
The Pennsylvania State University

The Graduate School

PUSHING THE POWER AND PERFORMANCE ENVELOPE OF

NEXT-GENERATION HANDHELD PLATFORMS

A Dissertation in

Computer Science and Engineering

by

Nachiappan Chidambaram Nachiappan

© 2015 Nachiappan Chidambaram Nachiappan

Submitted in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

December 2015

The dissertation of Nachiappan Chidambaram Nachiappan was reviewed and approved∗ by

the following:

Mahmut T. Kandemir

Professor of Computer Science and Engineering

Dissertation Co-Adviser, Committee Co-Chair

Chita R. Das

Distinguished Professor of Computer Science and Engineering

Dissertation Co-Adviser, Committee Co-Chair

Anand Sivasubramaniam

Professor of Computer Science and Engineering

W. Kenneth Jenkins

Professor of Electrical Engineering Department

Raj Acharya

Professor of Computer Science and Engineering

Head of the Department of Computer Science and Engineering

∗Signatures are on file in the Graduate School.

Abstract

Today’s handhelds have grown in sophistication to run demanding applications. With the
number of wearables and IoTs expanding, the tablets and smartphones are proposed to
be used as their compute hubs. This places high compute demand and significant energy
drain on these handhelds. In such a landscape, the consumers expectations are antithetical
– needing the highest performance delivered all the time along with a long battery runtime
all through a modest Li-ion battery on device!

To provide higher performance and lower energy consumption, vendors have resorted
to the use of hardware accelerators. In current generation handhelds, many applications
(especially multimedia apps) rely heavily on multiple accelerators. In spite of these efforts
from the vendors, full fledged support for multiple concurrent applications have been futile
as they are unable to meet the consumer’s power-performance expectations. The main
motivation of this dissertation is to propose techniques to push the performance
boundaries by alleviating the bottlenecks and to efficiently make use of the power
envelope when multiple accelerators are involved. It consists of four main components.

The first part of the dissertation presents GemDroid, a comprehensive simulation
infrastructure to study SoC architectures. Currently, this is one of the first publicly
available tool to conduct a holistic evaluation of mobile platforms consisting of cores, IPs
and system software.

As the second part, the dissertation analyzes a spectrum of applications with
GemDroid, and observes that the memory subsystem is a vital cog in the mobile platform
because, it needs to handle both core and IP traffic, which have very different
characteristics. Consequently, a heterogeneous memory controller (HMC) design is
presented, where the memory is physically divided into two address regions, where the
first region with one memory controller (MC) handles core-specific application data and
the second region with another MC handles all IP related data.

iii

In the third part, the dissertation focuses on improving system throughput by short-
circuiting the memory traffic and enabling multiple-applications to run concurrently by
virtualizing the data paths. Through measurements on a current generation tablet, it
shows that the frequent invocation of the CPU for processing applications frames and the
involvement of main memory as a data flow conduit, are serious limitations. Instead, the
dissertation proposes a novel IP virtualization framework (VIP), involving three key ideas
that allow several IPs to be chained together and made to appear to the software as a
single device. Firstly, chaining of IPs avoids data transfer through the memory system,
enhancing the throughput of flows through the IPs. Secondly, by using a burst-mode, the
CPU can initiate the processing of several frames through the virtual IP chain, without
getting involved and interrupted for each frame, thereby allowing better energy saving and
utilization opportunities. Third, the dissertation also makes a case for supporting multiple
applications through the creation on several virtual paths – one for each flow, and hardware
scheduling is used to enforce QoS guarantees despite any contention for resources along the
way.

As the final part, the dissertation strives to address the most critical and a daunting
task - efficient energy management in handheld platforms. With the growing number of
accelerators, memory demands are increasing and high computing capacities are required
to support applications with stringent QoS needs. Current DVFS techniques that
modulate power states of a single hardware component, or even recent proposals that
manage multiple components, can lose out opportunities for attaining high energy
efficiencies that may be possible by leveraging application domain knowledge. Thus, this
dissertation proposes a coordinated multi-component energy optimization mechanism for
handheld devices, where the energy profile of different components such as CPU, memory,
GPU and IP cores are considered in unison to trigger the appropriate DVFS state by
exploiting the application domain knowledge. Specifically, it shows that for the important
class of frame-based applications, the domain knowledge - frame processing rates,
component utilization and available slack - can be used to decide effective DVFS states for
each component from among the numerous choices.

iv

Table of Contents

List of Figures viii

List of Tables xi

Acknowledgments xii

Chapter 1
Introduction 1

Chapter 2
Background and Related Work 8

2.1 Background . 8

2.1.1 Overview of SoC Platforms . 8

2.1.2 Data movement in SoCs . 11

2.1.3 Decomposing an Application Execution into Flows 12

2.2 Related Work . 16

Chapter 3
GemDroid: A Simulation Infrastructure For Handheld Systems 18

3.1 An Extendable Simulation Framework . 18

3.2 Model characteristics . 20

v

3.3 Capabilities of GemDroid . 22

Chapter 4
Design of a Heterogeneous Memory Controller (HMC) 24

4.1 Locality-Parallelism Tradeoff in Memory Design 24

4.2 Overview of the Proposed Design . 26

4.2.1 Memory Region Separation . 26

4.2.2 Heterogeneity in Data Striping . 27

4.3 Results . 28

4.4 Conclusions . 31

Chapter 5
Short-Circuiting Memory Traffic 33

5.1 Overview . 34

5.2 Data Reuse and Reuse Distance . 38

5.2.1 Converting Data Reuse into Locality 39

5.2.2 Flow-Buffering . 43

5.2.3 IP-IP Short-circuiting . 44

5.3 Implementation Details . 46

5.3.1 Correctness . 47

5.3.2 OS and Hardware Support . 50

5.4 Evaluation . 51

5.5 Conclusion . 53

Chapter 6
Virtualizing Flows in SoCs 54

6.1 Inefficiencies in Current Systems . 54

6.2 VIP: Virtualizing IP Chains . 55

6.3 Advantages of VIP . 60

vi

6.4 Evaluation and Results . 62

6.5 Conclusions . 67

Chapter 7
Energy Management in Handhelds 69

7.1 Existing Power Management Policies . 69

7.1.1 Domain-Aware, Single-Component DVFS 70

7.1.2 Independent, Multi-Component DVFS 71

7.1.3 Coordinated, Multi-Component DVFS 72

7.2 Energy Savings with Existing DVFS Policies 72

7.2.1 Inefficiency of existing approaches 74

7.3 Proposed Domain Aware Energy Management 76

7.3.1 Greedy Policies . 77

7.3.2 Kaldor-Hicks Compensation Policy (K&H) 79

7.4 Results . 79

7.5 Conclusions . 83

Chapter 8
Conclusions and Future Work 84

8.1 Conclusions . 84

8.2 Future Research Directions . 87

8.2.1 Utilizing Battery Characteristics for Energy Savings 87

8.2.2 Effective Scheduling . 89

Chapter 9
Publications 91

9.1 Five Significant Publications . 91

9.2 Other Significant Publications . 92

Bibliography 93

vii

List of Figures

2.1 Target SoC platform with a high-level view of different functional blocks in
the system. 9

2.2 Overview of data flow in SoC architectures. 11

2.3 Video playback flow . 14

3.1 Detailed Infrastructure Diagram. 19

3.2 Execution where display IP reads a frame from memory at the same time
core is writing a new frame. 22

4.1 Schematic of (A) Baseline memory design and (B) Proposed HMC memory
design. 25

4.2 Performance improvements of HMC with respect to baseline system. 27

4.3 Impact of HMC on locality. Baseline has both MCs serving both CPU and
IP requests without distinguishing between them. 29

4.4 Impact of HMC on Bandwidth. Baseline has both MCs with default page-
striped addresses. 30

4.5 Impact of HMC on Latency. Baseline has both MCs serving both CPU and
IP requests without distinguishing between them. 30

4.6 Impact of HMC showing how increase in bank-level parallelism reduces
latency of requests in IP-address region. 31

5.1 Total data stalls and processing time in IPs during execution. 37

5.2 Trends showing increase of percentage of data stalls with each newer
generation of IPs and DRAMs. 37

viii

5.3 Percentage of frames completed in a subset of applications with varying
memory bandwidths. 38

5.4 Percentage reduction in Cycles-Per-Frame in different flows with a perfect
memory configuration. 39

5.5 Data access pattern of IPs in YouTube application. 40

5.6 Hit rates under various cache capacities. 41

5.7 Cycles Per Frame under various cache capacities. 41

5.8 Area and power-overhead with large shared caches. 42

5.9 IP-to-IP reuse distance variation with different sub-frame sizes. Note that
the y-axis is in the log scale. 42

5.10 Delay breakdown of a memory request issued by IPs or cores. The numbers
above the bar give the absolute cycles. 44

5.11 Hit rates with flow-buffering and IP-IP short-circuiting. 46

5.12 Pictorial representation showing the structure of five consecutive video
frames. 47

5.13 High level view of the SA that handles sub-frames. 49

5.14 Percentage of Frames Completed (Higher the better). 51

5.15 Reduction in Cycles Per Frame in a flow normalized to Baseline (Lower the

better). 52

5.16 Reduction in Number of Active Cycles of Accelerators (Lower the better). . 52

6.1 Detailed Overview Of Virtualization at Multiple Levels 55

6.2 Distribution of percentage of frames in between two taps in FlappyBird* . 59

6.3 Combining Frame-Bursts and IP-to-IP communication leads to Head-Of-
Line blocking by shared IPs. 60

6.4 VIP Solution with Multiple Applications 61

6.5 Energy Efficiency of VIP. 64

6.6 Improved energy efficiency of CPUs handling interrupts and scheduling
frames with Frame Burst. (a) Shows reduction in CPU energy and
executed instructions. (b) Shows reduction in the number of interrupts
processed by the CPU. 64

ix

6.7 Normalized flow time per frame with VIP. 65

6.8 VIP enabling meeting QoS deadlines with IP-to-IP communication and
Frame bursts. 67

7.1 Energy consumption of different DVFS schemes, normalized to Optimal. . 73

7.2 Problems with profiling based DVFS policies. 74

7.3 CoScale’s performance and energy behavior for different performance
degradation thresholds (shown on x-axis from 1% to 100%). 76

7.4 Algorithm employed to compute frequencies for components using greedy
and K&H policy . 77

7.5 Dynamic behavior of SDT Greedy Policy and Kaldor&Hicks policy in
YouTube app. 79

7.6 Energy Per Frame normalized to the Optimal policy for Skype and Angry
Birds applications. 80

7.7 Energy Per Frame normalized to the Optimal policy for Facebook and
VideoRecord applications. 80

7.8 Energy Per Frame normalized to the Optimal policy for multi-player game
and VideoPlayback applications. 81

x

List of Tables

2.1 Expansions for IP abbreviations used in this thesis. 13

2.2 IP flows in the applications. 13

6.1 Applications and their IP flows. 63

6.2 Multiple Applications Workloads. 63

6.3 Evaluation platform details. 63

7.1 Performance of different DVFS schemes . 74

7.2 Frames dropped (in %) for different policies. 81

xi

Acknowledgments

I am deeply thankful to all the people who have provided intellectual contributions and
motivational support to this dissertation. I have no words to describe all their help and
support. Hence, a simple acknowledgement – but a sincere thanks from the bottom of my
heart.

“The learned teacher makes you enjoy learning;
On leaving, makes you keep thinking of his teachings.”

—Thirukkural – 394

Each and everyone acknowledged below has taught me something meaningful.

Advisors, Co-advisors and Teachers
Chita R. Das
Mahmut Kandemir
Anand Sivasubramaniam
Vijaykrishnan Narayanan
Venkateswaran Nagarajan
Kamakoti Veezhinathan

Seniors and Collaborators
Niranjan Soundararajan
Asit K. Mishra
Emre Kultursay
Sai Prashanth Muralidhara
Praveen Yedlapalli
Hayawardh Vijayakumar
Bikash Sharma
Adwait Jog
Onur Kayiran

xii

Jayaram Bobba
Soumya Eachempati
Nandhini Chandramoorthy
Ravindhiran Mukundarajan
Myoungsoo Jung
Karthik Swaminathan

Lab Mates
Prashanth Thinakaran
Jashwant Raj Gunasekaran
Ashutosh Pattnaik
Haibo Zhang
Tulika Parija
Jihyun Ryoo
Jagadish Kotra
Mahshid Sedhgi
Amin Jadidi
Anup Sarma
Xulong Tang

Family and Friends
Nachiappan. C (father)
Karpagambal. RM (mother)
Kiruthika. M (wife)
Sivagami. A. N. (sister)
Grandparents
Cousins
Vivek Narayanan
Prem Anand
Rathan Vignesh
Aswin Sridharan
Bharath Ramasamy
Bharat Rengarajan
Amey Farde
Akshay Virdhe
Deepika Vaidyanathan
Priyanka Gomatam
Sharath Reddy

.. and some more special people (who I have missed to mention here, but) who have made
my PhD a happy journey!

xiii

Chapter 1
Introduction

There is an exploding demand for mobile systems, which include smartphones, tablets,

and wearable devices. Gartner research projects that 2 billion of these units will be sold in

2013 [1] and there will be over 10 billion mobile devices by the end of 2017 [2]. Moreover,

it is projected that global mobile data will increase 13-fold between 2012 and 2017

reaching 11 Exabytes per month and two-thirds of this data is projected to be video

data [2]. These numbers clearly indicate the importance of designing feature-rich mobile

devices to cope up with the market demand. The ITRS roadmap for designing

System-on-Chip architectures (SoCs) over the next decade projects that a mobile device

could have up to 50 processing cores with about 300 TFLOPS computing capability and

more than 400 IP blocks for enabling such feature-rich mobile platforms [3]. Thus, major

companies like AMD, ARM, Apple, Intel, NVidia, Qualcomm, and Samsung have already

ventured into this growing market targeting devices ranging from wearable wrist watches,

glasses, to hand-held smartphones, phablets and tablets. Design and analysis of these

devices with required QoS provisioning, power budgets and evolving technology artifacts is

a daunting task that computer architects have to deal with in the coming years.

Handheld systems are being transformed from simple, single-core architectures to

2

complex multicore platforms with heterogeneous cores (with different power/performance

characteristics), many different types of IPs, and multiple memory controllers. Currently,

most web-pages and applications are customized for smartphones to make them “lighter”

in terms of performance demanded and power consumed. Even with such use-cases,

current generation smartphones typically last a day at the maximum under normal usage

scenarios when fitted with a 2000 mAh battery. Furthermore, on the application side, one

can observe a trend towards running multiple, independent applications at the same time

on the same device, putting tremendous pressure on all on-chip resources. Clearly,

designing a handheld system that can meet all this pressure – demand for

high-performance capable of supporting desktop applications, minimal energy

consumption for doing the same task, and conserving energy to last few days on a single

charge, is not a trivial task.

The Problem:

(I) From Evaluation Perspective

To evaluate existing handheld platforms, there are no tools that can simulate the software

and hardware parts to characterize the performance and energy impacts of various

applications. Surprisingly, despite the significant amount of research conducted over the

last decade targeting handhelds, we are still missing a comprehensive and extensible

simulation infrastructure in the public domain. Unfortunately, current tools and

simulation/emulation platforms do not enable full platform simulation of handheld

systems. More specifically, multicore/manycore simulators such as GEMS [27] and Gem5

[20] model a uniform parallel system with cache hierarchies. There is no concept of IP

blocks or heterogeneity in those simulators, which is a must for modeling mobile

platforms. On the other hand, existing IP simulators/emulators generally operate in

isolation (i.e., model only the target IP), whereas in a handheld platform both IPs (which

can be of different types) and parallel cores should be accurately modeled and simulated.

3

(II) From Performance Perspective

The combined requests from multiple cores and IPs with different characteristics share the

memory subsystem. This makes memory one of the major and a critical bottleneck for

handheld platforms. The memory access patterns of IPs exhibit high levels of regularity

(e.g., sequential data accesses by frame-buffers), as opposed to the memory access

patterns of, say, well-known SPEC benchmarks [4]. Similarly, the memory bandwidth

demanded by cores and IP when running a video on YouTube are very different from each

other. Specifically, while the core’s bandwidth demand is more or less constant (requiring

< 0.2GBPS for the studied workloads), display IP’s needs are very bursty in nature

(needing around 0.8GBPS), and the total bandwidth demand for a video recorder can be

much higher than that of the memory system. Moreover, these requests not only differ in

terms on bandwidth demands, but also their latency demands are also very different from

each other. While IPs have strict latency deadlines that need to be met, cores do not have

deadlines. On the other hand, IPs have time window before which they can be served

without affecting the user-experience, but, each cores memory request directly affects the

performance of the system.

(III) From System Design Perspective

When we examine the interface that exists today between such IPs and the CPU cores, there

are two main deficiencies, leading to both performance and power inefficiencies. First, many

of today’s applications use more than one IP, where one feeds data to another. For this data

movement, they use memory as a conduit, as well as, needs the host CPU to orchestrate

the movement. Second, when multiple applications run each depending on multiple IPs,

including possibly some common IPs, it introduces several points of contention – the shared

IP(s), the data flow paths, and the memory. Throwing more hardware (i.e., increasing

the number of IPs) to handle the contention is not desirable from the cost and/or energy

viewpoint, especially when we are not clear if we are extracting the maximum utilization

out of the existing IPs.

4

(IV) From Energy Perspective

Despite considerable research in the past two decades leading to multi-fold improvements

in energy efficiencies, the problem has become all the more interesting and challenging in

current and future handhelds for the following two reasons: (1) Users are increasingly

running sophisticated applications that require considerable computing, memory, storage

and networking capabilities, all under the constraints of real-time

interactivity/responsiveness, e.g., YouTube, video chat, interactive games, etc., and (2) To

accommodate these needs, handhelds are starting to look like servers, with multiple

components – multiple cores, large memories and storage, specialized accelerators and

GPUs – which can all dissipate high power.

Energy efficient operation of handhelds has to thus (a) ensure that any power state

setting of components does not lead to violations in application real-time requirements (for,

say, processing a frame), (b) take into account that several components are involved in

processing such a frame and there could be cascading effects as a result of slowing down

a component when saving power, and (c) recognize that it may not suffice to only target

the main CPU for power savings since other components could also contribute significantly.

Without a holistic/coordinated power management strategy, spanning different components,

which understands the needs of these frame-based applications, we may not be able to make

the right trade-offs between energy savings and application performance needs (SLAs for

frames).

In this dissertation, we target to address the above 4 problems of

• incapability of evaluating current handheld platforms for ineffciencies,

• performance ineffeciency caused due to memory bottleneck,

• system-wide power and performance inefficency observed while running multiple

applications.

• power inefficency caused due to unoptimal frequency setting of multiple components

5

co-running at an instant,

The interactivity in many of the Android applications involves a steady stream of data

that needs to be periodically processed energy-efficiently within a time window. We

broadly refer to this category of important applications as “frame-based applications” in

this dissertation. These “frame-based applications” are the target workloads through-out

this dissertation.

Thesis: This dissertation adopts a four pronged approach in addressing the above

mentioned inefficiencies.

(I) The first dimension of this dissertation presents an infrastructure built to simulate

and evaluate handheld platforms. We propose a comprehensive simulation infrastructure,

called GemDroid, which incorporates the GEM5 architecture simulator [5], Attila graphics

simulator [6] and internal models for the other IPs, and, is capable of running the Android

mobile OS for facilitating mobile platform design and optimization research. GemDroid

is comprised of two primary layers. The first layer provides emulation of Android OS by

the Google Android Emulator [7] and allows us to capture system-level interaction between

multiple IPs and I/O devices, including OS activities. What the emulator cannot provide is

the timing information of different IP activities and therefore, as the second layer, the timing

piece is integrated/built using the existing simulation platforms or model them analytically

as needed for different IPs. The framework is flexible for integrating models of varying

complexities for the cores and IPs.

GemDroid

A small step for simulation and evaluation platforms,

enabling ideas for giant leaps in design of handheld platforms

(II) The second dimension of this dissertation presents a novel heterogeneous memory

controller (HMC) design for SoCs, where one MC is dedicated for latency critical core

requests and the second MC is optimized to enhance the bank-level parallelism of the

6

memory requests it serves. The two memory controllers are still responsible for two distinct

(non-intersecting) address ranges. Evaluation of this new MC design shows that it is better

than state-of-the-art in terms performance and user experience.

(III) The third dimension of this dissertation proposes two important software-hardware

codesign ideas - first, to short-circuit memory traffic by allowing IPs to communicate among

themselves directly without using memory as the conduit ans second, to virtualize the flow

of data across multiple IPs for co-existing applications that are involved in periodically

processing frames. In these approaches, rather than treat each IP as a separate piece of

hardware, we dynamically create/initiate a hardware chain of IP cores that can be treated

as a single device in software by the host. We instantiate a IP hardware chain for each

application’s data flow through its sequence of IPs. In the second part of this dimension,

we virtualize these hardware chains thereby creating a virtual channel of data flow across

IPs for each application’s data flow. We enable such an approach through minimal hardware

and software stack modifications. The combination of these approaches can help boost the

utilization of existing IPs, while still allowing individual applications to meet their required

frame/flow rates. Such a solution can even boost the utilization of the host cores for other

useful work by relieving them from the mundane role of data transfer conduits between the

IPs. It can achieve this goal without requiring additional IPs to be introduced into the

already power and real-estate constrained handheld device.

(IV) The fourth dimension of this dissertation identifies that even if we have complete

application level (Oracle-based) slack/tolerance information, a strategy that can only

control the power states of the main CPU cores has the potential to reduce overall system

energy by only 8% to adhere to the frame processing guarantees. From a more practical

perspective, today’s common power governors (like OnDemand in Linux/Android), which

have neither such Oracle knowledge nor do they manage power states beyond the main

CPU cores and memory bus, fall short of even this target. Thus, a multi-component

power mode control mechanism can further improve the energy savings. For instance, one

7

could choose the most energy-efficient DVFS setting for each system component. But such

a mechanism, though more energy efficient than OnDemand, will loose substantially in

terms of performance as it is not aware of frame deadlines. These motivate the need for

recognizing performance slack in the applications when performing such DVFS for the

different components. Towards that, this dissertation proposes a frame-aware coordinated

multi-component DVFS framework that leverage frame-level slack and utilization

information of components predicted at frame boundaries. In this context, we propose two

mechanisms, called Greedy policy and Kaldor-Hicks [8] compensation policy (K&H). The

Greedy policy in turn examines three different options: Maximum Energy First (MEF),

Most to Gain First (MGF) and Slope (4E/4T) First (SDF). The K&H policy can even

choose energy inefficient options for one component, while offsetting this with higher

energy savings in another.

Chapter 2
Background and Related Work

In this section, we first provide a brief overview of current SoC (system-on-chip) platforms

showing how the OS, core and the IPs interact from a software and hardware perspective.

Next, we describe the properties of the applications that are used in this work. We also

summarize prior work related to this dissertation.

