
 
 

The Pennsylvania State University 
 

The Graduate School 
 

Department of Computer Science and Engineering 
 

 
A SIMPLE AND FAST VECTOR SYMBOL  

REED-SOLOMON BURST ERROR DECODING METHOD 
 
 

 
A Thesis in 

 
Computer Science and Engineering 

 
by 

 
Christopher Chang 

 
 

© 2008 Christopher Chang 
 
 

Submitted in Partial Fulfillment 
of the Requirements 

for the Degree of 
 
 

Master of Science  
 
 

May 2008 
 

 
 



 

 

ii

 
 
 
The thesis of Christopher Chang was reviewed and approved* by the following: 
 
 
 
John J. Metzner 
Professor of Computer Science and Engineering 
Thesis Adviser 
 
 
Guohong Cao 
Associate Professor of Computer Science and Engineering 
 
 
Raj Acharya 
Professor of Computer Science and Engineering 
Head of the Department of Computer Science and Engineering 
 
 
 
*Signatures are on file in the Graduate School. 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 



 

 

iii

Abstract 

 

 Error correction and detection play an important role in data transmission and storage 

systems.  With the increasing demand for higher data transfer rates, reliability and efficiency 

is a necessity.  A commonly used error correcting method is Reed-Solomon decoding.  It is 

particularly attractive when dealing with bursts of errors.  However, decoding complexity is 

a factor to consider when choosing codes.   

There exists a faster and rather simple method in which vector symbol decoding is 

used along with Reed-Solomon codes to correct errors with a probability ≥ 1 – n(n-k)2-r.  

This paper discusses and simulates this novel technique and shows that it does in fact correct 

at a close to perfect success rate.  Three cases of errors are tested, two different types of 

bursts of errors along with a non-burst scenario.  We will see that the procedure described in 

this paper can uniquely correct a larger range of errors with less decoding complexity. 
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Chapter 1 
 

Introduction 

 

 Error correction has become a necessity in recent and future information systems.  

This is especially true now due to the demand for higher digital data transmission speeds and 

larger storage systems.  Any type of interference or corruption on the data channel could 

lead to errors on the receiving end.  Data that is transmitted from location A should look 

exactly like the data received at location B.  This data also needs to appear at the receiver at 

a reasonable speed.  In order to guarantee this reliability and efficiency, there are several 

different types of techniques that have been created to deal with it. 

One powerful and popular type of error correcting scheme is Reed-Solomon decoding.  

This method is especially impressive when dealing with bursts of errors.  Bursts of errors 

occur when a consecutive set of symbols are received in error.  Since Reed-Solomon codes 

count a single error when one or all bits of a symbol are incorrect, it is able to correct a 

greater number of bursts than the average block code.  However, there are obvious 

overheads when encoding and decoding any type of data.  Therefore, previous works in this 

area have constantly aimed to provide faster methods of decoding and a greater range of error 

correction.  Unfortunately, increasing the speed and range of error correction usually comes 

with the price of having a slight failure rate.   

This paper describes a technique that goes about lowering the decoding complexity and 
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increasing the error correction capability of burst error decoding.  It will prove to be able to 

correct bursts of errors with a probability ≥ 1 – n(n-k)2-r .  For those that are not corrected, 

vector symbol decoding can also be used to find the error location vector and correct it 

accordingly, with the overhead of greater decoding complexity.   

This simple and fast technique uses vector symbol decoding along with Reed-Solomon 

codes to correct errors.  It traps the error pattern, which is of length up to n – k in a set of 

registers in which the error values are the syndrome components.  When the errors are 

trapped, we should see n – k – e zero syndromes, where e is the number of errors.  Three 

different scenarios are tested: a burst of n – k - 1 errors, a burst of n - k errors where at least 

one of the components is error-free and a case of a non-burst set of errors such that there are 

at least two errors spaced greater than n - k spaces apart.  The goal of this paper is to 

implement the idea mentioned and show that it can correct errors with a close to perfect 

success rate.    

The paper is organized as follows.  Chapter 2 provides information about a powerful 

decoding scheme, vector symbol decoding.  Chapter 3 goes into some background 

information about Reed-Solomon encoding and decoding.  In chapter 4, we will see a 

discussion on burst error correction and some examples of prior work others have done in this 

area.  The next section, chapter 5, describes the methodology of the technique that is 

implemented in this paper.  Chapter 6 lists information about the simulator, the tools and the 
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parameters that were used to build and test this method.  Chapter 7 analyzes and evaluates 

the results that were attained through that simulator with a number of tables and graphs.  In 

chapter 8, the paper goes on to discuss future work that can be done.  The paper ends by 

concluding in the final chapter, chapter 9. 
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Chapter 2 

 
Vector Symbol Decoding 

 

 Vector symbol decoding [11, 12, 14] allows for greater error correcting capabilities 

when applied to normal block code decoding schemes.  Data is represented in entities 

known as vector symbols instead of a sequence of bits.  In addition, this technique is capable 

of operating on non-binary codes.  This property then, in turn, allows for greater increased 

data transmission rates.   

 

2.1 Concatenated Coding 

 Concatenated codes, first discovered by Forney in 1966 [5], is a way of constructing 

long powerful codes from shorter codes.  This is can be done by using a binary code as an 

inner code and a non-binary code as the outer code.  It is often used in both digital data 

communication and storage systems due to its ability to achieve higher reliability with lower 

decoding complexity.  In many applications, Reed-Solomon codes, described later in the 

paper, are used as the outer codes. 

 With a (n1, k1) binary code and a (n2, k2) non-binary code, a concatenated code can be 

formed by having the symbols from GF(2k1) of the non-binary code represented by k2 bytes of 

k1 binary symbols each.  The k2 bytes of k1 digits each are encoded depending on the type of 
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non-binary code that is being used.  These k1 digits are then encoded into the rules set for 

the binary code.   

 

2.2 Vector Symbol Coding 

 Vector symbols are similar to concatenated codes in which the inner code is a binary 

code and the outer code is the vector symbol.  If each vector has r binary digits each, then 

the outer code is generated using an r-bit interleaving of the (n, k) binary code.  Let H be the 

parity check matrix for the binary code, then the vector symbol code has n symbols of r bits 

each which satisfy the matrix equation [0] = [H] * [C].  In this equation, C is an n x r matrix 

of binary digits, in which each row is a code symbol.  The H and the 0 matrix are both of 

size (n – k) x r.   

