
The Pennsylvania State University

The Graduate School

Eberly College of Science

EFFECTIVE THEORY OF LEVY AND FELLER PROCESSES

A Dissertation in

Mathematics

by

Adrian Maler

© 2015 Adrian Maler

Submitted in Partial Fulfillment
of the Requirements

for the Degree of

Doctor of Philosophy

December 2015

The dissertation of Adrian Maler was reviewed and approved* by the following:

Stephen G. Simpson
Professor of Mathematics
Dissertation Adviser
Chair of Committee

Jan Reimann
Assistant Professor of Mathematics

Manfred Denker
Visiting Professor of Mathematics

Bharath Sriperumbudur
Assistant Professor of Statistics

Yuxi Zheng
Francis R. Pentz and Helen M. Pentz Professor of Science
Head of the Department of Mathematics

*Signatures are on file in the Graduate School.

ii

ABSTRACT

We develop a computational framework for the study of continuous-time
stochastic processes with càdlàg sample paths, then effectivize important
results from the classical theory of Lévy and Feller processes.

Probability theory (including stochastic processes) is based on measure.
In Chapter 2, we review computable measure theory, and, as an application
to probability, effectivize the Skorokhod representation theorem.

Càdlàg (right-continuous, left-limited) functions, representing possible
sample paths of a stochastic process, form a metric space called Skorokhod
space. In Chapter 3, we show that Skorokhod space is a computable metric
space, and establish fundamental computable properties of this space.

In Chapter 4, we develop an effective theory of Lévy processes. Lévy
processes are known to have càdlàg modifications, and we show that such
a modification is computable from a suitable representation of the process.
We also show that the Lévy-Itô decomposition is computable.

In Chapter 5, we extend the effective theory from Lévy processes to the
larger class of Feller processes. Feller processes, too, are known to admit
càdlàg modifications, and we show that such a modification is computable
from a suitable representation of that type of process, which is quite different
from how we represent a Lévy process.

In Chapter 6, we outline two areas for future research: an effective theory
of càdlàg martingales, and algorithmic randomness for Lévy processes.

iii

Contents

Acknowledgments vi

1 Introduction 1
1.1 Background . 2
1.2 Outline . 3

2 Computable measure theory 5
2.1 Computability . 5

2.1.1 Representations . 6
2.1.2 Names and numbered sets 7

2.2 Computable analysis . 8
2.2.1 Metric spaces . 8
2.2.2 Compactness . 16
2.2.3 Continuous function spaces 23

2.3 Computable measure theory . 28
2.3.1 Measure . 29
2.3.2 Integration . 32
2.3.3 Convergence in probability 36

3 Effective Skorokhod space 43
3.1 Skorokhod space . 44

3.1.1 Càdlàg functions . 44
3.1.2 Skorokhod topology . 46
3.1.3 Billingsley metric . 49

3.2 Effective Skorokhod space . 51
3.2.1 Simple functions . 51
3.2.2 Time changes and partitions 54

3.3 Computably càdlàg functions 56
3.3.1 Partial computability . 56

iv

3.3.2 Jump complexity . 59
3.3.3 Effective measurability 64
3.3.4 Counterexamples . 66

4 Effective theory of Lévy processes 68
4.1 Classical theory of Lévy processes 69

4.1.1 Stochastic processes . 69
4.1.2 Lévy processes . 71
4.1.3 Lévy-Itô decomposition 74

4.2 Computable Lévy processes . 76
4.2.1 Stochastic computability and effective measurability . 76
4.2.2 Computably càdlàg Lévy processes 79

4.3 Effective Lévy-Itô decomposition 87
4.3.1 Intensity measure and Poisson integral 87
4.3.2 Jumps and drift . 91

5 Effective theory of Feller processes 96
5.1 Classical theory of Feller processes 97

5.1.1 Probability kernels . 97
5.1.2 Markov processes . 100
5.1.3 Feller processes . 103

5.2 Computable Feller processes . 105
5.2.1 Computable probability kernels 105
5.2.2 Computable Feller semigroups 106

5.3 Computably càdlàg Feller processes 109
5.3.1 Pseudo-canonical process 110
5.3.2 Pseudo-Markov property 113
5.3.3 Strong pseudo-Markov property 116
5.3.4 Effective sample path regularity 118

6 Future directions 126
6.1 Càdlàg martingales . 126
6.2 Algorithmic randomness . 128

References 131

v

Acknowledgments

This dissertation would not have been possible without the direction of
my adviser, Steve Simpson; a great deal of advice from Jason Rute; and a
great deal of homework from Manfred Denker. I would also like to thank
Jan Reimann, Philip Scott, Donald Richards and Bharath Sriperumbudur,
and the math department staff at Penn State, particularly Becky Halpenny.

vi

Chapter 1

Introduction

The purpose of this dissertation is

(i) to develop a computational framework for the study of continuous-
time stochastic processes whose sample paths, up to a modification,
are càdlàg, which includes Lévy and Feller processes; and

(ii) within this framework, to effectivize important results from classical
stochastic process theory, proving

(a) that a càdlàg modification of a Lévy process not only exists, but
is computable from a suitable representation of the process,

(b) that the components of the Lévy-Itô decomposition are similarly
computable from a representation, and

(c) that a càdlàg modification of a Feller process, too, is computable
from a suitable representation of that type of process.

These problems belong to the field of computable analysis, which is the
intersection of computability theory and mathematical analysis: the study
of how, and to what extent, classical analysis (including measure theory)
can be effectivized, meaning carried out by an idealized computer.1 More
precisely, modern probability theory (including stochastic processes) is based
on measure theory, so naturally our effective theory of stochastic processes
will be based on computable measure theory.

To further explain and motivate our project, this chapter includes a short
history of relevant research by other authors in Section 1.1, and an outline
of the rest of the dissertation (plus a word on notation) in Section 1.2.

1For a brief history of computable analysis, see Avigad and Brattka [5].

1

1.1 Background

This section is not intended to be a comprehensive review of the literature,
but it should at least contain the essential references for our purposes.

Recently, computable aspects of Brownian motion have been studied in
the context of algorithmic randomness by Fouché [32, 33], Kjøs-Hanssen and
Nerode [49], and Allen, Bienvenu, and Slaman [2], among others,2 following
initial work by Asarin and Pokrovskii [4]. Our own project was conceived as
an extension of that theory to the entire class of Lévy processes. (Essentially,
Brownian motion is the only continuous Lévy process.) That said, we defer
to future research all applications to algorithmic randomness.

Our extension of the effective theory to Lévy processes, then to the even
larger class of Feller processes, is based on computable measure theory, which
is a fairly new theory itself. (It was used to study Brownian motion as well.)
The recent work by Gács [39], Hoyrup and Rojas [47], and Rute [67] was
essential to our project. We should also mention similar and related work
by Weihrauch [72], Schröder [68], and Bosserhoff [13].3

Quite separately, Chan [18, 19, 20] has developed a constructive theory
of continuous-time stochastic processes, including Feller processes, based on
a constructive theory of measure which is due to Bishop and Cheng [10] and
extends initial work on constructive analysis by Bishop [9]. Our proof that a
càdlàg modification of a Feller process is computable is in part an adaption
of a constructive argument in Chan [19].

Finally, we should mention other effective theories of stochastic processes
of some particular class: Rute [67], discrete-time (sub-, super-, and reverse)
martingales; Kjøs-Hanssen, Nguyen, and Rute [51], martingales on Brownian
motion; Mukeru [57], stochastic integrals with respect to Brownian motion;
Collins [22], discrete-time Markov processes and stochastic integrals with
respect to Brownian motion; Edalat [30], discrete-time processes; Bilokon
and Edalat [8], continuous-time continuous processes; Freer and Roy [38],
discrete-time exchangeable processes; and there may be others.

2We might add Fouché [34, 35, 36], Kjøs-Hanssen and Nerode [50], Kjøs-Hanssen and
Szabados [52], Davie and Fouché [26], Fouché, Mukeru, and Davie [37], and Allen [1].

3Other recent work on or related to computable measure theory, in no particular order:
Schröder and Simpson [69], Hoyrup and Rojas [45, 46], Gács, Hoyrup, and Rojas [40, 41],
Bienvenu et al. [6], Miyabe [55], Müller [58], Davie [25], Wu [75, 76], Wu and Ding [77,
78], Wu and Weihrauch [79], Hertling and Weihrauch [43, 44], Weihrauch and Tavana-
Roshandel [74], and Edalat [29, 31]. Again, this is not intended to be comprehensive.

2

1.2 Outline

For convenience, we present a section-by-section outline of Chapters 2–6.
This information is also included at the start of the chapters themselves.

Chapter 2, “Computable measure theory,” is largely review, starting
with some concepts from general computability theory in Section 2.1. This
is background for computable analysis, which is covered in some detail in
Section 2.2. We specialize to computable measure theory in Section 2.3,
where we also prove an effective version of the Skorokhod representation
theorem as an example of an application to probability theory.

Our interest, again, is mainly in applications to stochastic process theory.
Now, in the literature, a stochastic process X is typically presented as a
time-indexed family {Xt} of random variables ω ↦Xt(ω), but it can also be
treated as a single random variable ω ↦ (t ↦ Xt(ω)) taking values, called
sample paths, in some space of functions. In computable analysis, a sample
path presentation is more useful, assuming the sample paths are reasonably
well behaved, so that they belong to a sensible function space—which is the
case for many important classes of stochastic processes.

In Chapter 3, “Effective Skorokhod space,” we introduce a computable
metric space whose points are càdlàg functions, representing possible sample
paths of a stochastic process. Naturally, we begin by reviewing the classical
theory in Section 3.1. In Section 3.2, we show that those functions form a
computable metric space, and in Section 3.3, we establish the computable
properties of càdlàg functions that will be needed in subsequent chapters.

That brings us to our first class of stochastic processes. A Lévy process
{Xt ∶ t ≥ 0} is an Rn-valued stochastic process with independent, stationary
increments, so that (i) successive changes in position, say Xt1−Xt0 , Xt2−Xt1 ,
and so on, are statistically independent, and (ii) the probability distribution
of the increment Xt −Xs depends only on the elapsed time t − s.

According to an important classical theorem, every Lévy process admits
a modification whose sample paths are càdlàg, so they live in Skorokhod
space. Moreover, the Lévy-Itô decomposition states that every Lévy process
can be written as the sum of four processes: a deterministic drift, a Brownian
motion, a compound Poisson process, and a pure jump martingale.

We effectivize that much of the classical theory in Chapter 4, “Effective
theory of Lévy processes.” Section 4.1 is review, of course, including the two
theorems just mentioned. In Section 4.2, we show that a càdlàg modification
of a Lévy process not only exists, but is computable from a representation
of the process. In Section 4.3, building on that result, we show that the
components of the Lévy-Itô decomposition are computable as well.

3

Every Lévy process is also a Feller process. A Feller process is a type of
Markov process, which is to say a process with no memory: the distribution
of its future state depends, not on its entire past, but only on its present
state. Since every Feller process has a càdlàg modification, it seems natural
to extend the effective theory in this direction. One difference is that, in
many cases, we would rather treat a Feller process, not as a given collection
of sample paths, but as a so-called transition function describing how the
process, whatever it may be, changes from one time to another. We would
then construct sample paths that are consistent with the transition function.

For that reason alone, the material in Chapter 5, “Effective theory of
Feller processes,” differs considerably from the previous chapter. As usual,
Section 5.1 is review. In Section 5.2, we effectivize all the basic objects from
the classical theory, including transition functions. Finally, in Section 5.3,
we show that a càdlàg modification of a Feller process, too, is computable
from a representation of the process—which, being based on a transition
function, is quite different from our representation of a Lévy process.

With our computational framework in place, and with some idea of how
to effectivize (some parts of) stochastic process theory, there are a number
of potential extensions and applications. In Chapter 6, “Future directions,”
we mention two: an effective theory of càdlàg martingales in Section 6.1,
and algorithmic randomness for Lévy processes in Section 6.2.

One last thing before we begin: a word on notation. Obviously, different
areas of mathematics use their own, which sometimes clash—especially in
this dissertation. In probability theory, X and Y denote stochastic processes;
in computable analysis, they denote metric spaces. In both cases, µ and λ
most likely denote measures; in the context of càdlàg functions, they denote
so-called time changes—and so on. We will try to avoid overloading.

We might add that in the literature there appears to be no accepted
standard term for an effectively compact set (Definition 2.2.52), a càdlàg
function (Definition 3.1.3), the metric on the space of measurable functions
(Definition 2.3.21), either of the two metrics on the space of càdlàg functions
(Definitions 3.1.22 and 3.1.35), a probability kernel (Definition 5.1.3), or a
Feller process (Definition 5.1.44)—but these are minor points.

4

Chapter 2

Computable measure theory

Modern probability theory, including stochastic processes, is developed in a
framework of measure theory. Accordingly, we develop our effective theory
of stochastic processes in a framework of computable measure theory.

Section 2.1 briefly reviews some concepts from general computability
theory as background for computable analysis, which is covered in Section
2.2. We specialize to computable measure theory in Section 2.3, where we
also prove an effective version of the Skorokhod representation theorem as an
application to probability theory; otherwise, this chapter is largely review.

2.1 Computability

For a general introduction to computability, see, for example, Cutland [24]
or Rogers Jr. [64]. The fundamental concepts are

(i) a computable function f ∶ ⊆ Nn → Nm (for any given n,m ∈ N), and

(ii) a computable operator Φ ∶ ⊆ NN → NN.

We assume the reader is familiar with both. In this section, we review
the concept of an effective representation, as background for computable
analysis. Representations were introduced by Kreitz and Weihrauch [53];
for details, see Weihrauch [73]. The material is somewhat technical.

As a preliminary, we establish a notational convention:

Notation 2.1.1. Angle brackets denote finite sequences, also known as
strings. Round brackets denote infinite sequences (and open intervals).

5

2.1.1 Representations

Taking as fixed the definition of a computable function f ∶ ⊆ Nn → Nm, we
make the standard extensions in Definitions 2.1.2–2.1.5.

Definition 2.1.2. A set A ⊆ Nn is said to be computable if its indicator
function 1A ∶ Nn → {0,1} ⊆ N is (total) computable, where as usual

1A(a) = { 1 if a ∈ A,
0 otherwise.

(2.1.1)

Definition 2.1.3. A sequence (ai)i∈N ⊆ Nn is said to be computable if the
function i↦ ai is (total) computable of type N→ Nn.

Definition 2.1.4. A set A ⊆ Nn is said to be computably enumerable if
A = {ai ∶ i ∈ N} is the image of some computable sequence (ai)i∈N. In that
case, (ai)i∈N is said to computably enumerate A.

Definition 2.1.5. The elements of a sequence (fi)i∈N of functions ⊆ Nn →
Nm are said to be uniformly computable if there exists a computable function
F ∶ ⊆ Nn+1 → Nm such that F (i, ⋅) = fi for all i ∈ N.

In computability theory, our various idealized computers (e.g., Turing
machines, register machines) can only handle, as inputs and outputs, finitary
objects, i.e., natural numbers and anything that can be encoded as such.

Remark 2.1.6. There is a well-known canonical way to encode, as a unique
natural number, any string ⟨e0, . . . , en⟩ of (a) natural numbers, (b) integers,
or (c) rational numbers. We may identify such a sequence with its code.
Thus, for the purposes of computability theory, a function of type, say,
N2 → N or N ×Z→ Q2, etc., may be treated as a function of type N→ N.

With our basic definitions in hand, we can represent non-finitary objects,
such as real numbers, as sequences of natural numbers.

Definition 2.1.7. A represented set is a pair ⟨X,δ⟩ where X is a set and
δ ∶ ⊆ NN → X is a surjective function. In that case, δ is said to be a
representation of X.

Definition 2.1.8. Let ⟨X,δ⟩ be a represented set. A point x ∈ X is said
to be δ-computable if there exists a computable sequence α ∈ NN such that
δ(α) = x. This can be made uniform: the elements of a sequence (xi)i∈N ⊆X
are said to be uniformly δ-computable if there exists a sequence (αi)i∈N of
uniformly computable sequences αi ∈ NN such that δ(αi) = xi for all i ∈ N.

6

Remark 2.1.9. If ⟨X,δX⟩ and ⟨Y, δY ⟩ are represented sets, the Cartesian
product X × Y has an obvious canonical representation, namely

δX × δY ∶ (⟨ni,mi⟩)i∈N ↦ ⟨δX((ni)i∈N), δY ((mi)i∈N)⟩. (2.1.2)

Definition 2.1.10. Let ⟨X,δX⟩ and ⟨Y, δY ⟩ be represented sets. A function
φ ∶ ⊆X → Y is said to be ⟨δX , δY ⟩-computable on a set D ⊆X if there exists
a computable operator Φ ∶ ⊆ NN → NN such that for all α ∈ δ−1

X (D),

δY (Φ(α)) = φ(δX(α)). (2.1.3)

That is, Φ maps each representation of x to some representation of φ(x).

Notation 2.1.11. We may omit the representations when they are clear
from the context, writing “computability” rather than “δ-computability.”

Fact 2.1.12. If φ ∶ ⊆ X → Y is computable on D and x ∈ D is computable,
then φ(x) is computable. This can be made uniform in x: if xi ∈ D is
uniformly computable (for all i ∈ N), then φ(xi) is uniformly computable.

Remark 2.1.13. From now on, it should be clear from the context how a
given definition, result, etc., can be “made uniform.”

Notation 2.1.14. When φ ∶ ⊆ X → Y is computable on D, we may write:
“φ(x) is computable uniformly from a representation of x” (for all x ∈D).

2.1.2 Names and numbered sets

Under assumptions which are quite reasonable in the context of computable
analysis, a set admits a canonical representation.

Definition 2.1.15. A numbered set is a pair ⟨O, (on)n∈N⟩ where O is a
countable set and (on)n∈N enumerates O. In that case, (on)n∈N is said to be
a numbering of O, and n ∈ N is said to be a code for o = on ∈ O.

Definition 2.1.16. A numbered set ⟨O, (on)n∈N⟩ and a surjective function
ρ ∶ ⊆ ON →X induce a canonical representation of X, denoted by δρ, via

δρ((ni)i∈N) = ρ((oni)i∈N) (2.1.4)

whenever the right-hand side is defined. ρ is said to be a description of X
with respect to ⟨O, (on)n∈N⟩, and the elements of O are elementary objects.

Remark 2.1.17. In this dissertation, all the representations will be induced
canonically by a numbered set of elementary objects and a description.

7

Now fix a numbered set ⟨O, (on)n∈N⟩, a description ρ ∶ ⊆ ON → X, and
the associated canonical representation δρ ∶ ⊆ NN →X.

Definition 2.1.18. Let x ∈ X. If ρ(σ) = x for some σ ∈ ON, σ is said to be
a ρ-name for x. If we write σ = (oni)i∈N, then (ni)i∈N ⊆ N is said to index σ.

Notation 2.1.19. We may omit the numbered set and description when
they are clear from the context, writing, e.g., “name” rather than “ρ-name.”

Definition 2.1.20. A name σ is said to be ρ-computable if it is indexed by
a computable sequence (ni)i∈N. A point x ∈ X is said to be ρ-computable if
it has a ρ-computable name σ. Both definitions can be made uniform.

Fact 2.1.21. A point x ∈ X is δρ-computable (Definition 2.1.8) if and only
if x is ρ-computable. This can be made uniform in x.

Notation 2.1.22. It is usually safe to identify an elementary object with a
code for that object; see Remark 2.1.6. In that case, a sequence (ni)i∈N of
codes indexing a name (oni)i∈N would simply be identified with that name.

Notation 2.1.23. If φ(x) is computable uniformly from a representation
of x (Notation 2.1.14) and the representation is canonical for a numbered
set, we may write: “φ(x) is computable uniformly from a name for x.”

2.2 Computable analysis

This section is mostly review material. Part 2.2.1 is essential, as it covers
elementary computable analysis. Part 2.2.2, on effective compactness, and
Part 2.2.3, on continuous function spaces, are somewhat technical.

In any case, for a more detailed introduction to computable analysis,
including proofs, the reader may consult Weihrauch [73] or, for a slightly
different style of presentation, Pour-El and Richards [62]. We assume the
reader is familiar with classical analysis as in, say, Rudin [66].

2.2.1 Metric spaces

Before we consider computable metric spaces in general, we should explain
what it means for a real number to be computable.

We define a canonical representation (see Definition 2.1.16) of R, using
the rational numbers as elementary objects and certain Cauchy sequences
as names. First, let (q○i)i∈N be a standard one-to-one enumeration of Q.

8

Definition 2.2.1. A sequence σ = (σi)i∈N of rational numbers is said to be
a fast Cauchy sequence if j > i implies ∣σi − σj ∣ < 2−i for all i, j ∈ N.

Fact 2.2.2. Let Q ⊆ QN be the set of fast Cauchy sequences. The function
ρlim(σ) = limσ with domain Q is a description of R with respect to the
numbered set ⟨Q, (q○i)i∈N⟩, so it induces a canonical representation δlim of R.

We identify each rational number with its code (see Notation 2.1.22). As
a special case of Definition 2.1.18, we have

Definition 2.2.3. A Cauchy name, or just a name, for a real number x is
a sequence σ = (σi)i∈N of rational numbers such that

(i) σ converges to x, i.e., limi→∞ ∣σi − x∣ = 0, and

(ii) σ is fast Cauchy, i.e., j > i implies ∣σi − σj ∣ < 2−i for all i, j ∈ N.

And as a special case of Definition 2.1.20, we have

Definition 2.2.4. x ∈ R is said to be computable if it has a computable
Cauchy name. The elements of a sequence (xi)i∈N are said to be uniformly
computable if there exists a computable rational (double) sequence (σi,j)i,j∈N
such that for all i ∈ N, (σi,j)j∈N is a Cauchy name for xi ∈ R.

Fact 2.2.5. The set of computable real numbers is (i) countable, (ii) dense
in R with the usual metric, and (iii) an algebraically closed subfield of R.

Here it is worth digressing briefly to mention semicomputability:

Definition 2.2.6. x ∈ R is said to be lower semicomputable if it is the
supremum of a computable sequence of rationals, and upper semicomputable
if it is the infimum of a computable sequence of rationals.

Fact 2.2.7. A real number x is computable if and only if x is both upper
and lower semicomputable.

To return to the main subject, knowing what it means to compute a real
number, we can generalize to points in a complete, separable metric space:

Definition 2.2.8. A computable metric space is a triple ⟨X,d, θ⟩ such that

(i) ⟨X,d⟩ is a complete, separable metric space,

(ii) θ = (sn)n∈N enumerates a (countable) dense subset S of X, and

(iii) the real number d(sn, sm) is computable uniformly from n,m ∈ N.

9

In that case, the elements of S are called the ideal points for ⟨X,d, θ⟩.

Generalizing Definition 2.2.1, we have

Definition 2.2.9. A sequence x in a metric space ⟨X,d⟩ is said to be a fast
Cauchy sequence if j > i implies d(xi, xj) < 2−i for all i, j ∈ N.

Now let X = ⟨X,d, θ⟩ be a computable metric space.

Fact 2.2.10. Let S be the set of fast Cauchy sequences of ideal points. The
function ρS(σ) = limσ with domain S is a description of X with respect to
the numbered set ⟨S, θ⟩, so it induces a canonical representation δS of X.

Notation 2.2.11. We may identify the enumeration θ = (sn)n∈N with the
corresponding set S = {sn ∶ n ∈ N}, and write X as ⟨X,d,S⟩ rather than
⟨X,d, θ⟩. In practice, this should not be confusing, because the numberings
we use are fairly obvious, if not actually canonical.

Notation 2.2.12. We may identify X with the underlying set X.

As another special case of Definition 2.1.18, we have

Definition 2.2.13. A Cauchy name, or just a name, for a point x ∈X is a
sequence α = (sni)i∈N of ideal points such that

(i) α converges to x in ⟨X,d⟩, i.e., d(sni , x)→ 0, and

(ii) α is fast Cauchy, i.e., j > i implies d(sni , snj) < 2−i for all i, j ∈ N.

And as another special case of Definition 2.1.20, we have

Definition 2.2.14. A point x ∈ X is said to be computable if it has a
computable Cauchy name. This definition can be made uniform.

Fact 2.2.15. The set of computable points is countable and dense in ⟨X,d⟩.

Examples 2.2.16. Rn is a computable metric space under the Euclidean
metric with Qn for ideal points, for each n ∈ N. The computable points are
exactly the n-tuples of computable real numbers.

Similarly, [0,∞)n and [0,1]n are computable metric spaces.

Fact 2.2.17. d(x, y) is computable, uniformly from Cauchy names for x
and y, for all x, y ∈X. In particular, if x and y are computable points, then
d(x, y) is a computable real number.

10

For completeness and as an example of elementary computable analysis,
we include a proof of the following useful fact:

Fact 2.2.18. Let A be a closed subset of X. Let (an)n∈N ⊆ A be a sequence
of uniformly computable points dense in A. Then A = ⟨A,d, (an)n∈N⟩ is a
computable metric space. Moreover, a Cauchy name for x in A is computable
uniformly from a Cauchy name for x in X, and vice versa; in particular, a
point x ∈ A is computable in A if and only if x is computable in X.

Proof. It is easy to see from Definition 2.2.8 that A is a computable metric
space: (i) a closed subspace of a complete, separable metric space is complete
and separable; (ii) by assumption, (an)n∈N enumerates a dense subset of A;
and (iii) d(an, am) is computable uniformly from n,m ∈ N by Fact 2.2.17.

From A to X: Suppose we are given a Cauchy name (ani)i∈N for x as a
point in A. Since an is computable uniformly from n as a point in X, we
can compute from i ∈ N an ideal point smi ∈ S such that d(smi , ani) < 2−i−1.
Then (smi+1)i∈N is a Cauchy name for x as a point in X, and it is in fact
computable uniformly from the given name for x.

From X to A: Suppose x ∈ A and we are given a Cauchy name for x
as a point in X. Given i ∈ N, search for an ideal point ani for A such that
d(x, ani) < 2−i−1. The search is computable by Fact 2.2.17, and it has to
terminate because (an)n∈N is dense in A. Then (ani+1)i∈N is a Cauchy name
for x as a point in A, computable uniformly from the given name for x.

We can treat the topology of X as a represented set, using certain open
balls as elementary objects. τ(X) denotes the family of open subsets of X.

Definition 2.2.19. The basic open balls in X are ∅ and sets of the form

B(a, r) = {x ∈X ∶ d(a, x) < r} (2.2.1)

where a ∈ S and r ∈ Q>0 = Q ∩ (0,∞). r is the radius and a is the center.

Fact 2.2.20. S and Q>0 are numbered sets, so the family T of basic open
balls has a canonical numbering. The union operator ρτ(σ) = ⋃σ with
domain T N is a description of τ(X) with respect to T , so it induces a
canonical representation δτ of the topology.

Definition 2.2.21. With respect to the representation δτ , a name for an
open set U ≠ ∅ is essentially a sequence (ai, ri)i∈N ⊆ S ×Q>0 such that

U = ⋃
i∈N
B(ai, ri). (2.2.2)

11

Definition 2.2.22. When an open set U is computable in τ(X), we say
that U is effectively open or Σ0

1. The complement of an effectively open set
is said to be effectively closed or Π0

1. Sets that are both Σ0
1 and Π0

1 are said
to be ∆0

1. These definitions can all be made uniform.

Definition 2.2.23. The basic closed balls in X are ∅ and sets of the form

B(a, r) = {x ∈X ∶ d(a, x) ≤ r} (2.2.3)

where a ∈ S and r ∈ Q>0.

Fact 2.2.24. Finite unions and intersections of basic open balls are Σ0
1 sets,

and finite unions and intersections of basic closed balls are Π0
1 sets.

Definition 2.2.25. An intersection V = ⋂i∈NUi of uniformly Σ0
1 sets Ui is

said to be effectively Gδ or Π0
2. That is, a Π0

2 set has the form

V = ⋂
i∈N
⋃
j∈N

B(ai,j , ri,j) (2.2.4)

where (ai,j , ri,j)i,j∈N ⊆ S ×Q>0 is a computable sequence.

The family of basic open balls serves as an effective basis for X in the
sense of the following definition. In computable measure theory, we may need
to switch to a better-behaved basis, necessitating the general definition:

Definition 2.2.26. Let (xi)i∈N and (εi)i∈N be uniformly computable in X
and (0,∞), respectively. The family {B(ai, εi) ∶ i ∈ N} of open balls is said
to form an effective basis for X if for all open U ≠ ∅ there exists a sequence
(ik)k∈N computable uniformly from a name for U in τ(X) such that

U = ⋃
k∈N

B(xik , εik). (2.2.5)

Now let X = ⟨X,dX , SX⟩ and Y = ⟨Y, dY , SY ⟩ be two computable metric
spaces. Definition 2.1.10 becomes

Definition 2.2.27. A function f ∶ ⊆ X → Y is said to be computable on a
set D ⊆ X if there exists a computable operator Φ ∶ ⊆ SN

X → SN
Y such that

Φ(σ) is a Cauchy name of f(x) for any Cauchy name σ of any point x ∈D.

Fact 2.2.28. Every computable function is continuous on its domain.

Fact 2.2.29. f ∶ ⊆X → Y is computable if and only if for all open U ⊆ Y ,

f−1(U) = V ∩ dom(f) (2.2.6)

for some open set V ⊆ X computable uniformly from a name for U (where
dom(f) denotes the domain of f). This can be made uniform.

12

Definition 2.2.30. A function f ∶ X → [0,∞] = [0,∞) ∪ {∞} is said to
be lower semicomputable if f is the pointwise supremum of some sequence
(fi)i∈N of uniformly computable functions fi ∶X → [0,∞).

We handle functions of more than one variable using product spaces:

Definition 2.2.31. The product space

X ×Y = ⟨X × Y, dX×Y , SX × SY ⟩ (2.2.7)

is a computable metric space, where X × Y and SX × SY are the usual
Cartesian products (the latter enumerated in the canonical way) and

dX×Y (⟨x1, y1⟩, ⟨x2, y2⟩) = max{dX(x1, x2), dY (y1, y2)}. (2.2.8)

Fact 2.2.32. Addition, subtraction, and multiplication are computable of
type R ×R→ R. Division ⟨x, y⟩↦ x/y is computable on R × (R ∖ {0}).

For many more elementary results in computable analysis, the reader
may consult Pour-El and Richards [62] or Weihrauch [73].

Having defined computable functions between computable metric spaces,
we can explain what it means for a vector space to be computable:

Definition 2.2.33. Suppose X is a real vector space with operations +
(vector addition) and ⋅ (scalar multiplication). The triple ⟨X,+, ⋅⟩ is said
to be a computable vector space if vector addition is computable of type
X ×X →X and scalar multiplication is computable of type R ×X →X.

Definition 2.2.34. Suppose ⟨X,+, ⋅⟩ is a normed space. Denote the norm
by ∥ ⋅ ∥. The 4-tuple ⟨X, ∥ ⋅ ∥,+, ⋅⟩ is said to be a computable Banach space if

(i) ⟨X,+, ⋅⟩ is a computable vector space,

(ii) the norm ∥ ⋅ ∥ is computable of type X → [0,∞), and of course

(iii) the norm actually induces the metric dX on X.

Notation 2.2.35. To simplify our notation, when X = ⟨X,dX , SX⟩, we may
denote the computable Banach space ⟨X, ∥ ⋅ ∥,+, ⋅⟩ by ⟨X, ∥ ⋅ ∥, SX⟩, as dX is
implicit in ∥ ⋅∥ and the operations + and ⋅ are usually clear from the context.

We can also explain what it means for two computable metric spaces to
be isomorphic in a computable way:

13

Definition 2.2.36. An isomorphism between X and Y is a pair ⟨f, g⟩ where
f ∶X → Y and g ∶ Y →X are continuous bijections and f−1 = g. An isometry
is an isomorphism such that dY (f(x), f(y)) = dX(x, y) for all x, y ∈X.

Definition 2.2.37. An isomorphism (respectively, an isometry) ⟨f, g⟩ is
said to be computable if f and g are computable functions. X and Y are
said to be computably isomorphic (computably isometric) if there exists a
computable isomorphism (a computable isometry) between them.

Definition 2.2.38. Let d1 be another metric on X = ⟨X,d,S⟩. d1 is said to
be computably related to d in X if

(i) d1(x, y) is computable uniformly from names for x and y, and

(ii) there exists a computable sequence (in)n∈N such that for all x, y ∈ X,
for all n ∈ N, d1(x, y) < 2−in implies d(x, y) < 2−n.

Two computably related metrics are essentially interchangeable from a
computable analysis standpoint [14]:

Fact 2.2.39. If d1 is computably related to d in X, then ⟨X,d1, S⟩ is a
computable metric space computably isomorphic to ⟨X,d,S⟩.
Fact 2.2.40. Let (an)n∈N be a dense sequence of uniformly computable
points. Then ⟨X,d, (an)n∈N⟩ and ⟨X,d,S⟩ are computably isometric.

Proof. This follows from Fact 2.2.18 and the identity isometry ⟨id, id⟩.

Notation 2.2.41. The sets S and S1 = {an ∶ n ∈ N} from Fact 2.2.40 are
said to be computably equivalent sets of ideal points for ⟨X,d⟩.

We list a few important computable metric and Banach spaces:

Examples 2.2.42. For all n ∈ N, the Euclidean space ⟨Rn, ∣ ⋅ ∣,Qn⟩ is a
computable Banach space, where ∣ ⋅ ∣ denotes the n-dimensional Euclidean
norm. We denote this space simply by Rn. Similarly, the unit cube [0,1]n
and the unit torus Tn = (R/Z)n are computable metric spaces.

Our next example is quite important in computable measure theory.

Definition 2.2.43. Let A be any set. A∗ denotes the set of strings (of any
length) of elements of A. That is, A∗ = ⋃n∈NAn. As usual, AN denotes the
family of A-valued sequences. For all σ ∈ A∗, we define the cylinder set

[σ] = {α ∈ AN ∶ σ ⊑ α} (2.2.9)

where σ ⊑ α means σ is a prefix of α. The topology generated by the cylinder
sets is called the cylinder topology.

14

Example 2.2.44. The Cantor space {0,1}N is a computable metric space
with respect to the first-difference metric

d(α,β) = 2−min{n∈N ∶ αn≠βn} for α ≠ β, (2.2.10)

which induces the cylinder topology. For ideal points, take {0,1}∗.

Remark 2.2.45. The Hilbert cube [0,1]N is a computable metric space in a
similar way. For ideal points, take the eventually-zero sequences of rationals.

There is a more general way to construct a computable power space:

Definition 2.2.46. Suppose X = ⟨X,d,S⟩ is a computable metric space.
Let d̃ = min{1, d}. Then XN denotes the computable metric space whose
underlying set is XN, equipped with the product metric

dΠ(α,β) = ∑
n∈N

2−(n+1)d̃(αn, βn), (2.2.11)

and for ideal points the eventually-constant S-valued sequences.

We have one more important example of a computable Banach space,
which we will revisit later. Let a < b be computable real numbers.

Definition 2.2.47. Let P enumerate the continuous functions φ ∶ [a, b]→ R
for which there exist rationals a = x0 < x1 < ⋯ < xn = b such that

(i) φ(x0), φ(x1), . . . , φ(xn) are rational, and

(ii) φ is linear on intervals of the form (xi, xi+1) for all i < n.

Example 2.2.48. C[a, b] denotes the set of continuous R-valued functions
on [a, b]. C[a, b] is a computable Banach space under the sup-norm

∥f∥∞ = sup{∣f(t)∣ ∶ a ≤ t ≤ b}, (2.2.12)

which induces the uniform metric d∞. For ideal points, take P.
Of course, there are many computably equivalent sets of ideal points.

An important result in computable analysis effectivizes the Weierstrass
approximation theorem [62]:

Fact 2.2.49. A function f ∶ [a, b] → R is computable if and only if f is a
computable point in the space ⟨C[a, b], ∥ ⋅∥∞,P⟩. This can be made uniform.

This concludes our review of elementary computable analysis.

15

2.2.2 Compactness

We turn to an effective theory of compactness, which has been developed
by Mori, Tsujii, and Yasugi [56], Yasugi, Mori, and Tsujii [80], Blanck [11],
Brattka [14], Brattka and Weihrauch [17], and Brattka and Presser [16].1

It seems fair to say that the facts stated below, unless otherwise noted,
belong to the folklore of effective compactness. For the sake of completeness,
we provide direct proofs. For the relevant concepts from classical analysis
and general topology, see, for example, Munkres [59].

As usual, X = ⟨X,d,S⟩ denotes a computable metric space.

Definition 2.2.50. Let A ⊆X. A basic open cover of A is a finite set

B = {B(a0, r0), . . . ,B(an, rn)} (2.2.13)

where n ∈ N, A ⊆ ⋃B, and for all i ≤ n, B(ai, ri) is a basic open ball. The
cover B may of course be coded as ⟨a0, r0, . . . , an, rn⟩.

Remark 2.2.51. U = ⋃B is effectively open, uniformly from a code for B.

Definition 2.2.52. A compact set A is said to be effectively compact if the
set of codes of basic open covers of A is computably enumerable. A compact
space X is effectively compact if it is effectively compact as a set.

Examples 2.2.53. [0,1]n, Tn, {0,1}N, and [0,1]N are effectively compact.
More generally, if X is effectively compact, then Xn and XN are too.

We collect two facts (and a definition) about effective compactness.

Fact 2.2.54. An effectively compact set K is effectively closed.

Proof. If K ≠ X, by enumerating (computably) covers of K by basic open
balls, then taking their closure, it is easy to write Kc =X ∖K as a union of
uniformly Σ0

1 sets. (And the case that K =X is trivial.)

Definition 2.2.55. A ⊆X is said to be effectively totally bounded if we can
compute, from any ε > 0, a basic open cover of A by balls of radius ε.

Fact 2.2.56. Let K ⊆ X be compact. K is effectively compact if and only
if K is effectively totally bounded. This can be made uniform.

1The terminology of effective compactness varies in the literature.

16

Proof. (⇒) If K is effectively compact, then K is certainly totally bounded.
Therefore, given ε > 0, if we enumerate (the codes of) basic open covers

B = {B(a0, r0), . . . ,B(an, rn)}

of K, we will eventually find one such that ri ≤ ε for all i ≤ n, which yields
a basic open ε-cover (i.e., cover by balls of radius ε) of K, as required.

(⇐) Suppose K is effectively totally bounded. We can enumerate the
codes of all finite sets D = {B(a0, r0), . . . ,B(an, rn)} of basic open balls. By
hypothesis, given ε > 0, we can compute a basic open ε-cover

{B(e0, ε), . . . ,B(em, ε)}

of K. From a code for D, we can verify computably that

(∀j ≤m) (∃i ≤ n) d(ej , ai) + ε < ri. (2.2.14)

Therefore, we can enumerate (the codes of) all finite sets D for which
there exists an ε such that (2.2.14) holds. The claim is that this enumerates
exactly the basic open covers of K.

