

The Pennsylvania State University

The Graduate School

Department of Computer Science and Engineering

A SIMPLE AND FAST VECTOR SYMBOL

REED-SOLOMON BURST ERROR DECODING METHOD

A Thesis in

Computer Science and Engineering

by

Christopher Chang

© 2008 Christopher Chang

Submitted in Partial Fulfillment
of the Requirements

for the Degree of

Master of Science

May 2008

ii

The thesis of Christopher Chang was reviewed and approved* by the following:

John J. Metzner
Professor of Computer Science and Engineering
Thesis Adviser

Guohong Cao
Associate Professor of Computer Science and Engineering

Raj Acharya
Professor of Computer Science and Engineering
Head of the Department of Computer Science and Engineering

*Signatures are on file in the Graduate School.

iii

Abstract

 Error correction and detection play an important role in data transmission and storage

systems. With the increasing demand for higher data transfer rates, reliability and efficiency

is a necessity. A commonly used error correcting method is Reed-Solomon decoding. It is

particularly attractive when dealing with bursts of errors. However, decoding complexity is

a factor to consider when choosing codes.

There exists a faster and rather simple method in which vector symbol decoding is

used along with Reed-Solomon codes to correct errors with a probability ≥ 1 – n(n-k)2-r.

This paper discusses and simulates this novel technique and shows that it does in fact correct

at a close to perfect success rate. Three cases of errors are tested, two different types of

bursts of errors along with a non-burst scenario. We will see that the procedure described in

this paper can uniquely correct a larger range of errors with less decoding complexity.

iv

Table of Contents

List of Figures ...vi
List of Tables.. viii
Acknowledgements...ix

Chapter 1. INTRODUCTION..1

Chapter 2. VECTOR SYMBOL DECODING...4

2.1 Concatenated Coding ...4
2.2 Vector Symbol Coding...5
2.3 Vector Symbol Decoding Steps..6

2.3.1 Example ..7

Chapter 3. REED-SOLOMON DECODING ..9

3.1 Example ...10
3.2 Encoding ..10

3.2.1 Steps to Encoding ...11
3.2.2 Encoding Using a FSR..12

3.3 Decoding ..13
3.3.1 Steps to Decoding ...13

Chapter 4. BURST ERROR DECODING...18

4.1 Physical Burst ..18
4.2 Cyclic Burst ...19

4.2.1 Error Trapping...12
4.3 Reiger Bound ...20
4.4 Feed-Back Shift Register ...21
4.5 Interleaving ..22
4.6 Reed-Solomon Decoding ...23

Chapter 5. METHODLOGY..24

5.1 Finding g(X) for the (31, 24) Reed-Solomon code..25

Chapter 6. SIMULATOR ...27

6.1 Architecture..27
6.2 Components ...28

v

6.3 Parameters..30
6.4 Test Cases...32

Chapter 7. EVALUATION...34

7.1 Case 1: Burst of 6 Errors..35
7.2 Case 2: Burst of Length 7 with one Error Free Component ..38

7.2.1 Case with At Least Two Error Free Components ...40
7.3 Case 3: Non-Burst Errors...41
7.4 Graphs ..44

Chapter 8. FUTURE WORK ...51

Chapter 9. CONCLUSION ..53

References..55

vi

List of Figures

2.1. Vector Symbol Matrix...7

2.2. Syndrome Matrix ..7

2.3. Final Syndrome Matrix ...8

2.4. Error Values ..8

3.1. Reed-Solomon Codeword...10

3.2. Feed-back Shift Register...13

4.1. Physical Burst ...18

4.2. Cyclic Burst ..19

6.1. Architecture of Simulator..28

6.2. Burst of Errors...32

6.3. Burst of Errors with One EFC ..33

6.4. Non-Burst of Errors ..33

7.1. Case 1: Success Rate vs. Probability of 1s (15 – 30)..45

7.2. Case 1: Success Rate vs. Probability of 1s (5 – 15)..46

7.3. Case 2: Success Rate vs. Probability of 1s (15 – 30)..46

7.4. Case 2: Success Rate vs. Probability of 1s (5 – 15)..47

7.5. Case 3: Failure Rate vs. Probability of 1s (15 – 30) ...48

7.6. Case 3: Success Rate vs. Probability of 1s (5 – 15)..48

vii

7.7. Success Rate vs. Number of Bits ..50

viii

List of Tables

7.1. Case 1 Results: Burst of 6 Errors..36
7.1a. r = 30 ...36
7.1b. r = 25...37
7.1c. r = 20 ...37
7.1d. r = 15...37
7.1e. r = 10 ...37
7.1f. r = 5..38

7.2. Case 2 Results: Burst of Length 7 with one EFC ...39

7.2a. r = 30 ...39
7.2b. r = 25...39
7.2c. r = 20 ...40
7.2d. r = 15...40
7.2e. r = 10 ...40
7.2f. r = 5..40

7.3. Case 3 Results: Non-Burst of Errors...42

7.3a. r = 30 ...42
7.3b. r = 25...43
7.3c. r = 20 ...43
7.3d. r = 15...43
7.3e. r = 10 ...43
7.3f. r = 5..44

ix

Acknowledgements

 I would first and foremost like to thank my thesis advisor, Dr. John J. Metzner for his

continued and unlimited patience, guidance and support. I am also very grateful to my

committee member Dr. Guohong Cao who has also assisted me through my time in Penn

State. Last but not least, I would like to thank Penn State’s Department of Computer

Science and Engineering for the time I spent there.

1

Chapter 1

Introduction

 Error correction has become a necessity in recent and future information systems.

This is especially true now due to the demand for higher digital data transmission speeds and

larger storage systems. Any type of interference or corruption on the data channel could

lead to errors on the receiving end. Data that is transmitted from location A should look

exactly like the data received at location B. This data also needs to appear at the receiver at

a reasonable speed. In order to guarantee this reliability and efficiency, there are several

different types of techniques that have been created to deal with it.

One powerful and popular type of error correcting scheme is Reed-Solomon decoding.

This method is especially impressive when dealing with bursts of errors. Bursts of errors

occur when a consecutive set of symbols are received in error. Since Reed-Solomon codes

count a single error when one or all bits of a symbol are incorrect, it is able to correct a

greater number of bursts than the average block code. However, there are obvious

overheads when encoding and decoding any type of data. Therefore, previous works in this

area have constantly aimed to provide faster methods of decoding and a greater range of error

correction. Unfortunately, increasing the speed and range of error correction usually comes

with the price of having a slight failure rate.

This paper describes a technique that goes about lowering the decoding complexity and

2

increasing the error correction capability of burst error decoding. It will prove to be able to

correct bursts of errors with a probability ≥ 1 – n(n-k)2-r . For those that are not corrected,

vector symbol decoding can also be used to find the error location vector and correct it

accordingly, with the overhead of greater decoding complexity.

This simple and fast technique uses vector symbol decoding along with Reed-Solomon

codes to correct errors. It traps the error pattern, which is of length up to n – k in a set of

registers in which the error values are the syndrome components. When the errors are

trapped, we should see n – k – e zero syndromes, where e is the number of errors. Three

different scenarios are tested: a burst of n – k - 1 errors, a burst of n - k errors where at least

one of the components is error-free and a case of a non-burst set of errors such that there are

at least two errors spaced greater than n - k spaces apart. The goal of this paper is to

implement the idea mentioned and show that it can correct errors with a close to perfect

success rate.