 It should be noted that vector symbols thrive on linearly independent vectors.  In [14] 

it is shown that the probability of independence on r-bit random vectors is highly dependent 

on the size of r.  It mentions that the likelihood of an n – k r-bit random vector being 

dependent is approximately 2-[r-(n-k)].  Therefore, the size of a vector symbol should be a lot 

larger than n – k.  A lower r could lead to linear dependent vectors that generate harder to 

correct errors.  We will see this in the evaluation section when a lower vector symbol size 

results in a lower success rate. 
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2.3 Vector Symbol Decoding Steps 

There are a number of operations to perform in vector symbol decoding which are 

described below.  If we consider symbols over GF(21), we will be using Boolean matrices 

that contain only 0s and 1s.  These fields have the property of closed modulo-2 addition and 

multiplication.  However, this paper mainly uses symbols over GF(25).  The following 

describes the steps involved in vector symbol decoding. 

1. Multiply the parity check matrix H and the received vector y to attain the syndrome 

matrix S.   

2. If the syndrome matrix S contains a non-zero element, then we know that the 

received vector y contains an error.   

3. Use column operations on the syndrome matrix S to find the null indicators.  Using 

these indicators we can find the null combinations from the row space of the parity 

check matrix H. 

4. Take the logical OR of these null combinations to form the error location vector.   

5. A zero in the error location vector, also known as the elv, indicates the position of 

the error(s). 

6. Form an n x n sub-matrix of the parity check matrix H, where n is the number of 

zeroes found in the error location vector.  This matrix corresponds to the n rows of 

S and error position columns to be used to solve for the error values. 
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2.3.1 Example 

 Let’s assume a (7, 3) code with generator polynomial g(X) = 1 + X2 + X3 + X4.  This 

vector symbol with eight bits each has already completed the first two steps mentioned above 

and computed [S] = [H] * y as shown in figure 2.1 below.   

 

Figure 2.1 - Vector symbol matrix [9] 

 We now would like to perform column operations on the syndrome matrix [S] to find 

the null combinations.  By adding column 1 to columns 3, 4, 6 and 8, we will end up with 

the shown in figure 2.2. 

 
Figure 2.2 - Syndrome matrix with column operations performed 

 
 
 We then want to add column 2 onto columns 3 and 7.  The result is shown in figure 
2.3.   
 

1 0 0 0 0 0 0 0 
0 1 1 0 0 0 1 0 
0 1 1 0 0 0 1 0 

 0 0 0 0 0 0 0 0 
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Figure 2.3 – Final syndrome matrix after column operations 

 

 We can now figure out the null indicators from this final matrix, which are row 2 + 

row 3 and row number 4.  With these indicators, we then find the null combinations from 

the parity check matrix H.  By taking row 2 + row 3 and row 4 from H in figure 2.1, we get 

the following two vectors: 

 
row 2 + row 3 : 0 1 0 1 1 1 0 
row 4        : 0 0 0 1 1 0 1 

 

Taking the logical OR of these two vectors would give the error locating vector as  

0 1 0 1 1 1 1.  Looking at the location of the 0s in the elv, we know that the errors are 

located in positions 1 and 3.   

 Columns 1 and 3 of H tell us that the error values are in rows 1 and 2 of S. 

 
Figure 2.4 – Error values 

 
The error values are as follows then: 

 
e1 = 1 0 1 1 0 1 0 1 
e3 = 0 1 1 0 0 0 1 0 

 

1 0 

0 1 

e1 

e3
=

1 0 1 1 0 1 0 1
0 1 1 0 0 0 1 0

1 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 

 0 0 0 0 0 0 0 0 
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Chapter 3 
 

Reed-Solomon Decoding 

 

 Reed-Solomon codes were discovered in 1960 by Irving S. Reed and Gustave 

Solomon.  This class of error-correcting codes is very popular today.  They are used in a 

variety of applications including optical media, broadband data transmission and television 

broadcasting systems.  These non-binary cyclic codes are made up of m-bit sequences, 

which contain k data symbols to be encoded and n code symbols in the encoded sequence of 

bits.  A symbol error occurs when at least one bit in the symbol is incorrect.  The code will 

correct the symbol whether if it is one bit that is incorrect or all the bits received are error bits.  

No matter how many bits in a symbol are corrupted, it is only regarded as one single error.  

Due to this property, this gives Reed Solomon codes a very good burst correcting capability. 

The code is known to have a t symbol-error correcting capability where t = (n – k)/2.  

This means that it can correct up to t errors in the received sequence and 2t erasures, which 

are errors with the characteristic that their location is known.  Reed-Solomon codes also 

have the property of having the largest possible minimum distance at n – k + 1.  In other 

words, it has the greatest number of bits in which two code words differ.  As shown in 

figure 3.1 below, the total size of k bits worth of data is a codeword of n length with 2t parity 

bits.  Of course, the more parity bits there are the more CPU power it takes to encode and 
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decode the codeword.  As the error correcting power of the code increases, the 

implementation grows more complex. 

 

Figure 3.1 - Reed-Solomon codeword [1] 

 

3.1 Example 

A common Reed-Solomon code is (255, 223) with 8-bit symbols.  This means that 

each codeword contains 255 bytes in length.  223 out of the 255 bytes make up the data and 

the 32 remaining bytes are used as parity check codes.  In this example, t would equal 16, 

since 255-223 = 32 and 32/2 = 16.  That means that this code can correct up to 16 bytes of 

errors anywhere in the codeword and 32 bytes of erasures.  In addition, it has a minimum 

distance of 255 - 223 + 1 = 33. 

 

3.2 Encoding 

Reed Solomon encoding is done by first figuring out the generator polynomial g(X).  

The degree of this polynomial depends on the number of parity check symbols in the code.  

In the t = 16 example above, the X32 polynomial degree would be the highest.  For 
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simplicity, let’s assume a (7, 3) double-error correcting Reed Solomon code.  We notice that 

this code has n – k = 4 roots.  Therefore the generator polynomial g(X) is, 

g(X) = (X – α) (X – α2) (X – α3) (X – α4) 

Multiplying this out and canceling accordingly would give us, 

g(X) = α3+ α1X + α0X2 + α3X3 + X4 

We can check the correctness of the generator polynomial by setting X = α, α2, α3, α5.  Other 

alphas need not be checked since they are conjugates of the previous four.  If   

g(α) = 0, g(α2) = 0, g(α3) = 0, g(α5) = 0 

Then we know that our g(X) is correct.  Otherwise, we would have to re-compute it. 

 

3.2.1 Steps to Encoding 

1. Convert the data symbols into their respective alpha polynomial message m(X).   

(eg. 110 011 101 would equal α3+ α4X + α6X2) 

2. Multiply m(X) by X(n-k) to obtain the product b(X). 

(eg. α3+ α4X + α6X2 * X4 = α3X4 + α4X5 + α6X6 ) 

3. Divide this new polynomial by g(X) to obtain p(X). 

(eg. [α3X4 + α4X5 + α6X6] / [α3+ α1X + α0X2 + α3X3 + X4]) 

4. Obtain the encoded message u(X) by adding p(X) to b(X).   
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3.2.2 Encoding Using a FSR 

Encoding can also be done using a feedback shift register with field element multipliers 

right before the XOR adders.  The bits that result in the registers are the parity bits, p(X) 

which will be added to the message.  Figure 3.2 shows the architecture of the feedback shift 

register that would be used for the example above.  With Switch 1 closed, the message 

symbol sequence is fed in for the first k cycles with all the registers initialized to zero.  At 

the same time, Switch 2 is in the down position to allow for the input to also be fed to the 

output.  The input is then multiplied by the respective field element alphas.  The result is 

either fed into a register (for the first register on the left) or added with the previous register’s 

contents using XOR gates.  This is done until the whole input sequence has been fed in 

(after k cycles).  Switch 1 is then open and Switch 2 is switched to the up position to allow 

for the parity bits to be concatenated to the message.   

