
The Pennsylvania State University

The Graduate School

College of Engineering

NEW TECHNIQUES FOR TRUSTWORTHY MOBILE

COMPUTING

A Dissertation in

Computer Science and Engineering

by

Xin Chen

© 2015 Xin Chen

Submitted in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

December 2015

The dissertation of Xin Chen was reviewed and approved∗ by the following:

Sencun Zhu

Associate Professor of CSE & IST

Dissertation Advisor, Chair of Committee

Guohong Cao

Professor of CSE

Wang-Chien Lee

Professor of CSE

Le Bao

Assistant Professor of STAT

Mahmut Kandemir

Professor of CSE

Graduate Program Chair

∗Signatures are on file in the Graduate School.

ii

Abstract

Technology advances in wireless networking have engendered a new era of com-
puting, called mobile computing, in which users carrying portable devices have
access to shared networks regardless of their physical locations. The new com-
puting paradigm provides users with seamless access to networked services, and
therefore, revolutionizes the way how computers are used. While more and more
users enjoy the convenient networked services brought by mobile computing, the
unique characteristics of mobile computing in communication channels (e.g., WiFi,
GSM, Bluetooth, NFC, SMS), in hardware (e.g., PDA, smartphone and wearable
device) and in software (e.g., Palm OS, Apple iOS, Google Android) also have
raised many new concerns on trust, security and privacy.

In this dissertation, we present our studies on two types of mobile networks: tac-
tical networks and mobile phone networks. For tactical networks, we elaborate our
study about operational trust management and attack-resilient reputation man-
agement. Specifically, we first present Zigzag, a partial mutual revocation based
trust management scheme, which allows rapid impeachment of identified malicious
nodes, and then propose GlobalTrust, an attack-resilient reputation system for
tactical networks, which aims at optimizing reputation assessment by identifying
malicious nodes, and meanwhile, providing the consistency and resiliency.

For mobile phone networks, we first present DroidLid, an automated functionality-
aware privacy leakage analysis for Android applications. Prior approaches to de-
tecting privacy leakage on smartphones primarily focused on the discovery of sensi-
tive information flows but did not justify whether the leaked sensitive information
flow is intended or not. In this study, we formulate it as a justification problem,
which aims to justify the purpose of every sensitive information transmission in
an app. We solve the justification problem by bridging the gap between the sen-
sitive information transmission and application functions. Moreover, we propose
SweetDroid, a calling-context-sensitive, fine-grained privacy policy enforcement
framework for Android OS. Our policy enforcement framework is able to distin-
guish sensitive data requests at different calling contexts and applies different pol-

iii

icy rules automatically. The policy enforcement framework takes an important
step towards applying the contextual integrity theory for mobile applications.

The design, implementation, demonstrations, and evaluation of proposed stud-
ies are elaborated in the dissertation.

iv

Table of Contents

List of Figures ix

List of Tables xi

Acknowledgments xii

Chapter 1
Introduction 1
1.1 Trust Management in Tactical Networks 1
1.2 Privacy Threats in Mobile Phone Networks 2
1.3 Contributions . 3

1.3.1 Zigzag: Partial Mutual Revocation Based Trust Manage-
ment in Tactical Ad Hoc Networks 3

1.3.2 GlobalTrust: An Attack-Resilient Reputation System for
Tactical Networks . 4

1.3.3 DroidJust: Automated Functionality-Aware Privacy Leak-
age Analysis for Android Applications 4

1.3.4 SweetDroid: Calling-Context-Sensitive Privacy Policy En-
forcement Framework for Android 5

1.4 Dissertation Outline . 6

Chapter 2
Zigzag: Partial Mutual Revocation Based Trust Management

in Tactical Ad Hoc Networks 7
2.1 Related work . 9
2.2 Network and Security Models . 10
2.3 Zigzag: Partial Mutual Revocation 11

2.3.1 Overview . 11
2.3.2 Detailed Design of Zigzag 12

2.3.2.1 Trust Reduction 12

v

2.3.2.2 Judgment Criteria 13
2.3.2.3 Trust Update . 14
2.3.2.4 Profit Evaluation 15
2.3.2.5 Trust-Aware Partial Data Access 16

2.3.3 Basic Analytical Model . 18
2.3.4 Evaluation . 20

2.3.4.1 Honest Nodes Accusing Malicious Nodes 21
2.4 Security analysis . 21

2.4.0.2 Malicious Nodes Accusing Honest Nodes 23
2.4.0.3 Mutual Accusation 25

2.5 Comparative Study . 25
2.6 Summary . 28

Chapter 3
GlobalTrust: An Attack-Resilient Reputation System for Tac-

tical Networks 29
3.1 Related Work . 30
3.2 Preliminaries . 32

3.2.1 Problem Statement and Challenges 32
3.2.2 Networw Model and Assumptions 33
3.2.3 Adversary Model . 34

3.3 GlobalTrust . 35
3.3.1 Overview . 35
3.3.2 Subjective Reputation Evaluation 36
3.3.3 Assessment of Trusted Quorum 38
3.3.4 Global Reputation Evaluation 39
3.3.5 Security Analysis . 41

3.4 Performance Evaluation . 42
3.4.1 Simulation Setup . 42
3.4.2 Performance Metrics . 43
3.4.3 Comprehensive Evaluation 44
3.4.4 Comparative Performance Analysis 47

3.4.4.1 GlobalTrust vs. K-Means Clustering-Based Judg-
ment . 47

3.4.4.2 GlobalTrust vs. Existing Reputation Schemes . . . 48
3.5 Summary . 51

Chapter 4
DroidJust: Automated Functionality-Aware Privacy Leakage

Analysis for Android Applications 52

vi

4.1 Related Work . 53
4.2 Problem Statement and Design Goals 55
4.3 Approach Overview . 57

4.3.1 Design Rationale . 57
4.3.2 An Motivating Example . 58

4.4 DroidJust: Overview and System Design 61
4.4.1 Overview . 61
4.4.2 Sensitive Information Transmission Analysis 62

4.4.2.1 Sources . 62
4.4.2.2 Sinks . 65

4.4.3 Sensible Information Reception Analysis 65
4.4.3.1 Sources . 65
4.4.3.2 Sinks . 66

4.4.4 Static Taint Analysis . 66
4.4.5 Correlation and Justification 68
4.4.6 Correlation . 69

4.5 Experimental Evaluation . 69
4.5.1 Evaluation on Google Play Apps 70
4.5.2 Evaluation on Known Malware 73

4.6 Discussion . 75
4.7 Summary . 75

Chapter 5
SweetDroid: Calling-Context-Sensitive Privacy Policy Enforce-

ment Framework for Android 77
5.1 Related Work . 78
5.2 Background and Example . 80
5.3 SweetDroid Architecture . 82
5.4 Security Analysis . 85
5.5 Case Study . 86
5.6 Evaluation . 89

5.6.1 Rewriting Evaluation . 89
5.6.2 Size Overhead . 90
5.6.3 Privacy Policy Generation 91
5.6.4 Performance Evaluation . 92

5.7 Summary . 93

Chapter 6
Conclusion and Future Works 94
6.1 Conclusion . 94

vii

6.2 Future Works . 95

Bibliography 96

viii

List of Figures

2.1 TA accuracy vs. intensities . 21
2.2 Avg. Trust for α = 0.7 . 21
2.3 Avg. Trust of malicious nodes vs. α 22
2.4 Avg. Trust of honest and malicious nodes vs. γ 22
2.5 Profit of mal. nodes vs. α . 23
2.6 One-to-One accusation (pt = 0.8) 24
2.7 Many-to-One accusation (pt = 0.8) 24
2.8 Mutual accusations . 26
2.9 Partial vs. complete revocation . 27
2.10 Ave. trust level vs. β . 27

3.1 Workflow of GlobalTrust . 36
3.2 An example of hierarchical clustering dendrogram 39
3.3 Decision error vs. α . 45
3.4 Decision error vs. k . 45
3.5 Decision error vs. d . 46
3.6 ROC curve by varying θ . 47
3.7 Comparison with KMS-JS . 48
3.8 Comparison with PeerTrust in accuracy 50

4.1 Design workflow: linking sensitive information with app functions . 59
4.2 A motivating example with an Android app 60
4.3 Overall Architecture of DroidJust 61
4.4 Analysis results for Google Play apps 71

5.1 The design of SweetDroid framework (the SweetDroid com-
ponents are colored as grey.) . 83

5.2 Permission request . 87
5.3 Policy manager app . 87
5.4 A location request by app . 88

ix

5.5 A location request by library . 88
5.6 An IMEI request by library . 89
5.7 Modify current rule . 89
5.8 Application Size Increase After Repackaging 90

x

List of Tables

2.1 TA’s Judgment Probabilities . 13
2.2 Profits made by an honest and malicious node for different kinds of

accusations events. The profits stated represent an honest node’s
local view of the network and a global view for malicious node. In
the column of “honest node profit”, the inequalities should hold
true for the scheme to be beneficial for honest nodes, whereas in
the column of “malicious node profit”, the inequalities should hold
true for our scheme to be disadvantageous for the malicious nodes. . 14

2.3 Parameter Setting . 27

3.1 Malicious attack patterns . 43
3.2 Detection types . 44
3.3 Comparison between our GlobalTrust and existing TBRM schemes

w.r.t. consistency and resilience . 49

4.1 Android framework APIs that are able to change sensible phone
states . 66

4.2 (C3) Identified Google play apps that send out users’ sensitive in-
formation not for functions. Notes: 1. we use Andrubis for dynamic
taint analysis, whose dynamic taint analysis is based on TaintDroid;
2. we update till Feb. 13, 2015; 3. the file exceeds the maximum
size limit (8MB) restricted by Andrubis; 4. only the IMEI leak is
identified. 70

4.3 Malware families featuring privacy leakage 74

5.1 Repackaging Evaluation Results . 90
5.2 Privacy Leakage Analysis . 91
5.3 Leaked Sensitive Information . 92
5.4 Performance on Benchmark Applications 92
5.5 Performance on API invocations . 92

xi

Acknowledgments

I would like to express my deepest appreciation to my supervisor Dr. Sencun
Zhu for his support throughout my dissertation research. Dr. Zhu has created a
motivating, comfortable, and innovative research environment that I have benefited
a lot such as the valuable research experience and expertise. Without all his
guidance and help, this dissertation would not have been possible. It has been a
great pleasure and honor for me to work under his supervision.

I am also grateful to Dr. Guohong Cao, Dr. Wang-Chien Lee and Dr. Le Bao
for attending my Ph.D. dissertation committee and providing the great inspiration
and insightful comments on my dissertation.

I would like to thank my co-author Zhi Xu, Wei Xu, Heqing Huang, Jin-Hee
Cho, Mudhakar Srivatsa, and Harshal Patankar for numerous discussions, insight-
ful suggestions, and spending valuable time helping me on my research works.

xii

Dedication

Special thanks to my parents and my wife, Xiangyun. I am deeply indebted to
them for spending so many years in the Ph.D. program. Their love, encouragement,
understanding, and support give me strength and courage.

xiii

Chapter 1 —

Introduction

1.1 Trust Management in Tactical Networks

Trust plays an important role in our daily life, as it enables people to assess a degree

of uncertainty by utilizing their past experience. Let us take as an example the use

of trust in electronic commerce. When customers in eBay and Amazon select sellers

and purchase products, they often pay attention to the rating scores of sellers and

products since rating scores indicate trustworthiness of sellers and products. As a

result, sellers try to keep their rating scores as high as possible to seize the market.

Besides, the concept of trust has been widely applied to various research areas,

from social science, psychology, economics, media to computer science in the past

few years.

In mobile ad hoc networks, trust also plays a crucial role in reinforcing security,

reliability and availability. Trust management is a central issue in mobile ad hoc

networks that are often deployed in adversarial settings and disaster management

scenarios [1–3]. In such settings, compromised nodes can divert and monitor traf-

fic, influence quorum-based decisions or spread harmful information. Moreover,

since mobile ad hoc network routing involves a cooperative process among nodes,

a secure routing mechanism must evaluate the trustworthiness of every node in-

volved. Therefore, to limit the damage caused by compromised nodes and to

provide a secure routing mechanism, agile trust management schemes that allow

rapid impeachment of malicious nodes are vital for the network security.

Reputation assessment is another important issue in mobile ad hoc networks.

In particular, many studies define reputation as a global perception of a node’s

1

trustworthiness in a network, whereas trust indicates an individual node’s per-

ception of any other node’s trustworthiness based on its direct observation. A

desirable reputation system should be consistent, resilient and accurate. However,

maintaining a consistent global view towards a node’s reputation is challenging

with uncertain or incomplete evidence in such hostile, distributed tactical network

environments.

1.2 Privacy Threats in Mobile Phone Networks

Mobile devices such as smartphones and tablets have been an essential part of our

modern life. However, at the same time, the large amount of sensitive informa-

tion stored and processed on them, from device serial number, location to private

messages, is of serious privacy concerns. Based on the summary from Mobile-

Sandboxing [4], a malware analysis research company, user-privacy threatening

malware families are prominent, which contribute to 63.1% of all malware fami-

lies for the year 2014, and the privacy threat has increased by 3% as compared

to 2013 and by 13% as compared to 2012. To remedy against privacy violations

arising from mobile applications, the need for effective and efficient privacy leakage

detection and prevention approaches is extremely emergent.

Privacy leakage detection on mobile applications has been heavily studied in

recent years. Prior research primarily focused on the discovery of sensitive in-

formation flows [5–13]. However, as more and more benign apps send out users’

sensitive information for legitimate application functions, these approaches can-

not easily justify the purposes of sensitive information transmissions in an app,

and hence may not detect privacy leakage effectively. For example, Google Maps

sends out users’ location information to a remote server for driving navigation and

location-based recommendation services. To continue to be effective and adapt

to the growing application markets, the development of more intelligent analysis

approaches to detecting privacy leakage on smartphones is strongly desired.

Another crucial research direction to fight against serious privacy threats in

mobile devices is to prevent privacy leakage and thus protect users’ sensitive in-

formation. Although there are lots of systems for mobile device side privacy pro-

tection [11, 14–24], most of them are permission-based. None of them is based on

individual information flows, which means that they do not distinguish the con-

2

textual information of the access to sensitive data. While one may force users

to make a decision per sensitive data request, it is very impractical since it may

cause dialog fatigue for users by handling every sensitive data request. Moreover,

sometimes it is not obvious even to a tech-savvy user the reason for sensitive infor-

mation access, leading to many decision errors [25,26]. A calling-context-sensitive

privacy protection solution for mobile devices is under high demand.

1.3 Contributions

In this dissertation, we study trust management in tactical networks, and privacy

leakage detection and prevention in mobile phone networks. The major contribu-

tions of this dissertation are as follows.

1.3.1 Zigzag: Partial Mutual Revocation Based Trust Manage-

ment in Tactical Ad Hoc Networks

In Chapter 2, we present Zigzag − a partial mutual revocation approach wherein

we design a trust update function to temporarily punish both the accuser and

accused node (without involving a quorum) − however, the trust update function

does not essentially set their trust values to zero; instead it partially lowers the

trust values of both the accuser and the accused. Similar to the complete mutual

revocation approach a trusted authority or a quorum may (periodically) review

such partial mutual revocations and update the trust values of the accuser and the

accused nodes accordingly.

Specifically, the key contributions of our work in Chapter 2 include:

• We propose a partial mutual revocation based trust management, which

not only offers the node a certain degree of freedom to tradeoff the extent of

sacrifice with the global good of the network, but more importantly, reinforce

the network against strategic (false) accusations made by bad nodes and

erroneous accusations made by good nodes (e.g., due to benign errors in

network monitoring).

• We present both analytical solutions that model evolving trust using re-

currence equations over time and experimental evaluation to quantify the

3

efficacy of the proposed approach using three important metrics: revoca-

tion immediacy, accuracy, and abuse resistance. Both the analytical and

experimental results show that the partial mutual revocation based trust

management is able to rapidly impeach malicious nodes and highly resilient

to malicious attacks targeting the proposed revocation scheme.

• Our proposed scheme encourages honest nodes to accuse malicious nodes by

incentivizing them but at the same time discourages malicious nodes to do

the same by penalizing them for making false accusations.

1.3.2 GlobalTrust: An Attack-Resilient Reputation System for

Tactical Networks

In Chapter 3, we propose GlobalTrust, a reputation system for tactical net-

works with the goal of maximizing correct decision-making for identifying malicious

entities.

Specifically, the key contributions of our work in Chapter 3 include:

• GlobalTrust provides an accurate, consistent view on the reputations of

all nodes and detects malicious nodes in tactical networks.

• GlobalTrust can effectively deal with various types of attacks where all

entities except the commander node may be compromised.

• GlobalTrust outperforms the existing reputation schemes (i.e., two schemes

in PeerTrust [27]) in terms of view consistency and resilience against various

types of attacks.

1.3.3 DroidJust: Automated Functionality-Aware Privacy Leak-

age Analysis for Android Applications

In Chapter 4, we formulate the problem of sensitive information leakage in mobile

devices as a justification problem, which aims to justify if a sensitive information

transmission in an app serves any purpose, either for intended functions of the app

itself or for other related functions such as advertisements and analytics. To solve

the justification problem, we propose an automated, functionality-aware approach,

4

called DroidJust. DroidJust not only identifies sensitive information flows but

also tries to link each flow with certain application function to provide the evidence

for justification.

Specifically, the key contributions of our work in Chapter 4 include:

• We propose a novel approach to automatically justify an app’s sensitive infor-

mation transmission by bridging the gap between the sensitive information

transmission and application functions. Different to the previous work that

utilize the evidence arising before or at the release point [25, 26], we are

(probably) the first to consider the evidence arising after the release point

for privacy leakage detection.

• Our approach overcomes several challenges to integrate all three types of

PScout [28] resources (API, URI and Intent Actions) into DroidJust for

labeling almost all (if not all) sensitive information sources in Android (in

Section 4.2).

• We implement a prototype of DroidJust and evaluate it with more than

6000 Google Play apps and more than 300 known malware featuring privacy

leakage. Our evaluation results demonstrate that DroidJust can effectively

distinguish benign apps delivering sensitive information for application func-

tions from the malware harvesting users’ sensitive information.

• DroidJust identified 15 Google play apps that send out users’ sensitive

information but not for any application functions. Most of them cannot be

detected by any anti-virus engine in VirusTotal and are still available for

download in Google Play.

1.3.4 SweetDroid: Calling-Context-Sensitive Privacy Policy En-

forcement Framework for Android

In Chapter 5, we aim at addressing these challenges by proposing a calling-context-

sensitive privacy policy enforcement framework, named SweetDroid. Extending

the existing Android framework, SweetDroid generates very fine-grained privacy

policies targeting installed Android apps on Android devices, and enforces these

privacy policies at the calling context level in application runtime to effectively

enhance user privacy yet retain app’s usability.

5

Specifically, the key contributions of our work in Chapter 5 include:

• We propose a novel privacy policy enforcement framework to enhance user

privacy yet retaining application usability. Based on our best knowledge, our

framework is the first to enforce privacy policies at the calling context level.

It is able to distinguish sensitive data requests arising at different calling

contexts, and correspondingly apply different privacy policies.

• Different to conventional policy enforcement schemes, our framework auto-

matically generates privacy policies based on security analysis rather than

forcing users to specify policies, which not only largely release normal users

from the pain in making policies but also optimize the effectiveness of policies

to achieve the sweet point balancing privacy protection and app usability.

• We implement a prototype of SweetDroid and evaluate it with Android

apps from a third-party app market and known malware from VirusTotal [85].

Our evaluation results demonstrate that SweetDroid can effectively dis-

tinguish different sensitive data requests within an app, and respond appro-

priately to enhance user privacy yet retaining app usability.

1.4 Dissertation Outline

In summary, the rest of this dissertation is organized as follows: In Chapter 2, we

present Zigzag, a partial mutual revocation based trust management scheme in

tactical ad hoc networks. We propose GlobalTrust, an attack-resilient reputa-

tion system for tactical networks in Chapter 3. In Chapter 4, we present Droid-

Just, an automated functionality-aware privacy leakage analysis for Android ap-

plications. In Chapter 5, we propose a calling-context-sensitive privacy policy

enforcement framework, named SweetDroid. Finally, Chapter 6 concludes our

studies and present future works.

6

Chapter 2 —

Zigzag: Partial Mutual Revocation Based

Trust Management in Tactical Ad Hoc

Networks

Trust management is a central issue in ad hoc networks that are often deployed

in adversarial settings and disaster management scenarios [1–3]. In such settings,

compromised nodes can divert and monitor traffic, influence quorum-based deci-

sions or spread harmful information. Also, since mobile ad hoc network (MANET)

routing involves a cooperative process where route information is relayed between

nodes, any secure routing mechanism must evaluate the trustworthiness of other

nodes. Therefore, to limit the damage caused by compromised nodes and to pro-

vide a secure routing mechanism, agile trust management schemes that allow rapid

impeachment of malicious nodes are vital for the security of the network.

One of the key challenges in operational trust management is to continually

monitor the behavior of a node and update its trust score accordingly − evidently,

both speed and accuracy is of great importance here. Past work has explored quo-

rum based approaches wherein a group of nodes deliberate on trust revocation

decisions and update the trust values of the accuser and the accused nodes ac-

cordingly − unfortunately, in the context of ad hoc networks such an approach

lacks speed and agility. To address this problem, several papers have explored

the concept of mutual revocation (also termed suicide [29–33]) wherein the trust

value of both the accuser and the accused node are temporarily set to zero without

involving a quorum; a trusted authority or a quorum (periodically) reviews such

mutual revocations (suicides) and updates the trust values of the accuser and the

7

accused nodes accordingly − immediate revocation offers higher agility and speed

which generally favors ad hoc network operation, albeit at the cost of lowering the

accuracy (i.e., both good and bad nodes may get revoked).

In this chapter, we present Zigzag − a partial mutual revocation approach

wherein we design a trust update function to temporarily punish both the accuser

and accused node (without involving a quorum) − however, the trust update func-

tion does not essentially set their trust values to zero; instead it partially lowers

the trust values of both the accuser and the accused. Similar to the complete

mutual revocation approach a trusted authority or a quorum may (periodically)

review such partial mutual revocations and update the trust values of the accuser

and the accused nodes accordingly. In doing so we intuitively interpret trust score

as a currency: a currency that is expended by both the accuser and the accused

when they participate in (partial) mutual revocation; a currency that is earned

when a quorum or a trusted authority agrees with the accuser’s decision to (par-

tially) revoke the accused; a currency that allows a node to exert higher influence

in network operations (e.g., leader election, routing and forwarding decisions, etc.).

We remark that one of the key benefits of mutual revocation is its inherent

ability to work in sparse dynamic networks where global (network-wide) evidences

are hard to collect. Essentially, partial revocation offers the node a certain degree

of freedom to tradeoff the extent of sacrifice with the global good of the network.

In particular, we construct trust update mechanisms for partial mutual revocation

that not only enables this tradeoff, but also is robust to strategic (false) accusa-

tions made by bad nodes and erroneous accusations made by good nodes (e.g.,

due to benign errors in network monitoring). We present both analytical solutions

that model evolving trust using recurrence equations over time and experimental

evaluation to quantify the efficacy of the proposed approach using three impor-

tant metrics: revocation immediacy, accuracy, and abuse resistance. Revocation

immediacy is the time taken for a node to be revoked from the network once it

has been identified as malicious. Accuracy is mainly concerned with minimizing

the effects caused due to misidentification of nodes. And finally, abuse resistance

deals with avoiding malicious nodes from taking advantage of the proposed trust

revocation scheme for their own benefit. Our scheme encourages honest nodes to

accuse malicious nodes by incentivizing them but at the same time discourages

malicious nodes to do the same by penalizing them for making false accusations.

8

2.1 Related work

The process of arriving at a revocation decision is the primary focus of the majority

of revocation schemes presented to-date in the ad hoc networking literature [30,31,

33–37]. Assuming that a node has amassed sufficient evidence, various approaches

have been introduced that require differing amounts of participation from other

nodes in the network. That is, revocation decision making may be the result of a

collaborative or unilateral decision process.

In collaborative schemes, nodes accuse other nodes of misbehaving by casting

negative votes against them. If a predetermined threshold of negative votes is cast,

then the offending node is considered revoked. By contrast, systemic revocation

decision making has been proposed for use in Identity-based Public Key Infrastruc-

tures (ID-PKIs) for ad hoc networks [38]. As part of an ID-PKI, a validity period

can be expressed in deriving a node’s identifier. Once a node’s identifier expires,

the node must contact its (possibly distributed) TA and request a new private key,

with a new expiry time. The TA in turn can decide whether to issue new keys dur-

ing this re-enrollment process. In systemic-based decision making, the frequency of

renewal (the longevity of an expiry period) is an important parameter: the higher

the frequency, the less impact a compromised key may have on the network, but

the greater is the effort that must be expended on key issuance procedures. This

approach requires an on-line TA and may significantly increase traffic and thus

energy consumption. The concept of unilateral decision making as a method of

revocation was first introduced by Rivest in dealing with key compromise [39] in

Public Key Infrastructures (PKIs). A user, upon detecting that his key has been

exposed, declares his key invalid by issuing a signed message using the compro-

mised key (indicating that this key is no longer to be trusted). This notion of

suicide has recently been extended for use in ad hoc networks [29–31,33]. A node

commits suicide by broadcasting a signed instruction to revoke both its own key

and the key of the misbehaving node. Suicide as a method of revocation in ad hoc

networks has a number of attractive features when compared with collaborative

decision making. With suicide, nodes can act immediately to a perceived threat.