The paper is organized as follows. Chapter 2 provides information about a powerful

decoding scheme, vector symbol decoding. Chapter 3 goes into some background

information about Reed-Solomon encoding and decoding. In chapter 4, we will see a

discussion on burst error correction and some examples of prior work others have done in this

area. The next section, chapter 5, describes the methodology of the technique that is

implemented in this paper. Chapter 6 lists information about the simulator, the tools and the

3

parameters that were used to build and test this method. Chapter 7 analyzes and evaluates

the results that were attained through that simulator with a number of tables and graphs. In

chapter 8, the paper goes on to discuss future work that can be done. The paper ends by

concluding in the final chapter, chapter 9.

4

Chapter 2

Vector Symbol Decoding

 Vector symbol decoding [11, 12, 14] allows for greater error correcting capabilities

when applied to normal block code decoding schemes. Data is represented in entities

known as vector symbols instead of a sequence of bits. In addition, this technique is capable

of operating on non-binary codes. This property then, in turn, allows for greater increased

data transmission rates.

2.1 Concatenated Coding

 Concatenated codes, first discovered by Forney in 1966 [5], is a way of constructing

long powerful codes from shorter codes. This is can be done by using a binary code as an

inner code and a non-binary code as the outer code. It is often used in both digital data

communication and storage systems due to its ability to achieve higher reliability with lower

decoding complexity. In many applications, Reed-Solomon codes, described later in the

paper, are used as the outer codes.

 With a (n1, k1) binary code and a (n2, k2) non-binary code, a concatenated code can be

formed by having the symbols from GF(2k1) of the non-binary code represented by k2 bytes of

k1 binary symbols each. The k2 bytes of k1 digits each are encoded depending on the type of

5

non-binary code that is being used. These k1 digits are then encoded into the rules set for

the binary code.

2.2 Vector Symbol Coding

 Vector symbols are similar to concatenated codes in which the inner code is a binary

code and the outer code is the vector symbol. If each vector has r binary digits each, then

the outer code is generated using an r-bit interleaving of the (n, k) binary code. Let H be the

parity check matrix for the binary code, then the vector symbol code has n symbols of r bits

each which satisfy the matrix equation [0] = [H] * [C]. In this equation, C is an n x r matrix

of binary digits, in which each row is a code symbol. The H and the 0 matrix are both of

size (n – k) x r.

 It should be noted that vector symbols thrive on linearly independent vectors. In [14]

it is shown that the probability of independence on r-bit random vectors is highly dependent

on the size of r. It mentions that the likelihood of an n – k r-bit random vector being

dependent is approximately 2-[r-(n-k)]. Therefore, the size of a vector symbol should be a lot

larger than n – k. A lower r could lead to linear dependent vectors that generate harder to

correct errors. We will see this in the evaluation section when a lower vector symbol size

results in a lower success rate.

6

2.3 Vector Symbol Decoding Steps

There are a number of operations to perform in vector symbol decoding which are

described below. If we consider symbols over GF(21), we will be using Boolean matrices

that contain only 0s and 1s. These fields have the property of closed modulo-2 addition and

multiplication. However, this paper mainly uses symbols over GF(25). The following

describes the steps involved in vector symbol decoding.

1. Multiply the parity check matrix H and the received vector y to attain the syndrome

matrix S.

2. If the syndrome matrix S contains a non-zero element, then we know that the

received vector y contains an error.

3. Use column operations on the syndrome matrix S to find the null indicators. Using

these indicators we can find the null combinations from the row space of the parity

check matrix H.

4. Take the logical OR of these null combinations to form the error location vector.

5. A zero in the error location vector, also known as the elv, indicates the position of

the error(s).

6. Form an n x n sub-matrix of the parity check matrix H, where n is the number of

zeroes found in the error location vector. This matrix corresponds to the n rows of

S and error position columns to be used to solve for the error values.

7

2.3.1 Example

 Let’s assume a (7, 3) code with generator polynomial g(X) = 1 + X2 + X3 + X4. This

vector symbol with eight bits each has already completed the first two steps mentioned above

and computed [S] = [H] * y as shown in figure 2.1 below.

Figure 2.1 - Vector symbol matrix [9]

 We now would like to perform column operations on the syndrome matrix [S] to find

the null combinations. By adding column 1 to columns 3, 4, 6 and 8, we will end up with

the shown in figure 2.2.

Figure 2.2 - Syndrome matrix with column operations performed

 We then want to add column 2 onto columns 3 and 7. The result is shown in figure
2.3.

1 0 0 0 0 0 0 0
0 1 1 0 0 0 1 0
0 1 1 0 0 0 1 0

 0 0 0 0 0 0 0 0

8

Figure 2.3 – Final syndrome matrix after column operations

 We can now figure out the null indicators from this final matrix, which are row 2 +

row 3 and row number 4. With these indicators, we then find the null combinations from

the parity check matrix H. By taking row 2 + row 3 and row 4 from H in figure 2.1, we get

the following two vectors:

row 2 + row 3 : 0 1 0 1 1 1 0
row 4 : 0 0 0 1 1 0 1

Taking the logical OR of these two vectors would give the error locating vector as

0 1 0 1 1 1 1. Looking at the location of the 0s in the elv, we know that the errors are

located in positions 1 and 3.

 Columns 1 and 3 of H tell us that the error values are in rows 1 and 2 of S.

Figure 2.4 – Error values

The error values are as follows then:

e1 = 1 0 1 1 0 1 0 1
e3 = 0 1 1 0 0 0 1 0

1 0

0 1

e1

e3
=

1 0 1 1 0 1 0 1
0 1 1 0 0 0 1 0

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0

 0 0 0 0 0 0 0 0

9

Chapter 3

Reed-Solomon Decoding

 Reed-Solomon codes were discovered in 1960 by Irving S. Reed and Gustave

Solomon. This class of error-correcting codes is very popular today. They are used in a

variety of applications including optical media, broadband data transmission and television

broadcasting systems. These non-binary cyclic codes are made up of m-bit sequences,

which contain k data symbols to be encoded and n code symbols in the encoded sequence of

bits. A symbol error occurs when at least one bit in the symbol is incorrect. The code will

correct the symbol whether if it is one bit that is incorrect or all the bits received are error bits.

No matter how many bits in a symbol are corrupted, it is only regarded as one single error.

Due to this property, this gives Reed Solomon codes a very good burst correcting capability.

The code is known to have a t symbol-error correcting capability where t = (n – k)/2.

This means that it can correct up to t errors in the received sequence and 2t erasures, which

are errors with the characteristic that their location is known. Reed-Solomon codes also

have the property of having the largest possible minimum distance at n – k + 1. In other

words, it has the greatest number of bits in which two code words differ. As shown in

figure 3.1 below, the total size of k bits worth of data is a codeword of n length with 2t parity

bits. Of course, the more parity bits there are the more CPU power it takes to encode and

10

decode the codeword. As the error correcting power of the code increases, the

implementation grows more complex.

Figure 3.1 - Reed-Solomon codeword [1]

3.1 Example

A common Reed-Solomon code is (255, 223) with 8-bit symbols. This means that

each codeword contains 255 bytes in length. 223 out of the 255 bytes make up the data and

the 32 remaining bytes are used as parity check codes. In this example, t would equal 16,

since 255-223 = 32 and 32/2 = 16. That means that this code can correct up to 16 bytes of

errors anywhere in the codeword and 32 bytes of erasures. In addition, it has a minimum

distance of 255 - 223 + 1 = 33.