The decoding method in this paper uses a similar technique to compute 

Rem{X(n-k)*m(X)}, where m(X) is the input.  The registers in the technique denote the 

syndromes instead and trap the errors when at least one zero vector in a register is found.  

This will be shown later on in the paper. 
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Figure 3.2 – example of a feedback shift register encoding a Reed Solomon codeword [16] 

 

3.3 Decoding 

Reed-Solomon decoders attempt to locate the position and magnitude of up to t errors or 

2t erasures and correct them.  Decoding a Reed-Solomon code requires that we compute the 

syndrome of the received vector r(X).  This tells us whether or not r(X) is a member of the 

codeword set.  A zero syndrome will indicate that it is a part of the set.  On the other hand, 

a nonzero value will signify the presence of errors in the received vector.  Therefore, our r(X) 

will be the addition of u(X), which is the transmitted vector, and e(X), which is the error 

vector.   

 

3.3.1 Steps to Decoding 

1. Take r(X) = u(X) + e(X) and convert the bits into their respective alphas as in step 1 of 

the encoding procedure. 
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2. Substitute the 2t roots of the generator polynomial into the X.   For the double-error 

correcting code we used in the encoding example, we would substitute the field 

elements α, α2, α3, α4 into r(X) for the four syndrome equations. (Note that if the error 

polynomial e(X) is known, then by evaluating it at the roots of g(X), we should also 

see the same values when substituting the 2t roots into r(X)). 

3. Determine if any of these equations result in a nonzero value.  A nonzero value 

indicates an error in the received vector.  Otherwise, if all syndromes are zero, we 

can assume that the received sequence is not corrupted. 

4. If we find a nonzero value, we need to figure out the error location polynomial.  We 

first note that there are v errors in locations X j1, X j2, X j3, …, X jv where v is unknown 

and j denotes the location of the error.  The error values are symbolized by ej1, ej2, …, 

ejv.  Therefore, 

e(X) = ej1Xj1+ ej2Xj2+ ej3Xj3+ …+ ejvXjv 

We now define βl = αjl where l = 1, 2, …, v.  These are known as the error location 

numbers.  We can then express the 2t set of equations as follows: 

S1 = r(α) = ej1βl + ej2β2 + … + ejvβv 

S2 = r(α2) = ej1βl
2 + ej2β2

2 + … + ejvβv
2 

••• 

S2t = r(α2t) = ej1βl
2t + ej2β2

2t + … + ejvβv
2t 
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5. The error location polynomial is defined as σ(X) = 1 + σ1X + σ2X2 + ...+ σvXv.  The 

roots of this equation are the inverses of the error-location numbers, defined as β1, β2, 

β3, …, βv and the σ are the coefficients of the error-locating polynomial.  In order to 

find these numbers, we would want to find the solution that gives us the smallest 

degree, producing σ(X) with the minimum number of errors.  One method that can be 

used to solve for the equations and determine the error-location polynomial is 

Berlekamp’s iterative algorithm [2].  However, there are other ways to go about 

finding it, such as Euclid’s algorithm [8] which tends to be more widely used in 

practice because it is easier to implement.  These algorithms are not described in 

detail due to their complexity and slight relevancy to this literature. 

6. Once we figure out the error-locating polynomial, we can go about determining the 

error values.  By substituting 1, α, α2, α3, … , αq, where q = 2m from GF(2m), into the 

σ(X) we found above, we can find the inverse of the roots.  These values indicate the 

error-location numbers that we need to generate the error pattern polynomial e(X).  A 

popular algorithm used to find these values is the Chien search [8].  If we are dealing 

with binary symbols, then the error pattern polynomial denotes the errors since we are 

only concerned with 0s or 1s and we can flip them accordingly.  However, in 

non-binary cases, we would need to find the error values by the following steps.   
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7. To determine the error values, we first designate β1, β2, β3, …, βv to equal the alphas 

that we found in e(X), where v signifies the number of errors that we have found.  

We can then use the syndrome equations that we found in step four to solve for the 

error values,  

S1 = r(α) = ej1βl + ej2β2 + … + ejvβv 

S2 = r(α2) = ej1βl
2 + ej2β2

2 + … + ejvβv
2 

••• 

 S2t = r(α2t) = ej1βl
2t + ej2β2

2t + … + ejvβv
2t  

 

8. Since now we know both S and β, we can go about solving the equations for e.  

Depending on the v number of errors we found in the error patter polynomial, we can 

figure out the error values using any v number of syndrome equations listed above.  

One way to do this is by writing out the matrices.  For example, for the (7, 3) case 

above, if we chose to use S1 and S2, we can form the following matrix, 

 

9. By inserting the respective values into that matrix, we can figure out e1 and e2 since 

they are the only unknowns.  To solve for the e’s, we can invert the above matrix to 

bring the β’s to the right side of the equation.  Once we have computed the values for 

β1 β2  

β1
2 β2

2
e1  

e2 
=

S1

S2
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the e’s, we can correct the received polynomial by adding it to the received 

polynomial r(X) to obtain the codeword u(X). 
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Chapter 4 
 

Burst Error Decoding 

 

 Bursts of errors arise when a continuous set of symbols are received in error.  This 

happens when disturbances or interference in the communication channels occur.  As 

mentioned in the previous section, Reed-Solomon codes allow for very good burst correcting 

capabilities.  The Reiger bound given for a Reed-Solomon code is (n – k) / 2, meaning it can 

correct up to that many errors only.  There have been techniques that were developed to 

increase this bound.  This section starts by introducing a few definitions of bursts followed 

by some information on prior work that has been done in this area.   

 

4.1 Physical Burst 

 A burst in a block code is defined as a vector of consecutive errors.  The length of 

the burst, l, begins from the first error position i, such that 1 ≤ i ≤ n, and ends in the last error 

position i + l – 1 ≤ n [10].  However, the burst of errors need not necessarily be all errors as 

shown in figure 4.1.  For example, if position i + 2 is correct, the length of the burst is still l.  

The case in which all the symbols in the burst are errors is known as a full error burst [10]. 

