGURE	4-7:	THE	FINITE	ELEMENT	FIELD	PLOTS	ABOVE	(A)	AND	BELOW	(B)	THE	SCREEN	AT	AN	INCIDENT	

FREQUENCY	OF	1.2	ΜM.	VALUES	CLOSE	TO	OR	ABOVE	0.5	V/M	THE	FIELDS	ARE	REDDER.	THE	FIELDS	

ALONG	THE	EDGES	ARE	AVERAGED	TO	GIVE	EACH	TRIANGLE	A	SOLID	COLOR	VALUE.	95	

FIGURE	4-8:	A	FREQUENCY	SWEEP	OF	THE	PREVIOUS	FSS	WITH	A	SILVER	SCREEN	USED.	96	

FIGURE	5-1:	MODEL	OF	THE	FREQUENCY	SELECTIVE	SURFACE	SHOWING	A	2X2	ARRAY	OF	UNIT	CELLS.	IN	

THIS	BÉZIER	SURFACE	REPRESENTATION,	A	BLACK	OUTLINE	REPRESENTS	THE	BOUNDARY	BETWEEN	

THE	PARTS	OF	THE	SURFACE	ABOVE	AND	BELOW	THE	THRESHOLD	VALUE	WITH	RED	BEING	THE	

SCREEN.	...	102	

FIGURE	5-2:	A	PLOT	OF	THE	NORMALIZED	CIRCULAR	POLARIZED	LIGHT	AS	A	FUNCTION	OF	WAVELENGTH.

	...	103	

FIGURE	5-3:	THE	CIRCULAR	POLARIZATION	FILTER	RE-OPTIMIZED	FOR	USE	IN	THE	TELECOMMUNICATIONS	

BAND.	THE	METALLIC	SCREEN	IS	SHOWN	IN	GOLD	AND	THE	DIELECTRIC	IS	DARK	BLUE.	104	

FIGURE	5-4:	THE	RELATIVE	CIRCULAR	POLARIZATION	FOR	SEVERAL	ANGLES	CENTERED	ON	THE	1.55	ΜM	

BAND.	..	105	

FIGURE	6-1:	A	SIDE	VIEW	OF	THE	FSS.	THE	METALLIC	FSS	LAYER	IS	BETWEEN	TWO	THICK	DIELECTRIC	HALF	

SPACES	...	111	

FIGURE	6-2:	AN	OPTIMIZED	BÉZIER	SURFACE.	THE	BLACK	OUTLINE	SHOWS	THE	THRESHOLD	POINTS	

ALONG	THE	SURFACE.	...	113	

FIGURE	6-3:	A	2X2	GRID	OF	MESHED	UNIT	CELLS.	GRAY	REPRESENTS	THE	METALLIC	SCREEN	AND	GREEN	

REPRESENTS	DIELECTRIC	SUBSTRATE.	...	113	

xii

FIGURE	6-4:	FREQUENCY	SWEEPS	FOR	UNPOLARIZED	LIGHT	FROM	0	TO	65 ∘.	DASHED	LINES	SHOW	THE	

UNIT	TRANSPARENCY.	SOLID	LINES	SHOW	THE	REFLECTIVITY.	DOTS	SHOW	THE	ABSORBED	ENERGY.	

AVERAGE	TRANSPARENCY	DROPS	TO	51	%	IN	THE	VISIBLE	SPECTRUM	AT	AN	ANGLE	OF	INCIDENCE.

	...	115	

FIGURE	6-5:	FREQUENCY	SWEEPS	AT	NORMAL	INCIDENCE	FOR	TE	(A)	AND	TM	(B)	POLARIZATIONS	ONLY.

	...	116	

FIGURE	6-6:	THE	FINITE	ELEMENT	FIELD	STRENGTH	AT	460	NM.	(A)	SHOWS	THE	TE	FIELDS.	IT	SHOULD	BE	

NOTED	THAT	THERE	IS	LITTLE	INTERACTION	BETWEEN	THE	FIELDS	AND	THE	METALLIC	SCREEN.	(B)	

SHOWS	THE	TM	FIELDS.	IN	THIS	ARRANGEMENT,	THE	FIELDS	FIT	NEATLY	BETWEEN	THE	SCREENS	

YIELDING	LITTLE	PERTURBATION.	..	118	

FIGURE	6-7:	THE	FINITE	ELEMENT	FIELD	STRENGTH	AT	600	NM.	(A)	SHOWS	THE	TE	FIELDS.	AT	THIS	

HIGHER	WAVELENGTH,	THE	FIELDS	BEGIN	TO	INTERACT	WITH	THE	ENLARGED	SECTIONS	OF	THE	

SCREEN	RESULTING	IN	A	SLIGHT	INCREASE	IN	SCATTERING.	(B)	SHOWS	THE	TM	FIELDS.	IN	THIS	

ARRANGEMENT,	THE	FIELDS	ARE	PRIMARILY	CONCENTRATED	WITHIN	BETWEEN	THE	PERIODIC	

SCREENS	BUT	THE	INTERACTION	BEGINS	TO	BECOME	LARGER	RESULTING	IN	INCREASED	

SCATTERING.	..	119	

FIGURE	6-8:	A	PLOT	OF	THE	S-PARAMETERS	FOR	THE	FSS	USING	A	POLYIMIDE	SUBSTRATE.	120	

FIGURE	6-9:	FREQUENCY	SWEEPS	AT	NORMAL	INCIDENCE	FOR	SILVER	(A)	AND	ALUMINUM	(B)	

NANOWIRES.	...	121	

FIGURE	7-1:	A	SIMPLE	SCHEMATIC	OF	THE	TYPICAL	DESIGN	OF	A	SIMPLE	SILICON	GERMANIUM	ELECTRO-

ABSORPTION	MODULATOR.	..	126	

FIGURE	7-2:	THE	UNIT	CELLS	ARRANGED	IN	2X2	GRIDS	FOR	THE	OPTIMIZED	FREQUENCY	SELECTIVE	

SURFACES.	THE	TOP	DESIGN	TARGETS	1.3	ΜM	AND	THE	BOTTOM	TARGETS	1.5	ΜM.	127	

FIGURE	7-3:	PLOTS	OF	SIMULATED	ABSORPTION	VERSUS	WAVELENGTHS	FOR	THE	DESIGNS	SHOWN	IN	

FIGURE	7-2.	..	129	

xiii

FIGURE	8-1:	A	LUMPED	ELEMENT	MESH.	THE	SILVER	PORTION	IS	A	METALLIC	PATCH	AND	THE	BLUE	

PORTION	BETWEEN	THE	PATCHES	IS	A	LUMPED	RESISTIVE	ELEMENT.	..	131	

	

	 	

xiv

LIST OF TABLES

TABLE	2-1:	A	SUMMARY	OF	THREE	IMPORTANT	BOUNDARY	CONDITIONS	FOR	USE	IN	A	FINITE	ELEMENT	

SYSTEM.	...	34	

TABLE	3-1:	A	SUMMARY	OF	THE	ARCHITECTURAL	DIFFERENCES	BETWEEN	A	CPU	AND	GPU	ARCHITECTURE	

THAT	MIGHT	MAKE	ONE	MORE	ATTRACTIVE	THAN	THE	OTHER	FOR	CERTAIN	PROBLEMS.	74	

TABLE	3-2:	BENCHMARK	DATA	FOR	SIMPLE	GENERIC	FSS	DESIGNS	BETWEEN	A	CPU	AND	GPU	

IMPLEMENTATION	OF	THE	PFEBI	ALGORITHM.	..	83	

xv

ACKNOWLEDGEMENTS

I would like to thank my advisor, Professor Douglas H. Werner, for his guidance and

patience throughout my graduate program. I would also like to thank Dr. Keith Lysiak for his

support through the Applied Research Lab and Professors Timothy Kane, Lyle Long and George

Kesidis for serving on my committee and providing their insights on this work. Finally, I would

like to thank Danielle Kiger for her love and support she has given me throughout the years and

my mother for raising me and keeping me motivated to continue my education.

1

Chapter 1
Introduction and Technical Approach

Introduction

This chapter introduces the topic of the dissertation, which is the development of a finite

element boundary integral method that has been accelerated using massively parallel compute

devices such as a graphics-processing unit. The technical approach and original contributions are

outlined.

Statement of the Problem

Periodic metallodielectric structures have recently been investigated by several groups for

use in a variety of novel applications. These include optical applications of the Frequency

Selective Surface (FSS) technology that was originally developed for microwave applications

such as absorption filters [1, 2] to investigations into development of Negative Index Materials in

an effort to achieve the perfect lens proposed by Pendry [3, 4]. As material lithographic

technologies have progressed, the ability to produce periodic metallic screens with increasingly

complicated geometries with nanoscale variations has begun to become a more viable approach to

optical filter design. Furthermore, in an effort to move beyond standard element models, which

have analytic solutions available, it becomes necessary to develop an effective numerical

approach to this sort of problem. It is also necessary to develop an effective model with which

one can achieve a desired response. A method is proposed here using a GPU accelerated hybrid

2

periodic finite-element boundary-integral (FEBI) method with prismatic meshes and Bézier

surfaces to optimize quickly and effectively frequency selective surfaces.

Technical Approach

The research presented here is based on the FSS technology originally developed for

microwave applications. FSS are planar devices comprised of a doubly periodic metallic screen,

which is printed on a substrate such as the example FSS shown in Figure 1-1. These devices

operate as spatial filters for electromagnetic radiation. While early designs focused on the radio

frequency spectrum, the techniques used can be scaled down to micron or nanometer dimensions

for operation at IR and optical frequencies. Our lab, for instance, has synthesized, fabricated and

measured FSS filters at a variety of frequency regions using analytic and numerical approaches.

These approaches have typically been done using a fractal technique [5] or a two-dimensional

periodic numerical method such as the method of moments approach or a brick-element FEBI

approach [6]. The advantage of using a numerical approach allows us to synthesize filters using a

derivative-free stochastic optimization process such as the well-known genetic algorithm (GA) or

more recent covariance matrix adaptation evolution strategy (CMA-ES) which allow for more

flexibility in the synthesis of designs.

These stochastic optimization techniques are well suited for generalized FSS designs

using a robust curvilinear geometry approach, which can be used with the finite element

boundary integral method. Recent advances in semiconductor have opened the doors to a variety

of lithography techniques, which can mass-produce fine patterns with unusual geometries making

a study of generic curvilinear geometries more attractive than simpler pixelated designs.

3

The curvilinear geometry approach is achieved using a Bézier surface, which is a method

to achieve arbitrary surface patterns using a limited number of variables. Using this technique,

several example designs were optimized which might see practical application in future optical

devices.

Original Contributions

The research I have performed during my Ph.D. studies at the Pennsylvania State

University have led to several practical applications for optical FSS design.

- The development of a GPU optimized finite element boundary integral solver

- The use of Bézier surfaces coupled with a stochastic optimization routine for use in

designing optical frequency selective surfaces and other two-dimensional metallic

screens.

- The development of a wide-angle circularly polarized filter, which can be designed to

transmit frequencies within the narrow CO2 absorption band while blocking nearby

interferences or broadly turned for use in a communications system.

Figure 1-1: Diagram of a frequency selective surface composed of a periodic metallic screen that has been
printed on a dielectric substrate.

4

- The design of a filter that confines optical energy into a semiconductor substrate,

which could potentially see applications in solar technologies.

- The design of an optical transparent metallic interconnect which is continuous

periodically.

- The use of a metallic FSS screen, which enhances the variability in absorption for a

silicon germanium electro-optic modulation system.

Overview

This dissertation introduces the use of GPU-based compute device to enhance the

calculation speed of the boundary integral impedance matrix for use in a finite element solver.

Prior to this, a finite element method, which is truncated by a triangular boundary integral, could

up to several hours to calculate individual frequency points. Because of this, robust triangular

finite element codes have had a tendency to use an approximate boundary condition such as the

perfectly matched layer. These types of boundary conditions require the use of large meshes and

have a large impact on the overall number of unknowns. This has an effect on the overall amount

of RAM required to solve such a system causing many applications to require extremely powerful

and expensive workstations to begin to approach such problems.

Chapter 2 introduces the finite element method and lays the mathematical foundation for

the software that has been written.

Chapter 3 details the software that has been written and the design approaches that were

done in the optical system design.

Chapter 4 details the Bézier surface as a practical tool for designing optical frequency

selective surfaces using optical absorbers as an example.

5

In chapter 5, an approach for designing oblique-angle circular polarization filter is

introduced. Using this polarization filter, two designs are presented which are optimized for

applications near the CO2 absorption band and in the fibre-optics telecommunications band.

In chapter 6, a transparent metallic screen is shown. This filter was optimized under the

restriction that there be limited polarization dependence and a continuous path between unit cells

such that current can flow.

Chapter 7 discusses the state of the art for electro-absorption modulators and provides a

suggestion for an FSS design that couples well with the change in absorption in such a device

enhancing the absorption when the applied field is such that the dielectric absorption is higher.

The final chapter provides a summary of this work and provides suggestions for future

work.

6

Chapter 2
Mathematical Foundations for the Periodic Finite Element Boundary Integral

for Electromagnetic Problems

Background

In the 19th century, James Clerk Maxwell’s insight unified four separate theorems

concerning electric and magnetic fields into a set of equations that form the basis of

electrodynamics, optics and circuit theory. These equations describe the behavior of the electric

and magnetic fields, 𝑬 and 𝑯 respectively, with the commonly used differential form reproduced

below in equations 2-1 through 2-4 with current density 𝑱 and magnetic current density 𝑴, and

material properties consisting of the charge density, 𝜌, magnetic charge density, 𝜌D, the

permittivity, 𝜖, and permeability, 𝜇.

 𝛻 ⋅ 𝑬 =
𝜌
𝜖

 ((
2-1)

 𝛻 ⋅ 𝑯 =
𝜌D
𝜇

 ((
2-2)

𝛻×𝑬 = 	−𝑴 − 𝜇

𝜕𝑯
𝜕𝑡

((

2-3)

𝛻×𝑯 = 𝑱 + 𝜖

𝜕𝑬
𝜕𝑡
	

((
2-4)

7

Figure 2-1: Electromagnetic interaction with sphere can be solved using scattering theory. The vector
incident upon the sphere describes an electric field, 𝑬, and a magnetic field, 𝑯, travelling in the 𝑺 direction.

Figure 2-2: An FSS with complicated geometry must be solved using a numerical method.

With these equations, one can determine the field vectors for electromagnetic waves

traveling through media. When a wave impinges on a boundary, a discontinuity occurs in the

material parameters. With simple media or simple boundaries such as in Figure 2-1, these

interactions can oftentimes be solved analytically with some effort. However, in the case of a

generalized frequency selective surface such as below in Figure 2-2, which contains multiple

8

materials with some generic geometry, solving for the field interactions becomes in many cases

impractical. In this case, it becomes desirable to design a method that can be used to estimate the

field response to such a material numerically. Fortunately, this is possible by reformulating

Maxwell’s equations into a set of integral equations and solving these numerically. This

dissertation will address this by deriving a formulation for the hybrid finite-element boundary-

integral method accelerated through massively parallel calculation using general-purpose

graphics processing unit (GPGPU) programming.

The Time-Harmonic Form of Maxwell’s Equations

In many cases, the solutions to Maxwell’s equations are sinusoidal in time. This includes

every problem that will be considered herein. Time-harmonic wave such as these have a

generalized form that is represented by 𝑒OPQ. Using this form, one may insert 𝑒OPQ insert

Maxwell’s equations as written in 2-1 through 2-4. Using basic derivative rules, one can replace

R
RQ

 with 𝑗𝜔 which simplifies Maxwell’s equations such that only the spatial components need to

be considered. Thus, one formulate two time-harmonic wave equations for fields 𝑬 and 𝑯 as in

equations 2-5 and 2-6.

 𝛻U𝑬 = 𝛻×𝑴 + 𝑗𝜔𝜇𝑱 +
1
𝜖
𝛻𝜌 + 𝑗𝜔𝜇𝜎𝑬 − 𝜔U𝜇𝜖𝑬

((
2-5)

 𝛻U𝑯 = 𝛻×𝑱 + 𝜎𝑴 + 𝑗𝜔𝜎𝑴 +
1
𝜇
𝛻𝜌D + 𝑗𝜔𝜇𝜎𝑯 − 𝜔U𝜇𝜖𝑯

((
2-6)

Boundary Conditions

Maxwell’s equations can be used to solve for the field vectors in continuous media.

However, most problems of interest are not confined to simple continuous media. When an

9

electromagnetic system is considered which is not confined to continuous media, Maxwell’s

equations cannot be solved without being provided the boundary conditions, which is problem-

dependent. For these, one must consider the integral form of Maxwell’s equations, written below

in equations 2-7 through 2-10. These equations describe the field relations and material properties

over an extended region of space rather than instantaneously at a specific point in space as in the

differential formulation with 𝑄X and 𝑄D being the total electric and magnetic charges

respectively.

𝑬 ⋅ 𝑑𝒍 = 	− 𝑴 ⋅ 𝑑𝒔 −

𝝏
𝝏𝒕

𝜇𝑯 ⋅ 𝑑𝒔
^^_

(2-7)

𝑯 ⋅ 𝑑𝒍 = 𝑱 ⋅ 𝑑𝒔

^
+ +

𝜕
𝜕𝑡

𝜖𝑬 ⋅ 𝑑𝒔
^_

(2-8)

𝜖𝑬 ⋅ 𝑑𝒔

^
= 𝑄X

 (2-9)

𝜇𝑯

^
⋅ 𝑑𝒔 = 𝑄D

(2-10)

Figure 2-3: A completely arbitrary electromagnetic system.

10

Consider the geometry displayed in Figure 2-3. A wave that interacts with the boundary

within the confines of the outlined contour, 𝐶, induces currents within the boundary governed by

equations 2-5 and 2-6. Thus, for a finite conductive media as the height 𝛥𝑦 → 0 the surface

integral vanishes and the integrals may be solved as

 𝑛× 𝑬U − 𝑬e = 	−𝑴 (2-11)

 𝑛× 𝑯U − 𝑯e = 𝑱 (2-12)

The boundary conditions can be completed by determining the conditions along the

interface. Thus, one may integrate 2-7 and 2-8 simply arriving at the following boundary

conditions.

 𝑛 ⋅ 𝜖U𝑬U − 𝜖e𝑬e = 	𝜌X (2-13)

 𝑛 ⋅ 𝜇U𝑯U − 𝜇e𝑯e = 	𝜌D (2-14)

Here, 𝜌X and 𝜌D represent the electric and magnetic charge densities respectively. For a

source-free media, which is not a perfect conductor, one may assume that no charges exist along

the surface. In this case, the right hand side of equations 2-9 through 2-12 may be set to zero.

Furthermore, physically magnetic charge and current cannot occur so for most cases one may

simplify the boundary conditions by setting 𝑴 and 𝜌D to zero. From these equations, one can see

that the normal components of the electric and magnetic fields are discontinuous across a

boundary.

Oftentimes, when one is designing a numerical approximation of an electromagnetic

system, the use of the exact boundary conditions, seen above, becomes impractical. For this

reason, approximate boundary conditions, such as the Standard Impedance Boundary Condition

(SIBC), have been developed. The SIBC is derived from the case of a plane wave travelling from

one medium of infinite extent with impedance 𝑍e = 	
gh
ih

 into another medium of infinite extent

11

with impedance, 𝑍U =
gj
ij

. From the time-harmonic form of Maxwell’s equations, it is known

that the electric field and the magnetic fields can be related through the surface currents as

 𝑱𝒔 = 𝑛×(𝑯U − 𝑯e)
(2-15)

𝑯 =

𝑛×𝑬
𝑍

(2-16)

 𝑛× 𝑛×𝑬 = −𝑍e𝑍U𝑛×𝑯
(2-17)

A similar process can be used to derive a boundary condition approximation for a thin

finite conductive surface. Noting that the current density is related to the electric field through the

conductivity of a material with thickness 𝜏 in between two materials with impedance Z, the

boundary conditions can be derived as

 𝑱 = 𝜎𝑬
(2-18)

 𝑱n = 𝜏𝑱
(2-19)

 𝑬 =
𝑱n
𝜏𝜎

= 𝑍
𝑱
𝜎

(2-20)

Through these, the fields above and below may be determined as

 𝑛× 𝑛× 𝑬e + 𝑬U = 	−2𝑍
𝑱n
𝜎
	

(2-21)

 𝑛× 𝑬U − 𝑬e = 	0
(2-22)

Surface Equivalence

For a numerical representation of an electromagnetic system to be valid, it must be

understood that there is an equivalence between the system and the model of that system. To

justify this, one must consider whether a few properties are valid within the context of Maxwell’s

12

equations. That is, whether the solutions to Maxwell’s equations are unique and linear for a

particular electromagnetic system consisting of interactions between media and whether, given

unique, linear solutions, one may consider two sources within a region to be equivalent given that

the fields generated from them are equivalent.

Uniqueness

To begin, the uniqueness of the solutions to Maxwell’s equations will be considered.

Consider a generic, lossy with material properties 𝜖 and 𝜇 in which electric and magnetic sources,

𝑱n and 𝑴n respectively, are generating fields. If Maxwell’s equations produce solutions that are

not unique, one may consider two sets of fields generated: the first set called 𝑬o and 𝑯o as well

as a second set called 𝑬p and 𝑯p. All solutions must satisfy Maxwell’s equations. Thus,

−𝛻×𝑬o = 𝑴 + 𝑗𝜔𝜇𝑯o 𝛻×𝑯o = 𝑱 + 𝑗𝜔𝜖𝑬o
(2-23)

−𝛻×𝑬p = 𝑴 + 𝑗𝜔𝜇𝑯p 𝛻×𝑯p = 𝑱 + 𝑗𝜔𝜖𝑬p
(2-24)

Subtracting (2-24) from (2-23), arrives at

−𝛻× 𝑬o − 𝑬p = 𝑗𝜔𝜇(𝑯o − 𝑯p) −𝛻× 𝑯o − 𝑯p = (𝜎 + 𝑗𝜔𝜖)(𝑬o − 𝑬p)
(2-25)

which may be rewritten as

−𝛻×𝛿𝑬 = 𝑗𝜔𝜇𝛿𝑯 = 𝛿𝑴Q −𝛻×𝛿𝑯 = 𝑗𝜔𝜖𝛿𝑬 = 𝛿𝑱Q
(2-26)

where 𝛿𝑬 and 𝛿𝑯 are the differences in the electric and magnetic fields and 𝛿𝑴Q and 𝛿𝑱Q are the

total differences in the magnetic and electric current densities. For the solutions to Maxwell’s

equations to be unique, these values must all be zero implying that 𝑬o = 𝑬p and 𝑯o = 𝑯p.

Conservation of energy suggests that this is the case. This can be shown by using the

electromagnetic conservation of energy equation.

13

𝛿𝑬×𝛿𝑯∗ ⋅ 𝑑𝒔

^

+ 𝜎 + 𝑗𝜔𝜖 ∗ 𝛿𝑬 U + 𝑗𝜔𝜇 𝛿𝑯 U 𝑑𝑣 = 0
t

(2-27)

The surface integral in (2-27) can be shown to be zero through vector identities when

the tangential components of 𝑬 or 𝑯 are specified over the boundary. For the volume integral to

be equal to zero, it must be that 𝛿𝑬 and 𝛿𝑯 are also zero since 𝜎, 𝜔, 𝜖 are clearly non-zero system

parameters. Thus, the solutions to Maxwell’s equations must be unique.

Linearity

To prove linearity, one may consider fields generated by two sources 𝑱e and 𝑱U. These

fields must satisfy the equations

 𝛻×𝑬e = −𝑗𝜔𝜇𝑯e
(2-28)

 𝛻×𝑯e = 𝑱e + 𝑗𝜔𝜖𝑬e
(2-29)

for source 𝑱e and

 𝛻×𝑬U = −𝑗𝜔𝜇𝑯U
(2-30)

 𝛻×𝑯U = 𝑱U + 𝑗𝜔𝜖𝑬U
(2-31)

for source 𝑱U.

Given the total fields 𝑬 and 𝑯 obtained by adding both systems, it becomes clear that

linearity for electromagnetic systems holds. That is,

𝑬 = 𝑬e + 𝑬U 𝑯 = 𝑯e + 𝑯U
(2-32)

14

Surface Equivalence

Figure 2-4: A crude representation of the surface equivalence principle, which replaces a full material
system with equivalent sources.

With the understanding that most numerical solutions to an electromagnetic system will

be obtained not with the real, physical system but instead with a meshed approximation of that

system, it is important to show that one may derive an equivalent source whose solution matches

the unique solution of the system being modeled. The surface equivalence principle states that

given electromagnetic sources, 𝑬 and 𝑯, within a region, sources 𝑬X and 𝑯X which produce the

same field within that region are said to be equivalent. This can be seen in Figure 2-4.

This provides a distinct advantage over the use of the real system in solving an

electromagnetic problem. Oftentimes in electromagnetic systems, the solution to the radiated or

scattered fields may be difficult or impossible to solve analytically using known integration

techniques. While such solutions exist, such as for a current flowing through a dipole or loop, in

general, the problems that one might consider do not always fall neatly into these known cases. In

this situation, it becomes convenient to decompose the system into a series of equivalent

elements, which can then be solved more easily through a known or numerical method, instead of

solving the system directly.

15

Figure 2-5: A simple diagram of an electromagnetic interaction with a boundary.

Given fields 𝑬u and 𝑯u within the boundary of the surface and 𝑬v and 𝑯v in Figure 2-5,

the equivalent sources can be determined from the boundary conditions easily as

 𝑱X = 𝑛×(𝑯v − 𝑯u)
(2-33)

 𝑴n = −𝑛×(𝑬v − 𝑬u)
(2-34)

Using these equivalent surface currents, the radiation equations can be used to derive the

electric field integral equation (EFIE) and magnetic field integral equation (MFIE) [7]

𝑬 𝑟 = 	− 𝛻×𝐺

^
𝑅 ⋅ 𝑛z×𝑬 𝒓z 𝑑𝑆z

+ 	𝑗𝑘~𝑍 𝐺	 𝑅 ⋅ 𝑛z×𝑯 𝒓z 𝑑𝑆′
^

(2-35)

𝑯 𝑟 = 	− 𝛻×𝐺

^
𝑅 ⋅ 𝑛z×𝑯 𝒓z 𝑑𝑆z 						

−
𝑗𝑘~
𝑍

𝐺	 𝑅 ⋅ 𝑛z×𝑬 𝒓z 𝑑𝑆′
^

(2-36)

16

 where 𝑅 = |𝒓 − 𝒓z|, 𝒓 and 𝒓′ are the observation and integration points, 𝑛′ is the unit normal at

the integration point, and 𝐺 is the dyadic Green’s function which may be written as

𝐺 = 	− 𝐼 +

𝛻𝛻
𝑘~U

𝐺~(𝑅)

(2-37)

where 𝐼 is the unit dyad and the scalar Green’s function is given as

𝐺~(𝑅) =

𝑒�O���

4𝜋𝑅
	

(2-38)

 Using (2-35) and (2-36), the surface equivalent currents, and vector identities, the

integral equations, which may be used in a numerical solution to an electromagnetic system, may

be derived. These expressions can be written as,

𝑬 = 	 𝑴 𝒓z ×𝛻𝐺~ 𝒓, 𝒓z − 𝑗𝑘~𝑍𝑱 𝒓z 𝐺~ 𝒓, 𝒓z

^

− 𝑗
𝑍
𝑘~

𝛻z ⋅ 𝑱 𝒓z 𝛻𝐺~ 𝒓, 𝒓z 𝑑𝑆′

(2-39)

𝑯 = 	 −𝑱 𝒓z ×𝛻𝐺~ 𝒓, 𝒓z + 𝑗

𝑘~
𝑍
𝑴 𝒓z 𝐺~ 𝒓, 𝒓z

^

+ 𝑗
1
𝑘~𝑍

𝛻z ⋅ 𝑴 𝒓z 𝛻𝐺~ 𝒓, 𝒓z 𝑑𝑆′

(2-40)

The Finite Element Method

The finite element method has a long history in engineering due to its usefulness in

numerically solving integral equations, such as in equations (2-39) and (2-40). While its origins

are uncertain, Courant is believed to be among the first to describe the discretization of partial

differential equations (PDEs) into a representation that is similar to the finite element method [8]

although his work built upon developments by other researchers. The finite element method

began to mature and see heavy development as computer technology progressed and aviation

17

engineers began using it in their models [9, 10]. These advances, no doubt, was encouraged by

the development of the bipolar junction transistor, integrated circuits and early computer

technology.

The finite element method is attractive due to its ability to handle the discretization of

complex geometry consisting of dissimilar materials. One may also use the finite element method

to determine localized responses allowing one to not only see the global effects, such as in

electromagnetic scattering, but also the fields locally on an element which have been used to

determine that scattering. The finite element method has the distinct advantage of generating

sparse matrices, which can result in a typically low memory requirement.

A disadvantage of the finite element method in a boundary-value problem is that a

method must be used to enclose the system. When paired with an appropriate boundary condition,

an electromagnetic scattering or radiation problem can be successfully applied to a finite element

formulation. A common technique to do this is to use an absorbing boundary condition or

perfectly matched layer (PML) which can then truncate the system. This technique, however,

requires the discretization of much of the half-space - that is, the whole of space above or below

the system - such that the wave not be distorted by near-field effects. Furthermore, an improperly

matched layer may create additional error in the finite-element system by inducing non-existent

scattering along the boundaries.

Another technique is to pair the finite element method with a hybridization technique

coupling the fields with the results of a boundary-integral method. While boundary-integral

systems typically require fully populated matrices, these methods, which only treat the boundaries

two-dimensionally, require much less unknowns than a three-dimensional finite-element system.

When integrated with acceleration techniques, this process becomes more attractive than the use

of a fully meshed finite element system coupled with a matching technique like PML.

18

Discretization of a Domain into a Finite Element Mesh

The finite element method achieves its ability to represent complex geometries through

the process called meshing or discretization. Typically, a geometry will be discretized into

elements with as few edges or nodes as possible. In two-dimensions, the geometry is typically

discretized into a triangular or quadrilateral mesh. In three dimensions, the most convenient

representations are into eight-node brick elements, six-node prismatic elements, or five node

tetrahedral elements. Each three-dimensional representation may represent an increasing degree

of complexity.

A simple mesh may be seen in Figure 2-6. In this example, a two-dimensional circular

material is represented. This simple scenario demonstrates the benefit of using a mesh, which is

constructed from elements with fewer nodes, i.e. in two-dimensions a triangle. In order for the

quadrilateral mesh to approximate a circle, many more elements are necessary. Conversely, a

mesh that represents an object that is restricted to quadrilateral objects would be better-

represented using quadrilateral elements since it requires twice as many triangles to build a mesh

of a given fineness.

For generality, it is best to use a mesh that is built from elements with the least amount of

edges necessary to represent the any object in the dimensionality in which variations are desired.

That is, one should use triangles for two-dimensional objects, prisms for layers of two-

dimensional objects, and tetrahedrons for three-dimensional objects. In this research, only layered

two-dimensional objects will be considered. Thus, prismatic elements are a logical choice.

19

Figure 2-6: Example meshes representing a circle. On the left, a triangular mesh is used requiring 170
triangles. On the right, the mesh is built from square pixels using 900 pixels. The edges are drawn for emphasis.

The finite element process is based on the idea that at some level of fineness, the wave

response may be approximated by some other function, which is of a smaller order along an

element. The simplest case occurs when the wave can be considered linear along the element. In

general, this holds when the element is less than 1/10 of the wavelength within the material. This

allows the integral equations to be recast into a set of weighted averages, which can be

represented by a matrix

 𝑍 𝐽 = [𝐸] (2-41)

where 𝑍 is a matrix containing the finite element impedance functions, 𝐸 is the excitation and 𝐽 is

the induced currents which are unknown. Typically, this system of equations is large, sparse and

symmetric. For this reason, the solution lends itself to a specialized algorithm such as the

biconjugate gradient instead of direct matrix inversion, which is computationally intensive and

requires a large amount of memory.

20

The Weak Form of a Differential Equation

The key to setting up a finite element problem in a way that a computer can easily solve

is by expanding the integral equation into what is known as its weak form. In other words, the

wave equation will be solved in a way that is valid over some test domain, in this case along the

mesh.

To begin, consider the general form of the wave equation for an electric field

 𝛻× 𝛻×𝑬 − 𝑘U𝑬 = −𝑗𝑘~𝑍~𝜇𝑱 − 𝛻×𝑴 (2-42)

In this example, the sources and material parameters are known qualities but the field is

unknown. Rather than solve the fields analytically, the finite element method uses what is known

as the weighted residual method to minimize the difference between an approximation of those

fields and the fields, as they would exist in reality.

 First, recast the equation into the residual form

 𝛻× 𝛻×𝑬u�Q − 𝑘U𝑬u�Q + 𝑗𝑘~𝑍~𝜇𝑱 + 𝛻×𝑴 = 𝑹	 (2-43)

where 𝑬u�Q is the finite element approximation of the electric field inside the mesh. By

subdividing the problem space into a mesh, the variations become small enough that the field on

the 𝑖th element may be approximated by some basis function 𝑾u such that

 𝑹 ⋅ 𝑾u𝑑𝑉 = 0
t

(2-44)

From this, the finite element equations can be formed. By expanding the weighted

residual equation (2-44) by inserting (2-43) into 𝑹, it may be written fully as

𝛻× 𝛻×

𝑬u�Q

𝜇�
⋅

t
𝑾u𝑑𝑉 − 𝑘~U 𝜖�𝑬u�Q ⋅ 𝑾u𝑑𝑉

t

= −𝑗𝑘~𝑍~ 𝑱u
t

⋅ 𝑾u𝑑𝑉 − 𝛻×
𝑴u

𝜇�
⋅ 𝑾u𝑑𝑉

t

(2-45)

21

where the material parameters, 𝜖� and 𝜇�, have been extracted to emphasize their contribution to

the field localized within the element. Since the right-hand side of (2-45) contains only known

quantities, it may be simplified as

−𝑗𝑘~𝑍~ 𝑱u

t
⋅ 𝑾u𝑑𝑉 − 𝛻×

𝑴u

𝜇�
⋅ 𝑾u𝑑𝑉

t
= 𝑓u

(2-46)

Furthermore, the left-hand side may be simplified using integration by parts and invoking Green’s

theorem [7] arriving at the weak formulation.

 𝛻×𝑬u�Q ⋅ 𝛻×𝑾u

𝜇�
𝑑𝑉

t

− 𝑘~U 𝜖�𝑬u�Q ⋅ 𝑾u𝑑𝑉
t

− 𝑗𝑘~𝑍~ 𝑛×𝑯u�Q ⋅ 𝑾u𝑑𝑆 = 𝑓u
^

	

(2-47)

This fully formed weak formulation may be discretized allowing a computer to solve for the

electric field provided the magnetic field, 𝑯u�Q, may be solved for using a boundary condition

which couples the internal and external magnetic fields.

Discretization of the Weak Formulation

The standard method to discretize integral equations such as the one in (2-47) is to

introduce a discrete formulation for the unknown fields, in this case 𝑬u�Q and 𝑯u�Q, and to choose

a weighting function which will yield an approximation of the real fields.

To begin, it will be noted that for a fine meshing, that is one in which follows the rule of

thumb that the elements are smaller than a tenth of the wavelength, it is appropriate to

approximate the fields along those elements as a constant value multiplied by a basis function,

which varies within the element. This effectively recasts the total fields as a piecewise linear

22

function over the entire domain. The benefit of this technique is it removes variability from the

fields and places it in a function over which the variation is known a priori. This allows the

unknown fields to be removed from the integral limiting integration to known, solvable quantities

only. Therefore, the total field -- be it electric, magnetic or other – may be represented as the sum

of all the basis functions over the entire domain.

Figure 2-7: Triangle element for use with triangle edge elements.

As an equation, one may write

𝑈 𝒓 = 𝑈uX𝑁uX(𝒓)

��

u�e

��

X�e

(2-48)

where 𝑈 𝒓 is some arbitrary, unknown field, 𝑈uX is a constant approximation of that field on the

ith piece of the eth element. 𝑁uX(𝒓) is a basis function chosen from the type of element and

subdivided pieces, typically nodes or edges, into which the domain has been discretized. 𝑁u is the

number of pieces per element, and 𝑁X is the total number of elements into which the domain has

been decomposed.