3.2 Encoding

Reed Solomon encoding is done by first figuring out the generator polynomial g(X).

The degree of this polynomial depends on the number of parity check symbols in the code.

In the t = 16 example above, the X32 polynomial degree would be the highest. For

11

simplicity, let’s assume a (7, 3) double-error correcting Reed Solomon code. We notice that

this code has n – k = 4 roots. Therefore the generator polynomial g(X) is,

g(X) = (X – α) (X – α2) (X – α3) (X – α4)

Multiplying this out and canceling accordingly would give us,

g(X) = α3+ α1X + α0X2 + α3X3 + X4

We can check the correctness of the generator polynomial by setting X = α, α2, α3, α5. Other

alphas need not be checked since they are conjugates of the previous four. If

g(α) = 0, g(α2) = 0, g(α3) = 0, g(α5) = 0

Then we know that our g(X) is correct. Otherwise, we would have to re-compute it.

3.2.1 Steps to Encoding

1. Convert the data symbols into their respective alpha polynomial message m(X).

(eg. 110 011 101 would equal α3+ α4X + α6X2)

2. Multiply m(X) by X(n-k) to obtain the product b(X).

(eg. α3+ α4X + α6X2 * X4 = α3X4 + α4X5 + α6X6)

3. Divide this new polynomial by g(X) to obtain p(X).

(eg. [α3X4 + α4X5 + α6X6] / [α3+ α1X + α0X2 + α3X3 + X4])

4. Obtain the encoded message u(X) by adding p(X) to b(X).

12

3.2.2 Encoding Using a FSR

Encoding can also be done using a feedback shift register with field element multipliers

right before the XOR adders. The bits that result in the registers are the parity bits, p(X)

which will be added to the message. Figure 3.2 shows the architecture of the feedback shift

register that would be used for the example above. With Switch 1 closed, the message

symbol sequence is fed in for the first k cycles with all the registers initialized to zero. At

the same time, Switch 2 is in the down position to allow for the input to also be fed to the

output. The input is then multiplied by the respective field element alphas. The result is

either fed into a register (for the first register on the left) or added with the previous register’s

contents using XOR gates. This is done until the whole input sequence has been fed in

(after k cycles). Switch 1 is then open and Switch 2 is switched to the up position to allow

for the parity bits to be concatenated to the message.

The decoding method in this paper uses a similar technique to compute

Rem{X(n-k)*m(X)}, where m(X) is the input. The registers in the technique denote the

syndromes instead and trap the errors when at least one zero vector in a register is found.

This will be shown later on in the paper.

13

Figure 3.2 – example of a feedback shift register encoding a Reed Solomon codeword [16]

3.3 Decoding

Reed-Solomon decoders attempt to locate the position and magnitude of up to t errors or

2t erasures and correct them. Decoding a Reed-Solomon code requires that we compute the

syndrome of the received vector r(X). This tells us whether or not r(X) is a member of the

codeword set. A zero syndrome will indicate that it is a part of the set. On the other hand,

a nonzero value will signify the presence of errors in the received vector. Therefore, our r(X)

will be the addition of u(X), which is the transmitted vector, and e(X), which is the error

vector.

3.3.1 Steps to Decoding

1. Take r(X) = u(X) + e(X) and convert the bits into their respective alphas as in step 1 of

the encoding procedure.

14

2. Substitute the 2t roots of the generator polynomial into the X. For the double-error

correcting code we used in the encoding example, we would substitute the field

elements α, α2, α3, α4 into r(X) for the four syndrome equations. (Note that if the error

polynomial e(X) is known, then by evaluating it at the roots of g(X), we should also

see the same values when substituting the 2t roots into r(X)).

3. Determine if any of these equations result in a nonzero value. A nonzero value

indicates an error in the received vector. Otherwise, if all syndromes are zero, we

can assume that the received sequence is not corrupted.

4. If we find a nonzero value, we need to figure out the error location polynomial. We

first note that there are v errors in locations X j1, X j2, X j3, …, X jv where v is unknown

and j denotes the location of the error. The error values are symbolized by ej1, ej2, …,

ejv. Therefore,

e(X) = ej1Xj1+ ej2Xj2+ ej3Xj3+ …+ ejvXjv

We now define βl = αjl where l = 1, 2, …, v. These are known as the error location

numbers. We can then express the 2t set of equations as follows:

S1 = r(α) = ej1βl + ej2β2 + … + ejvβv

S2 = r(α2) = ej1βl
2 + ej2β2

2 + … + ejvβv
2

•••

S2t = r(α2t) = ej1βl
2t + ej2β2

2t + … + ejvβv
2t

15

5. The error location polynomial is defined as σ(X) = 1 + σ1X + σ2X2 + ...+ σvXv. The

roots of this equation are the inverses of the error-location numbers, defined as β1, β2,

β3, …, βv and the σ are the coefficients of the error-locating polynomial. In order to

find these numbers, we would want to find the solution that gives us the smallest

degree, producing σ(X) with the minimum number of errors. One method that can be

used to solve for the equations and determine the error-location polynomial is

Berlekamp’s iterative algorithm [2]. However, there are other ways to go about

finding it, such as Euclid’s algorithm [8] which tends to be more widely used in

practice because it is easier to implement. These algorithms are not described in

detail due to their complexity and slight relevancy to this literature.

6. Once we figure out the error-locating polynomial, we can go about determining the

error values. By substituting 1, α, α2, α3, … , αq, where q = 2m from GF(2m), into the

σ(X) we found above, we can find the inverse of the roots. These values indicate the

error-location numbers that we need to generate the error pattern polynomial e(X). A

popular algorithm used to find these values is the Chien search [8]. If we are dealing

with binary symbols, then the error pattern polynomial denotes the errors since we are

only concerned with 0s or 1s and we can flip them accordingly. However, in

non-binary cases, we would need to find the error values by the following steps.

16

7. To determine the error values, we first designate β1, β2, β3, …, βv to equal the alphas

that we found in e(X), where v signifies the number of errors that we have found.

We can then use the syndrome equations that we found in step four to solve for the

error values,

S1 = r(α) = ej1βl + ej2β2 + … + ejvβv

S2 = r(α2) = ej1βl
2 + ej2β2

2 + … + ejvβv
2

•••

 S2t = r(α2t) = ej1βl
2t + ej2β2

2t + … + ejvβv
2t

8. Since now we know both S and β, we can go about solving the equations for e.

Depending on the v number of errors we found in the error patter polynomial, we can

figure out the error values using any v number of syndrome equations listed above.

One way to do this is by writing out the matrices. For example, for the (7, 3) case

above, if we chose to use S1 and S2, we can form the following matrix,

9. By inserting the respective values into that matrix, we can figure out e1 and e2 since

they are the only unknowns. To solve for the e’s, we can invert the above matrix to

bring the β’s to the right side of the equation. Once we have computed the values for

β1 β2

β1
2 β2

2
e1

e2
=

S1

S2

17

the e’s, we can correct the received polynomial by adding it to the received

polynomial r(X) to obtain the codeword u(X).

