
The Pennsylvania State University
The Graduate School
College of Engineering

EVALUATING CLOUD WORKLOAD CHARACTERISTICS

A Thesis in
Computer Science and Engineering

by
Diman Zad Tootaghaj

© 2015 Diman Zad Tootaghaj

Submitted in Partial Fulfillment
of the Requirements
for the Degree of

Master of Science

December 2015

The thesis of Diman Zad Tootaghaj was reviewed and approved∗ by the following:

Mahmut T. Kandemir
Professor of Computer Science and Engineering
Thesis Advisor

Anand Sivasubramaniam
Professor of Computer Science and Engineering

Chita R. Das
Professor of Computer Science and Engineering

Mahmut T. Kandemir
Professor of Computer Science and Engineering
Head of the Department of Computer Science and Engineering or Graduate
Program

∗Signatures are on file in the Graduate School.

ii

Abstract

The combined impact of node architecture and workload characteristics on off-chip
network traffic with performance/cost analysis has not been investigated before
in the context of emerging cloud applications. Motivated by this observation, this
work performs a thorough characterization of different cloud workloads using a full-
system datacenter simulation infrastructure. We first study the inherent network
characteristics of emerging cloud applications including message inter-arrival times,
packet sizes, inter-node communication overhead, self-similarity, and traffic volume.
Then, we study the effect of hardware architectural metrics on network traffic. Our
experimental analysis reveals that (1) the message arrival times and packet-size
distributions exhibit variances across different cloud applications; (2) the inter-
arrival times imply a large amount of self-similarity as the number of nodes increase;
(3) the node architecture can play a significant role in shaping the overall network
traffic; and finally, (4) the applications we study can be broadly divided into those
which perform better in a scale-out or scale-up configuration at node level and into
two categories, namely, those that have long-duration, low-burst flows and those
that have short-duration, high-burst flows.
Using the results of (3) and (4), we discuss the performance/cost trade-offs for

scale-out and scale-up approaches and proposes an analytical model that can be used
to predict the communication and computation demand for different configurations.
It is shown that the difference between two different node architecture’s performance
per dollar cost (under same number of cores system wide) can be as high as 154
percent which disclose the need for accurate characterization of cloud applications
before wasting the precious cloud resources by allocating wrong architecture. The
results of this study can be used for system modeling, capacity planning and
managing heterogeneous resources for large-scale system designs.

iii

Table of Contents

List of Figures vi

List of Tables vii

Acknowledgments viii

Chapter 1
Introduction 1

Chapter 2
Motivation and Background 6
2.1 Motivation . 6
2.2 Background . 8

Chapter 3
Experimental Setup 10
3.1 Introduction . 10
3.2 Simulated Configurations . 10

3.2.0.1 Node Architectures 10
3.2.0.2 Network Architectures 12

3.3 Evaluated Workloads . 12
3.4 Evaluation Methodology . 13

3.4.1 Metrics . 13

Chapter 4
Network Characteristics’ of Applications 16
4.1 Introduction . 16
4.2 Traffic Volume . 16
4.3 Inter-arrival Times and Self Similarity 17

4.3.1 Packet Size Distribution . 22

iv

4.3.2 Concurrent Flow Analysis 23

Chapter 5
Evaluation 25
5.1 Communication over Computation Overhead 25

5.1.1 Performance Comparison of Different Architectures 27
5.1.2 Bandwidth Comparison between Scale-up and Scale-out . . . 28
5.1.3 Performance Cost Analysis 30

Chapter 6
Potential Implications 33
6.1 Introduction . 33
6.2 Potential Implications of evaluated metrics 33

Chapter 7
Related Work 38

Chapter 8
Conclusion 40

Bibliography 42

v

List of Figures

2.1 A three-layer datacenter architecture. 7

3.1 High-level view of the simulated architecture. 11

4.1 Traffic volume versus dataset size. 17
4.2 CDF of inter-arrival times for 40 nodes for pagerank. 18
4.3 CDF of packet sizes in the graph analytic and web benchmarks. . . 20
4.4 Estimating the Hurst parameter using different methods. 22

5.1 Execution time versus the number of nodes for pagerank using
default server architecture (architecture 1 in Table 3.2). 26

5.2 Performance improvement of three different configurations with
respect to the baseline. 28

5.3 Normalized execution time of three different network configurations
with respect to the baseline. 28

5.4 Scale-up approach with two and three cores per node versus scale-out
approach. 29

5.5 Average bandwidth usage of different benchmarks for scale-up and
scale-out approach. 30

5.6 Total cost of ownership for scale-out and scale-up approaches for
various server types ("A×B,C" means A times B-core C-socket server). 32

5.7 Speed up per kilo dollar cost for scale-out (48 single core machines)
and scale-up (12 quad-core machines). 32

6.1 Short burst long duration flow in kcore and high burst short duration
flows in directed triangle count. 37

vi

List of Tables

3.1 Node parameters and their default values. 11
3.2 Different node architectures considered in this work. 12
3.3 Different network architectures. 12
3.4 Evaluated workloads. 14

4.1 Hurst parameter estimation for different number of nodes. 19
4.2 Error and best fitting parameters of different distributions for packet

inter-arrival times in different benchmarks. 21
4.3 The comparative time analysis of the maximum number of concur-

rent flows for studied workloads. 24

6.1 Workload Classification (part 1). 34
6.2 Workload Classification (part 2). 35
6.3 Implications of the metrics of interest. 36

vii

Acknowledgments

I would like to express my gratitude to my supervisor, Dr. Mahmut Taylan
Kandemir, whose understanding, and patience, added considerably to my graduate
experience. I would like to thank the other members of my committee, Dr. Anand
Sivasubramanian, and Dr. Chita R. Das for the assistance they provided at all
levels of the research project.

I would also like to thank my family for the support they provided me through
my entire life and in particular, I must acknowledge my husband and best friend,
Farshid, without whose love, encouragement and editing assistance, I would not
have finished this thesis.

In conclusion, I recognize that this research would not have been possible without
the financial assistance of the Pennsylvania State University, the Department of
Computer Science and Engineering, and express my gratitude to them.

viii

Dedication

This thesis is dedicated to my parents and my husband, Farshid, for their endless
love, support and encouragement.

ix

Chapter 1 |
Introduction

Cloud computing is an emerging area where applications and IT infrastructure
are provided to users as service. In this new computing paradigm, infrastructure,
platform and software are made available to users as services. These services are
refered to infrastructure as service (IaaS), platform as service (PaaS), and software
as service (SaaS).
Cloud applications, ranging from interactive query-based jobs to high performance

computing applications are driving the development of current datacenters that
are composed of tens of thousands of nodes to handle extremely large amounts of
data processing and operation execution. Efficiently executing these applications
requires having sufficient computational, storage, and network bandwidth resources.
For example, many Map-Reduce jobs, have bursty network communications during
the map and data shuffling phases (1; 2). Similarly, many cloud applications
and high-performance computing (HPC) applications need high communication
bandwidth (3).
While every other aspect of datacenter performance have been improved drasti-

cally, network bandwidth and latency has been a source of performance degradation
in cloud computing for years (3; 4). High network latency abandons any hope for
getting performance benefit on large number of machines and makes the scale-out
approach (5; 6) challenging for network-intensive applications. On the other hand,
the ever-growing data sizes in Big Data era, that cannot be processed in a single
server or reside in memory makes distributed processing unavoidable. Therefore,
given a workload and a set of computational and storage resources, an in-depth
study of network traffic demand, can be the key to reducing costs and boosting

1

performance. Analyzing the combined impact of hardware architecture and work-
load can help cloud providers in designing performance/cost efficient datacenters.
The capital expense of networking is about 15 percent of the cost of a datacenter

as argued in (7). A significant part of this network cost is the cost of switches,
routers, electrical-to-optical (E/O) and optical-to-electrical (O/E) converters and
cabling to satisfy high bandwidth demand of cloud applications. To reduce the
capital cost of networking, most datacenters over-subscribe network resources which
are not always fully utilized.
Current datacenters are composed of tens of thousands of nodes to handle ex-
tremely large amounts of data and operations that belong to different applications.
Efficiently executing these applications requires having sufficient computational,
storage, and network bandwidth resources. Many Map-Reduce jobs, for example,
have bursty network communications during the map and data shuffling phases.
Similarly, many cloud applications and HPC applications need high communication
bandwidth.
There exists prior works (8; 9; 10) that studied workload characteristics and network
traffic in datacenters. High-performance computing (HPC) nodes produce higher
traffic bursts compared to low-performance computing nodes and on the other hand
can handle part of traffic within cores using inter-core interconnection network. In
addition to node architecture, the other factor that shapes message traffic is the
inherent temporal characteristics of the workload. Most of the previous studies on
network topology exploration employ either synthetic traffic or non-real workloads
(11; 12; 13). However, the hardware architectures employed by datacenters and
workloads are changing rapidly; as a result, the traffic patterns and application
characteristics taken from prior studies may not be applicable to current systems.
To the best of our knowledge, none of these studies investigated the impact of node
architecture and real workload characteristics on inter-node network traffic.
In addition, conventional trend in academia and industry suggests using a cluster

of commodity servers, which is called scale-out for cloud computing (5). Ap-
puswamy et al. (14) suggest adding more resources to a single server, which is
called scale-up approach. In this thesis, we discuss performance/cost trade-offs for
these controversial approaches for different cloud applications. We consider differ-
ent types of cloud workloads ranging from those that represent Map-Reduce and
client-server paradigms in CloudSuite (15; 16; 17) to memory-intensive large-scale

2

scientific computing benchmarks in Mantevo (18), and network-intensive parallel
graph algorithms in Graphlab (19; 20).
The main goal of this thesis is to study the combined impact of node architecture
(the number of cores, intra-node network, cache/memory hierarchy) and cloud
workload characteristics on inter-node network traffic as well as performance/cost
analysis. Using a set of twelve cloud workloads with different characteristics, the
specific research questions that we strive to answer can be summarized as follows:

• What is the message inter-arrival times’ distribution and packet size distribution
of different cloud workloads to regenerate the same traffic pattern?

