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ABSTRACT 

 

Capillarity, gravity and viscous forces control the fluids migration in geologic 

formations. However, experimental working addressing the simultaneous action of these 

driving forces as well as the impact of injection flow rate in fractured porous media is 

limited. Understanding how these variables affect fracture-matrix transfer mechanisms 

and invasion front evolution in fractured rocks are of crucial importance to modeling and 

prediction of multiphase ground flow. This study addresses the simultaneous influence of 

fracture orientation, rock and fluid properties, and flowing conditions on multiphase flow 

in fractured permeable media at laboratory scale. Displacement of a non-wetting phase 

(gas or liquid) by capillary imbibition was monitored using X-ray computed tomography 

(CT). Results were then mimicked using an automated history matching approach to 

obtain representative relative permeability and capillary pressure curves to further 

investigate the impact of matrix homogeneity/heterogeneity and boundary shape on the 

response of the imbibition front. Sensitive analyses, in combination with direct 

experimental observation, allowed us to explore relative importance of relative 

permeability and capillary pressure curves to saturation distribution and imbibing font 

evolution. 

 

Experimental observations combined with simulation results indicated the impact of 

fracture orientation on imbibition front evolution was minimal for the time- and length-

scales considered in this investigation. While different injection rates and fluid types 

showed significant differences in the shape of the imbibing front, breakthrough time, and 

saturation profiles. The speed and shape of imbibing front progressions were found to be 

sensitive to matrix water relative permeability, capillary pressure contrast between matrix 

and fracture, and degree of rock heterogeneity. Results from this work also demonstrated 

conditions that favor co-current, counter-current, and the coexistence of both 

displacement mechanisms during imbibition. Co-current flow dominates in the case of 

water displacing air, while counter-current flow dominates in the case of water displacing 
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kerosene. The balance of capillarity and relative permeabilities has a significant impact of 

the shape on the invasion front, resulting in periods of co-current and counter-current 

imbibition. This work presents direct evidence of spontaneous migration of wetting fluids 

into a rock matrix embedding a fracture. These observations and conclusions are not 

limited by the geometry of the system and have important implication for water flooding 

of naturally fractured reservoir and leak-off retention and migration after hydraulic 

fracture treatments. 
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Chapter 1                                                                                             

Introduction 

 

Fractures serve as primary conduits having great impact on the migration of injected fluid 

into fractured permeable media. This research study is a multi-variable analysis of 

fracture-matrix flow including the effects of injection flow rate, fluid type, fracture 

orientation and flow direction. In the first section of this study (see Chapter 2), we 

analyze the impact of two different injection rates on the capillary dominated 

displacement of oil by water in fractured rock samples, using x-ray computed 

tomography. A laboratory flow apparatus was designed specifically for this set of 

experiment, in which saturation maps are monitored as a function of time for two 

injection flow rates. X-ray computed tomography (CT) was used to record these 

saturation maps as a function of time. Continuous CT scanning allowed us to track 

capillary imbibition into a fractured Berea sandstone sample originally saturated with 

kerosene.  

 

Experiments were later extended to cover different fluid types and five different fracture 

configurations with flow directions (see Chapter 3). This experimental investigation 

addresses the influence of viscosity ratio and fracture orientation on the progression of an 

imbibition front in fractured permeable media at laboratory scale. Three different fluid 

pairs including air-brine, kerosene-brine and a viscous oil-brine, and five different 

fracture configurations were investigated to address the influence of viscosity ratio and 

fracture orientation on oil recovery and saturation maps. Experimental results of two-

phase (kerosene-brine) floods are then mimicked using an automated history matching 

approach to obtain representative matrix and fracture relative permeability and capillary 

pressure curves (see Chapter 4). These curves were then used to predict imbibition front 

evolution under different flow conditions, which result in excellent agreement with 
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experimental observations. Sensitivity analyses and predictive simulation tests were 

provided to further investigate the effects of transport properties and shapes of boundary 

on oil displacement and imbibition front evolution. Results from this investigation 

provide a comprehensive set of data for the validation of numerical models and 

strengthen fundamental understanding of multiphase flow in fractured rocks. 

 

 



 

 

Chapter 2                                                                                   

Experimental Investigation of Rate Effects  

 

Understanding how injection flow rate affects fracture-matrix transfer mechanisms and 

invasion front evolution in fractured reservoirs are of crucial importance to modeling and 

prediction of multiphase ground flow. However, experimental work addressing the 

impact of injection flow rate in fractured core samples is limited. In this chapter, we 

monitor and analyze transfer mechanisms in fractured rock samples using medical X-ray 

computed tomography. The impact of different injection rates on the resulting fluid 

recovery and saturation maps is evaluated through visual and quantitative analyses. 

Results from this work help visualize the impact of injection flow rate on the dynamics of 

fracture-matrix transport and, at the same time, provide detailed quantitative information 

for the validation of representative numerical models of fractured permeable reservoirs. 

 

2.1   Literature Review 

Fluid displacement in fractured media is of interest for many environmental and 

engineering processes. Examples include CO2 geological sequestration, nuclear waste 

disposal, geothermal power generation, and enhanced oil recovery in natural fracture 

reservoir (Berkowitz (2002); Committee on Fracture Characterization and Fluid Flow 

(1996)). The presence of fractures not only provide preferential pathways for fluid 

migration, but also gives rise to a range of complex flow phenomena. Crandall et al. 

(2010) conducted a series of simulations for flows in fractured permeable rocks, and 

observed more than 5% increase in the volumetric flow rate within high permeability-

fractured porous media. Karpyn et al. (2009) found that bedding planes adjacent to 

fracture zones with higher aperture tend to have higher porosity, and higher permeability, 

thus affecting the overall hydraulic conductivity of the system. This higher hydraulic 

conductivity leads to higher flow rate in the fracture zone and makes injected fluids easily 
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breakthrough and low efficiency displacement in the porous matrix. Alajmi and Grader 

(2000) used x-ray CT to study two-phase flow displacements in layered Berea samples 

with fracture tips. The results showed the presence of the fracture significantly delayed 

the oil recovery. In addition, different flow behaviors, co-current and counter-current 

imbibition were observed at three different regions in the sample, the fracture region, the 

non-fractured region, and the fracture tip. Rangel-German and Kovscek (2002) used x-

ray CT to study capillary imbibition of air and oil displacement by water from rock 

samples. They identified two different fracture flow regimes, co-current and counter-

current imbibition. Counter-current imbibition is occurring when the fractures refills with 

water at a faster rate than it can be transferred through the fracture-matrix interface, while 

co-current shows when relatively slow flow through fractures.  

 

Different flow regimes were observed at different injection flow rate. Melean et al. 

(2003) conducted a series of imbibition experiments in porous medium at different 

injection rates by using CT scan measurements. The results showed the water front 

spread smoothly and increased evenly at low rates, while the water front spread rapidly 

and inclined to the outlet at high rate cases. Babadagli (1994) found that as the injection 

rate is increased, fracture pattern becomes an important parameter controlling the 

saturation distribution in the rock matrix. As the rate is lowered, however, the system 

begins to behave like a homogeneous system showing a frontal displacement regardless 

of the fracture configuration. Similar observation can be obtained from Babadagli (2000). 

Although these, and other studies (Prodanovic et al. (2008), Hoteit and Firoozabadi 

(2008), Donato et al. (2007), and Rangel-German et al. (2006)) have contributed to 

current understanding of multiphase flow in fractured systems, there is still limited 

understanding of the relative impact of injection rate affecting two-phase displacement 

mechanisms in fractured rocks. Analyzing how injection rate affects fracture-matrix flow, 

especially under capillary dominated conditions, remains largely unexplored and it is the 

main goal of this section. 
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2.2   Experiment Design 

The purpose of this design was to create a two-dimensional flow system within a sample 

holder, to allow complete sample monitoring with a single-slice CT scanning as shown in 

Figure 2-1. By making the sample a thin disk, we eliminate one flow direction, the one 

orthogonal to the disk. Therefore, a single slice is sufficient to capture the entire fracture 

and the surrounding rock matrix, thereby allowing us to keep track of saturation changes 

at small time intervals. The rock sample used in this study was Berea Sandstone. Each 

sample disk has a diameter of 102 mm and thickness of 10 mm. A single tensile fracture 

was created artificially on each disk. All fractures are aligned with the centre of the 

sample and perpendicular to the bedding layers. Fracture apertures are around 0.5mm. 

Pore volume of the matrix and fracture are 18.51mL and 0.51mL, respectively. The 

experimental apparatus includes three major portions: sample holder, fluid supply system 

and X-ray CT scanner.  

 

 

Figure 2-1: Schematic drawing of experimental design.  

360o 

Supporting

rod
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2.2.1   Sample Holder 

A cake-shaped sample holder was fabricated according to the diagram shown in Figure 2-

2 and Figure 2-3. After assembling pieces A, B and inserting piece C, a trapped volume is 

obtained with a diameter of 104 mm and a thickness of 10 mm. This sample holder is 

made of Teflon to avoid chemical reaction with fluids, and only Teflon and the rock 

sample are intercepted by the scanning plane. Viton rubber sheets are used to seal the gap 

between the sample and the walls of the holder, thus blocking potential pathways around 

the sample and allowing fluid flow through the fracture alone. The supporting rod, also 

shown in the top-right insert in Figure 2-1, can rotate in 45 degree increments, and it is 

attached in such a way that the cell can rotate on its horizontal axis. Although the core 

holder is designed to allow different fracture inclinations and flow directions with this 

rotation system, this section focuses on experiments using a horizontal fracture. A similar 

rotation system was used in a core holder designed for gravity segregation experiments 

by Karpyn et al. (2006).  Figure 2-4 (left) shows a sample disk with fracture 

perpendicular to the bedding layers and Figure 2-4 (right) shows a photograph of all the 

pieces forming the core holder. 

 

 

Figure 2-2: Schematic drawing of sample holder design. 
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Figure 2-3: Schematic drawing of flow pathway within sample holder. 

 

 

 

 

  

Figure 2-4: A sample disk with fracture perpendicular to the bedding layers (left), and 

Teflon core holder, Viton rubber sheets (black) and support rod (right). 
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2.2.2   X-ray CT scanner 

Fluid saturation distributions are computed using X-ray computed tomography (CT) 

scanning. X-Ray CT is a non-destructive imaging technique that uses X-rays and 

mathematical reconstruction algorithms to view the internal properties of an object 

(Vinegar and Wellington (1987)). It is also used to quantify rock heterogeneities, 

determine lithologies and porosities, and monitor fluid saturations during flow processes.  

A medical HD350 scanner with a detection limit of 25 microns was used in this study. 

The CT system consists of an ionized X-Ray source, a detector, a translation system, and 

a computer system that controls motions and data acquisition. Each CT image produces a 

matrix of 512 by 512 pixels covering the entire sample. The voxel size selected to this 

work was 5.00×0.205×0.205 mm. Figure 2-5 shows the schematic drawing of medical 

CT scanner used in this study, which locates in the Center for Quantitative X-Ray 

Imaging (CQI) at Penn State University. 

 

Figure 2-5: Schematic drawing of X-Ray CT Scanner. 
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2.2.3   Fluid Circulation System 

The fluids used in the present experiments are distilled water and kerosene. Distilled 

water was tagged with 15% by weight of sodium iodide (NaI) to increase its CT 

registration and provide a high contrast between the two phases. The viscosity of tagged 

water is approximately 1.80 cP (centipoise) and that for kerosene is 4.06cP. The physical 

properties of these fluids are shown in Table 2-1. Before commencing the experiment, 

two immiscible fluids, oil and water phases, were thoroughly mixed with each other and 

allowed to separate under gravity action. This procedure minimizes in-situ changes in 

saturation due to mutual solubility.  