 
  
                0 e e e e e e e e e e e 0 

n 
Figure 4.1 – Physical Burst 

l 
i i + l - 1 
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4.2 Cyclic Burst 

A cyclic burst can be characterized as having the n positions of the code arranged 

around a circle as shown in figure 4.2.  The burst length, l, is defined as the number of 

positions that cover the burst in the arc.  Cyclic bursts that start at the end of the codeword 

and wrap around to the beginning of the codeword, however, are not considered the physical 

bursts described above.  An error pattern such as 110000010 would be considered a cyclic 

burst of length 4 but a physical burst of length 8.  Note that a full error cyclic burst is the 

same as a full error burst. 

 

 
 Figure 4.2 - Cyclic Burst  
 
 

4.2.1 Error Trapping 

 If the burst of errors in a received vector are confined to the n – k high-order positions, 

Xk, Xk+1, …, Xn-1 and are cyclically shifted into a linear feed-back shift register n – k times, 

the resulting syndrome will display the error pattern.  Since the syndrome s(n-k)(X) of the 

l 

e  e 
0 0
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received vector r(n-k)(X) is equal to e(n-k) mod g(X), then s(n-k)(X) = e(n-k)(X) which is the error 

pattern.  This is computed when the r(X) is shifted n - k times since the circuit is computing 

X(n-k)*r(X) mod g(X), in which the errors are trapped as the syndrome values.  Due to 

shifting acting as multiplication, n – k shifts will bring the errors into the registers. 

 If the burst of errors are not in the n – k high-order parity digit positions, but are 

located in l consecutive positions, then after i cyclic shifts, the errors will appear as the 

syndrome s(X).  We will see the first l high-order digits of s(i)(X) as the errors and the n – 

k – l low-order digits of s(i)(X) being zeros.   

 

4.3 Reiger Bound 

A code that is capable of correcting all errors in a burst of up to length l, but not all 

errors in a burst of length l + 1, is known as an l-burst-error-correcting code [8].  This 

means that it can correct a full error burst of length l.  It is proved in [8] that the number of 

parity-check bits required for an l-burst-error-correcting code needs to be at least 2l.  In 

other words, 

n – k ≥ 2l 

From this equation, we can see the Reiger bound, which says that the burst error correcting 

capability of an (n, k) code is, 

l ≤ ⌊ (n – k) / 2⌋ 
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4.4 Feed-Back Shift Register 

 Gallager’s approach uses the error trapping idea described above in which the shortest 

burst is found with a given syndrome [7], allowing it to detect and correct bursts greater than 

the Reiger bound.  This method, for binary codes, can find bursts that are of length less than 

n – k.  It requires two passes to find the errors, the first is taken to locate the shortest burst 

and the second is used to trap it.  Unfortunately, the drawback is that as the length of the 

burst increases above the Reiger bound, the probability of a burst of shorter length with the 

same syndrome increases as well, causing the decoding to fail.  In cases where the length of 

the burst is < n – k, there could be two bursts of with the same syndrome.  If the longer burst 

ended up being the correct one, then Gallager’s method would make an incorrect decision 

since it was set to choose the shorter of the two.  Therefore, for binary codes, since it is 

impossible for all bursts of length larger than (n – k)/2 to have different syndromes, we rarely 

see binary burst error correcting codes attempt to correct errors greater than the Reiger bound.  

Non-binary codes, on the other hand, are a different story as they allow for a better correction 

rate. 

 In [13], the non-binary case of burst errors is examined in which specific classes of 

vector symbol cyclic codes are shown to be able to correct up to n – k – 1 errors, with the 

restriction that they are linearly independent.  However at the maximum number of errors, it 

only succeeded less than fifty percent of the time.  Decoding is also done with a feed-back 
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shift register like that of the error trapping technique.  The modulo-two XOR adders are, 

instead, replaced with r-bit vector XORs since they are working in a field greater than GF(2).  

The method shown later will make a similar modification. 

 

4.5 Interleaving 

One common method that has been used to increase the Reiger bound is code 

interleaving.  This is done by taking a (n, k) code and combining it with c code words from 

the original code with alternating symbols.  The c code words are arranged into c rows of a 

three dimensional array and transmitted column by column.  Effectively, this would increase 

the error-correcting capability of the code by c since a burst of errors will affect no more than 

one digit in each row.  However, this comes at the cost of a longer latency.  In a cyclic 

interleaved code, the syndrome computation can also be done by replacing each register stage 

with c stages in the decoder for the original code. 

 Fossorier shows in [6] that code interleaving allows for the correction of bursts up to 

length c(n – k) – m, where c is the depth of the interleaved code (cn, ck).  It is also shown to 

be successful ≥ 1 – c*n*2-m percent of the time.  This means that interleaving a code 

actually increases the efficiency and success of burst error correction.   

Interleaving had initially been done so that each component has a lower number of 

errors, therefore allowing a greater range of correction.  However, the technique described 
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in this paper utilizes the concentration of bursts contained in a vector symbol to allow for a 

greater error correcting capability.   

 

4.6 Reed-Solomon Decoding 

 Due to the capability of Reed-Solomon codes for correcting bursts of errors, there 

have been a number of algorithms designed to take advantage of this fact.  One method was 

discovered by J. Chen and P. Owsley is described in [3], which deals with non-binary cases.  

It is said to be able to correct bursts of up to n – k – 2 as opposed to the n – k – 1 correcting 

capability of the technique described in this paper.  However, this method is quite complex 

as it requires several Galois field operations in fields greater than GF(21) and solving for 

variables.  There is also a probability of failure associated with it.  As the burst length 

increases, so does the probability of a “miscorrect.”  In the technique that will be described 

later in this paper, the probability of success increases as the number of bits increase.   

In response to the algorithm developed in [3], E. Dawson and A. Khodkar had 

produced a more efficient algorithm in [4] to correct bursts greater than the Reiger bound by 

reducing the formation of the key equations and the calculation of the roots.  Although this 

algorithm did lower the amount of operations, the method in this thesis has an even lower 

decoding complexity by using a feed-back shift register. 
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Chapter 5 
 

Methodology 

 

 As described above, Reed-Solomon burst errors can be detected and corrected in 

several different ways.  Here, a simpler method is presented by using feed-back shift 

registers and the error trapping technique [10].  As stated in [10], it is possible to correct up 

to n – k – 1 burst errors.  The input is a vector symbol code for a Reed-Solomon code over 

the field of GF(2m).  This vector symbol has r = j * m bits each, in which there are j GF(2m) 

components.  The circuit is fed these symbols of r bits each which contain e ≤ n – k -1 r-bit 

error vectors.  We assume that the errors are composed of independent random patterns of 

0s and 1s.   