2.1 Background

2.1.1 Overview of SoC Platforms

As shown in Figure 2.1, handhelds available in the market have multiple cores and other

specialized IPs. The IPs in these platforms can be broadly classified into two categories

– accelerators and devices. Devices interact directly with the user or external world and

include cameras, touch screen, speaker and wireless. Accelerators are the on-chip hardware

components which specialize in certain activities. They are the workhorses of the SoC as

they provide maximum performance and power efficiency, e.g. video encoders/decoders,

graphics, imaging and audio engines. In other words, devices are usually uni-directional

from a memory’s perspective, i.e., they either write data to memory (example, touch-screen,

9

CPU

Wireless

LPDDR3 (DRAM)

Primary Camera

Secondary Camera

Core CPUCore C

P

U

C

o

r

e

C

P

U

C

o

r

e

Frame Buffer + LCD

Graphics

Video
Decoder

Video
Encoder

Image
Processor

Audio
Encoder

Audio
Decoder

CPUCore CPUCore

Network On Chip IOSF/OCP/AMBA/IDI

System

Agent

+

MC

Sound Device

Flash Memory Controller

Figure 2.1: Target SoC platform with a high-level view of different functional
blocks in the system.

mic), or read data from memory for a specific task (eg., display, speaker, etc,,). Accelerators

are two-way, that is, they read some data from memory, process it and write the output

back to memory.

Interactions between Core, IPs and Operating System: SoC applications are

highly interactive and involve multiple accelerators and devices to enhance user

experience. Using API calls, application requirements get transformed to accelerator

requirements through different layers of the OS. Typically, the calls happen through

software device drivers in the kernel portion of the OS. These calls decide if, when and for

how long the different accelerators get used. A certain level of transparency is needed for

security, fairness of resource usage and portability of application code. Usually,

applications do not directly communicate with the IPs. They are accessed through the

software drivers present as a part of the operating system for the sake of providing security

and fairness to all applications. Operating systems such as Android, Windows and iOS,

include various drivers that interact closely with the accelerators. The device drivers,

which are optimized by the IP vendors, control the functionality and the power states of

the accelerators. Once an accelerator needs to be invoked, its device driver is notified with

request and associated physical address of input data. The device driver sets up the

different activities that the accelerator needs to do, including writing appropriate registers

10

with pointers to the memory region where the data should be fetched and written back.

These drivers not only act as links between applications running on the OS and underlying

hardware, but also control power states of IPs. The accelerator reads the data from main

memory through DMA. Input data fetching and processing are pipelined and the fetching

granularity depends on how the local buffer is designed. The input data is buffered till the

accelerator starts processing. Once data is processed, it is written back to the local buffers

and eventually to the main memory at the address region specified by the driver. As most

accelerators work faster than main memory, there is a need for input and output buffers.

The System Agent (SA): Also known as the Northbridge, is a controller that

receives commands from the core and passes them on to the IPs. Their design varies with

different architectures. Some designs add more intelligence to the SA to prioritize and

reorder requests to meet QoS deadlines and to improve DRAM hits. SA usually

incorporates the memory controller (MC) as well. Apart from re-ordering requests across

components to meet QoS guarantees, even fine-grained re-ordering among IP’s requests

can be done to maximize DRAM bandwidth and bus-utilization. With increasing user

demands from handhelds the number of accelerators and their speeds keep

increasing [9–11]. We envision that the number of accelerators and their processing speeds

on handhelds will keep increasing as user demand increases [9–11]. These trends will place

a very high demand on DRAM traffic. Consequently, unless we design a sophisticated SA

that can handle the increased amount of traffic, the improvement in accelerators’

performance will not end in improved user experience. As systems become more complex

in future, the need for a smarter SA is only becoming more pronounced. A smart SA that

is not only aware of platform power and performance requirements, but also intelligently

decides if a piece of code has to be run on an accelerator or core along with multiple

accelerators.

11

Transaction
Queue

Core1

IP 1

IP 2

M
ai

n
 M

e
m

o
ry

Core2 Core3 Core4

System Agent

1
2

3

4
5

6

M
e

m
o

ry

B
u

sBank
Queues

Figure 2.2: Overview of data flow in SoC architectures.

2.1.2 Data movement in SoCs

Figure 2.2 depicts the high-level view of the data flow in SoC architectures. Once a core

issues a request to an IP through he SA (shown as (1), the IP starts its work by injecting

a memory request into SA. First, the request traverses through an interconnect which is

typically a bus or cross-bar, and is enqueued in a memory transaction queue. Here, requests

can be reordered by the SA according to individual IP priorities to help requests meet their

deadlines. Subsequently, requests are placed in the bank-queues of the memory controller,

where requests from IPs are re-arranged to maximize the bus utilization (and in turn, the

DRAM bandwidth). Following that, an off-chip DRAM access is made. The response is

returned to the IP through the response network in the SA (shown as (2)). IP-1 writes its

output data to memory (shown in (3)) till it completes processing the whole frame. After

IP-1 completes processing, IP-2 is invoked by the core (shown as 4), and data flow similar

to what IP-1 had is followed, as captured by (5) and (6) in Figure 2.2. The unit of data

processing in media and gaming IPs (including audio, video and graphics) is a frame, which

carries information about the image or pixels or audio delivered to the user. Typically a

high frame drop rate corresponds to a deterioration in user-experience.

One main observation from this figure is that, The total request access latency includes

the network latency, the queuing latencies at the transaction queue and bank queue, DRAM

12

service time, and the response network latency. This latency, as expected, is not constant

and varies based on the system dynamics (including DRAM row-buffer hits/misses). When

running a particular application, the OS maps the data frames of different IPs to different

physical memory regions. Note that these regions get reused during the application run

for writing different frames (over time). In a data flow involving multiple IPs that process

the frames, one after another, the OS (through device drivers) synchronizes the IPs such

that the producer IP writes another frame of data onto the same memory region after the

consumer IP had consumed the earlier frame.

Secondly, the total end-to-end latency depends on requests from other accelerators,

devices and cores, with each request having it’s own priorities and deadlines to meet. Higher

the priority of a concurrent request, greater will be the latency suffered. Third, if requests

are contending for the same DRAM bank, bank-level parallelism in DRAM will be affected

and will result in additional delays. Finally, the total latency of a memory request will

depend on whether the access was a row buffer hit or not.

This synchronization between producers and consumers is taken care by the OS. In the

figure, even though it seems like an IP is reading or writing to a same location repeatedly,

they are to different frames of data. The reuse mentioned here are not to be confused

with data reuse or locality, as across frames each cache line has new data and is considered

“dirty” from a memory perspective.

2.1.3 Decomposing an Application Execution into Flows

Applications cannot directly access the hardware for I/O or acceleration purposes. In

Android, for example, application requests get translated by intermediate libraries and

device drivers into commands that drive the accelerators and devices. While an application

can use multiple devices and accelerators, usually the sequence in which these IPs are called

are quite regular and there is significant amount of overlap in the data that one IP writes

13

and an another IP reads, that is, there is significant data reuse across different IPs. This

translation results in hardware processing the data, moving it between multiple IPs and

finally writing to storage or displaying or sending it over the network. Let us consider for

example a video player application. The flash controller reads a chunk of video file from

memory, gets processed by the core, and two separate requests are sent to video-decoder

and audio-decoder. They read their data from the memory and, once an audio/video frame

is decoded, it is sent to the display through memory. In this thesis, we term such a regular

stream of data movement from one IP to another as a flow. All our target applications

have such flows, as shown in Table 2.2. Table 2.1 gives the expansions for IP abbreviations.

We classify two IPs as a part of a flow only when there is some data being shared between

them. It is to be noted that an application can have one or more flows. In multiple flows,

each flow could be invoked at a different point in time, or multiple independent flows can

be active concurrently without sharing any common IP or data across them.

IP Abbr. Expansion IP Abbr. Expansion

VD Video Decoder AD Audio Decoder
DC Display Controller VE Video Encoder
MMC Flash Controller MIC Microphone
AE Audio Encoder CAM Camera
IMG Imaging SND Sound

Table 2.1: Expansions for IP abbreviations used in this thesis.

Id Application IP Flows

A1 Angry Birds AD - SND; GPU - DC
A2 Sound Record MIC - AE - MMC
A3 Audio Playback (MP3) MMC - AD - SND
A4 Photos Gallery MMC - IMG - DC
A5 Photo Capture (Cam Pic) CAM - IMG - DC; CAM - IMG - MMC
A6 Skype CAM - VE; VD - DC; AD - SND; MIC - AE
A7 Video Record CAM - VE - MMC; MIC - AE - MMC
A8 Youtube VD - DC; AD - SND

Table 2.2: IP flows in the applications.

Single Application Scenario. As described above, most mobile apps follow a sequence

of steps through multiple IPs to display frames of content onscreen. Fortunately, Android

[12] supports different SDKs (OpenGL ES [13], RenderScript [14]) besides several layers

in the Android framework to prevent the need for app developers to directly interact with

the IP hardware and in turn avoid code portability issues. Therefore, applications use API

14

CPU

(cores)

D

R

A

M

Decoder

GPU

Display

IdealExisting

Buffer

Buffer

Buffer

(a) Video Player’s
conceptual data
flow (present vs

ideal)

Interruptions/
Controls

IP: Display

IP: GPU

IP: Decoder

Request

Buffer

Read

Frame

Decoder
Driver

Pull

Decoded

Frame

Decode

Frame

GPU
Driver

Display
Driver

Decoder
Driver

Display

Frame

Render

Frame

Application

Layer

System

Level (OS)

Hardware

Layer (IP)

Start Time
T0

Display Time
Tf

CPU Spinning CPU Sleeping

(b) Time line depicting control-flow in Video
Player

while !End of Video do
/*Request Input Buffer*/

requestBuffer();
readFrame();

/*Send Frame to Decoder*/
decodeFrame();

/*Wait till decoder is done*/

/*Read Output from Decoder*/
pullFrame();

/*Send Frame to Render*/
render();

/*Send Frame to Display*/
display();

end

(c) High-level
algorithm of Video

Player

Figure 2.3: Video playback flow

calls to talk to the driver which in turn handles the requests to the corresponding IP. The

drivers present in the Android OS stack virtualize the underlying hardware components

(essentially, a single IP), as applications neither have any specific knowledge about the IP

nor do they know about whether other applications are accessing them. To illustrate all the

above in detail, we study a typical video-player application (Grafika [15], available as open-

source) where we show when the APIs are invoked, and how the drivers are called(shown

in Figure 2.3.

As shown, CPU does some simple computation, and using API calls provided by the

IP drivers, the application invokes the IP, through their drivers, by providing the request

details, frame size, and pointers to the locations that need to be read from and written back

to. These details are passed on to the driver of the first IP that is to be invoked. Driver sets

up data frame pointers to fetch the data from and write it back to in the IP registers and

triggers the IP for execution. Once the IP processes the data, its output data is transferred

from its local buffers to main memory and it notifies the CPU with an interrupt. The

interrupt is handled by the OS, and a call-back response is sent to the application which

then invokes the next IP in pipeline though the corresponding driver. The application then

decides its next course of action based on its current state, sets up data for the next IP,

and invokes the next IP in pipeline. This shuttling of data back-and-forth between CPU,

memory, and IPs is shown in Figure 2.3. This sequence is repeated for each IP until the

frame gets displayed. Also, the above series of events are repeated for each and every frame.

15

An optimal approach would be to bypass CPU interrupts for every IP, as well as bypass

memory by making each IP directly communicate with the next one, as shown in Figure 2.3

(as Ideal). Note that, as IPs typically have a queue of request buffers, CPU submit a series

of requests to the drivers. Without stalling for the response, CPU proceed with its other

tasks. In most cases, for graphics/frame or display bound applications, although the CPU

does not do computationally intensive tasks, it cannot go to deep sleep states because of it

being the “task-master” that handles API calls besides memory allocations.

Multiple Application Scenario. Stock Android OS does not support concurrent

multiple application execution currently. In variations of Android where multiple

application execution is supported, IPs are typically not “tied” to an application through

its run-time. Multiple applications multiplex the IPs over time. They queue their requests

to the driver unaware of the other application. To understand how a multiple-app system

would work, we instrumented the above mentioned open source video-player application to

support up to four video playbacks and ran it on a Nexus 7 device. Each concurrently

running video player would inject its requests into the video-decoder IP, and we found the

following from our experiment: (1) Video-Decoder (VD) accelerator/IP limits the number

of requests that can be queued. We observed in general that the IPs queue multiple

requests from the CPU, and serve them in a specific order. For example, we found that in

Nexus 7, the queue size is seven; beyond this, the CPU/driver is blocked from sending

additional requests. (2) In a multi-app scenario, if one application blocks a shared IP by

enqueueing multiple requests continuously, the other applications can suffer. Some level of

control or coordination at the application/driver/OS level is needed to ensure fairness,

and, (3) as number of video-player instances is increased, video-playback quality decreased

visibly 1, as well as the overheads (CPU activity) observed at the cores is very high.
1A Nexus tablet was able to run four concurrent lower-quality videos but four HD videos were not

runnable. Another tablet from Asus (MemoPad 8) ran four HD videos, but at a low FPS

16

2.2 Related Work

There has been a growing interest in enhancing performance and energy efficiency of

handheld devices. This primarily includes memory-centric optimizations [16–21], designing

efficient accelerators [22–31], system-level energy-centric optimizations [32–41], and

platform development for analyzing SoC systems and applications [42–46]. There has also

been considerable work on power modeling/optimization in smartphones including

proposals for a system-call-based power model [47], consumption of network

devices/protocols [34] and various IPs [41, 48, 49], and a network-based power reduction

technique [50].

Simulation Infrastructure and Characterization Handheld Platforms

&Applications: Gutierrez et al. [42] analyze the micro-architectural characteristics of

smartphone applications without focusing on IP behavior. Another recent work [51]

proposes an infrastructure to simulate smartphone cores, by integrating GEM5 and the

OS, to study emerging smartphone workloads. Again this study is only core centric and

lacks IP analysis. Similarly, the simulator in [52] does not model an SoC system with

multiple accelerators, and lacks Android support. With GemDroid [44], we have developed

an infrastructure that can simulate multiple IPs as well as cores with Android OS, which

can be easily extended to include more IP models. Several works have investigated the

power consumption of different applications [53], and different IPs [35] in smartphones,

and have proposed infrastructure to simulate mobile networks [54,55].

Techniques targetting DRAMs and Memory Controllers: Several works have

investigated memory scheduling techniques in the context of SoCs and smartphones. Lee

and Change [16] describe the essential issues in memory system design for SoCs. Lee et

al. [33] propose a memory scheduling mechanism that provides latency and bandwidth

guarantees for memory accesses, and Akesson et al. [17] discuss a memory scheduling

technique that provides a guaranteed minimum bandwidth and maximum latency bound

17

to IPs. Lin et al. [18] employ a hierarchical memory scheduler that improves system

throughput. Jeong et al. [19] provide QoS guarantees to frames by balancing requests at

the memory controller. In the context of CMPs and uni-processor systems, several works

have proposed low-power memory designs [38, 56] that can be applied in smartphones for

better energy efficiency. Recently, optimizations for inter-accelerator communication have

been proposed [57–59]. Note that these solutions primarily target single application

executions, and more importantly, focus exclusively on the memory performance.

Accelerator Design: Ozer et al. [60] describe the steps involved in the design and

verification of ARM IPs. Saleh et al. [61] discuss reusability, integrity, and scalability of IPs

used in SoCs. Along with IP design and analysis, several works have proposed IP-specific

optimizations [22–27].

Energy Characterization and Power Management in SoCs: There is a large body

of work in this domain for smartphones. Pathak et al. [47] explore the limitations of

utilization-based power models, and propose a system-call-based power model.

Balasubramanian et al. [34] study the power consumption of network devices and

protocols in smartphones. Falaki et. al [50] propose a network-based power reduction

technique. Several prior studies have investigated the power consumption of various IPs

and applications in smartphones [32, 41, 49]. Many works have proposed optimizations

specific to mobile web browser applications [32, 62–65] to improve browsing performance

and energy efficiency. For frame-based applications, existing optimizations [40, 66–68]

typically focus on power management of video decoders.

Virtualization: Virtualization [69] has found widespread adoption at complete system

(server) level, as well as for individual devices including CPU, network [70,71] and storage.

In the accelerator domain, [72–76] propose ways to share GPU resources concurrently. In

networking domain, while there have been multiple works, most of them are based on

virtualizing network resources to improve throughput (using virtual channels [70,71]).

Chapter 3
GemDroid: A Simulation

Infrastructure For Handheld Systems

3.1 An Extendable Simulation Framework

The goal of GemDroid is to serve as a framework that aids in evaluating mobile architecture

designs. Given the diversity in the types of phones and tablets that get built and used, the

goal of the proposed framework is to provide flexibility for evaluating these designs with

multiple cores and IPs. The framework needs to be agnostic to the details in the IP model,

which can be a simple analytical model or a complex cycle-accurate model of the IP’s

micro-architecture.

Currently very limited infrastructure exists for enabling platform level studies across

multiple IPs running realistic and/or relevant workloads. GEM5 framework is the closest,

that the authors are aware of, which can simulate an ARM or x86 cycle-accurate core

with Android/Linux Kernel running on top of it [5, 42]. Currently, GEM5 can simulate

only a limited set of IPs (core and only display panel). This limited support and drastic

simulation slow down severely restricts the number of apps that can be run. Further, it is

19

Main Memory

Core GPUVIDEO IPn

IP Models

System Agent and Memory Controller

AUDIO IMAG

Simple Core Model

Caches

OoO

Multiple Issue

N – entry

Outstanding Memory

Requests

Synth.Traces

from GPU

Simulator

H264

Enc/Dec
Analyti-

cal Model

Gem5

Android

Apps.

Android

OS

Android Emulator

Simulation

Emulation

Vendors &

White Papers

Error
Calibratio

n
Evaluation

Platform

Power Measurement

Setup

Power

Validation

+/-
error

Real Device Measurements

Figure 3.1: Detailed Infrastructure Diagram.

not possible to do IP-centric evaluations. While incorporating GEM5 in its infrastructure,

GemDroid proposes expands on the number of IPs modeled to get close to a complete device

(see Figure 3.1). Further, GemDroid proposes makes it flexible in terms of the modeling

technique adopted for the IPs for which cycle-accurate models are hard to build mainly due

to unavailable public information.

The proposed GemDroid framework consisting of two main components – Android

emulator and GEM5 – is shown in Figure 3.1. These sub-components are besides the

individual IP models GemDroid relies heavily on the Google Android’s open-source

emulator and it has been enhanced for this dissertation’s needs. Android emulator meets

two essential goals – booting an operating system and running commonly used

applications on top. The emulator runs the latest version of Android compiled for ARMv7

ISA with Neon instructions. The core of the emulator, based on the Qemu tool [7],

translates each ARM instruction to a set of native machine instructions and executes

them on the host. During this translation, instruction level traces are captured. The

proposed framework will also emulate other IPs such as the imaging (handles the images

captured using the camera), display, network, audio and there are hooks available to

emulate sensors such as accelerometer, gyrometer, etc. 1

However, the emulator misses out on the crucial part needed for performance studies:

1Note, we propose to instrument the code base of the applications to collect traces when those IPs that
are not tracked by the emulator are invoked.

20

it does not incorporate the simulation time for any of the IPs. The emulator’s goal is to

enable application development for Android and hence has a different set of goals than this

dissertation’s. GemDroid integrates existing performance models - GEM5 for the core and

memory subsystem, Attila for graphics [6] - and analytical models for the other IPs missing

a model (like Video, Network and others). This work does not claim to have developed

performance/power models for all IPs, but the proposed framework is extensible, and will

allow for other users in the community to incorporate their models as needed. In particular,

it can be augmented with additional cores (CPUs) as well as different types of IPs as they

(their models) become available.

Trace-based simulation

Unlike server workloads or widely available benchmarks like SPEC, PARSEC [77], etc.,

mobile applications are more user interactive. Providing user inputs and studying the

system is not an easy task due to the associated non-determinism; for that, one possible

method is to capture user inputs that are sent to the OS, replay it exactly while evaluating

the system [43,51]. In the infrastructure, Android emulator is used as the front end, where

one can install almost all applications available on Google Play and provide inputs like

the way it is done on SoCs. The emulator has been instrumented to capture the ARM

instructions and IP calls along with their interactions with the memory in a trace file.

Using such a trace, provides determinism in evaluating such applications with user inputs.

3.2 Model characteristics

While a cycle-accurate full system simulation meets the accuracy goals for

micro-architectural and system level studies, they cannot simulate considerable durations

of target mobile workloads due to complexity associated with handling multiple IPs. On

the other hand, while development boards can meet the speed requirements they fail to

21

provide control for exploring the system by changing the underlying parameters. On the

other hand having synthetic models for all IPs, though will drastically reduce simulation

time, may not be very helpful in exposing performance trends in architectural design

space or in providing detailed insights into application performance. As described in [5],

GEM5 can cycle-accurately simulate 200K instructions per second, potentially leading to

800X slowdown for a processor-core based system. If the simulator is augmented with

accurate models of GPU, audio/video encoder/decoder, and imaging IPs, the simulation

times would become unreasonable. Hence GemDroid looks to keep the infrastructure

flexible for integrating models with differing levels of complexity and allowing them to

interact. Depending on the IP of interest, users can integrate accurate models for specific

IPs and integrate less accurate models for the rest of the system. The less accuracy is with

respective to not modeling the micro-architecture details of IPs, but having enough

information to capture timing associated with different activities. In this work, for

studying system-level memory characteristics across IPs, an alternate simplified core

model was developed in the infrastructure which assumes a 1-IPC model. This does not

affect the timing accuracy of the execution significantly as many frequently used ARM

ISA instructions are single-cycle instructions. This is similar to what has been done

in [78, 79]. Such a system had only a 180X slowdown compared to real hardware. Users

though have the flexibility to switch between the highly accurate GEM5 core model or the

simplified core model based on their requirements. Note that when the system is extended

with cycle-accurate core model, significant slowdowns were observed resulting in only a

short duration of execution time being simulated. Such a simulation is unsuitable for IP

based system studies as not many IP calls are seen in such short duration.

For the graphics IP, we used the Attila graphics simulator [6], which handles the openGL

calls issued by applications. These OpenGL calls that are used for rendering different

images to the screen, are captured in the trace. For video IP, we used the open-source

H264 RTL model [80] to capture the timing associated with decoding. For audio, and

imaging (applications that use camera for capturing pictures or recording video), we use

22

the emulator to capture the calls to audio and imaging IP. These calls provide us with

the sizes of the frames, and the arrival rate of the frame requests (based on the number

of instructions between frames). Currently, the integrated framework has IP models that

closely reproduces the memory access behavior for GPUs rendering OpenGl games, display

panel, audio/video encoders/decoders, network interface, and imaging.

For power validation of this framework, we use an iterative method to determine the

realistic minimum and maximum power drawn by accelerators across multiple use-cases.

We compared the average power consumed on the simulation framework with the average

power consumed on a Samsung S4 device. To measure device power, we connected Monsoon

Power Monitor [81] to the battery terminals of a Samsung S4 device, and measured total

system power (at 0.2 ms resolution) for the apps that predominantly stress a particular IP.

We ran in airplane mode, turned off GPS, and only bare minimum background activities

were enabled on the phone for over a minute (shown in Figure 3.1). We iteratively tuned

the model such that the maximum error on the simulation infrastructure was well within

∼10% of the actual measurements for the chosen applications.