Fix D and ε. For all y ∈K, d(y, ej) < ε for some j ≤m. If (2.2.14) holds,

d(y, ai) ≤ d(y, ej) + d(ej , ai) < ε + d(ej , ai) < ri

for some i ≤ n. Hence y ∈ B(ai, ri), proving that D covers K.
Conversely, let D cover K. Let B be the family of open balls B(x, ε)

such that x ∈ K, ε > 0, and d(x, ai) + 2ε < ri for some i ≤ n. B is an open
cover of K, so it has a finite subcover B0 = {B(xk, εk)}.

Let δ = mink{εk}. Let ε < δ. B0 is a cover, so for all j ≤ m, there exists
a k such that d(ej , xk) < εk. By definition of B0, there exists an i ≤ n such
that d(xk, ai) + 2εk < ri. Hence

d(ej , ai) + ε ≤ d(ej , xk) + d(xk, ai) + ε < εk + d(xk, ai) + εk < ri,

which gives us (2.2.14). This proves the claim and completes the proof.

In computable analysis, it is necessary in general to assume that compact
sets satisfy a stronger property than effective compactness.

Definition 2.2.57. For non-empty A ⊆X,

x↦ d(x,A) = inf{d(x, y) ∶ y ∈ A} (2.2.15)

is the distance function X → [0,∞) associated with A (and d).

17

Note that (classically) if A is compact, then the infimum is attained.

Definition 2.2.58. A non-empty, effectively compact K ⊆ X is said to be
effectively located in X if its distance function d(⋅,K) is computable.

The effectively located sets turn out to be the computable points in a
certain computable metric space:

Definition 2.2.59. H(X) denotes the family of non-empty compact subsets
of X. H(X) is a computable metric space under the Hausdorff metric

dH(K1,K2) = max{ sup
x∈K1

{d(x,K2)}, sup
y∈K2

{d(K1, y)}}. (2.2.16)

Both suprema are attained. For ideal points, take the family S of non-empty
finite subsets of S (the enumerated set of ideal points for X).

Fact 2.2.60. Uniformly from a name for K ∈H(X), we can

(i) compute the distance function associated with K,

(ii) enumerate the set of codes of basic open covers of K,

(iii) compute the diameter of K, diam(K) = sup{d(x, y) ∶ x, y ∈K}, and

(iv) compute a sequence (xj)j∈N such that {xj ∶ j ∈ N} =K.

Proof. The following is uniform from a name (An)n∈N for K.
We begin with claim (i). For all x ∈X, by the triangle inequality,

(∀n ∈ N) ∣d(x,An) − d(x,K)∣ ≤ d(An,K) < 2−n.

An is finite and made up of ideal points, so d(x,An) is computable uniformly
from n ∈ N and a name for x ∈X. This proves claim (i).

For claim (ii), by Fact 2.2.56, it suffices to show that K is effectively
totally bounded. For all i ∈ N, write Ai = {e0, . . . , em}. Then

{B(e0,2
−i), . . . ,B(em,2−i)}

is a basic open cover of K, as required. This proves claim (ii).
For claim (iii), we appeal again to total boundedness. If we cover K

with open balls B(e0, ε), . . . ,B(em, ε) such that d(ei,K) < ε for all i, then
diam(K) is within 2ε of maxi,j d(ei, ej). This proves claim (iii).

For claim (iv), fix n ∈ N and a ∈ An. Compute a sequence (ai)i∈N ⊆ S
as follows. Let a0 = a ∈ An and proceed by induction. Suppose we have

18

already computed a0, . . . , ak such that ai ∈ An+i for all i ≤ k and d(ai, ai+1) <
2−(n+i)+1 for all i < k. If An+k+1 includes at least one point a′ such that
d(ak, a′) < 2−(n+k)+1, we can compute such a point and set ak+1 = a′.

Since ak ∈ An+k, there exists a z ∈K such that d(ak, z) < 2−(n+k). Hence
there exists an a′ ∈ An+k+1 such that d(z, a′) < 2−(n+k)−1. It follows that
d(ak, a′) < 2−(n+k)+1, as required to compute the sequence (ai)i∈N.

It is easy to see that (ai)i∈N converges computably. Ket x denote its limit,
which satisfies d(ai, x) < 2−(n+i)+2 for all i ∈ N. In particular, d(a, x) < 2−n+2.
Since limi→∞ d(ai,K) = 0, x belongs to K = K. Thus we assign, to each
n ∈ N and each a ∈ An, a computable point x = x(n, a) ∈ K. Enumerate all
of these as one sequence (xj)j∈N ⊆K of uniformly computable points.

We just need to show that {xj ∶ j ∈ N} is dense in K. Fix y ∈ K and
n ∈ N. There exists an a ∈ An such that d(y, a) < 2−n, and there exists a
j ∈ N such that d(a, xj) < 2−n+2, so that d(y, xj) < 2−n+3. This proves claim
(iv), which completes the proof.

Fact 2.2.61. Let K be a non-empty compact set. K is computable inH(X)
if and only if K is effectively located.

Proof. If K is computable in H(X), then K is effectively located by Fact
2.2.60 (ii). Conversely, suppose K is effectively located. Fix i ∈ N. We can
enumerate the codes of all finite sets of ideal points A = {a0, . . . , an} ⊆ S.
By hypothesis, given A, we can verify computably that

(i) supx∈A d(x,K) < 2−i, and that

(ii) B(a0,2
−i), . . . ,B(an,2−i) is a basic open cover of K.

Together, (i) and (ii) imply that dH(A,K) < 2−i. Classically, for all i ∈ N,
there exists an A satisfying both conditions, which completes the proof.

Definition 2.2.62. A ⊆X is said to be effectively separable if there exists a
sequence (xj)j∈N of uniformly computable points such that A = {xj ∶ j ∈ N}.

Corollary 2.2.63. If K is effectively located, then it is effectively separable.
Hence K is a computable metric subspace of X: for ideal points, compute
any dense sequence in K.

That brings us to the effective version of local compactness. X = ⟨X,d,S⟩
continues to denote a computable metric space.

Definition 2.2.64. X is said to be effectively locally compact if there exists
a sequence (Ki)i∈N of non-empty compact sets such that

19

(i) X = ⋃i∈NKi and Ki ⊆K○
i+1 (the interior of Ki+1) for all i ∈ N,

(ii) Ki is effectively located, uniformly from i, for all i ∈ N, and

(iii) K○
i is effectively open, uniformly from i, for all i ∈ N.

In that case, (Ki)i∈N is said to be an effective exhausting sequence for X.

Brattka [14] deduces

Fact 2.2.65. Let (Ki)i∈N be an effective exhausting sequence. Uniformly
from a name for x ∈X, we can compute an i ∈ N such that x ∈K○

i .

Example 2.2.66. For each n ∈ N, Rn is effectively locally compact with an
effective exhausting sequence defined by Ki = [−i, i]n for all i ∈ N.

It is convenient and sometimes necessary to impose extra conditions on
the effective exhausting sequence in relation to a given metric d′ on X.

Definition 2.2.67. A metric d′ on X is said to be adapted to (Ki)i∈N if
d′ ≤ 1 and for all i ∈ N, if x ∈Ki and d′(x, y) < 1, then y ∈K○

i+1.

Example 2.2.68. In Rn, the metric d′(x, y) = min{1, ∣x − y∣} is adapted to
the effective exhausting sequence (Ki)i∈N from Example 2.2.66.

In Example 2.2.68, the adapted metric was computably related to the
original metric. Brattka [14] shows that we can achieve this in general:

Fact 2.2.69. Let (Ki)i∈N be an effective exhausting sequence. X has an
adapted metric d′ that is computably related to d. Moreover, the Hausdorff
metric d′H associated with d′ is computably related to dH .

Classically, every locally compact separable metric space X admits a
metrizable one-point compactification X∗ (see, for example, Kechris [48]).
Mandelkern [54] shows that X∗ is constructively metrizable, and we will
adapt his method to show that X∗ is computably metrizable.

Definition 2.2.70. For non-empty A ⊆X and ε > 0, define the open set

Aε = {x ∈X ∶ (∃a ∈ A) d(x, a) < ε} = {x ∈X ∶ d(x,A) < ε}.

Remark 2.2.71. If K ∈ H(X), then by Fact 2.2.60, Kε is effectively open
uniformly from names for ε and K.

Lemma 2.2.72. Let (Ki)i∈N be an effective exhausting sequence. Given
i ∈ N, we can compute an ε > 0 such that Kε

i ⊆K○
i+1.

20

Proof. Classically, in any metric space, if K is compact, F is closed, and
K ∩ F = ∅, then K and F are separated:

d(K,F) = inf{d(x, y) ∶ x ∈K,y ∈ F} > 0.

Fixing i ∈ N and setting K = Ki and F = X ∖K○
i+1, we have Kε

i ⊆ K○
i+1 for

all sufficiently small ε. We just need to find one such ε.
Write K○

i+1 = ⋃j∈NB(aj , rj). Enumerate the basic open covers of Ki.
Given a cover {B(e0, ε0), . . . ,B(en, εn)}, we can verify computably that

(∀i ≤ n) (∃j ∈ N) d(ei, aj) + 2εi < rj .

Classically, such a cover exists. Set ε = min{ε0, . . . , εn}. If d(x, y) < ε and
y ∈Ki, then there exists an i ∈ N such that d(y, ei) < εi. Hence

(∃j ∈ N) d(x, aj) ≤ d(x, y) + d(y, ei) + d(ei, aj) < ε + εi + d(ei, aj) < rj .

So x ∈K○
i+1, which proves that Kε

i ⊆K○
i+1.

Now we can effectivize the one-point compactification:

Theorem 2.2.73. Let (Ki)i∈N be an effective exhausting sequence. There
exists an effectively compact space ⟨X∗, d∗, S∗⟩ which is an effective one-
point compactification of X in the following sense:

(i) There exists a point ∗ ∈ X∗ and a one-to-one computable function
θ ∶X →X∗ such that θ(X) =X∗ ∖ {∗}.

(ii) It is also the case that θ−1 is computable on θ(K), uniformly from a
name for K, for all K ∈H(X).

(iii) IfX is not compact, then θ(X) is dense inX∗. Otherwise, ∗ is isolated.

Proof. The proof is adapted from the constructive proof of Theorem 2 in
Mandelkern [54]. By Lemma 2.2.72, we can compute a decreasing sequence
(γi)i∈N of positive rationals such that for all i ∈ N, γi < 2−i−1 and Kγi

i ⊆K○
i+1.

Using (γi)i∈N, define a function h ∶X → (0,1/2) as follows:

h(x) = sup
i∈N

{γi − d(x,Ki)}. (2.2.17)

By Fact 2.2.65, uniformly from a name for x, we can compute an n ∈ N
such that d(x,Ki) = 0 for all i ≥ n. In particular, the supremum in (2.2.17)
is the maximum of finitely many terms. Using Fact 2.2.60 (i), it is easy to
see that h(x) is computable, uniformly from a name for x, for all x ∈X.

21

Note that h(x) ≥ γi for x ∈ Ki and h(x) < γi otherwise. Next, we show
that ∣h(x) − h(y)∣ ≤ d(x, y) for all x, y ∈ X. Fix x, y and ε > 0. For some
i ∈ N, γi − d(x,Ki) > h(x)− ε. By the definition of h, γi − d(y,Ki) ≤ h(y), so

h(x) − h(y) < γi − d(x,Ki) + ε − (γi − d(y,Ki)) ≤ d(x, y) + ε,

which proves that ∣h(x) − h(y)∣ ≤ d(x, y).
∗ is a new symbol: a formal “point at infinity.” We define a metric d∗

on X1 =X ∪ {∗} as follows: for all x, y ∈X,

d∗(x, y) = min{d(x, y), h(x) + h(y)};

for x ∈ X, d∗(x,∗) = h(x); and of course d∗(∗,∗) = 0. It is not difficult to
prove (classically) that d∗ is a metric. Note that d∗ ≤ 1, d∗ ≤ d on X ×X,
and d∗ is computable of type X ×X → [0,∞).

Let X∗ be the completion of ⟨X1, d
∗⟩. Extend d∗ to X∗. Let θ ∶X1 →X∗

be the canonical inclusion mapping; denote θ(∗) by ∗. Then θ(S) ∪ {∗} is
dense in X∗, so in particular X∗ is separable. Writing S = {sn ∶ n ∈ N}, we
can easily enumerate S∗ = θ(S) ∪ {∗} as

(un)n∈N = (∗, θ(s0), θ(s1), . . .).

It is clear that d∗(un, um) is computable uniformly from n,m ∈ N.
The compact space ⟨X∗, d∗, S∗⟩ is therefore a computable metric space.

By Fact 2.2.56, X∗ is effectively compact if it is effectively totally bounded.
Given ε > 0, compute an i ∈ N such that γi < ε and compute a basic open

cover {B(a0, ε), . . . ,B(an, ε)} of Ki. Let

σ = ⟨θ(a0), . . . , θ(an),∗⟩.

For all x ∈ E, either x ∈ Ki, in which case d∗(x,xj) < ε for some j ≤ n, or
x ∈X ∖Ki, in which case d∗(x,∗) = h(x) < γi < ε. Hence σ covers X∗, which
proves that X∗ is effectively totally bounded.

The restriction of θ ∶X1 →X∗ to X is also denoted by θ. For all x, y ∈X,
d∗(θ(x), θ(y)) = d∗(x, y) ≤ d(x, y). Since θ maps S to S∗, it follows that θ
is computable of type X →X∗. Next, we will show that θ(X) =X∗ ∖ {∗}.

For all x ∈ X, d∗(θ(x),∗) = h(x) > 0, so θ(X) ⊆ X∗ ∖ {∗}. For the
reverse inclusion, fix y ∈ X∗ such that d∗(y,∗) > 0. Choose a j ∈ N so that
d∗(y,∗) > γj . Write y as the limit of a sequence (yn)n∈N in X∗. For all
sufficiently large n ∈ N, d∗(θ(yn),∗) > γj . Hence (yn)n∈N ⊆ X without loss
of generality. For all n ∈ N, h(yn) > γj so yn ∈ Kj . Since (yn)n∈N is Cauchy
under d∗ and h is bounded away from zero on (yn)n∈N, that sequence is

22

Cauchy under d. Hence there exists a point x ∈ Kj such that yn → x
with respect to d, which implies that y = lim θ(yn) = θ(x) belongs to θ(X).
Therefore, θ(X) ⊇X∗ ∖ {∗}, proving their equality.

Finally, we will show that θ−1 is computable on θ(K), uniformly from
a name for K, for all K ∈ H(X). Using our name for K, compute a point
y ∈ K such that d∗(∗, y) ≤ 2d∗(∗,K). Since y ∈ X∗ ∖ {∗}, d∗(∗, y) > 0. For
x ∈ θ−1(K), θ(x) ∈ K, so d∗(∗, θ(x)) = d∗(∗, x) = h(x). Hence h is bounded
below on θ−1(K), which implies that θ−1 ∶ K → X is effectively uniformly
continuous. Since it maps θ(S) to S, θ−1 is computable on K, uniformly
from the name for K.

Classically, it is well known that θ(X) is dense in X∗ if X is not compact,
and ∗ is isolated in X∗ otherwise. This completes the proof.

2.2.3 Continuous function spaces

Effective local compactness gives us two generalizations of the computable
metric space C[a, b]. The first of these was developed by Brattka [14].

For the relevant concepts from classical functional analysis, Conway [23]
or another standard text should be more than sufficient.

Let ⟨X,d,SX⟩ be effectively locally compact with effective exhausting
sequence (Ki)i∈N, and let ⟨Y, ∥ ⋅ ∥, SY ⟩ be a computable Banach space.

Definition 2.2.74. C(X,Y) denotes the set of (total) continuous functions
f ∶X → Y . For all i ∈ N and f ∈ C(X,Y), define the semi-norm

∥f∥Ki = sup{∥f(x)∥ ∶ x ∈Ki}. (2.2.18)

C(X,Y) is a complete, separable metric space under the Fréchet metric

dC(f, g) =∑
i∈N

2−i−1 ⋅ ∥f − g∥Ki
1 + ∥f − g∥Ki

, (2.2.19)

which is bounded by 1 and induces the compact-open topology.

Notation 2.2.75. When Y = R, we may write C(X) instead of C(X,R).

Next, we choose ideal points for C(X,Y), starting with the case Y = R.

Definition 2.2.76. Let F ⊆ C(X). F is said to separate points if for all
x, y ∈X such that x ≠ y, there exists an f ∈ F such that f(x) ≠ f(y).

Definition 2.2.77. Let F ⊆ C(X). A polynomial of F over Q is a function
f ∶X → R of the form

f = p(f0, . . . , fn) (2.2.20)

23

where n ∈ N, p ∈ Q[x0, . . . , xn], and f0, . . . , fn ∈ F . We may denote the set
of all polynomials of F over Q by PolyQ(F).

As a consequence of the Stone-Weierstrass theorem, we have

Fact 2.2.78. If F separates points, then PolyQ(F) is dense in C(X).

Definition 2.2.79. Let F ⊆ C(X) and A ⊆ Y . A linear combination of F
over A is a function f ∶X → Y of the form

f(x) =∑
i≤k
fi(x)ai (2.2.21)

where k ∈ N, f0, . . . , fk ∈ F , and a0, . . . , ak ∈ A. We may denote the set of all
linear combinations of F over A by LinA(F).

By the Stone-Weierstrass theorem again, we have

Fact 2.2.80. If F separates points and A is dense in Y , then

LinA(PolyQ(F)) (2.2.22)

(that is, the set of linear combinations of polynomials) is dense in C(X,Y).

Definition 2.2.81. For s ∈ SX , let ds(x) = d(x, s). Then

FSX = {ds ∶ s ∈ SX} ⊆ C(X) (2.2.23)

is a canonical sequence of functions that separates points. Enumerate

LinSY (PolyQ(FSX)) = {ψi ∶ i ∈ N}. (2.2.24)

Brattka [14] proves the following five facts.

Fact 2.2.82. ⟨C(X,Y), dC, (ψi)i∈N⟩ is a computable metric space.

Remark 2.2.83. If X is compact, we can just set Ki = X for all i ∈ N.
Then dC = d∞/(1 + d∞) is computably related to d∞.

Fact 2.2.84. The computable points in C(X,Y) are exactly the (total)
computable functions X → Y . This can be made uniform.

Note that, in light of Remark 2.2.83, Fact 2.2.84 generalizes Fact 2.2.49,
the computable Weierstrass approximation theorem.

Fact 2.2.85. Let X1,X2 be effectively locally compact, and let f ∶X1×X2 →
Y . The following are equivalent, and this can be made uniform:

24

(a) ⟨x1, x2⟩↦ f(x1, x2) is computable of type X1 ×X2 → Y

(b) x1 ↦ (x2 ↦ f(x1, x2)) is computable of type X1 →C(X2, Y)

Fact 2.2.86. The following elementary function operations are computable.

(i) Evaluation: ⟨f, x⟩↦ f(x), which is of type C(X,Y) ×X → Y

(ii) Addition: ⟨f, g⟩↦ f + g, of type C(X,Y) ×C(X,Y)→C(X,Y)

(iii) Scalar multiplication: ⟨a, f⟩↦ af , of type C(X)×C(X,Y)→C(X,Y)

(iv) Norm: f ↦ ∥f∥, of type C(X,Y)→C(X)

Fact 2.2.87. The real number ∥f∥Ki from Definition 2.2.74 is computable
uniformly from i ∈ N and a name for f ∈ C(X,Y).

At this point, we have managed to generalize from C[a, b] to the space
C(X,Y), where X is effectively locally compact and Y is a computable
Banach space—but to do this, we had to change the metric from d∞ to dC.
Next, we describe a different way to generalize C[a, b] which allows us to
continue using the sup-norm.

⟨X,d,SX⟩ is still effectively locally compact with effective exhausting
sequence (Ki)i∈N, and Y = ⟨Y, ∥ ⋅ ∥, SY ⟩ is still a computable Banach space.

Definition 2.2.88. A function f ∶X → Y is said to vanish at infinity if for
all ε > 0 there exists a compact K ⊆X such that ∥f(x)∥ < ε for all x /∈K.

A vanishing rate for a function f is a sequence (in)n∈N ⊆ N such that for
all n ∈ N, ∥f(x)∥ < 2−n for all x /∈Kin .

Fact 2.2.89. f vanishes at infinity if and only if f has a vanishing rate.

Definition 2.2.90. C0(X,Y) denotes the space of continuous functions
f ∶X → Y vanishing at infinity. C0(X,Y) is a separable Banach space with
respect to the sup-norm

∥f∥∞ = sup{∥f(x)∥ ∶ x ∈X}, (2.2.25)

which induces the uniform metric d∞ and the uniform topology.

Notation 2.2.91. We may write C0(X) instead of C0(X,R).

The uniform topology, though not the metric, extends to C(X,Y):

Definition 2.2.92. The uniform topology on C(X,Y) is the topology of
uniform convergence: fn → f if and only if sup{∥fn(x)− f(x)∥ ∶ x ∈X}→ 0.

25

Note that C0(X,Y) is a closed vector subspace of C(X,Y) with the
uniform topology, and the restricted topology is induced by the sup-norm.
Also, if X is compact, then evidently C0(X,Y) = C(X,Y).

Now, the set Cb(X,Y) of bounded continuous functions X → Y is also
a closed vector subspace of C(X,Y) under the uniform topology, hence a
Banach space under the sup-norm. However, Cb(X,Y) is not separable in
general, as the following example shows.

Example 2.2.93. C(R, [0,1]) is not separable: for all α ∈ {0,1}Z, define a
continuous function fα ∶ R→ [0,1] such that fα(n) = αn for all n ∈ Z. Then
∥fα − fβ∥∞ = 1 whenever α ≠ β, and {0,1}Z is uncountable.

We distinguish a well-behaved dense subset of C0(X,Y): the functions
with compact support.

Definition 2.2.94. The support of a function f ∶X → Y is given by

supp(f) = {x ∈X ∶ f(x) ≠ 0}. (2.2.26)

Definition 2.2.95. K(X,Y) denotes the set of (total) continuous functions
f ∶X → Y with compact support. K(X,Y) is a vector subspace of C0(X,Y),
and it is dense with respect to the sup-norm.

Notation 2.2.96. We may write K(X) instead of K(X,R).

Going forward, we need an auxiliary function that modifies continuous
functions to make them vanish at infinity:

Definition 2.2.97. For all i ∈ N, define a function ηi ∶X → R by

ηi(x) = max{0,1 − dist(x,Ki)}. (2.2.27)

Note that ηi is computable uniformly from i ∈ N, and 0 ≤ ηi ≤ 1.

Remark 2.2.98. By Fact 2.2.69, we can assume without loss of generality
that d is adapted to (Ki)i∈N. In that case, supp(ηi) =Ki+1.

Let f ∈ C(X,Y). Evidently, for all i ∈ N, ηi ⋅ f ∶ X → Y is continuous
and equals f on Ki, and its support is supp(f) ∩Ki+1.

Proposition 2.2.99. The function ⟨f, i⟩ ↦ ηi ⋅ f is computable of type
C(X,Y) ×N→C(X,Y).

Proof. By Fact 2.2.60 (i) and Fact 2.2.84, ηi ∈ C(X) is computable uniformly
from i ∈ N, and the result follows from Fact 2.2.86 (iii).

26

The next result is fairly obvious, but we will work through the details.

Proposition 2.2.100. If {fj ∶ j ∈ N} is dense in C(X,Y) with respect to
dC, then {ηi ⋅ fj ∶ i, j ∈ N} is dense in C0(X,Y) with respect to d∞.

Proof. Let g ∈ C0(X,Y), let (in)n∈N be a vanishing rate for g, and let n ∈ N.
We will identify a pair ⟨i, j⟩ such that ∥g − ηi ⋅ fj∥∞ ≤ 3 ⋅ 2−n.

Set i = in so that ∥g(x)∥ ≤ 2−n for all x /∈ Ki. Choose a j ∈ N such
that dC(g, fj) ≤ 2−n−i−2. Incidentally, this shows that we can compute ⟨i, j⟩
uniformly from a name for g ∈ C(X,Y) and a vanishing rate for g.

We claim that ∥g(x) − ηi(x) ⋅ fj(x)∥ ≤ 3 ⋅ 2−n for all x ∈ X. There are
three cases to consider: x ∈Ki, x ∈Ki+1 ∖Ki, and x /∈Ki+1.

First, on Ki, ηi ⋅ fj = fj . Since dC(g, fj) ≤ 2−n−i−2,

∥g − fj∥Ki ≤ 2i+12−n−i−2 = 2−n−1.

So ∥g(x) − ηi(x) ⋅ fj(x)∥ ≤ 2−n−1 < 3 ⋅ 2−n for all x ∈Ki.
Next, for x ∈Ki+1 ∖Ki, ∥g(x)∥ ≤ 2−n. Since dC(g, fj) ≤ 2−n−i−2,

∥g − fj∥Ki+1 ≤ 2i+22−n−i−2 = 2−n.

It follows that ∥ηi(x) ⋅ fj(x)∥ ≤ ∥fj(x)∥ ≤ 2−n + 2−n, which implies that

∥g(x) − ηi(x) ⋅ fj(x)∥ ≤ 2−n + 2−n + 2−n = 3 ⋅ 2−n.

Finally, for x /∈ Ki+1, ηi(x) ⋅ fj(x) = 0 and ∥g(x)∥ ≤ 2−n. In all cases,
∥g(x) − ηi(x) ⋅ fj(x)∥ ≤ 3 ⋅ 2−n, as required.

Now recall the ideal points {ψi ∶ i ∈ N} for C(X,Y) (Definition 2.2.81).
Corollary 2.2.87 and Proposition 2.2.100 imply

Corollary 2.2.101. C0(X,Y) is a computable Banach space with respect
to the sup-norm: for ideal points, take {ηi ⋅ ψj ∶ i, j ∈ N}.

With our new ideal points, it is easy to prove

Proposition 2.2.102. The evaluation operator ⟨f, x⟩↦ f(x) is computable
of type C0(X,Y) ×X → Y .

Naturally, the space ⟨C0(X,Y), d∞⟩ is closely related to C0(X,Y) as a
subspace of ⟨C(X,Y), dC⟩:

Proposition 2.2.103. Let f ∈ C0(X,Y).

27

(i) Uniformly from a name for f in ⟨C0(X,Y), d∞⟩, we can compute a
name for f in ⟨C(X,Y), dC⟩ and a vanishing rate for f .

(ii) Conversely, a name for f in ⟨C0(X,Y), d∞⟩ is computable uniformly
from a name for f in ⟨C(X,Y), dC⟩ and a vanishing rate for f .

Proof. Suppose we are given a name for f in ⟨C0(X,Y), d∞⟩. Then it is
easy to compute a vanishing rate for f , because if ∥f − ηi ⋅ ψj∥∞ < ε, then
∥f∥ < ε outside Ki+1. Since moreover dC(f, ηi ⋅ ψj) < ε provided that ε < 1,
Proposition 2.2.99 lets us compute a name for f in ⟨C0(X,Y), dC⟩.

Conversely, given a name for f in ⟨C(X,Y), dC⟩ and a vanishing rate
for f , Corollary 2.2.87 lets us approximate f in sup-norm.

Our effective one-point compactification X∗ (Theorem 2.2.73) happens
to be consistent with our computable function space C0(X,Y):

Proposition 2.2.104. If f is a computable point in C0(X,Y), then the
extension f̃ of f to X∗ by setting f̃(∗) = 0 is computable of type X∗ → Y .
f̃ is also a computable point in C(X∗, Y). This can be made uniform.

Proof. The case that X is compact (and ∗ is isolated) is trivial, so let us
assume that X is not compact (and X is dense in X∗).

The extension of f to X∗ is clearly computable on X, which leaves only
f̃(∗). Suppose (xn)n∈N ⊆ X converges to ∗ computably with respect to d∗.
Then it is enough to show that f(xn)→ 0 at a computable rate (in Y).

By definition, d∗(xn,∗) = h(xn); that is, h(xn)→ 0 computably. By the
definition of h, we can compute a sequence (ni)i∈N ⊆ N such that for all i ∈ N,
for all n ≥ ni, xn lies outside Ki. But we can also use Proposition 2.2.103 to
compute a vanishing rate (Definition 2.2.88) for f . Combine that vanishing
rate with the sequence (ni)i∈N to see that f(xn)→ 0 at a computable rate.

Finally, f̃ is a computable point in C(X∗, Y) by Fact 2.2.84.

2.3 Computable measure theory

At this point, we have all the tools from computable analysis we need to
study computable measure theory. Again, that theory has been developed,
quite recently, by Gács [39], Hoyrup and Rojas [47], Rute [67], Weihrauch
[72], Schröder [68], and Bosserhoff [13], among others (see Section 1.1).

Rute [67] provides a very useful overview; unless otherwise noted, our
own review is based on that source. We assume the reader is familiar with
the principles of classical measure theory as in, say, Cohn [21].

28

2.3.1 Measure

We begin by defining a metric space whose points are probability measures.
Let X = ⟨X,d,S⟩ be a computable metric space. Of course, X is a

measurable space as well, equipped with the Borel σ-algebra B(X).
Definition 2.3.1. M1(X) denotes the set of probability measures on X.
M1(X) is a complete, separable metric space under the Prokhorov metric

π(µ, ν) = inf{ε > 0 ∶ µ(A) ≤ ν(Aε) + ε for each Borel set A}. (2.3.1)

The topology induced by π is called the weak topology on M1(X).
Fact 2.3.2. The weak topology is the finest (i.e., largest) topology on
M1(X) satisfying the following convergence property:

µn → µ ⇐⇒ (∀f ∈ Cb(X)) lim
n
∫ fdµn = ∫ fdµ. (2.3.2)

Gács [39] proves

Fact 2.3.3. M1(X) is a computable metric space under the Prokhorov
metric. For ideal points, take the measures concentrated on finitely many
atoms s0, . . . , sn ∈ S, assigning each a rational measure.

Definition 2.3.4. A probability measure µ on X is said to be computable if
µ is computable in M1(X). A computable probability space is a pair ⟨X, µ⟩
where X is a computable metric space and µ ∈M1(X) is computable.

Remark 2.3.5. Suppose ν is a finite, nontrivial measure on X. Then
µ = ν/ν(X) is a probability measure, and we can identify ν with the pair
⟨µ, ν(X)⟩ ∈M1(X) × [0,∞). In general, if ⟨µ,M⟩ is a computable point in
the product space, we can call ν =Mµ a computable measure on X.

The next two facts effectivize measure and integration on a computable
metric space [47]. Recall that τ(X) denotes the topology of X.

Fact 2.3.6. µ(U) is lower semicomputable uniformly from names for µ ∈
M1(X) and U ∈ τ(X). µ ∈M1(X) is computable if and only if µ(U) is lower
semicomputable, uniformly from a name for U , for all U ∈ τ(X).
Fact 2.3.7. Let f ∶ X → R be computable and bounded by M > 0. Then
the integral operator

µ↦ ∫ fdµ (2.3.3)

is computable of typeM1(X)→ R, and this can be made uniform in names
for f and M . Moreover, µ is computable if and only if ∫ fdµ is computable,
uniformly from a name for f , for all computable f ∶X → [0,1].

29

When X is effectively locally compact, we can define the continuous
function spaces C(X,Y) and C0(X,Y) from Part 2.2.3.

Lemma 2.3.8. Let (Ki)i∈N be an effective exhausting sequence for X. Then
there exists a computable sequence (in)n∈N ⊆ N such that for all n ∈ N,

µ(X ∖Kin) < 2−n. (2.3.4)

Proof. This follows from Fact 2.3.6 when we note that µ(Ki) ↑ 1.

Proposition 2.3.9. Let X be effectively locally compact. The integral
operator ⟨µ, f⟩↦ ∫ fdµ is

(i) computable of type M1(X) ×C(X, [0,1])→ [0,1], and

(ii) computable of type M1(X) ×C0(X)→ R.

Moreover, if µ ∈M1(X), then the following are equivalent:

(a) µ is computable

(b) ∫ fdµ is computable uniformly from a name for f ∈ C(X, [0,1])

(c) ∫ fdµ is computable uniformly from a name for f ∈ C0(X)

Proof. With Lemma 2.3.8, all claims follow easily from Fact 2.3.7.

We list a few important computable probability spaces:

Example 2.3.10. The unit cube [0,1]n is a computable probability space
under Lebesgue measure, denoted as usual by λ, for each n ∈ N.

Example 2.3.11. Cantor space {0,1}N (Example 2.2.44) is a computable
probability space under the fair coin measure

P ([σ]) = 2−∣σ∣ (2.3.5)

where σ ∈ {0,1}∗ and [σ] is the associated cylinder set (Definition 2.2.43).

Example 2.3.12. C[a, b] (Example 2.2.48) is a computable probability
space under Wiener measure; for details, see Fouché [33].

We have mentioned the need for an effective basis (Definition 2.2.26) for
the underlying space that is, in some sense, well behaved.

30

Definition 2.3.13. Let ⟨X, µ⟩ be a computable probability space. A set
A ⊆ X is said to be µ-almost decidable, or just almost decidable, if there
exist effectively open sets U,V ⊆X such that U ⊆ A, V ⊆ Ac, U ∪V is dense,
and µ(U ∪V) = 1. Then A is said to be almost decidable by the pair ⟨U,V ⟩.

The elements of a sequence (Ai)i∈N of sets are said to be uniformly almost
decidable if there exists a sequence of uniformly computable pairs ⟨Ui, Vi⟩
such that Ai is almost decidable by ⟨Ui, Vi⟩ for all i ∈ N.

Remark 2.3.14. An almost decidable set has a null boundary.

Hoyrup and Rojas [47] prove an important technical result:

Fact 2.3.15. Write X = ⟨X,d, (si)i∈N⟩. There exists a sequence (εj)j∈N of
uniformly computable positive reals dense in (0,∞) such that {B(si, εj) ∶
i, j ∈ N} is an effective basis whose elements are uniformly almost decidable.

Notation 2.3.16. The choice of effective basis in Fact 2.3.15 is not unique,
so we fix one and denote it by Basis(X, µ).

The proof of Fact 2.3.15 uses an effective version of the Baire category
theorem [56, 15] which is worth stating separately:

Fact 2.3.17. Every dense Π0
2 set in a computable metric space X contains a

dense sequence of uniformly computable points. This can be made uniform.

Definition 2.3.18. A cell for ⟨X, µ⟩ is ∅ or a set of the form

C = A0 ∩⋯ ∩An ∩Bc
0 ∩⋯ ∩Bc

m (2.3.6)

where A0, . . . ,An,B0, . . . ,Bm ∈ Basis(X, µ).

Evidently, a cell may be encoded as a string. Rute [67] proves

Fact 2.3.19. The measure of a cell C is computable from (a code for) C.

Because it will be useful later, we add an easy

Lemma 2.3.20. If µ(C) > 0, then we can compute a point in C from C.

Proof. The boundary of each cell is µ-null, so the interior of C has positive
measure; in particular, C○ is a non-empty open set, which therefore includes
an ideal point. Enumerate ideal points s until s ∈ Ai for all i ≤ n and s /∈ Bi
for all i ≤m, which can be verified computably and implies s ∈ C○.

31

2.3.2 Integration

Let ⟨X, µ⟩ be a computable probability space. The facts stated below, unless
otherwise noted, are proved in Rute [67].

Definition 2.3.21. L0(X, µ) denotes the family of µ-a.e. equivalence classes
[f]∼ of (Borel) measurable functions f ∶ X → R. L0(X, µ) is a complete,
separable metric space under the Ky-Fan metric

dµ([f]∼, [g]∼) = ∫ min{∣f − g∣,1}dµ. (2.3.7)

Notation 2.3.22. We will identify a measurable function f with its µ-a.e.
equivalence class [f]∼. This should not be too confusing.

Use Fact 2.3.15 to fix an effective basis of uniformly almost decidable
sets, which we denote by Basis(X, µ). Recall the definition (2.3.18) of a cell.

Definition 2.3.23. A test function for ⟨X, µ⟩ is a function of the form

g = q01C0 +⋯ + qk1Ck (2.3.8)

where q0, . . . , qk ∈ Q and C0, . . . ,Ck are pairwise disjoint cells.

Fact 2.3.24. L0(X, µ) is a computable metric space under dµ with (µ-a.e.
equivalence classes of) test functions for ideal points.

Definition 2.3.25. When f is computable as a point in L0(X, µ), we say
that f is L0(µ)-computable, or just L0-computable.2

We proceed to the spaces of integrable and square-integrable functions.
Again, the test functions from Definition 2.3.23 serve as ideal points.

Definition 2.3.26. L1(X, µ) denotes the family of L1-functions f ∶X → R.
L1(X, µ) is a separable Banach space under the L1-norm

∥f∥L1 = ∫ ∣f ∣dµ. (2.3.9)

Definition 2.3.27. L2(X, µ) denotes the family of L2-functions f ∶X → R.
L2(X, µ) is a separable Banach space under the L2-norm

∥f∥L2 = (∫ ∣f ∣2dµ)
1/2
. (2.3.10)

2In the literature, L0-computability is more often called “effective measurability.”

32

Fact 2.3.28. L1(X, µ) is a computable Banach space under the L1-norm,
and L2(X, µ) is a computable Banach space under the L2-norm, with test
functions (Definition 2.3.23) for ideal points in both cases.

Definition 2.3.29. When f is computable as a point in L1(X, µ), we say
that f is L1(µ)-computable. When f is computable as a point in L2(X, µ),
we say that f is L2(µ)-computable. As usual, we may omit the measure µ.

Fact 2.3.30. L2-computability implies L1-computability, which implies L0-
computability. This can be made uniform.

We can also effectivize the space of measurable sets:

Definition 2.3.31. B(X, µ) denotes the family of (µ-a.e. equivalence classes
of Borel) measurable subsets of X. B(X, µ) is a complete, separable metric
space under the symmetric difference metric

d⊖(A,B) = µ(A⊖B), (2.3.11)

where of course ⊖ denotes the symmetric difference of sets.

Definition 2.3.32. A test set for ⟨X, µ⟩ is a set of the form

A = C0 ∪⋯ ∪Ck (2.3.12)

where C0, . . . ,Ck are pairwise disjoint cells.

Fact 2.3.33. B(X, µ) is a computable metric space under the symmetric
difference metric with test sets for ideal points.

Definition 2.3.34. When A is computable as a point in B(X, µ), we say
that A is L0(µ)-computable, or just L0-computable.

The next step is to generalize L0-computability to functions taking values
in an arbitrary computable metric space (e.g., the space of càdlàg functions).
Let Y = ⟨Y, d,SY ⟩ be a computable metric space.

Definition 2.3.35. L0(X, µ;Y) denotes the family of measurable functions
f ∶X → Y . L0(X, µ;Y) is complete and separable under the Ky-Fan metric

dµ(f, g) = ∫ min{d(f, g),1}dµ. (2.3.13)

Definition 2.3.36. A test function for ⟨X, µ⟩ and Y has the form

g(x) = si if x ∈ Ci, i = 0, . . . , k, (2.3.14)

where s0, . . . , sk ∈ SY and C0, . . . ,Ck are pairwise disjoint cells that cover X
up to a null set, i.e., such that µ(C0 ∪⋯ ∪Ck) = 1.