Additionally, suicide as a method of revocation is resistant to abuse due to the

high cost associated with revoking another node.

It was first pointed out by Raya et al. [31] that in order for the suicide scheme to

9

work properly, the node should value the network utility more that his own utility.

Raya et. al. [31] and Reidt et. al. [?] have developed methods to incentivize good

nodes to participate in mutual revocation schemes. However, as duly acknowledged

by both Raya et. al. [31] and Reidt et. al. [?], complete mutual revocation takes

a heavy toll on the node. For example, consider a small network that contains

only 10 nodes out of which two good nodes get involved in a mutual revocation.

Raya et al. loose both the good nodes; Reidt et al. revive one of these nodes,

but the other node is permanently revoked. Therefore, an accidental revocation

profits the adversary. Every honest node revoked helps the adversary strengthen

its influence on the network; also, in a non-cooperative environment it is more

likely that the malicious nodes will collude to bring down an honest node than

honest nodes cooperating to bring down a bad node.

2.2 Network and Security Models

Trust Model: We assume every node in the tactical ad hoc network has a pub-

lic/private key pair, and the public key is known by every other node (or through

public key certificate signed by a well-known CA). We further assume that each

node in the network may have one or more identifiers along with its corresponding

private keys. The trust level associated with an identifier is a fuzzy trust value

which ranges between 0 (untrusted) and 1 (trusted).

Every node has an embedded Intrusion Detection System (IDS), which monitors

its neighbors for any kind of malicious activity. For the sake of simplicity in this

work, we focus on simple packet dropping attacks. Irrespective of the nature of such

malicious activity, we assume that the IDS may be imperfect (typically represented

by false positive and false negative rates). Hence, given an input from an imperfect

IDS, a node may decide to launch an accusation against the purported bad node

by broadcasting a digitally signed accusation message into the entire network.

In our model, a trusted authority (TA), as a network manager or administrator,

can join the network in need. For example, in a tactical network, a TA could be

the commander. Ideally most of the accusations that might take place in a network

would be the result of malicious activity (e.g., actual packet dropping witnessed

by nodes). But the rest of the accusations could be a result of the intentional

false accusations made by the malicious nodes and unintentional false accusations

10

made by the good nodes (due to IDS imperfection). This can indeed be true as

malicious nodes with the goal of disrupting the operation of the entire system may

attempt to accuse as many honest nodes as possible. Therefore, to control any ran-

dom or unjustified accusations, the TA reviews past accusations and helps identify

whether an accusation was justified or not. The TA does so by making probabilis-

tically correct decisions by, for example, posthumously interrogating witnesses or

collecting evidences from other nodes in the network. Also, to incentivize nodes

to make correct accusations, the TA rewards a node for a justified accusation by

providing it additional trust and thus rewarding the node for its actions. After

every judgment round, TA will permanently revoke any identifier with trust below

a predefined threshold.

Adversary Model: In our model, we assume that the main goal of an adversary

is to bring down the throughput of the entire network by dropping as many packets

as possible. The simplest way to achieve this goal would be to drop all the packets

that reach the malicious nodes. But, by doing so they also risk of being detected.

So in order to maximize their overall influence on the network during their own

lifetime, the malicious nodes can carefully choose a packet dropping rate. This

would not only enable them to drop packets in an effective manner but also help

them remain undetected by honest nodes for an otherwise longer time. Also based

on different strategies, the adversary may even choose to abuse the scheme by

making false accusations on honest nodes with the goal of reducing the average

trust of honest nodes. If the traffic in the network is trust-driven, then this could

lower the throughput.

2.3 Zigzag: Partial Mutual Revocation

2.3.1 Overview

In contrast to complete mutual revocation, during a partial mutual trust revo-

cation, both accuser and the accused lose partial trust. For example, if node A

accuses node B on its forwarding behavior, then both of them may partially lose

data forwarding capability. The benefits of this are at least two-folds. First, in-

trusion detection systems (IDS), especially those based on forwarding behavior

monitoring, are prone to errors because of network and systems complexity. The

11

network loses two benign nodes completely when a false accusation occurs, while

by partial revocation the impact of such errors is limited. Second, even if a node

is not completely trusted in data forwarding, it may still be safe to involve it

in forwarding less critical messages. With appropriate replication through either

multi-path routing or forward error correction, it would be possible to leverage the

remaining resources of a suspicious node for enhancing network throughput.

2.3.2 Detailed Design of Zigzag

At a high level our protocol for partial mutual revocation can be summarized as

follows: (i) Initially when the nodes are deployed in the environment they are

all assumed to be benign. (ii) Whenever a node behaves maliciously, some of its

neighboring nodes will accuse it of being malicious. This will lead to a drop in

trust levels of both the nodes (accuser & accused). (iii) After a while, the TA

would come online and analyze all the accusations occurred during its absence.

It would then pass its own judgment based on the information it gathers. Based

on that judgment the accuser and accused node’s trust levels would be modified

again. If the judgment is taken in favor of the accuser, then it will be given a small

bonus in the form of trust and the trust level of the accused node will be left as it

is. However, if the judgment is taken in favor of the accused node then the trust

level of the accused node will be brought back to the original value and the trust

level of the accuser node will not be recovered as a punishment of false accusation.

Steps (ii) and (iii) are repeated as long as the network remains operational.

2.3.2.1 Trust Reduction

In our scheme once the accusation takes place, trust levels of both the nodes (viz.

accuser and the accused) are reduced as follows:

T ′Accuser = TAccuser(1− βTAccused) (2.1)

T ′Accused = TAccused(1− βTAccuser) (2.2)

β ∈ [0, 1] is a parameter to control the severity of accusation. Normally, an accuser

could choose β based on the observed attack intensity—the more malicious the

observed attack is, the larger β should be (e.g., using a linear or an exponential

12

function). An accuser may also choose β based on other technical or nontechnical

considerations. Ultimately it gives the accuser the flexibility to decide the level of

sacrifice it is willing to make. We will show how β impacts on the system in our

evaluation section.

A key intuition here is that trust should be reduced in the same amount for

both nodes (i.e., δTAccuser = δTAccused = βTAccusedTAccuser) to prevent malicious

nodes from taking advantage of the system. As soon as a node finds out that

a neighbor is acting in a malicious way, it makes an accusation. For a malicious

node, it can accuse another node at will. The accusation involves partially reducing

both the accuser and accused node’s trust and broadcasting a signed message to

the entire network indicating the identifiers of both the accuser and the accused

node. After the accusation takes place, each node carries on with it tasks – may

it be forwarding packets or even making further accusations.

2.3.2.2 Judgment Criteria

Many such accusations can take place until the TA comes online. When the TA

does come online, it collects all the accusations that took place since its last visit1.

In order to pass a judgment on a specific accusation, the TA takes a probabilistic

decision based on collected opinions from other nodes on the accused node.

TA Judgment
Good Bad

Reality Good pt pf
Bad qf qt

Table 2.1. TA’s Judgment Probabilities

We abstractly quantify the efficacy of TA’s decision using its false positive and

false negative probabilities as described in Table 3.2. pt denotes probability that

TA classifies an honest node as an honest node. qt denotes probability that TA

classifies a malicious node as a malicious node. Also pf and qf are the false positive

and false negative probabilities respectively. They are the probabilities with which

TA misclassifies an honest node as a malicious one and malicious one as honest.

Here pt + pf = qt + qf = 1.

1How to collect information in a MANET is a well-studied problem, so we do not study it
here.

13

Event Honest node profit Malicious node profit

Honest node makes no accusation 0 0
Honest node accuses another honest node bpf − δTpt positive

Honest node accuses malicious node 1)bqt − δTqf > 0 2)(M
H−δT −

M
H

)qf − (M
H
− M−δT

H+b
)qt < 0

Malicious node makes no accusation 0 0
Malicious node accuses another malicious node 0 3) negative

Malicious node accuses honest node −δTpf 2)(M+b
H−δT −

M
H

)pf − (M
H
− M−δT

H
)pt < 0

Table 2.2. Profits made by an honest and malicious node for different kinds of accu-
sations events. The profits stated represent an honest node’s local view of the network
and a global view for malicious node. In the column of “honest node profit”, the in-
equalities should hold true for the scheme to be beneficial for honest nodes, whereas in
the column of “malicious node profit”, the inequalities should hold true for our scheme
to be disadvantageous for the malicious nodes.

If an accusation was deemed correct, then the trust of the accuser is restored

and it is given a small incentive in the form of additional trust. However, if the

accusation was deemed incorrect, then the trust level of accused is brought back to

the original value. The trust level of the accuser, however, is not brought back to

the original value. This is done in order to penalize for making false accusations.

One can use several past approaches for trust assessment to provide us the

functionality of a TA. In this work, we assume that the TA collects evidence from

several nodes in the network and builds a classifier based on the k -means clustering

algorithm [40]. The classifier outputs a 0 or 1 which indicates that the accused

node is indeed guilty or not based on available evidences. The details of our

approach are excluded from this work. We note that the correctness of our partial

mutual revocation protocol depends only on the false positive and false negative

probabilities of the judgment system; indeed one could in general use any judgment

mechanism as long as one can quantify all the parameters in Table 2.1.

2.3.2.3 Trust Update

After the TA passes its judgment on an accusation, the trust levels of both the

nodes (accuser and accused) are updated as follows. If the TA rules in favor of the

accused, the trust level of the accused node needs to be brought back by adding

the reduction value in the accusation. However, if the TA rules in favor of the

accuser, then a bonus needs to be provided to the accuser node besides restoring

the reduction value. The bonus encourages honest nodes and gives them a reason

to make correct accusations and expose the nodes behaving maliciously. Now,

14

bonus can be calculated considering many aspects including: accused node’s trust

level prior to the accusation TAccused, reduction in trust level of the accuser due

to the accusation δTAccuser, trust level of the accuser prior to accusation TAccuser,

node’s previous streak (either winning or losing), etc. Now among these various

aspects, if the bonus is based on δTAccused, then the amount of bonus received

would be based on the amount of trust lost by the accused node.

Intuition: If an honest node correctly accuses a malicious node which had a

high trust level for some reason, then the honest node needs to get due credit for

it. The bonus function to achieve this is:

b = γ · δTAccused (2.3)

where γ ∈ (0, 1) is a system set parameter. Therefore, the TNewAccuser can be written

as:

TNewAccuser = TAccuser + γ · δTAccused (2.4)

The reason for limiting the parameter to 1 is to ensure that accuser never receives

bonus more than the amount of trust lost by the accused during the accusation.

If on the other hand, γ > 1 were permitted then two malicious nodes could take

undue advantage of this and build their own trust by simple accusing each other

over and over.

2.3.2.4 Profit Evaluation

Table 2.2 lists the expected profit for honest and malicious nodes for each type of

accusation events. These expected profits are based on the TA judgment probabil-

ities listed in Table 3.2. For an honest node, the main motive is to be as useful as

possible. This can be achieved by increasing its trust or by making correct accu-

sations (thereby pinpointing malicious nodes in the network). On the other hand,

malicious nodes want to disrupt network operations by reducing the average trust

value of honest nodes or increasing their own average trust value. Therefore, we

count malicious nodes’ profit as the ratio of total trust values of malicious nodes to

those of honest nodes. Then, we examine all possible accusation events to ensure

the following requirements:

1. An honest node can obtain profit by following rules to accuse a malicious

15

node;

2. Malicious nodes cannot gain profit by accusing honest nodes or being accused

by honest nodes;

3. Malicious nodes cannot gain profit by accusing with each other.

Let M be the total trust values of malicious nodes in the network and let H

be the total trust values of honest nodes. δT is the amount of trust reduction of

the accuser node or accused node in the accusation. An honest node can gain a

bonus b if the accusation is justified whereas it will lose δT in trust level if not

justified. Then for condition 1), we have bqt − δTqf > 0. For condition 2), in the

case that an honest node accuses a malicious node, the ratio of total malicious

nodes’ trust values to total honest nodes’ trust values is increased by M
H−δT −

M
H

if TA favors the malicious node whereas the ratio is reduced by M
H
− M−δT

H+b
if TA

favors the honest node; in the other case that a malicious accuses an honest node,

the ratio of total malicious nodes’ trust values to total honest nodes’ trust values

is increased by M+b
H−δT −

M
H

if TA favors the malicious node whereas the ratio is

reduced by M
H
− M−δT

H
if TA favors the honest node. Hence, we can conclude

two inequalities for condition 2) as shown in Table 2.2. For condition 3), recall

from the trust update section that the choice of parameter γ (γ < 1) ensures that

malicious nodes do not gain by accusing other malicious nodes. For condition 1)

and 2), we derive the lower bounds for the TA’s judgment probability pt and qt:

pt >
bH + δTM

δT (H − δT)
pf , qt > max(

(H + b)δTM

(H − δT)(bM + δTH)
,
δT

b
)qf

The loosely derived lower bounds for both are as follows:

pt >
γH +M

H − 1
pf , qt > max(

M

H − 1
,

1

γ
)qf

2.3.2.5 Trust-Aware Partial Data Access

Different with the situation in complete mutual revocation, a node being partially

revoked in partial mutual revocation still retains some extent of network capability

based on its trust level, and hence can contribute to the network. However, to

16

differentiate nodes with various trust levels, it is necessary to associate a node’s

trust level with its network capability. For example, trust is widely used to assist

route selection [41,42] and therefore nodes with low trust levels are more likely to

be excluded from packet forwarding. Here, we propose trust-aware partial data

access, which aims to tie a node’s trust level to its capability in data access.

A group key is used to protect the confidentiality of communication within the

network. We require that a node with low trust can only have partial group key

and thus understand partial data packets encrypted by the group key.

Problem Model: We assume every data packet has a secrecy level which is ranged

from 0 (least secrecy) to M − 1 (most secrecy). Every node j has a hierarchical

rank Rj from 0 (least capability) to M − 1 (most capability) in the MANET

corresponding to its trust level Tj. Hierarchical ranks of nodes are evaluated by

TA periodically by using a linear function: Rj = bTj ·Mc. The design goal is to

ensure that a node can only decrypt any data packet whose secrecy level is at most

the node’s rank evaluated by TA recently.

Scheme: Whenever TA finishes updating all nodes’ trust levels after accusa-

tion judgment, TA evaluates all nodes’ ranks and distributes new group keys

based on the new ranks. In each group rekeying, TA generates a key chain of

size M . Let the keys in the key chain generated for the rekeying at time t be

KM−1(t), KM−2(t), · · · , K1(t), K0(t), where K0(t) = H(K1(t)) = H2(K2(t)) =

· · · = HM−1(KM−1(t)) and H is a one-way hash function such as SHA-1. Due

to the one-wayness of the hash function, a node that knows Ki(t) can iteratively

compute the keys Ki−1(t), · · · , K0(t) and understand any packets encrypted by

these keys, but cannot compute any of the keys Ki+1(t), · · · , KM−1(t) and under-

stand the associated packets. Then, TA sends to each node j key KRj(t) for the

next communication session. Each node derives its own sub keychain based on the

one-way function. During the session, a sender will encrypt a data packet whose

secrecy level is j with group key Kj(t). And, only the nodes whose ranks are at

least j can decrypt and understand the packet. Besides, the scheme ensures that

a node cannot properly encrypt any data packet whose secrecy level is higher than

its own rank.

17

2.3.3 Basic Analytical Model

To make our analysis tractable, we assume that TA comes online every interval

time T1 to handle all the accusation events that happened during its absence.

T1 is a system parameter that the authority can adjust by considering both the

efficiency and overhead. Also, each honest node takes a time period of T2 to

gather enough evidence, via its IDS, to launch an accusation against a malicious

node. The choice of this parameter mainly depends on the performance of IDS

by considering a tradeoff between accusation immediacy and accuracy. We define

the timeline of TA’s online round i as [i · T1, (i+ 1) · T1). Hence, the maximum

number of accusations that can be launched by a node in each TA’s online round

is given by: ω = T1/T2. To avoid malicious nodes from repeatedly accusing honest

nodes for abusing the whole system and limit the overhead of accusation traffic,

any node that make more than ω accusations in one round will be directly revoked

by the TA. For analysis purpose, we assume that the IDS of an honest node will

accuse a malicious node with a probability of αi when the malicious node’s attack

intensity is αi: in the context of packet forwarding αi is the probability with

which a malicious node drops packets in round i. Hence, the average number of

accusations made by each honest node in i is:

λi =
ω∑
k=0

k ·
(ω
k

)
· αki · (1− αi)

ω−k = ωαi (2.5)

Denote the average trust levels of honest nodes and malicious nodes as two-

dimension arrays Th and Tm, respectively. Specifically, Th(i, j) and Tm(i, j) are

the respective average trust levels of honest nodes and malicious nodes after the

jth accusation round during round i. i starts from 0 and continues till the network

is operational. j starts from 0 and ends at λi.

Given that two malicious nodes have no incentive to accuse each other and

two honest nodes rarely accuse each other, the total number of accusations that

involve honest nodes must equal those that involve malicious nodes. Hence, in each

round for every accusation that involves an honest node, there are n
m

accusations

that involves a malicious node (where n is the number of honest nodes and m

is the number of malicious nodes and typically, n > m). Therefore, based on

18

Formula (1) and (2), trust value of malicious nodes evolves as follows 2: Tm(i, j) =

Tm(i, j − 1) · (1− βTh(i, j − 1))
n
m

It is a little more complex to approximate Th(i, j) because the average trust

value of malicious nodes varies considerably after every m accusations. Hence, we

divide an accusation round into n
m

phases, and at each phase m of n honest nodes

accuse malicious nodes for a total of m times. Hence, the average trust of m honest

nodes at each phase k (from 1 to n
m

) is formulated as below:

Th k(i, j) = Th(i, j − 1)(1− βTm(i, j − 1) · (1− βTh(i, j − 1))k−1)

To approximate the average trust of n honest nodes, we add up the average

trust of m honest nodes at each phase with a weight of m
n

, i.e., Th(i, j) =
∑ n

m
k=1

m
n
·

Th k(i, j). After deduction, we have:

Th(i, j) = Th(i, j − 1) · (1−
mTm(i, j − 1)(1− (1− βTh(i, j − 1))

n
m)

nβTh(i, j − 1)
)

To recursively solve the above two formulas, we first need to determine Th(i, 0)

and Tm(i, 0). Clearly, Th(0, 0) and Tm(0, 0) are the initial trust levels assigned to

good nodes and bad nodes, respectively. For analysis purpose, let us assume they

are both 0.8. More general, Th(i, 0) is determined by judgment decisions based on

λi−1 accusations at the (i− 1)th round. We can formulate Th(i, 0) by considering

all of λi−1 accusations one by one in a probabilistic way. It is much simpler to

get the average trust level of malicious nodes Tm(i, 0) as TA passes its judgment

only once for each malicious node and all accusation events containing the same

accused node follow this judgment decision. If accusations against malicious nodes

are justified, the malicious nodes would keep the trust level as in the end of TA’s

previous online round; otherwise, the average trust level of malicious nodes would

be restored to that in the beginning of TA’s previous online round. To summarize,

we have the following formulas:

2We acknowledge that the function approximates the expectation of trust levels by directly
involving the expected value for the simplicity.

19

Th(i, 0) = Th(i− 1, 0)

+

λi−1∑
j=1

(qt · γ · (Tm(i− 1, j − 1)− Tm(i− 1, j))

−(1− qt) · (Th(i− 1, j − 1)− Th(i− 1, j))) (2.6)

Tm(i, 0) = qt · Tm(i− 1, λi−1) + (1− qt) · Tm(i− 1, 0) (2.7)

Now that we have captured the evolution of trust for malicious and honest

nodes through recurrence equations over time, we quantify the expected reward

for a malicious node as follows. For the sake of simplicity we assume that in each

round i, the expected reward for a malicious node is proportional to the product of

their average trust level and their attack intensity α. The reward for a malicious

node at each round i is evaluated as
∑λi−1
j=0 Tm(i, j)

λi
· θi · αi, where 0 < θ < 1 is a

discount factor3 that weighs immediate reward for a malicious node more than

its future rewards. Hence, the total profit of a malicious node over the network

lifetime is:

R =

∞∑
i=0

∑λi−1
0 Tm(i, j)

λi
· θi · αi (2.8)

The malicious nodes could strategically choose a vector α = (α1, α2, . . .) to

maximize their expected long-term reward.

2.3.4 Evaluation

This subsection contains two revocation cases: honest nodes accusing malicious

nodes and malicious nodes accusing honest nodes. For the first case, our evaluation

is based on the basic analytical formulas derived in Section 2.3.3. For the second,

we wrote C simulators based on our trust update formulas (Formulas 1-4) without

considering node mobility.

3Discount factor is commonly used approximation for infinite horizon problems [43,44].

20

2.3.4.1 Honest Nodes Accusing Malicious Nodes

In this part of the evaluation, we assume only honest nodes accuse malicious nodes.

Figure 2.1 shows how the TA’s accuracy (qt and pt) changes with the attack inten-

sity α based on the aforementioned k-means clustering algorithm. As the attack

intensity α increases, the probabilities that TA correctly identifies a malicious and

an honest node dramatically increase, and they both nearly reach 1 when α is over

0.7.

2.4 Security analysis

The analytical results shown next were carried out with a fixed malicious-to-honest

node ratio (m
n

) = 0.5 and the varying TA’s accuracy which changes with the attack

intensity based on the curves shown in Figure 2.1. The number of accusation

rounds (i.e. ω) in a TA’s online interval is set to 10. β is set to 1. Except for

Figure 2.4, γ is 0.1 by default. To validate our analytical model, we also did a

number of simulations with the same parameter settings as the above and the

validation results are shown in Figure 2.2 and 2.3.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Attack intensity (i.e. α)

A
cc

u
ra

cy
 o

f
T

A

p

t

q
t

Figure 2.1. TA accuracy vs. intensities

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Round

A
v
er

ag
e

tr
u
st

 l
ev

el

Honest nodes(simulation)

Honest nodes(analysis)

Malicious nodes(simulation)

Malicious nodes(analysis)

Figure 2.2. Avg. Trust for α = 0.7

Figure 2.2 shows how the average trust of honest and malicious nodes changes

over different rounds. Here the attack intensity for a malicious node is set to 0.7.

First, we can see the simulation results match with the analytical results very well.

Second, as the rounds progress, the average trust associated to malicious nodes

21

decreases quickly whereas the average trust associated to honest nodes does not.

This is due to the fact that during each round many accusations against malicious

nodes take place and at the end of each round all those accusations are judged by

the TA. When the TA passes its judgment, malicious nodes hardly recover to their

trust of the previous round. On the other hand, the honest nodes are awarded a

bonus for making correct accusations. Since the deducted trust of accused nodes

also depends on the trust level of accusers, with higher trust levels, honest nodes

can bring down the average trust level of malicious nodes more in later rounds.

Figure 2.3 shows how the average trust of malicious nodes changes over dif-

ferent rounds with varying attack intensities. Each curve in the figure, either by

simulation or by analysis, corresponds to a fixed attack intensity. First, we can

see that the analysis and simulation results are very close, thus validating our an-

alytical models. Second, as the attack intensity α increases, the average trust of

malicious nodes decreases more quickly over each round. This happens because

honest nodes have a higher probability to accuse bad nodes at each accusation

round as α increases. Higher accusation probability reflects higher accusation fre-

quency in the figure. Another reason is that as α increases, the TA’s accuracy qt

also increases (as shown in Figure 2.1). Thus, the trust level of malicious nodes is

less likely to be restored by TA. We can also see that the change of trust level over

rounds is a zigzag shape, so we name our revocation protocol Zigzag.

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Round

A
v

er
ag

e
tr

u
st

 l
ev

el
 o

f
m

al
ic

io
u

s
n

o
d
es

α = 0.1 (simulation)

α = 0.1 (analysis)

α = 0.4 (simulation)

α = 0.4 (analysis)

α = 0.7 (simulation)

α = 0.7 (analysis)

α = 1.0 (simulation)

α = 1.0 (analysis)

Figure 2.3. Avg. Trust of malicious nodes
vs. α

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Round

A
v

er
ag

e
tr

u
st

 l
ev

el

γ=0.1 (honest)

γ=0.4 (honest)

γ=0.1 (malicious)

γ=0.4 (malicious)

Figure 2.4. Avg. Trust of honest and ma-
licious nodes vs. γ

Figure 2.4 shows how the average trusts of malicious nodes and honest nodes

22

change under different values of γ. It is very clear that average trust of honest

nodes increases as the bonus parameter γ increases. Consequently, the average

trust of malicious nodes drops much faster.