Time

Figure 3.2: Execution where display IP reads a frame from memory at the
same time core is writing a new frame.

3.3 Capabilities of GemDroid

The infrastructure can be used to conduct multiple types of studies starting from the core,

memory and individual IPs to system-level performance/power analyses. The first insight

we can get from using GemDroid is the usage pattern of IPs for different applications.

Currently, we have incorporated multiple IP models in GemDroid and have analyzed the

23

behavior of a wide spectrum of applications such as games, video recording and video

playback. While GemDroid may not simulate (cycle) accurately, it models the

performance of various components based on a combination of various available resources

(online reference manuals, architecture designs, etc.,) faithfully with reasonable accuracy.

Hence, variation with real world performance and simulator performance is possible. With

GemDroid, in addition to understanding IP usage behavior, the platform can help in

studying contention for shared resources. Consider the example shown in Figure 3.2. The

figure illustrates a scenario when YouTube video playback traces were simulated on the

system and different IP’s memory accesses were analyzed. We note that there are instants

when two IPs perform memory access at the same time. Further, multi-core studies are

also possible once we collect application-level traces for multiple applications. We leave

this as a future work. Instead, in this thesis, we analyze the memory system of current

SoCs to quantify its impact on application performance, explain how a heterogeneous

memory controller design can help mitigate some of the problems the memory system

brings and explore methods to circumvent memory through IP-to-IP direct

communication. The rest of the chapters will explore in detail each of the above.

Chapter 4
Design of a Heterogeneous Memory

Controller (HMC)

We provide a brief overview of the existing baseline memory design, and explain the

proposed heterogeneous memory controller (HMC) design, and finally show some initial

results with such a design.

4.1 Locality-Parallelism Tradeoff in Memory Design

Baseline Memory System: Figure 4.1 (A) shows the memory design of our baseline

system. It consists of 2 memory controllers (MCs) controlling two distinct regions of

memory. As shown, the cores and IPs share this memory subsystem. Traditionally, these

MCs are the gateway to access data in memory, which is logically organized as DRAM

banks. Each bank has cells (memory elements) laid out in arrays of rows and columns.

The data can be striped across banks at various granularity, for example, at page-level or

at cache-line-level. In page-level, the distribution of data across banks is at a granularity

of a OS page, which is a chunk of multiple consecutive cache lines. For example, if page

25

size is 4KB (as used in this work), the first 4KB of consecutive data is mapped to the first

bank, and the next 4KB to the next bank, and so on. In our baseline system, we use this

page-level striping for both the memory controllers, as shown in Figure 4.1 (A). In

cache-line-level striping, the distribution of data across banks is at a much finer

granularity – at cache-line granularity. In this case, every other cache line is mapped to a

different bank.

Baseline HMC

Cores IPs IPsCores

MC0
(Page Striped)

(A) (B)

MC1
(Page Striped)

MC0
(Page Striped)

MC1
(Cache Striped)

Figure 4.1: Schematic of (A) Baseline memory design and (B) Proposed HMC
memory design.

Locality vs. Parallelism: When accessing a cache line from memory, the row that

contains the cache line is brought to a buffer called row buffer, which is associated with every

DRAM bank. Once the contents are placed in the row buffer, subsequent memory requests

to the same row are served from the row buffer (row-buffer hits), instead of fetching them

again from the memory array. This reduces access latency, improves performance, and saves

the energy-expensive job of reading the row from memory array. Instead, if a different row

from the one in the row buffer is requested, the current row is closed, and the new row gets

placed in the buffer. This incurs high memory latency and is a high energy consuming task.

Therefore, it is optimal to receive and serve requests from the row buffer. For this very

reason, the most popular form of data distribution in CMPs is page-level striping, where

up to 4KB of consecutive data can be mapped to a bank, and if requests are scheduled

timely, all the data can be fetched from the row-buffer, thereby improving DRAM locality

and energy efficiency. On the other hand, page-level striping restricts parallelism, as not

many DRAM banks can be utilized in parallel. This is because if the requests possessing

good locality are scheduled roughly at the same time, only a limited set of the banks will

be accessed and the other DRAM banks will be idle. This limitation can be addressed by

26

cache-line striping, where the same 4KB of data is striped across banks, and hence the same

requests will access multiple banks. Such striping, although increases parallelism, it reduces

locality. It is apparent that both techniques of data-distribution have pros and cons.

Auxiliary Metrics: In this context, we define two auxiliary metrics, which will be

used to understand this trade-off. First, Bank Level Parallelism (BLP), which is defined

as the average number of memory banks that are busy when there is at least one request

being served at this memory controller [79]. Improving BLP enables better utilization of

DRAM bandwidth. Second, Row-Buffer Locality (RBL), which is defined as the average

row-buffer hit rate across all memory banks [79]. Improving RBL decreases average latency

for memory requests, and increases the memory service rate.

4.2 Overview of the Proposed Design

The IPs have significantly higher memory bandwidth requirements compared to cores.

This manifests into two primary problems: (1) the IP requests arrive in bursts thereby

causing large queuing delays for CPU requests reducing the core performance, and (2) the

IP memory requests interfere with core requests, thereby impacting the row-buffer locality

of all the requests. Due to these two issues, the DRAM bandwidth utilization is severely

affected leading to degradation of system performance. To address this, we propose having

separate memory regions for mobile systems.

4.2.1 Memory Region Separation

In this design, we divide the address space into two regions: first region – associated with a

dedicated memory controller (MC1) for CPU data which is accessed only by the CPUs, and

the second region – associated with MC2 for IP data, which can be accessed by both cores

and IPs. Note that, we cannot have completely dedicated memory controllers for IP and

CPU requests, because the data produced by IPs need to be used by cores (or vice versa).

27

0

0.2

0.4

0.6

0.8

1

1.2

cfbench rlbench rgbench linbench antutu-ram antutu-cpu

N
o

rm
.

E
x

e
c

u
ti

o
n

 T
im

e

Baseline HMC

(a) Reduction in execution time
for CPU-bound applications.

0%

20%

40%

60%

80%

100%

Browser Gallery YouTube

Baseline-Busy Baseline-Idle HMC-Busy HMC-Idle

(b) Reduction in CPU busy
cycles with HMC.

0

5

10

15

20

25

Browser Gallery Youtube

F
ra

m
e

s
 D

ro
p

p
e

d

P
e

r
S

e
c

o
n

d
 (

F
D

P
S

) Baseline HMC

(c) Improvement in average
FDPS for Onscreen

applications

Figure 4.2: Performance improvements of HMC with respect to baseline system.

The goal of this design is to offer dedicated memory controller for core requests, as

these requests are more latency critical. On the other hand, requests for the IP region are

bandwidth intensive, as they arrive in bursts and access large chunks of data. Now, with

separate memory regions, the bursts of requests coming to IP regions access consecutive

cache lines. Due to this, these requests have very good row buffer locality. But, the downside

of such an access pattern is that the bank-level-parallelism is very low.

4.2.2 Heterogeneity in Data Striping

To address the above problem, we enhance the design of memory with appropriate data

striping. We adopt two different data striping techniques for MCs: MC0 uses page-level

striping, and MC1 uses cache-line striping as shown in Figure 4.1(B). The motive of having

two different striping techniques is to increase the BLP for IP memory region, while retaining

the row-locality at CPU memory region. Note that, in general, cache-line striping reduces

row-buffer locality. However, in this scenario (especially for IPs), typically the row-buffer

locality is not affected, because these regions receive requests to large chunks of contiguous

data. Consider the example where the system has cache-line striped n memory banks, and

the display IP is accessing a large frame region. In such a system, consecutive cache lines

are mapped to different banks in a cyclic manner, such that every nth cache line is mapped

to the same bank. Similarly, as there is a large number of IP requests for each consecutive

cache line, every nth request is mapped to the same bank. All the requests that are mapped

to a bank hit in the row buffer, leading to high row-buffer-locality. Because the IPs typically

28

access consecutive cache lines, the requests that are mapped to the same bank are likely to

hit in the row buffer, leading to high row-buffer locality. Also, as the IP requests are sent

to different banks, they take advantage of BLP. Note that in the proposed design, there

are no extra overheads in terms of data copies or data duplication. All IP-associated data

are written to DRAM through a separate memory controller(MC1) by cores or other IPs.

While MC0 can be accessed by the cores, MC1 can be accessed by the cores and the IPs.

4.3 Results

We compare our HMC design to an iso-resource baseline system with 2 memory

controllers which are page-striped. In the baseline system, the memory controllers are not

aware of the characteristics of IPs’ and cores’ requests. We do not consider cache-line

striped memory controllers as they increase the memory latency for all core’s memory

operations, thus reducing system performance and energy efficiency. In the proposed

design, Heterogeneous Memory Controller (HMC), we isolate the requests targeted to IP

and CPU memory regions. Figure 4.2a shows the performance comparison of HMC with

the baseline system for representative CPU bound and Onscreen applications. We report

their respective evaluation metrics (execution times for CPU bound applications, and

CPU-busy cycles and FDPS for Onscreen applications). From Figure 4.2a, we observe

that, on average, the execution time of CPU-bound applications is reduced by 25% (up to

56% in cfbench). This improvement is primarily attributed to two reasons. First is the

reduced interference from IP accesses on the CPU requests at MC 0, because of memory

region separation. Second is the reduction in latency at MC1 because of increased RBL

and BLP.

The variance in reduction in execution times are attributed to the impact of IP accesses

on the CPU accesses. If an application has relatively more number of IP accesses, it is likely

to perform better with our HMC design. Note that for core bound applications, which do

29

not have any IP calls (antutu-ram and antutu-cpu), will mostly not take advantage of

HMC’s optimizations. In fact, in some cases, they might lose performance due to reduced

memory channel parallelism for CPU requests. In our studies, we find that the execution

time of Antutu-CPU application increases by less than 1%.

The graph in Figure 4.2b shows the CPU activity under different memory system designs.

In on-screen applications, CPU has to process data before an IP can consume it or vice versa.

By employing our HMC design, the CPU processes the data quicker leaving it idle for more

cycles. This can be seen in the second set of bars in the graph. This reduction in busy cycles

directly translates to power savings.1 Figure 4.2c shows the metric Frames Dropped Per

Second (FDPS) under different memory system designs. HMC design makes the memory

subsystem faster for both CPU and IP memory requests leading to fewer frame drops per

second.

To understand the impact of our HMC design, we analyze some auxiliary metrics below.

First, we look at how the locality at the memory controllers is affected due to HMC in

Figure 4.3. Sub-graph (a) shows that the locality (row-buffer hit rates) at MC0 which is

receiving only CPU requests in the HMC case did not change much, while (b) shows the

row-buffer hit rates increase to almost 100%. This is mainly because, when the address

regions are partitioned, only requests to IP memory space arrive at MC1. These requests

typically access consecutive cache lines, contributing to high number of row-buffer hits.

0

20

40

60

80

100

Antutu-gfx Browser YouTube Gallery Video2 Videoplayer

R
o

w
 B

u
ff

e
r

H
it

 R
a

te

Baseline HMC

Soundplay

(a) Effect on locality in CPU-region addresses.

0

20

40

60

80

100

Antutu-gfx Browser YouTube Gallery Video2 Videoplayer

R
o

w
 B

u
ff

e
r

H
it

 R
a
te

Baseline HMC

Soundplay

(b) Effect on locality in IP-region addresses.

Figure 4.3: Impact of HMC on locality. Baseline has both MCs serving both
CPU and IP requests without distinguishing between them.

1In this work, we focus on performance and do not have a comprehensive power model for the system
components.

30

In HMC, though there is significant locality, because consecutive accesses go to the

different banks due to cache-line striping, the bank level parallelism is also observed to be

substantially higher than the base case. Particularly, this can be seen in Figure 4.4 (b),

where the BLP for base-case averages around 1.25 banks only, whereas for HMC averages

around 5.8 banks across all applications. In this IP memory region, as the requests that

arrive typically go to consecutive banks in cyclic fashion, BLP tends to remain so high.

Thus, Figures 4.3 and 4.4 together clearly show that our design did not lose locality when

striping cache lines across banks. It is also clear from these graphs that with intelligent data

mapping in memory, like in HMC, we can get the benefits of both, locality and parallelism.

0
1
2
3
4
5
6
7
8

Antutu-gfx Browser YouTube Gallery Video2 Videoplayer

B
L

P

Baseline HMC

Soundplay

(a) Effect on bank-level parallelism in
CPU-region addresses.

0

1

2

3

4

5

6

7

8

Antutu-gfx Browser YouTube Gallery Video2 Videoplayer

B
L

P

Baseline HMC

Soundplay

(b) Effect on bank-level parallelism in IP-region
addresses.

Figure 4.4: Impact of HMC on Bandwidth. Baseline has both MCs with
default page-striped addresses.

0

20

40

60

80

100

120

Antutu-gfx Browser YouTube Gallery Video2 Videoplayer

L
a

te
n

c
y
 (

c
y
c

le
s

)

386 Baseline HMC

Soundplay

(a) Effect on latency in CPU-region addresses.

0

50

100

150

200

250

300

350

Antutu-gfx Browser YouTube Gallery Video2 Videoplayer

L
a
te

n
c
y
 (

c
y
c
le

s
)

Baseline HMC

Soundplay

(b) Effect on latency in IP-region addresses.

Figure 4.5: Impact of HMC on Latency. Baseline has both MCs serving both
CPU and IP requests without distinguishing between them.

We observe that locality and parallelism in this system have significant impact on the

latency of memory requests. Figure 4.5 shows the average latency of requests arriving at

the memory controllers. We observe that, with HMC, in MC0, average latency improves

because the core’s requests are isolated from IP’s requests. Thus, the latency critical core

requests are served much faster, leading to performance improvements. In IP-region memory

31

0

0.2

0.4

0.6

0.8

1

5

5
0

9
5

1
4

0

1
8

5

2
3

0

2
7

5

3
2

0

3
6

5

4
1

0

4
5

5

5
0

0

5
4

5

5
9

0

6
3

5

6
8

0

7
2

5

7
7

0

8
1

5

8
6

0

9
0

5

9
5

0

9
9

5

99 Percentile

Latency

HMC

Baseline

(a) CDF of latencies of memory accesses sent to
IP address region in YouTube application.

0

0.2

0.4

0.6

0.8

1

5

5
0

9
5

1
4

0

1
8

5

2
3

0

2
7

5

3
2

0

3
6

5

4
1

0

4
5

5

5
0

0

5
4

5

5
9

0

6
3

5

6
8

0

7
2

5

7
7

0

8
1

5

8
6

0

9
0

5

9
5

0

9
9

5

99 Percentile

Latency

HMC

Baseline

(b) CDF of latencies of memory accesses sent to
IP address region when using Browser

application.

Figure 4.6: Impact of HMC showing how increase in bank-level parallelism
reduces latency of requests in IP-address region.

controller, the latencies were not affected significantly even though the requests are coming

in bursts.

Finally, in Figure 4.6, we plot the cumulative distribution function of latencies of

memory requests that arrived at the IP-region memory controller for YouTube and

Browser application. The x-axis in this plot is the memory latency in cycles. We can

observe that, with HMC, 99 % of the requests have latencies less than 300 cycles, while in

baseline system, only 82% (youtube) and 95% (browser) of the requests have this latency.

This clearly shows the benefits of HMC in reducing the memory latencies.

4.4 Conclusions

Analyzing a spectrum of applications with GemDroid, we observed that the memory

subsystem is a vital cog in the mobile platform because, it needs to handle both core and

IP traffic, which have very different characteristics. Consequently, we present a

heterogeneous memory controller (HMC) design, where we divide the memory physically

into two address regions, where the first region with one memory controller (MC) handles

core-specific application data and the second region with another MC handles all IP

32

related data. The proposed modifications to the memory controller design results in an

average 25% reduction in execution time for CPU bound applications, up to 11%

reduction in frame drops, and on average 17% reduction in CPU busy time for on-screen

(IP bound) applications.

Chapter 5
Short-Circuiting Memory Traffic

Real-time interactive applications, including interactive games, video streaming, camera

capture, and audio playback, are amongst the most popular on today’s tablets and

mobiles apart from email and social networking. Such applications account for nearly 65%

of the usage on today’s handhelds [82], stressing the importance of meeting the challenges

imposed by such applications efficiently. This important class of applications has several

key characteristics that are relevant to this study. First, these applications work with

input (sensors, network, camera, etc.) and/or output (display, speaker, etc.) devices,

mandating real-time responsiveness. Second, these applications deal with “frames” of

data, with the requirement to process a frame within a stipulated time constraint. Third,

the computation required for processing a frame can be quite demanding, with hardware

accelerators often deployed to leverage the specificity in computation for each frame and

delivering high energy efficiency for the required computation. The frames are then

pipelined through these accelerators one after another sequentially. Fourth, in many of

these applications, the frames have to flow not just through one such computational stage

(accelerator) but possibly though several such stages. For instance, consider a video

capture application, where the camera IP may capture raw data, which is then encoded

into an appropriate form by another IP, before being sent either to a flash storage or a

34

display. Consequently, the frames have to flow through all these computational stages,

and typically the memory system (the DRAM main memory) is employed to facilitate this

flow. Finally, we may need to support several such flows at the same time. Even a single

application may have several concurrent flows (the video part and audio part of the video

capture application which have their own pipelines). Even otherwise, with

multiprogramming increasingly prevalent in handhelds, there is a need to concurrently

support individual application flows in such environments.

5.1 Overview

Apart from the computational needs for real-time execution, all the above observations

stress the memory intensity of these applications. Frames of data coming from any

external sensor/device is streamed in to memory, from which it is streamed out by a

different IP, processed and put back in memory. Such an undertaking places heavy

demands on the memory subsystem. When we have several concurrent flows, either within

the same application or across applications in a multiprogrammed environment, all of

these flows contend for the memory and stresses it even further. This contention can have

several consequences: (i) without a steady stream of data to/from memory, the efficiencies

from having specialized IPs with continuous dataflow can get lost with the IPs stalling for

memory; (ii) such stalls with idle IPs can lead to energy wastage in the IPs themselves;

and (iii) the high memory traffic can also contend with, and slow down, the memory

accesses of the main cores in the system. While there has been a lot of work covering

processing – whether it be CPU cores or specialized IPs and accelerators

(e.g. [61] [48] [16]) – for these handheld environments, the topic of optimizing the data

flows, while keeping the memory system in mind, has drawn little attention. Optimizing

for memory system performance, and minimizing consequent queueing delays has itself

received substantial interest in the past decade, but only in the area of high-end systems

(e.g., [34] [79] [83] [78]). This work addresses this critical issue in the design of handhelds,

35

where memory will play an increasingly important role in sustaining the data flow not just

across CPU cores, but also between IPs, and with the peripheral input-output (display,

sound, network and sensors) devices.

In today’s handheld architectures, a System Agent (SA) [84–87] serves as the glue

integrating all the compute (whether it be IPs or CPU cores) and storage components. It

also serves as the conduit to the memory system. However, it does not clearly understand

data flows, and simply acts as a slave initiating and serving memory requests regardless of

which component requests it. As a result, the high frame rate requirements translate to

several transactions in the memory queues, and the flow of these frames from one IP to

another explicitly goes through these queues, i.e., the potential for data flow (or data

reuse) across IPs is not really being exploited. Instead, this work explores the idea of

virtually integrating accelerator pipelines by “short-circuiting” many of the read/write

requests, so that the traffic in the memory queues can be substantially reduced.

Specifically, this work explore the possibility of shared buffers/caches and short-circuiting

communication between the IP cores based on requests already pending in the memory

transaction queues. In this context, the following specific contributions are made:

• It is shown that the memory is highly utilized in these systems, with IPs facing around

47% of their total execution time stalling for data, in turn, causing 24% of the frames

to be dropped in these applications. We cannot afford to let technology take care of

this problem since with each DRAM technology advancement, the demands from the

memory system also become more stringent.

• Blindly provisioning a shared cache to leverage data flow/reuse across the IP cores is

also likely to be less beneficial from a practical standpoint. An analysis of the IP-to-

IP reuse distances suggests that such caches have to run into several megabytes for

reasonable hit rates (which would also be undesirable for power).

• This work shows that this problem is mainly due to the current frame sizes being

36

relatively large. Akin to tiling for locality enhancement in nested-loops of large

arrays [88–90], it introduces the notion of “sub-frame” for restructuring the data

flow, which can substantially reduce reuse distances.

• With this sub-framing in place, it is shown that reasonably sized shared caches –

referred to as flow buffers in this work – between the producer and consumer IPs of a

frame can circumvent the need to go to main memory for many of the loads from the

consumer IP. Such reduction in memory traffic results in around 20% performance

improvement in these applications.

• While these flow buffers can benefit these platforms substantially, it also explores an

alternate idea of not requiring any separate hardware structures – leveraging

existing memory queues for data forwarding from the producer to the consumer.

Since memory traffic is usually high, recently produced items are more likely to be

waiting in these queues (serving as a small cache), which could be forwarded to the

requesting consumer IP. It is also shown that these can be accommodated in

recently-proposed memory queue structures [91], and demonstrate performance and

power benefits that are nearly as good as that of the flow buffer solution.

Typically, DRAM is shared between the cores and IPs and is used to transfer data

between them. There is a high degree of data movement and this often results in a high

contention for memory controller bandwidth between the different IPs. Depending on the

type of IPs involved, frames get written to memory or read from memory at a certain rate.

For example, cameras today can capture video frames of resolution 1920x1080 at 60 FPS

and the display refreshes the screen with these frames at the same rate (60 FPS). Therefore,

60 bursts of memory requests from both IPs happen in a second, with each burst requesting

one complete frame. While the request rate is small, the data size per request is high – 6MB

for a 1920x1080 resolution frame (this will increase with 4K resolutions [10]). If this amount

of bandwidth cannot be catered to by the DRAM, the memory controller and DRAM queues

fill up rapidly and in turn the devices and accelerators start experiencing performance drops.

37

The performance drop also affects battery life as execution time increases.

%
 o

f
ti

m
e

 s
p

e
n

t

0%

20%

40%

60%

80%

100%

G
P

U

D
C

A
D

S
N

D

M
IC A
E

A
D

S
N

D

IM
G

D
C

C
A

M

IM
G

D
C

C
A

M

V
E

V
D

D
C

A
D

S
N

D

M
IC A
E

C
A

M

IM
G

D
C

V
E

M
IC A
E

V
D

D
C

A
D

S
N

D

Angry Birds Audio MP3 Photos CamPic Skype Video Record Youtube

Processing Cycles Data Stall Cycles

Snd.

Rec

Figure 5.1: Total data stalls and processing time in IPs during execution.

F
ra

c
ti

o
n

 o
f

ti
m

e
 a

n

IP
 s

ta
ll

s
 i
n

 m
e

m
o

ry

0

20

40

60

80

100

G
P

U

A
D

A
E

A
D

IM
G

IM
G

V
E

V
D

A
D

A
E

IM
G

V
E

A
E

V
D

A
D

Angry Birds Snd
Rec

MP3 Photos CamPic Skype Video Record Youtube

0.5x-LPDDR2-800 Base-LPDDR3-1333 2x-LPDDR3-1600 4x-LPDDR4-3200

Figure 5.2: Trends showing increase of percentage of data stalls with each
newer generation of IPs and DRAMs.

