
The Pennsylvania State University
The Graduate School

Eberly College of Science

IMPLICATIONS FOR PLANET FORMATION FROM

POPULATION INFERENCE OF KEPLER-PLANET-CANDIDATES

AND ECLIPSING BINARIES

A Dissertation in
Astronomy & Astrophysics

by
Megan Iris Shabram

© 2015 Megan Iris Shabram

Submitted in Partial Fulfillment
of the Requirements
for the Degree of

Doctor of Philosophy

December 2015



The dissertation of Megan Iris Shabram was reviewed and approved∗ by the
following:

Eric B. Ford
Professor of Astronomy & Astrophysics
Chair of Committee, Dissertation Advisor

Steinn Sigurdsson
Professor of Astronomy & Astrophysics

Ronald L. Gilliland
Adjunct Professor of Astronomy & Astrophysics

Kevin Luhman
Professor of Astronomy & Astrophysics

Christopher House
Associate Professor of Geosciences

Donald Schneider
Department Head and Distinguished Professor

∗Signatures are on file in the Graduate School.

ii



Abstract

The Kepler Space Science Mission has revolutionized our understanding of planetary
system architectures, and the diversity of planet bulk densities. From Kepler, we
now have a population of ∼4,700 planet candidates and ∼ 3000 eclipsing binaries
with measured light curves, from which we can begin to characterize the distribution
of stars and planets to tease out relationships between planet properties and host
star properties in a robust statistical manner. The results of these investigations
constrain proposed planet formation theories. This dissertation analyzes three
particular sub-populations observed by Kepler that are well suited for hierarchical
inference to characterize their population properties. First, we investigate the
eccentricity distribution for a sample of short-period planet candidates from Kepler,
where both the transit and occultation are observed for each system. This sub-
sample lends a rare opportunity for tractable inference of its eccentricity distribution,
exposing at least two populations within the eccentricity distribution and potential
correlations of the eccentricity with host star metallicity and planet radius. Secondly,
we investigate the mass-radius-eccentricity relation for a sample of near-resonant
planet-pairs from Kepler. This study greatly improves upon previous research of
constraining the mass-radius relation for small planets. Furthermore, we explore
the period-eccentricity distribution of eclipsing binary stars from Kepler. We find
that ∼ 72% of EBs below ∼ 11 days are very circularized, where as ∼ 87% of EBs
above ∼ 11 days can take on a wide range in eccentricity values including some
with significant eccentricities.
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4.1 Projected eccentricity (h = e cosω and k = e sinω) for Kepler EBs.
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the full range in period for our sample of EBs, ranging from 0.00325
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Chapter 1 |
Introduction and Background

1.1 Planet Formation
Results from ground and space based exoplanet discovery and characterization
missions have exposed populations of planets that have orbital configurations and
bulk densities quite different from the planets in our solar system. Radial velocity
(RV) surveys have uncovered different classes of giant planetary systems, including
giant planets with orbits on the order of a few days to giant planets with orbits ∼300
days to 4 years (Ford, 2014; Wright et al., 2011). RV surveys are incomplete for
planets at even larger orbital separations, however, direct imaging and microlensing
observatories are beginning to probe this parameter space. Planets at these wide
separations may be the scattered companions of a class of close-in giant planets,
sometimes with orbital periods of hours to days, that were primarily detected with
the early RV and transit discovery missions. Furthermore, transit surveys such as
the Kepler Space Science mission (Borucki et al., 2010; Koch et al., 2010; Borucki
et al., 2011a), are most sensitive to planets with large planet radii or planet-to-star
radius ratios, with short orbital periods.

As Kepler pushed the limits of transit photometry towards smaller planet
radii and longer orbital periods to look for an Earth analog, it became clear that
super-Earths and mini-Neptunes may be the dominant result of planet formation
processes. This has prompted the revision of previous planet formation models that
were developed to explain the formation of our solar system’s planets. Figure 1.1
from the NASA Exoplanet Archive (Akeson et al., 2013) shows the scatter in planet
mass and planet orbital period for the confirmed exoplanets as of August 27th,
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2015, colored based on the method of detection. From this figure, it is clear that
methods such as RV and transits for detecting exoplanets probe different regions of
parameter space. As we push the limits of these detection methods we can begin to
reduce selection biases, filling in gaps in parameter space, or discovering empirical
gaps that are markers of the features of planet formation mechanisms.

Figure 1.1: Scatter in planet orbital period and planet mass for the confirmed
exoplanets as of August 27th, 2015 from the NASA Exoplanet Archive (Akeson
et al., 2013), colored based on the method of detection. Multiple exoplanet detection
methods such as transits and radial velocity (RV) are critical for expanding the
parameter space of detected planets. The radial velocity detected planets (red)
show a cluster for larger planet masses and longer orbital periods, where as the
planets detected via the transit method (green) fill in the region of parameter space
at shorter orbital periods (less than 1 year). In this figure, timing variations refer
to planets detected with a method involving timing such as pulsar timing or transit
timing variations.
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Initial Planet Formation Theories

Initial theories regarding the formation of planetary systems at large were put forth
to explain the formation of the solar system, and are highlighted by two dominating
mechanisms. These two mechanisms are referred to as the “core accretion” and the
“gravitational instability” scenarios. Before the discovery of extrasolar planets, core
accretion models received much attention because simulations could not recreate
our solar system configuration via gravitational instability models. This is because
gravitational instability operates similar to the star formation process, where
turbulent material collapses under its own gravity as enough material occupies a
small volume. This is thought to sometimes happen in the outer regions (∼100
AU) of massive protoplanetary disks (Boss, 1997; Boley, 2009), much farther out
than the locations of the terrestrial planets. However, it was proposed that giant
planets may form this way then migrate inwards as the system dynamically evolves.
This could potentially explain giant planet formation in our solar system (Cameron,
1978; Boss, 1997) but complications arise when extending this to terrestrial-like
planets that orbit closer to their host star, similar to Mars, Earth, Venus, and
Mercury.

Terrestrial-like planets are thought to be rocky and substantially comprised of
refractory materials, with a thin envelope of gas created primarily by outgassing
of material as the planet cools in the later stages of formation. It is unlikely that
the terrestrial planets of our solar system are the cores of migrated giant planets,
since it is not clear what happens to a giant planet’s core as it evolves, and if
the mass-loss required to strip a giant planet down to a terrestrial-like planet is
feasible. On the other hand, core accretion, the process by which a planetesimal
nucleus grows in mass as it draws in and collects material while orbiting in the
protoplanetary disk, could create gas-giants and terrestrial-like planets (Pollack
et al., 1996).

After the discovery of the population of planets now widely known as hot-
Jupiters during early RV and transit surveys, gravitational instability came back
into the picture because core accretion was not able to reproduce these heavily
irradiated gas giants at extremely close orbital separations, and in some cases, RV
detected planets at farther distances on eccentric orbits. It was then proposed that
hot-Jupiters may have formed in the outer cold regions of their circumstellar disk
via gravitational instability, and mechanisms such as smooth disk migration then
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worked to dissipate orbital energy, causing these hot-Jupiters to migrate inward
(Bodenheimer et al., 2000; Ida & Lin, 2004). Moreover, it has been observed that
hot-Jupiters typically do not have nearby planets or planets on interior orbits,
perhaps because these planets were somehow cleared from the system during epochs
of dynamical evolution.

Interestingly, Rossiter-McLaughlin observations have exposed some systems
where host star rotations are highly mis-aligned with the planetary orbital disk.
This favors a scenario where planet-planet scattering excites the eccentricities of
two giant planets causing one planet to be ejected or thrown to the outer regions
of the planetary system, and one planet to have an excited eccentricity with a
small pericenter distance (Rasio & Ford, 1996). This sets up the inner planet of
the scattering event to under go tidal circularization and potentially end up as a
hot-Jupiter that has cleared out any planets on interior orbits. Furthermore, the
planets produced in this scenario could potentially orbit retrograde, a feature that is
sometimes present in the hot-Jupiter population (Sanchis-Ojeda et al., 2013). This
paints a picture where smooth disk migration may operate at the initial stages of the
dynamical evolution, and planet-planet scattering events and secular perturbations
act on the system at later stages. These scenarios were heavily developed as they
could reproduce the observed hot-Jupiter population at a time in history when
most of the detected planets were hot-Jupiters.

From hot-Jupiters to sub-Neptunes

After the Kepler mission commenced in early 2009, we were able to untangle the
selection effects for transit surveys that favored the detection of primarily hot-
Jupiters and begin to acquire a sample that more accurately represents exoplanetary
systems around solar-like stars in our vicinity of the Milky Way. With the Kepler
mission producing a sample of over 4600 planet candidates to date (Akeson et al.,
2013), researchers have learned that the largest population of detected planets may
in fact be similar to a version of a mini Neptune, with orbital separations less than
0.5 AU (Fressin et al., 2013). Hot-Jupiters now only comprise a small fraction
of the detected exoplanets. Additionally, there seem to be a plethora of systems
containing multiple planets that have orbital architectures somewhat similar to
the architectures of the gas giant and satellite systems within our solar system,
e.g., the Kepler-11 system (Lissauer et al., 2011). Many of these sub-Neptune
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exoplanets reside in these multiple-planet systems, on short orbital periods, and
closely packed together. These are often referred to as Short-period Tightly-packed
Inner Planetary Systems (STIPS). Due to the close proximity of the planets in
STIPS, the gravitational interactions between planets can cause mutual planetary
perturbations where their orbits deviate from strict periodicity. This feature can be
measured by tracking the variations of the time each transit occurs and comparing
those times to the calculated orbital period if the planet were to be unaffected
by the other planets in its system. These measurements are referred to as transit
timing variations (TTVs) (Ford et al., 2012b).

Short-period Tightly-packed Inner Planetary Systems

Many of the multiple transiting planet systems discovered by Kepler exhibit TTVs.
Most now have randomly distributed period ratios but statistically a significant
sample orbit near to mean motion resonances (MMR) with each other. An MMR
occurs when a pair of planets have orbital periods that are integer ratios of one
another. A first-order MMR, in particular, has an orbital period ratio of j : j − 1
where j is known as the resonant number. In cases where STIPS are in or near
MMR, the TTV signals are large. These TTV measurements have provided us
with the means to get precise measurements and perform detailed analysis to
characterize the orbital and physical properties of these sub-Neptune planets and
STIP systems. For instance, the TTV amplitudes can inform us about the planet
masses and eccentricities (Lithwick et al., 2012), and when coupled with the planet
radii measurements, can provide much insight. Using this information, we can
begin to untangle the planet formation process for STIP systems and how it may
be similar to or differ from the formation of hot-Jupiters and the planets in our
solar system. As RV surveys became more sensitive to giant planets with longer
orbital periods, a dearth of giant planets between 10 and 200 day orbital periods
was discovered. However, there is a plethora of sub-Neptune planets in this orbital
period range. Why a lack of giant planets has been observed in this parameter
space is an open question.

One of the striking features from the Kepler sample of planets is a statistically
significant pile up of planets in orbital configurations just wide of MMR, and a
gap just narrow (Lissauer et al., 2011; Fabrycky et al., 2014; Steffen & Hwang,
2015). This is different than what was observed for the gas giants detected in
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radial velocity surveys, where these planets seem to have stayed very close to MMR.
Efforts have been put forth to explain this feature, including the theory of resonant
repulsion (Lithwick & Wu, 2012). Resonant repulsion requires that after these
planets have migrated into MMR with each other, potentially via smooth disk
migration, a dissipative mechanism transfers orbital energy into heat and pushes
the planets apart. It was initially proposed that tides could act as this dissipative
mechanism, but recent work has shown that for the sub-Neptune mass planets
involved in these configurations, the lower mass compared to hot-Jupiters, and the
large initial eccentricities required for the tidal timescale to be less than the age of
the system, are unreasonable (Silburt & Rein, 2015). Recent work to characterize
this dissipative mechanism was put forth by Chatterjee & Ford (2015), where after
these lower mass planets have migrated into MMR via smooth disk migration,
planet-planetesimal disk interactions create many micro-scattering events that can
dissipate orbital energy on appropriate timescales to move these planets wide of
MMR. Higher planet masses may not be as susceptible to these micro-scattering
events, and the planet-planetesimal disk scattering mechanism may explain why
we see many giant planet systems detected by radial velocity surveys still in MMR.

1.2 The Kepler Space Science Mission
The Kepler Space Science Mission has set a high standard for the future in space
exploration and scientific discovery as it carried out near-continuous photometry for
4 years using a 0.95-m aperture space-based telescope to monitor more than 150,000
stars selected to be similar in nature to the Sun (Borucki et al., 2010; Koch et al.,
2010). As of August 27th 2015 Kepler has discovered 4,696 exoplanet candidates,
472 multiple transiting planet systems, and has confirmed 1,887 exoplanets (Akeson
et al., 2013). The Kepler mission set out to explore the structure and diversity of
planetary systems, with the goal of discovering the frequency of Earth-like planets
in the habitable zone of Sun-like stars (η⊕). The Kepler mission also seeks to
characterize the orbits and properties of single and multiple planetary systems, as
well as characterize the properties of their host stars. Figure 1.2 shows planet orbital
period versus planet radius for confirmed planets (blue) and planet candidates (red)
detected by Kepler.
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Figure 1.2: Planet orbital period versus planet radius for Kepler planets. Confirmed
planets are shown in blue, and planet candidates are shown in red. Detection of
an Earth-radii planet around a solar-like star on a year long orbit is still to be
determined within the baseline Kepler data products.

Science with Kepler Data

Teams are contributing to innovative, high-performance and reliable exploration
technologies while developing the analysis required for the full realizations of
the Kepler mission objectives. After the launch of the mission in March 2009,
the realization that the Kepler field stars and the Kepler instrument introduce
significantly more noise in the photometry data than expected, the primary mission
objective of discovering an Earth analog became jeopardized (Gilliland et al., 2011).
In 2012, the baseline Kepler mission was extended from 3.5 years to 7.5 years to
reach the required signal-to-noise ratio (SNR) for detection of potential Earth-like
planets on year long orbits within the data. Soon after this extension, one of the
remaining three reaction wheels required to keep Kepler stable for its remarkable
photometric precision, failed. However, the current data is still prolific! The
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substantial sample of small planets on short period orbits has revolutionized our
understanding of planetary systems architecture. Furthermore, the Kepler data has
provided the opportunity to employ advanced probabilistic analysis for discovering
more from the data than meets the eye.

Initially, the focus of research being done to characterize the Kepler sample
was largely to constrain the occurrence rates of various planetary mass regimes
relative to the planets in our solar system. In particular, many studies examined
the occurrence rates of hot-Jupiters, sub-Neptunes, and super-Earths, and how
these might correlate with orbital separation (e.g., Fressin et al. (2013); Howard
et al. (2012, 2010)). Other work generated histograms of the number of planets in
these mass regimes versus semi-major axis, orbital period, planet radius, and stellar
effective temperature to learn about parameter distributions for these populations,
but mainly as preliminary analysis with the aim to catalog the Kepler objects of
interests (Borucki et al., 2011a).

Transit timing variations have been detected in dozens of near-resonant systems
from Kepler, providing access to the mass of small bodies otherwise unattainable
with current radial velocity (RV) technology (e.g., Ford et al. (2012b,a, 2011); Steffen
et al. (2013); Mazeh et al. (2013); Rowe & Thompson (2015a)). The eccentricity
distribution for terrestrial planets discovered by Kepler has been explored (Ford
et al., 2008; Moorhead et al., 2011; Kane et al., 2012; Plavchan et al., 2014a),
however, these studies are limited by uncertainties in host star parameters. In
Chapter 2 of this dissertation, we investigate the eccentricity distribution of a
sample of short-period planet candidates from Kepler, using measurements of the
eccentricity that are largely independent of the host star properties.

Selection effects and detection biases are prevalent in the Kepler sample. How-
ever, much work has been done to catalog the combined differential photometric
precision (CDPP) and the Kepler pipeline detection efficiency. Accurate esti-
mates of the uncertainties of transit parameters are dependent on the photometric
measurement error as a function of time, which is approximated by the CDPP.
Furthermore, properly characterizing the detection efficiency is crucial to charac-
terizing the Kepler sample as a representative sample of planets (Jenkins et al.,
2010b; Christiansen et al., 2012, 2013; Christiansen, 2014). The false positive rate
has been shown to be low (Fressin et al., 2013; Batalha et al., 2013), suggesting
that preliminary population analysis of the Kepler planet candidates is informative
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in spite of many of the planet candidates still awaiting confirmation.
Many researchers have begun the efforts to mine the Kepler data for existing

evidence of Earth analogs by working to improve the pipeline sensitivity (Rowe &
Thompson, 2015a; Seader et al., 2015; Tenenbaum et al., 2014; Burke et al., 2014;
Tenenbaum et al., 2013, 2012). Some studies extrapolate the occurrence rates to
parameter space with smaller planets on longer orbital periods, extracting improved
estimates of the number of Earth-like planets in the same period and radius bin as
Earth (Foreman-Mackey et al., 2014; Petigura et al., 2013b,a; Dong & Zhu, 2013).
These studies, however, require strong assumptions that weaken the validity of
their inferences. Other efforts have begun work characterizing populations in the
Kepler sample but have failed to robustly and comprehensively account for the
selection biases in the planet vetting process, the false positive rates, the pipeline
detection efficiency, or combinations of these issues (Rogers, 2015a; Wolfgang et al.,
2015; Weiss & Marcy, 2014; Wolfgang & Lopez, 2015; Foreman-Mackey et al.,
2014; Fressin et al., 2013; Weiss et al., 2013). Without properly accounting for the
impact of selection effects, detection-efficiency/completeness and the false-positive-
rates/reliability of the Kepler sample, the estimates for η⊕ and other population
level science will remain significantly less accurate.

Kepler’s Observables

Kepler provides us with high precision broadband photometry at long and short
cadences for star-planet occultation events where the light curves can be studied in
extreme detail for many planetary systems. The transit depth tells us information
about the radius of the planet relative the radius of the host star, allowing us
to infer the planet’s size. Additionally, we can measure the transit duration, the
ingress and egress duration, and the time of reoccurring mid transit and secondary
eclipse. Combining these pieces of information using Kepler’s laws, we can learn
about the planet’s impact parameter (the chord that the planet traverses over
the face of the star in contrast to the full diameter of the star), the eccentricity
of the planetary orbit, and the orbital period/semi-major axis, provided we have
information about the stellar mass and radius. This is described in the following
relation:

D = ρ∗sqrt(1− b2)(a/r+(e cosω, e sinω))−1 (1.1)
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where D is the transit duration, ρ∗ is the stellar density, b is the impact parameter,
a is the semi-major axis, and r+ is the distance the planet is from the star at
the time of transit and is a function of the orbital eccentricity, and argument
of periastron. Constraining these parameters for the Kepler sample will provide
robust opportunities to explore how orbital parameters are correlated with different
planetary sub-populations. For instance, finding how eccentricity changes with
planet size, stellar type, stellar metallicity, orbital period, effective temperature,
multiplicity and more can shed light on the connection between star formation
and the formation of planetary companions, and disentangle degenerate formation
scenarios described in §1.1.

The high photometric precision also allows unprecedented stellar characterization
through asteroseismology. Eclipsing binary stars can also be studied in detail with
Kepler data. Stellar evolution is largely coupled with planet formation and dynamical
evolution. For example, tidal circularization plays an important role in sculpting
of eclipsing binaries and planetary systems orbital properties. The behavior of
such systems share common dynamical processes, but operate in different mass and
composition regimes, offering an opportunity for comparison. Thus, investigating
properties of EBs statistically can shed light onto star and planet formation. The
end state of EBs after billions of years of tidal evolution provide a way to constrain
the internal structure of stars and planets, as well as the physics of tidal dissipation.

1.3 Hierarchical Bayesian Modeling
The hierarchical Bayesian modeling method has been employed in this dissertation
to begin the processes of robustly characterizing populations of exoplanets from
the Kepler sample. Bayesian modeling accounts for the conditional structure of
the results of random processes in nature. Knowing more about the behavior of a
system and using that information when developing the population model produces
more accurate inferences of the parameters of interest. In a hierarchical Bayesian
framework, this philosophy is extended from individual systems to populations
of systems for which we have measurements. In this regime, the population-level
parameters are simultaneously inferred along with probabilistic parameter estimates
for the population constituents.

The population-level parameters being inferred describe the distributions of star

10



and planet properties while the parameters describing the observables contain the
actual properties of one particular star and planetary system, as drawn from an
assumed underlying distribution using the population-level parameters. In the case
of population inference for the Kepler sample, the physical model for a transiting
planet light curve relates the observables, (e.g., stellar radius, stellar density,
standard deviations of out-of-transit flux over various time scales, transit depth,
reference transit time, transit duration) to the planet and host star properties (e.g.,
the observable parameters plus planet-to-star radius ratio, eccentricity, argument
of pericenter, and inclination).

Hierarchical Bayesian inference operates by leveraging the measurement uncer-
tainties and specifying distributions at each level. Information and uncertainty
are characterized in the resulting posteriors of the population level parameters
that describe the chosen distribution’s size and shape (e.g., the population level
parameters of a Normal distribution population model are the mean and variance).
Robust hierarchical Bayesian models are constructed in such a way that the results
for the posteriors for the population level parameters are insensitive to outliers or
other small departures from the model assumptions.

Formalism

The posterior probability distribution function for the vector of hyperparameters
φ that describe the population level parameters in an HB model and the latent
variables θ, is given by

p(θ,φ|d,M) = p(d|θ,φ,M)p(θ|φ,M)p(φ,M)∫
dφ p(d|θ,φ,M)p(θ,φ|M) . (1.2)

Here, “|” is read as “given”, d is the vector of data being used to constrain the
model. θ is the vector of latent variables parameterized by the intrinsic distributions
for the observables such as star and planet properties surveyed, parameters that
describe the signal to noise ratio and other features of the data collection method,
and explanatory variables that are given as known or define relationships between
observables and latent variables. M represents additional information such as the
model specification inherent to the particular HB model. The prior probability
distribution function for φ is p(φ), and is also referred to as the hyperprior.
The probability of measuring the data d given the model parameters φ, θ, and
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model specification M is p(d|θ,φ,M)p(θ|φ,M), and is commonly referred to as a
likelihood for the hierarchical model with fixed φ. The denominator in Equation 1.2
is the normalization, which is important in model comparison, but not important
when evaluating population features using robust model specification. Calculating
the normalization for an HB model is non-trivial. Methods such as importance
sampling can be used to accomplish this, however new methods are continuing to
be developed.

Advantages of HB Models

HB modeling leverages the power of the ensemble of data, where the observed
quantities are dimensions in the HB model. As a consequence, the joint posterior for
these large dimensional problems provides marginal distributions for the observed
variables in addition to the population level parameters. These probabilistic param-
eter estimates for the observed variables are often more precise than probabilistic
parameter estimates that are not from a hierarchical framework, a phenomenon
known as “shrinkage" (Loredo, 2007). Moreover, the practice of non-hierarchical
models for probabilistic parameter estimation of hierarchical data can lead to
further problems. In these cases, models developed for parameter estimation may
over-fit data. This is exposed when these models make inferior predictions for new
data (Gelman et al., 2004).

Another advantage to HB modeling is the incorporation of each observable’s
unique measurement uncertainty into the inference of the population parameters,
and parameter estimates of the population constituents. This allows for the
possibility of robust inference even when the measurement uncertainties are large.
Furthermore, HB modeling can produce parameter estimates for quantities that
are not observed by incorporating physical models into the framework.

Evaluating HB Models

HB models are fundamentally high-dimensional problems, often without analytical
solutions. In this dissertation, we focus on numerically calculating the posteriors
for our HB models using Monte Carlo methods. These methods impose some
limitations in that Monte Carlo error is convolved in the posterior distributions for
the parameter estimates. Monte Carlo error goes as 1/

√
N , where N is the number
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of iterations or draws from the HB model. Therefore, it is important that we test
our models for convergence. We do a first pass analysis to test for convergence
by looking at trace plots, which show the parameter estimate as a function of
iteration for each chain in the MCMC simulations. Chains that are well-mixed
sample parameter space effectively. We also evaluate the autocorrelation of each
the Markov Chains in our Markov Chain Monte Carlo simulations as a diagnostic
for convergence. The autocorrelation is the correlation or similarity between the
parameter estimate for iterations as a function of the distance between iterations, or
lag time. Furthermore, we evaluate the Gelman-Rubin statistic R̂, which evaluates
the across chain variance to test whether all parallel chains converge to the same
posterior distribution (Gelman et al., 2004).

1.4 Outline
Chapter 2 examines a sample of short-period planet candidates from Kepler for
which both a transit and an occultation were observed. Here, we characterize
the eccentricity distribution of a sample of 50 short-period planet candidates
using transit and occultation measurements from NASA’s Kepler Mission. First,
we evaluate the sensitivity of our hierarchical Bayesian modeling and test its
robustness to model misspecification using simulated data. When analyzing actual
data assuming a Rayleigh distribution for eccentricity, we find that the posterior
mode for the dispersion parameter (the Rayleigh parameter) is σ = 0.081±0.014

0.003.
We find that a two-component Gaussian mixture model for e cosω and e sinω
provides a better model than either a Rayleigh or Beta distribution. Based on our
favored model, we find that ∼ 90% of planet candidates in our sample come from
a population with an eccentricity distribution characterized by a small dispersion
(∼ 0.01), and ∼ 10% come from a population with a larger dispersion (∼ 0.22).
Finally, we investigate how the eccentricity distribution correlates with selected
planet and host star parameters. We find evidence that suggests systems around
higher metallicity stars and planet candidates with smaller radii come from a more
complex eccentricity distribution.

Chapter 3 describes an analysis of a sample of planet-pairs from Kepler in near
first-order mean motion resonances with significant transit timing variation signals.
We characterize the mass-radius-eccentricity distribution of this sub-population of
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transiting planets using Transit Timing Variations (TTV) observations from NASA’s
Kepler mission. Kepler’s precise measurements of transit times (Mazeh et al., 2013;
Rowe & Thompson, 2015a) constrain the planet-star mass ratio, eccentricity and
pericenter directions for hundreds of planets. In particularly favorable cases,
strongly-interacting planetary systems allow TTVs to provide precise measurements
of masses and orbital eccentricities separately (e.g., Kepler-36, Carter et al. (2012)).
For each of these precisely characterized systems, there are several planetary systems
harboring at least two planets near a mean motion resonance (MMR) for which
TTVs provide a joint constraint on planet masses, eccentricities and pericenter
directions (Hadden & Lithwick, 2014). Unfortunately, a near-degeneracy between
these parameters leads to a posterior probability density with highly correlated
uncertainties. Nevertheless, the population encodes valuable information about
the distribution of planet masses, orbital eccentricities and the planet mass-radius
relationship. We characterize the distribution of masses and eccentricities for
near-resonant transiting planets by combining a hierarchical Bayesian model with
an analytic model for the TTV signatures of near-first-order-resonant planet-pairs
(Lithwick et al., 2012) to accelerate exploration of this complex parameter space.
By developing a rigorous statistical framework for analyzing the TTV signatures of
a population of planetary systems, we significantly improve upon previous analyses.
For example, our analysis includes transit timing measurements of near-resonant
transiting planet-pairs regardless of whether there is a significant detection of TTVs,
thereby avoiding biases due to only including TTV detections.

Chapter 4 applies the methods from our eccentricity distribution analysis
presented in Chapter 2 on a sample of 795 eclipsing binary (EB) systems, for
which we have primary and secondary eclipses projected eccentricity measurements.
First, we apply a two-component Gaussian mixture HB model to the sample of EB
projected eccentricities. In this HB model regime, we find that the mixture fractions
and dispersions are flow = 53±2.2

1.6 %, fhigh = 47±1.8
1.9 %, and σlow = 0.0067±0.0003

0.0003,
σhigh = 0.21±0.007

0.005, respectively. Here, “low” refers to the smaller dispersion
component and “high” refers to the component where EBs may have significant
eccentricities. Next, we apply an HB model using a piece-wise function, where the
parameters for the eccentricity distribution depend on whether the orbital period
are below or above a threshold in orbital period. In this scenario, the threshold,
which we call the period break point, is simultaneously inferred along with the
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eccentricity distribution for each sub-population below and above the break point.
In the case where we allow the eccentricity distribution on either side of the period
break point to be modeled as a mixture of two Gaussian distributions, we find
that the inferred period break point is at 10.74±0.26

0.027 days. This is consistent
with previous findings from Latham et al. (2002); Mayor et al. (2001), where they
observed a period break point at around 10 days for EBs from disk and halo parent
populations, indicative of tidal circularization operating on this population of
short-period EBs. Furthermore, the eccentricity distribution of EBs below ∼ 10.74
days, has population level parameters flow = 0.72±0.024

0.022, fhigh = 0.28±0.025
0.02 %, and

σlow = 0.0055±0.0004
0.0002, σhigh = 0.1±0.0047

0.0048 for the mixture fractions and dispersions,
respectively. The eccentricity distribution for EBs with periods above ∼ 10.74
days has population level parameters flow = 0.13±0.024

0.023, fhigh = 0.87±0.027
0.02 %, and

σlow = 0.018±0.0035
0.0018, σhigh = 0.26±0.0074

0.011 for the mixture fractions and dispersions,
respectively. This suggests that ∼ 72% of EBs below the inferred period break
point are very circularized, where as ∼ 87% of EBs above the inferred period break
point can take on a wide range in eccentricity values including some with significant
eccentricities.

Chapter 5 summarizes our results and discusses our conclusions from these
projects, as well as discusses future work. As high-fidelity data products from the
Kepler Mission near completion, timely development of probabilistic population
inference to match these advanced data products can compensate for the abbrevi-
ated mission and characterize the exoplanet population more accurately than any
previous analysis to date. The probabilistic nature of the analysis presented in this
dissertation, and applicable for future population characterization studies, lends
itself well to predictive studies such as exoplanet population synthesis.

15



Chapter 2 |
The Eccentricity Distribution of
Short-Period Planet Candidates
Detected by Kepler in Occulta-
tion

2.1 Introduction
The Kepler mission has identified a sample of planet candidates detected both in
transit and occultation, providing detailed orbital information, including orbital
eccentricity, for a subset of systems with a wide variety of stellar host properties.
However, early works on the eccentricity distribution of all Kepler objects of interest
(KOIs), including those in this subset, are limited due to uncertainties in host
star properties. Recent studies have focused on applying Bayesian data analysis
for robust error estimation (e.g., Parviainen et al., 2013), and other studies have
investigated the eccentricity distribution of planets discovered with the radial
velocity technique and the role that tidal interactions play in shaping eccentricity
distributions (Wang & Ford, 2011; Matsumura et al., 2008; Hansen & Murray,
2015). While some studies have attempted to constrain the eccentricity distribution
of planets via transit durations identified by Kepler, these studies have been limited
by uncertainties in stellar densities (Moorhead et al., 2011; Kane et al., 2012;
Plavchan et al., 2014a; Van Eylen & Albrecht, 2015). Lucy (2013) used a Bayesian
approach to explore the eccentricity distribution of eclipsing binaries. Kipping
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(2014a) explored biases in an eccentricity distribution using a Beta distribution prior,
but little else has been done to explore the eccentricity distribution of exoplanets
via similar methods and with the goal of quantifying population-level parameters.
Hogg et al. (2010) proposed using an hierarchical Bayesian (HB) model to constrain
the eccentricity distribution of hot Jupiters, but applied their model to simulated
radial velocity observations, only.

Bayesian inference has made its way into exoplanet studies as computing facilities
have evolved to accommodate the required calculations. The application of HB
modeling is highly relevant for studying the Kepler planet sample (e.g. Demory,
2014; Wolfgang & Lopez, 2015; Rogers, 2015b; Foreman-Mackey et al., 2014). This
framework allows us to obtain population-level posterior distributions, such as the
distribution function for planets, while accounting for measurement uncertainties
and potentially, selection effects. HB is particularly well suited for characterizing a
population’s eccentricity distribution largely because of its ability to accommodate
samples where each measurement has a large measurement uncertainty.

As a first step in studying the exoplanet population in general, we use HB
modeling to investigate the eccentricity distribution of the subset Kepler planet
candidates that are detected in both transit and occultation, which provides
measurements of projected eccentricity via transit duration ratios and phase offsets.
Even for this subset of planet candidates, individual eccentricity measurements
often have large uncertainties. Fittingly, HB is designed to account for individual
measurement uncertainties. Thus, we approach this problem from both sides:
we will apply modern statistical methods that incorporate uncertainties into our
eccentricity study (e.g., HB modeling), while also working with a subset of planet
candidates with enough information to help bypass some of the uncertainty in
their host star parameters. The projected eccentricity measurements (e cosω and
e sinω) are presumed independent of the stellar host star density and radius, which
mitigates the problem of uncertainties in stellar parameters. Applying HB to
the eccentricity distribution is a logical starting point while working to construct
a comprehensive hierarchical model (i.e., a joint population distribution that
includes planet parameters in addition to orbital eccentricity) in which, measurement
uncertainties are naturally incorporated into the analysis.

Furthermore, we can investigate various sub-populations of planets from the
Kepler sample and look for correlations of planet and host star properties within
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these subpopulations. In particular, we explore mixture models where the eccentric-
ity distribution can be interpreted as a combination of two sub-populations. With
this analysis, more than one population in the eccentricity distribution could arise,
for example, due to different formation mechanisms at work. Characterizing the ec-
centricity distribution in this way provides insight into postulated planet formation
theories such as planet orbital migration and planet scattering. In principle, these
mechanisms could form two populations that make up the eccentricity distribution:
one population that evolved via slow disk migration and another population that
evolved via excitation of a large eccentricity (e.g., planet-planet scattering or secular
perturbations) proceeded by tidal circularization. With this in mind, the population
of planets that came from planet-planet scattering might have a larger dispersion
as it would include planets with large eccentricities, while the population of planets
that came from disk migration might have a smaller dispersion and contain fewer
eccentric planets. These populations might also correlate with host star properties,
which would allow for a framework to test physical models of the origin of each
population thus shedding light onto planet formation.