33

Fact 2.3.37. L0(X, µ;Y) is a computable metric space under dµ with test
functions (Definition 2.3.36) for ideal points.

Definition 2.3.38. When f is computable as a point in L0(X, µ;Y), we say
that f is L0(µ)-computable, or just L0-computable.

Remark 2.3.39. If Y = {0,1}, we can identify L0(X, µ;Y) with the space
B(X, µ) of measurable sets, since A↦ 1A is a bijective isometry.

We give an example of a class of L0-computable functions which is useful
in its own right.

Definition 2.3.40. A function f ∶ X → Y is said to be µ-a.e. computable,
or just a.e. computable, if f is computable on a Π0

2 set V such that µ(V) = 1.

Remark 2.3.41. Evidently, total computable functions are a.e. computable.

Hoyrup and Rojas [47] prove the next result:

Fact 2.3.42. Every partial computable function defined on a set of measure
one can be extended to an a.e. computable function (i.e., to a Π0

2 domain).

Fact 2.3.43. Every a.e. computable function is L0-computable (uniformly).

The notion of an image (or “push-forward”) measure is essential:

Definition 2.3.44. Let f ∶ X → Y be measurable. The image measure of
µ along f is the probability measure µf = f(µ) on Y given by

µf(A) = µ(f−1(A)). (2.3.15)

Remark 2.3.45. In probability, the image measure of a random variable
(i.e., measurable function) f is typically called the distribution or law of f .

Fact 2.3.46. If f is L0(µ)-computable, then µf is computable (uniformly).

The next result calls to mind the Skorokhod representation theorem from
probability theory, which we will effectivize in Part 2.3.3.

Fact 2.3.47. A measure µ on X is computable if and only if µ is the image of
the fair coin measure P along some P -a.e. computable function {0,1}N →X.

We will often want to compose measurable functions, for which we need

Fact 2.3.48. Let f ∶ X → Y be L0(µ)-computable and let g ∶ Y → Z be
L0(µf)-computable (note the measure). Then g ○ f is L0(µ)-computable
uniformly from names for f and g.

34

There are many computably equivalent ways to choose test functions
(that is, ideal points for the L0, L1, and L2 spaces defined above). Rute [67]
lists several, including one due to Gács [39]: a set G of bounded, computable,
Lipschitz continuous test functions, defined below.

Because G does not depend on µ, it is an appropriate choice for effective
probability: X may represent the state space of a stochastic process and take
many different measures (e.g., initial distributions), and we would rather use
the same test functions in all cases.

Definition 2.3.49. Let G0 be the set of functions X → R of the form

gu,r,ε(x) = max{0,1 −max{0, d(x,u) − r}/ε}. (2.3.16)

where u ∈ SY , r ∈ Q>0, and ε = 1/n for some n ∈ N.
Computably enumerate, as (gi)i∈N, the smallest set G of functions X → R

containing G0 and the constant function 1 and closed under finite maxima
and minima and rational linear combinations.

Remark 2.3.50. The function gu,r,ε is continuous, identically 1 on B(u, r),
and identically 0 outside B(u, r + ε), taking intermediate values in between.
The function gi is bounded, computable, and Lipschitz continuous.

Gács [39] proves

Fact 2.3.51. All bounded continuous functions can be obtained as the limit
of a pointwise increasing sequence of functions in G.

And we already mentioned

Fact 2.3.52. Let µ be a computable probability measure on X. G is a
computably equivalent set of test functions for L0(X, µ).

We list four other important facts, which are proved in Rute [67]:

Fact 2.3.53. The integral operator f → ∫ fdµ is computable from L1(X, µ)
to R. More generally, the integral operator ⟨f,A⟩ → ∫A fdµ is computable
from L1(X, µ) ×B(X, µ) to R. Moreover, the valuation operator A → µ(A)
is computable of type B(X, µ)→ R.

Fact 2.3.54. ∥ ⋅ ∥L1-convergence implies dµ-convergence, and a convergence
rate for the latter is computable from a convergence rate for the former.

Fact 2.3.55. f is L1-computable if and only if f is L0-computable and
∥f∥L1 < ∞ is computable. f is L2-computable if and only if f is L0-
computable and ∥f∥L2 < ∞ is computable. If 0 ≤ f ≤ 1, then f is L2-
computable if and only if f is L0-computable. This can be made uniform.

35

Fact 2.3.56. If f and g are L1-computable and 0 ≤ g ≤ 1, then f ⋅ g is
L1-computable. This can be made uniform.

Finally, we add

Proposition 2.3.57. If f is L0-computable, g is L1-computable, and ∣f ∣ ≤ g
almost everywhere, then f is L1-computable. This can be made uniform.

Proof. The following is uniform in names for f ∈ L0(X, µ) and g ∈ L1(X, µ).
Split f into its positive and negative parts. Considering each separately,

we may assume, without loss of generality, that f ≥ 0.
Let fn = min{max{f, n}, n + 1} − n for each n ∈ N, so f = ∑n∈N fn. fn

is L0-computable (uniformly from n). Moreover, since 0 ≤ fn ≤ 1, fn is
L1-computable (again, uniformly) by Fact 2.3.55.

Similarly, let gn = min{max{g, n}, n+1}−n. Then ∥g−(g0+⋯+gn)∥L1 → 0
by the Lebesgue monotone convergence theorem. gn is L1-computable, so
given ε > 0, we can compute an n ∈ N such that ∥g − (g0 +⋯ + gn)∥L1 < ε.

Using the fact that fn ≤ gn almost everywhere, we get

∥f − (f0 +⋯ + fn)∥L1 = ∥fn+1 + fn+2 +⋯∥L1

≤ ∥gn+1 + gn+2 +⋯∥L1 < ε.

Evidently, f0 +⋯+ fn is L1-computable, which completes the proof.

2.3.3 Convergence in probability

As usual, let ⟨X, µ⟩ be a computable probability space and let Y = ⟨Y, d,SY ⟩
be a computable metric space. Let f and (fi)i∈N be measurable functions
X → Y . The facts below, unless otherwise noted, are proved in Rute [67].

Definition 2.3.58. (fi)i∈N is said to converge almost surely to f (with
respect to µ) if for all ε > 0 there exists an n ∈ N such that

µ{x ∈X ∶ sup
i≥n

{d(fi(x), f(x))} ≥ ε} < ε. (2.3.17)

Definition 2.3.59. (fi)i∈N is said to converge effectively almost surely to f
if n = n(ε) is computable from ε in Definition 2.3.58.

Definition 2.3.60. (fi)i∈N is said to converge in probability to f if for all
ε > 0 there exists an n ∈ N such that

(∀i ≥ n) µ{x ∈X ∶ d(fi(x), f(x)) ≥ ε} < ε. (2.3.18)

36

Definition 2.3.61. (fi)i∈N is said to converge effectively in probability to f
if n = n(ε) is computable from ε in Definition 2.3.60.

Recall the Ky-Fan metric dµ (Definition 2.3.35).

Fact 2.3.62. Convergence in probability is equivalent to convergence with
respect to dµ, and either convergence rate is computable from the other.
Almost-sure convergence implies convergence in dµ, and a convergence rate
for the latter is computable from a convergence rate for the former.

Fact 2.3.63. If (fi)i∈N converges in dµ at a geometric rate, meaning that

(∀i ∈ N) dµ(fi, f) < 2−i, (2.3.19)

then (fi)i∈N converges effectively almost surely.

Proposition 2.3.64. f is L0-computable if and only if {f ≤ a} is L0-
computable uniformly from a ∈ Q and µ{∣f ∣ ≤ a}→ 1 computably as a→∞.

Proof. Suppose f is L0-computable. Clearly, 1(−∞,a] is L0(µf)-computable
(uniformly from a) of type X → {0,1}. Hence {f ≤ a} is L0-computable by
Fact 2.3.48. Similarly, {∣f ∣ ≤ a} is L0-computable (uniformly), so µ{∣f ∣ ≤ a}
is computable by Fact 2.3.53. Since µ{∣f ∣ ≤ a} converges monotonically to 1
as a→∞, we can compute a rate of convergence.

Conversely, fix ε > 0. For z ∈ Z, let az = zε and let fz = az1{az<f≤az+1}.
{az < f ≤ az+1} = {f ≤ az+1} ∖ {f ≤ az} is L0-computable (uniformly from
z), and so is fz. Hence gn = ∑∣z∣≤n fz is L0-computable. By hypothesis, we
can compute an n = n(ε) such that µ{∣f ∣ > an} < ε. On the complement
of that set, we have ∣gn − f ∣ < ε by construction. We have shown that
(gn)n∈N converges to f effectively in probability. By Fact 2.3.62, f is L0-
computable.

Remark 2.3.65. We can replace {f ≤ a} by {f < a} in Proposition 2.3.64.

Fact 2.3.47 called to mind an important result from probability theory,
known as the Skorokhod representation theorem3 [70]:

Fact 2.3.66. Let M be a complete, separable metric space. Let (Pn)n∈N be
a sequence of probability measures on M converging weakly to P0. There
exist M -valued random variables (Zn)n∈N on [0,1] (with Lebesgue measure)
such that Zn has distribution Pn for all n and Zn → Z0 almost surely.

3This has nothing to do with Skorokhod space, the subject of Chapter 3.

37

As an application of computable measure theory, we prove an effective
Skorokhod representation theorem:

Theorem 2.3.67. Let X be a computable metric space. Let (µn)n∈N be
a sequence of uniformly computable probability measures on X such that
π(µn, µ0) < 2−n for all n. There exist uniformly a.e. computable X-valued
random variables (Zn)n∈N on [0,1] (with Lebesgue measure) such that Zn
has distribution µn for all n and Zn → Z0 effectively almost surely.

Remark 2.3.68. Cantor space with the fair coin measure is measure-
theoretically identical to the unit interval with Lebesgue measure, as the
binary expansion defines a measure-preserving computable surjection from
the former to the latter with an a.e. computable inverse. From a computable
measure-theoretic standpoint, these spaces are essentially interchangeable.

To prove Theorem 2.3.67, we first need to generalize Fact 2.3.15. Let
(µn)n∈N be a sequence of uniformly computable probability measures on a
computable metric space X = ⟨X,d, (si)i∈N⟩.

Definition 2.3.69. The elements of a sequence (Ai)i∈N of measurable sets
are said to be uniformly almost decidable for (µn)n∈N if there exist sequences
(Ui)i∈N and (Vi)i∈N of uniformly Σ0

1 sets such that for all i, n ∈ N, Ai is µn-
almost decidable by ⟨Ui, Vi⟩.

Lemma 2.3.70. There exists a sequence (rj)j∈N of uniformly computable
positive reals dense in (0,∞) such that {B(si, rj) ∶ i, j ∈ N} is an effective
basis whose elements are uniformly almost decidable for (µn)n∈N.

Proof. This proof is a uniform version of the proof of (what we call) Fact
2.3.15 in Hoyrup and Rojas [47]. For all n, i, j ∈ N, let

Un,i,j = {r > 0 ∶ µn(B(si, r)) < µn(B(si, r)) + 1/j}.

Un,i,j is Σ0
1 (uniformly) as a subset of [0,∞). Note that for all r > 0,

µn(B(si, r)) − µn(B(si, r)) = µn(Si,r)

where Si,r denotes the sphere B(si, r)∖B(si, r). For r ≠ r′, Si,r and Si,r′ are
disjoint. µn is finite, so µn(Si,r) ≥ 1/j for only finitely many r. In particular,
Un,i,j is dense in [0,∞).

For all i, j ∈ N, let Vi,j = [0,∞) ∖ {d(si, sj)}. Then Vi,j is dense and Σ0
1

uniformly from i and j. The intersection

A = ⋂
n,i,j∈N

Un,i,j ∩ ⋂
i,j∈N

Vi,j

38

is Π0
2 in [0,∞). By the Baire category theorem, A is dense in [0,∞). By the

effective Baire category theorem (Fact 2.3.17), A contains a sequence (rk)
of uniformly computable reals dense in [0,∞). For all n, i, k ∈ N, B(si, rk)
is almost decidable with respect to µn by U⟨i,k⟩ = B(si, rk) and V⟨i,k⟩ =
X ∖B(si, rk), which are Σ0

1 uniformly from i and k.
Finally, let U = ⋃k∈NB(sik , qik) be an open subset of X. Uniformly from

k ∈ N and a name for U , Ak = {r ∈ A ∶ r < qik} is computably enumerable as
(tk,j)j∈N. A is dense, so B(sik , qik) = ⋃j∈NB(sik , tk,j) for all k ∈ N. It follows
that U = ⋃k,j∈NB(sik , tk,j), and this is uniform in a name for U . We have
shown that {B(si, rk)} is an effective basis.

Notation 2.3.71. The choice of “uniform” effective basis in Fact 2.3.15 is
not unique, so we fix one and denote it by Basis(X, (µn)n∈N).

Definition 2.3.72. As in Definition 2.3.18, a cell is ∅ or a set of the form

C = A0 ∩⋯ ∩An ∩Bc
0 ∩⋯ ∩Bc

m, (2.3.20)

where A0, . . . ,An,B0, . . . ,Bm ∈ Basis(X, (µn)n∈N).

Again, cells may be encoded as strings. The proof of (what we call) Fact
2.3.19 in Rute [67] also proves

Lemma 2.3.73. µn(C) is computable uniformly from n and C.

The proof of Lemma 2.3.20 also proves:

Lemma 2.3.74. If µn(C) > 0, we can compute a point in C from n and C.

We also need an effective version of part of the portmanteau theorem.

Lemma 2.3.75. Suppose (µn) is uniformly computable and π(µn, µ0) < 2−n

for all n ∈ N. For all cells C and n ∈ N, there exists an m =m(n,C) ∈ N such
that ∣µi(C) − µ0(C)∣ < 2−n for all i ≥m.

Proof. First, suppose A ∈ Basis(X, (µn)n∈N) and write A = B(si, rk). A is a
continuity set for µ0, so µ0(B(si, r)) ↓ µ0(A) as r ↓ rk. Using this fact and
Lemma 2.3.73, uniformly from ε > 0 and (a code for) A, we can compute a
j = j(ε, i, k) ∈ N such that rj > rk and

µ0(B(si, rj)) < µ0(B(si, rk)) + ε.

Letting δ = rj − rk > 0, we have µ0(Aδ) < µ0(A) + ε.

39

Similarly, µ0(B(si, r′)) ↑ µ0(A) as r′ ↑ rk. Hence, uniformly from ε and
A, we can compute a j1 ∈ N such that rj1 < rk and

µ0(B(si, rj1)) > µ0(B(si, rk)) − ε.

Letting δ1 = rk − rj1 > 0, we have µ0((X ∖A)δ1) < µ0(X ∖A) + ε.
Generalizing to a finite collection of basic open balls A0, . . . ,Am, we see

that, uniformly from ε and a cell C, we can compute a δ = δ(ε,C) such
that µ0(Cδ) < µ0(C) + ε and µ0((X ∖C)δ) < µ0(X ∖C) + ε. Replacing δ by
min{δ, ε}, we have δ < ε without loss of generality.

Now suppose π(µi, µ0) < δ. We have

µi(C) < µ0(Cδ) + δ < µ0(C) + ε + δ < µ0(C) + 2ε

and similarly
µi(X ∖C) < µ0(X ∖C) + 2ε.

Hence ∣µi(C) − µ0(C)∣ < 2ε for all sufficiently large i, as required.

Now we can prove the effective Skorokhod representation theorem.

Proof of Theorem 2.3.67. We effectivize a classical proof of the Skorokhod
representation theorem (Fact 2.3.66) presented by Watanabe and Ikeda [71].

Write X = ⟨X,d,S⟩ and S = (si)i∈N. Apply Lemma 2.3.70 to fix an
effective basis {B(si, rk) ∶ i, k ∈ N} whose elements are uniformly almost
decidable for (µn)n∈N. (rk)k∈N is uniformly computable and dense in [0,∞),
and each open ball B(si, rk) has a µn-null boundary for all n.

Compute a subsequence (rmk)k∈N such that for all k, 2−(k+1) < rmk < 2−k.
This allows us to compute, from i and k, the cell

Dk
i = B (si, rmk) ∖⋃

j<i
B (sj , rmk) .

In turn, we can compute, from i1, i2, . . . , ik, the cell

Si1,i2,...,ik =D1
i1 ∩D

2
i2⋯∩Dk

ik
.

These cells have the following properties:

• If ij ≠ i′j for some j, then Si1,i2,...,ik ∩ Si′1,i′2,...,i′k = ∅

• ⋃ik∈N Si1,i2,...,ik−1,ik = Si1,i2,...,ik−1 and ⋃i∈N Si =X

• The diameter of Si1,i2,...,ik is less than 2−k

40

• µn(∂Si1,i2,...,ik) = 0 for all n

Because µn is uniformly computable, µn(Si1,i2,...,ik) is computable uniformly
from n and i1, i2, . . . , ik by Lemma 2.3.73.

Next, we compute, from n and i1, i2, . . . , ik, the endpoints of an open
subinterval ∆n

i1,i2,...,ik
of [0,1] with the following properties:

• The length of ∆n
i1,i2,...,ik

is µn(Si1,i2,...,ik)

• If ik ≠ i′k, then ∆n
i1,i2,...,ik

and ∆n
i1,i2,...,i′k

are disjoint

• Whenever ik < i′k, ∆n
i1,i2,...,ik

lies to the left of ∆n
i1,i2,...,i′k

• The union of ∆n
i1,i2,...,ik−1,ik over all ik is ∆n

i1,i2,...,ik−1 , so in particular

∆n
i1,i2,...,ik−1,ik ⊆ ∆n

i1,i2,...,ik−1

Fix n ∈ N. If µn(Si1,...,ik) > 0, we can apply Lemma 2.3.74 to compute,
from i1, . . . , ik, a point xni1,...,ik in the interior of the cell Si1,...,ik . Otherwise,
xni1,...,ik is undefined. We will now define the a.e. computable random variable
Zn on [0,1]. For all k ∈ N and t ∈ [0,1], set

Zkn(t) = xni1,...,ik for t ∈ ∆n
i1,...,ik

if the computable point xni1,...,ik , exists; otherwise, Zkn(t) is undefined on

∆n
i1,...,ik

. Zkn is also undefined at the endpoints of those intervals; the set of
endpoints has Lebesgue measure zero.

λ denotes Lebesgue measure. xni1,...,ik is undefined only if µn(Si1,...,ik) =
0, in which case λ(∆n

i1,i2,...,ik
) = 0. Therefore, Zkn is a.e. computable. A

countable union of null sets has measure zero, so there exists a set Hn ⊆ [0,1]
such that (i) λ(Hn) = 0 and (ii) for all k, Zkn is computable on [0,1] ∖Hn.

It is not difficult to see that our construction guarantees that for all
k′ > k ∈ N, for all t /∈ Hn, d(Zkn(t), Zk

′
n (t)) ≤ 2−k. Set Zn(t) = limk Z

k
n(t).

Then Zn is a.e. computable. Again, a countable union of null sets has
measure zero, so there exists a set H ⊆ [0,1] such that (a) λ(H) = 0 and (b)
for all n, Zn is computable on [0,1] ∖H.

By the classical proof of Fact 2.3.66, the distribution of Zn is in fact µn
for all n. We just need to show that Zn → Z0 effectively almost everywhere.

Fix ε > 0. Compute a k such that 2−k < ε. Intervals of the form ∆0
i1,...,ik

cover [0,1] up to a null set, so compute a finite set {c1, . . . , cm} of sequences
cj = ⟨ij1, . . . , i

j
k⟩ of length k such that

λ(∆0
c1 ∪⋯ ∪∆0

cm) > 1 − ε/2, i.e., λ(J) < ε/2, (2.3.21)

41

where J = J(ε) denotes the complement of ∆0
c1 ∪⋯ ∪∆0

cm in [0,1].
There are only finitely many cells Sc1 , . . . , Scm , so Lemma 2.3.75 says we

can compute an N ∈ N such that for all n ≥ N ,

max
1≤j≤m

∣µn(Scj) − µ0(Scj)∣

is arbitrarily small, which implies max1≤j≤m λ(∆0
cj⊖∆n

cj) can be made small,

where ⊖ denotes symmetric difference. ∆0
cj and ∆n

cj are intervals, so we have
shown that their endpoints can be made arbitrarily close; the endpoints of
∆0
cj are fixed for each j, so we can compute an N = N(ε) such that for all

n ≥ N , for j = 1, . . . ,m, the left and right endpoints of ∆n
cj are within ε/8m

of the left and right endpoints, respectively, of ∆0
cj .

For j = 1, . . . ,m, let Fj and Gj be the real intervals of length ε/4m
centered at the left and right endpoints, respectively, of ∆0

cj . Hence, for all
n ≥ N , the endpoints of ∆n

cj belong to (Fj ∪Gj) ∩ [0,1], and so the points

t ∈ ∆0
cj ∖ (Fj ∪Gj) belong to ∆n

cj as well as ∆0
cj .

Let K =K(ε) = (F1 ∪G1 ∪⋯ ∪ Fm ∪Gm) ∩ [0,1]. Then

λ(K) ≤ 2m ⋅ ε/4m = ε/2.

Finally, λ(J ∪K) < ε/2 + ε/2 = ε, and for all t /∈ J ∪K, for all n ≥ N , our
construction guarantees that

d(Z0(t), Zn(t)) < 2−k < ε,

since Z0(t), Zn(t) ∈ Scj for some j = 1, . . . ,m, and the diameter of each

cell Scj is less than 2−k. Therefore, Zn → Z0 effectively almost everywhere,
which completes the proof of Theorem 2.3.67.

42

Chapter 3

Effective Skorokhod space

A function, defined on some subset of the real line and taking values in a
metric space, is said to be càdlàg1 if it is everywhere continuous on the right
with limits on the left. Essentially, càdlàg functions are continuous except
where they jump, which is countably often at most. In this chapter, we
introduce a computable metric space whose points are càdlàg functions on
a closed and bounded interval. This space is fundamental to our effective
theory of Lévy and Feller processes.

How is the function space relevant? A stochastic process X is typically
described as a time-indexed family {Xt} of random variables ω ↦Xt(ω), but
it can also be treated as a single random variable ω ↦ (t ↦ Xt(ω)) taking
values in some space of functions; the values of this “random function” are
the sample paths of the process. In computable analysis, a sample path
presentation is more useful, assuming the function space is reasonably well
behaved.2 In fact, the sample paths of Lévy and Feller processes are càdlàg
(to be precise, up to a modification), so they live in Skorokhod space.

In Section 3.1, we review the classical theory of càdlàg functions. In
Section 3.2, we show that those functions form a computable metric space.
In Section 3.3, we establish the computable properties of càdlàg functions
that will be needed in the following chapters.

1From the French: “continue à droite, limite à gauche.” Also known as rcll, for “right-
continuous, left-limited.” Rogers and Williams [65] use the term R-function.

2As an example of a function space that is not well behaved, the Daniell-Kolmogorov
extension theorem gives a canonical process with sample paths in the space of all functions
from, say, [0,1] to R, but that space (with the product topology) is not even separable.
See Theorem 1.3.2 in Revuz and Yor [63] or Theorem II.30.1 in Rogers and Williams [65].

43

3.1 Skorokhod space

This section is review, based on the well-known Billingsley [7]. We describe
a topology on the space of right-continuous, left-limited functions from a
closed and bounded interval to a complete, separable metric space.

3.1.1 Càdlàg functions

We begin with a standard bit of notation (and a convention). Fix a complete,
separable metric space ⟨E,d⟩ and a real number T > 0.

Notation 3.1.1. Let f ∶ [0, T]→ E.

(i) For 0 < t ≤ T , f(t−) denotes the left-hand limit lims↑t f(s), if it exists.

(ii) For 0 ≤ t < T , f(t+) denotes the right-hand limit lims↓t f(s), if it exists.

By convention, f(0−) = f(0) and f(T+) = f(T).

The reader will be quite familiar with spaces of continuous functions.

Definition 3.1.2. CE = CE[0, T] denotes the set of continuous functions
from [0, T] to E. CE is complete and separable under the uniform metric

d∞(f, g) = sup{d(f(t), g(t)) ∶ 0 ≤ t ≤ T}. (3.1.1)

Our interest, again, is in a larger class of functions:

Definition 3.1.3. A function f from [0, T] to E is said to be càdlàg if f is
everywhere continuous on the right with limits on the left; that is,

(i) for 0 < t ≤ T , f(t−) exists, and

(ii) for 0 ≤ t < T , f(t+) exists and equals f(t).

The set of càdlàg functions from [0, T] to E is denoted by DE = DE[0, T].

Notation 3.1.4. When E = R, the most common case, we may omit E from
the notation for the set of càdlàg functions and write simply D = D[0, T].

Remark 3.1.5. Evidently, continuous functions are càdlàg, and the reverse
inclusion does not hold for nontrivial E: CE[0, T] ⊊ DE[0, T].

We need some notation to describe the jumps (discontinuities) of a càdlàg
function f , and we can be more descriptive when f is vector-valued:

44

Definition 3.1.6. In general, for f ∈ DE[0, T] and 0 ≤ t ≤ T , we let

∆f(t) = d(f(t), f(t−)), (3.1.2)

which we can call the size of the jump at t.
If E = V is a vector space, hence a Banach space, then for f ∈ DV [0, T],

we can also define its jump function Jf ∶ [0, T]→ V by

Jf(t) = f(t) − f(t−). (3.1.3)

The following auxiliary function is occasionally useful, as it measures
how much a given function varies on a given set:

Definition 3.1.7. Let f ∶ [0, T]→ E be any function, not necessarily càdlàg.
Let P ⊆ [0, T] be any set. Let

ηf(P) = sup{d(f(s), f(t)) ∶ s, t ∈ P}. (3.1.4)

For instance, we can use η to define the modulus of continuity:

Definition 3.1.8. Let f ∶ [0, T] → E be any function. The modulus of
continuity of f is given by

πC(f, δ) = sup{ηf [t, t + δ] ∶ 0 ≤ t ≤ T − δ}. (3.1.5)

Fact 3.1.9. f is continuous if and only if limδ→0 πC(f, δ) = 0.

Continuous functions on [0, T] are uniformly continuous, of course, and
there is a notion of uniformity for càdlàg functions too, as follows.

Definition 3.1.10. A partition σ of [0, T] is a string ⟨σi⟩i≤n of real numbers
such that 0 = σ0 < σ1 < ⋯ < σn−1 < σn = T . Let ∣σ∣ = n.

Intervals of the form [σi, σi+1) are called subintervals of the partition.
The mesh of the partition is the length of the longest subinterval:

mesh(σ) = max
i<∣σ∣

{σi+1 − σi}. (3.1.6)

That brings us to uniformity for càdlàg functions:

Fact 3.1.11. Let f ∈ DE and ε > 0. There exists a partition σ such that

max
i<∣σ∣

ηf [σi, σi+1) < ε. (3.1.7)

Fact 3.1.11 is quite useful. For example, it implies

45

Fact 3.1.12. Let f ∈ DE .

(i) For all M > 0, {t ∶ ∆f(t) >M} is finite. Hence {t ∶ ∆f(t) ≠ 0} is
countable: càdlàg functions jump at most countably often.

(ii) The range of f has compact closure. In particular, the uniform metric
d∞ extends from CE to DE .

(iii) f can be approximated in the uniform metric d∞ by piecewise constant
functions. In particular, f is Borel measurable.

As we know, the modulus of continuity πC characterizes the continuous
functions. The càdlàg functions are characterized by a different modulus, as
follows; naturally, we call it the “càdlàg modulus.”

Definition 3.1.13. A partition σ is said to be δ-sparse if mesh(σ) > δ.

Definition 3.1.14. Let f ∶ [0, T] → E be any function (not necessarily
càdlàg). The càdlàg modulus of f is given by

πD(f, δ) = inf{max
i<∣σ∣

ηf [σi, σi+1) ∶ σ is δ-sparse}. (3.1.8)

Remark 3.1.15. If δ0 < δ1, then πD(f, δ0) ≤ πD(f, δ1).

The càdlàg modulus πD does in fact characterize the càdlàg functions:

Fact 3.1.16. A function f is càdlàg if and only if limδ→0 πD(f, δ) = 0.

We may need to compare the two moduli, πC and πD. It is easy to prove

Fact 3.1.17. Let δ < T /2. Then

(i) πD(f, δ) ≤ πC(f,2δ) for all f ∶ [0, T]→ E, and

(ii) πC(f, δ) ≤ 2πD(f, δ) for all continuous f ∶ [0, T]→ E.

Hence the moduli are essentially equivalent for continuous functions.

3.1.2 Skorokhod topology

In the last part, we introduced DE[0, T], the set of càdlàg functions from
[0, T] to E. Now we give it a metric that induces a separable topology.

We know that the uniform metric d∞ extends from CE to DE , and it is
easy to see that DE is complete under d∞. However, the uniform topology
is too large: ⟨DE , d∞⟩ is not separable for nontrivial E, as follows.

46

Example 3.1.18. Let x, y ∈ E be distinct points and let t0 ≥ 0. Define a
càdlàg function ht0 = h

x,y
t0

by the formula

ht0(t) = { x if t < t0,
y if t ≥ t0.

(3.1.9)

If t1 < t2 ≤ T , then d∞(ht1 , ht2) = d(x, y). It follows that no countable subset
of DE can be dense with respect to d∞.

Example 3.1.18 will be the basis for several other examples.
We can express uniform convergence in terms of graphs, which motivates

the definition of a more suitable topology on DE .

Definition 3.1.19. Let f ∶ [0, T] → E be any function. The graph of f is
the set of ordered pairs

{⟨t, x⟩ ∶ f(t) = x} ⊆ [0, T] ×E. (3.1.10)

In the pair ⟨t, x⟩, t is called the abscissa and x the ordinate.

Essentially, two functions f and g are near one another in the uniform
topology if the graph of f can be moved onto the graph of g by a uniformly
small change in the ordinates, leaving the abscissas fixed. We can define
another topology on DE , called the Skorokhod topology, in such a way that
two functions f and g are near one another if the graph of f can be moved
onto the graph of g by a uniformly small change in both the ordinates and
the abscissas. Thus two functions can be near one another in the Skorokhod
topology even if they do not jump at the same times—interpreting [0, T] as
a time interval, obviously. We will now make this precise.

The Skorokhod topology is defined in terms of time changes:

Definition 3.1.20. A time change φ is a continuous, strictly increasing
bijection of [0, T] onto [0, T]. The set of time changes is denoted by Λ = ΛT .

Fact 3.1.21. We list some basic facts about time changes.

(i) Time changes are uniformly continuous, and they fix 0 and T .

(ii) The identity function id ∶ [0, T]→ [0, T] is a time change.

(iii) For all φ,ψ ∈ Λ, φ○ψ ∈ Λ and φ−1 ∈ Λ. In other words, the time changes
form a group under composition.

47

Definition 3.1.22. The Skorokhod metric d○J on DE is given by

d○J(f, g) = inf
φ∈Λ

max{∥φ − id∥∞, d∞(f, g ○ φ)} . (3.1.11)

The Skorokhod topology, denoted by J1, is the topology induced by d○J .

We collect some useful facts about the Skorokhod metric and topology.

Fact 3.1.23. For any time change φ and càdlàg functions f and g,

∥φ − id∥∞ = ∥id − φ−1∥∞ and d∞(f, g ○ φ) = d∞(f ○ φ−1, g). (3.1.12)

Fact 3.1.24. For any time change φ and partition σ, φ(σ) = ⟨φ(σi)⟩ is a
partition (of equal length). Moreover,

∣mesh(σ) −mesh(φ(σ))∣ ≤ 2∥φ − id∥∞. (3.1.13)

Fact 3.1.25. Let f and (fn)n∈N be càdlàg. Then d○J(fn, f)→ 0 if and only
if there exists a sequence (φn)n∈N of time changes such that

∥φn − id∥∞ → 0 and d∞(fn ○ φn, f)→ 0. (3.1.14)

Fact 3.1.26. The Skorokhod topology is coarser than the uniform topology:
if d∞(fn, f)→ 0, then d○J(fn, f)→ 0, but the converse does not hold.

Example 3.1.27. Recall Example 3.1.18. Let x ≠ y ∈ E and t0 < T . Let

f = hx,yt0 and fn = hx,yt0+1/n for all n ∈ N. (3.1.15)

Evidently, d○J(fn, f)→ 0, but d∞(fn, f) = d(x, y) for all n.

Fact 3.1.28. If d○J(fn, f) → 0, then d(fn(t), f(t)) → 0 for all points of
continuity t for f . If moreover f is continuous, then d∞(fn, f) → 0. The
Skorokhod topology relativized to CE coincides with the uniform topology.

Finally, we identify a countable dense subset of DE , which will be used
extensively when we effectivize the Skorokhod topology.

Definition 3.1.29. Recall that E is separable. Fix a countable dense subset
S of E. For all n ∈ N, let Sn be the set of S-valued càdlàg step functions
on [0, T] that are constant on each of the intervals [i2−nT, (i + 1)2−nT) for
i = 0, . . . ,2n − 1. The elements of S = ⋃n∈N Sn are called simple functions.

Fact 3.1.30. A càdlàg function f can be approximated in d○J by simple
functions. Hence the Skorokhod topology is separable: S is dense.

48

3.1.3 Billingsley metric

Both the Skorokhod metric d○J and the topology J1 it induces have unusual
and inconvenient features. For instance, under J1, if V is a (nontrivial)
Banach space, then DV is neither complete nor a topological group under
pointwise addition, as the following example shows.

Example 3.1.31. Recall Example 3.1.18. Let v1 ≠ v2 ∈ V and t0 < T . Let

f = hv1,v2t0
and fn = hv1,v2t0+1/n for all n ∈ N. (3.1.16)

We know that d○J(fn, f)→ 0. But consider the sequence of differences

(fn − f)(s) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 if s < t0,
v1 − v2 if t0 ≤ s < t0 + 1/n,
0 if t0 + 1/n ≤ s.

(3.1.17)

Although it is a Cauchy sequence with respect to d○J , it does not converge.

A similar example shows that DE is not complete under d○J for any
(nontrivial) complete, separable metric space E.

On the other hand, completeness is not a topological property, and there
is a topologically equivalent metric dJ , which we call the Billingsley metric,
under which DE is complete. The definition of this new metric hinges on a
different notion of what it might mean for a change in the abscissas to be
“uniformly small,” as follows.

Definition 3.1.32. The deviation ∥φ∥○ of a time change φ is given by

∥φ∥○ = sup{∣ln φt − φs
t − s ∣ ∶ 0 ≤ s < t ≤ T} . (3.1.18)

Remark 3.1.33. Since (φt − φs)/(t − s) > 0 is the slope of a chord of the
graph of φ, the deviation measures the most those slopes deviate from 1.

Fact 3.1.34. For all φ,φ1, φ2 ∈ Λ,

(i) ∥φ−1∥○ = ∥φ∥○ ≥ 0 = ∥id∥○, and

(ii) ∥φ1 ○ φ2∥○ ≤ ∥φ1∥○ + ∥φ2∥○.

Definition 3.1.35. The Billingsley metric dJ on DE is given by

dJ(f, g) = inf
φ∈Λ

max{∥φ∥○, d∞(f, g ○ φ)} . (3.1.19)

49

Remark 3.1.36. Compare Definition 3.1.22. The only difference is that
where the Skorokhod metric uses the sup-norm to measure how much a
time change differs from identity, the Billingsley metric uses the deviation.

The analogue of Fact 3.1.25 for the Billingsley metric is

Fact 3.1.37. Let f and (fn)n∈N be càdlàg. Then dJ(fn, f)→ 0 if and only
if there exists a sequence (φn)n∈N of time changes such that

∥φn∥○ → 0 and d∞(fn ○ φn, f)→ 0. (3.1.20)

We need to be able to compare the Skorokhod and Billingsley metrics.
It is not difficult to prove

Fact 3.1.38. For all φ ∈ Λ, ∥φ − id∥∞ ≤ T (e∥φ∥○ − 1).

Fact 3.1.38 and the elementary inequality u ≤ eu − 1 for all u ∈ R imply

Fact 3.1.39. For all f, g ∈ DE , d○J(f, g) ≤ max{1, T}(edJ(f,g) − 1).

Then Fact 3.1.39 implies that if dJ(fn, f) → 0, then d○J(fn, f) → 0. The
converse follows from

Fact 3.1.40. For all f, g ∈ DE , if d○J(f, g) < δ2 and δ < min{T,1/4}, then

dJ(f, g) ≤ 4δ + πD(f, δ), (3.1.21)

where πD is the càdlàg modulus (see Definition 3.1.14 and Fact 3.1.16).

Facts 3.1.39 and 3.1.40 together imply

Fact 3.1.41. dJ and d○J are topologically equivalent.

Incidentally, Fact 3.1.38 and the elementary inequality eu −1 ≤ 2u for all
0 ≤ u ≤ 1/2 give us a convenient estimate:

Fact 3.1.42. If ∥φ∥○ ≤ 1/2, then ∥φ − id∥∞ ≤ 2T ∥φ∥○.

It remains only to show that the Billingsley metric dJ is complete. First,
we associate to each càdlàg function f and partition σ an auxiliary càdlàg
function Aσf which is useful in certain proofs.

Definition 3.1.43. For a given partition σ, the operator Aσ ∶ DE → DE

is defined as follows: Aσf takes the constant value f(σi) on the interval
[σi, σi+1) for i < ∣σ∣, and Aσf(T) = f(T).

50

Fact 3.1.44. If mesh(σ) ≤ δ, then d○J(f,Aσf) ≤ max{δ, πD(f, δ)}.

We already know that the Skorokhod topology is separable. Using Fact
3.1.44, we can show that DE is complete under the new metric. To sum up:

Fact 3.1.45. The space DE is separable and complete with respect to the
Billingsley metric dJ . The simple functions S are dense in DE .

Definition 3.1.46. The space ⟨DE , dJ⟩ is called Skorokhod space.

3.2 Effective Skorokhod space

Previously, we defined Skorokhod space ⟨DE , dJ⟩, where DE = DE[0, T]
is the set of càdlàg functions from [0, T] to a complete, separable metric
space E, and dJ is the Billingsley metric, which makes DE complete and
separable. Now we turn Skorokhod space into a computable metric space
by identifying a suitable set of ideal points.

3.2.1 Simple functions

Fix a computable metric space ⟨E,d,S⟩ and T > 0. All the results in this
section and the next are uniform from a name for T , although it is generally
safe to assume that T is a whole number, or at the very least rational. In
any case, we begin by identifying a set of ideal points for ⟨DE , dJ⟩.

We were given a countable dense subset S of E. Recall Definition 3.1.29.
For all n ∈ N, Sn denotes the set of S-valued càdlàg step functions on
[0, T] that are constant on each of the intervals [i2−nT, (i + 1)2−nT) for
i = 0, . . . ,2n − 1. The elements of S = ⋃n∈N Sn are called simple functions,
and S is dense in DE . The simple functions will be our ideal points.

Remark 3.2.1. A simple function can be coded as a string in S.