 

A schematic representation of this system is presented in Figure 2-6. A vacuum pump 

enables the sample holder reach 250 microns vacuum condition.  This vacuum state is 

used to pre-saturate the sample with oil phases. A syringe pump (LC-5000) delivers 

tagged water (brine) into the sample through the fracture. To guarantee a predominantly 

capillary-driven displacement, injection flow rates are low, in the order of 40mL/hr and 

4mL/hr, which correspond to capillary numbers in the order of 4.8×10
-4

 and 4.8×10
-5

, 

respectively. The capillary number represents the relative control of viscous force over 

capillary force. For capillary numbers below 10
-5

, flow in porous media is considered to 

be dominated by capillary forces (Ding and Kantzas (2007)). The equation for calculating 

the capillary number is 



 v
N ca


 ...........................................................................................................[2-1] 

where μ is the viscosity of the liquid, v is a characteristic velocity and γ is the surface or 

interfacial tension between the two fluid phases.  

 

 

 

 



10 

 

 

 

Figure 2-6: Schematic drawing of fluid circulation system. 

 

 

Table 2-1: Physical properties of fluids. 

Phases  Fluid composition 
Viscosity at 

25.7ºC (cP) 

Specific gravity at 

25.7ºC 

Water  
Tagged water 

(15% NaI by weight) 
1.0 1.0 

Oil  Kerosene 2.9 0.79 
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2.3   Experimental Procedure 

A schematic representation of the experimental procedure is presented in Figure 2-7. The 

dry fractured sample was mounted and vacuumed in the sample holder and scanned to 

observe its heterogeneity and its layered structure (stage 1 in Figure 2-7). In stage 2, the 

sample was pre-saturated with oil (non-wetting phase) and scanned. The image difference 

between these two stages is used for porosity calculations. In stages 3 and 4, the sample 

was flooded by injecting water. Fluid saturations were continuously monitored by 

scanning at specific time intervals until residual oil saturation was reached. At the same 

time, oil recovery is recorded as a function of time at the outlet. 

 

 

Figure 2-7: Experimental procedure and CT scanning sequence for oil-water system. 
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2.4   Determination of Porosity and Fluid Saturation 

The average sample porosity (
avg ) is 23.27% obtained from the volume of oil used in 

saturating the sample and the bulk volume of the sample. Pixel porosities (
pixel ) were 

obtained from Equation [2-2] using X-ray CT registrations from the vacuum condition in 

stage 1( vacuumCT ) and the oil saturated condition in stage 2 ( satCT ) as shown in Figure 

2-7. 

  avg

avgvacuumsat

vacuumsat
pixel

CTCT

CTCT





 ……………………………………………....…......[2-2] 

In situ saturations were also determined using data from the CT scanner.  Pixel water 

saturations (
pixelwS ,

) were obtained from Equation [2-3], where 
pixel  is the pixel porosity 

from Equation [2-2], 
avgwS ,

 is the average saturation of water in the sample obtained from 

the linear correlation between 100% water saturated ( avgwCT , ) and 100% oil saturated 

sample ( avgsatCT , ).  

  avgw

pixel

avg

avgfsat

fsat

pixelw S
CTCT

CTCT
S ,, 
























….……………..............………….…………….…….….... [2-3] 

avgsatavgw

avgsatavgf

avgw
CTCT

CTCT
S

,,

,,

,



 ……..………..................................……………………….…….….[2-4] 

 

2.5   Results and Discussion 

In this section, we compare two different injection flow rates using the same fluid type, 

kerosene and brine. Average saturation changes as a function of time and pore volume 

injected are presented in Figure 2-8. These saturations were averaged over the entire 

sample, including fracture and rock matrix. In Figure 2-8 top, water breakthrough for the 

low-rate curve in red is delayed 10 min with respect to the high-rate blue curve.  In 

addition, the high-rate curve (q=40mL/hr) reaches higher water saturation, and thus 

higher oil recovery, sooner than the low-rate case, but it requires more pore volume 
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injected to reach that saturation level, as seen in Figure 2-8 bottom. After approximately 

300 minutes of water injection, oil recovery becomes negligible in both cases, when 

water saturation reaches 0.56. Under this final saturation conditions, both oil and water 

are still mobile inside the rock sample, but the increments in water saturation are too 

small to be appreciated in the lapse of a few days. 

 

Figure 2-9  are time progressions of water saturation (Sw) maps corresponding to high 

and low water injection rate. Dark blue represents regions saturated with kerosene 

(Sw=0.0), red represents regions saturated with water (Sw=1.0), and intermediate colors 

represent the co-existence of kerosene and water in the pore space. For the high-rate case 

(Figure 2-9 top) we see a sharp increase in water saturation in the neighborhood of the 

fracture, and a maximum in the fracture itself and the outlet (right end of the fracture). 

Under these flowing conditions, the fractures refills with water at a faster rate than it can 

be transferred through the fracture-matrix interface, confirming similar experimental 

observations found in the literature (Rangel-German and Kovscek (2006)). 

Simultaneously, counter-current imbibition is occurring in the water invaded zone as oil 

is expelled from the matrix into the fracture. As time progresses, the imbibition front 

moves away from the fracture, and water accumulation becomes evident around the 

outlet end of the fracture (right side) in red, supporting the fact that the rate of capillary 

dispersion through the matrix is low compared to the rate of injection. The rate of 

injection is also responsible for the shape of the imbibing front, which is farther away 

from the fracture inlet than the outlet. These mechanistic observations are less 

pronounced when the rate of injection is reducing. 

 

Figure 2-9 bottom shows an analogous progression of water saturation maps obtained at 

4mL/hr of water injection.  The contrast in saturation ahead and behind the water front is 

not as sharp as that in Figure 2-9 top. This is evident in a smoother color transition, 

passing from dark to light blue, to green, and finally yellow and red. 
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Figure 2-8: Average water saturation as a function of time, showing the effect of injection rate. 
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Figure 2-9: Time progression of water saturation maps corresponding to 40mL/hr (top) and 4mL/hr (bottom) brine injection rate, 

kerosene-brine experiment.  
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In addition, for the same pore volume injected, that is 0.7 PVI at 20 min high-rate 

(40mL/hr) and 170 min low-rate (4mL/hr), we observe a much larger imbibed region in 

the low-rate case, implying low injection rate allows a more effective spreading of water 

for the same volume injected. At the late time (t=1440), water collects around the 

fracture's outlet end.  This is depicted by the red cone shape observed at the right side of 

the sample.  

 

Further quantitative examination of saturation changes obtained from CT scanning is 

presented in Figure 2-10. These vertical saturation profiles averaged over the central 6 

mm of each CT slice for the two flow rates under study. These profiles capture saturation 

changes with time in the direction perpendicular to the fracture. For both experiments, 

continuous high water saturation is observed in the center of the sample, where the 

fracture is located.  The most salient differences between these two groups of vertical 

profiles are: (1) the speed at which the water front moves away from the fracture, which 

was also evident in the saturation maps, presented in Figure 2-9; and (2) the change in 

saturation as we move away from the fracture. Figure 2-10 right shows a gradual 

saturation change at the front, while there is a drastic drop in saturation across the water 

front in Figure 2-10 left. Furthermore, water saturations remain in the 0.50-to-0.55 range 

within the imbibed zone, which suggests that both fluid phases are under a dynamic 

equilibrium at that saturation. This is consistent with the knowledge that counter-current 

flow is the prevalent flow mechanism in the imbibed zone. As the water front progresses, 

the resident oil is displaced towards the fracture, in a counter-current manner, and 

replenished by the oil that is sitting ahead of the front, thus maintaining a dynamic 

equilibrium and a constant saturation in the imbibed zone. 
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Figure 2-10: Vertical saturation profiles perpendicular to the fracture and averaged over the central 6 mm of the sample, Kerosene-

brine experiment, q=40mL/hr (left) and q=4mL/hr (right).
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Chapter 3                                                                                                               

Impact of Viscosity Ratio and Fracture Orientation  

 

The objective of this section is to investigate the effects of viscosity ratio and fracture 

orientation on oil recovery and water front evolution using medical X-Ray computed 

tomography (CT). First, we compare three different fluid pairs with different viscosity 

ratio in horizontal fractured rock samples. These experiments were then extended to 

include five different fracture configurations in the case of water displacing air to 

evaluate the impact of fracture orientations. A detailed delineation of the impact of 

viscosity ratio as well as fracture orientation on the dynamics of fracture-matrix transport 

is presented and provides reference background to qualify the migration and trapping of 

leak-off fracturing fluids in hydraulic fracture under shut-in conditions. 

 

3.1   Literature Review 

In general, capillarity, gravity and viscous force are three major driving forces control 

fluids migration in geological formations. Numerous studies had demonstrated the 

importance of these forces whether from experiments (Lefebvre du prey (1978), Ovdat 

and Berkowitz (2006)) or simulation models (Ajose and Mohanty (2003)).  

Ide et al. (2007) used simulation model to investigate the impacts of gravity and viscous 

forces on capillary trapping of CO2. Results showed that effects of capillary pressure and 

aquifer inclination increased the amount of CO2 trapped. Hognesen et al. (2006) 

conducted a series of experiments to identify capillary and gravity dominated flow 

regimes and concluded that the impact of gravity decreased as the height of the core 

decreased.  

 

The simultaneous action between capillarity, gravity and viscous forces becomes more 

complex in fractured geological formation (Berkowitz (2002)).When a wetting fluid 
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flows through a fracture, capillarity may drives the wetting fluid from the fracture into 

the matrix, while viscous force propels the fluid to flow through the fracture with less 

resistance. Rangel-German et al. (2006) stacked Boise sandstone blocks to study multi-

phase flow in a fractured system. They concluded that both capillary and viscous force 

control the flow in the fracture and that capillary continuity can occur in any direction, 

depending on the relative strengths of the capillary and Darcy (viscous) terms in the flow 

equations. Tang and Firoozabadi (2000) conducted a series of experiments and found the 

oil displacement efficiency can be significantly influenced by viscous force and gravity in 

a fractured porous media. Rangel-German and Kovscek (2002) indicated the effect of 

gravity on the orientation of fracture-matrix is evident through oil-water experiments. 

Firoozabadi and Markeset (1992) studied gravity and capillary cross-flow in fractured 

porous media, and showed that the contribution of capillary cross-flow from the side 

faces of the matrix rock increased with the tilt angle. Gu and Yang (2003) used numerical 

modeling to study the interfacial profile between two immiscible fluids in a reservoir 

with a fracture with random orientation, and found that the equilibrium shape of the 

interfacial profile depends on the ratio of gravity and capillarity. 

 

Fracture orientation had great influence on fluid displacement under the interplay of 

capillary, gravity and viscous forces. Crawford and Collins (1954) found the sweep 

efficiency depends on the length and orientation of the fracture and direction of the flood. 

Carnes (1966) indicated that it is essential to determine presence and orientation of a 

fracture system in a reservoir since it has a significant effect on the success or failure of 

water flooding. Shedid (2006) and Shedid and Zekri (2006) investigated the effect of 

fracture orientation on water flooding processes. The results indicated fracture orientation 

had greater influence on oil displacement, and the increase of fracture inclination angle 

decreases oil displacement by water flooding. Similar experimental work were reported 

by Farzaneh et al. (2010) recently with different results between the oil displacement and 

the orientation angle. They conducted experimental studies and observed that the oil 

displacement decreased when the fractures’ aperture, discontinuity, over-lap, and 
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distribution increased. In contrast, the oil displacement increased when the orientation 

angle, discontinuity- distribution and the number of fractures increased. However, 

experimental works addressing the simultaneous action of capillarity, gravity and viscous 

force under the effect of different fracture orientation (where injection direction is 

parallel to fracture) is limited. Understanding how these forces affects fracture-matrix 

transfer mechanisms and how these mechanisms are altered by fracture orientation are of 

crucial importance and are the main goals of this section.  