Once the complete received vector has been shifted in, the circuit beings to search for 

zeroes.  The e errors values will appear as the syndromes in the other registers when at least 

one zero is found in a register.  There will be n – k – e zero entries and the remaining e 

non-zero entries will be the exact error vectors.  The testing for zeroes can actually begin 

right after the burst if the codeword is the all zero vector and there are no more nonzero 

inputs.  However, in real systems, the codeword is not always zero, so testing must be done 

after the whole sequence has been shifted in.  It is said in [10] that n-k-1 errors can be 

decoded with a probability of less than or equal to 1 – n(n-k)2-r.  The goal of this paper is to 

prove that it does run with that probability. 
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5.1 Finding g(X) for the (31, 24) Reed-Solomon code 

When the vector symbols are fed in, they are multiplied by the respective field element 

corresponding to the generator polynomial.  The r-bit vector that is input is split into m-bit 

components to allow for the multiplication of the field elements from GF(2m).  In the 

simulations that were done, elements from GF(25) are used for the (31, 24) Reed-Solomon 

code.  Therefore, each symbol is divided into 5 bit components, multiplied by the 

corresponding alpha from GF(25) and combined back to form the original r-bit vector.  In 

order to figure out the alphas at each stage, we need to find the g(X) for the Reed-Solomon 

code that we are using.  The generator polynomial was found by multiplying out the 31 – 24 

= 7 roots shown below.  Tables for the Galois Fields of 2m from m = 3 to m = 10, can be 

found in [8]. 

 

g(X) = ( X – α ) ( X – α2 ) ( X – α3 ) ( X – α4 ) ( X – α5 ) ( X – α6 ) ( X – α7 ) 

= X7 + (α7 + α6 + α5 + α4 + α3 + α2 + α) X6 + (α13 + α12 + α9 + α8 + α7 + α4 + α3) X5 

+ (α18 + α17 + α15 + α12 + α9 + α7 + α6) X4 + (α22 + α21 + α19 + α16 + α13 + α11 + α10) X3 

+ (α25 + α24 + α21 + α20 + α19 + α16 + α15) X2 + (α27 + α26 + α25 + α24 + α23 + α22 + α21) X 

+ α28 

g(X) = X7 + α5X6 + α29X5 + α5X4 + α9X3 + α10X2 + α25X + α28 
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The corresponding alpha’s bit representations are listed below. 

α28 01101 

α25 10011 

α10 10001 

α9 01011 

α5 10100 

α29 10010 

α5 10100 
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Chapter 6 
 

Simulator 

 

 The simulator is written in C++ mainly using Microsoft Visual Studio.  It uses the 

Galois Field library [15] and a variety of standard library files including the bitset API.  

Simulations were run on a desktop machine with a 2.0 GHz Sempron processor and 1.5 GB 

of memory.  Runs took on the order of 15 minutes to an hour each. 

 

6.1 Architecture 

Figure 6.1 shows the basic architecture of the feed-back shift register implemented in the 

simulator.  The r-bit registers begin cleared with zeroes in them.  As each of the 31 vector 

symbols is shifted in, the r bits of the symbol are split into j 5-bit components from GF(25).  

The 31 is due to n symbols from the (31, 24) Reed-Solomon code.  These error symbols are 

stored in a vector of bitsets for the testing phase.   

The multipliers shown in the figure are 5-bit field multipliers.  The input was originally 

split for this reason, so that the j sequence of 5 bits can be multiplied by the bit representation 

of the alphas.  The j products are then combined together to form the original size r-bit 

vector since the additions are computed as r-bit vector XORs for each shift.   

Once the whole sequence of vector symbols are shifted in, testing begins.  The 

simulator inputs a sequence of 31 zero vectors since exclusive ors of zeros do nothing to the 



 

 

28

state of the vector.  After each shift, if a zero vector is found in any of the registers, the 

simulator tests to see if the remaining registers contain the errors that were input to begin 

with.  A false positive would be one in which a zero is found but the errors trapped do not 

match the errors that were input.  Success only comes when anytime a zero is found during 

the testing phase, the burst of errors are guaranteed to be trapped in the rest of the registers.  

Otherwise, a single false zero in a run would count as a failure. 

 
Figure 6.1 Architecture of simulator 

 
 

6.2 Components 

The application consists of several parts: a feeder, a random vector generator, a register 

controller, xor gates, multiplication gates, a field element handler, a bitset controller, a 

register tester, and a statistics handler.  Their respective functions are listed below.   

1. Feeder – inputs the vector created from the random vector generator.  The location 

of the errors is set by an array of 31 binary digits, where a 1 signifies an error and a 0 

+ 

X X X X X X X 

+ + + + + + 

31 vector symbols of input

α28 α25 α10  α9  α5 α29  α5
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signifies a correct symbol. 

2. Random vector generator – creates a bitset of size NUMBITS and fills it with 1s or 0s 

based on PROB.  The generation of an all zero vector is excluded since that would 

result in no errors at all.  Therefore, the generator only creates a nonzero bitset.  

Tossing away zero vectors increase the actual probability of 1s.  However, for 

generality, a set number of probabilities are used, namely 12.5%, 25%, 32.5% and 

50%. 

3. Register controller – manages the previous and current states of all the registers.  At 

each shift, the controller keeps track of the data in the previous shift and the current 

shift.  These registers are initialized to a bitset of size NUMBITS using 

bitset_reset(). 

4. XOR gates – computes a bit-wise xor of size NUMBITS of two vectors. 

5. Multiplication gates – field element multiplication from GF(25).  5-bit Galois field 

multiplications from the split input and the bit representation of the alpha.  This is 

done using the GF.Mult() operator from the Galois field library.  Since the operator 

took in decimals, binary to decimal and decimal to binary functions were required. 

6. Field element handler – responsible for the Galois field elements on which the Galois 

field library operates on.  Initialized and maintained the primitive polynomial of 

GF(25), the generator polynomial for the (31, 24) Reed-Solomon code, and the Galois 
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field symbol datatypes.   

7. Bitset controller – this component performed the splitting and combining of the bitset 

vectors.  It also converted bitsets into decimals and vice versa to compute Galois 

field operations. 

8. Register tester – tests for zeroes in the registers for 31 shifts and calculates the success 

or failure rate of the decoding method.  A run is considered successful when for 

every shift where a zero is found, the values in the registers match the error values 

that were input.  If, for any shift of any run, a zero is found with incorrect error 

values in the registers, the run is deemed a failure.  This is regardless of whether or 

not a correct set of error values was found earlier in the run.  The register tester is 

activated only after the whole input has been fed in.   

9. Statistics handler – stores and prints the success and failure rates along with other 

useful information.  This includes the number of times a zero was found in both a 

successful and failed run. 

 

6.3 Parameters 

There are a number of parameters that can be set for the simulator as described below: 

1. CAS – used to denote whether or not the test for zeroes should be done during the 

input or after the input.  Due to the simulator using the all zero codeword, it is 
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possible to start testing right after the nonzero inputs.  In real systems however, it is 

done after although correctly trapped errors do show up if it is checked after the 

burst during the input for the zero codeword case.  The simulations however, were 

mainly done with this parameter set to 1, which activates the register tester after the 

whole input has been fed in. 

