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ABSTRACT

Prior to storage in a drgask facility, spent nuclear fuel must undergo a vacuum drying
cyde duringwhichthe spent fuel rods are heated up to elevated temperatute®6fC to remove
moisturethe canisters within the caskAs temperature increases during heatisgne ofthe
hydride particles within the cladding dissolve while the integaal pressure in fuel rods increases
generating multaxial hoop and axial stresses in the clesed thinwalled cladding tubes. As
cookdown starts, the hydrogen in solid solution precipitates as hydride platelets, and if the multi
axial stresses are digfently large, the precipitating hydridegeorient from their initial
circumferential orientation to radial orientation. Radial hydrides can severely embrittle the spent
nuclear fuel cladding at low temperatimeesponse to hoop stress loading

Becaus the cladding can experience a range of stress states during thetechamnical
treatment induced during vacuum drying, this study has investigated the effect of stress state on the
process of hydride reorientation during controlled themezhanical reatments utilizing the
combination of in situ Xay diffraction and novel mechanical testing analyzed by the combination
of metallography and finite element analysis. The study used cold worked and stress relieved
Zircaloy-4 sheet containing approx. 18a.vwpm hydrogen as its material basis. The failure
behavior of this material containing radial hydridessalso studied over a range of temperatures.
Finally, samples fromreactorirradiated cladding tubes were examined bya} diffraction using
synchrdron radiation.

To reveal the stress state effect on hydride reorientation, the critical threshold stress to
reorient hydrides was determined by designing novel mechanical test samples which produce a
range of stress st equbiaxalf ®oomensi ani ahemoafnhead
threshold stress was determined after themmeghanical treatments by correlating the finite

element stresstate results with the spatial distribution of hydride microstructures observed within



the optical micrograghs for each sample. Experiments showed that the hydride reorientation was
enhanced as the stress biaxiality increased. The threshold stress decreased from 150 MPa to 80
MPa when stress biaxiality ratio increased from uniaxial tension teeggiaxial ension. This
behavior was also predicted by classical nucleation theory based on the Gibbs free energy of
transformation being assisted by thefiatd stress.

An analysis of in situ Xay diffraction data obtaineduringa thermemechanical cycle
typicd of vacuum dryingshowed a complex lattiegpacing behavior of the hydride phase during
the dissolution and precipitation. Theplane hydrides showed bilinear lattice expansion during
heating with the intrinsic thermal expansion rate of the hydridegylmserved only at elevated
temperatures as they dissolve. For radial hydrides that precipitate during cooling under stress, the
spacing of the clospacked {111} planes oriented normal to the maximum applied stress was
permanently higher than the compesding {111} plane spacing in the other directions. This
behavior is believed to be a result of a complex stress state within the precipitatinigk@late
hydrides that induces a strain component within the hydndemalt o i t s fApl at eo f a:
applied stress direction) that exceeds the lattice spacing strains in the other directions. During
heatu p , the |l attice spacing of these same fApl at e
the stress state within the pldilee hydrides as thedissolve.

The presence of radial hydrides and their connectivity witplane hydrides was shown
to increase the ductif®-brittle transition temperature during tensile testing. This behavior can be
understood in terms of the role of radial hydridepromoting the initiation of a long crack that
subsequently propagates under fracture mechanics conditions. Finalhspgheinl of irradiated
Zircaloy-4 and M5 cladding tubes was measured at room temperature and compared to that of un

irradiated samles.
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1 INTRODUCTION AND BACKGROUND

1.1 Zirconium Based-Alloys for Nuclear Fuel Cladding Tube Material

Zirconiumbased alloys are being used as the fuel cladding tubes that encapsulate the uranium
dioxide fuel (UQ) in light water reactsr (LWRS). Zirconiumbased alloyshave low thermal neutron
absorption crossection which improves neutron econofiy. Zirconiumbased alloysre also resistant
to high temperature corrosion aack mechanically stable under neutron irradiation at the high operating
temperatures and pressures of LWRs. Theggepties are important to the performance of the LWR as
the cladding constitutes the principal physical barrier between the fission gases released by the fuel and the

coolant water.