• What factors affect the burstiness of network traffic in the cloud? How much
role does the node architecture play in order to design better network buffer
managements?

• What is the ratio of communication time over computation time for cloud work-
loads and how does it scale with respect to the volume of data to provision network
capacity for each cloud workload?

• How does the bandwidth requirements of different cloud benchmarks change with
respect to the basic node parameters such as the number of cores and cache/mem-
ory capacity? This observation helps a designer to provide enough network
resources when configuring resources to the current datacenter architecture.

• How much is the performance/cost of different workloads for scale-out or scale-up
approaches? which helps us to find the right way to expand the datacenter for
the running workloads.

• What is the impact of node architecture on network traffic and performance/-
cost? Which of scale-out or scale-up approaches is better for each studied cloud
workloads?

We carried out a series of experimental study using a full-system simulation that
gives us exploring the effect of hardware parameters on the system performance. It
also helps to isolate traffic pattern of different applications (21). We used a set of
modern workloads in cloud study including Cloudsuite (15; 16; 17), Mantevo (18)
and Graphlab (19; 20) benchmark suites. We also generalized experimental study
for large-sized datacenters to ease capacity planning and performance optimization.

3

We can derive the following results from our experimental study:

• The studied workloads can be categorized into three different groups: memory-
intensive applications, network bandwidth-intensive applications, and network
latency-sensitive applications. Applications belonging to different groups require
different design optimization considerations.

• Running network bandwidth-intensive or latency-sensitive applications on a scale-
out hardware architecture does not give us much performance/cost benefit com-
pared to the scale-up approach. On the other side, memory-intensive applications
scale well and the scale-out approach gives better performance/cost.

• For most of the studied cloud benchmarks, the packet inter-arrival times follow
lognormal or extreme value distribution, which is a long-tailed distribution and
causes self-similarity in network traffic. Self-similar traffic increases queue length
in the network and this degrades the performance of the system. There exist prior
works on how to perform buffer management in the presence of self-similarity in
network traffic (22). Self-similar traffic is quantified by a Hurst parameter. Larger
Hurst parameter represents higher self-similarity for a flow and more possibility
to congest the network. There exists a burstiness metric to quantify self-similarity
called Hurst parameter. When the hurst parameter is high for a specific flow, it
is possible that the self-similar flow fills up the queue. Consequently, if we knew
the self-similarity quantity of each application in advance, it would be possible
to employ better buffer management and achieve better performance. It was
observed that increasing the dataset size and the number of nodes increase the
hurst parameter for self-similarity. Static buffer management systems have a
fixed buffer size and, as long as the queue has enough capacity, they accept the
incoming packets. When the buffer is full, they discard the subsequent packets.

• We used the parameters of AMD Opteron server processors (23; 24) and observed
that the node architecture (e.g., number of cores, cache/memory capacity) plays
an important role on bandwidth; for instance, the effect of node configuration
(under the same number of cores system wide) can be as much as 40.7% on
execution time and 154% on performance per dollar; and the effect of network
configurations on execution time can be as much as 74%.

4

The rest of this thesis is structured as follows. Chapter 2 discusses the motivation
and background behind this work. Chapter 3 explains experimental setup. Chapter 4
studies network characteristics of studied workloads. Chapter 5 describes the
evaluation results. Chapter 6 summarizes the potential implications of our major
findings. Chapter 7 studies related work and finally Chapter 8 concludes the thesis.

5

Chapter 2 |
Motivation and Background

2.1 Motivation

With the rapid increase in consumer demands and increasing complexity of the
cloud applications, datacenter designers are steadily revisiting design of nodes and
network architectures in datacenters. As both applications and node architectures
are rapidly changing, analyzing the impact of both on network traffic is becoming
increasingly important. Large cloud computing vendors such as Facebook, Amazon,
and Google rely heavily on traditional network structures, which consist of two or
three levels of switch hierarchy shown in Figure 2.1 (8; 12).

As technology improves, more and more cores are being embedded into a single
node and the communication bandwidth requirement of datacenters keeps increasing.
As pointed out by prior studies (3; 4; 11), one of the main limitations of today’s large-
scale computing is the network communication latency and bandwidth. There have
been several prior studies attempted to find better network topologies and routing
algorithms in datacenters (11; 12). However, to our knowledge, there is no prior
work that characterizes the combined impact of machine architecture/parameters
and cloud application characteristics on the network traffic, performance/cost of
scalability. Such a study could help us identify the application’s specific bottlenecks
and ultimately reach cost-efficient datacenter designs for different characteristics
of cloud workloads. In addition, accurate workload characterization is important
for system modeling and capacity planning. Specifically, the capacity planning
for large-scale system design needs more accurate modeling and understanding of

6

Internet

ToR switches

Aggregate

switches

Core switches

Traditional

Datacenter Network

N
o

rt
h

-S
o

u
th

 (
in

/o
u

t)
 T

ra
ff
ic

East-West (node-to-node) Traffic

1Gbps 1Gbps 1Gbps 1Gbps

10Gbps

10Gbps 10Gbps

10Gbps

Figure 2.1: A three-layer datacenter architecture.

workload requirement and behavior. Operating and running large computation in
large scale is expensive and large cloud vendors have to know how to expand node
architecture and network architecture resources to satisfy the ever-increasing job
workload demands. Recent trend in academia and industry is to use large number
of commodity servers for cloud computing (5; 6). However, based on network
communication pattern, different workloads have completely different performance
metrics for scale-up and scale-out approach. Therefore, in this thesis, we conduct a
simulation-based study, using a full-system simulator, that simplifies design space
exploration, to perform such evaluations in smaller scale to find out the network
traffic pattern of these applications in small-scaled systems and generalize it to
large-scale ones. To this end, we derive an analytical model and use non-linear
regression analysis to find the accuracy of the predicted model. It is not possible
to rent large datacenters with different node and network architectures to test the
performance of workloads on them and find the best performance/cost efficient
architecture. Therefore, in this thesis, we conduct a simulation-based study, using
an accurate, flexible, full-system simulator to perform such evaluations in smaller
scale to find the trend behavior and generalize the results for larger datacenter design

7

choices. Also, as argued in (8), it is almost impossible to monitor datacenter’s
traffic across nodes in a real datacenter with reasonable accuracy. There are three
methods to monitor packet injection: SNMP counters, Sampled flow, and Deep
packet injection. However, these methods are not very accurate and may introduce
too much overhead. For example, in the first method, it is only possible to poll
the switches once every few minutes. Consequently, it is not possible to observe
fine-grain network characteristics of datacenters like packet inter-arrival times, or
burstiness of traffic. In the second method, it is only possible to gather flow-based
information and the last method’s overhead is too much. In this work, we use
full-system simulation to capture traffic pattern of different cloud applications with
regards to hardware architecture.
The number of cores per node, on-chip cache and off-chip memory capacities are

three critical parameters that can affect the performance of different applications
running on a datacenter. In this work, we perform experiments to investigate the
bandwidth requirement and traffic pattern in a datacenter with respect to cache,
memory size and number of cores. In addition, we conduct a flow-based analysis of
different cloud applications.