In order to use the simple functions as ideal points for DE , we must
be able to compute dJ(f, g) uniformly from codes for simple functions f, g.
Because simple functions have a special form, we will be able to prove, in
Proposition 3.2.7 below, that we can compute, from codes for f and g, a
code for a time change ψ which is optimal in the sense that the infimum

dJ(f, g) = inf
φ∈Λ

max{∥φ∥○, d∞(f, g ○ φ)}

is actually attained for φ = ψ. Essentially, this is because ψ itself must have
a special form. We will now make this precise.

51

Notation 3.2.2. For all n ∈ N, for i = 0, . . . ,2n, let rn,i = i2−nT . In this
context, we will call a real number of the form rn,i a breakpoint.

Definition 3.2.3. For all n ∈ N, Γn denotes the set of time changes ψ for
which there exists a partition σ = ⟨rn,i(k)⟩ made up of breakpoints such that

(i) for all k ≤ ∣σ∣, there exists a j such that ψ(rn,i(k)) = rn,j , and

(ii) for all k < ∣σ∣, ψ is linear on the interval (rn,i(k), rn,i(k+1)).

Evidently, Γn is finite. Note also that Γn ⊆ Γm for all m > n. The elements
of Γ = ⋃n∈N Γn are called basic time changes.

Remark 3.2.4. A basic time change can be coded as a string of rationals.
It is also evidently computable as a function from [0, T] to [0, T].

It is not difficult to prove the following two lemmas. The first belongs
to computability theory; the second, to elementary geometry.

Lemma 3.2.5. Given codes for f, g ∈ S and ψ ∈ Γ, we can compute the
rationals d∞(f, g○ψ) and ∥ψ− id∥∞, the real number ∥ψ∥○, and the rationals
mins<t{(ψt − ψs)/(t − s)} and maxs<t{(ψt − ψs)/(t − s)}.

Lemma 3.2.6. Let φ1, φ2 ∈ Λ and 0 ≤ s < t ≤ T . If φ1 = φ2 outside (s, t), φ1

is linear on (s, t), and φ2 is not linear on that interval, then

∥φ1∥○ ≤ ∥φ2∥○ and ∥φ1 − id∥∞ ≤ ∥φ2 − id∥∞. (3.2.1)

With Lemmas 3.2.5 and 3.2.6, we can prove

Proposition 3.2.7. Given codes for f, g ∈ S , we can compute (i) the code
of a basic time change ψ0 such that

dJ(f, g) = max{∥ψ0∥○, d∞(f, g ○ ψ0)} , (3.2.2)

so that ψ0 may be considered optimal with respect to dJ , and (ii) the code
of a basic time change ψ1 such that

d○J(f, g) = max{∥ψ1 − id∥∞, d∞(f, g ○ ψ1)} , (3.2.3)

so that ψ1 may be considered optimal with respect to d○J .

52

Proof. We will prove claim (i), constructing a time change ψ that is optimal
with respect to dJ . The proof of claim (ii) is exactly analogous.

Given codes for f, g ∈ S , compute an n ∈ N such that f, g ∈ Sn. We
claim that there is no time change φ /∈ Γn such that for all ψ ∈ Γn,

max{∥φ∥○, d∞(f, g ○ φ)} < max{∥ψ∥○, d∞(f, g ○ ψ)} .

If this claim is true, then the result follows from Lemma 3.2.5: we compute
the code of each element ψ of Γn, a finite set, then compute ∥ψ∥○ ∈ R and
d∞(f, g ○ ψ) ∈ Q, and on that basis choose an optimal ψ.

Suppose the claim is false, i.e., that such a time change φ exists. Let
an,i = φ−1(rn,i) for i = 0, . . . ,2n. Because f is constant on each interval of
the form (rn,i, rn,i+1), the behavior of φ on the interval (an,i, an,i+1) cannot
affect the value of d∞(f, g ○ φ). By Lemma 3.2.6, we may assume that φ is
linear on (an,i, an,i+1) for all i, as this can only improve ∥φ∥○.

Next, note that ∥φ−1∥○ = ∥φ∥○ and d∞(f, g ○ φ) = d∞(f ○ φ−1, g). Let
bn,i = φ(rn,i) for all i. Because z is constant on each interval of the form
(rn,i, rn,i+1), the behavior of φ−1 on the interval (bn,i, bn,i+1) cannot affect
the value of d∞(f ○φ−1, g). By Lemma 3.2.6 again, we may assume that φ−1

is linear on (bn,i, bn,i+1) for all i. That is, φ is linear on intervals of the form
(rn,i, rn,i+1). Note that this change cannot undo our progress by somehow
making φ nonlinear on intervals of the form (an,i, an,i+1).

In short, φ, or an improvement on φ, is linear on intervals of the form

(φ−1(rn,i), φ−1(rn,i+1)) and (rn,i, rn,i+1) for all i.

Therefore, if the graph of φ is nonlinear in a neighborhood of some point
⟨t, φt⟩, both t and φt must be breakpoints. In other words, φ maps some of
the breakpoints to breakpoints and is linear in between; that is, φ belongs
to Γn after all. This completes the proof.

Together, Lemmas 3.2.5 and 3.2.7 imply

Proposition 3.2.8. The real numbers dJ(f, g) and d○J(f, g) are computable
uniformly from codes for simple functions f and g.

S admits a canonical enumeration (given that the ideal points S of E
have already been enumerated). Hence Proposition 3.2.8 implies that DE is
a computable metric space under dJ with S for ideal points.

Notation 3.2.9. From now on, by Skorokhod space (Definition 3.1.46) we
mean the computable metric space ⟨DE , dJ ,S ⟩, ideal points included.

53

The next two definitions are special cases of Definitions 2.2.13 and 2.2.14.

Definition 3.2.10. A Cauchy name, or just a name, for a càdlàg function
f is a sequence (fn)n∈N of simple functions such that

(i) dJ(fn, f)→ 0, and

(ii) dJ(fn, fm) < 2−n for all m > n.

Definition 3.2.11. A càdlàg function f is said to be computably càdlàg if
it has a computable Cauchy name. This definition can be made uniform.

3.2.2 Time changes and partitions

If (fn)n∈N is a name for a càdlàg function f , then there must be a sequence
(φn)n∈N of time changes such that ∥φn∥○ → 0 and d∞(fn ○ φn, f) → 0. Here
we consider the computability of (φn)n∈N and of other useful time changes.
For clarity, we state

Definition 3.2.12. Quite simply, a time change φ is said to be computable
if φ is computable as a function from [0, T] to [0, T].

Proposition 3.2.13. Uniformly from a name (fn)n∈N for f ∈ DE , we can
compute a sequence (φn)n∈N of time changes such that for all n ∈ N,

∥φn∥○ < 2−n+1 and d∞(fn ○ φn, f) < 2−n+1.

Proof. The following is uniform from (fn)n∈N.
Since dJ(fn, fm) < 2−n for all m > n, Lemma 3.2.7 says that, given n,

we can compute (the code of) a basic time change ψn such that ∥ψn∥○ < 2−n

and d∞(fn, fn+1 ○ ψn) < 2−n.
For all n,m ∈ N, compute the basic time change

ρmn = ψn+m ○ ψn+m−1 ○ ⋯ ○ ψn+1 ○ ψn.

Note that ρm+1
n = ψn+m+1 ○ ρmn . It follows from this and Fact 3.1.42 that

∥ρm+1
n − ρmn ∥∞ = ∥ψn+m+1 − id∥∞ ≤ 2T ∥ψn+m+1∥○ < 2−(n+m)T.

Hence, for all n, (ρmn)m∈N yields a computable Cauchy name in C[0, T]. Its
limit τn is computable on [0, T], uniformly from n, and given by

τn = lim
m

(ψn+m ○ ψn+m−1 ○ ⋯ ○ ψn+1 ○ ψn).

54

Evidently, τn is non-decreasing and fixes 0 and T , so if we can just show
that τn is strictly increasing, then τn must be a time change. Fact 3.1.34
(ii) implies that ∥τn∥○ < 2−n+1. Since, in particular, ∥τn∥○ < ∞, τn must be
strictly increasing, which makes it a time change.

Time changes are continuous, so

τn+1 ○ ψn = lim
m

(ψn+m ○ ψn+m−1 ○ ⋯ ○ ψn+1 ○ ψn) = τn.

Equivalently, τ−1
n+1 = ψn ○ τ−1

n . Letting φn = τ−1
n for all n, we have

d∞(fn ○ φn, fn+1 ○ φn+1) = d∞(fn, fn+1 ○ ψn) < 2−n.

So (fn ○φn)n∈N is Cauchy in DE with respect to d∞. DE is complete in the
uniform topology, so d∞(fn ○ φn, g) → 0 for some g ∈ DE . Since ∥φn∥○ → 0
as well, dJ(fn, g)→ 0 (Fact 3.1.37). Limits are unique, so g = f .

In fact, we also found a rate of convergence: d∞(fn ○ φn, f) < 2−n+1.
Finally, φn is computable uniformly from n, and ∥φn∥○ = ∥τn∥○ < 2−n+1,
which completes the proof.

In light of Proposition 3.2.13, without loss of generality, whenever we
compute from a name (fn)n∈N for some f ∈ DE , we also have a sequence
(φn)n∈N of time changes such that ∥φn∥○ < 2−n and d∞(fn○φn, f) < 2−n. This
fact is often useful. For example, we can use it to effectivize Fact 3.1.11 quite
easily, as follows. Recall the auxiliary function ηf (Definition 3.1.7), which
we used to define the càdlàg modulus πD (Definition 3.1.14).

Proposition 3.2.14. Given n ∈ N, uniformly from a name for f ∈ DE , we
can compute a partition σ and rationals ri such that for all i < ∣σ∣, for all
t ∈ [σi, σi+1), we have d(f(t), ri) < 2−n−1. In particular, ηf [σi, σi+1) < 2−n.

Naturally, to “compute a partition” σ = ⟨t0, . . . , tk⟩ is simply to compute
k = ∣σ∣ and t0, . . . , tk ∈ R.

Proof. Using Proposition 3.2.13, compute a time change φ and (the code
of) a simple function g such that d∞(f, g ○ φ) < 2−n−1. g is constant on
intervals of the form [i2−kT, (i+1)2−kT) for some k computable from g. For
i = 0, . . . ,2k, let si = i2−kT and compute the real number ti = φ−1(si) and
the rational number ri = g(qi). For i = 0, . . . ,2k − 1 and t ∈ [ti, ti+1),

d(f(t), ri) ≤ d∞(f, g ○ φ) < 2−n−1.

Let σ = ⟨t0, . . . , t2k⟩. We have ηf [ti, ti+1) < 2−n by the triangle inequality.

55

Proposition 3.2.14, in turn, lets us effectivize Fact 3.1.16:

Corollary 3.2.15. Given n ∈ N, uniformly from a name for f ∈ DE , we
can compute a positive rational δ and a δ-sparse partition σ such that
ηf [σi, σi+1) < 2−n for all i < ∣σ∣. In particular, πD(f, δ) < 2−n.

Proof. Compute σ as in Proposition 3.2.14 and choose any δ < mesh(σ).

3.3 Computably càdlàg functions

Computable functions (between computable metric spaces) are necessarily
continuous, so computably càdlàg functions that are not continuous cannot
be computable as functions. In this section, we investigate what we can and
cannot compute from a name for a càdlàg function.

3.3.1 Partial computability

Here we establish basic computability properties of Skorokhod space DE =
DE[0, T], which will be used extensively in the sequel. The key result is

Theorem 3.3.1. If t is a point of continuity for a càdlàg function f , i.e., if
∆f(t) = 0, then f(t) is computable uniformly from names for f and t. Also,
f(T) is computable uniformly from a name for f .

Proof. First of all, f(T) is computable uniformly from a name for f because
time changes fix T , so d(f(T), g(T)) ≤ dJ(f, g) for all càdlàg g.

As for the other claim, let t be a point of continuity for f . The following is
uniform from a name (fn)n∈N for f and a name for t. Let ε < 1/2 be a positive
rational. We will compute an ideal point a ∈ S such that d(a, f(t)) < 5ε.

First, we compute a sequence (gk)k∈N of simple functions. For all k, let
δk = 2−kε. Then use Proposition 3.2.13 to compute a simple function gk and
a time change φk such that ∥φk∥○ < δk/T and d∞(f, gk ○ φk) < δk.

By Fact 3.1.42, ∥φk − id∥∞ < 2δk. Let sk = φk(t), so

d(f(t), gk(sk)) < δk and ∣sk − t∣ < 2δk.

Compute a rational tk such that ∣t− tk∣ < δk. Then ∣sk − tk∣ < 3δk. Let Jk
be the rational interval (tk − 3δk, tk + 3δk) ∩ [0, T], so that sk ∈ Jk.

Next, compute ηgk(Jk) (Definition 3.1.7). Suppose ηgk(Jk) < 4ε. Then
f(t) is within δk of gk(sk), sk belongs to Jk, gk varies by less than 4ε on Jk,
and δk ≤ ε. Hence f(t) is within 5ε of a = gk(sk).

56

On the other hand, if ηgk(Jk) ≥ 4ε, we can increment k and try again
with δk+1 = δk/2. It suffices that this search terminate, i.e., that for large
enough k, ηgk(Jk) < 4ε. f is continuous at t, so for sufficiently large k,

(∀0 ≤ r ≤ T) ∣t − r∣ < 6δk Ô⇒ d(f(t), f(r)) < ε.

Let u ∈ Jk and let r = φ−1
k (u). It follows that d(f(r), gk(u)) < δk and

∣u−r∣ < 2δk. We also have ∣t− tk∣ < δk and ∣tk −u∣ < 3δk, so ∣t−r∣ < 6δk. Hence
d(f(t), f(r)) < ε. We have

d(f(t), gk(u)) ≤ d(f(t), f(r)) + d(f(r), g(u)) < ε + δk ≤ 2ε

for all u ∈ Jk. f(t) is fixed, so ηgk(Jk) < 2 ⋅ 2ε = 4ε, as required.

Corollary 3.3.2. Let f ∶ [0, T] → E be continuous. Then f is computably
càdlàg if and only if f is computable.

Using Fact 2.2.84 (generalized Fact 2.2.49), we can strengthen Corollary
3.3.2 for functions taking values in a computable Banach space V :

Corollary 3.3.3. Let f ∶ [0, T] → V be continuous. Then a name for f in
DV [0, T] is computable from a name for f in CV [0, T], and vice versa.

The set of jump times is countable, so Theorem 3.3.1 also implies

Corollary 3.3.4. Uniformly from a name for f in DE[0, T], the function
f ∶ [0, T] → E is a.e. computable (with respect to Lebesgue measure λ).
Hence the inclusion mapping DE[0, T]→ L0([0, T], λ;E) is computable.

Moreover, the proof of Theorem 3.3.1 may be adapted to prove

Proposition 3.3.5. The set of points of continuity for a càdlàg function f
is Π0

2 (i.e., the set of jump times is Σ0
2) uniformly from a name for f .

Proof. The following is uniform in a name for f ∈ DE .
Suppose we have a name for t. As in the proof of Theorem 3.3.1, given

a positive rational ε < 1/2, for all k ∈ N, we can compute the following:

• δk = 2−kε,

• a simple function gk and a time change φk such that d∞(f, gk ○φk) < δk
and ∥φk∥○ < δk/T , which in turn implies ∥φk − id∥∞ < 2δk,

• sk = φk(t),

57

• a rational tk such that ∣t − tk∣ < δk,

• the rational interval Jk = (tk − 3δk, tk + 3δk)∩ [0, T] containing sk, and

• the real number ηgk(Jk) (Definition 3.1.7).

Recall that if ∆f(t) = 0, then ηgk(Jk) < ε for sufficiently large k. Let

C = {t ∈ [0, T] ∶ (∀ε) (∃k) (ηgk(Jk) < ε)}.

Evidently, C is Π0
2. We need to show that if ∆f(t) > 0, then t /∈ C.

Suppose ∆f(t) > 0 and fix ε < ∆f(t)/3. For each k, compute the list
of objects mentioned above, then let Ik = (tk − δk, tk + δk) ∩ [0, T]. Because
∥φk − id∥∞ < 2δk, φ

−1
k (Ik) ⊆ Jk. It follows that

ηgk(Jk) ≥ ηgk(φ−1(Ik)) > ηf(Ik) − 2δk.

Moreover, since ∣t − tk∣ < δk, Ik includes t as well as all points s < t that are
sufficiently close to t. Hence ηf(Ik) ≥ d(f(t), f(t−)) = ∆f(t).

Since ∆f(t) > 3ε and δk ≤ ε, ηgk(Jk) > 3ε − 2δk ≥ ε. This holds for all k,
so t /∈ C, which completes the proof.

There is an alternative characterization of computably càdlàg functions
that will prove quite useful:

Theorem 3.3.6. Uniformly from a name for f ∈ DE[0, T], we can compute

(i) the endpoint f(T),

(ii) a sequence (σn)n∈N of partitions such that for all n,

ηf [σnk , σnk+1) < 2−n for all k < ∣σn∣, and (3.3.1)

(iii) a sequence (tj)j∈N of reals dense in [0, T] such that f(tj) is computable
uniformly from j.

Conversely, from names for (i), (ii), and (iii), we can compute f .

Proof. First, suppose we have a name for f . Theorem 3.3.1 gives us (i) and
Proposition 3.2.14 gives us (ii). Proposition 3.3.5 states that the set C of
points of continuity for f is a dense Π0

2 set. By Fact 2.3.17 (computable Baire
category theorem), C contains a dense sequence of uniformly computable
points; this and Theorem 3.3.1 give us (iii).

Conversely, suppose we have names for (i), (ii), and (iii). Fix n ∈ N,
σ = σn, and the sequence (tj)j∈N. Let ⟨rk, f(rk)⟩ be a string of uniformly

58

computable pairs such that σk ≤ rk < σk+1 for all k < ∣σ∣. Define a càdlàg
function g by g(t) = f(rk) if σk ≤ t < σk+1 for some k, and g(T) = f(T).

Since σ is fixed, it is easy to see that g is computably càdlàg. Moreover,

dJ(f, g) ≤ d∞(f, g) ≤ max
k
ηf [σnk , σnk+1) < 2−n.

Thus we can compute f , which completes the proof.

Theorem 3.3.6 is an easy way to show that we can concatenate, truncate,
and perform other basic operations on càdlàg functions in a computable way,
though endpoints will always present minor difficulties.

Corollary 3.3.7. Let T1, T2 > 0. Let f ∈ DE[0, T1] and g ∈ DE[0, T2]. The
concatenated function f⌢g defined by

f⌢g(t) = { f(t) if 0 ≤ t < T1,
g(t − T1) if T1 ≤ t ≤ T1 + T2

(3.3.2)

is computable in DE[0, T1 + T2] uniformly from names for f, g, T1, T2.

Corollary 3.3.8. Let T2 > T1 > 0. Let f ∈ DE[0, T2]. The truncated
function g defined by g(t) = f(t) for 0 ≤ t < T1 and g(T1) = f(T1−) is
computable in DE[0, T1] uniformly from names for f, T1, T2.

Corollary 3.3.9. Let T1, T2 > 0. Let f ∈ DE[0, T1]. The càdlàg function
g defined by g(t) = f(t ⋅ T1/T2) for 0 ≤ t ≤ T2 is computable in DE[0, T2]
uniformly from names for f , T1, and T2.

The next result, which assembles a piecewise constant càdlàg function,
follows quite easily from Theorem 3.3.6 or directly from the definitions.

Corollary 3.3.10. Let a0, a1, . . . , an ∈ E. Let 0 = t0 < t1 < ⋯ < tn = T .
The càdlàg function f defined by f(t) = ai if t ∈ [ti, ti+1) for some i < n and
f(tn) = an is computable in DE[0, T] from names for t0, a0, . . . , tn, an.

3.3.2 Jump complexity

We collect some useful facts about the discontinuities of càdlàg functions.
The results are stated for càdlàg functions taking values in a computable

Banach space ⟨V, ∥ ⋅ ∥, S⟩ because it allows us to define the jump function
Jf(t) = f(t) − f(t−). However, the results can typically be generalized
in a straightforward way to càdlàg functions taking values in an arbitrary
computable metric space E.

We begin with an auxiliary result about approximating a single jump:

59

Lemma 3.3.11. Let f, g ∈ DV [0, T]. If dJ(f, g) < ε ≤ 1/2, then

∥Jf(t) −Jg(s)∥ < 2ε (3.3.3)

for some s such that ∣t − s∣ < 2Tε. So if ∥Jf(t)∥ >K, ∥Jg(s)∥ >K − 2ε.

Proof. By hypothesis, there exist a δ < ε and a time change φ such that
∥φ∥○ < δ and ∥f − g ○ φ∥∞ < δ. By Fact 3.1.42, ∥φ − id∥∞ < 2Tδ.

Let h = g ○ φ, so that ∥f − h∥∞ < δ. Let γ > 0. For r < t, if ∣r − t∣ is
small enough, then ∥f(r)−f(t−)∥ < γ and ∥h(r)−h(t−)∥ < γ. It follows that
∥f(t−) − h(t−)∥ < δ + 2γ. γ was arbitrary, so ∥f(t−) − h(t−)∥ ≤ δ.

Since Jf(t) = f(t) − f(t−) and Jh(t) = h(t) − h(t−), we have

∥Jh(t) −Jf(t)∥ ≤ ∥f(t) − h(t)∥ + ∥f(t−) − h(t−)∥ ≤ 2δ < 2ε.

Let s = φ−1(t), so that Jg(s) = Jh(t). Since ∣t − s∣ < 2Tδ < 2Tε and the last
claim in the lemma is obvious, this completes the proof.

Lemma 3.3.11 generalizes to multiple jumps, which we state as

Proposition 3.3.12. Let f, g ∈ DV [0, T]. Let dJ(f, g) < ε ≤ 1/2 and let
0 ≤ t0 < ⋯ < tn ≤ T be distinct times. Then there exist distinct times
0 ≤ s0 < ⋯ < sn ≤ T such that for all i ≤ n,

∣ti − si∣ < 2Tε and ∥Jf(ti) −Jg(si)∥ < 2ε. (3.3.4)

In particular, if ∥Jf(ti)∥ >Ki, ∥Jg(si)∥ >Ki − 2ε.

Proof. This is a straightforward generalization of the proof of Lemma 3.3.11.
Regarding the distinctness of the times si, just note that when we set si =
φ−1(ti), we get si ≠ sj whenever ti ≠ tj , for any time change φ.

As stated, Lemma 3.3.11 and Proposition 3.3.12 have no computable
content. Still, we use them to prove the key fact about jump computability:

Theorem 3.3.13. Uniformly from a name for f ∈ DV [0, T], we can compute
sequences (ti)i∈N ⊆ [0, T], (vi)i∈N ⊆ V , and (nj)j∈N ⊆ N such that

(i) for all i, Jf(ti) = vi ≠ 0,

(ii) each jump of f appears exactly once as a pair ⟨ti, vi⟩, and

(iii) for all i and j, if i > nj , then ∥vi∥ < 2−j .

Before we prove Theorem 3.3.13, we state two (and a half) corollaries.

60

Corollary 3.3.14. If f is computably càdlàg, any given jump ⟨t,Jf(t)⟩ of
f is computable. (Note that this is not stated uniformly.)

Proof. Fix i in the sequences (ti)i∈N, (vi)i∈N from Theorem 3.3.13.

Corollary 3.3.15. Given j ∈ N, uniformly from a name for f ∈ DV [0, T],
we can compute a Π0

1 null set A ⊆ [0, T] such that ∥Jf(t)∥ < 2−j for all t /∈ A.

Proof. Compute (ti)i∈N, (vi)i∈N, and nj from Theorem 3.3.13. For all n ∈ N,
compute closed rational intervals I0, . . . , Inj−1 ⊆ [0, T] of length 2−n/nj and
containing t0, . . . , tnj−1 (i.e., the first nj jump times).

Let Bn = [0, T]∖⋃k<nj Ik, a finite union of open rational intervals. Then

B = ⋃n∈NBn is Σ0
1. Of course, it follows that A = [0, T] ∖B is Π0

1, and A is
evidently a null set. This completes the proof.

In addition to Corollaries 3.3.14 and 3.3.15, note that Theorem 3.3.13
affirms Proposition 3.3.5: the image of a one-to-one enumeration is Σ0

2 (in a
uniform way), and in this case the image of (ti)i∈N is the set of jump times.

Proof of Theorem 3.3.13. The following is uniform from a name for f ∈
DV [0, T]. We proceed in stages, indexed by m ∈ N.

Let m be even and let n ≥ m + 2. Compute a simple function g such
that dJ(f, g) < 2−n. Compute the list of jumps ⟨t,Jg(t)⟩ of g such that
∥Jg(t)∥ > 2−m, say ⟨s0,w0⟩, . . . , ⟨sk,wk⟩.

By Proposition 3.3.12, each si is an approximation (to within 2−n+1T) of
a distinct jump time t of f , and the corresponding wi is an approximation
(to within 2−n+1) of v = Jf(t). Any jump ⟨t, v⟩ of f so approximated must
satisfy ∥v∥ > 2−m − 2−n+1 ≥ 2−m/2. Moreover, each jump ⟨t, v⟩ of f such that
∥v∥ > 2−m + 2−n+1 corresponds to exactly one pair ⟨si,wi⟩.

Enumerate s0, . . . , sk as approximations of distinct jump times t of f
such that ∥Jf(t)∥ > 2−m/2, and enumerate w0, . . . ,wk as approximations of
the corresponding values Jf(t). In short, the jumps we are enumerating by
this stage are distinct, include all jumps ⟨t, v⟩ of f such that ∥v∥ ≥ 2 ⋅ 2−m >
2−m + 2−n+1, and include only jumps ⟨t, v⟩ of f such that ∥v∥ > 2−m/2.

Having completed stage m, we add 2 to m and repeat. At this stage, the
jumps we are enumerating include all jumps ⟨t, v⟩ of f such that ∥v∥ ≥ 2−m/2.
In particular, they include every jump that we partially enumerated in the
previous stage, and every jump such that 2−m/2 < ∥v∥ < 2 ⋅ 2−m, which we
may or may not have begun to enumerate in the previous stage.

The enumeration just described establishes the theorem: each jump ⟨t, v⟩
of f satisfies ∥v∥ > 2−m for some least even m ∈ N, so it shows up in either

61

stage m or m + 2. In any case, each jump is enumerated exactly once, and
we can easily compute the sequence (nj)j∈N, as required.

Proposition 3.3.12 (jump approximation) can be used to prove a number
of facts about the arithmetical complexity of sets in DV = DV [0, T].

Proposition 3.3.16. Let B ⊆ V be open. Let A be the set of f ∈ DV that
jump at least n times by vectors belonging to B ∖ {0}; that is, such that

∣{t ∶ Jf(t) ∈ B ∖ {0}}∣ ≥ n. (3.3.5)

Then A is Σ0
1 uniformly from n and a name for B ∈ τ(V).

Remark 3.3.17. Proposition 3.3.16 applies to sets of the following forms,
which are Σ0

1 uniformly from names for a0, a1, a2, a3 > 0:

B1 = {v ∶ a0 < ∥v∥ < a1}, B2 = {v ∶ ∥v∥ > a2}, B3 = {v ∶ ∥v∥ < a3}.

Proof of Proposition 3.3.16. The proof is a straightforward generalization
of the following special case, when n = 1, B is an open ball, and 0 /∈ B.

Let A be the set of f ∈ DV with at least one jump v ∈ Br(v0), where
0 < r < ∥v0∥. We will show that A is Σ0

1 uniformly from names for r and v0.
Suppose f ∈ A. Then ∥v − v0∥ < r − 4ε for some positive rational ε < 1/2.

By Proposition 3.3.12, jump approximation (actually, in this special case,
Lemma 3.3.11 suffices), any simple function g such that dJ(f, g) < ε will
have a jump v1 such that ∥v1 − v0∥ < r − 2ε. Such a g exists.

Conversely, suppose g is a simple function with a jump v1 such that
∥v1 − v0∥ < r − 2ε for some positive rational ε < 1/2, and dJ(f, g) < ε. By
Proposition 3.3.12, f has a jump v such that ∥v − v0∥ < r − ε.

Given names for r, v0, and ε, we can enumerate the simple functions g
with at least one jump v1 such that ∥v1 − v0∥ < r − 2ε. It follows that

A = {f ∶ (∃ε) (∃g) (∃s) (dJ(f, g) < ε and ∥Jg(s) − v0∥ < 2ε)}

is Σ0
1 uniformly from names for r and v0, as required.

With a little work, many other facts about arithmetical complexity in DV

follow from Proposition 3.3.12 plus the fact (3.1.12) that càdlàg functions
have only finitely many jumps whose norm exceeds any given K > 0.

Proposition 3.3.18. Let v0 ∈ V ∖ {0}. Let G be the set of f ∈ DV with
fewer than n jumps equal to v0; that is, such that

∣{t ∶ Jf(t) = v0}∣ < n. (3.3.6)

62

G is Σ0
1 uniformly from n and a name for v0.

Moreover, let r > 0 and let F be the set of f ∈ DV with fewer than n
jumps of norm equal to r. F is Σ0

1 uniformly from n and a name for r.

Proof. Consider the first claim. The proof is a straightforward generalization
of the following special case, when n = 1. The second claim is similar.

Let G be the set of f ∈ DV with no jumps equal to v0. We will show
that G is Σ0

1 uniformly from a name for v0.
Suppose f ∈ G. f has only finitely many jumps v such that, say, ∥v∥ >

∥v0∥/2 (Fact 3.1.12), so there exists a positive rational ε < 1/2 such that f
has no jumps v ∈ B4ε(v0). By Proposition 3.3.12, any simple function g such
that dJ(f, g) < ε must have no jumps v1 ∈ B2ε(v0). Such a g exists.

Conversely, suppose there exists a positive rational ε < 1/2 and a simple
function g such that dJ(f, g) < ε and g has no jumps v1 ∈ B2ε(v0). By
Proposition 3.3.12, f has no jumps equal to v0.

Given v0 and ε, we can enumerate the simple functions g with no jumps
v1 such that ∥v1 − v0∥ < 2ε. It follows that the set

G = {f ∶ (∃ε) (∃g) (dJ(f, g) < ε and (∀s) ∥Jg(s) − v0∥ ≥ 2ε)}

is Σ0
1 uniformly from a name for v0, as required.

Together, Proposition 3.3.12 and Theorem 3.3.13 (jump enumeration)
can be used to evaluate the complexity of sets defined not only by the
number and size of jumps, but also by the times when they occur.

Proposition 3.3.19. Uniformly from a name for t ∈ [0, T], the set of f ∈ DV

such that ∥Jf(t)∥ = 0 (i.e., such that t is a continuity point of f) is Π0
2.

Proof. By Proposition 3.3.12, ∥Jf(t)∥ = 0 if and only if for all positive
rational ε there exists a simple function g and a rational interval I containing
t such that dJ(f, g) < ε and ∥Jg(s)∥ = 0 for all s ∈ I. This is Π0

2 uniformly
in a name for t, as required.

Remark 3.3.20. Proposition 3.3.19 exchanges the roles of f ∈ DV [0, T]
and t ∈ [0, T] in Proposition 3.3.5.

Just one more example of this sort of jump complexity fact before we
proceed to effective measurability in Skorokhod space:

Proposition 3.3.21. Uniformly from names for t ∈ [0, T] and an open set
B ⊆ V , the set of f ∈ DV such that Jf(t) ∈ B ∖ {0} is Π0

2.

63

Proof. The following is uniform from names for t and B. ε and δ range over
the positive rationals.

Suppose v = Jx(t) ∈ B∖{0}. Fixing ε, for small enough δ, by Proposition
3.3.12, any simple function g such that dJ(f, g) < δ will have a jump ⟨s, v1⟩
such that ∣s − t∣ < ε and v ∈ B(v1,2δ), where B(v1,2δ) ⊆ B.

Conversely, suppose that for all ε, there exist a δ and a simple function
g such that dJ(f, g) < δ < ε and g has a jump ⟨s, v1⟩ such that ∣s − t∣ < ε and
B(v1,2δ) ⊆ B. By Proposition 3.3.12 and the fact that f has only finitely
many jumps larger than any given K > 0, f must jump at exactly time t. If
we set v = Jf(t), we have v ∈ B(v1,2δ) ⊆ B.

The following property of f is Π0
2: for all ε, there exist a δ and a simple

function g such that dJ(f, g) < δ < ε and g jumps by v1 at s where ∣s − t∣ < ε
and B(v1,2δ) ⊆ B. This completes the proof.

3.3.3 Effective measurability

As we said in the introduction to this chapter, a stochastic process on a
closed and bounded time interval whose sample paths are càdlàg, or at least
almost surely càdlàg, may be treated as a random variable taking values
in Skorokhod space. (This may not be obvious: see Fact 3.3.24.) Here we
develop the basic tools needed to effectivize such a “random function.” They
will be used in Chapters 4 and 5 for Lévy and Feller processes, respectively.

We begin with some essential terminology:

Notation 3.3.22. For all 0 ≤ t ≤ T , πt ∶ DE → E denotes the projection

πt ∶ f ↦ f(t). (3.3.7)

If X ∶ Ω→DE , then Xt or X(t) ∶ Ω→ E denotes the coordinate process

πt ○X ∶ ω ↦X(ω)(t). (3.3.8)

Our first two facts about measurability in Skorokhod space are proved
in Billingsley [7]. As usual, by “measurable,” we mean Borel measurable.

Fact 3.3.23. The projection πt ∶ DE → E is measurable for all 0 ≤ t ≤ T .

Fact 3.3.24. Let ⟨Ω,F ⟩ be a measurable space and let X ∶ Ω→DE . Then
X is measurable if and only if Xt ∶ Ω→ E is measurable for all 0 ≤ t ≤ T .

We used Proposition 3.3.12 (jump approximation) and Theorem 3.3.13
(jump enumeration) to establish a number of facts about jump complexity
in Skorokhod space. If we know that jumps of a given size do not occur, or
at least almost surely (a.s.) do not occur, then we can say more.

64

Proposition 3.3.25. Let ⟨Ω,P⟩ be a computable probability space. Let
X ∶ Ω→DV [0, T] be L0(P)-computable. Suppose there exist r1, r2 > 0 such
that for P-almost every (a.e.) ω ∈ Ω, for all 0 ≤ t ≤ T ,

∥JX(ω)(t)∥ /∈ {r1, r2}. (3.3.9)

Let Ψ(x) = ⟨t1, . . . , tk⟩, where 0 < t1 < ⋯ < tk ≤ T are exactly the times
when r1 < ∥Jx(t)∥ < r2. Then Ψ ∶ DV [0, T] → [0, T]∗ is PX -a.s. computable
uniformly from names for r1 and r2. This also holds when r2 =∞.

Proof. By hypothesis, PX -a.s., f ∈ DV [0, T] has no jump v such that ∥v∥ = r1

or r2. But if ∥v∥ ≠ r1, r2, then we can decide r1 < ∥v∥ < r2 computably, given
a name for v. Apply Theorem 3.3.13 to complete the proof.

The next result is also not difficult to prove, but it is quite important.
It extends Corollary 3.3.10, assembling a random càdlàg function.

Theorem 3.3.26. Again, let ⟨Ω,P⟩ be a computable probability space. Let
F0, . . . , Fn ∶ Ω→ E and U0, . . . , Un ∶ Ω→ R be measurable. Suppose that

(∀ω ∈ Ω) 0 = U0(ω) < U1(ω) < ⋯ < Un(ω) = T. (3.3.10)

Define a function X ∶ Ω→DE[0, T] by

Xt(ω) = Fi(ω) if t ∈ [Ui(ω), Ui+1(ω)) for some i < n, (3.3.11)

and XT (ω) = Fn(ω). Then X is L0(P)-computable uniformly from names
for P ∈M1(Ω), F0, . . . , Fn ∈ L0(Ω,P;E), and U0, . . . , Un ∈ L0(Ω,P).

Proof. Corollary 3.3.10 defined a partial computable function

Φ ∶ ⊆ En+1 × [0, T]n+1 →DE[0, T]

such that Φ ○ ⟨F0, . . . , Fn, U0, . . . , Un⟩ = X on all of Ω. By Fact 2.3.48, X is
uniformly L0(P)-computable, as required.

Our final result exchanges the roles of f ∈ DE[0, T] and t ∈ [0, T] in
Corollary 3.3.4. (Compare Remark 3.3.20.)

Proposition 3.3.27. Once again, let ⟨Ω,P⟩ be a computable probability
space. Let X ∶ Ω → DE[0, T] be L0(P)-computable. Suppose that for all
0 ≤ t ≤ T , for P-a.e. ω ∈ Ω, ∆Xt(ω) = 0. Then the evaluation mapping

eval ∶ [0, T]→ L0(DE[0, T],PX ;E) (3.3.12)

given by eval(t) ∶ f ↦ f(t) is computable.

65

Proof. The following is uniform from a name for 0 ≤ t ≤ T .
By Theorem 3.3.1, f ↦ f(t) is computable on {f ∈ DE[0, T] ∶ ∆f(t) = 0}.

Since ∆f(t) = 0 a.s. [PX], this means that f ↦ f(t) is PX -a.e. computable,
hence L0(PX)-computable by Fact 2.3.43.

3.3.4 Counterexamples

Here we present a few basic negative results in effective Skorokhod space.
For one thing, Theorem 3.3.13 (jump enumeration) cannot be improved:

Proposition 3.3.28. Given a sequence (ti)i∈N of distinct reals in (0, T], we
can compute an f ∈ DV [0, T] such that f jumps exactly on {ti ∶ i ∈ N}.

Corollary 3.3.29. A computably càdlàg function can jump on a dense set.

Proof of Proposition 3.3.28. The following is uniform from (ti)i∈N.
We will compute a sequence (fn)n∈N of càdlàg functions converging in

DV [0, T] at a computable rate. First, fix any computable unit vector α ∈ V .
Recalling Example 3.1.18, let f0 = 1[t0,T]α.

Evidently, f0 is computably càdlàg. We compute the rest of the sequence
by induction. Suppose we have already computed piecewise-constant càdlàg
functions f0, . . . , fn in such a way that

(i) for all k ≤ n, fk jumps exactly on {t0, . . . , tk}, and

(ii) for all k < n, dJ(fk, fk+1) ≤ 2−(k+1).

We define fn+1 as follows. Compute an m ∈ N such that m ≥ n + 3,
2−m < T , and ∣ti − tj ∣ > 2−m for all i < j ≤ n. Set

fn+1 = fn + 2−2m−1 ⋅ 1[tn+1,T]α.

Evidently, fn+1 jumps exactly on {t0, . . . , tn+1}. Since tn+1 is computable, it
is easy to see that fn+1 is computably càdlàg whenever fn is.

By Fact 3.1.40, if d○J(fn+1, fn) < δ2 for some δ < min{T,1/4}, then

dJ(fn+1, fn) ≤ 4δ + πD(fn, δ),

where πD is the càdlàg modulus. Set δ = 2−m. Then πD(fn, δ) = 0 by
construction, as all the jump times are further than δ apart, and fn is
constant in between. The trivial time change φ = id shows that

d○J(fn+1, fn) ≤ ∥fn+1 − fn∥∞ = 2−2m−1 < δ2.