Zirconium has a hexagonal clospdcked (HCP) crystal structure withc/a ratio of 1.59 at
temperatures below 865°C, which medhat in this temperature range the zirconium crystal exhibits
anisotropic propertiesAt 865°C, anallotropic phase transformation occurs causing a transformation from

the HCP crystal stewenttwred @ umphas )Bisxp). artycdyw!l st

Zirconium is alloyed with other elements such as iron (Fe), tin (Sn), chromium (Cr) nof@ye
nickel (Ni), and niobium (Nb) to improve corrosion resistance and mechamiopérties[2-5]. The
chemical compositisof selected zirconiurbased alloys are shown irable 1-1. Each alloy type is
developed to operate in a certain environment for a specific reactor type. For instance,-Zirsaliyzed
as cladding material in boiling water reactors (BWRs) asidtructural material in heavy water reactors
(CANDU). Zircaloy-2 contains dispersed intermetallic precipitates of Zr(Feao Zr(Fe,Nij in the HCP
Uzirconium matrix(2]. Ti n (Sn) and oxygen ( O)-Zrimatnxmelp stabilizes ol i d

t h eircdhium phase and improve its mechanical stref@jth



Zircaloy-4 fuel cladding was developed for use in pressurized water reactors (PWRs), and unlike
Zircaloy-2, it contains only Zr(Fe,Cr)particles, as an increased Fe content replaces nickel, which was
associated withnicreased hydrogen pickugn general, the manufacturing process of Zircaloybes
includes quenching from high temperatures in the ¢
with intermediate annealing steps, and final stress relievihg. final product is intte cold worked stress
relieved condition (CWSR)X]. The plastic deformation during the pilgering procedsices the tube wall
thickness and increases the flow stress because of work hardening. This cold working also creates a
textured microstructure within the cladding tube such that thges of the zirconiungrains are
preferentially oriented normal thié tube surface, and tilted -80° from tube radiadirection[7]. The
presence of the crystallographic texture causes anisotropic deforrbatiawior due to irradiation creep
and growthin the radial, axial, and circumferential orientations. Furthermore, as a result of coldh&ork, t
grains tend to be elongated in the axial orientation such tHabasated CWSR Zircaley consists of

elongateancake shapegtains with an average length 6l um[8].

ReplacingZircaloy-4, modern zirconium alloys, such as ZIRLO and M5, aoe preferentially
used in PWRs. Both of these alloys include niobiur
behavior[1]. Similar to Zircaloy4, ZIRLO, also contains tin as well as a small amount of iron. On the
other hand, M5 is a binary alloy of zirconium 1% niobium. Both ZIRLO ANDéWBibit crystallographic
textures similar to Zircaleyt. While ZIRLO is typically used in CWSR condition, M5 has ergstallized

grain microstructurg9].

Another common zirconiurbased alloy is Z2.5Nb, whichis used as pressure tube material in
heavy water reactors (CANDU). Like M5 and ZIRLZ;2.5Nbcontains additions of oxygen and niobium
to improve corrosion behavior and mechanical strength. The main difference b&tvw&BNband M5 or
ZIRLO is the texture. IrZr-2.5Nh the ea x e s oezircontium g@rairls are aligned parallel to the axial

direcion and perpendicular theradial direction because of differences in the tube reduction priggess



Table1-1 Alloying elements of selected zirconium alldgiscurrent use in theuclear industry

Alloys Reactor Elements [wt. percent]
Sn Fe Cr @] Ni Nb
10001400
Zircaloy-4 PWR 1.2-1.7 | 0.180.24| 0.07-0.13 N/A | N/A
[wt. ppm]
12601440
Zircaloy-2 | BWR, CANDU | 1.431.45| 0.130.14 0.1 0.05| N/A
[wt. ppm]
Zr-2.5Nb CANDU N/A N/A N/A 0.090.15 | N/A | 2.42.8
1430
ZIRLO PWR 0.96 0.1 N/A N/A | 0.99
[wt. ppm]
1250
M5 PWR N/A N/A N/A N/A| 1.0
[wt. ppm]

1.2 Environmental Degradation of Nuclear Fuel Cladding

During operation in a nuclear reactor ttladding tubes are concurrently subjected to various

degradation driving forces such as radiation damage from the intense patrticle flux, waterside corrosion of

the cladding and hydrogen pickup, stresses induced by -pkltiding interactiorand other pasible

degradation mechanisiriacluding gridto-rod fretting and CRUBNduced localized corrosion. Since the

cladding is subjected to a very aggressive environment during operation, the integrity of fuel cladding tube

has to be ensured from the beginnofgt he nucl ear power pl ant és

storage, dncask storage, and transportation), to final disposal.

oper at

The combination of pelletlad interaction, which is defined as the mechanical interaction between

the UQ fuel pellet and the Zircaloy cladding, and chemical attack from fission products within the



environment (espéally iodine) can cause stressrrosion cracking of the cladding. The mechanical
interaction is caused by U®wellingwhich results in friction between it and cladding. Radial cracks

in the pelletinduced bythetemperature gradient in the Wgellet, causdission products to accumulate in
localized regions at which chemical attack of the cladding occurs. Thus, both frictional loading and an
environnentally induced deterioration of mechanical properties can cause crack initiation, and

subsequently crack growth at slow rates within the claddifgL1].