2.2 Background

Traditional datacenter architectures consist of two or three layers structured as
a tree, where higher layer switches have high capacity with more ports but more
expensive. In order to reduce the cost, most datacenter network designers use
over-subscription factor of 2.5:1 to 8:1 (11). An over-subscription of n:1 means that
in worst case traffic patterns, only 1/n of the total communication bandwidth is
available to different nodes in that traffic pattern. The concurrent flows for each
cloud application plays an important role on how much we can over-subscribe a
network architecture. For example, if an application has all-to-all communication
pattern, oversubscribing the network would degrade the performance since the
network would be the bottleneck resource. Concurrent flow analysis can guide
system administrative on choosing the appropriate factor for over-subscription.
Figure 2.1 shows an example of a three-layer datacenter network architecture, where
the servers at each rack are connected to the Top of Rack (ToR) switches with

8

1Gbps Ethernet links. ToR switches are connected to the aggregate switches using
10 Gbps links and finally aggregate switches are connected to the core switches
using a fat-tree topology. It is important to provision enough bandwidth for each
link in the hierarchy when we scale-up or scale-out the servers.
Network traffic can be distinguished as either node-to-node (East-West) com-

munication or in-out traffic (North-South). North-South traffic patterns happen
in client-server applications, where the clients from the internet side (Figure 2.1)
send queries to the servers and get responses. The communication pattern in
North-South traffic patterns is mainly between client and servers and the servers do
not have communication among themselves. While, in East-West traffic patterns,
the communication is mainly among servers. The client-server and interactive
query-base applications in Cloudsuite have North-South traffic pattern and the
servers never communicate with each other. However, most scientific benchmarks
like graph algorithms from Graphlab and Mantevo benchmarks in our experiments
have East-West traffic behavior.
Provisioning for East-West traffic is more difficult than North-South traffic, be-

cause North-South traffic challenges can be solved by means of load balancing and
replication techniques. However, it has been extensively discussed that East-West
network bandwidth and latency is the main source of performance degradation
in large-scale computing (3). Therefore, we focus on East-West traffic patterns
as dominant behavior in datacenters. The traditional datacenter network archi-
tectures cannot scale out easily and have high power consumption due to E/O
and O/E transceivers in ToR, aggregate and core switches. There has been re-
cent studies that employ commodity switches to scale out datacenter networks
(11; 12; 13; 25; 26). One of the important drawbacks of these networks is their high
operating expense for managing large number of small commodity switches and
cabling complexity. Farrington et al (27) studied different datacenter topologies’
cost power and cabling complexity. However, to the best of our knowledge, there
has not been any prior study that compares different node architectures versus
different network architectures.

9

Chapter 3 |
Experimental Setup

3.1 Introduction

In this section, we describe the simulation setup and different node and network
architectures that we tested. To capture fine-grained network traffic pattern (in
the granularity of micro second) for any specific workload, we employed COTSon
full-system simulator (28), that is based on AMD Simnow (29). Simnow simulates
an entire server machine including cores, memory, I/O and network interfaces.
To simulate multiple nodes, COTSon provides networking for Simnow and uses a
parallel discrete-event model, allowing the simulation of multi-core clusters. The
simulator uses a mediator to provide a network interface between nodes (or servers)
(30), and it uses Ubuntu 64-bit x-86 3.5.0-23-generic Linux as the operating system.

3.2 Simulated Configurations

3.2.0.1 Node Architectures

In this work, we mainly focus on quantifying the behavior of one entire rack,
which consist of 40 servers. We used the parameters of an AMD Opteron server
processor as a baseline in our simulations (23). Table 3.1 gives the main architectural
parameters of the baseline system configuration. Each core has its own private
instruction and data L1 and L2 caches and an L3 cache is shared among all the

10

Network Mediator

Server 1 Server 2 Server40

DIMM Banks

HubMemory Network

Interface

PCI

Bus

L3 Cache

IC DC IC DC

Core x

IC DC

Core 1 Core 2

PCI-X

Controller

Processor 1 Processor n

L2 L2 L2

L3 Cache

IC DC IC DC

Core x

IC DC

Core 1 Core 2

L2 L2 L2

Figure 3.1: High-level view of the simulated architecture.

Table 3.1: Node parameters and their default values.

Processor parameters and their default values
Clock frequency 2400MHz
Main Memory latency 150cycles
L1 caches Split I and D, 64kB private, 2-way, 64B, LRU,

write-through, 2-cycle hit
L1 TLB Split I and D, 4kB private, 32 entries, 2-cycle

latency
L2 cache Unified, 1MB private, inclusive, 4-way, 64B, LRU,

write-back, 10-cycle hit
L3 cache 4MB shared, NUCA, inclusive, 16-way, 64B, LRU,

write-back, 4-cycle tag, 10-cycle data hit, 40-cycle
CPU to L2

cores in the processor. The memory, L3 cache, network interface and DIMM banks
are connected through a hub device. Figure 3.1 shows the target architecture
simulated in our experiments. Table 3.2 shows the different node architectures
varied in this work. We changed the number of servers from 1 to 40 (scale-out
degree) and the number of cores per node from 1 to 6 (scale-up degree).

11

Table 3.2: Different node architectures considered in this work.

Architecture L3 size/latency Memory Size cores
Default 4MB/40cycles 512M 1

Double Cache 8MB/60cycles 512M 1
Double memory 4MB/40cycles 2048M 1

Dual-core 8MB/60cycles 1024M 2
4-core 16MB /80cycles 2024M 4
6-core 24MB/100cycles 6144M 6

Table 3.3: Different network architectures.

Network Parameter Network 1 Network 2 Network 3
Ports 48*1 GbE 48*1 GbE 48*1/10 GbE

Maximum Bandwidth 1 Gbps 1 Gbps 100 Mbps
Latency 4µs 40µs 4µs
cfactor 2 10 10

3.2.0.2 Network Architectures

We used three different network architectures with different bandwidth, latency
and congestion parameter, as shown in Table 3.3. We used the standard ToR
switches that contain 48 GigE ports. This table specifies each network configuration
in terms of maximum available bandwidth of links (in Gbps), minimum latency
of the switches (in µs) and a congestion factor (cfactor) that shows the queuing
latency of the switches.

3.3 Evaluated Workloads

We used a diverse set of cloud applications ranging from interactive query-based
to high-performance scientific workloads. The workload set include seven programs
from Graphlab benchmark suite (19), two programs from Cloudsuite benchmarks
(15), and three programs from Mantevo benchmarks (18). The twelve benchmark
programs used in this work and short descriptions can be summarized in Table 3.41.
The graph analytic toolkit from Graphlab has different applications that analyze a
graph structure. As input for these applications, we used Stanford large network

1The names in parentheses are abbreviations used in this thesis

12

dataset collections (31) which include different graphs from social networks and
communication networks. We also used two benchmarks from Cloudsuite, that
are based on online applications. The Graphlab uses Open MPI and Hadoop
implementation of Map-Reduce to perform graph computations on large graphs.
The Mantevo benchmarks are open-source mini-applications to analyze, predict
and improve HPC systems. These applications cover different classes of cloud
workloads ranging from interactive query-based workloads to high performance
scientific workloads.

3.4 Evaluation Methodology

To quantify the impact of node and network architectures on the network traffic
pattern and overall workload performance, we evaluate five different scenarios:

1. Changing the number of cores per socket, and increasing the total cache/mem-
ory capacity, we evaluate the effect of scale-up on network communication as
well as performance/cost trade-offs.

2. Changing the capacity of LLC per node, we determine the memory-intensity
of the applications.

3. Changing the total number of nodes in the system, we evaluate the network
traffic pattern as well as the traffic self similarity metrics.

4. Changing the network bandwidth and latency, we determine the sensitivity
of the applications to the network configurations.

5. We compare the scale-out of 40 single-core machines with the scale-up of 12
quad-core machines for different applications.

3.4.1 Metrics

The metrics used to evaluate the impact of node configuration and workload
characteristics on network traffic are:

13

Table 3.4: Evaluated workloads.

Application Description
pagerank (pgrnk) An algorithm used by Google that computes

the pagerank of each vertex in the graph.
format convert (fcvt) Converts a graph from a specific format, for

example snap, tsv, adj or binsv4 to another
format.

undirected triangle count (udtc) Counts the total number of triangles in a
graph using the algorithm in (32).

directed triangle count (dtc) Counts the total number of directed triangles
in the graph.

kcore decomposition (kcore) Iteratively computes sub graphs of k cores in
a given graph. A sub graph is called k-core if
and only if all vertices in the sub graph is at
least of degree k.

connected components (cc) Computes all connected components and the
number of vertices in that component for a
given graph.

approximate diameter (apxr) Computes the approximate diameter of a
given graph using the proposed algorithm
in (33).

Data Serving (dsrv) A benchmark from Cloudsuite (17) for data
store systems that is used for large-scale web
applications.

memcached (mem) A client-server architecture for distributed
memory caching. The servers keep key-value
stores and clients send query for these key-
values. The keys are at most 250 bytes and
values are at most 1MB.

CoMD A part of Mantevo benchmarks and is an
mpi implementation of molecular dynamics
algorithms which is used in material science.

MiniFE An approximation to an unstructured implicit
finite element code. The application was con-
figured with MPI support.

HPCCG Implements a Conjugate Gradient solver,
where the coefficient matrix is stored in a
sparse matrix format.