18

Chapter 4

Burst Error Decoding

 Bursts of errors arise when a continuous set of symbols are received in error. This

happens when disturbances or interference in the communication channels occur. As

mentioned in the previous section, Reed-Solomon codes allow for very good burst correcting

capabilities. The Reiger bound given for a Reed-Solomon code is (n – k) / 2, meaning it can

correct up to that many errors only. There have been techniques that were developed to

increase this bound. This section starts by introducing a few definitions of bursts followed

by some information on prior work that has been done in this area.

4.1 Physical Burst

 A burst in a block code is defined as a vector of consecutive errors. The length of

the burst, l, begins from the first error position i, such that 1 ≤ i ≤ n, and ends in the last error

position i + l – 1 ≤ n [10]. However, the burst of errors need not necessarily be all errors as

shown in figure 4.1. For example, if position i + 2 is correct, the length of the burst is still l.

The case in which all the symbols in the burst are errors is known as a full error burst [10].

 0 e e e e e e e e e e e 0

n
Figure 4.1 – Physical Burst

l
i i + l - 1

19

4.2 Cyclic Burst

A cyclic burst can be characterized as having the n positions of the code arranged

around a circle as shown in figure 4.2. The burst length, l, is defined as the number of

positions that cover the burst in the arc. Cyclic bursts that start at the end of the codeword

and wrap around to the beginning of the codeword, however, are not considered the physical

bursts described above. An error pattern such as 110000010 would be considered a cyclic

burst of length 4 but a physical burst of length 8. Note that a full error cyclic burst is the

same as a full error burst.

 Figure 4.2 - Cyclic Burst

4.2.1 Error Trapping

 If the burst of errors in a received vector are confined to the n – k high-order positions,

Xk, Xk+1, …, Xn-1 and are cyclically shifted into a linear feed-back shift register n – k times,

the resulting syndrome will display the error pattern. Since the syndrome s(n-k)(X) of the

l

e e
0 0

20

received vector r(n-k)(X) is equal to e(n-k) mod g(X), then s(n-k)(X) = e(n-k)(X) which is the error

pattern. This is computed when the r(X) is shifted n - k times since the circuit is computing

X(n-k)*r(X) mod g(X), in which the errors are trapped as the syndrome values. Due to

shifting acting as multiplication, n – k shifts will bring the errors into the registers.

 If the burst of errors are not in the n – k high-order parity digit positions, but are

located in l consecutive positions, then after i cyclic shifts, the errors will appear as the

syndrome s(X). We will see the first l high-order digits of s(i)(X) as the errors and the n –

k – l low-order digits of s(i)(X) being zeros.

4.3 Reiger Bound

A code that is capable of correcting all errors in a burst of up to length l, but not all

errors in a burst of length l + 1, is known as an l-burst-error-correcting code [8]. This

means that it can correct a full error burst of length l. It is proved in [8] that the number of

parity-check bits required for an l-burst-error-correcting code needs to be at least 2l. In

other words,

n – k ≥ 2l

From this equation, we can see the Reiger bound, which says that the burst error correcting

capability of an (n, k) code is,

l ≤ ⌊ (n – k) / 2⌋

21

4.4 Feed-Back Shift Register

 Gallager’s approach uses the error trapping idea described above in which the shortest

burst is found with a given syndrome [7], allowing it to detect and correct bursts greater than

the Reiger bound. This method, for binary codes, can find bursts that are of length less than

n – k. It requires two passes to find the errors, the first is taken to locate the shortest burst

and the second is used to trap it. Unfortunately, the drawback is that as the length of the

burst increases above the Reiger bound, the probability of a burst of shorter length with the

same syndrome increases as well, causing the decoding to fail. In cases where the length of

the burst is < n – k, there could be two bursts of with the same syndrome. If the longer burst

ended up being the correct one, then Gallager’s method would make an incorrect decision

since it was set to choose the shorter of the two. Therefore, for binary codes, since it is

impossible for all bursts of length larger than (n – k)/2 to have different syndromes, we rarely

see binary burst error correcting codes attempt to correct errors greater than the Reiger bound.

Non-binary codes, on the other hand, are a different story as they allow for a better correction

rate.

 In [13], the non-binary case of burst errors is examined in which specific classes of

vector symbol cyclic codes are shown to be able to correct up to n – k – 1 errors, with the

restriction that they are linearly independent. However at the maximum number of errors, it

only succeeded less than fifty percent of the time. Decoding is also done with a feed-back

22

shift register like that of the error trapping technique. The modulo-two XOR adders are,

instead, replaced with r-bit vector XORs since they are working in a field greater than GF(2).

The method shown later will make a similar modification.

4.5 Interleaving

One common method that has been used to increase the Reiger bound is code

interleaving. This is done by taking a (n, k) code and combining it with c code words from

the original code with alternating symbols. The c code words are arranged into c rows of a

three dimensional array and transmitted column by column. Effectively, this would increase

the error-correcting capability of the code by c since a burst of errors will affect no more than

one digit in each row. However, this comes at the cost of a longer latency. In a cyclic

interleaved code, the syndrome computation can also be done by replacing each register stage

with c stages in the decoder for the original code.

 Fossorier shows in [6] that code interleaving allows for the correction of bursts up to

length c(n – k) – m, where c is the depth of the interleaved code (cn, ck). It is also shown to

be successful ≥ 1 – c*n*2-m percent of the time. This means that interleaving a code

actually increases the efficiency and success of burst error correction.

Interleaving had initially been done so that each component has a lower number of

errors, therefore allowing a greater range of correction. However, the technique described

23

in this paper utilizes the concentration of bursts contained in a vector symbol to allow for a

greater error correcting capability.

4.6 Reed-Solomon Decoding

 Due to the capability of Reed-Solomon codes for correcting bursts of errors, there

have been a number of algorithms designed to take advantage of this fact. One method was

discovered by J. Chen and P. Owsley is described in [3], which deals with non-binary cases.

It is said to be able to correct bursts of up to n – k – 2 as opposed to the n – k – 1 correcting

capability of the technique described in this paper. However, this method is quite complex

as it requires several Galois field operations in fields greater than GF(21) and solving for

variables. There is also a probability of failure associated with it. As the burst length

increases, so does the probability of a “miscorrect.” In the technique that will be described

later in this paper, the probability of success increases as the number of bits increase.

In response to the algorithm developed in [3], E. Dawson and A. Khodkar had

produced a more efficient algorithm in [4] to correct bursts greater than the Reiger bound by

reducing the formation of the key equations and the calculation of the roots. Although this

algorithm did lower the amount of operations, the method in this thesis has an even lower

decoding complexity by using a feed-back shift register.

24

Chapter 5

Methodology

 As described above, Reed-Solomon burst errors can be detected and corrected in

several different ways. Here, a simpler method is presented by using feed-back shift

registers and the error trapping technique [10]. As stated in [10], it is possible to correct up

to n – k – 1 burst errors. The input is a vector symbol code for a Reed-Solomon code over

the field of GF(2m). This vector symbol has r = j * m bits each, in which there are j GF(2m)

components. The circuit is fed these symbols of r bits each which contain e ≤ n – k -1 r-bit

error vectors. We assume that the errors are composed of independent random patterns of

0s and 1s.

Once the complete received vector has been shifted in, the circuit beings to search for

zeroes. The e errors values will appear as the syndromes in the other registers when at least

one zero is found in a register. There will be n – k – e zero entries and the remaining e

non-zero entries will be the exact error vectors. The testing for zeroes can actually begin

right after the burst if the codeword is the all zero vector and there are no more nonzero

inputs. However, in real systems, the codeword is not always zero, so testing must be done

after the whole sequence has been shifted in. It is said in [10] that n-k-1 errors can be

decoded with a probability of less than or equal to 1 – n(n-k)2-r. The goal of this paper is to

prove that it does run with that probability.

