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ABSTRACT 
 

Prior to storage in a dry-cask facility, spent nuclear fuel must undergo a vacuum drying 

cycle during which the spent fuel rods are heated up to elevated temperatures of  Ò 400°C to remove 

moisture the canisters within the cask.  As temperature increases during heating, some of the 

hydride particles within the cladding dissolve while the internal gas pressure in fuel rods increases 

generating multi-axial hoop and axial stresses in the closed-end thin-walled cladding tubes. As 

cool-down starts, the hydrogen in solid solution precipitates as hydride platelets, and if the multi-

axial stresses are sufficiently large, the precipitating hydrides reorient from their initial 

circumferential orientation to radial orientation.  Radial hydrides can severely embrittle the spent 

nuclear fuel cladding at low temperature in response to hoop stress loading. 

Because the cladding can experience a range of stress states during the thermo-mechanical 

treatment induced during vacuum drying, this study has investigated the effect of stress state on the 

process of hydride reorientation during controlled thermo-mechanical treatments utilizing the 

combination of in situ X-ray diffraction and novel mechanical testing analyzed by the combination 

of metallography and finite element analysis. The study used cold worked and stress relieved 

Zircaloy-4 sheet containing approx. 180 wt. ppm hydrogen as its material basis.  The failure 

behavior of this material containing radial hydrides was also studied over a range of temperatures. 

Finally, samples from reactor-irradiated cladding tubes were examined by X-ray diffraction using 

synchrotron radiation. 

To reveal the stress state effect on hydride reorientation, the critical threshold stress to 

reorient hydrides was determined by designing novel mechanical test samples which produce a 

range of stress states from uniaxial to ñnear-equibiaxialò tension when a load is applied. The 

threshold stress was determined after thermo-mechanical treatments by correlating the finite 

element stress-state results with the spatial distribution of hydride microstructures observed within 
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the optical micrographs for each sample. Experiments showed that the hydride reorientation was 

enhanced as the stress biaxiality increased.  The threshold stress decreased from 150 MPa to 80 

MPa when stress biaxiality ratio increased from uniaxial tension to near-equibiaxial tension. This 

behavior was also predicted by classical nucleation theory based on the Gibbs free energy of 

transformation being assisted by the far-field stress.  

An analysis of in situ X-ray diffraction data obtained during a thermo-mechanical cycle 

typical of vacuum drying showed a complex lattice-spacing behavior of the hydride phase during 

the dissolution and precipitation. The in-plane hydrides showed bilinear lattice expansion during 

heating with the intrinsic thermal expansion rate of the hydrides being observed only at elevated 

temperatures as they dissolve.  For radial hydrides that precipitate during cooling under stress, the 

spacing of the close-packed {111} planes oriented normal to the maximum applied stress was 

permanently higher than the corresponding {111} plane spacing in the other directions.   This 

behavior is believed to be a result of a complex stress state within the precipitating plate-like 

hydrides that induces a strain component within the hydrides normal to its ñplateò face (i.e., the 

applied stress direction) that exceeds the lattice spacing strains in the other directions.   During 

heat-up, the lattice spacing of these same ñplateò planes actually contract due to the reversion of 

the stress state within the plate-like hydrides as they dissolve.   

The presence of radial hydrides and their connectivity with in-plane hydrides was shown 

to increase the ductile-to-brittle transition temperature during tensile testing.  This behavior can be 

understood in terms of the role of radial hydrides in promoting the initiation of a long crack that 

subsequently propagates under fracture mechanics conditions.  Finally, the d-spacing of irradiated 

Zircaloy-4 and M5 cladding tubes was measured at room temperature and compared to that of un-

irradiated samples.  
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1 INTRODUCTION AND BACKGROUND  

 Zirconium Based-Alloys for Nuclear Fuel Cladding Tube Material 

Zirconium-based alloys are being used as the fuel cladding tubes that encapsulate the uranium 

dioxide fuel (UO2) in light water reactors (LWRs). Zirconium-based alloys have low thermal neutron 

absorption cross-section which improves neutron economy [1].  Zirconium-based alloys are also resistant 

to high temperature corrosion and are mechanically stable under neutron irradiation at the high operating 

temperatures and pressures of LWRs.   These properties are important to the performance of the LWR as 

the cladding constitutes the principal physical barrier between the fission gases released by the fuel and the 

coolant water. 

Zirconium has a hexagonal closed-packed (HCP) crystal structure with a c/a ratio of 1.594 at 

temperatures below 865°C, which means that in this temperature range the zirconium crystal exhibits 

anisotropic properties.  At 865°C, an allotropic phase transformation occurs causing a transformation from 

the HCP crystal structure (Ŭ phase) to a body-centered cubic (BCC) crystal structure (ɓ-phase). 