Figure 2.5 shows the total profit earned by a malicious node over its entire

lifetime with various attack intensities. Here, the attack intensity α is fixed to

a certain value during the entire lifetime, which means α1, α2, . . . are equal. It

reveals that in our scheme malicious nodes can achieve higher long-term profit with

a relatively low attack intensity. Especially, the optimal α is around 0.2. This is

because qt and pt are affected by the attack intensity. Here the functionality of

bad nodes is assumed to be proportional to their trust levels.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

Attack intensity (i.e. α)

P
ro

fi
t

o
f

m
al

ic
io

u
s

n
o
d
es

Figure 2.5. Profit of mal. nodes vs. α

Here an interesting question is: assuming the global knowledge of the system,

would the malicious nodes gain a higher long-term profit by adopting a different

attack intensity αi at a different round? That is, the malicious nodes may drop

packets at different rates at different rounds so that they may drop the maximal

number of packets. We use an efficient heuristic search algorithm to figure out this

optimal attack intensity vector under the searching granularity of 0.1. Interestingly,

our result suggests the optimal attack intensity vector αopt in this setting is the

same as the previous optimal α, that is, all αi = 0.2.

2.4.0.2 Malicious Nodes Accusing Honest Nodes

As noted previously, the main motive of malicious nodes is to disrupt the network.

Accusing honest nodes repeatedly and bringing their average trust level down could

23

be one of the effective ways as this can lower the network throughput. We present

two different types of attack strategies below.

Figure 2.6 represents the One-to-One attack scenario where each malicious node

accuses a different honest node at each accusation round. No two malicious nodes

accuse the same honest node. Their main motive is to bring down as many honest

nodes as possible in a single round. As the TA updates trust levels at the end of

each round, a malicious node keeps accusing the same honest node until it is evicted

from the network. Here, we compare the average trusts of malicious nodes and

honest nodes under three different settings of m
n

. It can be seen from the figure that

as m
n

increases, i.e., with more malicious nodes, the one-to-one accusation is more

effective by the end of TA’s round. However, as the TA updates the trust levels,

the trust of malicious nodes decreases whereas the trust of honest nodes increases.

This happens because the TA judgment probability (pt) is usually higher than 0.5

to support honest nodes. As the rounds progress, the average trust of honest nodes

is not affected much but the average trust of malicious nodes reaches zero.

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Round

A
v
er

ag
e

tr
u
st

 l
ev

el

m

n
= 0.2(hon.)

m

n
= 0.5(hon.)

m

n
= 0.8(hon.)

m

n
= 0.2(mal .)

m

n
= 0.5(mal .)

m

n
= 0.8(mal .)

Figure 2.6. One-to-One accusation (pt =
0.8)

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Round

A
v
er

ag
e

tr
u
st

 l
ev

el

m

n
= 0.2(hon.)

m

n
= 0.5(hon.)

m

n
= 0.8(hon.)

m

n
= 0.2(mal .)

m

n
= 0.5(mal .)

m

n
= 0.8(mal .)

Figure 2.7. Many-to-One accusation (pt =
0.8)

Figure 2.7 represents a Many-to-One attack scenario where malicious nodes

collude and keep on accusing honest nodes sequentially. Specifically, at each ac-

cusation round, each malicious node will pick to accuse the active honest node

whose trust level is the lowest. As a result, an honest node will receive multiple

accusations until its trust level is below a threshold and considered inactive. The

main objective is to break down as many honest nodes as possible. A predefined

24

threshold (0.05 in our simulation) is set to determine whether an honest node is

active according to its trust level. It can be seen from the figure that many honest

nodes are brought down in the first couple of rounds. When the round comes to

an end the TA updates all the trust levels, the average trust of malicious nodes

falls below that of honest nodes. This trend continues in the first few rounds until

their difference becomes rather large. Once that happens malicious nodes are not

able to make any sizable impact on honest nodes’ trust levels, let alone bring them

down. As they continue this type of sequential accusation, their own trust level

decreases and after few rounds it approaches zero.

Based on the comparison of 2.6 and Figure 2.7, it can be observed that from

the adversary’s point of view, the Many-to-One attack and the One-to-One attack

do not have much difference in their accusation effectiveness. This observation has

the following important indication. As these two accusation strategies represent

two extreme cases for an adversary, any other accusation strategy, which we do

not enumerate here, would be a hybrid version of these two cases, so its attack

effectiveness would also be similar.

2.4.0.3 Mutual Accusation

Finally, we consider the case that malicious nodes and honest nodes accuse each

other. Here, we mix the above scenarios to simulate a more realistic setting.

Under this attack scenario, malicious nodes perform malicious activities dropping

packets with the attack intensity α of 0.7, which lead to the potential accusations

by honest nodes. Besides, at each accusation round, they will randomly choose an

active honest node (i.e., whose trust level is above 0.05 in our setting) to accuse.

It can be seen from Figure 2.8 that compared with Figure 2.7 and Figure 2.6, the

average trust of malicious nodes falls more quickly because their dropping behavior

is sensed and hence they are accused by honest nodes.

2.5 Comparative Study

We further evaluate Zigzag through simulations and show its revocation immedi-

acy and accuracy in comparison with the complete revocation scheme [32]. Besides,

we study how β impacts security.

25

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Round

A
v
er

ag
e

tr
u
st

 l
ev

el

α = 0.2 (hon.)

α = 0.7 (hon.)

α = 0.2 (mal.)

α = 0.7 (mal.)

Figure 2.8. Mutual accusations

Our simulation is based on the simulator GloMoSim 2.03. Table 2.3 describes

the general parameter settings. We choose DSR as the routing protocol and 802.11

as the MAC layer protocol. The mobility model is random waypoint; node’s ve-

locity is between 0 and 10 m/s and its pausing time is 30 time units. In the

simulation, periodically each node requests a simple response from a neighbor cho-

sen at random. An honest node will always send back an ACK in response whereas

a malicious node only responds to the request at a probability pre-determined by

its attack intensity. At each accusation round, an honest node will choose to ac-

cuse a node that is identified to be malicious by its IDS, if any. Because of the

imperfection of its IDS, an accused node might or might not be an actual bad

node. The TA will come online to judge all accusations and update the trust levels

of all accuser and accused nodes every T2 time. By default, the judgment accuracy

is fixed. Both Zigzag and complete revocation are implemented and evaluated

under this setting. The results are averaged over 20 independent runs.

Revocation Immediacy is the time taken (or the number of accusations needed)

for a node to be revoked from network once it is identified as malicious. Accuracy

is mainly concerned with minimizing the effect caused by faulty IDS (leading to

false accusations). Figure 2.9 provides a comparison on these two metrics between

partial and complete revocation. Figure 2.9 shows that the average trust level

of malicious nodes drops quickly. In the complete revocation scheme, it reaches

almost 0 in 3 rounds, and in ZigZag it reaches to 0.05 in 3 rounds. Although this

indicates the former has higher revocation immediacy, in our partial revocation

scheme, a node is considered revoked after its trust level drops below 0.05. So in

26

Parameters Description Default

Scenario

N # of nodes in the network 100
n # of honest nodes in the network 80
m # of malicious nodes in the network 20
α attack intensity of malicious nodes 1
T2 interval of TA online round 100 units

Zigzag
β coefficient of trust reduction 0.1
γ coefficient of trust reward 1

Complete revocation b coefficient of trust reward 1

IDS
pf IDS false positive of IDS 0.05
qf IDS false negative of IDS 0.05
T1 interval of accusation round 2 units

TA
pf false positive of TA judgment 0.2
qf false negative of TA judgment 0.2

Table 2.3. Parameter Setting

this sense, the revocation immediacy of Zigzag is close to that of the complete

revocation scheme.

0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (seconds)

A
v

er
ag

e
tr

u
st

 l
ev

el

Partial (hon.)

Full (hon.)

Partial (mal.)

Full (mal.)

Figure 2.9. Partial vs. complete revoca-
tion

0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (seconds)

A
v

er
ag

e
tr

u
st

 l
ev

el

β=0.05 (hon.)

β=0.1 (hon.)

β=0.2 (hon.)

β=0.05 (mal.)

β=0.1 (mal.)

β=0.2 (mal.)

Figure 2.10. Ave. trust level vs. β

On the other hand, the figure also shows the big advantage of Zigzag over the

complete revocation scheme in terms of accuracy. Due to false positives of IDSs in

mobile nodes, false accusations have a much greater influence on the complete revo-

cation scheme, as its average trust level of good nodes is far below that of Zigzag.

This demonstrates Zigzag works much better in tolerating IDS inaccuracies.

The parameter β denotes the degree of trust reduction in Zigzag. From Figure

2.10, we can observe the tradeoff between accusation immediacy and accuracy.

When β decreases, the revocation speed is lower but accuracy is better. To the

27

opposite, when β increases, the revocation speed is faster but accuracy is worse.

Hence, β can be flexibly selected based on the context of a network, the severity

of observed attacks, and other factors.

2.6 Summary

In this chapter, we have introduced Zigzag, a new scheme for trust management in

ad hoc networks. First, based on a node’s fuzzy trust value, its network privileges

are modulated under a model of partial revocation. Second, for better revocation

immediacy and abuse resistance, we explored the idea of mutual trust revocation.

The partial revocation approach presents its trade-offs between revocation immedi-

acy and accuracy. Third, by providing trust in the form of incentives, it encourages

honest nodes to make right accusations but at the same time also discourages ma-

licious nodes by penalizing them for making false accusations. Our future work

will study other possible attack strategies as well as more extensive simulations to

compare Zigzag with other existing revocation schemes.

28

Chapter 3 —

GlobalTrust: An Attack-Resilient Rep-

utation System for Tactical Networks

Military tactical networks often face challenges in designing security protocols be-

cause they require additional precautions compared to civilian networks, includ-

ing high hostility, distributed network characteristics, node subversion, and node

heterogeneity. The mixture of wired/wireless communication mediums and high

tempo operations cause rapid changes in network topology and service require-

ments. Since communities of interest (e.g., mission/task teams) are formed dy-

namically, participating nodes may not have any pre-defined trust relationships to

each other. A tactical network may consist of heterogeneous entities character-

ized by humans (e.g., soldiers), robots, or unmanned/manned vehicles equipped

with devices such as machines and/or sensors. In this work, we use the terms a

node and an entity interchangeably to represent heterogeneous entities (or nodes)

above. Military tactical networks typically have a hierarchical structure where a

commander makes critical decisions to control all other entities in the network [45].

In this scenario, for the commander, it is critical to perceiving an accurate view

towards other entities for making right decisions. For example, when the comman-

der wants to form a temporary mission team, called a military coalition, based on

an acceptable trust level of nodes, the accuracy of trust assessment towards each

node significantly impacts mission success.

One of the common applications using trust management mechanisms is to

identify malicious entities in order to protect the network from attackers. The

malicious entities may disrupt system security goals by performing network attacks

such as loss of service availability (e.g., denial-of-service, packet dropping), and/or

29

loss of data integrity (e.g., good/bad mouthing, message forgery/modification).

In this work, we propose an attack-resilient reputation management mechanism

that can accurately assess nodes’ trustworthiness in the presence of highly hostile

entities.

Trust or reputation management has been extensively studied in various do-

mains [46]. In particular, many studies define reputation as a global perception of

a node’s trustworthiness in a network, whereas trust indicates an individual node’s

perception of any other node’s trustworthiness based on its direct observation. A

desirable reputation management should be able to provide the following features

in the network:

• Consistency: provide a consistent view of the reputation of a node based

on the consensus of honest nodes.

• Resiliency: be resilient to common security threats.

• Accuracy: derive valid reputation values based on accurate trust assess-

ment.

Maintaining a consistent global view towards the node’s reputation is challeng-

ing with uncertain or incomplete evidence in hostile, distributed tactical network

environments.

In this chapter, we propose a reputation system, the so called GlobalTrust,

for tactical networks for maximizing correct decision-making by identifying mali-

cious entities.

3.1 Related Work

Trust or reputation management (TRM) schemes have been extensively studied in

various domains. In general, the term trust management is interchangeably used

with the term reputation management [47]. However, a slight difference between

trust and reputation has been clarified in the literature. According to Liu et

al. [48], trust is a node’s belief in trusting a peer, a subjective view towards its

peer. Reputation is the perception that peers form about a node. Thus, reputation

can be estimated based on the aggregation of peer nodes’ trust values. Again in

our work, we use trust to indicate a node’s subjective opinion towards other nodes

30

based on its own observations (i.e., LTOs) while reputation means the converged

view towards a particular node, computed based on multiple opinions of other

nodes such as the commander node’s reputation values about other nodes.

Cho et al. [46] discussed the unique properties of trust, which can be distin-

guished from reputation, such as subjectivity, incomplete transitivity, asymmetry,

and context-dependency. Fundamentally, trust is a subjective belief a node has

towards another node. On the other hand, reputation is a relatively objective con-

cept because it is computed based on evidence from the majority of third parties.

Aberer and Despotovic [1] presented a trust-based reputation management

scheme that is scalable for data management without any centralized control with-

out considering collusive attacks. Kamvar et al. [49] proposed a distributed and

secure method for reputation management that effectively identifies and isolates

malicious nodes using the pre-trusted authority. Xiong and Liu [27] proposed two

reputation-based trust models to evaluate a node’s reputation in a fully distributed

manner: trust-value based credibility measure (TVM) and personalized similarity

measure (PSM). However, TVM is vulnerable to collusion attack while PSM gen-

erates discrepancies in reputation about the same entity for different evaluators.

Zhou and Hwang [50] introduced a reputation system using the power-law feed-

back provided by power nodes to aggregate reputation values in order to build a

robust P2P system. Bella et al. [51] proposed a reputation management scheme

that enables a node to exchange and update other nodes’ reputation values in mo-

bile ad hoc networks (MANETs). Arboit et al. [52] introduced a computational

reputation model that considered accusations against nodes in MANETs. These

works [51,52] do not deal with the false recommendation attack that significantly

deters accurate reputation assessment. Some other existing reputation manage-

ment schemes [53–56] evaluate the reputation of a node subjectively based on the

evaluator’s direct observation, ultimately leading to inconsistent global reputation

view in the network.

Quorum-based decision on detecting malicious nodes has been extensively stud-

ied based on k-out-of-n threshold signatures [57,58]. The key idea to these schemes

is to determine the threshold k + 1 that is an upper bound of negative votes to

diagnose a node as compromised. However, it has a limitation in obtaining a suf-

ficient number of votes under highly dynamic network environments and also did

not consider any collusive attack. Later, Reidt et al. [32] proposed a revocation

31

decision making scheme by employing the k-means clustering algorithm for trust

management. Nevertheless, the k-means-based judgment scheme is vulnerable to

inconsistent (or conflicting) recommendation attack.

3.2 Preliminaries

3.2.1 Problem Statement and Challenges

We assume each node in a tactical network is pre-installed with a monitoring

mechanism [59] characterized by detection error probability ε. This enables a

node to directly observe its neighboring nodes’ behavior. With this monitoring

capability, each node can derive Local Trust Opinions (LTOs) about its neighboring

nodes based on direct observations. For example, LTOw,u is node w’s trust opinion

towards node u based on direct observations. If node w has not encountered with

node u, there will be no LTO. Let pw,u and nw,u be the total number of positive

events and total number of negative events that node w observed about node u,

over the period of encountering time. The LTO of node w towards node u during

this time period, LTOw,u, is calculated as:

LTOw, u =
pw, u

pw, u + nw, u
(3.1)

LTOw,u is a real number scaled in [0, 1]. Note that if the total number of observed

events, pw,u + nw,u, is 0 (i.e., no direct observation), LTOw,u will be set as a null

value. These LTOs form an LTO matrix where each entry LTOi,j is the LTO of

node i towards node j. The following is a simple example of an LTO matrix with

six nodes in the network, where the fourth and sixth nodes are malicious nodes

giving false (dishonest) LTOs. Here empty entries indicate null values.

LTO =



0.82 1 0 0.26

0.93 0.88 0.20

0.96 0 0.93

0.05 0 0 0 1

0.89 0.18 0.23

0 0 0.07 1 0


(3.2)

32

We define the density of an LTO matrix, denoted as d, as the proportion of

non-null LTOs (i.e., real values) in the matrix and calculate d as follows:

d =
|{(i, j) : LTOi, j 6= null}|

N(N − 1)
(3.3)

where N is the number of nodes. Besides, every LTO is time-stamped to keep

track of its freshness. Every node may store its LTOs using, for example, in-

network storage technology with multiple copies to mitigate the potential data

loss in a distributed network environment. That is, LTOs are stored and fetched

in a distributed hash table (DHT) like P-Grid [1].

Given an LTO matrix for a given time period, our goal is to develop a reputation

management scheme that can provide the network authority (e.g., a commander)

with the capability of consistent and accurate assessment on the reputation of

every node. That is, the proposed scheme aims to meet the following key require-

ments: (1) providing a consistent reputation value towards a node based on an

LTO matrix; and (2) minimizing the inaccuracy of reputation evaluation intro-

duced by intentionally injected false LTOs and imperfect monitoring error. To

achieve these goals, we face two major challenges:

• No pre-trusted LTOs: The nodes which provide LTOs are not pre-trusted,

so their LTOs cannot be trusted. In other words, the commander node cannot

directly use these LTOs to derive reputation values for nodes.

• Incomplete/Sparse LTO matrix: The LTO matrix may be incomplete

and even sparse due to the lack of observations or malicious nodes suppressing

their LTO reports during an evaluation period.

3.2.2 Networw Model and Assumptions

GlobalTrust is a very generic framework, as long as it has an LTO matrix as

the input. The LTO matrix can be generated from any group where members rate

each other. Hence, GlobalTrust can be applied to the context of MANETs,

peer-to-peer networks, Internet, or social networks. For concreteness, we assume

that the targeted environment is a tactical network consisting of multiple mobile

nodes communicating through multiple hops. For secure communication, each

node is pre-loaded with a public/private key pair or pairwise shared keys.

33

In our work, a network is allowed to be hierarchical in that nodes may have

different ranks in the structure. Node k’s hierarchical rank, HRk, represents the

importance of its role in the network. For instance, it is a very common scenario

in a tactical network where entities with different ranks, such as a commander and

his/her members, collaborate in a common mission.

In the considered military scenario, we allow a trusted authority (TA), such

as a commander node, to be online periodically or as needed to collect evidence

to assess reputation of other nodes and make trust decisions. None of the regular

nodes is pre-trusted. We note that if in certain scenarios, when a single TA involves

a security, safety, and/or performance concern, standard protocols [60] can be hold

to distribute such a trust role into multiple regular nodes in the network, leading

to reaching a consensus on the trustworthiness of all nodes. Such extensions are

orthogonal to the reputation management algorithm in GlobalTrust.

A node may behave honestly, or may be compromised and perform various

types of attacks. Now we describe various types of attack behaviors considered

in this work below. We assume that honest nodes are a majority in the network,

not allowing the Byzantine Failure condition due to too many malicious entities

in the network. we demonstrate the impact of the ratio of malicious nodes on

decision accuracy in Section 3.4.3. As a measure of reputation, we consider the

degree of compliance with a given network protocol (i.e., not performing network

attacks and reporting honest LTOs compared against those of majority entities)

by an entity.

3.2.3 Adversary Model

A malicious node (aka a compromised node or attacker) is defined as a node not

complying with a given network protocol by either denying requested services or

providing false LTOs. We model the degree of an attacker’s misbehavior with

attack intensity, α, ranged in [0, 1]. With this attack intensity, we can model a

random attack behavior where an attacker performs an attack with probability α

while exhibiting honest behavior with probability (1 − α). Malicious nodes may

collude to promote their reputations via good mouthing attacks while demoting

honest nodes’ reputations via bad mouthing attacks. Malicious nodes may provide

false LTOs that are opposite to their actual observations. In this work, we consider

34

the following attack behaviors:

• Näıve Malicious Attack (NMA): A compromised node may provide im-

proper services, not complying with a given network service protocol. How-

ever, it does not lie in reporting its LTOs.

• Collusive Rumor Attack (CRA): In addition to providing improper ser-

vices, malicious nodes collude to report false LTOs (i.e., good/bad mouthing

attacks) for disrupting accurate trust or reputation assessment.

• Non-collusive Rumor Attack (NRA): Without colluding with other ma-

licious nodes, a malicious node can report a false LTO that is opposite to the

observed evidence. For example, if an LTO is evaluated as p, the malicious

node may report 1− p for the LTO.

• Malicious Spy Attack (MSA): Some malicious nodes misbehave while

other malicious nodes, called malicious spies, behave normally by providing

proper services. These malicious nodes may collude and form an attacker

community to perform good/bad mouthing attacks by reporting false LTOs,

in order to subvert the entire trust and reputation system [61].

• Conflicting Behavior Attack (CBA): Malicious nodes can behave incon-

sistently to different parties. This attack aims to disseminate conflicting (or

inconsistent) LTOs. For example, they may misbehave only to a subset of

honest nodes (referred to as target nodes) to intensify the LTO discrepancy

between targeted and non-targeted honest nodes. This attack may reduce

the overall attack intensity due to the nature of intermittent misbehavior.

3.3 GlobalTrust

3.3.1 Overview

With a commander node taking the role of TA, GlobalTrust is deployed on

TA to evaluate the global reputations of all nodes. Whenever TA comes online, it

collects all LTOs with timestamps during the last offline interval. In this section,

we discuss how to evaluate global reputation values of all nodes by aggregating

35

both true and false LTOs, without any prior knowledge of which LTOs are true or

false.

SR
1

SR
2

SR
3

SR
4

Collecting LTOs
Subjective Reputation

Evaluation

Identifying Trusted

Quorum

SR
4
=

SR
3
=

SR
2
=

SR
1
=

Global Reputation

Evaluation

Classfying Nodes

Figure 3.1. Workflow of GlobalTrust

Assuming that honest nodes are a majority in the network, they are expected

to form a consistent view on other nodes even in the presence of conflicting evi-

dence. We call the view that node i has towards node j a subjective reputation

(SR); it is computed by TA based on both the LTOi,j and the LTOs that other

nodes have over node j. Section 3.3.2 will detail how to compute the subjective

reputation. We use a machine learning technique, called hierarchical clustering,

to identify a minimum dominating set of nodes as a trusted quorum based on the

similarity among their subjective views. Then we evaluate the reputation of a node

by converging the subjective reputations of nodes in the quorum. Based on the

computed reputation value of each node, TA judges the trustworthiness status of

each node according to three reputation statuses: honest, malicious or unknown.

Fig. 3.1 summarizes the key processes of the GlobalTrust.

3.3.2 Subjective Reputation Evaluation

In our model, each node can compute LTOs only for other nodes it has directly

interacted with, not for remote nodes because no direct evidence is available. How-

ever, TA can evaluate all nodes based on the LTOs provided by all nodes in the

network. With the LTO matrix, TA will first calculate the subjective reputations

36

(SR) of each node based on subjective trust values, LTOs, provided by all nodes

in the network. Let SRw, u denote the reputation of node u evaluated by TA as it

could have been subjectively assessed by node w. In the evaluation, node w trusts

its own LTO. We use a weighted average to compute SRw, u :

SRw, u =
∑
j∈Su

LTOj, u ·
HRj · Sim(w, j)∑
j∈Su HRj · Sim(w, j)

(3.4)

where Su is the set of nodes that have non-null LTOs over node u (including w if

w has one), LTOj, u is the LTO of node j over node u, HRj is node j’s hierarchical

rank, and Sim(w, j) is the similarity between LTOs reported by node w and node

j. The rationale behind the formula is as follows. From node w’s viewpoint, to

evaluate the reputation of another node u, besides its own direct observation (if

any), the LTOs over node u reported by other nodes can be taken into consideration

too. Node w weighs other nodes’ LTOj, u values based on the similarity between

its own view and node j’s view. That is, it weighs more the opinions from others

with more similar views to its own. The similarity of LTOs between node w and

node j is measured based on a cosine function with the input of their LTO vectors:

Sim(w, j) = max(cos(LTO′w, LTO′j), 0). (3.5)

Here we adopt a cosine function to capture the similarity of two LTOs represented

by two vectors. The cosine similarity result is ranged in [−1, 1], where −1 refers to

complete dissimilarity in the two opinions, 1 complete similarity, and 0 ignorance

(uncertainty), indicating orthogonal opinions. Before computing the cosine sim-

ilarity of two vectors, the LTOs in both vectors are linearly mapped to the scale

of [−1, 1], re-scaled from the original scale in [0, 1]. The re-scaled LTO vector is

denoted as LTO′. Note that if there is no common set between two vectors, the

cosine similarity value is set to 0. Further, the similarity result is adjusted to 0 if

the cosine similarity value of the two vectors is negative, which excludes evidence

37

provided by untrusted nodes due to the dissimilarity. SRw, u is evaluated by:

SRw,u =



if
∑

j∈Su HRj · Sim(w, j) 6= 0,∑
j∈Su LTOj, u · HRj ·Sim(w, j)∑

j∈Su HRj ·Sim(w, j)

else if Su 6= ∅,∑
j∈Su LTOj,u · HRj∑

j∈Su HRj

else

null

(3.6)

When
∑

j∈Su HRj · Sim(w, j) = 0 (i.e., the denominator in Equation 3.4), this

indicates that node w does not have directly observed evidence towards u, nor did

any other nodes with whom node w shares positive similarity. In this case, we

average the existing LTOs on node u with the HR of each recommender as the

weight for SRw, u, if any. If none of the nodes in the network has LTOs on node u

(i.e., Su = ∅), we set it to a null. Note that if Su = ∅, SRw, u is null for any w.