• Communication over computation overhead gives the overheads incurred
due to parallel execution. This metric can be used to evaluate the communication

14

overhead experienced when running a given benchmark in parallel.

• Packet inter-arrival times and packet size distribution These metrics,
capture the burstiness of the incoming traffic and if known by a designer, he/she
can regenerate the traffic pattern for synthetic traffic generation. Furthermore,
knowing these metrics in advance help us to provision network buffers and have
better bandwidth allocation for different applications.

• Self similarity indicates the burstiness of the network traffic for different bench-
marks. Self similar traffics have long tail distribution and if a self similar traffic
flow shares the network buffers with a non self similar traffic flow, it would take
up all the queue and results buffer overflow for non-self similar traffics.

• Bandwidth requirement gives the amount of bandwidth needed between dif-
ferent nodes for a given dataset and hardware architecture.

• Concurrent flows shows the maximum number of concurrent flows in an appli-
cation/workload during execution. This metric can be used to predict the required
bisection bandwidth of each application to choose appropriate over-subscription
factor. For example, if an application has an all-to-all traffic pattern (highest
number of the concurrent flows), over-subscribing the network degrades the overall
system performance.

• Performance per dollar cost indicates how much performance increase we will
get for each dollar we spend on system configuration.

Note that, these metrics collectively allow us to characterize the network traffic
in sufficient detail. As will be discussed, such a characterization can be used to
find the bottlenecks for each application and identify cost performance trade-offs
in designing datacenters.
Next, we present our detailed experimental analysis using the parameters and

metrics given in this section.

15

Chapter 4 |
Network Characteristics’ of Ap-
plications

4.1 Introduction

In this section, we evaluate network characteristics’ of applications and show how
node/network configuration in Chapter 3 can change these parameters.

4.2 Traffic Volume

Large cloud computing vendors need to process big data sets. These data sizes
are growing quickly from gigabytes to terabytes to petabytes. To evaluate the
bandwidth demand of our target applications with respect to data size, in this
section, we change the data sizes of our graph applications to study how it affects
the transmitted data volume. We do not present the results with the Cloudsuite
benchmarks, as we could not safely change their input sizes.
Figure 4.1 shows linear regression estimation of transmitted volume of data for

different data set sizes for different graph applications. It can be seen that the
data traffic volume increases linearly with respect to data set size and, for different
benchmarks, there is a linear relationship between how much traffic needs to be
transmitted through the network and how big the data size is. However, it can also
be observed that, some applications involve more inter-node communication and

16

0 0.5 1 1.5 2 2.5 3

x 10
5

0

200

400

600

800

1000

1200

Data size (number of vertices in the graph)

C
o
m

m
u
n
ic

a
tio

n
 T

ra
ff
ic

 (
M

B
)

pagerank

kcore

directed triangle count

undirected triangle count

format convert

connected component

approximate diameter

Figure 4.1: Traffic volume versus dataset size.

some need less. Using this graph, one can even predict how much communication
bandwidth is needed for large-scale graph analytic.

4.3 Inter-arrival Times and Self Similarity

Most prior works on datacenter networks use synthetic traffic with exponential
distribution to tune network and/or application parameters. However, in our
experiments the inter-arrival time of our cloud applications follow a long-tailed
distribution (34), that can result in performance degradation, unless we provision
enough buffers in the network.

Figure 4.2 plots cumulative distribution function (CDF) of inter-arrival times in a
Map-reduce application and its curve fitting using exponential, gamma, generalized
extreme value (gev) and weibull distributions, when using 40 quad-core servers.
We found that, for most of the evaluated graph analytic benchmarks, the gener-

alized extreme value distribution 1 gives the best fit for packet inter-arrival times’
distribution. Generalized extreme value distribution has the following cumulative
distribution function which has three degree of freedom:

1Generalized extreme value distribution has three degrees of freedom and can result a better
fit with less error

17

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.2

0.4

0.6

0.8

1

Real CDF

Exponential Fit

Gamma Fit

Gev Fit

weibull Fit

Figure 4.2: CDF of inter-arrival times for 40 nodes for pagerank.

F (x, µ, σ, ξ) = 1
σ
e−[1+ξ((x−µ)

σ
)]−1/ξ

for1 + ξ(x− µ)
σ

> 0 (4.1)

We further observed that, the lognormal distribution, which has two degrees
of freedom, seems to be a good fit for Graphlab benchmarks. Table 4.2 lists the
parameters for each distribution using the maximum likelihood estimation and the
normalized Euclidean distance (error) we obtain for each distribution.
The normalized Euclidean distance for two vectors is defined as follows:

distance(d1, d2) = ||d1 − d2||
||d1||.||d2||

. (4.2)

Similar to our finding, prior studies (35; 36) have shown that the traffic pattern
of Ethernet follows a self-similar distribution which degrades network performance.
Self-similar processes can be described using long-tailed distributions like Pareto,
lognormal, and Weibull distribution. Self-similarity in networks is not a pleasant
phenomenon, since network performance can degrade with increasing self-similarity
due to, primarily, the queue length increase. The effect of self similarity on network
performance is studied by Park et al. (37). Taqqu et al. (34) proposed several
strategies to estimate the self similarity parameter. We follow (34) and evaluate
Hurst parameter as an estimation of self similarity. Table 4.1 gives the result
of this estimation using the different strategies discussed in (34). It is observed
that increasing the number of nodes increases the self-similarities. Consequently,
network designer need to provision more buffers when running the workloads on
large number of machines. Figure 7 shows log-log estimation results for the results
presented in Table 4.1.
Those flows, which have higher Hurst parameter, fill up the networks buffers

18

Table 4.1: Hurst parameter estimation for different number of nodes.

nodes
Method aggvar boxper diffvar peng per R/S

5 0.478 0.454 0.253 0.448 0.430 0.571
10 0.484 0.461 0.388 0.485 0.441 0.577
15 0.541 0.472 0.453 0.580 0.453 0.601
20 0.584 0.480 0.666 0.597 0.462 0.653
40 0.634 0.520 0.712 0.621 0.482 0.664

and non-self similar traffics would be discarded. By knowing the Hurst parameter
for different flows, a designer can estimate queue length for network buffers and
potentially design better buffer management system.

Following the definitions given in (34), a self-similar process can defined as follows:

Definition 1 Let X = (Xk : k = 0, 1, 2, ...) be a wide sense stationary process, a
process X is called exactly self similar with a self similarity parameter H, if, for
all m values, its aggregated sequence is identical to its distribution

X = m(1−H)X(m), (4.3)

where the aggregated sequence is defined as

X
(m)
k = 1

m

km∑
i=(k−1)m+1

xi k = 1, 2, ... (4.4)

Some workloads make the network more congested than others. Consequently,
postponing bandwidth-intensive applications to low-traffic conditions can improve
the performance.

19

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

Packet size (Bytes)

C
D

F

(a) pgrnk.

0 200 400 600
0

0.2

0.4

0.6

0.8

1

Packet size (Bytes)

C
D

F

(b) mem.

0 500 1000 1500
0

0.2

0.4

0.6

0.8

1

Packet size (Bytes)

C
D

F

(c) dsrv.

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

Packet size (Bytes)

C
D

F

(d) kcore.

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

Packet size (Bytes)

C
D

F

(e) apxr, cc, fcvt,
dtc, udtc.

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

Packet size (Bytes)

C
D

F

(f) MiniFE.

0 500 1,000 1,500 2000
0

0.2

0.4

0.6

0.8

1

Packet size (Bytes)

C
D

F

(g) HPCCG.

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

Packet size (Bytes)

C
D

F

(h) CoMD.

Figure 4.3: CDF of packet sizes in the graph analytic and web benchmarks.

20

Table 4.2: Error and best fitting parameters of different distributions for packet inter-arrival times in different benchmarks.