Zirconium is alloyed with other elements such as iron (Fe), tin (Sn), chromium (Cr), oxygen (O), 

nickel (Ni), and niobium (Nb) to improve corrosion resistance and mechanical properties [2-5].  The 

chemical compositions of selected zirconium-based alloys are shown in Table 1-1.  Each alloy type is 

developed to operate in a certain environment for a specific reactor type. For instance, Zircaloy-2 is utilized 

as cladding material in boiling water reactors (BWRs) and as structural material in heavy water reactors 

(CANDU).  Zircaloy-2 contains dispersed intermetallic precipitates of Zr(Fe,Cr)2 and Zr(Fe,Ni)2 in the HCP 

Ŭ-zirconium matrix [2].  Tin (Sn) and oxygen (O) found in solid solution in the Ŭ-Zr matrix help stabilize 

the Ŭ-zirconium phase and improve its mechanical strength [6]. 
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Zircaloy-4 fuel cladding was developed for use in pressurized water reactors (PWRs), and unlike 

Zircaloy-2, it contains only Zr(Fe,Cr)2 particles, as an increased Fe content replaces nickel, which was 

associated with increased hydrogen pickup.  In general, the manufacturing process of Zircaloy-4 tubes 

includes quenching from high temperatures in the ɓ phase field, subsequent hot extrusion, and cold pilgering 

with intermediate annealing steps, and final stress relieving.  The final product is in the cold worked stress 

relieved condition (CWSR) [6].  The plastic deformation during the pilgering process reduces the tube wall 

thickness and increases the flow stress because of work hardening.   This cold working also creates a 

textured microstructure within the cladding tube such  that the c-axes of the zirconium grains are 

preferentially oriented normal to the tube surface, and tilted 30-40° from tube radial direction [7].  The 

presence of the crystallographic texture causes anisotropic deformation behavior due to irradiation creep 

and growth in the radial, axial, and circumferential orientations.  Furthermore, as a result of cold work, the 

grains tend to be elongated in the axial orientation such that as-fabricated CWSR Zircaloy-4 consists of 

elongated pancake shaped grains with an average length of 5-10 µm [8].   

Replacing Zircaloy-4, modern zirconium alloys, such as ZIRLO and M5, are now preferentially 

used in PWRs. Both of these alloys include niobium which stabilizes the ɓ phase and improves the corrosion 

behavior [1].   Similar to Zircaloy-4, ZIRLO, also contains tin as well as a small amount of iron. On the 

other hand, M5 is a binary alloy of zirconium 1% niobium. Both ZIRLO AND M5 exhibit crystallographic 

textures similar to Zircaloy-4. While ZIRLO is typically used in CWSR condition, M5 has a re-crystallized 

grain microstructure [9]. 

Another common zirconium-based alloy is Zr-2.5Nb, which is used as pressure tube material in 

heavy water reactors (CANDU).  Like M5 and ZIRLO, Zr-2.5Nb contains additions of oxygen and niobium 

to improve corrosion behavior and mechanical strength. The main difference between Zr-2.5Nb and M5 or 

ZIRLO is the texture. In Zr-2.5Nb, the c-axes of the Ŭ-zirconium grains are aligned parallel to the axial 

direction and perpendicular to the radial direction because of differences in the tube reduction process [7].  
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Table 1-1 Alloying elements of selected zirconium alloys in current use in the nuclear industry 

Alloys Reactor Elements [wt. percent] 

  Sn Fe Cr  O Ni Nb 

Zircaloy-4 PWR 1.2-1.7 0.18-0.24 0.07-0.13 

1000-1400 

[wt. ppm] 

N/A N/A 

Zircaloy-2 BWR, CANDU 1.43-1.45 0.13-0.14 0.1 

1260-1440 

[wt. ppm] 

0.05 N/A 

Zr -2.5Nb CANDU N/A N/A N/A 0.09-0.15 N/A 2.4-2.8 

ZIRLO  PWR 0.96 0.1 N/A 

1430 

[wt. ppm] 

N/A 0.99 

M5 PWR N/A N/A N/A 

1250 

[wt. ppm] 

N/A 1.0 

 

 Environmental Degradation of Nuclear Fuel Cladding 

During operation in a nuclear reactor the cladding tubes are concurrently subjected to various 

degradation driving forces such as radiation damage from the intense particle flux, waterside corrosion of 

the cladding and hydrogen pickup, stresses induced by pellet-cladding interaction and other possible 

degradation mechanisms, including grid-to-rod fretting and CRUD-induced localized corrosion.  Since the 

cladding is subjected to a very aggressive environment during operation, the integrity of fuel cladding tube 

has to be ensured from the beginning of the nuclear power plantôs operation, including all steps (pool 

storage, dry-cask storage, and transportation), to final disposal.  

  The combination of pellet-clad interaction, which is defined as the mechanical interaction between 

the UO2 fuel pellet and the Zircaloy cladding, and chemical attack from fission products within the 
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environment (especially iodine) can cause stress-corrosion cracking of the cladding.  The mechanical 

interaction is caused by UO2 swelling which results in friction between pellet and cladding.  Radial cracks 

in the pellet, induced by the temperature gradient in the UO2 pellet, cause fission products to accumulate in 

localized regions at which chemical attack of the cladding occurs. Thus, both frictional loading and an 

environmentally induced deterioration of mechanical properties can cause crack initiation, and 

subsequently crack growth at slow rates within the cladding [10, 11].   