25

5.1 Finding g(X) for the (31, 24) Reed-Solomon code

When the vector symbols are fed in, they are multiplied by the respective field element

corresponding to the generator polynomial. The r-bit vector that is input is split into m-bit

components to allow for the multiplication of the field elements from GF(2m). In the

simulations that were done, elements from GF(25) are used for the (31, 24) Reed-Solomon

code. Therefore, each symbol is divided into 5 bit components, multiplied by the

corresponding alpha from GF(25) and combined back to form the original r-bit vector. In

order to figure out the alphas at each stage, we need to find the g(X) for the Reed-Solomon

code that we are using. The generator polynomial was found by multiplying out the 31 – 24

= 7 roots shown below. Tables for the Galois Fields of 2m from m = 3 to m = 10, can be

found in [8].

g(X) = (X – α) (X – α2) (X – α3) (X – α4) (X – α5) (X – α6) (X – α7)

= X7 + (α7 + α6 + α5 + α4 + α3 + α2 + α) X6 + (α13 + α12 + α9 + α8 + α7 + α4 + α3) X5

+ (α18 + α17 + α15 + α12 + α9 + α7 + α6) X4 + (α22 + α21 + α19 + α16 + α13 + α11 + α10) X3

+ (α25 + α24 + α21 + α20 + α19 + α16 + α15) X2 + (α27 + α26 + α25 + α24 + α23 + α22 + α21) X

+ α28

g(X) = X7 + α5X6 + α29X5 + α5X4 + α9X3 + α10X2 + α25X + α28

26

The corresponding alpha’s bit representations are listed below.

α28 01101

α25 10011

α10 10001

α9 01011

α5 10100

α29 10010

α5 10100

27

Chapter 6

Simulator

 The simulator is written in C++ mainly using Microsoft Visual Studio. It uses the

Galois Field library [15] and a variety of standard library files including the bitset API.

Simulations were run on a desktop machine with a 2.0 GHz Sempron processor and 1.5 GB

of memory. Runs took on the order of 15 minutes to an hour each.

6.1 Architecture

Figure 6.1 shows the basic architecture of the feed-back shift register implemented in the

simulator. The r-bit registers begin cleared with zeroes in them. As each of the 31 vector

symbols is shifted in, the r bits of the symbol are split into j 5-bit components from GF(25).

The 31 is due to n symbols from the (31, 24) Reed-Solomon code. These error symbols are

stored in a vector of bitsets for the testing phase.

The multipliers shown in the figure are 5-bit field multipliers. The input was originally

split for this reason, so that the j sequence of 5 bits can be multiplied by the bit representation

of the alphas. The j products are then combined together to form the original size r-bit

vector since the additions are computed as r-bit vector XORs for each shift.

Once the whole sequence of vector symbols are shifted in, testing begins. The

simulator inputs a sequence of 31 zero vectors since exclusive ors of zeros do nothing to the

28

state of the vector. After each shift, if a zero vector is found in any of the registers, the

simulator tests to see if the remaining registers contain the errors that were input to begin

with. A false positive would be one in which a zero is found but the errors trapped do not

match the errors that were input. Success only comes when anytime a zero is found during

the testing phase, the burst of errors are guaranteed to be trapped in the rest of the registers.

Otherwise, a single false zero in a run would count as a failure.

Figure 6.1 Architecture of simulator

6.2 Components

The application consists of several parts: a feeder, a random vector generator, a register

controller, xor gates, multiplication gates, a field element handler, a bitset controller, a

register tester, and a statistics handler. Their respective functions are listed below.

1. Feeder – inputs the vector created from the random vector generator. The location

of the errors is set by an array of 31 binary digits, where a 1 signifies an error and a 0

+

X X X X X X X

+ + + + + +

31 vector symbols of input

α28 α25 α10 α9 α5 α29 α5

29

signifies a correct symbol.

2. Random vector generator – creates a bitset of size NUMBITS and fills it with 1s or 0s

based on PROB. The generation of an all zero vector is excluded since that would

result in no errors at all. Therefore, the generator only creates a nonzero bitset.

Tossing away zero vectors increase the actual probability of 1s. However, for

generality, a set number of probabilities are used, namely 12.5%, 25%, 32.5% and

50%.

3. Register controller – manages the previous and current states of all the registers. At

each shift, the controller keeps track of the data in the previous shift and the current

shift. These registers are initialized to a bitset of size NUMBITS using

bitset_reset().

4. XOR gates – computes a bit-wise xor of size NUMBITS of two vectors.

5. Multiplication gates – field element multiplication from GF(25). 5-bit Galois field

multiplications from the split input and the bit representation of the alpha. This is

done using the GF.Mult() operator from the Galois field library. Since the operator

took in decimals, binary to decimal and decimal to binary functions were required.

6. Field element handler – responsible for the Galois field elements on which the Galois

field library operates on. Initialized and maintained the primitive polynomial of

GF(25), the generator polynomial for the (31, 24) Reed-Solomon code, and the Galois

30

field symbol datatypes.

7. Bitset controller – this component performed the splitting and combining of the bitset

vectors. It also converted bitsets into decimals and vice versa to compute Galois

field operations.

8. Register tester – tests for zeroes in the registers for 31 shifts and calculates the success

or failure rate of the decoding method. A run is considered successful when for

every shift where a zero is found, the values in the registers match the error values

that were input. If, for any shift of any run, a zero is found with incorrect error

values in the registers, the run is deemed a failure. This is regardless of whether or

not a correct set of error values was found earlier in the run. The register tester is

activated only after the whole input has been fed in.

9. Statistics handler – stores and prints the success and failure rates along with other

useful information. This includes the number of times a zero was found in both a

successful and failed run.

6.3 Parameters

There are a number of parameters that can be set for the simulator as described below:

1. CAS – used to denote whether or not the test for zeroes should be done during the

input or after the input. Due to the simulator using the all zero codeword, it is

31

possible to start testing right after the nonzero inputs. In real systems however, it is

done after although correctly trapped errors do show up if it is checked after the

burst during the input for the zero codeword case. The simulations however, were

mainly done with this parameter set to 1, which activates the register tester after the

whole input has been fed in.

2. NUMCHECKS – used in conjunction with CAS, which tells the simulator how

many shifts the application should cycle through with no input for the testing of the

zeros. This parameter is set to 31 for all the simulations that were run due to the

number of vector symbols that were input.

3. NUMBITS – number of bits for each vector symbol that was to be fed in. This is

the r variable in our computations. This parameter was set to a multiple of m = 5

from 5 to 30.

4. NUMCOMPS – number of 5-bit components for each field multiplication. This is

the j number of components. It is set according to the number of bits in each vector

symbol.

5. PROB – probability of the number of 1s in the error vectors. This was set ranging

from 5% to 50%. However, only a certain number of probabilities are recorded in

the results listed in this paper. Note that the since the all zero vector is disregarded,

the probability of ones is actually higher. This true probability will be mentioned

32

in the next chapter.

6. NUMRUNS – the number of runs to simulate with the set parameters. Each test

included a 31 vector symbol input and an additional 31 shifts for the input. Each of

the scenarios was run 100,000 times on the most part. A run is considered 31 shifts

for the input and another 31 shifts for the searching of zeros.