  

3.2   Experimental Design  

An experimental apparatus including sample holder, fluid supply system and X-Ray CT 

scanner designed and constructed in the Chapter 2 was used in this study. The rock 

sample used in this study was Berea Sandstone with average porosity about 22%. A 

single tensile fracture was created artificially on each disk. Fractures are aligned with the 

centre of the each sample and are placed perpendicular to the bedding layers. Average 

fracture apertures are around 0.5mm. Pore volume of the matrix and fracture are 18.51mL 

and 0.51mL respectively. Five different fracture configurations including (1) horizontal, 

(2) vertical flowing up,(3) vertical flowing down,(4) diagonal flowing up, and (5) 

diagonal flowing down were investigated to address the influence of fracture orientation 

on the capillary imbibition in fractured permeable rock. A detailed matrix of fracture 

configurations is displayed in Figure 3-1. 

 

Figure 3-1: Five different fracture configurations. 
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Air-brine, kerosene-brine and viscous oil-brine represent three different fluid pairs 

considered in this experimental work. The viscous oil was formed by mixing 50% by 

weight of n-decane and Silicone oil. Kerosene and viscous oil represent two types of oil 

phase to pre-saturate the sample. Water was tagged with 15% by weight of sodium iodide 

(NaI) to increase its CT registration and provide a high contrast between the two phases. 

The viscosity of tagged water is approximately 1.0 cP and that for kerosene and mixture 

oil are 2.9 cP and 36.32 cP, respectively. The physical properties of these fluids are 

shown in Table 3-1.  

 

Before commencing the experiment, wetting and non-wetting liquid phases, were 

thoroughly mixed with each other and allowed to separate under gravity action. This 

procedure minimizes in situ changes in saturation due to mutual solubility during the 

displacement experiment. To guarantee a predominantly capillary-driven displacement, 

injection flow rates are low, in the order of 4mL/hr, which correspond to capillary 

numbers (Nca) on the order of 10
-4

 to 10
-8

. This capillary number represents the relative 

control of viscous over capillary forces. For capillary numbers below 10
-5

, flow in porous 

media is considered to be dominated by capillary forces (Ding and Kantzas (2007)). Bond 

number (Bo) express the relative importance of gravitational to capillary forces. Table 

3-2 summarizes capillary numbers and Bond numbers correspond to three different fluid 

pairs. 

 

Table 3-1: Physical properties of fluids. 

Exp. Phases Fluid composition 
Viscosity at 

25.7
o
C (cP) 

Specific gravity at 

25.7
o
C 

Set 1 
water Tagged water(15% NaI by weight) 1.0 1.0 

oil Kerosene 2.9 0.79 

Set 2 
water Tagged water(15% NaI by weight) 1.0 1.0 

Air Air 0.018 0.001 

Set 3 
water Tagged water(15% NaI by weight) 1.0 1.0 

oil Silicone oil & Decane 50% by weight 36.32 0.83 
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Table 3-2: Capillary numbers and Bond numbers correspond to three fluid pairs. 

Fluid type Nca Bo 

Set 1 Kerosene 4.8 × 10
-5

 0.038 

Set 2 Air 5.5 × 10
-8

 0.033 

Set 3 viscous oil 2.7× 10
-4

 0.014 

 

3.3   Experiment Procedure and Determination of Porosity and Fluid Saturation 

Kerosene-brine and viscous oil-brine follow the same experimental procedure presented 

in Figure 2-7. Air-brine system shows similar experimental procedure as presented in 

Figure 3-2. The only difference between these two procedures is, in air-brine system, 

since distilled water was used to saturate sample for porosity calculations in the stage 2, 

additional 72 hours vacuuming and air injection was required to drain off water and 

saturated with air, before starting injection as shown in stage 3.  

 

 

Figure 3-2: Experimental procedure and CT scanning sequence for air-water system. 
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obtained from Equation [2-3], 
avgwS ,

 is the average saturation of water in the sample 

obtained from Equation [2-4]. Since initial water saturation exist in all air-brine 

experiments, in situ saturations and average saturations need to be modified as presented 

in Appendix A.2 Equation [22] and Equation [33].   

 

3.4   Results and Discussions 

3.4.1    Impact of Viscosity Ratio 

In this section, we compare three different immiscible fluid pairs with different viscosity 

ratios using the same injection flow rate of q=4ml/hr in horizontal fractured rock samples. 

In experiment set 1, the sample was pre-saturated with kerosene; in experiment set 2, the 

sample was pre-saturated with air; and in experiment set 3, the sample was pre-saturated 

with viscous oil before starting brine injection. Figure 3-3 presents average saturation 

changes as a function of time for all case. These saturations were averaged over the entire 

sample, including fracture and rock matrix. In Figure 3-3, we can see the difference in 

water saturation as a function of time and pore volume injected (PVI) for the three fluid 

pairs under consideration. Since the existence of initial water saturation (Swi=0.1225) in 

set 2, air-brine, initial saturations for set 2 is higher than set 1 and set 3 as shown in blue 

diamond of Figure 3-3-top.  In order to compare these saturation curves under the same 

start point, pore volume injected (PVI) for set 2 was extrapolated to zero, as shown in 

Figure 3-3-bottom. The results show that early time behavior is nearly identical for set1 

and set 2, because this is controlled by the injection rate that has been specified as 4 

mL/hr. After around 0.4 PVI, set 2 begins to separate from set 1 and reaches maximum 

water saturation at an earlier time. In addition, set 2 increases as a straight and overlaps 

the line of constant imbibion rate implying water saturation increases as a constant rate. 

While for set 3, water saturation is negligible during the first 700 minutes of injection, 

and increases up to 0.1 after 4000 minutes of continuous injection. The increment in 

water saturation from set 1 and set 2 is much faster, displaying the influence of viscous 

forces.  
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Figure 3-3: Average water saturation as a function of time and PVI for different fluid pairs. 
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The time progression of water saturation maps corresponding to three fluid pairs are 

presented in Figure 3-4. Dark blue represents regions saturated with kerosene (Sw=0.0), 

red represents regions saturated with water (Sw=1.0), and intermediate colors represent 

the co-existence of kerosene and water. A late water breakthrough time, 0.54 PVI (135 

minutes), is observed in set 2 (the case of water displacing air), while an early 

breakthrough time, 0.03PVI (10 minutes), is observed in set 1 (the case of water 

displacing kerosene). In addition, a co-current flow mechanism can be observed in set 2 

where water and air toward a same direction, while a counter-current flow mechanism 

where water and kerosene moving in an opposite direction was observed in set 1. This is 

because a relative smaller viscosity ratio and higher interfacial tension in set 2 (the case 

of water displacing air) than that in set 1 (the case of water displacing kerosene) that 

makes injected water more easily flow from the fracture into the matrix; thus delaying 

water breakthrough time and displaying as co-current flow mechanism.  In addition, in 

set 2, fracture-matrix transfer mechanism switches from co-current to counter-current 

imbibition after water breakthrough, thus limiting additional recovery of the resident fluid 

phase as shows in Figure 3-3 (after 135 minutes) and Figure 3-3 (after 0.54 PVI). That is 

consistent with our knowledge that co-current imbibition can be a more efficient 

displacement than counter-current flow (Pooladi-Darvish and Firoozabadi (2000)). In set 

3, there is only a little increase in water saturation in the neighborhood of the fracture for 

the first 300 minutes; however, none in the matrix. After 1440 minutes, the brine starts to 

accumulate in the fracture, represented by the red shades. Under this flowing condition, 

there is no evident matrix-fracture transfer or imbibitions into the rock matrix. The oil in 

the fracture is displaced by brine due to forced injection. 

 

Close examination of Figure 3-5 reveals similar observation through vertical saturation 

profiles. These vertical saturation profiles averaged over the central 6 mm of each CT 

slice for three different fluid pairs. These profiles capture saturation changes with time in 

the direction perpendicular to the fracture. For all experiments, continuous high water 

saturation is observed at the center of the sample (0mm, or fracture location). In 
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experiment set 2, the saturations appear after 60 minutes of water injection, while a sharp 

water saturation peak along the fracture is observed in the early time of set 1(t=20 

minutes). That is consistent with a late water breakthrough time in experiment set 2 and 

an early water breakthrough time in experiment set 1 observed in Figure 3-4. In set 3, 

there is only a saturation peak in the fracture, and no water in the matrix implying that 

capillary forces are not strong enough to drive brine into the matrix and displace the 

resident viscous oil, thus making the overall process viscous dominated. 
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Figure 3-4: Sequence of water saturation maps obtained from CT scanning at 4mL/hr water injection rate for different fluid pairs. 
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Figure 3-5: Vertical Saturation profiles perpendicular to the fracture and averaged over the central 6 mm of the sample, for different  

fluid pairs. 
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3.4.2   Impact of Fracture Orientation 

In this section, we compare five different fracture orientations in the case of water 

displacing air using same injection flow rate q=4ml/hr as displayed in Figure 3-1, 

including: 

(1) horizontal fracture.  

(2) vertical fracture flowing up. 

(3) vertical fracture flowing down. 

(4) diagonal fracture flowing up.  

(5) diagonal fracture flowing down.  

 

Figure 3-6 shows average water saturation as a function of pore volume injected (PVI) 

for these five different fracture orientations. Once again, early time behavior is nearly 

identical for all cases, because this is controlled by the injection rate that has been 

specified as 4 mL/hr. After around 0.62 PVI, different cases start to separate from each 

other. The cases of horizontal fracture and vertical fracture flowing down begin to 

separate first and reach the lowest final saturation value at about 0.6-to-0.7 after 15 PVI. 

On the contrary, diagonal fracture flowing up and vertical flowing up show later  

breakthrough and higher ultimate saturation value after 15 PVI. The ultimate recovery 

from these imbibition scenarios is primarily controlled by breakthrough time, when the 

flow mechanism switches from co-current to counter-current, thus limiting extended 

recovery of the resident fluid phase.  

 

 The time progression of water saturation maps corresponding to these five fracture 

configurations are presented in Figure 3-7. A co-current flow mechanism prevailed in all 

cases when displacing a non-wetting gas phase confirming previous observation in 

Chapter 3.3.1 (impact of viscosity ratio) that co-current flow dominates in the case of  

water displacing air due to a relative smaller viscosity ratio and higher interfacial tension. 

In addition, the water front in the matrix is moving faster than that in the fracture, which  
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Figure 3-6: Average water saturation as a function of pore volume injected (PVI) for different fracture orientations. 
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Figure 3-7: Sequence of water saturation maps obtained from CT scanning at 4mL/hr water injection rate for different fracture 

orientations. 
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indicates that capillary force in the matrix is larger than that in the fracture. This 

observation is evident as a shorter red line in the fracture zone within the imbibing front 

in Figure 3-7.  

 

The existence of rough-walled fractures and a relative faster moving rate of the water 

front in the matrix than fracture also contribute to snap-off effects. There is direct 

evidence of snap-off inside the fracture when the invading front in the matrix moves 

ahead of the invading front in the fracture which leads to an air bubble was trapped 

behind the water front in fracture zone as shown in Figure 3-8. This phenomena occurs 

when the capillary pressure decreases or the radius of the curvature of the water (wetting-

phase fluid) increases and the water layers in the aperture start to swell and temporary cut 

off the connection of air phase. 

 

 

Figure 3-8: Saturation maps showing air (circular shadow) trapped in the fracture zone as 

water injected time equals to 61 minutes. 

Air bubble 
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Figure 3-9 shows snapshots of a generation of snap-off. An air bubble was trapped in the 

fracture zone when water injected time equals to 61 minutes. However, this balance did 

not hold for a long time. After one minute of continuous injection, this air bubble erupted, 

and at the same time, it changed the shape of water front as water injected time equals to 

62 minutes and the water front extended following this flow intermittency  

 

 

Figure 3-9: Saturation maps showing air snap-off in the fracture. 