66

Therefore,
dJ(fn+1, fn) ≤ 4δ + 0 = 2−m+2 ≤ 2−(n+1).

The Cauchy sequence (fn)n∈N of càdlàg functions converges in DV [0, T]
to some computably càdlàg function f . By construction, it is easy to see
that f jumps exactly on {ti ∶ i ∈ N}, as required.

Theorem 3.3.6 was a useful alternative characterization of computably
càdlàg functions. Of course, there may be other such characterizations. We
know that every computably càdlàg function is a.e. computable (Corollary
3.3.4) and computably bounded (Theorem 3.3.6). Also, its discontinuities
are computably enumerable (Theorem 3.3.13). But these properties do not
characterize the computably càdlàg functions:

Example 3.3.30. The following real-valued function is a.e. computable and
bounded by 1 with one discontinuity (at 1/2), but it is not even càdlàg:

f(t) = { sin((1/2 − t)−1) if t < 1/2,
0 if t ≥ 1/2. (3.3.13)

Now suppose f is a càdlàg function taking values in a Banach space V .
We might like to define—and ideally compute—a “continuous part” of f ,
which would be a continuous function f̃ ∶ [0, T]→ V such that for all t,

f̃(t) = f(t) −∑
ti≤t
Jf(ti) (hypothetically)

where ti ranges over the jump times of f . However, this is not possible:

Example 3.3.31. We define a real-valued computably càdlàg function f
on [0,1] that has no “continuous part” (computable or otherwise). For all
k ∈ N, let tk = 1/2 − 2−k−2 and let ak = 1/(k + 1), i.e.,

(tk)k∈N = (1/4,3/8,7/16, . . .) and (ak)k∈N = (1,1/2,1/3, . . .).

Let f = 0 on [0, t0) and on [1/2,1]. For all k ∈ N, let f jump by ak at tk, then
make f linear on [tk, tk+1) with slope mk = −ak/(tk+1 − tk), so that f(tk+1−)
is zero. It is not difficult to see that f is computably càdlàg on [0,1].

Let f̃ be the continuous part of f on [0,1/2). f̃ is well defined (and
piecewise linear), but f̃(t) ↓ −∞ as t ↑ 1/2, since f̃(tk+1) − f̃(tk) = −ak.

Fortunately, a càdlàg function like the one in Example 3.3.31 is rather
unlikely to show up as the sample path of, say, a Lévy process—a class of
stochastic processes to which we now turn.

67

Chapter 4

Effective theory of Lévy
processes

A Lévy process is a type of vector-valued stochastic process in continuous
time. In this chapter, we develop a basic effective theory of Lévy processes,
first explaining what it means for such a process to be computable, then
proving effective versions of two important results from the classical theory.

We assume the reader is familiar with the principles of classical measure-
theoretic probability as in Pollard [61] or Grimmett and Stirzaker [42].

Without getting into all the details, a Lévy process X = {Xt ∶ t ≥ 0}
has independent, stationary increments, so that (i) successive changes in
position, say Xt1 −Xt0 , Xt2 −Xt1 , and so on, are statistically independent,
and (ii) the probability distribution of the increment Xt −Xs depends, not
on the initial time s, nor on the initial position Xs, but only on the elapsed
time t− s. A Lévy process is a continuous-time analogue of a random walk.

Brownian motion is one example of a Lévy process; a compound Poisson
process is another. These examples show that a Lévy process, in general,
can move continuously (in space) or jump. In fact, this is about all it can
do: according to an important classical theorem, which we will effectivize,
every Lévy process admits a modification whose sample paths are càdlàg,
so they live in Skorokhod space (which, of course, we just effectivized).

Moreover, the Lévy-Itô decomposition, which we will also effectivize,
states that every Lévy process can be written as the sum of four processes: a
deterministic linear drift, a Brownian motion, a compound Poisson process
which consists of all the jumps above a certain size, and finally a purely
discontinuous martingale which consists of all the other, small jumps.

In Section 4.1, we review this classical theory in a little more detail.

68

In Section 4.2, we show that a càdlàg modification of a Lévy process not
only exists, but is computable from a suitable (effective) representation of
the process. In Section 4.3, we show that the components of the Lévy-Itô
decomposition are similarly computable from a representation.

4.1 Classical theory of Lévy processes

This section is review, based on the well-known Applebaum [3], which the
reader may consult for further details, including proofs.

4.1.1 Stochastic processes

As a preliminary, we establish some notational conventions.

Notation 4.1.1. Let ⟨Ω,F ⟩ be a measurable space. We may refer to the
elements of F , i.e., the measurable subsets of Ω, as events.

Let ⟨E,E ⟩ be a measurable space, too. We may refer to F /E -measurable
functions X ∶ Ω → E as random variables, in which case Ω is said to be the
sample space and E the state space.

Let X ∶ Ω→ E be a random variable and let A ⊆ E be an event. We may
denote by {X ∈ A} the event {ω ∶X(ω) ∈ A} ⊆ Ω.

Let P be a probability measure on ⟨Ω,F ⟩. Let X ∶ Ω → E be a random
variable. As in Definition 2.3.44, we denote by PX the image measure of P
along X, which is the probability measure on ⟨E,E ⟩ given by

PX(A) = P{X ∈ A}.

Finally, we adopt the de Finetti notation as in Pollard [61]:

(i) We will use the same symbol for a probability measure P on ⟨Ω,F ⟩ and
for the associated expectation operator on R-valued random variables,

f ↦ Pf = ∫
Ω
f(ω)P(dω).

(ii) We may identify an event A with its indicator function 1A ∶ E → {0,1},
treating it as an R-valued random variable.

We proceed to some basic definitions, beginning with two important
equivalence relations on random variables. Throughout, ⟨Ω,F ,P⟩ denotes
a probability space and ⟨E,E ⟩ a measurable space.

69

Definition 4.1.2. Random variables X,Y ∶ Ω → E are said to be equal in
distribution if PX = PY , in which case we write X ∼ Y .

Definition 4.1.3. Random variables X,Y are said to be equal almost surely
if P{X = Y } = 1, in which case we write X = Y a.s. [P].
Fact 4.1.4. If X = Y a.s. [P], then X ∼ Y .

To each Rn-valued random variable we associate a C-valued function:

Definition 4.1.5. Let X ∶ Ω→ Rn be a random variable. The characteristic
function of X, φX ∶ Rn → C, is given by

φX(u) = P [ei(u,X)] = ∫
Ω
ei(u,X(ω))P(dω) = ∫

Rn
ei(u,y)PX(dy). (4.1.1)

Here, i denotes
√
−1, and (⋅, ⋅) is the Euclidean inner product on Rn.

Fact 4.1.6. φX is continuous at the origin, φX(0) = 1, and ∥φX∥∞ ≤ 1.

A stochastic process is a sequence of random variables representing a
system whose state changes randomly over time:

Definition 4.1.7. An E-valued (continuous-time) stochastic process X on
Ω is a family {Xt ∶ t ∈ I} of random variables Xt ∶ Ω → E, where I ⊆ [0,∞).
In that case, we may write X(t) or X(t, ⋅) instead of Xt. In general, I is an
interval, but unless otherwise noted, our processes are indexed by I = [0,∞).
Definition 4.1.8. A function I → E of the form t ↦ Xt(ω) for some ω ∈ Ω
is said to be a sample path of the stochastic process X.

There are two important equivalence relations on stochastic processes.
Let X = {Xt ∶ t ≥ 0} and Y = {Yt ∶ t ≥ 0} be E-valued processes on Ω.

Definition 4.1.9. X and Y are said to be modifications of one another if
for all t, for P-a.e. ω, Xt(ω) = Yt(ω).
Definition 4.1.10. X and Y are said to be indistinguishable if for P-a.e.
ω, for all t, Xt(ω) = Yt(ω).
Fact 4.1.11. Indistinguishable processes are modifications of one another.

Now assume that our state space E is a metric space (with the Borel σ-
algebra). Our interest, again, is in stochastic processes with càdlàg sample
paths—or at least with modifications with càdlàg sample paths.

Definition 4.1.12. A stochastic process X = {Xt ∶ t ∈ I} is said to be
càdlàg if for P-a.e. ω, the sample path t↦Xt(ω) is càdlàg. X is said to be
continuous if for P-a.e. ω, the sample path t↦Xt(ω) is continuous.

Fact 4.1.13. Let X be a stochastic process. Any two càdlàg modifications
of X are indistinguishable.

70

4.1.2 Lévy processes

Lévy processes are characterized by three plus one properties: independent
increments, stationary increments, stochastic continuity, and they have to
start at the origin, which can be achieved by normalizing.

To define stochastic continuity, we need to assume that the state space
is a metric space, say ⟨E,d⟩ (with the Borel σ-algebra), which is reasonable.
So let X = {Xt ∶ t ≥ 0} be an E-valued stochastic process.

Definition 4.1.14. Let t ≥ 0. X is said to be stochastically continuous at t
if for all ε > 0, there exists a δ > 0 such that for all s ≥ 0,

∣t − s∣ < δ Ô⇒ P{d(Xt,Xs) ≥ ε} < ε. (4.1.2)

X is said to be stochastically continuous1 if it is stochastically continuous
at t for all t ≥ 0.

Fact 4.1.15. X is stochastically continuous at t if and only if the function
s↦Xs of type [0,∞)→ L0(Ω,P;E) is continuous at t.

For completeness, we include a proof, which is easy—and effective.

Proof. Suppose X is stochastically continuous at t and fix ε > 0. For small
enough δ, ∣t − s∣ < δ implies P(A) < ε/2, where A = {d(Xt,Xs)∥ ≥ ε/2}. By a
standard calculation,

dP(Xt,Xs) = ∫
Ω

min{1, d(Xt,Xs)}dP ≤ ∫
A

1dP + ∫
Ω∖A

ε/2dP < ε/2 + ε/2 = ε.

Hence s↦Xs is continuous at t.
Conversely, suppose s ↦ Xs is continuous at t and fix ε > 0. Then for

sufficiently small δ, ∣t − s∣ < δ implies

dP(Xt,Xs) = ∫
Ω

min{1, d(Xt,Xs)}dP < ε2.

Hence P{d(Xt,Xs) ≥ ε} must be less than ε, which completes the proof.

In order to define even an increment, we need to assume that the state
space is a normed space, say ⟨V, ∥ ⋅∥⟩ (with the Borel σ-algebra again), which
is still reasonable. So let X be a V -valued stochastic process.

Definition 4.1.16. X is said to have independent increments if Xt1 −Xt0 ,
Xt2 −Xt1 , . . . , Xtn −Xtn−1 are independent whenever 0 ≤ t0 < t1 < ⋯ < tn.

1The term “continuous in probability” is used in some sources.

71

Definition 4.1.17. X is said to have stationary increments if

(∀t > s ≥ 0) Xt −Xs ∼Xt−s −X0. (4.1.3)

Fact 4.1.18. If X has independent and stationary increments, then X is
stochastically continuous if and only if X is stochastically continuous at 0.

Now, Definitions 4.1.16 and 4.1.17 will not need to be effectivized at all
when we turn to computability in Section 4.2. Definition 4.1.14 can easily
be effectivized in either that or the equivalent form given by Fact 4.1.15.

In any case, now we can define a Lévy process. Fix n ∈ N and let the
state space be Rn (with the Euclidean norm).

Definition 4.1.19. An Rn-valued stochastic process X = {Xt ∶ t ≥ 0} is said
to be an (n-dimensional) normalized Lévy process if

(i) X has independent, stationary increments,

(ii) X is stochastically continuous, and

(iii) X0 = 0 a.s. [P].

When we said that (iii) can be achieved by normalizing, we meant

Remark 4.1.20. Evidently, if an Rn-valued process Y = {Yt ∶ t ≥ 0} satisfies
(i) and (ii) in Definition 4.1.19, then Y − Y0 is a normalized Lévy process.
And if X is a normalized Lévy process and v ∶ Ω → Rn is a random vector,
then Y =X + v satisfies (i), (ii), and Y0 = v a.s. [P].

In light of this remark, our next definition is not much of a generalization.

Definition 4.1.21. Let v0 ∶ Ω → Rn be a random vector. X is said to be a
Lévy process with initial position v0 if X − v0 is a normalized Lévy process.

Let µ0 a probability measure on Rn. X is said to be a Lévy process with
initial distribution µ0 if X −X0 is a normalized Lévy process and PX0 = µ0.

Typically, facts about normalized Lévy processes generalize to processes
with a given initial position or distribution. Accordingly:

Notation 4.1.22. From now on, by a Lévy process we mean a normalized
Lévy process: X0 = 0 a.s. [P].

Next, we associate to each Lévy process a C-valued continuous function,
which is closely related to the characteristic function (see Definition 4.1.5).

72

Fact 4.1.23. Let X be a Lévy process. There exists a unique continuous
function η ∶ Rn → C, called the Lévy symbol of X, such that

(∀u ∈ Rn) (∀t ≥ 0) φXt(u) = etη(u). (4.1.4)

Moreover, η(u) = lnP[exp(iuX1)] for all u ∈ Rn.

We also associate to X a certain Borel measure, as follows.

Definition 4.1.24. A Lévy measure is a (Borel) measure ν on Rn such that

(i) ν{0} = 0, and

(ii) ∫Rn min{1, ∣y∣2}ν(dy) <∞.

Remark 4.1.25. A Lévy measure is necessarily σ-finite.

The Lévy-Itô decomposition (Theorem 4.1.43) may be used to prove

Fact 4.1.26. Let X be a Lévy process. There exist a b ∈ Rn, a positive-
definite n × n symmetric matrix A, and a Lévy measure ν such that for all
u ∈ Rn, for all t ≥ 0,

φXt(u) = exp (t[i(u, b) − 1

2
(u,Au)

+ ∫
Rn

(ei(u,y) − 1 − i(u, y)1∣y∣<1)ν(dy)]). (4.1.5)

This is called the Lévy-Khintchine formula.

Notation 4.1.27. ⟨b,A, ν⟩ are called the characteristics of X. In particular,
b is the drift and ν is the intensity measure.

Fact 4.1.28. Let Y be a modification of a Lévy process X. Then Y is a
Lévy process with the same characteristics as X.

That brings us to the first major result from the classical theory of Lévy
processes that we intend to effectivize in this chapter:

Fact 4.1.29. Every Lévy process has a càdlàg modification.

Finally, we need to be able to describe the jumps of a càdlàg process X.

Definition 4.1.30. The jump process ∆X is given by

∆X(t) =X(t) −X(t−) for all t ≥ 0. (4.1.6)

Fact 4.1.31. For a Lévy process X, for all t ≥ 0, for P-a.e. ω, ∆Xt(ω) = 0.

But we can say much more about Lévy processes, particularly the jumps,
if we use another important theorem: the Lévy-Itô decomposition.

73

4.1.3 Lévy-Itô decomposition

The second major result we plan to effectivize in this chapter is the Lévy-Itô
decomposition. Explaining what it says will take up the remainder of this
section. (For a proof of the result, see Section 2.4 in Applebaum [3].)

Let X = {Xt ∶ t ≥ 0} be a Lévy process. We need to take a closer look at
the jumps of X. For simplicity, and without any real loss of generality, we
assume that X is one-dimensional, i.e., that the state space is R.

Definition 4.1.32. The Poisson random measure associated with X is the
family {Nt ∶ t ≥ 0} of functions Nt ∶ Ω ×B(R)→ [0,∞] given by

Nt(ω,A) = Nt(A)(ω) = ∣{s ≤ t ∶ 0 ≠ ∆Xs(ω) ∈ A}∣. (4.1.7)

In other words, the Poisson random measure counts jumps of certain
sizes that occur by a certain time. We list some other basic properties in

Fact 4.1.33. For all t ≥ 0,

(i) for all ω ∈ Ω, A↦ Nt(ω,A) is an N ∪ {∞}-valued measure on R,

(ii) for all A ∈ B(R), Nt(A) ∶ ω ↦ Nt(ω,A) is a random variable, and

(iii) A↦ P(Nt(A)) is a measure on R.

Definition 4.1.34. A measurable subset A of R is said to be bounded away
from zero2 if 0 /∈ A, i.e., if there exists an ε > 0 such that A ∩B(0, ε) = ∅.

We collect a few more basic properties of the Poisson random measure:

Fact 4.1.35. If A is bounded away from zero, then

(i) for all t ≥ 0, Nt(A) <∞ a.s. [P], and

(ii) {Nt(A) ∶ t ≥ 0} is a Poisson process, called the jump-counting process,
with intensity ν(A) <∞, where ν is the intensity measure of X.

Fact 4.1.36. If A1, . . . ,An are disjoint and bounded away from zero, and
t1, . . . , tn ≥ 0, then the random variables Nti(Ai) are independent.

Fact 4.1.37. The intensity measure ν is given by P(N1): for all A ∈ B(R),

ν(A) = P(N1(A)) = P(∣{s ≤ 1 ∶ 0 ≠ ∆Xs ∈ A}∣). (4.1.8)

Moreover, P(Nt(A)) = tν(A) for all t ≥ 0.

2The term “bounded below” is used in some sources, including Applebaum [3].

74

The Poisson random measure is used to define other random variables,
and even stochastic processes, based on the jumps of X. Let A ⊆ R be
measurable. Let f ∶ ⊆ R→ R be measurable and defined on A.

Definition 4.1.38. Suppose A is bounded away from zero. For all t ≥ 0,
the Poisson integral of f over A at t is the random finite sum

(∫
A
f(x)Nt(dx)) (ω) = ∑

x∈A
f(x)Nt(ω,{x}). (4.1.9)

Fact 4.1.39. {∫A f(x)Nt(dx) ∶ t ≥ 0} is a compound Poisson process.

Definition 4.1.40. Suppose A is bounded away from zero. For all t ≥ 0,
the compensator Ñt(A) is the random variable

Ñt(A) = Nt(A) − tν(A). (4.1.10)

Definition 4.1.41. Suppose f is ν-integrable over A. For all t ≥ 0, the
compensated Poisson integral of f over A at t is the random variable

∫
A
f(x)Ñt(dx) = ∫

A
f(x)Nt(dx) − t∫

A
f(x)ν(dx). (4.1.11)

(Note that we did not assume that A was bounded away from zero.)

Fact 4.1.42. {∫A f(x)Ñt(dx) ∶ t ≥ 0} is a purely discontinuous martingale.

That brings us to the Lévy-Itô decomposition, which is the second major
result from the classical theory that we intend to effectivize:

Fact 4.1.43. Let X be a Lévy process. For all ε > 0, there exist a b ∈ R and
a Brownian motion W = {Wt ∶ t ≥ 0} such that for all t ≥ 0,

Xt = bt +Wt + ∫∣x∣<ε
xÑt(dx) + ∫∣x∣≥ε

xNt(dx), (4.1.12)

and all of these components are independent.

Notation 4.1.44. The third component, which is a purely discontinuous
martingale, is called the compensated sum of small jumps. We can call the
fourth component the sum of large jumps; it is a compound Poisson process.

But before we can effectivize any results, we need to answer more basic
questions, like what it means for a Lévy process to be computable.

75

4.2 Computable Lévy processes

In this section, we present two candidates for what it might mean for a Lévy
process to be computable, and show that they are essentially equivalent.
Along the way, we will effectivize Fact 4.1.29 (and this represents most of
the work), proving that a càdlàg modification of a Lévy process not only
exists, but is computable from a suitable representation of the process.

4.2.1 Stochastic computability and effective measurability

There are at least two plausible candidates for what it might mean for a
Lévy process to be computable: what we call stochastic computability and
effective measurability. We state the definitions for a general stochastic
process, although effective measurability only makes sense if the process has
a càdlàg modification (which all Lévy processes do).

We need to assume that the sample space is a computable probability
space, say ⟨Ω,P⟩ (with the Borel σ-algebra, of course). As for the state
space, we already assumed—for simplicity, and without any real loss of
generality—that our Lévy processes were one-dimensional, i.e., R-valued.
So let X = {Xt ∶ t ≥ 0} be an R-valued stochastic process on Ω.

Definition 4.2.1. X is said to be stochastically computable if the function
t↦Xt is computable of type [0,∞)→ L0(Ω,P).

Remark 4.2.2. If a modification Y of X is stochastically computable, then
X is stochastically computable, as Xt = Yt a.s. [P] means dP(Xt, Yt) = 0.

In light of Fact 4.1.15, stochastic computability is the effective version of
stochastic continuity. It is also a very reasonable assumption in the context
of computable analysis. The proof of Fact 4.1.15 was effective, so we have

Proposition 4.2.3. Let X be stochastically computable. Let t ≥ 0 and
ε > 0. Uniformly from names for t and ε, we can compute a δ = δ(t, ε) > 0
such that for all s ≥ 0,

∣t − s∣ < δ Ô⇒ P{∣Xt −Xs∣ ≥ ε} < ε. (4.2.1)

Moreover, if we restrict t to a closed and bounded interval [0, T] (and we
have a name for T), then δ = δT (ε) can be made independent of t.

Proposition 4.2.4. Assume that X is a Lévy process. If X1 is L0(P)-
computable, then the Lévy symbol η ∶ R → C of X (see Fact 4.1.23) is
computable. In particular, this holds if X is stochastically computable.

76

Proof. By Fact 2.3.48, exp(iuX1) is L0(P)-computable uniformly from a
name for u ∈ R. Since exp(iuX1) is bounded by 1 in absolute value, it is
uniformly L1(P)-computable by Fact 2.3.55.

Fact 2.3.53 generalizes to C-valued functions in a straightforward way.
It follows that P[exp(iuX1)] ∈ C is computable. Setting

z = P[exp(iuX1)] = r exp(iθ),

we can compute η(u) = ln z = ln r + iθ. The branch cut in C is not an issue,
because η is continuous (Fact 4.1.23). This completes the proof.

Not every Lévy process is integrable, i.e., it is not necessarily the case
that for all t ≥ 0, P∣Xt∣ <∞. We still get some use out of an effective analogue
of integrability which is stronger than stochastic computability:

Definition 4.2.5. X is said to be L1-computable if the function t ↦ Xt is
computable of type [0,∞)→ L1(Ω,P).

Proposition 4.2.6. If X is L1-computable, X is stochastically computable.

Proof. Just apply Fact 2.3.30 uniformly.

Remark 4.2.7. Similarly, we may define L2-computability for stochastic
processes. Then L2-computability implies L1-computability.

To define effective measurability, our second notion of computability for
stochastic processes, we need to assume that X is càdlàg. This is reasonable,
since every Lévy process has a càdlàg modification (Fact 4.1.29).

Definition 4.2.8. Assume that X is càdlàg. Let T > 0. We denote by X ∣T
the function ω ↦ X(⋅, ω) of type Ω →D[0, T], whose values are the sample
paths of X restricted to the time interval [0, T].

Of course, if X happens to be continuous, then X ∣T ∶ Ω→C[0, T].

Remark 4.2.9. By Fact 3.3.24, X ∣T ∶ Ω→D[0, T] is measurable.

Definition 4.2.10. Assume that X is càdlàg. X is said to be effectively
measurable (in Skorokhod space, D) if X ∣T is L0(P)-computable of type
Ω→D[0, T], uniformly from T , for all dyadic rational T > 0.

Remark 4.2.11. We assumed that T was a dyadic rational for convenience.
In fact, without any real loss of generality, we could assume that T ∈ N.

77

Remark 4.2.12. There is no reason in general why time should be bounded
for a Lévy process, and indeed in the classical theory time typically ranges
over [0,∞). In Skorokhod space, however, time is bounded. The reader can
see in Definition 4.2.10 how we have resolved this.

Effective measurability implies a relatively weak form of computability:

Definition 4.2.13. Assume thatX is càdlàg. X is said to have a computable
distribution (on Skorokhod space, D) if PX ∣T is computable inM1(D[0, T]),
uniformly from T , for all dyadic rational T > 0.

Proposition 4.2.14. Let X be càdlàg. If X is effectively measurable in D,
then X has a computable distribution on D.

Proof. The image of P along X ∣T is computable by Fact 2.3.46.

Stochastic computability and effective measurability are closely related
for Lévy processes. First of all, it is not difficult to prove

Proposition 4.2.15. Let X be a Lévy process with càdlàg sample paths.
If X is effectively measurable, then X is stochastically computable.

Proof. The following is uniform from a name for t ≥ 0. Fix a dyadic rational
T > t. By assumption, X ∣T is L0(P)-computable of type Ω → D[0, T]. By
Fact 4.1.31 and Proposition 3.3.27, the evaluation mapping

eval ∶ [0, T]→ L0(D[0, T],PX) (4.2.2)

is computable. Let Wt(ω) = eval(t)(X(⋅, ω)). By Fact 2.3.48, Wt is L0(P)-
computable. But Wt =Xt a.s. [P], which completes the proof.

By effectivizing Fact 4.1.29, we obtain a converse to Proposition 4.2.15:

Theorem 4.2.16. Every stochastically computable Lévy process X has an
effectively measurable modification X̃.

Actually, our proof will construct a càdlàg modification of X from the
function t↦Xt. In any case, combining this result with Propositions 4.2.15,
4.2.6, and 4.2.14 yields an important equivalence:

Corollary 4.2.17. Let X be a Lévy process. The following are equivalent:

(i) X is stochastically computable

(ii) X is effectively measurable up to a modification

78

Both (i) and (ii) hold if X is L1-computable. Either (i) or (ii) implies that
X (or a càdlàg modification thereof) has a computable distribution.

But before we prove Theorem 4.2.16, we should mention an application
to continuous stochastic processes (for example, Brownian motion).

As usual, X = {Xt ∶ t ≥ 0} denotes an R-valued stochastic process on Ω.

Definition 4.2.18. Assume that X is continuous. X is said to be effectively
measurable in C if X ∣T is L0(P)-computable of type Ω→C[0, T], uniformly
from T , for all dyadic rational T > 0.

(Compare Definition 4.2.10.) Now, as we know, C[0, T] is a topological
subspace of D[0, T] for all T > 0 (Fact 3.1.28). Better yet, we have

Proposition 4.2.19. Assume that X is continuous. Then X is effectively
measurable in C if and only if X is effectively measurable in D.

Proof. Just apply Corollary 3.3.3.

Basically, if we know our process has an effectively measurable càdlàg
modification, which we know classically is continuous, then Proposition
4.2.19 gives us an effectively measurable continuous modification for free.

The proof of Theorem 4.2.16 will take up the remainder of this section.

4.2.2 Computably càdlàg Lévy processes

Our proof of Theorem 4.2.16 uses several auxiliary results and is similar to
the proof of Theorem 5.2.15, which in turn adapts a proof in Chan [19].

As a preliminary, the proof of Lemma 2.3.70 may be adapted to prove a
technical result of no immediately obvious relevance:

Lemma 4.2.20. Let a < b be computable reals. Let (Pn)n∈N be a sequence
of uniformly computable probability measures on R. We can compute an
increasing, computably Cauchy sequence (ak)k∈N in (a, b) such that for i ≠ j,
the one-element sets {ai} and {ai − aj} are Pn-null for all n ∈ N.

Proof. Similar to the proof of Lemma 2.3.70, for all n, j ∈ N, let

Un,j = {a > 0 ∶ µn[−a, a] < µn(−a, a) + 1/j}.

Un,j is Σ0
1 (uniformly from n and j). Obviously, for all a > 0,

µn[−a, a] − µn(−a, a) = µn{±a}.

79

{±a} and {±a1} are disjoint for a ≠ a1 and µn is finite, so µn{±a} ≥ 1/j for
only finitely many a. In particular, Un,j is dense in [0,∞). Hence

A0 = ⋂
n,j∈N

Un,j

is a Π0
2 set dense in [0,∞). Use the effective Baire category theorem to

compute a point a0 ∈ ±A0 ∩ (a, b). By construction, {a0} is µn-null for all
n ∈ N. Now suppose we have computed ai for all i < k. For all n, j ∈ N, let

V k
n,j = {a > 0 ∶ (∀i < k) µn[ai − a, ai + a] < µn(ai − a, ai + a) + 1/j}.

Evidently, if a ∈ V k
n,j , then µn{ai ± a} < 1/j for all i < k. Just as above, V k

n,j

is a Σ0
1 set dense in [0,∞) (uniformly from n, j, and k). Hence

Ak = ⋂
n,j∈N

Un,j ∩ ⋂
n,j∈N

V k
n,j

is a Π0
2 set dense in [0,∞). Use the effective Baire category theorem again

to compute a point ak ∈ ±Ak ∩(ak−1, b)∩(ak−1, ak−1+2−k). By construction,
both {ak} and {ak − ai}, for all i < k, are µn-null for all n ∈ N.

Thus we construct (ak)k∈N by induction. By forcing ak − ak−1 < 2−k, we
guarantee that (ak)k∈N is computably Cauchy. This completes the proof.

Now let X = {Xt ∶ t ≥ 0} be a stochastically computable Lévy process
on a computable probability space ⟨Ω,P⟩. For the proofs to follow, we need
a countable dense subset of times, for which we will use the non-negative
dyadic rationals: let D = {q○i ∶ i ∈ N} enumerate them (without repetition).

Our second technical result is

Lemma 4.2.21. Let a < b be computable reals again. We can compute an
increasing, computably Cauchy sequence (ak)k∈N in (a, b) such that for all
i ≠ j, for all (dyadic rational) t ∈D,

P{∣Xt −X0∣ = ai} = P{∣Xt −X0∣ = ai − aj} = 0. (4.2.3)

Proof. Apply Lemma 4.2.20 to the sequence (µn)n∈N, where µn is the image
measure of P along ∣Xt −X0∣ and t = q○n. By (uniform) Fact 2.3.46, those
measures are uniformly computable.

Remark 4.2.22. It follows that {∣Xt −X0∣ > ai} and {∣Xt −X0∣ > ai − aj}
are L0(P)-computable uniformly from i, j ∈ N and t ∈D.

80

Remark 4.2.23. Lemma 4.2.21 holds for any stochastically computable
process X, not just for a Lévy process.

Now we use Lemma 4.2.21 to prove two more lemmas. Both concern the
regularity of the sample paths of X, i.e., how much they may vary.

Notation 4.2.24. For all r, s ∈D, X̂[r, r + s] denotes the random variable

sup{∣Xt −Xr ∣ ∶ t ∈ [r, r + s] ∩D}. (4.2.4)

Our first regularity result is adapted from Lemma 5.3 in Chan [19].

Lemma 4.2.25. For all r, s ∈ D, for all M > 0, min{X̂[r, r + s],M} is
L1(P)-computable from r, s, and a name for M .

In the proof, we compute several objects used in later proofs.

Proof. We will prove the lemma for r = 0. It is easy to generalize to r ∈D.
Fix s ∈D. By Lemma 4.2.21, if 0 ≤ a < b, we can compute an increasing,

computably Cauchy sequence (ak)k∈N in (a, b) such that for all t ∈D,

P{∣Xt −X0∣ = ak} = P{∣Xt −X0∣ = ak+1 − ak} = 0,

so that both {∣Xt−X0∣ > ak} and {∣Xt−X0∣ > ak+1−ak} are L0(P)-computable
uniformly from k and t (see Remark 4.2.22).

For all k ∈ N, let εk = (ak+1 − ak)/2. By Proposition 4.2.3, compute a δk
such that P{∣Xt −X0∣ ≥ εk} < εk whenever t < δk. Then compute a strictly
increasing sequence (pk)k∈N ⊆ N such that p0 = 0 and 2−pks < δk for all k ≥ 1.

Divide [0, s] ∩D into finite subsets as follows: for all k ∈ N,

Dk = {j2−pks ∶ 0 ≤ j ≤ 2pk}.

Then {0, s} =D0 ⊆D1 ⊆ ⋯ and ⋃k∈NDk = [0, s] ∩D.
Compute, for each t ∈ D, the least j ∈ N such that t ∈ Dj , and call it

j(t). If j(t) > 0, compute the first time rt ∈Dj(t)−1 such that r > t.
Define a sequence (Ak)k∈N of uniformly L0(P)-computable sets by

Ak = ⋂
t∈Dk

{∣Xt −X0∣ ≤ aj(t)}.

Then define a sequence (Tk)k∈N of random variables (stopping times, in fact)

Tk = ∑
t∈Dk

t1Ck(t) + s1Ak

81

where Ck(t) is the uniformly L0(P)-computable set

{∣Xt −X0∣ > aj(t) and ∣Xu −X0∣ ≤ aj(u) for all u ∈Dk with u < t}.

Tk represents the first time t ∈Dk when ∣Xt−X0∣ > aj(t), or s if no such time
exists. Tk is L1(P)-computable uniformly from k.

For all k ∈ N, Ak ⊇ Ak+1 by definition and

Ak ∖Ak+1 ⊆ ⋃
t∈Dk+1

{Tk+1 = t and ∣X(rt) −X(t)∣ > ak+1 − ak}

since ∣Xt −X0∣ > aj(t) = ak+1 and ∣Xrt −X0∣ ≤ aj(rt) = ak. From this, we get

P(Ak ∖Ak+1) ≤ ∑
t∈Dk+1

P{Tk+1 = t and ∣X(rt) −X(t)∣ > ak+1 − ak}

= ∑
t∈Dk+1

P{Tk+1 = t} ⋅ P{∣X(rt − t) −X(0)∣ > ak+1 − ak},

because X has independent, stationary increments. (This is the only place
in the proof where we use the assumption that X is a Lévy process, and not
merely stochastically computable.) And the last expression is bounded by

∑
t∈Dk+1

P{Tk+1 = t} ⋅ (ak+1 − ak) = ak+1 − ak,

because rt − t < 2−pks < δk for all t ∈Dk+1.
Since P(Ak∖Ak+1) ≤ ak+1−ak and ∑k∈N(ak+1−ak) converges (absolutely)

at a computable rate, the event

B = ⋂
k∈N

Ak = ⋂
t∈[0,s]∩D

{∣Xt −X0∣ ≤ aj(t)}

is L0(P)-computable, being a computable limit of L0(P)-computable sets.
On B, ∣Xt −X0∣ < b for all t ∈ [0, s] ∩D, whereas on Ω ∖B, ∣Xt −X0∣ > a

for some t ∈ [0, s] ∩D. (Recall that a < ak < b for all k ∈ N.)
Now fix M > 0. Repeat the above construction, obtaining for all n ∈ N

uniformly L0(P)-computable sets B(0),B(1), . . . ,B(2n) such that

• on B(k), ∣Xt −X0∣ < k2−nM for all t ∈ [0, s] ∩D, and

• on Ω ∖B(k), ∣Xt −X0∣ > (k − 1)2−nM for some t ∈ [0, s] ∩D.

Set B(2n +1) = R and define uniformly L1(P)-computable random variables

Zn =
2n

∑
k=0

(k + 1)2−nM1B(k+1)∖B(k).

82

Note that ∣Zn − Zn+1∣ ≤ 2−nM for all n ∈ N. It follows that Z = limZn is
L1(P)-computable.

Finally, it is easy to see that Z is the smaller of M and the supremum
of ∣Xt −X0∣ over t ∈ [0, s] ∩D, which completes the proof.

Our second regularity result is adapted from Lemma 5.4 in Chan [19].

Lemma 4.2.26. Let r ∈D and ε > 0. Compute δ = δ(r, ε) as in Proposition
4.2.3 (uniformly from r and a name for ε). Then for all s ∈D, for all c > 2ε,

s < δ Ô⇒ P{X̂[r, r + s] > c} < 2ε. (4.2.5)

Proof. We will prove the lemma for r = 0. It is easy to generalize to r ∈D.
First, of course, use Proposition 4.2.3 to compute δ. Next, fix s ∈ D, let

a = ε and b = 2ε, and compute the sequences (ak)k∈N, (pk)k∈N, (Dk)k∈N, and
(Ak)k∈N as in the proof of Lemma 4.2.25. For all k ∈ N,

P(Ak ∖Ak+1) ≤ ak+1 − ak.

Moreover, if s < δ, we have

P(Ω ∖A0) = P{∣Xs −X0∣ > a0} ≤ P{∣Xs −X0∣ ≥ ε} < ε.

Therefore, if we let B = ⋂kAk∈N (also as in the proof of Lemma 4.2.25),

P(Ω ∖B) = P(Ω ∖A0 ∪A0 ∖A1 ∪A1 ∖A2 ∪⋯)
< ε + (a1 − a0) + (a2 − a1) +⋯
= ε + limak − a0 < 2ε.

Now, B ⊆ {X̂[0, s] ≤ b} by definition. Since c > 2ε = b, {X̂[0, s] > c} ⊆
Ω ∖B, which completes the proof: P{X̂[0, s] > c} ≤ P(Ω ∖B) < 2ε.

The next step is to use Lemmas 4.2.25 and 4.2.26 to prove the key result,
adapted from Theorem 5.5 in Chan [19], about sample path regularity for
stochastically computable Lévy processes on a given interval [0, T].

Theorem 4.2.27. Given 0 ≠ T ∈ D, uniformly from a name for 0 < ε < 1,
there exist L0(P)-computable random variables

0 = U0 = V0 ≤ U1 ≤ V1 ≤ ⋯ ≤ Un ≤ Vn, (4.2.6)

and an L0(P)-computable event G such that

(i) P(G ∪ {Un ≤ T}) < 2ε, and

83

(ii) on Ω ∖G, ∣X(t) −X(Vi)∣ < 2ε whenever Ui < t < Ui+1 for some i.

Proof. First, compute δ = δT (ε/2) as in Proposition 4.2.3. Then compute a
K ∈ N such that K > 2 and

Kδ(ε/2)(1 − ε) > 2s,

and an m ∈ N such that (K − 2)m/(K − 1)m < ε. Let n =mK + 1.
Let a = ε and b = ε + ε/n. Compute the sequences (ak)k∈N, (pk)k∈N,

(Dk)k∈N, and (j(t))t∈D as in the proof of Lemma 4.2.25, but for the interval
[0, T] rather than [0, s]. For all k ∈ N and s ∈D, let

Zk(s) = min{2, sup{∣Xt −Xs∣ ∶ t ∈ [s, s + 2−pkT] ∩D}}.

Then Zk(s) ∼ Zk(0) is L1(P)-computable (uniformly from k and s).
Next, for all k ∈ N and s ∈ D, let τk(s) be the least t ∈ Dk such that

t ≥ s and ∣X(t) −X(s)∣ > aj(t), or T if no such time exists. Then τk(s) is
L1(P)-computable as well (see the proof of Lemma 4.2.25).

Generalizing Lemma 4.2.21, compute a sequence (a′k)k∈N such that

• ak < a′k < ak+1 for all k, and

• {Zk(s) > a′k+1 − ak} is L0(P)-computable for all k and s.

Let Bk(s) = {Zk(τk+1(s)) > a′k+1 − ak}. Bk(s) is L0(P)-computable for all k
and s, and

P(Bk(s)) = P{Zk(0) > a′k+1 − ak}.

Since 2−pks < δ((ak+1−ak)/2) and a′k+1−ak > ak+1−ak, Lemma 4.2.26 implies
that P(Bk(s)) < ak+1 − ak. Hence ∑k∈N P(Bk(s)) converges computably, so
that B(s) = ⋃k∈NBk(s) is L0(P)-computable for all s. Furthermore,

P(B(s)) < ∑
k∈N

(ak+1 − ak) = limak − a0 < b − a = ε/n.