 A simple method for choosing a basis function is to assume that at the size of the

discretization the change in fields from one node to another can be approximated as a low order

polynomial. For a first order basis function applied to a one-dimensional finite element problem,

this may be written as

23

 𝑁u 𝑥 =
𝑥 − 𝑥��e
𝑥� − 𝑥��e

 (2-49)

Whereas for a triangular element, such as the one shown in Figure 2-7, the basis function

becomes slightly more complicated. Assuming any point on the triangle may be described by the

functions

 𝑥 = 𝑥e + 𝑥U − 𝑥e 𝜉 + 𝑥� − 𝑥e 𝜐
(2-50)

 𝑦 = 𝑦e + 𝑦U − 𝑦e 𝜉 + 𝑦� − 𝑦e 𝜐
(2-51)

where 𝑥e, 𝑥U, and 𝑥� are the 𝑥 coordinates of the triangle nodes, 𝑦e, 𝑦U, and 𝑦� are the 𝑦

coordinates of the triangle nodes, and 𝜉 and 𝜐 are local coordinates within the triangle ranging

from 0 to 1. From this, a first order shape function may be derived as

 𝑢 𝜉, 𝜐 = 𝑐e + 𝑐U𝜉 + 𝑐�𝜐
(2-52)

from which the triangle bases can be derived as

 𝑁e = 1 − 𝜉 − 𝜐
(2-53)

 𝑁U = 𝜉
(2-54)

 𝑁� = 𝜐
(2-55)

The designer has the freedom to decide on the type of basis function to be used. In this case, a

shape function that varies linearly along the edges of the triangle has been described. One may

also choose bases that vary at a higher order at a cost of higher computational complexity. Other

common bases are based on the node locations rather than on the variations along the edges

between nodes although this may come at a cost to accuracy [11].

24

Figure 2-8: A single prismatic element.

 For this work, the finite element code uses prismatic edge elements, such as the one

shown in Figure 2-8, with basis functions as described by Volakis and reproduced below in

equations (2-56) through (2-63)[7]. In these equations, 𝑳uX are triangular area basis. Here, the

triangles are described as 𝛥uO� where 𝑖, 𝑗, and 𝑘 are arbitrary triangle nodes and the basis

functions are calculated at a point, 𝑃, within the triangle. The parameter 𝑠 is a normalization

parameter that is zero at the bottom and unity at the top. Finally, the basis functions 𝒗 are used to

describe the vertical edges along the prism and are specifically designed to minimize tangential

discontinuities between the edge elements.

 𝑾�
X = 𝑁uOX = 𝑏uO 𝑳uX𝛻𝑳OX − 𝑳OX𝛻𝑳uX 𝑠, 𝑖, 𝑗 = 1,2,3; 𝑘 = 1,2,3

(2-56)

 𝑾�
X = 𝑁uOX = 𝑏uO 𝑳uX𝛻𝑳OX − 𝑳OX𝛻𝑳uX 1 − 𝑠 , 𝑖, 𝑗 = 4,5,6; 𝑘 = 4,5,6

(2-57)

 𝑾�
X = 𝒗u 𝜉, 𝜐 𝑳uX 𝜉, 𝜐 , 𝑖, 𝑗 = 1,2,3; 𝑘 = 7,8,9	

(2-58)

𝑳eX =

𝐴𝑟𝑒𝑎 𝛥§U�
𝐴𝑟𝑒𝑎 𝛥eU�

(2-59)

𝑳UX =

𝐴𝑟𝑒𝑎 𝛥§�e
𝐴𝑟𝑒𝑎 𝛥eU�

(2-60)

𝑳�X =

𝐴𝑟𝑒𝑎 𝛥§eU
𝐴𝑟𝑒𝑎 𝛥eU�

(2-61)

25

𝒗 𝜉, 𝜐 = 𝑳uX 𝜉, 𝜐 𝒗u

�

u�e

(2-62)

𝒗 𝜉, 𝜐 =

𝒗 𝜉, 𝜐
|𝒗 𝜉, 𝜐 |

 (2-63)

These prismatic elements are a trade-off between cubic elements, which produce few

unknowns while sacrificing generalization of geometries, and tetrahedral elements, which

produce many unknowns but can describe virtually any geometry. With a prismatic element fewer

unknowns are required than in a tetrahedral mesh but generalization of a geometry is maintained

within a two-dimensional plain making it ideal for the simulation and analysis of a frequency

selective surface, patch antenna or other similar devices. Furthermore, meshing is simpler as

fewer constraints are required since they only need to be done within the plane of the surface and

coupling with the boundaries is automatically enforced.

Regardless of the type of meshing or basis functions used in the discretization of a

system, ultimately the basis functions will be applied to the finite element approximation given in

(2-48) to build a linear system of the form

 𝐴 𝑥 = [𝑏]
(2-64)

Where [𝐴] is a sparse matrix built from the basis equations, [𝑥] are the unknowns seen in

(2-48) as 𝑈uX, and [𝑏] is a vector built from the excitations, such as an incident plane wave, or

boundary conditions. As a sparse system, it is well suited for use with an iterative solver such as

the biconjugate gradient, instead of a traditional solving algorithm like pure inversion or LU

decomposition.

Typically, a finite element problem can be solved through the steps outlines below.

- Apply a meshing algorithm to decompose the system into one to which basis

functions may be applied.

26

- Build the finite element matrix by applying basis functions to the weak form of the

PDE.

- Apply boundary conditions to limit the domain of the problem.

- Solve using an iterative method.

Having discussed the discretization of the discretization of the weak form of a differential

equation it is appropriate to move onto the boundary conditions leaving meshing and iterative

methods to a later chapter since they do not directly relate to the finite element method.

Boundary Conditions in the Finite Element Method

A robust boundary condition serves two purposes in a finite element code. First, it

truncates the mesh to a domain limiting the area over which is necessary to compute the fields.

Second, the boundary conditions provide a basis from which a unique solution to the partial

differential equations may be determined. While in some situations, such as within a waveguide

or resonance chamber, the boundary conditions are well understood, oftentimes it is in the interest

of an engineer to determine the scattering or radiation responses of fields propagating into free-

space or far enough away that one may consider that to be an accurate approximation. To

eliminate the necessity of meshing unnecessary space, techniques have been developed which

truncate the domain to within the bounds of an artificial boundary. In this analysis, three methods

will be discussed which may be applied to a finite element problem to truncate the boundaries by

minimizing artificial reflections: absorbing boundary conditions, perfectly matched layer, and a

hybrid boundary integral.

27

Absorbing Boundary Conditions

Figure 2-9: A schematic arrangement for an absorbing boundary condition.

Absorbing boundary conditions were an early method of truncating the finite element

domain. These methods are all based on the idea that within the simulation domain all scattered

or radiated fields, which propagate away from the material being considered, is equivalent to lost

energy. Therefore, no energy incident upon the boundary is perturbed by the boundary.

Mathematically, this is equivalent to simulating the effects of an anechoic chamber. A problem

with these methods, such as those based on Enquist and Majda [12] or the Bayliss-Turkel

boundary conditions [13], is that they are sensitive and tend to be problem specific.

Consider the situation seen in Figure 2-9 in which an arbitrary field, 𝑈 is incident upon

the artificial boundary. A simple artificial boundary condition obeys the following condition.

 𝑑𝑈
𝑑𝑛

+ 𝛼𝑈 = 0

(2-65)

In other words, the change in the field in the normal direction to the boundary is equal to the field

multiplied by some constant.

 This formulation is first order and has the obvious problem that it ignores higher order

effects. Another drawback is that typically absorbing boundary conditions require the artificial

boundary to be placed a few wavelengths away from the object being simulated requiring

unnecessarily large meshes and matrices. However, despite this, these boundary conditions are

ABC

FEM

periodic
boundary

28

useful do to their simplicity. An improved absorbing boundary condition takes into account the

second derivative as well. This condition may be written as

 𝑑𝑈
𝑑𝑛

= 𝛼𝑈 + 𝛽
𝜕U𝑈
𝜕𝑠U

		

(2-66)

where 𝑠 represents the field components along the surface of the artificial boundary. In both the

first and second order cases, the selection of 𝛼 and 𝛽 is problem dependent.

An absorbing boundary condition is discretized similar to the way a normal finite element

problem would be discretized. Consider the discretization of a scattering magnetic field,

𝑯nªoQ = 𝐻unªoQ𝐿uX(𝒓)

U

u�e

�

n�e

(2-67)

Such that the 𝑁n is the number of elements on the surface of the artificial boundary and the

absorbing boundary integral equation,

 1
𝜖�
𝐿O𝑛 ⋅ 𝛻𝑯nªoQ𝑑𝑠 = ∫

1
𝜖�X
𝐿O(𝛼𝑯nªoQ + 𝛽

𝜕U𝑯nªoQ

𝜕𝑠U_¯°±²³
)𝑑𝑠

(2-68)

may be rewritten using integration by parts and discretized as

 1
𝜖�
𝐿O𝑛 ⋅ 𝛻𝑯nªoQ =

1
𝜖�n
[𝛼 𝐿O𝐿u𝑑𝑠 − 𝛽

𝜕𝐿O
𝜕𝑠

𝜕𝐿u
𝜕𝑠

𝑑𝑠	
_

]
_

��

u�e

��

X�e_

(2-69)

which yields the element equations

𝐴X 𝐻nªoQ,X + 𝐵n 𝐻nªoQ,X = [𝑏X]

��

X�e

�

n�e

		
��

X�e

(2-70)

whose individual elements can be developed based on the problem. These absorbing boundary

element equations may be inserted into a full finite element system as

 [𝐴µµ] [𝐴µ^]
[𝐴^µ] [𝐴^^]

𝐻u�Q

𝐻pv¶�· + 0 0
0 [𝐵]

𝐻u�Q

𝐻pv¶�· = [𝑏]

(2-71)

29

Perfectly Matched Layer

Figure 2-10: A schematic arrangement for a perfectly matched layer.

The perfectly matched layer was designed to solve many of the problems that existed in

the traditional absorbing boundary conditions. Like the absorbing boundary conditions, the

perfectly matched layer is designed to take advantage of the mathematical equivalency of a field

propagating to infinite and the field being completely absorbed. The difference is that in a domain

truncated by an absorbing boundary condition, aside from ideal situations, there is no guarantee

that reflections will be eliminated. The absorbing boundary condition maximized absorption in

the partial differential equations at the boundary whereas the perfectly matched layer minimized

reflection which encouraging absorption in the material of the artificial boundary.

Originally proposed by Beringer [14], the perfectly matched layer is built upon the

insight that within the layer Maxwell’s equations must also be valid. Thus, by proposing a layer

in which the impedances match the impedance from which the fields arrive, no field is reflected.

Thus, the code is free to absorb the field over a few layers eliminating undesirable reflections.

This method is commonly used due to its robustness and simplicity. A major drawback

however is that the layers must be meshed just as the simulation domain itself causing a dramatic

increase in the memory necessary to solve the problem. Furthermore, these absorbing boundary

methods are valid for continuous problems but, in a computer simulation, the problem is

PML

FEM

periodic
boundary

30

discretized. Therefore, it is possible that with improper meshing inaccuracies or convergence

issues will occur.

As an example, consider the scattering problem seen in Figure 2-10. The numerical

system in a perfectly matched layer problem is a special case of the absorbing boundary condition

in (2-71) except that 𝐵 = 0 and the relative permittivity and permeability are tensors that, for a

wave traveling in the 𝑧 direction, may be set as

𝜖 = 𝜇 =

𝑐 0 0
0 𝑐 0
0 0 1/𝑐

(2-72)

where 𝑐 is a complex constant used to maximize absorption and minimize reflection.

The Boundary Integral as a Boundary Condition

Figure 2-11: A schematic image of the periodic finite element boundary integral problem.

The boundary integral approach to handling boundary conditions is radically different

from the absorbing boundary conditions described above. Rather than approximate the effect of

an incident wave upon an absorbing boundary, the boundary integral method calculates an exact

solution of the partial differential equations on the boundary. This can be seen graphically in

Figure 2-11 which demonstrates the regional nature of a finite element boundary integral system.

To do this, one may use Kirchhoff’s boundary integral with respect to the magnetic field

using the following expressions [15, 16].

P-BI

FEM
periodic

boundary

31

 𝐻¹ = 𝐻¹u + 𝐻¹nªoQ
(2-73)

 𝐻¹ 𝒓 𝒓∈_°±»�¼

= 𝐻¹u −
𝜕𝐻¹ 𝒓z

𝜕𝑛z
𝐺U½ 𝒓, 𝒓z − 𝑛z ⋅ 𝛻z𝐺U½ 𝒓, 𝒓z 𝐻¹ 𝒓z 𝑑𝑙′

_

(2-74)

 𝐺U½ 𝒓, 𝒓z = 	−
𝑗
4
𝐻~

U (𝑘~ 𝒓 − 𝒓z)

(2-75)

where 𝐺U½ 𝒓, 𝒓z is a Green’s function and 𝐻~
U 𝑘~ 𝒓 − 𝒓z is a second order Hankel function.

The boundary integral in (2-74) may be discretized using Galerkin’s method and approximated

in a similar way to what is done in the finite element method. First, for simplicity, let the partial

derivative of the magnetic field be rewritten as

𝜓 𝒓 =

𝜕𝐻 𝒓
𝑑𝑛

(2-76)

A convenient way to discretize the unknowns, 𝐻¹(𝒓) and 𝜓 𝒓 is to use a piecewise

constant expansion in which the fields are represented by their average value within the element.

This may be written as

𝜓 =

𝜓en + 𝜓Un

2
𝛱(𝜃 − 𝜃n)

�

n�e

(2-77)

𝐻¹ =

𝐻¹h
n + 𝐻¹j

n

2
𝛱(𝜃 − 𝜃n)

�

n�e

(2-78)

where 𝛱(𝜃 − 𝜃n) is a pulse function that is one within the element and zero otherwise and 𝜓en,

𝜓Un, 𝐻¹h
n , and 𝐻¹j

n are the values at the bounds of the elements. This simple approximation can be

inputted into the boundary integral equation yielding a residual equation, which will help in

forming the boundary integral numerical system. Inputting (2-77) and (2-78) into (2-74) and

rearranging yields

32

𝐻¹ 𝒓 +	 [

𝜓en + 𝜓Un

2
𝐺U½ 𝒓, 𝒓z 𝑑𝑙z

_

�

n�e

−
𝑯e
n + 𝑯U

n

2
𝑛′ ⋅ 𝛻z𝐺U½ 𝒓, 𝒓z 𝑑𝑙′]

_
− 𝐻¹u 𝒓 = 𝑅(𝒓)

(2-79)

Using the weighted residual method with 𝑊 𝒓 = 𝛿(𝜙 − 𝜙¶), where the subscript 𝑢

represents the test scenario at an unknown, yields

 𝑅 𝒓 𝑊 𝒓 𝑑𝑙 = 0
_

(2-80)

which will allow a system of equations over each element to be build using for a boundary

integral system with test pointed at the center of each element. These can be written in the form

of the following equations.

 𝑯¹e
¶e + 𝑯¹U

¶e

2
+

𝜓en + 𝜓Un

2
𝐺ne,¶e −

𝑯¹e
ne + 𝑯¹U

nU

2
𝐺Äh,±h

�

n�e

= 𝑯¹
u 𝒓¶e ,

𝑢e = 1,2, … , 𝑁n

(2-81)

𝐺ne,¶e = −

𝑗𝑟_
4

𝐻~
U (2𝑘~𝑟_ sin

𝜙¶e − 𝜙z

2
)𝑑𝜙′

ÉhÊ
ËÉ
U

Éh�
ËÉ
U

(2-82)

𝐺Äh,±h = −

𝑑
𝑑𝑛

𝐺U½
ÉhÊ

ËÉ
U

Éh�
ËÉ
U

(𝒓, 𝒓z)|���h	

(2-83)

Such that (2-81) forms the basis for the boundary integral portion of the system of

equations while (2-82) and (2-83) are Green’s function integrals, which must be calculated.

With the boundary integral recast in the form of a linear system, it may now be used in a

full finite element problem as in the previous absorbing boundary condition examples as

 [𝐴µµ] [𝐴µ^]
[𝐴^µ] [𝐴^^]

𝐻u�Q

𝐻pv¶�· + 0 0
0 [𝐵𝐼]

𝐻u�Q

𝐻pv¶�· = [𝑏]

(2-84)

where [𝐵𝐼] is the boundary integral system.

33

Finally, it is important to consider coupling the finite element and boundary integral

systems. Doing this will allow the fields determined from the boundary integral to be continuous

into the finite element region guaranteeing an accurate solution for a given excitation. The

complete finite-element boundary-integral equations are

 𝛻×𝑬u�Q ⋅ 𝛻×𝑾u

𝜇�t
𝑑𝑉

− 𝑘~U 𝜖�𝑬u�Q ⋅ 𝑾u𝑑𝑉 − 𝑗𝑘~𝑍~ 𝑛×𝑯u�Q ⋅ 𝑾u𝑑𝑆 = 𝑓uu�Q
^t

(2-85)

−
1
2

𝑸u ⋅ 𝑛×𝑯u�Q 𝑑𝑆 − 𝑸u ⋅ 𝑛×𝛻×𝐺×𝑛z ⋅ 𝑯u�Q𝑑𝑆z𝑑𝑆
^^^

− 𝑗𝑘~𝑌~ 𝑸u ⋅ 𝑛×𝛻×𝐺×𝑛z ⋅ 𝑬XÎQ𝑑𝑆z𝑑𝑆 = 𝑓uXÎQ
^^

(2-86)

where the internal testing functions are indicated by 𝑾u, the external testing functions are

indicated by 𝑸u, and the external excitation force, 𝑓uXÎQ, can be determined for each element by

applying boundary conditions.

𝑓uXÎQ = − 𝑸u ⋅ 𝑛× 𝑯u�ª + 𝑯�XÏ 𝑑𝑆

^

(2-87)

Finally, the coupling condition can be determined using electric field continuity boundary

conditions such that the following equation is satisfied.

𝑸u ⋅ 𝑛× 𝑬u�Q − 𝑬XÎQ 𝑑𝑆 = 0

^

(2-88)

With these conditions satisfied, the finite element boundary integral can be discretized

and used to solve generalized electromagnetic scattering problems.

This type of formulation should provide improved accuracy over the use a simulated

boundary condition at the cost of increased computational complexity. This is summarized in

Table 2-1.

34

Absorbing Boundary

Condition

Perfectly Matched Layer Boundary Integral

Fast Fast Slow

Memory intensive Memory intensive Low memory requirements

Possible artificial reflects Artificial reflections less

likely

No artificial reflections

Approximate solution Approximate solution Exact solution neglecting

numerical integration errors

Table 2-1: A summary of three important boundary conditions for use in a finite element system.

Periodic Boundary Conditions

Figure 2-12: An example of two-dimensional periodic unit cells.

The final form of boundary conditions that will be considered are periodic boundary

conditions. These conditions are easy to conceptualize and visualize. For example, consider a

two-dimensional system such as the one shown in Figure 2-12. In this case, the simulation

35

domain has been divided into several identical elements that are repeated ad infinitum in the

horizontal and vertical directions. While in reality no surface is truly infinitely periodic, this

assumption serves as a valid simplification for surfaces in which the unit cells extend several

wavelengths from the simulation domain. If a designer is concerned with the field effects near the

edges of a device or cannot guarantee that the majority of the energy will be concentrated

uniformly within the center of the device, it is recommended that a finite element method using

another boundary condition be employed.

Each individual element, known as a unit cell, must match on opposing boundaries in

both the physical positioning of the elements and the force generated on the elements by induced

fields. This can be conceptualized mathematically as

 𝛻D𝑬 𝑥, 𝑦 = 𝛻D𝑬 𝑥 + 𝑖𝜌o, 𝑦 + 𝑗𝜌p ;	

						𝑖 = 0,1,2, … ; 	𝑗 = 0,1,2, … ,𝑚 = 0,1,2, …

(2-89)

where 𝜌o and 𝜌p are the periodicities in the 𝑥 and 𝑦 directions.

Using a periodic boundary condition not only simplifies the calculation of the fields at the

boundaries but also the calculation of the fields within the unit cells as well. In particular, one

may take advantage of Ewald summations [17], and periodic Green’s functions [18].

An Ewald summation is a method for calculating the long-range electric interactions in

periodic electromagnetic systems. In an electromagnetic system, the field interaction between

elements occur inversely proportional to the distance between the elements. That is, it is

proportional to e
𝒓�𝒓Ñ

. Using a simple summation for such a system will lead to a large calculation

that is not guaranteed to converge. The Ewald method divides this interaction into two separate

calculations that converge rapidly. Using the error function, one may divide the summation into

two complementary sums such that

36

1
𝑟
=
erf 12 𝜂𝑟

𝑟
+
𝑒𝑟𝑓𝑐 1

2 𝜂𝑟
𝑟

(2-90)

where the error functions in this situation do not represent any kind of error. Instead, these

functions were chosen due to their convergence properties near and far from the interaction.

These functions are defined as follows

erf 𝑥 =

2
𝜋

𝑒�Qj
Î

~
𝑑𝑡

(2-91)

𝑒𝑟𝑓𝑐 𝑥 = 1 − erf 𝑥 =

2
𝜋

𝑒�Qj
∞

Î
𝑑𝑡

(2-92)

In this code, rather than use the real-valued error functions, the complex form, also

known as the Faddeeva function, will be used, which can be defined as

 𝑤 𝑧 = 	 𝑒�¹j𝑒𝑟𝑓𝑐(−𝑖𝑧)
(2-93)

Using the Ewald transformation, the Green’s functions in a periodic system may be

modified into periodic Green’s functions. These functions may be inserted as normal into the

derivation of a finite element or boundary integral system. By calculating the Green’s functions

using an Ewald summation, the contributions to the Green’s function from far-off unit cells are

simplified into the converged value. For ease of calculation, one may split the Green’s function

calculations into special cases for the spatial and spectral. These can be expressed mathematically

as

 𝐺n×oQuoØ,×X�uv·uª = 0.5 [𝑒�O��Ù²𝑐𝑒𝑟𝑓 𝑟D�𝑘 −
𝑗
2

D,�

+ 𝑒O��Ù²𝑐𝑒𝑟𝑓 𝑟D�𝑘 +
𝑗
2
]
𝑒�ÚÛÚÊ�ÜÛÜ

4𝜋𝑟D�

(2-94)

𝐺n×XªQ�oØ,×X�uv·uª =

𝑒�O �»,ÚÎÊ�»,ÜÝ

𝑗2𝜌o𝜌p sin 𝛾 𝑘n×
𝑐𝑒𝑟𝑓

𝑗𝑘n×
2

D,�

		

(2-95)

37

where the Hankel functions of the second kind, used in the general form of a Green’s function,

have been simplified to exponential functions, the summations over 𝑚 and 𝑛 are rotated such that

they spiral out from the element which is being calculated and the distance value for the periodic

contribution at a point is represented using

𝑟D� = 𝑥 − 𝜌Î U + 𝑦 − 𝜌Ý

U

(2-96)

 𝜌Î = 𝑚𝜌o − 𝑛𝜌p cos 𝛾
(2-97)

 𝜌Ý = 𝑛𝜌p sin 𝛾
(2-98)

𝑘n× = 𝑘U − 𝑘Q,ÎU − 𝑘Q,ÝU

(2-99)

where 𝜌o and 𝜌p are the periodicities in the horizontal and vertical directions of the unit cell, and

𝛾 is the angle of the parallelogram which encloses the unit cell.

Calculation of the Scattered Field

Once a finite element system is solved, regardless of the type of boundary conditions

used, the solution of the system contains values representing the induced fields or currents at each

particular element. This is useful in that it allows an engineer or designer to get a picture of the

physical response of a system but it is not directly useful for the sort of thing one might desire

from an electromagnetic system. Typically, in an electromagnetic system, what is of interest is

instead the scattering or radiation that occurs in that system.

In this research, I have focused on the scattering response of an electromagnetic system

from an incident unit-magnitude plane-wave. Using a unit-magnitude incident wave allows a true

response to be calculated using the linearity relation by scaling the unit-scattering response by the

actual power of an incident wave. The use of plane waves is a valid assumption for most

38

scattering cases. For example, an incident wave from a spherical source when traveling a far

enough distance can be approximated as planar after it has traveled a distance of several

wavelengths assuming that the portion of the wave hitting the scattering media is small in

comparison. Similarly, a beam from a laser source or exiting a fibre-optic cable typically has a

beam pattern, which can be described as Gaussian. If the beam waist is large compared to the size

of a unit cell of the scattering object, approximating the incident field as a plane wave may be

justified.

Figure 2-13: An arbitrary object upon which a plane wave is incident.

To calculate the scattering from an incident plane wave for an arbitrary system, such as

the one in Figure 2-13, one may solve Kirchhoff’s integral equation for an arbitrary wave, 𝑈(𝒓)

usually written as

𝑈nªoQ 𝒓 = − {𝑛 ⋅ 𝛻′(𝑈 𝒓z 𝐺U½ 𝒓, 𝒓z − 𝑛z ⋅ 𝛻z𝐺U½ 𝒓, 𝒓z 𝑈 𝒓z 𝑑𝑙′

_

(2-100)

where 𝑈 can be the scattered electric or magnetic fields and the Green’s function is a zeroth-order

Hankel function of the second kind,

39

 𝐺U½ 𝒓, 𝒓z = −
𝑗
4
𝐻~

U (𝑘~ 𝒓 − 𝒓z)

(2-101)

This Green’s function can be thought of as the field generated by the individual element

at 𝒓′.

Kirchhoff’s integral equation can be used to calculate the scattered or radiated fields

since the current, which generates a radiated field, can be determined from the fields using

Maxwell’s equations and normal electromagnetic boundary conditions, i.e.

 𝑱 = 𝑛×𝑯 = −
𝑗𝜔𝜖~
𝑘~U

𝑛×[𝑧×𝛻𝑬¹]

(2-102)

 One may insert the equivalent electric and magnetic sources into the integral equation to

determine the scattered electric field for a general problem as

𝐸¹nªoQ 𝒓 = {−𝑗𝑘~𝑍~𝐽¹ 𝒓 𝐺U½ 𝒓, 𝒓z + 𝑀Q 𝑛z ⋅ 𝛻z𝐺U½ 𝒓, 𝒓z }𝑑𝑙′

_

(2-103)

Overview

The goal of this chapter was to lay the mathematical foundations upon which Maxwell’s

equations may be decomposed into a system of equations that may be solved more easily using

computational techniques. Using standard techniques, the equations were modified into their

weak formulations, which allow a linear approximation of the unknown fields to be extracted

from the integrals leaving an integral that is solvable using standard techniques.

As an integral based method, the finite element method will not give an exact solution on

its own. To account for this, several boundary condition techniques were mentioned and

discussed. Most common finite element codes rely on techniques, which approximate the

boundary conditions through artificially constructed regions that must also be constructed and

simulated through the same techniques as the primary finite element domain. On the other hand,

40

an exact solution can be had by integrating over the boundary of the domain instead. This is not

without its problems as, like in the finite element construction, these boundary integrals are not

always directly solvable. For some problems, this does not lead to many problems and the

problem may still be solved in a reasonable time. However, if the problem is to be generalized

into any type of boundary structure, particularly with a triangular decomposition, this leads to

computational complexity that must be discussed further.

Chapter 3
Programming Considerations for the Finite Element Boundary Integral

Method

Background

A fully functional, complete electromagnetics simulation suite must consider two primary

focuses: design and analysis.

The previous chapter described the mathematical foundations for the latter. In addition,

when it comes to implementation in software, analysis must also take into account many factors

as well. Besides discretization of the structure into individual elements, one must also take into

account limitations with the computer as well. These include things like precision and structuring

the algorithms in a way that is well suited for accelerated calculation in parallel.

There are additional considerations that must be made prior to analysis even beginning as

well. These can all be summarized under the general label of design. These include things like

building a mesh, efficient representations of objects to be modelled and optimization, which ties

the design and analysis together.

Additionally, as the previous chapter has mentioned, the boundary integral, while

providing an exact solution to the fields at the boundary, may possibly lead to many

computational issues. Particularly, without modification, an electromagnetic boundary that has

been truncated for a solution in a boundary integral creates a boundary integral matrix with

𝑂(𝑁U) computational complexity. In addition, the calculation of each element of that matrix has

its own complexity, which can potentially grow the time required to calculate the system to an

unreasonable level.

This chapter will focus on how to address these considerations.

42

Mesh Generation: Brick Versus Prismatic Elements

Figure 3-1: A single unit cell of an arbitrary frequency selective surface that has been built using brick
elements.

The process of mesh generation involves representing an object by a set of polygons,

which approximate the geometric domain of that object. While this process can be done using

polygons of any number of edges, typically these are done using polygons with three or four

edges, i.e. with triangle or quadrilateral polygons.

When designing a periodic frequency selective surface in two-dimensions, it is helpful to

determine which constraints and characteristics of the problem might be suited to which type of

simulation. The reason for this is an object which is modeled using just quadrilaterals may be

simulated much more quickly due to regularity in the angles of the individual elements and, if

desired, the size of the elements themselves. For example, if a regular grid of brick elements such

as the one in Figure 3-1 is used, not only is there a large reduction in memory since the mesh may

be simply calculated on the fly rather than stored but the finite element and boundary integral

matrices can be calculated quickly using the simple equations seen below.

43

𝐼e =

𝐿åæ
6

𝑐e
𝐿�åæe
𝐿�åæU

+ 𝑐U
𝐿�åæU
𝐿�åæe

, 𝑖𝑓	𝑇𝐸 = 𝑆𝐸.

−
𝐿�å^æ
6

𝑐�,																											𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(3-1)

𝐼U =
𝑐ê
36

𝐿½, 𝑖𝑓	𝑇𝐸 = 𝑆𝐸.
�

½�e
0,														𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(3-2)

 𝑍ëæ =
𝐼e
𝜇
− 𝑘U𝐼U𝜖

(3-3)

where, 𝑐e, 𝑐U, 𝑐�, and 𝑐ê are scaling constants depending on the direction of the element. 𝑇𝐸

represents the current test element and 𝑆𝐸 represents the current source element used for

calculation of the individual finite element impedance matrix entry. 𝐿åæ represents the length of

the test edge, 𝐿�åæ represents the lengths of the edges that are not under test, and 𝐿�å^æ

represents the length of the edge that is not the test or source. 𝐿½ is the length of the element in

one of the cardinal directions, and 𝑍ëæ is an individual entry into the finite element impedance

matrix.

 From these equations, it becomes clear that in a brick element simulation, there are many

opportunities to simplify calculation and speed up overall computation of the entire impedance

matrix. For example, if the simulation is done using a mesh that is built entirely from cubic

elements, the calculation of each 𝐼 term becomes a constant since all elemental length are

constant. Thus, variations in the impedance matrix comes from the material parameters only.

 The boundary integral terms are slightly more complicated since they require numerical

integration of the Green’s functions and must consider contributions from all elements. Still,

regularity in the geometry allows numerical and analytical integration to be calculated simply by

forcing many potential contributions to be perpendicular to the elements. This allows the Ewald’s

summation to converge somewhat quickly compared to a model in which such a condition is not

44

enforced. Furthermore, calculation of the boundary integral using quadrilateral elements allows

several terms in the boundary integral to be calculated analytically rather than numerically.

Figure 3-2: A pixel based unit cell that features metallic elements that touch on the corner.

 If a brick element based finite element simulation is efficient and fast, one might wonder

why one would use a triangular form instead. While a brick element system is useful for

simulations that consist solely of dielectrics, where one can usually simplify geometries by

inputting parameters that use equivalent parameters, or one in which a frequency selective surface

built solely out of square metallic patches is desired. There are many cases where such a

simulation does not guarantee accuracy. In the previous chapter, an example was given of a

circular patch built from brick elements, which required an extremely fine mesh, in compared to

one which used prismatic elements. Another example, perhaps more problematic would be the

one seen in Figure 3-2. In this example, a frequency selective surface has been generated which

has pixels that only touch at the corners. This is problematic because in a metallic patch, the finite

element works by determining the fields that result from induced currents on the metals. If there

45

is an isolated metallic square, one may be concerned with the accuracy of the current

approximations that are unable to flow to other nearby elements. In practice, it is difficult to

determine if such small isolated elements have a strong effect on the overall scattering profile.

Furthermore, such elements may be vestigial having been the result of an element with greater

effect that occurred in a previous generation of the evolutionary algorithm. This sort of mesh is

not ideal because it does little to reassure an engineer of the physical bases for the scattering

profile.

Figure 3-3: A maze-like brick element metallic screen.

 One may continue to use a brick element approach by imposing manufacturability

constraints on the optimization. This approach, however, requires the optimizer to do several

checks each time a mesh is generated which adds programming complexity and possibly

inconsistencies resulting in parameters that produce meaningful changes in the fitness value in

some evaluations and no significant effect on the fitness values in others. This may have an effect

on the overall convergence to a minimum. Another approach is to use a mesh generation function

46

that is guaranteed not to have such characteristics. The benefit of this approach is it simplifies the

number of unknowns in an optimization. For example, one may use a maze generation algorithm

in their optimizer which is guaranteed to generate a mesh that is optimized for a brick element

approach with less parameters than optimizing each value individually [19, 20]. These algorithms

generate grids, which will look similar to the one in Figure 3-3. This comes at a cost, however,

since using this type of algorithm will reduce the overall variability in the type of models that one

may generate.

Figure 3-4: Triangular elements eliminate situations where metallic corners are touching.

 A prismatic mesh is an ideal compromise because it maintains regularity in the vertical

direction, which makes it simple to maintain periodic boundary conditions and, in most cases, a

metallic frequency selective will not need variations in the vertical direction. As has already been

shown, it makes it simple to model curves. Most importantly, it makes it easy to eliminate

floating metallic elements. For example, looking back at the mesh in Figure 3-2, one may

regenerate it using a triangular mesh generation routine and arrive at a mesh similar to the one

47

seen in Figure 3-4 depending on how the paths are defined. This mesh not only better represented

the geometry of the material but also no longer has a risk of having ambiguities in the current

flow.

Accelerated Calculation of the Boundary Integral Using the Adaptive Integral Method

Using prismatic meshes over brick-elements does have a significant drawback, however.

The construction of the numerical system is a time consuming process. In a standard prismatic

element FEBI system, there are thousands of unknowns which require 𝑁𝑥𝑁 equations to be

calculated to fill the impedance system, where 𝑁 is the number of unknowns. In addition, each

element is electromagnetically dependent on every other element, which requires the computation

of N equations to calculate each matrix component. Thus, in a worst-case scenario, calculating

one frequency point using the standard prismatic periodic FEBI can take days. The first way to

alleviate this process is to simplify the calculation of the impedance system. An effective way to

do this is to use the Adaptive Integral Method (AIM) [21]. This not only reduces the system to an

𝑂(𝑁	𝑙𝑜𝑔	𝑁) problem but also simplifies the computation of each component of the impedance

matrix. In addition, AIM also provides a way to speed up the solution of the system using FFT in

conjunction with an iterative solver such as the bi-conjugate gradient (BiCG) method.

AIM can be utilized to provide a dramatic increase to the computation time of the FEBI

method. First, a uniform AIM grid, such as the one seen in Figure 3-5, can be applied to the unit

cell on the top and bottom surfaces. This grid allows the RWG basis functions to be approximated

as the distribution on the grid. The interaction between two AIM cells sufficiently far away can

then be accurately approximated. Thus, only the interactions between nearby elements need to be

calculated using the traditional method as in (3-5). The periodic Green's functions in the far

AIM cells form a Toeplitz matrix. Matrices of this type, when an FFT is performed form a one-

48

dimensional vector from which the computation time required in the BICG multiplications will be

decreased.

Figure 3-5: An example AIM grid. The near-field contributions are calculated as normal whereas the fields
several grids away are analyzed in bulk.

 𝑍ëæ + 	 𝑍íµ 0
0 0 ∙ 𝐸

íµ

𝐸ëæ
= [𝑉0]

(3-4)

 𝑍íµ ∙ 𝑬íµ ≈ [𝒁íµ �Xo� + 𝒁íµ Ïo�
ñµò] ∙ 𝑬íµ

(3-5)

Thus, by using the adaptive integral method, it becomes possible to gain the benefits of

determining nearly exact boundary conditions using integral expressions while reducing the

computational complexity to one that is closer to linear.

In addition to simplifying the convergence of the calculation of elements of the boundary

integral impedance matrix, the adaptive integral method also ensures that the matrix is Toeplitz,

49

i.e. one in which the values on the diagonals are all constant. This can be described

mathematically as

𝑀åvX×ØuQ¹ =

𝑥~ 𝑥e
𝑥�e 𝑥~

𝑥U ⋯ 𝑥��e
𝑥e ⋯ 𝑥��U

𝑥�U 𝑥�e
⋮

𝑥��Êe
⋯

𝑥��ÊU

𝑥~ ⋯ 𝑥���
⋯
𝑥��Ê�

⋱ ⋮
⋯ 𝑥~

(3-6)

The key advantage of this banded nature is found in the ability to accelerate the

calculation of a matrix-vector product, which is used in iterative techniques to solve linear

systems.