Application
Distribution exponential gamma gev weibull lognormal

Pagerank Error: 0.030
Mean: 0.6711

Error: 0.0058
Shape: 0.1516
Scale: 0.435

Error: 9.5e-4
Shape: 1.85, Scale: 2.76e-5

Location: 1.47e-5

Error: 7.1e-4
Scale: 1.51e-4
Shape: 0.34

Error: 5.7e-4
Mean: -10.0828

SD: 2.39

connected components Error: 0.0386
Mean: 0.0086

Error: 0.0063
Shape: 0.138
Scale: 0.062

Error: 5.4e-4
Shape: 1.397, Scale: 1.93e-5

Location: 1.30e-5

Error: 8.6e-4
Scale: 1.05e-4
Shape: 0.32

Error: 6.1e-4
Mean: -10.4062

SD: 2.20

data serving Error: 9.3404
Mean: 1.91

Error: 0.0308
Shape: 0.158
Scale: 12.07

Error: 0.1240
Shape: 4.43, Scale: 0.459

Location: 0.1035

Error: 0.0286
Scale: 0.347
Shape: 0.213

Error: 0.0141
Mean: -4.178

SD: 8.40

kcore Error: 0.0079
Mean: 0.0028

Error: 0.0045
Shape: 0.397
Scale: 0.007

Error: 5.7e-4
Shape: 0.805, Scale: 0.00047

Location: 0.00039

Error: 0.0019
Scale: 0.0012
Shape: 0.59

Error: 0.0013
Mean: -7.54

SD: 1.69

memcached Error: 9.9728
Mean: 2.037

Error: 0.0214
Shape: 0.107
Scale: 19.08

Error: 0.0096
Shape: 7.76, Scale: 9.27e-5

Location: 1.29e-5

Error: 0.0156
Scale: 0.0303
Shape: 0.163

Error: 0.0125
Mean: -6.834

SD: 7.94

directed triangle count Error: 0.0282
Mean: 0.0063

Error: 0.0059
Shape: 0.1386
Scale: 0.0456

Error: 4.9e-4
Shape: 1.12, Scale: 1.50e-5

Location: 1.18e-5

Error: 8e-4
Scale: 7.117e-5

Shape: 0.34

Error: 5.5e-4
Mean: -10.672

SD: 1.94

undirected triangle count Error: 0.0345
Mean: 0.0077

Error: 0.0062
Shape: 0.138
Scale: 0.055

Error: 6.9e-4
Shape: 1.101, Scale: 1.62e-5

Location: 1.37e-5

Error: 8.7e-4
Scale: 8.76e-5
Shape: 0.34

Error: 7.1e-4
Mean: -10.49

SD: 1.97

approximate diameter Error: 0.0661
Mean: 0.014

Error: 0.0072
Shape: 0.127
Scale: 0.112

Error: 7.2e-4
Shape: 1.088, Scale: 1.60e-5

Location: 1.39e-5

Error: 9.7e-4
Scale: 9.26e-5
Shape: 0.32

Error: 7.3e-4
Mean: -10.473

SD: 2.00

format convert Error: 0.0696
Mean: 0.015

Error: 0.0073
Shape: 0.123
Scale: 0.121

Error: 6.5e-4
Shape: 1.026, Scale: 1.43e-5

Location: 1.26e-5

Error: 9.5e-4
Scale: 7.77e-5
Shape: 0.32

Error: 6.8e-4
Mean: -10.62

SD: 1.94

CoMD Error: 0.4073
Mean: 0.00239

Error: 0.2204
Shape: 0.152
Scale: 0.0157

Error: 1.31e-2
Shape: 0.7142, Scale: 1.0832e-5

Location: 1.079e-5

Error: 1.57e-2
Scale: 3.72e-5
Shape: 0.3955

Error: 1.10e-2
Mean: -11.08

SD: 1.67

MiniFE Error: 0.5245
Mean: 0.00389

Error: 0.2084
Shape: 0.140
Scale: 0.0277

Error: 6.5e-2
Shape: 1.2634, Scale: 1.048e-5

Location: 5.476e-6

Error: 3.41e-2
Scale: 7.04e-5
Shape: 0.305

Error: 3.37e-2
Mean: -11.07

SD: 2.91

HPCCG Error: 0.444
Mean: 0.0029

Error: 0.2100
Shape: 0.154
Scale: 0.0188

Error: 4.4e-2
Shape: 1.068, Scale: 1.4731e-5

Location: 1.1441e-5

Error: 3.58e-2
Scale: 6.70e-5
Shape: 0.345

Error: 3.91e-2
Mean: -10.80

SD: 2.17

21

0 1 2 3 4 5
5

6

7

8

9

10

11

log10(Aggreate Level)

lo
g

1
0

(V
ia

n
c
e

)

Time Viance Method

(a) Aggvar.

−4 −3 −2 −1
9.8

9.85

9.9

9.95

10

10.05

Log10(Frequency)

L
o

g
1

0
(P

e
ri
o

d
o

g
ra

m
)

Boxed Periodogram Method

(b) Boxper.

0 1 2 3 4 5
4

5

6

7

8

9

10

11

Log10(Aggreate Level)

L
o

g
1

0
(D

if
fe

re
n

t
V

ia
n

c
e

)

Different Viance Method

(c) Diffvar.

1 2 3 4 5
9

9.5

10

10.5

11

11.5

12

12.5

Log of Aggregate Level

L
o

g
 o

f
R

e
s
id

u
a

l
V

a
ia

n
c
e

Peng Method

(d) Peng.

−6 −4 −2 0 2
9

9.5

10

10.5

11

log10(Frequency)

lo
g

1
0

(P
e

ri
o

d
o

g
ra

m
)

Periodogram Method

(e) Per.

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

3.5

log10(blocks of size m)

lo
g

1
0

(R
/S

)

R/S Method

slope 1/2

slope 1

(f) R/S.

Figure 4.4: Estimating the Hurst parameter using different methods.

4.3.1 Packet Size Distribution

In addition to the message inter-arrival times, packet size distribution has to
be known for regeneration of the same traffic pattern. For instance, one needs to
consider a higher network bandwidth and more buffers in networks with larger
packet sizes. Here, we report the analysis results of packet size distribution of our
benchmarks. The simulation results, in Figure 4.3 show that packet size distribution
for the benchmarks which use Map-Reduce framework follow a bimodal distribution
with two peaks in 66 bytes and 1514 bytes, that is the maximum Ethernet packet size.
Pagerank, approximate diameter, connected component, format convert, directed
triangle count and undirected triangle count are the applications, which have larger
packet sizes with a bimodal distribution. However, for web applications, packet sizes
have a multi-modal distribution with smaller packets. Memcached, data serving
and kcore are three applications that have a multi-modal packet size distribution
with fewer packet sizes. Knowing the packet size distribution of these workloads
helps us to perform better traffic and quality of service (QoS) management in the
network only by extracting the packet size in the header. Smaller packets can
get higher priority than larger packets. Also the high frequency of large packets
(1514 bytes) shows the room for improving the packet control protocol in current
datacenter networks to allow transmitting higher sizes of packets.

22

4.3.2 Concurrent Flow Analysis

Different applications generate different ranges of long-term or short-term traffic
flows. Datacenter networks should be able to tolerate large traffic bursts, provide low
latency for short flows and high utilization for long flows. In addition, the number
of concurrent flows in an application gives us a metric to determine how much the
bisection bandwidth is being utilized in the network. Computing the number of
concurrent flows for an application helps us to have a better understanding of the
bisection bandwidth utilization of that application. This helps an administrator
to determine how to over-subscribe the network for cost reduction. To compute
concurrent flows of each application, we use the steps given in Algorithm 1. Using
the time and size of packets exchanging between two nodes, Algorithm 1 finds all
the longest contiguous intervals that these two nodes send receive. The threshold of
having a connection is the mean rate of all communications, i.e., if packet size per
its inter-arrival time is higher than the mean (threshold), that interval is considered
as a flow between these two nodes.
Table 4.3 shows the comparison of concurrent flows from the master node to

all slave nodes for each application running on a 10 nodes. We observed that,
kcore, Data serving, and directed triangle count have the most concurrent flows.
Therefore, running these applications on the same rack can be expected to reduce
congestion in the higher layers of the datacenter hierarchy. In addition, we compute
average flow duration of different benchmarks, some benchmarks, like kcore, data
serving, and memcached, have long-term flow duration which makes them suitable
fit for hybrid architecture (circuit and packet switching) networks where long-term
duration flows can go through the circuit switching network. Other benchmarks,
with short-term flows, need to go through the packet switching network part of the
hybrid network.

23

Algorithm 1: Computing concurrent flows.
Input: logs of all nodes communications including packet time and size.
Output: Number of concurrent flows.

1 Partition all logs from a source (S) to any destination (D).
2 Get the inter-arrival times (IAT) vector of the logs in 1 with packet size (PS)
vector.

3 Compute flow rate (FR) vector from S to any D with zero-division protection as
FR[i] = PS[i]/(IAT [i] + 1) i = 1..n.

4 Compute mean of flow rate vector (MFR) as a threshold.
5 For all D, flow from S to D (F(S,D)) exists if its FR[i] is higher than MFR.
6 At any time for all D, flow duration from S to any D (FD(S)) is sum of the
IAT [i] i = 1..n which its F (S,D) exists.

7 Repeat 1 for any other source.

Table 4.3: The comparative time analysis of the maximum number of concurrent
flows for studied workloads.