Radiation damage isaused byhe displacement of the atonmsthe cladding materidtom their
lattice positions byhe incoming neutron fluxThis procesreates a vacancy and a daterstitial atom
pair, i.e. Frenkel pairs. The evolution of those Frenkel pairs causes microstructural changes in the cladding
such as solute atom segatign, secorygbhaseparticle amorphization, dislocation loop formation, and
dissolution or precipitation of second phasfich causehanges in microstructuteading tohardening,
embrittlement, andeformatiorof the cladding.Thus,themechanical resmse of the cladding is degraded.
Also, the radiation damagmnassist other degraton mechanisms such as streggrosion cracking and

waterside corrosioff].

Waterside corrosion of the nuclear fuel cladding involves the formation of a zirconium oxide layer
at the high operation temperatures in nuclear reactors and is a result of an oxidation reaction of zirconium
and water as shown in Equati@inl). Due to the oxidation reactioa ZrO; layerforms and growsn the
cladding outer surfac& he mechanisms of oxide formation and groargcomplexinvolving a wide range
of multi-scale physical phenomena including electrical charge balance, vdoantransport, crystal
structure, crystallographic orientation (texture), initial microstructure of the cladding, alloying elements,
residual stresses at the metalde interfaces, waterside chemistry and others (like galvanic properties of
cladding and structural metals in the reactor c§i€]. In general, uniform corrosion the main
degradation concelin PWRs anchodular corrosion in BWRs. One of tHeawback of oxidation is the
decrease of the heat transfer properties from cladding to codtamtddition,the oxidespallingcauses

material loss andanpromotes hydride blister formatiga3].



1 0¢(/19:0 ¢ (1.1)

As shown in Equation (1.1), the other product of watde corrosion reaction is hydrogen which
can be pickedip by the cladding.Also, radiolysis of water under neutron and gamma irradiation, Equation

(1.2), produces hydrogen which als@ycontributes to the hydrogen picip[1] in the following manner:

h

(1 ( I (1.2)
The extent of hydrogen piakp depends on many parameters such as oxide layer thickness, second phase
particles, alloying elements, water chemistry, and most importantly the type of the zirdmsathalloy
(as listed inTable1-1) [12]. For instance, the hydrogen piak fraction of Zircaloy and ZIRLO is high
whereasZr-2.5Nb is drastically lower han Zircaloy4 and ZIRLO[14]. The hydrogen picked up by
cladding can be eithéoundin solid solutionin the HCP zirconium matrixdepending on terminal solid
solubility of dissolution at a specific temperature) or in the form of hydride precipitatetséfminal solid
solubility limit is exceeded15-17]. For example, during operation of a PWR, ud20 wt. ppm of
hydrogen is in solid solution due to the terminal solid solubility of dissolutitreatiadding tubeperating
temperaturef 350°C[17] and any additional hydrogen precipitates as zirconium hydride platelets in th

cladding that are brittle at low temperatuf&§].

1.3 Dry Cask Storage/Transportation of the Spent Fuel Cladding

The spent fuel rods that are initially in wstbrage can be removed from the spent fuel pool to be
stored in drycasks containers. In general, the decay heat of fuel rods is removed by either inedilgas or

cooling such that the maximum clad temperature will not exceed 400°C-aaskystorage facilitid 9.

Cladding integrity must be assurieddry-cask storage to ensure fuel retrievahili8pent fuel rods
may containa high level of hydrogen content and a hydride microstructure that may degrade cladding
mechanical response. The postulated failure mechanisms for cladding are creep, stress corrosion cracking

5



(SCC), and hydrogeimduced defects such as delayed hydride cradkiitC), and hydride embrittlement

[20, 21].

Delayed hydride cracking involveése hydrogen difison under the high triaxial stressesarthe
crack tip region. Whethe hydrogen solubility limit is reached on a local scale near the crack tip, hydride
can precipitate and subsequently cracksusextendng the main crack into a region low in hydrogen
content at which point, the crack arrests. The stress field of the arrested crack themrettedmtdrogen,
and the process repeats with discontinuous crack growth occurring until the crack becomes teitigthl
as dictated byhe claddingracture toughness. Thus, DHC is a tidependent subritical crack growth.
For dry cask storage conditions, the stress intensity at a crack tip is estimated under conservative conditions
as33. 5 MP aa m, lowtheicritidal stress intersity to propagate crack in the presencdraigen

in Zircaloy claddingThus, DHC is not likely to happen during etrgisk storagg?q].