Generation of Triangular Meshes Using Delaunay Triangulation

The process of subdividing a set of points, 𝑷, into triangles such that the points do not lie

within the triangles is known as a triangulation. In general, a triangulation is not limited to a

planar two-dimensional object and may be extended to higher dimensions using simplices such as

tetrahedral objects in three dimensions. In this work, a two-dimensional triangulation extruded in

the vertical dimension to form prismatic elements will be used.

In a finite element problem, it is important that the elements are somewhat regular

without having extremely small angles as well as limiting the overall number of triangles, in

effect reducing the number of unknowns in the finite element problem. A commonly used method

designed to maximize the minimum angle in a triangulation is known as Delaunay triangulation,

named after the work done by Boris Delaunay in 1934 [22]. This triangulation has many

properties that make it useful for finite element simulations such as

- The union of all of the triangles forms the complex hull of the points used to produce

the triangulation.

50

- Any triangulation of point set, 𝑷, consisting of 𝑛 points and 𝑘 points on the complex

hull contains at most 2𝑛 − 2 − 𝑘 triangles.

- The triangulation maximizes the minimum angle in a triangulation but does not

necessarily minimize the maximum angle or edge length.

- Any circle passing through an edge in a Delaunay triangulation, 𝐴𝐵, does not contain

any other point in the point set, 𝑷, used to seed the triangulation.

 This final property, which is key to the Delaunay triangulation process, is maintained

using a determinant relation. Delaunay found that any point, 𝐷, lies within a circumcircle

enclosing a triangle, 𝐴𝐵𝐶, if and only if the following relationship is satisfied.

 𝐴Î 𝐴Ý
𝐵Î 𝐵Ý

𝐴ÎU + 𝐴ÝU 1
𝐵ÎU + 𝐵ÝU 1

𝐶Î 𝐶Ý
𝐷Î 𝐷Ý

𝐶ÎU + 𝐶ÝU 1
𝐷ÎU + 𝐷ÝU 1

=
𝐴Î − 𝐷Î 𝐴Ý − 𝐷Ý
𝐵Î − 𝐷Î 𝐵Ý − 𝐷Ý

𝐴ÎU − 𝐷ÎU + 𝐴ÝU − 𝐷ÝU

𝐵ÎU − 𝐷ÎU + 𝐵ÝU − 𝐷ÝU

𝐶Î − 𝐷Î 𝐶Ý − 𝐷Ý 𝐶ÎU − 𝐷ÎU + 𝐶ÝU − 𝐷ÝU

> 0

(3-7)

where 𝐴, 𝐵, and 𝐶 are sorted in counterclockwise order.

 There are many implementations of such triangulations. Rather than implement a new

Delaunay triangulation library, the meshes in this work were made using code that takes

advantage of the well-established Computational Geometry Algorithms Library (CGAL), which

supports many important geometry algorithms has been optimized for efficiently generating

meshes [23]. The C++ code has been included in Appendix A.

Using Bézier Surfaces for the Generation of Arbitrary Meshes

When designing unit cells for 2D periodic frequency selective surfaces, it is desirable to

have a convenient way to represent the unit cell. In normal brick element codes, this can be done

with a one-to-one pixel representation. That is, if a pixel is written as one number, it corresponds

51

to the material represented in the database by that same value. However, with triangular meshes it

begins to become impractical to do an optimization of material values for each triangle. Even simple

meshes may have hundreds of triangles with each triangle being represented by a set of vertex

locations and their corresponding faces. It is in this situation that Bézier surfaces become useful as

a mathematical tool.

Bézier surfaces are a two-dimensional extension of the Bézier curve. Mathematically,

Bézier curves may be defined as a sum of series of Bernstein polynomials [24]. The conventional

𝑖th Bernstein polynomial of order 𝑛 is defined on the interval 0 ≤ 𝑢 ≤ 1 as

 𝐵u,� 𝑢 = 	
𝑛!

𝑖! 𝑛 − 𝑖 !
𝑢u 1 − 𝑢 ��u

(3-8)

Given n+1 geometrical control points, 𝒑u, the Bézier curve 𝑐(𝑢) is defined in terms of the

nth order Bernstein polynomials 𝐵u,� 𝑢 by

𝑐 𝑢 = 	 𝐵u,� 𝑢 𝒑u

�

u�~

(3-9)

Because the weighting factors are control points in the 𝑥-𝑦 plane, the Bézier curve is

determined by the weighted average of the control points where the individual weighting varies

with the parameter, 𝑢. This allows for a geometrical interpretation of the Bézier curve as the

weight of the control point is changed. As the position and weight of the control points is moved,

the weights pull and tug at the overall geometrical representation, but the curve always remains

smooth and inside the convex hull formed by the control point coordinates. Other polynomial

formulations, such as the Taylor series, generally do not have such geometric interpretations or

relationships with the resulting curve.

These Bézier curves can be easily extended to a two or higher dimensional surface. While

a list of control points defines the Bézier curve, a grid of control points can do the same for a

52

Bézier surface. The basis function for this case is formed by multiplying two independent Bézier

curves in their respective dimensions as follows:

𝑐 𝑢, 𝑣 = 	 𝐵u,D 𝑢 𝐵O,� 𝑣 𝒑uO

�

O�~

D

u�~

(3-10)

where 𝒑uO are the set of (𝑚 + 1)×(𝑛 + 1) control points. These two dimensional basis functions

exert most of their influence in a region localized by the control points but are non-zero

everywhere. Thus, to adapt the Bézier surface to the design of a metallic screen, a threshold on

the resulting curve was applied so that every point above the threshold is determined to be metal

and every point below it is determined to be simply a dielectric.

 A key advantage of using a Bézier surface representation for frequency selective surface

design is the ease of incorporating design rules into the optimization of the surface. The Bézier

surface is effectively a two-dimensional sum of weighted polynomials. While it is not an

interpolation technique and, therefore, the subsequent surface does not pass through the control

points, the surface is guaranteed to remain within the convex hull of the control point matrix. In

essence, the control points act as a pulling force on the resulting surface. Because of this, one may

easily apply design rules, such as boundary conditions or symmetry, to the control points and

these conditions are automatically transferred onto the Bézier surface. This feature, which can be

seen in Figure 3-6, makes this representation incredibly useful for design and optimization of

periodic frequency selective surfaces.

53

(A)

(B)

Figure 3-6: (A) A surface plot of the control points inputted into a Bézier surface algorithm. (B) The Bézier
surface that resulted from the inputted control points in (A).

54

 It should be noted that in the work described in this dissertation, the surfaces generated

do not represent a true Bézier surface. In a true Bézier surface, the control points are allowed to

vary and those variations are what changes the shape of the surface. In this work, in order to

optimize frequency selective surface generation, the control points are held at fixed positions and

the optimization parameters are instead gravitational force multipliers, which effect the overall

pull of each control point. In effect, this transformation frees the optimizer from needing to

optimize for multiple dimensionality reducing the number of parameters. Furthermore, this allows

the traditional control point matrices to be larger than would be effective in an optimization

routine allowing for a finer or courser mesh depending on the problem without requiring a large

increase in the optimization parameters.

 Using this method to adapt Bézier surfaces, which generates a height map across a two-

dimensional plane, will yield a collection of points in that plane which represent the overall shape

of the intended surface to be simulated. However, inputting those points directly into a

triangulation algorithm to arrive at a mesh is ineffective and, at best, will generate far too many

triangles, and, at worst, fail to generate a mesh altogether. Because of this, it important to derive a

method which can be used to filter out excessive points from the surface.

 This is a complicated problem because not only must the internal points be removed but

the remaining points must also be ordered in a way that the resulting polygon is simple, i.e. one in

which the lines do not intersect and the sides form a closed path.

 Given a collection of unconnected points, such as in Figure 3-7 (A), finding an efficient

path through each point is a well-known complicated class of problems commonly called a

travelling salesman problem. These problems, given no constraints, are called NP hard because

they cannot be solved in polynomial time. These problems are usually computed using heuristic

techniques such as a genetic algorithm.

55

 In the case of this research, the additional constraint that no lines may be crossed can be

applied to it, which allows the opportunity to use an extremely effective technique to find the

correct path around the points. The technique that will be used is called the alpha shape. First

proposed by Edelsbrunner et al. [25], the alpha shape is a generalization of the convex hull, i.e.

the smallest set of points that encloses a shape. An alpha shape itself is related to the concept of

the Delaunay triangulation in that the process of generating an alpha shape uses the same process

of determining whether a point on the set is enclosed within a circumcircle in order to find the

shape.

(A)

56

(B)

Figure 3-7: The difference between a convex and concave hull is shown. (A) The point collection used to
generate the hulls. (B) An example of the convex hull. (C) An example of a concave hull.

 Convex hulls are simple to find since all one must do is find the minimum number of

edges which enclose the point set. However, it is intuitive that this technique will eliminate much

of the information about the shape of those points. This is what makes the alpha shape useful. The

alpha shape may find the convex hull or it may find the concave hull, i.e. the set of edges that not

57

only enclose all the points but also follow the general shape of those points. Graphically, the

difference between a convex and a concave hull may be seen in Figure 3-7.

 This provides us a simple and powerful method to find any geometric shape from what

would otherwise be an unconnected set of points. By controlling the alpha-parameter, i.e. the

parameter used to control the radius of the circumcircles that carve out the underlying shape, one

may easily determine a well-ordered path around the points that are above the threshold value.

 A good metaphor [26] for the process of generating an alpha shape for a set of points, 𝑷,

is to imagine that the points are chocolate chips which are embedded into a container of ice

cream. The alpha shape is the result of scooping out the ice cream such that each scoop, or

circumcircle, touches the chips but does not remove them. The shape is then defined using the set

of locations of each chip in the order that the scoops were removed.

(A)

58

(B)

(C)

Figure 3-8: Three alpha shapes for a point collection. As alpha grows, the alpha shape approaches a convex
hull.

 Mathematically, one may define the circles in an alpha shape by their radius, 𝛼. These

circles are translated iteratively through the domain and if a circle of radius 𝛼 passes through two

points in the point-set, a line is drawn connecting those points. By controlling the size of the

59

radius of the circles, one may find a shape that represents the convex hull or one that represents a

concave hull depending on the chosen radius. Several alpha shapes for a single point set may be

seen in Figure 3-8.

 Alpha shapes are fast and effective because they determine the order of the points from

the outside rather than from the points themselves, which is how one would normally approach a

travelling salesman problem. Upon ordering the points, the Bézier surface can simply be inserted

into the meshing algorithm resulting in a mesh such as the one in Figure 3-9 allowing it to be

used in a FEBI simulation.

Figure 3-9: A Bézier surface following thresholding has been inputted into an alpha shape algorithm. The
points used in the final meshing algorithm are extracted from this alpha shape for efficient meshing.

 The MATLAB code that has been written to generate arbitrary Bézier surfaces for a

PFEBI simulation has been included in Appendix B.

60

Mesh Optimization Using Covariance Matrix Adaptation Evolution Strategy

In addition to a simple mathematical representation, a robust optimization technique is

useful for designing frequency selective surfaces. While there has been much work demonstrating

the use of Monte-Carlo or more advanced techniques like Genetic Algorithm [27, 28], recently

there has been a move towards other strategies like the Covariance Matrix Adaptation Evolution

Strategy (CMA-ES) [29, 30].

The basic algorithmic structure of a CMA-ES optimization is similar to the genetic

algorithm, which is described in Figure 3-10. CMA-ES expands on the evolutionary process of

the genetic algorithm by evolving the distribution of fitness evaluations rather than the

considering each function independently. The general process is described in Figure 3-11. As can

be clearly seen, an immediate advantage over the GA is that the CMA-ES does not rely on the

parameters used in the parent generation. Instead, each successive generation a population is

generated from an approximation normal distribution of the previous generation’s fitness

evaluations in the direction of a minimum value. This makes the CMA-ES algorithm more robust

since it is less likely to become stuck in the event that the algorithm arrives at a poor population.

61

Figure 3-10: A flowchart that describes the general evolutionary process used in a genetic algorithm.

Choose most fit members to be

parents (tournament selection)

Fill next generation by single-point

crossover of parents

Randomly generate initial population

Evaluate fitness of each member

Introduce random mutations

Repeat for N generations

62

Figure 3-11: A flowchart that describes the evolutionary process of the CMA-ES algorithm.

Set initial population size and random seed

 Evaluate and sort the fitness of each member

Repeat for until stopping criteria are met

Find the current mean fitness and update the

distribution mean

Update the anisotropic and isotropic evolution paths

Initialize mean, covariance matrix (as identity),

standard deviation, and the anisotropic and isotropic

evolution paths

Update the covariance matrix

Update the standard deviation

Generate new population from a normal distribution

with mean, standard deviation and covariance matrix

63

This algorithm holds several key advantages over the well-known genetic algorithm.

Perhaps key among them for this work is that it is a continuous algorithm. The traditional gene

representation uses discrete binary values. While this method will work well for a brick element

system where the material parameters are regular and discrete, it is ineffective for a triangulation,

which has a variable number of elements that have been generated from a continuous

representation such as a Bézier surface. For example, in a genetic algorithm to represent a number

from zero to one, one must calculate the series

𝑥 =

1
2� − 1

𝑥u2u
��e

u�~

(3-11)

For an eight-bit representation not only are the number of variables increased but the real-value

representation is limited to 256 discrete values. In a continuous system like CMA-ES, only one

variable is necessary for each value and any value that may be represented within the limits of the

floating-point precision of the computer may be used.

 The basic formulation for a CMA-ES problem is as follows

 𝑥�
üÊe ~𝑚 ü + 𝜎 ü 𝒩 0, 𝐶 ü 	𝑓𝑜𝑟	𝑘 = 1, … , 𝜆

(3-12)

where 𝑔 is the current generation, 𝑘 is the current member of the population, 𝑚 is the mean value

at the current search generation, 𝜎 is the standard deviation to be used as a step size, and

𝒩 0, 𝐶 ü is a multivariate normal distribution with zero mean and covariance matrix 𝐶 ü . This

provides the key advantage over traditionally used stochastic evolutionary algorithms like GA.

While GA works by intelligently modifying the population such that the fitness moves towards a

minimum, CMA-ES operates by approximating a normal distribution of the covariance matrix at

each generation. By constructing a statistical sample of all possible fitness values at each

generation, CMA-ES also provides a distinct advantage in the population size of each generation

of the optimization.

64

 In GA, the probability of obtaining a minimum value increases as the size of the

population increases. With a small population, unless many more generations and a large

mutation rate are used, there is a risk that the optimization will either become stuck in a local

minimum far from the true minimum or not find one at all. By increasing the mutation rate too

high, GA loses its intelligence and becomes no different from a Monte Carlo, or completely

random, optimization. On the other hand, if the population size is set too high, the optimization

could possibly sample every possible variation of variables eliminating the point of using an

optimization technique. While there is no ideal population size and mutation rate, typically one

would use a population that is on the order of the number of variables and a mutation rate that

encourages small changes in each child in order to provide a good chance to jump towards other

minima without making changes too dramatic.

 CMA-ES, by operating on the statistical distribution of the domain can be ran using a

smaller population without such risks by taking advantage of statistical sampling theory. Just as

in a presidential election where one may randomly sample a small subset of the population and

extrapolate to the preferences of the population as a whole, at each generation, CMA-ES creates a

random sampling of the fitness distribution of the global population and is able to move to a

minimum. For example, a classic example used to demonstrate Newton’s method for optimization

is to determine the square root of a number. This is done by finding the minimum of the equation

𝑥U = 𝑟. To provide an overly simplified example for CMA-ES, Figure 3-12 demonstrates the use

of CMA-ES to find center of a two-dimensional version of this problem where 𝑥U + 𝑦U = 𝑟U. It

can be seen that in each generation, an estimate of the covariance matrix is determined until it

moves the distribution to the minimum.

65

(A)

(B)

66

(C)

Figure 3-12: A CMA-ES optimization example in which the minimum of 𝑥U + 𝑦U = 𝑟 must be found within
the bounds [−3, 3].

67

Of course, the example shown in Figure 3-12 is a poor candidate for stochastic

optimization and a solution would be more easily found using classical optimization techniques

like Newton’s method. This example, however, demonstrates quite well how the CMA-ES creates

a random sample and narrows the distribution to something surrounding an optimal point.

Figure 3-13: The recommended population growth rate with respect to number of variables using CMA-ES.

 In fact, CMA-ES has a recommended population that grows logarithmically as in Figure

3-13 [31]. That is, for a system in which the number of variables is 𝑁, the suggested population

size, 𝜆, is

 𝜆 = 4 + 3𝑓𝑙𝑜𝑜𝑟 ln𝑁
(3-13)

where floor is the function that maps a real number to the nearest, smaller integer value.

 This small population size combined with quick convergence makes CMA-ES the ideal

optimization technique for a generic triangular meshing technique like the Bézier surface

formulation. Accounting for symmetry and other manufacturing considerations, a typical Bézier

surface is able to have a large amount of variability with thirty to forty control point variables. By

68

taking into account other parameters such as the unit cell size, it is rare for a CMA-ES

optimization with strong variability to require more than seventeen population members.

Figure 3-14: An arbitrary Pareto front to demonstrate the tradeoff between design requirements.

 While the vanilla CMA-ES algorithm works well for many cases, there are times when a

designer does not feel that it is able to find a target minimum at a fast enough rate. In these cases,

many strategies may improve the convergence rate. One method, which has been discussed

frequently, involves increasingly the population size as the generations increase [32]. A technique

that I found worked well for Pareto front, i.e. problems in which there are multiple fitness values

that may or may not be independent, such as the one seen in Figure 3-14, was to periodically

analyze trends in the optimization and reseed the optimization using new starting points and

parameters, which favored a desirable balance between fitness values. Ultimately, when using

these sorts of optimizations, the strategy used is up to the designer.

69

General Purpose Graphics Processing Unit Programming

(A)

(B)

Figure 3-15: Schematic diagrams of the work flow for software ran on the CPU (A) or a compute device such
as a GPU (B).

70

Recently, there has been an exciting development in computer science that has caused a

divergence in processor models. While the traditional idea of a CPU has continued to exist

relatively unchanged since 8-bit CPUs became common in the 1970s, developing in a logical

fashion as technology advanced by increasing instruction sets, bus sizes, transistor count, cores

and so on, the graphics processing unit (GPU), which was originally seen as a co-processor

whose purpose was to blit pixels together and transfer the resultant values to a memory range

which would then be rastered onto a screen, has seen an interesting trajectory into something else

entirely. Consumer demand, both through the increase in the market for three-dimensional video

games and high performance computing arrays used to create processor which instead one

designed to quickly do sequential operations has transformed into a powerful array of simple

processors designed specifically to do thousands of vector calculations in parallel.

Figure 3-15 demonstrates a simple diagram of the differences between a basic CPU and a

GPU. A typical modern CPU, such as the Intel i7 family of processors, consists of several,

typically two or four, identical core processors, which have complex instruction sets. When

software is compiled to run on one of these processors, assuming that the software is not

multithreaded, it is converted to a set of instructions that the processor reads and converts to

microcode, which is processed by one of the cores in sequence. These processors are optimized

for generality so typically mathematical operations, unless there is a specific instruction designed

to support that operation such as those provided by the Streaming SIMD Extensions instruction

set, will not perform at an optimized rate unless the programmer or the compiler takes special

care to account for it.

Specifically, the traditional model of a processor in a computer is not well optimized for

large multi-dimensional arrays and, until recently with the development of the Advanced Vector

Extensions instruction set, vector operations.

71

On the other hand, since graphics technology has shifted its focus from simple blitting

operations to three dimensional vector processors, has become the ideal place to calculate these

sorts of problems. The typical architecture of a GPU has a specific structure, which makes it

attractive to exploit for certain problems. For example, every GPU has been designed under the

assumption that it will be calculating values in a three or four element vector representing the

color values: red, green, blue, and alpha or transparency. Furthermore, since the typical GPU has

been designed under the assumption that it will calculate shading and location for triangular

elements that are largely independent of one another, a typical consists of many parallel

processors that each run at a rate that is slower than a typical CPU.

For example, a currently available high end GPU is the AMD Radeon R9 Fury X. This

processor consists of 4096 stream processors that each have a core clock-rate of 1050 MHz and 4

GB of onboard memory. While on its face, these specifications are impressive, there are two

important considerations one must make before writing code to be ran on a GPU. First, unless a

specialized compute-oriented GPU like the NVidia Tesla is used, the GPU is also performing

display operations and a large portion of the memory is blocked so that it can contain the current

framebuffer, which is a bitmap of the currently displayed frame to be displayed on a monitor.

Second, because the GPU is optimized for visual operations, a typical human eye is not able to

process differences in color or position at a precision that one might be concerned with for

scientific operations. Because of this, in general, GPUs process double precision, or 64-bit,

operations at a rate that is much lower than the rate at which they process single precision, 32-bit,

operations. Going back to the Radeon R9 Fury X, in the ideal case, it can perform 8192 billion

single precision floating-point operations per second but only 512 billion double precision

floating-point operations per second.

Furthermore, since the CPU and GPU do not share memory, each time a process is set up

to be ran on a GPU, the data must be collected and placed in a GPU buffer that is transferred into

72

the GPU memory. This makes the use of a GPU for extremely large problems less attractive

because unless the software is well programmed to account for a large difference in memory,

software that is not well optimized might face bottlenecks transferring data to and from the GPU.

For example, a large finite element problem, which has not been truncated using specific

boundary conditions like periodicity and the boundary integral, can easily grow its memory

footprint to over one hundred gigabytes. Such a problem would be difficult to justify for use on a

GPU.

Finally, as a parallel-oriented processor, it is important to consider just what

parallelization means in terms of computational code. The ideal problem for calculation in

parallel is one in which there are many components, such as in a matrix, which are all completely

independent of one another. However, interdependence does not necessarily rule out an

application for parallel processing. If calculations are independent, the programmer can consider

this by creating locks or mutually exclusive portions of the code where the two parallel processes

must wait their turn and continue operating in parallel when they are not at the mutually exclusive

point.

An extremely simple example of a problem in which most of the operations are

independent but is not guaranteed to work properly in parallel is the dot product, that is 𝑐 =

𝑎 𝑖 𝑏[𝑖]�
u�e . This is a clear example of a case in which the majority of the computation is

independent but the final calculation is not. Each multiplication between the elements in 𝑎 and 𝑏

are completely independent of each other but the answer, 𝑐, is not guaranteed to be accurate if

this is programmed for parallelization naively. The reason is that if two operations are performed

summing onto c at the same time, e.g. 𝑐nQX× = 𝑐nQX×�e + 𝑎 𝑗 𝑏[𝑗] and 𝑐nQX× = 𝑐nQX×�e +

𝑎 𝑘 𝑏[𝑘], both operations began with the same value for 𝑐 unaware of each other resulting in a

value that has overwritten the result from whichever process finishes first. This is called a race

condition and can be addressed by isolating portions of the code in which this is possible and

73

making each process wait until other process finish performing that operation. By doing this, a

dot product can still be calculated much more quickly in parallel but the improvement is

somewhat less than the ideal situation of linearly increasing with the number of parallel

processes.

This situation leads to the other common problem with a parallel calculation, a dead or

live lock. This situation occurs where two processes that are running in parallel reach a point in

the operation in which they are both waiting for the other to finish. Metaphorically, a deadlock is

similar to an intersection in which all cars arrive at the same time and are each turning left. In this

case, none of the other cars has the right-of-way and none can go until the other cars have gone.

In reality, eventually one of the cars would make a move easing the traffic but in a rigid system

like a computer, unless exceptions have been programmed for this case no car would ever be able

to move. A live lock is similar but is best described by two people walking in opposite directions,

to get around each other; they both move to try to get out of the way of the other. A live lock

occurs when each person keeps moving in the same direction perpetually blocking the other

person.

The key differences between CPU and GPU architectures are summarized in Table 3-1

below. As can be easily seen, when designing code to take advantage of the GPU, it must be

designed with its strengths and weaknesses in mind. Particularly, the programmer must isolate

portions of the code that are well-suited to parallel operation, ideally structure the data in a way

that can be spread into a four-element vector such that they may be further calculated in parallel

and, where possible, pre-calculate important double precision operations to reduce a significant

bottleneck.

74

CPU GPU

Sequential operation Parallel operation

Simple to program Must carefully consider possibility of bugs

and locks

Calculations performed on a scalars Calculations performed on 4-element vectors

Cheap memory Expensive memory

Can quickly calculate double precision Significant cost for double precision

operations

Table 3-1: A summary of the architectural differences between a CPU and GPU architecture that might make
one more attractive than the other for certain problems.

The final consideration for writing code to run on a GPU is the application-programming

interface (API) to be used. Early attempts at GPU calculation operated in a way similar to writing

software in an assembly language. Using this method, a clever programmer could manipulate the

registers directly and do quick calculations. This method is not ideal because it limits the code to

specific architectures and requires more advanced knowledge of the hardware than most

programmers would normally have.

As these methods became more desired, two competing APIs emerged. The first widely

used method is known as CUDA, or the Compute Unified Device Architecture. This method

inherits many language features from C to allow a programmer to easily transfer data buffers to

and from a GPU and perform calculations on them. However, as an NVidia technology, this API

is restricted to NVidia GPUs.

As a response to the proprietary nature of CUDA, Apple created the Open Computing

Language (OpenCL) API that is now managed by the graphics standard body, Kronos. Like

CUDA, it is C based making it simple for an experienced programmer to adopt. Additionally, it

has the advantage of not having a strict definition of a “compute device”. While CUDA code is

75

limited to only running on a GPU produced by NVidia or its partners, OpenCL can run on a GPU

produced by any vendor or even a CPU or field programmable gate array. This has a huge

advantage in that not only does it not restrict users to a particular vendor but also software written

in OpenCL is much easier to debug since it can be ran over thousands of threads on a GPU or just

one on a CPU. However, since it is a newer technology and many projects had already begun to

be designed with CUDA in mind, it does not have as mature of a mathematical library requiring

many basic functions to be written from scratch.

Modification of the Triangular Boundary Integral for GPU Applications

To begin, it is important to justify whether a periodic finite element boundary integral

code is well suited for calculation on a GPU. As has been discussed in the previous section,

offloading calculation onto a GPU has the potential to improve the calculation of a problem.

However, if it is not well suited, such as a problem in which too many calculations are

interdependent or a problem in which there is a significant amount of double-precision

calculations in each parallel calculation such that it slows down overall operation enough to

prevent an improvement in calculation time.

 To begin, one may consider an arbitrary simulation as seen in Figure 3-16. This

simulation is of a periodic gold FSS consisting of nine prismatic layers totaling 483.4	𝑛𝑚 in

thickness and a square unit cell with sides that are 519.2	𝑛𝑚. This simulation is being evaluated

in the important telecommunications band of 1.55	𝜇𝑚. It consists of two materials, a glass

dielectric, which is seen in blue, and a gold screen, which is colored gold in the diagram. This

mesh is built from a Bézier surface that allowed for high variability and consisted of 204 source

points. Triangulation of this surface yielded 709 vertices and 1360 triangles per layer.

76

Figure 3-16: A two-by-two grid of an arbitrary FSS used to demonstrate the growth in the number of
discretization unknowns. This surface extends infinitely in the horizontal and vertical dimensions.

Pre-processing this mesh determines that the finite element portion of the code has

yielded 26520 unknowns and that the boundary integral portion consists of a much smaller

amount of unknowns, specifically 2040.

Next, the structure of each constituent matrix must be considered. The finite element

matrix is sparse, which means that the number of matrix elements to be calculated is linearly

proportional to the number of unknowns. Furthermore, by embracing the weak formulation, the

integration is done over the weighting functions, which are simple to calculate. Furthermore, the

calculation of the finite element matrix has a large memory footprint since it requires the

knowledge of each element and the material parameters thereof. The finite element matrix does

not look to be a good candidate for GPU acceleration.

On the other hand, the calculation of the boundary integral matrix seems to be an ideal

place to look for GPU acceleration with some modification. Before this can be considered, the

77

first thing that needs to be done is to apply the adaptive integral method. On its own, the

boundary integral requires 𝑂 𝑁U storage. With the number of unknowns this problem requires,

that would require a matrix with an astonishing 4194304 elements. Because these elements are

double precision complex numbers which each require 16 bytes, this matrix alone would require

64	𝐺𝐵 of storage. The adaptive integral method reduces the number of elements to be calculated

to 𝑂 𝑁𝑙𝑜𝑔𝑁 which is much easier to work with. In reality, the number exact number of elements

varies depending on the adaptive grids used and, in this simulation, using a large grid there are

only 575066 total edges to compute. With each element requiring complicated integration and

each element completely independent of the other, it becomes clear that the boundary integral

with the adaptive integral method is the type of problem that is best suited for calculation on the

GPU.

What makes this an even more attractive target for GPU calculation is the way in which

each element is calculated. For each edge corresponding to an element on the impedance matrix

that needs to be calculated, its impedance consists of its self-impedance and the contributions

from nearby elements until it has reached convergence. This can be seen graphically in Figure

3-17. The adaptive integral method provides the advantages of allowing us to reduce the number

of these interactions to consider by considering far-away contributions as a bulk contribution and

it orders it in a way that is simple to iterate. In a GPU, this is useful because since each stream

processor is itself multi-threaded as well as optimized for vectors, it becomes extremely simple to

distribute these contributions across the processors multi-dimensionally.

Further acceleration can be done using the vector nature of the GPU. Each edge has an

impedance that must be calculated in relation to the source edge and a distant edge. By

distributing each of these calculations between the x and y elements of the calculation vector, the

speed can effectively be doubled.

78

Figure 3-17: A crude demonstration of the edge interactions in the boundary integral. Interactions between
edges are shown in red. In the top right, a self-interaction is shown.

In addition to algorithmic improvements, several considerations must be taken into

account for these calculations with respect to GPU computation. One area that a programmer

might immediately consider relates to the use of double precision.

A naïve attempt would be to use single precision except where necessary. However,

single precision is only accurate to between six and nine significant digits. However, many of

these edge contributions consist of differences that only occur at the sixth or higher significant

digit. By using single precision numbers, there is a risk of propagating errors throughout the code.

Since the use of single precision representation will result in a result that is incorrect,

with very few exceptions, this appears to be a poor choice to look for speed improvements.

Instead, the best path to GPU based optimization consists of two factors: taking

advantage of the architecture and using built in functions.

It was mentioned earlier that the GPU is optimized around four-dimensional calculations

whether they be red, green, blue, alpha or x, y, z, and w, where w is a scaling dimension. For

example, one common calculation is the magnitude, 𝑟 = 𝑥U + 𝑦U. By mapping the values into a

79

vector, for example 𝑟 = 𝑎. 𝑥U + 𝑎. 𝑦U or even 𝑟 = 𝑎. 𝑥 ∗ 𝑎. 𝑦 + 𝑎. 𝑧 ∗ 𝑎. 𝑤 , where 𝑎. 𝑥 = 𝑎. 𝑦

and 𝑎. 𝑧 = 𝑎. 𝑤, rather than multiple scalars, this can be calculated in much fewer cycles.

Another area that can dramatically improve the computation of elements is through

judicious use of built-in functions [33]. Many GPUs have built in instructions to perform

common complicated operations such as 𝑠𝑖𝑛 or 𝑐𝑜𝑠. While in early GPUs most of these

instructions were single precision only, with the increase in demand for compute devices, many

higher end GPUs now include these operations at higher precision as well with the proper

compilation flags selected. Because of this, one must be careful about which hardware the code is

running on because without properly checking the hardware and case-based code modification it

is possible that the software will not run or will not maintain proper accuracy.

In addition, it was earlier mentioned that the boundary integral calculation was improved

using an Ewald transformation. This operation relies on the use of what is known as either the

complex error or Faddeeva function. While the error function exists as a built-in function on GPU

devices, it only exists for real valued operations. In order to calculate the Faddeeva function, a

fast implementation of the operation was done the work of Poppe and Wijers as a guide [34].

Finally, another performance optimization technique that has been performed for the

GPU-based boundary integral calculation. The various operations used in the overall calculation

of the boundary integral relies on several values that are not independent of one another, or may

be known a priori. For example, in the calculation of the Green’s functions, there are operations

in which the wave vector is divided by a variable that is a multiple of the wave vector. All cases

in which this occurred were simplified to a constant value.

In general, however, the use of pre-computed values for performance optimization

purposes do not tend to have a huge impact on performance and should only be done when they

are obvious or when the operation being simplified occurs repeatedly and is complex. The best

80

method of optimizing the use of GPU for compute purposes is to rely on the advantages of the

hardware.

GPU FEBI Benchmark Tests

A common unit cell for FSS designs is a periodic ring structure. This is a good example

to use for verification of the method. As can be seen in Figure 3-18, the response as derived from

the FEBI method matches the commercial HFSS code, which uses an FEM based method.

Another unit cell, seen in Figure 3-19, demonstrating an arbitrary design has also been generated

using polynomial basis functions. It can be seen that in both of these examples the FEBI method

accurately models the system.

Next, tests will verify that the GPU acceleration is working correctly and successfully

decreases the computation time. The CPU used in this study was an Intel Xeon CPU at 2.4 GHz

and the GPU was an NVidia Tesla M2090. In this case, using GPU accelerated code there is no

significant difference in the frequency sweeps results. It has also been found that the time

required to solve a frequency is improved. The simulation times required show a remarkable

decrease when simulated on the GPU as shown in Table 3-2. With this, it becomes attractive to

use a heuristic optimization technique such as Covariance Matrix Adaptation Evolution Strategy.

81

(A)

(B)

Figure 3-18: A periodic PEC ring (in red) on a dielectric substrate (A) has been evaluated (B) for
comparison between the commercial HFSS and the PFEBI implementation.

82

(A)

Figure 3-19: An arbitrary mesh (A) has been evaluated for comparison between the commercial HFSS and
the PFEBI implementation.

83

 CPU (s) GPU (s)

Ring 642 19

Arbitrary 6314 157

Table 3-2: Benchmark data for simple generic FSS designs between a CPU and GPU implementation of the
PFEBI algorithm.

Iterative Methods to Solve a FEBI System

Given the finite-element boundary integral system defined by the linear system defined as

 𝑍ëæ + 	 𝑍íµ 0
0 0 ∙ 𝐸

íµ

𝐸ëæ
= [𝑉0]

(3-14)

 𝑍íµ ∙ 𝑬íµ ≈ [𝒁íµ �Xo� + 𝒁íµ Ïo�
ñµò] ∙ 𝑬íµ

(3-15)

The ultimate goal is to solve for the field vector, 𝐸
íµ

𝐸ëæ
, which contains the unknown

electric field contributions for each edge element. If this system only consisted of a fully

populated matrix such as what would be found from the boundary integral, a reasonable choice

would be to use a direct solution technique like LU decomposition.

However, since the finite element matrix is both much larger than the boundary integral

matrix and sparse, such a direct technique will oftentimes be a bad choice. This is because, in this

situation, many of the eigenvalues are near zero making the system unstable.

An alternative method which is useful for large, mostly sparse systems is to use an

iterative method which operates on the Krylov subspace, i.e. one in which the matrix system is

successively multiplied with a vector iteratively in order to minimize the residual, or error

between a guess of the solution and the true solution [35].

In this dissertation, the biconjugate gradient method has been primarily used due to its

memory efficiency. However, several other more advanced methods exist as well which may

84

converge more quickly. These include the generalized minimum residual method [36], which

requires that the residual at each iteration be saved, or the induced reduction method, which is

somewhat of a compromise between biconjugate gradient and generalized minimum residual in

that it requires the storage for a fixed number of residuals.

Material Parameters and Design Ideas

Figure 3-20: The complex permittivity for several of the materials that will be considered in this dissertation.

Finally, before designs are presented it is important to understand the properties of

various materials. By knowing the typical properties for materials, one may simplify the

optimization process by selecting materials that are likely to induce the properties being sought.

For example, it can be seen in Figure 3-20 that palladium is a metallic material that, using

a dielectric model, has a real and imaginary permittivity that are close in optical frequency bands.

In this case, palladium might be a good candidate for use in designs in which absorption is

85

desired. Palladium falls within the platinum group of metals and shares several characteristics

with platinum. However, unlike platinum, palladium is readily available for commercial use.

On the other hand, gold is a material that has a very small real component and large

imaginary component in its permittivity model. This suggests that gold might be useful for

inducing changes in phase, polarization or simply for use in low-loss scattering problems. Silver

and copper are other metals that share many properties with gold electromagnetically although, in

general, gold tends to be an ideal candidate due to it being less lossy and not prone to oxidation

like copper.