 

The influence of fracture orientation resulting in different water breakthrough time can be 

observed at PVI=0.4 (time=135minutes) where late water breakthrough can be 

discovered in the case of diagonal fracture flowing up and vertical fracture flowing up. In 

addition, higher water saturations represents in darker red can be observed behind 

imbibing front in the case of diagonal fracture flowing up and vertical flowing up as 

shown in Figure 3-7. This is because gravity slightly delays the progression of water 

imbibing front and water breakthrough time, thus more water was accumulated behind 

water front.  

 

Similar observations are made from the vertical saturation profiles in Figure 3-10. A 

higher water saturation value at the same PVI and slower water front evolving can be 

observed in the Figure 3-10-right when PVI=0.2. In addition, a higher final water 

saturation value can be observed in the fracture zone of Figure 3-10 right when 

PVI=17.8.  
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Figure 3-10: Vertical Saturation profiles perpendicular to the fracture and averaged over the central 6 mm of the sample, in the case of  

vertical fracture flowing down and vertical fracture flowing up.
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Chapter 4                                                                                                                   

Numerical Analysis of Imbibition Front Evolution and History 

Matching 

Appropriate transport properties such as relative permeability and capillary pressures are 

essential for successful simulation and prediction of multi-phase flow in such systems. 

However, the lack of thorough understanding of the dynamics governing immiscible 

displacement in fractured media limits our ability to properly represent their macroscopic 

transport properties. In this study, an automated history matching approach proposed by 

Basbug and Karpyn (2008) was implemented to generate representative matrix and 

fracture relative permeability and capillary pressure curves Sequential saturation 

distribution maps of brine displacing kerosene at low injection rate (4mL/hr) presented in 

Chapter 2 were used as matched data. These optimized curves were then validated with 

previous experimental data at higher water injection rate (40mL/hr) condition. Sensitivity 

analyses were performed in order to study the effects of transport properties and 

boundary effects on oil displacement and water front evolution. Through this study, 

significant insight is provided for transport properties on the water front progression in 

fractured permeable systems under capillary dominated conditions. 

 

4.1    Literature Review 

Transport properties such as permeability and capillary pressure are important for 

successful description of fluid displacement processes (De la Porte et al. (2005)). 

Numerous papers had proposed techniques for estimation of relative permeability and 

capillary pressure curves for both matrix and fracture by using experiments or simulation 

models. Heaviside et al. (1983) determined representative relative permeability and 

capillary pressure curves using both steady-state and unsteady-state experiments as well 

as numerical modeling. Firoozabadi and Hauge (1990) proposed a phenomenological 
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model to relate the fracture capillary pressure to saturation. El-Khatib (1995) developed a 

modified J-function for calculating capillary pressure. Mohamad Ibrahim and L.F. 

Koederitz (2001) presented a relative permeabilty prediction model from two phase 

steady-state and unsteady-state experiment data. Bertels et al. (2001) developed an 

experimental technique to measure and compute fracture aperture distribution, capillary 

pressure, and relative permeability in fractured rocks using X-Ray CT scanning. Li 

(2008) and Li and Horne (2010) generated a correlation between resistivity index with 

relative permeability and capillary pressure data.  

 

Kruger (1961) first applied history matching technique to calculated the areal 

permeability distribution of the reservoir. Archer and Wong (1973) and Chavent et al. 

(1980) applied similar approach to obtain relative permeability as well as capillary 

pressure curves curves from experimental data. With the improvement of technology, this 

technique becomes feasible to obtain permeability and capillary pressures curves. Chen et 

al. (2005) developed optimization code based on Levenberg-Marquardt algorithm and 

coupled it with a commercial reservoir simulator to match well test data and obtain 

relative permeability curves. Basbug and Karpyn (2008) proposed a history matching 

approach can automated determine both matrix and fracture relative permeability and 

capillary pressure curves using B-spine equations. Angeles et al. (2010) developed 

history matching model for relative permeability curves and capillary pressure curves 

using field test data including resistivity, pressure and flow rates. 

 

In order to accurately simulate and predict fluid transport behavior through fractured 

systems, a thorough understanding of the variables that affect fluids transport through 

fractures is necessary. Al-Wadahi et al. (2000) and Li (2003) applied of history matching 

technique to investigate three phase counter-current flow mechanism. Similar study was 

done by Alajmi (2003) to investigate the influence of a fracture tip on two-phase flow 

displacement processes. Or (2008) indicated key factors shaping the displacement front 

morphology, including fluid velocity, density and viscosity ratios, interfacial tensions, 
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and pore size distribution of the porous medium. Tavassoli et al. (2005a, b) proposed an 

approximate analytical approach to analyze capillary force counter-current imbibitions in 

both strongly and weak water-wet systems to assist dual-porosity modeling of flow in 

fractured reservoirs. Rangel-German and Kovscek (2005) found that relative permeability 

for fractured rocks with impermeable matrices are different from those for fractured 

porous rocks. Relative permeability curves for fractures not interacting with granular 

matrices are represented by X-type functions, while relative permeability for fractures 

interacting with porous matrices do not necessary exhibit X-type behavior. The shape of 

this function is controlled by injection flow rate, fracture aperature and the imbibition 

potential of the rock.  

 

However, analyzing the relationship between transport properties and water font 

morphology especially under capillary dominated condition within fractured system, 

remains largely unexplored, and is the main goal of this section. Results from this work 

help visualize the impact of transport properties on the water front progression and, at the 

same time, provide detailed quantitative information for the simulation and prediction of 

multiphase flow in fractured permeable systems. 
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4.2   Automated History Matching Approach  

History matching is a technique that adjusts simulation parameters until they are able to 

reproduce the "history" of the modeled system. In this study, an automated history 

matching approach proposed by Basbug and Karpyn (2008) was implemented and to 

execute this matching approach. This code was developed under MATLAB
®
 2006b with 

the optimization algorithm and coupled with the commercial reservoir simulator. The B-

spline functions used for determining relative permeability curves and C++ programming 

code used for extracting saturation data from the simulator output results were replaced 

by modified Brooks and Corey equations and a MATLAB
®  

subroutine code to simplify 

and accelerate simulation speed.  

 

A schematic diagram of automated history matching approach is illustrated in Figure 4-1. 

The process starts with a reasonable initial guess of rock and fluid properties including 

relative permeability and capillary pressure. The black oil module (IMEX (2009)) of a 

commercial reservoir simulator (CMG) were use to run the simulation. Saturation 

distribution were then extracted from the output results and compared with the 

experimental data. Matrix and fracture relative permeability and capillary pressure curves 

were then updated with a large-scale optimization algorithm (Trust-Region Method) if 

the difference between experimental and simulation results did not fall within prescribed 

error bounds. Large-scale optimization (Trust-Region Method) is an algorithm that 

minimizes the least-squares objective function, J is implemented for adjusting. The 

objective function is given by: 

 

 
 

2

,,,

exp

,,,,,, ),(



tzyx

tzyxcr

cal

tzyx SPkSJ .................................................................................[4-1]
 
 

 

where 
cal

tzyxS ,,,  is the saturation results calculated from simulation, while 
exp

,,, tzyxS  is that 

obtained from previous experiment.  
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Figure 4-1: Schematic diagram of history matching approach (Basbug and Karpyn 

(2008)). 
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The dimension of the experimental work in Chapter 2 was 485 485 pixels with the 

resolution approximate 0.205mm (105mm/512). An up-scaling scheme was applied to 

increase speed on both simulation and optimization process. For that purposes, 

experimental data (saturation images) was up-scaled by a factor of 5 in each direction 

using the arithmetic average. This factor is based on the fracture aperture resolution 

suggested by Glass et al. (1998), and correlation length suggested by Keller (1998)). 

After up-scaling scheme, simulation model dimension became 97 97 pixels with 

approximate resolution 1.025mm (525 mm/512). This dimension was also applied to 

following simulations including sensitivity analysis, automatic history matching approach 

and predicted simulation studies. 

 

The shape of the modeled system is a circular disk with diameter of approximate 

99.463mm (50925 mm/512) and thickness of 10 mm. A continuous fracture layer is 

positioned along in the center of the simulation model. The initial water saturation was 

zero before starting water injection. We used constant flow rate inlet, 4mL/hr and 

constant pressure outlet along with no flow boundary condition for the entire model. The 

inlet and outlet were located at start and end of the fracture layers respectively.  

 

Porosity distributions were extracted from experimental work in Chapter 2 and up-scaled 

by a factor of 5 in each direction by using the arithmetic average.  

Absolute permeability, k  in each pixel was obtained from equation Timur’s correlation 

(Timur (1968)), given by: 

2

4.4

136.0
wirrS

k


    ………………………………………………………….………… [4-2]                                           

 

where   is the pixel porosity of the rock sample (percentage) obtained from experimental 

work in Chapter 2, and Swirr is the irreducible water saturation (fraction). 
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Table 4-1 presents a summary of porosity and permeability values used in the present 

simulation model. Relative permeability and capillary pressure curves are defined with 

modified Brooks and Corey equation (Lake (1989)), given by 
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where wS  is water saturation, 
rk is relative permeability, cP is capillary pressure,  

wirrS  and orS , were irreducible water saturation and residual oil saturation; end-point 

relative permeabilities are identified with the superscript symbol “ o ” obtained from 

perious steady-state relative permeability experiment. on and wn are Corey exponent to oil 

and water respectively. ceP  is capillary entry pressure. 

 

 

Table 4-1: Rock properties assigned to fracture and matrix in simulation model. 

Property Value 

Fracture permeability [md] 5000 

Average matrix permeability [md] 76.5  

Fracture porosity [fraction] 0.3262 

Matrix porosity [fraction] 0.2273 
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4.3   Sensitivity Analysis 

To explore the sensitivity of imbibition front development to fracture/matrix transport 

properties, we have constructed a series of test cases including sensitivity to matrix 

relative permeability as well as matrix and fracture capillary pressure curves according to 

the following case studies. All modified transport properties are listed in Table 4-2.  

 

Case A: reference case.  

We used base-case transport properties provided in Figure 4-2. Model dimensions, 

porosity and absolute permeability distributions, flowing conditions and fluid properties 

were as presented in Chapter 4.2 (page 41 through 43).  

  

Figure 4-2: Matrix and fracture relative permeability curves (left) and capillary pressure 

curves (right) used in sensitivity analysis case A. 

 

Table 4-2: Lists of investigated parameters in sensitivity analysis cases. 

Case 
Corey exponent 

oil (no) 

Corey exponent 

water (nw) 

End-point relative 

permeability (k
o
rw) 

Matrix capillary entry 

pressure (Pce) 

A 8 2.5 0.077 24.5 

B 2 2.5 0.077 24.5 

C 8 4 0.5 24.5 

D 8 2.5 0.077 3.8 
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Case B: sensitivity to relative permeability to oil in the rock matrix.  

To investigate the sensitivity of front evolution to matrix oil relative permeability ( rok ), 

we increased relative permeability to oil by decreasing Corey exponent oil ( on ), to 

compare cases A ( 8on ) and B ( 2on ), see Figure 4-3.  

  

Figure 4-3: Matrix relative permeability curves (left) and capillary pressure curves (right) 

for sensitivity analysis cases A, B. 
 

Case C: sensitivity to relative permeability to water in the rock matrix.  

To investigate the sensitivity to matrix relative permeability to water ( rwk ), we increased 

water relative permeability by Corey exponent water ( wn ) and increasing end-point 

relative permeability (
o

rw
k ), to compare cases A ( 5.2wn , 077.0o

rw
k ) and C ( 4wn ,

5.0o

rw
k ), see Figure 4-4. 
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Figure 4-4: Matrix relative permeability curves (left) and capillary pressure curves (right) 

for sensitivity analysis cases A, C. 

Case D: sensitivity to capillary pressure contrast between matrix and fracture.  

To investigate the sensitivity to capillary pressure contrast between matrix and fracture, 

we decrease capillary entry pressure ( ceP ) in the fracture to compare cases A ( 5.24ceP ) 

with D ( 8.3ceP ), see Figure 4-5.  