Radiation damage is caused by the displacement of the atoms in the cladding material from their 

lattice positions by the incoming neutron flux. This process creates a vacancy and a self-interstitial atom 

pair, i.e. Frenkel pairs.  The evolution of those Frenkel pairs causes microstructural changes in the cladding 

such as solute atom segregation, second-phase-particle amorphization, dislocation loop formation, and 

dissolution or precipitation of second phase, which cause changes in microstructure leading to hardening, 

embrittlement, and deformation of the cladding.  Thus, the mechanical response of the cladding is degraded.  

Also, the radiation damage can assist other degradation mechanisms such as stress-corrosion cracking and 

waterside corrosion [9]. 

Water side corrosion of the nuclear fuel cladding involves the formation of a zirconium oxide layer 

at the high operation temperatures in nuclear reactors and is a result of an oxidation reaction of zirconium 

and water as shown in Equation (1.1).   Due to the oxidation reaction, a ZrO2 layer forms and grows on the 

cladding outer surface. The mechanisms of oxide formation and growth are complex involving a wide range 

of multi-scale physical phenomena including electrical charge balance, vacancy-ion transport, crystal 

structure, crystallographic orientation (texture), initial microstructure of the cladding, alloying elements, 

residual stresses at the metal-oxide interfaces, waterside chemistry and others (like galvanic properties of 

cladding and structural metals in the reactor core) [12].   In general, uniform corrosion is the main 

degradation concern in PWRs and nodular corrosion in BWRs.  One of the drawbacks of oxidation is the 

decrease of the heat transfer properties from cladding to coolant.  In addition, the oxide spalling causes 

material loss and can promotes hydride blister formation [13].  
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As shown in Equation (1.1), the other product of water-side corrosion reaction is hydrogen which 

can be picked-up by the cladding.   Also, radiolysis of water under neutron and gamma irradiation, Equation 

(1.2),  produces hydrogen which also may contributes to the hydrogen pick-up [1] in the following manner: 

 (/
ȟ
( /(  (1.2) 

The extent of hydrogen pick-up depends on many parameters such as oxide layer thickness, second phase 

particles, alloying elements, water chemistry, and most importantly the type of the zirconium-based alloy 

(as listed in Table 1-1) [12].  For instance, the hydrogen pick-up fraction of Zircaloy-4 and ZIRLO is high 

whereas Zr-2.5Nb is drastically lower than Zircaloy-4 and ZIRLO [14].  The hydrogen picked up by 

cladding can be either found in solid solution in the HCP zirconium matrix (depending on terminal solid 

solubility of dissolution at a specific temperature) or in the form of hydride precipitates if the terminal solid 

solubility limit is exceeded [15-17].    For example, during operation of a PWR, up to 120 wt. ppm of 

hydrogen is in solid solution due to the terminal solid solubility of dissolution at the cladding tube operating 

temperature of 350°C [17] and any additional hydrogen precipitates as zirconium hydride platelets in the 

cladding that are brittle at low temperatures [18].  

 Dry Cask Storage/Transportation of the Spent Fuel Cladding 

The spent fuel rods that are initially in wet-storage can be removed from the spent fuel pool to be 

stored in dry-casks containers. In general, the decay heat of fuel rods is removed by either inert gas or air 

cooling such that the maximum clad temperature will not exceed 400°C in dry-cask storage facilities [19].  

Cladding integrity must be assured in dry-cask storage to ensure fuel retrievability.  Spent fuel rods 

may contain a high level of hydrogen content and a hydride microstructure that may degrade cladding 

mechanical response.  The postulated failure mechanisms for cladding are creep, stress corrosion cracking 
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(SCC), and hydrogen-induced defects such as delayed hydride cracking (DHC), and hydride embrittlement 

[20, 21].   

Delayed hydride cracking involves the hydrogen diffusion under the high triaxial stresses near the 

crack tip region. When the hydrogen solubility limit is reached on a local scale near the crack tip, hydrides 

can precipitate and subsequently cracks, thus extending the main crack into a region low in hydrogen 

content at which point, the crack arrests.  The stress field of the arrested crack then attracts more hydrogen, 

and the process repeats with discontinuous crack growth occurring until the crack becomes critical in length 

as dictated by the cladding fracture toughness. Thus, DHC is a time-dependent sub-critical crack growth.  

For dry cask storage conditions, the stress intensity at a crack tip is estimated under conservative conditions 

as 3-3.5 MPaãm, which is below the critical stress intensity to propagate crack in the presence of hydrogen 

in Zircaloy cladding. Thus, DHC is not likely to happen during dry-cask storage [20].  