For dielectrics, the designs that will be discussed are primarily based on silicon-based

glasses. Unlike the metals described above, except in rare cases, typically one would desire to use

a dielectric that has a minimal imaginary component. This is because the imaginary component of

a dielectric manifests itself electromagnetically typically in heat losses as opposed to metals

where, in addition to losses, are primary contributors to unusual scattering patterns.

86

Chapter 4
Metamaterial Absorber for the Near-IR with Curvilinear Geometry Based on

Bézier Surfaces

Introduction

Periodic metallodielectric nanostructures have recently been investigated by several

groups for use as infrared (IR) absorbers [37, 38]. One type of IR absorber utilizes metamaterials

with an effective magnetic resonance, such as negative index metamaterials. The intrinsic loss

associated with their effective properties can be exploited to achieve high absorption over the

resonant band [37]. Another absorber design approach is adapted from the RF and based on

electromagnetic band-gap (EBG) metasurfaces. Such a device uses a lossy metallic screen that is

backed by a thin dielectric layer and a ground plane [39]. An EBG metasurface was introduced in

[38] with dual-band absorption in the mid-IR over a wide field of view. Many EBG designs have

relied on the use of a pixelated grid to determine the placement of the metallic features. Here, a

new approach that allows for a more general unit cell shape using prismatic elements whose

triangle placement is determined using Bézier surfaces as opposed to one that uses brick elements

may be considered. To determine an optimal surface, the powerful Covariance Matrix Adaptation

Evolution Strategy (CMA-ES) algorithm has been employed to synthesize the metamaterial

absorber.

Design Approach for Broadband Absorbers

The absorber structure considered here consists of a single patterned Au screen and an Au

ground layer that are separated by a thin dielectric layer. The top Au screen is periodic in two

87

dimensions and is defined by a unit cell geometry. The screen unit cell geometry is determined

using a rotated curvilinear prototype to attain four-fold symmetry. This structure can be fabricated

by alternately depositing the Au ground and polyimide (PI) dielectric layers before using e-beam

lithography to define the features of the top Au screen.

This single-screen absorber operates by coupling with the incident wave at one or more

resonances, enhancing the fields in the structure. Energy from the incident wave is dissipated by

the loss in the metallic features.

In order to synthesize the absorber structure, the CMA-ES [28, 29] optimizer linked to a

full-wave periodic finite element-boundary integral electromagnetic solver has been employed.

The optimization routine evolves candidate designs over multiple generations using a fitness or

cost evaluation to determine the performance of candidate designs. In order to optimize the

absorber structure considered in this chapter, the screen geometries are determined by

thresholding a Bézier surface.

While the Bézier surface has been previously defined, a description will be reproduced

here for convenience. Bézier surfaces are a two-dimensional extension of the Bézier curve.

Mathematically, Bézier curves may be defined as a sum of series of Bernstein polynomials. The

conventional 𝑖th Bernstein polynomial of order n is defined on the interval 0 ≤ 𝑢 ≤ 1 as

 𝐵u,� 𝑢 = 	
𝑛!

𝑖! 𝑛 − 𝑖 !
𝑢u 1 − 𝑢 ��u

(4-1)

Given n+1 geometrical control points, 𝒑u, the Bézier curve 𝑐(𝑢) is defined in terms of the

nth order Bernstein polynomials 𝐵u,� 𝑢 by

88

𝑐 𝑢 = 	 𝐵u,� 𝑢 𝒑u

�

u�~

(4-2)

Because the weighting factors are control points in the x-y plane, the Bézier curve is

determined by the weighted average of the control points where the individual weighting varies

with the parameter u. This allows for a geometrical interpretation of the Bézier curve as the

weight of the control point is changed. As the position and weight of the control points is moved,

the weights pull and tug at the overall geometrical representation, but the curve always remains

smooth and inside the convex hull formed by the control point coordinates. Other polynomial

formulations, such as the Taylor series, generally do not have such geometric interpretations or

relationships with the resulting curve.

These Bézier curves can be easily extended to a two or higher dimensional surface [24,

25]. While a list of control points defines the Bézier curve, a grid of control points can do the

same for a Bézier surface. The basis functions for this case formed by multiplying two

independent Bézier curves in their respective dimensions as follows:

𝑐 𝑢, 𝑣 = 	 𝐵u,D 𝑢 𝐵O,� 𝑣 𝒑uO

�

O�~

D

u�~

(4-3)

where 𝒑uO are the set of (𝑚 + 1)×(𝑛 + 1) control points. These two dimensional basis functions

exert most of their influence in a region localized by the control points but are non-zero

everywhere. Thus, to adapt the Bézier surface to the design of a metallic screen, a threshold on

the resulting curve was applied so that every point above the threshold is determined to be Au and

every point below it is determined to be empty.

89

Figure 4-1: Mesh of the unit cell showing Au triangles in red and non-Au triangles in blue.

Eight-fold symmetry is also desired in the design of the Au screen, so that the absorber

response at normal incidence will be polarization independent. This symmetry condition can be

achieved by first forcing the control point matrix to be diagonal. This forces the Bézier surface to

be symmetric along the diagonal, forming one quadrant of the overall unit cell. The Bézier

surface is then rotated three times to fill in the remaining quadrants of the unit cell. The

parameters to be optimized using CMA-ES include the diagonal control point values, the unit cell

dimension, and the thicknesses for the screen and dielectric layers. Material properties for Au and

PI based on experimental measurements [40] are incorporated into the fitness evaluation. The

Cost function employed is given by

 𝑐𝑜𝑠𝑡 = 1 − 𝐴 U
(4-4)

where A is the absorption magnitude at each specified wavelength 𝜆u.

90

In addition, a second absorber was designed. In this case, the optimization was more

robust while scanning over a larger frequency and incident angle range. Like the previous design,

a gold FSS screen was optimized above a palladium ground plane. However, unlike the previous

design, the ground plane uses material parameters for a ground plane. This was chosen due to its

properties as a p-type semiconductor. Furthermore, the Bézier surface control point matrix was

determined without enforcing symmetry conditions. By neglecting symmetry conditions, the

resulting surface is allowed more variability at the cost of a loss of polarization independence.

Design Results

Figure 4-2: Absorptivity plot for design in Figure 4-1 showing a peak value of 96.9 % at 0.96 µm the design
frequency.

The CMA-ES was employed to optimize an absorber with a target wavelength of 0.96

µm. A population of 12 members was optimized over 100 generations to evolve the geometry

shown in Figure 4-2. The unit cell dimension (period) for the optimized geometry is 0.79 µm, and

91

the layer thicknesses are 20 nm, 318 nm, and 200 nm for the Au screen, PI substrate, and Au

ground, respectively. The predicted absorption coefficient for the optimized design is plotted

verses wavelength in Figure 4-2 for normal incidence. The absorption is high at the design

wavelength, with a peak absorptivity of 96.9% and reflection suppressed to less than -15.2	𝑑𝐵.

The second absorber can be seen in Figure 4-3. This surface was meshed as a unit cell

with a threshold applied to achieve a prismatic mesh for use in a finite element boundary integral

solver. This unit cell was optimized to be a square with 256	𝑛𝑚 sides. The screen layer was

optimized between two 153	𝑛𝑚 thick polyimide layers sitting atop a ground plane. Palladium

silicide was chosen as the screen to encourage a high absorption response as well as for its

properties as a semiconductor. Finally, the frequency response over the band of interest,

0.5	– 	1.8	𝜇𝑚, is plotted in Figure 4-4 with a doped p-Silicon ground plane.

Figure 4-3: The Bézier surface used for mesh generation of the wide-band, wide-angle absorber. Surface
values over a threshold, seen here in light green to red, are meshed as Pd2Si. Values below the threshold are meshed

as polyimide.

92

Figure 4-4: The frequency response for the optimized Bézier surface over the optimized frequency band.

Figure 4-5: The frequency response of the optimized surface with the ground plane removed.

One concern that one may have with this design is what the source of the source of the

absorption is. If the majority of the energy is being absorbed as heat into the palladium screen, for

93

instance, this design may have a limited usefulness. In order to test this, two things have been

done. First, the finite element field strength can be sampled at each triangle edge immediately

above and below the screen. If the losses primarily occur on the screen, one would expect that the

fields below the screen would be significantly lower than those above. However, it can be seen in

Figure 4-6 and Figure 4-7. However, in the case of the shorter wavelengths, the field is in fact

stronger below than above suggesting that the fields are confined beneath the screen forcing the

energy to be lost within the substrate. In the longer wavelength case, the fields interact more

strongly with the palladium inducing some loss on the screen. However, it does not appear to be

significantly large and the fields below remain strong.

(A)

94

(B)

Figure 4-6: The finite element field plots above (A) and below (B) the screen at an incident frequency of
0.8	𝜇𝑚. Values close to or above 0.5	𝑉/𝑚 the fields are redder. The fields along the edges are averaged to give each
triangle a solid color value.

(A)

95

(B)

Figure 4-7: The finite element field plots above (A) and below (B) the screen at an incident frequency of
1.2	𝜇𝑚. Values close to or above 0.5	𝑉/𝑚 the fields are redder. The fields along the edges are averaged to give each

triangle a solid color value.

By replacing the substrate with a standard glass, there is further confirmation that this

filter works primarily by suppressing the amount of energy that is able to reflect as can be seen in

Figure 4-5. Still, because palladium was used as a screen, the absorption is somewhat high at

around 40	% through the simulated band. This is to be expected since palladium is a highly lossy

metal. To account for this, a less lossy metallic screen could be used. This approach, however,

comes at the cost of a loss of semiconductor properties in the screen.

As an alternative screen, silver has been chosen as an example over gold because the

permittivity of silver is further from the permittivity of semiconductor substrate. Figure 4-8 shows

a frequency sweep of this filter from near normal-incidence to near grazing incidence. Because

this filter was not optimized using parameters for silver, it reflects light more strongly than what

96

one would normally desire although there is strong confinement of the electromagnetic energy

into the substrate. However, the energy in the visible spectrum is still strongly suppressed with an

overall reflection remaining below 50	% throughout the band of interest, 0.6	𝜇𝑚 − 1.6	𝜇𝑚

except at extremely oblique angles.

Figure 4-8: A frequency sweep of the previous FSS with a silver screen used.

This suggests that the light reacts strongly with the metals at high frequencies due to the

plasma effects of the screen that are occurring due to the curved shape of the surface. At

frequencies between 0.6	𝜇𝑚 and 1.4	𝜇𝑚, because the wavelength of the light is reduced due to

the glass medium, the wavelength of the light is small enough that it may pass between the

screens while large enough that it is not resonating. In this region, the light passes through the

screen into semiconductor substrate where it is absorbed. Finally, at the lowest simulated

frequencies, the wavelength of the light begins to become large enough that it must interact with

the metals causing large amounts of energy to be reflected.

97

Conclusion

Bézier surfaces were presented as a possible way to represent arbitrary FSS unit cells in a

prismatic two-dimensional periodic mesh. The CMA-ES optimization method was used to

generate a Bézier surfaces for absorbing FSS problems. One design, optimized for a single

frequency point using a single screen exhibited polarization independent absorption at 0.96	𝜇𝑚.

A second design, which produced above 90	% absorption, polarization-independent response at

oblique incidence over two octaves. A nature inspired spiral design was shown that was able to

achieve a broadband absorption. Future research can be done into the use of different materials

for use as a screen, the direct field response along the spirals as a function of frequency as a way

to tune the absorption as well as the use of a unit cell with a deeper spiral in order to shift the anti-

reflective properties to a higher frequency. The techniques described here can be further explored

to design multi-band or broadband absorbers as well as other metamaterials for the near-IR.

98

Chapter 5

An Oblique-Angle Infrared Circular Polarization Filter Using a Bézier
Surface Representation

Introduction

The polarization state of light has many applications such as optical communication [41]

and imaging [42, 43]. Many devices have been presented which can be used to induce a circular

polarization on light from fiber Bragg gratings and stacked subwavelength gratings [44, 45], or

liquid crystal technology [46].

The atmosphere of the Earth is comprised of many gases. While the major components of

the atmosphere are nitrogen, oxygen and argon, a relatively small percentage is comprised of

what is known as the greenhouse gases. These greenhouse gases get their name due to having

vibrational absorption bands that correspond with parts of the infrared that convert

electromagnetic energy into heat. Of these, there is particular interest in the concentration of

CO2, which has an absorption band at 4.3	𝜇𝑚. A challenge in measuring CO2 concentration lies

in the nearby absorption band for N2O, which lies at 4.5	𝜇𝑚. Commonly, these can be measured

using a cascade laser, which can finely sweep and measure the frequency response in this band

[47].

In this chapter, a technique to synthesize an optical polarization filter using thin film

frequency selective surface (FSS) techniques. This process is initially proposed for the use in the

mid-infrared, which uses a frequency selective surface to isolate the circular polarization

component precisely at the CO2 absorption band. Following this, a process will be presented that

99

will allow the design to be adapted for use at the important communication frequency of 1.55	𝜇𝑚

which has minimal dispersion and loss in silica fibers.

Mesh Design

Mesh Design Using a Bézier Surface

Production of optical frequency selective surfaces oftentimes is based on modeling of a

pixelated model. While the calculation of electromagnetic responses of these models is

straightforward, the pixelization lends itself to a design that relies on many sharp corners/edges as

well as the potential for extremely sub-wavelength features. Production of these features on a

nanoscale is quite a challenge, which may produce a discrepancy between the performance of the

simulated and the manufactured designs. For this reason, a curvilinear frequency selective surface

based on a Bézier surface representation [24, 25] and the periodic finite element boundary

integral method has been used. The Bézier surface itself is a two-dimensional expansion upon the

idea of the Bézier curve. Adapting the Bézier curve to a two-dimensional system as in (5-1)

creates the Bézier surface where 𝒌u,O is a list of control points which map onto the 𝑢, 𝑣 plane. 𝐵u�

is a Bernstein polynomial.

𝑝 𝑢, 𝑣 = 𝐵u� 𝑢 𝐵OD 𝑣 𝒌u,O

D

O�~

�

u�~

(5-1)

This representation differs from the typical interpolation scheme in which the surface

must pass through the control points. Instead, in a Bézier representation, the control points attract

the surface. Typically, the surface acquired from a Bézier representation resembles its control

point matrix. This provides an advantage in an optimization scheme in which a designer may

100

encourage certain symmetries or shapes by building them into the control points of the Bézier

surface.

Optimization of Bézier Surfaces Using the Covariance Matrix Adaptation Evolutionary
Strategy

The Bézier surface can be readily incorporated into an evolutionary optimization scheme.

The Bézier surface is capable of representing continuous surfaces with a limited number of

variables. Because of this, one may define an optimization in which the control points and other

parameters useful in designing a frequency selective surface, such as layer thickness or unit cell

size, into a global search scheme such as the Covariance Matrix Adaptation Evolutionary Strategy

(CMA-ES). CMA-ES [28, 29], like the well-known Genetic Algorithm (GA), is a derivative-free

stochastic numerical optimization routine. In this design, a unit cell comprised of hundreds of

triangles using a control point matrix with only a handful of variables is used. CMA-ES, which

has an optimal population size of 𝑝𝑜𝑝 = 4𝑙𝑜𝑔10 𝑁 + 3, is able to converge quickly to an

optimal design. In addition to the control points and size parameters, an additional variable has

been incorporated into the CMA-ES optimization the threshold that is used to determine the

cutoff for what regions in the Bézier surface are considered metal and what are considered a

dielectric.

Optimization for Circular Polarization

In designing a circular polarization filter, one may take advantage of the fact that any

incident wave can be considered as a sum of left- and right-hand circularly polarized waved. That

is,

101

 𝑬𝒊 = 	𝑬𝒍𝒉𝒄𝒑 + 𝑬𝒓𝒉𝒄𝒑
(5-2)

Mathematically, any polarization may be described by the Stokes vector 𝑺. However, in

designing an electromagnetic system, it is often more convenient to consider instead the Mueller

matrix, 𝑴, which acts on the polarization vector [48]. That is,

 𝑺𝒐𝒖𝒕 = 𝑴 ∙ 𝑺𝒊𝒏
(5-3)

These parameters can be determined by calculating the electromagnetic interaction of

incident waves. The relevant Mueller parameters can be represented in terms of reflected fields as

 𝒎𝟏𝟏
𝒎𝟏𝟐
𝒎𝟏𝟑
𝒎𝟏𝟒

= 	

𝟎.𝟓(𝑬𝟏𝟏 𝟐 + 𝑬𝟏𝟐 𝟐 + 𝑬𝟐𝟏 𝟐 + 𝑬𝟐𝟐 𝟐)
𝟎.𝟓(𝑬𝟏𝟏 𝟐 + 𝑬𝟏𝟐 𝟐 − 𝑬𝟐𝟏 𝟐 − 𝑬𝟐𝟐 𝟐

𝒓𝒆𝒂𝒍(𝑬𝟏𝟏 ∙ 𝑬𝟐𝟏∗ + 𝑬𝟏𝟐 ∙ 𝑬𝟐𝟐∗)
𝒊𝒎𝒂𝒈(𝑬𝟏𝟏 ∙ 𝑬𝟐𝟏∗ + 𝑬𝟏𝟐 ∙ 𝑬𝟐𝟐∗)

(5-4)

Here, the term 	𝑚eê represents the circular polarization of the reflected wave. Due to

stability conditions [48], it is sufficient to consider only these terms in an optimization of Mueller

parameters when a specific Stokes polarization response is desired.

A Circular Polarization Filter at 𝟒. 𝟑	𝝁𝒎

A frequency selective surface was optimized to separate circularly polarized components

of an incident wave at 4.3	𝜇𝑚. That is, a left-hand circularly polarized wave will be reflected and

a right-hand circularly polarized wave will be transmitted. A few unit cells of the meshed Bézier

surface can be seen in Figure 5-1. The frequency response of the circular polarization normalized

to reflection intensity is shown plotted in Figure 5-2. It can be seen that the ratio of circularly

polarized light to reflected intensity at 4.3	𝜇𝑚 is 88	%. Furthermore, the light at 4.5	𝜇𝑚, which

can be considered noise from the nearby N2O band, is completely reflected. One may calibrate

the system by incorporating a 4.3	𝜇𝑚 circular polarization detector a distance behind the filter.

102

Figure 5-1: Model of the frequency selective surface showing a 2x2 array of unit cells. In this Bézier surface
representation, a black outline represents the boundary between the parts of the surface above and below the threshold
value with red being the screen.

103

Figure 5-2: A plot of the normalized circular polarized light as a function of wavelength.

A Circular Polarization Filter Optimized for the Telecommunications Band

An advantage of this design is that it is simple and easy to scale to various frequency

bands. As an example, using the Bézier surface shown in Figure 5-1 as a basis, a circular

polarization filter targeting the telecommunications band surrounding 1.55	𝜇𝑚 was optimized.

With this basis, the CMA-ES optimization was able to find a solution within six generations

arriving at the mesh shown in Figure 5-3. In this case, the unit cell period is 653	𝑛𝑚 with a

92.6	𝑛𝑚 screen sandwiched between two 114	𝑛𝑚 glass layers.

104

Figure 5-3: The circular polarization filter re-optimized for use in the telecommunications band. The metallic
screen is shown in gold and the dielectric is dark blue.

In this band, the gold is less lossy. This allows the filter to reflect the circular polarization

components more easily in a wider band. At the optimized angle of 35∘, nearly the entire short,

conventional and long wavelength bands are above 50	% relative circular polarization yielding

either a highly elliptical or a purely circular polarization. Furthermore, at 1.55	𝜇𝑚, the relative

circular polarization remains above 50	% within ±25∘ of the optimal angle. This would allow an

operator plenty of leeway in the angle at which the filter is connected.

As in the previous filter, this design operates by reflecting one circular polarization and

transmitting the other. In this case, it could see use in encoding an optical signal using a technique

such as Dual Polarization Quadrature Phase Shift Keying [49].

105

Figure 5-4: The relative circular polarization for several angles centered on the 1.55	𝜇𝑚 band.

Conclusion

A simple frequency selective surface was optimized to isolate circularly polarized waves

centered at the CO2 absorption band of 4.3	𝜇𝑚. This design successfully provides a sharp

contrast between the intensities of lights at the CO2 and N2O bands allowing a simple optical

system to observe greenhouse gases without overlapping bands.

The adaptability of this design was shown by quickly re-optimize the filter for use in the

fibre-optic telecommunications band. This design showed strong lossless unity relative circular

polarization at the center of the important conventional band. It was further suggested that this

design might be useful for modulation purposes.

106

Chapter 6
A Highly Transparent Conductive Surface Design Based on an Optical

Frequency Selective Surface

Introduction

With uses ranging from consumer applications like LCD and touch screens to EMI

shielding, transparent antennas and photovoltaics, the market for transparent conductive materials

has seen rapid growth. Meanwhile, concerns about the global supply and price of indium [50],

used in indium tin oxide (ITO) a common transparent conductive material, have created a demand

for alternatives, which provide high transparency, low resistivity and ease of manufacturing.

There has been considerable interest into ITO alternatives, which are chemically similar.

That is, materials that exhibit semiconductor properties that are transparent within the visible

spectrum. Popular materials include aluminum-doped zinc oxide (AZO) [51] and gallium doped

zinc oxide (GZO) [52]. These alternatives, while cheaper, do not fully achieve the performance

that one would expect in a commercially produced sample ITO failing to achieve the level of

transparency or conductivity seen in ITO.

In addition to transparent conductive oxides, there has been additional research in using

silver nanowires [53] and carbon nanotubes [54] for a similar effect. These techniques have

shown promising results yielding low sheet resistance and high levels of transparency. Indeed,

Madraria et al were able to achieve films with 85	% transparency at 550	𝑛𝑚 on a plastic

substrate using a dry printing technique [55]. While transparent conductive films designed from

nanowires is a promising approach, most research has looked into solutions of randomly arranged

nanowires.

107

Another alternative approach that has not seen much research is in an ordered nanowire

technique. In other words, applying frequency selective surface design techniques the problem.

Frequency selective surfaces (FSS) are periodic structures that are engineered to achieve a

particular electromagnetic response over a particular frequency band. With semiconductor

etching techniques providing for smaller and more complex transistors and, more importantly,

metallic interconnects this approach becomes more attractive. Rather than relying on rare

materials or growing random meshes of nanowires, one may instead apply a mask and print a

well-defined FSS.

As transistor-manufacturing processes allow for smaller transistors, technologies to

produce complicated, metallic nanowire networks have matured. For example, the semiconductor

industry, in moving to multi-gate architectures such as FinFET [56], may now mass-produce

three-dimensional arrays of contacts. In addition to complex wire-networks, the metallic contacts

may be produced at even smaller sizes. IBM, for instance, recently reported FinFETs, which had

gate widths as low as 8	nm [57].

A successful transparent conductive surface must meet three general requirements. It

must achieve a high degree of transparency, ideally with an average visible transparency of above

80	%, low dispersion and a wide field of view. It must have a low resistivity. It must have a well-

defined method of production that could be applied on a massive scale. In this chapter, I will

propose an optical FSS based design that achieves all three goals.

108

Designing an Optimized Nanowire

Optical Frequency Selective Surfaces from Nanoscale Interconnect Technology

FSS technologies are well-understood devices that are used extensively from radio to

optical bands of the electromagnetic spectrum. These surfaces generally consist of periodic

arrangement of materials in order to achieve some desired frequency response. Commonly, these

materials are metallic although it is common in the optical regime to use only dielectric materials

in an FSS [58].

In FSS design, it is common for the space between periodic features, otherwise known as

the unit cell size, to be somewhere on the order of the wavelength which is being targeted by the

unit cell. Thus, as the frequency of the light increases, the unit cell size must by extension

decrease. For one to design an FSS that operates within the visible spectrum, the unit cell size

must be on the order of a few hundred nanometers. At this size, one must take special care in a

design to ensure that the features of the unit cell, which are necessarily smaller, are realizable.

Fortunately, with constant advances in transistor technologies, it is now possible to

consider nanowires, which are only tens of nanometers in diameter. Major semiconductor

manufacturing companies are now producing semiconductors with 14	nm half-pitches. By

necessity, gates of this size require nanowires, which are of a similar size.

Recent MOSFET technology has moved towards three-dimensional transistors such as

those seen in FinFET technologies. Immersion lithography [59], in particular, is an attractive

technique for etching trenches and memory cells with feature sizes in the tens of nanometers. For

example, 193	nm immersion lithography has been used to a size to produce 22	nm CMOS cells

with fin channels with widths of 8	nm [57]. These transistors, in addition to exhibiting small

109

feature sizes demonstrate complex wire-networks requiring interconnects that are of a similar

order.

The resistivity of nanoscale copper interconnects is well documented in the annual

Interconnect Roadmap Report [60]. It is known that as the width decreases, the copper becomes

less able to facilitate current flow thus increasing resistivity. For this reason, as a design

objective, wire width has been encouraged to be above 40	nm because at interconnect line widths

below this threshold the resistivity of the lines begins to grow somewhat rapidly. Keeping the line

widths somewhat large will allow for a design that more easily competes with randomly dispersed

nanowires, which have somewhat large bulk resistances on the order of 30	Ω/sq.

 Mathematical Description of the Unit Cell

A further design requirement was in geometrical complexity. It is desirable to use a

geometrical representation that allows for continuity and generality. The unit cells have been

subdivided into triangles to allow some complexity and freedom in the definition of the shape but

rather than optimizing each triangle independently, a Bézier surface representation has been used.

Bézier surfaces are mathematical surfaces, somewhat related to an interpolation

technique, which are often seen in computer aided design or graphics programs. A Bézier surface

representation serves this purpose well because it provides a method to describe a nearly infinite

number of shapes with a limited number of variables.

While the description of a Bézier surface was discussed in an earlier chapter, I will

reproduce it here for reference. Mathematically, a Bézier surface is an N-dimensional spline. In

two-dimensional space, a Bézier surface is a sum of independent Bernstein polynomials. A

general form of the ith polynomial of an nth order Bernstein polynomial can be written in the u-

dimension as in (6-1).

110

 𝐵u� 𝑢 = 𝑛
𝑖 𝑢u 1 − 𝑢 ��u

(6-1)

Thus, a Bézier surface of degree (n+1) by (m+1) can be written as in (6-2).

𝑝 𝑢, 𝑣 = 𝐵u�

D

O�~

�

u�~

𝑢 𝐵OD 𝑣 𝑘u,O

(6-2)

By selecting a high degree Bézier surface, one can describe a surface with a higher

degree of complexity. A 5th order Bézier surface in both dimensions was chosen as a tradeoff

between generality of the surface and manufacturability of the metallic structure. This choice

yielded 25 control points to be optimized. At this level of complexity, the surface easily facilitates

curvilinear wires without risking large rates of change in the surface.

By consolidating the design into a limited number of variables such as Bézier control

points, unit cell size, and wire thickness, it becomes simple to use a stochastic optimization model

such as covariance matrix adaptation evolution strategy (CMA-ES) to develop an effective unit

cell [28, 29]. Finally, to map the Bézier surface to a two-dimensional unit cell, an additional

optimization parameter was used as a surface threshold term. Using this threshold value, all

points on the surface above the threshold are mapped in the mesh-generation code to copper and

all values below the threshold are mapped to a glass.

As an evolutionary algorithm, CMA-ES updates a random population over several

generations in an attempt to move towards a local minimum. Unlike the well-known genetic

algorithm, CMA-ES moves towards its goal by determining an approximation of the covariance

matrix of the solution space. Each generation, the algorithm approximates the inverse Hessian

matrix allowing the search space to be updated similar to a quasi-classical optimization.

The search space was initialized using a Bézier surface, which approximated rounded-

edge mesh unit cell. As a fitness function, a root mean square (RMS) of several per-wavelength

111

fitness values was used. At each wavelength, the fitness was a weighted RMS calculated as in (

6-3).

 𝑓𝑖𝑡7 = 0.4𝑅U + 0.6 1 − 𝑇 U
(6-3)

Such that R is the reflected power and T is the transmitted power. This sort of fitness

function will allow attempt to find an arrangement that will yield a high degree of transparency

while forcing the lost energy to be absorbed rather than reflected through the inclusion of the

reflection coefficient in the fitness function. Fitness values were calculated at wavelengths of

400	nm, 500	nm, 700	nm and 900	nm alternating between horizontal and vertical polarizations.

Furthermore, to encourage a wide field of view, fitness values were calculated at both normal and

25° incidence.

Simulations were done using the periodic finite-element boundary integral algorithm

described earlier. A prismatic mesh was used to simplify meshing for a layered two-dimensional

periodic surface. The nanowire layer was simulated such along with two layers above and below

of glass with a glass half-spaces on top and bottom as in Figure 6-1. This allowed the finite-

element code to quantify field interactions near the interface while compressing the simulation

domain with the boundary integral. Using half spaces above and below the FSS should be

accurate to a manufactured structure if the half spaces are several wavelengths thick.

Figure 6-1: A side view of the FSS. The metallic FSS layer is between two thick dielectric half spaces

112

Simulation Results and Discussion

CMA-ES reached a minimum after 19 generations with the Bézier surface seen in Figure

6-2.

The optimized FSS has a metallic concentration of 24.8	% and a thickness, t, of 45.3	nm.

The nanowire varies in width throughout the unit cell from a minimum of 47.0 to 124.8	nm and a

total unit cell size of 285.3	nm. Using an estimated resistivity, ρ, of 4	µΩ/cm as a basis, which is

slightly lower than the typical resistance of a 38 nm half-pitch interconnect, an estimated sheet

resistance of 3.56	Ω/□	can be calculated using (6-4).

𝑅n =

𝜌/𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛
𝑡

	

(6-4)

This compares well with ITO thin-films, which have conductivities between 20 and 25

Ω/□ [62].

Frequency sweeps were performed using the optimized FSS with a variety of materials from 400

to 750	𝑛𝑚 using the periodic finite-element boundary integral method with Figure 6-3 showing a

2𝑥2 grid of meshed unit cells. Frequency sweeps were performed using the optimized FSS with a

variety of materials. Because the wire size is on the order of where the resistivity of copper begins

to become similar to the resistivity aluminum, frequency responses were calculated using both

materials. The metal was also simulated using the properties of silver due to its high conductivity.

For dielectric, FSS designs were simulated using polyimide for its thermal and mechanical

properties and a constant refractive index of 1.523 which is the refractive index of Corning 0211

flexible glass at 589.3	nm [61]. Sweeps were also performed with angles of incidence ranging

from 0 to 65°	to measure expected response over a wide field of view.

113

Figure 6-2: An optimized Bézier surface. The black outline shows the threshold points along the surface.

Figure 6-3: A 2x2 grid of meshed unit cells. Gray represents the metallic screen and green represents

dielectric substrate.

114

Figure 6-4 shows the results of frequency sweeps at angles of incidence from 0 to 65°.

As can be seen in the dashed lines, the filter shows strong transparency up to 65° where it has a

mean transparency of 51	%. Meanwhile, the reflectivity of the surface, which goes up to 11	% at

65°, is relatively low over all angles. This is advantageous over a surface like ITO where the

energy, which does not pass through the surface, is reflected. In this FSS design, the lost energy is

absorbed as heat, which in a consumer device like a phone should provide a nicer viewing

experience.

Another advantage of this design is that, aside from the violet and far-red portions of the

spectrum, the response has relatively low dispersion. For example, at normal incidence,

transmitted light energy varies from 81 to 85	% between 450 and 650	𝑛𝑚.

The results in Figure 6-4were taken by averaging the transverse electric (TE) and

transverse magnetic (TM) polarizations. This can be done since unpolarized light can be thought

of as being one or the other 50 % of the time. However, by looking at each polarization directly,

as in Figure 6-5, one can get an idea of the physics that is occurring within the filter in the visible

spectrum.

115

Figure 6-4: Frequency sweeps for unpolarized light from 0 to 65∘. Dashed lines show the unit transparency.
Solid lines show the reflectivity. Dots show the absorbed energy. Average transparency drops to 51 % in the visible
spectrum at an angle of incidence.

116

(A)

(B)

Figure 6-5: Frequency Sweeps at normal incidence for TE (A) and TM (B) polarizations only.

117

It can be seen that at higher frequencies, towards the ultra-violet, the grating like structure

that exists throughout the unit cell starts to take hold and push higher absorption in the TE

polarization. In the TM polarization, throughout the band, the frequency response is relatively

high showing a response that is nearly agnostic of the metallic structure altogether. This causes

absorption to rise in this polarization. At lower frequencies, towards 700 nm, the adjusted wire

begins to exhibit a similar grating-like response in the TM polarization. Since this portion of the

wire is smaller and does not extend across the unit cell, the TE response exceeds 90 %

transmission but the TM response only begins to show an increase in reflection. Additionally, at

about 430 nm, a resonance occurs in both polarizations due to the size of the wavelength

approaching that of the unit cell.

The use of a finite-element boundary-integral tool for simulation provides us with an

additional view at the physical nature of this structure. By examining the finite-element field

strengths on the edges of the mesh, one can get a picture of the electromagnetic wave as it exists

within the structure. Figure 6-6 and Figure 6-7 show two-dimensional cuts of the finite element

field strength immediately above the metallic surface at 430 and 600 nm.

It can be seen in these images that at higher frequencies, towards violet, the waves are

nicely confined within the metallic portion of the FSS. In TE, the wave is occluded by the

nanowire resulting in some absorption, seen in the darker red color, which represents a stronger

field. Meanwhile, at lower frequencies, the wavelength is larger than the unit cell and the

interaction is more complex. It appears that the metallic nanowire is focusing the beam into the

dielectric component as seen by the dark red field response along the edge of the wire as well as

the more concentrated fields in the dielectric.

118

(A)

(B)

Figure 6-6: The finite element field strength at 460 nm. (A) shows the TE fields. It should be noted that there
is little interaction between the fields and the metallic screen. (B) shows the TM fields. In this arrangement, the fields
fit neatly between the screens yielding little perturbation.

119

(A)

Figure 6-7: The finite element field strength at 600 nm. (A) shows the TE fields. At this higher wavelength,
the fields begin to interact with the enlarged sections of the screen resulting in a slight increase in scattering. (B)

shows the TM fields. In this arrangement, the fields are primarily concentrated within between the periodic screens but
the interaction begins to become larger resulting in increased scattering.

120

Figure 6-8: A plot of the S-parameters for the FSS using a polyimide substrate.

 The TM response is much simpler. Towards the violet, a sinusoidal beam response can

be seen across the unit cell. This is similar to what one would expect to see in a wave interaction

with a pure dielectric made of one material. At the lower frequency of 600	𝑛𝑚, because the wave

is larger than the unit cell, interaction with the metallic nanowire is unavoidable. This leads to

some energy being reflected.

As can be seen in Figure 6-8, this design provides a similar response for different

dielectric substrates as well. In addition to the Corning glass substrate, simulations were also

performed using a polyimide substrate. Here, the mean transmissivity in the frequency band is

82	%.

Similarly, frequency sweeps were performed using nanowires made of silver and

aluminum. Figure 6-9 shows the results of these two side-by-side. From this, it can be seen that

the properties of the design are largely due to the relationship between the material parameters of

121

copper and the physical arrangement of the wire itself. While using a silver wire maintains a high

degree of transmission, it adds dispersion to the response, behaving especially poorly at higher

frequencies. Meanwhile, aluminum exhibits a poor response throughout most of the band with a

high transmission at high frequencies.

(A)

(B)

Figure 6-9: Frequency sweeps at normal incidence for silver (A) and aluminum (B) nanowires.

122

Conclusion

A FSS based nanowire design has been described that exhibits a strong, low dispersion

transparent response while maintaining a consistent path through which current can flow. This

design behaves well with widely different dielectric substrates but lacks consistency with other

metallic wires. However, due to the transparency that exists in FSS designs, which use a different

metal, it should be possible to use a similar optimization process, taking into account the proper

material parameters, to achieve a similar response using these other metals as well.

Due to a lack of proper facilities, testing of this design outside of commonly used

computer aided design techniques was unable to be performed. However, because this design was

optimized with current nanofabrication techniques in mind and it should be possible with the

proper facilities to produce a manufactured sample for comparison.

123

Chapter 7

Enhanced Electro-Absorption Modulation Using an FSS

Introduction

As the demand for increased communication and transmission of data has grown in

recent years, there has been a move to increase the use of optical bands which can contain

bandwidths several gigahertz wide. The conventional fibre-optics band around 1.55	𝜇𝑚 contains

a bandwidth of 3.7	𝐺𝐻𝑧, for example. For these bands to be accessible, two key features are

necessary: the ability to encode an electrical signal into an optical one and the ease of integration

into a silicon circuit.

Since the discovery of the electro-optical effect in silicon [63], semiconductor electro-

optical devices have become attractive. Direct integration into silicon would allow for fast

communication within a device or allow for direct integration of a computer with a larger

communications network [64]. Interconnects in a computer are increasingly becoming a

significant contributor to the total energy consumption of components. SiGe electro-absorption

modulators are an attractive alternative to traditional metallic interconnects due to their low

power consumption. Energy consumption models for SiGe modulators have calculated a typical

consumption of tens of femtojoules or less per bit [65].