  

Figure 4-5: Matrix relative permeability curves (left) and capillary pressure curves (right) 

for sensitivity analysis cases A, D. 
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however, in case B, saturation keeps increasing until 0.8, which is consistent with a larger 

mobile region in the transport properties specified for case B. 

 

Figure 4-6: Average water saturation as a function of time for sensitivity cases A, B, C 

and D. 

 

Figure 4-7 shows time progressions of water saturation (Sw) maps for cases A through D. 

Red represents regions saturated with water (Sw=1.0), dark blue represents regions 

saturated with kerosene (Sw=0.0), and intermediate represent the co-existence of 

kerosene and water. In Figure 4-7, case A, base case, an early water breakthrough was 

observed. Under this flowing condition, the fractures refills with water at a faster rate 

than it can be transferred through the fracture-matrix interface, confirming similar 

experimental observations found in the literature (Rangel-German and Kovscek (2002)). 

Simultaneously, counter-current imbibition is occurring in the water invaded zone as oil 

is expelled from the matrix into the fracture. As time progresses, the imbibition front 

moves away from the fracture, and water accumulation becomes evident in the fracture 

zone in red, supporting the fact that the rate of capillary dispersion through the matrix is 

low compared to the rate of injection. 
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Figure 4-7: Sequence of water saturation maps at 4mL/hr water injection rate for 

sensitivity cases A, B, C and D. 

 

In cases B and C, where oil and water matrix relative permeability curves were increased 

relative to the reference case A, early water breakthrough and counter-current flow 

mechanism were also observed.  However, a higher final water saturation can be 

observed in case B, as time equals to 1430 minutes. This observation confirm a previous 

finding in Figure 4-6, due to a larger mobile region for oil phase in the transport 

properties specified for case B, final water saturation can keep increasing until 0.8.  
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In case C, where matrix relative permeability to water has been increased, we observe a 

faster water front extension as it spreads away from the fracture when time equals both 

80 and 170 minutes. This is because of the wider mobile range for the water phase in the 

transport properties specified for case C, which make the injected water more mobile at 

low saturation. However, because matrix relative permeability to oil in cases A and C, the  

increased matrix relative permeability to water can only enable the water front to extend 

farther into the matrix instead of increasing the average water saturation in the sample. 

 

In case D, there is a significant difference in the shape of the imbibition front due to 

increased capillary pressure contrast between matrix and fracture. We also observe a 

delayed water breakthrough in case D. This form of imbibition front evolution is 

characterized by an early period of co-current displacement until water breakthrough, 

followed by counter-current imbibition. In this case, due to higher capillary pressure 

contrast between fracture and matrix, injected water is more easily derived from the 

fracture, and thus delaying its breakthrough time, presenting an inclined shape of water 

fronts, and a higher water saturation value behind water front as shown in yellow as 80 

minutes of Figure 4-7 case D.  

 

Further quantitative examination of saturation changes for cases A through D is presented 

in Figure 4-8. These are vertical saturation profiles average over the central 6 mm of the 

simulation model, which capture saturation distribution at 80 minutes of injection, in the 

direction perpendicular to the fracture. As shown in Figure 4-6, all cases reach almost the 

same average saturation value after 80 minutes of injection. Under this time frame, an 

increased oil relative permeability in the matrix (case B) shares a similar vertical 

saturation profile with the reference case A, as shown in Figure 4-8, representing a 

similar imbibition rate from the fracture into matrix.  
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Figure 4-8: Vertical saturation profiles perpendicular to the fracture and averaged over 

the central 6 mm of the simulation model, q=4mL/hr at time=80 minutes for sensitivity 

analysis cases A, B, C and D. 
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demonstrated in the plot presented in Figure 4-9, where the loss of color contrast behind 

the water front was observed with increasing the water front progression to matrix system 
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proved that either water relative permeability or capillary pressure contrast can increase 

mobility of water phase, and thus influence the speed of water front extension, while the 

relative permeability to oil primarily controls residual saturations at the end of the 

displacement process. The balance of capillarity and relative permeabilities also has a 

significant impact of the shape of the invasion front, resulting in periods of co-current 

and counter-current imbibition. 

 

4.4   History Matching Results and Validation 

The purpose of this section is to determine the representative transport properties using 

the proposed automated history matching method, and hence could be readily adapted for 

its application to the analysis of additional predictive scenarios. A sequential saturation 

distribution maps at low water injection rate (4mL/hr) was used as matched data to 

generate representative relative permeability and capillary pressure curves. Based on the 

observations from the experiments and sensitivity analysis, an appearance of early water 

breakthrough and counter-current imbibition should be observed throughout the 

simulation. Average saturation as a function of time, spatial saturation profiles, and visual 

inspection of imbibition front are used as additional agreement criteria to generate a 

robust history matching result. These optimized curves were then validated with previous 

experimental data at higher water injection rate (40mL/hr) condition. Three further 

simulations were used to investigate the effect of homogeneity, heterogeneity and shape 

of boundary condition on the imbibition front evolution. 

 

Relative permeability and capillary pressure curves after history matching approach are 

shown in Figure 4-9 and Figure 4-10. Figure 4-9 indicates that relative permeability curve 

in fracture is larger than that in matrix, while capillary pressure in matrix is higher as 

shown in Figure 4-10. The relative permeability ratio between oil and water phase 

(kro/krw) is close to 0 as water saturation equals to 0.55 implying oil displacement rate 

starts to slow down after that point. In addition, matrix relative permeability curves 
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intersect at a water saturation of 0.53, which is consistent with experimental observation 

of  a dynamic equilibrium between oil and water phases within the imbibed zone at 

Sw=0.50-to-0.55. (Lee and Karpyn (2010)).   

 

Figure 4-9: Matrix and fracture relative permeability curves obtained from history 

matching method. 

 

Figure 4-10: Capillary pressure curves on both matrix and fracture obtained from history 

matching method. 
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Figure 4-11 shows an independent validation of relative permeability curves obtained 

from the history matching methods, against experimental measurements using steady-

state two-phase displacement in cylindrical cores. The curves obtained from the history 

match are slightly lower than the experimental ones, which is attributed to the fact that 

the steady-state displacement experiment took place is a co-current manner, while the 

history matched results correspond primarily to counter-current flow.  The difference in 

the magnitude of co-current and counter-current relative permeabilities is consistent with 

findings reported by Bourbiaux and Kalaydjian (1990). 

 

Figure 4-11: Comparison of experimental and history matched relative permeability 

curves. 
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early time seems to be slightly ahead of the experimental front in Figure 4-14, which can 

be explained through small differences in the continuity of the fracture zone and the 

simplified representation of the fracture by a row of grid blocks having uniform 

properties.  

 

 

Figure 4-12: Comparison of experimental and modeled average water saturation as a 

function of time at 4mL/hr water injection rate. 
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Figure 4-13: Comparison of experimental and modeled water saturation maps at 4 mL/hr water injection rate. 
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Figure 4-14: Comparison of experimental and modeled vertical saturation profiles 

perpendicular to the fracture and averaged over the central 6 mm of the sample, 

q=4mL/hr. 
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An additional test of the validity of the modeled system and transport properties was 

performed by predicting the evolution of the imbibition front and saturation changes at a 

higher injection rate, for which we also had experimental data.  This data set at higher 

injection rate was not presented to the model during the history match process, but rather 

used to assess the accuracy of the predictions. When using the matched transport 

properties to predict imbibition front evolution at a higher injection rate of 40mL/hr, the 

prediction still showed excellent agreement as displayed in Figure 4-15 through Figure 

4-17.  

 

Simulation results from different injection rates, in Figure 4-12 and Figure 4-15, show 

that higher-rate curve (q=40mL/hr) reaches higher water saturation, and thus higher oil 

displacement, at the expense of more pore volumes injected. The rate of injection is also 

responsible for the shape of the imbibing front, which is farther away from the fracture 

inlet than the outlet, as shown in Figure 4-16. This observation is less pronounced when 

the rate of injection is reduced, as shown in Figure 4-13. In addition, for approximately 

the same pore volume injected, that is 10min (0.36PVI) at high-rate case and 110min 

(0.33PVI) at low-rate case, we observe a much larger imbibed region in the low-rate case. 

This implies low injection rate (4mL/hr) allows a more effective spreading of water for 

the same volume injected.  

 

Further quantitative examination of saturation changes can be obtained from vertical 

saturation profiles, Figure 4-14 and Figure 4-17. For both simulation results, continuous 

high water saturation is observed in the center of the sample, where the fracture is 

located. The most noticeable differences between these two vertical profiles are: (1) the 

speed at which the water front moves away from the fracture, and (2) the change in 

saturation as moves away from the fracture. Figure 4-14 shows a gradual saturation 

change at the front, while there is a relative sharp drop in saturation across the water front 

in Figure 4-17. Furthermore, water saturations remain in the 0.50-to-0.55 range within the 

imbibed zone, which is consistent with the previous experimental results.  
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Figure 4-15: Comparison of experimental and predicted average water saturation as a 

function of time at 40mL/hr water injection rate. 
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Figure 4-16: Comparison of experimental and predicted water saturation maps at 40 mL/hr water injection rate. 
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Figure 4-17: Comparison of experimental and predicted vertical saturation profiles 

perpendicular to the fracture and averaged over the central 6 mm of the sample, 

q=40mL/hr. 
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4.5   Predictive Cases 

Having established a solid level of confidence in the modeled system, relative to its 

experimental counterpart, allowed us to design additional predictive scenarios to explore 

the influence of matrix homogeneity/heterogeneity and boundary shape on the response 

of the imbibition front. To investigate the influence of matrix homogeneity/heterogeneity 

on water front evolution, we compare three different porosity and permeability 

distributions as cases A, E and F with the same the transport properties provided in 

Figure 4-9 and Figure 4-10. This investigation can also help to explain the mismatching 

of faster water front evolving at early time in Figure 4-14. In circular systems, the water 

front hits outer boundaries faster in the inlet than the outlet.  

 

Case A: reference case.  

The average porosity and permeability are the same in all additional predictive cases. 

Their standard deviation in porosity and permeability are also listed in Table 4-3. 

 

Case E: as homogeneous systems.  

In case E, a single porosity (0.2273) and permeability (76.5 md) value were applied for 

entire modeled system except the fracture zone. A more uniform porosity and 

permeability distribution is expected to obtained than that in case A.  

 

Table 4-3: Standard deviation of porosity and permeability for cases A, E, F and G. 

Case 
Standard deviation of 

Porosity(mean=0.2273)  

Standard deviation of 

Permeability(mean=76.5mD)  

A 0.04 45.02 

E 0.00 0.00 

F 0.09 169.83 

G 0.04 45.02 
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Case F: as heterogeneous systems,  

In case F, matrix porosity variations were increased according to following equation: 

avgavgpixnewpix a   )(_
 

where a  is deviation factor (a=3), avg and pix are average and pixel porosity 

respectively.  Timur’s correlation (Timur (1968)) was used to obtain an absolute 

permeability value after a porosity distribution map was created. Figure 4-22 displayed 

porosity and permeability distributions for predictive case F. Figure 4-18 displays 

porosity and permeability histograms for cases A and F. Porosity and permeability in 

both cases shape as normal distribution according to Anderson-Darling Normality test 

(Anderson and Darling (1951)), while reference case A presents as a more sorted system 

than case F.  

 

Case G: as square boundaries.  

To study the effects of boundary shape on imbibing front inclination, which is away from 

the fracture inlet than the outlet as shown in Figure 4-13 and Figure 4-16, in case G, we 

change circular boundary as a square boundary using the same rock and fluid properties 

of reference case A. This additional case study can help to understand the effects of 

boundary shape on imbibing front inclination. 