Here, we focus on inferring the eccentricity distribution of an interesting subset
of planets using HB modeling applied to both simulated and real transit and occul-
tation measurements from the Kepler mission. This sample contains predominantly
short-period planet candidates, most of which are likely to be hot Jupiters, identified
by Kepler. We look for correlations between the eccentricity distribution and other
properties, such as stellar effective temperature, planet radius, orbital period, and
stellar metallicity to begin to synthesize a global understanding of planet formation.
This manuscript is organized as follows. In §2.2, we describe our observational
data. In §2.3, we describe the method behind the HB analysis calculations, and
the priors selected for the study. In §2.4, we present the results of our HB analysis.
In §2.5, we investigate potential correlations between the eccentricity distribution
and planet or host star properties. In §2.6, we summarize our results, and in §2.7,
we discuss our conclusions, potential biases and future work.

2.2 Observations
When a planet both transits and occults its host star, we are able to obtain detailed
information about the planetary orbit, including information about the projected
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orbital eccentricity, h = e cosω and k = e sinω. The relationship between orbital
eccentricity and transit observables is outlined in Winn (2010). h can be derived
from

∆tc ≈
P

2

[
1 + 4

π
h

]
, (2.1)

where ∆tc is the time between the center of the transit and the center of the
occultation and P is the orbital period. k can be derived from

Tocc

Ttra
≈ 1 + k

1− k , (2.2)

where Tocc is the occultation duration and Ttra is the transit duration. More
precise expressions for h and k are listed in Ragozzine & Wolf (2009), section 2.5
and elsewhere. The original full derivations of these expressions can be found in
Sterne (1940) and de Kort (1954). When analyzing Kepler observations in §2.5,
we calculate the transit and occultation times and durations numerically using
Keplerian orbits.

We have measured the offsets and durations of transits and occultations for a
sample of planet candidates observed by Kepler. This study is based on quarters
Q0 through Q12 Kepler data (see Burke et al., 2014, for the Q0-Q10 data release).
In total, the datasets encompass about ∼1100 days of quasi-continuous photometric
monitoring between May 2009 and March 2012. We retrieved the Q0-Q12 FITS files
from MAST1 and extracted the PDCSAP FLUX , commonly known as “calibrated
light curves", long-cadence photometry (Jenkins et al., 2010a) for each target.
Using the calibrated data eliminates the potential for instrumental corrections or
cotrending basis vectors to introduce short-timescale correlated noise.

2.2.1 Derivation of the planet physical and orbital properties

We focus on a sample of planet candidates for which an occultation is detected. We
address the biases that the selection effects introduce into our sample in §2.3.2 and
§2.7. We use the Kepler planet candidate list to keep all planets larger than 8 Earth
radii and with orbital periods less than 10 days. This initial selection of planet
candidates was based on early planet candidate lists from NExSci. Note that most
planets with a detectable occultation have very high SNR transits, so we do not

1http://archive.stsci.edu/kepler/
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expect that many additional planets would be found in the full Q0-Q17 datasets.
The preliminary parameters were derived using the KIC stellar values, and updated
later in our analysis. We employ a Markov Chain Monte Carlo (MCMC) framework
to compute the posterior distribution of the system’s orbital parameters using
these initial values. When performing MCMC analysis, we used an empirical main
sequence mass-radius relationship (Torres et al., 2009) to derive more accurate
planetary parameters. After the MCMC analysis was performed, some planet
candidate radii changed to be outside the initial range stated above. Our MCMC
implementation (described in Gillon et al. (2012)) uses the Gibbs sampler and the
Metropolis-Hastings algorithm to estimate the posterior distribution function of all
unknown parameters. Our nominal model is based on a star and a single transiting
planet on a Keplerian orbit about their center of mass.

The input data provided to each MCMC run consist of the Q0-Q12 Kepler
photometry and the stellar parameters (effective temperature T eff , metallicity
[Fe/H] and spectroscopic log g) extracted from the Kepler Input Catalog (KIC)
(Brown et al., 2011). We correct for the photometric dilution induced by neighboring
stellar sources using a quarter-dependent dilution factor based on the dilution values
presented in the literature and on the contamination values reported in the FITS
files headers (Bryson et al., 2013).

We divide the total light curve in segments of duration ∼24 to 48 hrs. The
smooth photometric variations due to stellar variability or instrumental systematic
effects in each segment are fit with a time-dependent quadratic polynomial. Baseline
polynomial coefficients are determined at each step of the MCMC for each light
curve with the singular value decomposition method. The resulting coefficients
are then used to correct the calibrated photometric light curves. We assume a
quadratic law for the limb-darkening (LD) and use c1 = 2u1 + u2 and c2 = u1− 2u2

as jump parameters, where u1 and u2 are the quadratic coefficients (Mandel &
Agol, 2002). We integrate over the 29.4 minute long cadence integration time when
modeling long cadence light curves.

The MCMC has the following set of jump parameters (i.e., parameters that are
not fixed in our model and are used as a basis for proposal steps): the planet/star
flux ratio, the impact parameter b, the transit duration from first to fourth contact,
the time of minimum light T0, the orbital period, the occultation depth, the two
LD combinations c1 and c2 and the two parameters

√
e cosω and

√
e sinω. At
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each step of the MCMC, the Keplerian model is constructed based on the e and
ω values derived from the

√
e cosω and

√
e sinω jump parameters. A uniform

prior distribution is assumed for all jump parameters except c1 and c2. This
corresponds to a prior that is uniform in e ∈ [0, 1) and ω ∈ [0, 2π). For the
limb-darkening parameters, we assume normal priors which are centered on values
of c1 and c2 that correspond to the values of u1 and u2 from the theoretical tables
of Claret & Bloemen (2011) for the stellar parameters obtained from the KIC.
The standard deviation of the priors for c1 and c2 were set by the corresponding
standard deviations propagated from u1 and u2’s uncertainties. We run two Markov
chains of 100,000 steps for each planet candidate. The mixing and convergence of
the Markov chains are assessed using the Gelman-Rubin statistic criterion (Gelman
& Rubin, 1992). Results for e cosω and e sinω are shown in Table 2.1.

Table 2.1: Result for e cosω and e sinω from MCMC. See §2.1 for details on how
these values are calculated.

KOI e cosω σ+e cosω σ−e cosω e sinω σ+e sinω σ−e sinω

13.01 0.00379 0.00073 0.00073 0.32343 0.01569 0.01559
17.01 −0.00038 0.03414 0.02824 −0.00144 0.04517 0.04379
18.01 0.02051 0.03321 0.03515 −0.00965 0.04659 0.05250
20.01 −0.01868 0.05117 0.04820 0.00010 0.05112 0.05023
22.01 −0.01123 0.05055 0.05328 −0.00137 0.04962 0.05033
97.01 −0.00353 0.02024 0.02003 −0.00336 0.03877 0.04284
98.01 0.00993 0.04816 0.04114 0.00040 0.04973 0.04662
127.01 0.02353 0.05076 0.05854 0.00120 0.05051 0.05272
128.01 −0.01801 0.03372 0.03033 0.00044 0.04655 0.04697
131.01 −0.01178 0.04109 0.04290 −0.00036 0.04971 0.04784
135.01 −0.04691 0.04427 0.03340 0.00148 0.05046 0.05497
183.01 0.01357 0.05300 0.04929 0.00246 0.05187 0.05141
186.01 −0.01337 0.04675 0.04576 0.00049 0.05070 0.04854
188.01 0.00430 0.03649 0.03731 −0.00252 0.04584 0.04577
200.01 0.01366 0.05739 0.06048 −0.00142 0.05184 0.05280
202.01 0.00563 0.04669 0.04344 −0.00377 0.04464 0.04659
203.01 0.05014 0.02115 0.02894 0.00126 0.05447 0.05276
204.01 0.01586 0.04639 0.05328 0.00028 0.05031 0.04986
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206.01 −0.01727 0.05781 0.06547 −0.00069 0.05229 0.05331
254.01 −0.03065 0.05882 0.05747 −0.00141 0.05432 0.05094
421.01 0.00351 0.05653 0.05293 −0.00169 0.05077 0.05120
607.01 −0.0027 0.04021 0.03915 −0.00011 0.04710 0.04763
611.01 0.03344 0.05965 0.05111 0.01742 0.05413 0.05283
728.01 0.00330 0.04798 0.05457 0.00366 0.05367 0.05392
760.01 0.01367 0.03489 0.03363 0.00139 0.04686 0.04647
767.01 −0.00490 0.04486 0.04563 −0.00099 0.05053 0.04772
774.01 −0.16220 0.00638 0.00332 −0.00802 0.06739 0.05652
791.01 0.01588 0.02676 0.02860 0.00223 0.04661 0.04651
797.01 0.04823 0.03688 0.05262 0.01784 0.06601 0.05972
801.01 0.02502 0.05106 0.04972 −0.00221 0.05348 0.05067
805.01 0.38761 0.00080 0.00115 0.02390 0.02642 0.02648
823.01 −0.00629 0.00274 0.00284 −0.35185 0.01225 0.01219
830.01 0.00997 0.05621 0.05942 −0.00098 0.05115 0.05116
850.01 −0.01543 0.05830 0.06948 0.00094 0.05208 0.05235
883.01 −0.02412 0.06865 0.06509 0.00065 0.05498 0.05499
890.01 0.00621 0.05985 0.03740 0.00096 0.04949 0.04824
895.01 −0.06154 0.01675 0.01243 −0.00275 0.06048 0.05811
897.01 0.00571 0.05530 0.04969 0.00083 0.04771 0.05155
908.01 −0.00760 0.04825 0.04482 −0.00138 0.04992 0.04960
913.01 0.00433 0.05289 0.04532 0.00276 0.04787 0.05067
929.01 0.00446 0.03132 0.03626 −2× 10−05 0.04638 0.04677
931.01 −0.01950 0.06144 0.06634 0.00042 0.05485 0.05313
1066.01 −0.05694 0.06242 0.02904 −0.00046 0.05689 0.05470
1176.01 0.01372 0.04534 0.04789 −0.00070 0.04914 0.04876
1227.01 0.00424 0.03187 0.04877 −0.30367 0.05812 0.04006
1391.01 −0.02053 0.02736 0.02283 −3× 10−05 0.04203 0.04201
1456.01 0.00524 0.03596 0.03497 −0.00229 0.04655 0.04747
1457.01 −0.00701 0.04232 0.02725 −0.00038 0.04791 0.04625
1781.01 0.07127 0.01272 0.02821 0.00197 0.05888 0.05369
1793.01 0.00685 0.04855 0.04713 0.00578 0.04827 0.04871
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2.2.2 Properties of Planet Candidates Analyzed

When selecting the initial planet candidates that we perform MCMC fits for planet
properties described above, we vet for eclipsing binaries (EBs) using the procedure
outlined in (Demory & Seager, 2011). This leaves us with a sample of 85 planet
candidates for which we have calculated posteriors for their orbital and physical
properties. From this new list of planet candidates with updated properties from
MCMC fitting, we do a second updated sweep for eclipsing binaries referring to
Tenenbaum et al. (2014) and Bryson et al. (2013), works that were published
after our initial planet candidate list was developed. We also reference the Kepler
Eclipsing Binary catalog2 for additional newly reported EBs. From this procedure,
we are able to exclude an additional 18 planet candidates. We include KOI 1227 in
our sample of planet candidates as it appears in both the Kepler eclipsing binary
catalog with a period of ∼ 4 days, and in the Kepler planet catalog as a potential
planet with an ∼ 2 day period. After the vetting outlined above, we exclude an
additional 17 planet candidates for which the occultation signal-to-noise was low,
resulting in very poor measurements of h and k. This leaves us with 50 planet
candidates that have approximately Gaussian measurement uncertainties for h and
k to use for our analysis of the eccentricity distribution in §3.4.2. Working in h
and k space instead of eccentricity space greatly simplifies our HB model for the
eccentricity distribution (see §4.3.1), since the measurement uncertainties for h and
k can be assumed to be roughly normally distributed.

The 50 remaining planet candidates have radii estimates of ∼ 1.9 to 30 Earth
radii, with a median value of 10.6 Earth radii, host star effective temperature of
3948 K to 8848 K, with a median value of 5728 K, orbital period of 1.03 days to
20.13 days with a median value of 4.24 days, and host star metallicity of −0.518 to
0.440 in [Fe/H] with a median value of 0.023 [Fe/H]. The 30 Earth Radii planet
candidate (KOI 1793) is large, and an outlier for typical radii in our sample, but
still makes it past our EB vetting procedure outlined above. These values came
from the Kepler Star Properties Catalog as reported at Exoplanet Archive updated
December 2013 and revised February 2014 (Buchhave et al., 2012; Huber et al.,
2014). The majority of the planets have stellar metallicity values obtained from
photometry, and 10 planets have spectroscopically derived stellar parameters.

2http://exoplanetarchive.ipac.caltech.edu/docs/eclbin.html
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2.3 Method
We aim to simulate and characterize the eccentricity distribution of a subset of the
population of planet candidates in the Kepler sample for which both transits and
occultations have been observed. First, we describe a general HB model, before
specializing it for our application of characterizing the eccentricity distribution in
§3.2. Next, we build and test a model using simulated data in order to determine
the accuracy of our method and robustness to model misspecification in §2.4.2,
then we apply our model to the real dataset in §3.4.2.

2.3.1 The Hierarchical Bayesian Model

Hierarchical Bayesian (HB) modeling is a powerful method to estimate population
parameters by propagating the unique uncertainty from each measurement of
the population constituents into the inference of the population parameters. An
HB model requires an analysis model that parameterizes the functional form of
the population distribution, p(xp|φ), where xp represents the true value of each
quantity being measured (later we adapt this model so that xp represents h and
k). φ is the set of hyperparameters that determine the features or shape of the
prescribed analysis model. To infer these population hyperparameters, we must
specify the priors for the hyperparameters or the hyperpriors, p(φ). Once this
multi-level model is applied to a sample of measurements, both the population’s
parameters and the true parameters for each of the population members can be
inferred simultaneously. The measured properties (dp) are related to the true
properties (xp) and the measurement uncertainties (σp) by p(dp|xp, σp). As a result,
the HB model allows us to characterize the true parameter values and population
level parameters while using the information contained in the measurements and
their uncertainties.

The general form for the posterior for the hyperparameter vector (φ), where D
represents the number of measurements that make up the dataset (dp), is given by:

p(φ|xp, σp) ∝ p(φ)
D∏
p=1

∫
dxp p(xp|φ)p(dp|xp, σp) (2.3)

Next, let us consider a simplified HB model where each measurement dp is
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drawn from a normal distribution centered on the true value xp with measurement
uncertainty σp

p(dp|xp, σp) ∼ Normal dp(xp, σ2
p). (2.4)

Here, the “ ∼ " can be read as “is distributed as", common notation for statisticians.
At the “mid-level" of the hierarchical model, we assume that the population of
true values, xp’s, can be parameterized by a Gaussian mixture model, where each
component of the population model has mean zero and Nm is the number of mixture
components.

p(xp|φ) =
Nm∑
i

fi Normal xp(0, σ2
i ), (2.5)

Each component contributes a fraction fi of the population, so

Nm∑
i

fi = 1. (2.6)

φ then represents all of the fi and σi values3. If we assume a common Gaus-
sian mixture model prior for each xp as shown in Equation (2.5) and Gaussian
measurement error as shown in Equation (2.4), then our hierarchical model can be
mathematically described as Equation (2.3) adapted to our specific analysis:

p(fi, σi|dp, σp) ∝ p(fi, σi)

×
D∏
p=1

∫
dxp

Nm∑
i=1

fi Normal xp(0, σ2
i ) Normal dp(xp, σ2

p).
(2.7)

Moving the integral inside the summation and exploiting the symmetry of the
Gaussian distribution, we get

p(fi, σi|dp, σp) ∝ p(fi, σi)

×
D∏
p=1

[
Nm∑
i=1

fi

∫
dxp Normal xp(0, σ2

i ) Normal xp(dp, σ2
p)
]
.

(2.8)

In Equation (2.9), we extend the limits of the integral to infinity in order to develop
an analytic approximation to our hierarchical model that is accurate when σi < 1,

3Note that σi is a hyperparameter that partly describes the underlying population distribution
along with fi, where σp is the measurement uncertainties of the observable quantity.
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∀;∈ [1, Nm] (i.e. allowing the underlying model to assign eccentricities > 1).

p(fi, σi|dp, σp) ∝ p(fi, σi)

×
D∏
p=1

Nm∑
i=1

fi exp
[
−d2

p/(σ2
p + σ2

i )
]√

2π(σ2
p + σ2

i )

 . (2.9)

We discuss how we modify this derivation when evaluating our model numerically,
applied to the eccentricity distribution in §2.4.1. The posterior distribution for the
hyperparameter vector is conditional on all observations. The posterior modes and
credible intervals can be calculated from Equation (2.8) using MCMC or estimated
analytically based on Equation (2.9). Recent applications of HB modeling applied
to other Kepler observations include Morton & Winn (2014), Rogers (2015b),
Wolfgang & Lopez (2015), and Foreman-Mackey et al. (2014).

2.3.2 Applying the Hierarchical Model to Eccentricity Measure-
ments

Next, we tailor the above model to the eccentricity distribution. The set of
projected eccentricity measurements h and k for each planet candidate become the
xp’s described in §2.3.1. We assume that each true value of h and k is drawn from
a distribution that is a mixture of Nm normal distributions (the analysis model),
where each mixture component contributes a fraction fi, is centered on zero, and has
a standard deviation σi. Thus, the hyperparameters φ =

{
f1, ..., fNm−1 , σ1, ..., σNm

}
describe the underlying population’s distribution of h and k’s. Since fractions sum
to one, fNm = 1−

∑Nm−1
i=1 fi.

The values of h and k provide an alternate parameterization for the eccentricity
(e), and the argument of periastron (ω). We assume that the orientations of
planetary systems’ pericenter directions (ω) will be randomly distributed with
respect to the direction towards Earth, i.e., ω is uniform random [0, 2π]. Thus,
the prior probability distribution for each planet’s h and k has radial symmetry.
While this is an excellent general model for planets, it is an approximation for
our sample of planet candidates since 1) the geometric transit probability and
occultation probability depend somewhat on ω for eccentric orbits and 2) the
detection probability of both the transit and occultation depends on the transit
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and occultation durations and thus the eccentricity and pericenter direction, and
the occultation duration also depends on the orbital period. We will discus these
issues further in §4.5. Results of this analysis can be found in §2.4 and §3.4.2.

2.3.3 Evaluating the Hierarchical Model

We sample from the posterior using MCMC. To calculate Markov chains we use the
publicly-available code Just Another Gibbs Sampler (JAGS; Plummer, 2003). JAGS
uses Gibbs sampling when possible, and otherwise reverts to standard random
walk Metropolis–Hastings. We simultaneously sample from both the posterior
distributions for the population parameters and the posterior predictive distributions
for each observable. We compare the within-chain variance to the between-chain
variance and evaluate the Gelman-Rubin (R̂) ratio to test for non–convergence,
and accept chains with an R̂ < 1.01. We also look at the autocorrelation function
for the Markov chains and accept cases that have a zero crossing at a lag of ≤ 5.
The exact JAGS input model used in our study can be found online4.

2.4 Results

2.4.1 Prior specification

We consider three different analysis models and calculate posteriors for each using
simulated data to test the accuracy and robustness of our method. The three
analysis models used for xp’s in our calculation are (i) a single Gaussian (Nm = 1),
(ii) a two-component Gaussian mixture (Nm = 2), and (iii) a three-component
Gaussian mixture (Nm = 3).

We use these same three models both to analyze the data and to generate
simulated observations. In each model, the population parameters, also known
as hyperparameters, (φ) are a union of the set of dispersions for each mixture
component (σi’s) and the set of fractions of planets associated with each of the
mixture components (fi’s). In each case, each mixture component is a Gaussian
centered at zero and represents a unique population.

When evaluating the eccentricity parameter space, we take our priors for h and
4http://www.astro.ufl.edu/∼mshabram/jags_model/eccmodel.txt
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k to be a mixture of Gaussian distributions, each with zero mean but truncated such
that e =

√
h2 + k2 < 1. Following truncation, the prior for h and k is renormalized,

so that the total probability integrates to unity. The truncation accounts for
the selection effect of not detecting planets on hyperbolic orbits (e > 1) as any
such planets are not bound to their host systems and do not transit more than
once. A Rayleigh distribution can also be parameterized as the square root of the
sum of squared Normal distributions with zero mean, where the variance of each
component is equivalent to the Rayleigh parameter. Thus, the prior population
distribution for e is a truncated Rayleigh distribution for Nm = 1 and can be
visualized as a mixture of truncated Rayleigh distributions of Nm ≥ 2. Choosing a
Rayleigh distribution for the eccentricity distribution is physically motivated by
the fact that it naturally arises for exoplanets on circular orbits and subjected to a
series of many normally distributed small random perturbations to its orbit. It is
therefore a common distribution “shape" used for eccentricity distributions (e.g.,
Moorhead et al. (2011), Fabrycky et al. (2014)). We justify its superiority over a
Beta distribution (Kipping, 2014a) in §2.4.2.2.

Calculating a posterior probability distribution function (PDF) from a HB
model also requires specifying a prior probability distribution for the population
parameters (φ). This is known as the hyperprior. Our hyperparameters are the
dispersions σi’s ( for each mixture component) and the associated mixture fractions.
We assume a uniform prior for the dispersions of each mixture component between
0 and 1. The mixture component fractions follow a Dirichlet distribution with
the concentration parameter set to 1 (e.g., no component is given special weight).
This is the multidimensional generalization of the Beta distribution. The Dirichlet
distribution forces the sum of the mixture component fractions to equal one.

2.4.2 Validating the Hierarchical Model

Since the true distribution parameters for the synthetically generated datasets are
known, analyzing these simulated observations with our hierarchical model allows
us to directly compare the output population parameters and the input population
parameters. We are also able to test the sensitivity of the posterior to the chosen
analysis model.

We expect to see variations in the ability of a given analysis model to recover
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the input model’s parameters. For instance, if the analysis model is the same
as the model used to generate the simulated observations, then we expect to be
able to recover the input population parameters, within the limits of measurement
uncertainties and Monte Carlo error. However, if the analysis model is different
than the model used to generate the data, there could be larger differences between
the posterior predictive distributions for the eccentricity distribution and the actual
distributions used to generate the data. If we can identify an analysis model
that is relatively insensitive to the model that was used to generate the simulated
observations, then we can increase our confidence in the robustness of the procedure
when applying our hierarchical model to a real dataset.

2.4.2.1 Generation and Analysis of Simulated Data

We are also interested in understanding the effect that the quantity and quality of
the data has on our inference. It is important that we choose an analysis model
that is relatively robust to model misspecification, so we can be confident when
applying the HB model to real data. To accomplish this, we generate several
simulated datasets varying the number of planets in the sample, the simulated
measurement uncertainties, or both. For each pair of generative model and analysis
model, we analyze four datasets of different qualities. We summarize each in Table
2.2. Datasets labeled “good" (“half") consist of 50 (25) planets with measurement
uncertainties of 0.04 and 0.08 for h and k respectively.5 These datasets are designed
to be similar to our actual transit and occultation dataset for both h and k. Datasets
labeled “better" (“best") contain 50 (500) planets with measurement uncertainties of
0.001. The mixture fractions and dispersions used to generate the synthetic datasets
are the following: for a single Gaussian distribution, labeled as “R1" in Table ??,
f = 1.0 and σ = 0.3, for a two-component Gaussian mixture model (“R2"), f1 = 0.7,
f2 = 0.3, σ1 = 0.05, and σ2 = 0.3, and for a three-component Gaussian mixture
model (“R3"), f1 = 0.6, f2 = 0.3, f3 = 0.1, σ1 = 0.05, σ2 = 0.2, and σ3 = 0.5. We
generate 20 datasets for each pair of data quality and generative model in order to
quantify Monte Carlo error. The goal of this particular experiment is to identify an
analysis model for the xp’s that performs well for a variety of plausible distributions

5The uncertainty in the phase offset of the transit is typically smaller than that of the
occultation and transit duration ratio, thus the eclipse data constrain h with more precision than
k.
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used to generate simulated data.

Table 2.2: Values indicating the quantity and quality of the suite of simulated
observations used in our analysis. Datasets labeled “good" (“half") consist of 50 (25)
planets with measurement uncertainties of 0.04 and 0.08 for h and k respectively.
These datasets are designed to be similar to our actual transit and occultation
dataset for both h and k. Datasets labeled “better" (“best") contain 50 (500)
planets with measurement uncertainties of 0.001, and are designed to forecast the
power of this method and model setup when the quantity of real data grows and
the quality of data is improved upon (better measurement uncertainty).

Model Name Np σh σk

half 25 0.040 0.080
good 50 0.040 0.080
better 50 0.001 0.001
best 500 0.001 0.001

Table 2.3: Results of validation and sensitivity analysis of three hierarchical models
for eccentricities. Shown in this table are Kolmogorov-Smirnov (K-S) statistics
comparing datasets of simulated observations with datasets generated using the
posteriors of the hyperparameters from an HB model that analyzed the same
set of simulated observations (comparing input to output to test model). Here
R1, R2, and R3 represent a one-, two- and three-component Gaussian mixture
model, respectively. Table 2.2 summarizes the different quantity and quality of
simulated observations used in this analysis. A two-component Gaussian mixture
model does well across the majority of simulated datasets. See §4.2.2 for a detailed
interpretation of these results.

Analysis Model

Generalized Model Name Nm = 1 Nm = 1 Nm = 1

R1 half 0.1310 0.1615 0.1740
R1 good 0.1550 0.1650 0.1700
R1 better 0.0990 0.1150 0.1275
R1 best 0.0400 0.0500 0.0550
R2 half 0.2365 0.2100 0.2715
R2 good 0.2545 0.1875 0.2330
R2 better 0.1890 0.0825 0.1590
R2 best 0.1705 0.0660 0.1485
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R3 half 0.1535 0.1215 0.1415
R3 good 0.2560 0.2085 0.2285
R3 better 0.1270 0.1035 0.1350
R3 best 0.1726 0.0835 0.2142

2.4.2.2 Results for Synthetic Data

First, we validate our HB model using the same model for the analysis as used to
generate a simulated dataset. Next, we consider the results of applying an analysis
model that differs from the model used to generate the data. The purpose of making
these comparisons is to identify an appropriate analysis model, balancing the need
for flexibility with the desire to minimize model parameters. By analyzing a variety
of simulated datasets, we develop intuition for how different models perform, prior
to analyzing the actual data. Since the true distribution of exoplanet eccentricities
likely differs from any of our analysis models, it is important to analyze data sets
generated under alternative models, so as to test the robustness of our approach.

When we use the same analysis model and generative model, it would be
possible to compare the true model parameters to the posterior distribution for the
model parameters. However, most of our comparisons involve different analysis
and generative models. In these cases, it is not possible to compare the true model
parameters to the posterior distribution for the model parameters. Instead, we
compare the predictive posterior distribution for the eccentricity distribution (i.e.,
the distribution of interest). We use the K-S distance to measure how the predictive
posterior distribution for eccentricities under each analysis model compares to the
true eccentricity distribution used to generate the simulated data. Table 3 shows
the median Kolmogorov-Smirnov (K-S) distance between each simulated dataset’s
true h and k distribution and the posterior predictive distribution for h and k based
on 20 simulations of a particular hierarchical model from Table 2 (see §2.4.2.1 for a
list of the chosen “true" eccentricity distribution values used in our study).

We illustrate an example case in Figure 2.1, by showing cumulative distributions
of |h| and |k|. The solid black curve is the true distribution from which the simulated
planet’s h and k values are drawn. The dashed black curve is the cumulative
distribution for one simulated dataset (“R2", “good"; f1 = 0.7, f2 = 0.3, σ1 = 0.05,
and σ2 = 0.3, see §2.4.2.1) that includes simulated observational uncertainties. The
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Figure 2.1: Cumulative distributions of |h| and |k|. The solid black curve is the
true distribution from which the simulated planet’s h and k values are drawn. The
dashed black curve is the cumulative distribution for one simulated dataset (“R2",
“good"; f1 = 0.7, f2 = 0.3, σ1 = 0.05, and σ2 = 0.3, see §4.2.1) that includes
simulated observational uncertainties. The gray shaded region is the 68.3% credible
interval for the CDFs of the posterior samples for the population parameters of
the intrinsic distribution of |h| and |k| (i.e., without intrinsic uncertainties). This
is calculated once the simulated observations have been analyzed using the same
two-component Gaussian mixture model as was used to generate the data. The two-
component Gaussian HB model does a good job of capturing the true distribution
for datasets generated with a two-component Gaussian mixture.

gray shaded region is the 68.3% credible interval for the CDFs of the posterior
distribution for the population parameters of the intrinsic distribution of |h| and
|k| (i.e., without intrinsic uncertainties). This is calculated once the simulated
observations have been analyzed using the same two-component Gaussian mixture
model as was used to generate the data.

The posterior predictive distributions are generated from the posteriors for the
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hyperparameters obtained from applying the hierarchical model to each simulated
dataset. Each column of Table 3 represents comparison results for posteriors
calculated using an analysis model with one-, two-, or three-components in the
Gaussian mixture model respectively, for each eccentricity distribution. The analysis
model names are described in Table 2. Each row of Table 3 gives results for a
specific generative model and data quality. R1, R2, and R3, indicate one, two and
three component models for generating the simulated observations, respectively.

If the model is working properly, we expect to get posterior distributions for
the population’s parameters that are consistent with values used to generate the
data. Indeed, we find K-S distances are between ∼ 0.05 to 0.1 for these cases. Since
models have different parameters (even when they are represented by the same
variable names), the most appropriate way to compare the performance is based on
the posterior predictive distribution for the population of measurements. In this
case, the K-S distances between the posterior predictive distributions for the HB
model and actual model are ∼ 0.1 to 0.2.

For simulated datasets with smaller measurement uncertainties, we find that the
K-S distance between the posterior predictive distribution and associated simulated
data for h and k is similar for analysis models that have at least the same number
for mixture components or more. Additionally, for several combinations of analysis
and generated models, we note that the Nm = 2 analysis model results in a smaller
K-S distance to the R3 data than the Nm = 3 analysis model. This is likely due
to the greater flexibility of the Nm = 3 model and finite number of measurements,
i.e., the three-component model “over-fits" the discrete dataset. We found that
the Nm = 2 analysis model did a better job overall at recovering the predictive
distribution for the simulated datasets across all versions for simulated data.

Some authors advocate parameterizing the eccentricity distribution as a Beta
distribution, e ∼ Beta(α, β) (e.g., Kipping, 2014a). Therefore, we also investigate
using a Beta distribution analysis model using one (“R2", “good") simulated
dataset (see Table 2). In this model set up, α and β become the hyperparameters
(population level parameters) that we wish to infer. We use a Gamma distribution
with k = 2 and θ = 1 as the prior probability distribution for α and β. Figure
2.2 shows the results of this HB model as eccentricity vs. cumulative fraction.
The simulated eccentricity data are shown as the dotted black curve. The true
eccentricity distribution generated using a two-component Gaussian mixture model
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for h and k (e.g. f1 = 0.7, f2 = 0.3, σ1 = 0.05, and σ2 = 0.3, as described in
§2.4.2.1) is shown in red. The dashed green curve is plotted using the posterior
modes for α and β, (α = 0.11±0.04

0.02, β = 1.73±0.85
0.24) for this HB model. The K-S

distance between the “R2," “good" distribution (red) used and the distribution
using the posteriors modes of α and β (dashed-green) is 0.5, which is in support of
these being two distinct distributions. Our results indicate that the standard Beta
distribution is a poor choice for an analysis model to parameterize the eccentricity
distribution as it erroneously predicts a strong peak near e = 0 and under predicts
the frequency of larger eccentricities.

In principle, we could model the transit and occultation times and durations
directly, instead of h and k. However, this would increase the computational com-
plexity. Even taking advantage of our approximations, the calculations presented
represent a significant computational investment (∼2.4 CPU months). Modeling h
and k also facilitates deriving analytical expressions for testing the algorithms. By
modeling the projected eccentricity, h and k, we were able to thoroughly test both
the code and algorithm on real and simulated data sets.