In recent years, semiconductor based optical modulation has begun to mature to a point

where semiconductor based photonics has become a reality. Using strained silicon or strained

silicon-germanium (SiGe) stacked quantum wells [66], devices which demonstrate an

electrically-influenced change in the refractive index or absorption coefficient have been

developed.

124

This chapter will demonstrate simulations of devices that have been built around the

known parameters of a SiGe stacked quantum well with an embedded metallic frequency

selective surface that amplifies the differences in optical parameters of SiGe quantum wells

boosting the absorption allowing the device to be smaller.

Properties of a SiGe Absorption Modulator

Silicon-Germanium Physical Properties

The use of stacked multiple quantum wells consisting of Si and Ge induces the quantum-

confined Stark effect which characterized by electric-field dependent optical absorption [66].

These stacked SiGe layers typically have thicknesses that are only a fraction of the size of the

wavelength. For this reason, it is appropriate to simplify the overall index of refraction to a

weighted average of the two materials. In these simulations, the refractive index was chosen

based on the properties of a theoretical device consisting of 𝑆𝑖~.e𝐺𝑒~.< which has a weighted

index of 𝑛 = 3.941. With a voltage swing typical voltage swing between 𝑉 = 0	𝑉 and 𝑉 = 5	𝑉,

typical values for the absorption coefficient range from on the order of 𝛼 = 1000	𝑐𝑚�e to

8000	𝑐𝑚�e in the original fibre-optics band centered around 1.3	𝜇𝑚 and from a reported

1000	𝑐𝑚�e to 5000	𝑐𝑚�e in the conventional band for a device held at high temperatures which

one might expect on an active CPU [67].

The Electro-Absorption Effect

The electro-absorption effect occurs in a SiGe stacked quantum well due to external

electric fields manipulating the band-gaps of the wells. Typically, these devices consist of

125

multiple layers of different, doped semiconductor materials stacked such that the electrons or

holes may only occupy discrete energy states within each layer. By inducing an electric field on

such a device, a shift in the band-gap energy is induced with a fast response rate with rates as

high as 3.5	𝐺𝐻𝑧 having been reported [68] This shift in band-gap energy can be engineered such

that the absorption bands shift to the bands used in fibre-optic communication making them

useful for photonic devices.

Germanium features an indirect band gap at 0.67	𝑒𝑉 and a small direct band gap at

0.8	𝑒𝑉 [65], which corresponds with the conventional communications band at 1.55	𝜇𝑚. Silicon,

on the other hand, features an indirect band gap of 4.0	𝑒𝑉. When Si and Ge combine in a

quantum well, strain induces a shift in the bandgap energy. By controlling the ratio between Si

and Ge, a degree of control over the band gap is created which has an effect on the optical

absorption of the material. Typically, individual quantum wells have a thickness that is near

20	𝑛𝑚.

Design and Simulation

For an electro-absorption modulator to be useful for communication, it must be able to

show a difference in absorption between two applied voltages of at least 3	𝑑𝐵 in a reasonable

length. Previous devices have shown a 3	𝑑𝐵 drop at the 1.55	𝜇𝑚 band after approximately

60	𝜇𝑚 [65]. An exceptional device incorporated a coupled ring-resonator reducing the device

length to 12	𝜇𝑚 [66]. For this design, a large difference between the absorption of the system

when an applied voltage increases the absorption as compared to one in which no FSS is included

is desired. Optical properties of the SiGe multiple quantum wells were determined using data

from Liu [65].

126

Figure 7-1: A simple schematic of the typical design of a simple silicon germanium electro-absorption

modulator.

The Covariance Matrix Adaption Evolution Strategy, which attempts to approximate the

covariance matrix of a random sample in an attempt to push the mean to a fitness minimum [29,

30], was integrated with a periodic finite element boundary integral solver to optimize designs

centered at 1.3	𝜇𝑚 and 1.55	𝜇𝑚. The fitness function used was the difference function in.

 𝒇𝒊𝒕 = 𝟏 − 𝑨𝒉𝒊𝒈𝒉 − 𝑨𝒍𝒐𝒘
(7-1)

The structure of the optimized device is similar to that of Figure 7-1 featuring an FSS

embedded in SiGe quantum wells sandwiched between inactive SiGe buffers and electrodes. An

optical source is supplies a signal at an angle and the light is assumed to reflect perfectly off the

electrodes until it exits the device.

127

Figure 7-2: The unit cells arranged in 2x2 grids for the optimized frequency selective surfaces. The top
design targets 1.3	𝜇𝑚 and the bottom targets 1.5	𝜇𝑚.

The optimized designs can be seen in Figure 7-2. These FSS unit cells feature loops

which are on the order of the target wavelength within the SiGe quantum wells in which the

128

surface is embedded. For this reason, a current is induced on the edges of the FSS. When the

SiGe has stronger absorption, the current is stronger and the energy is confined to the surface.

When the absorption is set low, the screen acts as a reflective surface and little energy is lost as

current.

Frequency sweeps of the designs are shown in Figure 7-3. Using these results, the length

required to achieve a 3	𝑑𝐵 or 10	𝑑𝐵 difference in absorbed optical power can be calculated using

𝑳 =

𝐥𝐨𝐠 𝑨𝒕𝒂𝒓𝒈𝒆𝒕
𝐥𝐨𝐠 𝟏 − 𝑨𝒅𝒊𝒇𝒇

𝑳𝟎

(7-2)

where 𝐴Qo�üXQ is the targeted absorption difference, 𝐴·uÏÏ is the difference in absorption between

the two states and 𝐿~ is the distance traveled per pass. From this, it is found that the length

required to achieve a 3	𝑑𝐵 difference in transmission is 1.03	𝜇𝑚 for the FSS targeting the 1.3	𝜇𝑚

band and 2.5	𝜇𝑚 for the FSS targeting the 1.55	𝜇𝑚 band.

Conclusion

Using the optical parameters of previously published SiGe devices, a simple FSS-based

design that can be embedded between the quantum wells has been demonstrated. Using this

approach, the computer models show an enhancement of the absorption properties in the electro-

absorption modulator. This allows the device length to be reduced making it more attractive for

use in computer applications where there is a desire to move away from traditional metallic wire-

based interconnects to an optical communications system.

129

Figure 7-3: Plots of simulated absorption versus wavelengths for the designs shown in Figure 7-2.

Chapter 8 Conclusions and Future Work

Conclusions

The research in this dissertation has been divided into two primary areas of focus. The

first section discussed an implementation of the finite element method using a boundary integral

method to truncate the top and bottom of the simulation domain to reduce the amount of

unknowns and parameters to store in memory.

However, the calculation of the boundary integral, particularly with the use of triangular

basis functions requires several repeated, linearly independent numerical integrations, which

incorporate the contributions of many elements near and far from each element. Since this sort of

problem is well suited for a GPGPU system, the boundary integral code was implemented in the

GPU to provide a strong increase in computational speed for these systems balancing the

tradeoffs between a boundary integral and an approximate boundary such as the perfectly

matched layer.

Using this system, a covariance matrix adaptation evolutionary strategy was employed in

conjunction with a Bézier surface based meshing algorithm to produce several proposed designs

in the infrared and optical spectra. These designs provided novel approaches to existing

electromagnetics problems.

These include problems such as manipulating the polarization of the scattered light to

induce a circular polarization, confining optical energy into a doped semiconductor substrate,

transparent films whose periodicity is taken advantage of to maintain a constant path for current

flow, and enhanced optical absorption modulation which will allow the physical footprint of such

systems to be reduced allowing them to be more easily integrated into computer networks.

131

Future Work

In this dissertation, an accelerated numerical electromagnetic solver and several designs

has been discussed. These concepts lay the groundwork for future topics that I would be pleased

to see further examination and development. In particular, I would like to see physical

realizations of the designs that have been proposed such that they might see further development

and possible commercial or research applications. Additionally, a few aspects of the solver could

be enhanced. One area, which was not discussed in this work up to this point, was the inclusion of

support for lumped elements, such as in Figure 8-1, and analysis thereof.

Figure 8-1: A lumped element mesh. The silver portion is a metallic patch and the blue portion between the
patches is a lumped resistive element.

Rudimentary work has been done to include support for lumped elements in the

triangular finite element boundary integral code. However, since most of the work in this

dissertation has been in the optical spectrum, it proved difficult to find designs that are both

realizable and an improvement on standard FSS techniques. Recent advances in tunable optical

nano-antennas may be easier to simulate using a lumped element approach rather than modeling

132

the load that may be more easily analyzed using such a model [68]. The current implementation

will only work within the finite element region and only supports vertical and horizontal

connections to metallic elements.

Based on the presented work, the following is a brief summary of many areas that I

believe may be considered for future research:

- Implementation of the generalized minimum residual method with a prismatic basis,

hybrid finite-element boundary integral method

- Further study into optical lumped elements as an approximation for nano-scale loads.

- Development of physical optical Bézier surface based Frequency Selective Surfaces

using modern etching techniques.

- Study into the physical causes of coupling between doped semiconductors and

frequency selective surfaces.

133

References

1. Y. Avitzour, Y. A. Urzhumov, and G. Shvets, “Wide-angle infrared absorber based on a
negative-index plasmonic metamaterial,” Phys. Rev. B, vol. 79, pp. 045131/1-5, January
2009.

2. J. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal dual-band near-
perfectly absorbing mid-infrared metamaterial coating,” ACS Nano, vol. 5, no. 6, pp. 4641-
4647, April 2011.

3. V.G. Veselago, “The electrodynamics of substances with simultaneously negative values of
ε and µ,” Sov. Phys. USPEKHI, Vol. 10, No. 4, 1968, pp. 509-514.

4. J.B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett., Vol. 85, No. 18,
pp. 3966-3969, 2000.

5. R. P. Drupp, J. A. Bossard, Y-H. Ye, D. H. Werner, and T. S. Mayer, “Dual-band infrared
metallodielectric photonic crystals,” Applied Physics Letters, Vol. 85, pp. 1835-1837, Sept.
2004.

6. D. J. Kern and D. H. Werner, “Magnetic loading of EBG AMC ground planes and ultrathin
absorbers for improved bandwidth performance and reduced size,” Microw. Opt. Technol.
Lett., vol. 48, no. 12, pp. 2468-2471, December 2006

7. J. L. Volakis, A. Chatterjee, and L. C. Kempel, Finite Element Method for
Electromagnetics, New York: Wiley-IEEE Press, 1998.

8. R. L. Courant, “Variational methods for the solution of problems of equilibrium and
vibration,” Bulletin of the American Mathematical Society, 49, 1943, pp. 1-23.

9. J. H. Argyris, H. Balmer, J. St. Doltsinis, P.C. Dunne, M. Haase, M. Kleiber, G.A.
Malejannakis, H.-P. Mlejnek, M. Muller, and D.W. Scharpf, “Finite element method – the
natural approach,” Computer Methods in Applied Mechanics and Engineering, vol. 17-18,
No. 1, pp. 1-106, Jan. 1979.

10. E. Hinton, and J. S. Campbell, “Local and global smoothing of discontinuous finite element
functions using a least squares method,” International Journal for Numerical Methods in
Engineering, vol. 8, no. 3, pp. 461-480, Mar. 1974.

11. J.-Y. Wu, and R. Lee, “The advantages of triangular and tetrahedral edge elements for
electromagnetic modeling with the finite element method,” IEEE Transactions on Antennas
and Propagation, Vol. 45, No. 9, pp. 1431-1437, Sep. 1997.

12. B. Engquist, and A. Majda, “Absorbing boundary conditions for the numerical simulation
of waves,” Mathematics of Computation, Vol. 31, No. 139, pp. 629-651, Jul. 1977.

13. A. Bayliss, M. Gunzburger, and E. Turkel, “Boundary conditions for the numerical solution
of elliptic equations in exterior regions,” SIAM Journal of Applied Math, Vol. 42, pp. 430-
451, 1982.

14. J.-P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,”
Journal of Computational Physics, Vol. 114, pp. 185-200, Oct. 1994.

15. C. A. Brebbia, Boundary element method for engineers, London: Pentech, 1978.
16. H. Ling, “RCS of waveguide cavities: a hybrid boundary-integral/modal approach,” IEEE

Transactions on Antennas and Propagation, Vol. 38, No. 9, Sep. 1990.

134

17. T. F. Eibert, J. L. Volakis, D. R. Wilton, and D. R. Jackson, “Hybrid FE/BI modeling of 3-d
periodic doubly periodic strucures utilizing triangular prismatic elements and an MPIE
formulation accelerated by the Ewald transformation”, IEEE Trans. Antennas Propag., vol.
47, no. 5, pp. 843-850, May 1999.

18. R. E. Jorgenson, and R. Mittra, “Efficient calculation of the free-space periodic Green’s
function,” IEEE Transactions on Antennas and Propagation, Vol. 38, No. 5, pp. 633-642,
May 1990.

19. J. B. Kruskal, “On the shortest spanning subtree of a graph and the traveling salesman
problem,” Proceedings of the American Mathematical Society, Vol. 7, No. 2, pp. 48-50,
1956.

20. M. L. Fredman, and R. E. Tarjan, “Fibonnaci heaps and their uses in improved network
optimization algorithms,” 25th Annual Symposium on Foundations of Computer Science,
pp. 338-346, 24-26 Oct. 1984.

21. X. Wang, and D. H. Werner, "Fast Analysis of 3-D Doubly Periodic Structures with
Complex Geometry and Anisotropic Materials using the Adaptive Integral Method," 2010
IEEE Antennas and Propagation Society International Symposium (APSURSI), pp. 1-4,
July 11-17 2010.

22. B. Delaunay, “Sur la sphère vide". Bulletin de l’Académie des Sciences de l'URSS, Classe
des sciences mathématiques et naturelles, Vol. 6, pp. 793–800, 1934.

23. The CGAL Project. CGAL User and Reference Manual. CGAL Editorial Board, 4.7
edition, 2015.

24. R. H. Bartels, An Introduction to Splines for Use in Computer Graphics and Geometric
Modeling, 1987: Morgan Kaufmann.

25. H. Edelsbrunner, D. G. Kirkpatrick, and R. Seidel, “On the shape of a set of points in the
plane,” IEEE Transactions on Information theory, Vol. 29, No. 4, pp. 551-559, Jul. 1983.

26. H. Edelsbrunner and E. P. Mücke. “Three-dimensional alpha shapes,” ACM Trans. Graph.,
13(1): pp43–72, Jan. 1994.

27. R. L. Haupt and D. H. Werner, Genetic Algorithms in Electromagnetics, New York: Wiley-
IEEE Press, 2007.

28. P. L. Werner, R. Mittra, and D. H. Werner, "Extraction of Equivalent Circuits for
Microstrip Components and Discontinuities Using the Genetic Algorithm," IEEE
Microwave and Guided Wave Letters, Vol. 8, No. 10, pp. 333-335, 1998.

29. N. Hansen, S.D. Muller and P. Koumoutsakos, “Reducing the time complexity of the
derandomized evolution strategy with covariance matrix adaptation (CMA-ES),”
Evolutionary Computing, Vol. 11, No. 1, pp. 1-18, Mar. 2003.

30. M. D. Gregory, Z. Bayraktar, and D. H. Werner, “Fast optimization of electromagnetic
design problems using the covariance matrix adaptation evolution strategy,” IEEE Trans.
Antennas Propag., vol. 59, no. 4, pp. 1275-1285, April 2011.

31. A. Auger and N. Hansen, “Performance evaluation of an advanced local search algorithm,”
Proceedings of the IEEE Congress on Evolutionary Computation, Vol. 2, pp. 1777-1784, 2-
5 Sep. 2005.

32. A. Auger and N. Hansen, “A restart evolutionary strategy with increasing population size,”
Proceedings of the IEEE Congress on Evolutionary Computation, Vol. 2, pp. 1769-1776, 2-
5 Sep. 2005.

33. The Khronos Group, 2015 Nov. 11, The OpenCL Specification (version 2.1), [Online].
Available: https://www.khronos.org/registry/cl/specs/opencl-2.1.pdf

34. G. P. M. Poppe, and C. M. J. Wijers, “More efficient calculation of the complex error
function,” ACM Transactions on Mathematical Software, Vol. 16, No. 1, pp. 38-46, Mar.
1990.

135

35. Y. Saad, Iterative Methods for Sparse Linear Systems, Philadelphia: SIAM, 2003.
36. Y. Saad and M. H. Schultz, “GMRES: a generalized minimum residual algorithm for

solving nonsymmetric linear systems”, SIAM Journal of Scientific Computing, Vol. 7, No.
3, Jul. 1986.

37. Y. Avitzour, Y. A. Urzhumov, and G. Shvets, “Wide-angle infrared absorber based on a
negative-index plasmonic metamaterial,” Phys. Rev. B, vol. 79, pp. 045131/1-5, January
2009.

38. J. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal dual-band near-
perfectly absorbing mid-infrared metamaterial coating,” ACS Nano, vol. 5, no. 6, pp. 4641-
4647, April 2011.

39. D. J. Kern, and D. H. Werner, “Magnetic loading of EBG AMC ground planes and ultrathin
absorbers for improved bandwidth performance and reduced size,” Microw. Opt. Technol.
Lett., vol. 48, no. 12, pp. 2468-2471, December 2006.

40. A. D. Rakić, A. B. Djurišić, J. M. Elazar, and M. L. Majewski, “Optical properties of
metallic films for vertical-cavity optoelectronic devices,” Appl. Opt., vol. 37, no. 22, pp.
5271-5283, August 1998.

41. Martinelli, M., Martelli, P., and Pietralunga, S. M., "Polarization Stabilization in Optical
Communications Systems," Journal of Lightwave Technology, Vol. 24, No. 11, 4172-4183,
Nov. 2006.

42. G. Nordin, J. Meier, P. Deguzman, and M. Jones, "Micropolarizer array for infrared
imaging polarimetry," J. Opt. Soc. Am. A, Vol. 16, pp. 1168-1174 (1999).

43. J. Tyo, D. Goldstein, D. Chenault, and J. Shaw, "Review of passive imaging polarimetry
for remote sensing applications," Applied Optics, Vol. 45, pp. 5453-5469 (2006).

44. J. Arce-Diego, R. López-Ruisánchez, J. López-Higuera, and M. Muriel, "Fiber Bragg
grating as an optical filter tuned by a magnetic field," Optics Letters, Vol. 22, pp. 603-605
(1997).

45. P. Deguzman and G. Nordin, "Stacked Subwavelength Gratings as Circular Polarization
Filters," Applied Optics, Vol. 40, pp. 5731-5737 (2001).

46. Q. Hong, T. Wu, X. Zhu, R. Lu, and S. Wu, "Designs of wide-view and broadband circular
polarizers," Optics Express, Vol. 13, pp. 8318-8331 (2005).

47. G. Wysocki, R. Lewicki, R. F. Curl, F. K. Tittel, L. Diehl, F. Capasso, M. Troccoli, G.
Hofler, D. Bour, S. Corzine, R. Maulini, M. Giovannini, and J. Faist, “Widely tunable
mode-hop free external cavity quantum cascade lasers for high resolution spectroscopy and
chemical sensing,” Appl. Phys. B, Vol. 92, No. 3, pp. 305–311, 2008.

48. A. B. Kostinski, C. R. Givens, J. M. Kwiatkowski, “Constraints on Mueller Matrices of
Polarization Optics,” Applied Optics, Vol. 32, No. 9, March 1993.

49. C. Laperle, B. Villeneuve, Z. Zhang, D. McGhan, H. Sun, and M. O'Sullivan, “Wavelength
Division Multiplexing (WDM) and Polarization Mode Dispersion (PMD) Performance of a
Coherent 40Gbit/s Dual-Polarization Quadrature Phase Shift Keying (DP-QPSK)
Transceiver,” in Optical Fiber Communication Conference and Exposition and The
National Fiber Optic Engineers Conference, March 2007.

50. US Geological Survey, 2014 Nov., U.S. Mineral Commodity Summaries, [Online].
Available: http://minerals.usgs.gov/minerals/pubs/commodity/indium/mcs-2015-indiu.pdf

51. T. Minami, H. Nanto, and S. Takata, “Highly Conductive and Transparent Aluminum
Doped Zinc Oxide Thin Films Prepared by RF Magnetron Sputtering,” Japanese Journal of
Applied Physics, Vol. 23, No. 5, 1984.

52. E. Fortunato, L. Raniero, L. Silva, A. Gonçalves, A. Pimentel, P. Barquinha, H. Águas, L.
Pereira, G. Gonçalves, I. Ferreira, E. Elangovan, R. Martins, “Highly stable transparent and

136

conducting gallium-doped zinc oxide thin films for photovoltaic applications”, Solar
Energy Materials and Solar Cells, Vol. 92, No. 12, pp. 1605-1610, December 2008.

53. M. Oh, W.-Y. Jin, H. J. Jun, M. S. Jeong, J.-W. Kang, and H. Kim, “Silver nanowire
transparent conductive electrodes for high-efficiency III-nitride light-emitting
diodes,”Scientific Reports, Vol. 5, pp. 13483-, Sep. 2015.

54. E. M. Doherty, S. De, P. E. Lyons, A. Shmeliov, et al, “The spatial uniformity and
electromechanical stability of transparent, conductive films of single walled nanotubes,”
Carbon, Vol. 47, pp. 2466-2473, 2009.

55. A. R. Madraria, A. Kumar, and C. Zhou, “Large scale, highly conductive and patterned
transparent films of silver nanowires on arbitrary substrates and their application in touch
screens,” Nanotechnology, Vol. 22 (24), 245201, 2011.

56. Huang, X. et al., "Sub 50-nm FinFET: PMOS" International Electron Devices Meeting
Technical Digest, pp. 67-70, December 5–8, 1999.

57. L. Pasini, et al., "High performance low temperature activated devices and optimization
guidelines for 3D VLSI integration of FD, TriGate, FinFET on insulator," in 2015
Symposium on VLSI Technology (VLSI Technology), pp. T50-T51, 16-18 June 2015.

58. J. A. Ashbach, P. L. Werner, D. H. Werner, and F. Namin, "Single material alternative to a
multilayer optical window," Proceedings of the 2010 IEEE International Symposium on
Antennas and Propagation and USNC/URSI National Radio Science Meeting, Toronto,
Canada, July 11-17, 2010.

59. M. Switkes, and M. Rothschild, “Immersion lithography at 157 nm,” Journal of Vacuum
Science and Technology B, Vol. 19, pp. 2353-, 2001.

60. Interconnect Roadmap 2011
61. Corning 0211 Microsheet.
62. H. Kim et al., “Electrical, optical, and structural properties of indium–tin–oxide thin films

for organic light-emitting devices,” Journal of Applied Physics, Vol. 86, No. 11, pp 6451-
6461, Dec. 1999.

63. R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” , IEEE Journal of
Quantum Electronics, Vol. 23, No. 1, pp. 123-129, Jan. 1987.

64. D. A. B. Miller, “Physical reasons for optical interconnection”, International Journal of
Optoelectronics, Special Issue on Smart Pixels, Vol. 11, No. 3, pp. 155-168, May 1997.

65. R. K. Schaevitz, E. H. Edwards, et. al, “Simple electroabsorption calculator for designing
1310 nm and 1550 nm modulators using germanium quantum wells” IEEE Journal of
Quantum Electronics, Vol. 48, No. 2, pp. 187–197, Feb 2012.

66. Q. Xu, B. Schmidt, et al., “Micrometre-scale silicon electro-optic modulator,” Nature, Vol.
425, No. 7040, pp. 325-327, Mar 2005.

67. P. Chaisakul, D. Marris-Morini, M. Rouifed, G. Isella, D. Chrastina, J. Frigerio, X. Le
Roux, S. Edmond, J. Coudevylle, and L. Vivien, "23 GHz Ge/SiGe multiple quantum well
electro-absorption modulator," Optics Express, Vol. 20, No. 3, pp. 3219-3224, Jan 2012.

68. A. H. Panaretos, Y. A. Yuwen, D. H. Werner, and T. S. Mayer, “Tuning the optical
response of a dimer nanoantenna using plasmonic nanoring loads,” Scientific Reports, Vol.
5, 9813, May 2015.

137

Appendices

Appendix A

Mesh Generation Code for the CGAL Library

#include <stdlib.h>
#include <fstream>
#include <string.h>
#include <sstream>
#include <vector>
#include <iostream>
#include <cmath>
#include <map>
#include <time.h>
#include <png.h>
#include "make_mesh.h"

// OpenGL
void handleKeypress(unsigned char key, int x, int y) {
 switch (key) {
 // Escape Key
 case 27:
 exit(0);
 case 'm': case 'M':
 showMesh = !showMesh;
 break;
 case '+':
 if (displayScreen+1 < nlayers) {
 displayScreen++;
 }
 break;
 case '-':
 if (displayScreen > 0) {
 displayScreen--;
 }
 break;
 default:
 break;
 }
}

void mouseMove(int x, int y)
{
 if (xOrigin >= 0) {
 // update deltaAngle
 deltaAngle = (x - xOrigin) * 0.005f;

 // update camera's direction
 lx = sin(glAngle + deltaAngle);
 lz = -cos(glAngle + deltaAngle);
 }
}

void handleMouse(int button, int state, int x, int y) {
 // only start motion if the left button is pressed
 if (button == GLUT_LEFT_BUTTON) {

138

 int modifiers = glutGetModifiers();
 if (modifiers != GLUT_ACTIVE_CTRL) {
 if (state == GLUT_UP) {
 glAngle += deltaAngle;
 xOrigin = -1;
 } else {
 xOrigin = x;
 }
 } else {
 if (state == GLUT_UP) {
 zPos += deltaZ;
 } else {
 xOrigin = x;
 }
 }
 }
}

void computePos(float deltaMove) {
 x += deltaMove * lx * 0.1f;
 z += deltaMove * lz * 0.1f;
}

void changeSize(int w, int h) {

 // Prevent a divide by zero, when window is too short
 // (you can't make a window of zero width).
 if (h == 0)
 h = 1;

 float ratio = w * 1.0 / h;

 // Use the Projection Matrix
 glMatrixMode(GL_PROJECTION);

 // Reset Matrix
 glLoadIdentity();

 // Set the viewport to be the entire window
 glViewport(0, 0, w, h);

 // Set the correct perspective.
 gluPerspective(45.0f, ratio, 0.1f, 100.0f);

 // Get Back to the Modelview
 glMatrixMode(GL_MODELVIEW);
}

void renderBitmapString(
 float x,
 float y,
 void *font,
 char *string) {
 int i, len;
 char *c;
 len = (int) strlen(string);
 glRasterPos2f(x, y);
 glColor4f(0.0f, 0.0f, 0.0f, 0.0f);
 // glutBitmapString(GLUT_BITMAP_HELVETICA_18, string);
 // for (i = 0; i < len; i++)
 for (c=string; *c != '\0'; c++) {
 glutBitmapCharacter(font, *c);
 }
}

void renderScene(void)
{

139

 // glutSetWindow(subWindow1);
 char number[12];
 int i, j;

 double x, y, z;

 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
 if (showMesh)
 glPolygonMode(GL_FRONT_AND_BACK, GL_LINE);
 else
 glPolygonMode(GL_FRONT_AND_BACK, GL_FILL);
 glColor3f(0.0f, 0.0f, 1.0f);

 glLoadIdentity();
 // glRotatef(glAngle, 0.0f, 0.0f, 1.0f);

 gluLookAt(x, 1.0f, 0.5*z,
 x+lx, 1.0f, z+lz,
 0.0f, 1.0f, 0.0f);

 i = 0;
 glBegin(GL_TRIANGLES);
 for (i = 0; i < vertices.size() / 4; i++) {
 if (dim == 2)
 glVertex3f(nodes[vertices[i]*dim], nodes[vertices[i]*dim+1], 0.0);
 else if (dim == 3) {
 if (vertices[i] >= 0) {
 for (j = 0; j < 3; j++) {
 x = nodes[vertices[i*4 + j]*dim]/(sizeX);
 y = nodes[vertices[i*4 + j]*dim+1]/(sizeY)+1.0;
 z = nodes[vertices[i*4 + j]*dim+2]/(sizeX);
 if (pecMesh) {
 if (is_patch[i]) {
 glColor3f(0.863f, 0.698f, 0.192f);
 } else {
 glColor3f(0.1137f, 0.21176f, 0.3333f);
 }
 }
 else {
 if (which_dielectric[displayScreen * nFaces + i] == 1) {
 glColor3f(0.1137f, 0.21176f, 0.3333f);
 } else {
 glColor3f(0.863f, 0.698f, 0.192f);
 }
 glBindTexture(GL_TEXTURE_2D, textureIDs[1]);
 }
 glVertex3d(x, y, z);
 }
 }
 }
 }
 glEnd();
 // Write text
 glColor4f(0.0f,0.0f,0.0f, 1.0f);
 sprintf(number, "Layer: %d", displayScreen);
 renderBitmapString(-0.95, 0.05, (void *)font, number);
 // textBox
 glPolygonMode(GL_FRONT_AND_BACK, GL_FILL);
 glColor4f(0.8f, 0.8f, 0.8f, 0.8f);
 glBegin(GL_TRIANGLES);
 // triangle1
 glVertex3d(-1.0, 0.0, 0.0);
 glVertex3d(-0.5, 0.0, 0.0);
 glVertex3d(-1.0, 0.2, 0.0);
 // triangle2
 glVertex3d(-1.0, 0.2, 0.0);
 glVertex3d(-0.5, 0.2, 0.0);

140

 glVertex3d(-0.5, 0.0, 0.0);
 glEnd();
 glutSwapBuffers();
}

double factorial(int n)
{
 return (n <= 1 ? 1.0 : static_cast<double>(n)*factorial(n-1));
}

bool beztest(double x, double y)
{
 int n = bezsize;
 double c = 0; // result from Bézier calculation
 double Bi, Bj;
 for (int i = 0; i < bezsize; i++) {
 Bi = factorial(n-1) * pow(x, i) * pow(1.0 - x,n-1-i) / (factorial(i) *
factorial(n-1-i));
 for (int j = 0; j < bezsize; j++) {
 Bj = factorial(n-1) * pow(y, j) * pow(1.0 - y,n-1-j) / (factorial(j) *
factorial(n-1-j));
 c += Bi * Bj * Bézier_coeffs[i*n + j];
 }
 }
 if (fabs(c/cmax - bezthresh) < 0.001)
 printf("beztest bez(%f, %f) = %f, thresh %f\n", x,y,c/cmax,bezthresh);
 return (c/cmax > bezthresh);
}

void read_off_file(std::string filename)
{
 std::ifstream fid;
 fid.open(filename.c_str());
 std::string line;
 std::stringstream ss;

 bool thislayer, was_screen, was_sub;
 bool test[3];
 bool facesDefined = false;
 bool nodesDefined = false;
 bool isOff = false;
 int i, j;
 int patch = 0;
 int screeni, subi;
 int n, attributes, boundary_marker;
 int nVert, vert_boundary_marker;

 int nEdge; // nEdge isn't actually used
 int nPolyVertices; // number of vertices for the ith polygon
 int maxPolyVertices = 4;
 int ithVertices[4];
 int idx;
 double triVertices[6];

 Point p;

 dim = 3; // OFF is defined in 3-Dimensions

 while(getline(fid, line)) {
 //the following line trims white space from the beginning of the string
 line.erase(line.begin(), find_if(line.begin(), line.end(),
std::not1(std::ptr_fun<int, int>(isspace))));
 if (line[0] == '#')
 continue;
 if (line.empty())
 continue;
 if (line.compare("OFF") == 0) {

141

 isOff = true;
 // Next line should be numVertices numFaces numEdges
 getline(fid, line);
 std::stringstream(line) >> nVert >> nFaces >> nEdge;
 continue;
 }

 if (!nodesDefined && isOff) {
 nodes.resize(nVert*dim);
 for (i = 0; i < nVert; i++) {
 while (line.empty())
 getline(fid,line);
 if (dim == 2) {
 // this doesn't happen
 std::stringstream(line) >> nodes[i*dim] >> nodes[i*dim + 1];
 } else if (dim == 3) {
 std::stringstream(line) >> nodes[i*dim] >> nodes[i*dim + 1] >>
nodes[i*dim + 2];
 }
 getline(fid,line);
 }

 nodesDefined = true;
 } else if (!facesDefined && isOff) {
 vertices.resize(nFaces * maxPolyVertices);
 for (i = 0; i < nFaces; i++) {
 while(line.empty())
 getline(fid, line);

 // ss << line;
 // ss >> nPolyVertices;
 // For now, let's just assume that we have triangular meshes
 std::stringstream(line) >> nPolyVertices >>
vertices[i*maxPolyVertices] >> vertices[i*maxPolyVertices+1] >>
vertices[i*maxPolyVertices+2];
 // std::cout << line << " " << nPolyVertices << "\n";
 // for (int j = 0; j < nPolyVertices; j++) {
 // ss >> vertices[i*maxPolyVertices + j];
 // std::cout << vertices[i*maxPolyVertices + j] << " ";
 // }
 getline(fid, line);
 }
 facesDefined = true;
 }
 }
 fid.close();
 for (int l = 0; l < nlayers; l++) {
 if (l < ndiel1+nscreens && l >= ndiel1) {
 for (j = 0; j < nFaces; j++) {
 // try to move the point to the upper right quadrant of a square of size
2
 // i.e. upper right quadrant's square is size 1 with bottom left at
origin
 test[0] = false;
 test[1] = false;
 test[2] = false;
 for (int k = 0; k < 3; k++) {
 double x;
 double y;
 x = (nodes[vertices[j*4+k]*dim] + sizeX / 2.0) / sizeX;
 y = (nodes[vertices[j*4+k]*dim+1] + sizeY / 2.0) / sizeY;
 Point curPt = Point(nodes[vertices[j*4+k]*dim],
nodes[vertices[j*4+k]*dim+1]);
 int holeNum = 0;
 for (std::vector<Polygon_2>::iterator it = pgn.begin();
 it != pgn.end(); it++) {
 if (!isHole[holeNum]) { // Do not fill in holes.