3.3.3 Assessment of Trusted Quorum

After computing the SR for each pair of nodes, TA generates an SR matrix. The SR

tuple in node w’s view is denoted as vector SRw = (SRw,1, · · · , SRw,N). There are

N SR tuples in total. Our next step is to identify a subset of the SR tuples as TA’s

trusted quorum. Intuitively, SR tuples from honest nodes tend to be similar and

hence form a cluster, while those from malicious nodes may form another cluster or

are irregularly distributed subject to specific false recommendation attack patterns.

We call a cluster dominating if the number of nodes in the cluster exceeds the half

of a network size. We aim to find the minimum dominating cluster to represent the

trusted quorum. The reasons are two folds: the dominating size guarantees that

the SR tuples in malicious nodes’ views cannot form such a big cluster while the

minimum requirement contributes to excluding inaccurate SR tuples, due to false

reported LTOs and imperfect direct observations, as much as possible. We use

the agglomerative hierarchical clustering technique to build a hierarchy of clusters

based on all the SRs and find a minimum dominating cluster.

Fig. 3.2 is a simple example of hierarchical clustering dendrogram. In this

method, each node starts with its own cluster, and the pairs of clusters with the

38

1 5 7 9 10

5,7

9,10

5,7,9,10

1,5,7,9,10

Figure 3.2. An example of hierarchical clustering dendrogram

nearest distance are merged continuously until only one cluster remains. Eventu-

ally, it forms a hierarchical clustering tree. Here, the distance of two values a and b,

denoted as dist(a, b), is |a− b|, and the distance of two clusters A and B is defined

as max{dist(a, b) : a ∈ A, b ∈ B}. Fig. 3.2 describes the example procedures of

hierarchical clustering dendrogram as follows: (1) the cluster {9} and the cluster

{10} are merged since their distance of 1 is the smallest; (2) the cluster {5} and the

cluster {7} are merged because the current smallest distance is 2; (3) the cluster

{5, 7} and the cluster {9, 10} are combined since the smallest distance becomes 5

after that; (4) the cluster {5, 7, 9, 10} merges with the cluster {1} to complete the

hierarchical clustering.

Applying this method, we categorize N SR tuples into a hierarchical clustering

tree by assigning each SR tuple into a leaf node. In our case, the distance between

any two SR tuples is their Euclidean distance and the distance between two clusters

follows the same definition above. Therefore, the minimum dominating cluster,

denoted as D, is the first cluster formed in the agglomerative clustering whose

size is over N/2. This cluster D becomes TA’s trusted quorum. To compute the

agglomerative clustering, we use the nearest-neighbor chain algorithm [62]. The

overall time and space complexity for the nearest nearest-neighbor chain algorithm

is O(N2) and O(N), respectively, where N is the number of nodes in the network.

3.3.4 Global Reputation Evaluation

We compute the global reputation of each node considering two aspects of reputa-

tion: behavioral reputation (BR) and credibility reputation (CR). Node u’s behav-

ioral reputation, BRu, reflecting how other nodes view node u’s network behavior,

39

is computed by averaging the SR tuples in D:

BRu =

unknown if Su = ∅∑
w∈D SRw, u
|D| otherwise

(3.7)

Su is the set of nodes that have LTOs over node u, SRw, u is the SR of node u

in node w’s opinion. When no LTOs towards node u are available in the network

(i.e., Su = ∅), BRu is set to unknown. In the case, SRw, u must be null for any

w, as mentioned previously.

Node u’s credibility reputation, denoted as CRu, indicates how trustworthy u’s

reported LTOs (i.e., LTOu) are. It is estimated based on the difference between

u’s reported LTOs and BRs of the nodes that node u has reported LTOs over.

This implies that if the behavioral reputation of a node j is evaluated to be good,

node u also has a very positive LTO over j, meaning u’s LTO is more credible.

The credibility of node u’s LTOS, CRu, is estimated by:

CRu =


unknown if LTOu = null

1−
√∑

j∈{LTOu,j 6=null}
(LTOu,j−BRj)2

|{j|LTOu,j 6=null}| otherwise

Note that when node u does not report any LTOs (i.e., LTOu = null), unknown

is assigned to CRu. In this case, its global reputation is solely computed based on

its behavior.

Finally, TA computes the global reputation of node u by:

GRu =



γBRu + (1− γ)CRu if both known

unknown if both unknown

CRu if only BRu = unknown

BRu if only CRu = unknown

(3.8)

Here γ ∈ [0, 1] is used to normalize the global reputation values.

After TA computes global reputation (GR) values of all nodes, it can judge

the trustworthiness of each node u as one of three statuses: malicious, honest, or

40

unknown by:

Decision(u) =


unknown if GRu = unknown

honest if GRu ≥ θ

malicious if GRu < θ

(3.9)

where θ is a decision threshold selected from the range in [0, 1] that may be adjusted

to minimize detection errors (we will examine the impact of θ in our simulation

experiments).

3.3.5 Security Analysis

For security analysis, let us first consider the case that a malicious node behaves

consistently to other nodes (i.e., NMA, CRA, NRA and MSA attacks). In this

case, honest nodes have high consistent views (LTOs) on every malicious node

as well as on every honest node, meaning high similarity of LTOs between two

honest nodes. On the other hand, the similarity of LTOs between an honest node

and a malicious node depends on how faithfully the malicious node reported its

LTOs. The more faithfully, the higher the similarity. Therefore, by converging

the LTOs with their similarity as weight, SRw,u is highly accurate to reflect node

u’s behavioral reputation when node w is honest. That is, SR tuples in honest

nodes’ views are highly consistent and accurate. Note that for a malicious node w,

SRw,u could be inaccurate if node w reports false LTOs, or accurate if node reports

LTOs honestly to actually contribute to reputation aggregation. By leveraging

hierarchical clustering, the consistent and accurate SR tuples with a minimum

dominating size will form a trusted quorum to eventually evaluate the behavioral

reputations of all nodes accurately, which can effectively identify malicious nodes in

the attacks including NMA, CRA and NRA. With the help of accurate behavioral

reputation, the scheme can accurately evaluate the credibility reputation of nodes

and hence effectively identify malicious spies in MSA.

There is a case that malicious nodes behave inconsistently to different honest

nodes (i.e., CBA). Even in this case, since honest nodes have high consistent views

on honest nodes consisting of a majority of the nodes in the network, they are more

likely to form the trusted quorum even if malicious nodes may exhibit inconsistent

41

network / reporting behavior. Note that if malicious nodes report their honest

LTOs, they are likely to be involved into the trusted quorum and contribute to

accurate reputation assessment. This, thus, enables their credibility reputations

(CR) to maintain high. However, their behavioral reputations (BRs) will be low,

which causes their overall global reputations lower than those of honest nodes. In

this sense, our scheme is resilient against malicious nodes performing CBA and

accordingly can effectively identify honest and malicious nodes, except the case

with the following two cases: (1) when the ratio of malicious nodes is very close

to 50% (see Section 3.4.3 for the analysis); and (2) the LTO matrix is too sparse,

leading to the case the LTOs of malicious nodes form the majority in the LTO

matrix.

3.4 Performance Evaluation

3.4.1 Simulation Setup

We evaluate GlobalTrust through extensive simulations using C. The network

model uses a set of human-mobility traces from CRAWDAD [63]. In the collection

of the datasets, all participants were equipped with Global Positioning System

(GPS) receivers to log their positions per 30 seconds. We use the dataset by

KAIST (Korea Advanced Institute of Science and Technology) which uses mobility

traces of 92 nodes. The nodes of a simulated network are split into two types of

nodes, honest or malicious nodes. The numbers of malicious and honest nodes are

denoted as m and h, respectively. The ratio of malicious nodes is denoted as k

(= m
m+h

) and its default value is set to 0.3. Each node is assumed to have an equal

hierarchical rank, except TA, taking the role of a higher rank commander.

The networking traffic is simulated based on packet forwarding behavior. Every

node randomly requests one of its neighboring nodes to forward a packet as a relay

for 100 times per minute, where the one-hop wireless radio range is 250 meters.

For honest nodes, they cooperate in forwarding packets with probability (1− e) =

0.95 and drop packets with probability e = 0.05. Honest nodes are supposed to

provide LTOs of other nodes based on their direct observations. After a node

forwards a packet to a neighbor node, it would monitor the neighbor’s behavior on

packet forwarding. Packet forwarding is regarded as positive behavior while packet

42

dropping is counted as a negative behavior. We consider the inherent detection

error probability in the monitoring mechanism with ε = 0.05, providing falsely

observed report towards the observed events (e.g., reporting opposite results). We

summarize attackers’ behavior pattern discussed in Section 3.2.3 in Table 3.1. Note

that α is the probability that a malicious node drops a packet and α = 0.5 as the

default.

Model Behavior Recommendation
NMA misbehaving with prob. α honestly reporting LTOs
NRA misbehaving with prob. α reporting opposite LTOs, 1− α

CRA misbehaving with prob. α
reporting LTOs of 1 to malicious nodes

and LTOs of 0 to honest nodes

MSA
half malicious nodes misbehaving with prob. α; reporting LTOs of 1 to malicious nodes
the other half malicious nodes behaving honestly and LTOs of 0 to honest nodes

CBA
misbehaving with prob. α to half honest nodes; reporting LTOs of 1 to malicious nodes
behaving honestly to the other half honest nodes and LTOs of 0 to honest nodes

Table 3.1. Malicious attack patterns

TA computes the reputation of each node every 30 minutes. Based on TA’s

online interval and mobility traces, we observe that on average a node encounters

with 39% of all nodes as a 1-hop neighbor. The LTOs submitted in the previ-

ous offline time frame (i.e., the last 30 minutes) are collected to estimate global

reputations and make decisions about nodes’ statuses (i.e., honest, malicious, or

unknown). The coefficient γ is set to 0.7 to weigh the behavioral reputation (BR)

higher than the credibility reputation (CR) because malicious behavior is able to

cause direct attacks to the network performance (e.g., throughput), whereas false

LTOs may be filtered out by GlobalTrust and hence introduce less negative im-

pacts on the network. We set the decision threshold, θ = 0.8, to determine whether

a node is malicious or honest. The simulation is run 1000 for each scenario for the

results shown here.

3.4.2 Performance Metrics

In this work, we consider detection errors (i.e., FPs and FNs) on trust decisions

evaluated by TA as performance metrics. We show all possible decision cases in

Table 3.2. For the nodes classified as unknown, this is the case when they neither

provide any recommendation nor interact with any other nodes, regarded as inac-

tive in the network. We do not consider them for our performance analysis. For an

43

active node, four outcomes are possible, as in Table 3.2. We mainly use both false

positive (FP) and false negative (FN) probabilities as our performance metrics

to indicate judgment (decision) errors. Besides, we use receiver operating char-

acteristics (ROC) analysis as a performance metric, indicating correct detection

probability.

TA Decision
Malicious Honest

Ground Truth Malicious true positive (TP) false negative (FN)
Honest false positive (FP) true negative (TN)

Table 3.2. Detection types

3.4.3 Comprehensive Evaluation

This subsection gives a comprehensive evaluation of decision errors with respect

to three factors: the probability of attack intensity (α), ratio of malicious nodes

(k), and malicious attack patterns. Finally, we show how the selection of decision

threshold (θ) affects the decision accuracy.

Fig. 3.3 illustrates how the decision errors vary as attack intensity, α, increases.

We observe that the maximum FP is less than 0.03 over the entire range of α ex-

cept for CBA. Under NMA, the FP is close to zero because of no false (dishonest)

recommendations. Under CBA, the FP increases slightly up to 0.07 when α in-

creases. This is because the increasing α can increase the dissimilarity between

honest nodes’ LTOs and malicious nodes’ LTOs, which ultimately affects the sub-

jective reputation evaluation. However, the negative impact is small because the

similarity of honest nodes’ LTOs over honest nodes ensures the credibility of LTOs.

Fig. 3.3 also shows that the observed FN is close to 0, except the case of NMA

with α < 0.3 showing a significant number of malicious nodes is falsely identified

as honest. With small α, malicious nodes under NMA do not exhibit misbehavior

much, accordingly leading to high FN. Under all other attacks, malicious nodes’

global reputations are downgraded due to their misbehavior and false LTOs, lead-

ing to the situation that most of them are classified as malicious even with low α.

Besides the spies in MSA are well identified even if they show consistent honest be-

haviors. Therefore, considering credibility reputation (CR) in deriving the overall

global reputation significantly helps identify malicious nodes showing inconsistent

behavior such as intermittent reporting of false recommendations.

44

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

0.08

Attack intensity (α)

F
a

ls
e

 p
o

s
it

iv
e

 p
ro

b
.

NMA

NRA

CRA

MSA

CBA

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

Attack intensity (α)

F
a

ls
e

 n
e

g
a

ti
v

e
 p

ro
b

.

NMA

NRA

CRA

MSA

CBA

Figure 3.3. Decision error vs. α

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.2

0.4

0.6

0.8

Ratio of malicious nodes (k)

F
a

ls
e

 p
o

s
it

iv
e

 p
ro

b
.

NMA

NRA

CRA

MSA

CBA

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

Ratio of malicious nodes (k)

F
a

ls
e

 n
e

g
a

ti
v

e
 p

ro
b

.

NMA

NRA

CRA

MSA

CBA

Figure 3.4. Decision error vs. k

Fig. 3.4 reveals how the increasing ratio of malicious nodes, k, degrades the

decision errors. The FP increases but stays below 0.1 under all types of attacks

with k < 0.4. When k increases up to 0.5, the FP increases rapidly and stays

around 0.7 at the end. This is because the trusted quorum derived from the

hierarchical clustering may include more malicious nodes than honest nodes when

malicious nodes become a majority of the network. We also observe that CBA is

more detrimental than NRA, CRA and MSA when k increases. For attacks such

as NRA, CRA and MSA, a higher k means more malicious nodes in the trusted

quorum. However, when malicious nodes perform the CBA attack, a higher k not

only increases the degree of malicious activities, but also affects the subjective

reputation evaluation by honest nodes, because the CBA attackers generate more

conflicting LTOs.

When k is below 0.4, the FN increases with k under MSA, CRA and CBA and

it reaches 0.06 at its maximum under CBA whereas it is almost zero under NMA

and NRA. For higher k > 0.4, the FN increases as quickly as the FP increases

because the trusted quorum tends to include more malicious nodes. Again, CBA

impacts more detrimentally than CRA and MSA over a wider range of k. This

is because malicious nodes performing the CBA can obtain high trust values in

behavior reputation (BR) while still performing attacks, compared to malicious

nodes performing CRA and MSA. Overall GlobalTrust is fairly resilient to the

attacks considered above when k < 0.4.

Fig. 3.5 shows how the density of an LTO matrix, d, affects the decision errors.

45

The result shows that both FP and FN stay low and they fluctuate a little bit

as the density of an LTO matrix, d, increases under all other attacks considered.

Hence, GlobalTrust is adaptive to a wide range of LTO density, d, as low as

20%.

0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.02

0.04

0.06

0.08

0.1

Density of an LTO matrix (d)

F
a
ls

e
 p

o
s
it

iv
e
 p

ro
b

.

NMA

NRA

CRA

MSA

CBA

0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.02

0.04

0.06

0.08

0.1

Density of an LTO matrix (d)

F
a
ls

e
 n

e
g

a
ti

v
e
 p

ro
b

.

NMA

NRA

CRA

MSA

CBA

Figure 3.5. Decision error vs. d

Fig. 3.6 visualizes how GlobalTrust performs w.r.t. θ using the ROC metric.

We consider three collusion attacks including CRA, MSA and CBA. The y-axis

is the TP probability, referring to the probability of correctly detecting malicious

nodes, while the x-axis denotes the FP, meaning the probability of detecting a

good node as bad. The value labeled with each point is the decision threshold,

θ. The observed general trend is that the TP probability increases with θ and FP

(< 0.05). In Fig. 3.6, to ensure that ROC (detection probability) is above 0.7,

θ should be as low as 0.4, 0.4 and 0.6 under CRA, MSA and CBA, respectively.

Similar to our observation in previous results, malicious nodes performing CBA

have higher reputation values than those performing CRA and MSA.

When the threshold, θ, increases from 0.7 to 0.8 under MSA, ROC significantly

increases by 0.13 between these two thresholds. This implies that sufficiently high

θ is required to maximize ROC. We observe that θ = 0.8 is optimal under the

given condition because this ensures the smallest fluctuation of FP and FN, 0.05,

under the considered attacks.

46

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
0.7

0.75

0.8

0.85

0.9

0.95

1

0.4
0.5

0.6

0.7
0.8 0.9

0.4
0.5

0.6

0.7

0.8
0.9

0.6

0.7
0.8

False positive prob.

T
ru

e
 p

o
s
it

iv
e
 p

ro
b

.
(d

e
te

c
ti

o
n

 p
ro

b
.)

CRA

MSA

CBA

Figure 3.6. ROC curve by varying θ

3.4.4 Comparative Performance Analysis

This subsection presents two performance comparison studies: (1) GlobalTrust

vs. k-means clustering-based judgment scheme [32]; and (2) GlobalTrust vs.

two existing reputation methods (i.e., TVM and PSM) in PeerTrust [27].

3.4.4.1 GlobalTrust vs. K-Means Clustering-Based Judgment

Reidt et al. [32] introduced a k-means clustering-based judgment scheme (KMS-JS)

on a trust overlay network. In KMS-JS, TA collects all LTOs to form LTO matrix

O, in which oi, j represents the LTO of node i about node j. All N ×N entries are

assumed to be full after a sufficiently long time elapsed, where N is the number

of nodes in the network. The LTOs over node j are placed in its column vector

of the matrix O, oj = (o1,j, . . . , oN,j). The values in column vectors of honest

nodes tend to be close to each other and thus can often be clustered together. The

judgment system uses a N −1 dimensional hyper-plane to maximally separate two

clusters based on nodes’ column vectors, and the larger cluster is categorized as

honest. Unfortunately, the decision made may not be true, showing severe security

vulnerability due to conflicting recommendation attacks. For example, a collusive

community divides all honest nodes (i.e., nodes out of the community) into two

groups equally, denoted as G1 and G2; collusive malicious nodes provide highest

LTOs about themselves and honest nodes in G1, while they provide lowest LTOs

about honest nodes in G2; also, malicious nodes control their attack intensity α

in a proper level. This attack pattern tends to maximize the difference between

47

vectors oj of two different honest groups and minimize the difference between

malicious nodes and nodes in G1. Under this attack, the judgment system may

cluster malicious nodes and nodes G1 into the honest class while nodes in G2 are

clustered into the malicious class. Fig. 3.7 shows how detection error (FP and FN)

varies with respect to α, when the ratio of malicious nodes k is 0.3. Fig. 3.7 shows

that KMS-JS performs very poorly with FN close to 1 and FP close to 0.5 for

α < 0.9. In contrast, GlobalTrust performs significantly better than KMS-JS,

with both FN and FP less than 0.1 in most cases when α > 0.1.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

Attack intensity (α)

F
a
ls

e
 p

o
s
it

iv
e
 p

ro
b

.

KMS−JS

Ours

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

Attack intensity (α)

F
a
ls

e
 n

e
g

a
ti

v
e
 p

ro
b

.

KMS−JS

Ours

Figure 3.7. Comparison with KMS-JS

3.4.4.2 GlobalTrust vs. Existing Reputation Schemes

Here we compare GlobalTrust with the existing reputation schemes [27,49,50,

53, 54, 64] based on two criteria: consistency and resilience, shown in Table 3.3.

In Fig. 3.8, we compare GlobalTrust with two reputation techniques used in

PeerTrust [27], trust value based credibility measure (TVM) and personalized

similarity measure (PSM), with respect to the accuracy of trust assessment.

Consistency: For fully distributed tactical networks, reputation evaluation is

normally performed either in a distributed, cooperative way [49] or in an indepen-

dent, uncooperative way [27]. In the former case, the evaluated reputation of a

node must be consistent through the network. In the latter case, the evaluated

reputation towards a node may be inconsistent in the network if an evaluator dif-

ferentiates direct observations from indirect observations in deriving reputation

values. Table 3.3 shows if existing reputation schemes have considered view con-

sistency.

48

TBRM Cons. NMA NRA CRA MSA CBA

CORE Yes
√ √

• • •
EigenTrust Yes

√ √
? • ?

SORI No
√ √

• • •
Robust No

√ √ √
? •

PSM No
√ √ √

?
√

PowerTrust Yes
√ √ √

?
√

GlobalTrust Yes
√ √ √ √ √

√
: resilient; ?: partially vulnerable; •: vulnerable

Table 3.3. Comparison between our GlobalTrust and existing TBRM schemes w.r.t.
consistency and resilience

Resilience: We compare GlobalTrust with existing reputation schemes w.r.t.

their resilience to the types of attacks in Table 3.3. CORE and SORI do not

deal with collusion attacks such as CRA, MSA and CBA. EigenTrust is able to

resist CRA to some extent with the help of pre-trusted nodes; however, for those

nodes that the pre-trusted nodes have not had a chance to interact or observe (i.e.,

high uncertainty), the reputation evaluation would be highly distorted. Besides,

MSA is an attack that can effectively defeat EigenTrust based on two reasons:

(1) EigenTrust has no way to identify spies since their reputations are overesti-

mated with high reputation values; and (2) false recommendations provided by

spies are regarded as trustworthy information because the spy nodes do not show

other abnormal behavior except passing false recommendations. EigenTrust may

be vulnerable to CBA when pre-trusted nodes may be cheated by malicious nodes

showing inconsistent behavior. Robust, PSM and PowerTrust devise trust models

to effectively filter out false recommendations by collusion attacks; however, they

do not consider credibility of recommendations for reputation evaluation and hence

cannot identify spies in MSA. Robust is vulnerable to CBA with a malicious node

showing inconsistent behavior because of the lack of capability to detect them by

honest nodes. Since GlobalTrust can filter out false recommendations using the

subjective reputation of nodes based on the identified trust quorum. In addition,

GlobalTrust uses credibility reputation (CR) to consider credible recommen-

dations that can help correctly measure global reputation, ultimately leading to

effectively identifying spies in MSA.

Accuracy: In Fig. 3.8, we compare GlobalTrust with PeerTrust [27] w.r.t.

49

accuracy of trust assessment. We choose PeerTrust for the comparison because

PeerTrust and GlobalTrust adopt the same definition of behavior reputation.

The two evaluation models, TVM and PSM, in PeerTrust are devised based on

different strategies to estimate recommendation credibility. TVM is known as

vulnerable to collusion attacks while PSM is well designed to resist CRA. All

parameters are set equally for these schemes in our simulation for fair comparison,

as shown in Section 3.4.

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.1

0.2

0.3

0.4

0.5

Ratio of malicious nodes (k)

R
M

S
 e

rr
o

r

TVM

PSM

Ours

(a) RMS error vs. k under NRA

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.1

0.2

0.3

0.4

0.5

Ratio of malicious nodes (k)

R
M

S
 e

rr
o

r

TVM

PSM

Ours

(b) RMS error vs. k under CRA

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.1

0.2

0.3

0.4

0.5

Ratio of malicious nodes (k)

R
M

S
 e

rr
o

r

TVM

PSM

Ours

(c) RMS error vs. k under MSA

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.1

0.2

0.3

0.4

0.5

Ratio of malicious nodes (k)

R
M

S
 e

rr
o

r

TVM

PSM

Ours

(d) RMS error vs. k under CBA

Figure 3.8. Comparison with PeerTrust in accuracy

For PSM model, an honest node is randomly assigned as the evaluator to

compute reputation-based trust values of all nodes. The evaluator’s LTOs are pre-

trusted in PSM when estimating the credibility of others’ recommendations. We

compare these three reputation evaluation methods (TVM, PSM and Global-

Trust) w.r.t. judgment accuracy under NRA, CRA, MSA and CBA. We use the

root-mean-square (RMS) of the behavioral reputations of all nodes and the actual

likelihood that all nodes behave honestly to measure reputation evaluation errors.

50

That is, we compare the behavioral reputations (BRs) in GlobalTrust with the

reputation-based trust values in TVM and PSM since all of these values estimate

the actual probability that all nodes behave honestly.