  

Figure 4-18: Matrix porosity (left) and permeability (right) histograms for cases A and F. 
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Figure 4-19 presents average saturation changes as a function of time for cases A, E, F 

and G. The results show oil displacement rate is nearly identical for cases A, E and G 

throughout the entire simulations. Close examination of case E, the homogeneous system, 

shows that saturations begin to separate from case A and increase slightly faster after 

around 100 minutes of water injection. Further increments become negligible after 400 

minutes and reach a final water saturation of about 0.56. This can be explained by the fact 

that rock properties of the reference case A are close to homogeneous. However, in case 

F (heterogeneous system), saturations separate from case A after 30 minutes injection, 

and increase at a slower rate with respect to case A. After 1400 minutes of injection, 

saturation reaches a final saturation value of 0.55. It indicates the increase matrix 

heterogeneity decreases oil displacement rate. It also confirms the previous observation 

that the displacement rate is mainly controlled by relative permeabilities. Furthermore, in 

case G, we change the circular boundaries to square boundaries. Saturation distributions 

obtained from case G are nearly identical to the reference cases A, implying that the 

shape of the boundaries has low effect on oil displacement under capillary dominant 

condition.  

 

 

Figure 4-19: Average water saturation as a function of time at 4mL/hr water injection rate 

for cases A, E, F and G. 
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Similar observations are made from the time progressions of water saturation maps in 

Figure 4-20. Case E, the homogeneous system, shows a slightly faster water front 

extension respect to reference case A, while an unsmooth and slower water front 

progression was observed in case F, the heterogeneous systems. This result extends our 

previous conclusions that the reason for the mismatch of water front at early time in 

Figure 4-14 is not limited to the continuity of the fracture zone and the simplified 

representation of the fracture. An up-scaling scheme for the simulation model could 

create a smooth property distribution and a more homogeneous system that can contribute 

to the speed of water front evolution. In addition, the system with square boundary (case 

G), shows similar results to the system with circular boundary (case A), confirming that 

the rate of injection is responsible for the shape of the imbibing front, and this effect is 

less pronounced when the rate of injection is reducing.  Under capillary-dominant 

counter-current flow regimes, the shape of the boundary has a minimal effect on shape of 

imbibing front evolution. 
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Figure 4-20: Predicted sequence of water saturation maps at 4mL/hr water injection rate for cases A, E, F and G. 
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Chapter 5                                                                                      

Conclusions 

Understanding and predicting the migration of fluids in fractured geologic systems is of 

great importance in many geological applications, be it for remediation, recovery, 

storage, or sequestration. In this study, we analyze the impact of injection rate, viscosity 

ratio, fracture orientation and transport properties on recovery and imbibition front 

evolution in fractured sandstone, under capillary dominated conditions. Results lead to 

the following conclusions: 

 

 The higher injection flow rate (q=40mL/hr) shows higher oil recovery, at the 

expense of more pore volumes injected to reach the ultimate oil recovery. A sharp 

imbibing front is observed in the high-rate experiment, while a smoother 

saturation gradient is observed at low rate. Water saturation in the imbibed zone 

remains constant at around 0.50-to-0.55, suggesting a dynamic equilibrium in the 

mobility of oil and water phases. We also describe the counter-current flow 

mechanisms that are evident from the experimental results, and support our 

observations on the evolution of saturation maps and profiles obtained in the 

laboratory.  

 

 Co-current flow dominates in the case of water displacing air, while counter-

current flow dominates in the case of water displacing kerosene. Liquid-liquid (in 

the case of water displacing kerosene) and gas-liquid (in the case of water 

displacing air) imbibition results show significant differences in the shape of the 

imbibing front, breakthrough time, and saturation profiles. Capillary forces are 

significantly hindered in the case of water displacing viscous oil when the 

viscosity of the displaced phase increases, thus making the overall process viscous 

dominated. 
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  The influence of fracture orientation on the shape of the imbibing front, and 

ultimate recovery, was minimal for the time- and length-scales considered in this 

investigation. However, the varying relevance of gravity at different fracture 

inclinations still causes changes in water saturation distribution behind the 

imbibing front, and breakthrough time. Water breakthrough also switches the 

fracture-matrix transfer mechanism from co-current to counter-current, thus 

limiting additional recovery of the resident fluid phase. In addition, there is direct 

evidence of snap-off inside the fracture when the invading front in the matrix 

moves ahead of the invading front in the fracture. 

 

 Final saturation and ultimate displacement are most sensitive to relative 

permeability ratio between oil and water phase. Relative permeability to water in 

the matrix, capillary pressure contrast between matrix and fracture, and degree of 

rock heterogeneity determine the speed and shape of imbibing front progression. 

The balance of capillarity and relative permeabilities also has a significant impact 

on the shape of the invasion front, resulting in periods of co-current and counter-

current imbibition. Fracture permeability, and capillary pressure contrast between 

matrix and fracture dominate occurrence of water breakthrough. The impact of 

boundary shape on imbibition front evolution was found to be minimal under the 

evaluated flow conditions, which are dominated by capillary forces.  

 

 Additional experimental and numerical analyses in tight sands and shale are 

required in the future which would be benefit to evaluate migration and trapping 

of hydraulic fracturing leak-off under shut-in conditions. 
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Appendix A                                                                                                                                                 

Derivative of Porosity and Fluid saturations from CT Scans 

A.1 Kerosene-Brine System 

1 Average Porosity 

volumedeadvolumeBulk

injectedoil

avg
VV

V

__

_




………….....………………...……….….....................[1] 

 

2 Pixel Porosity 

when pore space was 100% saturated with oil 

  pixeloilpixelmatrixpixelsatoil CTCTCT   1,_ ………………………….....…….............[2] 

  avgoilavgmatrixavgsatoil CTCTCT   1,_ ………….............………....….....................[3] 

during vacuum condition 

  pixelvacuumpixelmatrixpixelvacuum CTCTCT   1, ……………...…...…..................[4] 

  avgvacuumavgmatrixavgvacuum CTCTCT   1, ………………............….................[5] 

 

By subtracting equation [2] and [4], we have 

  pixelvacuumoilpixelvacuumpixelsatoil CTCTCTCT  ,,_  

vacuumoil

pixelvacuumpixelsatoil

pixel
CTCT

CTCT






,,_

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By subtracting equation [3] and [5], we have 

  avgvacuumoilavgvacuumavgsatoil CTCTCTCT  ,,_   

avg
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[7] into [6] 

avg
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3 Average water saturation:  
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avgsatoilavgf

avgw
CTCT

CTCT
S

,_,_

,_,

,





……………........................………….…....….......[9] 

 

4 pixel water saturation: 

As a co-existence of kerosene and water in the pore space (f). 

    pixelwpixelwaterpixelwpixeloilpixelmatrixpixelf SCTSCTCTCT ,,, 11  
..…….........[10] 

    wwaterwoilmatrixavgf SCTSCTCTCT   11, ….…...................................[11] 

By subtracting equation [2] and [10], we have 
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By subtracting equation [3] and [11], we have 

woilwwateravgsatoilavgf SCTSCTCTCT  ,_,  

avgwavg

avgsatoilavgf

oilwater
S

CTCT
CTCT

,

,_,







…….….............................................................[13] 

[13] into [12] 

avgw

pixel

avg

avgsatoilavgf

pixelsatoilpixelf

pixelw S
CTCT

CTCT
S ,

,_,

,_,

, 
























………………....…..….…….......….…….[14] 
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A.2 Air-Brine System 

1 Average Porosity 

volumedeadvolumeBulk

injectedDW

avg
VV

V

__

_




……………...……………………………...…............[1] 

 

2 Pixel Porosity 

when pore space was 100% saturated with distilled water 

  pixelDWpixelmatrixpixelsatDW CTCTCT   1,_ ……………………….….…....…...[15] 

  avgDWavgmatrixavgsatDW CTCTCT   1,_ ………………………...........….........[16] 

By subtracting equation [15] and [2], we have  

  pixelvacuumDWpixelvacuumpixelsatDW CTCTCTCT  ,,_  

vacuumDW

pixelvacuumpixelsatDW

pixel
CTCT

CTCT






,,_

… … … … … . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . … . . . . . . . . . . . . . [ 1 7 ] 

By subtracting equation [16] and [5], we have 

  avgvacuumDWavgvacuumavgsatDW CTCTCTCT  ,,_   

avg

avgvacuumavgsatDW

vacuumDW

CTCT
CTCT



,,_ 


……..……...................................[18] 

[18] into [17] 

avg

avgvacuumavgsatDW

pixelvacuumpixelsatDW

pixel
CTCT

CTCT


,,_

,,_






……………………………...............[19] 

 

3 Average water saturation:  

avgwavgwiavgw SSS ,,, 
…………….....................………..…........….…….….... [20] 

3.1 Initial water saturation(with distilled water) 
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avgvacuumavgsatDW

avgvacuumavgDWinitial

avgwi
CTCT

CTCT
S

,,_

,,_

,





………….....……………..…..…............ [21] 

 

3.2 Water saturation increments(Brine) 

avgDWinitialavgsatbrine

avgDWinitialavgf

avgw
CTCT

CTCT
S

,_,_

,_,

,





……….....…………...............….….... [22] 

 

4 Pixel water saturation 

pixelwpixelwipixelw SSS ,,,  …………..................……………………….…….….... [23] 

4.1 Initial water saturation (distilled water) 

when pore space was 100% saturated with air 

  pixelairpixelmatrixpixelsatair CTCTCT   1,_ ......................................................[24] 

when there was residual DW in pore space 

    pixelwipixelDWpixelwipixelairpixelmatrixpixelDWinitial SCTSCTCTCT ,,,_ 11  

........................................................................................................................[25]  

By subtracting equation [24] and [25] 

 

pixelairDW

pixelsatairpixelDWinitial

pixelwi
CTCT

CTCT
S



1__,_

, 





......................................................[26] 

Assume vacuumair CTCT 
 and recall equation [18] 

avg

avgvacuumavgsatDW

vacuumDW

CTCT
CTCT



,,_ 


……..…...................................[18] 

[18] into [26] 

pixel

avg

avgvacuumavgsatDW

pixelsatairpixelDWinitial

pixelwi
CTCT

CTCT
S











,,_

__,_

,

................................................[27] 

Assume avgvacuumavgair CTCT ,, 
 and recall equation [21] 

  pixelwipixelairDWpixelsatairpixelDWinitial SCTCTCTCT ,__,_  
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avgwi

avgvacuumavginitialDW

avgvacuumavgsatDW
S

CTCT
CTCT

,

,,_

,,_




……............................ [21] 

 

 

[21] into [27] 

avgwi

pixel

avg

avgvacuumavginitialDW

pixelsatairpixelDWinitial

pixelwi S
CTCT

CTCT
S ,

,,_

__,_

, 









.....................................[28] 

 

 

4.2 Water saturation increments (with Brine) 

As a co-existence of air and brine in the pore space (f). 