Note that (τk(s))k∈N is non-increasing and, for all k ∈ N,

{τk(s) − τk+1(s) > 2−pkT} ⊆ Bk(s).

In particular, P{τk(s) − τk+1(s) > 2−pkT} ≤ P(Bk(s)), and it follows that
τ(s) = limk→∞ τk(s) is L0(P)-computable for all s.

Let U0 = V0 = 0. Then let U1 = τ(0), V1 = τ1(0), and G1 = B(0). Now we
repeat the entire construction starting at time s = V1. By induction, after
repeating the construction n times, we have, for all i < n,

84

• Vi+1 = Vi + τ1(Vi),

• Ui+1 = Vi + τ(Vi), and

• Gi+1 = B(Vi).

Then let G = ⋃i≤nGi. On Ω ∖G = ⋂i≤nΩ ∖B(Vi), we have

∣X(r) −X(τk+1(Vi))∣ ≤ a′k+1 − ak < ak+2 − ak

whenever k ≥ 1, 1 ≤ i ≤ n, and r belongs to

[τk+1(Vi), τk+1(Vi) + 2−pkT] ⊇ [τk+1(Vi), τk(Vi)].

Summing over all k ≥ 1, we have, for all r ∈ (τ(Vi), τ1(Vi)],

∣X(r) −X(τ(Vi))∣ < 4(lim
k→∞

ak − a1) < 2ε.

Hence, for all t ∈ (Ui+1, Vi+1], by the definitions of Ui+1 and Vi+1,

∣X(Vi+1) −X(t)∣ < 2ε.

On the other hand, if t ∈ [Vi+1, Ui+2), write t = Vi+1 + r where

r < Ui+2 − Vi+1 = τ(Vi+1) ≤ τj(r)(Vi+1).

Here, τj(r)(Vi+1) is the least u ≥ Vi+1 such that u ∈Dj(r) and X(u) is outside
the aj(r)-neighborhood of X(Vi+1). Hence

∣X(t) −X(Vi+1)∣ = ∣X(Vi+1 + r) −X(Vi+1)∣ ≤ aj(r) < limak ≤ b < 2ε.

We have established claim (ii) in the theorem.
Now we need to show that P(G ∪ {Un ≤ T}) < 2ε. First, we have

P(Gi+1) = P(B(Vi)) < ε/n,

so P(G) < ε. It remains only to show that P{Un ≤ T} < ε.
For all i < n, for all r ∈D,

P(Vi+1 − Vi) = P[τ1(Vi)] ≥ rP{τ1(Vi) ≥ r} ≥ rP{X̂[Vi, Vi + r] ≤ a1}.

If moreover r > δ(ε/2), then since a = ε > a1, Lemma 4.2.26 gives

P{X̂[Vi, Vi + r] > a1} ≤ ε

85

(see Notation 4.2.24). Therefore, P(Vi+1 − Vi) ≥ r(1 − ε).
Summing over all i <K,

P(VK) ≥Kδ(ε/2)(1 − ε) > 2T.

And since 0 ≤ VK ≤KT , letting q = P{VK ≤ T}, we have

2T < P(VK) ≤ (1 − q)KT + qT,

which, by a direct calculation, implies that q < (K − 2)/(K − 1).
Finally, we put a bound on P{Un ≤ T}:

P{Un ≤ T} ≤ P{Vn−1 ≤ T} = P{VmK ≤ T}
≤ P{VK ≤ T, V2K − VK ≤ T, . . . , VmK − V(m−1)K ≤ T}
= P{VK ≤ T, V2K − VK ≤ T, . . .} ⋅ P{VK ≤ T}
≤ P{VK ≤ T, V2K − VK ≤ T, . . .} ⋅ (K − 2)/(K − 1)

By induction, P{Un ≤ T} ≤ (K − 2)m/(K − 1)m < ε, as required to establish
claim (i) and complete the proof.

We are now ready to prove Theorem 4.2.16. First, we define what we
know classically to be a càdlàg modification of X = {Xt ∶ t ≥ 0}.

Definition 4.2.28. Let X̃ extend {Xt ∶ t ∈D} to t ∈ [0,∞) according to

X̃t(ω) = lim
r↓t

Xr(ω) (4.2.7)

where r is restricted to D, whenever the limit exists; and 0 otherwise.

As usual, see Applebaum [3] for the classical details, particularly

Fact 4.2.29. X̃ is a càdlàg modification of X.

Remark 4.2.30. Since X̃ is a modification of X and X is a Lévy process,
Fact 4.1.28 implies (classically) that X̃ itself is a Lévy process.

Now Theorem 4.2.16 is just the sum of Fact 4.2.29 and the following

Proposition 4.2.31. X̃ is effectively measurable.

Proof. Let 0 ≠ T ∈ D and 0 < ε < 1. Use Theorem 4.2.27 to define the
L0(P)-computable random variables

0 = U0 = V0 ≤ U1 ≤ V1 ≤ ⋯ ≤ Un ≤ Vn.

86

Then define a random variable Z ∶ Ω→D[0, T] by

Z(⋅)(t) =X(Vi) if t ∈ [Ui, Ui+1) for some i < n,

and Z(⋅)(t) = 0 by convention if t > Un. By Theorem 3.3.26, Z is L0(P)-
computable (uniformly from a name for ε).

By Theorem 4.2.27 and the right-continuity of X̃,

P{dJ(Z, X̃) > 4ε} ≤ P{d∞(Z, X̃) > 4ε} < 2ε,

which implies that dP(Z, X̃) < 2ε+ 4ε. Since ε was arbitrary, we have shown
that X̃ is L0(P)-computable as a function from Ω to D[0, T]. Since T was
arbitrary, this completes the proof.

4.3 Effective Lévy-Itô decomposition

In this section, we effectivize the Lévy-Itô decomposition (Fact 4.1.43).

4.3.1 Intensity measure and Poisson integral

Let ⟨Ω,P⟩ be a computable probability space and let X = {Xt ∶ t ≥ 0} be an
R-valued Lévy process on Ω. Now, in this context (computable analysis),
stochastic computability is a very reasonable assumption to make about a
Lévy process, given that classically it is stochastically continuous. But in
light of Theorem 4.2.16, we can even restrict our attention to effectively
measurable (càdlàg) Lévy processes without any real loss of generality.

The reader should recall the following definitions and notation:

(i) the intensity measure ν (Notation 4.1.27)

(ii) the Poisson random measure Nt (Definition 4.1.32)

(iii) the Poisson integral ∫A f(x)Nt(dx) (Definition 4.1.38)

(iv) the compensated Poisson integral ∫A f(x)Ñt(dx) (Definition 4.1.41)

(v) the sum of large jumps ∫∣x∣≥ε xNt(dx) (Fact 4.1.43)

(vi) the compensated sum of small jumps ∫∣x∣<ε xÑt(dx) (Fact 4.1.43 again)

All of these are relevant to the Lévy-Itô decomposition and will have to
be effectivized somehow, in this section or the next. We will start with the
intensity measure, the Poisson random measure, and the Poisson integral.

First of all, we can forget about computing the intensity measure:

87

Remark 4.3.1. The intensity measure may not be finite, so in general it
cannot be computable even in the more general sense of Remark 2.3.5.

Still, the intensity measure has many computable properties, and we
identify some of these in the following two lemmas.

Lemma 4.3.2. There exists a dense sequence (αk)k∈N ⊆ R of uniformly
computable continuity points for ν, so that ν{αk ∶ k ∈ N} = 0.

Proof. In the following, ε ranges over Q and t ranges over [0,∞).
By Fact 2.3.17 (computable Baire category theorem), it is enough to

show that the set A of continuity points for ν is a dense Π0
2 subset of R.

If x ∈ R ∖A, i.e., if x ≠ 0 is an atom of ν, then Fact 4.1.37 implies that
X exhibits jump discontinuities ∆X(t) = x according to a Poisson process
with intensity r = ν({x}) > 0. Clearly, therefore, R ∖ A cannot contain an
open set, so A is dense (classically).

We just need to show that R ∖A is Σ0
2. By definition,

x ∈ R ∖A ⇐⇒ (∃ε > 0) PX{(∃t ≤ 1) Jf(t) = x} ≥ ε.

By Proposition 3.3.18, {f ∶ (∃t ≤ 1) Jf(t) = x} ⊆ D[0,1] is Π0
1 uniformly

from a name for 0 ≠ x ∈ R. It follows that PX{f ∶ (∃t ≤ 1) Jf(t) = x} is
upper semicomputable. Fixing ε, the following property of x is Π0

1:

PX{f ∶ (∃t ≤ 1) Jf(t) = x} ≥ ε.

Adding an existential quantifier over ε > 0, we deduce that R∖A is Σ0
2, which

completes the proof.

The reader may have noticed that, technically, in the proof of Lemma
4.3.2, PX should be replaced by PX ∣1. For simplicity, though, we adopt

Notation 4.3.3. When T > 0 is fixed or clear from the context, we use X to
denote X ∣T ∶ Ω→D[0, T], the random variable whose values are the sample
paths of X restricted to the time interval [0, T] (see Definition 4.2.8).

Now fix, as in Lemma 4.3.2, a dense sequence (αk)k∈N ⊆ R of uniformly
computable continuity points for ν.

Lemma 4.3.4. The intensity measure ν(U) ∈ [0,∞] of an open subset U
of R is lower semicomputable uniformly from a name for U ∈ τ(R).

88

Proof. It is enough to prove the lemma for an open rational interval U =
(p, q). Since we can compute continuity points αi > p and αj < q arbitrarily
close p and q respectively, it is actually enough to show that ν((αi, αj)) is
lower semicomputable (uniformly from i, j ∈ N).

Since ν({0}) = 0, 0 /∈ [αi, αj] without loss of generality. Hence

ν((αi, αj)) = P∣{t ≤ 1 ∶ αi < ∆X(t) < αj}∣ = PJ1(X) = PXJ1,

where J1 ∶ D[0,1]→ N is given by J1(f) = ∣{t ≤ 1 ∶ αi < Jf(t) < αj}∣. Because
(αi, αj) is bounded away from zero, J1(f) <∞ for all f ∈ D[0,1].

The result follows from Proposition 3.3.25: uniformly from n ∈ N, the
event {J1 = n} is L0(PX)-computable, so PX{J1 = n} is computable. Hence

ν((αi, αj)) = PX(J1) = ∑
n∈N

nPX{J1 = n}

is (uniformly) lower semicomputable. This completes the proof.

Now we turn from the intensity measure to the Poisson random measure,
which we recall counts jumps of certain sizes that occur by a certain time.

Proposition 4.3.5. Let A = (αi, αj), (αi,∞), or (−∞, αj), where in any
case αi, αj are continuity points for ν and A is bounded away from zero.
Then the intensity ν(A) is computable, and the jump-counting process
{Nt(A) ∶ t ≥ 0} is an L1-computable Poisson process (uniformly from i, j).

Proof. We prove the proposition for A = (αi, αj). The other cases are exactly
analogous. Similar to the proof of Lemma 4.3.4, we write

Nt(⋅,A) = ∣{s ≤ t ∶ αi < ∆X(s) < αj}∣ = Jt(X)

where Jt ∶ D[0, t]→ N is given by Jt(f) = ∣{s ≤ t ∶ αi < Jf(s) < αj}∣. Because
A is bounded away from zero, Jt(f) <∞ for all f ∈ D[0, t] and t ≥ 0. Also,

ν(A) = P(N1(⋅,A)) = P(J1(X)) = PX(J1).

The following is uniform from a name for t. By Proposition 3.3.25, Jt is
L0(PX)-computable, so Jt(X) is L0(P)-computable (Fact 2.3.48).

The characteristic function of Jt(X) (Definition 4.1.5) is given by

φ(z) = φJt(X)(z) = P[exp(izJt(X))].

Now, exp(izJt(X)) is (uniformly) L0(P)-computable, but also bounded, so
it is L1(P)-computable (Fact 2.3.55). That lets us compute φ ∶ R→ C.

89

Since {Jt(X) ∶ t ≥ 0} is a Poisson process with intensity r = ν(A),

(∀u ∈ R) φ(z) = exp(rt(eiz − 1)).

Hence we can compute r from φ (see proof of Proposition 4.2.4). We have
established the first claim.

For the second claim, we already know that Nt(⋅,A) = Jt(X) is L0(P)-
computable, and we just showed that its expected value P(Nt(A)) = tν(A)
is computable. Therefore, Nt(A) is L1(P)-computable (Fact 2.3.55). It is a
Poisson process by Fact 4.1.35, and that completes the proof.

Remark 4.3.6. Assuming that A = (αi, αj) is bounded away from zero, we
can treat ν as a computable measure, in the more general sense of Remark
2.3.5, on the computable metric subspace A = [αi, αj].

Finally, we effectivize the Poisson integral.

Proposition 4.3.7. As in the premises of Proposition 4.3.5, let A = (αi, αj),
(αi,∞), or (−∞, αj), where in any case αi, αj are continuity points for ν
and A is bounded away from zero. Let f ∶ R → R be computable. Then
the Poisson integral {∫A f(x)Nt(dx) ∶ t ≥ 0} is a stochastically computable
compound Poisson process (uniformly from i, j).

Proof. As usual, the following is uniform from a name for t.
The Poisson integral is given by

∫
A
f(x)Nt(dx) = ∑

x∈A
f(x)Nt({x}) = ∑

x∈A
f(x)Jt(X,x),

where Jt ∶ D[0, t] ×A→ N is given by Jt(g, x) = ∣{s ≤ t ∶ ∆g(s) = x}∣.
By Proposition 3.3.25, we can PX -a.s. compute the list of all the jumps

of g belonging to A. f is computable, hence computably continuous, so

∑x∈A f(x)Jt(X,x) is L0(P)-computable. It is a compound Poisson process
by Fact 4.1.39, which completes the proof.

We have now effectivized (as much as we need to) the intensity measure,
the Poisson random measure, and the Poisson integral. These are the basic
ingredients of the Lévy-Itô decomposition. Now we turn to the jumps, both
large and small, and the deterministic drift.

90

4.3.2 Jumps and drift

We begin by identifying a special sequence of continuity points for ν.

Proposition 4.3.8. There exists a decreasing sequence (εk)k∈N of uniformly
computable positive reals, converging to 0, such that ν{±εk ∶ k ∈ N} = 0.

Proof. See the proof of Lemma 4.3.2.

So fix (εk)k∈N. For all m ∈ N, let Bm = {x ∶ εm+1 ≤ ∣x∣ < εm} ⊆ R. For all
n ∈ N, let An = ⋃nm=0Bm = {x ∶ εn+1 ≤ ∣x∣ < ε0}. Finally, let C = {x ∶ ∣x∣ ≥ ε0}.

Proposition 4.3.9. Each of Bm, An, and C is a ν-continuity set bounded
away from 0. Its interior is Σ0

1 and its closure is Π0
1 (uniformly).

Proof. This is clear from the definitions.

Recall the Lévy-Itô decomposition (Fact 4.1.43). If we set ε = ε0, the
sum of large jumps becomes ∫C xNt(dx). Then Proposition 4.3.7 implies

Corollary 4.3.10. The sum of large jumps is stochastically computable.

We can say more about the better-behaved of the two jump processes:

Proposition 4.3.11. The sum of large jumps is an effectively measurable
(càdlàg) compound Poisson process with computable intensity.

Proof. Classically, ∫C xNt(dx) is càdlàg and a compound Poisson process
(see Fact 4.1.39). By Corollary 4.3.10, it is stochastically continuous, so to
prove it is effectively measurable, just apply Theorem 4.2.16.

To be precise, we can use Definition 4.2.28 to construct an effectively
measurable modification of the sum of large jumps, and classically any two
càdlàg modifications of a process are indistinguishable (Fact 4.1.13).

The intensity r = ν(C) is computable by Proposition 4.3.5.

As for the sum of small jumps, it has to be compensated. Now, the
compensator itself (Definition 4.1.40) is not actually used for this purpose,
but it is worth mentioning that Proposition 4.3.5 implies

Corollary 4.3.12. Let A = (αi, αj), (αi,∞), or (−∞, αj), where in any
case αi, αj are continuity points for ν and A is bounded away from zero.
Then the compensator Ñt(A) is L1-computable (uniformly from i, j).

More to the point, the small jumps are certainly bounded, and in general
a Lévy process with bounded jumps is easier to control:

91

Proposition 4.3.13. Let Y = {Yt ∶ t ≥ 0} be a stochastically computable
Lévy process. Suppose we are given a K ∈ N such that

sup
t≥0

{∣∆Y (t)∣} <K. (4.3.1)

Then Y is L2-computable (see Remark 4.2.7).

Proof. First, use Lemma 4.2.21 to compute a new bound a > K such that
P{∣Yt∣ = a} = 0. Other than that, we are just effectivizing a classical proof
from Applebaum [3] (specifically, Theorem 2.4.7).

We define, by induction, a sequence (Tn)n∈N of stopping times. First,
T0 = inf{t ≥ 0 ∶ ∣Y (t)∣ > a}. Then, for all n ∈ N,

Tn+1 = inf{t ≥ Tn ∶ ∣Y (t) − Y (Tn)∣ > a}.

By Theorem 4.2.16, T0 = inf{t ∈ D ∶ ∣Y (t)∣ > a} a.s. [P], where D denotes
the non-negative dyadic rationals. And classically we have

P(e−Tn) = [P(e−T0)]n.

Denote inf{t ∈D ∶ ∣Y (t)∣ > a} by τ0. The proof of Theorem 4.2.27 showed
that τ0∧m is L0(P)-computable uniformly from m ∈ N. e−(τ0∧m) is uniformly
bounded, hence L1(P)-computable (Fact 2.3.55). It follows that

e−τ0 = lim
m→∞ e

−(τ0∧m)

is also L1(P)-computable. Since e−τ0 equals e−T0 a.s. [P], the real number

γ = P(e−τ0) = P(e−T0)

is computable. Classically, we have 0 < γ < 1, and for all t ≥ 0 and n ∈ N,

P({∣Y (t)∣ ≥ 2na}) ≤ etγn,

a computable bound. Then, still classically, for all p ∈ N,

P(∣Y (t)∣p ⋅ 1∣Y (t)∣≥2na) ≤ (2a)pet
∞
∑
j=n

(j + 1)pγj ,

which converges absolutely at a computable rate.
Now, since Y (t) is L0(P)-computable (uniformly from a name for t) by

hypothesis, this computable bound implies that Y (t) is L2(P)-computable,
which completes the proof.

92

We already took the trouble of separating out the large jumps of X, so
we can apply Proposition 4.3.13 to whatever is left:

Corollary 4.3.14. For all n ∈ N, Yn(t) = X(t) − ∫∣x∣≥εn xNt(dx) defines an

L2-computable, effectively measurable Lévy process (uniformly from n).

Proof. Classically, Yn is càdlàg and a Lévy process. By Proposition 4.3.7,

{∫∣x∣≥εn xNt(dx) ∶ t ≥ 0} is stochastically computable (uniformly). Hence the

difference Yn is also stochastically computable. By Proposition 4.3.13, Yn
is L2-computable. Finally, for effective measurability, just apply Theorem
4.2.16 as in the proof of Proposition 4.3.11.

Incidentally, this effectivizes another classical fact about Lévy processes:

Corollary 4.3.15. For all n ∈ N, Yn(t)−P(Yn(t)) defines an L2-computable,
effectively measurable martingale (uniformly from n).

But we are mainly interested in applying Corollary 4.3.14 to the drift:

Proposition 4.3.16. The drift b of X is computable.

Proof. We appropriate the relevant classical result from Applebaum [3]:

b = P [X(1) − ∫
C
xN1(dx)] = P(Y0(1)).

By Corollary 4.3.14, P(Y0(1)) is computable.

With the sum of large jumps and the drift accounted for, we are left
(classically, that is) with the sum of a Brownian motion and the small jumps.
If we can pull out those jumps, we will have effectivized the decomposition.

We begin by effectivizing (as much as we need to) the compensated
Poisson integral. (We effectivized the Poisson integral in Proposition 4.3.7.)
As with Corollary 4.3.14, bounding the jumps is a key part of the proof.

Proposition 4.3.17. Let A = (αi, αj) where αi, αj are continuity points for
ν and A is both bounded away from zero and bounded. Let f ∶ R → [0,M]
be computable and bounded. Then the compensated Poisson integral

∫
A
f(x)Ñt(dx) = ∫

A
f(x)Nt(dx) − t∫

A
f(x)ν(dx)

defines an L2-computable martingale (uniformly from i, j,M).

93

Proof. By Proposition 4.3.7, the Poisson integral {∫A f(x)Nt(dx) ∶ t ≥ 0} is
stochastically computable. Since f and A are bounded, this process has
bounded jumps, and Proposition 4.3.13 implies that it is L2(P)-computable.

Classically, ∫A f(x)ν(dx) is just the expected value of ∫A f(x)N1(dx).
Hence it is computable, which is enough to prove that the compensated
Poisson integral is L2-computable. Classically, the process is a martingale
(Fact 4.1.42), and that completes the proof.

That brings us to the compensated sum of small jumps.

Proposition 4.3.18. The compensated sum of small jumps

Z(t) = ∫∣x∣<ε0
xÑt(dx)

defines an L2-computable, effectively measurable martingale.

Proof. Classically, for all n ∈ N,

Mn(t) = ∫
An
xÑt(dx) =

n

∑
m=0

∫
Bm

xÑt(dx) = ∫
εn+1≤∣x∣<ε0

xÑt(dx)

defines a martingale. By Proposition 4.3.17, it is L2-computable.
Classically, for all t ≥ 0, ∥Mn(t)∥L2 is increasing in n and bounded above,

and Mn(t) converges to the martingale Z(t) in L2-norm; see Theorem 2.4.11
in Applebaum [3]. We can then use a classical bound to ensure that the rate
of convergence is computable; see, for example, Dia [27].

Classically, Z is a purely discontinuous martingale (Fact 4.1.42). Finally,
for effective measurability, just apply Theorem 4.2.16 as in the proof of
Proposition 4.3.11.

We can now state the effective Lévy-Itô decomposition.

Theorem 4.3.19. Let X be an effectively measurable Lévy process. We
can compute an ε > 0 such that in the Lévy-Itô decomposition (Fact 4.1.43),

(i) the drift vector b is computable,

(ii) the sum of large jumps ∫∣x∣≥ε xNt(dx) defines an effectively measurable
compound Poisson process with computable intensity,

(iii) the compensated sum of small jumps ∫∣x∣<ε xÑt(dx) defines an L2-
computable, effectively measurable martingale, and

(iv) the Brownian motion W is effectively measurable in C.

94

Proof. ε = ε0 was given by Proposition 4.3.8. Claims (i), (ii), and (iii) are
established in Propositions 4.3.16, 4.3.11, and 4.3.18, respectively.

Finally, if we subtract from X all the other components, which are
stochastically computable, we are left with a Brownian motion W , which
is therefore stochastically computable itself. Apply Theorem 4.2.16 as in
the proof of Proposition 4.3.11 to show that W is effectively measurable in
D. Classically, the sample paths of W are continuous, so Proposition 4.2.19
establishes (iv) and completes the proof.

The value we chose for ε is not in any way special. It is really just a
positive real number such that ν({±ε}) = 0. So it may be worth mentioning

Remark 4.3.20. Throughout the proofs in this section, we can replace ε0
by εk for any k ∈ N. Hence we have actually shown that we can compute
a sequence (εk)k∈N of uniformly computable positive reals, converging to 0,
such that (i)–(iv) hold for ε = εk, uniformly from k, for all k ∈ N.

Indeed, the proof of Lemma 4.3.2 shows that we can compute a sequence
(αk)k∈N of uniformly computable reals that is dense in (0,∞) and such that
(i)–(iv) hold for ε = αk, uniformly from k, for all k ∈ N.

95

Chapter 5

Effective theory of Feller
processes

Every Lévy process is also a Feller process, and every Feller process also
admits a càdlàg modification. In this chapter, we extend our effective theory
of Lévy processes to the larger class of Feller processes in a way that is
broadly consistent with the constructive theory of Chan [19, 20].1

A Feller process is a type of Markov process, which is to say a process
with no memory: the distribution of its future state depends, not on its
entire past, but only on its present state. A Feller process must also satisfy
a continuity condition, which is enough to ensure that a càdlàg modification
exists. All of this is also true of a Lévy process, of course.

One difference is that, in many cases, we would rather treat a Feller
(or a Markov) process, not as a given collection of sample paths, but as a
so-called transition function describing how the process, whatever it may
be, is supposed to change from one time to another. We would then try
to construct sample paths that are consistent with the transition function.
For that reason alone, our effective theory of Feller processes looks quite
different from the theory developed in Chapter 4.

In Section 5.1, we review the relevant classical theory of Feller processes.
In Section 5.2, we effectivize its basic objects, including transition functions.
Finally, in Section 5.3, we generalize Theorem 4.2.16, proving that a càdlàg
modification of a Feller process not only exists, but is computable from a
suitable representation of the process—which, being based on a transition
function, is quite different from how we represented a Lévy process.

1In the constructive theory, Feller processes are described as Markov processes with
strongly continuous Markov semigroups (which they are); the term “Feller” is not used.

96

5.1 Classical theory of Feller processes

In this section, we review basic concepts from the classical theory of Markov
processes—to be precise, time-homogeneous Markov processes in continuous
time—with an emphasis on Feller processes, of course. For details, the reader
may consult Rogers and Williams [65] or Revuz and Yor [63].

5.1.1 Probability kernels

Probability kernels are fundamental to Markov process theory. They extend
the concept of a conditional probability distribution.

Suppose the state x of a stochastic process is observed at time s. Where
will the process be at a later time t? The answer is a probability distribution
on the state space. If the process has no memory, that distribution depends
only on x, s, and t. If s and t are fixed, we have a mapping from states to
probability distributions: this is the concept of a probability kernel.

Definition 5.1.1. A kernel from a measurable space ⟨E,E ⟩ to another
measurable space ⟨F,F ⟩ is a function κ ∶ E ×F → [0,∞] such that

(i) for all x ∈ E, B ↦ κ(x,B) is a measure on ⟨F,F ⟩, and

(ii) for all B ∈ F , x↦ κ(x,B) is E -measurable.

This chapter will introduce a great deal of notation, starting with

Notation 5.1.2. Let κ be a kernel. The measure B ↦ κ(x,B) is denoted
by κx. The integral with respect to κx, assuming it exists, of a measurable
function f ∶ F → [−∞,∞] may be denoted by any of these:

∫ κ(x, dy)f(y) = ∫ f(y)κx(dy) = κf(x). (5.1.1)

With this notation, for all x ∈ E, for all B ∈ F , κx(B) = κ1B(x).

Definition 5.1.3. A kernel κ from ⟨E,E ⟩ to ⟨F,F ⟩ is said to be a sub-
probability kernel if κx(F) ≤ 1 for all x ∈ E. κ is said to be a probability
kernel if κx(F) = 1 for all x ∈ E. In both cases, 0 ≤ κ ≤ 1.

Remark 5.1.4. A sub-probability kernel describes a stochastic process that
can disappear or die. Later we will formalize this with a “coffin state.”

Definition 5.1.5. For a measurable space ⟨E,E ⟩, E + denotes the cone of E -
measurable functions E → [0,∞]. bE denotes the Banach space of bounded
E -measurable functions E → R under the sup-norm.

97

Let κ be a kernel from ⟨E,E ⟩ to ⟨F,F ⟩.

Fact 5.1.6. If f ∈ F+, then (x ↦ κf(x)) ∈ E +. Thus κ induces a function
from F+ to E +, which is also denoted by κ.

Fact 5.1.7. Assume that κ is a sub-probability kernel. If f ∈ bF , then
(x ↦ κf(x)) ∈ bE . Thus κ induces a linear operator from bF to bE , which
is still denoted by κ. This operator satisfies

0 ≤ f ≤ 1 Ô⇒ 0 ≤ κf ≤ 1. (5.1.2)

Moreover, for any sequence (fn)n∈N ⊆ bF ,

fn ↓ 0 (pointwise) Ô⇒ κfn ↓ 0 (pointwise). (5.1.3)

Finally, κ is a probability kernel if and only if κ(1) = 1.

Definition 5.1.8. A linear operator ϕ ∶ bF → bE is said to be Markov if

(i) 0 ≤ f ≤ 1 implies 0 ≤ ϕf ≤ 1, and

(ii) fn ↓ 0 implies ϕfn ↓ 0 (pointwise in both cases).

A Markov operator is said to be strictly Markov if ϕ(1) = 1.

With this terminology, Fact 5.1.7 states that each sub-probability kernel
κ induces a Markov operator, and this operator is strictly Markov if and
only if κ is a probability kernel. We have a converse in

Fact 5.1.9. To each Markov operator ϕ ∶ bF → bE there corresponds a
unique sub-probability kernel κ inducing ϕ, namely the one given by

(∀x ∈ E) (∀B ∈ F) κ(x,B) = ϕ1B(x). (5.1.4)

Again, κ is a probability kernel if and only if ϕ is strictly Markov.

We collect a few more basic facts about Markov operators in

Fact 5.1.10. Every Markov operator ϕ ∶ bF → bE is

(i) positive, i.e., f ≥ 0 implies ϕf ≥ 0,

(ii) monotone, i.e., f ≤ g implies ϕf ≤ ϕg, and

(iii) a contraction, i.e., ∣f ∣ ≤ 1 implies ∣ϕf ∣ ≤ 1.

98

Of course, every contraction is bounded: ∥ϕ∥ ≤ 1, with equality if and only
if ϕ is strictly Markov. Moreover, ϕ satisfies Jensen’s inequality :

(iv) if H ∶ R→ R is convex and H(0) = 0, then H(ϕf) ≤ ϕ(H(f)).

The following example of a probability kernel is simple but important.

Definition 5.1.11. If x ∈ E, εx denotes the unit mass at x: the probability
measure on ⟨E,E ⟩ defined by εx(A) = 1 if x ∈ A, and 0 otherwise.

Example 5.1.12. We define a probability kernel κ0 from ⟨E,E ⟩ to ⟨E,E ⟩
by setting κ0(x, ⋅) = εx for all x ∈ E. κ0 induces the identity operator on bE .

We conclude by defining some important kernel-related operations.

Notation 5.1.13. To simplify our notation, we may identify a measurable
space ⟨A,A ⟩ with the underlying set A. This should not be confusing.

First, we define a product operation on kernels.

Definition 5.1.14. If κ1 is a kernel from E to F and κ2 is a kernel from F
to G, then we define the product kernel κ1κ2 from E to G by

(∀x ∈ E) (∀C ∈ G) (κ1κ2)(x,C) = ∫ κ1(x, dy)κ2(y,C). (5.1.5)

Fact 5.1.15. The product of sub-probability kernels is a sub-probability
kernel. The product of probability kernels is a probability kernel.

Fact 5.1.16. For sub-probability kernels κ1 and κ2, the Markov operator
bG → bE induced by the product κ1κ2 is given by

(κ1κ2)f(x) = (κ1(κ2f))(x) = ∫ κ1(x, dy)∫ κ2(y, dz)f(z). (5.1.6)

We can also integrate kernels, i.e., apply measures to them.

Definition 5.1.17. If κ is a sub-probability kernel from E to F and µ is a
probability measure on E, then µκ ∶ bF → R denotes the linear operator

(µκ)f = ∫ (κf)dµ = ∫ µ(dx)∫ κ(x, dy)f(y). (5.1.7)

Remark 5.1.18. The operator µκ is a special case of the product operator
in Fact 5.1.16, as each measure µ on E induces a kernel from E to E which
is constant in its first argument: ⟨x,A⟩↦ µ(A).

Notation 5.1.19. Naturally, a kernel from E to E is called a kernel on E.

99

5.1.2 Markov processes

With a kernel, we can describe how the state of a memoryless process changes
from one time to another, provided that both times are fixed. We introduce
time dependence (in continuous time) via transition functions.

Definition 5.1.20. A transition function on a measurable space E is a
family {Ps,t ∶ 0 ≤ s ≤ t} of sub-probability kernels on E such that

(∀s ≤ t ≤ u) Ps,u = Ps,tPt,u. (5.1.8)

In other words, for all x ∈ E, for all A ∈ E ,

Ps,u(x,A) = ∫ Ps,t(x, dy)Pt,u(y,A). (5.1.9)

This is known as the Chapman-Kolmogorov equation.

For our purposes, Definition 5.1.20 is unnecessarily general, because
Feller processes are necessarily time-homogeneous in the following sense.

Definition 5.1.21. A transition function {Ps,t ∶ 0 ≤ s ≤ t} is said to be
time-homogeneous or simply homogeneous if Ps,t = P0,t−s for all 0 ≤ s ≤ t.

In other words, Ps,t depends on s and t only through the difference t−s.

Notation 5.1.22. If {Ps,t ∶ 0 ≤ s ≤ t} is homogeneous, we write Pt instead
of P0,t for all t ≥ 0, and denote the transition function by {Pt ∶ t ≥ 0}.

Fact 5.1.23. If {Pt ∶ t ≥ 0} is homogeneous, the Chapman-Kolmogorov
equation can be rewritten as

(∀s, t ≥ 0) Ps+t = PsPt. (5.1.10)

Hence {Pt ∶ t ≥ 0} is a semigroup under the kernel product. In other words,
for all x ∈ E, for all A ∈ E ,

Ps+t(x,A) = ∫ Ps(x, dy)Pt(y,A). (5.1.11)

Notation 5.1.24. From this point forward, we consider only homogeneous
transition functions, so we can omit the word “homogeneous.”

Fact 5.1.25. According to Fact 5.1.7, a transition function {Pt ∶ t ≥ 0} on
E induces a family of Markov operators Pt ∶ bE → bE via

Ptf(x) = ∫ Pt(x, dy)f(y). (5.1.12)

By (5.1.10), these operators form a semigroup under composition.

100

Now fix a sample space ⟨Ω,F ⟩ and a state space ⟨E,E ⟩. To define an
E-valued Markov process on Ω, we also need a filtration.

Definition 5.1.26. A filtration on Ω is a family {Ft ∶ t ≥ 0} of sub-σ-
algebras of F such that Fs ⊆ Ft whenever s ≤ t.

Fix a filtration {Ft ∶ t ≥ 0} on Ω as well.

Definition 5.1.27. An E-valued stochastic process X = {Xt ∶ t ≥ 0} on Ω
is said to be Ft-adapted if Xt is Ft-measurable for each t ≥ 0.

Now we can define a Markov process. (A time-homogeneous Markov
process, to be precise, but these are the only Markov processes we will
consider. For a more general definition, see Revuz and Yor [63].)

Definition 5.1.28. A Markov process with transition function {Pt ∶ t ≥ 0}
and initial distribution µ ∈M1(E) is a pair ⟨X,ν⟩ where

(i) X = {Xt ∶ t ≥ 0} is an E-valued, Ft-adapted stochastic process,

(ii) ν is a probability measure on Ω such that νX0 = µ, and

(iii) the Markov property holds: for all s, t ≥ 0, for all f ∈ bE ,

ν[f(Xs+t)∣Fs] = (Ptf)(Xs) a.s. [ν]. (5.1.13)

We would rather handle every initial distribution in one process:

Definition 5.1.29. A Markov process with transition function {Pt ∶ t ≥ 0}
(and no specified initial distribution) is a pair ⟨X,P⟩ where

(i) X = {Xt ∶ t ≥ 0} is an E-valued, Ft-adapted stochastic process,

(ii) P = {Pµ ∶ µ ∈M1(E)} is a family of probability measures on Ω such
that Pµ

X0
= µ for all µ, and

(iii) for all µ, the Markov property holds: for all s, t ≥ 0, for all f ∈ bE ,

Pµ[f(Xs+t)∣Fs] = (Ptf)(Xs) a.s. [Pµ]. (5.1.14)

Let us assume that a Markov process ⟨X,P⟩ actually exists. An initial
distribution µ ∈M1(E), together with the transition function {Pt ∶ t ≥ 0},
determines the finite-dimensional distributions of the process:

101

Fact 5.1.30. Let 0 = t0 < t1 < ⋯ < tn. For all f ∈ bE n+1, the expected value
Pµ[f(Xt0 , . . . ,Xtn)] is given by the formula

∫ µ(dx0)∫ Pt1(x0, dx1)⋯∫ Ptn−tn−1(xn−1, dxn)f(x0, . . . , xn). (5.1.15)

(In particular, this determines the finite-dimensional distributions of X.)

Remark 5.1.31. Fact 5.1.30 says that the initial position x0 of the process
is distributed according to µ, its position x1 at time t1 according to Pt1(x0, ⋅),
its position x2 at time t2, according to Pt2−t1(x1, ⋅), and so on.

Notation 5.1.32. Let s, t ≥ 0. We may write PXs[f(Xt)] for Ptf(Xs), in
which case we can rewrite the Markov property (5.1.14) as

Pµ[f(Xs+t)∣Fs] = PXs[f(Xt)] a.s. [Pµ]. (5.1.16)

A Markov process is particularly well behaved if its transition function
satisfies two extra assumptions:

Definition 5.1.33. {Pt ∶ t ≥ 0} is said to be normal if P0(x, ⋅) = εx for all
x ∈ E. In other words, P0 is the identity operator on bE .

Definition 5.1.34. {Pt ∶ t ≥ 0} is said to be conservative if Pt is a probability
kernel for each t ≥ 0. In other words, Pt(1) = 1.

Remark 5.1.35. 1 − Pt(x,E) represents the probability that the process
disappears or dies, so to speak, before or at time t. See Remark 5.1.4.

The first condition will not be a problem for us, since all Feller transition
functions are normal. Neither will the second condition, in fact, as we can
make any transition function conservative by extending the state space:

Definition 5.1.36. The extended state space for a given transition function
{Pt ∶ t ≥ 0} is ⟨E∗,E ∗⟩, where

(i) ∗ is a new symbol, called the coffin state,

(ii) E∗ = E ∪ {∗}, and

(iii) E ∗ = σ(E ,∗) is the smallest σ-algebra containing E and {∗}.

Fact 5.1.37. Every transition function {Pt ∶ t ≥ 0} induces a conservative
transition function {P ∗

t ∶ t ≥ 0} on E∗ as follows: for all t ≥ 0,

(i) for all x ∈ E, P ∗
t (x,{∗}) = 1 − Pt(x,E),

(ii) P ∗
t (∗, ⋅) = ε∗ is the unit mass at ∗, and

(iii) P ∗
t = Pt on E × E .

Remark 5.1.38. Fact 5.1.37 (ii) says that the coffin state is absorbing.

102

5.1.3 Feller processes

The class of Markov processes is a bit too large to effectivize: in general,
the sample paths of a Markov process do not live in a well-behaved space of
functions. Feller processes, on the other hand, have càdlàg modifications.

We have to assume that the state space E is lccb, i.e., a locally compact
Hausdorff space with a countable base (equipped with the Borel σ-algebra).
Such a space has a one-point compactification. The definition of a Feller
process will be stated in terms of real-valued functions on the state space
that vanish at infinity. Recall Definitions 2.2.88 and 2.2.90.