The most likely cause of claitd) failure in drycask storage conditions is hydride embrittlement
as a result ofunfavorable hydride microstructures in the zirconiibased claddings. Possibla
homogenoushydride microstructures after reactor operation are hydride rim, hydride blaster
circumferentially oriented hydride platelets, such as showfigure 1-1a. In general, the hydride
formation can reduce the fracture resistance of the material and directly affects thetahbeiitke-
transition temperature of the cladding (DBT[LB]. Hydride rim and blister formation can reduce the
ductility of cladding without affecting thDBTT while circumferentially oriented hydrides hagsdeffect
on ductility. During dryingand storageircumferential hydrides can change their orientation and form
radially oriented hydridess shown irFigure1-1b. These radial hydrides drastically decrease the DBTT
causing severtss of ductility and rupture at low strains. Except for radial hydride embrittlement, the
failure mechanisms care mitigated by controlling the temperature during transportation. Bechtise
potentially large decrease in DBTT, radial hydridduced embrittlement isf special concern during dry

storage of the spent nuclear fuel rods.



Radial hydride embrittleent can affect cladding failure during etrgsk storage and transportation
processes even at elevated temperafirgs??]. For instance, when hydrides are aligned thrabgh
thickness of the cladding (radial hydrides) as showkigare1-1b, the DBTT increases up to 150°C, and
a crack initiation and growth procesgy occur with very small plastic deformatid® Thus radial

hydride formatiorcanresult n a decr ease of-l itkhed DBariTlI varned. Abr i tt | e

The formation of a radial hydridenicrostructure occurs ifluring cooldown the hydrides
precipitate under a sufficient tensile hoop stress from a drying cycle in which the cladding experiences
sufficiently high temperatures to dissolve part or all of the hydrogen present in the cl&ldihga re
oriented hydride microstructure can happen under the vaduying conditions of spent fuel rods. During
wet storage after fuel removal from reactor, most hydrides are oriented circumferentially such that the
hydride platelet faces are paraltel the circumferential direction of the cladding tube (i.e., the hoop

direction) and perpendicular to the radial direction of the cladding, as sh&iguie1-1a.

For dry-cask storage or transportation after wet storage, the moisture on the ctaddnsgirface
has to be removed by heating the claddin@4®0°C (with the decay heat of fuel rods) and then coeling
down to storage/transportation temperatures in a procask | e d -dirvyai cAtiguériigh temperatures
achieved dring the vacuuntdrying processup to 200 wt. ppnhydridescandissolve andill gases (He
during fabrication) andgaseous fission products internatlyessurize the cladding and ciegta hoop
stressas the spent fuel rods are heated up. During@owh, hydrides start to precipitaieder streséat
a temperature determined by tenali solid solubility of precipitatiofil7]). However the presence of a
sufficient level of hoop tension stresan change the initial circumferential orientation of the hydrides into

a radial orienta2).on (Aradial o hydrides)



Figure1-1 Hydride platelets orientations (a) initial circumferential hydride microstructure (b) through thickness (radial)
hydride microstructure after theramechanical treatment such as vacuum drj28).

14 Zirconium Hydride Phases and Possible Hydride Microstructures in Nuclear Fuel Cladding
during Reactor Operation

1.4.1 Zirconium Hydride Phases

o

In the open |iterature, two stable (04, U) and
in the zirconiurshydrogenphase diagram iRigure1-2 [24-27]. The basiqropertieof these phases are
listed inTable1-2. Thedifferent hydridephases have different degrees of hydrogepancy at the two
available (preferred) interstitial sites, and this behavior causes different volumetric strains for each phase,
stoichiometry, a n dhydddesy enty &dlf of shiewo wvaitahler irgerstiti®d eites ave
occupied by hydrgen which resulttha st oi chi ometry coef fi c-hydridegs, of 1.
hydrogen occupies more than half of the two interstitial sitbéch yields a stoichiometry coefficient in
therange of 1.31 to 1.7 withn equilibrium value of 1.5F o rhydfide phase, hydrogen occupies almost
all the available interstitial sitesvhichmeanshe Ohydridestoichiometry is intherange of1.7 to 2[6, 28,
29. Un | i-tydrided which have face centered cubic (FCC) crystal structurethedtha n d hydride
phases have fagenteredetragonal (FCT) crystal structure ame formed byshear transformatiathat

8
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Table1-2 The properties of hydride phases observed in zirconium and zircdrdeed alloys.