Application Concurrent Flows
Data serving 71

approximate diameter 20
connected component 42
directed triangle count 54

format convert 18
kcore 75

pagerank 28
undirected triangle count 45

memcached 1
CoMD 40
MiniFE 10
HPCCG 5

24

Chapter 5 |
Evaluation

5.1 Communication over Computation Overhead

We start by studying the communication overhead with different number of nodes.
We change the number of nodes from 1 to 40 and measure the total execution time
it takes for the server nodes to perform pagerank graph computation. We chose
pagerank benchmark as a representative of graph applications, because it has more
inter-node communication overhead. We recall that that the total execution time
taken by the application to perform the required computation on n nodes can be
expressed as:

Total execution time = S + P/n+On, (5.1)

where S is the sequential part of the program, P is the parallelable part, and On

is the communication overhead. There exists a trade-off between the degree of
parallelism (n) and the communication overhead (On) incurred due to parallelism.
As we increase n, the program runs more parallel but on the other hand we
experience more communication overhead due to the required synchronization to
merge the processed data. Figure 5.1 plots the execution time versus the number of
nodes for the application under study (pagerank) under different dataset sizes. It can
be seen that, in general, as we increase the size of the dataset, the performance keeps
increasing for larger number of nodes. However, the overhead of communication is
too much for small dataset sizes. For dataset sizes less than 60MB, as we increase
the number of nodes, no performance improvement is achieved and there is no point

25

0 5 10 15 20 25 30 35 40
0

50

100

150

Number of nodes

E
xe

cu
tio

n
 t
im

e

DataSet size:42.4MB (Actual data)

DataSet size:63.3MB (Actual data)

DataSet size:105MB (Actual data)

Dataset size:251MB (Actual data)

DataSet size:42.4MB (Curve Fitting)

DataSet size:63.3MB (Curve Fitting)

DataSet size:105MB (Curve Fitting)

Dataset size:251MB (Curve Fitting)

Figure 5.1: Execution time versus the number of nodes for pagerank using default
server architecture (architecture 1 in Table 3.2).

in increasing the scale-out degree. Further, increasing the number of nodes (servers)
from 1 to 2 degrades performance as the impact of the overhead is typically more
pronounced with the small number of nodes. Using non-linear regression methods,
the communication overhead in Equation 5.1 can be modeled as follows:

On = (α1 + α2/n) ∗ log(n). (5.2)

where α1 represents the coefficient of the communication overhead of the sequential
part (when one server forks the tasks for the other parallel servers), and α2

represents the coefficient of the communication overhead of the parallel part (when
parallel servers want to join the processed data in one place). It is known that
the implementation of the program has a logarithmic overhead (38). Therefore,
Equation 5.2 can accurately predict the execution time with respect to the datasize
and the degree of parallelism. For small dataset sizes, the value of α1 is very close
to zero and increases as we increase the dataset size. In addition, it is observed
that, running the same dataset size on very large number of nodes increases
the communication overhead such that beyond a certain point, parallelism level
saturates and the communication overhead keeps increasing. Figure 5.1 plots the
result of curve fitting and predicted tail (using dashed lines) using this model for

26

pagerank and for different data sizes. The experiments in this figure show that,
when doubling the dataset size, the overhead constant, α2, increases by 178%;
however, the parallel constant, P , in Equation 5.1, only increases by 50%.

5.1.1 Performance Comparison of Different Architectures

To explore the impact of different node architectures, we evaluated the perfor-
mance of different applications using the studied configurations, as was shown in
Tables 3.2 and 3.3, respectively. Figure 5.2 shows the performance improvement
that each configuration gets with respect to the baseline system for different appli-
cations. The performance improvement is the average performance improvement
for 10 different dataset sizes. It is observed that pagerank, approximate diameter,
directed triangle count, undirected triangle count and connected components are
applications which are less cache sensitive and get more performance improvement
with more number of cores per server. On the other hand, kcore, CoMD, MiniFE
and HPCCG are more cache and memory sensitive and increasing the number of
cores per server increases the contention for memory bandwidth. Therefore, these
benchmarks show less performance improvement with more number of cores per
server.
Further, based on the results of experiments with different network architectures,

we can divide these applications into network bandwidth-intensive and network
latency-sensitive categories. Figure 5.3 shows normalized execution time of the
applications with different network configurations with respect to the baseline. It is
observed that, MiniFE, HPCCG, approximate diameter and connected components
are applications which are more sensitive to the network latency. On the other
hand, pagerank, directed triangle count and undirected triangle count are bandwidth-
intensive applications. Later, in section 5.1.3, we show that the applications can
have different performance/cost benefits in a scale-out or scale-up approach based
on how network sensitive they are.

27

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

pgrnk

kcore

apxr
dtc

udtc
cc fcvt

dsrv
m

em
C
oM

D

M
iniFE

H
PC

C
G%

 P
e
rf

o
rm

a
n

ce
 I

m
p

ro
v

e
m

e
n

t
Double Cache Double Memory Double Core

Figure 5.2: Performance improvement of three different configurations with respect
to the baseline.

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6

pgrnk

kcore

apxr
dtc

udtc
cc fcvt

dsrv
m

em
C
oM

D

M
iniFE

H
PC

C
GN

o
rm

a
li

z
e
d

 E
x

e
cu

ti
o

n
 T

im
e

Default Network 10x less BW 10x more latency

Figure 5.3: Normalized execution time of three different network configurations
with respect to the baseline.

5.1.2 Bandwidth Comparison between Scale-up and Scale-out

In this part, we quantify the effect of different node architectures on the bandwidth
requirement of our workloads. In particular, we target iso-core architectures, and
compare the scale-up and scale-out approaches. Figures 5.4(a-b) and 5.4(c-d) show
4 cores and 6 cores in the scale-out and scale-up configurations, respectively. Let us
assume that a scale-up node is equal to packing k cores in scale-out to construct a
k-core scale-up machine as shown in Figure 5.4. The virtual links in this figure show
the communication demand between any two nodes in scale-out or scale-up configu-
ration. In real configurations, nodes are not connected in a fully connected graphs,
but the average bandwidth between two different nodes does not change. Let S be
the subset of links in the scale-out approach which connects the two parts of the

28

1-core 1-core

1-core 1-core

1-core

1-core 1-core

1-core

1-core

1-core
2-core

2-core

3-core

3-core

Scale out Scale out

Scale up Scale up

(a) (b) (c) (d)

Figure 5.4: Scale-up approach with two and three cores per node versus scale-out
approach.

graph, which are forming one vertical link in the scale-up approach. Investigating
the different scale-out and scale-up approach with different number of nodes and
different dataset sizes, we observed that if we aggregate k nodes together the av-
erage communication bandwidth between any two k-core machines is approximately:

Avg BW in k-core scale up = k2 ∗ k2(2k
2
) ∗Avg BW in scale-out (5.3)

In addition, the maximum bandwidth of each link in scale-up approach can be
computed as follows:

max(BWk-core scale-up) = max(
k∑

i=1,i∈S
BWlink #i in scale-out) (5.4)

Figure 5.4 plots virtual links between any two communicating nodes in a scale-up
approach which is k2 times more than each link in the scale-out approach 1. Using
the proposed analytical approach, a designer can predict how much to increase the

1The formula is derived using the fact that the average communication of each k-core ma-
chine should be approximately k2 times more than the scale-out approach, however the total
communication bandwidth is reduced by a factor of k2

(2k
2) which is the total number of outgoing

links in scale-up approach over the total number of outgoing links in the scale-out approach. For
example in a 2-core scale-up approach in Figure 4.3, every 4 link construct one link between two
nodes in scale-up, and the total amount of off-chip communication is reduced by 4/6 and in a
3-core scale-up approach every 9 links in the scale-out construct one link in scale-up and the total
off-chip communication is reduced by 9/15.

29

 0*100

 1*105

 2*105

 3*105

 4*105

 5*105

pgrnk

kcore

apxr
dtc

udtc
cc fcvt

dsrv
m

em
C
oM

D

M
iniFE

H
PC

C
G

A
v

g
 B

W
 o

f
li

n
k

s
(b

p
s)

Scale Out(40*1â��core) Scale Up (20*2-core)

Figure 5.5: Average bandwidth usage of different benchmarks for scale-up and
scale-out approach.

average bandwidth of network when scaling up server nodes. Since the maximum
bandwidth in today’s datacenter switches is 10Gbps, scaling up the servers at some
point may lead the network bandwidth be the bottleneck in the system.
Figure 5.5 shows the average bandwidth usage of different links in scale-out and

scale-up approach for applications with east to west traffic patterns.
Our experiments also show that the web applications where a client sends request

to servers, utilize the high level switches, regardless of mapping of cores to nodes,
since there is very little communication among servers. However, in Map-reduce
benchmarks, the traffic volume between different servers is very high; consequently,
it would be better, if possible, to use the servers in the same rack to avoid traffic
to be directed to high level switches.

5.1.3 Performance Cost Analysis

In this section, we evaluate performance/cost analysis of different applications in
a scale-out and scale-up approach. To estimate the cost for datacenter in scale-out
and scale-up approach, we assume a power usage effectiveness (PUE) of 1.7, and
utility price of 0.07 dollar per kwh. As shown in Figure 5.2, most of cloud computing
workloads are CPU and memory intensive. Thus, we assume CPU and memory
price to be the major contributor of capital costs and power cost to be the major
contributor of operating cost 2 (14; 39; 40).