The actual behavioral reputation towards a malicious node’s behavior is 1− α
under NRA and CRA, 1 for spy and 1 − α for non-spy under MSA, and 1 − α

2

under CBA. The actual reputation of an honest node’s behavior is 1. Fig. 3.8

shows the results comparing GlobalTrust, TVM and PSM. We mainly observe

the following trends:(1) TVM is severely vulnerable to collusion attacks including

CRA, MSA and CBA as the RMS error has exceeded 0.4 when the ratio of mali-

cious nodes, k, reaches 0.4; (2) GlobalTrust has about 0.25 to 0.4 lower RMS

evaluation errors than PSM when k reaches 0.4 for each attack; and (3) PSM per-

forms well, being resilient against NRA and CRA since the increased span of the

RMS error is not significantly large (around 0.1) when k varies from 0.05 to 0.4.

In contrast to PSM, GlobalTrust performs well in interpreting the behavioral

reputation of a node under all these attacks as the maximum RMS error increases

approximately up to 0.05. The results prove that GlobalTrust outperforms

TVM and PSM in terms of the accuracy of trust assessment.

3.5 Summary

In this chapter, we proposed a trust-based reputation scheme, called Global-

Trust, to accurately evaluate the reputation of nodes with respect to both the

behavioral trustworthiness and recommendation credibility in a tactical network

environment in the presence of malicious entities and with no pre-trusted nodes

in the network except for a commander node. Through the extensive simulation

experiments, we compared GlobalTrust with other existing schemes and showed

that GlobalTrust outperforms existing reputation schemes by highly being resilient

against various types of attacks, maintaining high view consistency throughout the

network and generating low reputation judgment errors.

51

Chapter 4 —

DroidJust: Automated Functionality-

Aware Privacy Leakage Analysis for

Android Applications

Mobile devices, particularly smartphones and tablets, are becoming more and more

prevalent in the world. While users enjoy the convenience and functions brought by

smartphones and tablets, their privacy is severely threatened by malicious mobile

apps that leak sensitive information to remote servers against users’ intention.

Based on the statistics from Genome [65] and Mobile-Sandbox [66], 55.8% and

59.7% Android malware families feature privacy leakage. Therefore, it is vital to

have an effective approach for detecting such malicious apps.

Prior approaches to detecting privacy leakage on smartphones primarily focused

on the discovery of sensitive information flows [5–13]. However, as more and more

benign apps send out users’ sensitive information for legitimate application func-

tions, these approaches cannot easily justify the purposes of sensitive information

transmissions in an app, and hence may not detect privacy leakage effectively. For

example, Google Maps sends out users’ location information to a remote server

for driving navigation and location-based recommendation services. To continue

to be effective and adapt to the growing application markets, the development of

more advanced analysis approaches to detecting privacy leakage on smartphones

is strongly desired.

In this chapter, we formulate the problem of sensitive information leakage as a

justification problem, which aims to justify if a sensitive information transmission

in an app serves any purpose, either for intended functions of the app itself or for

52

other related functions such as advertisements and analytics. To solve the justifica-

tion problem, we propose an automated approach, called DroidJust. DroidJust

not only identifies sensitive information flows but also tries to link each flow with

certain application function to provide the evidence for justification. DroidJust

uses various static taint analyses to automate the whole analysis process. We eval-

uate DroidJust on more than 6000 Google Play apps and more than 300 known

malware collected from VirusTotal. Our experiments show that our tool can ef-

fectively and efficiently analyze Android apps for the purposes of their sensitive

information flows, and hence can greatly assist in detecting privacy leakage.

4.1 Related Work

Most prior approaches to detecting privacy leakage in mobile apps use either static

or dynamic analysis. TaintDroid [7] is a dynamic analysis tool for monitoring

potential privacy leakage in Android apps by modifying Dalvik virtual machine

and dynamically instrumenting Dalvik bytecode instructions. PiOS et al. [6] is a

static analysis tool for discovering possible leaks of SI from a mobile device to third

parties in iOS devices. Enck et al. [8] use ded [67], a re-targeting tool, to convert

a Dalvik executable back to Java source code, and leverage a commercial Java

source code static analysis tool named Fortify 360 [68] to detect suspicious infor-

mation flow. AndroidLeaks [10] is another static analysis tool to detect potential

privacy leakage in Android applications by leveraging the WALA [69] framework.

Mann et al. [12] also proposed a static taint analysis based framework by using

their self-crafted abstract Dalvik virtual machine instruction set and a security

type system. Permlyzer [70] is a hybrid permission analysis tool which uses both

dynamic and static analysis to identify the use of sensitive permissions. Flow-

Droid [5] is a precise context, flow, field, object-sensitive and lifecycle-aware static

taint analysis tool to detect SI transmissions in Android apps. FlowDroid uses

SuSi [71], a machine-learning approach to identifying an app’s sensitive informa-

tion sources and sinks. To summarize, all these approaches are capable of detecting

an app’s SI transmissions, but they are not designed to justify the SI transmission

automatically.

Several approaches have focused on the justification of an app’s SI transmission

by examining the contextual information of the leakage. AppIntent [26] is an anal-

53

ysis tool to provide a human analyst with the contextual information of privacy

data transmission, particularly, the chain of events leading to the triggering of a

transmission, to help justify discovered SI transmissions. However, the approach

still needs human effort to justify every discovered SI flow. Tripp et al.proposed

a bayesian approach to statistically classify SI transmissions as legitimate or ille-

gitimate based on the evidence arising at the release point [25]. The effectiveness

of the approach highly depends on the select feature of the evidence for their sta-

tistical inference, which is the similarity between actual sensitive data and the

data about to be released. Different to those two approaches, which consider the

evidence arising before and at the release point, our approach uses the evidence

arising after the release point for privacy leakage detection. Zhang et al.proposed

Capper, a bytecode rewriting tool, to instrument Android apps to alert users on

SI transmissions in runtime and enable users to allow/deny the transmission [72] .

Market providers and antivirus vendors, however, cannot use the reactive approach

to performing large-scale detection.

Past research work has also demonstrated the strong relationship between an

app’s meta information and its declared permissions. Pandita et al.and Qu et

al.proposed WHYPER and AutoCog to automatically infer an app’s necessary per-

missions from its description by using natural language processing [73, 74]. These

approaches can be potentially used to provide additional useful information to jus-

tify an app’s SI transmission. However, it is nearly impossible to only use meta

information to justify an app’s SI transmission because meta information is often

very high-level, incomplete and sometimes inaccurate in reflecting all permission

needs. Note that DroidJust is not designed for permission analysis, but rather

a tool for sensitive information flow analysis. Because a privacy-sensitive permis-

sion might be needed in multiple sensitive information flows in an app, even if the

purpose of a permission is justified, a dependent individual SI flow may still be

unjustifiable. For example, a malicious weather forecast app may be justified for

the location permission based on its description, but one of its SI flows stealthily

sending to an unknown third party cannot be justified. This indicates that these

tools and DroidJust work at different granularities and may complement each

other.

54

4.2 Problem Statement and Design Goals

Recently, detecting privacy leaks in mobile apps has been one of the main research

focuses on smartphone security, and it has led to development of many useful tools

such as TaintDroid [7] for Android and PiOS [6] for iOS. Based on either static

or dynamic taint analysis, such tools [5–13] can help discover potential sensitive

information transmission. In a nutshell, these taint analysis approaches reduce

the privacy leakage detection problem to the reachability problem. However, in

reality, the existence of sensitive information transmission is not equal to privacy

leakage, as real-world apps may send out users’ sensitive information for their

advertised functions. For example, a weather forecast app may send out users’

location information to fetch the weather reports tailored to the locations; Google

Maps also sends out GPS information for driving navigation. While these exam-

ples demonstrate obvious reasons for usage of users’ sensitive information, there

are also less obvious, sometimes even unpredictable, usage cases. For example,

com.pixeltech.imonline, a trial Facebook messager app identified in our exper-

iment, sends out users’ Gmail addresses to a remote server for calculating the

remaining trial days and then shows the number of days in the app. Judging this

sort of sensitive information transmission is beyond the power of the conventional

taint analysis approaches.

Realizing the fuzzy nature of the privacy leakage detection problem, prior re-

search work has tackled the privacy leakage detection problem from different angles.

For example, Yang et al. [26] proposed to use users’ expectations as the indicator

of privacy leakage. If the sensitive information transmission is expected by users,

it will be considered as necessary, so not a leakage case; otherwise, if unexpected,

it will be a privacy leakage case. However, users’ expectations are diverse. For

example, an advertisement library may send out a phone’s geographic location

for location-based advertisements. Depending on whether they like to receive tar-

geted advertisements or not, different users may agree or disagree that disclosure

of location information is expected in this context. Further, we cannot assume all

users are capable of comprehending system-level contextual information to provide

their expectations. The experiment in [26] has demonstrated that even security

specialists had a discrepancy about the usage of device IDs in certain apps after

they reviewed the generated event chains that lead to data transmission. This is

55

because app developers could potentially use a device ID, a phone number or even

a Google account as a unique identifier of a device or a user, and such code-level

information is often not available to the human specialists when they make de-

cisions. Indeed, device IDs and phone numbers are the most common sensitive

information that are delivered to the network [7,65]. Different from the users’ ex-

pectation angle, Tripp et al. [25] formulated the privacy-leakage detection problem

as a machine learning problem based on certain features. Their approach, however,

is probabilistic, and the effectiveness highly depends on the selected features and

the training data sets.

In this work, we take a slightly different angle to tackle this privacy leakage

detection problem. We formulate it as a justification problem, which aims to jus-

tify if a sensitive information transmission in an app serves any purpose, either

for intended functions of the app itself or for other related functions such as ad-

vertisements and analytics. For example, if an app sends out the user’s location

to a remote server, later receives information from the server, and finally displays

the information to the user in the phone screen, we consider this sensitive infor-

mation transmission justifiable. On the contrary, if the app does not receive any

information from the server after sending out users’ location information, this sen-

sitive information transmission is unjustifiable. Note that conceptually there are

differences between justifiability and privacy leakage. According to our definition,

a sensitive information transmission caused by an advertisement library is also

justifiable because it does serve some known purpose, although privacy advocators

may dislike it and consider it a privacy leakage. The merit of our formulation is

that it separates technical issues from users’ opinions. Rather than directly telling

a user whether a sensitive information flow is a privacy leakage, we only report the

purpose it serves, if any. The research problem now becomes more distinct and

objective, and, therefore, more feasible to solve than before.

Following the formulation above, we aim to design an approach to justifying

an app’s sensitive information transmission. Specifically, we want to achieve the

following design goals.

• Fully automated analysis. The proposed approach must be able to auto-

matically justify an app’s sensitive information transmission. The purpose is

to minimize the involvement of human analysts in the middle. This task is

challenging because it requires automatically extracting and understanding the

56

contextual information in order to bridge the gap between an app’s sensitive

information transmissions and its functions.

• Complete and precise coverage. Our approach needs to precisely cover

almost all (if not all) users’ sensitive information, restricted by the sensitive

permissions of our interest. This is non-trivial due to the incomplete Android

documentation and diverse permission enforcement mechanisms in Android.

• High accuracy and scalability. Our approach should minimize the inaccuracy

incurred by possible under- and over-approximation during our implementation.

Besides, our technique must be efficient for analyzing real-world apps at a large

scale.

4.3 Approach Overview

In the section, we describe the rationale behind our justification approach and its

workflow and then present an example to illustrate how our approach justifies the

sensitive information transmission through a real-world app.

4.3.1 Design Rationale

The key to solving the justification problem is to identify if an app’s sensitive

information transmission could be used to fulfill some app function. To start,

we study how an app provides functions to mobile phone users. We realize that

the functions of a mobile app in smartphones are experienced by users during

their interactions with the app. During the interactions, users are prompted by

the changes of sensible phone states (SPS) (e.g., display, sound, vibration and

light). Here sensible phones states are defined as phone output events that can

be directly sensed by phone users. In other words, app functions are provided to

users via SPS. Without leading to any SPS directly or indirectly, the function

of an app is not meaningful to phone users as it cannot be experienced by users.

Hence, if a sensitive information transmission cannot cause the change of any

SPS, we consider it unnecessary and hence unjustifiable. Otherwise, we consider

it justifiable. Note that in the PC world, similar rationale has been adopted by

Privacy Oracle [75] and TightLip [76] to detect sensitive information leakage by

57

third-party apps. Their ideas are to apply black-box based differential testing

to identify the existence of sensitive user inputs in outbound network traffic by

mapping the discrepancy in output network traffic to different inputs.

Figure 4.1 shows our overall workflow, which answers how an app’s sensitive

information transmission is used to provide functions to users by linking users’

sensitive information (SI) with app functions in terms of SPS. In the figure,

SI is first read (often further transformed) and delivered to a remote server for

computing or other purposes. This is an outbound information flow. Then, if

a response from the server is received by the app and ultimately used to change

some SPS directly or indirectly, we call this inbound information flow sensible

information reception (SIR). If an inbound information flow is not a SIR, it will

not be sensed by the phone user, so we will not use it to justify any SI transmission.

Note that without this rule, an attacker may easily introduce random inbound

information flows to justify illegal SI transmissions. We will discuss this problem

again in our Security Analysis section. Finally, once we have all the information

flows of interest, we want to link inbound and outbound information flows. If a

SI transmission cannot be linked to any SIR, it is unjustifiable; otherwise, it is

justifiable.

From Figure 4.1, we can see that the app’s sensitive information may also be

consumed locally to change some SPS. Such local flow information could be useful

for other analysis purpose, but for this work, we do not study it. Last, from our

formalization, we can see a limitation of our approach: it cannot justify sensitive

information flows in some service apps, which run in the background and have no

user interface at all.

4.3.2 An Motivating Example

We present a motivating example to elaborate our proposed analysis approach, as

shown in Figure 4.2.

com.inspireadart.niceweather is a popular weather forecast app in Google

Play app store. We start from analyzing the app’s SI transmission. In a discovered

SI flow, the phone location information is first read, transformed to the locality

information and returned from the getLocation method. Then, the locality infor-

mation is passed to the getForecastWeatherData method in a background task

58

!"#$%&%'"()#*+,
-).

!"#$%&%'"()#*+,
-).

Sensitive Info
(SI) Network

Transmission

Sensible Phone
States (SPS)

Light
Vibration
Sound
Display

R
ec

ep
tio

nLocal U
se

Figure 4.1. Design workflow: linking sensitive information with app functions

(doInBackground). Further, the locality information is put into a URL string, and

the URL is finally used to open an HTTP connection after a few manipulations in

the getForecastWeatherData method.

Next, we analyze the app’s sensible information reception SIR. In the discov-

ered SIR flow, the received information is first read from a HTTP connection and

returned after a few manipulations from the getForecastWeatherData method.

Then, the returned information is passed to the getForecastWeather method for

parsing and the method returns a WeatherForecast object in a background task

(doInBackground). Further, the background task returns the WeatherForecast

object, which is in turn passed to the onPostExecute method as its parame-

ter. In the onPostExecute method, the WeatherForecast object is passed to the

updateScreen method. Finally, the extracted information from the WeatherForecast

object flows into the framework API setText to change the text of a TextView

in the updateScreen method. We note that here we show only one of the dis-

covered information flows from the WeatherForecast object to SPS due to space

limit. In reality, the extracted information from the WeatherForecast object

also flows into several other framework APIs such as setImageDrawable and

setBackgroundResource to change SPS. We also note that the intermediate

representation in each message box in the figure shows an information flow in a

method; hence, adjacent lines in a message box may not be adjacent in actual

bytecode.

Last but not least, we can see that the discovered SIR is correlated to the

59

Sensitive Information Transmission (com.inspiredart.niceweather)
<getLocation(String[])>:
$r8 = virtualinvoke $r12.<LocationManager: Location
getLastKnownLocation(String)>($r9)
$d0 = virtualinvoke $r8.<Location: double getLatitude()>();
$d1 = virtualinvoke $r8.<Location: double getLongitude()>();
$r5 = virtualinvoke r17.<Geocoder: List getFromLocation(double,double,int)>($d0,$d1,1);
$r3 = interfaceinvoke $r5.<List: Object get(int)>(0);
$r14 = (Address) $r3;
$r9 = virtualinvoke $r14.<Address: String getLocality()>();
$r4 = $r9;
return $r4;

doInBackground(String[]):
$r2 = specialinvoke $r0.<GetForecastForMainScreen2: String getLocation(String[])>($r1);
$r2 = virtualinvoke $r11.<WeatherHttpClient: String
getForecastWeatherData(String,String,String)>($r2, "en", "14");

getForecastWeatherData(String, String, String)>:
$r1 := @parameter0: String;
$r10 = virtualinvoke $r10.<StringBuilder: StringBuilder append(String)>($r1);
$r3 = virtualinvoke $r10.<StringBuilder: String toString()>();
$r3 = staticinvoke <String: String valueOf(java.lang.Object)>($r3);
specialinvoke $r10.<StringBuilder: void <init>(String)>($r3);
$r10 = virtualinvoke $r10.<StringBuilder: StringBuilder append(String)>("&units=metric");
$r3 = virtualinvoke $r10.<StringBuilder: String toString()>();
$r3 = staticinvoke <String: String valueOf(Object)>($r3);
specialinvoke $r10.<StringBuilder: void <init>(String)>($r3);
$r10 = virtualinvoke $r10.<StringBuilder: StringBuilder append(String)>("&cnt=");
$r10 = virtualinvoke $r10.<StringBuilder: StringBuilder append(int)>($i0);
$r3 = virtualinvoke $r10.<StringBuilder: String toString()>();
$r3 = staticinvoke <String: String valueOf(Object)>($r3);
specialinvoke $r10.<StringBuilder: void <init>(String)>($r3);
$r3 = <WeatherHttpClient: String API>;
$r10 = virtualinvoke $r10.<StringBuilder: StringBuilder append(String)>($r3);
$r3 = virtualinvoke $r10.<StringBuilder: String toString()>();
specialinvoke $r11.<URL: void <init>(String)>($r3);
$r4 = virtualinvoke $r11.<URL: URLConnection openConnection()>();
$r7 = (HttpURLConnection) $r4;
virtualinvoke $r7.<HttpURLConnection: void setRequestMethod(String)>("GET");
virtualinvoke $r7.<HttpURLConnection: void setDoInput(boolean)>(1);
virtualinvoke $r7.<HttpURLConnection: void setDoOutput(boolean)>(1);
virtualinvoke $r7.<HttpURLConnection: void connect()>();

Sensible Information Reception (com.inspiredart.niceweather)
<getForecastWeatherData(String, String, String)>:
virtualinvoke $r7.<HttpURLConnection: void connect()>();
$r8 = virtualinvoke $r7.<HttpURLConnection: InputStream getInputStream()>()
specialinvoke $r14.<InputStreamReader: void <init>(InputStream)>($r8);
specialinvoke $r5.<BufferedReader: void <init>(Reader)>($r14);
$r3 = virtualinvoke $r5.<BufferedReader: String readLine()>();
$r3 = staticinvoke <String: String valueOf(Object)>($r3);
specialinvoke $r10.<StringBuilder: void <init>(String)>($r3);
$r10 = virtualinvoke $r10.<StringBuilder: StringBuilder append(String)>("\r\n");
$r3 = virtualinvoke $r10.<StringBuilder: String toString()>();
virtualinvoke $r6.<StringBuffer: StringBuffer append(String)>($r3);
$r3 = virtualinvoke $r6.<StringBuffer: String toString()>();
$r10 = virtualinvoke $r10.<StringBuilder: StringBuilder append(String)>($r3);
$r10 = virtualinvoke $r10.<StringBuilder: StringBuilder append(String)>("]");
$r3 = virtualinvoke $r10.<StringBuilder: String toString()>();
virtualinvoke $r15.<PrintStream: void println(String)>($r3);
$r3 = virtualinvoke $r6.<StringBuffer: String toString()>();
return $r3;

<doInBackground(String[])>:
$r2 = virtualinvoke $r11.<WeatherHttpClient: String
getForecastWeatherData(String,String,String)>($r2, "en", "14")
$r4 = staticinvoke <JSONWeatherParser: WeatherForecast
getForecastWeather(String)>($r2);
return $r4;

<onPostExecute(WeatherForecast)>:
virtualinvoke $r2.<MainActivity: void updateScreen(WeatherForecast)>($r1)

<updateScreen(WeatherForecast)>:
$r1 := @parameter0: WeatherForecast;
$r120 = virtualinvoke $r1.<WeatherForecast: DayForecast getForecast(int)>($i2);
interfaceinvoke $r121.<List: boolean add(Object)>($r120);
$r122 = interfaceinvoke $r121.<List: Object get(int)>($i4);
$r120 = (DayForecast) $r122;
$r113 = $r120.<DayForecast: Weather weather>;
$r116 = $r113.<Weather: Clouds clouds>;
$i2 = virtualinvoke $r116.<Clouds: int getPerc()>();
$r112 = staticinvoke <String: String valueOf(int)>($i2);
$r3[$i4] = $r112;
$r111 = $r3[0];
$r111 = staticinvoke <String: String valueOf(Object)>($r111);
specialinvoke $r127.<StringBuilder: void <init>(String)>($r111);
$r33 = virtualinvoke $r127.<StringBuilder: StringBuilder append(String)>("%");
$r111 = virtualinvoke $r33.<StringBuilder: String toString()>();
virtualinvoke $r110.<TextView: void setText(CharSequence)>($r111);

Figure 4.2. A motivating example with an Android app

60

discovered SI transmission because they use the exact same network connection

(<HttpURLConnection: void connect()>). Therefore, through our two-stage

information flow analysis, we conclude that this SI transmission is used to fulfill

app’s functions, and hence justifiable.

APK File

Manifest,
Jimple

PScout
Resources

Sensitive Info
Transmission

Analysis

Sensitive Info
Transmission

Flows

Sensible Info
Reception

Flows
Android

Documentation

Sensible Info
Reception
Analysis

Correlation Justification

Figure 4.3. Overall Architecture of DroidJust

4.4 DroidJust: Overview and System Design

This section starts with an overview of the DroidJust’s system design, and then

describes its details.

4.4.1 Overview

Figure 5.1 depicts the overall architecture of DroidJust to justify an app’s SI

transmission. It takes the following major steps.

1. Preprocessing. An Android apk file consists of a Dalvik executable file, man-

ifest files, native libraries, and resources. In this step, DroidJust decomposes

the apk file and transforms the Dalvik bytecode executable file into the Jimple

representation, which is a typed-3 address intermediate representation suitable

for analysis and optimization on the Soot framework.

2. Sensitive information transmission analysis. In this step, DroidJust

searches the app for SI flows by parsing the permission specifications from

PScout [28] and the outgoing channels where the SI flows can reach, and using

static taint analysis to identify the SI transmission from the SI (as sources) to

the outgoing channels (as sinks).

61

3. Sensible information reception analysis. In the step, DroidJust searches

the app for inbound network flows and the framework APIs that can change

SPS. This is done by parsing the Android documentation, and using static

taint analysis to identify the SIR, with inbound network flows as sources and

the framework APIs that can change SPS as sinks.

4. Correlation and justification. After the SI transmission and SIR analy-

sis, DroidJust correlates the identified transmissions and reception flows in

an attempt to justify all the SI transmissions, and finally determines if a SI

transmission is justifiable.

4.4.2 Sensitive Information Transmission Analysis

In the subsection, we define the users’ SI and show how DroidJust identifies them

as taint sources. In addition, we show how to identify the outgoing channels as taint

sinks. The actual static taint analysis process will be explained in Section 4.4.4.

4.4.2.1 Sources

Sensitive information. There are many kinds of SI in Android apps, and cur-

rently DroidJust covers ten types of SI: phone information (such as device

ID and phone number), contacts, messages, user profile, location information,

social stream data, calendar information, user accounts, call logs, and browsing

history and bookmarks. Android uses security permissions to restrict apps to

access SI. Particularly, there are 12 Android permissions corresponding to the

ten types of SI. Except for messages and location information, each type of the

aforementioned SI is protected by one permission for read access. For example,

READ PHONE STATE corresponds to phone information and READ CONTACTS corre-

sponds to contacts. For messages and location information, there are two permis-

sions for each. READ SMS and RECEIVE SMS grant read access to SMS messages

while ACCESS COARSE LOCATION and ACCESS FINE LOCATION grant read access to

phone’s location information.

Label actual sensitive data. Researchers have proposed many tools to iden-

tify sensitive data based on Android permissions [10,12,77–81]. However, it is still a

big challenge to discover all possible sensitive data sources due to either the incom-

plete Android documentation or the diverse permission enforcement mechanisms

62

in Android. For better coverage, DroidJust utilizes the permission specification

of PScout [28] to identify most (if not all) SI sources related to the above permis-

sions. PScout is known as a tool that extracts a relatively complete permission

specification from Android. In particular, there are three types of permission-

related resources in PScout. The first type (T1) is documented and undocumented

framework APIs that retrieve SI through returns or callbacks. The second type

(T2) is privileged intent actions, which are associated with IntentFilter and

BroadcastReceiver classes to request SI. The third type (T3) is URI fields and

strings that are identifiers of content providers that manage SI in Android.