2.5 Results for Kepler planet candidates with occul-
tations
We calculated posteriors of one-, two-, and three-component Gaussian mixture
models applied to real Kepler transit and occultation data (see §2.2 for description
of dataset). Figure 2.3 shows a histogram of the observed h and k values from
Table 1 (shown in grey). Since we are assuming the argument of periastron (ω) is
random, h and k are equivalent, or drawn from the same distribution. A Gaussian
distribution using population parameters from the posterior mode for the dispersion
for a one-component model is overplotted (shown as the dotted black curve). This
one-component model does a poor job at capturing the shape of the distribution
because it struggles to match the moderate eccentricity outliers. A two-component
Gaussian mixture model using population parameters from the mode of the 2D
marginal posterior for the mixture fraction and dispersions is shown in red. This
model captures the peaked nature of the observed distribution as well as the small
number of measurements away from the peak. This suggests that two populations
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Figure 2.2: Results of an HB model that parameterizes the eccentricity as a standard
Beta distribution. We investigate using a Beta distribution analysis model on an
"R2", "good" (see Table 2) simulated dataset. A cumulative distribution of the
simulated eccentricity data are shown in grey. The distribution generated using a
two-component Gaussian mixture model for h and k values (e.g. f1 = 0.7, f2 = 0.3,
σ1 = 0.05, and σ2 = 0.3, as described in §4.2.1) is shown in red. The dashed green
curve is a cumulative Beta distribution, Beta(α, β), plotted using the posterior
modes for α and β, (α = 0.11±0.04

0.02, β = 1.73±0.85
0.24) for this HB model. The Beta

distribution erroneously predicts a strong peak near e = 0 and under predicts the
frequency of larger eccentricities.

can explain the eccentricity distribution of our sample, although in §2.4.4.2 we
show with synthetic data that using a two-component Gaussian mixture model
is optimal for the present dataset. We also consider using a three component
Gaussian mixture model and find that only two of the three components can be
constrained given the quantity and quality of the Kepler transit and occultation
dataset, suggesting that the available data are not able to indicate the presence of
a third population, or that a third population may not exist.
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Figure 2.3: A histogram of the h and k dataset are shown in grey. Shown in black is
a one-component Gaussian distribution using the posterior mode for the dispersion
obtained from an HB model that uses a one-component Gaussian mixture model.
Shown in red is a two-component Gaussian mixture model using posterior modes
for the mixture fractions and dispersions obtained from an HB model that uses
a two-component Gaussian mixture model. The black model does a poor job at
capturing the shape of the distribution. The red model captures the peaked nature
of the true distribution while also allowing for a smaller number of measurements
far from the central peak.

The posterior distribution for the dispersion of true values of h and k assuming
a one-component Gaussian model is displayed in Figure 2.4, which is based on
our full dataset for planet candidates with both Kepler transit and occultation
measurements. The posterior mode for the dispersion is σ = 0.081±0.014

0.003. We use
this value as the dispersion for our one-component Gaussian population model
shown as the dotted black curve in Figure 2.3.

Next, we investigate joint posterior distributions for a two-component Gaussian
mixture model applied to our full Kepler transit and occultation dataset. These
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Figure 2.4: Posterior distribution for the dispersion of a Gaussian model for h and
k applied to our full Kepler short-period planet candidate transit and occultation
dataset. The 68.3% credible intervals about the mode are shown as dotted black
lines, and the mode is shown as a vertical solid black line.

results are shown in Figure 2.5, where the panels on the diagonal show the marginal-
ized posterior distribution for the population parameters: σlow the lesser value
of σ1 and σ2, σhigh the greater value of σ1 and σ2, and flow, the weights for the
mixture component (fhigh = 1 − flow). The use of σlow and σhigh instead of σ1

and σ2 (and corresponding fractions) is helpful for visualizing the results, since
our model has symmetry under exchanging (σ1, f1) and (σ2, f2). The off-diagonal
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panels show posterior samples and contours for the 68.3% credible interval of
the two-dimensional marginal posteriors for each parameter pair. The fact that
(σlow, flow) and (σhigh, fhigh) form two distinct clusters demonstrates the value of
a two-component (two population) model for the eccentricity distribution of our
sample of Kepler planet candidates.

As expected, the uncertainties in measurements of k = e sinω are much greater
than the uncertainties in the measurements of h = e cosω. We note that in our
sample, the k values are more tightly clustered around zero than h. Therefore, we
investigated if excluding these values significantly impacts our results. By doing
this we are decreasing our effective sample size, but maintaining the number of
measurements with small uncertainties. When running our simulations without k
values, we get the following results: using a single Gaussian model σ = 0.074±0.016

0.003,
and when using a two-component Gaussian mixture model, the marginal posterior
modes for the mixture fractions and dispersions are flow = 0.93±0.029

0.051, σlow =
0.003±0.010

0.001, and fhigh = 0.07±0.062
0.019, σhigh = 0.187±0.547

0.028, respectively. These values
differ from the values obtained using the full h and k planet candidate dataset by ∼
9.0%, 4.4%, 107.7%, 44.4%, and 16.2% for σ, flow, σlow, fhigh, and σhigh respectively.
Each of these overlaps the 68.3% credible interval for the same parameters with
the full dataset. The most notable difference is for σlow, which we estimate to be
0.03 when using k alone, but 0.01 when including both h and k observations.

2.5.1 Correlation of The Eccentricity Distribution with Star and
Planet Properties

Another goal of this study is to investigate potential correlations between the
eccentricity distribution and planet or host star properties. Specifically, we consider
whether the planet candidate eccentricity distribution is correlated with stellar
metallicity, host star effective temperature, planet radius, or orbital period. Values
for each planet candidate are obtained from the Kepler Star Properties Catalog
as reported at Exoplanet Archive updated December 2013 and revised February
2014 (Buchhave et al., 2012; Huber et al., 2014). The majority of the planets have
effective temperatures and stellar metallicity values obtained via KIC photometry,
however 10 planets have spectroscopically derived values. Given the relatively small
sample size, we focus on comparing the distribution of planet candidates with large
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Figure 2.5: Joint posterior distributions for a two-component Gaussian mixture model
applied to our Kepler short-period planet candidate transit and occultation dataset. In
each panel, the data are plotted with the horizontal axis representing σlow the lesser
value of σ1 and σ2, σhigh the greater value of σ1 and σ2, and flow the corresponding
weight for the low mixture component, on a logarithmic scale. Since fhigh = 1− flow, we
only show flow here. The vertical axis shows these same variables, and each panel is the
corresponding two-dimensional marginal posteriors for each parameter pair. The contour
region plotted over the sampled posterior represents the 68.3% credible interval. The
one-dimensional histograms are plotted as log density, with the 68.3% credible intervals
shown as dotted black lines, and the mode is shown as a vertical solid black line. The
two-component Gaussian mixture model characterizes the eccentricity distribution of our
sample of planet candidates better than a one-component analysis model.
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and small values for each parameter. We sort the planet candidates in our dataset
from largest to smallest values of a given property, and then create two sub-samples
of the original population. Unless otherwise specified, we divide the data in half
to maximize the statistical power when comparing the two samples and to avoid
introducing an additional parameter specifying the dividing point between the high
and low subsets. We analyze each subset as described in section §2.3.

Initially, we evaluate each subset of data using an HB model with a one-
component Gaussian distribution for h and k, as we did before for the full dataset.
This is shown in Figure 2.6, where we have applied the HB model to the small-
valued (blue) and large-valued (red) halves of the Kepler occultation data, sorted
by (a) stellar effective temperature, (b) planet radius, (c) orbital period, and (d)
stellar metallicity. The histograms of the posterior distribution for the dispersions
for stellar effective temperature (a) and orbital period (c) suggest that the two
subsets do not come from significantly different distributions if we assume the
eccentricity distribution is described by a simple Rayleigh distribution. However,
for planet radius (b), and stellar metallicity (d), the differences in the posteriors
for the dispersion suggests that the two subsets may have different eccentricity
distributions. This provides motivation to consider more complex models for
correlations between the eccentricity distribution and stellar and planet properties.

Next, we look at posterior distributions based on applying the HB model using
a two-component Gaussian mixture for the analysis model applied to the small-
valued half or large-valued half of the data subsets, again based on sorting by (a)
stellar effective temperature, (b) planet radius, (c) orbital period, and (d) stellar
metallicity. Figure 2.7 shows posterior distributions for the small-valued half of
data (blue and green clusters), and large-valued half (red and orange clusters).
The two groups of clusters represent samples of the posterior distribution for the
hyperparameter vector, in this case for σlow and flow (top left group of clusters in
each sub-plot), and σhigh and fhigh (bottom right group of clusters in each sub-plot).
The data are plotted with the vertical axis representing the low value of the mixture
fraction, flow, in green and orange, and, fhigh, in blue and red for the two subsets
of sorted data shown (small and large). The contours correspond to 68.3% credible
intervals. In this plot we can compare the two high and low value subsets to
the full sample to check for correlations with each parameter. Interestingly, the
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Figure 2.6: One-component Gaussian analysis model applied to subsets of the Kepler
transit and occultation data. We apply an HB model to small-valued (blue) and large-
valued (red) halves of the Kepler short-period planet candidate transit and occultation
data, sorted by (a) stellar effective temperature, (b) planet radius, (c) orbital period, and
(d) stellar metallicity. The dotted lines correspond to the 68.3% credible intervals and
the solid vertical lines correspond to the mode for each posterior distribution. for panel
(b) planet radius, and panel (d) stellar metallicity, differences in the small-values and
large-valued data subsets merit further investigation. In order to explore these results
further, we analyze these subset using a two-component Gaussian mixture model (see
Figure 2.7).

posteriors of the mixture fractions for the planet candidates with larger planet
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Figure 2.7: Continued on following page.

radii are consistent with 0 and 1 for planet radius (b) and host star metallicity
(d), indicating only one population is required to accurately model the eccentricity
distribution for this subset of planet candidates. When modeling the eccentricity
distribution of a sample of planet candidates with host star metallicities less than
0.023 dex (median [Fe/H] of our full sample), we find a one-component mixture
model is sufficient. On the other hand, planet candidates of host star metallicities
above 0.023 dex are better modeled with a two-component mixture model for h
and k. We find a similar, but weaker correlation between eccentricity distribution

42



Figure 2.7: Two-component Gaussian mixture model applied to the Kepler transit
and occultation data. We apply an HB model to small- and large-valued halves
of the short period Kepler candidate occultation data, sorted by stellar effective
temperature (a), planet radius (b), orbital period (c), and stellar metallicity (d).
The full sample is divided into two equally sized small- and large-value subsets
before being processed through our HB model. The small-valued subset of data
corresponds to the blue and green clusters, and the large-valued subset corresponds
to the red and orange clusters. The two groups of clusters represent samples
of the posterior distribution for the hyperparameter vector, in this case for σlow
and flow (top left group of clusters), and σhigh and fhigh (bottom right group of
clusters). The data are plotted with the vertical axis representing the low value of
the mixture fraction, flow, in green and orange, and, fhigh, in blue and red for the
two subsets of sorted data shown. The contours represent 68.3% credible intervals.
Interestingly, for planet radius (b), and stellar metallicity (d), the posteriors of the
mixture fractions for the planet candidates with large-valued planet radii and for
small-valued host star metallicities are consistent with 0 and 1, indicating only one
population is required to accurately model the eccentricity distribution for these
subsets of planet candidates. For planet radius and stellar metallicity, we also see
that the two-component population models are somewhat different for small and
large value subsets.

and planet radius. Planet candidates with radii smaller than 10.6 R⊕ are better
modeled with a two-component mixture model, while a one component mixture
model is favored for planet candidates with radii above 10.6 R⊕. There is not a
strong correlation between planet radius and metallicity in our sample. Further,
we verified that the subsamples based on metallicity and planet radius are distinct
from each other.

Next, we consider whether the data can constrain more complex models that
allow for a flexible choice of the break point between the two subsets of planet
candidates, rather than fixing the break point to divide the dataset in half. We
choose to investigate a more flexible model for orbital period first, because the
measurement uncertainties for orbital period are negligible. We allow the period
break point to be a free parameter in a single HB model where each subset of
planet candidates are modeled with a two-component mixture model as before.
Instead of fixing the break point near the median and dividing the data into equal
sized subsets, we place a uniform prior on the period break point. Figure 2.8 shows
the marginal posterior distribution for the period break point from analyzing the
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actual dataset. The marginal posterior for the period break has peak values that
are clustered near the minimum and maximum of the period values in our sample.
This indicates that the model favors period breaks causing one data subset to have
so few observations that the population parameters from one subset are minimally
constrained. We conclude that the present dataset is not able to usefully constrain
this more complex model. Therefore, we do not attempt to apply a similar model
allowing for two eccentricity distributions with an unknown break in terms of the
host star metallicity or planet radius, since their measurement uncertainties are
much larger.

2.6 Summary of Results
We investigated the eccentricity distribution for a sample of short-period single-
planet candidate systems from Kepler that are detected in both transit and oc-
cultation. We demonstrated that HB models are well-suited for characterizing
the eccentricity distribution using transit and occultation data. We modeled the
distribution of h and k as coming from either a single Gaussian distribution with
zero mean or a mixture of Normal distributions. After testing our hierarchical
model on a suite of simulated datasets and analysis models with one, two, or
three mixture components, we find that a two-component mixture model (Nm = 2)
performed well in all cases considered, including simulated datasets generated using
a three-component mixture model. Thus, the two component mixture model is
a robust analysis model for our hierarchical model applied to Kepler transit and
occultation data. Additionally, we investigate the usage of a standard Beta distribu-
tion analysis model in our HB model. Our results indicate that the standard Beta
distribution is a poor choice for an analysis model to parameterize the eccentricity
distribution.

Next, we applied HB modeling to analyze a real dataset of h = e cosω and
k = e sinω measurements, derived from transit and occultation measurements.
If we model the population distribution of h and k with a single Gaussian, then
we infer a dispersion of σ = 0.081±0.014

0.003. When we applied the two-component
mixture model to the full dataset, we found flow = 0.89±0.045

0.057, σlow = 0.01±0.014
0.002,

and fhigh = 0.11±0.057
0.045, σhigh = 0.22±0.100

0.026. These results suggest the presence of a
small population of planet candidates (∼ 11%) that contain planets with a broad
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Figure 2.8: Marginal posterior distribution for the critical period break point from
a joint period-eccentricity distribution HB model. We analyze the full dataset using
an HB model that allows for the eccentricity distribution to differ depending on
whether the orbital period is greater or less than the critical period break point.
We infer that the present data does not allow us to empirically identify a period
cutoff that depicts two populations.

range of orbital eccentricities and a larger population of planet candidates (∼ 89%)
that contain planets on nearly circular orbits.

Next, we assessed whether there is evidence for more complexity in the eccen-
tricity distribution by considering analysis models that allow correlations between
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the eccentricity distribution and other planet or host star parameters. For the
current sample of Kepler planet candidates seen in both transit and occultation, we
find interesting correlations of the eccentricity distribution with either the planet
radius or the host star metallicity, but not with stellar effective temperature or
orbital period.

We present evidence that host stars in our sample with higher metallicity and
planet candidates with smaller radii have a more complex eccentricity distribution
than stars with low metallicity and planet candidates with larger radii. The
eccentricity distribution of these more complex populations are well described by a
two-component Gaussian mixture model with a zero mean, suggesting a potential
physical explanation in terms of proposed planet formation models, which we will
describe in more detail in §4.5.

2.7 Discussion
Previous studies of the period-size distribution of Kepler planet candidates have
identified two common architectures of planetary systems: 1) Systems with Tightly-
packed Inner Planets (STIPS; Lissauer et al. (2011); Payne et al. (2013); Boley et al.
(2014)) and 2) systems with a single short-period planet (often a giant planet) with
either no additional planets detected or a large gap between the short-period planet
and the next detectable planet (Steffen et al., 2012a, 2013; Dawson & Murray-Clay,
2013). This work focuses on a sample containing primarily isolated giant planet
candidates. Of course, these systems may have undetected companions, particularly
at larger orbital separations where the geometric transit probability is small.

Two broad classes of mechanisms have been proposed to explain the formation
of hot Jupiters. In both models, planets form at greater distances from their
host star. In one model, a giant planet experiences a gradual inspiral through
a gas or planetesimal disk until they halt near their present orbit (e.g., Kley &
Nelson 2012). In the other model, gravitational perturbations from another massive
body (potentially another planet or a stellar companion) excite a giant planet’s
orbital eccentricity until its periastron distance is so small that tidal forces begin
to circularize the orbit (e.g., Rasio & Ford 1996; Fabrycky & Tremaine 2007;
Naoz et al. 2011). Several studies have assessed the relative merit of these two
classes of models, making use of the observed orbital period distribution (Ford &
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Rasio, 2006; Valsecchi & Rasio, 2014), spin-orbit obliquity distribution (Morton &
Johnson, 2011; Albrecht et al., 2012; Naoz et al., 2012; Dawson, 2014) and orbital
architectures (Steffen et al., 2012b; Dawson et al., 2012; Dawson & Murray-Clay,
2013). Collectively, these studies suggest that multiple mechanisms likely contribute
to the formation of hot-Jupiters. In this case, the two populations would likely
have different distributions of orbital eccentricities, with disk migration leading to
the smaller dispersion of eccentricities. This motivates us to consider interpreting
evidence of a two-component mixture model for the eccentricity distribution in
terms of two formation models.

Our analysis of Kepler’s short-period planet candidates with occultation mea-
surements suggests that the eccentricity distribution can be well described by a
two-component mixture model, where the less abundant population of planets has
a broader dispersion of eccentricities. If the mixture components indeed translate
into formation mechanisms of hot-Jupiters, then this could suggest that disk mi-
gration could be the more common formation mechanism. Alternatively, if tidal
circularization of highly eccentric proto-hot Jupiters is sufficiently rapid, then the
current eccentricities could reflect late-stage excitation of orbital eccentricities due
to undetected planets. Of course, a complete formation theory would need to
explain all observations, including the low abundance of additional planets near
hot-Jupiters (Steffen et al., 2012a), the final semi-major axis of hot-Jupiters (e.g.,
Ford & Rasio 2008; Valsecchi & Rasio 2014), the distribution of orbital obliquities
(e.g., Fabrycky & Winn 2009; Morton & Johnson 2011; Albrecht et al. 2012) and
correlations between obliquity and other star and planet properties (e.g., Winn
2010; Morton & Winn 2014).

It is particularly interesting to compare the eccentricity distribution of our
sample to that of other subsamples of the Kepler planet candidate list, particularly
subsamples dominated by smaller planets. Since the eccentricity affects the transit
duration (Barnes, 2007; Burke, 2008), the distribution of transit durations can
constrain the eccentricity distribution for arbitrary sub-samples of Kepler planet
candidates (Ford et al., 2008). Early studies of the eccentricity distribution of
Kepler’s planet candidates (Moorhead et al., 2011; Kane et al., 2012; Plavchan
et al., 2014b) were limited due to the uncertainty in stellar parameters. Transit
durations combined with stellar properties from photometry (Moorhead et al.,
2011), high-resolution spectroscopy (Buchhave et al., 2012; Dawson & Johnson,
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2012) and/or flicker (Kipping et al., 2014) can effectively recognize high eccentricity
planets. However, further research is needed to obtain stellar properties precise and
accurate enough to enable population studies of the more typical low eccentricity
planets. Fortunately, one can characterize the eccentricity distribution of substantial
subsets of Kepler planet candidates, either by using stars with high quality stellar
characterization (e.g., asteroseismology, Huber et al. 2013; Ford et al. in prep.) or
by using ratios that eliminate the dependence on stellar properties (e.g., Kipping
2011; Fabrycky et al. 2014; Morehead et al. in prep.).

Previous studies suggest that the typical eccentricity of planet candidates in
systems with multiple transiting planet candidate systems (' 0.00 − 0.06) is
likely smaller than in our sample (e.g., Fang & Margot 2012; Fabrycky et al.
2014). Similarly, Wu & Lithwick (2013) and Hadden & Lithwick (2014) analyze
transit timing variations (TTVs) in systems with near-resonant planet candidates.
Hadden & Lithwick (2014) report a maximum likelihood estimate of the dispersion of
eccentricities of σe = 0.018+0.005

−0.004. This is significantly smaller than the σ = 0.08+0.014
−0.003

of our one-component model for the eccentricity distribution. Their result is
comparable to the σlow = 0.01+0.014

−0.002 that describes nearly 90% of planets when
using our two-component model. Hadden & Lithwick (2014) explicitly consider
dividing their sample into subsets based on the estimated planet size being larger or
smaller than 2.5R⊕. Interestingly, they find an even smaller eccentricity dispersion
(σ = 0.008+0.003

−0.002) for subset of larger planets with measurable TTVs. This is opposite
of what would be expected based on a simple comparison to either our results
or planets discovered by radial velocity surveys, both of which are dominated by
significantly larger and/or more massive planets. Future observations and analyses
with improved statistical methodology will be important for understanding the
underlying nature of these differences.

2.7.1 Potential Biases

We note several potential sources of bias in our characterization of the eccentricity
distribution. First, there is a purely geometrical effect due to the fact that we analyze
only planet candidates observed to both transit and occult their host stars. Since
the geometrical transit and occultation probabilities are both functions of the orbital
eccentricity and direction of pericenter, the eccentricity distribution of planets in
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our sample is different than the eccentricity distribution of all planets (even if we
controlled for orbital separation relative to the star radius). Mathematically, we
assume a uniform distribution for the argument of periastron, ω, which is true for
all planets in nature, but not true for our sample. Previous studies have suggested
that the difference between the eccentricity distribution of transiting planets and
all short-period planets is modest (Burke, 2008; Kipping, 2014a). For our sample,
the effect will be even weaker, since we require both transit and occultation to be
included in our sample and the two have opposite dependence on e sinω. We confirm
this by computing the distribution of ω for a simulated population generated by
starting with a uniform distribution and rejecting planets that do not both transit
and occult. We find ω to be very nearly uniformly distributed for these cases, where
there is a non-zero effect but it is less that 4%. Therefore, we do not account for
this effect in our study. We quantify the significance of this effect in an upcoming
study by employing Approximate Bayesian Computing which can naturally model
complex selection criteria such as this (Cisewski et al. in prep).

A second potential bias in our characterization of the eccentricity distribution is
simply that the population of planet candidates we study may not be representative
of all planet candidates. The decreasing geometric transit probability as a function
of orbital period or semi-major axis inevitably leads to our sample being dominated
by planet candidates with short orbital periods, similar to all population studies
based on known transiting planets. Detection probability is also a function of
the signal-to-noise of the transit and occultation. Since the transit is typically
much deeper than the occultation, the detection probability for the occultation
(rather than the transit) is the dominant effect for this study. The occultation
signal-to-noise depends on the occultation depth and duration. In principle, the
duration depends on the density of the host star, impact parameter, eccentricity
and pericenter. In practice, the occultation duration is most sensitive to the impact
parameter. Thus, our sample may have excluded some planets with large impact
parameters, resulting in the occultation going undetected. Similarly, the occultation
depth depends on the effective temperature of the planet, and thus indirectly on
the effective temperature of the star, the orbital distance and the stellar radius.
Therefore, our sample is likely enriched in planets with larger radii, planets with
higher effective temperatures, host stars with higher effective temperatures and
smaller radii, and planets orbiting even more closely to their host star. If planet
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formation proceeds differently around more massive stars, then the eccentricity
distribution for planets in our sample could deviate from the eccentricity distribution
of the overall planet population.

Furthermore, our sample could be enhanced with planets with significant eccen-
tricity if tidal forces on planets in eccentric orbits led to substantial heating and
increased thermal emission. Since the sample analyzed in this study consists of
mostly giant planets and host stars with a single detected transiting planet, the
eccentricity distribution for our sample may differ from the eccentricity distribution
of smaller planets and/or planets in systems with multiple closely-spaced planets.
These potential biases can also be viewed as opportunities to constrain planet
formation and tidal theories. By comparing the eccentricity distribution of different
planet populations, future studies can quantify how the eccentricity distribution
changes with planet size, multiplicity and stellar properties.

We anticipate several ways that future observations will allow for improvements
to our analysis. First, we analyzed a subsample of the Kepler planet candidates
that had already been evaluated for any indication that the Kepler Object of
Interest (KOI) was actually due to an eclipsing binary star, rather than a planet
(e.g., Tenenbaum et al. 2014; Bryson et al. 2013). Both the transit shape and
comparison of the target centroid location during and out-of-transit provide powerful
diagnostics for recognizing likely false positives. Estimates of the false positive
rate are sufficiently low (∼ 10− 20%; Fressin et al. 2013; Burke et al. 2014), that
we can interpret our results in terms of the eccentricity distribution of planets.
Nevertheless, one should be cognizant that the sample of planet candidates we
analyze may include one or more false positives, such as diluted eclipsing binaries. In
particular, our study necessarily selects planet candidates for which an occultation
is measured, which may lead to an increased rate of diluted eclipsing binary false
positives. Properly accounting for a non-zero fraction of false positives would
require a significantly more complex model. Therefore, we leave such work for
future studies. Alternatively, future observations of these very interesting planet
candidates may identify any remaining false positives and characterize the false
positive rate sufficiently well that adding further complexities to the model is not
necessary.
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2.7.2 Future Research

Transit and occultation observations from future missions could lead to improved
understanding of the eccentricity distribution of short-period planets as a function
of host star mass and temperature. In particular, there could be differences between
a volume-limited sample of target stars and our sample due to the target selection
algorithm for the Kepler planet search targets as well as variations in Kepler’s
detection sensitivity. Given the Kepler target selection criteria and detection
sensitivity, most of the planet candidates we analyze are orbiting F and G stars.
Future missions such as NASA’s Transiting Exoplanet Survey Satellite (TESS)
(Ricker et al., 2014) and ESA’s PLATO (Rauer et al., 2014) are expected to survey
a broader range of target stars and to have a simpler target selection function.

Finally, future observations and analysis of host star properties could also result
in improved characterization of correlations between the eccentricity distribution
and host star properties. In particular, a large fraction of host star metallicities used
in our analysis were derived from photometric observations as opposed to higher
quality spectroscopic observations (Huber et al., 2013). As metallicities derived
from high-resolution spectroscopy are published for more stars in our sample, we
will be able to make more robust conclusions about the potential correlation of the
eccentricity distribution with metallicity.

This paper demonstrates that it is practical to apply rigorous HB models to
evaluate key dynamical properties of exoplanet populations. In principle, these
methods can be readily generalized to provide a more accurate characterization
of other aspects of the exoplanet population, such as the frequency of planets as
a function of size and orbital period (Foreman-Mackey et al., 2014), the planet
radius-mass relationship (Rogers, 2015b; Wolfgang & Lopez, 2015), the distribution
of mutual orbital inclinations and multiplicity, and the frequency of small planets in
the habitable zone of solar-type stars (Foreman-Mackey et al., 2014). A challenge for
future HB analysis will be to develop rigorous model comparison techniques. Each
unique problem is often limited by the statistical power of the data, where there is
no universal technique applicable in all cases. In practice, the high-dimensional
integration required can be computationally challenging. Therefore, careful thought
and problem specification is needed, so as to render the necessary calculations
tractable. Fortunately, recent collaborations between astronomers and statisticians,
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such as the 2013 program on Modern Statistical and Computational Methods for
Analysis of Kepler Data (SAMSI) at the Statistical and Applied Mathematical
Sciences Institute have significantly enhanced the level of sophistication among
exoplanet researchers. Forthcoming publications will describe recent efforts appli-
cation of importance sampling and Approximate Bayesian computing (ABC) to
enable application of HB models to more complex problems (e.g., Rogers 2015b;
Morton & Winn 2014; Cisewski et al. in prep).
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Chapter 3 |
The Mass-Radius-Eccentricity Dis-
tribution of Near-Resonant Tran-
siting Exoplanet Pairs Detected
by Kepler

3.1 Introduction
With the onslaught of planet candidate data from Kepler, scientists are working
towards understanding the physical and orbital properties of exoplanet systems
on a broad scale, incorporating formation theories that can explain both the
configuration of our solar system and planetary systems that are very different. The
Kepler Mission has provided us with an ensemble of planetary systems (e.g., Burke
et al., 2015) for which we are beginning to harness the statistical power offered
(e.g., Rowe & Thompson, 2015b). Among the plethora of information to be gained
from these exoplanet systems is information about the mass-radius relationship
for these systems (Wu & Lithwick, 2013; Weiss et al., 2013; Weiss & Marcy, 2014;
Marcy et al., 2014; Wolfgang et al., 2015).

Theoretical studies to explore planet composition beyond measuring bulk density
have revealed that multiple compositional regimes can describe the same mass
and radius of an exoplanet (Rogers & Seager, 2010; Valencia et al., 2013; Lopez
& Fortney, 2014). This feature complicates our ability to deduce whether: 1) a
planet of a given mass and radius formed in situ or formed beyond the snow line
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and dynamically evolved migrating inward to locations closer to its host where it
is more easily detected by Kepler, if a planet, 2) if it has undergone episodes of
mass gain and/or mass loss, and 3) if it is composed mostly of iron and silicates
with a hydrogen-helium abundant atmosphere (Lopez & Fortney, 2014). Moreover,
complex internal structure of these planets can yield different planet radii for a given
mass (Rogers & Seager, 2010). With this in mind, obtaining empirical constraints
on composition distribution from the Kepler sample of exoplanets is non-trivial.

Efforts to characterize the population of planetary system compositions for small
planets has been in the lime light, as scientists work to constrain the joint mass-
radius distribution for planets that span a large range of masses and radii. Studies
to constrain the features of a power law mass-radius joint distribution for small
planets have provided insight into the broad features of this relation (Weiss et al.,
2013; Weiss & Marcy, 2014; Lissauer et al., 2011), but there remains considerable
room for improvement.requires scientist One concern arrises when models assume
that planets of the same radii must have the same masses and/or compositions
(or planets of the same mass must have the same radius). A few studies have
allowed a mass-radius relation that is not a one-to-one function. This requires
scientists to approach the mass-radius data in a novel way, to gain accuracy, even if
it comes at the expense of precision in some cases. Furthermore, large uncertainties
in stellar properties translate into large uncertainties in planet properties. With
such an understanding we are able to develop models that incorporate the large
measurement uncertainty. This has sparked the development of models that can
empirically measure the scatter in mass for a given planet radius (Wolfgang &
Lopez, 2015; Wolfgang et al., 2015; Rogers, 2015a).

A few early analyses have used mass constraints from transit timing variations
(TTVs) to investigate the mass-radius relation for small planets. Most previous
studies have used mass constraints from radial velocity (RV) observations (Wolfgang
& Lopez, 2015; Wolfgang et al., 2015; Rogers, 2015a; Weiss et al., 2013; Weiss &
Marcy, 2014). Here, we improve upon these previous analyses in three ways: 1) we
use a more uniform sample of planet candidates that come from the transit timing
variations of planet pairs in or near mean-motion resonance (Lithwick et al., 2012),
2) we greatly increase the sample size of small planets in our population study
compared to previous studies of the same nature, and 3) by using analytical relations
that relate the transit timing variation amplitude to the mass and eccentricity for
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planet-pairs. These analytical relations approximate the dominant TTV signature
of near resonant planets including the effects of planet periods, masses, eccentricities,
and pericenter distances. Constraining the masses of TTV systems using Newton’s
laws would require much larger computing investments.

One complication is that the TTV signature often results in highly correlated
uncertainties for the mass, eccentricity, and pericenter of these planet pairs near a
first-order mean motion resonance (MMR). We employ a hierarchical Bayesian (HB)
analysis to place probabilistic constraints on masses and eccentricities irrespective
of their highly correlated uncertainties, while simultaneously learning about the
populations mass-radius-eccentricity features. Thanks to the small fractional
uncertainty in the transit timing variation amplitudes and the large sample size, we
constrain the mass-radius model in a robust manner. We also model measurements
of the planet-to-star radius ratios and stellar radii, in lieu of planet radii, so as to
minimize effects of uncertainties in stellar radii. Furthermore, we include systems
with weak detections or non-detections to minimize biases against measuring the
mass of low mass planets.

This chapter is organized as follows. In §3.2, we describe our physical model
relating our observables to our approximations for the TTV amplitudes. In §3.3,
we describe the HB statistical model, and the priors selected for the study. In §3.4,
we present the results of our HB analysis and investigate potential correlations
between the mass-radius-eccentricity distribution and planet or host star properties.
In §3.5, we summarize our results, and in §3.6, we discuss our conclusions, potential
biases and future work.

3.2 Methods Overview

3.2.1 Kepler Data

Of the plethora of multiple transiting planet systems discovered by Kepler, many
have features resulting from their gravitational interactions with one another that
are detectable within the current data. The gravitational tug exhibited by these
planets on each other causes the orbits to deviate from strict periodicity. These
deviations are known as transit timing variations (TTVs). Within the sample of
multiple transiting planet systems, we identify every known planet-pair near a
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first-order mean motion resonance (MMR), using the planet catalogs based on data
from Q1 through Q16 (Rowe & Thompson, 2015b). These systems are identified
reliably since the measurement uncertainties of orbital period for Kepler planet
candidates are very small. This results in a sample of 120 planet-pairs (See Tables
3.3-3.5). The minimum, median, and maximum values for the observables we use
in our study are summarized in Table 3.1 below.

Table 3.1: Minimum, median, and maximum values for Kepler data used in this
study. Tables 3.3-3.5 show the full dataset.

Variable Name Minimum Median maximum

Planet-to-star radius ratio 0.0042 0.014 0.0718
|TTV amplitude| (days) 6× 10−06 0.0018 0.67
Orbital Period (days) 1.68 12.55 284.06
Stellar mass (M�) 0.189 0.965 4.23
Stellar radius (R�) 0.169 0.987 2.046

3.2.2 TTV Ephemerides

First, we fit a linear ephemeris to the observed transit times to estimate the orbital
periods. For each planet we measured transit timing variations, or deviations from
a linear fit to the transit times. We included weak and non-detections of TTVs to
minimize detection biases. Many of the planets appeared to have more outlying
transit times than one would expect for Gaussian measurement uncertainties. To
characterize the measurement errors on the dataset, we extracted a subsample of
planet pairs far enough from resonance such that |∆| > 0.08, where

∆ = P ′(j − 1)
Pj

− 1, (3.1)

is the distance from resonance, and j is an integer such that the planet-pair has a
period ratio near j:j-1. For |∆| > 0.08, planets are unlikely to have any detectable
TTVs, and their distribution was broader than a Gaussian. Next, we fit a linear
and sinusoidal model to the observed transit times:

tn = to + nP + VRe cos
(

2π(tn − tconj)
PTTV

)
+ VIm sin

(
2π(tn − tconj)

PTTV

)
(3.2)

56



where tn is the time on the nth transit, tconj is the time of conjunction, VRe and VIm
are the TTV amplitudes of the cosine and sine components, respectively, where we
adapt the nomenclature from Lithwick et al. (2012), where their derivations are in
terms of the real and imaginary components. PTTV is the TTV period, also known
as the super period.