To explain how much impact the memory subsystem and the system-agent can have

on IPs’ execution time (active cycles during which the IPs remains in active state), in

Figure 5.1, we plot the total number of cycles spent by an IP in processing data and in data

stalls. Here, we use “data stall” to mean the number of cycles an IP stalls for data without

doing any useful computation, after issuing a request to the memory. We observe from

Figure 5.1 that the video decoder and video encoder IPs spend most of their time processing

the data, and do not stress the memory subsystem. IPs that have very small compute time,

like the audio decoder and sound engine, demand very high bandwidth than what memory

can provide, and thus tend to stall more than compute. Camera IP and graphics IP, on the

other hand, send bursts of requests for large frames of data at regular intervals. Here as

well, if memory is not able to meet the high bandwidth or has high latency, the IP remains

in the high-power mode stalling for the requests. The high data stalls seen in Figure 5.1

translate to frame drops which is shown in Figure 5.3 (for 5.3 GBPS memory bandwidth).

We see that on average 24% of the frames are dropped with the default baseline system,

which can hurt user experience with the device. With higher memory bandwidths (2x and

38

4x of the baseline bandwidth), though the frame drops decrease, they still do not improve

as much as the increase in bandwidth. Even with 4x baseline bandwidth, we observe more

than 10% frame drops (because of higher memory latencies).

As user demands increase and more use-cases need to be supported, the number of IPs

in the SoC is likely to increase [9] along with data sizes [10]. Even as the DRAM speeds

increase, the need to go off-chip for data accesses places a significant bottleneck. This affects

performance, power and eventually the overall user experience.

Further, to establish the maximum gains that can be obtained if we had an ideal and

perfect memory, we did a hypothetical study of perfect memory with 1 cycle latency. The

cycles-per-frame results with this perfect memory system are shown in Figure 5.4. As

expected, we observed drastic reduction in cycles per frames across applications and IPs (as

high as 75%). In some IPs, memory is not a bottleneck and those did not show improved

benefits. From this data, we conclude that reducing the memory access times does bring

the cycles per frame down, which in turn boosts the overall application performance. Note

that, this perfect memory does not allow any frames to be dropped.

5.2 Data Reuse and Reuse Distance

In a flow, data get read, processed (by IPs) and written back. The producer and consumer of

the data could be two different IPs or sometimes even the same IP. We capture this IP-to-IP

reuse in Figure 5.5, where we plotted the physical addresses accessed by the core and other

IPs for YouTube application. Note that this figure only captures a very small slice of the

0

25

50

75

100

A6 A7 A8 AVG(all)

%
 o

f
F

ra
m

e
s

S
h

o
w

n

5.3 GBPS 10.6 GBPS 21.2 GBPS

Figure 5.3: Percentage of frames completed in a subset of applications with
varying memory bandwidths.

39

entire application run. Here, we can see that the display-controller (DC) (red points) reads

a captured frame from a memory region that was previously written to by video decoder

(black points). Similarly, we can also see that the sound-engine reads from an address

region where audio-decoder writes. This clearly shows that the data gets reused repeatedly

across IPs, but the reuse distances can be very high. As mentioned in Section 2.1.2, when a

particular application is run, the same physical memory regions get used (over time) by an

IP for writing different frames. In our current context, the reuse we mention is only between

the producer and consumer IPs for a particular frame and nothing to to do with frames

being rewritten to the same addresses. Due to frame rate requirements, reuse distances

between display frame based IPs were more than tens of milli-seconds, while audio frame

based IPs were less than a milli-second. Thus, there is a large variation across producer-

consumer reuse distances across IPs that process large (display) frames (e.g., VD, CAM)

and IPs that process smaller (audio) frames (e.g., AD, AE).

5.2.1 Converting Data Reuse into Locality

Given the data reuse, the simplest solution is to place a on-chip cache and allow the multiple

IPs to share it. The expectancy is that caches are best for locality and hence they should

work. In this subsection, we evaluate the impact of adding such a shared cache to hold

the data frames. Typical to conventional caches, on a cache-miss, the request is sent to

the transaction queue. The shared cache is implemented as a direct-mapped structure,

with multiple read and write ports, and multiple banks (with a bank size of 4MB), and

0

20

40

60

80

100

G
P

U
-D

C

A
D

-S
N

D

M
IC

-A
E

-M
M

C

M
M

C
-A

D
-S

N
D

M
M

C
-I

M
G

-D
C

C
A

M
-I

M
G

-D
C

C
A

M
-I

M
G

-M
M

C

C
A

M
-V

E

V
D

-D
C

A
D

-S
N

D

M
IC

-A
E

C
A

M
-I

M
G

-D
C

C
A

M
-V

E
-M

M
C

M
IC

-A
E

-M
M

C

V
D

-D
C

A
D

-S
N

D

A1 A2 A3 A4 A5 A6 A7 A8

%
 C

y
c

le
s

 P
e

r
F

ra
m

e

Figure 5.4: Percentage reduction in Cycles-Per-Frame in different flows with a
perfect memory configuration.

40

the read/write/lookup latencies are modeled using CACTI [92]. We evaluated multiple

cache sizes, ranging from 4MB to 32MB, and analyzed their hit rates and the reduction

in cycles taken per frame to be displayed. We present the results for 4MB, 8MB, 16MB

and 32MB shared caches in Figure 5.6 and Figure 5.7 for clarity. They capture the overall

trend observed in our experiments. In our first experiment, we notice that as the cache

sizes increase, the cache hit rates either increase or remain the same. For applications like

Audio Record and Audio Play (with small frames), we notice 100% cache hit rates from

4MB cache. For other applications like Angry Birds or Video-play (with larger frames),

a smaller cache does not suffice. Thus, as we increase the cache capacity, we achieve higher

hit rates. Interestingly, some applications have very low cache hit rates even with large

caches. This can be attributed to two main reasons. First, frame sizes are very large to fit

even two frames in a large 32MB cache (as in the case of YouTube and Gallery). Second,

and most importantly, if the reuse distances are large, data gets kicked out of caches by

the other flows in the system or by other frames in the same flow. Applications with large

reuse distances like Video-record exhibit such behavior.

In our second experiment, we quantify the performance benefits of having such large

shared caches between IPs, and give the average cycles consumed by an IP to process a

full-frame (audio/video/camera frame). As can be seen from Figure 5.7, increasing the

cache sizes does not always help and there is no optimal size. For IPs like SND and AD, the

frame sizes are small and hence a smaller cache suffices. From there on, increasing cache

size increases lookup latencies, and affects the access times. In other cases, like DC, as the

frame sizes are large, we observe fewer cycles per frame as we increase the cache size. For

Time

2.2e+09

2.22e+09

2.21e+09

2.205e+09

2.215e+09

+ VD
+ DC

+ AD
+ SND

A
d

d
re

s
s
 R

a
n

g
e

Figure 5.5: Data access pattern of IPs in YouTube application.

41

0

20

40

60

80

100

A1 A2 A3 A4 A5 A6 A7 A8

4 MB 8 MB 16 MB 32 MB

H
it

 R
a
te

 (
%

)

Figure 5.6: Hit rates under various cache capacities.

other accelerators with latency tolerance, once their data fits in the cache, they encounter

no performance impact.

Further, scaling cache sizes above 4MB is not reasonable due to their area and power

overheads. Figure 5.8 plots the overheads for different cache sizes. Typically, handhelds

operate in the range of 2W – 10W, which includes everything on the device

(SoC+display+network). Even the 2W consumed by the 4MB cache will impact battery

life severely.

Summary: To summarize, the high number of memory stalls is the main reason for

frame drops, and large IP-to-IP reuse distances is the main cause for large memory stalls.

Even large caches are not sufficient to capture the data reuse and hence, accelerators and

devices still have considerable memory stalls. All of these observations led us to

re-architect how data gets exchanged between different IPs, paving way for better

performance.

The primary goal is to reduce the IP-to-IP data reuse distances, and thereby reduce

data stalls, which are a major impediment to performance.

To achieve this, this work proposes a novel approach of sub-framing the data. One of

the commonly used compiler techniques to reduce the data reuse distance in loop nests that

0

20

40

60

80

100

AE AD VE VD IMG DC SND MIC CAM

4 MB 8 MB 16 MB 32 MB

%
 C

y
c

le
s

 P
e

r
F

ra
m

e

Figure 5.7: Cycles Per Frame under various cache capacities.

42

0

2

4

6

8

4 MB 8 MB 16 MB 32 MB

P
o

w
e

r
(W

)

Dynamic Leakage

0

50

100

150

200

250

300

4 MB 8 MB 16 MB 32 MB

A
re

a
 (

m
m

2
)

Figure 5.8: Area and power-overhead with large shared caches.

1

10

100

1000

10000

100000

1000000

10000000

100000000

F
ra

m
e

1
0
2
4

5
1
2

1
2
8

6
4

3
2 8 1

A
c

c
e

s
s

 I
n

te
rv

a
l

Sub-Frame Size

CAM-IMG IMG-DC

1

10

100

1000

10000

100000

1000000

10000000

100000000

F
ra

m
e

1
0
2
4

5
1
2

1
2
8

6
4

3
2 8 1

A
c

c
e
s

s
 I

n
te

rv
a

l

Sub-Frame Size

MMC-VD VD-DC

(a) (b)

Figure 5.9: IP-to-IP reuse distance variation with different sub-frame sizes.
Note that the y-axis is in the log scale.

manipulate array data is to employ loop tiling [88, 89]. It is the process of partitioning a

loop’s iteration space into smaller blocks (tiles) in a manner that the data used by the loop

remains in the cache enabling quicker reuse. Inspired by tiling, we propose to break the

data frames into smaller sub-frames, that reduces IP-to-IP data reuse distances.

In current systems, IPs receive a request to process a data frame (it could be a video

frame, audio frame, display frame or image frame). Once it completes its processing, the

next IP in the pipeline is triggered, which in-turn triggers the following IP once it completes

its processing and so on. In our solution, we propose to sub-divide these data frames into

smaller sub-frames, so that once IP1 finishes it’s first subframe, IP2 is invoked to process

it. In the following sections, we show that this design reduces the hardware requirements to

store and move the data considerably thereby bringing both performance and power gains.

The granularity of the subframe can have a profound impact on various metrics.

To quantify the effects of subdividing a frame, we varied the sub-frame sizes from 1

cache line to the current data frame size, and analyzed the reuse distances. Figure 5.9

plots the reduction in the IP-to-IP reuse distances (on y-axis, plotted on log-scale), as we

reduced the size of a sub-frame. We can see from this plot an inverse exponential decrease

in reuse distances. In fact, for very small sub-frame sizes, we see reuse distances in less

43

than 100 cycles. To capitalize on such small reuse distances, we explore two techniques –

flow-buffering and opportunistic IP-to-IP request short-circuiting.

5.2.2 Flow-Buffering

In Section 5.2.1, we showed that even large caches were not very effective in avoiding misses.

This is primarily due to very large reuse distances that are present between the data-frame

write by a producer and the data-frame read by a consumer. With sub-frames, the reuse

distances reduce dramatically. Motivated by this, we now re-explore the option of caching

data. Interestingly, in this scenario, caches of much smaller size can be far more effective

(low misses). The reuse distances resulting from sub-framing are so small that even having

a structure with few cache-lines is sufficient to capture the temporal locality offered by IP

pipelining in SoCs. We call these structures as flow-buffers. Unlike a shared cache, the

flow-buffers are private between any two IPs. This design avoids the conflict misses seen

in a shared cache (fully associative has high power implications). These flow-buffers are

write-through. As the sub-frame gets written, the sub-frame is written to memory. The

reason for this design choice is discussed next.

In a typical use-case involving data flow from IP-A→IP-B→IP-C, IP-A gets its data

from the main-memory and starts computing it. During this process, as it completes a

sub-frame, it writes back this chunk of data into the flow-buffer between IP-A and IP-B.

IP-B starts processing this sub-frame from the flow-buffer (in parallel with IP-A working

on another sub-frame) and writes it back to the flow-buffer between itself and IP-C. Once

IP-C is done, the data is written into the memory or the display. Originally, every read and

write in the above scenario would have been scheduled to reach the main memory. Now,

with the flow-buffers in place, all the requests can be serviced from these small low-latency

cost and area efficient buffers.

Note that, in these use-cases, cores typically run device driver code and handle

44

0%

20%

40%

60%

80%

100%

Audio
Record

AR Game Video
Record

Video
Play

Average
(10 apps)

D
e

la
y
 B

re
a

k
d

o
w

n

MC Trans Q MC Bank Q DRAM
150 124 137 238 166

Snd.

Rec

Figure 5.10: Delay breakdown of a memory request issued by IPs or cores.
The numbers above the bar give the absolute cycles.

interrupts. They have minimal data frames processing. Consequently, we do not

incorporate flow-buffers between core and any other accelerator. Also, when a use-case is

in its steady-state (for example, a minute into running a video), the IPs are in the active

state and quickly consume data. However, if an IP is finishing up on an activity or busy

with another activity or waking up from sleep state, the sub-frames can be overwritten in

the flow-buffer. In that case, based on sub-frame addresses, the consumer IP can find its

data in the main memory since the flow-buffer is a write-through buffer. From our

experiments, we found that a flow-buffer size of 32 KB provides a good trade-off between

avoiding a large flow-buffer and sub-frames getting overwritten.

5.2.3 IP-IP Short-circuiting

The flow-buffer solution requires an extra piece of hardware to work. To avoid the cost of

adding the flow-buffers, an alternate technique would be to enable consumers directly use

the data that their producers provide. Towards that, we analyzed the average round-trip

delays of all accesses issued by the cores or IPs (shown in Figure 5.10) and found requests

spend maximum time queuing in the memory subsystem. MC Trans Queue shows the time

taken from the request leaving the IP till it gets to the head of the transaction queue. The

next part MC Bank Queue, is the time spent in bank queues. This is primarily determined

by whether the data access was a row buffer hit, or miss. And, finally DRAM shows the time

for DRAM accessing along with the response back to the IPs. As can be seen, most of the

time is spent in the memory transaction queues (˜100 cycles). This means that data that

45

could otherwise be reused lies idle in the memory queues and we use this observation

towards building an opportunistic IP-to-IP short-circuiting technique, similar in concept

to “store-load forwarding” in CPU cores [93, 94]1 though our technique is in between

different IPs. There are correctness and implementation differences, which we highlight in

the following paragraphs.

IPs usually load the data frames produced by other IPs. Similar to store-load forwarding,

if the consumer IP’s load requests can be satisfied from the memory transaction queue or

bank queues, the memory stall time can be considerably reduced. As the sub-frame size

gets smaller, the probability of a load hitting a store gets higher. Unlike the flow-buffers

discussed in Section 5.2.2, store data does not remain in the queues till they are

overwritten. This technique is opportunistic and as the memory bank clears up its entries,

the request moves from the transaction queue into the bank queues and eventually into

main memory. Thus, the loads need to follow the stores quickly, else it has to go to

memory. This distance between the consumer IP load request and producer IP store

request depends on how full the transaction and bank queues are. In the extreme case, if

both the queues (transaction-queue and bank-queue) are full, the number of requests that

a load can come after a store will be the sum of the number of entries in the queues.

The overhead of implementing the IP-IP short-circuiting is not significant since we are

using pre-existing queues present in the system agent. The transaction and bank queues

already implement an associative search to re-order requests based on their QoS

requirements and row-buffer hits, respectively [95]. Address-searches for satisfying core

loads already exist and these can be reused for other IPs. As we will show later, this

technique works only when the sub-frame reuse distance is small.

1Core requests spend relatively insignificant amount of time in transaction queues as they are not bursty in nature.
Due to their strict QoS deadlines, they are prioritized over other IP requests. They spend more time in bank queues
and in DRAM.

46

0

20

40

60

80

100

Angry
Birds

Snd.Rec MP3 Photo CamPic Skype Video
Record

Youtube

H
it

 R
a

te
 (

%
)

32 KB Flow-Buffer 16 KB Flow-Buffer 8 KB Flow-Buffer

4 KB Flow-Buffer IP-IP Short-circuiting

Figure 5.11: Hit rates with flow-buffering and IP-IP short-circuiting.

Effects of Sub-framing Data

The benefits of sub-framing are quantified in Figure 5.11 in terms of hit rates when using

flow-buffering and IP-IP short-circuiting. We can see that the buffer hit rates increase as

we increase the size of flow-buffers, and saturate when the size of buffers are in the ranges

of 16KB to 32KB. The other advantage of having sub-frames is the reduced bandwidth

consumption due to the reduced number of memory accesses. As discussed before,

accelerators primarily face bandwidth issues with the current memory subsystem.

Sub-framing alleviates such bottleneck by avoiding fetching every piece of data from

memory. Redundant writes and reads to same addresses are avoided. Latency benefits of

our techniques, as well as their impact on user experience will be shown in Section 5.4.

5.3 Implementation Details

In implementing our sub-frame idea, we account for the probable presence of dependencies

and correctness issues resulting from splitting frames. Below, we discuss the correctness

issue and the associated intricacies that need to be addressed to implement sub-frames.

We then discuss the software, hardware and system-level support needed for such

implementations.

47

5.3.1 Correctness

We broadly categorize data frames into the following types – (i) video, (ii) audio, (iii)

graphics display, and (iv) the network packets. Of these, the first three types of frames are

the ones that usually demand sustained high bandwidth with the frame sizes varying from

a megabyte to tens of MBs. In this work, we address only the first three types of frames,

and leave out network packets as the latency of network packet transmission is considerably

higher compared to the time spent in the SoC.

Video and Audio Frames

Encoding and decoding, abbreviated as codec is compression and decompression of data that

can be performed at either hardware or software layer. Current generation of smartphones

such as Samsung S5 [96] and Apple iPhone [97] have multiple types of codes embedded in

their phone.

Video Codecs: First, let us consider the flows containing video frames, and analyze the

correctness of sub-dividing such large frames into smaller ones. Among the video codecs, the

most commonly used are H.264 (MPEG-4) or H.265 (MPEG-H, HEVC) codecs. Let us take

a small set of video frames and analyze the decoding process. The encoding process is almost

equivalent to the inversion of each stage of decoding. As a result, similar principles apply

there as well. Figure 5.12 shows a video clip in its entirety, with each frame component

named. A high-quality HD video is made up of multiple frames of data. Assuming a

Slice
4x4

Macro
Blocks

Frame-1 Frame-2 Frame-3 Frame-4 Frame-5

Figure 5.12: Pictorial representation showing the structure of five consecutive
video frames.

48

default of 60 FPS, the amount of data needed to show the clip for a minute would be

1920x1080(screen resolution) x 3(bytes/pixel) x 60 (frame rate) x 60 (seconds) = 21.35 GB.

Even if each frame is compressed individually and stored on today’s hand-held devices, the

amount of storage available would not permit it. To overcome this limitation, codecs take

advantage of the temporal redundancy present in video frames, as the next frame is usually

not very different from the previous frame.

Each frame can be dissected into multiple slices. Slices are further split into

macroblocks, which are usually a block of 16x16 pixels. These macroblocks can be further

divided into finer granularities such as sub-macroblocks or pixel blocks. But, we do not

need such fine granularities for our purpose. Slices can be classified into 3 major types:

I-Slice (independent or intra slices), P-Slice (predictive), and B-Slice (bi-directional) [98]

as depicted in Figure 5.12. I-slices2 have all data contained in them, and do not need

motion prediction. P-slices use motion prediction from one slice which belongs to the past

or future. B-slices use two slices from past or the future. Each slice is an independent

entity and can be decoded without the need for any other slice in the current frame. P-

and B-slices need slices from a previous or next frame only.

In our sub-frame implementation, we choose slice-level granularity as the finest level of

sub-division to ensure correctness without having any extra overhead of synchronization. As

slices are independently decoded in a frame, the need for another slice in the frame does not

arise, and we can be sure that correctness is maintained. Sub-dividing any further would

bring in dependencies, stale data and overwrites.

Audio Codecs: Audio data is coded in a much simpler fashion than video data. An

audio file has a large number of frames, with each audio frame having the same number of

bits. Each frame is independent of another and it consist of a header block and data block.

Header block (in MP3 format) stores 32-bits of metadata about the coming data block

2Earlier codecs had frame level classification instead of slice level. In such situations, I-frame is
constructed as a frame with only I-slices.

49

Subframe data

load

Flow Id

1

2

IP-1 IP-2

Core Initiating a Flow

FLOW_SETUP(IP1, IP2,..,SUB-FRAME_SIZE);

IP-to-IP Flow detail Table inside SA

IP-1

IP-2

Flow Buffer
(write-through)

Prod.1 Cons1

Subframe data
store

Response Signal

Activate Signal

Subframe data

load

IP-1

IP-2

IP-IP Short-circuiting

Memory Queues

Subframe data
store

(b)

D
R

A
M

Flow Id

1

2

Prod.1 Cons1Response Signal

Flow-buffer(a)

Figure 5.13: High level view of the SA that handles sub-frames.

frame. Thus, each audio frame can be decoded independently of another as all required

data for decoding is present in the current frames header. Therefore, using a full audio

frame as a sub-frame would not cause any correctness issue.

Graphics Rendering: Graphics IPs already employ tiled rendering when operating on

frames and for the display rendering. These tiles are similar to the sub-frames proposed in

this work. A typical tiled rendering algorithm first transforms the geometries to be drawn

(multiple objects on the screen) into screen space and assigns them into tiles. Each screen-

space tile holds a list of geometries that needs to be drawn in that tile. This list is sorted

front to back, and the geometry behind another is clipped away and only the ones in the

front are drawn to the screen. GPUs renders each tile separately to a local on-chip buffer,

which is finally written back to main-memory inside a framebuffer region. From this region,

the display controller reads the frame to be displayed to be shown on screen. All tiles are

independent of each other, and thus form a sub-frame in our system.

50

5.3.2 OS and Hardware Support

In current systems, IPs are invoked sequentially one-after-another per frame. Let us revisit

the example considered previously – a flow with 3 IPs. The OS, through device drivers,

calls the first IP in the flow. It waits for the processing to complete and the data to be

written back to memory and then calls the second IP. After the second IP finishes its

processing, the third IP is called. With sub-frames, when the data is ready in the first IP,

the second IP is notified of the incoming request so that it can be ready (by entering to the

active state from a low power state) when the data arrives. We envision that the OS can

capture this information through a library (or multiple libraries) since the IP-flows for each

application are pretty standard. In Android [99] for instance, there is a layer of libraries

(Hardware Abstraction Layer – HAL) that interface with the underlying device drivers and

these HALs are specific to IPs. As devices evolve, HAL and the corresponding drivers are

expected to enable access to devices to run different applications. By adding an SA HAL

and its driver counterpart to communicate the flow information, we can accomplish our

requirements. From the application’s perspective, this is transparent since the access to

the SA HAL happens from within other HALs as they are requested by the applications.

Figure 5.13 shows a high level view of the sub-frame implementation in SA along with our

short-circuiting techniques. From a hardware perspective, to enable sub-framing of data,

the SA needs to have a small matrix of all IPs – rows corresponding to producers and

columns to consumers. Each entry in the row is 1 bit per IP. Currently, we are looking

at about 8 IPs, and this is about 8 bytes in total. In future, even as we grow to 100 IPs,

the size of the matrix is small. As each IP completes its sub-frame, the SA looks at its

matrix and informs the consumer IP. In situations where we have multiple flows (currently

Android allows two applications to run simultaneously [100]) with an IP in common, the

entries in the SA for the common IP can be swapped in or out along with the context of

the application running. This will maintain the correct consumer IP status in the matrix

for any IP.