For T1 (i.e., framework APIs), a major challenge is to map it to actual sensitive

data, given that not all return types are used to store actual sensitive data and the

callbacks to retrieve sensitive data are very diverse. To overcome the challenge,

we handle those framework APIs in the following manner. First, we filter out the

non-return APIs and then, based on the Android source code, we manually check

the remaining APIs to identify the return types that can be used to store actual

sensitive data. As a result, we get a list of 39 return types (of which 21 return

types are unique) for the 12 permissions, and we find that 575 framework APIs

directly return actual sensitive data for the 12 permissions in Android 4.1.1.

Further, to identify all the possible callbacks in those APIs for retrieving actual

sensitive data, we need to get an exhaustive list of the APIs that can retrieve the

actual sensitive data through callbacks, as well as the mapping from the APIs to

the callback classes, methods (i.e., handlers) and parameters. In practice, we use

an automatic filtering method to identify the APIs’ parameters that belong to or

inherit from the following types: Receiver, Listener, Callback, PendingIntent

and Binder, and then manually check their definitions to find the right callback

methods and parameters based on the Android source code. Finally, we obtain a

list of 254 framework APIs. By utilizing the refined framework APIs (575+254)

and additional mapping information, DroidJust can label the actual sensitive

data invoked by the framework APIs in PScout resources more accurately and

completely.

Registering a BroadcastReceiver with an IntentFilter is another way to

retrieve SI in Android. Hence, the second type of PScout resources (T2) is

privileged intent actions that can be added by an IntentFilter to gain ac-

cess to the corresponding SI. For example, "android.provider.Telephony.SMS

63

RECEIVED" is a privileged intent action to receive all incoming SMS messages, and

a BroadcastReceiver class can acquire the incoming messages by registration

with an IntentFilter including the intent action. Particularly, an intent con-

taining the incoming message is passed to the onReceive method of the registered

BroadcastReceiver.

In Android, there are two ways to register a BroadcastReceiver with an

IntentFilter. One way is to register in manifest files statically. In this case,

DroidJust parses manifest files to identify the BroadcastReceiver classes that

are registered with an IntentFilter, and then label the Intent parameters of

their onReceive methods as the actual sensitive data. The second way is to reg-

ister a BroadcastReceiver dynamically. Particularly, the app code can call the

method registerReceiver at runtime to register a BroadcastReceiver with an

IntentFilter. In this case, DroidJust searches the app for the strings that

are equal to the privileged intent actions, then performs static taint analysis from

the strings (as sources) to registerReceiver methods (as sinks) to identify the

BroadcastReceiver classes that can receive the SI, and finally label the Intent

parameters of their and their subclasses’ onReceive methods as actual sensitive

data.

The third type of resources (T3) in PScout is related to content providers.

In Android, content providers also manage access to certain SI. To retrieve the

referenced SI, app developers can use a ContentResolver object to resolve a con-

tent Uri object by calling its query method. Specifically, there are two ways to

obtain a content Uri object in Android. One way is to directly construct it by

encoding a string and the other way is to directly fetch a content Uri object from

the field of a framework class. For example, constructing a Uri object by en-

coding the string "content://com.android.contacts" gives the exact same Uri

object as android.provider.ContactsContract.AUTHORITY URI gives. Hence,

T3 is those strings and fields that can be used to construct or directly fetch Uri

objects to retrieve SI. DroidJust searches an app for the Uri objects that are

constructed by the strings or directly fetched from the fields, then performs static

taint analysis from the found Uri objects (as sources) to the query method of

the ContentResolver object (as sinks). It finally labels the result of the query (a

Cursor type) as actual sensitive data.

64

4.4.2.2 Sinks

The retrieved SI can directly flow to the outer world through several channels.

Below we describe two most common channels, which are currently covered in

DroidJust.

Internet. Android apps can access the Internet and deliver SI in several ways.

A common way is to employ a socket-like API or a high-level HTTP client to send

out SI. We collect all such APIs from java.net, javax.net and org.apache.http

packages. Besides, Android apps may embed SI into a URL and use the An-

droid webkit APIs such as <WebView: void loadUrl(String URL)> to deliver

SI to the network. Hence, we also collect the related framework APIs from the

android.webkit package as potential sinks.

SMS. SMS is another popular channel to deliver users’ SI, especially for mal-

ware. App developers can use the framework APIs in SmsManager package to send

a message. Hence, we collect a list of the framework APIs from the SmsManager

package as sinks.

4.4.3 Sensible Information Reception Analysis

Next, we identify both inbound information flows and sensible phone states (SPS)

by parsing the Android documentation. We will delay the description on static

taint analysis from the inbound information (as sources) to the SPS (as sinks) in

Section 4.4.4.

4.4.3.1 Sources

Corresponding to the two types of sinks for outbound SI transmissions, we also

consider inbound information flows from these two channels: the Internet and

SMS.

Internet. Android apps can receive information from the network by employ-

ing a socket-like API or a high-level HTTP client. We collect a list of the related

framework APIs from the java.net, javax.net and org.apache.http packages

to identify the sources. Besides, Android apps can receive network data by call-

ing the Android webkit APIs. We collect the related framework APIs from the

android.webkit package to identify the sources.

65

SMS. We consider the incoming text messages as another source of SIR in our

work. Android apps receive incoming text messages by registering a BroardcastReceiver

with the intent action android.provider.Telephony.SMS RECEIVED. To cover the

source, we label the corresponding onReceive methods and identify the incoming

Intent parameters as sources (as shown in 4.4.2.1).

4.4.3.2 Sinks

Android apps use framework APIs to change the SPS. For example, <TextView:

void setText(CharSequence)> is a framework API to change the display of a text

editor widget; <Vibrator: void vibrate(long)> is used to cause the phone to

vibrate. We collect the framework APIs that can change the SPS in four different

ways, including display, sound, vibration, and light, by parsing the Android 4.1.1

documentation. In general, many framework APIs can change the SPS via display.

Our selection strategy for this type of APIs is to first label all the subclasses of

android.view.View, because this class represents the most basic building block

for UI components in Android. We then manually identify the methods that can

change SPS by checking their functions in the Android documentation. Based on

our observation, most APIs that can change SPS have a prefix of “set” in their

method names. For sound, vibration and light, they have much fewer framework

APIs than the display-related APIs. Hence, we manually find the related classes to

collect their methods that can change SPS. Finally, we collect totally 249 Android

framework APIs that can change SPS. Table 4.1 gives a summary of our collected

Android framework APIs that are able to change SPS.

Type Method Name Quantity

display setText, setTitle, setIcon, etc. 232
sound setDataSource, setSound, etc. 11

vibration setVibrate, vibrate 4
light setLights 2

Table 4.1. Android framework APIs that are able to change sensible phone states

4.4.4 Static Taint Analysis

To identify the data flows from different kinds of sources to different kinds of

sinks, DroidJust uses static taint analysis intensively. Specifically, we have

66

the following static taint analysis tasks: 1) from an intent action string to a

registerReceiver method (in Section 4.4.2.1), 2) from a Uri object to a query

method (in Section 4.4.2.1), 3) from the actual sensitive data to the outgoing

channels (in Section 4.4.2), 4) from the inbound information to the SPS (in Sec-

tion 4.4.3), and 5) from a URL string to network socket or a high-level HTTP

client (in Section 4.4.5).

DroidJust models the static taint analysis problem within the IFDS [82]

framework for inter-procedural distributive subset problems. In practice, Droid-

Just extends Soot [83], Heros [84] and FlowDroid [5] to provide inter-procedural

data-flow analysis. Particularly, FlowDroid generates a dummy main method

based on a precise modeling of Android lifecycle and flow functions, which define an

IFDS analysis problem; Soot generates a call graph and an inter-procedural control-

flow graph (ICFG) from the dummy main method; Heros provides template-driven

inter-procedural data-flow analysis by taking as the input flow functions and the

ICFG; and DroidJust identifies different kinds of sources and sinks for the inter-

procedural data-flow analysis and supports additional indirect static taint analysis

(as described below).

Additional Indirect Static Taint Analysis. In practice, we find that the

state-of-the-art static taint analysis is ineffective to discover a significant amount

of data flows, particularly in the aforementioned tasks 3) and 4), due to the heavy

use of data medium in Android apps. That is, tainted data could be first stored

into a data medium and later delivered to a sink through data medium. This is

very common in Android development since app developers prefer to use data me-

dia (e.g., SQLite) as the backend of displayed content. To handle this challenge,

DroidJust performs additional indirect data flow analysis at two stages: first

from sources to the data media, and then from the tainted data media to sinks.

In general, there are four types of data media in Android: SharedPreference, Con-

tentProvider, SQLite database and File. Each type of data medium has its own

unique identifier, and DroidJust taints data media at two stages according to

the unique identifier. Specifically, SharedPreference uses both Context and a file-

name (a string) to uniquely identify a preference file; ContentProvider uses Uri to

uniquely identify a data repository; SQLite uses a table name (a string) to identify

a table on a default database; and File uses a filename (a string) to identify a

stored file. By launching the two-stage static taint analysis, DroidJust is able to

67

discover almost all data flows.

4.4.5 Correlation and Justification

After identifying the app’s SI transmissions and SIR, DroidJust tries to justify

each of the SI transmission flows by linking it to an SIR flow. This correlation

task is not easy since DroidJust cannot acquire and analyze the server-side logic.

To try the best, DroidJust solves it in the following manner. SI transmission

flows deliver the sensitive information either via the Internet or SMS. Considering

a SI transmission flow delivering the sensitive information via the Internet, if

the transmission flows into the Android webkit APIs, it is justifiable since the

transmission displays a WebView to users in phone screen. Otherwise, it means the

transmission flows into a socket-like API or a high-level HTTP client.

In the latter case, DroidJust first finds if the transmission is synchronous to

any SPS flow. Specifically, DroidJust checks if the SI transmission flow and

the SIR flow share the same network socket or HTTP client. If true, they are

correlated. Otherwise, DroidJust continues to check if a SI transmission flow

is asynchronous to any SIR flow. More specifically, DroidJust checks if the

destination of the SI transmission and the source of the SIR are the same. In

other words, DroidJust checks if the network server that delivers information to

the SPS is the same server where the SI flow goes to.

There are two tasks to map the server names. The first task is to extract

the network addresses from each of the inbound and outbound information flow.

DroidJust first identifies all the URL- or IP-like strings and then uses static

taint analysis to find the strings that flow into the network connection of the SI

transmission or SIR. The identified strings are the network addresses of the SI

transmission or reception. The second task is to check if these network addresses

refer to the same network server. The simplest way is to compare the hostnames

of the network addresses. However, in reality, an app may use different hostnames

for the same server. To cope with this situation, we further check whether the IP

addresses of the hostnames are equal. Finally, DroidJust justifies the SI trans-

mission if either the hostnames or the IP addresses of the hostnames are the same.

In its implementation, DroidJust uses the standard Java API (<URI: String

getHost()>) to extract hostnames from URL- or IP-like strings and nslookup to

68

resolve hostnames to IP addresses.

On the other hand, considering a SI transmission is through SMS, DroidJust

simply checks if the app receives any incoming messages to change SPS. If yes,

the transmission is justifiable; otherwise, the transmission is unjustifiable.

4.4.6 Correlation

After identifying the app’s sensitive information transmissions (SITs) and sensible

information receptions (SIRs) by using static taint analysis, DroidJust tries to

justify each of the sensitive information transmission flows by linking it to a sensi-

tive information reception flow. This correlation task is not easy since DroidJust

cannot acquire and analyze the server-side logic. To overcome the challenge, we

propose to employ dynamic analysis approaches to collect execution traces for our

correlation tasks. In particular, we use a testing tool, named MonkeyRunner, to

generate and send user events to automate app’s execution. At the same time,

we start profiling, a functionality of the activity manager (am) in adb, on the

app’s running process, to collect execution call-stacks. By the end, we collect a

few call-stack log files containing many method invocations with their timestamp

information. Then, DroidJust identifies both the SIT flows and the SIR flows in

the call-stack log files and correlates them based on their timing difference. Note

that a specific SIT flow or a SIR flow could occur in multiple times. To justify

an identified SIT flow, we try to validate whether there is always at least one SIR

flow occurring after the SIT flows in a pre-defined time limit. If yes, the SIT flow

is justified; otherwise, it is unjustified. We use a supervised machine learning ap-

proach to train the time limit since the parameter is critical to the accuracy of the

correlation task.

4.5 Experimental Evaluation

To evaluate the effectiveness, accuracy and efficiency of DroidJust, we perform

experiments on 6111 Google Play apps and 340 known SI-stealing Android malware

collected from VirusTotal [85]. Next we report the detailed results and our findings.

69

Package Name Leaked Sensitive Info Dynamic Tainting 1 Still on Google Play? 2 VirusTotal Score 2

com.controlaltkill.autoball Phone number No Yes 0/57
com.jb.gosms.pctheme.loving bears IMEI Yes Yes 0/57

com.kingdom card wcm777 1 Location No Yes 0/57
com.kokovoin.homedesign IMEI No Yes 1/56

com.mapnavigation IMEI Yes Yes 12/57
com.necta.aircall accept.free IMEI Yes Yes 7/57
com.pixoplay.candyshooter IMEI Yes Yes 0/57

com.topdisk.launcher IMEI N/A 3 Yes 0/57
cz.prilozany.android.compass IMEI, Location Partial 4 Yes 0/57

fr.pb.tvmobile IMEI No No 0/56
lk.bhasha.sett.hindi IMEI Yes Yes 3/57

lk.bhasha.vishwa IMEI No No 0/57
me.chatcast.kaomoji Gmail account name No Yes 0/57

me.zed 0xff.android.alchemy IMEI Yes Yes 2/57
mx.websec.mac2wepkey.hhg5xx Location No Yes 0/57

Table 4.2. (C3) Identified Google play apps that send out users’ sensitive information
not for functions. Notes: 1. we use Andrubis for dynamic taint analysis, whose dynamic
taint analysis is based on TaintDroid; 2. we update till Feb. 13, 2015; 3. the file
exceeds the maximum size limit (8MB) restricted by Andrubis; 4. only the IMEI leak is
identified.

4.5.1 Evaluation on Google Play Apps

In the experiment, we evaluate DroidJust over 6111 apps, randomly downloaded

from the Google play store during March 2014. Based on a report from An-

drubis [86], only 1.6% Google Play apps are identified as malware by anti-virus

vendors. Hence, we expect most of these downloaded apps to be benign and not

leak user privacy. By scanning these apps with DroidJust, we evaluate whether

DroidJust can precisely identify benign apps, particularly those delivering SI to

the network.

We setup our evaluation on a cluster with hundreds of Intel Xeon E5-2665 2.40

GHz processors (16 cores per processor). Each analysis task (for analyzing an

app) is assigned to a cluster node with 4 cores and 16 GB physical memory, which

runs JDK 1.7.0 21. DroidJust takes about 85 hours of CPU time to analyze

6111 Google play apps and 12 hours of CPU time to analyze 340 known malware.

On average, each Google play app takes about 50 seconds of CPU time and each

known malware about 128 seconds of CPU time. Hence, DroidJust is definitely

an affordable tool for antivirus vendors or Android market operators.

During the evaluation, we notice that DroidJust cannot analyze some apps

due to either insufficient memory or failure of type resolving. Basically, Droid-

Just shares the same problem with other FlowDroid-dependent tools [87]. We

start by analyzing 6111 apps, among which 1092 apps failed to go through. Thus,

70

below we show our experimental results over the remaining 5019 apps.

Contain'no'
sensi*ve'info'
transmission'
(95.82%)'

Jus*fiable'
(3.61%)'

Unjus*fiable'
(0.58%)'

Contain'sensi*ve'
info'transmission'

(4.18%)'

Figure 4.4. Analysis results for Google Play apps

Results. Figure 4.4 illustrates the analysis results. Among 5019 Google play

apps, 95.82% apps do not send out users’ SI while 4.18% (210) apps transmits

users’ SI via Internet or SMS. Among those transmitting SI, 3.61% (181) apps’ SI

transmissions are justifiable while 0.58% (29) apps’ SI transmissions are unjustifi-

able.

Validation. We manually check these 29 apps by analyzing their intermediate

representation (Jimple) and read their descriptions in Google Play to understand

their functions and validate our detection results. After validation, we classify

these 29 apps into the following categories.

(C1) Stealthily send out SI for app functions. There are ten apps that stealthily

send out users’ SI for application functions including anti-theft, location-tracking

and spying. Those apps have clear descriptions about their stealthy behavior

in Google Play. For anti-theft apps (e.g., avsolution.version1), once a thief

changes the SIM card of a stolen phone, they immediately notify the original

users of phone information (e.g., phone number, IMEI, and location) of the new

SIM card via SMS in a background task. This communication is designed to be

one-way. Location-tracking apps (e.g., gaugler.backitude) send out locations

via Internet or SMS to track a mobile device in real-time. Besides, there are

spyware apps whose main function is to spy on users, as stated in their descriptions.

For example, com.dona.messagespoofing is an intentionally designed spyware

to stealthily forward all incoming SMS messages to a designated phone number

after the first-time setup. In summary, those apps are supposed to stealthily send

71

out SI without users’ awareness. In terms of behavior, they are very similar to

spyware that steal users’ sensitive information. Hence, it is indeed appropriate for

DroidJust to label them as unjustifiable from the perspective of code behavior.

We note that privacy analysts can easily distinguish all these apps from malicious

spyware by reading their descriptions.

(C2) Analytics libraries. Four apps containing analytics libraries are found

sending out users’ phone information to remote servers. We recognize these an-

alytics libraries by checking the hostnames of their network servers. They have

affiliations with the mobile application solution providers including accelerator,

crittercism and kontagent. DroidJust does not justify the SI transmissions by

these analytics libraries because they do not provide any function back to users.

We note that, in practice, an analytics library is often bundled with the same

provider’s advertisement library, and therefore, our tool will justify the sensitive

information transmission in the analytics library by identifying the SIR in the

advertisement library.

(C3) Stealthily send out SI but not for app functions. We identify 15 apps

that stealthily send out users’ SI to remote servers, but such SI transmissions

cannot be justified. Those apps do not describe anything about their stealthy

behavior in their descriptions in Google Play. To avoid possible false alarms,

we manually and carefully check their app logic by analyzing their intermediate

representation (Jimple) to ensure that the discovered SI transmission does not

provide any function to users. Besides, we use the dynamic taint analysis tool

Andrubis to expose their privacy leak behavior in runtime.

Table 4.2 shows a summarized result for these 15 apps. From left to right, the

table shows app’s package name, leaked SI identified by DroidJust, if Andrubis

can identify the same leak if the app is still available for download on Google Play,

and how many antivirus engines in VirusTotal identify the app as malicious. From

this table, our observations and findings are as follows. First, we can see that the

most frequently leaked SI is device ID (IMEI). This is expected based on the past

research work [7,65]. Second, Andrubis’s dynamic taint analysis did not identify all

the SI transmissions in 8 apps, mostly due to the failure in generating appropriate

inputs. For example, com.kingdom card wcm777 1 and lk.bhasha.vishwa require

users to provide correct authentication information for a mobile payment account

and the Facebook account, respectively, at the very beginning, and dynamic taint

72

analysis fails to bypass the authentication in runtime. Third, after almost one

year, Google Play only removed two apps while the remaining 13 apps are still

available for download. Last but not least, 10 of these 15 apps cannot be detected

by any antivirus engines in VirusTotal.

4.5.2 Evaluation on Known Malware

In this experiment, we evaluate DroidJust on 340 malware known for stealing

users’ SI. To collect them, we first collect a list of malware families that are known

for stealing user private information from Genome [65] and Forensics blog [66], and

then download the apps related to these malware families from VirusTotal by using

their advanced reverse search system [85]. We run DroidJust against these 340

apps to evaluate its detection precision. We start with 340 apps and unfortunately

42 apps fail to go through due to the same reason as we mentioned above. Thus,

here we only show our experimental results for the rest 298 apps.

Results. Table 4.3 shows the analysis results for each malware family. There

are 43 malware families in total. For each malware family, the number of sam-

ples is between 1 and 31. In the table, the column Positive gives the number of

samples that are identified to contain unjustifiable SI transmission and column

Negative gives the number of samples that are identified to contain only justifiable

SI transmissions. The total number of positive outcomes is 274 while the total

number of negative outcomes is 24. Thus, the detection rate is 91.94%. The mal-

ware samples leak five kinds of SI, as shown in the middle of the table: phone

information (P), contacts (C), messages (S), locations (L) and accounts (A). We

note that the marks in each row indicate the union of sensitive information types

that are leaked by all samples in the malware family; as such, not every sample

in a malware family leaks all marked types. We can see that phone information is

the most leaked SI among the 43 malware families.

Validation. We manually inspect the 24 apps with negative outcomes by

analyzing their intermediate representation. There are two main sources of false

negatives for DroidJust. One is because of dynamic code loading. That is, some

malicious apps download and install other malware after exploiting a certain root

access vulnerability. It is the dynamically downloaded malware code that leaks user

privacy. Static taint analysis inherently cannot detect the leakage behavior by the

73

Malware Sensitive information Pos. Neg.
familiy P S L C A

anserver x 30 1
avpass x 1 0

backflash x x 2 0
basebridge x x 27 1
beanbot x x 6 0
bgserv x x 3 1

droiddreamlight x x x x 25 2
droidkungfu x 20 2

extension x 1 0
fakeangry x 5 0
fakebank x x 8 0
fakemart x 1 0

faketaobao x 2 1
fjcon x x x 4 0

fokonge x 19 1
geinimi x x x 17 1

ggtracker x x 6 1
gingermaster x x 16 3

godwon x x 3 1
golddream x x x x 29 0
hongtoutou x x 17 1

kmin x x 29 0
lena x 2 0

loozfon x x 3 0
mobilespy x x x 4 1
mobiletx x 2 1
pjapps x 22 1

plankton x 12 1
roguelemon x 1 0

roidsec x x x 2 0
sinpon x x x 2 0

skullkey x 1 0
smspacem x x 1 0
sndapps x x 9 0
spitmo x x 3 1
spyoo x 3 0
ssucl x x x x 1 0
tetus x 1 0

typstu x x 9 0
usbcleaver x 1 0
vdloader x 1 0

yzhc x 11 2
zitmo x x 2 1

Total (43) 37 20 5 10 6 274 24

Table 4.3. Malware families featuring privacy leakage

P: Phone information; C: Contacts; S: Messages;
L: Locations; A: Accounts.

74

malware installed later. The second reason is due to the inaccurate callback-based

lifecycle modeling in FlowDroid [88].

4.6 Discussion

In this section, we discuss the limitations of our approach.

Security Analysis. In our design, we ignore the meaningless inbound flows

(i.e., those not leading to any SPS) to prevent attackers from introducing noisy

inbound flows to evade our detection. Determined attackers, however, may man-

age to introduce noisy inbound flows that indeed lead to some SPS. Since SPS

is sensible to users, the attacker will need to ensure that such noisy flows will only

cause minimal changes of phone states to not degrade the usability and function-

ality of the app. We will examine the practicality of this and other attacks and

accordingly design possible countermeasures in our future work.

Implicit Information Flows. Sensitive information can propagate in other

channels than direct channels, such as control flow and timing channels. It is very

challenging to detect and track these channels. In this work, we do not consider

tracking implicit information flows. The limitation is also shared by other taint

analysis tools, such as TaintDroid [7] and PiOS [6]. We leave it as our future work

to support the discovery of implicit information flows.

Java Reflection & Native Code. Static information flow analysis always

has the trouble to handle Java reflection and native code due to the lack of full

knowledge on Java reflective calls and JNI calls [77]. In our work, we use taint

wrappers with various crafted function summaries to partially resolve the propa-

gation through Java Reflection, which however may introduce some false positives.

We do not deal with native code for data propagation. Potentially, we could model

the well-known JNI calls and thereby create the corresponding taint wrappers for

the calls to exercise static data propagation. We leave it as our future work to

enhance our tool.

4.7 Summary

In this chapter, we present DroidJust, an automated approach to justifying an

app’s SI transmission by bridging the gap between SI transmission and app’s func-

75

tionality. It uses static taint analysis to first discover the SI transmissions to the

network, then discover the information receptions (from the network) that serve

application functions, and finally justify the discovered SI information transmis-

sions by correlating the outbound and inbound information flows. Our evaluation

on real-world Android apps and known malware demonstrates that DroidJust

can effectively and efficiently analyze both benign apps and malware.

76

Chapter 5 —

SweetDroid: Calling-Context-Sensitive

Privacy Policy Enforcement Frame-

work for Android

Mobile devices such as smartphones and tablets have been an essential part of

our modern life. However, at the same time, the large amount of sensitive in-

formation stored and processed on them, from device serial number, location to

private messages, has raised many security and privacy concerns. Based on the

summary from Mobile-Sandboxing [4], the user-privacy threatening malware fami-

lies are prominent, which contribute to 63.1% of all malware families in 2014. The

privacy threat has increased by 3% as compared to 2013 and by 13% as compared

to 2012. To remedy against the privacy violations arising from mobile applica-

tions, the development of new approaches to protecting user privacy is extremely

emergent.