PTTV = P ′

j|∆| (3.3)

3.2.3 TTV Amplitudes

We assume a Student’s-t distribution for transit time uncertainty in order to
remain robust to outliers. The likelihood function for computing the observed TTV
amplitudes is thus:

L =
N∏
n=1

Tt̂n(tn, σn, ν) (3.4)

The student-t distribution will not penalize the likelihood function as severely as
would a Normal distribution, in cases where there are outliers. This is because
the tails of the distribution fall gradually, and the density in the tails remains
larger. For the sample as a whole, we fitted sinusoidal models to the TTVs with
the functional form:

M = a0 + a1t+ a2 sin
(

2π
PTTV

(t− tc)
)

+ a3 cos
(

2π
PTTV

(t− tc)
)

(3.5)

where M is the TTV model, PTTV is the periodicity of the TTVs The coefficients
atheta were all free parameters, and we explored their posteriors for each planet with
fits to Equation 3.5 using a Markov Chain Monte Carlo algorithm, and assuming
uncertainties were drawn from a student-t distribution. The phase of the TTVs is
determined by the conjunctions of the planets, and is zero if conjunction occurs at
the transit location and there is no free eccentricity.

We obtained measurements of the planet-to-star radius ratio, host star radius,
host star mass, and orbital periods from the Kepler planet candidate list based on
data from Q1 through Q12 of the NASA Exoplanet Archive1 (Akeson et al., 2013)
for our sample of Kepler planets. In cases where there are missing data we use the

1http://exoplanetarchive.ipac.caltech.edu, July 28th, 2015
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value from the Q1 through Q16 planet candidate catalog1. Table 3.1 shows the
resultant TTV amplitudes for our sample of planet pairs, Table 3.2 shows the radius
ratios and orbital periods for these planets pairs, and Table 3.3 shows the stellar
masses and radii for each system. Furthermore, we show in Figure 3.1 the TTV
amplitudes, the planet-to-star radius ratio and the fractional uncertainty in Rp/R∗

used in our study. The y-axis represents the amplitude of the sine component of
the transit timing variation amplitudes, and the x-axis represents the amplitude
of the cosine component. The circle sizes are proportional to the planet-to-star
radius ratio, and the fractional uncertainty (ratio of 68% credible interval to mode)
is shown as the color bar where the blue represents small fractional uncertainty,
and the red represents large fractional uncertainty. Figure 3.2 is the same figure
zoomed in, with 15 outliers, out of 240 planets total, are not shown for clarity.

3.2.4 Physical Model

Most planet-pairs detected by Kepler that orbit near first-order MMR have transit
timing variations that can be described analytically. A first-order MMR occurs when
two planets have period ratios that are integer ratios, specifically, j : j − 1, where j
is the resonant number. In systems of two planets near-first order MMR that are not
packed together extremely closely, the transit timing variations are approximately
sinusoidal. TTV signals that are well-fit by a superposition of two sinusoids could
be indicative of a three planet system, but are not included in this study. Fitting
N-body simulations to the transit timing variations can potentially help break
this degeneracy in mass and eccentricity. N-body simulations are computationally
costly, but are perhaps necessary for tightly-packed information-rich TTV systems.
In cases where the systems are well approximated by a sinusoid, these analytical
approximations are advantageous.

The analytical relations for these TTVs described in Lithwick et al. (2012) relate
the amplitude of the TTV signal including sin and cos components (for both the
interior and exterior planet) to the other planet’s mass and a linear combination
of both planets’ free eccentricity (the component of the eccentricity not caused
by resonance) vectors. The forced eccentricity vector is one component of the
eccentricity that is caused by the proximity of the planet-pair to MMR, where
the free eccentricity component is not caused by the proximity to resonance, with
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Figure 3.1: Transit timing variation amplitudes with size proportional to the
planet-to-star radius ratio and color indicating the fractional uncertainty. The y
axis represents the amplitude of the sine component of the transit timing variation
amplitudes, and the x-axis represents the amplitude of the cosine component. The
circle sizes are proportional to the planet to star radius ratio, and the fractional
uncertainty (ratio of 68% credible interval to mode) is show as the color bar
where the blue represents small fractional uncertainty, and the red represents large
fractional uncertainty.

timescales much less than the secular time. However, these analytical relations make
it clear that there will be a near degeneracy between the mass and free eccentricity
(from here on referred to simply as eccentricity) when they are constrained by the
TTV amplitudes. An advantage of using these analytical relations is that in the
limit that these approximations are exact, we can foresee this mass-eccentricity
degeneracy. Lithwick et al. (2012) show that in cases where there is non-zero free
eccentricity, the phase of the longitude of conjunction of the planet pairs evolves in
time. However, if the eccentricity is zero, this phase will remain constant. This can
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Figure 3.2: Transit timing variation amplitudes with size proportional to the
planet-to-star radius ratio and color indicating the fractional uncertainty. The y
axis represents the amplitude of the sine component of the transit timing variation
amplitudes, and the x-axis represents the amplitude of the cosine component. The
circle sizes are proportional to the planet to star radius ratio, and the fractional
uncertainty (ratio of 68% credible interval to mode) is show as the color bar
where the blue represents small fractional uncertainty, and the red represents large
fractional uncertainty. 15 outliers, out of 240 planets total, are not shown for
clarity.

help to determine if there is a non-zero eccentricity for a planet.
Following the analytical relations from Lithwick et al. (2012) described above,

the real and imaginary parts for the transit timing variation amplitudes from
Equations 8, 9 and 10 from Lithwick et al. (2012) correspond to the coefficients of
the amplitudes of the sine and cosine terms in Equations 3.6 and 3.7 below.
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Vint = Pint
µext

πj2/3(j − 1)1/3∆(−f − 3((f hint + g hext)− i(f kint + g kext))
2∆ ) (3.6)

Vext = Pext
µint
πj∆(−g + 3((f hint + g hext)− i(f kint + g kext))

2∆ ). (3.7)

These equations can then be broken up into their real and imaginary parts (or
amplitude of the sine and cosine components) as follows:

VRe int = − Pint

πj2/3(j−1)1/3∆
µext f (3.8)

− 3Pint
2πj2/3(j−1)1/3∆2

µext (f hint + g hext), (3.9)

VIm int = 3Pint
2πj2/3(j−1)1/3∆2

µext (f kint + g kext), (3.10)

VRe ext = − Pext
πj∆ µint g + 3Pext

2πj∆2 µint (f hint + g hext), (3.11)

VImext = − 3Pext
2πj∆2 µint (f kint + g kext). (3.12)

In the above equations, Pint and Pext are the interior and exterior planet-pair
orbital periods, respectively, ∆ is the distance from resonance, which is a function
of the resonant number j, Pint, and Pext, µint and µext are the planet-to-star mass
ratios for the interior and exterior planets, respectively, f and g are the Laplace
coefficients for the disturbing function derived in Lithwick et al. (2012), and hint,
kint, hext, and kext are the projected eccentricity values, (where h = e cosω and
k = e sinω) for the interior and exterior planet, respectively.

3.2.5 Statistical Model for Population

Hierarchical Bayesian (HB) modeling is well suited for studying populations where
the measurement uncertainties for individual objects are large because hierarchical
models can “pool and muster” strength from the whole population. For example,
we combine many weak constraints on planet masses to develop population models
for the mass-radius distribution including models that capture the intrinsic scatter
in mass for a given radius. In HB modeling, the population-level parameters are
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known as hyperparameters, and the mid level parameters that we are trying to
infer are known as latent variables. The observables are measurements of the latent
variables. The general form for the posterior for the hyperparameter vector φ and
associated latent variables θ is given as follows:

p(θ,φ|d) ∝ p(d|θ,φ)p(θ|φ)p(φ) (3.13)

where, d is the vector of measurements of observables associated with selected
latent variables that depends on the specific HB model constructed for a given
data set and science questions of interest. The symbol “|” is read as “given”. Here,
p(d,θ|φ) = p(d|θ,φ)p(θ|φ) is the likelihood function for our HB model, and
p(φ) is the prior probability density for the hyperparameters. Here, p(d|θ,φ) is
the probability of the measurements at the base-level of the hierarchical model
given the measurement uncertainties and population model parameters. p(θ|φ) is
the probability of the mid-level model parameters relating the true values of the
observed parameters to the population level parameters.

Another useful benefit to the Bayesian approach of multi-level modeling is
the ability to obtain probabilistic parameter estimates for variables that are not
observable or not yet observed. This is a feature we take advantage of in the case of
modeling the joint mass-radius-eccentricity distribution using analytic expressions
that relate TTV amplitudes to mass and eccentricity for which both quantities mass
and eccentricity we do not have measurements for. Moreover, in the HB framework,
we can get more accurate results for parameter estimates by marginalizing over all
other parameters in the joint posterior. This becomes important when constructing
models in order to remove selection effects or other sources of bias in the parameter
estimates. We emphasize careful consideration of biases and selection effects before
drawing conclusions about the exoplanet population at large from these population
studies.

When developing the population model, the fractional uncertainty of observed
variables coupled with the sample size can heavily influence whether or not a data set
will be able to constrain a given HB model. For instance, a more complex population
model may be a better description of nature, but may be poorly constrained by the
given data set. In comparison, a more simplified model would not describe nature
perfectly, but might capture the broad features present in the data and provide
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useful insight. Therefore, we start with relatively simple physical and statistical
models and gradually add complexity.

With this in mind it is important to explore the robustness of HB models for a
given science question and data set. The predictions of a robust HB model will
be insensitive to small changes in the population model and outliers. Testing the
robustness of population models for a given science question and data set is non-
trivial. For example, one obvious warning flag would be if the posterior distribution
is comparable to the prior distribution. In this case, results are sensitive to the
choice of priors. Furthermore, testing an HB model on simulated datasets can
expose any mathematical artifacts and identify realistic sample sizes and fractional
uncertainties required in order to constrain the variables meaningfully.

3.3 Applying the Hierarchical Model to Kepler Data
We aim to characterize the mass-radius-eccentricity relation for a sample of near-first-
order MMR planet-pairs from Kepler for which we have precisely measured TTV
amplitudes (low fractional measurement uncertainties). We do so via constructing
a hierarchical Bayesian model and testing our assumptions with simulated data.
Once we validate our model and demonstrate it is robust, we apply it to real
measurements of the TTV amplitudes described in §3.2.

In our model, we treat the orbital period and resonant number for systems in
our sample as known quantities (zero measurement uncertainty). This is a good ap-
proximation since these parameters have very small fractional uncertainties. When
working with TTV amplitudes, this leaves the mass, eccentricity, and pericenter
as unknown variables. This results in a mass-eccentricity degeneracy for TTV
amplitude measurements.

We begin by expanding the generalized form for an HB model shown in equation
3.13 above in terms of the variables required for our mass-radius-eccentricity relation
using TTV amplitudes for near-first-order MMR planet-pairs. The population
level variables are characteristic of the parameterization of the population. We
begin constructing our population model by parameterizing the mass-radius joint
distribution as a power-law relation with scatter in mass following Wolfgang et al.
(2015). We treat the eccentricity distribution as a separable dependency, first
modeling it as a one-component Gaussian mixture model, then evolving this to a
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two-component Gaussian mixture model following Shabram et al. 2015. Separable
in this context means that there is no functional dependance of the given variable
on another given variable in the model. We model the occurrence rate of planet
radii as a power-law function, which we also treat as separable. We illustrate the
dependancies and separability of our model set-up using a graphical model of our
Bayesian network shown in Figure 3.3.

Figure 3.3: Graphical model of Bayesian network. Here we show the relationship
between the hyperparameters, latent variables and observables in our mass-radius-
eccentricity joint hierarchical Bayesian model. Observables are high level measure-
ments that have been provided by others. The observables are shown in gray. The
latent variables are shown in white within the boxed region. The hyperparameters
that describe the features of the population model are shown in white above the
boxed region. The solid arrows represent probabilistic relationships and can be
read as “distributed as”, where the dashed arrows represent definitions or physical
models. The physical models used in this study (see Equations 3.44 to 3.48) link
observables to un-observed quantities (Planet radius, planet mass, eccentricity),
and we are able to get posteriors for these un-observed quantities.
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3.3.1 Variables

Inherent in the design of our science investigation is making usage of physical
models that describe relationships between model parameters and the usage of
probability distributions that recognize that noise renders these physical models
unable to pin down exact parameter estimates using observables. In our particular
investigation, the physical models we are using relate the amplitude of the TTV
signal to the planet-to-star mass ratio, eccentricity, orbital period, resonant number,
and distance from resonance (see Equations 3.6-3.12 and Tables 3.1 and 3.2)
Complicating matters further, these variables are included for both the interior and
exterior planets for each observed system. To minimize the effect of uncertainty
in the stellar radius, we use the measurements for the planet-to-star radius ratio,
and stellar radius in lieu of reported measurement for planet radius. This allows us
to use separable probability distributions for planet radius and stellar radius, and
link the two variables through a physical model relationship (planet radius divided
by stellar radius). In the following expressions, d from equation 3.13 above is the
vector of observations we use in our study:
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d = {Vobs,σVobs
,Rp/R∗obs,σRp/R∗obs

, R? obs, σR? obs
,M? obs, σM? obs

}
(3.14)

Vobs = {VobsRe int, VobsRe ext, Vobs Im int, Vobs Imext} (3.15)

σVobs
= {σVobs Re int

, σVobs Re ext
, σVobs Im int

, σVobs Im ext
} (3.16)

Rp/R∗obs = {Rp/R?obs int, Rp/R?obs ext} (3.17)

σRp/R∗obs
= {σRp/R?obs int

, σRp/R?obs ext
} (3.18)

Here, Vobs is the vector of real and imaginary components of the TTV amplitude
for both the interior and exterior planet, and σVobs

is the vector of associated
amplitude uncertainties. Rp/R∗obs is the vector of planet to star radius ratios
for the interior and exterior planet, and σRp/R∗obs

is the vector of associated
measurement uncertainties. M? obs and R? obs are the host star mass and radius
for each planet pair and σM? obs

and σR? obs
are the measurement uncertainties,

respectively.
The vector of latent variables in our study, θ in equation 1, becomes:

θ = {Vtrue,Rp/R∗true,µtrue,M? true, R? true,Rp true,Mp true,htrue,ktrue}
(3.19)

Vtrue = {VtrueRe int, VtrueRe ext, Vtrue Im int, Vtrue Imext} (3.20)

Rp/R∗true = {Rp/R∗true int, Rp/R∗true ext} (3.21)

MRef = {µM int, µM ext} (3.22)

Rp true = {Rp true int, Rp true ext} (3.23)

Mp true = {Mp true int,Mp true ext} (3.24)

htrue = {htrue int, htrue ext} (3.25)

ktrue = {ktrue int, ktrue ext} (3.26)

Above, Vtrue is the vector of true values that occurred in nature for the real
and imaginary components of the transit timing variation amplitude for the interior
and exterior planet pairs. Furthermore, Rp/R∗true, MRef , Rp true, Mp true, htrue,
and ktrue are the true values for the planet-to-star radius ratio, planet-to-star
mass ratio, planet radius, planet mass, and the components of the eccentricity
distribution (h = e cosω, and k = e sinω), respectively.
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The vector of hyperparameters that describe the features of the developed
population model, φ are:

φ = {M0, γMR, σMR,f ,σc}, (3.27)

where M0 is the constant for the power law planet mass-radius relationship, γMR is
the exponent for this planet mass-radius relationship, and σMR is the scatter in
planet mass for a given radius. f and σc are the mixture fractions and dispersions
for a two-component Rayleigh mixture eccentricity model (see Chapter 2 for details
regarding the eccentricity distribution model we use here), and γRp is the power-law
index for the planet occurrence rate as a function of of planet radii.

3.3.2 The Population Model

We now expand the hierarchical Bayesian model described in equation 3.13 in terms
of our mass-radius-eccentricity population model as follows:

p(γMR,M0, σRM , f ,σc,Rp/R∗true,µtrue, R∗ true,M∗ true,htrue,ktrue,

Rp true,Mp true|Vobs,σVobs
,Rp/R?obs,σRp/R?obs

, R∗ obs, σR∗ obs
,M∗ obs, σM∗ obs

)

∝ p(γMR)p(M0)p(σRM)p(f)p(σc)

p(R∗ true)p(M∗ true)p(c)p(htrue,ktrue|σc)

p(Rp true)p(MRef |Mo, γMR,Rp/R∗true,Rp true)

p(Mp true|MRef ,Mo, γMR, σMR,Rp/R∗true,Rp true)

p(R∗ obs|R∗ true, σR∗ obs
)p(M∗ obs|M∗ true, σM∗ obs

)

p(Rp/R∗ obs|Rp/R∗ true,σRp/R∗ obs
)p(Vobs|Vtrue,σVobs

) (3.28)

Here “p()” indicate each separable function in our HB model. We define the
dependencies and distributions of each of the separable equations shown above in
Equations 3.29-3.52 in §3.3.3 through §3.3.5 below.
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3.3.3 Hyperpriors

Equations 3.29 through 3.34 below show the hyperprior distributions for our HB
model. These are the variables that describe the shape of our population model
as inferred from our data set. In these Equations, the “∼” is read “distributed as”
and the “←” is read “defined as”. We assign a Uniform distribution between 0 and
2 for the power-law exponent γMR of our mass-radius relation within the HB model.
Previous studies of planets in a similar size regime have found that the parameters
describing a power-law model for the mass-radius relation to be Mo = 2.69M⊕
and γMR = 0.93 (Weiss & Marcy, 2014), and Mo = 2.7M⊕, γMR = 1.3, and
σMR = 1.9M⊕ (Wolfgang et al., 2015). We choose a range that encompasses those
results. The mass constant Mo represents the mass of a one Earth radii planet. We
choose a Uniform prior distribution forMo ranging from 0.25M⊕ to 2M⊕. We select
this range based on physical intuition for plausible sizes of Earth-size planets. We
choose a Uniform prior distribution ranging from 0M⊕ to 2M⊕ for the scatter in our
mass-radius relation. Based on results from Chapter 1 exploring the eccentricity
distribution of a sample of planets from Kepler, we use a mixture of Normal
distributions to characterize the distribution for h = e cosω and k = e sinω in our
HM model. For the mixture fractions f describing this eccentricity distribution,
we choose a Dirichlet prior distribution with α = 1, which forces the sum of the
fractions to 1. We use a Categorical distribution of the mixture fractions to assign
which mixture components will be used for which planet, which is described in the
mid-level model specification in §3.3.4. For the dispersion of each component σc,
we choose a Uniform prior distribution ranging from 0 to 1.

γMR ∼ Uniform(0, 2) (3.29)

Mo ∼ Uniform(0.25M⊕, 2M⊕) (3.30)

σMR ∼ Uniform(0, 2) (3.31)

f ∼ Dirichlet(α = 1)for i = 1...Ncomp (3.32)

σc ∼ Uniform(0, 1)for i = 1...Ncomp (3.33)

(3.34)
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3.3.4 Mid-Level Model Specification

We now move into the description of the mid-level of our HB model, where we
describe the relationship of the latent variables to the population level parameters
(a.k.a hyperpriors described above). We choose a Uniform distribution for stellar
mass M∗ and stellar radius R∗ ranging from 0.8M� to 3M� and 0.5R� to 2R�,
respectively, shown in Equations 3.35 and 3.36 below. Based of research in Shabram
et al. 2015 and described in Chapter 1 of this dissertation, we parameterize the
eccentricity distribution of the planets in our sample as a mixture of Normal
distributions centered at zero. Ncomp is the number of mixture components in the
Gaussian mixture model used to parameterize the projected eccentricity distribution,
and in this case, Ncomp = 2. We assign a categorical distribution (Equation 3.34)
to the variable c, where c takes on values equal to 1 for component-one, or 2
for component-two, of the two-component Gaussian mixture model for projected
eccentricity. Equation 3.38 below show the prior distributions for h = e cosω and
k = e sinω, where, σc represent the dispersions for each mixture component. We
truncate the prior distributions for h and k such that e =

√
h2 + k2 < 1. The prior

distributions are renormalized after truncation. The planet radii are assigned to
a Uniform prior distribution ranging from 0.1R⊕ to 15R⊕ in Equation 3.37 We
define a reference mass MRef as a power-law mass-radius relation in Equation 3.40.
The true planet mass is distributed Normally around the reference mass, shown in
Equation 3.41, with a dispersion of σMR, the hyperparameter describing the scatter
in planet mass for a given planet radius. We define the true planet-to-star mass
ratio µtrue as the planet mass divided by the stellar mass in Equation 3.42, and the
true planet-to-star radius ratio Rp/R∗true as the true planet radius divided by the
stellar radius in Equation 3.43 below.

R∗ true ∼ Uniform(0.5R�, 2R�) (3.35)

M∗ true ∼ Uniform(0.8M�, 3M�) (3.36)

cj ∼ Categorical(f) for j = 1...Ncomp (3.37)

htrue, ktrue|σc ∼ Normal(0,σc) for
√
h2 + k2 < 1 (3.38)

Rp true ∼ Uniform(0.1R⊕, 15R⊕) (3.39)

MRef |Mo, γMR,Rp true ←MoRp true
γMR (3.40)
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Mp true|MRef ,Mo, γMR, σMR,Rp true ∼ Normal(MRef , σMR) (3.41)

µtrue ←Mp true/M∗ true (3.42)

Rp/R∗true ← Rp true/R∗ true (3.43)
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It is important to note that the “←” represents model definitions, or physical
models, and are used to link variables but are not probabilistic and therefore do
not appear in Equation 3.25. Below the Vtrue vector is expanded into the real (and
imaginary parts for the interior and exterior planet pair as derived in Equations
3.6 through 3.12 in §3.2.4:

VtrueRe int ← −
Pint

πj2/3(j−1)1/3∆
µtrue ext f (3.44)

− 3Pint
2πj2/3(j−1)1/3∆2

µtrue ext (f htrue int + g htrue ext) (3.45)

Vtrue Im int ←
3Pint

2πj2/3(j−1)1/3∆2
µtrue ext (f ktrue int + g ktrue ext) (3.46)

VtrueRe ext ← −
Pext
πj∆ µtrue int g + 3Pext

2πj∆2 µtrue int (f htrue int + g htrue ext) (3.47)

Vtrue Imext ← −
3Pext

2πj∆2 µtrue int (f ktrue int + g ktrue ext) (3.48)

3.3.5 Base-Level Model Specification

The base-level of the HB model links the variables for which we have measurements
to their associated latent variables. In this study we have measurements and
uncertainties represented as summary statistics for the planet-to-star radius ratios
of both the interior and exterior planet-pairs, the stellar mass and radii for each
system, and the amplitude of the sine and cosine components of the interior and
exterior planet-pair TTV amplitudes. In this HB model we assume the observed
value is distributed Normally about the true value of the system with a dispersion
equal to the uncertainty reported in the summary statistics. In principle, the
observed value is not necessarily Normally distributed. Therefore, it would be
useful to use the full posteriors for the measurements in future studies.
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R∗ obs|R∗ true, σR∗ obs
∼ Normal(R∗ true, σR∗ obs

) (3.49)

M∗ obs|M∗ true, σM∗ obs
∼ Normal(M∗ true, σM∗ obs

) (3.50)

Rp/R∗ obs|Rp/R∗ true,σRp/R∗ obs
∼ Normal(Rp/R∗ true,σRp/R∗ obs

) (3.51)

Vobs|Vtrue,σVobs
∼ Normal(Vtrue,σVobs

) (3.52)

3.3.6 Evaluating the Hierarchical Model

We sample from the posterior using MCMC. To calculate Markov chains we use the
publicly-available code Just Another Gibbs Sampler (JAGS; Plummer, 2003). JAGS
uses Gibbs sampling when possible, and otherwise reverts to standard Metropo-
lis–Hastings. We simultaneously sample from both the posterior distributions
for the population parameters and the posterior predictive distributions for each
observable. We evaluate the Gelman-Rubin (R) ratio to test for non–convergence,
and accept chains with an R < 1.01. We also look at the autocorrelation function
for the Markov chains and accept cases that have a zero crossing at a lag of ≤ 5
using the default thinning by a factor of 500, and discarding all but the final 1000
iterations for 5 chains in total. The exact JAGS input model used in our study is
shown as Figure 3.4.

3.4 Results
The primary goal of our study is to characterize population level parameters that
describe a joint planet mass, radius and eccentricity distribution. Our method
simultaneously provides estimates of planet mass and eccentricity for the individual
planets in our sample. We start with a simplistic model, testing with simulated
data. With simulated data, the population level parameters are known, so we can
see how the sample size and measurement uncertainty impacts the model’s ability
to recover posteriors that accurately characterize the true chosen population level
parameters for the simulated data set. This allows us to discover the threshold
sample size and data quality needed to constrain the model, and adjust the model
accordingly so that it can be constrained by the real data set.
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Figure 3.4: Just Another Gibbs Sampler mass-radius-eccentricity HB model, with
R syntax highlighting.

3.4.1 Validating the Hierarchical Model: Testing Analysis Mod-
els with Corresponding Simulated Data

3.4.1.1 Effect of Measurement Uncertainties

In Figure 3.5 we show posterior distributions for hyperparameters of our mass-
radius-eccentricity HB model using 120 simulated Kepler planet candidate pairs.
Here, we use a single Gaussian distribution to parameterize the distribution of
projected eccentricities h = e cosω and k = e sinω with a fixed dispersion of the
projected eccentricity distribution σhk = 0.01 (eccentricities will be small for all
simulated planets). The observable quantities are the sine and cosine components of
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the transit timing variation amplitude Vobs, the stellar mass M∗, the stellar radius
R∗, and the planet-to-star radius ratio for the interior and exterior planet pairs
Rp/R∗ obs, described in §3.3.1. In this simulated data case, we set the uncertainties
of all observables artificially small to test the robustness of this model to the quantity
of planet pairs in our real data set (120 pairs, 240 planet candidates total). This
means that for this simulated data case, σVobs

= σM∗ = σR∗ = σRp/R∗ obs
= 0.001.

The chosen values for the population level parameters for the power-law mass-
radius relation parameterization are Mo = 1.0M⊕, γMR = 0.9, and σMR = 1.0M⊕,
described in §3.3.4. All true values for the hyperparameters fall within the 68%
credible interval of the marginal posteriors for these hyperparameters.

In Figure 3.6, we perform the same analysis as we did above, but this time we
set the measurement uncertainties for the observables to be the real uncertainties
from the Kepler data set. These measurement uncertainties are shown in Tables
3.1 through 3.3. The mean values for these measurement uncertainties are σVobs

=
0.14 days, σM∗ = 0.014M�, σR∗ = 0.11R�, and σRp/R∗ obs

= 0.0005. In this test
case, the true values for the hyperparameters (Mo = 1.0M⊕, γMR = 0.9, and
σMR = 1.0M⊕), are all still within the 68% credible interval of the marginal
posteriors shown in Figure 3.6. From this we conclude that when using the true
measurement uncertainties and the quantity of data available, we will be able to
constrain the population level parameters to with the 68% credible interval of the
posterior modes.

Next, we try a population model where we choose a prior for the dispersion of a
one-component Gaussian distribution model for eccentricity, allowing for flexibility
in the eccentricity distribution. In this case, we take our population model described
above, but we now have a new population level parameter which we call σhk, which
represents the dispersion for a one-component Gaussian distribution. We use
a uniform prior for σhk ranging from 0 to 3. In our simulated data case, the
chosen population parameters are: Mo = 1.0M⊕, γMR = 0.9, σMR = 1.0M⊕, and
σhk = 0.21. We choose a larger dispersion for the eccentricity distribution than the
previous simulated cases where σhk was set to a small value of 0.01, in order to asses
the impact of systems where planets may contain cases with larger eccentricities.
Figure 3.7 shows the results of this simulation. Here, the mass-radius relation true
hyperparameters all fall within the 68% credible interval of the marginal posterior
distributions. The hyperparameter for the eccentricity distribution, however, is just
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Figure 3.5: Posterior distributions for hyperparameters of our mass-radius-
eccentricity HB model using 120 simulated Kepler planet candidate pairs. Here,
the eccentricity distribution is fixed. In this simulated data case, we set the uncer-
tainties of our observables artificially small (all set to 0.001) to test the robustness
of this model to the quantity of planet pairs in our real data set. Shown in red are
the true values for the mass constant Mo = 1.0M⊕, the power-law index γMR = 0.9
and the scatter in mass for a given radii σMR = 1.0M⊕. All true values fall within
the 68% credible interval (shown above as black dashed lines) of the marginal
posteriors for these hyperparameters. Posterior modes are shown as black solid
lines, and the 68% credible interval on the 2-D posteriors are show as black solid
curves.
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Figure 3.6: Posterior distributions for hyperparameters of our mass-radius-
eccentricity HB model using 120 simulated Kepler planet candidate pairs, with a
fixed eccentricity distribution. In this simulated data case, we set the uncertainties
of our observables to the true observational uncertainties from the Kepler data, to
test how the real measurement uncertainties when combined with the quantity of
data available, will impact our results. Shown in red are the true values for the
mass constant Mo = 1.0M⊕, the power-law index γMR = 0.9 and the scatter in
mass for a given radii σMR = 1.0M⊕. All true values fall within the 68% credible
interval, shown above as black dashed lines, of the marginal posteriors for these
hyperparameters. Posterior modes are shown as black solid lines, and the 68%
credible interval on the 2-D posteriors are show as black solid curves.
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outside the 68% credible interval, but still well within the posterior distribution, so
we accept this test case.

Next, we try another simulated data scenario, where we increase the complexity
of our HB model to include a two-component Gaussian mixture model for the
projected eccentricity distribution. Results for this simulated data case are shown
in Figure 3.8. Here, the hyperparameters for this HB model are Mo = 1.0M⊕,
γMR = 0.9, σMR = 1.0M⊕, and the two-component Gaussian mixture model
hyperparameters are now σlow = 0.03, σhigh = 0.65, flow = 0.75, and fhigh = 0.25.
Here flow and fhigh are the mixture fraction for the two-components, and σlow

and σhigh are the two dispersion components. The subscript “low” indicates the
component of the projected eccentricity distribution with a smaller dispersion (most
eccentricities in this population are small), and the subscript “high” indicates the
larger dispersion component that allows for some cases with higher eccentricity.
For this particular case, we investigate the posterior modes and credible intervals
for planet radius vs. planet mass. We show these posterior summary statistics
in Figure 3.9. The gray bars represent the 68% credible interval of the marginal
posteriors for planet mass and radii. The red points represent the posterior modes
for the interior planets and the blue points represent the posterior modes for the
exterior planets. The black points represent the true planet masses and planet
radii generated for this particular model. The thick solid black curve is the true
mass-radius relation that the simulated data are drawn from. The region of scatter
in mass for a given radius, is shown as the region between the thick dotted black
lines.

3.4.1.2 Highly Correlated Uncertainties in Mass and Eccentricity

We inspected the posteriors for latent variables of the mass-radius-eccentricity
HB model that uses a two-component Gaussian mixture model. In particular, we
inspect the mass and projected eccentricity (h and k) for interior and exterior
planet pairs, to investigate the impact of the degeneracy between these variables
when using the analytical approximations for TTV amplitude described in §3.2.4.
Approximately 10% of the simulated systems did not return the true generated
value used to within the 68% credible interval for marginal posteriors of these
latent variables. Figures 3.10 through 3.13 show for examples cases for these latent
variables of interest. In all four figures, the 68% credible intervals are shown as the
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dotted black lines on the histograms of the marginal posteriors, posterior modes
for the marginals are shown as the solid black lines, and the 68% credible regions
for the 2D posteriors are shown as the solid black curve.

Figure 3.10 shows the 115th simulated system in the population. In this case,
the simulated h and k values are both very close to zero. We can see that the
histograms of the marginal posteriors for the interior and exterior planet mass
constrain the true generated value to within the 68% credible intervals shown as the
dotted black lines. Figure 3.11 shows the 43th simulated system in the population.
In this particular case, the measurements of the TTV amplitudes were unavailable,
so we included injected TTV measurement uncertainties set to 2 into the data set
for this planet. In this case the posteriors for the projected eccentricity do not
encompass the truths, but the simulation does well for recovering the true planet
masses. Figure 3.12 shows the 40th simulated system in the population. In this
case we see a bimodal solution for k, for both the interior and exterior planet.
Solutions where k is closer to zero produce larger mass planets, and cases where k
deviates from zero produces smaller mass planets. In this case, the HB model is
able to recover the true generated values well. Furthermore, Figure 3.13 shows the
41st simulated system in the population. In this case, k deviates a small amount
from zero and you can see two modes start to appear. The masses and projected
eccentricities are still well constrained in this case. By evaluating the parameter
space for different generated values for these selected latent variables, we can see
that our model is performing well for simulated data.

Finally, we test an HB model where we use a mixture of two power-law distribu-
tions to parameterize the mass-radius-eccentricity distribution. In this case, there
are now two-components for each hyperparameter describing the power-law mass
radius relation. Figure 3.14 shows the marginal posteriors for these hyperparame-
ters when this two-component power-law model is applied to the same simulated
data model as used in Figure 3.8. We conclude that this model is performing
at a satisfactory level, since the truths for the mass-radius power-law population
parameters are within the 68% credible region, and the truths for the eccentricity
distribution population parameters are within the posteriors.
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3.4.2 The Mass-Radius-Eccentricity Distribution for Kepler Planet
Candidates

After evaluating the robustness of our mass-radius-eccentricity HB model on simu-
lated data, we now apply this model to the real Kepler data. We summarize our
findings in Figures 3.15 through 3.18 below.