Lattice
Hydride | Stoichiometry | Crystal Orientation Type of
Parameters Morphology
Phase ZrH « Structure | Relationship Transformation
at 25°C [nm]
H+ZrA U ,
FCC, Nucleation and
U 131t01.71 a{111}/ a=0.4777 Platelet
Cak Growth at slow
cooling rates
a=0.4888 uA U, Straight
U 1.71t02 FCT c=0.457 Martensitic, bands with
cla<l Twinning subbands
H+ZrA o,
Bainite-type
a=0.4617 transformation;
b
2 1 FCT c=0.4888 Re-distribution of | Needlelike
{111}y /1
cla>1 Hydrogen atoms
by martensitic
shear
T h e thydtidetransformation happens at high hydrogen contents greater@080\it. ppm
with the U phase being formed by
boundarieg26]. T h e -hydrislainticrostmdture Gonsists of long straight bands witkbsabn d s

phase as shown Figure1-3. Howeverthe Ghydrideforms only atery high hydrogen contents not likely

to occur during operatiorit is however possibleé o

observe U

formationat hydrogen contents greater than 3000 wt. ppm (0.3 %2#.)

a mal taedmdi i c
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Figure1-3 Bhydride microstructure (a) shows the straight band structure at low magnification by optical and (b) shows
the subband structure at high magnification by TEN]

The f or mhydrides involees rapid diffusion of hydrogen atoms to localized regions by
s h e a r i-zirogniumflattidg both perpendicular to and parallel to the invapdntane strain pl a
(002) [28, 29, 34, 35 Thhyed rd des have an or-{ 2¢hil¥X0l0@) -weélt dat iU
zirconium witha volumetric misfit of 12.39436-38]. The misfit is relieved by shear (plastic relaxation)
and confined by anisotropic dilatational transformation straisshown imable1-3[35,37,39). T-he 0
hydrides (needé i ke) have b-gireaniunoas a resultvoé glienchimghith create hydrogen
super saturations higher than 500 wt. g9, 35, 40]. Interg r a n whidedes were also observed at

lower super saturatiorjd1].

Table1-3 Dilatational and volumetric misfit strains ofa n d hydrides

Misfit Strains [%] Direction o-hydrides U-hydrides
R TP 5.70 7.20
R p @ 0.551 4.58
R pPTT TT 5.64 4.58

Volumetric Strain [%)]

6 6 |6 12.3 17.2
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T h e-hydride phase ireported to benetastableT h e 29 p h a $as beembsemedtinithe n
high purity of zirconium crystals at various cooling rates and zircotiased alloys after quenching or
cookdown with cooling rates greatdran 10°C/min29, 41-45]. Cannet al.stated that as the purity of
zirconium increasedhes p has e f dncreasinglyppomotedsach thatthe phase became
equilibrium phasd43]. They al so deter mi ned t ha thydtids becomesc o mmo d
smal l er than t he addidenwherdoxygen camteneis graatgrithanolD00 wt. ppm
(similar to commercial alloys). Lanzaet al.also provided supporting data foetieportedeffect of purity
by testinghydride precipitatiorin Zircaloy-4. For nuclear fuel cladding such as Zircaby, -hydrides
were the only observed phase. the purity of zirconium decreasetheo p lbecenmemore favorable
[49].

T h ehydiides are the equilibrium phasermally observedin nuclear grade zirconiwinased
alloys ofZircaloy-2 and-4, andZr-25Nbi n nucl ear react or -bydrelesaunlikeng con
U a n d hydrides, are usually formed by diffusieontrolled phase transformation at low hydride super
saturation and under conditions of mostly heterogeneous nucleation efrizmetar(grain boundary)
precipitateg 29, 44, 46, 47]. At cooling ratesless than 83 AC/ mi n , rhydrides prefcipitathae U
grain boundaries and fewer intgganular hydrides are observiZB, 44]. For cooling rates higher than
3°C/min (but still lower than 10°C/min), the ratio of ingeanular hydride to integranular is high,
depending on the alloy, cooling rate, and hydrogen cofgém1,44]. Fu r t h e r rhydride intetndi e 0
structure alsodepends orooling rate such that for low cooling rates, high dislocation densities within
inter-granular hydrides am@bserved, whereas for intggranular hydrides precipitate at intermediate cooling
rates (greater than 3°C/min less than 10°C/min), fine internal twinning has been observed within these
hydrides[29, 4]].