7. G_X – defines the generator polynomial for a (31, 24) Reed-Solomon code. This is

set to the generator polynomial that was found in the previous section. The bit

representation of the alphas was used to store the g(X).

6.4 Test Cases

There were a total three different types of events that were experimented. The 1s in the

vector denote the location of an error symbol and the 0s signify a correct symbol in the 31

symbol vector:

1. A burst of errors in any location less than or equal to n – k – 1, which is 6 in our case.

1 1 1 1 1 1 0

n
Figure 6.2 – Burst of Errors

n – k -1

33

2. A burst of length n – k where at least one of the bits is error-free.

1 1 1 0 1 1 1 0

n
Figure 6.3 – Burst of Errors with One EFC

3. At least 2 errors that occur greater than n – k – 1 positions apart.

1 0 0 0 0 0 0 0 0 1 0

n
Figure 6.4 – Non-Burst of Errors

> n – k – 1

n – k

34

Chapter 7

Evaluation

 For each of the three different types of tests described in Chapter 6, there were a

number of tests run, each with a different NUMBITS and PROB. This method is said to be

able to correct errors at a probability ≤ 1 – n(n-k)2-r. However, this error correction

probability only applies to the case of 50% probability of 1s in the error vector. The results

obtained from running the simulations were very close to this suggested probability

mentioned in [10], even at differing percentages of 1s in the vectors. The tables in this

section show the success rates and failure rates that were taken from the simulations.

Each of the tests listed was run 100,000 times in GF(25) with PROB set to 0.125, 0.25,

0.375, and 0.50 using the all zero codeword from the (31, 24) Reed-Solomon code. The

check for zeroes in the register were all done after the whole input had been shifted in. It

should be noted that the probabilities that are used are approximates of the actual likelihood

of 1s in the error vector since complete zero vectors are omitted. Due to using the zero

codeword, the generation of a zero would signify no errors. Therefore, the actual

probability of 1s in the vector should be p / [1 – (1 – p)r], where p is the PROB parameter and

r is the NUMBITS parameter. For simplicity and consistency, multiples of 1/8 was used

instead to denote the probabilities. In the few tests that were made using the actual

35

probability of 1s, the difference in accuracy did not significantly affect the results.

7.1 Case 1: Burst of 6 Errors

 Table 7.1 shows the percentage of success of an event where a full burst of six errors

are found in the vector. The results shown below are for errors in first six positions of the

input. However, a burst of six errors can be anywhere in the 31 symbols. Due to the cyclic

nature of the codes, the location of the burst of errors is independent from the success rate.

Therefore, any location will give analogous results.

The probability of success shown and proved in [10] is calculated for each r in the

tables below. The findings show that the success rate is very close, if not the same to the

suggested probability. Due to the union bound on the failure rate mentioned in [10], it is

expected that the actual simulation results would be a little bit higher. Note that as the

average percentage of ones in the errors decrease, the success rate also decreases. This is to

be expected as well due to there being a higher possibility of a false zero trapping incorrect

errors.

Although r = 5 gives a 0% success rate, the simulator was able to find a few

successful runs. This can probably be because the odds of the random error patterns

matching another set of random bits in the register increases as the number of possibilities, or

bits, decreases. In other words, there is a higher likelihood for the feed-back shift register to

36

generate a similar set of syndromes. In addition, I believe the similarity in success rates

across the four probabilities of r = 5 are due to the fact that there is very little room for the

generation of significantly different error vectors in each of the runs.

As mentioned earlier, vector symbol decoding is weaker when it comes in contact

with linearly dependent vectors, and with a smaller r, the possibility of linear independence

decreases. We notice that since n – k is equal to 7 in our case, the r’s that are closer to 7 (eg.

5 and 10) show a low probability of success. On the other hand, those that are significantly

higher than n – k display a close to perfect rate. This is one of the main reasons for the

decrease in success rate since linear dependence of nonzero vectors could create accidental

zeroes in the registers. In most cases, we will see two such solutions with one of them being

correct, which can be verified with built-in detection. However, our simulations will count

these cases as failures as it does not have this feature.

Tables 7.1 – Case 1 Results: Burst of 6 Errors, n = 31, k = 24

r = 30, 1 – n(n-k)2-r = 99.99998%
Probability of 1s Success Rate

1/8 99.836%
1/4 100%
3/8 100%
1/2 100%

Table 7.1a

37

r = 25, 1 – n(n-k)2-r = 99.99935%
Probability of 1s Success Rate

1/8 99.499%
1/4 99.991%
3/8 99.999%
1/2 100%

Table 7.1b

r = 20, 1 – n(n-k)2-r = 99.97931%
Probability of 1s Success Rate

1/8 98.428%
1/4 99.922%
3/8 99.984%
1/2 99.988%

Table 7.1c

r = 15, 1 – n(n-k)2-r = 99.33777%
Probability of 1s Success Rate

1/8 94.468%
1/4 99.021%
3/8 99.404%
1/2 99.455%

Table 7.1d

r = 10, 1 – n(n-k)2-r = 78.80859%
Probability of 1s Success Rate

1/8 72.417%
1/4 81.230%
3/8 83.857%
1/2 84.785%

Table 7.1e

38

r = 5, 1 – n(n-k)2-r = 0%

Probability of 1s Success Rate
1/8 0.311%
1/4 0.322%
3/8 0.319%
1/2 0.357%

Table 7.1f

7.2 Case 2: Burst of Length 7 with one Error Free Component

 The second series of runs were done with a burst of seven errors in which at least one

of the seven components is error free. The numbers in the tables below represent an error in

the 4th position of the input vector. However, running simulations with the error-free

component in any position resulted in similar numbers. Once again the location of the burst

in the whole input is irrelevant to the success rate. When a zero was found, the error vectors

were seen to be wrapped around the beginning and end of the registers due to the cyclic

properties of the code. The error free component would appear as a zero in the register

when the errors were trapped. Therefore, we would actually see the whole burst of seven

errors where their locations in the registers depended on the positioning of the errors and the

error free symbol. This is similar to the length 6 burst case in which a successful zero

would be found either in the first register or last register.

The tables list results that are very similar to those that were shown above with a burst

of 6 errors. They also, in turn, match the 1 – n(n-k)2-r success probability. The success

39

rate of this sequence of tests versus the previous tests seems to give a slightly smaller success

rate. I believe this is because due to that extra error-free component in the burst, it has a

slightly higher chance of generating a false zero. Once again we see that the r = 5 case

resulted in a few successful runs. We can draw the same conclusions here as case 1 above.