Prior research effort on enhancing user privacy in mobile devices has mostly fo-

cused on permission model extension and enforcement [11,14–24]. Those proposed

solutions provided users with more flexible and fine-grained policy enforcement

than the conventional Android’s permission system, which is notorious for its all-

or-nothing permission authorization during an app installation phase [16,21]. For

example, a number of solutions [15, 16, 18, 19, 21, 23, 24] enable users to turn off

the permissions granted to the installed applications or intervene their access to

sensitive resources based on user-defined security policies. In a similar fashion,

the recent Android 6.0 introduces a new permission model that allows users to

not grant any permissions during app installation. Instead, it shows a dialog to

77

users asking for a certain permission when needed at the first time [89], which is

very similar to the iOS permission model. The new Android permission model

also provides users a graphical user interface (GUI) to enable/disable the granted

permissions after app’s installation phase.

Most previous solutions, however, apply permissions to a whole app and hence

may fail to prevent privacy violations, without considering and distinguishing the

contextual information of the access to sensitive data. For example, users may

grant a weather forecast app the permission to access the location data when

the app needs to retrieve the weather forecast information tailored to the current

location, but it is unclear whether the app may access the sensitive data in other

contexts and whether the users will approve as well. To ensure the contextual

integrity in accessing sensitive data, a simple solution is to force users to make a

decision per sensitive data request. Nevertheless, there are two major weaknesses

in practice. First, it may cause dialog fatigue since users have to permit every

sensitive data request. Second, although there are clear examples of the use of

sensitive data, there are also less obvious cases of the use of sensitive data where

users may not be capable of making right decisions [25, 26]. For example, app

developers could use device IDs, phone numbers or Google accounts as unique

identifiers of devices or users for realizing application function, and such code-level

information is not available to end users when they make decisions [90]. In a

nutshell, distinguishing the context of the access to sensitive data and reasoning

about the use of sensitive data under the context are two critical steps to enhancing

user privacy yet retaining application usability for mobile applications.

In this chapter, we aim at addressing these challenges by proposing a calling-

context-sensitive privacy policy enforcement framework, named SweetDroid.

Extending the existing Android framework, SweetDroid generates calling-context-

sensitive privacy policies targeting installed Android apps on Android devices, and

enforces these privacy policies at the calling context level in runtime to effectively

enhance user privacy yet retaining app’s usability.

5.1 Related Work

We categorize the previous work about privacy protection and enhancement on

smartphones into the following categories based on their primary mechanisms.

78

Permission Model Extension and Enforcement. Most past research

works enhance user privacy by either modifying Android source code [16,17,21,22,

91] or rewriting app code [11,14,18–20,24] to extend and enforce Android permis-

sion model. Apex allows users to selectively grant permissions to applications and

restrict the usage of resources [21]. Introducing a privacy mode, TISSA empowers

users to flexibly control what kinds of personal information are accessible to an

application [91]. CRePe can enforce fine-grained permission policies based on the

contextual information of the mobile device such as time, location and user inter-

action [17]. Saint provides a security infrastructure that governs install-time per-

mission assignment and enforce runtime application-centric security policies [22].

MockDroid modifies Android framework to allow users to mock an application’s

access to a resource [16].

I-ARM-Droid rewrites app’s bytecode to interpose on the invocations of sensi-

tive API methods in order to enforce desired security policies. [19]. RetroSkeleton is

an app rewriting framework that supports retrofit of app’s behaviors by statically

and dynamically inception of method invocations [18]. AppGuard rewrites and

repackages an app on the phone to mediate security-relevant methods [14]. Aura-

sium enforces user-defined policies by rewriting an app and low-level libc.so [24].

[20] provides fine-grained permissions on resource accessing by supporting param-

eterized permissions. AppFence enables users to feed shadow data to apps in place

of data that users want to keep private and block data exfiltration [11]. Addi-

tionally, Boxify uses full-fledged app sandboxing to enforce security and privacy

policies without modifying Android source code or app code [15].

Mandatory Access Control. Another way to enhance access control is to

introduce Security Enhanced Linux (SELinux) [92], the most prominent mandatory

access control solution, into Android. There are several research works supporting

mandatory access control on both Android’s middle and kernel layers [93,94].

However, nearly all existing approaches in these two categories heavily rely on

user-defined security or privacy policies to prevent privacy violations, which is not

realistic for normal users since they lack professional knowledge on security. Be-

sides, the contextual information used in the previous policies is too coarse-grained

and/or heuristic-oriented that could interfere with user-desired functionality [11].

In contrast, the generated privacy policies by our framework distinguish sensitive

API invocations in an app and handle them differently according to analysis re-

79

sults. It achieves the sweet point to enhance user privacy while retaining app

function.

Permission Separation for Libraries. There are a few research works

focusing on restricting permissions for one component [95] or a third-party li-

brary [96–98]. Compac distributes a narrowed set of permissions into every com-

ponent and hence enforces access control at component level [95]. AdSplit extends

Android to allow an application and its advertising to run as separate processes

(under separate user-ids) in order to separate permission sets for different do-

mains [98]. PEDAL uses a novel machine learning classifier to detect ad libraries

and rewrite app’s bytecode for privilege de-escalation [96]. AdDroid separates priv-

ileged advertising functionality from host applications, allowing apps to show ad-

vertisements without requesting privacy-sensitive permissions [97]. Though these

approaches can restrict access control at component or library level to eliminate

unnecessary sensitive data access (e.g., for advertisement), they cannot handle

overly-curious or privacy-invasive apps because there is no clear boundary between

the privacy-violating part and the user-defined function part.

5.2 Background and Example

In this section, we first describe our motivation by presenting an example and

then explain the attack model. List 1 gives two snippets of code abstracted from

a real-world Android application. The first snippet of code implements an activ-

ity of this application (AppActivitiy). The activity contains a private method

getUserProfile to fetch users’ profile from the application server by sending users’

IMEI (returned by getDeviceId()) and put the profile data into a private field

mUserProfile (line 9). The purpose is to frictionlessly authenticate a user 1 and

fetch the user’s app data remotely. This kind of IMEI usage is not rare in Android

applications where the fetched app data could contain app record, game save, re-

maining trial days, etc. It could avoid local data loss caused accidentally (e.g., reset

system for rescue) or intentionally (e.g., renew a trial app). The AppActivity, in

the example, uses UserProfile to interact with users and accomplish its function;

hence, impeding the IMEI retrieval could disable the application function or harm

user experience. The second snippet of code, as a part of a third-party library,

1It actually authenticates a device rather than a user since a user may have multiple devices.

80

1 public class AppActivity extends Activity {

2 private UserProfile mUserProfile = null;

3 private void getUserProfile(){

4 TelephonyManager tm = (TelephonyManager)

5 getSystemService(Context.TELEPHONY_SERVICE);

6 String imei = tm.getDeviceId();

7 if (imei != null)

8 // get users’ profile from the App server

9 mUserProfile = fetchUserProfile(imei);

10 }

11 }

12

13 public class LibraryClass extends Service{

14 public static void sendImei(){

15 TelephonyManager tm = (TelephonyManager)

16 getSystemService(Context.TELEPHONY_SERVICE);

17 String imei = tm.getDeviceId();

18 // harvest users’ IMEI to their servers

19 sendToURL(imei, "http://www.foo.com");

20 }

21 @Override

22 public void create(){

23 sendImei();

24 }

25 }

Listing 1: Example Android Application

implements a public method sendImei to send out users’ IMEI to a remote server

in an Android service (line 19). It invokes the method when the service is created

(line 23). The method is used by a third-party library to harvest users’ sensi-

tive information possibly for the purpose of statistics, and this kind of sensitive

information does not serve application function and thus should be prevented.

To avoid such unnecessary sensitive information leak and enforce the principle

of least privilege, an effective privacy policy enforcement scheme must be context

sensitive: the contexts of the sensitive data access in the two snippets of code should

be distinguished and the latter one should be considered as a privacy violation and

hence prevented. The current Android permission system (up to Android 6.0) and

existing policy enforcement approaches are agnostic to the exact calling context

81

within the app process, which means that their permission enforcement applies

equally to all code (including Java and Native code) executing under the app’s

assigned UID.

Attack Model. SweetDroid can enforce privacy policies for different calling

contexts of sensitive information access. We assume the following attack model

in this work. The attacker supplies an untrusted app with arbitrary malicious

Dalvik bytecode. The attacker’s goal is to leak users’ private data through a few

dangerous communication channels such as the Internet and SMS. We assume that

the Android OS is trusted, including the Linux kernel and the Android framework.

That is, we assume that an application cannot compromise the integrity of kernel or

Android framework. We assume that the attacker has no way of circumventing the

security mechanism of the Android platform or exploiting system vulnerabilities

to gain excessive privileges (e.g., root privilege).

Moreover, we assume that the untrusted app could be a repackaged version of

a legitimate app to take advantage of the permissions declared by the original app

for malicious purposes. We assume that the untrusted app has full control over its

process and the associated memory address space. Moreover, the app’s code and

thus the app’s behavior may be self-modified at runtime through techniques like

native code or Java reflection.

5.3 SweetDroid Architecture

In this section, we present the design and implementation of SweetDroid.

The main idea of SweetDroid is to provide a calling-context-sensitive privacy

policy enforcement on Android by leveraging state-of-the-art privacy analysis ap-

proaches. In particular, recent privacy analysis approaches can identify sensitive

information flows and evaluate their appropriateness based on their contextual

information for mobile applications [25, 26, 90, 99]. SweetDroid leverages the

code-level observations and insights provided by those privacy analysis tools to

construct privacy policies, and then regulate app’s access to sensitive information

and prevent privacy violations.

Depicted in Figure 5.1, there are mainly four technical components in Sweet-

Droid. We briefly explain their functions and how they interact with other com-

ponents in SweetDroid and the Android platform. First, SweetDroid will

82

Applications

Android Middleware
Linux Kernel

Installation
Mediator

Package
Installer

Package
Manager
Service

Policy
Manager

App

Privacy
Mediator

Privacy
Analyzer

a

b

c

d

e

Privacy Context

3rd Party
App (oat
format)

Policy
Manager
Service

Figure 5.1. The design of SweetDroid framework (the SweetDroid components
are colored as grey.)

leverage a Privacy Analyzer such as DroidJust [90] to analyze a given third-

party app and automatically generates its privacy context. The privacy context

file, in XML format, records the calling context of each sensitive API call (e.g.,

getLastKnownLocation), including the class and method where it is invoked, all

its network sinks and whether the outbound flow to each sink is intended or unin-

tended. This basically shows how risky each sensitive API is. The privacy context

files are hosted in a dedicated server or separate servers for later retrieval.

Second, we mediate the app installation process through “patching”. For in-

stance, when a user downloads a third-party app from the Internet for installation,

the apk file will be first passed to the PackageInstaller, which is the default

application for Android to interactively install a normal package (step a). Upon

the user confirms the installation request, the PackageInstaller will call the

PackageManagerService (a system service in Android framework) through an

InstallAppProgress activity (step b). Then, the PackageManagerService will

verify the app, keep the metadata and call our Installation Mediator (IM) (step c).

Just before the app is optimized and transformed into the Android runtime oat

format for later execution, our IM scans the apk file to find all sensitive API calls

and their calling contexts (including the class and method where each of them is in-

83

voked), and then rewrites each of such APIs with an extra parameter, which is the

encrypted calling context information by a randomly-generated secret key. The IM

applies the secret key throughout the entire app and sends the key associated with

the app’s package name to the PMS. The purpose of calling context information

encryption is to prevent the original app from calling rewritten APIs with a legit-

imate calling context directly. We call this process of introducing the encrypted

context information as an extra parameter as API patching. The patching is for

future runtime access control. Note that this simple scanning cannot track infor-

mation flows or identify privacy leakage. After that, the PackageManagerService

will optimize the modified bytecode by calling the native installd daemon and

then notify the PackageInstaller with installation success or failure (step d).

The output of this installation is a modified oat file which is usually located at

/data/dalvik-cache/ in the Android internal storage (step e).

Third, once the app is successfully installed, a Policy Manager App, will down-

load the privacy context file for this app from the server and send the file to Policy

Manager Service (PMS), which is a system service to manage privacy policies in

Android framework. Then, PMS will store the data of the privacy context file

in a SQLite database. Moreover, PMS takes a role in parsing privacy context

data and enforces a default privacy policy for each context. For example, if none

of the network sinks for a getLastKnownLocation() API invocation is intended

(according to the privacy context file), the default action, in this case, is DENY.

Besides downloading privacy context files, Policy Manager App also provides a

user-friendly interface for end users to view, comprehend and modify app’s privacy

policies if needed. For example, users can easily turn on or off the location infor-

mation access for advertisement providers in an app. Note that Policy Manager

App, as an interface in an application layer, does not maintain any privacy policy

and all operations about privacy policy read and write go through PMS.

Fourth, during the actual execution of this app (i.e., when this oat file is run-

ning), whenever a (rewritten) sensitive API is invoked, the Privacy Mediator (PM)

will handle the sensitive API invocation and check the PMS for this API, provid-

ing the app’s package name, the signature of the sensitive API and the encrypted

calling context (the last argument in the sensitive API invocation) to match the

same API in the app’s privacy context file in PMS and return the corresponding

policy rule. We note that before matching, the PMS decrypts this encrypted call-

84

ing context with the corresponding secret key from the IM. If the action is DENY,

the api will return a null value. If the action is MANIPULATION, the API will

return totally random data (step 4).

Moreover, SweetDroid does not require third-party app repackaging and

resigning before installation; hence, the whole API patching process is transparent

to the user and the authorship of the mobile app remains for the Android shared

UID feature [100] and hassle-free application upgrade.

5.4 Security Analysis

In this section, we analyze the security of SweetDroid by considering the fol-

lowing attack interfaces.

Java Code. SweetDroid relies on rewriting app’s bytecode and adding

sensitive API wrappers in Android framework to enforce privacy policies. Sweet-

Droid implements these two parts directly in Android framework and thus they

cannot be manipulated in runtime (since they are not under app’s process).

In an attempt to bypass SweetDroid, a malicious app may try to use Java

reflection or dynamic class loading to invoke original sensitive APIs instead of

rewritten ones. However, this kind of attack could be easily detected by placing

hooks in these original sensitive APIs because the Installation Mediator has previ-

ously replaced all sensitive API invocations in the app’s bytecode and the triggered

original sensitive API invocations must be caused by dynamic code behavior (i.e.,

Java reflection and dynamic loading). To defeat the attack, we simply redirect

original sensitive APIs to their rewritten versions with a null context, and the

rewritten APIs will deny the sensitive data access by default.

Moreover, a malicious app could use Java reflection or dynamic class loading

to invoke our rewritten sensitive APIs with a fake calling context argument that

matches a privacy policy rule as ALLOW. However, the malicious app cannot ac-

quire the right calling context due to two reasons. First, the Installation Mediator

encrypts the calling context with a randomly generated secret key and shares the

secret key only with PMS. That means, even if the malicious app acquires a le-

gitimate calling context of a sensitive API invocation, it cannot produce a valid

encrypted version of the legitimate calling context. Second, the malicious app may

try to look for a legitimate calling context directly from bytecode. For instance,

85

it could read its apk file to look for the legitimate calling context. Here we note

that the app does have the read access to its apk file normally under /data/app/.

However, this apk file is the original one which is untouched by our Installation

Mediator and thus does not include the rewritten APIs. The file containing the

rewritten APIs is the oat file under /data/dalvik-cache/ wherein the app has

no read access to read (unless the app acquires root privilege).

Native Code. Employing native code cannot bypass our privacy policy en-

forcement because SweetDroid intercepts neither IPC nor system calls, but en-

forces privacy policies inside the Android framework. A malicious app could lever-

age native code to tamper with the associated memory address space, but this

cannot circumvent SweetDroid for privilege escalation.

Red Pill. SweetDroid is not designed to be invisible to an untrusted app.

The untrusted app can use Java reflection to deduce that the app’s code has been

rewritten in runtime. Thus, a malicious app could hide its misbehavior and refuse

to function in such a hardened environment. While it could harm the usability of

an app for end users, the malfunction cannot lead to any privilege escalation.

5.5 Case Study

In this section, we present a case study to illustrate the usage of SweetDroid

on a popular weather forecast app from Anzhi app market (a leading Android

app market in China). SweetDroid can distinguish the different calling contexts of

sensitive information requests and thus enhance user privacy.

We start the case study by installing the weather forecast application in a Nexus

5 device. Figure 5.2 shows the requested permissions when the app is installed.

As we can see that the weather forecast app requests sensitive permissions to

access users’ phone and location information. From a user’s point of view, it is

reasonable to grant the location information access since the app could provide

weather forecast tailored to the user’s location. However, the user may have no

clue about why the app needs to access phone information at the current stage.

After the user grants the permission requests, SweetDroid installs the weather

forecast app through our API patching process. Once the app is successfully in-

stalled, the Policy Manager App (PMA) will download the privacy context for this

application from our server (the privacy context is generated by Droidjust), and

86

Figure 5.2. Permission request Figure 5.3. Policy manager app

send the privacy context file to the underlying Policy Manager Service (PMS). Fig-

ure 5.3 illustrates the user interface of PMA to show and modify privacy policies

for installed applications. The top left toggle is used to switch between different

apps. This figure particularly shows the privacy policy for the weather forecast

app and the title is the app’s package name. The following is a list of sensitive

information requests, each representing a sensitive information request at a specific

calling context. Figure 5.4 shows an example of a location information request.

It contains the signature of the sensitive API, the signature of the API’s calling

context, the analysis result from the privacy context file, and current rule being

applied to the sensitive information request. In the example, the location infor-

mation request is justified (based on the analysis result) and the default rule is

allow.

Figure 5.5 shows another location information request, which is used by an

advertisement library, named feiwo, based on the analysis result. The default rule

for the sensitive information request by advertisement libraries is mock. Figure 5.6

87

Figure 5.4. A location request by app Figure 5.5. A location request by library

shows that the advertisement library also requests the device’s IMEI information.

Besides viewing the sensitive information requests in the app, the user can modify

the policy rule for a sensitive information request at any time. Figure 5.7 shows

an example of a popup menu after a long click on the rule that a user wants to

modify. So far, SweetDroid provides three options including allow, mock, and

deny. “Allow” returns genuine sensitive information, “mock” returns fake sensitive

information, and “deny” simply returns null value. The “RECOMMENDED” flag

shows the default rule based on the analysis result. After the modification, the

rule takes effect immediately.

5.6 Evaluation

We evaluated SweetDroid on a collection of Android applications to ensure that

application installations succeed and the added code does not impede the original

functionality of applications. We conducted a broad evaluation which includes

88

Figure 5.6. An IMEI request by library Figure 5.7. Modify current rule

3760 apps from Anzhi (a leading third-party app market in China) as well as more

than 2759 malicious apps from VirusTotal. Our evaluation was conducted on an

LG Nexus 5 phone running Android 5.0.1 “Lollipop”.

5.6.1 Rewriting Evaluation

We first performed an evaluation to determine how many Android applications

were successfully rewritten and installed by SweetDroid. We applied Sweet-

Droid on 3760 apps from Anzhi and 2759 malicious apps from VirusTotal [85].

Table 5.1 shows the success rate of our rewritten process.

Source # of App Success Rate
Anzhi 3760 98.6%(3709)

VirusTotal 2759 95.9%(2646)

Table 5.1. Repackaging Evaluation Results

We have more than 95% success rate in application rewritten. The failures in

89

rewriting arbitrary applications are due to errors in apktool when disassembling

APK files (e.g., error in decoding application resource files, error in opening zip

files and invalid magic number in decoding). We are trying to work on improving

apktool to achieve a 100% success rate.

5.6.2 Size Overhead

We also evaluated the application size increase due to SweetDroid’s rewriting

process, as shown in Figure 5.8. On average, SweetDroid increases the appli-

cation size by only 11.6 KB, which is a very small overhead for the majority of

applications.

Figure 5.8. Application Size Increase After Repackaging

5.6.3 Privacy Policy Generation

We employed DroidJust [90] to automatically analyze privacy leakage and gener-

ate privacy policies for those Android applications. Table 5.2 shows the results,

where the third column shows the number of apps that contain unjustified sensitive

90

information leak in their application logic (refer to [90] for more details about un-

justified sensitive information leak), the fourth column shows the number of apps

that contain sensitive information leak in their advertisement logic, and the last

column shows the number of apps that contain either one.

The results demonstrate that more than 30% apps from both Anzhi and Virus-

Total have privacy leakage issues. However, these two application datasets have

a significant difference in the leaking area. Particularly, most privacy-invasive

apps from Anzhi leak users’ sensitive information through advertisement libraries

rather than application logic, whereas nearly all privacy-invasive apps (887 of 989)

from VirusTotal leak users’ sensitive information directly in their application logic.

There are two important observations. The first observation is that advertisement

libraries are the major cause of users’ sensitive information leakage since, as we

know, most advertisement libraries send out users’ sensitive information such as

IMEI and location for location-based or targeted advertising. This second observa-

tion is that privacy-invasive apps are mostly not identified as malware by antivirus

vendors unless they leak user privacy through their application logic.

Source # of Apps Unjustified Leak by App Leak by Ads Either
Anzhi 3760 488(13.0%) 1004(26.7%) 1254(33.4%)

VirusTotal 2759 887(32.1%) 199(7.2%) 989(35.8%)

Table 5.2. Privacy Leakage Analysis

Table 5.3 shows a breakdown of the leaked sensitive information for those apps.

On the one hand, we can see that the privacy-invasive apps from Anzhi mostly leak

users’ phone information (e.g., IMEI, IMSI, phone number, etc.) and location but

rarely leak other kinds of information such as messages and contacts. It validates

our previous observation that the major cause of the leaks in this dataset is for

advertising purpose. On the other hand, we can see that the privacy-invasive

apps from VirusTotal not only leaks phone and location information but also leak

messages and contacts significantly. Based on our study, we found that those

malware leak contacts and messages for malicious attacks. For example, harvesting

user contacts is used for message or email spam, and a malware stealthily calling

premium numbers usually intercepts and forwards the subscription message to its

malicious server.

91

Source Phone Info Location Messages Contacts Call Logs Accounts
Anzhi 1222 576 3 7 1 1

VirusTotal 719 79 457 102 2 2

Table 5.3. Leaked Sensitive Information

5.6.4 Performance Evaluation

We employed two most popular Android benchmark applications from the official

market and applied SweetDroid to them in order to check the performance

overhead that SweetDroid introduces to a real Android device. From Table 5.4,

we can see that the benchmark scores are largely unaffected by SweetDroid.

Note that higher scores mean better performance.

Benchmark App Without SweetDroid With SweetDroid
AnTutu Benckmark (5.7.1) 35621 Pts 35527 Pts

Geekbench 3 (3.3.2) 786 Pts 780 Pts

Table 5.4. Performance on Benchmark Applications

Because SweetDroid introduces the most overhead when an application in-

vokes sensitive API invocations, we further evaluate an artificial app’s runtime

delay caused by SweetDroid when it invokes sensitive APIs. The artificial app

calls each sensitive API invocations for 1000 times. Results in Table 5.5 show that

SweetDroid introduces an overhead of 13-15% in both cases. We believe that

the incurred overhead is acceptable since the averaging delay for each sensitive

API invocation is less than 0.3 ms and such a short time interval will not affect

user experience.

1000 API invocations Without SweetDroid With SweetDroid Overhead
Get Device ID 1786 ms 2022 ms 13.2%

Get Last Location 278 ms 318 ms 14.4%

Table 5.5. Performance on API invocations

5.7 Summary

In this chapter, we present SweetDroid, a calling-context-sensitive privacy policy

enforcement framework to automatically generate calling-context-sensitive privacy

92

policies for Android applications and enforce those privacy policies at the calling

context level in runtime in order to effectively enhance user privacy yet retaining

app’s usability. Our evaluation demonstrated that SweetDroid can effectively

distinguish users’ sensitive information use in different contexts of an Android

application and then apply proper privacy policies to prevent unnecessary privacy

leakage.

93

Chapter 6 —

Conclusion and Future Works

6.1 Conclusion

In this dissertation, we present our studies focusing on mobile security with a par-

ticular interest on tactical networks and mobile phone networks. For tactical net-

works, we propose Zigzag, a partial mutual revocation based trust management

scheme, which allows rapid impeachment of identified malicious nodes and offers a

node a certain degree of freedom to tradeoff the extent of sacrifice with the global

good of the network. Our analytical and experimental results have shown that the

proposed partial mutual revocation approach is more accurate than conventional

complete mutual revocation approaches by sacrificing revocation immediacy a bit.

Also, our evaluation has shown that the partial mutual revocation is very robust

against strategic (false) accusations made by bad nodes and erroneous accusations

made by good nodes (e.g., due to benign errors) to retain the availability of the

network.