The most likely cause of cladding failure in dry-cask storage conditions is hydride embrittlement 

as a result of unfavorable hydride microstructures in the zirconiumïbased claddings. Possible in 

homogenous hydride microstructures after reactor operation are hydride rim, hydride blister, and 

circumferentially oriented hydride platelets, such as shown in Figure 1-1a.  In general, the hydride 

formation can reduce the fracture resistance of the material and directly affects the ductile-to-brittle-

transition temperature of the cladding (DBTT) [18].  Hydride rim and blister formation can reduce the 

ductility of cladding without affecting the DBTT while circumferentially oriented hydrides have less effect 

on ductility.  During drying and storage circumferential hydrides can change their orientation and form 

radially oriented hydrides, as shown in Figure 1-1b.  These radial hydrides drastically decrease the DBTT, 

causing severe loss of ductility and rupture at low strains. Except for radial hydride embrittlement, the 

failure mechanisms can be mitigated by controlling the temperature during transportation.   Because of  the 

potentially large decrease in DBTT, radial hydride-induced embrittlement is of special concern during dry 

storage of the spent nuclear fuel rods. 
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Radial hydride embrittlement can affect cladding failure during dry-cask storage and transportation 

processes even at elevated temperatures [18, 22].   For instance, when hydrides are aligned through the 

thickness of the cladding (radial hydrides) as shown in Figure 1-1b, the DBTT increases up to 150°C, and 

a  crack initiation and growth process may occur with very small plastic deformation[18]   Thus radial 

hydride formation can result in a decrease of the DBTT and ñbrittle-likeò failure.  

The formation of a radial hydride microstructure occurs if during cool-down the hydrides 

precipitate under a sufficient tensile hoop stress from a drying cycle in which the cladding experiences 

sufficiently high temperatures to dissolve part or all of the hydrogen present in the cladding. Such a re-

oriented hydride microstructure can happen under the vacuum-drying conditions of spent fuel rods.  During 

wet storage after fuel removal from reactor, most hydrides are oriented circumferentially such that the 

hydride platelet faces are parallel to the circumferential direction of the cladding tube (i.e., the hoop 

direction) and perpendicular to the radial direction of the cladding, as shown in Figure 1-1a.  

For dry-cask storage or transportation after wet storage, the moisture on the cladding outer surface 

has to be removed by heating the cladding to Ò 400°C (with the decay heat of fuel rods) and then cooling-

down to storage/transportation temperatures in a process called ñvacuum-dryingò.   At the high temperatures 

achieved during the vacuum-drying process, up to 200 wt. ppm hydrides can dissolve and fill gases (He 

during fabrication) and  gaseous fission products internally pressurize the cladding and creating a hoop 

stress as the spent fuel rods are heated up.  During cool-down, hydrides start to precipitate under stress (at 

a temperature determined by terminal solid solubility of precipitation [17]).  However the presence of a 

sufficient level of hoop tension stress can change the initial circumferential orientation of the hydrides into 

a radial orientation (ñradialò hydrides) [22].   
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Figure 1-1 Hydride platelets orientations (a) initial circumferential hydride microstructure (b) through thickness (radial) 

hydride microstructure after thermo-mechanical treatment such as vacuum drying [23]. 

 

 Zirconium Hydride Phases and Possible Hydride Microstructures in Nuclear Fuel Cladding 

during Reactor Operation 

1.4.1 Zirconium Hydride Phases  

 In the open literature, two stable (ŭ, Ů) and one metastable (ɔ) hydride phases are reported, as shown 

in the zirconium-hydrogen phase diagram in Figure 1-2 [24-27]. The basic properties of these phases are 

listed in Table 1-2. The different hydride phases have different degrees of hydrogen occupancy at the two 

available (preferred) interstitial sites, and this behavior causes different volumetric strains for each phase, 

stoichiometry, and crystal structure. For ɔ-hydrides, only half of the two available interstitial sites are 

occupied by hydrogen which results in a stoichiometry coefficient of 1. On the other hand for ŭ-hydrides, 

hydrogen occupies more than half of the two interstitial sites, which yields a stoichiometry coefficient in 

the range of 1.31 to 1.7 with an equilibrium value of 1.5.  For Ů-hydride phase, hydrogen occupies almost 

all the available interstitial sites, which means the Ů-hydride stoichiometry is in the range of 1.7 to 2 [6, 28, 

29].  Unlike ŭ-hydrides which have face centered cubic (FCC) crystal structure, both the Ů- and ɔ- hydride 

phases have face-centered-tetragonal (FCT) crystal structure and are formed by  shear transformations that 
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the Ů-hydride is formed as a result of ŭ Ą Ů reaction; and ɔ- hydride is formed as a result of H + Zr Ą ɔ 

reaction. Although both the Ů- and ɔ- hydride phases have the same crystal structure, the c/a ratio of ɔ-

hydride is greater than 1 (å1.08) whereas c/a ratio of Ů-hydrides is less than 1 (å0.95) [6, 26, 28, 30].  

 

Figure 1-2 Zirconium-hydrogen (Zr-H) phase diagram [24, 25, 31-33] 
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Table 1-2 The properties of hydride phases observed in zirconium and zirconium-based alloys.  