142

 if (it->bounded_side(curPt) != CGAL::ON_UNBOUNDED_SIDE)
 test[k] = true;
 } else {
 // be a little more strict on holes to prevent them from
eating
 // boundary triangles
 if (it->bounded_side(curPt) == CGAL::ON_BOUNDED_SIDE)
 test[k] = false;
 }
 holeNum++;
 }
 }
 int count = 0;
 for (int iTest = 0; iTest < 3; iTest++) {
 if (test[iTest])
 count++;
 }
 if (count > 2) { //(test[0] == true && test[1] == true && test[2] ==
true) {
 if (pecMesh && patch < nPatchLayers) {
 which_dielectric.push_back(1);
 is_patch.push_back(true);
 } else {
 which_dielectric.push_back(2);
 }
 } else {
 if (pecMesh && patch < nPatchLayers) {
 is_patch.push_back(false);
 }
 which_dielectric.push_back(1);
 } // if (test
 } // for (j
 patch++;
 } else if (l < ndiel1 + nscreens + ndiel2 || l < ndiel1) { // if (l < nscreens
 std::cout << "l " << l << "\n";
 for (j = 0; j < nFaces; j++) {
 which_dielectric.push_back(1);
 }
 } else { // l >= nscreens+ndiel aka ground layers
 if (pecMesh) {
 for (j = 0; j < nFaces; j++) {
 which_dielectric.push_back(1);
 is_patch.push_back(true);
 }
 } else {
 for (j = 0; j < nFaces; j++) {
 which_dielectric.push_back(3);
 }
 }
 }
 } // for (l
}

void read_poly_file(std::string filename)
{
 std::ifstream fid;
 fid.open(filename.c_str());
 std::string line;
 std::stringstream ss;

 bool nodesDefined = false;
 bool verticesDefined = false;
 bool holesDefined = false;
 int i;
 int n, attributes, boundary_marker;
 int nVert, vert_boundary_marker;
 int nHoles;

143

 int idx;

 while(getline(fid, line)) {
 //the following line trims white space from the beginning of the string
 line.erase(line.begin(), find_if(line.begin(), line.end(),
std::not1(std::ptr_fun<int, int>(isspace))));
 if (line[0] == '#')
 continue;
 if (!nodesDefined) {
 std::stringstream(line) >> n >> dim >> attributes >> boundary_marker;
 nodes.resize(n*dim);
 for (i = 0; i < n; i++) {
 getline(fid,line);
 while (line.empty())
 getline(fid,line);
 if (dim == 2) {
 std::stringstream(line) >> idx >> nodes[i*dim] >> nodes[i*dim + 1];
 } else if (dim == 2) {
 std::stringstream(line) >> idx >> nodes[i*dim] >> nodes[i*dim + 1] >>
nodes[i*dim + 2];
 }
 }

 nodesDefined = true;
 } else if (!verticesDefined) {
 while(line.empty())
 getline(fid, line);
 std::stringstream(line) >> nVert >> vert_boundary_marker;
 vertices.resize(nVert * dim);
 for (i = 0; i < nVert; i++) {
 getline(fid, line);
 while(line.empty())
 getline(fid, line);
 if (dim == 2) {
 std::stringstream(line) >> idx >> vertices[i*dim] >> vertices[i*dim +
1];
 }
 else if (dim == 3) {
 std::stringstream(line) >> idx >> vertices[i*dim] >> vertices[i*dim +
1] >> vertices[i*dim + 2];
 }
 }
 verticesDefined = true;
 }
 else if (!holesDefined) {
 while (line.empty())
 getline(fid, line);
 std::stringstream(line) >> nHoles;
 holesDefined = true;
 }
 }
 for (i = 0; i < vertices.size(); i++)
 vertices[i]--;
 fid.close();
}

void write_triangle_OFF_file(CDT &cdt, std::string outfile)
{
 bool binary = false;
 bool noc = false;
 bool verbose = false;

 std::ofstream out (outfile.c_str());
 std::map<const Vertex*, std::size_t, std::less<const Vertex*> > mapping;
 std::size_t vn = 0;
 Vertex_iterator vi;
 for (vi = cdt.vertices_begin(); vi != cdt.vertices_end(); vi++) {

144

 CGAL_assertion(! cdt.is_infinite(vi));
 mapping[&*vi] = vn;
 vn++;
 }
 CGAL_assertion(vn == std::size_t(cdt.number_of_vertices()));

 std::size_t fn = 0;
 Face_iterator fi;
 for (fi = cdt.faces_begin(); fi != cdt.faces_end(); fi++) {
 CGAL_assertion(!cdt.is_infinite(fi));
 fn++;
 }
 std::size_t fin = cdt.number_of_faces() - fn;

 File_header_OFF header(binary, noc, false, verbose);
 File_writer_OFF writer(header);
 writer.write_header(out, vn, 3 * fn + fin, fn);

 for (vi = cdt.vertices_begin(); vi != cdt.vertices_end(); vi++) {
 CGAL_assertion(!cdt.is_infinite(vi));
 writer.write_vertex(to_double(vi->point().x()),
 to_double(vi->point().y()),
 0.0);
 }
 writer.write_facet_header();

 fi = cdt.faces_begin();
 while (fn--) {
 writer.write_facet_begin(3);
 CGAL_assertion(mapping.find(&*(fi->vertex(0))) != mapping.end());
 CGAL_assertion(mapping.find(&*(fi->vertex(1))) != mapping.end());
 CGAL_assertion(mapping.find(&*(fi->vertex(2))) != mapping.end());
 writer.write_facet_vertex_index(mapping[&*(fi->vertex(0))]);
 writer.write_facet_vertex_index(mapping[&*(fi->vertex(1))]);
 writer.write_facet_vertex_index(mapping[&*(fi->vertex(2))]);
 writer.write_facet_end();
 fi++;
 }
 CGAL_assertion(fi == cdt.faces_end());
 writer.write_footer();
}

void init()
{
 bool hasAlpha;
 bool success;
 int height, width;

 glClearColor(1.0f, 1.0f, 1.0f, 0.0f);
 glShadeModel(GL_SMOOTH);

 glEnable(GL_BLEND);
 glBlendFunc (GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
 glPixelStorei(GL_UNPACK_ALIGNMENT, 1);

 // glEnable(GL_LIGHTING);
 glEnable(GL_LIGHT0);
 glEnable(GL_DEPTH_TEST);
 GLfloat pos_light[4] = {2.0, 2.0, 2.0, 0.0};
 GLfloat amb_light[4] = {1.0, 1.0, 1.0, 0.0};
 glLightfv(GL_LIGHT0, GL_POSITION, pos_light);
 glLightfv(GL_LIGHT0, GL_AMBIENT, amb_light);

 // Bind image data to textures
 glGenTextures(2, textureIDs);
 // Texture 1
 const char* metalPng = "/home/jason/Textures/metal.png";

145

 success = loadPngImage(metalPng, width, height, hasAlpha, &metalTextureImage);
 if (!success) {
 std::cout << "Error loading png file\n";
 return;
 }
 glBindTexture(GL_TEXTURE_2D, textureIDs[0]);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
 glTexImage2D(GL_TEXTURE_2D, 0, hasAlpha ? 4 : 3, width, height, 0, hasAlpha ?
GL_RGBA : GL_RGB,
 GL_UNSIGNED_BYTE, metalTextureImage);
 // Texture 2
 const char* dielPng = "/home/jason/Textures/danube.png";
 success = loadPngImage(dielPng, width, height, hasAlpha, &dieleTextureImage);
 if (!success) {
 std::cout << "Error loading png file\n";
 return;
 }
 glBindTexture(GL_TEXTURE_2D, textureIDs[1]);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
 glTexImage2D(GL_TEXTURE_2D, 0, hasAlpha ? 4 : 3, width, height, 0, hasAlpha ?
GL_RGBA : GL_RGB,
 GL_UNSIGNED_BYTE, dieleTextureImage);
 glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE);
}

void writePFEBI(int nScreen)
{
 int i, j, nShed;
 int nNodes = nodes.size()/3;
 int nTri;
 int vertexNumber[3];
 double x, y, z;
 double ix1, ix2, ix3, iy1, iy2, iy3, c1, c2;
 double area;
 std::ofstream meshFile ("mesh.txt");
 std::ofstream patchFile;
 if (pecMesh) {
 std::cout << "Generating screen information.\n";
 patchFile.open("screen.txt");
 }
 std::ofstream materialFile ("material.txt");

 // Start mesh information
 meshFile << "0\n";
 meshFile << nNodes << "\n";

 for (i = 0; i < nNodes; i++) {
 x = nodes[i*dim];
 y = nodes[i*dim+1];
 z = nodes[i*dim+2];
 meshFile << x << " " << y << " " << z << "\n";
 }
 nTri = vertices.size()/4;
 meshFile << "1\n";

 nShed = 0;
 meshFile << nTri - shed.size() << "\n";
 meshFile.close();
 // if this is a PEC mesh, write screen info
 std::cout << is_patch.size() << std::endl;
 if (pecMesh) {

146

 for (int l = 0; l < nPatchLayers; l++) {
 for (i = 0; i < nFaces; i++) {
 patchFile << is_patch[l*nFaces+i] << std::endl;
 }
 patchFile << std::endl;
 }
 if (useGround) {
 for (i = 0; i < nFaces; i++) {
 patchFile << "1\n";
 }
 }
 patchFile.close();
 }
 // Mesh file closed. Write material file information
 materialFile << (nFaces-shed.size()) * nlayers << std::endl;
 for (int l = 0; l < nlayers; l++) {
 nShed = 0;
 for (i = 0; i < nFaces; i++) {
 if (shed.size() == 0 || i != shed[nShed]) {

 materialFile << which_dielectric[l*nFaces+i] << std::endl;
 } else
 nShed++;
 }
 materialFile << std::endl;
 }
 materialFile.close();
}

// Read PFEBI input file
// format is:
// AIM Method
// unit cell size in x and y directions and slant angle
// mesh filename
// number of AIM grids
// whether there are any screens -- In this case, we are using the relative permattivity
of the metal so this should be 0.
// number of layers in the z direction
// whether z layers have the same thickness
// thickness of the z layers (repeated number of layers times if there is different
thicknesses)
// Relative permittivities of medium above and below the structure
// name of material filename
// number of dielectric materials
// the rest isn't imported for this part of the code.
void read_inpfem()
{
 int i;
 int zsame;

 std::string temp;
 std::ifstream inpfem ("inpfem.txt");

 getline(inpfem, temp); // AIM Method
 inpfem >> sizeX >> sizeY >> slant;
 getline(inpfem, temp);
 slant = slant * PI / 180.0;

 getline(inpfem, temp); // mesh filename
 getline(inpfem, temp); // AIM gridding
 getline(inpfem, temp); // PEC?
 if (atoi(temp.c_str())) {
 getline(inpfem, temp); // number of patches
 int nscreens = atoi(temp.c_str());
 for (i = 0; i < nscreens; i++) {
 getline(inpfem, temp); // patch layer
 }

147

 getline(inpfem, temp); // patch filename 'screen.txt'
 getline(inpfem, temp); // impedance
 }
 inpfem >> nlayers;
 getline(inpfem, temp);
 inpfem >> zsame;
 getline(inpfem, temp);
 if (zsame == 0) {
 for (i = 0; i < nlayers; i++)
 getline(inpfem, temp); // i don't care right now what size the layers are
 }
 getline(inpfem, temp); // half-spaces
 // we don't need anything else from inpfem
 inpfem.close();
}

bool is_digits(const std::string &s)
{
 return std::all_of(s.begin(), s.end(), ::isdigit);
}

int main(int argc, char* argv[])
{
 bool runGL = false;

 int count;
 int n;
 int fineness, meshDepth;
 int nBoundary;
 int nInnerPts;
 double coordinates[3];
 double boundary_coords[2];
 std::list<double> rightX;
 std::list<double> rightY;
 std::list<double> botX;
 std::list<double> botY;
 double right_shift;

 std::string temp;
 lambda = 1.2;
 sizeX = 2.2;
 sizeY = 2.2;
 slant = 90.0*PI/180.0;
 fineness = 15;
 meshDepth = 15;
 pecMesh = false;
 useGround = false;
 std::vector<Vertex_handle> boundary_vertices;
 std::vector<Vertex_handle> vertices;
 std::cout << "This version of the meshing code will work with any type of
surface.\n";
 std::ifstream fid ("input.bez");
 std::ofstream outfile ("output.poly");
 CDTplus cdt;

 read_inpfem();

 if (argc > 1) {
 for (count = 1; count < argc; count++) {
 if (strcmp(argv[count], "-d") == 0)
 runGL = true;
 if (strcmp(argv[count], "-f") == 0)
 fineness = atoi(argv[count+1]);
 if (strcmp(argv[count], "-i") == 0)
 meshDepth = atoi(argv[count+1]);
 if (strcmp(argv[count], "-p") == 0) {
 pecMesh = true;

148

 if (!is_digits(argv[count+1])) {
 std::cerr << "Error: please enter the number of screens to mesh.\n";
 return 1;
 }
 nPatchLayers = atoi(argv[count+1]);
 }
 if (strcmp(argv[count], "-g") == 0) {
 useGround = true;
 }
 if (strcmp(argv[count], "-h") == 0) {
 std::cout << "PFEBI Mesh Code Using the CGAL Library Help:\n";
 std::cout << "-d: Display mesh using OpenGL\n";
 std::cout << "-f (arg): Set Boundary Fineness Value (default 15)\n";
 std::cout << "-i (arg): Set CGAL Mesh Fineness. Larger values yield
more triangles. (default 15)\n";
 std::cout << "-p (arg): Use a PEC Instead of a Lossy Metal. Argument is
the number of screens.\n";
 return 0;
 }
 }
 }
 std::cout << "Display mesh: " << runGL << std::endl;

 coordinates[2] = 0.0;
 // Begin reading the input file: input.bez
 fid >> boundary_coords[0];
 fid >> boundary_coords[1];

 fid >> sizeX >> sizeY >> slant;
 slant = slant * PI / 180.0;
 // Now let's determine total number of objects defined
 // Format: nscreen nsub ndiel
 fid >> nscreens >> ndiel1>> ndiel2 >> ngnd;
 fid >> bezsize >> bezthresh >> cmax;
 Bézier_coeffs.resize(bezsize*bezsize);
 for (int i = 0; i < bezsize; i++) {
 for (int j = 0; j < bezsize; j++) {
 fid >> Bézier_coeffs[i*bezsize+j];
 }
 }
 fid >> nSurface;
 pgn.resize(nSurface);
 isHole.resize(nSurface);
 std::vector<Point> points;
 std::cout << "Boundary " << boundary_coords[0] << " " << boundary_coords[1] << "\n";

 // before we finish reading everything, let's define the mesh boundary.
 right_shift = sizeY / tan(slant);
 if (right_shift < 0.001)
 right_shift = 0.0;
 if (fineness <= 3) {
 boundary_vertices.push_back(cdt.insert(Point(boundary_coords[0],
 boundary_coords[1])));

boundary_vertices.push_back(cdt.insert(Point(boundary_coords[0]+right_shift+sizeX,
 boundary_coords[1])));

boundary_vertices.push_back(cdt.insert(Point(boundary_coords[0]+right_shift+sizeX,
 boundary_coords[1]+sizeY)));
 boundary_vertices.push_back(cdt.insert(Point(boundary_coords[0],
 boundary_coords[1]+sizeY)));
 } else {
 for (int i = 0; i < 4; i++) {
 if (i == 2) {

boundary_vertices.push_back(cdt.insert(Point(boundary_coords[0]+right_shift+sizeX,
 boundary_coords[1]+sizeY)));

149

 }
 else if (i == 3) {

boundary_vertices.push_back(cdt.insert(Point(boundary_coords[0]+right_shift,
 boundary_coords[1]+sizeY)));
 }
 for (int j = 0; j < fineness-1; j++) {
 switch (i) {
 case 0:
 coordinates[0] = boundary_coords[0] + j*sizeX/((double)fineness-
1);
 coordinates[1] = boundary_coords[1];
 botX.push_back(coordinates[0]);
 botY.push_back(coordinates[1]);
 break;
 case 1: // right side
 if (slant * 180.0 / PI < 89.9) {
 coordinates[0] = (boundary_coords[0] + sizeX) +
j*sizeY/tan(slant)/((double)fineness-1);
 } else
 coordinates[0] = boundary_coords[0]+sizeX;
 if (slant * 180.0 / PI < 89.9)
 coordinates[1] = boundary_coords[1]+(coordinates[0]-
boundary_coords[0]-sizeX)*tan(slant);
 else
 coordinates[1] =
boundary_coords[1]+j*sizeY/((double)fineness-1);
 rightX.push_back(coordinates[0]);
 rightY.push_back(coordinates[1]);
 break;
 case 2: // top
 coordinates[0] = botX.back() + right_shift;
 coordinates[1] = botY.back() + sizeY;
 botX.pop_back();
 botY.pop_back();
 break;
 case 3: // left
 coordinates[0] = rightX.back() - sizeX;
 coordinates[1] = rightY.back();
 rightX.pop_back();
 rightY.pop_back();
 break;
 }
 boundary_vertices.push_back(cdt.insert(Point(coordinates[0],
coordinates[1])));
 }
 }
 }
 Polygon_2 boundary_pgn;
 double boundaryMult = 1.0;
 boundary_pgn.push_back(Point(boundaryMult*boundary_coords[0],
 boundaryMult*boundary_coords[1]));
 boundary_pgn.push_back(Point(boundaryMult*(boundary_coords[0]+sizeX),
 boundaryMult*boundary_coords[1]));
 boundary_pgn.push_back(Point(boundaryMult*(boundary_coords[0]+sizeX+right_shift),
 boundaryMult*(boundary_coords[1]+sizeY)));
 boundary_pgn.push_back(Point(boundaryMult*(boundary_coords[0]+right_shift),
 boundaryMult*(boundary_coords[1]+sizeY)));
 nBoundary = boundary_vertices.size();
 for (int i = 1; i < nBoundary; i++) {
 cdt.insert_constraint(boundary_vertices[i-1], boundary_vertices[i]);
 }
 if (nBoundary > 1) // should always occur
 cdt.insert_constraint(boundary_vertices[0], boundary_vertices[nBoundary-1]);
 clock_t begin=clock();
 Mesher mesher(cdt);
 for (int curSurface = 0; curSurface < nSurface; curSurface++) {

150

 bool hole;
 fid >> nInnerPts >> hole;
 isHole[curSurface] = hole;
 // load
 for (int i = 0; i < nInnerPts; i++) {
 fid >> coordinates[0] >> coordinates[1];
 double pgnCoords[2];
 double pgnMult = 1.0;
 pgnCoords[0] = coordinates[0];
 pgnCoords[1] = coordinates[1];
 Point curPt = Point(coordinates[0], coordinates[1]);
 points.push_back(curPt);
 pgn[curSurface].push_back(Point(pgnCoords[0]*pgnMult,pgnCoords[1]*pgnMult));
 vertices.push_back(cdt.insert(points.back()));
 }
 for (int i = 1; i < vertices.size(); i++) {
 cdt.insert_constraint(vertices[i-1], vertices[i]);
 }
 cdt.insert_constraint(vertices.back(),vertices[0]);
 vertices.clear();
 points.clear();
 }
 mesher.set_criteria(Criteria(0.125, sizeX/meshDepth));
 mesher.refine_mesh();
 std::cout << "Number of vertices: " << cdt.number_of_vertices() << std::endl;
 std::cout << "Number of finite faces: " << cdt.number_of_faces() << std::endl;
 int mesh_faces_counter = 0;
 for(CDT::Finite_faces_iterator fit = cdt.finite_faces_begin();
 fit != cdt.finite_faces_end(); ++fit)
 {
 if(fit->is_in_domain()) {
 ++mesh_faces_counter;

 }
 }
 std::cout << mesh_faces_counter << std::endl;
 clock_t end = clock();
 std::cout << "Time: " << (double)(end-begin)/CLOCKS_PER_SEC << std::endl;
 CGAL::write_triangle_poly_file(cdt, outfile);
 // output to OFF
 std::string offFileName = "output.off";
 write_triangle_OFF_file(cdt, offFileName);

 fid.close();
 outfile.close();

 std::string filename = "output.off";
 read_off_file(filename);

 writePFEBI(nscreens);

 if (runGL) {
 displayScreen = 0;
 glutInit(&argc, argv);
 glutInitDisplayMode(GLUT_DEPTH | GLUT_DOUBLE | GLUT_RGBA);
 glutInitWindowPosition(100, 100);
 glutInitWindowSize(1024, 1024);
 mainWindow = glutCreateWindow("Mesh");
 glutDisplayFunc(renderScene);
 glutIdleFunc(renderScene);
 init();
 // Handle key input
 glutKeyboardFunc(handleKeypress);
 // Mouse functions
 glutMouseFunc(handleMouse);
 glutMotionFunc(mouseMove);
 glutMainLoop();

151

 }
 return 0;
}

152

Appendix B
Bézier Surface and Alpha Shape Code in Matlab

function fitness = prepare_mesh_cma(ucsize, deltaZ, deltaZdiel, deltaZgnd, ngnd, ...
 ndiel1, ndiel2, npatch, metalEr, dielEr, subEr, freq, bezvec, pol, theta, thr)
fitness = 0;
close all;
% Definitions
% First define the bottom-left corner of the mesh
corner = [-ucsize/2 -ucsize/2]; % (x, y) position
aim_type = 2;
% input.bez shortens the ucsize to six digits which causes problems if the last digit is
odd
if mod(round(ucsize*1e6),2)
 ucsize = ucsize - 1e-6;
end
sizeX = ucsize;
sizeY = ucsize;
dimap = fopen('./dielectric_map.txt','w');
for i=1:ndiel1
 fprintf(dimap, '1 0 0 0\n');
end
for i=ndiel1+1:ndiel1+npatch
 fprintf(dimap, '1 2 0 0\n');
end
for i=npatch+1:npatch+ndiel2
 fprintf(dimap, '1 0 0 0\n');
end
for i=npatch+ndiel2+1:npatch+ndiel2+ngnd
 fprintf(dimap, '0 0 0 0\n');
end
fclose(dimap);
beta = atan(sizeY/(2*abs(corner(1))-sizeX))*180/pi; %85.875; % beta angle in degrees
mesh_filename = 'mesh.txt';
gridding = 35;%floor(1.2*15/sizeX+0.5);%19;
is_pec = 0;
nScreen = npatch;
screen_pos = 1;
patchfile = 'metal.txt';
impedance_r = 0.0;
impedance_i = 0.0;
nLayers = ndiel1+npatch+ndiel2+ngnd;
const_thick = 0;
%deltaZ = 0.2;
top = abs(dielEr);
bottom = abs(dielEr); %2.2;
%ndiel = 1;
eps_r = [real(dielEr), real(metalEr)];
eps_i = [imag(dielEr), imag(metalEr)];
material_file = 'material.txt';
bicg = 2;
cgtol = 0.00001;
minIt = 2;
maxIt = 5000;
dispCG = '.FALSE.';
use_bestguess = '.TRUE.';
sim_type = 1;
phi = 0.0;
%theta = 25.0;
sweepphi = [0.0 0.0 1.0];
sweeptheta = [0.0 0.0 1.0];
polarization = pol;
% Fill initial inpfem.txt for mesher
inpfem = fopen('./inpfem.txt','w');

153

fprintf(inpfem, '%d\n', aim_type);
fprintf(inpfem, '%-11.5f %-11.6f %f\n', sizeX, sizeY, beta);
fprintf(inpfem, '%s\n', mesh_filename);
fprintf(inpfem, '%d %d\n', gridding, gridding);
fprintf(inpfem, '%d\n', is_pec);
if is_pec
 fprintf(inpfem, '2\n');
 fprintf(inpfem, '0\n'); % patch on top layer
 fprintf(inpfem, '%d\n', nLayers); % patch on bottom layer
 fprintf(inpfem,'screen.txt\n');
 fprintf(inpfem,'(0.0, 0.0)\n');
end
fprintf(inpfem, '%d\n', nLayers);
fprintf(inpfem, '%d\n', const_thick);
for i=1:ndiel1
 fprintf(inpfem, '%f\n', deltaZdiel);
end
for i=1:npatch
 fprintf(inpfem, '%f\n',deltaZ);
end
for i=1:ndiel2
 fprintf(inpfem, '%f\n',deltaZdiel);
end
for i=1:ngnd
 fprintf(inpfem, '%f\n',deltaZgnd);
end
fprintf(inpfem, '%f %f\n', top, bottom);
fprintf(inpfem, '%s\n', material_file);
fprintf(inpfem, '%d\n', 2);
for i=1:2
 fprintf(inpfem, '(%f, %f) (1.0, 0.0)\n', eps_r(i), eps_i(i));
end
fprintf(inpfem, '%d\n', bicg);
fprintf(inpfem, '%f %d %d\n', cgtol, minIt, maxIt);
fprintf(inpfem, '%s\n', dispCG);
fprintf(inpfem, '%s\n', use_bestguess);
fprintf(inpfem, '%d\n', sim_type);
fprintf(inpfem, '%f %f\n', phi, theta);
fprintf(inpfem, '%f %f %f\n', sweepphi(1), sweepphi(2), sweepphi(3));
fprintf(inpfem, '%f %f %f\n', sweeptheta(1), sweeptheta(2), sweeptheta(3));
fprintf(inpfem, '%d\n', polarization);
fprintf(inpfem, '%f %f %f\n', freq(1), freq(1), 0.1);
fclose(inpfem);

% Now prepare the mesher
% generate a control point matrix and rotate it for symmetry
bezsize = 18;%length(bezvec);
fineness = 75;
[u v] = meshgrid(linspace(0,1,fineness), linspace(0,1,fineness));
p = zeros(bezsize/2,bezsize/2);
% Set up boundaries
p(9,1:9) = bezvec(1:9);
p(8,1:8) = bezvec(10:17);
p(7,1:7) = bezvec(18:24);
p(6,1:6) = bezvec(25:30);
p(5,1:5) = bezvec(31:35);
p(4,1:4) = bezvec(36:39);
p(3,1:3) = bezvec(40:42);
p(2,1:2) = bezvec(43:44);
p(1,1) = bezvec(45);
p2 = flipud(rot90(p,1));
for i=1:bezsize/2
 p2(i,i) = 0;
end
p = p + p2;
p = [p ; rot90(p,1)]; p = [p rot90(p,2)];
n = bezsize;

154

c = zeros(size(u));

for i = 0:n-1
 Bi = factorial(n-1)*u.^i.*(1-u).^(n-1-i)/(factorial(i)*factorial(n-1-i));
 for j = 0:n-1
 Bj = factorial(n-1)*v.^j.*(1-v).^(n-1-j)/(factorial(j)*factorial(n-1-j));
 c = c + Bi.*Bj*p(i+1,j+1);
% disp(sprintf('maxes %f %f %f %f',max(max(c)),max(max(Bi)), max(max(Bj)),
p(i+1,j+1)))
 end
end

cmax = max(max(c));
c = c / cmax;
thresh = thr*mean(mean(c));%0.65;
if thresh > 1
 return;
end
threshHi = 0.1;
% contour(u,v,c, 'LineWidth', 2)%uint32(c > thresh));
figure;surf(u,v,c)
%axis([0 1 0 1])
mesh = fopen('./input.bez','w');
fprintf(mesh, '%1.5f %1.5f\n', corner(1), corner(2));
fprintf(mesh, '%1.5f %1.5f %f\n', sizeX, sizeY, beta);
fprintf(mesh, '%d %d %d\n', npatch, ndiel1, ndiel2, ngnd);
fprintf(mesh, '%d %f %f\n', bezsize, thresh, cmax);

for i=1:bezsize
 for j=1:bezsize
 fprintf(mesh,'%f ',p(i,j));
 end
 fprintf(mesh,'\n');
end

pts = find(abs(c - thresh) < 0.002);
ptsHi = find(abs(c - threshHi) < 0.005);
n = length(pts);
cPadded =zeros(size(c)+2);
cPadded(2:end-1,2:end-1) = c;
dx = 1/(fineness-1);
[upad vpad] = meshgrid(-dx:dx:1+dx,-dx:dx:1+dx);
beta = beta*pi/180;
xv = linspace(corner(1)+0.001,corner(1)+sizeX,25);yv = corner(2)*ones(1,25)+0.001;
if (abs(beta-pi/2) < 0.001)
 xv = [xv (corner(1)+sizeX+(1:24)*sizeY/25*0)]; yv = [yv (corner(2)+(1:24)*sizeY/25)];
 topright=corner(1)+sizeX;%+sizeY/tan(beta);
 toprighty=corner(2)+sizeY;
 xv = [xv (topright-(0:24)*sizeX/25)]; yv = [yv toprighty*ones(1,25)];
 xv = [xv xv(50:-1:26)-sizeX]; yv = [yv yv(50:-1:26)];
end
% figure;imshow(c);
%rescale and move points to be in upper right quadrant
cgray = mat2gray(c);
% im = im2bw(cgray, thresh);
im = im2bw(mat2gray(cPadded),thresh);
[L, Nim] = bwlabel(im);
L2 = bwlabel(imcomplement(im));
%figure(imshow(c))
%figure;imshow(L)
L = L(2:end-1,2:end-1);
L2 = L2(2:end-1,2:end-1);
% New Alpha Shapes code for MATLAB 2014b and above
surfaces = [];
surfIdx = 1;
isHole = [];
for ii=1:max(max(L))

155

 uFull = u(L == ii);
 vFull = v(L == ii);
 shp = alphaShape(uFull,vFull);
 shpNoHole = shp; shpNoHole.HoleThreshold = 5;
 numReg = numRegions(shp);
% figure;plot(shp);figure;plot(shpNoHole)
 for i=1%:numReg
 % ignore exceedingly small components
 if (numReg < 1 || i > numReg)
 disp('No Alpha Shape to mesh: skipping');
 return;
 end
 if (area(shp,i) > 0.044)
 [tri xyz] = boundaryFacets(shp,i);
 [tri xyzNH] = boundaryFacets(shpNoHole,i);
 surfaces(surfIdx).u = xyzNH(1:1:end,1);
 surfaces(surfIdx).v = xyzNH(1:1:end,2);
 isHole(surfIdx) = false;
 holeCoords = xyz(size(xyzNH,1)+1:size(xyz,1),:);
 if numel(holeCoords) && ~isempty(holeCoords)
 if (abs(area(shp)-area(shpNoHole)) > 0.01)
 surfIdx = surfIdx + 1;
 surfaces(surfIdx).u = holeCoords(1:1:end,1);
 surfaces(surfIdx).v = holeCoords(1:1:end,2);
 isHole(surfIdx) = true;
 end
 end
 surfIdx = surfIdx + 1;
 end
 end
 figure(21);hold on
 numSurf = length(surfaces);
 for i=1:numSurf
 plot(surfaces(i).u,surfaces(i).v);
 end
end
% There are issues when the first or last coordinate of a surface is a corner
% so let's jumble them a bit
for ii=1:length(surfaces)
 doPivot = false;
 if ((surfaces(ii).u(1) == 0 || surfaces(ii).u(1) == 1) && ...
 (surfaces(ii).v(1) == 0 || surfaces(ii).v(1) == 1))
 doPivot = true;
 end
 if ((surfaces(ii).u(end) == 0 || surfaces(ii).u(end) == 1) && ...
 (surfaces(ii).v(end) == 0 || surfaces(ii).v(end) == 1))
 doPivot = true;
 end
 if doPivot
 pivotPt = floor(length(surfaces(ii).u)/2);
 surfaces(ii).u = [surfaces(ii).u(pivotPt:end); surfaces(ii).u(1:pivotPt-1)];
 surfaces(ii).v = [surfaces(ii).v(pivotPt:end); surfaces(ii).v(1:pivotPt-1)];
 end
end
ind = [];
% thin out the edges of the unit cell
adjust = 0.0;
figure(22);hold on
numSurf = length(surfaces);
for i=1:numSurf
 plot(surfaces(i).u,surfaces(i).v,'*-');
end

% surfaces are still in terms of 0 to 1 so scale
for ii=1:length(surfaces)
 surfaces(ii).u = surfaces(ii).u * sizeX - sizeX / 2;
 surfaces(ii).v = surfaces(ii).v * sizeY - sizeY / 2;

156

end
for ii=1:length(surfaces)
 if length(surfaces(ii).u) < 5
 ind = [ind ii];
 end
end
surfaces(ind) = [];
isHole(ind) = [];
% axis([0 1 0 1]);

fitness = 1.0;
sizeX = sizeX;
sizeY = sizeY;

nInnerPoints = 0;
nSurfaces = 0;
for ii=1:length(surfaces)
 if (length(surfaces(ii).u) > 4)
 nInnerPoints = nInnerPoints + length(surfaces(ii).u);
 nSurfaces = nSurfaces + 1;
 end
end
% fprintf(mesh, '%d\n', nInnerPoints);
fprintf(mesh, '%d\n', nSurfaces);
NS = 0;
for ii=1:length(surfaces)
 if (length(surfaces(ii).u) > 4)
 fprintf(mesh, '%d %d\n', length(surfaces(ii).u), isHole(ii));
 for j=1:length(surfaces(ii).u)
 fprintf(mesh, '%1.5f %1.5f\n', surfaces(ii).u(j), surfaces(ii).v(j));
 end
 else
 NS = NS + 1;
 end
end
fclose(mesh);
if NS == length(surfaces)
 disp('No Surfaces: returning\n');
 return;
end
inpaim = fopen('./input_aim.txt','w');
wavelength = 30 / freq;
gridsize = wavelength / sqrt(abs(dielEr)) / 10;
nearfield = 3 * gridsize;
fprintf(inpaim, '3\n');
fprintf(inpaim, '%f\n', nearfield);
fprintf(inpaim, '%f %f\n', gridsize, gridsize);
fclose(inpaim);
% figure out the proper number of boundary nodes
if is_pec
 unix('./make_mesh -f 35 -i 15 -p 1 -g &> /dev/null');
 if ans
 unix('./make_mesh -f 45 -i 25 -p 1 -g &> /dev/null');
 end
else
 unix('./make_mesh -f 2 -i 8 &>/dev/null');
end
% ensure that this mesh was valid
if (~exist('mesh.txt', 'file'))
 disp ('returning')
 return
end
fid = fopen('mesh.txt','r');
dummy = fscanf(fid, '%d', 1);
numnode = fscanf(fid, '%d', 1);
x = zeros(1,numnode); y = zeros(1,numnode);
for i=1:numnode

157

 xyz = fscanf(fid, '%f %f %f', [1,3]);
 x(i) = xyz(1);y(i) = xyz(2);
end
fclose(fid);
sizeY = (max(y) - min(y)) / sin(beta);
gridx = size(find(abs(x - corner(1)) < 0.001),2);
gridy = size(find(abs(y - corner(2)) < 0.001),2); % only works when there is no slant

% generate a proper inpfem
make_inpfem(false, aim_type, sizeY, beta, mesh_filename, gridx, gridy, is_pec, ...
 nLayers, const_thick, ndiel1, npatch, ndiel2, ngnd, deltaZdiel, deltaZ, ...
 deltaZgnd, top, bottom, material_file, eps_r, eps_i, bicg, cgtol, minIt, ...
 maxIt, dispCG, use_bestguess, sim_type, phi, theta, sweepphi, sweeptheta, ...
 polarization, freq)
unix('rm -f RefTE.txt RefTM.txt TrnTE.txt TrnTM.txt');
unix('~/clFEBI.x > tmpFile');
if ~exist('RefTE.txt', 'file')
 % check for atan2 issue
 make_inpfem(true, aim_type, sizeY, beta, mesh_filename, gridx, gridy, is_pec, ...
 nLayers, const_thick, ndiel1, npatch, ndiel2, ngnd, deltaZdiel, deltaZ, ...
 deltaZgnd, top, bottom, material_file, eps_r, eps_i, bicg, cgtol, minIt, ...
 maxIt, dispCG, use_bestguess, sim_type, phi, theta, sweepphi, sweeptheta, ...
 polarization, freq)
 unix('~/clFEBI.x > tmpFile');
end
if ~exist('RefTE.txt', 'file')
 % try again with a new mesh
 unix('./make_mesh -f 35 -i 5 &>/dev/null');
 % ensure that this mesh was valid
 if (~exist('mesh.txt', 'file'))
 disp ('returning')
 return
 end
 fid = fopen('mesh.txt','r');
 dummy = fscanf(fid, '%d', 1);
 numnode = fscanf(fid, '%d', 1);
 x = zeros(1,numnode); y = zeros(1,numnode);
 for i=1:numnode
 xyz = fscanf(fid, '%f %f %f', [1,3]);
 x(i) = xyz(1);y(i) = xyz(2);
 end
 fclose(fid);
 sizeY = (max(y) - min(y)) / sin(beta);
 gridx = size(find(abs(x - corner(1)) < 0.001),2);
 gridy = size(find(abs(y - corner(2)) < 0.001),2); % only works when there is no slant
 make_inpfem(false, aim_type, sizeY, beta, mesh_filename, gridx, gridy, is_pec, ...
 nLayers, const_thick, ndiel1, npatch, ndiel2, ngnd, deltaZdiel, deltaZ, ...
 deltaZgnd, top, bottom, material_file, eps_r, eps_i, bicg, cgtol, minIt, ...
 maxIt, dispCG, use_bestguess, sim_type, phi, theta, sweepphi, sweeptheta, ...
 polarization, freq)

 unix('~/clFEBI.x > tmpFile');
 if ~exist('RefTE.txt', 'file')
 % check for atan2 issue
 make_inpfem(true, aim_type, sizeY, beta, mesh_filename, gridx, gridy, is_pec, ...
 nLayers, const_thick, ndiel1, npatch, ndiel2, ngnd, deltaZdiel, deltaZ, ...
 deltaZgnd, top, bottom, material_file, eps_r, eps_i, bicg, cgtol, minIt, ...
 maxIt, dispCG, use_bestguess, sim_type, phi, theta, sweepphi, sweeptheta, ...
 polarization, freq)

 unix('~/clFEBI.x > tmpFile');
 end
end

if (exist('RefTE.txt', 'file'))
 % fitness is actually calculated in the function that calls this
 fitness = 1;

158

end

159

Appendix C
GPU Boundary Integral Calculation

#define USEDOUBLE
#define PI 0x1.921fb6p+1
#define BLOCK_SIZE 9
//#pragma OPENCL EXTENSION cl_amd_printf : enable

#ifdef USEDOUBLE
//#pragma OPENCL EXTENSION cl_amd_fp64 : enable
#pragma OPENCL EXTENSION cl_khr_fp64: enable
#define FTYPE double
#define FTYPE2 double2
#define FTYPE4 double4
#define FTYPE8 double8
#define FTYPE16 double16
#else
#define FTYPE float
#define FTYPE2 float2
#define FTYPE4 float4
#define FTYPE8 float8
#define FTYPE16 float16
#endif

FTYPE dist(FTYPE4 a, FTYPE4 b)
{
 return sqrt(pow(a.x-b.x,2)+pow(a.y-b.y,2)+pow(a.z-b.z,2)+pow(a.w-b.w,2));
}