In Figure 3.15 we show the posteriors for hyperparameters for real Kepler
data. Here we use a one-component Gaussian mixture model for the eccentricity
distribution in our joint mass-radius-eccentricity HB model. The posterior modes
and credible intervals for the hyperparameters are reported in Table 3.2. In Figure
3.16 we show again the hyperparameters for real Kepler data. In this case, we
use a two-component Gaussian mixture model for the eccentricity distribution in
our joint mass-radius-eccentricity HB model. The posterior modes and credible
intervals for the hyperparameters in this HB model are reported in Table 3.2. The
two-component power-law mass-radius HB model applied to simulated data in
Figure 3.14 did not perform well when applied to the real data set.

We then investigate the mass-radius relationship by plotting planet mass vs.
planet radius using the means from the latent variable posteriors for planet mass
and planet radius in Figure 3.17. In this particular case, we investigate the real
Kepler data using a mass-radius-eccentricity HB model that parameterizes the
projected eccentricity as a two-component Gaussian mixture model. The 68%
credible intervals of the marginal posteriors for mass and radius are show as gray
bars. The mass-radius relation using the posterior means for the mass constant Mo

and the exponent γMR is shown as the solid black curve. The dotted black curve
represents the posterior mean for the scatter in planet mass for a given radius σMR.
We question the validity of the masses reported here, as they are unreasonably
small for our sample of planets. Furthermore, Figure 3.18 shows 10 draws of the
eccentricity PDF from the joint posterior, from a mass-radius-eccentricity HB
model that uses a two-component Gaussian mixture model to parameterize the
eccentricity distribution. The top panel shows a linear scale and the bottom panel
shows a log scale in order to see the larger dispersion component more clearly.

Table 3.2: Posterior modes and 68% credible intervals of hyperparameters for mass-
radius-eccentricity HB model, using a one-component Gaussian mixture model for
eccentricity.

79



68% credible interval
Hyperparameter Mean Median Mode + −

M0 [M⊕] 0.016 0.01 2.96× 10−06 0.029 0.003
γMR 0.85 0.80 0.12 1.37 0.12

σMR [M⊕] 0.26 0.25 0.24 0.087 0.045
σhk 0.32 0.31 0.31 0.06 0.04
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Table 3.3: Posterior modes and 68% credible intervals of hyperparameters for
mass-radius-eccentricity HB model, using a two-component Gaussian mixture model
for eccentricity.

68% credible interval
Hyperparameter Mean Median Mode + −

M0 [M⊕] 0.043 0.029 1.79× 10−06 0.08 0.007
γMR 0.71 0.61 0.04 1.25 0.138

σMR [M⊕] 0.49 0.48 0.49 0.11 0.10
σlow hk 0.028 0.027 0.025 0.014 0.006
σhigh hk 0.74 0.76 0.93 0.001 0.370
flow hk 0.74 0.75 0.75 0.067 0.083
fhigh hk 0.26 0.25 0.25 0.056 0.094

3.5 Summary of Results
In theory, we are able to infer the distribution parameters for a mass-radius power-
law relation by marginalizing over eccentricity, while simultaneously computing
probabilistic estimates for the masses and eccentricities of these systems. This
would allow us to extract masses and eccentricities without doing computationally
expensive numerical simulations often not feasible for this subclass of observations.
Furthermore, we harness the statistical power of using small fractional uncertainties
by using planet-to-star radius ratios, stellar masses and stellar radii measurements,
in addition to well-measured TTV amplitudes, as our observables. For simulated
data, our model is robust and performs well in all our test cases. When applying
the model to the real Kepler data, we find that the model returns unreasonably
small mass estimates, and thus a poor estimate of the mass radius relationship.

3.6 Discussion
We are currently investigating the application of the HB model developed in this
study to real Kepler data. Next, we will try parameterizing the uncertainty in TTV
amplitudes as a Student-t distribution instead of a Normal distribution. This may
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help the model be more robust to outliers. It is possible that in cases where the
systems are far from resonance, the ∆ term will be larger, and in the analytical
relations shown in §3.2.4, there may be more weight given to the eccentricity terms
for a given TTV amplitude, which would push the masses estimates closer to
zero. This effect should have been present in the simulated data scenarios but it is
possible that the large fraction of non-detections and small TTV amplitudes in the
real data set changes the impact of this feature.

The plethora of short-period tightly-packed inner planetary systems (STIPS)
has provided a unique opportunity to constrain the masses of the sub-Neptune
class planets, where mass constraints for these planets are out of reach for current
RV surveys. This has allowed scientists to begin to probe the bulk properties
of these sub-Neptunes, and to empirically constrain mass-radius relationships for
small planets. N-body simulations have been used to obtain probabilistic parameter
estimates of planet masses for tightly packed, information rich, multi’s and are
useful in cases where non-sinusoidal TTV behavior exists (e.g., Carter et al.,
2012; Nesvorný & Morbidelli, 2008). However, these simulations are costly, and
unnecessary for many of the Kepler planet candidates pairs near first-order MMR,
where the analytical approximations relate the amplitude of the sinusoidal fit to the
TTV curve to the mass and eccentricity of the planet pairs (Lithwick et al., 2012).
Previous studies have assumed that when the phase of the longitude of conjunction
is zero, the free eccentricity is zero, and used this to estimate the mass of the planet
(Lithwick et al., 2012). This assumption is no longer needed in our probabilistic
assessment of the masses and eccentricities of planet near first order MMR.

One important feature of our study is that we include cases where TTV signals
are very small or not observed by predicting they may be there by the planets
orbital periods which are well-known. We can predict the sinusoidal fit to these
TTV curves by using the expression for the TTV period (super period), within
the regime of these analytical approximations. In these cases, the TTV amplitude
might be consistent with a zero mass planet. By including these non-detections,
we can approach a more random sample, and minimize sampling bias.

By applying a HB model to this problem, we not only work to constrain the
behavior of these planets as a population, but we are also able to get parameter esti-
mates for the mass and eccentricity of each unique planet pair in in our population
study irrespective of knowing the TTV phase or if there is a free eccentricity for a
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planet that is inconsistent with zero. A caveat to this interpretation is that the
results are only as accurate as the model specification. By evaluating the robustness
of our model, we have improved the confidence in our interpretations in spite of
the fact that the results are conditional on the model.

Parameter estimates in the HB framework experience “shrinkage” when com-
pared to parameter estimates calculated for each system independently, improving
the accuracy of these measurements. We develop the HB model in this study
as a tool to extract population information, and as mentioned above, the model
specification is specific to the quantity and quality of the data set. In cases where
models are not constrained by the data, (e.g., we get back our priors for population
level parameters), those models are considered poor parameterizations. This can
impact the marginal posteriors for the latent variables, or parameter estimates that
make up the population, further emphasizing the importance of developing robust
models in the HB framework. As we approach a more robust parameterization
of the data in the HB framework, our results are approaching more accuracy as
dictated by the data set. Furthermore, in cases where the quality and quantity of
the data set is improved, a more complex model may be able to be constrained,
probabilistic parameter estimates improved upon, and more information extracted
from the data in general (e.g., joint distributions for multiple populations such as
mass-radius-eccentricity and orbital period).

Resonant repulsion has been a suggested mechanism to cause planets to move
outside of MMR, where a dissipative force transfers orbital energy into heat while
angular momentum is conserved Lithwick & Wu (2012), acting to re-excite small
eccentricities in circularized planet pairs near first order mean motion resonance.
Tides have been ruled out as a dissipative mechanism for sub-Neptune mass planets,
as the tidal circularization timescale is on the order of, or greater than, the age of
the system, or it requires initial eccentricities of the planets to be larger than is
physically plausible (Silburt & Rein, 2015). Planet-planetesimal disk interactions
are a plausible explanation for this dissipative force (Chatterjee & Ford, 2015).
Assuming that the planets migrate into first-order MMR via smooth disk migration
initially, and after the gaseous disk has cleared, many micro scattering evens with
the remaining planetesimal disk can dissipate orbital energy in such a way where
these planet pairs move just wide of first-order MMR (Chatterjee & Ford, 2015).
During this phase of resonant repulsion, material is still potentially accreting, and
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dissipation of orbital energy could potentially cause flash heating events that may
impact the composition and structure of these planets. Furthermore, these planets
may experience more than one resonance acting on them, which may change the
resonant repulsion timescale, or the magnitude of heating.

3.6.1 Biases in this Study

Intrinsic to the Kepler mission design are selection effects creating biases that
can skew the interpretation of our population studies if extended to planets “in
general”. Kepler detects planets that transit from the vantage point from Earth,
which is more likely for planets that are on short-period orbits. In this study we
limit our interpretation of the mass-radius-eccentricity distribution to sub-Neptune
like planets that are near a first-order MMR. These planets may be a unique class
of planets in terms of composition and structure.

Completeness is another issue impacting our sample. Planets in our sample come
from less tightly packed low information content near resonant pairs in comparison
to systems such as Kepler-36 (Carter et al., 2012). Tightly packed systems may
not have TTV curves well approximated by sinusoids and are poor candidates
for applying the Lithwick et al. (2012) analytical relations. There could be more
planet-pairs near first-order MMR where one planet transit and the other does not.

Another concern affecting studies of the mass-radius relation is the large uncer-
tainty in stellar properties that affects both the transit data and radial velocity
data used in these studies (e.g., Weiss & Marcy, 2014; Wolfgang et al., 2015). The
HB model is designed for large uncertainties, however, in these studies we have so
far treated the uncertainties as random or recreated the posteriors for parameter
estimates using summary statistics and parameterizing these as Gaussian. Doing
this is a good first step in constructing comprehensive HB models, but in order
to account for biases or noise unique to each independent measurement in these
population studies, we need to use the full posteriors for parameter estimates for
our population constituents.

An interesting question would be if the dynamical mechanisms responsible for
creating tightly-packed systems and multi’s with larger spacing, are independent
of planet composition or structure. Perhaps there is an interplay between the
composition and structure with dynamical evolution (e.g., tightly packed systems
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experience more mass loss since they have smaller Hill spheres). Future population
exploration will aim to determine the relationship between stochastic processes that
produce the architectures we are seeing for these sub-Neptune multi’s from Kepler.
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Figure 3.7: Posterior distributions for hyperparameters of our mass-radius-
eccentricity HB model using 120 simulated Kepler planet candidate pairs. In
this simulated data case, we assign a Uniform prior distribution to the disper-
sion for the projected eccentricity distribution, and test the ability of the data to
constrain a model on increased complexity. Shown in red are the true values for
the mass constant Mo = 1.0M⊕, the power-law index γMR = 0.9 and the scatter
in mass for a given radii σMR = 1.0M⊕, and the dispersion for the projected
eccentricity σhk = 0.21. All true values fall with the posterior distribution for the
marginals shown above. The 68% credible interval is shown as black dashed lines
on the marginal posteriors for these hyperparameters. Posterior modes are shown
as black solid lines, and the 68% credible interval on the 2-D posteriors are show as
black solid curves.
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Figure 3.8: Hyperparameters for simulated Kepler data. Here, the hyperparameters
for this HB model are Mo = 1.0M⊕, γMR = 0.9, σMR = 1.0M⊕, and the two-
component Gaussian mixture model hyperparameters are now σlow = 0.03, σhigh =
0.65, flow = 0.75, and fhigh = 0.25. The 68% credible interval is shown as black
dashed lines on the marginal posteriors for these hyperparameters. Posterior modes
are shown as black solid lines, and the 68% credible interval on the 2-D posteriors
are show as black solid curves.
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Figure 3.9: Posterior modes and credible intervals for planet radius vs. planet mass
from simulated mass-radius-eccentricity HB model. The gray bars represent the
68% credible interval of the marginal posteriors for planet mass and radii. The red
points represent the posterior modes for the interior planets and the blue points
represent the posterior modes for the exterior planets. The black points represent
the true planet masses and planet radii generated for this particular model. The
thick solid black curve is the true mass-radius relation that the simulated data are
drawn from: Mo = 1.0M⊕, γMR = 0.9, for Mp = MoR

γMR
p . The region of scatter

in mass for a given radii, σMR = 1.0M⊕, is shown as the region between the thick
dotted black lines.
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Figure 3.10: Planet mass vs. projected eccentricity (h and k) of interior and exterior
planet pairs, using a mass-radius-eccentricity HB model with a two-component
Gaussian mixture model for h and k. Here we show the 115th simulated system in
the population. In this case, the simulated h and k values are both very close to
zero. We can see that the histograms of the marginal posteriors for the interior and
exterior planet mass constrain the true generated value to within the 68% credible
intervals shown as the dotted black lines. Posterior modes for the marginals are
shown as the solid black lines. The 68% credible region for the 2D posteriors is
shown as the solid black curve.
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Figure 3.11: Planet mass vs. projected eccentricity (h and k) of interior and exterior
planet pairs, using a mass-radius-eccentricity HB model with a two-component
Gaussian mixture model for h and k. Here we show the 43th simulated system in
the population. The 68% credible intervals are shown as the dotted black lines
on the histograms of the marginal posteriors. Posterior modes for the marginals
are shown as the solid black lines. The 68% credible regions for the 2D posteriors
are shown as the solid black curve. In this particular case, the measurements of
the TTV amplitudes were unavailable, so we included injected TTV measurement
uncertainties set to 2 into the data set for this planet. In this case the posteriors
for the projected eccentricity do not encompass the truths, but the simulation does
will for recovering the true planet masses.
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Figure 3.12: Planet mass vs. projected eccentricity (h and k) of interior and exterior
planet pairs, using a mass-radius-eccentricity HB model with a two-component
Gaussian mixture model for h and k. Here we show the 40th simulated system in
the population. The 68% credible intervals are shown as the dotted black lines on
the marginal posteriors. Posterior modes for the marginals are shown as the solid
black lines. The 68% credible regions for the 2D posteriors are shown as the solid
black curve. In this case we see a bimodal solution for k, for both the interior and
exterior planet. Solutions where k is closer to zero produce larger mass planets,
and cases where k deviates from zero produces smaller mass planets. In this case,
the HB model is able to recover the true generated values well.
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Figure 3.13: Planet mass vs. projected eccentricity (h and k) of interior and exterior
planet pairs, using a mass-radius-eccentricity HB model with a two-component
Gaussian mixture model for h and k. Here we show the 41st simulated system in
the population. The 68% credible intervals are shown as the dotted black lines on
the marginal posteriors. Posterior modes for the marginals are shown as the solid
black lines. The 68% credible regions for the 2D posteriors are shown as the solid
black curve. In this case, k deviates a small amount from zero and you can see two
modes start to break out. The masses and projected eccentricities are still well
constrained in this case.
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Figure 3.14: Hyperparameters for simulated Kepler data. Here, the hyperparameters
for this HB model are M1 = M2 = 1.0M⊕, γMR1 = γMR2 = 0.9, σMR1 = σMR2 =
1.0M⊕, and the two-component Gaussian mixture model hyperparameters are now
σlow = 0.03, σhigh = 0.65, flow = 0.75, and fhigh = 0.25. The 68% credible interval
is shown as black dashed lines on the marginal posteriors for these hyperparameters.
Posterior modes are shown as black solid lines, and the 68% credible interval on
the 2-D posteriors are show as black solid curves.
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Figure 3.15: Hyperparameters for real Kepler data. Here we use a one-component
Gaussian mixture model for the eccentricity distribution in our joint mass-radius-
eccentricity HB model. The 68% credible interval is shown as black dashed lines on
the marginal posteriors for these hyperparameters. Posterior modes are shown as
black solid lines, and the 68% credible interval on the 2-D posteriors are show as black
solid curves. The posterior modes and credible intervals for the hyperparameters
are reported in Table 3.2.
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Figure 3.16: Hyperparameters for real Kepler data. Here we use a two-component
Gaussian mixture model for the eccentricity distribution in our joint mass-radius-
eccentricity HB model. The 68% credible interval is shown as black dashed lines on
the marginal posteriors for these hyperparameters. Posterior modes are shown as
black solid lines, and the 68% credible interval on the 2-D posteriors are show as black
solid curves. The posterior modes and credible intervals for the hyperparameters
are reported in Table 3.2.
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Figure 3.17: Planet mass vs. planet radius. Shown are the means from the
latent variable posteriors for planet mass and planet radius when using a mass-
radius-eccentricity HB model that parameterizes the projected eccentricity as a
two-component Gaussian mixture model. The 68% credible intervals of the marginal
posteriors for mass and radius are show as gray bars. The mass-radius relation
using the posterior means for the mass constant Mo and the exponent γMR is shown
as the solid back curve. The dotted black curve represents the posterior mean for
the scatter in planet mass for a given radius σMR.

96



Figure 3.18: 10 draws of the eccentricity PDF from the joint posterior, from a
mass-radius-eccentricity HB model that uses a two-component Gaussian mixture
model to parameterize the eccentricity distribution. The top panel shows a linear
scale and the bottom panel shows a log scale in order to see the larger dispersion
component more clearly.
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Table 3.4: Transit Timing Variation (TTV) amplitudes for 120 near-first-order mean motion resonance transiting
exoplanet pairs.

KOI VobsRe int (days) σVobs Re int
VobsRe ext (days) σVobs Re ext

Vobs Im int (days) σVobs Im int
Vobs Imext (days) σVobs Im ext

153.0 -0.00066 0.00042 0.0004 0.0004 -0.00102 0.00042 -0.00063 0.00042
171.0 -0.00147 0.00054 -3e-05 0.0006 -0.00094 0.0017 -0.00151 0.00183
222.0 0.00147 0.00042 0.00048 0.00042 -0.00139 0.00129 -0.00344 0.00113
238.0 -0.00117 0.00126 -0.00156 0.00115 -0.00605 0.00525 -0.00278 0.00499
239.0 0.00033 0.00038 -0.00013 0.00044 nan 2.0 nan 2.0
244.0 0.002 0.00022 0.00178 0.0002 0.00097 0.00011 0.00064 8e-05
251.0 0.00013 0.00024 0.00023 0.00026 0.0 0.00224 0.00385 0.0023
255.0 0.00087 0.00607 0.0042 0.00494 0.00144 0.00088 -0.00111 0.00072
266.0 0.00314 0.00135 0.00205 0.00142 nan 2.0 nan 2.0
274.0 0.03533 0.00433 -0.0242 0.00356 0.03103 0.00525 -0.02084 0.00542
283.0 -0.00032 0.00036 0.00027 0.00037 -0.0005 0.00418 0.00071 0.00355
295.0 -0.00099 0.00062 -1e-05 0.00058 -0.00108 0.00191 0.00117 0.00186
301.0 0.00096 0.00096 -0.00096 0.00096 0.00159 0.00309 0.00334 0.00338
304.0 -0.00177 0.00517 0.00294 0.00545 -8e-05 0.00035 0.00042 0.00035
312.0 0.00185 0.00122 -0.0006 0.00115 0.00108 0.00108 -0.00239 0.0011
321.0 -0.0007 0.00057 -0.00035 0.00052 -0.0022 0.00208 -0.00516 0.00176
332.0 0.00309 0.00091 -0.00085 0.00102 0.00219 0.00596 -0.00915 0.00572
341.0 0.0007 0.00183 -0.00027 0.00158 -0.00086 0.00095 -0.00122 0.00075
354.0 -0.00444 0.00268 -0.00487 0.00226 -0.00032 0.00093 -1e-05 0.0008
370.0 0.00074 0.0025 -0.00678 0.00288 0.00213 0.00119 -0.0034 0.00147
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413.0 -0.00158 0.00083 0.00048 0.00072 0.00155 0.00194 0.00256 0.00193
430.0 -0.00246 0.00398 0.0053 0.00373 0.0004 0.0007 0.001 0.00062
457.0 0.00052 0.00046 -0.00066 0.00047 0.00052 0.00058 -0.0015 0.00073
508.0 -0.00147 0.00073 0.00078 0.00072 -0.00288 0.00115 0.00181 0.00127
523.0 -0.01056 0.01107 0.01718 0.00448 -0.00647 0.00415 0.00897 0.0014
543.0 0.00111 0.00133 0.0032 0.00141 -0.00139 0.00068 -0.00057 0.0006
546.0 -0.00188 0.00203 0.00032 0.00195 0.0003 0.00155 -0.00098 0.00132
551.0 7e-05 0.00115 -0.00279 0.00143 -0.00043 0.00147 -0.00151 0.00186
568.0 -0.00486 0.00165 0.00081 0.00185 0.00019 0.0008 -2e-05 0.00085
572.0 -0.00289 0.00329 -0.0001 0.00314 0.00078 0.00167 -0.00249 0.00135
574.0 0.00291 0.00254 -0.00053 0.00236 0.0016 0.00099 -0.00273 0.00108
579.0 0.00116 0.00067 -0.00076 0.00067 0.00038 0.00072 -0.00064 0.0007
605.0 -0.00014 0.00039 -0.00016 0.00038 0.00126 0.00317 0.0008 0.00336
626.0 -0.00158 0.00432 -0.00224 0.00456 -0.00118 0.0013 -0.00136 0.00143
627.0 0.00202 0.00157 0.0021 0.00162 0.0017 0.00072 0.00038 0.00074
647.0 -0.00098 0.00123 -0.00029 0.00118 0.01087 0.0082 -0.001 0.0066
678.0 -0.00032 0.00076 0.00071 0.0007 -0.00045 0.00092 0.00111 0.00103
679.0 0.00194 0.0067 0.00796 0.00684 0.00233 0.00196 0.002 0.00196
691.0 0.0039 0.00448 0.00496 0.00462 0.0002 0.00127 0.00036 0.00113
837.0 -0.00103 0.00185 0.00097 0.0018 0.00227 0.00129 -0.00038 0.00118
870.0 -0.00052 0.00064 0.00553 0.00066 -0.00449 0.00105 0.00862 0.00087
912.0 -0.0024 0.00142 0.00206 0.00144 -0.00096 0.00058 -0.00049 0.00053
992.0 nan 2.0 nan 2.0 0.00254 0.0033 0.006 0.00286
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1106.0 -0.00252 0.00157 0.0004 0.00174 -0.00763 0.0053 0.00495 0.00524
1165.0 -0.00369 0.0035 -0.00763 0.00392 0.00084 0.00064 0.00136 0.00067
1175.0 0.00439 0.00709 -0.00963 0.00701 0.00084 0.00562 0.00265 0.00588
1215.0 0.00716 0.00205 -0.00923 0.00212 0.00651 0.00424 -0.00931 0.00295
1241.0 0.08674 0.00908 0.03683 0.008 0.03337 0.0037 -0.0014 0.00382
1270.0 -0.00347 0.00051 -0.00073 0.00057 -0.02526 0.00155 -0.00278 0.00165
1279.0 0.00158 0.0038 -0.00037 0.00339 0.00163 0.00139 -0.00044 0.00123
1316.0 0.00056 0.0036 0.00066 0.00355 nan 2.0 nan 2.0
1363.0 0.00061 0.00157 -0.00132 0.00144 -5e-05 0.0023 -0.00166 0.00243
1404.0 0.00125 0.00233 0.00408 0.00262 -0.0058 0.00473 -0.00707 0.00491
1529.0 -0.01723 0.00568 0.005 0.00495 -0.04657 0.00387 0.00718 0.00316
1593.0 -0.00026 0.00241 -0.0031 0.00239 0.00958 0.00398 -0.00422 0.00347
1760.0 0.00136 0.00203 0.00029 0.0021 -0.00477 0.00378 7e-05 0.00387
1783.0 0.02314 0.00788 0.00366 0.00172 nan 2.0 nan 2.0
1824.0 1e-05 0.00064 -0.00046 0.0006 -0.00083 0.00079 -0.00178 0.00074
1843.0 -0.00018 0.00064 0.00138 0.00067 -0.00263 0.00257 0.00378 0.00282
1873.0 -0.00519 0.01627 -0.03515 0.00899 0.01545 0.01369 -0.01025 0.00905
1889.0 -0.00044 0.00413 -0.00247 0.00439 -0.00377 0.00195 -0.00617 0.00219
1891.0 -0.00164 0.00263 -0.00161 0.00265 -0.00232 0.00185 0.00193 0.00174
1899.0 -0.00061 0.00685 0.00261 0.00724 0.00207 0.00197 -0.0036 0.00181
1908.0 -0.001 0.00176 -0.00014 0.00162 -0.01133 0.00315 -0.00267 0.0029
1932.0 -0.00133 0.00752 -0.00056 0.00754 -0.00404 0.00554 -0.01507 0.00583
1940.0 nan 2.0 nan 2.0 0.00145 0.00084 -0.00176 0.00089
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1977.0 -0.00531 0.00246 -0.00309 0.00225 -0.00454 0.00085 -0.00157 0.001
1992.0 -0.00032 0.00272 0.00075 0.00252 0.02145 0.00743 0.00612 0.00596
1996.0 nan 2.0 nan 2.0 0.0016 0.00165 -0.00084 0.0015
2022.0 -0.0003 0.00107 -0.00075 0.00122 0.00132 0.00161 -4e-05 0.00169
2034.0 -0.00085 0.00268 -0.00307 0.00278 0.00086 0.00069 0.00083 0.00069
2036.0 0.00453 0.00309 0.00296 0.00304 -0.0002 0.00174 0.00115 0.00161
2111.0 0.00188 0.00158 -0.00145 0.00162 0.00249 0.00116 1e-05 0.00131
2113.0 -0.00152 0.00168 0.00106 0.00166 0.00289 0.00183 -0.00062 0.00158
2158.0 -4e-05 0.00215 -0.00198 0.00204 -1e-05 0.00445 -0.00166 0.00449
2162.0 0.00147 0.00407 0.00817 0.00466 -0.02154 0.01172 -0.00347 0.00897
2173.0 0.00111 0.00202 -0.00445 0.00253 -0.00441 0.00323 -0.00039 0.00345
2209.0 0.00375 0.00459 0.00044 0.00411 nan 2.0 nan 2.0
2236.0 0.00146 0.00376 -0.00132 0.00346 -0.00627 0.0038 0.00156 0.00421
2243.0 0.00226 0.00222 -0.00222 0.0023 -0.00537 0.00287 0.00415 0.00301
2257.0 -0.00136 0.00343 0.00988 0.00346 -0.00132 0.00612 0.00423 0.00593
2279.0 0.00509 0.00371 -0.00123 0.00426 -0.00244 0.0035 -0.00238 0.00286
2303.0 -0.00083 0.00216 -1e-05 0.00246 0.00493 0.00283 -0.00194 0.00269
2333.0 -0.00343 0.00244 0.00088 0.00248 -0.00455 0.00254 0.00331 0.00247
2414.0 0.6685 0.51724 -0.12853 0.05484 -0.05907 0.39819 -0.09264 0.05923
2420.0 -0.00444 0.00455 -0.00985 0.00478 0.00016 0.00316 -0.00301 0.00314
2422.0 0.00507 0.00378 -0.0066 0.00325 0.00259 0.00613 0.00318 0.00647
2442.0 -0.00061 0.00415 0.00562 0.00481 -0.0016 0.00358 -0.00024 0.00425
2458.0 0.00126 0.00158 -0.0024 0.00159 0.00403 0.00229 -0.00085 0.00226
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2498.0 -0.0002 0.00312 0.00033 0.00246 0.00519 0.00456 -0.00518 0.00448
2595.0 0.00052 0.00284 -0.0053 0.00369 -0.00053 0.00456 0.00069 0.00517
2612.0 0.00471 0.00383 -0.00599 0.00352 -0.00099 0.00377 -0.00146 0.00422
2672.0 0.00855 0.00178 0.01571 0.00187 0.01296 0.00748 0.01716 0.00314
2696.0 -0.00337 0.00371 -0.01496 0.00319 -0.0033 0.00286 -0.00024 0.00357
2704.0 0.00176 0.0012 4e-05 0.00114 -0.00068 0.00073 -0.00103 0.0007
2711.0 0.00298 0.00156 -0.00111 0.00136 0.00446 0.003 0.00244 0.00297
2739.0 -0.00084 0.00591 -0.0086 0.00663 -0.00291 0.00251 -0.0032 0.00233
2768.0 -0.00034 0.00532 -0.00108 0.00428 -0.00615 0.00703 -0.00298 0.00539
2840.0 -0.0044 0.00272 0.00104 0.00344 0.00973 0.00563 0.00534 0.0052
2977.0 -0.00162 0.00293 0.00544 0.00284 0.0038 0.00308 0.00141 0.00363
3022.0 0.00207 0.00252 -0.0012 0.00241 -0.00287 0.00381 -0.00028 0.0036
3052.0 0.00012 0.00422 0.00182 0.00389 -0.00354 0.00592 -0.0083 0.00427
3077.0 -0.00051 0.00243 -0.00368 0.00247 0.00213 0.00501 0.00951 0.00513
3196.0 0.00043 0.00317 0.00606 0.0033 -0.00013 0.00287 0.00251 0.00294
3214.0 -0.00351 0.00466 0.00078 0.00427 nan 2.0 nan 2.0
3340.0 -0.00711 0.0057 0.0029 0.00551 0.00074 0.00464 -0.00531 0.0049
3384.0 -0.0027 0.00241 0.00094 0.00271 0.00071 0.00304 -0.00531 0.00298
3503.0 -0.23747 1.08911 -0.39543 0.1281 nan 2.0 nan 2.0
4021.0 -0.0011 0.0032 -0.00234 0.00341 -0.00088 0.00231 0.00221 0.00215
4097.0 0.00094 0.00069 0.00081 0.00073 -0.00208 0.00231 0.00082 0.00228
4149.0 0.00782 0.00582 -0.00764 0.0053 -0.00224 0.0058 -0.00066 0.00638
4246.0 0.00365 0.00279 -0.00301 0.00277 nan 2.0 nan 2.0
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4287.0 nan 2.0 nan 2.0 -0.003 0.00308 0.00636 0.00298
4288.0 0.00568 0.00394 -0.00711 0.0036 -0.00496 0.00441 -0.00167 0.00488
4382.0 6e-05 0.00366 -0.0018 0.0034 -0.00084 0.00549 -0.00261 0.00563
4435.0 -0.00194 0.00846 -0.00729 0.0085 nan 2.0 nan 2.0
4504.0 0.00144 0.00314 0.00172 0.00305 -0.00397 0.00463 0.00414 0.00482
4541.0 -0.00908 0.00375 0.00409 0.0059 nan 2.0 nan 2.0
4657.0 0.00827 0.00439 0.00269 0.00451 nan 2.0 nan 2.0
4913.0 0.00153 0.00374 -0.00107 0.00352 nan 2.0 nan 2.0
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Table 3.5: Planet-to-star radius ratio and orbital period for 120 near-first-order mean motion resonance transiting
exoplanet pairs.