2. NUMCHECKS – used in conjunction with CAS, which tells the simulator how 

many shifts the application should cycle through with no input for the testing of the 

zeros.  This parameter is set to 31 for all the simulations that were run due to the 

number of vector symbols that were input. 

3. NUMBITS – number of bits for each vector symbol that was to be fed in.  This is 

the r variable in our computations.  This parameter was set to a multiple of m = 5 

from 5 to 30. 

4. NUMCOMPS – number of 5-bit components for each field multiplication.  This is 

the j number of components.  It is set according to the number of bits in each vector 

symbol. 

5. PROB – probability of the number of 1s in the error vectors.  This was set ranging 

from 5% to 50%.  However, only a certain number of probabilities are recorded in 

the results listed in this paper.  Note that the since the all zero vector is disregarded, 

the probability of ones is actually higher.  This true probability will be mentioned 
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in the next chapter. 

6. NUMRUNS – the number of runs to simulate with the set parameters.  Each test 

included a 31 vector symbol input and an additional 31 shifts for the input.  Each of 

the scenarios was run 100,000 times on the most part.  A run is considered 31 shifts 

for the input and another 31 shifts for the searching of zeros. 

7. G_X – defines the generator polynomial for a (31, 24) Reed-Solomon code.  This is 

set to the generator polynomial that was found in the previous section.  The bit 

representation of the alphas was used to store the g(X). 

 

6.4 Test Cases 

There were a total three different types of events that were experimented.  The 1s in the 

vector denote the location of an error symbol and the 0s signify a correct symbol in the 31 

symbol vector:  

 

1. A burst of errors in any location less than or equal to n – k – 1, which is 6 in our case. 
 
  
1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

n 
Figure 6.2 – Burst of Errors 

 
 
 

  

n – k -1 
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2. A burst of length n – k where at least one of the bits is error-free.  
 
  
1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

n 
Figure 6.3 – Burst of Errors with One EFC  

 
 

3. At least 2 errors that occur greater than n – k – 1 positions apart. 
 
 
1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

n 
Figure 6.4 – Non-Burst of Errors 
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Chapter 7 
 

Evaluation 

 

 For each of the three different types of tests described in Chapter 6, there were a 

number of tests run, each with a different NUMBITS and PROB.  This method is said to be 

able to correct errors at a probability ≤ 1 – n(n-k)2-r.  However, this error correction 

probability only applies to the case of 50% probability of 1s in the error vector.  The results 

obtained from running the simulations were very close to this suggested probability 

mentioned in [10], even at differing percentages of 1s in the vectors.  The tables in this 

section show the success rates and failure rates that were taken from the simulations.   

Each of the tests listed was run 100,000 times in GF(25) with PROB set to 0.125, 0.25, 

0.375, and 0.50 using the all zero codeword from the (31, 24) Reed-Solomon code.  The 

check for zeroes in the register were all done after the whole input had been shifted in.  It 

should be noted that the probabilities that are used are approximates of the actual likelihood 

of 1s in the error vector since complete zero vectors are omitted.  Due to using the zero 

codeword, the generation of a zero would signify no errors.  Therefore, the actual 

probability of 1s in the vector should be p / [1 – (1 – p)r], where p is the PROB parameter and 

r is the NUMBITS parameter.  For simplicity and consistency, multiples of 1/8 was used 

instead to denote the probabilities.  In the few tests that were made using the actual 
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probability of 1s, the difference in accuracy did not significantly affect the results. 

 

7.1 Case 1: Burst of 6 Errors 

 Table 7.1 shows the percentage of success of an event where a full burst of six errors 

are found in the vector.  The results shown below are for errors in first six positions of the 

input.  However, a burst of six errors can be anywhere in the 31 symbols.  Due to the cyclic 

nature of the codes, the location of the burst of errors is independent from the success rate.  

Therefore, any location will give analogous results.   

The probability of success shown and proved in [10] is calculated for each r in the 

tables below.  The findings show that the success rate is very close, if not the same to the 

suggested probability.  Due to the union bound on the failure rate mentioned in [10], it is 

expected that the actual simulation results would be a little bit higher.  Note that as the 

average percentage of ones in the errors decrease, the success rate also decreases.  This is to 

be expected as well due to there being a higher possibility of a false zero trapping incorrect 

errors.   

Although r = 5 gives a 0% success rate, the simulator was able to find a few 

successful runs.  This can probably be because the odds of the random error patterns 

matching another set of random bits in the register increases as the number of possibilities, or 

bits, decreases.  In other words, there is a higher likelihood for the feed-back shift register to 
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generate a similar set of syndromes.  In addition, I believe the similarity in success rates 

across the four probabilities of r = 5 are due to the fact that there is very little room for the 

generation of significantly different error vectors in each of the runs.   

As mentioned earlier, vector symbol decoding is weaker when it comes in contact 

with linearly dependent vectors, and with a smaller r, the possibility of linear independence 

decreases.  We notice that since n – k is equal to 7 in our case, the r’s that are closer to 7 (eg. 

5 and 10) show a low probability of success.  On the other hand, those that are significantly 

higher than n – k display a close to perfect rate.  This is one of the main reasons for the 

decrease in success rate since linear dependence of nonzero vectors could create accidental 

zeroes in the registers.  In most cases, we will see two such solutions with one of them being 

correct, which can be verified with built-in detection.  However, our simulations will count 

these cases as failures as it does not have this feature.   

 

Tables 7.1 – Case 1 Results: Burst of 6 Errors, n = 31, k = 24 
 
 

r = 30, 1 – n(n-k)2-r = 99.99998% 
Probability of 1s Success Rate 

1/8 99.836% 
1/4 100% 
3/8 100% 
1/2 100% 

Table 7.1a 
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r = 25, 1 – n(n-k)2-r = 99.99935% 
Probability of 1s Success Rate 

1/8 99.499% 
1/4 99.991% 
3/8 99.999% 
1/2 100% 

Table 7.1b 

 
 

r = 20, 1 – n(n-k)2-r = 99.97931% 
Probability of 1s Success Rate 

1/8 98.428% 
1/4 99.922% 
3/8 99.984% 
1/2 99.988% 

Table 7.1c 

 
 

r = 15, 1 – n(n-k)2-r = 99.33777% 
Probability of 1s Success Rate 

1/8 94.468% 
1/4 99.021% 
3/8 99.404% 
1/2 99.455% 

Table 7.1d 

 
 

r = 10, 1 – n(n-k)2-r = 78.80859% 
Probability of 1s Success Rate 

1/8 72.417% 
1/4 81.230% 
3/8 83.857% 
1/2 84.785% 

Table 7.1e 
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r = 5, 1 – n(n-k)2-r = 0% 

Probability of 1s Success Rate 
1/8 0.311% 
1/4 0.322% 
3/8 0.319% 
1/2 0.357% 

Table 7.1f  

 

7.2 Case 2: Burst of Length 7 with one Error Free Component 

 The second series of runs were done with a burst of seven errors in which at least one 

of the seven components is error free.  The numbers in the tables below represent an error in 

the 4th position of the input vector.  However, running simulations with the error-free 

component in any position resulted in similar numbers.  Once again the location of the burst 

in the whole input is irrelevant to the success rate.  When a zero was found, the error vectors 

were seen to be wrapped around the beginning and end of the registers due to the cyclic 

properties of the code.  The error free component would appear as a zero in the register 

when the errors were trapped.  Therefore, we would actually see the whole burst of seven 

errors where their locations in the registers depended on the positioning of the errors and the 

error free symbol.  This is similar to the length 6 burst case in which a successful zero 

would be found either in the first register or last register. 