Hydride 

Phase 

Stoichiometry 

ZrH r 

Crystal 

Structure 

Orientation 

Relationship  

Lattice 

Parameters 

at 25°C [nm]  

Type of 

Transformation 

Morphology 

ŭ 1.31 to 1.71 

FCC, 

CaF2 

ŭ{111}//Ŭ(002) a=0.4777 

H+ZrĄ ŭ,  

Nucleation and 

Growth at slow 

cooling rates 

Platelet 

Ů 1.71 to 2 FCT  

a=0.4888 

c=0.457 

c/a<1 

ŭ Ą Ů, 

Martensitic, 

Twinning   

Straight 

bands with 

sub-bands 

ɔ 1 FCT 

ɔ 

{111}//Ŭ(002) 

a=0.4617 

c=0.4888 

c/a>1 

H + Zr Ą ɔ, 

Bainite-type 

transformation; 

Re-distribution of 

Hydrogen atoms 

by martensitic 

shear  

Needle-like 

 

The ŭ to Ů-hydride transformation happens at high hydrogen contents greater than 10000 wt. ppm 

with the Ů phase being  formed by a martensitic transformation involving twinning at both ŭ-Ů and Ů-Ů 

boundaries[26].  The resultant Ů-hydride microstructure consists of long straight bands with sub-bands of Ů 

phase as shown in Figure 1-3.  However, the Ů-hydride forms only at very high hydrogen contents not likely 

to occur during operation. It is however possible to observe Ů phase in the cladding during hydride rim 

formation at hydrogen contents greater than 3000 wt. ppm (0.3 % wt.) [27]. 
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Figure 1-3 Ů-hydride microstructure (a) shows the straight band structure at low magnification by optical  and (b) shows 

the sub-band structure at high magnification by TEM[26] 

 

The formation of ɔ-hydrides involves rapid diffusion of hydrogen atoms to localized regions by 

shearing of Ŭ-zirconium lattice both perpendicular to and parallel to the  invariant-plane strain plane of Ŭ-

(002) [28, 29, 34, 35].  The ɔ-hydrides have an orientation relationship of ɔ-{111}// Ŭ-(002) with Ŭ-

zirconium with a volumetric misfit of 12.3% [36-38].  The misfit is relieved by shear (plastic relaxation) 

and confined by anisotropic dilatational transformation strains, as shown in Table 1-3 [35, 37, 39]. The ɔ-

hydrides (needle-like) have been observed in Ŭ-zirconium as a result of quenching, which create hydrogen 

super saturations higher than 500 wt. ppm [29, 35, 40]. Inter-granular ɔ-hydrides were also observed at 

lower super saturations [41].   

  

Table 1-3 Dilatational and volumetric misfit strains of ɔ- and ŭ- hydrides 

Misfit Strains [%]  Direction ɔ-hydrides ŭ-hydrides 

ʀ πππρ 5.70 7.20 

ʀ ρρςπ 0.551 4.58 

ʀ ρρππ 5.64 4.58 

Volumetric Strain [%]     

6 6 6ϳ   12.3 17.2 

  



 

 

12 

 

The  ɔ-hydride phase is reported to be metastable.  The ɔ phase formation has been observed in the 

high purity of zirconium crystals at various cooling rates and zirconium-based alloys after quenching or 

cool-down with cooling rates greater than 10°C/min [29, 41-45].  Cann et al. stated that as the purity of 

zirconium increased, the ɔ phase formation was increasingly promoted such that the ɔ phase became an 

equilibrium phase [43].  They also determined that the accommodation energy of ŭ-hydride becomes 

smaller than the accommodation energy of ɔ-hydride when oxygen content is greater than 1000 wt. ppm 

(similar to commercial alloys).  Lanzani et al. also provided supporting data for the reported effect of purity 

by testing hydride precipitation in Zircaloy-4.  For nuclear fuel cladding such as Zircaloy-4, ŭ-hydrides 

were the only observed phase. As the purity of zirconium decreased, the ɔ phase become more favorable 

[45].    

The ŭ-hydrides are the equilibrium phase normally observed in nuclear grade zirconium-based 

alloys of Zircaloy-2 and -4, and Zr-2.5Nb in nuclear reactor operating conditions.   The ŭ-hydrides, unlike 

Ů- and ɔ- hydrides, are usually formed by diffusion-controlled phase transformation at low hydride super 

saturation and under conditions of mostly heterogeneous nucleation of inter-granular (grain boundary) 

precipitates [29, 44, 46, 47].  At cooling rates less than 2-3ÁC/min, most of the ŭ-hydrides precipitate at 

grain boundaries and fewer intra-granular hydrides are observed [29, 44]. For cooling rates higher than 

3°C/min (but still lower than 10°C/min), the ratio of intra-granular hydride to inter-granular is high, 

depending on the alloy, cooling rate, and hydrogen content [29, 41, 44].  Furthermore, the ŭ-hydride internal 

structure also  depends on cooling rate such that for low cooling rates, high dislocation densities within 

inter-granular hydrides are observed, whereas for intra-granular hydrides precipitate at intermediate cooling 

rates (greater than 3°C/min less than 10°C/min), fine internal twinning has been observed within these 

hydrides [29, 41]. 