Tables 7.2 – Case 2 Results: Burst of Length 7 with one EFC, n = 31, k = 24

r = 30, 1 – n(n-k)2-r = 99.99998%
Probability of 1s Success Rate

1/8 99.847%
1/4 99.999%
3/8 100%
1/2 100%

Table 7.2a

r = 25, 1 – n(n-k)2-r = 99.99935%
Probability of 1s Success Rate

1/8 99.487%
1/4 99.991%
3/8 99.999%
1/2 100%

Table 7.2b

r = 20, 1 – n(n-k)2-r = 99.97931%
Probability of 1s Success Rate

1/8 98.430%
1/4 99.946%
3/8 99.983%
1/2 99.980%

Table 7.2c

40

r = 15, 1 – n(n-k)2-r = 99.33777%

Probability of 1s Success Rate
1/8 94.402%
1/4 98.948%
3/8 99.386%
1/2 99.472%

Table 7.2d

r = 10, 1 – n(n-k)2-r = 78.80859%
Probability of 1s Success Rate

1/8 71.566%
1/4 81.191%
3/8 83.231%
1/2 83.994%

Table 7.2e

r = 5, 1 – n(n-k)2-r = 0%
Probability of 1s Success Rate

1/8 0.310%
1/4 0.312%
3/8 0.314%
1/2 0.301%

Table 7.2f

7.2.1 Case with At Least Two Error Free Components

 We had mentioned the case of only one error free symbol in the burst of length 7

above. However, there is something we can do when we see more than one error free

component in the error vector. Note that when more than one of the components in a burst

of length n – k is error free, we will see the generation of shifts in which only one zero is

41

found. This would of course be incorrect since the correct set has more than one zero vector

symbol. Therefore, a strategy that can be used to find the true burst on failed runs is to pick

the shift in which we see the most zeros.

7.3 Case 3: Non-Burst Errors

The method described in this paper is primarily designed for decoding bursts of errors.

However, we wanted to test the strength of it by seeing how it would fare against a non-burst

set of errors. This next and final test was done to confirm the previous results and make

sure that it doesn’t give false zeroes in non-burst cases. In this scenario, two errors were

placed in positions at least 6 spaces apart. This particular series tests had errors placed in

locations 1 and 10 of the input. There is no way the errors can be trapped due to the size of

the register, which is a reason why the feed-back shift register method can only correct full

bursts of up to n – k – 1. The extra register is needed to detect the shift in which the errors

are trapped.

Instead of measuring the success rate, we measured the appearances of false zeroes.

A failure was noted whenever at least one zero vector was found in a run. In fact, any zero

found would be considered a false zero. A zero in this case would correspond to a failure

due to the errors not being able to be trapped. Therefore, the tables below measure the

percentage of zeroes that were found when decoding this sequence of errors, in which we can

42

relate to the failure rate. We note that the percentage of zeroes found are very similar to the

failure rate of the method, n(n-k)2-r. In addition, we also see the failure rate rise

significantly when the bit count falls below 15, as in the previous two cases. This is what

we hoped for because we do not want a non-burst set of errors confusing the decoder.

In the r = 5 case, we see that this technique finds a zero 100% of the time, which is

exactly the amount computed from the suggested probability. This is different from the

previous results we have found for r = 5. I believe this is because anytime a zero is found, it

is considered a failure, as opposed to the first two cases in which a zero might accidently lead

to the errors that were input. It is also safe to say that the dependence of the vectors also

play a role in this test case.

Tables 7.3 – Case 3 Results: Non-Burst Errors, n = 31, k = 24

r = 30
Probability of 1s Zeros Percentage

1/8 0.242%
1/4 0%
3/8 0%
1/2 0%

Table 7.3a

43

r = 25
Probability of 1s Zeros Percentage

1/8 0.802%
1/4 0.014%
3/8 0.001%
1/2 0%

Table 7.3b

r = 20
Probability of 1s Zeros Percentage

1/8 2.432%
1/4 0.115%
3/8 0.005%
1/2 0.003%

Table 7.3c

r = 15
Probability of 1s Zeros Percentage

1/8 7.563%
1/4 0.967%
3/8 0.125%
1/2 0.100%

Table 7.3d

r = 10
Probability of 1s Zeros Percentage

1/8 24.283%
1/4 9.340%
3/8 3.886%
1/2 2.99%

Table 7.3e

44

r = 5

Probability of 1s Zeros Percentage
1/8 100%
1/4 100%
3/8 100%
1/2 100%

Table 7.3f

7.4 Graphs

Figure 7.1 and figure 7.2 plot the success percentage against the probability of 1s for the

first two test cases. Since not all the cases for different r’s succeed with a close to perfect

percentage, only cases from r = 15 to r = 30 are plotted in the two graphs mentioned. The

next set of graphs, figure 7.3 and 7.4 plot the cases from r = 15 to r = 5. We notice that in

both circumstances, a greater number of ones lead to a greater percentage of success. It can

also be concluded that the success rate drops significantly as the average percentage of 1s

decrease from 25% to 12.5%. We can notice a greater reduction degree from 20 bits to 15

bits as well. As mentioned earlier, we can relate the increase in failures at lower bits to the

linear dependence of the vectors. With a higher degree of linear dependence, we would see

an increase in the rate of false zeros in our runs. Lowering the number of bits we have in

each vector would decrease the linear independence of the vectors. Therefore, we see that

an r higher than the n – k length will generate a lot better results. However, even at 15 and

10 bits, we have an average of 98% and 80% success rate, respectively. Therefore, we can

45

say that this method can correct bursts of length n – k – 1, close to 100% of the time when the

number of bits is ≥ 20. This property is attractive due to the growing size of data packets in

today’s digital data communication. From the graphs below, we can see that this method

does very well as long as there are around at least a quarter of ones in the error vector.

Burst of 6 Errors

94.00%

95.00%

96.00%

97.00%

98.00%

99.00%

100.00%

101.00%

0 0 1/5 1/3 2/5 1/2 3/5

Probabilty of 1s

Su
cc

es
s

P
er

ce
nt

ag
e

30 Bits
25 Bits
20 Bits
15 Bits

Figure 7.1 – Success Percentage vs. Probability of 1s (30, 25, 20, 15)

46

Burst of 7 with one EFB

94.00%

95.00%

96.00%

97.00%

98.00%

99.00%

100.00%

101.00%

0 0 1/5 1/3 2/5 1/2 3/5

Probability of 1s

Su
cc

es
s

P
er

ce
nt

an
ge

30 Bits
25 Bits
20 Bits
15 Bits

Figure 7.2 - Success Percentage vs. Probability of 1s (30, 25, 20, 15)

Burst of 6 Errors

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

0 0 1/5 1/3 2/5 1/2 3/5

Probability of 1s

Su
cc

es
s

Pe
rc

en
ta

ng
e

15 Bits
10 Bits

5 Bits

Figure 7.3 - Success Percentage vs. Probability of 1s (15, 10, 5)

47

Burst of 7 with one EFB

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

0 0 1/5 1/3 2/5 1/2 3/5

Probability of 1s

Su
cc

es
s

Pe
rc

en
ta

ng
e

15 Bits

10 Bits

5 Bits

Figure 7.4 - Success Percentage vs. Probability of 1s (15, 10, 5)

Figure 7.5 and 7.6 are graphs displaying the percentage of failure to the probability of 1s,

again one with r = 30 to r = 15 and r = 15 to r = 30. This is an inverse of the other four

graphs which show the success rate instead. We can see that the failure rate approaches zero

percent as the number of bits increase. It also has a similar slope at around 25% of 1s in

error vector. We can make similar conclusions with this set of graphs since we see a more

significant increase in the failure rate from the 25% mark to the 12.5% mark than from 50%

to 25% as well. Once again, we can notice a greater change in success rate as we dip below

20 bits. The main difference is the 0% success rate at r = 5, in which the reason was

explained earlier in this paper.