The tables list results that are very similar to those that were shown above with a burst 

of 6 errors.  They also, in turn, match the 1 – n(n-k)2-r success probability.  The success 
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rate of this sequence of tests versus the previous tests seems to give a slightly smaller success 

rate.  I believe this is because due to that extra error-free component in the burst, it has a 

slightly higher chance of generating a false zero.  Once again we see that the r = 5 case 

resulted in a few successful runs.  We can draw the same conclusions here as case 1 above. 

 

Tables 7.2 – Case 2 Results: Burst of Length 7 with one EFC, n = 31, k = 24 
 
 

r = 30, 1 – n(n-k)2-r = 99.99998% 
Probability of 1s Success Rate 

1/8 99.847% 
1/4 99.999% 
3/8 100% 
1/2 100% 

Table 7.2a 

 
 

r = 25, 1 – n(n-k)2-r = 99.99935% 
Probability of 1s Success Rate 

1/8 99.487% 
1/4 99.991% 
3/8 99.999% 
1/2 100% 

Table 7.2b 

 
 

r = 20, 1 – n(n-k)2-r = 99.97931% 
Probability of 1s Success Rate 

1/8 98.430% 
1/4 99.946% 
3/8 99.983% 
1/2 99.980% 

Table 7.2c 
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r = 15, 1 – n(n-k)2-r = 99.33777% 

Probability of 1s Success Rate 
1/8 94.402% 
1/4 98.948% 
3/8 99.386% 
1/2 99.472% 

Table 7.2d 

 
 

r = 10, 1 – n(n-k)2-r = 78.80859% 
Probability of 1s Success Rate 

1/8 71.566% 
1/4 81.191% 
3/8 83.231% 
1/2 83.994% 

Table 7.2e 

 
 

r = 5, 1 – n(n-k)2-r = 0% 
Probability of 1s Success Rate 

1/8 0.310% 
1/4 0.312% 
3/8 0.314% 
1/2 0.301% 

Table 7.2f 

 

7.2.1 Case with At Least Two Error Free Components 

 We had mentioned the case of only one error free symbol in the burst of length 7 

above.  However, there is something we can do when we see more than one error free 

component in the error vector.  Note that when more than one of the components in a burst 

of length n – k is error free, we will see the generation of shifts in which only one zero is 
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found.  This would of course be incorrect since the correct set has more than one zero vector 

symbol.  Therefore, a strategy that can be used to find the true burst on failed runs is to pick 

the shift in which we see the most zeros. 

 

7.3 Case 3: Non-Burst Errors 

The method described in this paper is primarily designed for decoding bursts of errors.  

However, we wanted to test the strength of it by seeing how it would fare against a non-burst 

set of errors.  This next and final test was done to confirm the previous results and make 

sure that it doesn’t give false zeroes in non-burst cases.  In this scenario, two errors were 

placed in positions at least 6 spaces apart.  This particular series tests had errors placed in 

locations 1 and 10 of the input.  There is no way the errors can be trapped due to the size of 

the register, which is a reason why the feed-back shift register method can only correct full 

bursts of up to n – k – 1.  The extra register is needed to detect the shift in which the errors 

are trapped.   

Instead of measuring the success rate, we measured the appearances of false zeroes.  

A failure was noted whenever at least one zero vector was found in a run.  In fact, any zero 

found would be considered a false zero.  A zero in this case would correspond to a failure 

due to the errors not being able to be trapped.  Therefore, the tables below measure the 

percentage of zeroes that were found when decoding this sequence of errors, in which we can 
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relate to the failure rate.  We note that the percentage of zeroes found are very similar to the 

failure rate of the method, n(n-k)2-r.  In addition, we also see the failure rate rise 

significantly when the bit count falls below 15, as in the previous two cases.  This is what 

we hoped for because we do not want a non-burst set of errors confusing the decoder.   

In the r = 5 case, we see that this technique finds a zero 100% of the time, which is 

exactly the amount computed from the suggested probability.  This is different from the 

previous results we have found for r = 5.  I believe this is because anytime a zero is found, it 

is considered a failure, as opposed to the first two cases in which a zero might accidently lead 

to the errors that were input.  It is also safe to say that the dependence of the vectors also 

play a role in this test case. 

 
 

Tables 7.3 – Case 3 Results: Non-Burst Errors, n = 31, k = 24 
 
 

r = 30 
Probability of 1s Zeros Percentage 

1/8 0.242% 
1/4 0% 
3/8 0% 
1/2 0% 

Table 7.3a 
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r = 25 
Probability of 1s Zeros Percentage 

1/8 0.802% 
1/4 0.014% 
3/8 0.001% 
1/2 0% 

Table 7.3b 

 
 

r = 20 
Probability of 1s Zeros Percentage 

1/8 2.432% 
1/4 0.115% 
3/8 0.005% 
1/2 0.003% 

Table 7.3c 
 
 

r = 15 
Probability of 1s Zeros Percentage 

1/8 7.563% 
1/4 0.967% 
3/8 0.125% 
1/2 0.100% 

Table 7.3d 
 
 

r = 10 
Probability of 1s Zeros Percentage 

1/8 24.283% 
1/4 9.340% 
3/8 3.886% 
1/2 2.99% 

Table 7.3e 
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r = 5 

Probability of 1s Zeros Percentage 
1/8 100% 
1/4 100% 
3/8 100% 
1/2 100% 

Table 7.3f 

 