2For example, for a 96 dual-core scale-out approach, assuming Mean Time to Failure (MTTF)
of three year (26280 hours), the total cost of ownership is [95+26280×0.07×1.7×65/1000]×96 =

30

Figure 5.6 shows the total cost of ownership for different configurations with 192-
cores in a scale-out or scale-up approach, using the offered cost of simulated AMD
processors from (24). For each configuration in Figure 5.6, represents the number of
nodes, B refers to the total number of cores inside a single node and C is the number
of sockets for each node. From total cost of ownership (TCO) perspective, it is
observed that 16×12-core dual socket servers has the optimal TCO for the servers in
a datacenter, but TCO does not consider workload’s performance. Thus, we came
up with a better metric to include TCO and performance together. Figure 5.7 shows
speed up/cost with respect to one single core machine for different applications
for scale-out and scale-up approaches. We assume iso-core, iso-cache capacity and
iso-memory configurations. As it is seen in the figure, graph applications have
little scalability and get better performance in scale-up approach. In fact, scale-up
approach has better performance/cost for graph applications that needs to access
random bits of data frequently. These applications are network bandwidth-intensive
and the communication overhead of scale-out is abandons any hope to get the
same performance as in the scale-up approach. But HPCCG as a bandwidth-
intensive, latency-sensitive, and memory-intensive workload performs better in
a scale-out approach. However, applications with high locality benefit from a
scale-out approach. The total aggregated memory bandwidth of scale-out approach
is higher than the scale-up, so memory intensive applications get more performance
benefit from scale-out.

$28634 where each dual core machine’s CPU and memory cost is $95 (24) and maximum
power usage of each dual core machine is 65 watt (24). The capital expense (CAPEX) of such
configuration is $9120 and the power cost (≈OPEX) is $19514.

31

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

96x2,1

48x4,1

32x6,1

16x12,2

6x32,4

3x64,8

T
o

ta
l

C
o

s
t

($
)

CAPEX Power Cost (OPEX)

Figure 5.6: Total cost of ownership for scale-out and scale-up approaches for
various server types ("A×B,C" means A times B-core C-socket server).

 0
 2
 4
 6
 8

 10
 12
 14

pgrnk

kcore

apxr
dtc

udtc
cc fcvt

C
oM

D

M
iniFE

H
PC

C
G

S
p

e
e
d

 u
p

/
k

$
 c

o
st

scale up (12 quad-core) scale out (48 single-core)

Figure 5.7: Speed up per kilo dollar cost for scale-out (48 single core machines)
and scale-up (12 quad-core machines).

32

Chapter 6 |
Potential Implications

6.1 Introduction

This chapter studies potential implications of our experimental study n combined
impact of node architecture and cloud workloads on network traffic.

6.2 Potential Implications of evaluated metrics

Based on our experimental results, one can reuse the results to analyze similar
studied workloads. For example, inter-arrival times and packet size distribution
can be used to regenerate the same traffic pattern. In addition, inter-arrival times
imply a large amount of self-similarity. Based on our flow analysis, applications
with high bandwidth demands and long-lived flows make the network buffer queues
to grow faster until the packets are discarded. As a result, TCP congestion control
is not fair for applications with low bandwidth demand and short-term flows.
Our experimental results opens up the area of designing better congestion control
mechanism and buffer managements for different classes of workloads.
Based on our observations, we classified the applications based on their bottleneck

resources in Table 6.1 and 6.2. Based on the results, applications are categorized
into five different categories. It is observed that for the same number of cores, scale-
out and scale-up approach can have completely different performance/cost metrics.
The results can be used for system administrator to get use of heterogeneous designs

33

Table 6.1: Workload Classification (part 1).

Characteristics pgrnk fcvt udtc dtc kcore cc
Network
bandwidth-
intensive

high medium high high medium medium

Network
latency-
sensitive

low medium low medium medium high

Memory-
intensive

low high low low high medium

Concurrent flow medium medium high high high high

Performance
/TCO

low
scale-up

low
scale-out

medium
scale-up

low
scale-up

low
scale-out

low
scale-up

for different applications.
Table 6.3 shows the implication of each metric of interest we discussed on each of

the benchmarks we studied. The first class of benchmarks is network-bandwidth
intensive benchmarks with better performance/cost for scale-up. The second class
of benchmarks is more sensitive to the routing delay. The third class of benchmarks
is memory-intensive applications, which get more memory resources in the scale-out
approach. The last class of benchmarks have long duration flows with low burst,
so these kind of traffics are more stable and are not sensitive to routing delay of
high delay switches and can be routed through optical switches. In addition, we
discussed how much bandwidth demand is increased when scaling up the server
nodes and proposed an analytical model to predict network bandwidth demands
of k-core servers. The results of this analysis can be used for network capacity
planning.

34

Table 6.2: Workload Classification (part 2).

Characteristics apxr dsrv mem CoMD MiniFE HPCCG
Network
bandwidth-
intensive

medium low low low low high

Network
latency-
sensitive

medium medium medium low high high

Memory-
intensive

medium high high high high high

Concurrent flow medium high low high low low

Performance
/TCO

medium
scale-up

medium
scale-out

medium
scale-out

high
scale-out

high
scale-out

high
scale-out

35

Table 6.3: Implications of the metrics of interest.

Metric graphlab (pagerank,
directed triangle
count, undirected
triangle count)

graphlab (approxi-
mate diameter, con-
nected components)

Mantevo (MiniFE,
HPCCG, CoMD)

cloudsuite (mem-
cached, data
serving) graphlab
(kcore)

Comm/Comp overhead high high low low
Inter-arrival times lognormal gev lognormal gev
Packet Size Distribution Bimodal distribution

with more large mes-
sages

Bimodal distribu-
tion with more
large messages

Bimodal distribu-
tion with more
large messages

multi modal distri-
bution with more
smaller messages

Bandwidth Requirement large burst small du-
ration flows

large burst small du-
ration flows

large burst small du-
ration flows

Small burst long
duration flows

Self Similarity high medium high low
Summary Network bandwidth-

intensive with better
performance/cost for
scale-up

Network latency
sensitive with
better perfor-
mance/cost for
scale-up

Memory intensive
with better per-
formance/cost for
scale-out

Stable flows, long
duration small
packets, with
better perfor-
mance/cost for
scale-out

36

2 4 6 8 10 12

x 10
7

0

1

2

3

4

5
x 10

6

Time (micro second)

B
W

 U
s
a

g
e

 (
b

p
s

)

(a) kcore

2 4 6 8

x 10
7

0

2

4

6

8

10

12
x 10

6

Time (micro second)

B
a

n
d

w
id

th
 (

b
p

s
)

(b) directed triangle count

Figure 6.1: Short burst long duration flow in kcore and high burst short duration
flows in directed triangle count.

Using optical interconnect in datacenters is an active emerging research. There
has been recent works trying to bring optical switches in datacenters to provide high
bandwidth demands of cloud applications (41; 42; 43). One single optical fiber link
can transmit 100 Gbps. However, the drawback of using optical links with electrical
switches is high cost of electrical to optical conversion. All optical networks has
been a goal for many years. If using completely optical routers or MEMS-based
optical circuit switches (44) the latency of switching would destroy the bandwidth
advantage of optics. However, if we have a more stable traffic pattern and we know
that the overhead of rerouting the flow in the network is low for some benchmarks,
we can benefit from hybrid network architecture of both all-electrical and all optical
switches.
Knowing the characteristics of traffic behavior in advance, can enable one employ a
hybrid network architecture, where long lived flows can be routed through optical
switches and short duration flows use traditional electrical switches. Based on
our experimental study, we can divide the benchmarks in our experimental suite
into two groups of long-duration, low-burst flows and short-duration, high-burst
traffics. Figure 6.1 plots two different benchmarks with different flow duration and
bandwidth requirement. Figure 6.1a shows the bandwidth usage of two different
server nodes, which shows a long short burst flow, that lives for the whole duration
of running the benchmark. Figure 6.1b shows the aggregated bandwidth usage of
all nodes during time, which shows short duration high burst flows. Classifying the
network traffic into these groups can potentially help us in exploiting hybrid network
architectures. For instance, we can take advantage of both optical switching and
packet switching routers.