The most common ŭ-hydride shape is platelets, observed for both intra- and inter-granular hydrides.  

For intra-granular hydrides, lattice matching of hydride and zirconium matrix is preferred to reduce the 

strain energy, and the orientation relationship between the close-packed planes of the hydride and matrix is 

ŭ-{111}// Ŭ-(002), which is similar to ɔ-hydrides in a zirconium matrix.  For inter-granular hydrides, the 
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grain boundary energy promotes hydride nucleation at grain boundaries [46, 48].   Furthermore, ŭ-hydrides 

also tend to precipitate on grains that have basal planes parallel to the grain boundary by lattice matching 

of closed-packed planes such that ŭ-{111}// Ŭ-(002),  to minimize not only the grain boundary energy but 

also the elastic strain energy and interphase boundary energy [46, 48].  

The ñmacroscopicò hydrides (see Figure 1-1) observed in optical micrographs are usually the 

collection of much smaller ñmicroscopic hydrideò platelets as shown in Figure 1-4a and b.  In general, 

length of these microscopic hydrides ( both intra- and inter- granular ) are measured mostly in a range of 

200-1000 nm [38].  The stacking of the smaller hydride, in particular circumferentially oriented, platelets 

results in all apparent ñmacroscopicò hydride platelet orientation (habit plane) of ρπρχ [38, 49]. The 

hydride platelets shown in Figure 1-4a likely nucleated at the grain boundary initially  close to the triple 

junction because of high grain boundary energy and growth into the zirconium matrix; thus, dislocation 

field around the hydride is observed due to plastic relaxation (accommodation) because the transformation 

(misfit) strain has not been able to accommodate all the strain energy elastically. Figure 1-4b shows that 

the hydride platelet nucleated nearby the grain boundary that is parallel to one of neighboring grainôs (002) 

planes; thereby hydride platelet orients itself to keep the closed-packed orientation relationship between 

zirconium and hydride, and other hydride platelet precipitates almost parallel to the grain boundary hydride 

by minimizing its transformation energy; thus a stacking orientation of hydrides has been observed. 
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Figure 1-4 Microscopic inter-granular hydrides in furnace cooled sample. (a) hydride precipitate perpendicular to a grain 

boundary; (b) hydride precipitates along the grain boundary [49] 

1.4.2 Possible Zirconium Hydride Microstructures in Nuclear Fuel Cladding  

As described previously, during reactor operation the hydrides can be in the form of different 

hydride microstructures such as a hydride rim, a blister, and uniformly distributed circumferential/radial 

hydride platelets.  A hydride rim is formed due to a temperature gradient in the cladding causing the 

cladding outer surface temperature to be lower than the inner surface temperature during nuclear power 

reactor operation. Therefore, the terminal solid solubility is first exceeded near the outer surface of the 

cladding. As a result, hydrogen precipitates as hydride platelets that accumulate as a continuous layer of 

separate circumferential hydride platelets, the ensemble of which constitutes the hydride rim (see Figure 

1-5a ) [27].  If oxide layer spallation occurs on the outer surface of the cladding, lens shaped solid hydrides, 

hydride blisters, can be formed on cladding outer surface as shown in Figure 1-5b [50]. 
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Figure 1-5 (a) Hydride rim formation in the nuclear fuel cladding tube [18] and (b) hydride blister formation on the 

cladding surface [51] 

 Zirconium Hydride Dissolution and Precipitation  

The hydrogen solubility in zirconium determines the amount of hydrogen that is in solid solution 

or precipitated in zirconium or zirconium-based alloy as a function of temperature. At a given temperature, 

the terminal solid solubility of dissolution describes the maximum hydrogen concentration in solid solution 

during dissolution and the terminal solid solubility of precipitation is the maximum hydrogen concentration 

that can precipitate in the matrix during precipitation process.  Differential scanning calorimetry (DSC) is 

a commonly used technique for solubility determination because of its sensitivity to low hydrogen contents 

and being non-destructive test [17, 52-59].   DSC is based on the measurement of the peak temperature and 

enthalpy of the thermally isolated hydrided Zircaloy sample and the reference non-hydrided sample at the 

same time. The enthalpy change is caused by phase transformations or dissolution and precipitation of 

hydrides. 

 In addition to DSC, in situ high energy X-ray diffraction (XRD) can also be used for the 

determination of TSSd and TSSp because hydride dissolution and precipitation can be followed as it happens 

[34, 60-63].  The precipitation and dissolution temperatures can be determined by the appearance or 

disappearance of the hydride diffraction peak as a function of temperature.  It is also possible to detect the 

d-spacing evolution of zirconium as a function of temperature (in a manner similar to the dilatometry 
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technique).  Figure 1-6  shows the terminal solid solubility of dissolution and precipitation data for Zircaloy-

4 as measured by DSC, XRD, and other techniques. 