KOI Rp/R?obs int σ+Rp/R?obs int
σ−Rp/R?obs int

Pint(days) Rp/R?obs ext σ+Rp/R?obs ext
σ−Rp/R?obs ext

Pext(days)

153.0 0.0246 0.00052 -0.00039 4.75 0.03275 1e-05 -0.00389 8.93
171.0 0.02172 0.00148 -0.00046 5.97 0.01443 0.0005 -0.00023 13.07
222.0 0.03316 0.00068 -0.00033 6.31 0.02639 0.00079 -0.00047 12.79
238.0 0.02101 0.00049 -0.00033 17.23 0.01095 0.00056 -0.00054 26.69
239.0 0.0134 0.00068 -0.00271 3.62 0.03808 0.00028 -0.00191 5.64
244.0 0.01844 0.00011 -4e-05 6.24 0.03156 0.00027 -0.0001 12.72
251.0 0.04766 0.00028 -0.00163 4.16 0.01496 0.00094 -0.00051 5.77
255.0 0.01219 0.00093 -0.00112 13.6 0.04501 0.00069 -0.00044 27.52
266.0 0.01221 1e-05 -0.00077 25.31 0.00941 0.0002 -0.00057 47.74
274.0 0.00789 0.00029 -0.0002 15.09 0.00785 0.00142 -0.00041 22.8
283.0 0.01891 0.00031 -0.0001 16.09 0.00738 0.00023 -0.00032 25.52
295.0 0.01542 0.00032 -0.00016 5.32 0.00975 0.00032 -0.00035 10.11
301.0 0.01304 0.00023 -0.0002 6.0 0.00807 0.00028 -0.00024 11.45
304.0 0.00527 2e-05 -0.00076 5.52 0.022 0.0003 -0.00011 8.51
312.0 0.01516 6e-05 -0.00089 11.58 0.01389 0.00034 -0.00023 16.4
321.0 0.01246 0.00027 -0.00017 2.43 0.00717 0.00034 -0.00017 4.62
332.0 0.01583 0.00087 -0.00108 5.46 0.00589 0.00042 -0.00037 6.87
341.0 0.0212 0.00207 -0.00159 4.7 0.02902 0.00205 -0.00146 7.17
354.0 0.0101 0.00033 -0.0004 7.38 0.02126 0.00037 -0.00022 15.96
370.0 0.01088 0.00021 -0.00036 22.95 0.01898 0.00084 -0.00109 42.88
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413.0 0.03334 6e-05 -0.00214 15.23 0.02341 0.00087 -0.00048 24.67
430.0 0.01358 0.00098 -0.00054 9.34 0.04025 0.00331 -0.00188 12.38
457.0 0.02559 0.00024 -0.00066 4.92 0.02423 0.00102 -0.00027 7.06
508.0 0.02718 0.00253 -0.00102 7.93 0.02519 0.00076 -0.0003 16.67
523.0 0.0311 0.00043 -0.00436 36.85 0.06424 0.00039 -0.00101 49.41
543.0 0.01602 0.00054 -0.00055 3.14 0.02504 0.0006 -0.00038 4.3
546.0 0.0218 0.00164 -0.00183 9.83 0.02948 5e-05 -0.00145 20.68
551.0 0.02129 0.00069 -0.00045 5.69 0.02318 0.0008 -0.00042 11.64
568.0 0.00896 0.00062 -0.00024 2.36 0.0149 0.0006 -0.00028 3.38
572.0 0.0105 0.00035 -0.00041 4.94 0.02153 0.0 -0.00184 10.64
574.0 0.01616 0.00077 -0.00045 10.4 0.03406 0.00326 -0.00247 20.13
579.0 0.01663 0.0005 -0.00023 2.02 0.01705 0.00064 -0.00044 3.76
605.0 0.03107 0.00012 -0.00234 2.63 0.0115 0.00035 -0.00088 5.07
626.0 0.00777 0.00037 -0.00057 8.03 0.01848 0.00019 -0.00064 14.59
627.0 0.01012 0.00035 -0.00022 4.17 0.01852 0.00032 -0.0003 7.75
647.0 0.01354 0.00027 -0.00021 5.17 0.00625 0.00029 -0.00052 8.11
678.0 0.01463 0.00056 -0.00021 4.14 0.01484 0.00053 -0.00035 6.04
679.0 0.00702 0.00042 -0.00025 16.26 0.01652 0.00024 -0.00021 31.81
691.0 0.01001 0.00037 -0.00039 16.23 0.0235 0.00036 -0.00021 29.67
837.0 0.01841 0.00074 -0.00067 4.14 0.0275 0.00117 -0.00054 7.95
870.0 0.03077 4e-05 -0.00218 5.91 0.03111 6e-05 -0.00404 8.99
912.0 0.01857 0.0006 -0.00086 6.67 0.03694 0.00098 -0.00047 10.85
992.0 0.01112 0.00073 -0.00066 4.58 0.01922 0.00072 -0.0005 9.93
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1106.0 0.02132 0.00243 -0.00112 7.43 0.01345 0.00074 -0.00075 15.98
1165.0 0.00764 0.0001 -0.00075 4.29 0.02097 0.00046 -0.00028 7.05
1175.0 0.01042 0.00197 -0.0009 17.16 0.01147 0.00032 -0.0007 31.59
1215.0 0.016 4e-05 -0.00164 17.32 0.0151 0.00049 -0.00024 33.01
1241.0 0.01074 0.00033 -0.00024 10.5 0.02456 0.00025 -0.00205 21.41
1270.0 0.03365 0.00014 -0.00496 5.73 0.52845 0.47114 -0.20455 11.61
1279.0 0.01043 0.00136 -0.00096 9.65 0.01689 0.0005 -0.0002 14.37
1316.0 0.00806 0.00032 -0.00141 7.65 nan 0.001 0.001 12.38
1363.0 0.02014 0.00078 -0.00053 3.55 0.01793 0.00113 -0.00066 5.7
1404.0 0.02757 0.00076 -0.00085 13.32 0.01912 0.0009 -0.00139 18.91
1529.0 0.00926 0.00055 -0.00045 11.87 0.01468 0.00031 -0.00094 17.98
1593.0 0.0223 0.00094 -0.00085 9.69 0.02198 0.00103 -0.00082 15.38
1760.0 0.02068 0.00095 -0.0006 5.52 0.01812 0.00074 -0.0011 8.78
1783.0 0.07175 0.00123 -0.00094 134.48 0.04208 0.00045 -0.00396 284.04
1824.0 0.0113 0.00023 -0.00014 1.68 0.01285 0.00026 -0.00022 3.55
1843.0 0.02939 0.00024 -0.00521 4.19 0.01285 0.0006 -0.00144 6.36
1873.0 0.02866 6e-05 -0.00654 34.92 0.04457 0.00107 -0.00063 71.31
1889.0 0.01668 0.0009 -0.00058 9.18 0.03346 0.0004 -0.00452 14.31
1891.0 0.01612 0.00099 -0.00041 8.26 0.02725 0.00375 -0.00104 15.96
1899.0 0.00739 0.00066 -0.00059 10.52 0.01914 0.00248 -0.00081 19.76
1908.0 0.02297 0.00028 -0.0023 12.55 0.01879 0.00493 -0.00136 24.09
1932.0 0.01329 0.00027 -0.00125 14.84 0.01641 0.00077 -0.00064 22.82
1940.0 nan 0.001 0.001 6.74 0.0316 0.0001 -0.00347 10.99
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1977.0 0.01142 0.00045 -0.0007 7.42 0.01772 0.00109 -0.00029 9.39
1992.0 0.01825 1e-05 -0.00151 12.8 0.01507 0.00031 -0.0011 27.32
1996.0 0.01487 0.00098 -0.00082 7.07 0.02823 0.0008 -0.00071 10.13
2022.0 0.01897 0.00054 -0.00042 5.93 0.01978 0.00074 -0.00034 12.25
2034.0 0.01645 0.00075 -0.00101 2.37 0.03663 0.0006 -0.001 3.61
2036.0 0.01886 0.00538 -0.00237 5.8 0.03088 0.00019 -0.00499 8.41
2111.0 0.0144 0.0005 -0.00036 3.29 0.01877 0.00101 -0.00032 7.19
2113.0 0.02825 0.00108 -0.00059 12.33 0.03067 0.00124 -0.00046 15.94
2158.0 0.00837 0.00031 -0.00031 4.56 0.00636 0.00053 -0.00022 6.68
2162.0 0.01719 0.0007 -0.00038 108.59 0.01672 0.00012 -0.00124 199.67
2173.0 0.01471 0.00056 -0.00043 37.82 0.01736 0.00242 -0.00254 53.58
2209.0 0.01398 0.00201 -0.00114 18.3 0.00974 0.0004 -0.00096 35.5
2236.0 0.01709 0.0007 -0.00106 12.13 0.03189 0.00038 -0.0072 19.99
2243.0 0.01496 0.00051 -0.0005 5.19 0.01493 0.00074 -0.00044 8.46
2257.0 0.02433 0.005 -0.00183 32.56 0.01962 0.00108 -0.00111 59.28
2279.0 0.01164 0.00039 -0.00075 12.51 0.01581 0.00052 -0.00042 27.02
2303.0 0.01088 0.00041 -0.00037 4.89 0.01091 0.00035 -0.00077 8.93
2333.0 0.00897 0.00044 -0.00024 3.93 0.0104 0.00043 -0.00042 7.63
2414.0 0.01124 0.0005 -0.00028 22.6 0.01212 0.0006 -0.00042 45.35
2420.0 0.00871 0.00058 -0.00061 5.47 0.01284 0.00066 -0.00038 10.42
2422.0 0.01967 0.00044 -0.00111 26.78 0.01817 0.00128 -0.00103 57.39
2442.0 0.01553 0.00094 -0.00085 12.31 0.02186 0.00079 -0.00085 25.19
2458.0 0.01649 0.00092 -0.00036 2.94 0.01571 0.00069 -0.0006 4.35

107



2498.0 0.00928 0.00052 -0.0004 6.74 0.0096 0.00034 -0.00083 13.06
2595.0 0.00864 0.00023 -0.00036 9.18 0.008 0.00042 -0.00022 14.61
2612.0 0.00549 0.00143 -0.00063 4.61 0.00539 0.00187 -0.00051 7.57
2672.0 0.03017 0.00058 -0.00028 42.99 0.05242 0.00061 -0.00059 88.52
2696.0 0.01864 0.0 -0.00141 44.56 0.03058 0.00182 -0.00211 96.46
2704.0 0.06849 0.01824 -0.0041 2.98 0.10114 0.00213 -0.00294 4.87
2711.0 0.01347 0.00034 -0.00033 9.02 0.01199 0.00045 -0.00038 17.34
2739.0 0.00961 0.00046 -0.00081 7.1 0.01644 0.00052 -0.00051 10.11
2768.0 0.01261 0.00099 -0.00087 11.83 0.0174 0.00543 -0.00411 14.75
2840.0 0.00852 0.0005 -0.00022 3.68 0.00803 0.00036 -0.00054 7.45
2977.0 0.00719 0.00012 -0.00046 2.79 0.00787 0.00159 -0.00064 4.14
3022.0 0.0128 0.00084 -0.00055 2.76 0.01251 0.00073 -0.00083 5.05
3052.0 0.00895 0.00039 -0.00052 10.13 0.00883 0.00054 -0.00047 15.61
3077.0 0.02173 0.00749 -0.00151 4.1 0.01933 0.00119 -0.00142 7.56
3196.0 0.00424 0.00024 -0.00021 4.96 0.00535 0.00024 -0.00036 6.88
3214.0 0.00759 0.0 -0.00118 11.49 0.00592 0.0003 -0.00029 25.09
3340.0 0.0083 0.00034 -0.00056 8.95 0.00966 0.00037 -0.00054 13.73
3384.0 0.00965 0.00046 -0.00075 10.55 0.01196 0.00176 -0.00089 19.92
3503.0 0.00833 0.00054 -0.00094 21.19 0.00865 0.002 -0.00055 31.82
4021.0 0.00769 0.00028 -0.00045 4.93 0.00966 0.00034 -0.0004 7.24
4097.0 0.0136 0.00125 -0.00042 2.79 0.0088 0.00044 -0.00063 4.45
4149.0 0.01168 0.00215 -0.0007 9.55 0.01182 0.00049 -0.00059 14.71
4246.0 0.00852 0.00055 -0.00056 6.98 0.01174 0.00011 -0.00341 8.76
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4287.0 0.00458 0.00027 -0.00027 9.62 0.0059 0.00026 -0.00038 13.12
4288.0 0.00567 0.00027 -0.00022 6.28 0.00561 0.00038 -0.00022 9.09
4382.0 0.0071 0.00036 -0.00038 2.95 0.00619 0.00049 -0.00035 3.98
4435.0 0.00763 0.00034 -0.00039 10.86 0.00735 0.00028 -0.00064 17.87
4504.0 0.01664 0.00139 -0.00036 4.13 0.01706 0.00097 -0.00097 8.12
4541.0 0.0179 0.00063 -0.0013 8.53 0.01659 0.00106 -0.00126 17.24
4657.0 0.00656 0.00028 -0.00049 7.58 0.00705 0.00042 -0.00067 10.43
4913.0 0.0085 0.00067 -0.0005 6.79 0.00969 0.00064 -0.00078 8.97
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Table 3.6: Host star mass and radius for 120 near-first-order mean motion resonance
transiting exoplanet pairs.

KOI R? obs(R�) σ+R? obs
) σ−R? obs

M? obs(M�) σ+M? obs
σ−M? obs

153.0 0.709 0.028 -0.034 0.696 0.04 -0.028
171.0 1.173 0.768 -0.136 1.195 0.281 -0.176
222.0 0.57 0.09 -0.09 0.59 0.09 -0.09
238.0 1.092 0.184 -0.099 1.012 0.063 -0.058
239.0 0.989 0.399 -0.095 1.056 0.183 -0.134
244.0 1.309 0.023 -0.023 1.187 0.06 -0.06
251.0 0.52 0.06 -0.06 0.54 0.06 -0.06
255.0 0.51 0.06 -0.06 0.53 0.06 -0.06
266.0 1.768 0.783 -0.607 1.269 0.269 -0.262
274.0 1.659 0.038 -0.038 1.184 0.074 -0.074
283.0 0.958 0.163 -0.043 1.071 0.049 -0.083
295.0 1.533 0.796 -0.416 1.263 0.235 -0.247
301.0 1.209 0.891 -0.159 1.187 0.297 -0.17
304.0 1.825 0.72 -0.671 1.173 0.299 -0.201
312.0 1.188 0.233 -0.113 1.168 0.092 -0.109
321.0 0.973 0.174 -0.047 1.058 0.064 -0.072
332.0 1.259 0.285 -0.186 1.126 0.101 -0.107
341.0 0.946 0.171 -0.078 0.892 0.063 -0.042
354.0 0.965 0.147 -0.045 1.075 0.041 -0.081
370.0 1.85 0.05 -0.05 1.319 0.101 -0.101
413.0 0.818 0.32 -0.066 0.874 0.093 -0.082
430.0 0.48 0.06 -0.06 0.51 0.06 -0.06
457.0 0.739 0.12 -0.054 0.817 0.078 -0.089
508.0 0.99 0.143 -0.049 1.081 0.048 -0.08
523.0 1.066 0.557 -0.108 1.07 0.245 -0.119
543.0 0.761 0.193 -0.055 0.84 0.089 -0.09
546.0 1.145 0.689 -0.132 1.195 0.253 -0.188
551.0 0.944 0.357 -0.081 1.037 0.131 -0.128
568.0 0.82 0.244 -0.058 0.92 0.066 -0.09
572.0 1.099 0.36 -0.199 0.896 0.138 -0.08
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574.0 0.755 0.163 -0.056 0.836 0.084 -0.093
579.0 0.785 0.194 -0.056 0.868 0.075 -0.086
605.0 0.56 0.09 -0.09 0.58 0.09 -0.09
626.0 1.014 0.16 -0.055 1.05 0.044 -0.063
627.0 1.072 0.25 -0.051 1.165 0.095 -0.094
647.0 1.089 0.464 -0.13 1.028 0.172 -0.114
678.0 1.56 1.028 -0.695 0.929 0.144 -0.088
679.0 1.141 0.282 -0.097 1.137 0.096 -0.092
691.0 1.053 0.185 -0.117 0.93 0.071 -0.065
837.0 0.766 0.087 -0.057 0.823 0.061 -0.077
870.0 0.57 0.09 -0.09 0.59 0.1 -0.1
912.0 0.59 0.09 -0.09 0.61 0.1 -0.1
992.0 0.917 0.353 -0.078 1.01 0.112 -0.126
1106.0 1.009 0.41 -0.096 1.07 0.197 -0.134
1165.0 1.114 0.378 -0.239 0.839 0.142 -0.054
1175.0 1.791 0.463 -0.455 1.062 0.177 -0.131
1215.0 1.692 0.42 -0.363 1.125 0.187 -0.112
1241.0 4.23 0.15 -0.15 1.32 0.13 -0.13
1270.0 0.791 0.179 -0.06 0.884 0.066 -0.098
1279.0 1.031 0.185 -0.101 0.95 0.066 -0.061
1316.0 2.024 0.319 -0.47 nan 0.5 0.5
1363.0 0.986 0.393 -0.089 1.093 0.189 -0.148
1404.0 0.45 0.09 -0.09 0.48 0.1 -0.1
1529.0 1.011 0.433 -0.095 1.066 0.199 -0.129
1593.0 0.914 0.379 -0.079 1.0 0.12 -0.125
1760.0 0.936 0.339 -0.082 0.978 0.079 -0.083
1783.0 0.957 0.338 -0.084 1.027 0.131 -0.118
1824.0 1.378 0.831 -0.304 1.123 0.306 -0.145
1843.0 0.45 0.08 -0.05 0.464 0.08 -0.05
1873.0 1.064 0.442 -0.106 1.149 0.216 -0.165
1889.0 0.852 0.366 -0.068 0.934 0.097 -0.098
1891.0 0.743 0.119 -0.055 0.825 0.072 -0.092
1899.0 1.175 0.617 -0.21 1.064 0.277 -0.158
1908.0 0.583 0.057 -0.053 0.589 0.058 -0.053

111



1932.0 3.177 0.704 -1.108 2.046 0.36 -0.397
1940.0 nan 1.4 1.4 0.573 0.06 -0.045
1977.0 0.63 0.051 -0.065 0.616 0.065 -0.052
1992.0 0.998 0.385 -0.094 1.074 0.183 -0.139
1996.0 0.561 0.041 -0.039 0.561 0.042 -0.025
2022.0 0.911 0.317 -0.074 1.001 0.1 -0.119
2034.0 0.868 0.373 -0.068 0.963 0.097 -0.1
2036.0 0.523 0.1 -0.05 0.541 0.1 -0.05
2111.0 1.028 0.427 -0.113 1.022 0.18 -0.123
2113.0 0.806 0.299 -0.06 0.897 0.08 -0.089
2158.0 1.46 0.788 -0.569 0.896 0.103 -0.081
2162.0 0.844 0.363 -0.059 0.935 0.099 -0.11
2173.0 0.718 0.042 -0.025 0.759 0.032 -0.042
2209.0 0.8 0.364 -0.068 0.822 0.11 -0.069
2236.0 0.848 0.289 -0.067 0.937 0.091 -0.106
2243.0 1.022 0.378 -0.093 1.09 0.194 -0.132
2257.0 0.834 0.263 -0.067 0.917 0.077 -0.096
2279.0 0.913 0.357 -0.087 0.933 0.107 -0.105
2303.0 1.319 0.999 -0.205 1.334 0.286 -0.253
2333.0 1.097 0.18 -0.113 0.987 0.066 -0.062
2414.0 0.91 0.189 -0.108 0.773 0.076 -0.029
2420.0 0.918 0.367 -0.077 1.007 0.116 -0.123
2422.0 0.985 0.355 -0.121 0.912 0.096 -0.062
2442.0 0.746 0.148 -0.062 0.77 0.116 -0.07
2458.0 0.909 0.452 -0.127 0.795 0.146 -0.06
2498.0 0.769 0.059 -0.036 0.793 0.048 -0.045
2595.0 1.604 0.883 -0.384 1.315 0.273 -0.253
2612.0 0.924 0.375 -0.119 0.824 0.129 -0.064
2672.0 1.06 0.389 -0.197 0.85 0.13 -0.061
2696.0 1.666 1.018 -0.355 1.411 0.303 -0.282
2704.0 0.189 0.125 -0.054 0.169 0.148 -0.049
2711.0 1.146 0.633 -0.15 1.07 0.252 -0.119
2739.0 0.96 0.416 -0.081 1.057 0.183 -0.13
2768.0 0.857 0.327 -0.064 0.952 0.081 -0.095

112



2840.0 0.848 0.386 -0.101 0.781 0.126 -0.053
2977.0 0.981 0.417 -0.092 1.015 0.162 -0.116
3022.0 0.901 0.38 -0.071 0.999 0.117 -0.116
3052.0 0.946 0.395 -0.132 0.821 0.135 -0.062
3077.0 0.742 0.068 -0.057 0.759 0.072 -0.063
3196.0 1.392 0.866 -0.293 1.21 0.293 -0.192
3214.0 3.132 1.202 -1.714 1.502 0.213 -0.479
3340.0 0.947 0.355 -0.104 0.925 0.114 -0.1
3384.0 1.09 0.198 -0.081 1.074 0.066 -0.066
3503.0 0.847 0.365 -0.057 0.918 0.093 -0.103
4021.0 1.937 0.975 -0.483 1.509 0.306 -0.312
4097.0 0.62 0.057 -0.057 0.643 0.053 -0.066
4149.0 1.259 0.907 -0.192 1.266 0.255 -0.221
4246.0 1.235 0.573 -0.229 1.046 0.236 -0.121
4287.0 1.517 0.807 -0.412 1.194 0.283 -0.202
4288.0 1.219 0.211 -0.161 1.07 0.079 -0.075
4382.0 1.173 0.56 -0.143 1.195 0.238 -0.182
4435.0 1.013 0.405 -0.092 1.069 0.189 -0.124
4504.0 0.803 0.337 -0.065 0.868 0.099 -0.085
4541.0 0.931 0.374 -0.091 0.958 0.123 -0.107
4657.0 0.773 0.245 -0.058 0.856 0.087 -0.094
4913.0 1.48 0.82 -0.344 1.277 0.269 -0.234
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Chapter 4 |
The Period-Eccentricity Distri-
bution for Eclipsing Binaries from
Kepler

4.1 Introduction
In the era of Kepler, there has been an increase in the quality and quantity of
photometric observations of eclipsing binary (EB) stars (Koch et al., 2010; Borucki
et al., 2011c,b; Batalha et al., 2013; Burke et al., 2014). More than 2400 eclipsing
binary stars now have measured light curves from Kepler (Prša et al., 2011; Slawson
et al., 2011). This has provided high quality constraints for stellar astrophysics since
EBs provide an opportunity to probe stellar astrophysics using minimum theoretical
assumptions (Torres et al., 2010). The large quantity of uniform, high duty-cycle
observations presents an opportunity to study EBs in a vigorous statistical manner
(Prša et al., 2012). From this, we hope to learn about the distribution of orbital
properties such as the eccentricity and period that inform our understanding of the
dynamical evolution of EBs.

Stellar evolution is likely coupled with planet formation and dynamical evolution.
For example, tidal circularization plays an important role in sculpting of eclipsing
binaries and planetary systems orbital properties (Wang & Ford, 2011; Plavchan
et al., 2014a; Shabram et al., 2015). The behavior of such systems share common
dynamical processes, but operate in different mass and composition regimes, offering
an opportunity for comparison. Thus, investigating properties of EBs statistically
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can shed light onto star and planet formation.
The observational uncertainties result in uncertainty in the parameter estimates

of EB eccentricities. As a first step in an encompassing characterization of the
population of EBs, we work with physical parameters that have been explored
in detail, where uncertainties are believed to be well-estimated. In addition to
characterizing the eccentricities of individual EBs, the distribution of orbital ec-
centricities is particularly important for constraining planet formation. We use
hierarchical Bayesian (HB) modeling to estimate population level parameters for
the eccentricity distributions of the Kepler EBs. This method has been applied to
and tested on similar domains, such as the Kepler short-period planet candidates
that both transit and occult, presented in Chapter 2. Investigating the EB sample is
a natural extension of these previous analyses. Previous analyses of the eccentricity
distribution of EBs using the Kepler EBs have been limited by the lack of the
incorporation of measurement uncertainties.

With a large sub-sample of 795 well characterized EBs, we can perform inference
using more complex models for the eccentricity distribution than previous EB studies
(e.g., Latham et al., 2002; Mayor et al., 2001), including potential dependences on
additional parameters such as orbital period. This was not practical for analogous
exoplanet studies since the sample size was much smaller (∼ 50, Shabram et al.
(2015)) . In particular, we investigate the eccentricity distribution of EBs, including
a joint distribution for the orbital eccentricity and period. The resulting posterior
distributions can shed light on tidal circularization with implications for both EB
and planet formation. The end state of EBs after billions of years of tidal evolution
provide a way to constrain the internal structure of stars and planets, as well as
the physics of tidal dissipation.

In §4.2, we describe the measurements used in this study. In §4.3, we describe
the HB model, and the priors selected for this study. In §4.4, we present the
results of our HB analysis for the eccentricity distribution and period-eccentricity
distribution for EBs. In §4.5, we discuss our conclusions.
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4.2 Observations
The observational data we use come from the 3rd Kepler EB catalog (Kirk et
al. in prep http://keplerebs.villanova.edu/) that analyzed light curves to identify
eclipsing binaries using the EBAI-code described in Prša et al. (2008, 2011, 2012). Dr.
Prša sent us outputs for tier 1 binaries, (i.e., the EBs that had small measurement
uncertainties for eccentricity). Specifically, we have obtained a selection of estimates
for h = e cosω and k = e sinω, as well as orbital period, for 795 EBs from this
catalog. Binaries with orbital periods of 5 to 10 days are included to explore
circularization.

The h and k measurement for our sample of EBs used in this study are shown
in Figure 4.1. The bottom left panel shows h vs. k, where the blue points represent
each EB measurements. Measurement uncertainties are shown as solid black lines,
but are very small and only visible in some cases. Histograms of the measurements
are show in the top left and bottom right panels. In Figure 4.2, we show histograms
of the orbital period measurements for the EB sample used in this study. The
orbital periods of the EBs in our sample range from 0.26 to 623 days.
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Figure 4.1: Projected eccentricity (h = e cosω and k = e sinω) for Kepler EBs.
The blue dots indicate the scatter in h and k for our sample of 795 EBs. The black
bars show the measurement uncertainties, and are only visible in some cases, as
the measurement uncertainties for this sample are small. The 68% credible region
of the data is shown as the black curve in the bottom left panel. Histograms of the
h and k measurements are shown in blue.

4.3 Method
We aim to characterize the eccentricity distribution and joint period-eccentricity
distribution of a sample of EBs from Kepler. First, we parameterize the eccentricity

117



Figure 4.2: Kepler EB orbital periods. The top panel shows the histogram of the
full range in period for our sample of EBs, ranging from 0.00325 to 623 days. The
frequency of orbital period values for the top panel is shown on a log scale for
clarity. The bottom panel zooms in on orbital period for clarity in the region of
interest, showing the frequency of orbital period between 0 and 20 days. The red
dotted line shows the posterior mode of the inferred period break point at which
the EBs below this threshold have a different eccentricity distribution than those
above this threshold. See §4.3 and 4.4 for details regarding this result. We use the
full sample of EBs in our analysis.

distribution as a mixture of two Gaussian distributions for h and k. If h and k were
each parameterized by a simple Gaussian, e =

√
h2 + k2 would take on a Rayleigh

distribution. Because e < 1 for bound orbits, we always truncate the eccentricity
distribution to 0 ≤ e < 1 and renormalize, so that the total probability integrates
to unity. Later, we set up a joint period-eccentricity distribution where we infer a
period transition between two, two-component Gaussian mixture model eccentricity
distributions. The methods used in this study are described in detail in Chapter 2,
specifically, §2.3. In §2.3 we validate the HB model used in this study. We show a
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graphical model of our period-eccentricity distribution HB model in Figure 4.4.

Figure 4.3: Graphical model of Bayesian network. Here we show the relationship
between the hyperparameters, latent variables and observables in the joint period-
eccentricity hierarchical Bayesian model. The observables are shown in gray. The
latent variables are shown in white within the boxed region. The hyperparameters
that describe the features of the population model are shown in white above the
boxed region. The solid arrows represent probabilistic relationships and can be
read as “distributed as”, where the dashed arrows represent definitions or physical
models and can be read “defined as”.

4.3.1 The Hierarchical Bayesian Model

4.3.1.1 The Population Model

We consider eccentricity-period distributions that are a mixture of normals for
h and k (truncated so e < 1) for any given period. We assume either: 1) the
same eccentricity distribution for all orbital periods considered, or 2) a piece-wise
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version, where the parameters for the eccentricity distribution depend on whether
the orbital period are below or above a "period break" point, Pbreak. The HB model
we use for our joint period-eccentricity distribution is as follows:

p(fa,σa,fb,σb, Pbreak, htrue, ktrue, Ptrue|hobs, kobs, σhobs
, σkobs

, Pobs)

∝ p(fa)p(σa)p(fb)p(σb)p(Pbreak)

p(htrue, ktrue|σref )p(σref |fa, fb, σa, σb, Pbreak, Ptrue)

p(hobs, kobs|htrue, ktrue, σhobs
, σkobs

)p(Ptrue|Pobs) (4.1)

In the expression for the HB model in Equation 4.1 above, Pbreak is the period
transition at which the EB eccentricity distribution changes. We characterize
the eccentricities of the EBs for any given orbital period using a two-component
Gaussian mixture model where the mixture fractions are fa and fb, and the
dispersions of the two components are σa and σb, respectively (each with Ncomp

components). The true values of the projected eccentricities for each EB are given as
htrue and ktrue. The dispersion vector, σref , represents either σa or σb, depending
on if the EB has a period that is below (use σa) or above (use σb) the period break
point. The true orbital period is represented as Ptrue, with the observed orbital
period represented as Pobs. The measurements of the projected eccentricity are
given as summary statistics hobs, kobs, σhobs

, and σkobs
. The “p()” represents each

separable function in our HB model and are described in detail in §4.3.1.2 through
4.3.1.4.

4.3.1.2 Hyperpriors

Equations 4.2 through 4.7 below show the hyperprior distributions for our HB
model. Here, Ncomp,a and Ncomp,b represents the number of mixture components
used in the Gaussian mixture models to parameterize the eccentricity distribution.
Except where otherwise specified, in this study we use two mixture components.
We assign a Dirichlet distribution as the prior for the mixture fractions of the
eccentricity distributions on either side of the period break point (fa and fb) with
α = 1. For the associated dispersions for each of the h and k distributions, we
assign a Uniform distribution between 0 and 1. We assign a Uniform distribution for
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the range in period break point values Pbreak between the minimum and maximum
periods in our sample of EBs, 0.00325 and 623 days, respectively.

fa ∼ Dirichlet(α = 1) for a = 1...Ncomp,a (4.2)

σa ∼ Uniform(0, 1) for a = 1...Ncomp,a (4.3)

fb ∼ Dirichlet(α = 1) for b = 1...Ncomp,b (4.4)

σb ∼ Uniform(0, 1) for b = 1...Ncomp,b (4.5)

Pbreak ∼ Uniform(Pmin = 0.00325, Pmax = 623.0) (4.6)

(4.7)

4.3.1.3 Mid-Level Model Specification

Here we describe the mid-level of our HB model, that relates the latent variables in
our study to the population level parameters. We use a Categorical distribution for
the category to assign each EB to a mixture component. Whether fa and σa or fb
and σb are used for a given EB, depends on whether the orbital period is greater or
less than Pbreak. The true projected eccentricity values htrue and ktrue are drawn
from a two-component Gaussian mixture model centered at zero, with a dispersion
σa if it is drawn from the h and k distribution appropriate for periods below the
period break point, and σb if it is drawn from the h and k distribution appropriate
for periods above the period break point. The mid-level model variables are vectors
of N (number of EBs), and in this study N = 795.

aj,i ∼ Categorical(fa,i) for j = 1...Ncomp,a, i = 1...N (4.8)

bj,i ∼ Categorical(fb,i) for j = 1...Ncomp,b, i = 1...N (4.9)

σref,i ←

{
σaj,i

(Ptrue,i < Pbreak) for j = 1...Ncomp,a, i = 1...N
σbj,i

(Ptrue,i > Pbreak) for j = 1...Ncomp,b, i = 1...N
(4.10)

htrue,i, ktrue,i|σref,i, Ptrue,i ∼ Normal((0), (σref,i 1)) for
√

(h2 + k2) < 1, i = 1...N
(4.11)
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4.3.1.4 Base-Level Model Specification

The base-level of our HB model describes the measurements used to constrain the
model. This level links the variables for which we have measurements to their
associated latent variables described in §4.3.1.3. The observables in our study are
the orbital periods and the projected eccentricity h = e cosω and k = e sinω. Here
we assume that the observed values of h and k are Normally distributed about
the true values of h and k, with a known dispersion. Because the measurement
uncertainty is very small for orbital period, the orbital periods are taken to be
known.

hobs,i, kobs,i|htrue,i, ktrue,i, σhobs,i
, σkobs,i

∼ Normal((htrue,i, ktrue,i), (σhobs,i
, σkobs,i 1))

for
√

(h2 + k2) < 1, i = 1...N (4.12)

Pobs,i ← Ptrue,i for i = 1...N (4.13)

4.3.2 Evaluating the Hierarchical Model

We sample from the posterior of our HB model using MCMC. We use the publicly-
available code Just Another Gibbs Sampler (JAGS; Plummer, 2003), to calculate
Markov chains. JAGS uses Gibbs sampling when possible, and otherwise reverts
to standard Metropolis–Hastings. We simultaneously sample from both the pos-
terior distributions for the population parameters and the posterior predictive
distributions for each observable. We evaluate the Gelman-Rubin (R) ratio to
test for non–convergence, and accept chains with an R < 1.01. We also look at
the autocorrelation function for the Markov chains and accept cases that have a
zero crossing at a lag of ≤ 5, after the chains have been thinned by a factor of
500 iterations. Our results and figures are based on the last 1000 iterations (after
thinning). The exact JAGS input model used in our study can be found in Figure
4.4.
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Figure 4.4: JAGS model for EB period-eccentricity distribution, with R syntax
highlighting.

4.4 Results for Kepler Eclipsing Binaries

4.4.1 The Eccentricity Distribution

First, we evaluate the eccentricity distribution of our sample of eclipsing binaries
independent of orbital period. We use a two-component Gaussian mixture model
to characterize the eccentricity distribution. For the hyperparameters, we relabel
the two indices from 1 and 2 to "low" and "high", where these are assigned based on
the dispersion (i.e., σlow = min(σ1, σ2), and flow is the mixture fraction associated
with this corresponding σ. Roughly half (53%) EBs come from a distribution
with a very small dispersion (σlow = 0.0067±0.0003

0.0003). Most of these EBs have
eccentricities that are very close to zero. We are able to constrain the the dispersion
of the low eccentricity component to better than 1 part in 100. The other 47%
of the population comes from an eccentricity distribution with a broad dispersion
(σhigh = 0.21±0.007

0.005). The marginal posterior distribution for mixture fractions
results in flow = 53±2.2

1.6 % and fhigh = 47±1.8
1.9 %. We report the posterior modes

and the credible intervals for the hyperparameters in our two-component HB model
in Table 4.1. Figure 4.5 shows the 2D marginal posteriors and marginals for the
hyperparameter posteriors. Figure 4.6 shows cumulative distributions for the EB
projected eccentricity distribution, where the Kepler EB projected eccentricity data
are shown as the dotted black curve. The gray shaded regions shows draws from
the posterior of the eccentricity distribution.
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Table 4.1: Posterior modes and 68% credible intervals of hyperparameters for the
two-component Gaussian mixture model for h and k.

68% credible interval
Hyperparameter Mode + −

σlow 0.0067 0.0003 0.0003
σhigh 0.21 0.007 0.005
flow 0.53 0.022 0.016
fhigh 0.47 0.018 0.019
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Figure 4.5: Posteriors for the hyperparameters in the two-component Gaussian
mixture model described in Chapter 2, applied to Kepler EB projected eccentricity
measurements. Approximately half the population comes from an eccentricity
distribution with a very small dispersion (σlow = 0.0067). The other half comes
from a distribution with a larger dispersion (σhigh = 0.21), meaning some EBs will
have significant eccentricities in this half of the population. The black contour
for the 2D joint posteriors represent the 68% credible region. For the marginal
distributions shown as histograms, the solid black line represents the posterior
mode, and the dotted black lines represents the 68% credible interval. The posterior
modes and the 68% credible intervals of the marginal posteriors can be found in
Table 4.1.
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Figure 4.6: Cumulative distributions for the EB projected eccentricity distribution.
The Kepler EB projected eccentricity data are shown as the dotted black curve.
The light gray shaded region shows the 68% credible region for the projected
eccentricity distribution using posterior draws of the hyperparameters. The dark
grey region represents the 95% credible region. The solid black curve is the
cumulative distribution for the projected eccentricity using the posterior mode for
the hyperparameters.