37

Chapter 7 |
Related Work

With rapid improvements in multi-core systems datacenter workloads is increas-
ing significantly. There are recent works aimed at improving the performance
of datacenter networks to sustain huge amount of data communication between
servers and with outside world. For example (11; 12) suggest to use commodity
switches in a fat tree topology for large-scale datacenters. However using commodity
switches leads to higher operational and management cost. Also, managing routing
algorithms to utilize the available bandwidth in such networks is very challenging
and without a deep understanding of traffic and workload characteristic it is not
possible to design a suitable routing algorithm for these kinds of networks.
While there are lots of works to improve the routing algorithms and network

topology of datacenters, there is only few works to study the effect of node archi-
tecture on traffic pattern of datacenters.
In (26) traffic pattern of a 1500 server cluster have been characterized from the

socket level perspective and it is assumed that server overhead is negligible for
large volumes of traffic. Benson et al in (10) have studied traffic behavior of 10
different datacenters using SNMP traces. The packet size distribution of different
datacenters in this study follows a bimodal distribution, which is the same as what
we found for most Map-Reduce applications. However using SNMP traces it is
not possible to poll the switches very often so this study does not look into fine
grain traffic behavior of different applications and does not study the effect node
architecture on traffic behavior of datacenter networks. Ersoz et al (9) implemented
a real 3-tier cluster-based datacenter, and characterize the network traffic behaviour
of the nodes. They found that the distribution of inter-arrival times and message

38

sizes of the incoming requests, conform lognormal distribution, and also Pareto
distribution is probable for service times of the requests. However, they haven’t
studied inter-node communications among different servers.
Taqqu et al (34) have used different methods like aggregated variance, differencing

the variance, absolute value of aggregated series, R/S method, and residuals of
regression for estimating self-similarity parameters to find Hurst parameter for
self-similar traffics. Chodnekar et al (45) characterize the network traffic behaviour
of the interconnection network of a system when multiple parallel applications
are running in the system. They investigate the distribution of message sizes and
generation times as a common distribution using SPASM simulator with a dynamic
and static strategies.
To our knowledge, our work is the first study that investigates the impact of both

node topology and cloud workloads on network traffic.

39

Chapter 8 |
Conclusion

The recent efforts to develop new Cloud technologies focus on new network and
routing designs and policies to get more performance from the current data centers
without considering the applications’ diversity demanding different types of services.
In this study, we conducted a workload characterization of wide range of modern

cloud applications on a variety of node and network architectures. The results
from this study can help us understand cost performance trade-offs in designing
datacenters.
Our results show that, generally we can divide our workloads into three different

categories: Memory intensive applications, network bandwidth intensive appli-
cations and network latency intensive applications. Running network intensive
applications on a scale out hardware architecture does not give us much perfor-
mance/cost benefit compared to scale up approach. On the other hand Memory
intensive applications scale well and the scale out approach gives better perfor-
mance/cost.
One of the findings of our simulation-based study is that the inter-arrival times

of packets follows a self-similar distribution and increasing the number of nodes
tends to increase this self similarity. Self-similar traffic leads to longer queue length
and degrades the network performance. There exist prior works on how to use
self similarity for buffer management in networks (22). Static buffer management
systems have a fixed buffer size and, as long as the queue has enough capacity, they
accept the incoming packets. When the buffer is full, they discard the subsequent
packets. However, in the case of self-similar traffic, it is possible that one of the
self-similar flows fill up the queue. Consequently, if we knew the self-similarity

40

parameter of each application in advance, it would be possible to employ better
buffer management and achieve better performance. Our results also show that node
architecture (e.g., number of cores, cache/memory capacity) plays an important
role on bandwidth; the difference between two different node configurations (under
the same number of cores system wide) can be as much as 30 percent of execution
time.
It is also shown that different benchmarks have different performance/cost for

scale-out and scale-up approaches and changing hardware architecture, like CPU
core architecture and memory hierarchy of a node can change the traffic pattern on
the network and upgrading the servers without changing the network infrastructure,
may lead the network to be the bottleneck in the system. We also observed that,
some of the benchmarks send a high duration flow into the network, which makes
them a suitable fit for hybrid datacenter networks where stable flows can pass
through optical switches, whereas low-duration flows can pass through electrical
switches.

41

Bibliography

[1] et al., J. D. (2008) “MapReduce: simplified data processing on large clusters,”
Communications of the ACM.

[2] et al., K. H. L. (2012) “Parallel data processing with MapReduce: a survey,”
ACM SIGMOD Record.

[3] et al., S. M. R. (2011) “It’s time for low latency,” in USENIX, HoOS.
[4] et al., M. A. (2011) “Data center tcp,” in SIGCOMM.
[5] et al., D. G. A. (2009) “FAWN: A Fast Array of Wimpy Nodes,” in ACM

SIGOPS.
[6] et al., V. J. R. (2010) “Web Search Using Mobile Cores: Quantifying and

Mitigating the Price of Efficiency,” in ISCA.
[7] et al., A. G. (2009) “The Cost of a Cloud: Research Problems in Data

Center Networks,” in SIGCOMM.
[8] et al., S. K. (2009) “The Nature of Data Center Traffic: Measurements &

Analysis,” in SIGCOMM.
[9] et al., D. E. (2007) “Characterizing Network Traffic in a Cluster-based,

Multi-tier Data Center,” in In ICDCS.
[10] et al., T. B. (2010) “Network Traffic Characteristics of Data Centers in the

Wild,” in ACM SIGCOMM.
[11] et al., M. A.-F. (2008) “A Scalable, Commodity Data Center Network

Architecture,” in SIGCOMM.
[12] et al., A. V. (2010) “Scale-Out Networking in the Data Center,” in Micro.
[13] et al., C. G. (2008) “Dcell: A Scalable and Fault-tolerant Network Structure

for Data Centers,” in ACM SIGCOMM.
[14] et al., R. A. (2013) “Scale-up vs Scale-out for Hadoop: Time to rethink?”

in SoCC.
[15] http://parsa.epfl.ch/cloudsuite/.
[16] et al., P. L.-K. (2012) “Scale-out processors,” in ISCA.
[17] et al., M. F. (2012) “Clearing the Clouds: A Study of Emerging Scale-out

Workloads on Modern Hardware,” in SIGPLAN.
[18] http://mantevo.org/.
[19] http://graphlab.org/.

42

[20] Y. Low, J. G. e. a. (2010) “GraphLab: A New Framework for Parallel
Machine Learning,” in CoRR.

[21] et al., L. T. (2011) “The impact of memory subsystem resource sharing on
datacenter applications,” in ISCA.

[22] et al., A. K. (2008) “Mathematical analysis of buffer sizing for Network-on-
Chips under multimedia traffic,” in ICCD.

[23] http://www.amd.com/en-us/products.
[24] http://newegg.com/.
[25] et al., R. M. (2009) “PortLand: A Scalable Fault-tolerant Layer 2 Data

Center Network Fabric,” in SIGCOMM.
[26] et al., A. G. (2008) “Towards a Next Generation Data Center Architecture:

Scalability and Commoditization,” in Proceedings of the ACM Workshop on
Programmable Routers for Extensible Services of Tomorrow.

[27] et al., N. F. (2009) “Data Center Switch Architecture in the Age of Merchant
Silicon,” in HOTI.

[28] http://cotson.sourceforge.net/.
[29] http://developer.amd.com/simnow-simulator/.
[30] et al., E. A. (2009) “COTSon: Infrastructure for Full System Simulation,”

in ACM SIGOPS.
[31] http://snap.stanford.edu/data/.
[32] Schank, T. (2007) “Algorithmic aspects of triangle-based network analysis,”

Phd thesis, University Karlsruhe.
[33] et al., U. K. (2008) “HADI: Fast Diameter Estimation and Mining in Mas-

sive Graphs with Hadoop,” Carnegie Mellon University, School of Computer
Science.

[34] et al., M. S. T. (1995) “Estimators for Long-Range Dependence: An
Empirical Study,” Fractals.

[35] et al., W. E. L. (1994) “On the self-similar nature of Ethernet traffic,” In
IEEE/ACM Transactions on Networking.

[36] Sahinoglu, Z. and S. Tekinay (1999) “On multimedia networks: self-similar
traffic and network performance,” In IEEE Communications Magazine.

[37] et al., K. P. (1997) “Effect of traffic self-similarity on network performance,”
in IPCNS.

[38] et al., J. P.-G. (2007) “Performance analysis of MPI collective operations,”
Cluster Computing.

[39] et al., D. H. (2013) “An analytical framework for estimating TCO and
exploring data center design space,” ISPASS.

[40] et al., C. K. (2010) “Server engineering insights for large-scale online services,”
in MICRO.

[41] et al., N. F. (2010) “Helios: A Hybrid Electrical/Optical Switch Architecture
for Modular Data Centers,” in ACM SIGCOMM.

[42] et al., A. V. (2011) “The Emerging Optical Data Center,” in Optical Fiber

43

Communication Conference National Fiber Optic Engineers Conference.
[43] Kachris, C. and I. Tomkos (2012) “A Survey on Optical Interconnects for

Data Centers,” IEEE Communications Surveys Tutorials.
[44] Toshiyoshi, H. and H. Fujita (1996) “Electrostatic micro torsion mirrors

for an optical switch matrix,” Journal of Microelectromechanical Systems.
[45] et al., S. C. (1997) “Towards a communication characterization methodology

for parallel applications,” in HPCA.

44