FTYPE2 conjugate(FTYPE2 s)
{
 return (FTYPE2) (s.x, -s.y);
}

// Heron's formula
FTYPE tri_area(FTYPE16 r)
{
 FTYPE4 l = (FTYPE4) (0.0, 0.0, 0.0, 0.0);
 FTYPE s;

 l.x = dist((double4)(r.s3, r.s4, r.s5, 0.0),(double4)(r.s7, r.s8, r.s9, 0.0));
 l.y = dist((double4)(r.s0, r.s1, r.s2, 0.0),(double4)(r.s7, r.s8, r.s9, 0.0));
 l.z = dist((double4)(r.s0, r.s1, r.s2, 0.0),(double4)(r.s3, r.s4, r.s5, 0.0));

 s = (l.x + l.y + l.z)/2.0;
 s = sqrt(s*(s-l.x)*(s-l.y)*(s-l.z));

 return s;
}

// Heron's formula
FTYPE tri_area3n(FTYPE4 r1, FTYPE4 r2, FTYPE4 r3)
{
 FTYPE4 l = (FTYPE4) (0.0, 0.0, 0.0, 0.0);
 FTYPE s;

160

 l.x = dist(r2, r3);
 l.y = dist(r1, r3);
 l.z = dist(r1, r2);
 s = (l.x + l.y + l.z)/2.0;
 s = sqrt(s*(s-l.x)*(s-l.y)*(s-l.z));

 return s;
}

FTYPE2 comp_exp(FTYPE alpha)
{
 FTYPE c,s;
 c = native_cos(alpha); s = native_sin(alpha);
// c = native_cos((float)alpha); s = native_sin((float)alpha);

 return (FTYPE2)(c,s);
}

FTYPE cabs(FTYPE2 a)
{
 //return sqrt(cpown(a.x,2) + cpown(a.y,2));
 return sqrt(mad(a.x,a.x,mad(a.y,a.y,0.0)));
// return sqrt(mad(a.x,a.x,a.y*a.y));
}

FTYPE4 vector_mult(FTYPE4 a, FTYPE4 b)
{
 FTYPE4 zero = (FTYPE4) (0.0, 0.0, 0.0, 0.0);
// return (FTYPE4) (a.x*b.x, a.y*b.y, a.z*b.z, 0.0);
 return mad(a, b, zero);
}

float4 vector_multf(float4 a, float4 b)
{
 return (float4) (a.x*b.x, a.y*b.y, a.z*b.z, 0.0);
}

FTYPE2 rcmult(FTYPE a, FTYPE2 b)
{
 return (FTYPE2) (a * b.x, a * b.y);
}

FTYPE2 cmult(FTYPE2 a, FTYPE2 b)
{
 FTYPE2 out;

 // This is a direct implementation. MAD is faster
 //out = (FTYPE2)(a.x*b.x - a.y*b.y, a.x*b.y+a.y*b.x);
 out = (FTYPE2)(mad(a.x,b.x, -a.y*b.y), mad(a.x,b.y,a.y*b.x));

 return out;
}

FTYPE2 cdiv(FTYPE2 a, FTYPE2 b)
{
 FTYPE2 out;
 FTYPE div;

 div = b.x*b.x + b.y*b.y;
 out = (FTYPE2)((a.x*b.x + a.y*b.y)/div, (a.y*b.x - a.x*b.y)/div);

 return out;
}

FTYPE2 cpow(FTYPE2 z, int n)
{

161

 FTYPE r, theta;
 r = cabs(z);
 theta = atan2(z.y,z.x);

 z = comp_exp(theta*n);
 z *= pown(r,n);
 return z;
}

FTYPE2 cpowd(FTYPE2 z, FTYPE n)
{
 FTYPE r, theta;
 r = cabs(z);
 theta = atan2(z.y,z.x);

 z = comp_exp(theta*n);
 z *= pow(r,n);
 return z;
}

/*
// Algorithm 680 Collected Algorithms from ACM.
// TRANSACTIONS ON MATHEMATICAL SOFTWARE, VOL. 16, NO. 1, PP. 47.
// REFERENCE - GPM POPPE, CMJ WIJERS; MORE EFFICIENT COMPUTATION OF
// THE COMPLEX ERROR-FUNCTION, ACM TRANS. MATH. SOFTWARE.
FTYPE2 wofz(FTYPE2 zp)
{
 FTYPE xabs, yabs, x, y, qrho, xabsq, xquad, yquad, xsum, ysum, xaux;
 FTYPE u1, v1, daux, u2, v2, u, v, h, h2, tx, ty, c, w1, qlambda, rx, ry, sx, sy;
 int i, n, j, nu, np1, kapn;
 FTYPE factor = 1.12837916709551257388;
 bool A, B;

 xabs = fabs(zp.x);
 yabs = fabs(zp.y);
 x = xabs / 6.3;
 y = yabs / 4.4;

 xabsq = xabs*xabs;
 xquad = xabsq - yabs*yabs;
 yquad = 2*xabs * yabs;

 qrho = x*x + y*y;
 A = false;
 B = false;
 if (qrho < 0.085264) {
 A = true;
 qrho = (1.0 - 0.85*y) * sqrt(qrho);
 n = round(6 + 72 * qrho);
 j = 2*n + 1;
 xsum = 1.0/j;
 ysum = 0.0;
 for (i = n ; i > 0; i--) {
 j = j - 2;
 xaux = (xsum * xquad - ysum * yquad) / i;
 ysum = (xsum * yquad + ysum * xquad) / i;
 xsum = xaux + 1.0/j;
 }
 u1 = -factor * (xsum * yabs + ysum * xabs) + 1.0;
 v1 = factor * (xsum * xabs - ysum * yabs);
 daux = exp(-xquad);
 u2 = daux * cos(yquad);
 v2 = -daux * sin(yquad);

 u = u1 * u2 - v1 * v2;
 v = u1 * v2 + v1 * u2;
 }

162

 else {
 if (qrho > 1.0) {
 h = 0.0;
 kapn = 0;
 qrho = sqrt(qrho);
 nu = round(3 + (1442/ (26*qrho + 77)));
 } else {
 qrho = (1-y)*sqrt(1-qrho);
 h = 1.88 * qrho;
 h2 = 2*h;
 kapn = round(7 + 34 * qrho);
 nu = round(16 + 26 * qrho);
 }

 if (h > 0.0) {
 qlambda = pow(h2, kapn);
 B = true;
 }
 rx = 0.0;
 ry = 0.0;
 sx = 0.0;
 sy = 0.0;

 for (n = nu; n >= 0; n--) {
 np1 = n+1;
 tx = yabs + h + np1*rx;
 ty = xabs - np1*ry;
 c = 0.5 / (tx*tx + ty * ty);
 rx = c*tx;
 ry = c*ty;
 if ((h > 0.0) && (n < kapn)) {
 tx = qlambda + sx;
 sx = rx * tx - ry * sy;
 sy = ry * tx + rx * sy;
 qlambda = qlambda / h2;
 }
 }

 if (h == 0.0) {
 u = factor * rx;
 v = factor * ry;
 } else {
 u = factor * sx;
 v = factor * sy;
 }

 if (yabs == 0.0)
 u = exp(-(xabs*xabs));
 }

 // evaluate w(z) in other quadrants
 if (zp.y < 0.0) {
 if (A) {
 u2 = 2*u2;
 v2 = 2*v2;
 } else {
 xquad = -xquad;
 w1 = 2*exp(xquad);
 u2 = w1*cos(yquad);
 v2 = -w1*sin(yquad);
 }
 u = u2 - u;
 v = v2 - v;
 if (zp.x != 0.0)
 v = -v;
 }
 return (FTYPE2) (u, v);

163

}

FTYPE2 cerf2(FTYPE2 z)
{
 int i;
 int n = 10;
// FTYPE twopi = 2 * PI;
 FTYPE2 f = (FTYPE2) (0.0, 0.0);
 FTYPE2 cj = (FTYPE2) (0.0, 1.0);
 FTYPE2 one = (FTYPE2) (1.0, 0.0);
 FTYPE2 cjz = cmult(-z, cj);
 FTYPE2 z2 = cpow(z,2);
// FTYPE powarg;
 FTYPE2 cjzpow = cpow(cjz,2);

// Since cjzpow is always large (because that was a requirement for
// entering this function), just use the asymptotic approximation for
// besseli
// Actually, that wouldn't work since this ignores nu and would always
// yield f = 0;

 for (i = 0; i < n; i++) {
 if (i % 2 == 0)
 f += besseli(2*i+0.5,cjzpow) - besseli(2*i+1.5,cjzpow);
 else
 f -= besseli(2*i+0.5,cjzpow) - besseli(2*i+1.5,cjzpow);
 }
 printf("cerf2 z = (%f, %f) f = (%f, %f) ", z.x, z.y, f.x, f.y);
 f *= sqrt(2);

 f = one - f;

 f = cmult(f, exp(-z2.x)*comp_exp(-z2.y)); //cpow(-z,2));
 FTYPE2 temp = exp(-z2.x)*comp_exp(-z2.y);
 printf("cerf2 = %f %f %f %f %f %f\n", z2.x, z2.y, f.x, f.y, temp.x, temp.y);

 return f;
}

FTYPE2 cerf(FTYPE2 z)
{
// z = (2/sqrt(PI))*(z - cpow(z,3)/3 +
// cpow(z,5)/10 - cpow(z,7)/42 + cpow(z,9)/216);
 FTYPE2 cj = (FTYPE2) (0.0, 1.0);
 FTYPE2 zp = cmult(cj, z);
 FTYPE2 u;
 FTYPE2 exp_arg;
 FTYPE2 out;

 u = wofz(zp);

 exp_arg = cmult(z,z);
printf("exp_arg: %f %f %f %f %f %f\n",z.x, z.y,zp.x, zp.y, u.x, u.y);
 out = cmult(cmult(-exp(exp_arg.x),comp_exp(-exp_arg.y)),u);
 return out;
}
*/

// This cerf replacement function is based on
// Abramowitz & Stegun section 7.1
//
// For large z, continued fraction 7.1.14
FTYPE2 cerf_continued_fraction(FTYPE2 zj, FTYPE sgn)
{
 bool test;

164

 int n = 0;

 FTYPE2 one = (FTYPE2) (1.0, 0.0);
 FTYPE2 cj = (FTYPE2) (0.0, 1.0);

 FTYPE2 z;
 FTYPE2 zsq;
 FTYPE2 y; // output variable
 FTYPE2 a, b, f, C, D, delta;
 FTYPE2 eps = (FTYPE2) (1.0e-10, 0.0);

 z = cmult(-zj, zj);

 b = one+2.0*z;
 f = b;
 C = f;
 D = (FTYPE2) (0.0, 0.0);

 while (n < 50) {
 n++;
 a = (FTYPE)n * (-4.0 * z);
 b += 2.0*one;

 D = b + cmult(a,D);
 if (cabs(D) <=eps.x)
 D = pow(eps,2);
 D = cdiv(one , D);
 C = b + cdiv(a, C);
 if (cabs(C) <= eps.x)
 C = pow(eps,2);
 delta = cmult(C, D);

 f = cmult(f, delta);

 test = (cabs(delta-one) <= eps.x);
 if (test) {
 y = f;
// printf("Done after %d\n:", n);
 break;
 }
 } // while

 zsq = cpow(zj,2);
 y = 2.0 / sqrt(PI) * cmult(exp(-zsq.x)*comp_exp(-zsq.y), cdiv(zj, y));

 y = sgn*y;

 return y;
}

/*FTYPE2 cerf2(FTYPE2 z)
{
 int kn;
 int n;
 int np1;
 int nu;
 FTYPE factor = 1.12837916709551257388;
 FTYPE H = 0.0;
 FTYPE H2;
 FTYPE qr;
 FTYPE ql;
 FTYPE C;
 FTYPE w1;
 FTYPE rmaxreal = 0.5e150;
 FTYPE rmaxgoni = 3.53711887601422e15;
 FTYPE rmaxexp = 708.503061461606;
 FTYPE2 r;

165

 FTYPE2 s;
 FTYPE2 zquad = (FTYPE2)(pow(fabs(z.x),2) - pow(fabs(z.y),2), 2.0*fabs(z.x)*fabs(z.y));
 FTYPE2 one = (FTYPE2) (1.0, 0.0);
 FTYPE2 q = (FTYPE2)(fabs(z.x) / 6.3, fabs(z.y)/4.4);
 FTYPE2 u2;
 FTYPE2 exp_arg;
 FTYPE2 out;
 if ((fabs(z.x) > rmaxreal) || (fabs(z.y) > rmaxreal))
 return (FTYPE2) (1.0, 0.0);
 qr = pow(q.x,2) + pow(q.y,2);
 if (qr > 1.0) {
 kn = 0;
 qr = sqrt(qr);
 nu = round(3.0+(1442.0/(26.0*qr + 77.0)));
 } else {
 qr = (1.0-fabs(z.y)/4.4)*sqrt(1.0-qr);
 H = 1.88 * qr;
 H2 = 2*H;
 kn = round(7.0+34.0*qr);
 nu = round(16.0+26.0*qr);
 }

 if (H > 0.0)
 ql = pow(H2,kn);

 r = (FTYPE2) (0.0, 0.0);
 s = (FTYPE2) (0.0, 0.0);

 for (n = nu; n >= 0; n--) {
 np1 = n + 1;
 FTYPE2 T = (FTYPE2)(fabs(z.y) + H + np1*r.x, fabs(z.x) - np1*r.y);
 C = 0.5 / (pow(T.x,2) + pow(T.y,2));
 r = (FTYPE2)(C * T.x, C * T.y);
 if ((H > 0.0) && (n <= kn)) {
 T = (FTYPE2)(ql + s.x, T.y);
printf("test %f %f %f %f s %f %f %f\n", T.x, T.y, r.x, r.y, s.x, s.y, ql);
 s = (FTYPE2)(r.x*T.x - r.y*s.y, r.y*T.x + r.x*s.y);
 ql = ql / H2;
 }
 }

 printf("s = (%f, %f), r = (%f, %f) %f %d %d\n", s.x, s.y, r.x, r.y, H, kn, nu);
 if (H == 0.0)
 out = (FTYPE2)(factor * r.x, factor*r.y);
 else
 out = (FTYPE2)(factor * s.x, factor*s.y);

 if (fabs(z.y) == 0)
 out.x = exp(-pow(fabs(z.x),2));
 if (z.y < 0.0) {
 zquad = (FTYPE2)(-zquad.x, zquad.y);

 if ((zquad.y > rmaxgoni) || (zquad.x > rmaxexp))
 return (FTYPE2)(1.0, 0.0);

 w1 = 2*exp(zquad.x);
 u2 = (w1*cos(zquad.y), -w1 * sin(zquad.y));

 out = u2 - out;

 if (z.x != 0.0)
 out = (FTYPE2)(out.x, -out.y);
 }

// exp_arg = cmult(z,z);

// out = cmult(cmult(-exp(exp_arg.x),comp_exp(-exp_arg.y)),u);

166

// printf("cerf2(%f, %f) = (%f, %f)\n", z.x, z.y, out.x, out.y);
 return out;
}*/

FTYPE2 cerf(FTYPE2 z)
{
 FTYPE2 f = (FTYPE2) (0.0, 0.0);
 FTYPE2 cj = (FTYPE2) (0.0, 1.0);
 FTYPE2 one = (FTYPE2) (1.0, 0.0);
 FTYPE2 zp = (FTYPE2)(-z.y, z.x);//cmult(cj, z);
 FTYPE2 zsq;
 FTYPE2 tmp;

// FTYPE sgn = 1.0;
// FTYPE2 cc;
 zsq = cpow(z,2);
// int k;
 int m = 64;
// int m2 = 2*m;
 FTYPE L = sqrt((FTYPE)m /2.0/sqrt(2.0));
 FTYPE2 L2 = (FTYPE2) (L, 0.0);

// FTYPE theta;
// FTYPE t;
// FTYPE ff[64];
// Use pre-calculated fourier coefficients since these only depend on accuracy and not
the value for z in wofz(z)
 FTYPE a[32] = { -1.3032e-12,3.7409e-12, 8.0303e-12,-2.1544e-11,-5.5442e-11, 1.1658e-
10, 4.1537e-10, -5.2310e-10,-3.2080e-09, 8.1249e-10, 2.3798e-08, 2.2930e-08,-1.4813e-07,
-4.1841e-07,4.2558e-07, 4.4015e-06, 6.8210e-06, -2.1410e-05, -1.3075e-04,-2.4533e-04,
3.9259e-04, 4.5195e-03, 1.9006e-02, 5.7304e-02, 1.4061e-01, 2.9544e-01, 5.4601e-01,
9.0193e-01, 1.3455e+00, 1.8257e+00, 2.2635e+00, 2.5723e+00};

 FTYPE2 zval;
 FTYPE2 p = (FTYPE2)(0.0, 0.0);
 FTYPE2 w;
// ff[0] = 0.0;

// FTYPE data[128];
// for (int i = 1; i < m2; i++) {
// k = i - m+1;
// theta = k * PI / m;
// t = L*tan(theta/2.0);
// ff[i] = exp(-t*t)*(L*L + t*t);
// }

// for(int i = 0; i < m2; i++) {
// data[2*i] = ff[i];
// data[2*i+1] = 0.0;
// }

// cdft(128, 1, data);
// for (int i = 0; i < m/2; i++) {
// a[i] = pown(-1.0,i) * data[(m/2-i)*2]/m2; // a = real(fft(f))/m2
// }
 tmp = (FTYPE2)(L-zp.y, zp.x);
 FTYPE2 tmp2 = (FTYPE2)(L+zp.y, -zp.x);
 zval = cdiv(tmp, tmp2);
 for (int i = 0; i < m/2; i++) {
 p += a[m/2-1-i]*cpow(zval,i);
 }
 w = cdiv(2*p,cpow(tmp2,2));
 w += cdiv(one/sqrt(PI),tmp2);

 w = cmult(w,exp(-zsq.x)*comp_exp(-zsq.y));
 return w;

167

}

int2 incr_indices2(int2 mn)
{
 int order = max(abs(mn.x),abs(mn.y));

 if (order == 0)
 mn.x = 1;
 else if (mn.x == order && mn.y > -order && mn.y < order)
 mn.y = mn.y + 1;
 else if (mn.y == order && mn.x > -order && mn.x <= order)
 mn.x = mn.x - 1;
 else if (mn.x == -order && mn.y > -order && mn.y <= order)
 mn.y = mn.y - 1;
 else if (mn.y == -order && mn.x >= -order && mn.x <= order)
 mn.x = mn.x + 1;

 return mn;
}

FTYPE2 GreenFun_SpectralDomain_Sing(FTYPE4 s, FTYPE kpm, FTYPE4 kvec,
 FTYPE Rho_a, FTYPE Rho_b, FTYPE Sin_Gamma,
 FTYPE Cotan_Gamma)
{
 bool loop = 1;
 int2 mn = (int2) (0, 0);
 int order;

 FTYPE threshold = 1.0e-3;

 FTYPE2 out = (FTYPE2) (0.0, 0.0);
 FTYPE2 contrib = (FTYPE2)(0.0, 0.0);
 FTYPE2 contrib_ind = (FTYPE2)(0.0, 0.0);
 FTYPE2 ktmn;
 FTYPE2 kzmn;
 FTYPE kztemp;
 FTYPE2 cj = (FTYPE2)(0.0,1.0);

 while (loop) {
 kzmn = (FTYPE2)(0.0, 0.0);
 ktmn.x = kvec.x + 2*PI*mn.x/Rho_a;
 ktmn.y = kvec.y + 2*PI*mn.y/(Rho_b*Sin_Gamma) - 2*PI*mn.x/Rho_a*Cotan_Gamma;
 kztemp = pown(kpm,2) - pown(ktmn.x,2) - pown(ktmn.y,2);
 if (kztemp > 0.0) {
 kzmn.x = sqrt(kztemp);
 kzmn.y = 0.0;
 } else {
 kzmn.x = 0.0;
 kzmn.y = -sqrt(fabs(kztemp));
 }
 if (cabs(kzmn) < 1e-10)
 kzmn = (FTYPE2) (1e-10, 0.0);
 contrib_ind = comp_exp(-(ktmn.x*s.x + ktmn.y*s.y));
 if (kztemp > 0.0) {
 contrib_ind = cdiv(contrib_ind, (FTYPE2) (0.0,
2.0*Rho_a*Rho_b*Sin_Gamma*kzmn.x));
 contrib_ind = cmult(contrib_ind, cerf((FTYPE2) (0.0, kzmn.x/(2*kpm))));
 } else {
 contrib_ind = cdiv(contrib_ind, (FTYPE2) (-2.0*Rho_a * Rho_b * Sin_Gamma *
kzmn.y, 0.0));
 contrib_ind = cmult(contrib_ind, cerf((FTYPE2) (-kzmn.y/(2*kpm), 0.0)));
 }

 contrib += contrib_ind;

 order = max(abs(mn.x), abs(mn.y));
 if (mn.x == order && mn.y == -order) {

168

 out += contrib;
 if (cabs(cdiv(contrib,out)) < threshold)
 loop = 0;
 contrib = (FTYPE2)(0.0, 0.0);
 }
 mn = incr_indices2(mn);
 }
 return out;
}

FTYPE2 GreenFun_SpectralDomain(FTYPE4 s, FTYPE kpm, FTYPE4 kvec,
 FTYPE Rho_a, FTYPE Rho_b, FTYPE Sin_Gamma,
 FTYPE Cotan_Gamma)
{
 bool loop = 1;
 int2 mn = (int2) (0, 0);
 int order;
 // int count_index = 0;
 FTYPE threshold = 1.0e-3;

// FTYPE ktmnX, ktmnY;

 FTYPE2 out = (FTYPE2) (0.0, 0.0);
 FTYPE2 contrib = (FTYPE2)(0.0, 0.0);
 FTYPE2 contrib_ind;
 FTYPE2 ktmn;
 FTYPE2 kzmn;
 FTYPE kztemp;

 while (loop) {
 kzmn = (FTYPE2)(0.0, 0.0);
 ktmn.x = kvec.x + 2*PI*mn.x/Rho_a;
 ktmn.y = kvec.y + 2*PI*mn.y/(Rho_b*Sin_Gamma) -
 2*PI*mn.x/Rho_a*Cotan_Gamma;

 kztemp = pown(kpm,2) - pown(ktmn.x,2) - pown(ktmn.y,2);
 if (kztemp > 0.0) {
 kzmn.x = sqrt(kztemp);
 kzmn.y = 0.0;
 } else {
 kzmn.x = 0.0;
 kzmn.y = -sqrt(fabs(kztemp));
 }
//printf("kzmn %e %e\n", kzmn.x, kzmn.y);
 if (cabs(kzmn) < 1e-10)
 kzmn = (FTYPE2) (1e-10, 0.0);
// contrib_ind = cdiv(comp_exp(-(ktmn.x*s.x + ktmn.y*s.y)),
// cmult((FTYPE2)(-2.0*Rho_a*Rho_b*Sin_Gamma*kzmn.y,2.0*
// Rho_a*Rho_b*Sin_Gamma*kzmn. x),
// cerf((FTYPE2)(-kzmn.y/(2*kpm), kzmn.x/(2*kpm)))));

 contrib_ind = comp_exp(-(ktmn.x*s.x+ktmn.y*s.y));
 if (kztemp > 0.0) {
 contrib_ind = cdiv(contrib_ind, (FTYPE2)(0.0,
 2.0*Rho_a*Rho_b*Sin_Gamma*kzmn.x));
 contrib_ind = cmult(contrib_ind, cerf((FTYPE2)(0.0, kzmn.x/(2*kpm))));
 }
 else {
 contrib_ind = cdiv(contrib_ind, (FTYPE2)
 (-2.0*Rho_a*Rho_b*Sin_Gamma*kzmn.y, 0.0));
 contrib_ind = cmult(contrib_ind, cerf((FTYPE2)(-kzmn.y/(2*kpm), 0.0)));
 }
//printf("contrib_ind %e %e\n", contrib_ind.x, contrib_ind.y);
 contrib += contrib_ind;
 order = max(abs(mn.x), abs(mn.y));
 if (mn.x == order && mn.y == -order) {
 out += contrib;

169

 if (cabs(cdiv(contrib,out)) < threshold)
 loop = 0;
 contrib = (FTYPE2)(0.0, 0.0);
 }
 mn = incr_indices2(mn);
 }
 return out;
}

FTYPE2 GreenFun2_Normal(FTYPE s, FTYPE kpm)
{
 FTYPE Efact = kpm;

 FTYPE2 gf;// = cmult(comp_exp(-kpm*s)/s,cerf((FTYPE2)(s*Efact, -0.5))) +
 // cmult(comp_exp(kpm*s)/s,cerf((FTYPE2)(s*Efact, 0.5)))*0.5;
 FTYPE2 temp, temp1, temp2, temp3, temp4, temp5;
temp = comp_exp(-kpm*s)/s;
//temp1 = cerf((FTYPE2)(s*Efact, -0.5));
//temp2 = cerf((FTYPE2)(s*Efact, 0.5));
temp3 = cmult(temp, cerf((FTYPE2)(s*Efact, -0.5)));
temp = comp_exp(kpm*s)/s;
temp4 = cmult(temp, cerf((FTYPE2)(s*Efact, 0.5)));
temp5 = 0.5*(temp3+temp4);
//printf("GF2 %f %f %f %f\nexp(-iks)/s = %f %f cerf = %f %f cerf_pos = %f %f
cmult %f %f %f %f\n", gf.x, gf.y, s, kpm, temp.x, temp.y, temp1.x, temp1.y, temp2.x,
temp2.y, temp3.x, temp3.y, temp5.x, temp5.y);
 gf = temp5;
 return gf;
}
FTYPE2 GreenFun2_Singularity(FTYPE s, FTYPE kpm)

{
 FTYPE factorial_temp[22] = {1.0,1.0,2.0,6.0,24.0,120.0,720.0,5040.0,40320.0,
 362880.0,3628800.0,39916800.0,4.790016e8,6.2270208e9,
 8.71782912e10,1.307674368e12,2.0922789888e13,
 3.55687428096e14,6.402373705728e15,
 1.21645100408832e17,2.43290200817664e18,
 5.109094217170944e19 };
 int p, L;

 FTYPE negOneFactor;
 FTYPE Efact = kpm;
 FTYPE2 one = (FTYPE2) (1.0, 0.0);
 FTYPE2 cj = (FTYPE2)(0.0, 1.0);
 FTYPE2 out = (FTYPE2)(0.0, 0.0);
 FTYPE2 GreenFun2_Sing_add = (FTYPE2)(0.0, 0.0);
 FTYPE2 GF_temp = (FTYPE2)(0.0, 0.0);
 FTYPE2 GF_temp_1 = (FTYPE2)(0.0, 0.0);
 FTYPE2 cj_kpm_2_Efact = (FTYPE2)(0.0, 0.5);
 FTYPE2 tmp;

 if (s <= 1.0e-6) {
 out = kpm*cmult(cj,-cerf((FTYPE2)(0.0, -0.5)) +
 cerf((FTYPE2)(0.0, 0.5))) * 0.5;
 for (p = 1; p <= 6; ++p)
 GF_temp.x += pown(0.5,2*(p))/factorial_temp[p];
 GreenFun2_Sing_add = -2.0*Efact/sqrt(PI)*(one + GF_temp);
 }
 else {
 tmp = (FTYPE2)(-pown(kpm,2)*s/2.0, pown(kpm,3)*pown(s,2)/6 - kpm);
 out = cmult(tmp,cerf((FTYPE2)(s*Efact, -0.5))) +
 cmult(conjugate(tmp),cerf((FTYPE2)(s*Efact,0.5)));
 out = out/2.0;
 GF_temp = (FTYPE2) (0.0, 0.0);
 for (p = 1; p <= 6; ++p) {
 GF_temp_1 = (FTYPE2) (0.0, 0.0);
 for (L = 1; L <= 2*p+1; ++L) {

170

 negOneFactor = ((L % 2) == 1) ? -1.0 : 1.0;

 GF_temp_1 += cpow(cj_kpm_2_Efact,L)*(negOneFactor+1.0)*pown(s,2*p-L)*
 pown(Efact,2*p+1-L)/factorial_temp[L]/
 factorial_temp[2*p+1-L];
 }

 negOneFactor = ((p % 2) == 1) ? -1.0 : 1.0;

 GF_temp += negOneFactor*factorial_temp[2*p]/factorial_temp[p]*GF_temp_1;
 }
 GreenFun2_Sing_add.x = -(2.0*Efact + GF_temp.x)/sqrt(PI);
 GreenFun2_Sing_add.y = GF_temp.y/sqrt(PI);
 }

 out += GreenFun2_Sing_add;

 return out;
}

FTYPE4 getr_1(FTYPE4 r1, FTYPE4 r2, FTYPE4 r3)
{
 FTYPE4 r;
 r = (r1 + r2 + r3) / 3.0;
 return r;
}

void getr_3(FTYPE4 *ri, FTYPE4 *r)
{
 int i;
 FTYPE4 vt[3];
 vt[0] = (FTYPE4)(0.0, 1.0/6.0, 1.0/6.0, 0.0);
 vt[1] = (FTYPE4)(0.0, 1.0/6.0, 2.0/3.0, 0.0);
 vt[2] = (FTYPE4)(0.0, 2.0/3.0, 1.0/6.0, 0.0);

 for (i = 0; i < 3; i++) {
 vt[i].x = 1.0 - vt[i].y - vt[i].z;
 r[i] = (FTYPE4)(0.0, 0.0, 0.0, 0.0);
 }

 for (i = 0; i < 3; i++) {
 r[i].x = vt[i].x*ri[0].x + vt[i].y*ri[1].x + vt[i].z*ri[2].x;
 r[i].y = vt[i].x*ri[0].y + vt[i].y*ri[1].y + vt[i].z*ri[2].y;
 r[i].z = vt[i].x*ri[0].z + vt[i].y*ri[1].z + vt[i].z*ri[2].z;
 }
}

void getr_7(FTYPE4 *ri, FTYPE4 *r)
{
 int i;
 FTYPE2 v[7];
 v[0].x = 1.0/3.0;
 v[1].x = 0.10128650732345633;
 v[2].x = 0.10128650732345633;
 v[3].x = 0.797426985353;
 v[4].x = 0.470142064105115;
 v[5].x = 0.470142064105115;
 v[6].x = 0.0597158717897;
 v[0].y = 1.0/3.0;
 v[1].y = 0.10128650732345633;
 v[2].y = 0.797426985353;
 v[3].y = 0.10128650732345633;
 v[4].y = 0.470142064105115;
 v[5].y = 0.0597158717897;
 v[6].y = 0.470142064105115;
 for (i = 0; i < 7; i++) {
 r[i] = (FTYPE4)((1.0 - v[i].x - v[i].y)*ri[0].x + v[i].x*ri[1].x + v[i].y*ri[2].x,

171

 (1.0 - v[i].x - v[i].y)*ri[0].y + v[i].x*ri[1].y + v[i].y*ri[2].y,
 (1.0 - v[i].x - v[i].y)*ri[0].z + v[i].x*ri[1].z + v[i].y*ri[2].z,
 0.0);
 }
}

// The following is based on the paper:
// "On the numberical integration of the linear shape functions times
// times the 3-D green's function or its gradient on plane triangle"
// IEEE Trian. A.P. vol.41,No.10,1993,pp1448-1455
void getr_9(FTYPE4 *ri, FTYPE4 *r)
{
 int i;
 FTYPE2 v[9];
 FTYPE4 cOne = (FTYPE4)(1.0, 0.0, 0.0, 0.0);
 FTYPE4 one = (FTYPE4) (1.0, 1.0, 1.0, 0.0);
 v[0].x = 0.5/9.0;
 v[1].x = 2.0/9.0;
 v[2].x = 0.5/9.0;
 v[3].x = 0.7222222222;
 v[4].x = 2.0/9.0;
 v[5].x = 0.3888888888;
 v[6].x = 0.3888888888;
 v[7].x = 2.0/9.0;
 v[8].x = 0.7222222222;
 v[0].y = 2.0/9.0;
 v[1].y = 0.5/9.0;
 v[2].y = 0.7222222222;
 v[3].y = 0.5/9.0;
 v[4].y = 0.3888888888;
 v[5].y = 2.0/9.0;
 v[6].y = 0.3888888888;
 v[7].y = 0.7222222222;
 v[8].y = 2.0/9.0;
 for (i = 0; i < 9; i++) {
 r[i] = (FTYPE4)((1.0 - v[i].x - v[i].y)*ri[0].x + v[i].x*ri[1].x + v[i].y*ri[2].x,
 (1.0 - v[i].x - v[i].y)*ri[0].y + v[i].x*ri[1].y + v[i].y*ri[2].y,
 (1.0 - v[i].x - v[i].y)*ri[0].z + v[i].x*ri[1].z + v[i].y*ri[2].z,
 0.0);
 }
}

// This subroutine be used to remove the singularity based the
// following paper:
// "On the numberical integration of the linear shape functions times
// times the 3-D green's function or its gradient on plane triangle"
// IEEE Trian. A.P. vol.41,No.10,1993,pp1448-1455
//FTYPE4 singular_inte(FTYPE4 rp, FTYPE16 r_n)
FTYPE4 singular_inte(FTYPE4 rp, FTYPE4 rin1, FTYPE4 rin2, FTYPE4 rin3, int debug, int
debug2)
{
 FTYPE4 NrecipR = (FTYPE4) (0.0, 0.0, 0.0, 0.0);

 // index variables
 int i;
 FTYPE4 p1 = rin1;//(FTYPE4)(r_n.s0, r_n.s1, r_n.s2, r_n.s3);
 FTYPE4 p2 = rin2;//(FTYPE4)(r_n.s4, r_n.s5, r_n.s6, r_n.s7);
 FTYPE4 p3 = rin3;//(FTYPE4)(r_n.s8, r_n.s9, r_n.sa, r_n.sb);
 FTYPE4 p2mp1 = p2-p1;
 FTYPE4 p3mp1 = p3-p1;
 FTYPE s_intes[3];
 FTYPE4 s1;
 FTYPE4 s2;
 FTYPE4 s3;
 FTYPE4 m1;
 FTYPE4 m2;
 FTYPE4 m3;

172

 FTYPE4 u;
 FTYPE4 v;
 FTYPE u3;
 FTYPE v3;
 FTYPE u0;
 FTYPE v0;
 FTYPE f2i0[3];
 FTYPE f3i0[3];
 FTYPE4 n;
 FTYPE4 length;
 FTYPE4 rpmp1;
 FTYPE ua_reciprocal_R;
 FTYPE va_reciprocal_R;
 FTYPE u_reciprocal_R;
 FTYPE v_reciprocal_R;
 FTYPE conversion[9];
 FTYPE tmp;
 conversion[0] = 1.0;
 for (i = 1; i < 9; i++)
 conversion[i] = 0.0;

 FTYPE2 s[3];
 FTYPE4 t[3];

 // Calculate the normal vector
 n = cross(p2mp1,p3mp1);
 FTYPE area = tri_area3n(p1, p2, p3);//tri_area(r_n);
 n = n/(2.0*area);
 // calculate length vector
 length = (FTYPE4)(dist(p2,p3),dist(p3,p1),dist(p2,p1),0.0);
 // calculate s vectors
 s1 = (p3-p2)/length.x;
 s2 = (p1-p3)/length.y;
 s3 = (p2-p1)/length.z;
 // calculate m vectors
 m1 = cross(s1,n);
 m2 = cross(s2,n);
 m3 = cross(s3,n);

 // calculate u vector
 u = p2mp1/length.z;

 // calculate v vector
 v = cross(n,u);
 u3 = dot(p3mp1,u);
 v3 = 2.0*area/length.z;
 rpmp1 = rp - p1;

 u0 = dot(u,rpmp1);
 v0 = dot(v,rpmp1);
 // calculate s and t
 // x - negative;
 // y - positive;
 // z - 0;
 s[0].x = -((length.z-u0)*(length.z-u3)+v0*v3)/length.x;
 s[0].y = ((u3-u0)*(u3-length.z)+v3*(v3-v0))/length.x;
 s[1].x = -(u3*(u3-u0)+v3*(v3-v0))/length.y;
 s[1].y = (u0*u3+v0*v3)/length.y;
 s[2].x = -u0;
 s[2].y = length.z-u0;

 t[0].z = (v0*(u3-length.z)+v3*(length.z-u0))/length.x;
 t[1].z = (u0*v3-v0*u3)/length.y;
 t[2].z = v0;
 t[0].x = sqrt(pow(length.z-u0,2)+v0*v0);
 t[0].y = sqrt(pow(u3-u0,2)+pow(v3-v0,2));
 t[1].y = sqrt(u0*u0+v0*v0);