4.4.2 The Period-Eccentricity Distribution

We explore the period-eccentricity distribution for our sample of Kepler eclipsing
binaries. We develop a joint HB model where the eccentricity distribution differs
for EBs with orbital periods greater or less than a break in the period distribution,
where this break point is also a parameter to be inferred.

In our first scenario, we characterize the eccentricity distribution for EBs that
have orbital periods that fall below the period break point to be a one-component
Gaussian distribution, and EBs that have orbital periods that fall above the period
break point to be a two-component Gaussian mixture model. In this caseNcomp,a = 1

126



and Ncomp,b = 2 in Equations 4.2 through 4.10. In this case the inferred period
break point is at 1.5±0.04

0.03 days. This means that for EBs with orbital periods above
1.5 days, the eccentricity distribution is better characterized by a two-component
Gaussian mixture model, where the population that has EBs with orbital periods
below 1.5 days has an eccentricity distribution that is better characterized by
a one-component Gaussian distribution. In this regime, the population of EBs
with eccentricities above the period break point have a very similar eccentricity
distribution as when fitting the eccentricity distribution with a two-component
Gaussian mixture model independent of orbital period (e.g., the populations have
roughly equal mixture fractions, and the low eccentricity dispersion components
are both on the order of 0.006 and the high dispersion components are both around
0.21). In the simplest case we explore in §4.4.1, this is the dominant population
that emerges.

Table 4.2: Posterior modes and 68% credible intervals of hyperparameters for a
one-component (low orbital periods) and a two-component (high orbital periods)
Gaussian mixture model for h and k with period break point.

68% credible interval
Hyperparameter Mode + −

σa 0.012 0.00079 0.00062
σb low 0.0062 0.0003 0.0004
σb high 0.215 0.0073 0.0045
fb low 0.48 0.02 0.022
fb high 0.52 0.026 0.016

Pbreak[days] 1.5 0.04 0.03

In our second scenario when characterizing the joint period-eccentricity distri-
bution, we assign two independent two-component Gaussian mixture models for
the eccentricity distribution on either side of the period break point. We find that
the period break point in this regime is at 10.74±0.26

0.027 days. There is a second
shorter mode at approximately 11 days, and we suspect the possibility of an EB
with an eccentricity value that has a probability of being above and below the break
point that falls in between these two modes causing the split. The eccentricity
distribution for the population with orbital periods below the period break point has
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Figure 4.7: The black contour for the 2D joint posteriors represent the 68%
credible region. For the marginal distributions shown as histograms, the solid
black line represents the posterior mode, and the dotted black lines represents the
68% credible interval. The posterior modes and the 68% credible intervals of the
marginal posteriors can be found in Table 4.2.

∼ 75% of EBs that come from an eccentricity distribution with a small dispersion of
0.0055±0.0004

0.0002. The other ∼ 25% of EBs with orbital periods below the period break
point come from a population with a eccentricity distribution characterized by a
larger dispersion of 0.1±0.0047

0.0048. The population of EBs with orbital periods about
the ∼ 11 day period break point is characterized by an eccentricity distribution
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with only ∼ 10% of the EBs coming from an eccentricity distribution characterized
by a small dispersion of 0.018±0.0035

0.0018, and the other ∼ 90% of the EBs with orbital
periods about this period break point coming from an eccentricity distribution with
a large dispersion of 0.26±0.0074

0.011 . This means that many of the EB population above
the period break point have cases where eccentricities are significantly different
from zero, and take on a wide range of eccentricity values.

Table 4.3: Posterior modes and 68% credible intervals of hyperparameters for a
two-component (low orbital periods) and a two-component (high orbital periods)
Gaussian mixture model for h and k with period break point.

68% credible interval
Hyperparameter Mode + −

σa low 0.0055 0.0004 0.0002
σa high 0.1 0.0047 0.0048
fa low 0.72 0.024 0.022
fa high 0.28 0.025 0.02
σb low 0.018 0.0035 0.0018
σb high 0.26 0.0074 0.011
fb low 0.13 0.024 0.023
fb high 0.87 0.027 0.02

Pbreak[days] 10.74 0.26 0.027

4.5 Discussion
Interestingly, we find that the period break of ∼ 10.74 days when analyzing the
EB population with a two-component Gaussian mixture model on either side of
the period break point. Figure 4.2 shows a histogram of the periods of the binaries
used in our study, with the inferred period break point for this HB model regime
plotted as the vertical dotted red line. This is consistent with previous findings
from Latham et al. (2002); Mayor et al. (2001), where they observe a period break
point at around 10 days for EBs from disk and halo parent populations, indicative
of tidal circularization operating on this population of short-period EBs. Latham
et al. (2002) find that EBs with periods shorter than 10 days have EBs on nearly
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Figure 4.8: The black contour for the 2D joint posteriors represent the 68%
credible region. For the marginal distributions shown as histograms, the solid
black line represents the posterior mode, and the dotted black lines represents the
68% credible interval. The posterior modes and the 68% credible intervals of the
marginal posteriors can be found in Table 4.3.

circular orbits, and EBs above 20 days take on a wide range of eccentricities. In
the marginal posterior for our inferred period break point in this HB model regime,
there is a second shorter mode at approximately 11 days. We suspect that there is
an EB with an eccentricity value that has a probability of being above and below
the break point that falls in between these two modes and is causing this split.
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Many of the observational biases in this study are similar to those described in
§2.7.1 where we explore the eccentricity distribution using projected eccentricity
measurements h and h of short period planet candidates detected in both transit
and occultation by Kepler. In particular, our sample of EBs is incomplete for long
period binaries. The geometrical transit probability limits the sample towards
larger periods. Furthermore, our sample of EBs are a field population not a cluster
population, for which we currently do not have good age estimates. However,
results from Latham et al. (2002), where they evaluate populations of EBs from
the disk of the galaxy versus the halo, indicate that characteristics that are distinct
between these two populations, such as metallicity, do not impact the eccentricity
distribution. Thus, Latham et al. (2002) suggest that these differences have little
impact over the process that leads to short-period binaries on circularized orbits.

In the future, it would be interesting to explore how the period-eccentricity
distribution correlates with the EB mass ratio, tidal circularization times, and ages.
Furthermore, it would be interesting to look for more than one split in the orbital
period and eccentricity distribution explored in this study, to see if we can find
another period-break point around 20 days similar to that found in Latham et al.
(2002).

Table 4.4: Orbital period measurements and projected eccentricity measurements
with uncertainties for Kepler EBs.

ID Period (days) e cosω σe cosω e sinω σe sinω

01026032 8.460440 -0.041580 0.000030 0.002120 0.004620
01433980 1.592630 -0.000390 0.000100 0.014740 0.001300
01571511 14.022450 -0.042220 0.000570 0.231540 0.023800
01995732 77.362720 -0.131260 0.000040 0.079460 0.004080
02019076 7.129230 0.000060 0.000020 -0.003280 0.003720
02161623 2.283470 0.001420 0.000050 -0.040360 0.002230
02162994 4.101600 0.000200 0.000010 -0.001040 0.000440
02305372 1.404690 0.004280 0.000020 -0.028200 0.000680
02306740 10.306990 -0.023320 0.000010 0.295810 0.000560
02307206 204.031380 -0.010910 0.000030 0.199010 0.020770
02442084 49.788600 -0.502620 0.000490 -0.304310 0.002910
02445134 8.412010 0.000960 0.000220 -0.006190 0.008270
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02447893 0.661620 -0.000360 0.000020 -0.017730 0.000680
02576692 87.878530 -0.142050 0.000020 0.144120 0.001180
02580872 15.926630 -0.052980 0.000010 0.193950 0.000880
02693092 39.841520 -0.247330 0.000550 -0.075970 0.031460
02708156 1.891270 0.000080 0.000040 -0.075030 0.001480
02719873 17.279290 -0.001700 0.000000 0.026350 0.000530
02852560 11.961310 -0.332960 0.000090 -0.244140 0.001010
02860594 5.499940 0.001200 0.000870 -0.023980 0.002110
02860788 5.259740 -0.000060 0.000030 0.001230 0.001090
02973509 6.627610 -0.102520 0.000020 0.105210 0.000810
02998124 28.597880 -0.043640 0.000020 0.029830 0.001950
03003991 7.244780 -0.000270 0.001070 0.010250 0.020680
03098194 30.476530 -0.200500 0.000050 -0.284650 0.000740
03102024 13.782520 -0.283510 0.000240 0.448870 0.001530
03115480 3.693700 0.000200 0.000080 0.002190 0.007740
03120320 10.265610 -0.036190 0.000060 0.011830 0.006760
03127817 4.327140 0.000190 0.000040 0.004330 0.001740
03218683 0.771670 -0.000930 0.000020 0.005320 0.000480
03241344 3.912680 -0.004910 0.000070 0.043890 0.003760
03241619 1.703340 -0.000000 0.000020 -0.012940 0.000540
03247294 67.418830 -0.385770 0.000470 -0.373580 0.002800
03248332 7.363610 -0.040780 0.000020 0.140250 0.002010
03323289 33.693200 -0.250160 0.000010 0.023940 0.001040
03327980 4.231020 -0.000650 0.000010 -0.000360 0.000360
03335816 7.422010 0.000040 0.000080 0.004280 0.011520
03341934 18.839500 -0.033560 0.000060 -0.294160 0.003840
03347485 7.544840 -0.000070 0.000870 -0.016390 0.037790
03348093 7.964420 0.006940 0.000030 0.266570 0.015140
03352751 3.495460 0.000920 0.000110 0.009870 0.007150
03428468 114.908680 -0.711120 0.001240 -0.251560 0.006470
03439031 5.952030 -0.000990 0.000000 -0.005040 0.000380
03440230 2.881100 0.001380 0.000030 0.010250 0.000990
03442054 117.681380 -0.377020 0.000240 0.138120 0.004540
03449540 3.212010 0.000000 0.000000 -0.007470 0.000330
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03530668 1.946200 -0.000760 0.019900 0.013980 0.003400
03542573 6.942800 -0.000020 0.000020 0.005230 0.001720
03544694 3.845700 -0.001220 0.000030 0.002250 0.003320
03644542 119.679800 -0.504380 0.000180 0.297150 0.001080
03654950 8.134720 0.000240 0.000040 -0.023910 0.002730
03730067 0.294080 -0.000390 0.000020 -0.011240 0.000510
03735629 9.328350 0.000020 0.000010 -0.002840 0.001380
03757778 36.514400 -0.238520 0.000060 -0.245640 0.000990
03765771 5.567720 0.000160 0.000920 -0.014160 0.122190
03834364 2.908460 0.000080 0.000180 0.000710 0.007820
03836439 1.540400 0.000360 0.000150 -0.001080 0.007180
03838496 5.980400 0.000980 0.000020 -0.004750 0.000920
03848919 1.047260 -0.000310 0.000010 0.001940 0.000280
03851193 1.341080 0.004280 0.000790 0.010890 0.003650
03858884 25.951930 -0.433640 0.000040 -0.162240 0.000580
03865298 9.530640 -0.229990 0.000030 0.042890 0.002680
03938073 31.024310 -0.432230 0.000040 -0.012340 0.005760
03964545 3.012480 0.000010 0.000050 -0.007210 0.004040
03970117 110.295120 -0.481790 0.000040 0.159790 0.000540
03970233 8.254910 -0.010440 0.000270 0.101810 0.019260
03971315 9.892280 -0.000140 0.000390 0.021420 0.055350
03973002 3.984200 0.000090 0.000020 -0.002180 0.002150
03973504 4.318730 0.000140 0.000050 0.008480 0.008300
04037428 4.264730 0.000320 0.000080 0.049200 0.028230
04042026 34.820050 -0.330140 0.000100 0.089800 0.003340
04054905 274.709020 -0.305380 0.000010 -0.200890 0.000090
04069213 5.194260 -0.020780 0.001010 -0.015270 0.015260
04075064 61.422810 -0.237250 0.000360 -0.513330 0.002210
04076952 9.761170 0.018210 0.000350 0.033500 0.000420
04079530 17.727100 -0.210990 0.000120 0.240230 0.002060
04149684 4.320850 0.003810 0.000150 -0.003670 0.007820
04150611 94.198200 -0.365640 0.000100 -0.067710 0.004000
04157488 5.197420 0.008480 0.000020 0.001510 0.001270
04174507 3.891820 0.001340 0.000160 0.009350 0.018480
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04247023 47.190620 -0.332150 0.000200 0.182870 0.003150
04247791 4.100870 0.000100 0.000020 -0.001110 0.000850
04249218 0.316200 0.005100 0.000020 -0.059760 0.001140
04276114 3.722410 -0.000180 0.000320 -0.022650 0.019030
04281895 9.543590 -0.303860 0.000030 -0.001910 0.003860
04285087 4.486030 -0.000090 0.000010 0.003740 0.000720
04346875 4.694220 0.000100 0.000090 0.007940 0.004200
04352168 10.643750 -0.155000 0.000030 -0.118660 0.001460
04365461 3.428830 0.000010 0.000020 -0.000300 0.001030
04375101 61.259600 -0.210620 0.000000 -0.000170 0.001560
04380283 1.744720 0.000140 0.000010 -0.000270 0.000470
04445630 5.627910 0.022570 0.000000 0.021240 0.000360
04473933 103.592620 -0.245610 0.000930 -0.001520 0.003880
04540632 31.005400 -0.091450 0.000080 0.656630 0.000800
04544587 2.189100 -0.237210 0.000010 0.146480 0.000320
04574310 1.306220 0.000350 0.000020 0.001800 0.000690
04578594 252.155000 -0.176690 0.000050 0.064240 0.004630
04586482 623.000000 -0.511120 0.000330 -0.118140 0.005340
04633434 22.271210 -0.025690 0.000000 0.096860 0.000840
04659255 198.013280 -0.063060 0.000020 -0.009820 0.019550
04660997 0.562560 0.000360 0.000020 0.003650 0.000320
04661634 73.894180 -0.434450 0.000040 -0.150490 0.000640
04663623 358.100000 -0.001700 0.000020 -0.003200 0.004350
04665989 2.248070 0.000180 0.000010 0.001360 0.000560
04670267 2.006100 -0.000070 0.000020 0.000290 0.000420
04671584 5.593320 -0.000140 0.000710 -0.051400 0.077880
04677321 1.572180 0.000510 0.000070 0.004210 0.001730
04678171 15.288710 -0.003480 0.000000 -0.006730 0.001020
04681152 1.835920 0.008860 0.000570 -0.007440 0.019010
04729553 0.961290 0.000480 0.000020 0.007450 0.000430
04736208 63.681890 -0.251000 0.000050 -0.194650 0.000990
04737267 9.524080 -0.006980 0.000020 -0.013520 0.000340
04737302 9.455590 -0.010460 0.000020 0.003950 0.001380
04739194 1.246590 0.002760 0.000040 -0.003080 0.000920
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04739791 0.898920 -0.001040 0.000120 -0.010510 0.003620
04740676 3.454240 0.000080 0.000030 0.043100 0.011560
04751083 4.532370 0.012500 0.000110 0.029150 0.010900
04753988 7.304430 -0.005180 0.000020 0.009420 0.002770
04758368 3.749940 -0.003650 0.000100 0.002390 0.002610
04773155 25.706000 -0.264000 0.000080 0.354220 0.000770
04815612 3.856800 0.000020 0.000030 0.025770 0.002430
04826439 2.474300 -0.000060 0.000000 0.004590 0.000230
04839180 8.852690 -0.002460 0.000010 -0.005680 0.000810
04840263 1.915650 0.000110 0.000030 -0.001200 0.001270
04840818 10.049540 0.000010 0.000050 0.005460 0.006710
04847832 30.960240 -0.058000 0.000020 -0.396000 0.000850
04851217 2.470280 -0.031490 0.000020 0.003240 0.000630
04851464 5.548260 0.001760 0.000090 0.120250 0.003380
04902030 1.757610 0.000000 0.000010 -0.033620 0.000440
04912991 8.885040 0.000000 0.000040 0.009990 0.010820
04931073 26.951240 -0.407760 0.000140 -0.070700 0.004890
04937143 9.848880 -0.212780 0.000140 -0.006640 0.017050
04940201 8.816630 0.001370 0.000050 -0.040900 0.010440
04946680 8.665260 -0.115980 0.000710 -0.018970 0.059030
04947726 4.726090 -0.078800 0.000120 0.124590 0.005580
04948863 8.643590 0.004710 0.000050 0.024800 0.013320
05016163 5.245660 -0.000070 0.000000 -0.001140 0.000410
05017058 2.323890 0.000140 0.000020 -0.000710 0.000910
05022440 3.693950 -0.000040 0.000120 0.008900 0.016490
05023948 3.649290 -0.000190 0.000010 0.018670 0.001350
05024292 4.301030 0.010710 0.000030 0.020630 0.002010
05025294 5.462690 -0.197240 0.001310 0.104880 0.067400
05036538 2.122020 0.000090 0.000010 0.015910 0.000440
05036966 62.735000 -0.201630 0.000280 -0.060470 0.024360
05039441 2.151380 -0.002910 0.000220 0.004110 0.002930
05080652 4.144360 0.000040 0.000010 0.003440 0.000810
05090690 24.023320 0.000020 0.000060 -0.013010 0.021240
05091614 21.142460 -0.144620 0.000040 0.030250 0.007360
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05097446 1.288060 0.000890 0.000080 -0.000140 0.000530
05110423 5.370430 0.000230 0.000190 -0.042020 0.033170
05113053 3.185100 0.000070 0.000020 -0.001730 0.000970
05115178 12.851720 -0.210820 0.000050 -0.010030 0.005950
05181455 5.579630 -0.000060 0.000060 -0.000340 0.008890
05193386 21.378290 -0.007030 0.000000 0.013860 0.000060
05215700 1.312400 0.000420 0.000020 0.000310 0.000560
05216727 1.513020 0.000000 0.000050 -0.002630 0.002360
05218014 10.845290 -0.221590 0.000500 0.083100 0.027820
05263802 6.700510 -0.006890 0.000050 -0.001860 0.005250
05264304 120.580000 -0.367230 0.000030 -0.016460 0.005990
05266937 5.917090 -0.000070 0.000020 0.010030 0.000670
05269407 0.958870 0.000600 0.000060 -0.015220 0.001290
05284133 8.784580 -0.182860 0.000050 -0.103300 0.002420
05285607 3.899400 0.000010 0.000060 -0.007680 0.003240
05286786 9.948750 -0.035910 0.000510 -0.093910 0.071500
05288543 3.457080 -0.002480 0.000030 0.009430 0.000480
05294739 3.736000 0.008260 0.000020 0.008490 0.000490
05300878 1.279440 -0.000460 0.000010 -0.007250 0.000300
05310435 4.931360 -0.000820 0.000060 0.004840 0.002530
05347784 9.584060 -0.010920 0.000020 0.000980 0.001500
05356593 45.977870 -0.092240 0.000290 0.102850 0.009540
05359678 6.230610 0.000040 0.000020 -0.000780 0.001190
05370302 3.904330 -0.002200 0.000260 -0.283040 0.003600
05372966 9.286360 -0.025350 0.000050 0.054310 0.005240
05384802 6.083090 -0.000010 0.000060 -0.009330 0.008790
05392897 42.399300 -0.413230 0.000440 -0.392350 0.000970
05393558 10.217100 -0.023070 0.000010 0.141630 0.001260
05394544 0.431970 0.001120 0.000800 0.021190 0.028380
05444392 1.519530 -0.000230 0.000010 0.000130 0.000240
05450814 6.487530 -0.026620 0.000720 -0.306680 0.084880
05456023 131.978310 -0.028070 0.000070 0.180910 0.013840
05460835 21.539270 -0.162090 0.000030 -0.006060 0.009260
05462901 5.270730 0.000180 0.000030 0.025670 0.004990
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05471619 0.962840 0.001520 0.000030 -0.023950 0.000700
05473556 11.258820 -0.081780 0.000010 0.115310 0.000870
05479973 1.795270 0.001840 0.000110 0.005920 0.002550
05513861 1.510210 -0.000040 0.000020 0.000560 0.000420
05530881 5.082520 0.000170 0.000060 0.017700 0.001340
05534702 1.025470 0.000390 0.000030 -0.006010 0.000760
05534814 9.718780 -0.000090 0.000140 -0.022680 0.042990
05535280 74.985300 -0.686410 0.000030 -0.008530 0.005570
05553624 25.762070 -0.106440 0.000060 -0.532130 0.000720
05597970 6.717380 -0.000280 0.000010 0.017060 0.000890
05598639 1.297550 0.000270 0.000020 -0.008150 0.000800
05621294 0.938900 0.002100 0.000060 -0.003460 0.000960
05622250 16.294210 -0.320980 0.000110 0.037560 0.007950
05632781 11.025200 -0.253480 0.000010 -0.106130 0.000440
05652260 8.929260 0.001310 0.000030 -0.008470 0.006180
05700330 53.220410 -0.476100 0.000200 0.357560 0.001020
05728139 10.668160 0.000130 0.001230 0.001890 0.004980
05728283 6.198280 -0.056050 0.000050 -0.118840 0.001250
05730394 5.519180 -0.000620 0.000040 0.003180 0.000600
05731312 7.946380 -0.418060 0.000280 -0.088270 0.007390
05735878 16.832080 -0.415870 0.000090 -0.063590 0.002000
05736461 7.346160 -0.109870 0.000020 0.041560 0.001260
05738506 9.501480 -0.153080 0.000050 -0.151790 0.002060
05738698 4.808770 0.000370 0.000010 -0.003000 0.000440
05768927 4.390510 0.000040 0.000040 0.047740 0.002640
05781192 9.459990 -0.031450 0.000010 0.047890 0.001410
05786154 197.920780 -0.342070 0.000020 -0.161410 0.000380
05796185 42.559240 -0.233920 0.003190 0.388890 0.030310
05802470 3.791870 -0.000020 0.000030 -0.008320 0.002020
05807579 17.844330 -0.256300 0.000070 0.089620 0.002720
05809827 1.222110 0.000080 0.000030 0.004100 0.000780
05817566 8.412200 0.000120 0.000020 -0.006360 0.000830
05866104 36.976000 -0.345400 0.001740 -0.378660 0.011400
05871918 12.643300 -0.158310 0.001050 -0.166340 0.036300
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05872150 20.355100 -0.032300 0.000400 0.060290 0.008470
05876805 18.173040 -0.177850 0.000030 -0.196750 0.000620
05955321 11.637880 -0.005950 0.000000 0.482230 0.000410
05961350 5.262670 -0.000560 0.000880 0.060980 0.076520
05962716 1.804610 0.000380 0.000110 -0.005960 0.003620
05979863 16.621850 -0.033660 0.000060 -0.020630 0.004770
05982353 19.563100 -0.056650 0.000360 -0.018460 0.016100
05983348 25.150780 -0.007300 0.000010 0.178590 0.002060
05986209 23.737970 -0.192080 0.000150 -0.364810 0.001890
06029130 12.591630 0.011080 0.000010 0.011130 0.000960
06029214 0.819070 0.000310 0.000070 -0.008520 0.002120
06042116 5.407160 -0.065640 0.000030 0.015110 0.002150
06042663 30.971770 -0.074860 0.000000 -0.174940 0.000250
06044064 5.063210 -0.007370 0.000040 0.037840 0.000320
06045264 0.909310 0.000190 0.000010 -0.000460 0.000260
06058875 1.129870 0.000140 0.000010 0.002910 0.000530
06060580 2.313370 0.000060 0.000200 0.016310 0.018410
06063448 76.017700 -0.445500 0.000050 0.166300 0.000630
06103049 0.643170 0.001680 0.000100 -0.001850 0.002900
06109688 14.086790 -0.066970 0.000030 0.322720 0.000930
06128027 5.455770 -0.004990 0.000150 0.060940 0.007450
06131659 17.527830 0.000060 0.000010 0.000030 0.002130
06145939 17.745410 0.000000 0.000010 -0.017860 0.008540
06147573 25.836830 -0.363750 0.000020 0.016160 0.002070
06182019 3.664960 -0.000640 0.000590 0.062550 0.026040
06182849 6.399110 0.000230 0.000020 0.018210 0.000860
06185717 11.702200 -0.054270 0.000140 0.131470 0.019120
06187893 0.789170 0.000340 0.000160 0.014350 0.002550
06197038 9.751710 0.007470 0.000030 0.018470 0.001740
06205460 3.722830 0.004380 0.000000 -0.036870 0.000040
06206751 1.245330 0.000310 0.000040 -0.001280 0.001050
06220470 8.144140 -0.154280 0.000020 -0.076370 0.000320
06227560 4.803510 -0.001240 0.000000 0.040940 0.000550
06228703 8.400410 0.000030 0.000030 0.003430 0.002420