   

pixelwpixelbrinepixelwipixelwater

pixelwpixelwipixelairpixelmatrixpixelf

SCTSCT

SSCTCTCT

,,

,,, 11









..........................[29] 

when there was residual DW in pore space 

    pixelwipixelDWpixelwipixelairpixelmatrixpixelDWinitial SCTSCTCTCT ,,,_ 11  

…….…...........................................................................................................[30] 

By subtracting equation [29] from [30] 

  pixelwpixelairbrinepixelDWinitialpixelf SCTCTCTCT ,,_,  
 

  pixelairbrine

pixelDWinitialpixelf

pixelw
CTCT

CTCT
S






,_,

,

….........................................................[31] 

since 

  avgvacuumbrineavgvacuumavgsatbrine CTCTCTCT  ,,_ ..................................[32] 

 

[32] into[31] 

pixel

avg

avgvacuumavgsatbrine

pixelDWinitialpixelf

pixelw
CTCT

CTCT
S









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,,_

,_,

,

…................................................[33] 

 



 

 

Appendix B                                                                                             

Matlab Code for Automated History Matching 

 

B.1 Optimization 

clear all 

clc 

tic 

x0=[2.5 1.4 1 3.5]; 

LB=[0.01 0.01 -3 -3]; 

UB=[10 10 10 10]; 

options = optimset; 

options = optimset(options,'Display','iter'); 
options = optimset(options,'TolFun',0.0001); 
options = optimset(options,'TolX',0.00001 ); 
options = optimset(options,'TolCon',0); 
options = optimset(options,'FunValCheck','on'); 
 

options = optimset(options,'Diagnostics','on'); 
options = optimset(options,'DiffMaxChange',0.1); 
options = optimset(options,'DiffMinChange',0.001 ); 
options = optimset(options,'LargeScale','on'); 
[x,resnorm,residual,exitflag,output,lambda,jacobian] = ... 
lsqnonlin(@obj_lee_EXP16,x0,LB,UB,options); 
toc 
 
 
B.2 Objective Function 
function F=obj_lee_EXP16(x) 
load 
('C:\Users\Chunghao\Documents\MATLAB\EXP16(flowrate=4ml_hr)
\EXP16_por_avg5_centralized.mat') 

load 
('C:\Users\Chunghao\Documents\MATLAB\EXP16(flowrate=4ml_hr)
\EXP16_Kabs_avg5_centralized.mat') 
load 
('C:\Users\Chunghao\Documents\MATLAB\EXP16(flowrate=4ml_hr)
\EXP16_null.mat') 
EXP16_Kabs_jk=EXP16_Kabs_avg5_centralized; 
EXP16_Kabs_jk(49,:)=5000; 
Swr=0.19; 
Sor=1-0.83; 
NSw=17;NSwf=19; 
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%NSw and NSwf were the number of saturation points... 
%that picked within the interval of Swirr and 1-Sor 
Nx=97;Ny=1;Nz=97;%grids in x and y direction 
Sw=linspace(Swr,1-Sor,NSw); 
Krwiro=0.077; 
krw=Krwiro*((Sw-0.19)/(1-0.19-0.17)).^x(2); 
Krocw=0.7402; 
no=10; 
kro1=Krocw*((1-Sw-(1-Sw(no)))/(1-0.19-(1-
Sw(no)))).^(1+2/x(1)); 
kro2=Krocw*((1-Sw-0.17)/(1-0.19-0.17)).^9; 

kro1=kro1+kro2(no); 
kro=[kro1(1:(no-1)) kro2(no:17)]; 
CPc=((19.995*x(2))+62.055)/3; 
Pcow=zeros(1,NSw); 
for j=1:NSw; 
    if ((Sw(j)>Swr)&&(Sw(j)<=1-Sor)); 
        Pcow(j)=CPc/(((Sw(j)-Swr)/(1-Sor-Swr))^(1/x(1))); 
    elseif (Sw(j)==Swr); 
        Pcow(j)=(1.5)*(CPc/(((Sw(j+1)-Swr)/(1-Sor-
Swr))^(1/x(1)))); 
    end 
end 
Pcow(1)=(1.5)*Pcow(3); 
Pcow(NSw)=CPc/(((Sw(NSw)-Swr)/(1-Sor-Swr))^(1/x(1))); 

load 
('C:\Users\Chunghao\Documents\MATLAB\EXP16(flowrate=4ml_hr)
\Swf.mat')   
Sorwf=0; 
Soirwf=0; 
Swcritf=0; 
Swconf=0; 
Krocwf=1; 
Krwirof=0.5; 
krwf=Krwirof*((Swf-Swcritf)/(1-Swcritf-Soirwf)).^1.8; 
krof=Krocwf*((1-Swf-Sorwf)/(1-Swconf-Sorwf)).^1.8; 
krof(19)=0; 
CPcf=((6.2*x(4))+20.67)/3;  %fracture 
  

Pcowf=zeros(1,NSwf); 
Pcowf(1)=1.5*CPcf/Swf(2); %fracture 
for i=1:NSwf-1; 
    Pcowf(i+1)=CPcf/Swf(i+1); %fracture 
end 
 
%% Modified from Basar's code 
fid= fopen('EXP16_CMG.dat','w'); 
fprintf(fid,'%s\n','***************************************
*****************************************'); 
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fprintf(fid,'%s\n','** EXP16                                                                       
**');                                   
fprintf(fid,'%s\n','***************************************
*****************************************'); 
fprintf(fid,'%s\n','***************************************
*****************************************'); 
fprintf(fid,'%s\n','** IMEX                                                                        
**'); 
fprintf(fid,'%s\n','** 97x1x97                                                                     
**'); 
fprintf(fid,'%s\n','** Kerosene-Brine                                                              

**'); 
fprintf(fid,'%s\n','** q=4ml_hr                                                                    
**');       
fprintf(fid,'%s\n','** Horizontal Fracture                                                         
**');  
fprintf(fid,'%s\n','** LAB UNIT                                                                    
**');         
fprintf(fid,'%s\n','***************************************
*****************************************'); 
  
fprintf(fid,'%s\n','RESULTS SIMULATOR IMEX'); 
fprintf(fid,'%s\n','*TITLE1');     
fprintf(fid,'%s\n',' ''EXP16'' '); 
fprintf(fid,'%s\n','*TITLE2'); 

fprintf(fid,'%s\n',' ''Kerosene-Brine'' '); 
fprintf(fid,'%s\n','*TITLE3'); 
fprintf(fid,'%s\n',' ''q=4ml_hr'' '); 
  
fprintf(fid,'%s\n','*WPRN   *GRID *TIME'); 
fprintf(fid,'%s\n','*WPRN   *WELL *TIME'); 
fprintf(fid,'%s\n','*WPRN   *SECTOR *TIME'); 
  
fprintf(fid,'%s\n','*OUTPRN *WELL *ALL'); 
fprintf(fid,'%s\n','*OUTPRN *GRID *SO *SW *PRES *OILPOT 
*BPP'); 
  
fprintf(fid,'%s\n','*WSRF   *GRID  *TIME'); 
fprintf(fid,'%s\n','*WSRF   *WELL  *TIME'); 

fprintf(fid,'%s\n','*OUTSRF *WELL *ALL'); 
fprintf(fid,'%s\n','*OUTSRF *GRID *ALL'); 
fprintf(fid,'%s\n','**OUTSRF *GRID *SO *SW *PRES *OILPOT 
*BPP'); 
fprintf(fid,'%s\n','*OUTSRF *RES *ALL'); 
    
fprintf(fid,'%s\n','*INUNIT *LAB'); 
fprintf(fid,'%s\n','***************************************
****************************************'); 
fprintf(fid,'%s\n','**SECTION: RESERVOIR DESCRIPTION:                                              
**'); 
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fprintf(fid,'%s\n','***************************************
****************************************'); 
  
fprintf(fid,'%s %d %d %d\n','*GRID *VARI',Nx,Ny,Nz); 
fprintf(fid,'%s\n','*KDIR  *DOWN'); 
  
fprintf(fid,'%s\n','*DI    *CON  0.102539063 ** cm'); 
fprintf(fid,'%s\n','*DJ    *CON  1.0         ** cm'); 
fprintf(fid,'%s\n','*DK    *CON  0.102539063 ** cm'); 
fprintf(fid,'%s\n','*DEPTH 1 1 1 -4.921875'); 
fprintf(fid,'%s\n','*null   *ALL'); 

for i=1:97; 
    for k=1:97;         
        fprintf(fid,'%f ',EXP16_null(i,k));         
        fprintf(fid,'\n'); 
    end 
end 
fprintf(fid,'%s\n','*POR   *ALL'); 
for i=1:97; 
    for k=1:97;         
        fprintf(fid,'%f ',EXP16_por_avg5_centralized(i,k));         
        fprintf(fid,'\n'); 
    end 
end 
fprintf(fid,'%s\n','*PERMI   *ALL'); 

for i=1:97; 
    for k=1:97;         
        fprintf(fid,'%f 
',EXP16_Kabs_avg5_centralized(i,k));         
        fprintf(fid,'\n'); 
    end 
end 
fprintf(fid,'%s\n','*PERMJ *ALL'); 
for i=1:97; 
    for k=1:97;         
        fprintf(fid,'%f ',EXP16_Kabs_jk(i,k));         
        fprintf(fid,'\n'); 
    end 
end 

fprintf(fid,'%s\n','*PERMK *ALL'); 
for i=1:97; 
    for k=1:97;         
        fprintf(fid,'%f ',EXP16_Kabs_jk(i,k));         
        fprintf(fid,'\n'); 
    end 
end 
fprintf(fid,'%s\n','*CPOR  *MATRIX 1E-6'); 
fprintf(fid,'%s\n','*PRPOR *MATRIX 101.325   ** kPa'); 
fprintf(fid,'%s\n','*MODEL *OILWATER'); 
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fprintf(fid,'%s\n','***************************************
******************************************'); 
fprintf(fid,'%s\n','**SECTION: PVT DATA:                                                           
**'); 
fprintf(fid,'%s\n','***************************************
******************************************'); 
fprintf(fid,'%s\n','*PVT *BG 1'); 
  
fprintf(fid,'%s\n','**p(kPa)  rs      bo       Bg    
viso(mPa-s) visg(mPa-s)'); 
fprintf(fid,'%s\n','82.9688 1.4768  1.00936 1.25955   

2.32164   0.0095245'); 
fprintf(fid,'%s\n','124.26  1.76531 1.01002 0.839518  
2.29698   0.0095319'); 
fprintf(fid,'%s\n','165.552 2.0621  1.0107  0.629009  
2.27224   0.00953988'); 
fprintf(fid,'%s\n','206.843 2.36635 1.01139 0.502545  
2.24752   0.00954833'); 
fprintf(fid,'%s\n','240.077 2.6162  1.01196 0.432355  
2.22769   0.00955543'); 
fprintf(fid,'%s\n','300 3.07697 1.01303 0.345095  2.19219   
0.00956883'); 
  
fprintf(fid,'%s\n','*DENSITY *OIL      0.8136 ** g/cm3'); 
fprintf(fid,'%s\n','*DENSITY *GAS      0.0012 ** g/cm3'); 

fprintf(fid,'%s\n','*DENSITY *WATER    1.1456 ** g/cm3'); 
    
fprintf(fid,'%s\n','*CO          0.000896311'); 
fprintf(fid,'%s\n','*BWI         1.00000 '); 
fprintf(fid,'%s\n','*CW          0'); 
fprintf(fid,'%s\n','*REFPW     101.325'); 
fprintf(fid,'%s\n','*VWI         1         ** mPa-s'); 
fprintf(fid,'%s\n','*CVW         0.0'); 
     
fprintf(fid,'%s\n','*ROCKFLUID'); 
fprintf(fid,'%s\n','***************************************
******************************************'); 
fprintf(fid,'%s\n','** Rock-Fluid Property Section                                                 
**'); 

fprintf(fid,'%s\n','***************************************
******************************************'); 
fprintf(fid,'%s\n','*RPT 1 *IMBIBITION *PCOW'); 
fprintf(fid,'%s\n','*EPSPC  0.05'); 
fprintf(fid,'%s\n','*SWT'); 
fprintf(fid,'%s\n','** sw krw krow Pcow '); %  
for i=1:NSw 
    fprintf(fid,'%f %f %f %f\n', Sw(i), krw(i), kro(i), 
Pcow(i)); 
end 
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fprintf(fid,'%s\n','*RPT 2 **IMBIBITION **PCOW'); 
fprintf(fid,'%s\n','*SWT'); 
fprintf(fid,'%s\n','**   sw   krw    krow   Pcow  '); 
for i=1:NSwf 
  fprintf(fid,'%f %f %f %f\n', Swf(i), krwf(i), (krof(i)), 
Pcowf(i)); 
end 
  
fprintf(fid,'%s\n','*RTYPE *MATRIX   *CON 1');    
fprintf(fid,'%s\n','*MOD'); 
fprintf(fid,'%s\n','1:97 1:1 49:49 = 2'); 

fprintf(fid,'%s\n','*INITIAL'); 
fprintf(fid,'%s\n','***************************************
******************************************'); 
fprintf(fid,'%s\n','** Initial Conditions **'); 
fprintf(fid,'%s\n','***************************************
******************************************'); 
fprintf(fid,'%s\n','*USER_INPUT'); 
fprintf(fid,'%s\n','*PRES *KVAR'); %pressure gradient in Z 
direction 
fprintf(fid,'%s\n','4*101.3244','8*101.3245','8*101.3246','
8*101.3247','9*101.3248','8*101.3249','8*101.325','8*101.32
51',... 
    