51

5.4 Evaluation

The performance and power benefits obtained by using sub-frames compared to the

conventional baseline system which uses full frames in IP flows is presented below. We

used a modified version of the GemDroid infrastructure [44] for the evaluation. For each

application evaluated, we captured and ran the traces either to completion or for a fixed

time. The trace lengths varied from about 2 secs to 30 secs. Usually this length is limited

by frame sizes we needed to capture. The transaction queue and bank queues in SA can

hold 64 entries (totaling 8KB). For the flow buffer solution, we used a 32 KB buffer (based

on the hit rates observed in Figure 5.11).

0

20

40

60

80

100

120

G
P

U
-D

C

A
D

_
S

N
D

M
IC

-A
E

-M
M

C

M
M

C
-A

D
-S

N
D

M
M

C
-I

M
G

-D
C

C
A

M
-I

M
G

-D
C

C
A

M
-I

M
G

-M
M

C

C
A

M
-V

E

V
D

-D
C

A
D

-S
N

D

M
IC

-A
E

C
A

M
-V

E
-M

M
C

M
IC

-A
E

-M
M

C

V
D

-D
C

A
D

-S
N

D

Angry Birds Snd.Rec MP3 Photo CamPic Skype Video Record Youtube AVG

F
ra

c
ti

o
n

 o
f

fr
a
m

e
s
 c

o
m

p
le

te
d

Base SubFrame-Cache SubFrame-Forward

Figure 5.14: Percentage of Frames Completed (Higher the better).

User Experience: As a measure of user experience, we track the number of frames

that could complete in each flow. The more frames that get completed, lesser the frame

drops and better is the user experience. Figure 5.14 shows the number of frames completed

in different schemes. The y-axis shows the percentage of frames completed out of the total

frames in an application trace. The first bar shows the frames completed in the baseline

system with full frame flows. The second and third bars show the percentage of frames

completed with our two techniques. In baseline system, only around 76% of frames were

displayed. By using our two techniques, the percentage of frames completed improved to

92% and 88%, respectively. Improvements in our schemes are mainly attributed to the

reduced memory bandwidth demand and improved memory latency as the consumer IP’s

52

0

25

50

75

100

125

G
P

U
-D

C

A
D

-S
N

D

M
IC

-A
E

-M
M

C

M
M

C
-A

D
-S

N
D

M
M

C
-I

M
G

-D
C

C
A

M
-I

M
G

-D
C

C
A

M
-I

M
G

-M
M

C

C
A

M
-V

E

V
D

-D
C

A
D

-S
N

D

M
IC

-A
E

C
A

M
-V

E
-M

M
C

M
IC

-A
E

-M
M

C

V
D

-D
C

A
D

-S
N

D

A1 A2 A3 A4 A5 A6 A7 A8 AVG

%
 o

f
C

y
c

le
s

 P
e

r
F

ra
m

e

SubFrame-cache SubFrame-forward

Figure 5.15: Reduction in Cycles Per Frame in a flow normalized to Baseline
(Lower the better).

0

20

40

60

80

100

120

G
P

U

A
D

A
E

A
D

IM
G

IM
G

V
E

V
D

A
D

A
E

V
E

A
E

V
D

A
D

A1 A2 A3 A4 A5 A6 A7 A8

%
 o

f
A

c
ti

v
e

 C
y
c

le
s SubFrame-Cache SubFrame-Forward

Figure 5.16: Reduction in Number of Active Cycles of Accelerators (Lower the
better).

requests are served through the flow-buffers or by short-circuiting the memory requests.

The hit-rates of consumer’s requests were previously shown in Figure 5.11. In some cases,

flow-buffers perform better than short-circuiting due to the space advantage in the flow

buffering technique.

Performance Gains: To understand the effectiveness of our schemes, we plot the

average number of cycles taken to process a frame in each flow in Figure 5.15. This is the

time between the invocation of first IP and completion of last IP in each flow. Note that,

reducing the cycles per frame can lead to fewer frame drops. When we use our techniques

with sub-framing, due to pipelining of intra-frame data across multiple IPs instead of

sequentially processing one frame after another, we are able to substantially reduce the

cycles per frame by 45% on average. We also observed that in A6-Skype application

(which has multiple flows), through the use of sub-framing, the memory subsystem gets

overwhelmed because, we allow more IPs to work at the same time. This is not the case in

53

the base system. If IPs do not benefit from flow-buffers or IP request short-circuiting, the

memory pressure is more than the baseline leading to some performance loss (17%).

Energy Gains: Energy efficiency is a very important metric in handhelds since they

operate out of a battery (most of the time). Exact IP design and power states

incorporated are not available publicly. As a proxy, we use the number of cycles an IP was

active to correspond to the energy consumed when running the specific applications. In

Figure 5.16, we plot the total number of active cycles consumed by an accelerator

compared to the base case. We plot this graph only for accelerators as they are

compute-intensive and hence, consume most of the power in a flow. On average, we

observe 46% and 35% reduction in active cycles (going up to 80% in GPU) with our

techniques, which translates to substantial system-level energy gains. With sub-framing,

we also reduce the memory energy consumption by 33% due to (1) reduced DRAM

accesses, and (2) memory spending more time in low-power mode. From the above results

it can be concluded that sub-framing yields significant performance and power gains.

5.5 Conclusion

Memory traffic is a performance bottleneck in mobile systems, and it is critical that we

optimize the system as a whole to avoid such bottlenecks. Media and graphics applications

are very popular on mobile devices, and operate on data frames. These applications have

a lot of temporal locality of data between producer and consumer IPs. This work show

that by operating a frame as an atomic block between different IPs, the reuse distances

are very high, and thus, the available locality across IPs goes unexploited. By breaking

the data frames into sub-frames, the reuse distance decreases substantially, and we can use

flow buffers or the existing memory controller queues to forward data from the producer to

consumer. Our results show that such techniques help to reduce frame latencies, which in

turn enhance the end-user experience while minimizing energy consumption.

Chapter 6
Virtualizing Flows in SoCs

6.1 Inefficiencies in Current Systems

Inefficiencies of CPU Interrupts and Per-frame Processing When running multiple

applications, multiple cores need to be active to setup IP calls and handle their interrupts.

Consequently, the cores are kept busy, increasing the overall energy consumption. Moreover,

even if the IPs are fast enough, such a dependency on the CPU to setup each IP for every

frame, will impact the overall system throughput.

Performance Inefficiencies due to shared resources We also consider the other

factor that impacts the overall efficiency – amount of time that an IP is doing useful work

when it is active (processing one frame). As mobile devices start to support multiple

applications, increased contention for shared resources like system-agent, memory

controllers and DRAM leads to drop in utilization of the IPs. The average memory

bandwidth increases with the number of applications and the percentage of time when

memory is close to its peak bandwidth (¿80%) is typically high.

In nutshell, as mobile devices start to support more applications simultaneously, current

systems do not seem to scale. This is attributed to two main reasons – too frequent CPU

55

Energy
Efficiency

CPU
2 Slack for

display
Slack for
display

CPU 1App 1

CPU 2

IP 1 IP 2

IP 1 IP 2App 2 Stall for IP1

Frame Display

CPU 1 IP 1 IP 2

Frame Display

CPU 1App 1

CPU 2

IP 1
IP 2

Slack for
display

App 2

Stall for IP1

Deadline Miss

CPU 1

CPU 2

CPU 1App 1

CPU 2App 2

CPU 1App 1

CPU 2App 2

Frame drops

(a) Baseline: State-of-the-art System

(b) IP-to-IP Communication without Memory Stalls

(c) Frame Bursts + (b)

(d) VIP: Virtualizing IP + (b) + (c)

Energy
Efficiency

Performance

Energy
Efficiency

Performance

Energy
Efficiency

Performance

Performance

Slack for
display

Frame Display Frame Display

Slack for
display

Slack for
display

Drop current frame

IP 2
IP 1
IP 2

IP 1
IP 2

IP 1
IP 2

IP 1

IP 1
IP 2

IP 1
IP 2

IP 1
IP 2

CPU
1

CPU
1

CPU
2

IP 1
IP 2

Slack for
display

IP 1
IP 2

IP 1
IP 2

IP 1
IP 2

CPU 2

~60% Util. ~80% Util. ~60% Util. ~80% Util.

~60% Util. ~80% Util.

100% Util.

100% Util.

100% Util.

100% Util.

100% Util.

100% Util.

100% Util.

100% Util.

100% Util.

100% Util.

100% Util.

100% Util.

CPU
1

Avoided

CPU1

Avoided

QoS

QoS

QoS

QoS

Not
Avoided

Figure 6.1: Detailed Overview Of Virtualization at Multiple Levels

interrupts and memory stalls affecting IP throughput. Even with multiple applications, we

see that IPs are not fully utilized, hence adding more IPs will not resolve the problem.

6.2 VIP: Virtualizing IP Chains

We propose to tackle the issues mentioned above in the context of IP-data flows on handhelds

uses a similar solution strategy to network routing. Even if flits of a message move hop-

by-hop from one switch to the next, they do not necessarily need the source involvement

56

after an end-to-end channel is set up (in wormhole routing and circuit switching strategies),

making it a lot more efficient for bulk data transfers (with is the case with these bulky

frames). Further, each such message is relatively isolated from another (i.e., blocking of one

message is not always holding up network resources that could allow another to proceed)

by virtualizing these channels of data flow in the network [70,71] in the shared resources.

We propose to chain individual IPs and expose a smarter interface to this integrated

chain, there by relieving the main CPU core from explicitly moving frames across IPs.

Further, by introducing a burst mode of operation, the CPU can send several such frames

in one burst through this chain, avoiding the need to take interrupts upon completion of

each frame. While these two enhancements alone can enhance the throughput of frame

flows and energy efficiencies, we may consequently lose out on the orchestration that the

CPU was doing earlier in scheduling individual frames of multiple applications to ensure

their QoS needs. As a result, this work additionally incorporates enhancements to conduct

rate-based flow control/scheduling mechanisms to meet each frame’s QoS requirements.

Overview of Our Proposed Solutions

Figure 6.1 illustrates the overall idea with the incremental addition of each technique

proposed. Part (a) shows the baseline system where the CPU invokes IPs and orchestrates

control flow for each frame. (b) on the other hand depicts the scenario when IPs

communicate between themselves without using memory as an intermediary. In this

technique, core sends a “super-request” that flows through a sequence of IPs. This

technique eliminates memory stalls, and as a result, we expect improvement in per-frame

processing time of IPs. In (c), we propose Frame-Bursts where the CPU sends a a burst of

these super-requests at one instant. Through this frame burst, the CPU schedules a set of

frames at once instead of orchestrating IPs for each frame. This reduces CPU active time

and interrupts substantially. Finally, in (d), we propose applications reserving virtual data

channels across multiple IPs - our VIP scheme. Such a methodology ensures that each

57

application can meet its QoS requirement. We propose to achieve this via fine-grained

hardware level virtualization of the IPs, where they can context switch between multiple

requests when needed. This not only increases the throughput, but also limits the impact

of head-of-the-line blocking problem if an IP is heavily used by one application.

In the parts below, we discuss each of the above-mentioned parts in greater detail.

IP-to-IP Communication

As discussed earlier in this dissertation, memory stalls play a major role in curtailing IP

utilization to sub-optimal numbers. To overcome this problem, a few recent works have

proposed direct IP-to-IP communication [20, 58, 101], where IPs avoid explicit reading or

writing of frames to DRAM memory, and directly forward their output to the next IP

through caches or flow buffers. Clearly, this enables more effective communication between

the producer and consumer IPs leading to reduced memory stalls. Speed mismatch between

the IPs is accounted for by careful buffer-sizing and fine-grain synchronization between the

IPs. In this proposal, we simply adopt this solution to overcome the memory problem.

This IP-to-IP communication enables looking at a sequence of multiple IPs as a single

unified resource as each IP autonomously communicates with the next when needed. This

eliminates the CPU from needing to setup each IP in a chain of IPs for a frame. Instead

the CPU just instantiates the chain of IPs in different flows. Instead data flows through a

sequence of IPs avoiding intermediate memory operations.

Frame Bursts

While IP-to-IP communication relieves the CPU from intra-frame inefficiencies, it still needs

to do the task of setting up data frames, pointers, and has to trigger the IP-flow for each

frame. (See Not Avoided arrow in Figure 6.1.)

58

To further reduce such inefficiencies across frames, we propose “frame bursts” – where

CPUs send aggregated requests to the IPs instead of sending them one by one for each frame.

The frame burst request sent to the first IP contains a header packet with information about

the processing requirements (such as FPS, frame sizes and IPs in sequence). The IPs can

work on them continuously without interrupting the CPU core allowing them to go into

longer and deeper sleep state, hence saving energy. This solution will need the CPU to

intervene only once every n-frames, where n is chosen in correspondence with application

requirements.

In this work, we consider three major classes of commonly used applications where we

apply frame bursts: (i) video playback which include any video playing or streaming apps,

(ii) video encoding which includes video recording, photo-capture, Skype, Google Hangout

and other similar ‘recording’ apps, and finally, (iii) gaming based applications – any touch

or flick/swipe based games. Note that the flows considered in these three applications are

representative of display bound Android applications.

Video playback and Video Encoding Applications: These applications employ

common video formats like VP8/H264 and are apt for frame bursts. Every uncompressed

full-frame (known as independent-frame) in the video is followed by n predicted frames.

Typically, the distance between the independent frames (called as GOP size) is less than

20 frames to keep the quality of video high [102]. During video playback, some videos have

variable GOP sizes. Each set of frames in between independent frames can be directly

scheduled using a single frame burst. In video encoding apps, this GOP size can be varied,

and is usually determined by the user. Burst size can be the same as chosen GOP size or a

few frame-bursts can capture the GOP. Due to this, in encoding apps, there is better

control and uniformity when choosing the burst sizes. Having a larger burst size will

improve energy savings and performance.

Game Applications: These applications need careful attention as the frame burst

sizing can affect game-play and user-interactivity. A large burst of frames means the

59

graphics and display pipeline will be occupied and the CPU can avoid polling for each

frame. Therefore, when a user touches or swipes, the system might not be as responsive as

before since the core needs to wake up (or context switch from a different job), leading to

reduced interactivity and feedback. In lieu of this, to tailor this technique for gaming

apps, we considered an open-source versions of a popular game, Flappy Bird [103]

(touch-based). We instrumented the code of the game to capture user-touch behavior.

With the help of 20 users (of varying degrees of player efficiency), each playing both the

games for at least 10 minutes, we captured a typical game play behavior.

0%

2%

4%

6%

8%

10%

12%

14%

<
0

.1
5

0
.2

0
.2

5

0
.3

0
.3

5

0
.4

0
.4

5

0
.5

0
.5

5

0
.6

0
.6

5

0
.7

0
.7

5

0
.8

0
.8

5

0
.9

0
.9

5 1

1
.0

5

1
.1

1
.1

5

1
.2

1
.2

5P
e

rc
e

n
ta

g
e

 o
f

T
a

p
s

Time Interval Between Two Taps(s)

Figure 6.2: Distribution of percentage of frames in between two taps in
FlappyBird*

In Figure 6.2, we plot the average time taken between user-touches for Flappy-Bird. We

note that rapid successive clicks will be at least 0.15 sec apart, with most touches (> 60%)

above 0.5 seconds. Note that 0.15 seconds translate to a leeway of around 10 frames (for a

60 FPS game). With a frame burst of size 5, two frame bursts can comfortably fit in this

duration.

Note that, in applications similar to above, frame bursts will always improve frame

time and FPS. We observed that for gaming apps, with 10 frames per burst, system

responsiveness remains unaffected.

60

IP1

IP2
IP3

IP4

IP5

Data Flow

Block

Buffers

Figure 6.3: Combining Frame-Bursts and IP-to-IP communication leads to
Head-Of-Line blocking by shared IPs.

Consequences of Fusing Frame-Bursts and IP-to-IP Communication

While the above two solutions address parts of the larger problem at hand, together they

introduce a new problem. With IP-to-IP communication, IPs are configured to communicate

directly with the next IP. In essence, all IPs together form a chain to produce the frames.

With frame-bursts, CPU schedules a number of frames and does not intervene for every

frame, expecting all tasks to be complete. But, consider a multiple applications scenario

with an IP being shared across their respective data flows. Here, one application’s frame-

burst could occupy a chain of IPs, and thus, the shared IP could be blocked for considerable

periods (for the duration of a full frame-burst, e.g. 80ms for a 60-FPS 5-frame burst).

Such a scenario will allow only one of the applications to progress at one point (shown in

Figure 6.3), with the other being blocked resulting in QoS violations. Earlier the CPU

(Android) was involved in each frame and could thus avoid such violations. By removing

the CPU out of the equation, some other component (the hardware) has to take on this

role to ensure QoS, which serves as the motivation for our solution in the next section.

6.3 Advantages of VIP

The aim of VIP is to enable IP-to-IP communication, circumventing source (CPU)

involvement as well as avoiding head-of-line blocking phenomena caused in the multiple

application execution scenario, as explained above. One of the commonly used networking

techniques to avoid Head Of Line (HOL) blocking in routers is to virtualize the channels

61

IP1

IP2

IP3

IP4

IP5

APP2

Core2

APP1

Core1

Data flow IP Buffers Buffer Scheduling Logic

Figure 6.4: VIP Solution with Multiple Applications

such that even if one path is blocked, messages in other paths can still pass through. It is

the process of time sharing the data path by multiple messages that prevents blocking.

Inspired by virtual-channels, we propose to virtualize the IP data paths by concurrent

requests with the goal of preventing HOL blocking, enabling each application to

independently progress to meet its QoS.

Virtualizing IP flows has three major advantages:

• First, when the IP-chain is instantiated by the CPU, akin to network messages, source

intervention is avoided. Data flows from the source to destination routed appropriately

through the IPs present in the flow. Further, as the data “flows” from one to another, the

detour through memory and the CPUs is avoided. This reduces memory energy, CPU

energy, and data transfer latency across IPs by minimizing the data movement across the

system.

• Second, it satisfies individual application QoS requirements of each co-existing data

flow. With multiple applications, each may have its own frame rate requirements. If one

application has a slow frame rate, with frame bursts enabled, it might occupy one IP or a

chain of IPs for a considerable amount of time, thereby preventing other applications from

progressing. By allowing concurrent data flows, VIP enables multiple applications to

progress individually.

• Third, due to virtualization, IPs maintain independent contexts for each request, and

62

thus, it gives them complete control to manage their resources in the most efficient way.

Traditionally, they are controlled by the CPU (their software drivers), which is unaware of

the memory stalls or hardware level bottlenecks faced by the IPs. With fine grained

control over which request to prioritize at every instant, along with enabling IP-to-IP

communication, overall IP utilization are maximized.

An illustration of multiple apps sharing IP3 is shown in Figure 6.4. IP3 has two sets

of input and output registers, along with contexts for storing requests from both core 1

and core 2. Note that, maintaining the contexts of applications barely require a handful of

registers. As shown, IP3 partitions both the application’s data flow through its virtual data

channels. The scheduling logic controls the rate at which both applications progress and

determines who gets the available compute/IP resources at any point in time. It also makes

sure that both requests progress at the rate determined by the applications and meet their

respective deadlines. We propose to use a simple EDF (earliest deadline first) scheduling

policy when there are multiple requests.

6.4 Evaluation and Results

Applications and Workloads Used

Table 6.1 lists the frame-based applications studied in our evaluations. Since we focus on

efficiently supporting multiple applications in our work, we consider practical

combinations (commonly encountered scenarios) of the listed applications. These are

listed in Table 6.2 along with the reasoning behind choosing such a combination. All the

applications produce display frames, and involve multiple IPs to produce each frame (refer

to [44] for IP-abbreviations).

Evaluation Platform: For the initial part of the work, we used real systems including

Nexus 7, Asus Memo Pad8, Samsung S4 and S5 to understand application and system

behavior. In all the systems, as noted before, we use instrumented version of the the

63

App App Name IP Flows

A1 Game-1 GPU - DC; AD - SND
A2 AR-Game GPU - DC; CPU - VE - NW; AD - SND; MIC - AE - NW
A3 Audio-Play CPU - AD - SND; CPU - DC
A4 Skype CPU - VD - DC; CAM - VE - NW; AD - SND; MIC - AE - NW
A5 Video Player CPU - VD - DC; AD - SND
A6 Video Record CAM - IMG - DC; CAM - VE - MMC; MIC - AE - MMC
A7 Youtube CPU - VD - DC; AD - SND

Table 6.1: Applications and their IP flows.

Wkld Application Combinations Use-case

W1 2 Video-Play Concurrent multiple Video Playback from disk
W2 1 HD-Video + 2-video Playback Concurrent multiple Video Playback
W3 Video-Play + YouTube Youtube video played with video on disk
W4 Skype + Video-Play Watching video while teleconferencing
W5 Game-1 + Skype Online multi-player gaming
W6 AR-Game + Audio-Play Music playback from disk while gaming
W7 Video-Play + Video-record Recording while playing another video
W8 Video-Play + AR Game Multiplayer gaming with video-streaming

Table 6.2: Multiple Applications Workloads.

Processor ARM ISA; 4-core processor; In-order 1-issue
Caches 64KB cache line; 32 KB L1-I; 32KB L1-D; 512 KB L2

Memory LPDDR3; 4 channel; 1 rank; 8 Banks
Vdd = 1.2V; tCL,tRP ,tRCD = 12, 12, 12 ns

IP Parameters Aud.Frame: 16KB frame; Vid.Frame: 4K (3840x2160)
Camera Frame: 2560x1620

Required FPS: 60 (16.66ms)

Table 6.3: Evaluation platform details.

Grafika application suite released by Google for video playback, encoding, and recording.

We use ftrace [104] to understand interrupt and kernel behavior running stock Android

4.4.2. Instrumented applications along with their ftraces were used in determining the time

between successive user taps (or flicks) to figure out the optimal frame burst sizes for each

application. Since implementing IP-to-IP communication and our proposed VIP scheme

require hardware modifications, we implemented them on a simulation framework. Our

evaluation framework builds on top of the GemDroid framework [44], which uses Android

open-source emulator to capture complete system-level behavior. GemDroid performs trace

based simulation of the full platform. Further details about the platform including each

components parameters is in Table 6.3.

64

Results

While motivating the need for virtualizing IP chains in Section 6.2, we showed in Figure 6.1

(d) that VIP should provide benefits in all three aspects – energy, performance and QoS.

Below, we present these benefits obtained using VIP, which combines all the enhancements

proposed in this work. There are 4 possible systems that we compare VIP with : the

Baseline system available today, Frame Burst (which just uses Frame Burst on top of the

Baseline without IP-to-IP communication support), IP-to-IP (which has IP chaining but no

Frame Burst Support), and IP-to-IP with Frame Burst (but no virtualization and hardware

scheduling).