Definition 5.1.39. A function f ∶ E → R is said to vanish at infinity if for
all ε > 0 there exists a compact K ⊆ E such that ∣f(x)∣ < ε for all x /∈K.

Definition 5.1.40. C0(E) denotes the vector space of continuous functions
E → R that vanish at infinity. C0(E) is a complete, separable subspace of
bE under the sup-norm.

Fact 5.1.41. Let ϕ ∶ C0(E)→ bE be a linear operator such that

0 ≤ f ≤ 1 Ô⇒ 0 ≤ ϕf ≤ 1. (5.1.17)

Then there exists a unique sub-probability kernel κ on E such that

(∀f ∈ C0(E)) (∀x ∈ E) ϕf(x) = ∫ κ(x, dy)f(y). (5.1.18)

Thus, by Fact 5.1.7, ϕ extends to a Markov operator bE → bE .

Definition 5.1.42. A Feller semigroup on ⟨E,E ⟩ is a family {Tt ∶ t ≥ 0} of
linear operators C0(E)→C0(E) with the following properties:

(i) T0 = id, and for all s, t ≥ 0, Tt+s = TtTs

(ii) for all t ≥ 0, for all f ∈ C0(E), 0 ≤ f ≤ 1 implies 0 ≤ Ttf ≤ 1

(iii) for all f ∈ C0(E), limt↓0 ∥Ttf − f∥∞ = 0

Property (iii) is called strong continuity.

Remark 5.1.43. By Fact 5.1.41, every Feller semigroup {Tt ∶ t ≥ 0} extends
to a unique transition function on E, which we denote by {Pt ∶ t ≥ 0}.

Definition 5.1.44. A transition function {Pt ∶ t ≥ 0} associated with a
Feller semigroup is called a Feller transition function. A Markov process
⟨X,P⟩ with a Feller transition function is called a Feller process.

103

Feller semigroups have another characterization:

Fact 5.1.45. Let {Tt ∶ t ≥ 0} be a family of linear operators C0(E)→C0(E)
satisfying properties (i) and (ii) in Definition 5.1.42. Then property (iii),
strong continuity, is implied by the apparently weaker condition

(iii)′ for all f ∈ C0(E), for all x ∈ E, limt↓0 ∣Ttf(x) − f(x)∣ = 0.

This, in turn, leads to a characterization of Feller transition functions:

Fact 5.1.46. A transition function {Pt ∶ t ≥ 0} is Feller if and only if

(i) for all t ≥ 0, for all f ∈ C0(E), Ptf ∈ C0(E), and

(ii) for all f ∈ C0(E), for all x ∈ E, limt↓0 ∣Ptf(x) − f(x)∣ = 0.

Notation 5.1.47. In light of Remark 5.1.43, we can identify—classically,
at least—a Feller semigroup with the associated transition function.

Let us assume that a Feller process ⟨X,P⟩ actually exists. Of course, for
all µ ∈M1(E), the Markov property holds: for all s, t ≥ 0, for all f ∈ bE ,

Pµ[f(Xs+t)∣Fs] = (Ptf)(Xs) a.s. [Pµ].

It is often possible to reduce the theory of Feller processes to the case
where the state space E is compact by taking a one-point compactification
of E. Recall the extended state space E∗ (Definition 5.1.36), which makes
the transition function conservative (according to Fact 5.1.37).

Definition 5.1.48. Whenever E is lccb, let the extended state space be a
one-point compactification of E. That is, let ∗ be a point at infinity.

Fact 5.1.49. Every Feller transition function induces a conservative Feller
transition function on its extended state space.

Feller processes do, in fact, exist, and like Lévy processes, they have
càdlàg modifications. The main result in this chapter will effectivize

Fact 5.1.50. For every Feller semigroup {Pt ∶ t ≥ 0}, there exists an E∗-
valued càdlàg Feller process ⟨X,P⟩ with transition function {Pt ∶ t ≥ 0}.

Technically, the transition function for the E∗-valued Feller process in
Fact 5.1.50 is the conservative transition function {P ∗

t ∶ t ≥ 0} induced by
{Pt ∶ t ≥ 0} on E∗. However, for simplicity, we adopt

Notation 5.1.51. We will continue to refer to {Pt ∶ t ≥ 0} as the transition
function, to E as the state space, and to E∗ as the extended state space.

104

5.2 Computable Feller processes

In this section, we explain what it means to compute a probability kernel,
a transition function, a Feller semigroup, and a Feller process.

5.2.1 Computable probability kernels

From now on, of course, our measurable spaces must be computable metric
spaces, equipped with the Borel σ-algebra.

Definition 5.2.1. Let E and F be computable metric spaces. A probability
kernel κ from E to F is said to be computable if the function x ↦ κx is
computable of type E →M1(F). A name for κ is a name for this function.

Gács [39] uses a different definition of a computable probability kernel,
based on the sequence (gi)i∈N from Definition 2.3.49. But our definition is
equivalent to his, and the proof is routine computable analysis:

Proposition 5.2.2. A probability kernel κ from E to F is computable if
and only if κgi ∶ E → R is computable, uniformly from i, for all i ∈ N.

In the classical theory of Feller processes, we had to assume that the
state space was locally compact. Let us now assume that E is effectively
locally compact. Then the space C0(E) of continuous functions E → R that
vanish at infinity is a computable Banach space (Corollary 2.2.101).

We can also characterize computable probability kernels in terms of the
associated Markov operator:

Proposition 5.2.3. Let κ be a probability kernel on E. The following are
equivalent, and this can be made uniform:

(a) κ is computable in the sense of Definition 5.2.1

(b) f, x↦ κf(x) is computable of type C0(E) ×E → R

(c) f, x↦ κf(x) is computable of type C(E, [0,1]) ×E → [0,1]

(d) f ↦ κf is computable of type C(E, [0,1])→C(E, [0,1])

Proof. The equivalence of (a), (b), and (c) follows from Proposition 2.3.9.
The equivalence of (c) and (d) follows from Corollary 2.2.85.

We can also see that the kernel product is a computable operation:

105

Proposition 5.2.4. Let κ1 and κ2 be probability kernels on E. Then κ1κ2

is computable uniformly from names for κ1 and κ2.

Proof. Uniformly from names for κ1 and κ2, the composition of f ↦ κ1f
and f ↦ κ2f is computable from C(E, [0,1]) to C(E, [0,1]) by Proposition
5.2.3. One more application of that result completes the proof.

These are more than enough facts about computable probability kernels
in general. We proceed to computable transition functions.

5.2.2 Computable Feller semigroups

We continue to assume that E is effectively locally compact.

Definition 5.2.5. A transition function {Pt ∶ t ≥ 0} on E is said to be
computable if t, x↦ P xt is computable of type [0,∞) ×E →M1(E).

Proposition 5.2.6. {Pt ∶ t ≥ 0} is computable if and only if t, f, x↦ Ptf(x)
is computable of type [0,∞) ×C0(E) ×E → R.

Proof. This is immediate from Proposition 5.2.3.

Definition 5.2.7. A Feller semigroup {Tt ∶ t ≥ 0} is said to be computable
if t, f ↦ Ttf is computable of type [0,∞) ×C0(E)→C0(E).

Proposition 5.2.8. The transition function associated with a computable
Feller semigroup is itself computable. This can be made uniform.

Proof. This is immediate from Proposition 5.2.6.

Notation 5.2.9. In light of Proposition 5.2.8, we can identify a Feller semi-
group with the associated transition function. (Recall Notation 5.1.47.)

Let {Pt ∶ t ≥ 0} be a computable Feller transition function. Recall the
property of strong continuity, from Definition 5.1.42 (iii):

lim
t↓0

∥Ptf − f∥∞ = 0 for all f ∈ C0(E).

The next result effectivizes this key property.

Proposition 5.2.10. Let K ⊆ E be compact. Given ε > 0, uniformly from
a name for K ∈H(E), we can compute a δ > 0 such that

1 − Pt(x,B(x, ε)) < ε (5.2.1)

whenever 0 ≤ t < δ and x ∈K.

106

Proof. We effectivize a standard classical argument [12]. Define a family
{fx ∶ x ∈ E} of continuous functions on E by:

fx(y) = { 1 − d(x, y)/ε if d(x, y) < ε,
0 otherwise.

Evidently, fx ∈ C0(E) is computable uniformly from a name for x, and it is
not difficult to show that ∥fx − fz∥∞ ≤ d(x, z)/ε for all x, z ∈ E.

Uniformly a name for K ∈ H(E), we can compute a finite set of points
x0, . . . , xm ∈ E such that

K ⊆ ⋃
i≤m

Bε2/4(xi).

In other words, for all x ∈ K, mini≤m d(x,xi) < ε2/4. It follows that the
family of functions {fx ∶ x ∈K} is similarly bounded: for all x ∈K,

min
i≤m

∥fx − fxi∥∞ < (ε2/4)/ε = ε/4.

Next, we have

Pt(x,B(x, ε)) = ∫ Pt(x, dy)1B(x,ε)(y) ≥ ∫ Pt(x, dy)fx(y) = Ptfx(x),

which implies that

1 − Pt(x,B(x, ε)) ≤ fx(x) − Ptfx(x).

We will bound the right-hand side uniformly. Taking a supremum over E,
we have, for all i ≤m,

∥fx − Ptfx∥∞ ≤ ∥fx − fxi∥∞ + ∥fxi − Ptfxi∥∞ + ∥Ptfxi − Ptfx∥∞.

Since x ∈K, we have ∥fx−fxi∥∞ < ε/4 for some i ≤m. Furthermore, ∥Pt∥ ≤ 1
(linear operator norm), so ∥Ptfxi − Ptfx∥∞ ≤ ∥fxi − fx∥∞ < ε/4 as well.

By hypothesis, t, f ↦ Ptf is computable from [0,∞)×C0(E) to C0(E).
Since we can compute a name for fxi ∈ C0(E) from i ∈ N, we can compute
a δ such that whenever 0 ≤ t < δ, ∥fxi − Ptfxi∥∞ < ε/2 for all i ≤m. Hence

∥fx − Ptfx∥∞ < ε/4 + ε/2 + ε/4 = ε.

Therefore, 0 ≤ t < δ implies 1 − Pt(x,Bε(x)) < ε, as required.

Proposition 5.2.10 says that for t near 0, P xt is nearly concentrated
around x. Hence if a bounded, continuous function f vanishes near x, then
Ptf(x) = ∫ f(y)dP xt (y) nearly vanishes too. The proof is routine:

107

Corollary 5.2.11. Let K ⊆ E be compact. Given ε > 0, uniformly from
a name for K in H(E), we can compute a δ > 0 such that ∣Ptf(x)∣ < ε
whenever 0 ≤ t < δ, x ∈K, and f ∈ C(E, [0,1]) vanishes on B(x, ε).

Let ⟨Ω,P⟩ be a computable probability space equipped with a filtration
{Ft ∶ t ≥ 0}, representing the sample space of a stochastic process.

Definition 5.2.12. An E-valued adapted process X on Ω is said to be
computably Markov if it is a Markov process with a computable transition
function. X is said to be computably Feller if it is a Feller process with a
computable Feller semigroup.

Proposition 5.2.13. A computable Feller process is computably Markov.

Proof. This is immediate from Proposition 5.2.8.

Remark 5.2.14. Without any real loss of generality, replacing E by E∗,
we can assume that a computable Feller transition function is conservative
and that the state space E is effectively compact: see Fact 5.1.49, Theorem
2.2.73, and Proposition 2.2.104. Obviously, in that case, C0(E) = C(E).

The main goal of this chapter is to effectivize Fact 5.1.50 as follows.

Theorem 5.2.15. Let {Pt ∶ t ≥ 0} be a computable, conservative Feller
semigroup on an effectively compact space E. There exists a càdlàg Feller
process ⟨X,P⟩ with transition function {Pt ∶ t ≥ 0} such that

(i) t, ω ↦ X(t, ω) is L0(λ × Pµ)-computable of type [0,∞) × Ω → E,
uniformly from a name for µ ∈M1(E), where λ is Lebesgue measure;

(ii) for all t ≥ 0, X(t, ⋅) is L0(Pµ)-computable of type Ω → E, uniformly
from names for t and µ ∈M1(E); and

(iii) ω ↦ X(⋅, ω) is L0(Pµ)-computable of type Ω → DE[0, T], uniformly
from a dyadic rational T > 0 and a name for µ ∈M1(E).

Remark 5.2.16. In the terminology of Chapter 4, Theorem 5.2.15 (ii) says
that X is stochastically computable, and (iii) says that X is effectively
measurable. Incidentally, (i) says that X is effectively jointly measurable.

The proof of Theorem 5.2.15 is carried out in the next section, but before
that, we specialize effective Feller process theory to Lévy processes.

Essentially, a one-dimensional Lévy process (see Section 4.1) is an R-
valued Feller process whose transition function is induced by a so-called
convolution semigroup, which means it takes a particularly simple form [3]:

108

Fact 5.2.17. The transition function for a Lévy process X is given by

Ptf(x) = P[f(Xt −X0 + x)], (5.2.2)

or equivalently by Pt(x,A) = P{Xt −X0 + x ∈ A}.

In particular, stochastic continuity (Definition 4.1.14) at t = 0 implies

Fact 5.2.18. For all ε > 0, there exists a δ > 0 such that for all s < δ,

1 − Ps(x,B(x, ε)) = 1 − P{∥Xs −X0∥ < ε} < ε. (5.2.3)

Thanks to these classical results, we can easily prove

Proposition 5.2.19. Every stochastically computable Lévy process is also
a computable Feller process.

Proof. Let X = {Xt ∶ t ≥ 0} be the Lévy process. Fact 5.2.17 gives us the
Feller semigroup {Pt ∶ t ≥ 0} of X, so most of our work is done:

Ptf(x) = P[f(Xt −X0 + x)].

Now, uniformly from a name for t, Xt and X0 are L0(P)-computable. It
follows that, uniformly from names for x ∈ R and f ∈ C0(R), f(Xt −X0 +x)
is L1(P)-computable, which lets us compute Ptf(x), as required.

Stochastic computability implies an effective version of Fact 5.2.18. This
is essentially Proposition 5.2.10 specialized to Lévy processes:

Proposition 5.2.20. Let X be a stochastically computable Lévy process.
Given ε > 0, we can compute a δ > 0 such that for all 0 ≤ t < δ,

1 − Pt(x,B(x, ε)) = 1 − P{∥Xt −X0∥ < ε} < ε. (5.2.4)

Proof. Set t = 0 in Proposition 4.2.3.

5.3 Computably càdlàg Feller processes

In this section, we develop the effective theory of Feller processes in a way
that is broadly consistent with the constructive theory of Chan [19, 20]. Our
goal is to prove Theorem 5.2.15 by adapting the constructive argument.

109

5.3.1 Pseudo-canonical process

Classically, the existence of a Feller process in a state space E with a given
transition function is established using the Daniell-Kolmogorov extension
theorem, which defines a so-called canonical process on the sample space of
all functions from, say, [0,1] to R. After establishing the existence of some
such process, we can show that its sample paths are actually càdlàg.

In computable analysis, this approach must be modified. For one thing,
the extension theorem is not effective; for another, the space of all functions
(with the product topology) is not separable. Instead, we define what we call
a “pseudo-canonical” process X indexed by dyadic rational times. Later, we
will prove that X satisfies an appropriate version of the Markov property.

The set-up, here and for the rest of this section, is as follows.

Notation 5.3.1. ⟨E,d,S⟩ denotes an effectively compact metric space,
which we identify with E, and E denotes its Borel σ-algebra. {Pt ∶ t ≥ 0}
denotes a computable, conservative Feller transition function on E.

Remark 5.3.2. We are assuming that E is effectively compact and that
{Pt} is conservative without loss of generality: see Remark 5.2.14.

Notation 5.3.3. Let D = {q○i ∶ i ∈ N} enumerate the non-negative dyadic
rationals: D will be the index set for our pseudo-canonical process. Let Ω
be the product space ED (Definition 2.2.46), which is effectively compact.
F = B(Ω) denotes the Borel σ-algebra of Ω.

Definition 5.3.4. The coordinate process on Ω is the computable function
X ∶ D × Ω → E given by X(t, ω) = ω(t). Of course, X is the evaluation
operator; here, it represents a D-indexed, E-valued stochastic process on Ω.

Remark 5.3.5. F = B(Ω) = σ{Xt ∶ t ∈D}.

With the set-up in place, we need to define probability measures Pµ

on Ω, which amounts to integrating bounded (Borel-) measurable functions
from Ω to R. It is enough to integrate continuous functions, and the Stone-
Weierstrass theorem allows us to approximate them conveniently.

Definition 5.3.6. Let A ⊆ C(Ω) be the set of functions of the form

f1(Xt1)f2(Xt2)⋯fn(Xtn), (5.3.1)

where f1, f2, . . . , fn ∈ C(E) and t1 < t2 < ⋯ < tn belong to D. Let A0 ⊆ A
be the subset of functions of the form (5.3.1) where f1, f2, . . . , fn are ideal
points from C(E). Let Lin(A) ⊆ C(Ω) be the set of linear combinations of
elements of A with coefficients from R, and let Lin0(A0) ⊆ Lin(A) be the
set of linear combinations of elements of A0 with coefficients from Q.

110

Recall that Ω is compact. The Stone-Weierstrass theorem implies

Fact 5.3.7. Lin(A) is dense in C(Ω) (with respect to the sup-norm).

In fact, we can say more (the proof is routine computable analysis):

Proposition 5.3.8. Lin0(A0) is a computably equivalent set of ideal points
for the computable Banach space C(Ω) (under the sup-norm).

We know how the transition function {Pt ∶ t ≥ 0} acts on the state space:
it maps each point x ∈ E to a distribution P xt on E. We need to define, for
each µ ∈M1(E), a measure Pµ on the sample space Ω that represents the
law of the coordinate process X with initial distribution µ. For that, we
need to define a probability kernel κ from E to Ω, i.e., a Markov operator
κ ∶ bF → bE . We begin by defining κ on functions of the form (5.3.1).

Definition 5.3.9. For f = f1(Xt1)f2(Xt2)⋯fn(Xtn) ∈ A,

κf = Pt1(f1 ⋅ Pt2−t1(f2⋯Ptn−tn−1(fn)⋯)), (5.3.2)

where f1, f2, . . . , fn ∈ C(E) and t1 < t2 < ⋯ < tn belong to D.

Proposition 5.3.10. The function κ maps A to C(E), and extends to a
computable linear operator κ ∶ C(Ω) → C(E) such that (i) κ(1) = 1, and
(ii) for all f ∈ C(Ω), 0 ≤ f ≤ 1 implies 0 ≤ κf ≤ 1.

Proof. Since {Pt ∶ t ≥ 0} is a Feller semigroup, we can see from Definition
5.3.9 that κf ∈ C(E) for all f ∈ A. Since {Pt ∶ t ≥ 0} is computable, κf is
computable (as a point in C(E)) uniformly from a name for f (in C(Ω)).

We extend κ, defined by (5.3.2), from A to Lin(A) by linearity:

κ(∑
i≤k
aif

i
1(Xt1)⋯f in(Xtn)) =∑

i≤k
aiPt1(f i1 ⋅ Pt2−t1(f i2⋯Ptn−tn−1(f in)⋯)).

It is not difficult to show that κ is well-defined on Lin(A); that is, if f = 0,
then κf = 0 as well. And it is clear that κ is a linear operator from Lin(A)
to C(E), and that κf is computable uniformly from a name for f .

By a standard continuity argument, the extension of κ from Lin(A) to
C(Ω) is linear. In fact, the standard continuity argument is effective, and
since κ is computable on Lin0(A0), its extension is computable on C(Ω).

It is easy to see from Definition 5.3.9 that (i) κ(1) = 1, and (ii) for all
f ∈ A, 0 ≤ f ≤ 1 implies 0 ≤ κf ≤ 1. The latter property extends to Lin(A)
by linearity, then to C(Ω) by continuity, which completes the proof.

111

Proposition 5.3.11. For all µ ∈M1(E), κ induces a probability measure
µκ on Ω. A name for µκ is computable uniformly from a name for µ.

Proof. The integral operator associated with µκ is given by (µκ)(f) = µ(κf)
for f ∈ C(Ω). By Proposition 5.3.10, κ ∶ C(Ω) → C(E) is computable, so
µ(κf) is computable uniformly from names for µ and f . Finally, κ(1) = 1,
so µκ is a probability measure. This completes the proof.

Remark 5.3.12. κ defines a computable probability kernel from E to Ω.

The computable probability kernel κ is essential to the theory.

Remark 5.3.13. We review some important facts about probability kernels.
We know that κ induces a computable linear operator κ ∶ bF → bE . This
operator has the following properties:

(i) κ is positive: f ≥ 0 implies κf ≥ 0 (for all f ∈ bF)

(ii) κ is monotone: f ≤ g implies κf ≤ κg

(iii) κ is a contraction: ∥f∥∞ ≤ 1 implies ∥κf∥∞ ≤ 1 (in fact, ∥κ∥ = 1)

(iv) fn ↓ 0 (pointwise) implies κfn ↓ 0 (pointwise)

Notation 5.3.14. For all µ ∈M1(E), Pµ denotes µκ ∈M1(Ω).

Going forward, µ represents an initial distribution (on the state space)
for a Feller process, and Pµ the corresponding measure on the sample space.

Proposition 5.3.15. For all µ ∈M1(E) and t ∈D, Pµ
Xt

= µPt.

Proof. Because of all the new notation, we will work through the details.
Let f ∈ C(E). By the change-of-variables formula,

Pµ
Xt

(f) = Pµ(f ○Xt) = µκ(f ○Xt).

By the definition (5.3.9) of κ on A, κ(f(Xt)) = Ptf , so µκ(f ○Xt) = µ(Ptf).
Since f ∈ C(E) was arbitrary, this completes the proof.

Remark 5.3.16. As a special case of Proposition 5.3.15, Pµ
X0

= µ.

112

5.3.2 Pseudo-Markov property

In the last part, given a conservative Feller semigroup {Pt ∶ t ≥ 0}, we defined
a probability kernel κ which took a distribution µ on E to a distribution
Pµ = µκ on Ω = ED. Here, we verify a version of the Markov property
(5.1.14) for the coordinate process X ∶D ×Ω→ E.

To state this “pseudo-Markov” property, we need a number of tools.

Definition 5.3.17. For all s ∈D, θs ∶ Ω→ Ω denotes the left-shift operator

θs(ω) ∶ t↦ ω(t + s). (5.3.3)

Notation 5.3.18. If Z ∶ Ω → R is a random variable, we may denote the
random variable (κZ)(Xs) ∶ Ω→ R by κXs(Z). This will be used later.

Evidently, the Markov property—the entire concept of a memoryless
process—is based on conditional expectations. Classically, these are defined
in terms of a filtration: conditioning on σ-algebras. However, σ-algebras are
not easily effectivized, so we will condition on sets of measurable functions.

Definition 5.3.19. Let ⟨M,ρ⟩ be a complete, separable metric space with
the Borel σ-algebra B(M). Let ν be a probability measure on M . A set G
of measurable functions from M to R is said to be a Borel family if

1. G is closed under the Ky-Fan metric dν , and

2. if g1, . . . , gn ∈ G and f ∈ C(Rn), then f(g1, . . . , gn) ∈ G .

Definition 5.3.20. Let A be a subset of L0(M,ν). G (A) denotes the set
of functions of the form f(g1, . . . , gn) where g1, . . . , gn ∈ A and f ∈ C0(Rn).

Fact 5.3.21. The closure G (A) of G (A) under dν is a Borel family, and
every Borel family on M arises in this way for some countable A.

Notation 5.3.22. G (A) is called the Borel family generated by A.

Next, we effectivize Borel families. Assume that M is an effectively
compact space and ν is a computable probability measure on M .

Fact 5.3.23. Let A enumerate uniformly L0(ν)-computable functions from
M to R. For all m ∈ N, let (fmk)k∈N enumerate the ideal points of C0(Rm),
so that by combining these sequences with A we have an enumeration of

Â = {fmk (g1, . . . , gm) ∶m,k ∈ N and g1, . . . , gm ∈ A}.

Then the Borel family G (A) generated by A is a computable metric space
under dν with Â for ideal points.

113

Proof. Â is dense in G (A), and the elements of Â are uniformly L0(ν)-
computable by Fact 2.3.48. Apply Fact 2.2.18.

By Fact 2.2.18, the computable points in G (A) are exactly the L0-
computable functions that belong to G (A), which we state as

Fact 5.3.24. A name for f in G (A) is computable uniformly from a name for
f in L0(M,ν), and vice versa; in particular, a point f ∈ G (A) is computable
in G (A) if and only if f is computable in L0(M,ν).

Notation 5.3.25. The computable metric space ⟨G (A), dν , Â⟩ is called a
computable Borel family in L0(M,ν).

We are now able to condition on Borel families:

Definition 5.3.26. Let f ∈ L1(M,ν). A conditional expectation of f given
the Borel family G (A) is a random variable f̃ ∈ G (A) such that

(∀g ∈ G (A)) ν(g ⋅ f̃) = ν(g ⋅ f). (5.3.4)

Notation 5.3.27. Conditional expectations, so defined, are unique up to
ν-a.e. equality. We denote the equivalence class by ν[f ∣G (A)].

Remark 5.3.28. It is enough to check that (5.3.4) holds for all g ∈ Â.

Definition 5.3.29. The (equivalence class of a) conditional expectation f̃
of f given G (A) is said to be computable if f̃ is computable in G (A).

The Borel families we will be using are intended to simulate the natural
filtration of a stochastic process, as follows. Let Z be a computable function
from D ×Ω to E (where E is compact). We denote Z(t, ⋅) by Zt or Z(t).

Definition 5.3.30. Let s ∈ D. For all m ∈ N, let (hmk)k∈N enumerate the
ideal points of C(En). Combine these sequences to enumerate

AZs = {hmk (Z(t1), . . . , Z(tm)) ∶m,k ∈ N and t1 < ⋯ < tm ∈ [0, s] ∩D}

as a sequence of uniformly computable functions from Ω to R.

Remark 5.3.31. Evidently, a function in As = AZs depends only on the
state of Z at a finite collection of times bounded by s.

Notation 5.3.32. Fix a probability measure ν on Ω. We denote by Fs =
FZ
s (ν) the Borel family in L0(Ω, ν) generated by As. It represents complete

information about the state of the process Z up to (and including) time s.

114

Remark 5.3.33. For all ν, Fs(ν) ⊆ Ft(ν) for all s ≤ t.

Remark 5.3.34. Recall Remark 5.3.28. For any f ∈ L1(Ω, ν), to verify that
f̃ = ν[f ∣Fs(ν)], it is enough to check that (5.3.4) holds for g ∈ As.

Notation 5.3.35. The choice of measure ν for Fs is implicit in the notation
for conditional expectation: ν[f ∣Fs] = ν[f ∣Fs(ν)].

Example 5.3.36. The most important cases are Z = X and Z = X ○ θs for
some s ∈D. Since Xt ○ θs =Xt+s for all s, t ∈D, we have, for all ν,

FX○θs
t (ν) ⊆ FX

s+t(ν) (5.3.5)

where the right-hand side represents complete information about X up to
time s + t, while the left-hand side lacks information about X on [0, s].

We can now state the pseudo-Markov property. µ ∈M1(E) continues to
represent an initial distribution for the Feller process we are constructing,
while Pµ = µκ represents the corresponding distribution on Ω = ED.

Notation 5.3.37. Unless otherwise specified, Fs denotes FX
s .

Proposition 5.3.38. Let s ∈D, µ ∈M1(E), and Z ∈ L1(Ω, µPsκ). Then

(i) the random variable Z○θs is L1-computable on ⟨Ω,Pµ⟩ uniformly from
s and names for µ and Z, and

(ii) the pseudo-Markov property holds:

Pµ[Z ○ θs∣Fs] = κXs(Z) (Pµ-a.e.) (5.3.6)

Proof. Let s ∈D. The following is uniform in a name for µ.
First, consider the special case where Z is of the form

Z = g1(Xs1)g2(Xs2)⋯gn(Xsm), (5.3.7)

where g1, . . . , gm ∈ C(E) and s1 ≤ ⋯ ≤ sm belong to D (see Definition 5.3.6).
In that case, it is clear that

Z ○ θs = g1(Xs1+s)g2(Xs2+s)⋯gn(Xsm+s)

is L1(Pµ)-computable. We still need to verify (ii), i.e., that

Pµ[Z ○ θs∣Fs] = κXs(Z) (Pµ-a.e.).

115

In other words (Definition 5.3.26), for all Y ∈ Fs = Fs(Pµ),

Pµ[Y ⋅ (Z ○ θs)] = Pµ[Y ⋅ (κZ)(Xs)]. (5.3.8)

It is enough to check (5.3.8) for Y of the special form

Y = f1(Xt1)f2(Xt2)⋯fn(Xtn),

where f1, . . . , fn ∈ C(E) and t1 ≤ ⋯ ≤ tn = s belong to D. But in that case,
(5.3.8) follows from Definition 5.3.9 by direct substitution.

Now consider the general case Z ∈ L1(Ω, µPsκ). Uniformly from a name
for Z, compute a series ∑Zn converging to Z in L1(Ω, µPsκ) such that ∀n,
Zn has the form (5.3.7), and ∀m, ∑n>m µPsκ∣Zn∣ < 2−m. Then

∑
n>m

Pµ∣Zn ○ θs∣ = ∑
n>m

Pµ(∣Zn∣ ○ θs) = ∑
n>m

Pµ[(κ∣Zn∣)(Xs)]

by the special case (5.3.7), and by Proposition 5.3.15 this equals

∑
n>m

Pµ
Xs

(κ∣Zn∣) = ∑
n>m

µPsκ∣Zn∣ < 2−m.

Hence the sequence of partial sums ∑n>mZn○θs is fast Cauchy in L1(Ω,Pµ),
and it evidently converges to Z ○ θs. We have established claim (i).

Finally, we establish claim (ii) in the general case by linearity:

Pµ[Y ⋅ (Z ○ θs)] =∑Pµ[Y ⋅ (Zn ○ θs)] =∑Pµ[Y ⋅ (κZn)(Xs)],

for all Y ∈ Fs by the special case (5.3.7), while on the other hand

∑Pµ[Y ⋅ (κZn)(Xs)] = Pµ[Y ⋅ (κZ)(Xs)]

(by linearity again). This completes the proof.

5.3.3 Strong pseudo-Markov property

In the last part, we showed that the pseudo-canonical process X indexed
by dyadic rationals (defined in Part 5.3.1) satisfies a version of the Markov
property. The goal now is to extend X computably to a Markov process on
the index set [0,∞). This will be accomplished in Part 5.3.4 using sample
path regularity properties. In order to state and prove those regularity
properties, as it turns out, we need a few more tools.

116

Classically, the canonical process satisfies the strong Markov property,
which in essence states that the Markov property (5.1.14) holds at random
times: for any non-negative stopping time τ , for all x ∈ E, s ≥ 0, and f ∈ bE ,

Px[f(Xs+τ)∣Fs] = (Pτf)(Xs) (Px-a.s.). (5.3.9)

Here, we define effective stopping times (a few of them, at least) and use
them to state and prove a “strong pseudo-Markov property.”

By this point, we have accumulated quite a bit of notation:

Notation 5.3.39. Recall E and Pt (Notation 5.3.1), D and Ω (Notation
5.3.3), X (Definition 5.3.4), κ (Definition 5.3.9), Pµ (Notation 5.3.14), θs
(Definition 5.3.17), κXs (Notation 5.3.18), and FZ

s (ν) (Notation 5.3.32).

µ ∈ M1(E) is still an initial distribution for X, while Pµ = µκ is the
corresponding distribution on Ω = ED.

Definition 5.3.40. A random variable τ on Ω taking values in a finite
subset D○ of D is said to be a discrete stopping time for the process X with
initial distribution µ if ∀s ∈D○, the event {τ = s} belongs to Fs(Pµ).

Definition 5.3.41. A discrete stopping time τ is said to be computable if
a name for {τ = s} in Fs(Pµ) is computable from s and a name for µ.

Remark 5.3.42. Z = ∑s∈D○ Z ⋅ 1{τ=s} for any random variable Z on Ω.

Discrete stopping times define Borel families:

Definition 5.3.43. For a discrete stopping time τ for X starting from µ,
Fτ(Pµ) = FX

τ (Pµ) denotes the set of random variables Z ∶ Ω→ R such that
for all s ∈D○, for all f ∈ C0(R), f(Z)1{τ=s} belongs to Fs(Pµ).

Fact 5.3.44. Fτ(Pµ) is a Borel family, so we can condition Pµ on Fτ(Pµ).
If τ is computable, then so is Fτ(Pµ).

Remark 5.3.45. τ itself belongs to Fτ(Pµ). Also, if τ ′ is another stopping
time such that τ ′ ≤ τ (surely), then Fτ ′(Pµ) ⊆ Fτ(Pµ).

Remark 5.3.46. Fτ(Pµ) represents complete information about X with
initial distribution µ up to the random time τ .

We define a random left-shift operator :

Definition 5.3.47. For a discrete stopping time τ for X and µ, let

θτ(ω) = θτ(ω)(ω).

Similarly, let Xτ(ω) =Xτ(ω)(ω). We may write X(τ) instead of Xτ .

117

Proposition 5.3.48. If τ and τ ′ are computable discrete stopping times
(for X and µ), then τ + τ ′ ○ θτ is also a computable discrete stopping time.

Proof. Let τ and τ ′ be D○-valued. Fix s ∈ D○. τ + τ ′ ○ θτ = s if and only if
for some q ∈ [0, s] ∩D○, τ = q and τ ′ ○ θq = s − q. {τ = q} is computable in
Fq(Pµ) ⊆ Fs(Pµ) by hypothesis. Similarly, {τ ′ ○ θq = s − q} is computable

in F
X○θq
s−q (µ) = Fs(Pµ). So {τ + τ ′ ○ θτ = s} is a finite union of sets

{τ = q} ∩ {τ ′ ○ θq = s − q}

that are computable in Fs(Pµ). This completes the proof.

That brings us to the strong pseudo-Markov property:

Proposition 5.3.49. Uniformly from t, for all t ∈D, let τ be a computable
discrete stopping time for X and µPtκ and let Z be L1(µPtκ)-computable.

(i) Z ○ θτ is L1(µPtκ)-computable, uniformly from t, for all t ∈D.

(ii) The strong pseudo-Markov property holds:

Pµ(Z ○ θτ ∣Fτ) = κXτZ (Pµ-a.e.) (5.3.10)

(iii) κ(Z ○ θτ) = κ(κXτZ) holds µPt-a.s. for all t ∈D.

Proof. All three claims follow from the definitions. Consider claim (i).
Let τ be D○-valued. Since Z is L1(µPtκ)-computable for all t ∈ D and

{Pu ∶ u ∈D} is a semigroup, Z is L1(µPtPsκ)-computable for all s, t ∈D. By
Proposition 5.3.38 (i), Z ○ θs is L1(µPtκ)-computable for all s, t ∈ D. Now
claim (i) follows from Z ○ θτ = ∑s∈D○(Z ○ θs)1{τ=s}.

Claims (ii) and (iii) follow from the definitions in similar fashion.

5.3.4 Effective sample path regularity

Here, we adapt two lemmas from Chan [19] (Lemmas 5.3 and 5.4 in that
source). Those lemmas are used to prove a key result (Theorem 5.3.52) on
the regularity of sample paths, which we need to prove the main result.

The first lemma from Chan [19], translated into computable analysis:

Lemma 5.3.50. The function

Ys = sup{d(X0,Xt) ∶ t ∈ [0, s] ∩D}

is L1(Pµ)-computable uniformly from s ∈D and a name for µ ∈M1(E).

118

Proof. Fix s and µ. Let 0 ≤ a < b. By Lemma 4.2.20 (and see Lemma 4.2.21),
compute a strictly increasing sequence (ak)k∈N in (a, b) such that for all t ∈D
and k ∈ N, {d(X0,Xt) = ak} and {d(X0,Xt) = ak+1 − ak} are µPrκ-null for
all r ∈ D. It follows that {d(X0,Xt) > ak} and {d(X0,Xt) > ak+1 − ak} are
computable in Ft(µPrκ) = FX

t (µPrκ). Let a∞ = limak.
Compute a strictly increasing sequence (pk)k∈N ⊆ N with p0 = 0 and such

that for all k ≥ 1, 2−pks < δk, where δk is given by Corollary 5.2.11, setting
ε = (ak+1 − ak)/2; that is, ∣Ptf(x)∣ < (ak+1 − ak)/2 whenever 0 ≤ t < δk, x ∈ E,
and f ∈ C(E, [0,1]) vanishes on B(x, (ak+1 − ak)/2).

Approximate the dyadic rational times [0, s]∩D by finite sets as follows:

Dk = {j2−pks ∶ 0 ≤ j ≤ 2pk}.

Then {0, s} =D0 ⊆D1 ⊆ ⋯ and ⋃kDk = [0, s] ∩D.
Compute, for each t ∈D, the least j = j(t) ∈ N such that t ∈Dj . If j > 0,

also compute the least dyadic rational r = r(t) ∈Dj−1 such that r > t.
Compute a sequence (Ak)k∈N of measurable sets given by

Ak = ⋂
t∈Dk

{d(X0,Xt) ≤ aj(t)}.

Define, for each k ∈ N, a random variable Tk = s1Ak +∑t∈Dk t1Ck(t) where

Ck(t) = {d(X0,Xt) > aj(t)} ∩ {d(X0,Xu) ≤ aj(u) for all u ∈Dk with u < t}.

Tk represents the first time t ∈ Dk when d(X0,Xt) > aj(t), or s if no
such time exists. Tk is a Dk-valued computable discrete stopping time for
Ft(µPrκ), uniformly from k. Moreover, for all k ∈ N, Ak ⊇ Ak+1 and

Ak ∖Ak+1 ⊆ ⋃
t∈Dk+1

{Tk+1 = t and d(Xt,Xr(t)) > ak+1 − ak}.

From this, we can calculate

Pµ(Ak ∖Ak+1) ≤ ∑
t∈Dk+1

Pµ{Tk+1 = t and d(Xt,Xr(t)) > ak+1 − ak}

≤ ∑
t∈Dk+1

Pµ[1{Tk+1=t} ⋅ κ
Xt{d(X0,Xr(t)−t) > ak+1 − ak}]

by the pseudo-Markov property, Proposition 5.3.38 (ii), using the fact that
{Tk+1 = t} ∈ Ft(Pµ). And the last expression above is bounded by

∑
t∈Dk+1

Pµ[1{Tk+1=t}] ⋅ (ak+1 − ak)/2 = (ak+1 − ak)/2,

119

because for t ∈Dk+1, v = r(t) − t < 2−pks < δk. Therefore,

B = ⋂
k∈N

Ak = ⋂
t∈[0,s]∩D

{d(X0,Xt) ≤ aj(t)}

is L0(Pµ)-computable, being an effective limit of L0(Pµ)-computable sets.
Evidently, for all ω ∈ B, d(X0(ω),Xt(ω)) < b for all t ∈ [0, s]∩D, and for

all ω /∈ B, d(X0(ω),Xt(ω)) > a for some t ∈ [0, s] ∩D.
Compute M = diam(E). Repeat the above construction to obtain, for

each n ∈ N, uniformly L0(Pµ)-computable sets B0,B1, . . . ,B2n such that for
all i ≤ 2n, for all ω ∈ Bi, d(X0(ω),Xt(ω)) < i2−nM for all t ∈ [0, s] ∩D, and
for all ω /∈ Bi, d(X0(ω),Xt(ω)) > (i − 1)2−nM for some t ∈ [0, s] ∩D.