'9*101.3252','8*101.3253','8*101.3254','8*101.3255','3*101.

3256'); 
fprintf(fid,'%s\n','*PB   *MATRIX *CON 0.386'); %Bubble 
point pressure 
fprintf(fid,'%s\n','*SO   *MATRIX *CON 1'); 
fprintf(fid,'%s\n','*DATUMDEPTH 0 *INITIAL'); 
  
fprintf(fid,'%s\n','*NUMERICAL'); 
fprintf(fid,'%s\n','***************************************
******************************************'); 
fprintf(fid,'%s\n','** Numerical Control Section                                                   
**'); 
fprintf(fid,'%s\n','***************************************
******************************************'); 
fprintf(fid,'%s\n','*MAXSTEPS  10000000');       

fprintf(fid,'%s\n','*AIM  *OFF');             
fprintf(fid,'%s\n','*NORM *PRESS 3000.0');  %default value 
fprintf(fid,'%s\n','*NORM *SATUR 0.1');     %default value 
    
fprintf(fid,'%s\n','*RUN'); 
fprintf(fid,'%s\n','*DATE 2010 10 25'); 
fprintf(fid,'%s\n','***************************************
******************************************'); 
fprintf(fid,'%s\n','** Well and Recurrent Data Section                                             
**'); 
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fprintf(fid,'%s\n','***************************************
******************************************'); 
   
fprintf(fid,'%s\n','*DTMAX  0.1   ** minutes'); 
%fprintf(fid,'%s\n','*DTWELL 0.001 ** minutes'); 
fprintf(fid,'%s\n','*DTMIN 0.0001 ** minutes'); 
fprintf(fid,'%s\n','*AIMSET *MATRIX   *CON 1  ** Set all 
blocks implicit'); 
  
fprintf(fid,'%s %d %s %d 
%s\n','*WELL',1,'''PRODUCER',1,''''); 

fprintf(fid,'%s %d\n','*PRODUCER',1); 
%fprintf(fid,'%s %f %s\n','*OPERATE *MAX *STL',4/60,'** 
cm3/min =  m3/D'); 
fprintf(fid,'%s %f %s\n','*OPERATE *MIN *BHP' ,101.325,' 
**kpa'); 
fprintf(fid,'%s\n','**                  RW,   CC,   WF,  
SS'); 
fprintf(fid,'%s\n','*GEOMETRY  *K      0.01  0.34   1.0  
0.0');    
fprintf(fid,'%s %d\n','*PERF *GEO',1); 
fprintf(fid,'%s\n','** i  j  k  ff');         
fprintf(fid,'%d %d %d %s\n',97,1,49, '1.0'); 
  
fprintf(fid,'%s %d %s %d %s\n','*WELL',2, 

'''INJECTOR',2,''''); 
fprintf(fid,'%s %d\n','*INJECTOR *MOBWEIGHT',2); 
fprintf(fid,'%s\n','*INCOMP  *WATER'); 
fprintf(fid,'%s %f %s\n','*OPERATE *MAX *STW',4/60,'** 
cm3/min =  m3/D'); 
fprintf(fid,'%s\n','**                  RW,   CC,   WF,  
SS'); 
fprintf(fid,'%s\n','*GEOMETRY  *K      0.01  0.34   1.0  
0.0');    
fprintf(fid,'%s %d\n','*PERF *GEO',2); 
fprintf(fid,'%s\n','** i  j  k  ff');         
fprintf(fid,'%d %d %d %s\n',1,1,49,'1.0');  
fprintf(fid,'\n'); 
fprintf(fid,'%s\n','*TIME 10'); 

fprintf(fid,'%s\n','*TIME 30'); 
fprintf(fid,'%s\n','*TIME 50'); 
fprintf(fid,'%s\n','*TIME 80'); 
fprintf(fid,'%s\n','*TIME 110'); 
fprintf(fid,'%s\n','*TIME 170'); 
fprintf(fid,'%s\n','*TIME 200'); 
fprintf(fid,'%s\n','*TIME 230'); 
fprintf(fid,'%s\n','*TIME 260'); 
fprintf(fid,'%s\n','*TIME 290'); 
fprintf(fid,'%s\n','*TIME 350'); 
fprintf(fid,'%s\n','*TIME 410'); 
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fprintf(fid,'%s\n','*TIME 470'); 
fprintf(fid,'%s\n','*TIME 530'); 
fprintf(fid,'%s\n','*TIME 710'); 
fprintf(fid,'%s\n','*TIME 890'); 
fprintf(fid,'%s\n','*TIME 1190'); 
fprintf(fid,'%s\n','*TIME 1430'); 
fprintf(fid,'%s\n','*TIME 2030'); 
fprintf(fid,'%s\n','*TIME 2930'); 
fprintf(fid,'%s\n','*TIME 4370'); 
fprintf(fid,'%s\n','*STOP'); 
status=fclose('all'); 

%% 
dos('run_cmg_imex_exe.bat'); 
dos('run_cmg_report_exe.bat'); 
% 
Sw_read=fopen('SW.INC','r'); 
reading=fscanf(Sw_read,'%s',1); 
i=1; 
Sw_map=zeros(97,97); 
while(1) 
    if strcmp(reading,'J')==1 
        reading=fscanf(Sw_read,'%s',1); 
        if strcmp(reading,'=')==1 
            reading=fscanf(Sw_read,'%s',1); 
            if strcmp(reading,'1')==1 

                Sw_map(i,:)=fscanf(Sw_read,'%f',[1,97]); 
                i=i+1; 
            end 
        end 
    end 
    if feof(Sw_read)==1 
        break 
    end 
    reading=fscanf(Sw_read,'%s',1); 
end 
%% 
load 
('C:\Users\Chunghao\Documents\MATLAB\EXP16(flowrate=4ml_hr)
\EXP16_97_10.mat') 

load 
('C:\Users\Chunghao\Documents\MATLAB\EXP16(flowrate=4ml_hr)
\EXP16_97_30.mat') 
load 
('C:\Users\Chunghao\Documents\MATLAB\EXP16(flowrate=4ml_hr)
\EXP16_97_50.mat') 
load 
('C:\Users\Chunghao\Documents\MATLAB\EXP16(flowrate=4ml_hr)
\EXP16_97_80.mat') 



83 

 

load 
('C:\Users\Chunghao\Documents\MATLAB\EXP16(flowrate=4ml_hr)
\EXP16_97_110.mat') 
load 
('C:\Users\Chunghao\Documents\MATLAB\EXP16(flowrate=4ml_hr)
\EXP16_97_170.mat') 
load 
('C:\Users\Chunghao\Documents\MATLAB\EXP16(flowrate=4ml_hr)
\EXP16_97_200.mat') 
load 
('C:\Users\Chunghao\Documents\MATLAB\EXP16(flowrate=4ml_hr)

\EXP16_97_230.mat') 
load 
('C:\Users\Chunghao\Documents\MATLAB\EXP16(flowrate=4ml_hr)
\EXP16_97_260.mat') 
load 
('C:\Users\Chunghao\Documents\MATLAB\EXP16(flowrate=4ml_hr)
\EXP16_97_290.mat') 
load 
('C:\Users\Chunghao\Documents\MATLAB\EXP16(flowrate=4ml_hr)
\EXP16_97_350.mat') 
load 
('C:\Users\Chunghao\Documents\MATLAB\EXP16(flowrate=4ml_hr)
\EXP16_97_410.mat') 
load 

('C:\Users\Chunghao\Documents\MATLAB\EXP16(flowrate=4ml_hr)
\EXP16_97_470.mat') 
load 
('C:\Users\Chunghao\Documents\MATLAB\EXP16(flowrate=4ml_hr)
\EXP16_97_530.mat') 
load 
('C:\Users\Chunghao\Documents\MATLAB\EXP16(flowrate=4ml_hr)
\EXP16_97_710.mat') 
load 
('C:\Users\Chunghao\Documents\MATLAB\EXP16(flowrate=4ml_hr)
\EXP16_97_890.mat') 
load 
('C:\Users\Chunghao\Documents\MATLAB\EXP16(flowrate=4ml_hr)
\EXP16_97_1190.mat') 

load 
('C:\Users\Chunghao\Documents\MATLAB\EXP16(flowrate=4ml_hr)
\EXP16_97_1430.mat') 
load 
('C:\Users\Chunghao\Documents\MATLAB\EXP16(flowrate=4ml_hr)
\EXP16_97_2030.mat') 
load 
('C:\Users\Chunghao\Documents\MATLAB\EXP16(flowrate=4ml_hr)
\EXP16_97_2930.mat') 



84 

 

load 
('C:\Users\Chunghao\Documents\MATLAB\EXP16(flowrate=4ml_hr)
\EXP16_97_4370.mat') 
  
EXP16_EXP=cat(1,EXP16_97_10,EXP16_97_30,EXP16_97_50,EXP16_9
7_80,EXP16_97_110,EXP16_97_170,EXP16_97_200,EXP16_97_230,EX
P16_97_260,EXP16_97_290,EXP16_97_350,EXP16_97_410,EXP16_97_
470,EXP16_97_530,EXP16_97_710,EXP16_97_890,EXP16_97_1190,EX
P16_97_1430,EXP16_97_2030,EXP16_97_2930,EXP16_97_4370);     
     
% 

EXP16_CMG=Sw_map(1:end,:); 
 
n_Sw_avg=length(EXP16_EXP)/97; 
EXP16_CMG_avg=zeros(1,n_Sw_avg); 
EXP16_EXP_avg=zeros(1,n_Sw_avg); 
EXP16_EXP_profile=zeros(97,n_Sw_avg); 
EXP16_CMG_profile=zeros(97,n_Sw_avg); 
for i=0:n_Sw_avg-1 
    
EXP16_CMG_avg(1,i+1)=Sw_avg(EXP16_CMG(i*97+1:i*97+97,:),EXP
16_null,97);    
EXP16_EXP_avg(1,i+1)=Sw_avg(EXP16_EXP(i*97+1:i*97+97,:),EXP
16_null,97);    
EXP16_EXP_profile(1:97,i+1)=mean(EXP16_EXP(i*97+1:i*97+97,4

6:52),2);    
EXP16_CMG_profile(1:97,i+1)=mean(EXP16_CMG(i*97+1:i*97+97,4
6:52),2); 
end 
  
Time_Line=[0 10 30 50 80 110 170 200 230 260 290 350 410 
470 530 710 890 1190 1430 2030 2930 4370]; 
 
figure,plot(Time_Line,[0,EXP16_CMG_avg],'-*'... 
    ,Time_Line,[0,EXP16_EXP_avg],'-o'); 
% 
height=(0.102539063)*10*linspace(-48,48,97); 
figure; 
for i=1:6   

plot(EXP16_EXP_profile(:,i),height,'b-');hold on; 
plot(EXP16_CMG_profile(:,i),height,'r-.'); 
axis([0 1 -50 
50]);xlabel('Sw(fraction)'),ylabel('Height(mm)'); 
hold on; 
end 
plot(EXP16_EXP_profile(:,end),height,'b-'); 
plot(EXP16_CMG_profile(:,end),height,'r-.'); 
F=(EXP16_CMG_avg-EXP16_EXP_avg)*100; 
save residual.mat F 
save x0 x  
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