0

0.2

0.4

0.6

0.8

1

1.2

A1 A2 A3 A4 A5 A6 A7 W1 W2 W3 W4 W5 W6 W7 W8 AVG

N
o

rm
a

li
z
e

d
 e

n
e

rg
y

p
e

r
fr

a
m

e

Baseline FrameBurst IP-to-IP IP-to-IP W FrameBurst VIP

One App Multi App

Figure 6.5: Energy Efficiency of VIP.

0

10

20

30

40

50

60

70

80

0

5

10

15

20

25

30

35

40

45

50

A
1

A
2

A
3

A
4

A
5

A
6

A
7

W
1

W
2

W
3

W
4

W
5

W
6

W
7

W
8

A
V

G

%
 I

n
s
tr

u
c
ti

o
n

s
 r

e
d

u
c
e
d

%
 R

e
d

u
c
ti

o
n

 i
n

 C
P

U
 e

n
e
rg

y

% Reduction in CPU Energy

% Instructions Reduced (w.r.t Baseline)

One App Multi App

0

5

10

15

20

25

30

35

40

45

50

A
1

A
2

A
3

A
4

A
5

A
6

A
7

W
1

W
2

W
3

W
4

W
5

W
6

W
7

W
8

A
V

G

#
 o

f
In

te
rr

u
p

ts

(p
e
r

1
0
0
m

s
)

Baseline Frame Burst

One App Multi App

Figure 6.6: Improved energy efficiency of CPUs handling interrupts and
scheduling frames with Frame Burst. (a) Shows reduction in CPU energy and

executed instructions. (b) Shows reduction in the number of interrupts
processed by the CPU.

Energy Efficiency: First, we plot the energy benefits of the evaluated schemes in

Figure 6.5 normalized with respect the baseline. The energy benefits are primarily due to

65

3 reasons – (i) reduced CPU energy, (ii) reduced data movement, and (ii) reduced IP stalls

(causing IPs to complete their work faster). Of these, the last two effects are more visible

in Figure 6.5 when IP-to-IP direct transfer is enabled (the last 3 bars for each workload).

To understand the impact of frame bursts, we separately study the energy consumption

of the CPU in Figure 6.6. On an average, the CPU consumes ∼25% lower energy when frame

bursts are enabled. This is due to the reduction in the number of instructions executed

(shown in the figure). With CPU not needing to handle each frame, it executes fewer

instructions as it does not need to save the driver/app context every time. Further, since

it has longer gaps before processing (5 frames of gap), it goes to deeper sleep states. These

CPU energy savings due to frame bursts, lead to ∼10% savings in the system level energy

shown in Figure 6.5.

The IP-to-IP communication has a substantial impact on energy savings as is clearly

visible in the last three bars. This is because of the decreased number of memory

bandwidth/accesses, and the lower stall time for the IPs (reducing their static power).

With VIP, in some cases, as the IPs context switch across concurrent requests, IPs

producing data for the next IP do not get blocked resulting in energy savings. Overall,

with VIP, we achieve extra energy savings of ∼ 22% over a system with IP-to-IP

communication.

25

50

75

100

125

150

A1 A2 A3 A4 A5 A6 A7 W1 W2 W3 W4 W5 W6 W7 W8 AVG

R
e

d
u

c
ti

o
n

 i
n

 P
e

r
F

lo
w

 T
im

e

(n
o

rm
a

li
z
e

d
 t

o
 B

a
s
e

li
n

e
) Baseline FrameBurst IP-to-IP W FrameBurst VIP

0.25

0.50

0.75

1.00

1.25

1.50

One App Multi App

Figure 6.7: Normalized flow time per frame with VIP.

66

Performance: Frame bursts with IP-to-IP communication provides two benefits.

First, as we can see in Figure 6.6, the number of interrupts (shown per 100ms) reduces

substantially, primarily because each IP directly communicates with the next IP instead

of interrupting the core. Second, as IPs communicate directly with each other bypassing

the memory, core utilization reduces as the average percentage of instructions reduces by

40% due to reduction in number of interrupts. Although not shown here due to space

constraints, the proposed virtualization support reduces core and memory utilization, while

improving IP utilization. As an overall performance metric, we plot the reduction in flow

time per frame for the three different techniques in Figure 6.7. For example, let us consider

the video player application. If memory is used to transfer data from one IP to the next,

approximately 12-14 MB of data needs to be read+written to DRAM per 1080p frame.

This translates to 700MB-800MB data movement per second. For a 4K frame, this is 3-

4 GBPS. With IP-to-IP communication, we avoid this memory traffic, thereby reducing

IP stalls, reducing memory utilization and flow processing time. With Frame Bursts, we

observe an improvement of about 20% in frame processing time. With VIP, when there are

multiple requests contending for a resource, due to context switching overheads, and because

the locality at memory gets disturbed, we see a slight loss in performance compared to the

burst mode. However, as we will see next, the burst mode faces significant QoS violations

compared to VIP in the multiple application scenario, thereby demonstrating the overall

advantages of VIP.

Meeting Quality-Of-Service Deadlines: Figure 6.8 depicts the QoS benefits of the

proposed scheme in terms of normalized frame drop rate with respect to the base line design.

Though we see performance improvements and energy reduction in Frame Bursts and IP-

to-IP with Frame Bursts, they cause serious degradation in QoS for all eight workloads.

This is because, when one application progresses, the other application is blocked, resulting

in increase in overall frame drop rate. VIP mitigates this problem by enabling time division

multiplexing of the IP between both applications. With EDF scheduling implemented in the

IP’s hardware, requests closer to their deadline get prioritized leading to fewer frame drops.

67

0

0.5

1

1.5

2

2.5

A1 A2 A3 A4 A5 A6 A7 W1 W2 W3 W4 W5 W6 W7 W8 AVG

N
o

rm
al

iz
ed

 Q
o

S
V

io
la

ti
o

n
s Baseline FrameBurst IP-to-IP IP-to-IP W FrameBurst VIP

One App Multi App

Figure 6.8: VIP enabling meeting QoS deadlines with IP-to-IP communication
and Frame bursts.

Overall, while IP-to-IP communication reduces frame drops by 5%, with frame bursts and

EDF in place, VIP helps reduce ∼15% frame drops compared to the baseline.

6.5 Conclusions

Current IP interfaces are grossly insufficient for the emerging class of frame based

applications that stream frames of data through several IP cores. The problem gets

exacerbated with multiple such applications running on a platform. The main CPU cores

that are continuously engaged in the processing of each frame, and the memory system

serving as the conduit for data flow, are some of the points of contention and inefficiencies

on such systems. Despite running multiple applications, many of which may use the same

IP cores, the utilizations of these accelerators is not very high, suggesting that throwing

more hardware to serve these multiple applications is not necessarily the best option.

Instead, this work proposes a new paradigm for creating Virtual IP chains (VIP) to

address the throughput and energy inefficiencies of current designs. VIP employs three

complementary innovations to achieve this goal. First, we enable multiple applications to

use IP-to-IP chaining for direct data transfer avoiding the memory system overhead.

Second, we propose a burst-mode transfer, where a CPU can initiate the processing of

several frames through the virtual IP chain without being involved/interrupted for each

68

frame. Third, akin to the virtual channel flow control in the networking domain, we

provide a virtual path for each flow to enforce proportional sharing of IPs for satisfying

the QoS guarantees. Our experimental evaluations with two-application workloads

provides 22% energy saving, 10% improvement in frame processing time and 10%

improvement in frame drop rate compared to just enabling IP-to-IP communication.

Chapter 7
Energy Management in Handhelds

SoC platforms employ DVFS policies to manage the energy consumption and performance

of a system. These governors adjust the frequencies of different hardware components in

the system to minimize the energy consumption or achieve the required performance.

7.1 Existing Power Management Policies

From a broader perspective, energy management policies can be viewed along two different

dimensions: (a) infusing domain awareness into the policy, and (b) co-ordination across

different components. Existing works in this area mostly fall under one of the combinations

of the above two dimensions – Ê policies that are domain-aware, but only one component is

taken into account; Ë policies that independently optimize multiple components but do not

consider domain knowledge; and Ì policies that coordinatedly manage multiple components

but do not consider domain knowledge. To our knowledge, there are NO prior Í domain-

aware coordinated policies, where multiple components like CPU cores, accelerators, and

memories are considered together on handhelds, and domain-knowledge application-slack is

leveraged.

70

Optimal: As a yardstick for comparison, we describe an optimal DVFS scheme which

assumes that the exact slack for each frame is known at the beginning of the frame. Using

this slack as input to a dynamic programming (brute-force) algorithm, the most energy

efficient frequency settings for core, memory and IPs are found while making sure

performance constraints are met. This is the upper-bound scheme, which gives the best

energy efficiency but not implementable. Note that even if the slack is known ahead for

each frame, this scheme incurs a complexity of O(M*Nn*An), where M is number of

frequency settings for the memory, N is number of cores and n is number of frequency

settings for core/accelerator, A is number of accelerators.

In the following discussion, we describe some of the previously proposed schemes in

categories Ê, Ë, and Ì, and motivate our proposal for Í using their deficiencies.

7.1.1 Domain-Aware, Single-Component DVFS

Application specific systems like MPEG-decoders, image-recognition devices, and smart-

cameras have specific application properties that allow for specialized DVFS policies [105–

109]. These policies use the domain knowledge to their advantage to achieve their goal.

They target the frequency of the highest power consuming component on board, typically

the main processor.

OracleCPU: As there is a large body of such work [105–113]) that have proposed DVFS

solutions for various domains, we choose to implement an ideal oracle single-component

DVFS policy that targets only the CPU cores (called Oracle-CPU). This policy will utilize

oracle knowledge of each frame’s slack to push the main CPUs into their optimal most

energy-efficient frequency point. Frequencies of all other components are set at their highest

values.

71

7.1.2 Independent, Multi-Component DVFS

These policies manage energy consumption of different components on-board

independently (without coordination). Each component has its own energy management

policy to manage its frequency, either to reduce the energy or increase

performance [38, 39, 56, 114]. In current SoC platforms, many components including CPU

cores, GPUs, and other high power consuming accelerators have their own DVFS policies

which are independent of each other. Specifically, in Android, CPU DVFS policy comes in

multiple flavors (called governors [115] as they govern the performance of cores). We

consider the following 4 representative policies in this space of independent

multi-component DVFS policies.

HighPerformance governor puts all components at their highest frequency settings

with the goal to achieve the best performance.

PowerSave governor locks all the components in lowest frequency setting to achieve

least power (not necessarily least energy).

OnDemand governor (default in Android) sets the frequencies of components based

on the utilization. Frequency of a component is set to maximum when utilization goes

beyond a threshold (typically 90%) and gradually reduces once the utilization falls below

the threshold.

ComponentOptimal runs all components (CPU and IPs) at their respective energy-

efficient optimal points (the knees in the respective energy curves for various frequencies)

and memory at default 433 Mhz without taking performance into consideration. Although

this governor has the least energy consumption, as all components are in their most energy-

efficient point, it may not deliver the required performance.

72

7.1.3 Coordinated, Multi-Component DVFS

In a system with multiple components, frequency settings for one component can effect

other components. For example, setting the frequency of memory can impact the

performance of core and vice versa. A coordinated DVFS policy, manages frequencies of

multiple components [37,116], taking such mutual impact into consideration.

CoScale [37] is an example of a coordinated DVFS policy, which scales CPU and

memory frequencies together to achieve minimal energy consumption in servers. We note

that there has been no such prior proposal in the context of handheld platforms and we

simply use CoScale, a coordinated strategy across CPUs and memory, for our own platform

even though it has been originally proposed for servers. The idea behind CoScale is to

scale the CPU and memory frequencies together while keeping the performance within user

defined tolerance. At the beginning of each epoch (5 ms), CoScale profiles the CPU and

memory behavior for a short period (300 us) and builds models for energy and performance

estimation. Using these models, it runs a greedy heuristic algorithm to determine the

frequencies for CPU and memory that achieves minimal energy consumption.

The main problem with DVFS policies like CoScale is that they do not have application

domain knowledge – how much slack is there, what components are needed to process a

frame, and how much processing is needed from each such component, etc. Sampling may

not really reveal all the details of the flow within a frame. While these techniques can work

well for general server systems, in our scenario, lack of domain awareness can be a serious

setback.

7.2 Energy Savings with Existing DVFS Policies

In Figure 7.1, we plot the energy consumed by the above schemes for different applications.

All the energy numbers on y-axis are normalized to the Optimal scheme which yields the

73

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

N
o

rm
a
li

z
e
d

 E
n

e
rg

y
 R

a
n

g
e
s

MP-GameSkype Video-Rec. Facebook

OracleCPU OnDemand

PowerSave CoScale

HighPerf

ComponentOptimal

Figure 7.1: Energy consumption of different DVFS schemes, normalized to
Optimal.

least energy consumption when there are no frame drops. Their corresponding frame drop-

rates are shown in Table 7.1.

First, the Optimal policy is not only ideal in terms of meeting the performance needs

of all the frames, but it also has energy consumption close to ComponentOptimal in most

cases. We can see that the domain-aware single-component policy (Oracle-CPU) fares well

in two applications (Skype and Videorecord) but lags behind in others. The four

independent multi-component policies have different energy and performance

characteristics. The HighPerformance governor consumes the maximum energy, while

meeting the deadlines to display all frames. PowerSave runs all components at the lowest

frequency, thus missing most frames (sometimes even complete frames), thus doing less

work. OnDemand governor is relatively better in energy efficiency than HighPerformance

as it has the same performance as HighPerf with slightly lower energy consumption. The

ComponentOptimal governor consumes the least energy, as all components run at their

most energy-efficient point, but misses around 75% of the frames on average. CoScale

presents different behaviors depending on the performance degradation parameter selected

(10% degradation results are shown here) – being very energy efficient in some cases (as in

Videorecord) and missing most deadlines in other cases. Overall, one can conclude that

the existing policies are optimized for either energy saving or high performance but not

both. In this work, we propose DVFS policies that try to achieve the best of both worlds.

74

Performance
Policy Skype Video-Record Facebook MP-Game

OracleCPU Displays all frames
OnDemand Displays all frames

HighPerformance Displays all frames
PowerSave Misses all frames

ComponentOptimal 37 95 94 0
CoScale 0 58 17 0
Optimal Displays all frames

Table 7.1: Performance of different DVFS schemes, given in terms of number
of frame deadlines that were met.

Governor Performance

On Demand Displays all frames
High Performance Displays all frames
Power Save Misses all frames
Optimal Displays 75% frames
Optimal (Perf) Displays all frames

7.2.1 Inefficiency of existing approaches

To understand their shortcomings, we delve deeper into the gaps of two representative

DVFS policies, the default OnDemand governor (independent multi-component) and CoScale

(coordinated multi-component), and motivate the need for a slack-aware coordinated multi-

component DVFS.

CORE
VD

DC

Mem.

Freq

CPU+IP

Freq

16 ms

IP behavior not

captured
Wasted Memory Energy

(due to late profiling)

Wasted Slacki ii
iii

Sampling

Point 1

Sampling

Point 2

Sampling

Point 3

Sampling

Point 4

Figure 7.2: Problems with profiling based DVFS policies.

• Utilization based DVFS may be too late to react: OnDemand is a utilization

(history) based DVFS policy. Based on the profile information obtained in the last 10 ms, it

decides the core frequencies for the next 10 ms (5 ms if set to aggressive). Assuming similar

policies for the accelerators, we notice that a reactive change in frequency based on load at

75

a coarse granularity (of 5 or 10 ms) does not yield the best results. This is because most

IPs typically take a very short time (around 5 ms) when processing a frame and may not

even be sampled. As shown in Figure 7.2, the third sampling point occurs only at the end

of the 16 ms and hence misses the opportunity to change memory frequency to its optimal

value. Thus, appropriate frequencies for the IPs need to be set at the start of processing a

frame, as being reactive misses energy saving opportunities.

• Profile and Prediction based DVFS may not capture application

semantics: Profile-based DVFS policies, similar to CoScale, profile for a short span (300

us) and predict the performance of the system for the next ‘n’ ms. These policies assume

that the same set of IPs running during the profiling phase will operate till at least the

next sampling period. Unfortunately, such an assumption does not hold true in these

platforms, where all IPs are not active all the time. Without such information when

processing a flow, these policies are handicapped and miss out on the opportunity to

operate in the most energy-efficient frequency. This is also shown in Figure 7.2 case (i)

where frequency of VD cannot be set appropriately as the component behavior was not at

all sampled. Note that sampling at a higher rate adds substantial overhead in terms of

energy and performance. In fact, Android does not support sampling faster than 5 ms.

• Difficulty of finding an appropriate performance degradation tolerance per

application and the need for a dynamic tolerance: In server and other throughput

based systems targeted in CoScale, there is a well-defined performance degradation metric

(like Cycles Per Instruction) that is more continuous. In mobile platforms, particularly

for display-based applications, performance is a rather discrete variable - frame deadline

is either met or missed. For example, a tolerance of 20% performance degradation might

translate to zero frame drops and a tolerance of 21% can lead to significant number of frame

drops. There is no well-defined translation from required frame rate (used in handheld

systems) to CPI (used in server systems). To demonstrate this problem, we plot the unused

slack (indication of frame rate) and energy saving (normalized to 1% tolerance) for different

76

tolerance% values (between 1% to 100%) in Figure 7.3. As we see, tolerance value has

a dramatic effect on unused slack and energy savings in different applications. In Video-

Recorder, moving the tolerance from 1% to even 5% causes significant increase in frame

drops. We also observe that, the same tolerance percentage in one application might leave

a lot of slack (like Video-Player), or, it misses a lot of frames (as in Video-Recorder) making

a case for per application tolerance values. Even within an application, one tolerance setting

for the whole execution also may not be suitable because of the dynamic behavior.

0.85

0.9

0.95

1

-10

-7.5

-5

-2.5

0

2.5

5

1 5 10 25 50 100

Perf. Degradation Allowed

E
n

e
rg

y
 (

n
o

rm
a

li
z
e

d
 t

o

1
%

 P
e

rf
.
D

e
g

ra
d

a
ti

o
n

)

S
la

c
k

U

n
u

s
e
d

 (
in

 m
s

) Slack Energy

(a) Video-Recorder App.

0.85

0.9

0.95

1

0

2

4

6

8

10

1 5 10 25 50 100
Perf. Degradation Allowed

E
n

e
rg

y
 (

n
o

rm
a

li
z
e

d
 t

o

1
%

 P
e

rf
.
D

e
g

ra
d

a
ti

o
n

)

S
la

c
k

 U
n

u
s

e
d

 (
in

 m
s

) Slack Energy

(b) Video-Player App.

Figure 7.3: CoScale’s performance and energy behavior for different
performance degradation thresholds (shown on x-axis from 1% to 100%).

Need For Slack Awareness and Coordination across IPs: The above analysis

suggests that we need to (1) leverage the frame-level slack information, and (2) take into

account the specific IPs involved in an application flow and their processing times for good

energy performance trade-offs. However, trying to get all such information in an application

oblivious manner through just sampling is very hard.

7.3 Proposed Domain Aware Energy Management

This section describes our proposed coordinated DVFS schemes which takes

domain-awareness (application slack) into account. Towards this goal, we need a

prediction of slack per frame (described next), which is then used by our policies. In this

section, we describe our slack prediction mechanism, and explain how our policies use it to

determine energy-efficient frequency settings.

77

Slack Prediction Mechanism: Our target applications have more-or-less uniform

slack distribution throughout the execution. From our experiments, we observed that a

moving average of the slack from the 3 previous frames can be a good predictor of the

slack in the next frame, because if there is contention for resources, it is experienced across

multiple frames.

Allocating the available slack to multiple IPs with different energy characteristics is a

multi-parameter optimization problem. Although the Optimal (brute-force) scheme

described in previous section is slack-aware and coordinated, the search space for this

optimization includes all possible combinations of frequency settings for all components.

Recall that the complexity of such a policy is O(m*Nn*An), where m is number of

frequency settings for the memory, N is number of CPU cores, and n is number of

frequency settings possible for a core/accelerator. Therefore, we resort to more practical

heuristic-based algorithms that have a complexity of O(m*(N+A)*n).

1. Collect time took and energy spent by each
component in previous frame

2. Predict slack based on recent history

3. For each IP in the application flow and memory
i. Compute the energy difference from energy at optimal

frequency

ii. Compute the time difference from time at optimal frequency

iii. Compute the ratio of energy difference and time difference

4. Sort the components based on the energy-time
ratio

(a) Common Algorithm to both Policies.

If (slack < 0), [do same as in Greedy case]

While (slack > 0) {

i. Select component with highest energy-time

ratio

ii.Reduce the frequency of the selected component

till optimal frequency is reached

}

While (optimal frequency is not reached) {

i. Estimate energy saving & slack needed to

reduce the frequency by one step

ii.Inc. frequency of component with lowest

energy-time ratio to create slack

iii.Use created slack to reduce the frequency of

the component selected in step 1

}

While (slack < 0) {

i. Select component with lowest energy-

time ratio

ii.Increase the frequency of the

selected component as much as

possible to make slack positive

iii.If slack > 0, then return

}

While (slack > 0){

i. Select the component with next

highest energy-time ratio

ii.Reduce the frequency of the selected

component till optimal freq. to use

the slack

}

Greedy Policies Kaldor-Hicks (K&H)

(b) Policy Description.

Figure 7.4: Algorithm employed to compute frequencies for components using
greedy and K&H policy

7.3.1 Greedy Policies

Towards this, we explore using greedy algorithms that push different components to lower

frequencies. For these policies, when slack is predicted to be available (positive slack), a

particular component is chosen (as per policy), and its frequency is reduced until either

the optimal frequency for the component is reached or the remaining slack becomes zero.

If further slack remains, the next component is chosen and the process continues. If the

78

predicted slack is negative, we move the chosen components to higher frequencies. The

order in which the components are chosen is based on the following heuristics.

Max Energy First (MEF): In this policy, we first order the components used by the

application based on the total amount of energy consumed in the previous frame for each

flow. We then target the components in increasing order of energy consumed.

Most to Gain First (MGF): While the above scheme targets the component

consuming maximum energy, it ignores the possibility that the highest energy consumer

might already be near its optimal point. Because the component energy curves are

concave in nature, as we move closer to the optimal energy point, benefits in moving to

even lower frequencies diminish. To take this into account, in this policy, we rank the

components based on the difference between energy consumed by it at its current

frequency and its optimal frequency, since this is the most we can hope to gain from this

particular component.

Slope (4E/4T) First (SDT): The above two policies consider only the energy side

of the picture. However, reducing the frequency of a component has also a cost associated

with it in terms of increasing processing time, diminishing the slack. The consequent lower

slack left provides less room for energy savings in other components. On the other hand, if

we target a component that will reduce energy but does not use up the slack much, it can

potentially give more overall benefits since multiple components involved in the flow can be

moved to lower frequencies. Particularly, components which are already near optimal give

minimum benefits in terms of energy, but consume a large portion of slack. We implement

this scheme by ranking the components based on the ratio of energy saved to the slack

consumed for the next frequency jump for each component, and choose the one with the

maximum value.

79

7.3.2 Kaldor-Hicks Compensation Policy (K&H)

Note that, in the above three policies, if enough slack is present, we never move a chosen

component to a higher frequency. Therefore, one can view these policies as

Pareto-efficient, because at no point during the execution the algorithm would make a

component worse off to make another well off.