 

 

Figure 1-6 Plots of selected dissolution and precipitation data for Zircaloy-4, showing the hysteresis between dissolution 

and precipitation from  Kammenzind [64], Slattery [65], McMinn [17], and Zanellato [62] 

 

Generally, the solubility curves can be written as an Arrhenius type equation [15, 65-67] as shown 

in Equation (1.3) 

 # ×ÔȢÐÐÍ ! ÅØÐ 
"

24
 (1.3) 

 

where #  is the hydrogen concentration in solid solution, wt. ppm, A is the pre-exponential constant, R is 

the gas constant, T is the temperature, and B is the activation energy of the specific process considered such 

as dissolution or precipitation. The terms A and B depend on the type of transformation (ɔ-, ŭ-, and Ů- 

hydride dissolution or precipitation), stoichiometry of the hydrides, and thermal history of the material. B 

also depends on the elastic and plastic self-strain accommodation energies.  
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For the equilibrium dissolution process, B is equal to the heat of solution, Ў(, of hydrides in the 

saturated zirconium matrix. Then, the equilibrium concentration of hydrogen, # , is written as: 

 # ×ÔȢÐÐÍ ! ÅØÐ 
Ў(

24
 (1.4) 

 

According to the dissolution and precipitation theory based on accommodation energies, hydrides 

and matrix both accommodate elastic (× ) and plastic strain energies ×  during precipitation.  During 

precipitation, the strain caused by the volumetric accommodation of the hydrides in zirconium matrix; i.e. 

the volumetric strain is relaxed by elastic strain energy until the critical precipitate size is reached.  Thus, 

the elastic strain energy depends on the elastic properties of matrix (bulk modulus) and hydrides and the 

anisotropic transformation strains within hydrides.  After a critical size of hydride precipitate is exceeded 

the precipitate accommodates the remaining part of the volumetric strain by punching-out dislocations; i.e. 

the plastic relaxation.  Thus, the plastic strain energy is determined by flow properties of the matrix and the 

size of the plastic region around hydride precipitate.   

 During dissolution part of the accommodated elastic strain energy is recovered and the plastic 

strain energy is not if dislocations are not annealed out.  Thus, the remaining part of elastic ×  and the 

plastic strain ×  energies contribute to the dissolution process and the terminal solid solubility of 

dissolution is written as shown in (1.5) [68], and  B in Equation (1.3) is written as  Ў( × ×  for 

dissolution:  

 # ×ÔȢÐÐÍ !ÅØÐ
Ў(

24
ÅØÐ 
× ×

24
 (1.5) 

  

 As stated previously, for hydride precipitation, there are two distinct stages based on the critical 

precipitate size for dislocation generation, i.e. plastic deformation of the matrix (and/or the hydride) that 

affect the terminal solid solubility of precipitation.  The first stage is the initial hydride nucleation.  At this 

stage only the elastic strain energy, × , needs to be accommodated in hydride and matrix because the 
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hydride size is smaller than the critical size to initiate plastic relaxation [69].  In this case, the terminal solid 

solubility is written as in Equation (1.6) [52, 54, 69, 70]. 

 # ×ÔȢÐÐÍ !ÅØÐ
Ў(

24
ÅØÐ 
×

24
 (1.6) 

 

As a result, B in Equation (1.3) is equal to  Ў( ×  for the initial stage of the hydride precipitation 

reference. After size of the hydride size exceeds the critical size to create dislocations in the matrix, the 

plastic accommodation energy also affects the solubility. Hence, the terminal solid solubility for 

precipitation as follows [52, 54, 69, 70]: 

 # ×ÔȢÐÐÍ !ÅØÐ
Ў(

24
ÅØÐ 
× ×

24
 (1.7) 

 

The term B in Equation (1.3) is now equal to  Ў( × ×  for the hydride growth stage of the 

precipitation.  The difference between the energy requirements for dissolution and precipitation is -2wp. 

Because of the presence of the term -2wp, the terminal solubility of dissolution and precipitation curves are 

not same.  As a result, that difference yields different terminal solid solubility values causing a ñhysteresisò  

on the solvus [71].  

 The plastic accommodation energy strongly depends on the yield strength of hydride and matrix 

and the plastic zone around the hydride. Thus, the plastic accommodation depends on the thermal history 

of the cladding, alloying elements, matrix microstructure, and texture.  

 Since, the elastic accommodation energy is governed by elastic properties of the hydrides and 

zirconium to zirconium hydride anisotropic transformation strain (or misfit). The misfit ʀ   at 

corresponding inter-atomic planes, in general, is written in terms of d-spacing: 

 

 ʀ
Ä Ὠ

Ὠ
 (1.8) 
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where [hkl] is the misfit direction, dH is the hydride d-spacing in the misfit direction, and dŬ is the zirconium 

d-spacing in the misfit direction. Since the transformation strains are governed by the lattice spacing of the 

hydride and matrix [71-73], the next section briefly addresses the lattice parameters and thermo-mechanical 

properties of hydrides and Zircaloy-4.     