The most -hgdadeshape is platelets, observed for botfaiaind intergranular hydrides.
For intragranular hydrides, lattice matching of hydride and zirconium matrix is preferred to reduce the
strain energy, and the orientation relationship between the ptmd®d planes of the hydride and matrix is
{111}/ (W 02) , whi c kydiidss insaizidonlura matrix. oFordantgranular hydrides, the
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grain boundary energy promotes hydride nucleation at grain boundg;ds§)]. Fur thydedesmor e, I
also tend to precipitate on grains that have basal planes parallel to the grain boundary by lattice matching
ofclosedp ac ked pl an{elsl }s{Q02)htd mirtinsize notionly the grain boundary energy but

also the elastic strain energy and interphase bouraangy[46, 48].

The i ma c r o shydodps (sed-igure 1-1) observed in optical micrographs are usually the
collection of much small er A miFgured<glecangphb. dn géngral,r i d e 0
lengthof these microscopic hydrides ( both intead inter granular ) areneasurednostly in a range of
2001000nm[38]. The stacking of the smaller hydride, in particular circumferentially oriented, platelets
results in al/l apparent fimacr oscoppmxo[38Mg|l.dThee de pl @
hydride platelets shown iRigure 1-4a likely nucleatedat the grain boundaritially close to the triple
junction because of high grain boungizenergy and growth into the zirconium matrix; thus, dislocation
field around the hydride is observed due to plastic relaxation (accommodation) because the transformation
(misfit) strain has not been able to accommodate all the strain energy eladtigalhe.1-4b shows that
the hydride platelet nucleated nearby the grain b
planes; therebyyuride platelet orients itself to keep the clogeatked orientation relationship between
zirconium and hydride, and other hydride platelet precipitates almost parallel to the grain boundary hydride

by minimizing its transformation energthus a stackingrientationof hydrides has been observed.
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Figure1-4 Microscopic intergranular hydrides in furnace cooled sample. (a) hydride precipitate perpendicular to a grain
boundary; (b) hydride precipitates along the grain bounidély

1.4.2 Possible Zirconium Hydride Microstructures in Nuclear Fuel Cladding

As described previously, during reactperation thehydrides can be in the form of different
hydride microstructures such as a hydride rim, a blister, and uniformly distributed circumferential/radial
hydride platelets. A hydride rim is formed due to a temperature gradient in the claddisiggthe
claddng outer surface temperatui@ belower than the inner surface temperature during nuclear power
reactor operation. Therefore, the terminal solid solubility is first exceededhseamter surface of the
cladding. As a result, hydrogen precipitates adridg platelets that accumulate as a continuous layer of
separateircumferentialhydride plateletsthe ensemble of which constitutes thelride rim (sed-igure
1-5a)[27]. If oxide layer spallation occurs on the outer surface of the cladding, lens shaped solid hydrides,

hydride blisters, can be formed on cladding outer surface as sh&igune1-5b [50].

14



Figure 1-5 (a) Hydride rim formation in the nuclear fuel cladding t(ih&] and (b) lydride blister formation on the
cladding surfac¢51]

1.5 Zirconium Hydride Dissolution and Precipitation

The hydrogen solubility in zirconium determines the amount of hydrogen that is in solid solution
or precipitated in zirconium or zirconiwmased alloy as a function of temperatdtea given temperature,
the terminal solid solubility of dissolutiatescribes the maximum hydrogen concentration in solid solution
during dissolutiorand the terminal solid solubility of precipitati@the maximuniydrogenconcentration
that can precipitate ithe matrix during precipitation proces®Differential scanning calorimetry (DSC) is
acommonlyused technique for solubility determinatiorchaseof its sensitivityto low hydrogen contents
andbeingnon-destructivaest[17, 52-59]. DSC is based on the measuremethepeak temperaturand
enthalpy of the thermally isolated hydridénicaloy sample and the reference Awmydrided sample at the
same time. The enthalpy change is caused by phase transformations or dissolution and precipitation of
hydrides.