173

 t[1].x = t[0].y;
 t[2].x = t[1].y;
 t[2].y = t[0].x;

 for (i = 0; i < 3; i++) {
 tmp = (t[i].y + s[i].y)/(t[i].x + s[i].x);
 f2i0[i] = log(tmp);//log((t[i].y + s[i].y)/(t[i].x + s[i].x));
 f3i0[i] = s[i].y*t[i].y - s[i].x*t[i].x + pow(t[i].z,2)*f2i0[i];
 }

 NrecipR.x = 0.0;
 ua_reciprocal_R = 0.0;
 va_reciprocal_R = 0.0;
 for (i = 0; i < 3; i++) {
 NrecipR.x += t[i].z*f2i0[i];
 }

 ua_reciprocal_R += 0.5*(dot(u,m1)*f3i0[0] + dot(u,m2)*f3i0[1] + dot(u,m3)*f3i0[2]);
 va_reciprocal_R += 0.5*(dot(v,m1)*f3i0[0] + dot(v,m2)*f3i0[1] + dot(v,m3)*f3i0[2]);

 u_reciprocal_R = u0*NrecipR.x + ua_reciprocal_R;
 v_reciprocal_R = v0*NrecipR.x + va_reciprocal_R;

 // convert the singular integral into a normal one
 conversion[0*3 + 1] = -1.0/length.z;
 conversion[0*3 + 2] = (u3/length.z-1.0)/v3;
 conversion[1*3 + 1] = 1.0/length.z;
 conversion[1*3 + 2] = -(u3/length.z)/v3;
 conversion[2*3 + 2] = 1.0/v3;

 s_intes[0] = NrecipR.x;
 s_intes[1] = u_reciprocal_R;
 s_intes[2] = v_reciprocal_R;

 NrecipR.y += conversion[0] * s_intes[0] + conversion[1] * s_intes[1] + conversion[2] *
s_intes[2];
 NrecipR.z += conversion[3] * s_intes[0] + conversion[4] * s_intes[1] + conversion[5] *
s_intes[2];
 NrecipR.w = v_reciprocal_R/v3;

 return NrecipR;
}

FTYPE2 SelfCellG1(FTYPE edge_L1I, FTYPE4 node_P1I,
 FTYPE4 node_P2I, FTYPE4 node_P3I, FTYPE edge_L1J,
 FTYPE4 node_P1J, FTYPE4 node_P2J, FTYPE4 node_P3J,
 int m_point, int n_point, FTYPE4 kpm, int debug, int debug2)
{
 int i;
 FTYPE2 out;
 FTYPE2 GreenFun;
 int mp, np;

 FTYPE4 r_m[3];
 FTYPE4 r_n[3];
 FTYPE4 rm1379[9];
 FTYPE4 rn1379[9];
 FTYPE4 rou_m[9];
 FTYPE4 rou_n[9];
 FTYPE4 rm, rn;
 FTYPE w_m[9];
 FTYPE w_n[9];
 FTYPE s;
 FTYPE4 NrecipR;
 FTYPE area;
 FTYPE SingularInt1overR;

174

 r_m[0] = (FTYPE4)(node_P1I.x, node_P1I.y, 0.0, 0.0);
 r_m[1] = (FTYPE4)(node_P2I.x, node_P2I.y, 0.0, 0.0);
 r_m[2] = (FTYPE4)(node_P3I.x, node_P3I.y, 0.0, 0.0);

 r_n[0] = (FTYPE4)(node_P1J.x, node_P1J.y, 0.0, 0.0);
 r_n[1] = (FTYPE4)(node_P2J.x, node_P2J.y, 0.0, 0.0);
 r_n[2] = (FTYPE4)(node_P3J.x, node_P3J.y, 0.0, 0.0);

 if (m_point == 1) {
 rm1379[0] = getr_1(r_m[0], r_m[1], r_m[2]);
 rou_m[0] = rm1379[0] - r_m[0];
 w_m[0] = 1.0;
 } else if (m_point == 3) {
 getr_3(r_m, rm1379);
 for (i = 0; i < 3; ++i) {
 rou_m[i] = rm1379[i] - r_m[0];
 w_m[i] = 1.0/3.0;
 }
 } else if (m_point == 7) {
 getr_7(r_m, rm1379);
 for (i = 0; i < 7; i++) {
 rou_m[i] = rm1379[i] - r_m[0];
 if (i < 4)
 w_m[i] = 0.12593918054482715259568394550018;
 else
 w_m[i] = 0.13239415278850618073764938783315;
 }
 w_m[0] = 0.225;
 } else {
 getr_9(r_m, rm1379);
 for (i = 0; i < 9; i++) {
 rou_m[i] = rm1379[i] - r_m[0];
 w_m[i] = 1.0 / 9.0;
 }
 }

 if (n_point == 1) {
 rn1379[0] = getr_1(r_n[0], r_n[1], r_n[2]);
 rou_n[0] = rn1379[0] - r_n[0];
 w_n[0] = 1.0;
 } else if (n_point == 3) {
 getr_3(r_n, rn1379);
 for (i = 0; i < 3; ++i) {
 rou_n[i] = rn1379[i] - r_n[0];
 w_n[i] = 1.0/3.0;
 }
 } else if (n_point == 7) {
 getr_7(r_n, rn1379);
 for (i = 0; i < 7; i++) {
 rou_n[i] = rn1379[i] - r_n[0];
 if (i < 4)
 w_n[i] = 0.12593918054482715259568394550018;
 else
 w_n[i] = 0.13239415278850618073764938783315;
 }
 w_n[0] = 0.225;
 } else {
 getr_9(r_n, rn1379);
 for (i = 0; i < 9; i++) {
 rou_n[i] = rn1379[i] - r_n[0];
 w_n[i] = 1.0 / 9.0;
 }
 }

 out = (FTYPE2) (0.0, 0.0);

 for (mp = 0; mp < m_point; mp++) {

175

 rm = rm1379[mp];
 for (np = 0; np < n_point; np++) {
 rn = rn1379[np];
 // Green's Function
 s = sqrt(pow(rm.x-rn.x,2) + pow(rm.y-rn.y,2));
 GreenFun = GreenFun2_Singularity(s, kpm.x);
 out += w_m[mp]*w_n[np]*(dot(rou_m[mp],rou_n[np]) -
 4.0 / pow(kpm.x,2))*GreenFun;
 }

 NrecipR = singular_inte(rm, r_n[0], r_n[1], r_n[2], debug, debug2);
 area = tri_area3n(r_n[0], r_n[1], r_n[2]);

 SingularInt1overR = (dot(rou_m[mp], r_n[0])*NrecipR.y +
 dot(rou_m[mp], r_n[1]) * NrecipR.z +
 dot(rou_m[mp], r_n[2]) * NrecipR.w -
 dot(rou_m[mp], r_n[0]) * NrecipR.x - 4.0 / pow(kpm.x,2) *
 NrecipR.x) / area;
 out.x += w_m[mp] * SingularInt1overR;

 }
 out = rcmult(- edge_L1I * edge_L1J / (8.0 * PI), out);

 return out;
} // SelfCellG1

FTYPE2 NearCellG1(FTYPE edge_L1I, FTYPE4 node_P1I,
 FTYPE4 node_P2I, FTYPE4 node_P3I, FTYPE edge_L1J,
 FTYPE4 node_P1J, FTYPE4 node_P2J, FTYPE4 node_P3J,
 int m_point, int n_point, FTYPE4 kpm, int debug, int debug2)
{
 int i;
 FTYPE2 out;
 FTYPE2 GreenFun;
 int mp, np;

 FTYPE4 r_m[3];
 FTYPE4 r_n[3];
 FTYPE4 rm1379[9];
 FTYPE4 rn1379[9];
 FTYPE4 rou_m[9];
 FTYPE4 rou_n[9];
 FTYPE4 rm, rn;
 FTYPE w_m[9];
 FTYPE w_n[9];
 FTYPE s;

 r_m[0] = (FTYPE4)(node_P1I.x, node_P1I.y, 0.0, 0.0);
 r_m[1] = (FTYPE4)(node_P2I.x, node_P2I.y, 0.0, 0.0);
 r_m[2] = (FTYPE4)(node_P3I.x, node_P3I.y, 0.0, 0.0);

 r_n[0] = (FTYPE4)(node_P1J.x, node_P1J.y, 0.0, 0.0);
 r_n[1] = (FTYPE4)(node_P2J.x, node_P2J.y, 0.0, 0.0);
 r_n[2] = (FTYPE4)(node_P3J.x, node_P3J.y, 0.0, 0.0);

 if (m_point == 1) {
 rm1379[0] = getr_1(r_m[0], r_m[1], r_m[2]);
 rou_m[0] = rm1379[0] - r_m[0];
 w_m[0] = 1.0;
 } else if (m_point == 3) {
 getr_3(r_m, rm1379);
 for (i = 0; i < 3; ++i) {
 rou_m[i] = rm1379[i] - r_m[0];
 w_m[i] = 1.0/3.0;
 }
 } else if (m_point == 7) {
 getr_7(r_m, rm1379);

176

 for (i = 0; i < 7; i++) {
 rou_m[i] = rm1379[i] - r_m[0];
 if (i < 4)
 w_m[i] = 0.12593918054482715259568394550018;
 else
 w_m[i] = 0.13239415278850618073764938783315;
 }
 w_m[0] = 0.225;
 } else {
 getr_9(r_m, rm1379);
 for (i = 0; i < 9; i++) {
 rou_m[i] = rm1379[i] - r_m[0];
 w_m[i] = 1.0 / 9.0;
 }
 }

 if (n_point == 1) {
 rn1379[0] = getr_1(r_n[0], r_n[1], r_n[2]);
 rou_n[0] = rn1379[0] - r_n[0];
 w_n[0] = 1.0;
 } else if (n_point == 3) {
 getr_3(r_n, rn1379);
 for (i = 0; i < 3; ++i) {
 rou_n[i] = rn1379[i] - r_n[0];
 w_n[i] = 1.0/3.0;
 }
 } else if (n_point == 7) {
 getr_7(r_n, rn1379);
 for (i = 0; i < 7; i++) {
 rou_n[i] = rn1379[i] - r_n[0];
 if (i < 4)
 w_n[i] = 0.12593918054482715259568394550018;
 else
 w_n[i] = 0.13239415278850618073764938783315;
 }
 w_n[0] = 0.225;
 } else {
 getr_9(r_n, rn1379);
 for (i = 0; i < 9; i++) {
 rou_n[i] = rn1379[i] - r_n[0];
 w_n[i] = 1.0 / 9.0;
 }
 }
 out = (FTYPE2) (0.0, 0.0);
 for (mp = 0; mp < m_point; mp++) {
 rm = rm1379[mp];
 for (np = 0; np < n_point; np++) {
 rn = rn1379[np];
 // Normal Green's Function
 s = sqrt(pow(rm.x-rn.x,2) + pow(rm.y-rn.y,2));
 GreenFun = GreenFun2_Normal(s, kpm.x);

 out += w_m[mp]*w_n[np]*(dot(rou_m[mp],rou_n[np]) - 4.0 / pow(kpm.x,2)) * GreenFun;
 }
 }

 out = rcmult(- edge_L1I * edge_L1J / (8.0 * PI), out);
 return out;
} // NearCellG1

FTYPE2 G2Num_Norm(FTYPE edge_L1I, FTYPE4 node_P1I,
 FTYPE4 node_P2I, FTYPE4 node_P3I, FTYPE edge_L1J,
 FTYPE4 node_P1J, FTYPE4 node_P2J, FTYPE4 node_P3J,
 int m_point, int n_point, FTYPE4 kpm, FTYPE4 kvec,
 FTYPE Sin_Gamma, FTYPE Cos_Gamma, int debug, int debug2)
{
 FTYPE2 out;

177

 int i;
 int mp, np;

 FTYPE4 r_m[3];
 FTYPE4 r_n[3];
 FTYPE4 rm1379[9];
 FTYPE4 rn1379[9];
 FTYPE4 rou_m[9];
 FTYPE4 rou_n[9];
 FTYPE4 rm, rn;
 FTYPE w_m[9];
 FTYPE w_n[9];
 FTYPE Cotan_Gamma = Cos_Gamma / Sin_Gamma;
 FTYPE2 GreenFun;

 r_m[0] = (FTYPE4)(node_P1I.x, node_P1I.y, 0.0, 0.0);
 r_m[1] = (FTYPE4)(node_P2I.x, node_P2I.y, 0.0, 0.0);
 r_m[2] = (FTYPE4)(node_P3I.x, node_P3I.y, 0.0, 0.0);

 r_n[0] = (FTYPE4)(node_P1J.x, node_P1J.y, 0.0, 0.0);
 r_n[1] = (FTYPE4)(node_P2J.x, node_P2J.y, 0.0, 0.0);
 r_n[2] = (FTYPE4)(node_P3J.x, node_P3J.y, 0.0, 0.0);

 if (m_point == 1) {
 rm1379[0] = getr_1(r_m[0], r_m[1], r_m[2]);
 rou_m[0] = rm1379[0] - r_m[0];
 w_m[0] = 1.0;
 } else if (m_point == 3) {
 getr_3(r_m, rm1379);
 for (i = 0; i < 3; ++i) {
 rou_m[i] = rm1379[i] - r_m[0];
 w_m[i] = 1.0/3.0;
 }
 } else if (m_point == 7) {
 getr_7(r_m, rm1379);
 for (i = 0; i < 7; i++) {
 rou_m[i] = rm1379[i] - r_m[0];
 if (i < 4)
 w_m[i] = 0.12593918054482715259568394550018;
 else
 w_m[i] = 0.13239415278850618073764938783315;
 }
 w_m[0] = 0.225;
 } else {
 getr_9(r_m, rm1379);
 for (i = 0; i < 9; i++) {
 rou_m[i] = rm1379[i] - r_m[0];
 w_m[i] = 1.0 / 9.0;
 }
 }

 if (n_point == 1) {
 rn1379[0] = getr_1(r_n[0], r_n[1], r_n[2]);
 rou_n[0] = rn1379[0] - r_n[0];
 w_n[0] = 1.0;
 } else if (n_point == 3) {
 getr_3(r_n, rn1379);
 for (i = 0; i < 3; ++i) {
 rou_n[i] = rn1379[i] - r_n[0];
 w_n[i] = 1.0/3.0;
 }
 } else if (n_point == 7) {
 getr_7(r_n, rn1379);
 for (i = 0; i < 7; i++) {
 rou_n[i] = rn1379[i] - r_n[0];
 if (i < 4)

178

 w_n[i] = 0.12593918054482715259568394550018;
 else
 w_n[i] = 0.13239415278850618073764938783315;
 }
 w_n[0] = 0.225;
 } else {
 getr_9(r_n, rn1379);
 for (i = 0; i < 9; i++) {
 rou_n[i] = rn1379[i] - r_n[0];
 w_n[i] = 1.0 / 9.0;
 }
 }

 out = (FTYPE2) (0.0, 0.0);
 for (mp = 0; mp < m_point; mp++) {
 rm = rm1379[mp];
 for (np = 0; np < n_point; np++) {
 rn = rn1379[np];

 // Spectral Domain Green's Function
 GreenFun = GreenFun_SpectralDomain(rm-rn, kpm.x, kvec,
 kpm.y, kpm.z, Sin_Gamma, Cotan_Gamma);

 out += rcmult(w_m[mp]*w_n[mp]*(dot(rou_m[mp],rou_n[np]) -
 4.0 / pow(kpm.x,2)),GreenFun);
 }
 }

 out = rcmult(- 0.5 * edge_L1I * edge_L1J, out);
 return out;
} // G2Num_Norm

FTYPE2 G2Num_Sing(FTYPE edge_L1I, FTYPE4 node_P1I,
 FTYPE4 node_P2I, FTYPE4 node_P3I, FTYPE edge_L1J,
 FTYPE4 node_P1J, FTYPE4 node_P2J, FTYPE4 node_P3J,
 int m_point, int n_point, FTYPE4 kpm, FTYPE4 kvec,
 FTYPE Sin_Gamma, FTYPE Cos_Gamma)
{
 FTYPE2 out;

 int i;
 int mp, np;

 FTYPE4 r_m[3];
 FTYPE4 r_n[3];
 FTYPE4 rm1379[9];
 FTYPE4 rn1379[9];
 FTYPE4 rou_m[9];
 FTYPE4 rou_n[9];
 FTYPE4 rm, rn;
 FTYPE w_m[9];
 FTYPE w_n[9];
 FTYPE Cotan_Gamma = Cos_Gamma / Sin_Gamma;
 FTYPE2 GreenFun;

 r_m[0] = (FTYPE4)(node_P1I.x, node_P1I.y, 0.0, 0.0);
 r_m[1] = (FTYPE4)(node_P2I.x, node_P2I.y, 0.0, 0.0);
 r_m[2] = (FTYPE4)(node_P3I.x, node_P3I.y, 0.0, 0.0);

 r_n[0] = (FTYPE4)(node_P1J.x, node_P1J.y, 0.0, 0.0);
 r_n[1] = (FTYPE4)(node_P2J.x, node_P2J.y, 0.0, 0.0);
 r_n[2] = (FTYPE4)(node_P3J.x, node_P3J.y, 0.0, 0.0);

 if (m_point == 1) {
 rm1379[0] = getr_1(r_m[0], r_m[1], r_m[2]);
 rou_m[0] = rm1379[0] - r_m[0];
 w_m[0] = 1.0;

179

 } else if (m_point == 3) {
 getr_3(r_m, rm1379);
 for (i = 0; i < 3; ++i) {
 rou_m[i] = rm1379[i] - r_m[0];
 w_m[i] = 1.0/3.0;
 }
 } else if (m_point == 7) {
 getr_7(r_m, rm1379);
 for (i = 0; i < 7; i++) {
 rou_m[i] = rm1379[i] - r_m[0];
 if (i < 4)
 w_m[i] = 0.12593918054482715259568394550018;
 else
 w_m[i] = 0.13239415278850618073764938783315;
 }
 w_m[0] = 0.225;
 } else {
 getr_9(r_m, rm1379);
 for (i = 0; i < 9; i++) {
 rou_m[i] = rm1379[i] - r_m[0];
 w_m[i] = 1.0 / 9.0;
 }
 }

 if (n_point == 1) {
 rn1379[0] = getr_1(r_n[0], r_n[1], r_n[2]);
 rou_n[0] = rn1379[0] - r_n[0];
 w_n[0] = 1.0;
 } else if (n_point == 3) {
 getr_3(r_n, rn1379);
 for (i = 0; i < 3; ++i) {
 rou_n[i] = rn1379[i] - r_n[0];
 w_n[i] = 1.0/3.0;
 }
 } else if (n_point == 7) {
 getr_7(r_n, rn1379);
 for (i = 0; i < 7; i++) {
 rou_n[i] = rn1379[i] - r_n[0];
 if (i < 4)
 w_n[i] = 0.12593918054482715259568394550018;
 else
 w_n[i] = 0.13239415278850618073764938783315;
 }
 w_n[0] = 0.225;
 } else {
 getr_9(r_n, rn1379);
 for (i = 0; i < 9; i++) {
 rou_n[i] = rn1379[i] - r_n[0];
 w_n[i] = 1.0 / 9.0;
 }
 }

 out = (FTYPE2) (0.0, 0.0);
 for (mp = 0; mp < m_point; mp++) {
 rm = rm1379[mp];
 for (np = 0; np < n_point; np++) {
 rn = rn1379[np];

 // Spectral Domain Green's Function
 GreenFun = GreenFun_SpectralDomain_Sing(rm-rn, kpm.x, kvec,
 kpm.y, kpm.z, Sin_Gamma, Cotan_Gamma);
 out += rcmult(w_m[mp]*w_n[mp]*(dot(rou_m[mp],rou_n[np]) -
 4.0 / pow(kpm.x,2)),GreenFun);
 }
 }

 out = rcmult(- 0.5 * edge_L1I * edge_L1J, out);

180

 return out;
} // G2Num_Sing

FTYPE2 BIContribG1(bool lSelfCell, FTYPE edge_L1I, FTYPE4 node_P1I,
 FTYPE4 node_P2I, FTYPE4 node_P3I, FTYPE edge_L1J,
 FTYPE4 node_P1J, FTYPE4 node_P2J, FTYPE4 node_P3J, FTYPE4 kpm,
 FTYPE Sin_Gamma, FTYPE Cos_Gamma, FTYPE4 kvec, int debug, int debug2)
{
 bool loop = true;
 bool lSelfCell_temp;
 int order;
 int Npoint_test, Npoint_source;
 int Npoint_test_singularity, Npoint_source_singularity;
 int test;
 int2 mn;
 FTYPE4 node_P1J_addM, node_P2J_addM, node_P3J_addM;
 FTYPE Rho_a = kpm.y;
 FTYPE Rho_b = kpm.z;
 FTYPE TestPatch_center[2];
 FTYPE SourcePatch_center[2];
 FTYPE distance_center_IJ;//, distance_center_IJ_old;
 FTYPE threshold;
 FTYPE2 contrib;
 FTYPE2 contrib_dup, contrib_ind;
 FTYPE2 factor;
 FTYPE2 cj = (FTYPE2) (0.0, 1.0);

 TestPatch_center[0] = (node_P1I.x + node_P2I.x + node_P3I.x) / 3.0;
 TestPatch_center[1] = (node_P1I.y + node_P2I.y + node_P3I.y) / 3.0;
 SourcePatch_center[0] = (node_P1J.x + node_P2J.x + node_P3J.x)/3.0;
 SourcePatch_center[1] = (node_P1J.y + node_P2J.y + node_P3J.y)/3.0;
 test = 1;
 if (test == 0) {
 Npoint_test = 1;
 Npoint_source = 1;
 } else if (test == 1) {
 Npoint_test = 3;
 Npoint_source = 3;
 }
 Npoint_source_singularity = 9;
 Npoint_test_singularity = 7;

 threshold = 0.001;
 mn.x = 0;
 mn.y = 0;
 contrib = (FTYPE2) (0.0, 0.0);
 contrib_dup = (FTYPE2) (0.0, 0.0);

 while (loop) {

 contrib_ind = (FTYPE2) (0.0, 0.0);
 node_P1J_addM.x = node_P1J.x + (FTYPE)mn.x * kpm.y + (FTYPE)mn.y*kpm.z*Cos_Gamma;
 node_P1J_addM.y = node_P1J.y + (FTYPE)mn.y * kpm.z * Sin_Gamma;

 node_P2J_addM.x = node_P2J.x + (FTYPE)mn.x*kpm.y + (FTYPE)mn.y*kpm.z*Cos_Gamma;
 node_P2J_addM.y = node_P2J.y + (FTYPE)mn.y * kpm.z * Sin_Gamma;

 node_P3J_addM.x = node_P3J.x + (FTYPE)mn.x*kpm.y + (FTYPE)mn.y*kpm.z*Cos_Gamma;
 node_P3J_addM.y = node_P3J.y + (FTYPE)mn.y * kpm.z * Sin_Gamma;

 SourcePatch_center[0] = (node_P1J_addM.x + node_P2J_addM.x +
 node_P3J_addM.x) / 3.0;
 SourcePatch_center[1] = (node_P1J_addM.y + node_P2J_addM.y +
 node_P3J_addM.y) / 3.0;

 distance_center_IJ = sqrt(pow(SourcePatch_center[0] -
 TestPatch_center[0],2) + pow(SourcePatch_center[1] -

181

 TestPatch_center[1],2));
 lSelfCell_temp = false;
 if (lSelfCell && mn.x == 0 && mn.y == 0)
 lSelfCell_temp = true;
 if (distance_center_IJ < 1.0e-6)
 lSelfCell_temp = true;

 if (lSelfCell_temp) {
 contrib_ind = SelfCellG1(edge_L1I, node_P1I, node_P2I, node_P3I,
 edge_L1J, node_P1J_addM, node_P2J_addM,
 node_P3J_addM, Npoint_test_singularity,
 Npoint_source_singularity, kpm, debug, debug2);
 } else {
 contrib_ind = NearCellG1(edge_L1I, node_P1I, node_P2I, node_P3I,
 edge_L1J, node_P1J_addM, node_P2J_addM,
 node_P3J_addM, Npoint_test,
 Npoint_source, kpm, debug, debug2);
 }
 contrib_ind = kpm.x*kpm.x*contrib_ind;//rcmult(kpm.x*kpm.x, contrib_ind);
 factor = comp_exp(-(kvec.x*(mn.x*Rho_a +
 mn.y*Rho_b*Cos_Gamma) + kvec.y * mn.y * Rho_b*Sin_Gamma));
 contrib_ind = cmult(contrib_ind, factor);

 contrib_dup += contrib_ind;
 order = (abs(mn.x) >= abs(mn.y)) ? abs(mn.x) : abs(mn.y);

 if (mn.x == order && mn.y == -order) {
 contrib += contrib_dup;
 if (cabs(cdiv(contrib_dup, contrib)) < threshold) {
 loop = false;
 break;
 }

 contrib_dup = (FTYPE2) (0.0, 0.0);
 }

 mn = incr_indices2(mn);
 } // Loop

 return contrib;
} // BIContribG1

FTYPE2 BIContribG2(bool lSelfCell, FTYPE edge_L1I, FTYPE4 node_P1I,
 FTYPE4 node_P2I, FTYPE4 node_P3I, FTYPE edge_L1J,
 FTYPE4 node_P1J, FTYPE4 node_P2J, FTYPE4 node_P3J, FTYPE4 kpm,
 FTYPE Sin_Gamma, FTYPE Cos_Gamma, FTYPE4 kvec, int debug, int debug2)
{
 int test;
 int Npoint_test, Npoint_source;
 int Npoint_test_singularity, Npoint_source_singularity;
 FTYPE2 contrib = (FTYPE2) (0.0, 0.0);

 test = 1;
 if (test == 0) {
 Npoint_test = 1;
 Npoint_source = 1;
 } else if (test == 1) {
 Npoint_test = 3;
 Npoint_source = 3;
 }
 Npoint_source_singularity = 9;
 Npoint_test_singularity = 7;

 if (lSelfCell) {
 contrib = G2Num_Sing(edge_L1I, node_P1I, node_P2I, node_P3I,
 edge_L1J, node_P1J, node_P2J, node_P3J,

182

 Npoint_test_singularity, Npoint_source_singularity,
 kpm, kvec, Sin_Gamma, Cos_Gamma);
 } else {
 contrib = G2Num_Norm(edge_L1I, node_P1I, node_P2I, node_P3I,
 edge_L1J, node_P1J, node_P2J, node_P3J,
 Npoint_test, Npoint_source,
 kpm, kvec, Sin_Gamma, Cos_Gamma, debug, debug2);
 }
 return contrib;
} // BIContribG2

FTYPE2 phaseshift(int sourceType, int testType, FTYPE2 PhaseXFwd, FTYPE2 PhaseXBwd,
 FTYPE2 PhaseYFwd, FTYPE2 PhaseYBwd)
{
 FTYPE2 phase;
 FTYPE2 PhaseX = (FTYPE2) (1.0, 0.0);
 FTYPE2 PhaseY = (FTYPE2) (1.0, 0.0);
 if (sourceType == 2 || sourceType == 7)
 PhaseX = cmult(PhaseX,PhaseXFwd);
 if (testType == 2 || testType == 7)
 PhaseX = cmult(PhaseX,PhaseXBwd);
 if (sourceType == 4 || sourceType == 6)
 PhaseY = cmult(PhaseY, PhaseYFwd);
 if (testType == 4 || testType == 6)
 PhaseY = cmult(PhaseY, PhaseYBwd);
 if (sourceType == 8) {
 PhaseX = cmult(PhaseXFwd, PhaseX);
 PhaseY = cmult(PhaseY, PhaseYFwd);
 }
 if (testType == 8) {
 PhaseX = cmult(PhaseX, PhaseXBwd);
 PhaseY = cmult(PhaseY, PhaseYBwd);
 }
 phase = cmult(PhaseX, PhaseY);
 return phase;
}

FTYPE2 CalZBI_via_EdgetoEdge_AIM(FTYPE4 kpm, int2 mn,
 __global FTYPE2 *pTri,
 __global FTYPE2 *mTri,
 __global int2 *edge,
 __global FTYPE *LenComm,
 __global int *pbc,
 __global int *pmEle,
 __global int *CommEdge,
 FTYPE2 csGamma, int nCom, FTYPE4 kvec,
 FTYPE2 PhaseXFwd, FTYPE2 PhaseXBwd,
 FTYPE2 PhaseYFwd, FTYPE2 PhaseYBwd, int debug, int
debug2)
{
 bool lSelf, lSelf_temp;
 int i;
 int tElement, sElement, testElement, sourceElement;
 int testEdge, sourceEdge;
 int m_temp, n_temp;
 FTYPE w_mTri, w_nTri;
 FTYPE edge_L1I, edge_L1J;
 FTYPE2 contribpm, contribpm_add;

 FTYPE4 node_PI[3], node_PJ[3];

 for (i = 0; i < 3; i++) {
 node_PI[i] = (FTYPE4) (0.0, 0.0, 0.0, 0.0);
 node_PJ[i] = (FTYPE4) (0.0, 0.0, 0.0, 0.0);
 }

183

 FTYPE2 Zmn = (FTYPE2) (0.0, 0.0);
 if (mn.x < nCom)
 m_temp = mn.x;
 else {
 m_temp = edge[(mn.x - nCom)].x;
 }
 if (mn.y < nCom)
 n_temp = mn.y;
 else {
 n_temp = edge[(mn.y - nCom)].x;
 }
 edge_L1I = LenComm[m_temp];
 edge_L1J = LenComm[n_temp];

 for (tElement = 0; tElement < 2; tElement++) {
 testEdge = pbc[m_temp*2 + tElement];
 testElement = pmEle[m_temp*2 + tElement];

 w_mTri = 0.0;
 if (CommEdge[mn.x*2 + tElement] == 1) {
 for (i = 0; i < 3; i++) {
 node_PI[i] = (FTYPE4) (pTri[m_temp*3 + i].x, pTri[m_temp*3 + i].y, 0.0, 0.0);
 w_mTri = 1.0;
 }
 } else if (CommEdge[mn.x*2 + tElement] == -1) {
 for (i = 0; i < 3; i++) {
 node_PI[i] = (FTYPE4) (mTri[m_temp*3 + i].x, mTri[m_temp*3 + i].y, 0.0, 0.0);
 w_mTri = -1.0;
 }
 } else {
 break;
 }

 for (sElement = 0; sElement < 2; sElement++) {
 sourceEdge = pbc[n_temp*2 + sElement];
 sourceElement = pmEle[n_temp*2 + sElement];

 w_nTri = 0.0;

 if (CommEdge[mn.y*2 + sElement] == 1) {
 for (i = 0; i < 3; i++) {
 node_PJ[i] = (FTYPE4) (pTri[n_temp*3 + i].x, pTri[n_temp*3 + i].y, 0.0, 0.0);
 w_nTri = 1.0;

 }
 } else if (CommEdge[mn.y*2 + sElement] == -1) {

 for (i = 0; i < 3; i++) {
 node_PJ[i] = (FTYPE4) (mTri[n_temp*3 + i].x, mTri[n_temp*3 + i].y, 0.0, 0.0);

 w_nTri = -1.0;

 }
 } else
 break;

 lSelf = false;
 if (testElement == sourceElement)
 lSelf = true;

 contribpm = 0.0;
 contribpm_add = (FTYPE2)(0.0, 0.0);
// Spatial
 lSelf_temp = lSelf;
 contribpm = BIContribG1(lSelf_temp, edge_L1I, node_PI[0],
 node_PI[1], node_PI[2], edge_L1J,
 node_PJ[0], node_PJ[1], node_PJ[2], kpm,

184

 csGamma.y, csGamma.x, kvec, debug, debug2);
 contribpm_add += contribpm;
// Spectral
 contribpm = BIContribG2(lSelf_temp, edge_L1I, node_PI[0],
 node_PI[1], node_PI[2], edge_L1J,
 node_PJ[0], node_PJ[1], node_PJ[2], kpm,
 csGamma.y, csGamma.x, kvec, debug, debug2);
 contribpm_add += kpm.x*kpm.x*contribpm;
 Zmn += w_mTri * w_nTri * cmult(contribpm_add,
 phaseshift(sourceEdge, testEdge, PhaseXFwd,
PhaseXBwd, PhaseYFwd, PhaseYBwd));

 }
 }
 return Zmn;
}

// OpenCL integration kernel for calculation of impedance matrix elements in BI
// Portion of PFEBI code.
// kpmp - A pointer containing k and rho
// kpm.x = k
// kpm.y = Rho_a
// kpm.z = Rho_b
// kvecp - A pointer representing the k-vector
// greenType - Variable representing which Green's function to use since
// OpenCL does not allow passing of functions by reference
// 0 - GreenFun2_Normal
// 1 - GreenFun2_Singularity
// csGammap - csGamma.x = CosGamma
// csGamma.y = SinGamma
__kernel void pfebi(__global FTYPE2 *Zdiag,
 __global FTYPE2 *Zneare,
 FTYPE4 kpm,
 FTYPE4 kvec,
 __global FTYPE2 *mTri,
 __global FTYPE2 *pTri,
 __global int2 *edge,
 __global FTYPE *LenComm,
 __global int *irowbag,
 __global int *izcolloc,
 __global int *pbc,
 __global int *pmEle,
 __global int *CommEdge,
 FTYPE2 csGamma,
 int N,
 int M,
 int nCom,
 __global FTYPE *fpparams)
{
 int2 mn;
 int numEl = N;
 int maxDiff = M;
 int gid = get_global_id(0);
 int jid = get_global_id(1);
 int j;
 int m_temp;
 FTYPE2 PhaseXFwd = (FTYPE2)(fpparams[1], fpparams[2]);
 FTYPE2 PhaseXBwd = (FTYPE2)(fpparams[3], fpparams[4]);
 FTYPE2 PhaseYFwd = (FTYPE2)(fpparams[5], fpparams[6]);
 FTYPE2 PhaseYBwd = (FTYPE2)(fpparams[7], fpparams[8]);

 FTYPE2 Zmn = (FTYPE2) (0.0, 0.0);

 FTYPE4 zero4 = (FTYPE4) (0.0,0.0,0.0,0.0);
 FTYPE2 one2 = (FTYPE2) (1.0, 1.0);
 FTYPE2 cOne = (FTYPE2) (1.0, 0.0);

185

 if (gid < numEl && jid < maxDiff) {
 mn.x = gid; // global id
 j = irowbag[gid] + jid;
 if (j < irowbag[gid+1]) {
 mn.y = izcolloc[j];
 Zmn = CalZBI_via_EdgetoEdge_AIM(kpm, mn, pTri, mTri, edge, LenComm,
 pbc, pmEle, CommEdge, csGamma, nCom, kvec,
 PhaseXFwd, PhaseXBwd, PhaseYFwd, PhaseYBwd, gid, mn.y);

 if (mn.x == mn.y) {
 if (mn.x < nCom) {
 m_temp = mn.x;

 Zdiag[m_temp] = Zmn;
 } else {
 m_temp = edge[mn.x - nCom].x;
 Zdiag[m_temp] += Zmn;
 }
 } // if (mn.x == mn.y)
 Zneare[j] = Zmn;
 } // for (j
 } // if (gid < numEl)
}

VITA

Jason Ashbach

- J. A. Ashbach, D.-H. Kwon, P. L. Werner, and D. H. Werner, "Low-Loss High-Q

Optical Bandstop Filter Based on Chalcogenide Glass Grating Structures,"

Proceedings of the 2009 IEEE International Symposium on Antennas and

Propagation and USNC/URSI National Radio Science Meeting, Charleston, SC,

USA, June 1-5, 2009.

- J. A. Ashbach, P. L. Werner, D. H. Werner, and F. Namin, "Single Material

Alternative to a Multilayer Optical Window," Proceedings of the 2010 IEEE

International Symposium on Antennas and Propagation and USNC/URSI National

Radio Science Meeting, Toronto, Canada, July 11-17, 2010.

- J. Ashbach, J. A. Bossard, X. Wang, and D. H. Werner, "Metamaterial Absorber for

the Near-IR with Curvilinear Geometry based on Beziér Surfaces," Proceedings of

the 2013 IEEE International Symposium on Antennas & Propagation and

USNC/URSI National Radio Science Meeting, July 7-13, 2013, Orlando, FL, USA.

- J. Ashbach, X. Wang, and D. H. Werner, "The Finite Element Boundary Integral

Method Accelerated Using a Graphics Processing Unit," Proceedings of the 2013

IEEE International Symposium on Antennas & Propagation and USNC/URSI

National Radio Science Meeting, July 7-13, 2013, Orlando, FL, USA

- J. Ashbach and D. H. Werner, "An Oblique-Angle Infrared Circular Polarization

Filter Using a Bezier Surface Representation," 2015 IEEE International Symposium

on Antennas & Propagation and USNC/URSI National Radio Science Meeting, July

19-24, 2015, Vancouver, BC, Canada.