48

Non-Burst Errors

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

6.00%

7.00%

8.00%

0 0 1/5 1/3 2/5 1/2 3/5

Probability of 1s

Fa
ilu

re
 P

er
ce

nt
ag

e

30 Bits
25 Bits
20 Bits
15 Bits

Figure 7.5 – Failure Percentage vs. Probability of 1s (30, 25, 20, 15)

Non-Burst Errors

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

0 0 1/5 1/3 2/5 1/2 3/5

Probability of 1s

Fa
ilu

re
 P

er
ce

nt
an

ge

15 Bits
10 Bits

5 Bits

Figure 7.6 – Failure Percentage vs. Probability of 1s (15, 10, 5)

49

The final figure, figure 7.7 portrays the effectiveness of the number of bits in the vector.

It plots the results we got for the 50% probability of 1s cases, along with the suggested

probability. As shown in the graph, we can see that all three of the plotted lines are nearly

identical to each other. At r = 15 and higher, we see a 99% or greater chance of succeeding

in decoding a burst of length n – k – 1. In the lower r’s, we see an increasing rate of failure

instead. With our n – k equal to 7, these numbers are to be expected. The more bits we

have in the vector symbol, the higher likelihood the vectors are independent and the more

likely we are to succeed in decoding and correcting the error. Therefore, we can conclude

that there is less room for failure due to a greater number of bits. This is true from r in the

denominator of the probability mentioned in [10].

It should be noted that although we found that some of the cases do not generate a

flawless success rate, we can still use the vector symbol decoding technique, mentioned

earlier in this paper, to find the error location vector and the error values [10]. However,

doing that would obviously increase the overhead of decoding.

50

Num of Bits vs. Success Rate

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

0 5 10 15 20 25 30 35

Number of Bits

Su
cc

es
s

R
at

e

Burst of 6

Burst of 7 w/ 1 EFB

1 – n(n-k)2 -̂r

Figure 7.7 – Success Rate vs. Number of Bits

51

Chapter 8

Future Work

 The results from this simulations show that this method is very powerful. Being able

to correct bursts close to twice the Reiger bound with a minor rate of failure is very useful.

Although this technique does not work as well for vector symbols under 15 bits, anything

larger than that succeeds at a close to perfect probability.

Due to the simplicity, I believe a software or hardware application of this circuit

should not be too hard and pretty feasible. Since the average size of each data transfer has

been increasing as of late, an implementation of this would be a great contribution. In

systems that have data sizes ranging from small to large, this scheme can be used in

conjunction with another decoder to just handle the larger data sizes. This decoder should

be able to fare pretty well with real data.

The case of more than two error-free symbols in a burst of length n – k is also

something that can be looked at in the future. As mentioned earlier, when we decode this

scenario, we might see shifts in which only one zero is found in the registers. In order to

find the true set of errors, we could pick the shift that contains the most zeros. There could

be further evaluation done in this area, to possibly increase the success rate of the method

described in this paper.

Another technique to consider is to use binary codes, instead of Reed-Solomon codes,

52

along with vector symbol decoding to correct bursts of errors. It is proved in [10] that a

vector symbol code with a minimum distance greater than 2 can correct full bursts of up to

length n – k – 1. However, this had the restriction that the errors were linearly independent.

If the vectors were not completely independent, then we could look for the position that has

the greatest number of zeroes to detect the errors. The results from this could then be

compared to our findings from the technique used in this paper. Although it is expected that

it might be somewhat lower than our results, it would be interesting to see how well it

actually performs.

53

Chapter 9

Conclusion

 Error detection and correction plays a major role in the transmission and storage of

data. Bursts of errors are cases in which errors gather around a certain part of the code word.

This generally happens due to disturbances in a communication channel and could last as

long as the interference persists. In addition to the overhead required to transfer data from

one point to another, the extra step of guaranteeing the integrity of this data is also a factor in

the transfer speed and latency. Therefore, it is vital that we have efficient and reliable

decoding methods with the increasing demand for speed and size. By increasing the speed

of the decoders, we can increase the speed of a transfer as well.

A simple and fast technique was described in this paper utilizing the power of

Reed-Solomon codes along with vector symbol decoding. It makes use of a simple

feed-back shift register to correct bursts of errors of up to n – k – 1 with a success rate of

1 – n(n-k)2-r. As compared to other works that use Reed-Solomon codes for burst error

correction, decoding complexity in this approach is much smaller and not to mention, the

correction range is greater [10].

 We found that an approach like this succeeds very often. With at least a 15-bit

vector symbol, we are able to uniquely correct 99.5% of the time. Therefore, anything

larger than 15 bits will give an even greater rate of success. Although there are higher

54

margins of error for a lower bit size and lower probability of 1s, these are merely some of the

worst case scenarios and could be related to the linear dependence of the vector symbols. In

addition, due to the rise in the use of digital data communication, there has been an increase

in the size of data transfers. This algorithm could benefit the speed and reliability of these

transfers. Despite the small number of failures, vector symbol decoding can still be used to

find the error location vector and error values as shown in Chapter 2. The only drawback is

that this would require more complex operations.

55

References

[1] 4i2i Communications Ltd. Reed-Solomon

Codes.http://www.4i2i.com/reed_solomon_codes.htm, 2004.

[2] E. R. Berlekamp. Algebraic Coding Theory, McGraw-Hill, New York, 1968.

[3] J. Chen, P. Owsley. “A burst-error-correcting algorithm for Reed-Solomon codes,”

IEEE Transactions on Information Theory, 1807 - 1812, November 1992.

[4] E. Dawson, A. Khodkar, “Burst-error correcting algorithm for Reed-Solomon codes,”

IEE Electronic Letters, 848 – 849, May 1995.

[5] G. D. Forney, Jr. Concatenated Codes, MIT Press, Cambridge 1966.

[6] M. Fossorier. “Universal burst error correction,” IEEE International Symposium on

Information Theory, 1969-1972, Seattle, July 2006.

[7] R.G. Gallager. Information Theory and Reliable Communication, 291 – 297, New

York, 1968.

[8] S. Lin, D. J. Costello Jr. Error Control Coding: Fundamentals and Applications.

Second Edition. Prentice-Hall, 2004.

[9] J. J. Metzner. “CSE 554 – Error Correcting Codes,” Pennsylvania State University,

Spring 2007.

56

[10] J. J. Metzner. “On correcting bursts (and random errors) in vector symbol (n, k)

cyclic codes,” IEEE Transactions on Information Theory, 1795 - 1807, April 2008.

[11] J. J. Metzner. “Vector symbol decoding with erasures, errors and symbol list

decisions,” IEEE International Symposium on Information Theory, 34, 2002.

[12] J. J. Metzner. “Vector symbol decoding with list inner symbol decisions,” IEEE

International Symposium on Information Theory, 481, June 2000.

[13] J. J. Metzner, Y. T. Cha. “On simple correction of bursts up to nearly twice the

guaranteed correction bound,” Proceedings of the 1994 Princeton Conference on

Information Systems and Sciences. 38-47, New Jersey, March 1994.

[14] J. J. Metzner, E. J. Kapturowski. “A general decoding technique applicable to

replicated file disagreement location and concatenated code decoding,” IEEE

Transactions on Information Theory, 911-917, July 1990.

[15] A. Partow. Galois field arithmetic library. http://www.partow.net/projects/galois/.

2006.

[16] B. Sklar. Digital Communications: Fundamentals and Applications. Second Edition.

Prentice-Hall, 2001.

[17] S. B. Wicker. Error Control Systems for Digital Communication and Storage.

Prentice-Hall, 1995.