In addition toDSC, in situ highenergy Xray diffraction (XRD) can also be used for the
determination of TS&and TS$because hydride dissolution and precipitation can be followed as it happens
[34, 60-63]. The precipitation and dissolution temperatures can be determined lapplkarance or
disappearance of the/dridediffraction peak as a function of temperatuieis also possible to deteitte

d-spacing evolution of zirconium as a function of tempegi{in a mannersimilar to the dilatometry
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technique) Figurel-6 shows the terminal solid solubility of dissolution and precipitationfdatircaloy-

4 asmeasured by DSC, XRD, and othechniques.
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Figure1-6 Plots of selected dissolution and precipitation data for Zircdlaghoving the hysteresis between dissolution
and precipitatiodfrom Kammenzind64], Slattery[65], McMinn [17], andZanellato][62]

Generally, the solubility curves can be writteraag\rrhenius type equatiofls, 65-67] as shown

in Equation(1.3)

& i _ 1.3
# x@Di A®924 (13

where# is the hydrogen concentrationgolid solutionwt. ppm,A is the preexponeritl constant, R is

the gas constant, T is thertgerature, and B is the activatienergy of thespecificprocessonsidered such

as dissolutioror precipitation. ThetermA and B depend on t he - tiyapned olf
hydride dissolution or precipitation), stoichiometry of the hydrides, and thermal history of the material. B

also depends on the elastic and plasticstedfin accommodation energies.
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For the equilibriumdissolution process, B is equal to the heat of solub¢n, of hydrides inthe

saturated zirconium matrix. Then, the equilibrium concentration of hydrégen,is written as

# x@®DIi !AQD% (1.4)

According to the dissolution and precipitation theory based on accommodation energies, hydrides
and matrix both accommodate elastic ) andplastic strain energies<  during precipitation.During
precipitation, the strain caused by the volumetric accommodation of the hydrides in zirconium matrix; i.e.
the volumetric strain is relaxed by elastic strain energy until the critical precipitate size is reached. Thus,
the elastic strain energy depds on the elastic properties of matrix (bulk modulus) and hydrides and the
anisotropic transformation strains within hydrides. After a critical size of hydride precipitate is exceeded
the precipitate accommodates the remaining part of the volumetiic By punchingput dislocations; i.e.
the plastic relaxation. Thuthe plastic strain energy determined by flovwpropertiesof the matrix andhe
size of the plastic region around hydride precipitate.

During dissolution part of the accommodatddstic strain energy is recovered and the plastic
strain energy is not if dislocations are not annealed out. , Theisemaining part of elastis ~ and the
plastic strainx  energies contribute to the dissolution process and the terminal soltilisolaf
dissolution is written as shown {@.5) [68], and B in Equatiofl.3) is written as Y( X x  for

dissolution

¢ x@bi 1Agp L Agn_> (15)
- ' 2 4 ~ 24 '

As stated previouslyof hydrideprecipitation, there are two distinct stages based on the critical
precipitate size for dislocation generation, i.e. plastic deformation of the matrix (and/or the hydride) that
affect the terminal solid solubility of precipitatioifhe first stage is thimitial hydridenucleation. At this

stage aly the elastic strain energy, , needs tdbe accommodated in hydride and matrix because the

17



hydride size is smaller than the critical size to initiate plastic relax@n In this case, the terminal solid
solubility is written as in Equatiofi.6) [52, 54, 69, 70].

v

. . y( X
# ><e5913|!AQJDE—LLAQJ%»—4 (1.6)

As a result, B in Equatiofil.3) is equal to ¥( x  for the initial stage of théydride precipitation
reference. After size of the hydridéze exceeds the critical size tweatedislocationsin the matrix the
plastic accommodation energy alsdfects the solubility. Hence, the terminal solid solubilitjor
precipitationas follows[52, 54, 69, 7Q]:

# XQDI'AQDW A@ﬁ * (17)
' 24 24 '

The term B in Equatiorfl.3) is now equal to ¥( X x  for the hydride growth stage of the
precipitation. The difference between the energy requirements for dissolution and precipit&van is
Because of thpresence of the terr2w, the terminal solubility of dissolution and precipitation curves are
not same. As a resul t, that difference yields di
on the solvu$71].
The plastic accommodation energy strongly dependf@yield strengh of hydride and matrix
and the plastic zone around ttndride. Thusthe plast accommodationlepend on the thermal history
of the cladding, alloying elements, matrix microstructure, and texture.
Since, he elastic accommodation energy is governed by elastic properties of the hydrides and

zirconium to zirconium hydrideanisotropic transfamation strain(or misfit). The misfit R at

correspondingnter-atomicplanes, in general, is writtein termms of dspacing:

(1.8)

18



where [hKI] is the misfit direction ds the hydride espacingn the misfit direction, andids the zirconium
d-spacingn the misfit direction. Since the transformation strains are govern#gelattice spacingof the
hydrideand matri{71-73], the next section briefly addresses the lattice parameters and tmexchanical

properties of hydrideand Zircaloy.