Finally, let

Zn =
2n

∑
i=1

k2−nM1Bi∖Bi−1 .

Zn is L1(Pµ)-computable, uniformly from n, and ∣Zn −Zn+1∣ ≤ 2−nM for all
n, so Z = limZn is L1(Pµ)-computable as well. It is easy to see that Z,
when it is defined, is the supremum of {d(X0,Xt) ∶ t ∈ [0, s] ∩D}. Hence
Ys = Z is L1(Pµ)-computable, and the proof was uniform in s and µ.

The second lemma from Chan [19], translated into computable analysis:

Lemma 5.3.51. Let ε > 0. Compute δ = δ(ε) as in Corollary 5.2.11. Fix
s < δ and c > 2ε. Then κ{Ys > c} < 2ε (where Ys is given by Lemma 5.3.50).

Proof. For x ∈ E, let µ = εx, so that Pµ = µκ = κx, where we recall that

κ{Ys > c}(x) = κx{Ys > c}.

Let a = ε and b = 2ε, and compute (ak)k∈N, (pk)k∈N, (Dk)k∈N, and (Ak)k∈N
as in the proof of Lemma 5.3.50. Then, for all k ∈ N,

κx(Ak ∖Ak+1) = Px(Ak ∖Ak+1) < ak+1 − ak.

Fix any f ∈ C(E2) such that 1{d(x,y)>a0} ≤ f(x, y) ≤ 1{d(x,y)>ε}. Then

κx(Ω ∖A0) = κx{d(X0,Xs) > a0} ≤ κx(f(X0,Xs)) = Ps(f(x, ⋅))(x) ≤ ε

where the last inequality requires that s < δ. Therefore, letting B = ⋂k∈NAk,

κx(Ω ∖B) = Px(Ω ∖A0 ∪A0 ∖A1 ∪A1 ∖A2 ∪⋯)
< ε + (a1 − a0) + (a2 − a1) +⋯
= ε + a∞ − a0 < 2ε

Finally, {Ys > c} ⊆ Ω∖B provided that c > 2ε, which completes the proof.

120

We use Lemmas 5.3.50 and 5.3.51 to prove the key result, adapted from
Theorem 5.5 in Chan [19] (and similar to Theorem 4.2.27), on sample path
regularity for the pseudo-canonical process X.

Theorem 5.3.52. Given 0 ≠ T ∈D, uniformly from names for 0 < ε < 1 and
µ ∈M1(E), there exist L0(Pµ)-computable random variables

0 = U0 = V0 ≤ U1 ≤ V1 ≤ ⋯ ≤ Un ≤ Vn, (5.3.11)

and an L0(Pµ)-computable event G such that

(i) Pµ(G ∪ {Un ≤ T}) < 2ε, and

(ii) on Ω ∖G, d(X(t),X(Vi)) < 2ε whenever Ui < t < Ui+1 for some i.

Proof. Compute δ = δ(ε) as in Corollary 5.2.11. Compute a q ∈ N such that

q > max{2,2T /[(1 − ε)δ(ε/2)]}

and an m ∈ N such that (q − 2)m/(q − 1)m < ε. Let n = qm + 1.
The following is uniform from a name for µ. As usual, Pµ = µκ. Let

a = ε and b = ε + ε/n, and compute (ak)k∈N, (pk)k∈N, (Dk)k∈N, {j(t) ∶ t ∈ D},
(Ak)k∈N, and (Tk)k∈N as in the proof of Lemma 5.3.50. The random variable

Zk = Y2−pkT = sup{d(X(0),X(t)) ∶ t ∈D ∩ [0,2−pkT]}.

is L1(Pµ)-computable uniformly from k. By an easy generalization of
Lemma 4.2.20 (and see Lemma 4.2.21), compute a sequence (a′k) such that
ak < a′k < ak+1 for all k and such that {Zk > a′k+1 − ak} is L0(µPuκ)-
computable uniformly from u ∈D. Set Bk = {Zk ○ θTk+1 > a′k+1 − ak}. Then

1Bk = 1{Zk>a′k+1−ak} ○ θTk+1 .

By Lemma 5.3.49, Bk is L0(µPuκ)-computable uniformly from u, and

κ(Bk) = κ (κX(Tk+1){Zk > a′k+1 − ak}) .

Since 2−pkT < δ((ak+1 − ak)/2) and a′k+1 − ak > ak+1 − ak, Lemma 5.3.51
implies that κ(Bk) < ak+1 − ak. Hence ∑µPuκ(Bk) converges (absolutely),
so B = ⋃kBk is L0(µPuκ)-computable uniformly from u. Furthermore,

κ(B) <∑
k

(ak+1 − ak) = a∞ − a0 < b − a = ε/n.

121

Similarly, because Tk+1 and Tk are L0(µPuκ)-computable uniformly from
u, Tk+1 ≤ Tk, and {Tk − Tk+1 > 2−pkT} ⊆ Bk, T∞ = limTk is L0(µPuκ)-
computable uniformly from u as well.

Set U1 = T∞, V1 = T1, and G1 = B. Now we restart the process from time
T1, and repeat the construction n times: for 0 < i ≤ n, Vi = Vi−1 + V1 ○ θVi−1 ,
Ui = Vi−1 +U1 ○ θVi−1 , and Gi = θ−1

Vi−1(G1). Set G = G1 ∪⋯ ∪Gn.
Suppose ω /∈ G. For 0 < i ≤ n, set ω′ = θVi−1(ω). Then ω′ belongs to

Gc1 = Bc = ⋂kBc
k, which implies that

d(X(Tk+1),X(r))(ω′) ≤ a′k+1 − ak < ak+2 − ak

for k ≥ 1 and for r ∈ [Tk+1(ω′), Tk+1(ω′) + 2−pkT] ⊆ [Tk+1(ω′), Tk(ω′)].
Summing over all k ≥ 1, we have, for all r ∈ (T∞(ω′), T1(ω′)],

d(X(T1),X(r))(ω′) < 4(a∞ − a1) < 2ε.

Substituting ω′ = θVi−1(ω) and simplifying, we get d(X(Vi),X(t))(ω) < 2ε
for all t ∈ (Ui(ω), Vi(ω)].

Now, if t ∈ [Vi(ω), Ui+1(ω)), write t = r + Vi(ω) where

r < Ui+1(ω) − Vi(ω) = T∞(θVi(ω)) ≤ Tj(r)(θVi(ω)).

Tj(r) is the first time u ∈ Dj(r) when X leaves the aj(r)-neighborhood of
X(0). Hence

d(X(t),X(Vi))(ω) = d(X(r),X(0))(θVi(ω)) ≤ aj(r) < a∞ < 2ε

Claim (ii) follows. It remains only to show that G ∪ {Un ≤ T} has small
measure. By Lemma 5.3.49 (iii),

Pµ(Gi) = Pµ(B ○ θVi−1) = Pµ(κX(Vi−1)(B)) < ε/n,

so Pµ(G) < ε. We just need to show that Pµ{Un ≤ T}.
For all i ∈ N, for all r ∈D with r > δ(ε/2),

κ(Vi+1 − Vi) = κ(T1 ○ θVi) = κ(κX(Vi)(T1)) ≥ κ(rκX(Vi){T1 ≥ r})

which is ≥ κ(rκX(Vi)(Yr ≤ a1)) ≥ r(1−ε), where Yr is given in Lemma 5.3.50.
Summing over i, κ(Vq) ≥ qδ(ε/2)(1 − ε) > 2T . Since 0 ≤ Vq ≤ qT , we have

κ(Vq ≤ T) ≤ (q − 2)/(q − 1).

122

By induction, V2q − Vq = V ○ θV , . . . , Vmq − V(m−1)q = V ○ V(m−1)q. Applying
Lemma 5.3.49 (ii) repeatedly,

Pµ{Un ≤ T} ≤ Pµ{Vn−1 ≤ T} = Pµ{Vmq ≤ T}
≤ Pµ{Vq ≤ T,V2q − Vq ≤ T, . . . , Vmq − V(m−1)q ≤ T}
= Pµ{Vq ≤ T,V2q − Vq ≤ T, . . . , V ○ θ(m−1)q ≤ T}
= Pµ{Vq ≤ T,V2q − Vq ≤ T, . . . , κX(V(m−1)q)(V ≤ T)}
≤ Pµ{Vq ≤ T,V2q − Vq ≤ T, . . .}(q − 2)/(q − 1) ≤ ⋯
≤ (q − 2)m/(q − 1)m < ε.

This proves (ii) and completes the proof.

The three claims in Theorem 5.2.15 now follow from Theorem 5.3.52.

Definition 5.3.53. The canonical process X is the extension of the pseudo-
canonical process from the index set D to [0,∞) according to the formula

X(t, ω) = lim
r∈D, r↓t

X(r,ω).

Proposition 5.3.54. X is L0(λ ×Pµ)-computable of type [0,∞) ×Ω→ E,
uniformly from a name for µ ∈M1(E).

Proof. It suffices to show that X is L0(λ×Pµ)-computable on [0, T]×Ω for
an arbitrary fixed T . Fix an initial distribution µ ∈M1(E). Let k ∈ N.

By Theorem 5.3.52, there exist L0(Pµ)-computable random variables

0 = Uk0 = V k
0 ≤ Uk1 ≤ V k

1 ≤ ⋯ ≤ Ukn(k) ≤ V
k
n(k)

and an L0(Pµ)-computable event Gk such that

(i) Pµ(Gk ∪ {Ukn(k) ≤ T}) < 2−k, and

(ii) on Ω ∖G, d(X(t),X(V k
i)) < 2−k whenever Uki < t < Uki+1 for some i.

Define a random variable Xk ∶ [0,∞) ×Ω→ E by

Xk(t, ω) =X(V k
i (ω), ω) if Uki (ω) < t < Uki+1(ω) for some i < n(k).

Evidently, Xk is L0(λ ×Pµ)-computable (uniformly from k).
Whenever j > k, d(Xj ,Xk) < 2−j + 2−k < 2−k+1 except possibly on the

set B = [0, T]× (Gj ∪Gk). But (λ×Pµ)(B) < 2−k+1T , so (Xk)k∈N converges
effectively almost surely with respect to λ ×Pµ. Evidently, the limit is X,
which proves that X is L0(λ ×Pµ)-computable.

123

Proposition 5.3.55. For all t ≥ 0, X(t) = X(t, ⋅) is L0(Pµ)-computable
from Ω to E, uniformly from names for t and µ ∈M1(E).

Proof. Fix t. As usual, Pµ = µκ. Suppose (εk)k∈N is a convergent sequence of
positive reals. By Lemma 5.3.51, let (rk)k∈N ↑ t and (sk)k∈N ↓ t be sequences
in D such that for all k ∈ N, Pµ(Ak) < εk, where

Ak = {εk < sup{d(X(rk),X(s)) ∶ s ∈ [rk, sk] ∩D}}.

Let A = lim inf Ak = ⋃n∈N⋂k≥nAk. Then Pµ(A) = 0 and Xt is defined
except possibly on A. Furthermore, d(X(t),X(rk)) ≤ εk except possibly on
Ak, so (X(rk))k∈N converges effectively almost surely to X(t) with respect
to Pµ; in particular, X(t) is L0(Pµ)-computable.

Proposition 5.3.56. ω ↦X(⋅, ω) is L0(Pµ)-computable of type Ω→DE[0, T],
uniformly from a dyadic rational T > 0 and a name for µ ∈M1(E).

Proof. Fix T . Let ε ∈ (0,1). Compute, as in Theorem 5.3.52,

0 = U0 = V0 ≤ U1 ≤ V1 ≤ ⋯ ≤ Un ≤ Vn.

Then define a random variable Z ∶ Ω→DE[0, T] by the formula

Z(⋅)(t) =X(Vi) if t ∈ [Ui, Ui+1) for some i ≤ n,

and Z(⋅)(t) = 0 by convention if t > Un. By Theorem 3.3.26, Z is L0(Pµ)-
computable. Moreover, dPµ(Z,X) < 2ε+ 4ε by Theorem 5.3.52. Since ε was
arbitrary, ω ↦X(⋅, ω) is L0(Pµ)-computable.

Actually, we still need to verify that the extension of X to [0,∞) is a
Markov process, but this can be done classically with a continuity argument;
see Chan [19]. As an illustration, we re-check Proposition 5.3.15:

Fact 5.3.57. For all µ ∈M1(E) and t ≥ 0, Pµ
Xt

= µPt.

Proof. Note that this result does not need to be effective in any way. Let
f ∈ C(E). (Recall that E is compact.) By a change of variables,

Pµ
Xt
f = Pµ(f ○Xt) = µκ(f ○Xt).

By Proposition 5.3.55, X is stochastically continuous. Classically, for
r > t close to t, µκ(f ○Xt) is close to µκ(f ○Xr). By Proposition 5.3.15,
µκ(f ○Xr) = µ(Prf). It is also true classically that µ(Prf) is close to µ(Ptf)
for r close to t. Since f ∈ C(E) was arbitrary, this completes the proof.

124

We also need to verify the Markov property by re-checking Proposition
5.3.38, but this is covered by the next two facts. As with Fact 5.3.57, they
can be proved classically with a continuity argument [19].

Fact 5.3.58. For all s ≥ 0, the (generalized) left-shift operator

θs(ω) ∶ t↦X(t + s,ω) (5.3.12)

is measurable from Ω to Ω.

Fact 5.3.59. Let s ≥ 0, µ ∈ M1(E), and Z ∈ L1(Ω, µPsκ). The Markov
property holds:

Pµ[Z ○ θs∣Fs] = κXs(Z) (Pµ-a.e.), (5.3.13)

where Fs is the Borel family

{g(X(t1), . . . ,X(tn)) ∶ g ∈ C(En) and t1 < ⋯ < tm ≤ s}.

Once Facts 5.3.58 and 5.3.59 have been verified, Theorem 5.2.15 is just
the sum of Propositions 5.3.54, 5.3.55, and 5.3.56.

125

Chapter 6

Future directions

In the introduction, we stated that the purpose of this dissertation was first
to develop a computational framework for the study of stochastic processes
with càdlàg sample paths, then within that framework to effectivize three
important classical results. This we have accomplished:

(i) Theorem 4.2.16 states that a càdlàg modification of a Lévy process is
computable from a suitable representation of the process

(ii) According to Theorem 4.3.19, the Lévy-Itô decomposition of a Lévy
process is also computable from such a representation

(iii) By Theorem 5.2.15, a càdlàg modification of a Feller process, too, is
computable from a suitable representation of that type of process

And we picked up a few other results along the way.
At this point, with our framework in place, and with some idea of how

to effectivize (some parts of) stochastic process theory, there are a number
of promising directions for future research. In this chapter, we outline two:
an effective theory of càdlàg martingales, and algorithmic randomness for
Lévy processes.

6.1 Càdlàg martingales

Markov processes, which we already discussed in detail, and martingales,
which we did not, are two of the largest and most important classes of
stochastic processes (in continuous time). A Markov process is memoryless:
the distribution of its future state depends, not on its entire past, but only
on its present state. A martingale, on the other hand, tends to stay put:

126

its expected future state, given its present state, is that same state. Both
properties—Markov and martingale—are defined in terms of a filtration.

To be more precise: let X = {Xt ∶ t ≥ 0} be an R-valued integrable
stochastic process on ⟨Ω,P⟩, adapted to a filtration {Ft ∶ t ≥ 0}. X is said
to be a martingale if for all s ≤ t,

P[Xt∣Fs] =Xs. (6.1.1)

Much of martingale theory generalizes to sub- and supermartingales, so it is
worth defining those as well: X is said to be a submartingale if for all s ≤ t,

P[Xt∣Fs] ≥Xs, (6.1.2)

and a supermartingale if for all s ≤ t,

P[Xt∣Fs] ≤Xs. (6.1.3)

For a proper introduction to martingales, see Revuz and Yor [63].
Now, recall that a Feller process is just a Markov process that satisfies a

very reasonable assumption (strong continuity), which is enough to ensure
that any Feller process has a càdlàg modification. As it turns out, any
martingale—or sub- or supermartingale—that satisfies a very reasonable
assumption, right-continuity in probability, also has a càdlàg modification.

A natural question is whether such a modification is computable from
a representation of the martingale. As usual, we need to assume that the
sample space is a computable probability space. As for the martingale,
stochastic computability is still a very reasonable assumption, and it implies
right-continuity in probability. L1-computability is stronger, but also seems
reasonable, given that martingales are integrable. This leads to

Conjecture. Every L1-computable (sub- or super-) martingale X has an
effectively measurable modification X̃.

It may be possible to effectivize the proof given in Revuz and Yor [63]
for the corresponding classical result (Theorem II.2.5 in that source).

In any case, there is an interesting connection to Lévy processes. Recall
that Fact 4.1.29 states that every Lévy process has a càdlàg modification,
and Theorem 4.2.16 effectivizes that fact. Now, our proof of Theorem 4.2.16
had nothing to do with martingales; essentially, it treated a Lévy process as
a very special type of Markov process. On the other hand, there is a proof
of Fact 4.1.29 (that is, a classical proof) that gets at Lévy processes through
martingales; see, for example, Theorem 2.1.8 in Applebaum [3].

127

Of course, a Lévy process X is not, in general, a martingale. It is,
however, closely related to a certain martingale Z (or rather a family of
martingales Zu where u ∈ R). Classically, if we can find a càdlàg modification
of Z, we can turn that into a càdlàg modification of X.

Fact 6.1.1. If X is a (one-dimensional) Lévy process, then for all u ∈ R,

Z(t) = Zu(t) = exp(iuX(t) − tη(u)) (6.1.4)

defines a C-valued martingale Z = Zu = {Z(t) ∶ t ≥ 0}, where η is the Lévy
symbol (Fact 4.1.23)

We can say something about the computability of Z:

Proposition 6.1.2. If X is a stochastically computable Lévy process, then
Z = Zu is L1-computable, uniformly from a name for u, for all u ∈ R.

Proof. The following is uniform from names for u ∈ R and t ≥ 0.
By hypothesis, X(t) is L0(P)-computable. By Lemma 4.2.4, η ∶ R→ C is

computable. It follows immediately that Z(t) is L0(P)-computable. Since
Z(t) is also bounded in absolute value, Fact 2.3.55 implies that Z(t) is
actually L1(P)-computable, as required.

In light of Proposition 6.1.2, it seems likely that our conjecture would
provide another, martingale-based proof of Theorem 4.2.16. In any case, an
effective theory of martingales is a promising area for future research.

6.2 Algorithmic randomness

In the introduction, we mentioned that computable aspects of Brownian
motion have been studied in the context of algorithmic randomness, and
that our own project was conceived as an extension of that theory to the
entire class of Lévy processes. We will now make this as precise as possible.

Let ⟨X,µ⟩ be a computable probability space.

Definition 6.2.1. A Martin-Löf test (with respect to µ) is a sequence
(Un)n∈N of uniformly Σ0

1 sets such that for all n ∈ N, µ(Un) < 2−n.

Note that if (Un)n∈N is a Martin-Löf test, then ⋂n∈NUn is a Π0
2 null set.

Essentially, then, a Martin-Löf test is an effectively null Π0
2 set.

Definition 6.2.2. Let (Un)n∈N be a Martin-Löf test. A point x ∈X is said
to pass the test if x /∈ ⋂n∈NUn.

128

Tests, and null sets in general, represent statistically unusual properties,
whereas random points ought to be statistically typical:

Definition 6.2.3. x is said to be Martin-Löf random or MLR (with respect
to µ) if it passes every Martin-Löf test.

For a proper introduction to algorithmic randomness, the reader should
really consult Nies [60] or Downey and Hirschfeldt [28].

Now suppose X is a stochastically computable Lévy process on ⟨Ω,P⟩.
Without loss of generality, by Theorem 4.2.16, X is effectively measurable.

For all dyadic rational T > 0, ω ↦ X(⋅, ω) defines an L0(P)-computable
function of type Ω → D[0, T], whose values are the sample paths of X
restricted to [0, T]. For simplicity, and without any real loss of generality,
let T = 1. Then X induces a probability measure PX (technically, PX ∣1) on
D[0,1]. This measure is computable (Fact 2.3.46).

Definition 6.2.4. A Martin-Löf random point in ⟨D[0,1],PX⟩ is said to be
a Martin-Löf random sample path of the Lévy process X.

The properties of Martin-Löf random sample paths of Brownian motion
have already been studied extensively by Fouché [32], Kjøs-Hanssen and
Nerode [49], and Allen, Bienvenu, and Slaman [2], among other authors. An
extension of their work to Lévy processes—cataloging all the properties of
these statistically typical sample paths—is now possible.

A key tool will be the conservation of randomness [45]:

Fact 6.2.5. Let ⟨X,µ⟩ be a computable probability space and let Y be a
computable metric space. Let f ∶ X → Y be µ-a.e. computable. If x ∈ X is
MLR with respect to µ, then f(x) is MLR with respect to µf .

This fact, which pushes randomness forward onto another space, already
implies a number of basic results about Martin-Löf random sample paths of
Lévy processes. For example, we can use it to sketch a proof of

Proposition 6.2.6. An MLR sample path of a Lévy process can only jump
at MLR times (with respect to Lebesgue measure on [0,1]).

Proof. By Proposition 4.3.8, we can compute a decreasing sequence (εk) of
positive reals, converging to 0, such that ν{±εk ∶ k ∈ N} = 0.

Obviously, the size of each jump lies between εj and εj for some j and
k. For a fixed j and k, let Ψ(x) = ⟨t1, . . . , tk⟩ where 0 < t1 < ⋯ < tk ≤ T
are exactly the times when 0 < εj < ∥Jx(t)∥ < εk. By Proposition 3.3.25,
Ψ ∶ DV [0, T]→ [0, T]∗ is PX -a.s. computable.

129

One application of the conservation of randomness (Fact 6.2.5) tells us
that each time t such that εj < ∥Jx(t)∥ < εk will be Martin-Löf random—but
with respect to PΨ(X).

Now, this image measure is not the usual Lebesgue measure on the time
interval [0,1]. However, because so-called large jumps (in this case, bounded
below by εj) always occur as a compound Poisson process, i.e., at a constant
rate, according to a Poisson distribution, it is not difficult to show that the
PΨ(X)-MLR reals are exactly the MLR reals for Lebesgue measure.

What else can we say about Martin-Löf random sample paths of Lévy
processes? Any non-trivial property that holds, classically, with probability
one is probably worth investigating. And what about the sample paths of
Feller processes? And martingales? And what about Schnorr randomness?

Unfortunately, we cannot explore any of these exciting possibilities in
this dissertation. All questions are open.

130

References

[1] Kelty Ann Allen. “Martin-Löf Randomness and Brownian Motion”.
PhD thesis. University of California, Berkeley, 2014.

[2] Kelty Allen, Laurent Bienvenu, and Theodore A. Slaman. “On zeros
of Martin-Löf random Brownian motion”. In: Journal of Logic and
Analysis 6.9 (2014), pp. 1–34.

[3] David Applebaum. Levy Processes and Stochastic Calculus. 2nd ed.
Cambridge Studies in Advanced Mathematics. Cambridge University
Press, 2009.

[4] E. A. Asarin and A. V. Pokrovskii. “Use of the Kolmogorov complexity
in analyzing control system dynamics”. In: Automation and Remote
Control 47.21–28 (1986).

[5] Jeremy Avigad and Vasco Brattka. “Computability and analysis: The
legacy of Alan Turing”. In: Turing’s Legacy: Developments from Tur-
ing’s Ideas in Logic. Ed. by Robert Downey. Lecture Notes in Logic.
Cambridge University Press, 2014.

[6] Laurent Bienvenu et al. “Algorithmic tests and randomness with re-
spect to a class of measures”. In: Proceedings of the Steklov Institute
of Mathematics 274.1 (2011), pp. 34–89.

[7] Patrick Billingsley. Convergence of Probability Measures. 2nd ed. Wi-
ley Series in Probability and Statistics. Wiley-Interscience, 1999.

[8] Paul Bilokon and Abbas Edalat. “A domain-theoretic approach to
Brownian motion and general continuous stochastic processes”. In:
Logic in Computer Science. 15. CSL-LICS 2014. ACM, 2014.

[9] Errett Bishop. Foundations of Constructive Analysis. McGraw-Hill,
1967.

[10] Errett Bishop and Henry Cheng. Constructive Measure Theory. AMS
Memoirs 116. American Mathematical Society, 1972.

131

[11] Jens Blanck. “Effective domain representations of H (X), the space
of compact subsets”. In: Theoretical Computer Science 219 (1999),
pp. 19–48.

[12] Stefano Bonaccorsi and Enrico Priola. “From Brownian motion to
stochastic differential equations”. In: Brownian motion and stochastic
differential equations: 10th International Internet Seminar. Interna-
tional School on Evolution Equations. 2006.

[13] Volker Bosserhoff. “Notions of probabilistic computability on repre-
sented spaces”. In: Electronic Notes in Theoretical Computer Science
202 (2008), pp. 137–170.

[14] Vasco Brattka. “Recursive and Computable Operations over Topolog-
ical Structures”. PhD thesis. The University of Hagen, 1999.

[15] Vasco Brattka. “Computable versions of Baire’s category theorem”.
In: Mathematical Foundations of Computer Science. Lecture Notes in
Computer Science 2136. MFCS 2001. Springer, 2001, pp. 224–235.

[16] Vasco Brattka and Gero Presser. “Computability on subsets of metric
spaces”. In: Theoretical Computer Science 305.1-3 (2003), pp. 43–76.

[17] Vasco Brattka and Klaus Weihrauch. “Computability on subsets of
Euclidean space. I. Closed and compact subsets”. In: Theoretical Com-
puter Science 219.1–2 (1999), pp. 65–93.

[18] Yuen-Kwok Chan. “A constructive approach to the theory of stochas-
tic processes”. In: Transactions of the American Mathematical Society
165 (1972), pp. 37–44.

[19] Yuen-Kwok Chan. “Notes on constructive probability theory”. In: An-
nals of Probability 2.1 (1974), pp. 51–75.

[20] Yuen-Kwok Chan. “On some open problems in constructive proba-
bility theory”. In: Constructive Mathematics. Ed. by Fred Richman.
Lecture Notes in Mathematics 873. Springer, 1981, pp. 44–53.

[21] Donald L. Cohn. Measure Theory. Birkhäuser, 1980.

[22] Pieter Collins. “Computable stochastic processes”. In: arXiv.org (2014).
Submitted. arXiv: 1409.4667v1 (math.PR).

[23] John B. Conway. A Course in Functional Analysis. 2nd ed. Graduate
Texts in Mathematics 96. Springer, 1990.

[24] Nigel Cutland. Computability: An Introduction to Recursive Function
Theory. Cambridge University Press, 1980.

132

1409.4667v1

[25] George Davie. “The Borel-Cantelli lemmas, probability laws and Kol-
mogorov complexity”. In: Annals of Probability 29.4 (2001), pp. 1426–
1434.

[26] George Davie and Willem L. Fouché. “On the computability of a con-
struction of Brownian motion”. In: Mathematical Structures in Com-
puter Science 23.6 (2013), pp. 1257–1265.

[27] El Hadj Aly Dia. “Error bounds for small jumps of Levy processes”.
In: Advances in Applied Probability 45.1 (2013), pp. 86–105.

[28] Rodney G. Downey and Denis R. Hirschfeldt. Algorithmic Random-
ness and Complexity. Theory and Applications of Computability. Springer,
2010.

[29] Abbas Edalat. “Domain theory and integration”. In: Theoretical Com-
puter Science 151.1 (1995), pp. 163–193.

[30] Abbas Edalat. “Domain theory in stochastic processes”. In: Logic in
Computer Science. LICS 1995. IEEE, 1995, pp. 244–254.

[31] Abbas Edalat. “A computable approach to measure and integration
theory”. In: Information and Computation 207.5 (2009), pp. 642–659.

[32] Willem L. Fouché. “Arithmetical representations of Brownian motion
I”. In: Journal of Symbolic Logic 65.1 (2000), pp. 421–442.

[33] Willem L. Fouché. “The descriptive complexity of Brownian motion”.
In: Advances in Mathematics 155.2 (2000), pp. 317–343.

[34] Willem L. Fouché. “Dynamics of a generic Brownian motion: Recursive
aspects”. In: Theoretical Computer Science 394 (2008), pp. 175–186.

[35] Willem L. Fouché. “Fractals generated by algorithmically random Brow-
nian motion”. In: Mathematical Theory and Computational Practice.
Lecture Notes in Computer Science 5635. CiE 2009. Springer, 2009,
pp. 208–217.

[36] Willem L. Fouché. “Diophantine properties of Brownian motion: re-
cursive aspects”. In: Logic, Computation, Hierarchies. Ed. by Vasco
Brattka, Hannes Diener, and Dieter Spreen. Ontos Mathematical Logic
4. De Gruyter, 2014, pp. 139–156.

[37] Willem L. Fouché, Safari Mukeru, and George Davie. “Fourier spec-
tra of measures associated with algorithmically random Brownian mo-
tion”. In: Logical Methods in Computer Science 10.3 (2014), pp. 1–24.

133

[38] Cameron E. Freer and Daniel M. Roy. “Computable de Finetti mea-
sures”. In: Annals of Pure and Applied Logic 163.5 (2012), pp. 530–
546.

[39] Peter Gács. “Uniform test of algorithmic randomness over a general
space”. In: Theoretical Computer Science 341.1–3 (2005), pp. 91–137.

[40] Peter Gács, Mathieu Hoyrup, and Cristóbal Rojas. “Randomness on
computable probability spaces—a dynamical point of view”. In: Sym-
posium on Theoretical Aspects of Computer Science. Dagstuhl Seminar
Proceedings 9001. STACS 2009. Schloss Dagstuhl, 2009, pp. 469–380.

[41] Peter Gács, Mathieu Hoyrup, and Cristóbal Rojas. “Randomness on
computable probability spaces, a dynamical point of view”. In: Theory
of Computing Systems 48.3 (2011), pp. 465–485.

[42] Geoffrey Grimmett and David Stirzaker. Probability and Random Pro-
cesses. 3rd ed. Oxford University Press, 2001.

[43] Peter Hertling and Klaus Weihrauch. “Randomness spaces”. In: Au-
tomata, Languages and Programming. Lecture Notes in Computer Sci-
ence 1443. ICALP 1998. Springer, 1998, pp. 796–807.

[44] Peter Hertling and Klaus Weihrauch. “Random elements in effective
topological spaces with measure”. In: Information and Computation
181.1 (2003), pp. 32–56.

[45] Mathieu Hoyrup and Cristóbal Rojas. “An application of Martin-Löf
randomness to effective probability theory”. In: Mathematical Theory
and Computational Practice. Lecture Notes in Computer Science 5635.
CiE 2009. Springer, 2009, pp. 260–269.

[46] Mathieu Hoyrup and Cristóbal Rojas. “Applications of effective prob-
ability theory to Martin-Löf randomness”. In: Automata, Languages
and Programming. Lecture Notes in Computer Science 5555. ICALP
2009. Springer, 2009, pp. 549–561.

[47] Mathieu Hoyrup and Cristóbal Rojas. “Computability of probability
measures and Martin-Löf randomness over metric spaces”. In: Infor-
mation and Computation 207.7 (2009), pp. 830–847.

[48] Alexander Kechris. Classical Descriptive Set Theory. Springer, 1995.

[49] Bjorn Kjøs-Hanssen and Anil Nerode. “The law of the iterated loga-
rithm for algorithmically random Brownian motion”. In: Logical Foun-
dations of Computer Science. Lecture Notes in Computer Science 4514.
LFCS 2007. Springer, 2007, pp. 310–317.

134

[50] Bjorn Kjøs-Hanssen and Anil Nerode. “Effective dimension of points
visited by Brownian motion”. In: Theoretical Computer Science 410
(2009), pp. 347–354.

[51] Bjorn Kjøs-Hanssen, Paul Kim Long V. Nguyen, and Jason M. Rute.
“Algorithmic randomness for Doob’s martingale convergence theorem
in continuous time”. In: Logical Methods in Computer Science 10.4
(2014). Paper 12, pp. 1–35.

[52] Bjorn Kjøs-Hanssen and Tamás Szabados. “Kolmogorov complexity
and strong approximation of Brownian motion”. In: Proceedings of
the American Mathematical Society 139.9 (2011), pp. 3307–3316.

[53] Christoph Kreitz and Klaus Weihrauch. “Theory of representations”.
In: Theoretical Computer Science 38 (1985), pp. 35–53.

[54] Mark Mandelkern. “Metrization of the one-point compactification”.
In: Proceedings of the American Mathematical Society 107.4 (1989),
pp. 1111–1115.

[55] Kenshi Miyabe. “L1-computability, layerwise computability and Solo-
vay reducibility”. In: Computability 2 (2013), pp. 15–29.

[56] Takakazu Mori, Yoshiki Tsujii, and Mariko Yasugi. “Computability
structures on metric spaces”. In: Combinatorics, Complexity, and Logic.
Springer Series in Discrete Mathematics and Theoretical Computer
Science. DMTCS 1996. Springer, 1997, pp. 351–362.

[57] Safari Mukeru. “The descriptive complexity of stochastic integration”.
In: Journal of Complexity 31.1 (2015), pp. 57–74.

[58] Norbert Th. Müller. “Computability on random variables”. In: Theo-
retical Computer Science 219 (1999), pp. 287–299.

[59] James R. Munkres. Topology. 2nd ed. Pearson, 1999.

[60] André Nies. Computability and Randomness. Oxford University Press,
2009.

[61] David Pollard. A User’s Guide to Measure Theoretic Probability. Cam-
bridge Series in Statistical and Probabilistic Mathematics. Cambridge
University Press, 2002.

[62] Marian B. Pour-El and J. Ian Richards. Computability in Analysis and
Physics. Perspectives in Mathematical Logic. Springer, 1989.

[63] Daniel Revuz and Marc Yor. Continuous martingales and Brownian
motion. 3rd ed. A Series of Comprehensive Studies in Mathematics.
Springer, 1999.

135

[64] Hartley Rogers Jr. Theory of Recursive Functions and Effective Com-
putability. MIT Press, 1987.

[65] L. C. G. Rogers and D. Williams. Diffusions, Markov Processes, and
Martingales. 2nd ed. Vol. 1. Cambridge Mathematical Library. Cam-
bridge University Press, 1994.

[66] Walter Rudin. Principles of Mathematical Analysis. 3rd ed. McGraw-
Hill, 1976.

[67] Jason Rute. “Topics in Algorithmic Randomness and Computable
Analysis”. PhD thesis. Carnegie Mellon University, 2013.

[68] Matthias Schröder. “Admissible representations of probability mea-
sures”. In: Electronic Notes in Theoretical Computer Science 167 (2007).

[69] Matthias Schröder and Alex Simpson. “Representing probability mea-
sures using probabilistic processes”. In: Journal of Complexity 22 (2006),
pp. 768–788.

[70] A. V. Skorokhod. “Limit theorems for stochastic processes”. In: Theory
of Probability and Its Applications 1.3 (1956), pp. 261–290.

[71] Shinzo Watanabe and Nobuyuki Ikeda. Stochastic differential equa-
tions and diffusion processes. 2nd ed. North Holland Mathematical
Library 24. North-Holland/Kodansha, 1989.

[72] Klaus Weihrauch. “Computability on the probability measures on the
Borel sets of the unit interval”. In: Theoretical Computer Science 219
(1999), pp. 421–437.

[73] Klaus Weihrauch. Computable Analysis: An Introduction. Texts in
Theoretical Computer Science (EATCS). Springer, 2000.

[74] Klaus Weihrauch and Nazanin Tavana-Roshandel. “Representations of
measurable sets in computable measure theory”. In: Logical Methods
in Computer Science 10.3 (2014).

[75] Yongcheng Wu. “Computable Measure Theory”. PhD thesis. Nanjing
University, 2005.

[76] Yongcheng Wu. “Computability on random events and variables in a
computable probability space”. In: Theoretical Computer Science 460
(2012), pp. 54–69.

[77] Yongcheng Wu and Decheng Ding. “Computability of measurable sets
via effective metrics”. In: Mathematical Logic Quarterly 51.6 (2005),
pp. 543–559.

136

[78] Yongcheng Wu and Decheng Ding. “Computability of measurable sets
via effective topologies”. In: Archive for Mathematical Logic 45.3 (2006),
pp. 365–379.

[79] Yongcheng Wu and Klaus Weihrauch. “A computable version of the
Daniell-Stone theorem on integration and linear functionals”. In: The-
oretical Computer Science 359 (2006), pp. 28–42.

[80] Mariko Yasugi, Takakazu Mori, and Yoshiki Tsujii. “Effective proper-
ties of sets and functions in metric spaces with computability struc-
ture”. In: Theoretical Computer Science 219 (1999), pp. 467–486.

137

Vita

Adrian Maler

Born: September 2, 1985 in Ottawa, Ontario, Canada

Education

PhD December 2015 The Pennsylvania State University
Dissertation Adviser: Stephen G. Simpson

BS May 2008 University of Ottawa

Publications

1. Effective Theory of Levy and Feller Processes.
Ph.D. dissertation, December 2015.

2. Cell cycle times and the tumour control probability.
Adrian Maler, Frithjof Lutscher.
Mathematics in Medicine and Biology 27(4): 313–342, 2010.

	Title
	Committee
	Abstract
	Contents
	Acknowledgments
	Introduction
	Background
	Outline

	Computable measure theory
	Computability
	Representations
	Names and numbered sets

	Computable analysis
	Metric spaces
	Compactness
	Continuous function spaces

	Computable measure theory
	Measure
	Integration
	Convergence in probability

	Effective Skorokhod space
	Skorokhod space
	Càdlàg functions
	Skorokhod topology
	Billingsley metric

	Effective Skorokhod space
	Simple functions
	Time changes and partitions

	Computably càdlàg functions
	Partial computability
	Jump complexity
	Effective measurability
	Counterexamples

	Effective theory of Lévy processes
	Classical theory of Lévy processes
	Stochastic processes
	Lévy processes
	Lévy-Itô decomposition

	Computable Lévy processes
	Stochastic computability and effective measurability
	Computably càdlàg Lévy processes

	Effective Lévy-Itô decomposition
	Intensity measure and Poisson integral
	Jumps and drift

	Effective theory of Feller processes
	Classical theory of Feller processes
	Probability kernels
	Markov processes
	Feller processes

	Computable Feller processes
	Computable probability kernels
	Computable Feller semigroups

	Computably càdlàg Feller processes
	Pseudo-canonical process
	Pseudo-Markov property
	Strong pseudo-Markov property
	Effective sample path regularity

	Future directions
	Càdlàg martingales
	Algorithmic randomness

	References