In a tactical network environment, we also present GlobalTrust, a trust-

based reputation management scheme, to accurately evaluate the reputation of

nodes with respect to both the behavioral trustworthiness and recommendation

credibility. Through the extensive simulation experiments, we have demonstrated

that GlobalTrust outperforms existing reputation schemes by highly being re-

silient against various types of attacks, maintaining high view consistency through

the network and generating low reputation judgment errors.

With a massive increase of smartphones and mobile devices over the past few

years, mobile malware is exploding. Based on the stats from a malware analysis

94

research company, privacy leakage is the highest-ranked threat in smartphones and

mobile devices. To mitigate the severe privacy threat in mobile phone networks, we

present DroidJust, an automated, functionality-aware approach to justifying an

app’s sensitive information release. Our evaluation on real-world Android apps and

known malware has demonstrated that DroidJust can effectively and efficiently

analyze both benign apps and malware.

Further, in order to mitigate privacy leakage in the mobile device side, we

present a calling-context-sensitive, fine-grained privacy policy enforcement frame-

work, named SweetDroid. Our policy enforcement framework is able to enforce

privacy policies at the calling context level. By doing so, SweetDroid can grant

or deny sensitive permission for different sensitive information requests based on

their specific calling contexts.

6.2 Future Works

For future works, we are interested in investing our efforts in the following direc-

tions.

Trust and Reputation Management in Tactical Ad Hoc Networks.

Our future work will study other possible attack strategies as well as more extensive

simulations to compare Zigzag or GlobalTrust with other existing revocation

schemes.

Functionality-Aware Privacy Leakage Analysis for Android Applica-

tions. Our future work include: (1) improve the correlation accuracy between

sensitive information transmission and sensible information reception by leverag-

ing machine learning techniques; (2) support the discovery of implicit information

flows; (3) enhance data propagation through native code by modeling the known

JNI call in Android framework; and (4) host an online service to provide the privacy

leakage analysis of Droidjust.

Calling-Context-Sensitive Privacy Policy Enforcement Framework for

Android Applications. We plan our future work on further improving the secu-

rity of SweetDroid, providing extensions for state-of-art privacy analysis tools

(e.g., TaintDroid) to automatically generate privacy context, and hosting a public

repository of privacy context for Android applications.

95

Bibliography

[1] Aberer, K. and Z. Despotovic (2001) “Managing trust in a peer-2-peer
information system,” in Proc. CIKM.

[2] Ooi, B., C. Liau, and K. Tan (2003) “Managing trust in peer-to-peer sys-
tems using reputation-based techniques,” Advances in Web-Age Information
Management, pp. 2–12.

[3] Wang, Y. and J. Vassileva (2003) “Trust and reputation model in peer-to-
peer networks,” in Peer-to-Peer Computing, 2003.(P2P 2003). Proceedings.
Third International Conference on, IEEE, pp. 150–157.

[4] “An Android malware summary from Mobile-Sandboxing,”
http://forensics.spreitzenbarth.de/2015/05/18/

our-android-malware-summary-for-the-year-2014/.

[5] Arzt, S., S. Rasthofer, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel (2014) “Flowdroid: Pre-
cise context, flow, field, object-sensitive and lifecycle-aware taint analysis for
android apps,” in Proceedings of the 35th annual ACM SIGPLAN conference
on Programming Language Design and Implementation (PLDI 2014).

[6] Egele, M., C. Kruegel, E. Kirda, and G. Vigna (2011) “PiOS: De-
tecting Privacy Leaks in iOS Applications.” in NDSS.

[7] Enck, W., P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. Mc-
Daniel, and A. Sheth (2010) “TaintDroid: An Information-Flow Tracking
System for Realtime Privacy Monitoring on Smartphones.” in OSDI’ 10,
vol. 10, pp. 1–6.

[8] Enck, W., D. Octeau, P. McDaniel, and S. Chaudhuri (2011) “A
Study of Android Application Security.” in USENIX Security Symposium.

[9] Gilbert, P., B.-G. Chun, L. P. Cox, and J. Jung (2011) “Vision: auto-
mated security validation of mobile apps at app markets,” in Proceedings of
the second international workshop on Mobile cloud computing and services,
ACM, pp. 21–26.

96

[10] Gibler, C., J. Crussell, J. Erickson, and H. Chen (2012) “Androi-
dLeaks: Automatically detecting potential privacy leaks in Android applica-
tions on a large scale,” in Trust and Trustworthy Computing, Springer, pp.
291–307.

[11] Hornyack, P., S. Han, J. Jung, S. Schechter, and D. Wetherall
(2011) “These aren’t the droids you’re looking for: retrofitting android to
protect data from imperious applications,” in Proceedings of the 18th ACM
conference on Computer and communications security, CCS’ 11, ACM, pp.
639–652.

[12] Mann, C. and A. Starostin (2012) “A framework for static detection
of privacy leaks in android applications,” in Proceedings of the 27th Annual
ACM Symposium on Applied Computing, ACM, pp. 1457–1462.

[13] Rastogi, V., Y. Chen, and W. Enck (2013) “AppsPlayground: auto-
matic security analysis of smartphone applications,” in Proceedings of the
third ACM conference on Data and application security and privacy, ACM,
pp. 209–220.

[14] Backes, M., S. Gerling, C. Hammer, M. Maffei, and P. von
Styp-Rekowsky (2013) “AppGuard–enforcing user requirements on an-
droid apps,” in Tools and Algorithms for the Construction and Analysis of
Systems, Springer, pp. 543–548.

[15] Backes, M., S. Bugiel, C. Hammer, O. Schranz, and P. von Styp-
Rekowsky (2015) “Boxify: Full-fledged app sandboxing for stock Android,”
in Proc. USENIX Security.

[16] Beresford, A. R., A. Rice, N. Skehin, and R. Sohan (2011) “Mock-
droid: trading privacy for application functionality on smartphones,” in Pro-
ceedings of the 12th Workshop on Mobile Computing Systems and Applica-
tions, ACM, pp. 49–54.

[17] Conti, M., V. T. N. Nguyen, and B. Crispo (2011) “CRePE: Context-
related policy enforcement for Android,” in Information Security, Springer,
pp. 331–345.

[18] Davis, B. and H. Chen (2013) “RetroSkeleton: retrofitting android apps,”
in Proceeding of the 11th annual international conference on Mobile systems,
applications, and services, ACM, pp. 181–192.

[19] Davis, B., B. Sanders, A. Khodaverdian, and H. Chen (2012) “I-
arm-droid: A rewriting framework for in-app reference monitors for android
applications,” Mobile Security Technologies, 2012.

97

[20] Jeon, J., K. K. Micinski, J. A. Vaughan, A. Fogel, N. Reddy, J. S.
Foster, and T. Millstein (2012) “Dr. Android and Mr. Hide: fine-grained
permissions in android applications,” in Proceedings of the second ACM work-
shop on Security and privacy in smartphones and mobile devices, ACM, pp.
3–14.

[21] Nauman, M., S. Khan, and X. Zhang (2010) “Apex: extending android
permission model and enforcement with user-defined runtime constraints,”
in Proceedings of the 5th ACM Symposium on Information, Computer and
Communications Security, ACM, pp. 328–332.

[22] Ongtang, M., S. McLaughlin, W. Enck, and P. McDaniel (2012)
“Semantically rich application-centric security in Android,” Security and
Communication Networks, 5(6), pp. 658–673.

[23] Wu, C., Y. Zhou, K. Patel, Z. Liang, and X. Jiang (2014) “Airbag:
Boosting smartphone resistance to malware infection,” in Proceedings of the
Network and Distributed System Security Symposium.

[24] Xu, R., H. Säıdi, and R. Anderson (2012) “Aurasium: Practical Policy
Enforcement for Android Applications.” in USENIX Security Symposium,
pp. 539–552.

[25] Tripp, O. and J. Rubin (2014) “A bayesian approach to privacy enforce-
ment in smartphones,” in USENIX Security.

[26] Yang, Z., M. Yang, Y. Zhang, G. Gu, P. Ning, and X. S. Wang (2013)
“Appintent: Analyzing sensitive data transmission in android for privacy
leakage detection,” in Proceedings of the 2013 ACM SIGSAC conference on
Computer & communications security, ACM, pp. 1043–1054.

[27] Xiong, L. and L. Liu (2004) “Peertrust: Supporting reputation-based trust
for peer-to-peer electronic communities,” IEEE Transactions on Knowledge
and Data Engineering, 16(7), pp. 843–857.

[28] Au, K. W. Y., Y. F. Zhou, Z. Huang, and D. Lie (2012) “Pscout:
analyzing the android permission specification,” in Proceedings of the 2012
ACM conference on Computer and communications security, ACM, pp. 217–
228.

[29] Clulow, J. and T. Moore (2006) “Suicide for the Common Good: A
New Strategy for Credential Revocation in Self-organizing Systems,” ACM
SIGOPS Operating Systems Reviews, 40(3), pp. 18–21.

98

[30] Moore, T., M. Raya, J. Clulow, P. Papadimitratos, R. Anderson,
and J.-P. Hubaux (2008) “Fast Exclusion of Errant Devices From Vehicular
Networks,” in Proceedings of the 5th conference on Sensor, Mesh and Ad Hoc
Communications and Networks (SECON 2008), pp. 135–143.

[31] Raya, M., M. H. Manshaei, M. Félegyhazi, and J.-P. Hubaux (2008)
“Revocation games In ephemeral networks,” in Proc. CCS.

[32] Reidt, S., M. Srivatsa, and S. Balfe (2009) “The fable of the bees:
incentivizing robust revocation decision making in ad hoc networks,” in Proc.
CCS.

[33] T. Moore, R. A., J. Clulow and S. Nagaraja (2007) “New strategies
for revocation in ad-hoc networks,” in Proc. ESAS.

[34] Zhu, S., S. Setia, S. Xu, and S. Jajodia (2006) “GKMPAN: An efficient
group rekeying scheme for secure multicast in ad-hoc networks,” Journal of
Computer Security, 14(4), pp. 301–325.

[35] Liu, D., P. Ning, and K. Sun (2003) “Efficient self-healing group key
distribution with revocation capability,” in Proc. CCS.

[36] Liu, W. (2006) “Securing Mobile Ad Hoc Networks with Certificateless Pub-
lic Keys,” IEEE Transactions on Dependable and Secure Computing, 3(4),
pp. 386–399.

[37] Yi, S. and R. Kravets (2003) “MOCA: Mobile certificate authority for
wireless ad hoc networks,” in Proc. PKI.

[38] Matt, B. (2004) “Toward Hierarchical Identity-based Cryptography for
Tactical Networks,” in Proceedings of the 2004 Military Communications
Conference (MILCOM 2003), IEEE Computer Society, pp. 727–735.

[39] Rivest, R. (1998) “Can we eliminate certificate revocation lists?” in Proc.
FC.

[40] Kanungo, T., D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Sil-
verman, and A. Y. Wu (2002) “An efficient k-means clustering algorithm:
Analysis and implementation,” IEEE TPAMI.

[41] Marti, S., T. Giuli, K. Lai, and M. Baker (2000) “Mitigating routing
misbehavior in mobile ad hoc networks,” in Proceedings of the 6th annual
international conference on Mobile computing and networking, ACM, pp.
255–265.

[42] Pirzada, A., A. Datta, and C. McDonald (2004) “Trust-based routing
for ad-hoc wireless networks,” in Proc. ICON.

99

[43] McCune, J. M., E. Shi, A. Perrig, and M. K. Reiter (2005) “Detection
of denial-of-message attacks on sensor network broadcasts,” in Proc. S&P.

[44] White, D. J. and C. E. White (1993) Markov decision processes, 1 ed.,
Wiley, John & Sons, Incorporated.

[45] Reidt, S. and S. D. Wolthusen (2007) “Efficient Distribution of Trust
Authority Functions in Tactical Networks,” in Information Assurance and
Security Workshop.

[46] Cho, J., A. Swami, and I. Chen (2011) “A survey of trust management
in mobile ad hoc networks,” IEEE Communications Surveys and Tutorials,
13(4), pp. 562–583.

[47] Li, H. and M. Singhal (2007) “Trust management in distributed systems,”
Computer, 40(2), pp. 45 –53.

[48] Liu, Z., A. W. Joy, and R. A. Thompson (2003) “A dynamic trust model
for mobile ad hoc networks,” in Proc. 10th IEEE Int’l Workshop on Future
Trends of Distributed Computing Systems.

[49] Kamvar, S. D., M. T. Schlosser, and H. Garcia-Molina (2003) “The
Eigentrust algorithm for reputation management in P2P networks,” in Proc.
WWW.

[50] Zhou, R. and K. Hwang (2007) “PowerTrust: A Robust and Scalable Rep-
utation System for Trusted Peer-to-Peer Computing,” IEEE Trans. Parallel
Distrib. Syst., 18(4), pp. 460–473.

[51] Bella, G., G. Costantino, and S. Riccobene (2008) “Managing repu-
tation over mANETs,” in Information Assurance and Security.

[52] Arboit, G., C. Crépeau, C. R. Davis, and M. Maheswaran (2008)
“A localized certificate revocation scheme for mobile ad hoc networks,” Ad
Hoc Netw., 6(1), pp. 17–31.

[53] Buchegger, S. and J. Le Boudec (2003) “A robust reputation system
for mobile ad-hoc networks,” in Proc. P2PEcon.

[54] He, Q., D. Wu, and P. Khosla (2004) “SORI: a secure and objective
reputation-based incentive scheme for ad-hoc networks,” in Proc. WCNC.

[55] Teacy, W. L., J. Patel, N. R. Jennings, and M. Luck (2006) “Travos:
Trust and reputation in the context of inaccurate information sources,” Au-
tonomous Agents and Multi-Agent Systems, 12(2), pp. 183–198.

100

[56] Jsang, A. and R. Ismail (2002) “The beta reputation system,” in Proceed-
ings of the 15th bled electronic commerce conference.

[57] Chan, H., V. D. Gligor, A. Perrig, and G. Muralidharan (2005)
“On the Distribution and Revocation of Cryptographic Keys in Sensor Net-
works,” IEEE Trans. Dependable Secur. Comput., 2(3), pp. 233–247.

[58] Raya, M., M. H. Manshaei, M. Félegyhazi, and J.-P. Hubaux (2008)
“Revocation games in ephemeral networks,” in Proc. CCS.

[59] Buchegger, S. and J. Le Boudec (2002) “Performance analysis of the
CONFIDANT protocol,” in Proc. MobiHoc.

[60] Kong, J., P. Zerfos, H. Luo, S. Lu, and L. Zhang (2001) “Providing
Robust and Ubiquitous Security Support for Mobile Ad-hoc Networks,” in
IEEE ICNP.

[61] Mármol, F. and G. Pérez (2009) “Security threats scenarios in trust and
reputation models for distributed systems,” computers & security, 28(7), pp.
545–556.

[62] Benzécri, J. (1982) “Construction d’une classification ascendante
hiérarchique par la recherche en châıne des voisins réciproques,” Les Cahiers
de l’Analyse des Données, 7(2), pp. 209–218.

[63] Rhee, I., M. Shin, S. Hong, K. Lee, S. Kim, and S. Chong (2009),
“CRAWDAD, data set ncsu/mobilitymodels (v. 2009-07-23),” .

[64] Michiardi, P. and R. Molva (2002) “Core: a collaborative reputation
mechanism to enforce node cooperation in mobile ad hoc networks,” in Ad-
vanced Communications and Multimedia Security.

[65] Zhou, Y. and X. Jiang (2012) “Dissecting android malware: Characteri-
zation and evolution,” in IEEE Symposium on Security and Privacy, S&P’
12, IEEE, pp. 95–109.

[66] “Mobile-Sandbox,” http://forensics.spreitzenbarth.de/

android-malware/.

[67] Octeau, D., S. Jha, and P. McDaniel (2012) “Retargeting Android Ap-
plications to Java Bytecode,” in Proceedings of the 20th International Sympo-
sium on the Foundations of Software Engineering, Department of Computer
Science and Engineering, Pennsylvania State University, University Park,
PA, USA.
URL http://siis.cse.psu.edu/dare/papers/octeau-fse12.pdf

101

[68] “Fortify 360 source code analyzer,” http://www8.hp.com/us/en/

software-solutions/software.html?compURI=1338812#.U3U1YlhdXKo.

[69] “WALA, T. J. Watson libraries for analysis,” http://wala.sourceforge.

net/.

[70] Xu, W., F. Zhang, and S. Zhu (2013) “Permlyzer: Analyzing permission
usage in android applications,” in IEEE 24th International Symposium on
Software Reliability Engineering, ISSRE’ 13, IEEE, pp. 400–410.

[71] Rasthofer, S., S. Arzt, and E. Bodden (2014) “A machine-learning
approach for classifying and categorizing android sources and sinks,” in Net-
work and Distributed System Security Symposium, NDSS’ 14.

[72] Zhang, M. and H. Yin (2014) “Efficient, Context-Aware Privacy Leakage
Confinement for Android Applications without Firmware Modding,” in Pro-
ceedings of the 9th ACM Symposium on Information, Computer and Com-
munications Security (ASIACCS 2014).

[73] Pandita, R., X. Xiao, W. Yang, W. Enck, and T. Xie (2013) “WHY-
PER: Towards Automating Risk Assessment of Mobile Applications.” in
USENIX Security.

[74] Qu, Z., V. Rastogi, X. Zhang, Y. Chen, T. Zhu, and Z. Chen (2014)
“AutoCog: Measuring the Description-to-permission Fidelity in Android Ap-
plications,” in Proceedings of the 2014 ACM SIGSAC Conference on Com-
puter and Communications Security, CCS’ 14, ACM, pp. 1354–1365.

[75] Jung, J., A. Sheth, B. Greenstein, D. Wetherall, G. Maganis,
and T. Kohno (2008) “Privacy oracle: a system for finding application
leaks with black box differential testing,” in Proceedings of the 15th ACM
conference on Computer and communications security, CCS’ 08, ACM, pp.
279–288.

[76] Yumerefendi, A. R., B. Mickle, and L. P. Cox (2007) “TightLip:
Keeping Applications from Spilling the Beans.” in NSDI’ 07.

[77] Felt, A. P., E. Chin, S. Hanna, D. Song, and D. Wagner (2011) “An-
droid permissions demystified,” in Proceedings of the 18th ACM conference
on Computer and communications security, ACM, pp. 627–638.

[78] Hoffmann, J., M. Ussath, T. Holz, and M. Spreitzenbarth (2013)
“Slicing droids: program slicing for smali code,” in Proceedings of the 28th
Annual ACM Symposium on Applied Computing, ACM, pp. 1844–1851.

102

[79] Kim, J., Y. Yoon, K. Yi, J. Shin, and S. Center (2012) “ScanDal:
Static analyzer for detecting privacy leaks in android applications,” MoST.

[80] Lu, L., Z. Li, Z. Wu, W. Lee, and G. Jiang (2012) “Chex: statically
vetting android apps for component hijacking vulnerabilities,” in Proceedings
of the 2012 ACM conference on Computer and communications security,
CCS’ 12, ACM, pp. 229–240.

[81] Yang, Z. and M. Yang (2012) “Leakminer: Detect information leakage on
android with static taint analysis,” in WCSE’ 12, IEEE, pp. 101–104.

[82] Reps, T., S. Horwitz, and M. Sagiv (1995) “Precise interprocedural
dataflow analysis via graph reachability,” in Proceedings of the 22nd ACM
SIGPLAN-SIGACT symposium on Principles of programming languages,
ACM, pp. 49–61.

[83] Vallée-Rai, R., P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sun-
daresan (1999) “Soot-a Java bytecode optimization framework,” in Pro-
ceedings of the 1999 conference of the Centre for Advanced Studies on Col-
laborative research, IBM Press, p. 13.

[84] Bodden, E. (2012) “Inter-procedural data-flow analysis with ifds/ide and
soot,” in Proceedings of the ACM SIGPLAN International Workshop on
State of the Art in Java Program analysis, ACM, pp. 3–8.

[85] “VirusTotal,” https://www.virustotal.com/.

[86] Weichselbaum, L., M. Neugschwandtner, M. Lindorfer,
Y. Fratantonio, V. van der Veen, and C. Platzer (2014) “Andrubis:
Android Malware Under The Magnifying Glass,” Vienna University of
Technology, Tech. Rep. TRISECLAB-0414-001.

[87] Li, L., A. Bartel, J. Klein, and Y. L. Traon (2014) “Automatically ex-
ploiting potential component leaks in android applications,” in Trust, Secu-
rity and Privacy in Computing and Communications, TrustCom’ 14, IEEE,
pp. 388–397.

[88] Gordon, M. I., D. Kim, J. Perkins, L. Gilham, N. Nguyen, and
M. Rinard (2015) “Information-flow analysis of Android applications in
DroidSafe,” in Proceedings of the 22nd Annual Network and Distributed Sys-
tem Security Symposium, NDSS’15.

[89] “Android 6.0 permission model,” https://developer.android.

com/preview/features/runtime-permissions.html?utm_campaign=

m-developer-launch&utm_source=dac&utm_medium=blog.

103

[90] Chen, X. and S. Zhu (2015) “DroidJust: Automated Functionality-Aware
Privacy Leakage Analysis for Android Applications,” in Proceedings of the 8th
ACM Conference on Security & Privacy in Wireless and Mobile Networks.

[91] Zhou, Y., X. Zhang, X. Jiang, and V. W. Freeh (2011) “Taming
information-stealing smartphone applications (on android),” in Trust and
Trustworthy Computing, Springer, pp. 93–107.

[92] Smalley, S., C. Vance, and W. Salamon (2001) “Implementing SELinux
as a Linux security module,” NAI Labs Report, 1(43), p. 139.

[93] Bugiel, S., S. Heuser, and A.-R. Sadeghi (2013) “Flexible and Fine-
grained Mandatory Access Control on Android for Diverse Security and Pri-
vacy Policies.” in Usenix security, pp. 131–146.

[94] Smalley, S. and R. Craig (2013) “Security Enhanced (SE) Android:
Bringing Flexible MAC to Android.” in NDSS, vol. 310, pp. 20–38.

[95] Wang, Y., S. Hariharan, C. Zhao, J. Liu, and W. Du (2014) “Compac:
Enforce component-level access control in Android,” in Proceedings of the 4th
ACM Conference on Data and Application Security and Privacy, ACM, pp.
25–36.

[96] Liu, B., B. Liu, H. Jin, and R. Govindan (2015) “Efficient Privilege
De-Escalation for Ad Libraries in Mobile Apps,” in Proceedings of the 13th
Annual International Conference on Mobile Systems, Applications, and Ser-
vices, ACM, pp. 89–103.

[97] Pearce, P., A. P. Felt, G. Nunez, and D. Wagner (2012) “Addroid:
Privilege separation for applications and advertisers in android,” in Proceed-
ings of the 7th ACM Symposium on Information, Computer and Communi-
cations Security, ACM, pp. 71–72.

[98] Shekhar, S., M. Dietz, and D. S. Wallach (2012) “AdSplit: Separat-
ing Smartphone Advertising from Applications.” in USENIX Security Sym-
posium, pp. 553–567.

[99] Huang, J., X. Zhang, L. Tan, P. Wang, and B. Liang (2014) “AsDroid:
Detecting stealthy behaviors in android applications by user interface and
program behavior contradiction,” in Proceedings of the 36th International
Conference on Software Engineering, ACM, pp. 1036–1046.

[100] “Android shared UID feature,” http://developer.android.com/guide/

topics/security/permissions.html.

104

Vita

Xin Chen

Xin Chen enrolled in the Ph.D. program in Computer Science and Engineering
at Pennsylvania State University in 2010. Prior to that, he received the B.S. degree
in Computer Science from Nanjing University, P.R.China in 2010. His research
interests include trust and reputation management in mobile ad hoc networks,
and various security and privacy issues in mobile phones.

Publications during the Ph.D. study include:

• X. Chen, and S. Zhu. ”DroidJust: Automated Functionality-Aware Pri-
vacy Leakage Analysis for Android Applications”. Proceedings of the 8th
ACM Conference on Security and Privacy in Wireless and Mobile Networks
(WiSec), 2015.

• X. Chen, J. Cho, and S. Zhu. ”GlobalTrust: An Attack-Resilient Reputa-
tion System for Tactical Networks”. Proceedings of the 11th IEEE Confer-
ence on Sensing and Communication in Wireless Networks (SECON), 2014.

• X. Chen, H. Patankar, S. Zhu, M. Srivatsa, J. Opper. ”Zigzag: Partial
Mutual Revocation Based Trust Management in Tactical Ad Hoc Networks”.
Proceedings of the 10th IEEE Conference on Sensing and Communication in
Wireless Networks (SECON), 2013.

• Z. Xu, H. Hsu, X. Chen, S. Zhu and A. Hurson. ”AK-PPM: An Authenti-
cated Packet Attribution Scheme for Mobile Ad Hoc Networks”. Proceedings
of the 15th International Symposium on Research in Attacks, Intrusions and
Defenses (RAID), 2012.

Awards during the Ph.D. study include:

• Student travel grants for WiSec’ 15.

• First place in Penn State Cisco Innovation Challenge, March 2012.