1.6 Thermo-mechanical Properties of Zircaloy4 and Zirconium Hydrides

In Chapterl.5, the importance of transformation strains and themmechanical propertieare
discussed in terms of the hysteresis of hydride dissolution and precipit@tiertransformation strains of
hydr i des depend on t he-zi at binc-bydipes Mhe latiéce marametesfais b ot h
measured by Xay diffraction studies are shown Equations fron(1.9) to (1.12) for the temperature

dependent siZinrgd @n ichwdpideg7gdTh® | at t i c e -zpcanium fhas¢ a@er s o f

ATl mccytpduym4d o®)n 4 pPp1p T 4 (1.9)
ATl mMpowu® opgmnsd poognd c8prm 4 (110
Forhyidri de | attice parameter, K e miwdredesusidige t e r mi n

powder diffraction Xray analysis of solid hydridexbtaining the relatioshown in Equatiofl.11)[75].

ATT mMYxxuyxe&pemnd of p s (111

However, t he | ahydrides &so gepends mtheesmichmmetrydrﬁtiojn the
range of 1.31 to 1.7Performing Xray diffraction experimentsf hydrided samplesramanakaet al.have

estimated theé-hydridelattice parameter as a function of both temperature and stoichiometry as given in
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Equation(1.12)[74.Yamanakads | attice par amet e rsinddr tothas® m

are reportedhy Kempter{ 75].

ATl mMynagdypygnO 4 couvcg@xpmnm ¢ pmO
\ (1.12)
v ¢ ypprt O

16.1 Ther mal Ex pansi o-Bircodiong Zirtalog -4 & m dZscomum Hydride

The determination ofhe thermal expansiogoefficient of CWSR Zircaloy is based on single

crystal zirconiunthermal expansion coefficients, lated inTable1-4 by MATPRO[76].

Tablel-4T h e s i n g {zieonium thesnaleekpansion coefficients which are selected in literature

Thermal Expansion (10°°C™) [002] [100]
Cheadlg77] 10.40 6.30

Lioyd [78] 9.21 5.14
Barrow[34] 8.19 5.08
Zanellato[62] 7.62 5.77
Skinner[79] 10.80 5.50

Thethermal expansion coefficient calculation of Zitoy plate is estimated as 7.1A&%/°C in
thetransverse idection (TD) of plate and 5.41 ¥0°/°C in the rolling direction (RD]80]. The thermal
expansion coefficient of Zircale§ sheet materidnas been determined to be 6.20€/°C in the transverse
direction andb.6x 10°/°C in the rolling direction Hence, the thermal expansion coefficienZiv€aloy-4

is intherange of 5 t&7.5x 10%°C?, depending otthe specimenlirection
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F o r-hydtides, the thermal expansion coefficient data controvesial. Early studies were
perfor med wzrécomugn hylide sathpled with hydrogen weigigrcent (wt.) of 1.€.8.
Kempter determined t he t-hydridesbydilammetriarmdkisamplesovdhe f f i ¢ i
hydridesas 2.562.98x 10°/°C, but those data may have been affected by cf@}sBec k 6s est i mat
of the U-hydridethermal expansion coefficient, based omay diffraction data, was 14x210°/°C[81].

A relatively recent study done by Yamanaahal.pr edi ct s t he t her mahydridespansi o
in a range of 2880 x 10°/°C [74] which is at least® i mes gr eat er t Fhasptheéesmpt er 6

great variability in the open literature that we will discimsthe current work

1.6.2 Mechanical Properties of Zircaloy4 and Zirconium Hydrides

MATPRO provides the following values for the t

shear modul us adifircaBy4i88sonbdés rati o 3

% pg oPTM @F c@T4 0 A (L13

' Tdwpm c8 opTé 0 A (L.14)
%

u c_° o (1.15)

Selected data of thiemperature dependent flow (yield) stresses and strain/state hardening
exponents for Zircaloyg materialare listed in

Table1-5.

Table1-5 showsthatthe flow behavior of plate and sheet materials are similesligitly different
thanthat oftube material flowin CWSR conditionsThis differences likely caused by the differences of
the strain ellipse during reduction process of sheets and tubes. For room temperature, the flow stress is
estimatedo be in therange of 536690 MPa andthe strength coefficient ithe range of 616715 MPa.

Furthermore, high temperature predictions on flow behafidircaoy-4 are alsamore or lessimilar for
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