 Thermo-mechanical Properties of Zircaloy-4 and Zirconium Hydrides 

In Chapter 1.5, the importance of transformation strains and thermo-mechanical properties are 

discussed in terms of the hysteresis of hydride dissolution and precipitation.  The transformation strains of 

hydrides depend on the lattice parameters of both Ŭ-zirconium and ŭ-hydrides. The lattice parameters as 

measured by X-ray diffraction studies are shown in Equations from (1.9) to (1.12) for the temperature 

dependent single crystal Ŭ-zirconium and ŭ-hydrides[74].  The lattice parameters of Ŭ-zirconium phase are  

 

 

 

For ŭ-hydride lattice parameter, Kempter determined the lattice parameter of ŭ-hydrides using 

powder diffraction X-ray analysis of solid hydrides obtaining the relation shown in Equation (1.11)[75]. 

 

 ÁÎÍ πȢτχχψχςρȢχρφ ρπ4 σȢςτ ρπ4 (1.11) 

 

However, the lattice parameter of ŭ-hydrides also depends on the stoichiometry ratio, Ò, in the 

range of 1.31 to 1.7.  Performing X-ray diffraction experiments of hydrided samples, Yamanaka et al. have 

estimated the ŭ-hydride lattice parameter as a function of both temperature and stoichiometry as given in 

 ÁÎÍ πȢσςςψτωρȢτυχ ρπ4 σȢσχ ρπ 4 ρȢφτ ρπ 4  (1.9) 

 ÃÎÍ πȢυρσωυφςȢυφς ρπ4 ρȢωσφ ρπ4 ςȢτυ ρπ 4 (1.10) 
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Equation (1.12) [74]. Yamanakaôs lattice parameter at room temperature predicts numbers similar to those 

are reported by Kempter [75].  

 

 

ÁÎÍ πȢτχπφτȢσψς ρπÒ 4 ςυςȢτχυ ρπ φȢςψ ρπÒ

υȢψςψρ ρπÒ  

(1.12) 

1.6.1 Thermal Expansion Coefficients of Ŭ-Zirconium, Zircaloy -4 and ŭ-Zirconium Hydride   

 The determination of the thermal expansion coefficient of CWSR Zircaloy-4 is based on single 

crystal zirconium thermal expansion coefficients, as listed in Table 1-4 by MATPRO [76].   

 

Table 1-4 The single crystal Ŭ-zirconium thermal expansion coefficients which are selected in literature 

Thermal Expansion (10-6 °C-1) [002]  [100]  

Cheadle [77] 10.40 6.30 

Lloyd [78] 9.21 5.14 

Barrow [34] 8.19 5.08 

Zanellato [62] 7.62 5.77 

Skinner [79] 10.80 5.50 

 

 The thermal expansion coefficient calculation of Zircaloy plate is estimated as 7.10 x 10-6 /°C in 

the transverse direction (TD) of plate and 5.41 x 10-6 /°C in the rolling direction (RD) [80].  The thermal 

expansion coefficient of Zircaloy-4 sheet material has been determined to be 6.2 x 10-6 /°C in the transverse 

direction and 5.6 x 10-6 /°C in the rolling direction. Hence, the thermal expansion coefficient of Zircaloy-4 

is in the range of 5 to 7.5 x 10-6 °C-1, depending on the specimen direction. 
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 For ŭ-hydrides, the thermal expansion coefficient data are controversial. Early studies were 

performed using solid ŭ- zirconium hydride samples with hydrogen weight percent (wt.) of 1.6-1.8. 

Kempter determined the thermal expansion coefficient of ŭ-hydrides by dilatometry for bulk samples with 

hydrides as 2.56-2.98 x 10-6 /°C, but those data may have been affected by cracks [75].  Beckôs estimation 

of the ŭ-hydride thermal expansion coefficient, based on X-ray diffraction data, was  14.2 x 10-6 /°C[81].   

A relatively recent study done by Yamanaka et al. predicts the thermal expansion coefficient of ŭ-hydrides 

in a range of 25-30 x 10-6 /°C [74] which is at least 5-times greater than Kempterôs value. Thus, there is 

great variability in the open literature that we will discuss in the current work. 

1.6.2 Mechanical Properties of Zircaloy-4 and Zirconium Hydrides 

MATPRO provides the following values for the temperature dependence of the Youngôs modulus, 

shear modulus and Poissonôs ratio ɜ of Zircaloy-4 [82]: 

 % ρȢςσφ ρπ φȢςςς ρπ4 0Á  (1.13) 

 ' τȢυωρ ρπ ςȢτφτ ρπ4 0Á  (1.14) 

 ʉ
%

ς'
ρ (1.15) 

 

Selected data of the temperature dependent flow (yield) stresses and strain/strain rate hardening 

exponents for Zircaloy-4 material are listed in  

Table 1-5.  

Table 1-5 shows that the flow behavior of plate and sheet materials are similar but slightly different 

than that of tube material flow in CWSR conditions. This difference is likely caused by the differences of 

the strain ellipse during reduction process of sheets and tubes. For room temperature, the flow stress is 

estimated to be in the range of 530-590 MPa and the strength coefficient in the range of 610-715 MPa. 

Furthermore, high temperature predictions on flow behavior of Zircaloy-4 are also more or less similar for 




























































































































































































































































































































