On the other hand, it may sometimes pay off to slightly increase the energy of some

component to get significant savings in another. Kaldor-Hicks Compensation [8] captures

some of the intuitive appeal of Pareto efficiency, but has less stringent criteria allowing

more such options to be considered. Under this theory, an outcome is more efficient if those

components that are made better off could in theory compensate those that are made worse

off and in total can lead to a globally optimal outcome.

In this policy, we target the component that will create the most slack with least increase

in energy when its frequency is increased. We then increase its frequency to a point of enough

slack that allows another (more energy consuming component, i.e., 4E/4slack) to move to

a lower frequency. This process is repeated until such a trade-off seems inefficient.

7.4 Results

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Frames Processed

M
e

m
 a

n
d

 I
P

 F
re

q
u

e
n

c
y
 (

G
H

z
)

C
P

U
 F

re
q

u
e
n

c
y
 (

G
H

z
)

CPU Memory VD

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Frames Processed

M
e

m
 a

n
d

 I
P

 F
re

q
u

e
n

c
y
 (

G
H

z
)

C
P

U
 F

re
q

u
e
n

c
y
 (

G
H

z
) CPU Memory VD

Figure 7.5: Dynamic behavior of SDT Greedy Policy and Kaldor&Hicks policy
in YouTube app.

Evaluation Metrics: We use the amount of energy consumed (in milli-joules) per

80

frame as the metric to compare the energy efficiency of different DVFS policies. For

performance, we use the percentage of frames dropped by the application. Note that, if a

frame is dropped during execution, it is not counted towards FPS, but it contributes

towards the energy consumed.

Results We present the energy and performance results seen across the set of DVFS

policies evaluated in this work. We added support for all these policies in our evaluation

platform. Also, an application’s run time is kept constant (few tens of seconds), while we

ran the same part of the trace for all policies, with the same 60 FPS requirement.

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

0.5
0.7
0.9
1.1
1.3
1.5
1.7
1.9
2.1
2.3
2.5

N
o

rm
a

li
z
e

d
 E

n
e

rg
y

p
e

r
F

ra
m

e

Figure 7.6: Energy Per Frame normalized to the Optimal policy for Skype and
Angry Birds applications.

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

N
o

rm
a

li
z
e

d
 E

n
e

rg
y

p
e

r
F

ra
m

e

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

Figure 7.7: Energy Per Frame normalized to the Optimal policy for Facebook
and VideoRecord applications.

The plots in Figure 7.6, Figure 7.7, Figure 7.8, show the energy per frame for six different

applications We normalized the energy consumed per frame to the Optimal policy. Recall

that Optimal is an ideal energy-efficient policy with performance guarantees.

In the results shown, the OracleCPU policy is the ideal version of any single-component

DVFS policy. We see that even such an ideal implementation consumes 37.8% more energy

81

0.5

0.7

0.9

1.1

1.3

1.5

1.7

1.9

2.1

0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4

Figure 7.8: Energy Per Frame normalized to the Optimal policy for
multi-player game and VideoPlayback applications.

DVFS Policy VidPlay VidRec Skype AngryBirds Facebook MPGame
OracleCPU 0 0 0 0 0 0
OnDemand 0 0 0 0 0 0
HighPerf 0 0 0 0 0 0
PowerSave All frames dropped (100%)

ComponentOpt 0 95 37 0 94 0
CoScale 0 58 0 0 17 0
MEF 0 3 3 0 12 0
MGF 0 3 4 0 10 0
SDT 0 3 9 0 12 0
K&H 0 3 4 0 10 0

Optimal 0 0 0 0 0 0

Table 7.2: Frames dropped (in %) for different policies.

than the optimal case on average. This is attributed to the fact that this policy does not

adjust the frequencies of components other than CPU cores. However, for the Facebook

app, OracleCPU is only 2% worse than optimal. This is because the application is core

bound, and thus CPU cores consume the major part of energy. Note that, this policy does

not miss any frame deadlines since all the components other than CPU are running at

highest frequency.

Among the independent multi-component DVFS policies, as expected,

HighPerformance and OnDemand policies are among the highest energy consumers of all

the governors shown, while they guarantee the best performance. On the other hand,

while PowerSave and ComponentOptimal policies conserve more energy than the Optimal

case, they do less work because they drop a significant fraction of frames, as can be seen

in Table 7.2.

82

For the domain-unaware coordinated policies, we focus on CoScale1. As shown

previously in Figure 7.3, the degradation tolerance value selected can have a significant

impact on energy efficieny and performance characteristics. We chose the tolerance value

for CoScale in 3 ways, tuned for – performance (in Skype and Youtube), energy efficiency

(in VideoRecord and Facebook) and balancing both (in VideoPlay, Angrybirds and

MPGame). Correspondingly, we see no frame drops in the case of performance, close to

optimal energy consumption with energy efficienct tolerence value, and the balanced case

strikes a middle-ground. Please note that, although CoScale algorithm can select the best

available frequency combination for different IPs, it performs sub-optimally due to not

being able to effectively use all the slack for each frame because of the reasons explained

in Section 7.2.1.

Next, we analyze our greedy policies: MEF, MGF and SDT. We find that SDT performs

better than or equal to MEF and MGF in all cases. While all three focus on the maximum

energy consuming component in some form, SDT is the only one which considers the time

contribution of the component towards the slack consumed.

Finally, let us analyze the energy efficiency and performance of the K&H

compensation policy. Overall, we observe that our greedy and K&H policies are within 9%

of the optimal; which is 22% and 23% better respectively, than the Android default

OnDemand governor. Further, in almost all cases, K&H is more energy-efficient than

CoScale for an iso-performance scenario. We note that CoScale can be tuned for energy

efficiency, by selecting a high performance degradation tolerance, in which case it will be

very energy-efficient (in some cases within ∼1% of Optimal) but at the cost of higher

frame drops. For example, in case of VideoRecord and Facebook, we see that the energy

consumption of CoScale is close to Optimal. However, from the performance perspective,

CoScale performs much worse than our policies in those applications, as shown in

Table 7.2.

1For CoScale, we set the performance degradation value (for each application) to strike a trade-off between
energy-efficiency and performance.

83

To understand the reason why K&H is better than Greedy, let us consider Figure 7.5,

which shows the dynamic nature of these two policies over a duration of 40 frames in YouTube

app. Particularly, note the VD frequency variations across these policies. We observe that

K&H pushes VD (an energy efficient component) to higher frequencies (than SDT) and

saves memory (a high-energy consuming component) from increasing its frequency. This

is because K&H pushes some low-energy consuming/high-slack providing components to

higher frequency, and keeping other components at lower frequency. We wish to stress

that, although the energy improvements from K&H seem marginal overall, it outperforms

the greedy policies in frame-drop rate (shown in Table 7.2), particularly when there are

multiple concurrent flows happening (e.g., Skype).

Based on the above analysis, one can clearly conclude that domain-aware coordinated

energy management policies have an edge over the rest of the policies.

7.5 Conclusions

Minimizing energy consumption in mobile devices is critical to improve battery life.

Current DVFS techniques are sub-optimal as they do not take into account – the

voltage-frequency states of the multiple IPs and the application characteristics such as

available slack time per frame in a coordinated fashion. Towards this, the dissertation

presents a coordinated, multi-IP and slack-aware DVFS policies to minimize the overall

system energy with minimal performance impact. Experimental evaluations show that our

DVFS policies saves on average ∼23% energy across the system, and is within ∼9% of a

theoretically-optimal policy. This is one of the first works that presents a slack-based,

coordinated DVFS framework for energy management in handheld platforms, an area that

is relatively little explored compared to server platforms.

Chapter 8
Conclusions and Future Work

8.1 Conclusions

The propensity of tablets and mobile phones in this handheld era raises several interesting

challenges. At the application end, these devices are being used for a number of very

demanding scenarios (unlike the mobiles of a decade ago), requiring substantial

computational resources for real-time interactivity, on both input and output sides, with

the external world. On the hardware end, power and limited battery capacities mandate

high degrees of energy efficiencies to perform these computational tasks. Meeting these

computational needs with the continuing improvements in hardware capabilities is no

longer just a matter of throwing high performance and plentiful cores or even accelerators

at the problem. Instead, a careful examination and marriage of the hardware with the

application and execution characteristics is warranted for extracting the maximum

efficiencies. In other words, a co-design of software and hardware is necessary to design

energy- and performance-optimal systems, which may not be possible just by optimizing

the system in parts. With this philosophy, this dissertation proposes a set of four software

and hardware optimizations at different levels of system stack for high performance and

energy-efficient handheld platform design.

85

• First, the dissertation describes the infrastructure that was built to simulate and

evaluate handheld platforms. This comprehensive simulation infrastructure is called the

GemDroid, and is comprised of two primary layers. The first layer provides emulation

of Android OS by the Google Android Emulator [7] and allows us to capture system-

level interaction between multiple IPs and I/O devices, including OS activities. What the

emulator cannot provide is the timing information of different IP activities and therefore, as

the second layer, we integrate/build the timing piece using existing simulation platforms or

model them analytically as needed for different IPs. The framework is flexible for integrating

models of varying complexities for the cores and IPs. Such an infrastructure would open-

up possibilities in evaluating and proposing new micro-architectural solutions to improve

performance and energy efficiency of handheld systems.

• Second, the dissertation proposes a novel heterogeneous memory controller (HMC)

design for SoCs, where one MC is dedicated for latency critical core requests and the

second MC is optimized to enhance the bank-level parallelism of the memory requests it

serves. These controllers can be further customized by employing different (memory request)

scheduling strategies and targeting different optimization metrics. These controllers handle

the core and IP requests differently. For IP requests, it maximizes the bank-level parallelism

as they are bandwidth constrained requests. For core requests, it minimizes the latency

by improving row buffer hits, as they are latency constrained requests. The two memory

controllers are designed such that they are still responsible for two distinct (non-intersecting)

address ranges, there by avoiding synchronization issues. We conclude that incorporating

such an heterogeneous design for memory controllers results in better performance and user

experience.

• Third, the dissertation proposes a new paradigm for creating hardware IP chains and

virtualizing them to address the throughput and energy inefficiencies of current designs.

This paradigm employs three complementary innovations to achieve this goal. First, we

enable multiple applications to use IP-to-IP chaining for direct data transfer avoiding the

86

memory system overhead. Second, we propose a burst-mode transfer, where a CPU can

initiate the processing of several frames through the virtual IP chain without being

involved/interrupted for each frame. Third, akin to the virtual channel flow control in the

networking domain, we provide a virtual path for each flow to enforce proportional

sharing of IPs for satisfying the QoS guarantees. Experimental evaluations with

two-application workloads shows substantial energy saving, and improvement in frame

processing time compared to just enabling direct IP-to-IP communication. We conclude

that IP-chaining and virtualization in handhelds can have a transformational impact on

designing such platforms, without having to simply throw more hardware resources at

meeting future demands. We could “do more with less”.

• Fourth, the dissertation makes a case for the need for recognizing performance slack in

the applications when performing such DVFS for the different components. Towards that,

we propose a frame-aware coordinated multi-component DVFS framework that leverage

frame-level slack and utilization information of components predicted at frame boundaries.

In this context, we propose two mechanisms, called Greedy policy and Kaldor-Hicks [8]

compensation policy (K&H). The Greedy policy in turn examines three different options:

Maximum Energy First (MEF), Most to Gain First (MGF) and Slope (4E/4T) First

(SDF). The K&H policy can even choose energy inefficient options for one component,

while offsetting this with higher energy savings in another. Experimental evaluations show

that such schemes improves energy efficiency by approaching ideal energy usage scenario,

as all components use minimal amount of energy with the constraint that they meet the

deadline together. We conclude that such co-ordinated domain aware DVFS schemes are a

promising way to improve energy efficiency in handheld platforms.

87

8.2 Future Research Directions

The next generation platforms are heading towards wearables and Internet-Of-Things (IoT)

where all devices are always “connected” to each other. Each device is specialized for it’s

own functionality, with energy efficiency built-in each one of them. However, they have been

built agnostic to a Li-ion battery’s physical and chemical characeristics, as well as agnostic

to other co-running applications/components in the system. Due to these factors, possible

exciting future research includes 1) utilizing battery characteristics for energy savings, 2)

scheduling among accelerator requests and memory requests for high performance and more

energy savings.

8.2.1 Utilizing Battery Characteristics for Energy Savings

Towards the end of battery run-time, around last 15% of battery, peaks in power trace start

to play a major role. A bigger peak at that time can drain the voltage much quicker, and

hit the cut-off voltage quicker. Otherwise, having a peak or not does not seem to make

any difference. The run-time improvements that we obtain are only because of voltage not

reaching cut-off voltage quickly, thus we are able to use more capacity from the battery.

In ideal case, that is, when we compare a real application’s power trace which have big

peaks (and where no DVFS is applied) to a constant power draw of their average power,

we see average improvement of less than 3-4%. For some applications, particularly if the

applications are not drawing more than 1.5 C current, only limited benefits can be obtained.

For a 2600mAH battery, 1.5 C equals to around 15W.

Our smart-phones (with 2600MAh) have to be stressed a lot to touch even 8 Watts once

is a while. This is less than 1C actually. For example, when we run a graphics intensive

game, along with artificially forcing all cores to always stay at maximum frequency whenever

they turn on. Plus, our phones forcibly throttle back if they reach 8W, mainly because of

88

thermal reasons. The maximum in all use-cases possible with multiple applications, we

touched 10 to 11 W once in a while, after which we could not measure power because our

power monitor shuts down.

Potential Benefits: A simple experiment was conducted, where we plotted the

difference between amplitude of voltage drops in a power profile with peaks vs a constant

draw. As explained above, peaks reduce voltage considerably towards the end 70% of

state of charge, when the battery reaches the cut off 3.2V and stops. When we run

workloads such that we execute 5 minutes of an application, and a standby period, we

notice that the time increases by some 5 to 10%. We noticed that this is because, even 1%

availability of extra capacity provided by normalizing the peaks gives a lot more stand-by

time, because standby reduces voltage very slowly. Thus even 15 to 20% of increase in

standby time in possible if we start from 20% state of charge. When we run workloads

from 100% SOC, we see those big numbers averaging out for the whole duration, and end

up with 4% even for ideal experiments.

Thus, we expect that if handhelds operate at high C-rates or their battery model is

such that it provides them with higher voltage drops when peaks are present in their power,

then there is substantial energy benefit by applying peak reduction technique. Peaks with

10.5W and valleys with 2.5W drains the battery a lot compared to a constant draw for a

2000 mAh battery.

Using “unaffected battery with peaks” to our advantage:

Utilizing the different behavior of the battery at different SoCs and proposing techniques

that suit the regions is also an interesting problem to explore. Because we see that peaks

do not affect the voltage much in the initial 95% to 25% of the battery, maybe we can ride

the wave and try to gain benefits from it. Currently, at times, CPU sleeps for less than 1

millisecond, and wakes up. It performs some job for less than 1 ms, and goes back to sleep.

Instead of intermittently waking up and getting back to sleep in C3 power state, cores can

do all jobs at once, and sleep at deeper power stats till the next frame.

89

To implement this proposal, the handheld platform needs to move into deeper power

states like C6 - where the whole core and platform is power gated, and they come back up

only when the next set of frames are to be processed. For more benefits, the core should

decode multiple frames (say 5 frames) at once, and go to deep sleep state C6, and wake up

only after 5 frames are shown.

8.2.2 Effective Scheduling

As the next generation platforms are fitted with more components likes more cores with

heterogeneous core, heterogeneous IPs with more functionality, there is a pressing need to

manage them more efficiently. Hence, an efficient way of scheduling tasks to cores and

requests to IPs are necessary for better performance and energy.

Accelerator Request Scheduling

Scheduling at the System agents (a.k.a. the north bridge in SoCs) is a critical task, and

can determine the performance in any mobile system. Such scheduling at the IP-level can

be achieved through two techniques:

• a non-work-conserving scheduler: either predicting the presence of concurrent flows which

access the same IPs and wait till the request from the shortest flow is served before serving

the longer flows, or,

• preemption within a frame: by preempting a long-running request from an IP and serving

the shorter flow-first (or earliest deadline first) before getting back to the preempted request.

Preemption of requests in an IP hardware leads to a work-conserving scheduler and such a

scheduler is needed for optimality.

Memory Scheduling

While this memory bottleneck problem can be tackled through provisioning more hardware

such as adding more memory/buffer as has been studied in the VIP (virtualizing IP chains)

part of this dissertation, this may not be a viable approach since not only the amount of extra

90

hardware grows with number of flows, but also the power consumption grows accordingly.

Instead, smarter solutions for addressing memory contention can be investigated.

As one option, one could explore intelligent memory scheduling of different flows. Just

meeting the timing requirements of individual frames or IPs is not sufficient to improve

the performance of multiple flows. Instead, an effective memory scheduler should consider

three intersecting parameters: (i) per-frame QoS requirements; (ii) awareness of existing

live flows in the system to schedule the required IPs in a coordinated fashion; and (iii) any

flow dependency in terms of shared IPs between flows. None of the existing scheduling

techniques for handhelds consider these three issues in unison.

Rate-proportional scheduling has been used extensively for scheduling periodic jobs

with timing constraints. Hence, borrowing these concepts and employing a

rate-proportional scheduling of memory requests at the memory controller can potentially

improve the performance of handheld devices.

Chapter 9
Publications

9.1 Five Significant Publications

[ISCA 2015]

Nachiappan Chidambaram N., Haibo Zhang, Jihyun Ryoo, Niranjan Soundararajan,

Mahmut Kandemir, Anand Sivasubramaniam, Chita R. Das

VIP: Virtualizing IP Chains on Handheld Platforms,

In International Symposium on Computer Architecture (ISCA), 2015.

[HPCA 2014]

Nachiappan Chidambaram N., Praveen Yedlapalli, Niranjan Soundararajan, Anand

Sivasubramaniam, Mahmut Kandemir, Ravi Iyer, Chita R. Das

Domain Knowledge Based Energy Management in Handhelds,

In High Performance Computer Architecture (HPCA), 2014.

[SIGMETRICS 2013]

Nachiappan Chidambaram N., Praveen Yedlapalli, Niranjan Soundararajan, Mahmut

Kandemir, Anand Sivasubramaniam, Chita R. Das

GemDroid: A Framework To Evaluate Mobile Platforms,

92

In International Conference on Measurement and Modeling of Computer Systems

(SIGMETRICS), 2014.

[MICRO 2014]

Praveen Yedlapalli, Nachiappan Chidambaram N., Niranjan Soundararajan, Mahmut

Kandemir, Anand Sivasubramaniam, Chita R. Das

Short-Circuiting Memory Traffic in Handheld Platforms,

In Microarchitecture (MICRO), 2014.

[ASPLOS 2013]

Adwait Jog, Onur Kayiran, Nachiappan Chidambaram N, Asit Mishra, Mahmut

Kandemir, Onur Mutlu, Ravi Iyer, Chita Das

OWL: Cooperative Thread Array Aware Scheduling Techniques for Improving GPGPU

performance,

In Architectural Support for Programming Languages and Operating Systems (ASPLOS),

2013.

9.2 Other Significant Publications

[MICRO 2014] Onur Kayiran, Nachiappan Chidambaram N., Adwait Jog, Rachata

Ausavarungnirun, Mahmut Kandemir, Gabriel Loh, Onur Mutlu, Chita Das

Managing Concurrency in Heterogeneous CPU-GPU Architectures,

In Microarchitecture (MICRO), 2014.

[PACT 2012] Nachiappan Chidambaram N., Asit K. Mishra, Mahmut Kandemir,

Anand Sivasubramaniam, Onur Mutlu, Chita Das

Application-aware Prefetch Prioritization in On-chip Networks,

In Parallel Architectures and Compilation Techniques (PACT), 2012.

Bibliography

[1] Gartner (2013) “Worldwide PC, Tablet and Mobile Phone Combined Shipments to

Reach 2.4 Billion Units in 2013,” .

[2] Cisco (2013) “Cisco Visual Networking Index: Forecast and Methodology,

2012:2017,” .

[3] for Semiconductors, T. I. T. R. (2008), “2008 Update,” .

URL http://www.itrs.net/

[4] Henning, J. L. (2006) “SPEC CPU2006 Benchmark Descriptions,” SIGARCH

Computer Architecture News, 34(4).

[5] Binkert, N., B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,

J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,

M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood (2011) “The Gem5 Simulator,”

SIGARCH Computer Architecture News.

[6] del Barrio, V., C. Gonzalez, J. Roca, A. Fernandez, and R. Espasa (2006)

“ATTILA: a cycle-level execution-driven simulator for modern GPU architectures,”

in ISPASS.

[7] Google (2014) “Android SDK - Emulator,” .

[8] Newman, P. (2004) in The New Palgrave Dictionary Of Economic and The Law.

[9] Steve Scheirey, D. S. (2013) Sensor Fusion, Sensor Hubs and the Future of

Smartphone Intelligence, Tech. rep., ARM Techreport.

[10] Engwell, J. (2013) The High Resolution Future Retina Displays and Design, Tech.

rep., Blurgroup.

[11] Engwell, J. Y. C. GPU Technology Trends and Future Requirements, Tech. rep.,

Nvidia Corp.

[12] Google (2014), “Android Developers,” http://developer.android.com/,.

http://www.itrs.net/
http://developer.android.com/

94

[13] ——— (2014), “OpenGL ES - Android Developers,” http://developer.android.

com/guide/topics/graphics/opengl.html,.

[14] ——— (2014), “RenderScript - Android Developers,” http://developer.android.

com/guide/topics/renderscript/compute.html.

[15] ——— (2014), “Google/Grafika,” https://github.com/google/grafika.

[16] Lee, K.-B. and T.-S. Chang (2006) Essential Issues in SoC Design Designing -

Complex Systems-on-Chip, chap. SoC Memory System Design, Springer.

[17] Akesson, B., K. Goossens, and M. Ringhofer (2007) “Predator: A Predictable

SDRAM Memory Controller,” in CODES+ISSS.

[18] Lin, Y.-J., C.-L. Yang, T.-J. Lin, J.-W. Huang, and N. Chang (2010)

“Hierarchical Memory Scheduling for Multimedia MPSoCs,” in ICCAD.

[19] Jeong, M. K., M. Erez, C. Sudanthi, and N. Paver (2012) “A QoS-aware

Memory Controller for Dynamically Balancing GPU and CPU Bandwidth Use in

an MPSoC,” in DAC.

[20] Yedlapalli, P., N. C. Nachiappan, N. Soundararajan, M. Kandemir,

A. Sivasubramaniam, and C. R. Das (2014) “Short-Circuiting Memory Traffic

in Handheld Platforms,” MICRO.

[21] Lim, K., D. Meisner, A. G. Saidi, P. Ranganathan, and T. F. Wenisch

(2013) “Thin servers with smart pipes: designing SoC accelerators for memcached,”

in International Symposium on Computer Architecture (ISCA).

[22] Fenney, S. (2003) “Texture Compression Using Low-frequency Signal Modulation,”

in HWWS.

[23] Han, K., A. Min, N. Jeganathan, and P. Diefenbaugh (2013) “A hybrid display

frame buffer architecture for energy efficient display subsystems,” in ISLPED.