7.4 Graphs 

Figure 7.1 and figure 7.2 plot the success percentage against the probability of 1s for the 

first two test cases.  Since not all the cases for different r’s succeed with a close to perfect 

percentage, only cases from r = 15 to r = 30 are plotted in the two graphs mentioned.  The 

next set of graphs, figure 7.3 and 7.4 plot the cases from r = 15 to r = 5.  We notice that in 

both circumstances, a greater number of ones lead to a greater percentage of success.  It can 

also be concluded that the success rate drops significantly as the average percentage of 1s 

decrease from 25% to 12.5%.  We can notice a greater reduction degree from 20 bits to 15 

bits as well.  As mentioned earlier, we can relate the increase in failures at lower bits to the 

linear dependence of the vectors.  With a higher degree of linear dependence, we would see 

an increase in the rate of false zeros in our runs.  Lowering the number of bits we have in 

each vector would decrease the linear independence of the vectors.  Therefore, we see that 

an r higher than the n – k length will generate a lot better results.  However, even at 15 and 

10 bits, we have an average of 98% and 80% success rate, respectively.  Therefore, we can 
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say that this method can correct bursts of length n – k – 1, close to 100% of the time when the 

number of bits is ≥ 20.  This property is attractive due to the growing size of data packets in 

today’s digital data communication.  From the graphs below, we can see that this method 

does very well as long as there are around at least a quarter of ones in the error vector.    
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Figure 7.1 – Success Percentage vs. Probability of 1s ( 30, 25, 20, 15 ) 
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Burst of 7 with one EFB
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Figure 7.2 - Success Percentage vs. Probability of 1s ( 30, 25, 20, 15 ) 
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Figure 7.3 - Success Percentage vs. Probability of 1s ( 15, 10, 5 ) 
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Burst of 7 with one EFB
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Figure 7.4 - Success Percentage vs. Probability of 1s ( 15, 10, 5 ) 
 

 

Figure 7.5 and 7.6 are graphs displaying the percentage of failure to the probability of 1s, 

again one with r = 30 to r = 15 and r = 15 to r = 30.  This is an inverse of the other four 

graphs which show the success rate instead.  We can see that the failure rate approaches zero 

percent as the number of bits increase.  It also has a similar slope at around 25% of 1s in 

error vector.  We can make similar conclusions with this set of graphs since we see a more 

significant increase in the failure rate from the 25% mark to the 12.5% mark than from 50% 

to 25% as well.  Once again, we can notice a greater change in success rate as we dip below 

20 bits.  The main difference is the 0% success rate at r = 5, in which the reason was 

explained earlier in this paper. 
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Figure 7.5 – Failure Percentage vs. Probability of 1s ( 30, 25, 20, 15 ) 
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Figure 7.6 – Failure Percentage vs. Probability of 1s ( 15, 10, 5 ) 
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The final figure, figure 7.7 portrays the effectiveness of the number of bits in the vector.  

It plots the results we got for the 50% probability of 1s cases, along with the suggested 

probability.  As shown in the graph, we can see that all three of the plotted lines are nearly 

identical to each other.  At r = 15 and higher, we see a 99% or greater chance of succeeding 

in decoding a burst of length n – k – 1.  In the lower r’s, we see an increasing rate of failure 

instead.  With our n – k equal to 7, these numbers are to be expected.  The more bits we 

have in the vector symbol, the higher likelihood the vectors are independent and the more 

likely we are to succeed in decoding and correcting the error.  Therefore, we can conclude 

that there is less room for failure due to a greater number of bits.  This is true from r in the 

denominator of the probability mentioned in [10].   

It should be noted that although we found that some of the cases do not generate a 

flawless success rate, we can still use the vector symbol decoding technique, mentioned 

earlier in this paper, to find the error location vector and the error values [10].  However, 

doing that would obviously increase the overhead of decoding. 
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Num of Bits vs. Success Rate
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Figure 7.7 – Success Rate vs. Number of Bits 
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Chapter 8 
 

Future Work 

 

 The results from this simulations show that this method is very powerful.  Being able 

to correct bursts close to twice the Reiger bound with a minor rate of failure is very useful.  

Although this technique does not work as well for vector symbols under 15 bits, anything 

larger than that succeeds at a close to perfect probability.   

Due to the simplicity, I believe a software or hardware application of this circuit 

should not be too hard and pretty feasible.  Since the average size of each data transfer has 

been increasing as of late, an implementation of this would be a great contribution.  In 

systems that have data sizes ranging from small to large, this scheme can be used in 

conjunction with another decoder to just handle the larger data sizes.  This decoder should 

be able to fare pretty well with real data. 

The case of more than two error-free symbols in a burst of length n – k is also 

something that can be looked at in the future.  As mentioned earlier, when we decode this 

scenario, we might see shifts in which only one zero is found in the registers.  In order to 

find the true set of errors, we could pick the shift that contains the most zeros.  There could 

be further evaluation done in this area, to possibly increase the success rate of the method 

described in this paper. 

Another technique to consider is to use binary codes, instead of Reed-Solomon codes, 
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along with vector symbol decoding to correct bursts of errors.  It is proved in [10] that a 

vector symbol code with a minimum distance greater than 2 can correct full bursts of up to 

length n – k – 1.  However, this had the restriction that the errors were linearly independent.  

If the vectors were not completely independent, then we could look for the position that has 

the greatest number of zeroes to detect the errors.  The results from this could then be 

compared to our findings from the technique used in this paper.  Although it is expected that 

it might be somewhat lower than our results, it would be interesting to see how well it 

actually performs. 
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Chapter 9 
 

Conclusion 

 

 Error detection and correction plays a major role in the transmission and storage of 

data.  Bursts of errors are cases in which errors gather around a certain part of the code word.  

This generally happens due to disturbances in a communication channel and could last as 

long as the interference persists.  In addition to the overhead required to transfer data from 

one point to another, the extra step of guaranteeing the integrity of this data is also a factor in 

the transfer speed and latency.  Therefore, it is vital that we have efficient and reliable 

decoding methods with the increasing demand for speed and size.  By increasing the speed 

of the decoders, we can increase the speed of a transfer as well.   

A simple and fast technique was described in this paper utilizing the power of 

Reed-Solomon codes along with vector symbol decoding.  It makes use of a simple 

feed-back shift register to correct bursts of errors of up to n – k – 1 with a success rate of  

1 – n(n-k)2-r.  As compared to other works that use Reed-Solomon codes for burst error 

correction, decoding complexity in this approach is much smaller and not to mention, the 

correction range is greater [10]. 

 We found that an approach like this succeeds very often.  With at least a 15-bit 

vector symbol, we are able to uniquely correct 99.5% of the time.  Therefore, anything 

larger than 15 bits will give an even greater rate of success.  Although there are higher 



 

 

54

margins of error for a lower bit size and lower probability of 1s, these are merely some of the 

worst case scenarios and could be related to the linear dependence of the vector symbols.  In 

addition, due to the rise in the use of digital data communication, there has been an increase 

in the size of data transfers.  This algorithm could benefit the speed and reliability of these 

transfers.  Despite the small number of failures, vector symbol decoding can still be used to 

find the error location vector and error values as shown in Chapter 2.  The only drawback is 

that this would require more complex operations.   
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