[24] Khan, H. b. T. and M. K. Anwar Quality-aware Frame Skipping for MPEG-2

Video Based on Inter-frame Similarity, Tech. rep., Malardalen University.

[25] Patel, K., E. Macii, and M. Poncino (2005) “Frame Buffer Energy Optimization

by Pixel Prediction,” in ICCD.

[26] Shim, H., N. Chang, and M. Pedram (2004) “A Compressed Frame Buffer to

Reduce Display Power Consumption in Mobile Systems,” in ASP-DAC.

[27] Siqueira, H. M., I. S. Silva, M. E. Kreutz, and E. F. Correa (2011) “DDR

SDRAM Memory Controller for Digital TV Decoders,” in SBESC.

[28] Hauswald, J., T. Manville, Q. Zheng, R. Dreslinski, C. Chakrabarti, and

T. Mudge (2014) “A hybrid approach to offloading mobile image classification,”

http://developer.android.com/guide/topics/graphics/opengl.html
http://developer.android.com/guide/topics/graphics/opengl.html
http://developer.android.com/guide/topics/renderscript/compute.html
http://developer.android.com/guide/topics/renderscript/compute.html
https://github.com/google/grafika

95

in Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE International

Conference on.

[29] Gao, C., A. Gutierrez, R. Dreslinski, T. Mudge, K. Flautner, and G. Blake

(2014) “A study of Thread Level Parallelism on mobile devices,” in ISPASS.

[30] Wang, Y., B. Krishnamachari, Q. Zhao, and M. Annavaram (2010) “Markov-

optimal sensing policy for user state estimation in mobile devices,” in Information

Processing in Sensor Networks (IPSN), ACM.

[31] Goulding-Hotta, N., J. Sampson, G. Venkatesh, S. Garcia, J. Auricchio,

P. Huang, M. Arora, S. Nath, V. Bhatt, J. Babb, S. Swanson, and M. Taylor

(2011) “The GreenDroid Mobile Application Processor: An Architecture for Silicon’s

Dark Future,” IEEE Micro, 31(2).

[32] Zhu, Y. and V. J. Reddi (2013) “High-performance and Energy-efficient Mobile

Web Browsing on Big/Little Systems,” in High Performance Computer Architecture

(HPCA).

[33] Lee, K.-B., T.-C. Lin, and C.-W. Jen (2005) “An efficient quality-aware memory

controller for multimedia platform SoC,” Transactions on Circuits and Systems for

Video Technology.

[34] Balasubramanian, N., A. Balasubramanian, and A. Venkataramani (2009)

“Energy Consumption in Mobile Phones: A Measurement Study and Implications for

Network Applications,” in IMC.

[35] Carroll, A. and G. Heiser (2010) “An Analysis of Power Consumption in a

Smartphone,” in USENIX ATC.

[36] Chung, Y.-F., C.-Y. Lin, and C.-T. King (2011) “ANEPROF: Energy Profiling

for Android Java Virtual Machine and Applications,” in ICPADS.

[37] Deng, Q., D. Meisner, A. Bhattacharjee, T. Wenisch, and R. Bianchini

(2012) “CoScale: Coordinating CPU and Memory System DVFS in Server Systems,”

in MICRO.

[38] Deng, Q., D. Meisner, L. Ramos, T. F. Wenisch, and R. Bianchini (2011)

“MemScale: Active Low-power Modes for Main Memory,” in ASPLOS.

[39] Deng, Q., D. Meisner, A. Bhattacharjee, T. F. Wenisch, and R. Bianchini

(2012) “MultiScale: Memory System DVFS with Multiple Memory Controllers,” in

ISLPED.

[40] Lee, B., E. Nurvitadhi, R. Dixit, C. Yu, and M. Kim (2005) “Dynamic

voltage scaling techniques for power efficient video decoding,” Journal of Systems

Architecture, 51(1011).

96

[41] Xiao, Y., R. S. Kalyanaraman, and A. Yla-Jaaski (2008) “Energy Consumption

of Mobile YouTube: Quantitative Measurement and Analysis,” in NGMAST.

[42] Gutierrez, A., R. Dreslinski, T. Wenisch, T. Mudge, A. Saidi, C. Emmons,

and N. Paver (2011) “Full-system analysis and characterization of interactive

smartphone applications,” in IISWC.

[43] Pandiyan, D., S.-Y. Lee, and C.-J. Wu (2013) “Performance, Energy

Characterizations and Architectural Implications of An Emerging Mobile Platform

Benchmark Suite : MobileBench,” in IISWC.

[44] Chidambaram Nachiappan, N., P. Yedlapalli, N. Soundararajan,

A. Sivasubramaniam, M. Kandemir, and C. R. Das (2014) “GemDroid: A

Framework to Evaluate Mobile Platforms,” in SIGMETRICS.

[45] Huang, Y., Z. Zha, M. Chen, and L. Zhang (2014) “Moby: A mobile benchmark

suite for architectural simulators,” in ISPASS.

[46] Lee, C., E. Kim, and H. Kim The AM-Bench: An Android Multimedia Benchmark

Suite, Tech. rep., Georgia Institute of Technology.

[47] Pathak, A., Y. C. Hu, M. Zhang, P. Bahl, and Y.-M. Wang (2011) “Fine-

grained Power Modeling for Smartphones Using System Call Tracing,” in EuroSys.

[48] Zhu, Y. and V. J. Reddi (2013) “High-performance and Energy-efficient Mobile

Web Browsing on Big/Little Systems,” in HPCA.

[49] Janapa Reddi, V., B. C. Lee, T. Chilimbi, and K. Vaid (2010) “Web Search

Using Mobile Cores: Quantifying and Mitigating the Price of Efficiency,” in ISCA.

[50] Falaki, H., D. Lymberopoulos, R. Mahajan, S. Kandula, and D. Estrin

(2010) “A First Look at Traffic on Smartphones,” in IMC.

[51] Sunwoo, D., W. Wang, M. Ghosh, C. Sudanthi, G. Blake, C. D. Emmons,

and N. Paver (2013) “A Structured Approach to the Simulation, Analysis and

Characterization of Smartphone Applications,” in IISWC.

[52] Ubal, R., B. Jang, P. Mistry, D. Schaa, and D. Kaeli (2012) “Multi2Sim: A

Simulation Framework for CPU-GPU Computing,” in PACT.

[53] Pathak, A., Y. C. Hu, and M. Zhang (2012) “Where is the Energy Spent Inside

My App?: Fine Grained Energy Accounting on Smartphones with Eprof,” in EuroSys.

[54] Chen, L., W. Chen, B. Wang, X. Zhang, H. Chen, and D. Yang (2011)

“System-level simulation methodology and platform for mobile cellular systems,”

IEEE Communications Magazine.

[55] Guo, P., “Simulation and Testing of Mobile Computing Platforms using Fujaba,” .

97

[56] Diniz, B., D. O. G. Neto, W. M. Jr., and R. Bianchini (2007) “Limiting the

power consumption of main memory.” in ISCA.

[57] Loghi, M. and M. Poncino (2005) “Exploring energy/performance tradeoffs in

shared memory MPSoCs: snoop-based cache coherence vs. software solutions,” in

Design, Automation and Test in Europe (DATE).

[58] Sungho, P., A. Ahmed, M. Kevin, C. Aarti, C. Matthew, C. Nandhini,

D. Michael, and N. Vijaykrishnan (2012) “System-On-Chip for Biologically

Inspired Vision Applications,” IPSJ transactions on system LSI design methodology.

[59] Irick, K. and N. Chandramoorthy (2014) “Achieving High-Performance Video

Analytics with Lightweight Cores and a Sea of Hardware Accelerators,” in ISVLSI.

[60] Ozer, E., N. Chong, and K. Flautner (2010) Processor and System-on-Chip

Simulation, chap. IP Modeling and Verification, Springer.

[61] Saleh, R., S. Wilton, S. Mirabbasi, A. Hu, M. Greenstreet, G. Lemieux,

P. Pande, C. Grecu, and A. Ivanov (2006) “System-on-Chip: Reuse and

Integration,” Proceedings of the IEEE Volume 96 Issue 6.

[62] Zhu, Y. and V. J. Reddi (2014) “WebCore: Architectural Support for Mobileweb

Browsing,” in International Symposium on Computer Architecuture, ISCA.

[63] Zhu, Y., A. Srikanth, J. Leng, and V. Reddi (2014) “Exploiting Webpage

Characteristics for Energy-Efficient Mobile Web Browsing,” Computer Architecture

Letters, 13(1).

[64] ”Yuhao Zhu, V. J. R., Matthew Halpern (2015) ”Event-based Scheduling for

Energy-Efficient QoS (eQoS) in Interactive Mobile Web Applications.

[65] Bhatt, V., N. Goulding-Hotta, J. S. Q. Zheng, S. Swanson, and M. B.

Taylor “Sichrome: Mobile web browsing in hardware to save energy,” in DaSi:

First Dark Silicon Workshop.

[66] Choi, K., K. Dantu, W.-C. Cheng, and M. Pedram (2002) “Frame-based

Dynamic Voltage and Frequency Scaling for a MPEG Decoder,” in International

Conference on Computer-aided Design, ICCAD.

[67] Mohapatra, S., R. Cornea, N. Dutt, A. Nicolau, and

N. Venkatasubramanian (2003) “Integrated Power Management for Video

Streaming to Mobile Handheld Devices,” in International Conference on Multimedia.

[68] Choi, K., R. Soma, and M. Pedram (2004) “Off-chip Latency-driven Dynamic

Voltage and Frequency Scaling for an MPEG Decoding,” in Design Automation

Conference (DAC).

98

[69] Popek, G. J. and R. P. Goldberg (1974) “Formal Requirements for Virtualizable

Third Generation Architectures,” Communications of the ACM, 17(7).

[70] Dally, W. and C. Seitz (1987) “Deadlock-Free Message Routing in Multiprocessor

Interconnection Networks,” IEEE Transactions on Computers.

[71] Dally, W. (1992) “Virtual-channel flow control,” IEEE Transactions on Parallel

and Distributed Systems, 3(2).

[72] Tanasic, I., I. Gelado, J. Cabezas, A. Ramirez, N. Navarro, and M. Valero

(2014) “Enabling preemptive multiprogramming on GPUs,” in International

Symposium on Computer Architecture (ISCA).

[73] Nvidia, “CUDA Multi Process Service Overview,” https://docs.nvidia.com/

deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf.

[74] ———, “NVidia Shared Virtual GPU (vGPU) Technology,” .

URL http://www.nvidia.com/object/virtual-gpus.html

[75] Menychtas, K., K. Shen, and M. L. Scott (2014) “Disengaged Scheduling for

Fair, Protected Access to Fast Computational Accelerators,” in ASPLOS.

[76] Kayiran, O., A. Jog, M. T. Kandemir, and C. R. Das (2013) “Neither More Nor

Less: Optimizing Thread-Level Parallelism for GPGPUs,” in PACT.

[77] Bienia, C. (2011) Benchmarking Modern Multiprocessors, Ph.D. thesis, Princeton

University.

[78] Das, R., O. Mutlu, T. Moscibroda, and C. R. Das (2010) “Aergia: Exploiting

Packet Latency Slack in On-chip Networks,” in ISCA.

[79] Kim, Y., M. Papamichael, O. Mutlu, and M. Harchol-Balter (2010) “Thread

Cluster Memory Scheduling: Exploiting Differences in Memory Access Behavior,” in

MICRO.

[80] Xu, K. (2008), “Nova : H.264/AVC Baseline Decoder,” OpenCores, rTL verified.

[81] Inc., M. S., “Monsoon Power Monitor,” http://msoon.com/LabEquipment/

PowerMonitor/downloads/PowerMonitor_ManualVer1.4.pdf.

[82] Bosomworth, D., “Mobile Marketing Statistics 2014,” http://www.

smartinsights.com/mobile-marketing/mobile-marketing-analytics/mobile-

marketing-statistics.

[83] Kim, Y., D. Han, O. Mutlu, and M. Harchol-Balter (2010) “ATLAS:

A Scalable and High-performance Scheduling Algorithm for Multiple Memory

Controllers,” in HPCA.

[84] Keltcher, C. N., K. J. McGrath, A. Ahmed, and P. Conway (2003) “The

AMD Opteron processor for multiprocessor servers,” IEEE Micro, 23(2), pp. 66–76.

https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf
https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf
http://www.nvidia.com/object/virtual-gpus.html
http://msoon.com/LabEquipment/PowerMonitor/downloads/PowerMonitor_ManualVer1.4.pdf
http://msoon.com/LabEquipment/PowerMonitor/downloads/PowerMonitor_ManualVer1.4.pdf
http://www.smartinsights.com/mobile-marketing/mobile-marketing-analytics/mobile-marketing-statistics
http://www.smartinsights.com/mobile-marketing/mobile-marketing-analytics/mobile-marketing-statistics
http://www.smartinsights.com/mobile-marketing/mobile-marketing-analytics/mobile-marketing-statistics

99

[85] Conway, P., N. Kalyanasundharam, G. Donley, K. Lepak, and B. Hughes

(2010) “Cache hierarchy and memory subsystem of the AMD Opteron processor,”

IEEE Micro, 30(2), pp. 16–29.

[86] Naveh, A., D. Rajwan, A. Ananthakrishnan, and E. Weissmann (2011) “Power

management architecture of the 2nd generation Intel ® Core microarchitecture,

formerly codenamed Sandy Bridge,” .

[87] Yuffe, M., E. Knoll, M. Mehalel, J. Shor, and T. Kurts (2011) “A fully

integrated multi-CPU, GPU and memory controller 32nm processor,” in IEEE

International Solid-State Circuits Conference Digest of Technical Papers (ISSCC),

IEEE.

[88] Lim, A. W. and M. S. Lam (1997) “Maximizing parallelism and minimizing

synchronization with affine transforms,” in Principles of programming languages

(POPL), ACM.

[89] Song, Y. and Z. Li (1999) “New tiling techniques to improve cache temporal

locality,” in ACM SIGPLAN Notices, vol. 34, ACM.

[90] Zhang, Y., W. Ding, M. Kandemir, J. Liu, and O. Jang (2011) “A data

layout optimization framework for NUCA-based multicores,” in Proceedings of the

44th Annual IEEE/ACM International Symposium on Microarchitecture, ACM.

[91] Bojnordi, M. N. and E. Ipek (2012) “PARDIS: A Programmable Memory

Controller for the DDRx Interfacing Standards,” in International Symposium on

Computer Architecture (ISCA).

[92] Shivakumar, P. and N. P. Jouppi (2001) Cacti 3.0: An integrated cache timing,

power, and area model, Tech. rep., Technical Report 2001/2, Compaq Computer

Corporation.

[93] Sha, T., M. M. K. Martin, and A. Roth (2005) “Scalable Store-Load Forwarding

via Store Queue Index Prediction,” in MICRO.

[94] Loh, G. H., R. Sami, and D. H. Friendly (2002) “Memory Bypassing: Not Worth

the Effort,” in WDDD.

[95] Rixner, S., W. J. Dally, U. J. Kapasi, P. Mattson, and J. D. Owens (2000)

“Memory Access Scheduling,” in International Symposium on Computer Architecture

(ISCA), ISCA.

[96] Samsung (2014), “Samsung Galaxy S5,” http://www.samsung.com/global/

microsite/galaxys5/.

[97] Apple, “Apple Iphone 5S,” https://www.apple.com/iphone/.

http://www.samsung.com/global/microsite/galaxys5/
http://www.samsung.com/global/microsite/galaxys5/
https://www.apple.com/iphone/

100

[98] Schwarz, H., D. Marpe, and T. Wiegand (2007) “Overview of the scalable video

coding extension of the H. 264/AVC standard,” IEEE Transactions on Circuits and

Systems for Video Technology, 17(9).

[99] Google, “Android HAL,” https://source.android.com/devices/index.html.

[100] Report, S. T. (2012), “WQXGA Solution with Exynos Dual,” http:

//www.samsung.com/global/business/semiconductor/minisite/Exynos/data/

Enjoy_the_Ultimate_WQXGA_Solution_with_Exynos_5_Dual_WP.pdf.

[101] Banakar, R., S. Steinke, B.-S. Lee, M. Balakrishnan, and P. Marwedel

(2002) “Scratchpad Memory: Design Alternative for Cache On-chip Memory in

Embedded Systems,” in CODES.

[102] Apple (2014), “Final Cut Pro 7 User Manual,” https://documentation.

apple.com/en/finalcutpro/usermanual/index.html#chapter=C%26section=12%

26tasks=true.

[103] cubei (2014), “cubei/FlappyCow,” https://github.com/cubei/FlappyCow.

[104] Linux, “ftrace - Function Tracer,” https://www.kernel.org/doc/Documentation/

trace/ftrace.txt.

[105] Chen, J.-J. and C.-F. Kuo (2007) “Energy-Efficient Scheduling for Real-Time

Systems on Dynamic Voltage Scaling (DVS) Platforms,” in Real-Time Computing

Systems and Applications, RTCSA ’07.

[106] Sanz, C., J. I. Gómez, C. Tenllado, M. Prieto, and F. Catthoor (2013)

“System-level Memory Management Based on Statistical Variability Compensation

for Frame-based Applications,” ACM Transactions on Embedded Computer Systems,

13(1s).

[107] Lee, B., E. Nurvitadhi, R. Dixit, C. Yu, and M. Kim (2005) “Dynamic

voltage scaling techniques for power efficient video decoding,” Journal of Systems

Architecture, 51(1011), pp. 633 – 652.

URL http://www.sciencedirect.com/science/article/pii/S1383762105000330

[108] Cao, Z., B. Foo, L. He, and M. van der Schaar (2008) “Optimality and

improvement of dynamic voltage scaling algorithms for multimedia applications,” in

Design Automation Conference (DAC).

[109] Choi, K., K. Dantu, W.-C. Cheng, and M. Pedram (2002) “Frame-based

Dynamic Voltage and Frequency Scaling for a MPEG Decoder,” in International

Conference on Computer-Aided Design (ICCAD).

[110] Isci, C., A. Buyuktosunoglu, and M. Martonosi (2005) “Long-term workload

phases: Duration Predictions and Applications to DVFS,” IEEE Micro.

https://source.android.com/devices/index.html
http://www.samsung.com/global/business/semiconductor/minisite/Exynos/data/Enjoy_the_Ultimate_WQXGA_Solution_with_Exynos_5_Dual_WP.pdf
http://www.samsung.com/global/business/semiconductor/minisite/Exynos/data/Enjoy_the_Ultimate_WQXGA_Solution_with_Exynos_5_Dual_WP.pdf
http://www.samsung.com/global/business/semiconductor/minisite/Exynos/data/Enjoy_the_Ultimate_WQXGA_Solution_with_Exynos_5_Dual_WP.pdf
https://documentation.apple.com/en/finalcutpro/usermanual/index.html#chapter=C%26section=12%26tasks=true
https://documentation.apple.com/en/finalcutpro/usermanual/index.html#chapter=C%26section=12%26tasks=true
https://documentation.apple.com/en/finalcutpro/usermanual/index.html#chapter=C%26section=12%26tasks=true
https://github.com/cubei/FlappyCow
https://www.kernel.org/doc/Documentation/trace/ftrace.txt
https://www.kernel.org/doc/Documentation/trace/ftrace.txt
http://www.sciencedirect.com/science/article/pii/S1383762105000330

101

[111] Aydin, H., R. Melhem, D. Mosse, and P. Mejia-Alvarez (2004) “Power-aware

scheduling for periodic real-time tasks,” IEEE Transactions on Computers, 53.

[112] Chen, G., K. Huang, J. Huang, C. Buckl, and A. Knoll (2013) “Effective

Online Power Management with Adaptive Interplay of DVS and DPM for Embedded

Real-Time System,” in Euromicro Conference on Digital System Design (DSD).

[113] Devadas, V. and H. Aydin (2012) “On the Interplay of Voltage/Frequency Scaling

and Device Power Management for Frame-Based Real-Time Embedded Applications,”

IEEE Transactions on Computers, 61.

[114] Mishra, A. K., R. Das, S. Eachempati, R. Iyer, N. Vijaykrishnan, and C. R.

Das (2009) “A Case for Dynamic Frequency Tuning in On-chip Networks,” in MICRO.

[115] Tyler, J. and W. Verdusko (2012) in XDA Developers’ Android Hacker’s Toolkit:

The Complete Guide to Rooting and theming.

[116] Chen, X., Z. Xu, H. Kim, P. Gratz, J. Hu, M. Kishinevsky, and U. Ogras

(2012) “In-network Monitoring and Control Policy for DVFS of CMP Networks-on-

Chip and Last Level Caches,” in International Symposium on Networks on Chip

(NoCS).

Vita

Nachiappan Chidambaram Nachiappan

Nachiappan Chidambaram N. was born in Tamil Nadu, India, in 1989. Nachi holds a bachelor’s
degree in Computer Science and Engineering from the Anna University, Tamil Nadu. He was a part
of WARFT (Waran Research Foundation) as research trainee during 2008-2010. Nachi joined Penn
State as a PhD student in 2010, and worked on SoC architectures under the supervisions of Prof.
Mahmut Kandemir and Prof. Chita R. Das. He served as a teaching assistant for C++ and Systems
Programming courses. His research has been published in top-tier computer architecture conferences
such as ISCA, HPCA, MICRO, ASPLOS, SIGMETRICS, and PACT. Nachi worked as an intern at
Intel Server Performance group in 2013, and Intel Software Services group in 2015, and was rated
“Outsanding” for his contributions.

	List of Figures
	List of Tables
	Acknowledgments
	Introduction
	Background and Related Work
	Background
	Overview of SoC Platforms
	Data movement in SoCs
	Decomposing an Application Execution into Flows

	Related Work

	GemDroid: A Simulation Infrastructure For Handheld Systems
	An Extendable Simulation Framework
	Model characteristics
	Capabilities of GemDroid

	Design of a Heterogeneous Memory Controller (HMC)
	Locality-Parallelism Tradeoff in Memory Design
	Overview of the Proposed Design
	Memory Region Separation
	Heterogeneity in Data Striping

	Results
	Conclusions

	Short-Circuiting Memory Traffic
	Overview
	Data Reuse and Reuse Distance
	Converting Data Reuse into Locality
	Flow-Buffering
	IP-IP Short-circuiting

	Implementation Details
	Correctness
	OS and Hardware Support

	Evaluation
	Conclusion

	Virtualizing Flows in SoCs
	Inefficiencies in Current Systems
	VIP: Virtualizing IP Chains
	Advantages of VIP
	Evaluation and Results
	Conclusions

	Energy Management in Handhelds
	Existing Power Management Policies
	Domain-Aware, Single-Component DVFS
	Independent, Multi-Component DVFS
	Coordinated, Multi-Component DVFS

	Energy Savings with Existing DVFS Policies
	Inefficiency of existing approaches

	Proposed Domain Aware Energy Management
	Greedy Policies
	Kaldor-Hicks Compensation Policy (K&H)

	Results
	Conclusions

	Conclusions and Future Work
	Conclusions
	Future Research Directions
	Utilizing Battery Characteristics for Energy Savings
	Effective Scheduling

	Publications
	Five Significant Publications
	Other Significant Publications

	Bibliography