138



06231401 6.091960 -0.023130 0.000060 -0.000710 0.006000
06233466 15.873310 -0.028910 0.000050 0.004440 0.001870
06233903 5.990850 -0.002290 0.000020 0.001030 0.001430
06301030 11.991160 -0.307750 0.000010 0.010340 0.001140
06307062 75.379010 -0.577340 0.000020 -0.009970 0.002310
06307537 29.744520 0.005860 0.000000 0.020520 0.000050
06312521 3.015550 0.000050 0.000030 -0.026540 0.003280
06359798 14.154040 -0.409660 0.000040 -0.091590 0.001040
06362386 4.592400 -0.001010 0.000060 -0.005580 0.001380
06363494 1.815630 -0.000320 0.000100 -0.002150 0.003610
06367628 3.779690 -0.000210 0.000020 -0.000640 0.000530
06387450 3.661330 -0.001080 0.003340 0.019150 0.027790
06421188 16.434350 -0.193320 0.000080 0.094620 0.003150
06431670 29.911480 -0.331160 0.000020 0.039330 0.001750
06443392 0.776980 -0.000250 0.000140 -0.000910 0.006850
06448768 16.486800 -0.159310 0.000070 0.291870 0.000840
06449358 5.776790 -0.000250 0.000020 0.042880 0.000260
06449552 20.148810 -0.103960 0.000070 -0.276940 0.002290
06452742 1.375540 0.000040 0.000050 -0.007050 0.003170
06464285 0.843650 0.000550 0.000060 -0.031250 0.000930
06466939 2.285890 -0.000030 0.000000 0.001270 0.000440
06468938 7.217010 -0.034720 0.000020 -0.004290 0.002300
06504534 28.162600 -0.090700 0.000110 0.068880 0.018980
06521542 4.425750 0.000020 0.000000 0.006950 0.000430
06522750 17.445640 -0.070160 0.000010 -0.058980 0.001220
06523216 14.313160 -0.042250 0.000260 -0.069530 0.002030
06525196 3.420600 0.000050 0.000010 -0.000430 0.000950
06531485 0.676990 0.000050 0.000130 0.021410 0.005440
06531496 14.323910 -0.001140 0.000070 0.030090 0.009670
06543674 2.391030 0.000050 0.000010 0.003000 0.000280
06545018 3.991460 0.002700 0.000020 0.003990 0.000490
06546508 6.107060 -0.000840 0.000040 -0.006680 0.007110
06548447 10.768380 -0.106410 0.000010 -0.047910 0.000030
06579806 9.880480 -0.053240 0.000320 0.126330 0.037890
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06591789 5.088410 -0.013170 0.000010 0.013750 0.001000
06594972 10.819170 -0.011090 0.000010 -0.017030 0.001170
06607610 63.518030 -0.108460 0.000030 0.158480 0.000890
06610219 11.301000 -0.012110 0.000000 0.196420 0.000420
06614926 3.026760 0.000080 0.000080 0.104550 0.001090
06620003 3.428550 -0.000370 0.000040 -0.007570 0.006800
06629332 4.310560 0.000010 0.000050 0.026410 0.008470
06629588 2.264470 -0.003170 0.000100 0.001330 0.002410
06665223 119.412020 0.000060 0.000000 0.037250 0.001780
06672229 23.832370 -0.058430 0.000020 -0.175540 0.001430
06694186 5.554220 0.010070 0.000200 0.001420 0.013240
06695889 1.106560 -0.000140 0.000020 -0.018020 0.001120
06697716 1.443250 0.000050 0.000020 0.012740 0.001030
06706287 2.535390 0.000100 0.000010 -0.004820 0.000470
06707942 9.014200 -0.081800 0.000990 0.042070 0.080630
06756669 5.851530 0.002470 0.001170 0.220090 0.057030
06762829 18.795270 -0.003950 0.000540 -0.035760 0.003180
06766748 7.002860 -0.004260 0.000020 -0.007230 0.000740
06778050 0.945830 0.000050 0.000010 0.001670 0.000390
06778289 30.130150 -0.051230 0.000020 0.220310 0.001070
06781535 9.122090 -0.251240 0.000040 0.017940 0.004540
06806632 9.469160 -0.323950 0.000250 0.089050 0.004890
06841577 15.537540 -0.117580 0.000120 0.107730 0.006830
06842345 17.381610 0.000010 0.000040 -0.071940 0.016300
06859813 10.882420 -0.235380 0.000480 -0.116440 0.016660
06863229 1.994920 0.000540 0.000110 0.002750 0.000310
06863840 3.852730 0.000230 0.000000 0.001950 0.000460
06864859 40.877840 -0.634480 0.000010 -0.007770 0.001110
06866228 7.702370 -0.015170 0.000650 0.071010 0.067670
06877673 36.758890 -0.098150 0.000000 -0.120120 0.000070
06891512 3.505130 -0.000060 0.000010 -0.004420 0.000350
06927629 7.735230 0.000020 0.000010 -0.000380 0.000780
06939670 4.238860 -0.000140 0.000050 0.013730 0.002750
06949550 7.841070 -0.264770 0.000000 -0.003700 0.000540
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06956216 4.818830 -0.006970 0.000060 0.008180 0.000840
06960446 10.149000 0.006160 0.000040 0.008010 0.004880
06962018 1.269890 0.000360 0.000010 0.021530 0.000490
06965293 5.077820 0.010100 0.000060 0.015670 0.011740
07009828 10.642450 -0.000030 0.000020 0.001280 0.001810
07021177 18.645330 -0.070720 0.000030 -0.554310 0.000600
07025540 2.148210 -0.000050 0.000010 0.010740 0.000480
07025851 4.681000 -0.000160 0.000020 0.013920 0.001830
07033748 4.392710 -0.000020 0.000010 0.000730 0.000370
07037405 207.150520 -0.158720 0.000020 0.107060 0.000190
07037540 14.405910 -0.005260 0.000090 0.103850 0.007500
07049486 26.718420 -0.274880 0.000100 -0.074430 0.004830
07097571 2.213960 0.000680 0.000140 0.014600 0.001050
07105574 20.726070 -0.526440 0.000030 -0.016470 0.002740
07118545 14.797220 -0.276310 0.000390 0.157590 0.003410
07121885 33.937540 -0.242520 0.000290 0.232440 0.004910
07122259 20.882170 -0.159100 0.002460 -0.056000 0.039200
07125636 6.490660 -0.015850 0.000010 -0.002530 0.001550
07128918 7.118800 0.004480 0.000020 0.006330 0.002850
07129465 5.491820 0.000040 0.000010 0.009880 0.000750
07132542 66.360990 -0.381030 0.000010 -0.033210 0.000810
07136958 29.015850 -0.195490 0.000040 -0.065380 0.002770
07137798 2.253540 -0.002250 0.000060 0.051170 0.004270
07177553 17.996470 -0.391190 0.000030 -0.008730 0.005340
07199774 4.708130 0.000120 0.000040 0.025930 0.003060
07200102 14.665760 -0.237740 0.000130 0.349520 0.001390
07203179 2.245740 0.000160 0.000010 0.003060 0.000390
07212066 3.840490 0.002630 0.000120 -0.001070 0.012990
07212722 2.316170 0.000270 0.000020 0.001720 0.000880
07257373 10.466900 -0.000020 0.000000 0.003740 0.000430
07258889 0.903900 0.000090 0.000020 -0.017080 0.000590
07270230 6.998090 -0.000300 0.000890 -0.056010 0.081930
07336754 12.155240 0.012500 0.000030 0.011660 0.003220
07353970 198.443500 -0.020710 0.000000 -0.099960 0.002080
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07362852 7.036710 -0.001530 0.000010 0.003290 0.000560
07368103 2.182520 0.000940 0.000140 0.000900 0.003390
07369523 5.318840 0.000180 0.000010 -0.002770 0.000450
07374746 2.733890 -0.000070 0.000010 0.000870 0.001140
07376500 5.877130 -0.385710 0.000110 -0.085920 0.003340
07385478 1.655480 0.000090 0.000080 0.005160 0.002970
07455553 6.516500 0.000460 0.000710 0.020080 0.076520
07506446 0.352600 -0.000370 0.000010 -0.005770 0.000250
07541502 44.827320 -0.474670 0.001140 0.205150 0.009280
07584826 0.622310 0.005060 0.000040 -0.008460 0.000980
07593110 3.549380 -0.002970 0.000040 -0.056110 0.003900
07597703 9.217800 0.000000 0.000000 0.001370 0.000480
07605600 3.326190 0.000640 0.000140 0.012230 0.001940
07620844 58.621570 -0.064610 0.000080 0.149200 0.007710
07624297 18.019650 -0.011140 0.000070 -0.010130 0.013900
07630658 2.151140 0.000180 0.000020 0.005490 0.000770
07670485 8.467710 -0.009760 0.000010 0.014440 0.003040
07671594 1.410350 0.001110 0.000020 0.044580 0.002740
07677005 38.058140 -0.475480 0.000100 -0.157890 0.001260
07690843 0.786260 0.000770 0.000130 0.005470 0.003300
07691527 4.800230 -0.067550 0.000010 0.056440 0.000870
07695093 4.032770 0.000680 0.000260 0.021310 0.009480
07708193 7.942450 -0.000280 0.000070 0.011010 0.005320
07750740 5.874200 0.000160 0.000060 0.012530 0.004740
07751562 17.042160 -0.198690 0.000070 0.071150 0.002390
07770471 1.157800 0.000480 0.000020 -0.022500 0.000690
07802136 10.980250 -0.087470 0.000080 0.023650 0.012640
07816680 8.585200 -0.000030 0.000010 0.027800 0.001660
07818448 0.618950 -0.000230 0.000030 0.000360 0.000840
07821010 24.238240 -0.349540 0.000160 -0.575960 0.000530
07830637 121.599180 -0.172630 0.000030 0.130120 0.001250
07838906 5.614950 0.001800 0.001180 0.024340 0.083900
07846730 11.028230 -0.019900 0.000040 -0.035290 0.000550
07847927 70.376270 -0.135030 0.000110 0.118950 0.006590
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07866921 91.499890 -0.187640 0.000010 -0.026920 0.001580
07877824 9.449430 -0.192430 0.000010 0.010570 0.000920
07898576 8.646900 -0.013050 0.000010 -0.037660 0.000210
07919653 4.210480 -0.000030 0.000020 -0.000680 0.001310
07938468 7.226950 0.000780 0.000020 -0.000440 0.000770
07938870 0.580730 0.000560 0.000120 0.011010 0.000780
07943535 4.719340 -0.150300 0.000160 -0.019620 0.018370
07947631 2.516560 -0.000190 0.000100 0.007220 0.011440
07950775 8.966610 -0.208770 0.000060 0.035900 0.005980
07960547 6.767340 -0.016100 0.000010 -0.030910 0.000860
07970629 2.051070 0.000010 0.000020 -0.003210 0.000960
07970760 7.649410 -0.000990 0.000170 0.005280 0.000700
07971389 26.349610 0.000040 0.000020 -0.023430 0.006280
07985167 1.384480 0.000180 0.000050 -0.014340 0.001950
07987749 17.030850 -0.142110 0.000030 0.021950 0.005620
08008128 14.854420 -0.411540 0.000890 -0.074070 0.023970
08009500 38.476640 -0.346290 0.001280 -0.192310 0.018580
08016214 3.174970 -0.000690 0.000030 -0.001830 0.000360
08043714 6.814990 0.004710 0.000400 0.120050 0.036480
08043961 1.559210 -0.000130 0.000020 -0.000650 0.000500
08044608 106.175940 -0.585820 0.000380 0.064510 0.009950
08052474 245.440000 -0.143270 0.000290 0.206690 0.009350
08074045 0.536390 0.001680 0.000060 0.000910 0.000610
08075618 17.561210 -0.000010 0.000010 -0.001380 0.004910
08081389 1.489440 0.000080 0.000020 -0.001810 0.000720
08088354 2.897830 0.000590 0.000080 -0.008660 0.006630
08094140 0.706430 0.000370 0.000020 0.000390 0.000810
08097825 2.936850 -0.000380 0.000020 -0.001740 0.000660
08098300 4.305920 0.005310 0.000010 -0.018440 0.000470
08106973 439.108380 -0.042110 0.000000 0.061820 0.001160
08111622 15.446060 -0.519460 0.000260 0.098200 0.005080
08112013 1.790520 0.001620 0.000110 0.034560 0.024860
08128965 7.140380 -0.000080 0.000080 0.033370 0.000650
08129189 53.647080 -0.204880 0.000040 -0.015800 0.005920
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08145789 1.670630 -0.000170 0.000100 0.009320 0.007100
08177798 2.900410 0.000040 0.000130 0.001150 0.009030
08180020 5.803130 0.009610 0.000880 0.003380 0.023660
08183389 32.440340 -0.344710 0.000260 -0.083780 0.009130
08193315 2.623870 -0.000060 0.000050 0.001460 0.001320
08196180 3.671660 -0.153040 0.000040 0.020480 0.002090
08229048 5.478950 0.000140 0.000070 -0.001830 0.007710
08231877 2.615530 -0.000070 0.000130 -0.009900 0.011460
08234477 4.028670 0.001110 0.000920 0.000220 0.000480
08243263 3.518550 0.000010 0.000050 0.007820 0.003940
08244173 2.184130 -0.000040 0.000010 0.013480 0.000420
08248812 0.685370 0.000500 0.000030 0.008310 0.000450
08262223 1.613020 0.000210 0.000030 0.002120 0.001230
08264097 2.897470 -0.001560 0.000210 -0.033610 0.005700
08285254 7.535900 0.000670 0.000030 0.004550 0.001920
08288719 1.510100 -0.000040 0.000070 -0.018680 0.004660
08296467 10.303360 -0.194600 0.000030 0.198670 0.000710
08299947 5.365600 0.000160 0.000010 0.001440 0.001080
08301013 4.428060 0.001490 0.000010 -0.000210 0.000430
08302455 4.883980 0.000130 0.000020 -0.013420 0.001810
08312222 12.823280 -0.054700 0.000020 -0.090910 0.001860
08314801 37.183280 -0.386340 0.000000 0.019000 0.000070
08316503 5.065330 -0.109540 0.000040 0.006910 0.002950
08345358 9.380630 0.000030 0.000050 -0.005160 0.007870
08356054 17.081230 -0.028590 0.000030 -0.250100 0.003180
08364119 7.735910 0.018210 0.000010 0.020140 0.000640
08374499 5.251920 0.013020 0.000030 -0.009030 0.000960
08378656 3.629440 0.014820 0.000020 0.016480 0.000080
08378922 43.263310 -0.113220 0.000030 0.289290 0.000850
08381592 5.784180 -0.004450 0.000030 0.008380 0.004070
08411947 1.797680 -0.002080 0.000010 -0.002780 0.000580
08414159 11.931130 -0.000300 0.000060 -0.037860 0.003630
08414914 100.302500 -0.477710 0.000140 0.051050 0.005950
08415863 27.533800 -0.220380 0.000290 -0.075210 0.016960
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08429450 2.705140 0.000000 0.000010 0.001000 0.000350
08430105 63.327110 -0.249880 0.000090 0.009630 0.000200
08444552 1.178100 0.000190 0.000030 -0.033090 0.001700
08445775 26.508270 -0.000030 0.000020 0.038700 0.007820
08453191 11.553530 0.000080 0.000010 -0.012620 0.001190
08453324 2.524540 0.000020 0.000240 -0.006730 0.015080
08460600 6.352090 -0.000380 0.000460 0.031350 0.014410
08479386 11.720760 0.000020 0.000000 0.001340 0.000480
08488876 5.801880 -0.137200 0.001200 0.012180 0.067920
08491745 111.319930 -0.153490 0.000030 -0.001280 0.000340
08504570 4.007700 0.000250 0.000020 -0.000280 0.001380
08509346 6.099030 0.008000 0.000160 0.013580 0.016540
08543278 7.549300 -0.013040 0.000050 0.029850 0.011170
08552540 1.061930 0.000510 0.000010 -0.001460 0.000330
08553788 1.606160 0.000180 0.000110 0.001580 0.002840
08553907 42.032210 -0.469430 0.000090 0.204160 0.000890
08559589 223.113050 -0.162980 0.000140 0.127970 0.006750
08559863 22.470500 -0.034880 0.000030 0.003360 0.005250
08560861 31.973230 -0.036630 0.000030 -0.008830 0.004060
08569819 20.849920 0.004150 0.000060 -0.370270 0.001030
08572936 27.795810 -0.166150 0.000070 -0.490440 0.000650
08574270 15.120190 -0.228410 0.000390 -0.084240 0.020340
08580438 6.496030 -0.000300 0.005620 -0.002810 0.009910
08581658 3.481660 -0.000710 0.000030 0.006450 0.000720
08589754 8.939380 -0.000460 0.000010 -0.024360 0.000720
08590527 0.739770 -0.000270 0.000360 -0.018800 0.011620
08590780 8.653890 0.000100 0.000000 -0.008600 0.000560
08604993 6.570420 0.011140 0.000060 -0.005400 0.005190
08605074 37.601620 -0.132930 0.000060 0.088070 0.002770
08608310 0.950380 0.000290 0.000020 -0.000670 0.000450
08608490 1.082810 0.000500 0.000010 0.016780 0.000380
08610483 48.799370 -0.326220 0.000130 -0.268840 0.001350
08618226 5.882040 0.000180 0.000020 0.064450 0.002490
08621026 4.059430 -0.001100 0.000070 0.013310 0.001260
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08668810 313.100000 -0.391570 0.000190 0.040100 0.013640
08686150 51.425890 -0.236390 0.000250 0.405000 0.002140
08700506 43.797800 -0.264510 0.000120 -0.462710 0.000780
08701327 8.508840 -0.002010 0.000010 -0.003380 0.000660
08711548 18.778160 -0.156260 0.000020 -0.127540 0.000860
08719897 3.151420 -0.000030 0.000010 0.005300 0.000570
08736245 5.069480 -0.000590 0.000020 0.003010 0.000680
08738115 37.594270 -0.397760 0.005230 -0.484020 0.020460
08746310 6.855620 0.000100 0.000080 0.013730 0.010000
08773948 33.469520 -0.017430 0.000170 0.241950 0.000750
08780968 5.234490 -0.000260 0.000020 -0.005500 0.000930
08784288 3.655120 0.000040 0.000010 -0.012100 0.000400
08801343 2.739870 0.004190 0.000170 0.021140 0.038250
08823397 1.506500 0.000290 0.000020 -0.009030 0.000470
08841616 1.679580 -0.000690 0.000140 0.007660 0.003060
08845221 5.403460 0.001350 0.000070 0.003250 0.000480
08848271 9.991660 -0.282880 0.001160 0.044700 0.082110
08868650 4.447130 -0.001010 0.000210 -0.014430 0.000460
08879427 16.313280 -0.450820 0.000940 0.024590 0.067030
08879915 3.442630 0.000330 0.000000 -0.000060 0.000540
08892720 61.491140 -0.489350 0.000110 0.059610 0.003560
08906676 8.209520 0.000380 0.000060 0.006200 0.008680
08935352 10.908800 0.000050 0.000030 -0.002670 0.001100
08937019 5.663650 -0.257290 0.000040 -0.149920 0.001050
08938628 6.862220 -0.002740 0.000030 0.016580 0.007010
08939650 3.655320 -0.000100 0.000040 -0.002490 0.002630
08953059 5.499940 -0.100600 0.000160 0.072790 0.004750
08953296 0.784300 0.002140 0.000070 -0.012380 0.001350
08953426 5.331750 0.000010 0.000020 0.005460 0.001010
08957954 4.359850 0.000090 0.000010 -0.008670 0.000580
08971432 0.624390 0.002540 0.000400 -0.091080 0.011660
08973000 28.027870 -0.224260 0.000100 0.451300 0.000720
08984706 10.135400 0.014720 0.000010 0.005590 0.000750
09001468 17.329970 -0.273740 0.000510 -0.425490 0.003600
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09007918 1.387210 0.001320 0.000160 0.010800 0.002970
09020426 0.913390 -0.000060 0.000010 0.001670 0.000240
09029486 6.277160 0.000170 0.000010 -0.002730 0.000980
09048145 8.667830 0.000410 0.001080 -0.003720 0.065480
09083523 0.918420 0.000520 0.000050 0.054230 0.001140
09091810 0.479720 -0.000820 0.000010 -0.000490 0.000240
09098810 8.258180 0.008820 0.000010 0.136400 0.000940
09119405 18.646320 -0.432640 0.000030 0.087240 0.000910
09143254 2.275050 -0.000090 0.000080 -0.017830 0.007580
09159301 3.044770 0.000520 0.000000 -0.037670 0.000180
09163674 1.546290 0.000090 0.000010 0.000610 0.000510
09164836 48.118820 -0.386290 0.000360 0.045250 0.026270
09172506 50.440310 -0.690180 0.000330 0.330170 0.001300
09179531 6.510780 0.007310 0.000010 -0.014550 0.001040
09207508 2.015150 0.000210 0.000020 -0.022460 0.000700
09210828 1.656410 -0.000250 0.000020 -0.002410 0.001170
09236858 2.537080 0.001170 0.000040 0.006570 0.001050
09246715 171.277700 -0.339710 0.000030 -0.057940 0.001490
09266285 5.613870 -0.003120 0.000070 -0.010000 0.004410
09284741 20.729260 -0.275560 0.000070 -0.231130 0.001110
09291748 15.926990 -0.017650 0.000070 0.067540 0.004240
09328852 0.645850 0.002370 0.000060 0.006560 0.001930
09344623 14.759480 -0.146170 0.000010 -0.119440 0.000620
09346253 34.064580 -0.327090 0.000400 -0.006940 0.003110
09353182 10.476260 -0.035270 0.000020 0.050100 0.000520
09357275 1.588300 0.000340 0.000070 0.000680 0.002150
09392702 3.909310 -0.000350 0.000060 -0.000410 0.002470
09402652 1.073100 -0.000030 0.000010 -0.001340 0.000260
09412462 10.186590 -0.021280 0.000010 -0.024860 0.000500
09418994 32.003800 -0.134460 0.000260 -0.221050 0.008130
09446824 4.202340 -0.002120 0.000120 0.145810 0.005140
09451096 1.250390 0.000620 0.000020 -0.008590 0.000680
09451127 5.117400 0.000280 0.002270 -0.006320 0.028990
09468296 5.748830 0.006690 0.000220 0.034320 0.041410
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09474222 13.691790 -0.337870 0.000050 -0.032410 0.001860
09474485 1.025160 -0.000090 0.000010 0.002140 0.000340
09474969 21.570510 -0.414700 0.000000 0.064590 0.000060
09489411 6.688930 -0.001650 0.000010 -0.016500 0.000250
09509207 14.199840 -0.369220 0.000090 -0.208080 0.001110
09520700 4.273670 0.000100 0.000010 0.006040 0.000690
09528430 90.082520 -0.354760 0.000060 0.102170 0.001340
09529856 37.482220 -0.461310 0.000150 0.020850 0.029920
09532123 8.215000 -0.207080 0.000070 -0.021220 0.009180
09540450 2.154710 -0.000080 0.000010 0.006380 0.000620
09569866 1.480320 0.000070 0.000020 -0.024840 0.000630
09576197 7.964430 -0.007470 0.000370 0.009820 0.003640
09579192 12.083540 -0.290160 0.001160 0.199910 0.013190
09579499 7.946720 -0.081370 0.000680 0.237030 0.033520
09592575 2.637580 -0.000000 0.000020 -0.004700 0.000920
09592855 1.219320 0.000040 0.000020 0.000310 0.000690
09597095 2.745640 0.000370 0.000110 -0.006660 0.006410
09602595 3.556510 0.001600 0.000000 -0.018910 0.000110
09613070 2.331850 0.000480 0.000040 0.018680 0.002120
09635529 4.703910 0.000110 0.000010 -0.007490 0.000600
09637299 1.882440 -0.000090 0.000020 0.002550 0.000840
09641031 2.178150 -0.000010 0.000010 0.000840 0.000560
09649222 5.918620 0.000840 0.000360 0.020440 0.011680
09652632 4.977620 -0.002010 0.000020 -0.009130 0.000870
09654476 0.396320 0.004420 0.000020 -0.012810 0.000510
09658118 24.060000 -0.152470 0.000070 -0.324290 0.001210
09665503 11.567980 -0.241500 0.000060 0.125640 0.001860
09673173 21.294740 -0.566140 0.000020 0.005800 0.001890
09692336 0.687900 0.000830 0.000050 0.013280 0.000610
09714358 6.474180 0.014080 0.000060 -0.020270 0.008290
09715925 6.308200 -0.198570 0.000140 -0.002500 0.022980
09762519 7.515150 -0.037920 0.000040 -0.000280 0.005840
09775253 8.788500 -0.000140 0.000000 0.145360 0.000330
09777062 19.230040 -0.156110 0.000070 -0.104630 0.004040
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09777090 5.508140 -0.006560 0.000090 0.008950 0.013150
09785454 184.520000 -0.499630 0.000740 0.092100 0.018490
09786017 4.498000 0.001110 0.000080 0.005680 0.001010
09813678 0.505080 0.000770 0.000230 0.006310 0.010300
09818732 45.035590 -0.319390 0.000050 0.165320 0.000850
09821078 8.429440 0.000730 0.000010 -0.025980 0.001270
09833618 1.408500 0.000950 0.000050 -0.024450 0.001050
09833806 0.393180 0.002890 0.000260 -0.010740 0.006860
09837083 0.623390 -0.000660 0.000070 0.026320 0.003380
09837578 20.733750 0.008650 0.000000 0.127810 0.000880
09838060 23.815830 -0.072000 0.000140 -0.014350 0.048430
09838975 18.692870 -0.052580 0.000070 0.164070 0.003140
09850387 2.748500 0.000310 0.000030 0.001670 0.001000
09851142 8.480300 -0.202930 0.000720 -0.128200 0.003250
09851944 2.163900 0.000020 0.000020 0.002100 0.000570
09873869 4.994780 -0.000100 0.000070 0.003370 0.002830
09881258 4.057030 0.000100 0.000020 -0.000010 0.001020
09892471 8.268080 -0.000420 0.000000 0.086990 0.000530
09896435 18.076700 -0.011460 0.000110 0.039320 0.028730
09899416 1.332560 -0.000140 0.000020 -0.035500 0.000510
09906590 1.686340 -0.000090 0.000090 0.012650 0.004800
09907505 39.206810 -0.230560 0.000150 -0.036990 0.019840
09911112 2.333650 -0.000250 0.000240 -0.067970 0.028640
09912977 1.887870 0.000010 0.000010 0.000520 0.000330
09913481 7.009480 0.000060 0.000030 0.004000 0.001370
09934208 9.058490 -0.089320 0.000020 0.137840 0.001220
09935245 0.784860 0.005510 0.000060 -0.007500 0.000750
09936698 5.712150 0.000310 0.000030 0.012800 0.002560
09944421 7.095210 -0.096800 0.000040 -0.065980 0.003750
09957351 0.495550 0.001850 0.000070 -0.006520 0.001950
09965206 16.227550 -0.024390 0.000010 -0.035190 0.001920
09966115 8.947430 -0.000170 0.000040 0.066990 0.002310
09970396 235.299400 -0.136590 0.000020 0.004290 0.004610
09971475 5.357410 0.000060 0.000020 0.034330 0.001540
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10001167 120.390970 -0.126740 0.002640 -0.048030 0.002170
10015516 67.692050 0.017090 0.026970 -0.048010 0.001660
10020423 7.448380 -0.018620 0.004840 -0.026660 0.010320
10026136 9.080190 -0.232380 0.000030 -0.180420 0.000620
10026457 9.934420 -0.102790 0.000030 0.091460 0.003160
10030778 29.473160 -0.011700 0.000080 0.024410 0.032690
10031409 4.143880 0.000060 0.000010 -0.008980 0.000800
10031808 8.589640 -0.020010 0.000020 0.152690 0.000990
10063044 1.009670 0.000270 0.000070 -0.002300 0.001570
10074700 365.650000 -0.019710 0.000010 0.146360 0.000840
10090246 2.286110 -0.001290 0.000080 0.004580 0.001880
10091110 383.860000 0.000030 0.001430 -0.011020 0.035150
10095469 0.677760 0.001230 0.000000 -0.012460 0.000080
10095512 6.017190 0.001100 0.000030 -0.002070 0.002240
10129482 0.846290 -0.000900 0.000040 -0.013240 0.001690
10152836 220.930000 -0.550330 0.000450 0.163030 0.004920
10155080 3.860900 -0.000050 0.000040 0.000680 0.002960
10156064 4.855940 0.000200 0.000020 0.002110 0.001570
10191056 2.427500 0.000900 0.000020 0.000390 0.000570
10198109 17.918740 -0.251390 0.000090 -0.232530 0.001400
10206340 4.564400 0.000100 0.000010 -0.008440 0.000320
10208759 4.575030 -0.000250 0.000010 0.001270 0.000310
10215422 24.847080 -0.291840 0.000020 -0.000540 0.003770
10215869 5.017270 0.000500 0.000050 0.003110 0.002200
10216186 0.605940 -0.000400 0.000100 0.030220 0.000670
10253421 0.428350 0.001090 0.000030 -0.029250 0.000960
10258558 20.867860 -0.020750 0.000020 0.039780 0.003320
10259029 7.061140 -0.134390 0.000100 0.019710 0.016290
10264202 1.035150 0.000350 0.000030 -0.027550 0.001310
10274244 13.683690 -0.069880 0.000010 0.089960 0.000740
10275074 4.362880 -0.000080 0.000090 0.012340 0.006350
10275887 9.726750 0.000190 0.000020 0.015160 0.000680
10292238 143.119260 -0.581690 0.000250 0.202270 0.002050
10294608 3.708980 0.000020 0.000000 -0.010200 0.000410
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10296163 9.296760 -0.246860 0.000420 -0.260930 0.005110
10332789 18.740730 -0.084140 0.000030 -0.237960 0.001310
10345862 58.288220 -0.310710 0.000030 -0.436230 0.000160
10346522 3.989140 0.002020 0.000010 -0.051670 0.000540
10352603 32.778990 -0.344990 0.000080 0.310650 0.000660
10363300 0.934930 0.000400 0.000060 -0.006720 0.001680
10383620 0.734560 0.000570 0.000040 0.008580 0.000470
10383696 8.487700 -0.065290 0.000050 -0.000420 0.007820
10385682 6.207460 0.000010 0.000000 -0.001490 0.000470
10420279 45.433250 -0.313880 0.000120 -0.384660 0.000840
10454401 12.180720 -0.038300 0.000010 -0.328260 0.000620
10454725 0.831770 0.002080 0.000100 0.027660 0.000900
10462826 50.467030 -0.184720 0.000120 0.059840 0.010610
10480952 4.074910 0.000080 0.000010 -0.002990 0.000620
10483644 5.110770 -0.001070 0.000240 0.011420 0.032640
10486425 5.274820 0.000230 0.000040 0.008870 0.003840
10487119 6.749360 -0.000430 0.000000 -0.038680 0.000500
10489521 3.224500 0.000120 0.000020 -0.001540 0.000850
10490960 5.682410 -0.077700 0.000010 -0.052400 0.000870
10491031 4.398140 0.000110 0.000010 -0.007020 0.000590
10518735 19.515000 -0.516910 0.000110 -0.077700 0.002700
10549576 9.089470 -0.003260 0.000100 -0.004220 0.003660
10581918 1.801860 0.000820 0.000020 -0.017370 0.000670
10592163 14.762950 -0.271960 0.000230 0.149330 0.005580
10593759 6.265210 0.001170 0.000130 0.004270 0.015510
10601579 8.098750 -0.017870 0.000040 -0.015900 0.003360
10616829 1.072930 0.002550 0.000130 -0.015270 0.002670
10619109 2.045180 0.000680 0.000080 0.004170 0.001990
10651945 25.367000 -0.480250 0.000150 0.056650 0.005420
10657664 3.273700 -0.000940 0.000070 -0.014400 0.000370
10661783 1.231360 0.000870 0.000060 0.001480 0.000480
10677186 100.401300 -0.258570 0.000220 -0.234900 0.003460
10686876 2.618430 0.000600 0.000250 0.008420 0.001830
10711551 10.692220 -0.051150 0.000010 -0.061290 0.002710
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10711913 19.408020 -0.078820 0.000330 -0.161080 0.024540
10727668 2.305900 0.000540 0.000100 -0.011240 0.000690
10735564 1.674980 0.000250 0.000040 0.007150 0.002150
10736223 1.105090 0.000660 0.000020 -0.028770 0.000640
10748621 286.180000 -0.296950 0.000030 0.039770 0.002510
10751515 56.406490 -0.113040 0.000040 0.146750 0.001740
10753734 19.406690 -0.495100 0.000070 -0.154850 0.000900
10794242 7.143710 -0.032560 0.000010 0.065890 0.000210
10809677 7.042180 0.000120 0.000260 -0.019010 0.044180
10849244 24.261680 -0.166090 0.000010 0.031180 0.001500
10857342 2.415920 0.003280 0.000010 -0.012120 0.000170
10857589 32.532530 -0.129480 0.000020 -0.134200 0.000100
10858720 0.952380 0.000050 0.000010 0.002080 0.000220
10909274 39.238140 -0.459360 0.000240 0.554460 0.000640
10920314 0.505170 0.001690 0.000070 0.012490 0.000520
10923260 7.436020 -0.374890 0.000110 0.146570 0.001970
10936427 14.361020 0.001440 0.000010 0.031540 0.000470
10937609 2.570430 0.000260 0.000060 -0.006700 0.002660
10965963 6.640240 -0.036520 0.000010 0.035310 0.000850
10973583 6.256340 -0.005500 0.000330 0.092530 0.058570
10987439 10.674600 -0.031560 0.000140 0.073960 0.020880
10991989 0.974480 -0.000360 0.000500 -0.013200 0.015180
10992733 18.525920 -0.343950 0.000060 -0.167760 0.000920
11071207 8.049640 -0.187490 0.000030 -0.173930 0.000910
11073223 11.578950 -0.234990 0.000090 -0.294410 0.001120
11076279 1.472580 0.002480 0.000040 -0.002380 0.001470
11124509 8.892910 -0.000010 0.000310 -0.071370 0.058900
11134079 1.260570 0.000040 0.000100 -0.019200 0.003870
11147276 3.133060 -0.000150 0.000020 -0.004260 0.001680
11198723 6.840310 -0.003690 0.000030 -0.003110 0.002930
11200773 2.489550 0.000340 0.000650 -0.000980 0.027580
11228612 2.980480 0.000110 0.000020 -0.000590 0.001000
11230837 0.446080 -0.000940 0.000040 -0.027100 0.001490
11232745 9.634240 -0.000090 0.000060 -0.008860 0.011780
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11233911 4.959900 0.000340 0.000020 -0.001370 0.001110
11234677 1.587420 0.001650 0.000030 0.081900 0.000890
11235323 19.668400 0.000110 0.000000 -0.006860 0.000050
11249624 65.583720 -0.820240 0.000520 -0.074200 0.008720
11250867 2.252820 0.000120 0.000040 0.001950 0.002080
11252617 4.478120 0.000400 0.000420 0.002990 0.022090
11287726 4.737710 0.000400 0.000040 0.010320 0.001980
11359305 28.487120 -0.452900 0.000650 0.185800 0.007360
11391181 8.617340 -0.170300 0.000020 -0.038860 0.001970
11391667 1.083740 0.000380 0.000240 0.016840 0.019180
11401845 2.161400 0.000440 0.000040 -0.000970 0.001520
11403216 4.053250 -0.000020 0.000060 0.010320 0.001900
11404644 5.902600 0.001380 0.001420 0.032070 0.017490
11409698 10.267830 -0.234160 0.000370 -0.018340 0.003080
11455484 6.142750 0.017880 0.000360 0.022490 0.002460
11499757 12.314400 -0.202280 0.000020 -0.156470 0.000730
11502172 25.431960 -0.090750 0.000040 0.008200 0.013450
11506235 20.413060 -0.242170 0.000360 0.052320 0.027400
11615481 65.432010 -0.529600 0.000010 -0.026590 0.000430
11616200 1.718650 0.001470 0.000140 -0.002510 0.001830
11616594 14.587610 -0.000170 0.000020 -0.000430 0.000740
11619964 10.368560 -0.065010 0.000030 -0.030820 0.004200
11656302 22.264810 -0.158370 0.000070 0.011900 0.003960
11662440 13.639460 -0.326530 0.000180 -0.075030 0.007340
11671429 112.463710 -0.365270 0.000110 0.250850 0.000980
11671660 8.710340 0.002480 0.000090 -0.019150 0.003350
11704044 13.765340 0.000090 0.000000 -0.024100 0.000890
11724210 5.746020 -0.000560 0.000340 -0.016710 0.009170
11768970 15.541350 -0.225920 0.001070 -0.395040 0.010140
11769146 282.965830 -0.083210 0.000410 0.247940 0.019000
11811454 2.274630 0.000250 0.000060 0.001400 0.001920
11817750 9.762550 0.006410 0.000030 0.000000 0.003870
11826400 5.889370 0.001590 0.001530 0.033130 0.042200
11858541 5.674350 -0.055790 0.000090 0.014420 0.009700
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11906217 37.910220 -0.512500 0.001360 0.140810 0.018740
11913071 3.747840 0.000580 0.000060 0.004520 0.001570
11922782 3.512930 0.000100 0.000010 0.003760 0.000710
11923819 33.159510 -0.259470 0.000060 0.135720 0.001740
11959569 46.148740 -0.128160 0.000000 0.079000 0.000060
11966557 60.297610 -0.138030 0.000130 0.201510 0.004330
11967004 1.941640 -0.000120 0.000310 0.024070 0.020470
11968490 1.078890 -0.000360 0.000090 -0.007770 0.004660
11975363 3.518420 0.000060 0.000010 0.002390 0.000500
12004679 5.042490 0.001770 0.000000 0.000600 0.000530
12004834 0.262320 0.000430 0.000030 0.003620 0.000890
12013615 8.202870 0.005460 0.000010 0.010300 0.000500
12017140 22.845240 -0.079470 0.000120 0.049480 0.006660
12022517 3.442710 0.002830 0.000060 -0.016470 0.004670
12022718 9.255330 0.000930 0.000120 0.044200 0.032330
12023089 0.623440 0.000280 0.000140 -0.006360 0.006260
12071006 6.096030 -0.000100 0.000020 0.006600 0.000800
12105785 31.953030 -0.070170 0.000210 -0.340200 0.007630
12108333 0.705450 0.000140 0.000010 -0.008580 0.000260
12164634 89.331220 -0.307280 0.000040 -0.019580 0.003720
12164751 2.630090 0.007100 0.000030 -0.022050 0.000730
12208887 53.501800 -0.013160 0.000020 -0.381520 0.002680
12217907 43.204590 -0.254300 0.000020 -0.317950 0.000190
12251779 14.844230 -0.385100 0.000070 0.121530 0.001260
12257908 2.615920 0.002580 0.000020 0.053440 0.000050
12302391 25.321730 -0.096110 0.000110 0.311800 0.003270
12306808 37.878480 -0.087350 0.000010 -0.050850 0.001300
12316447 17.907700 -0.368420 0.000110 0.009600 0.009990
12356746 1.004910 -0.000150 0.000060 -0.003460 0.002430
12367310 8.627490 0.011190 0.000200 0.067710 0.021510
12418816 1.521870 0.000170 0.000010 0.000160 0.000420
12470530 8.207260 -0.372780 0.000040 0.066510 0.001600
12557713 7.214720 -0.016360 0.000080 0.006720 0.014730
12644769 225.885000 -0.018200 0.000010 -0.123150 0.000870
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12645761 5.419140 0.000140 0.000100 -0.008130 0.009110
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Chapter 5 |
Conclusions and Future Work

5.1 Conclusions
First, we examined a sample of short-period planet candidates from Kepler for
which both a transit and an occultation were observed. We characterized the
eccentricity distribution of a sample of 50 short-period planet candidates using
transit and occultation measurements from NASA’s Kepler Mission. We evaluated
the sensitivity of our hierarchical Bayesian modeling and tested its robustness
to model misspecification using simulated data. We then analyzed actual data
assuming a Rayleigh distribution for eccentricity, and found the posterior mode for
the dispersion parameter to be σ = 0.081±0.014

0.003. We found that a two-component
Gaussian mixture model for e cosω and e sinω provided a better model than either
a Rayleigh or Beta distribution. Based on application of our favored model to real
Kepler data, we found that ∼ 90% of planet candidates in our sample come from
a population with an eccentricity distribution characterized by a small dispersion
(∼ 0.01), and ∼ 10% come from a population with a larger dispersion (∼ 0.22).

Moreover, we investigated how the eccentricity distribution correlates with
selected planet and host star parameters. We found evidence that suggests systems
around higher metallicity stars and planet candidates with smaller radii may come
from a more complex eccentricity distribution, but caution that these results may
be limited by large uncertainty in photometrically derived stellar metallicity and a
small sample size. Furthermore, we demonstrated that HB models are well-suited
for characterizing the eccentricity distribution using transit and occultation data.
Two broad classes of planet formation mechanisms have been proposed to explain

156



the formation of hot Jupiters, and studies suggest that multiple mechanisms likely
contribute to the formation of hot-Jupiters. Results of these two mechanisms
would likely have different distributions of orbital eccentricities, with disk migration
leading to the smaller dispersion of eccentricities, and planet-planet scattering
leading to a population with a larger dispersion of eccentricities. This motivates
us to consider interpreting evidence of a two-component mixture model for the
eccentricity distribution in terms of two formation models.

Next, we analyzed a sample of planet pairs from Kepler in near first-order
mean motion resonances with significant transit timing variation signals. We
characterized the mass-radius-eccentricity distribution of this sub-population of
transiting planets using Transit Timing Variations (TTV) observations from NASA’s
Kepler mission. Kepler’s precise measurements of transit times (Mazeh et al., 2013;
Rowe & Thompson, 2015a) constrain the planet-star mass ratio, eccentricity and
pericenter directions for hundreds of planets. In particularly favorable cases,
strongly-interacting planetary systems allow TTVs to provide precise measurements
of masses and orbital eccentricities separately (e.g., Kepler-36, Carter et al. (2012)).
For each of these precisely characterized systems, there are several planetary systems
harboring at least two planets near a mean motion resonance (MMR) for which
TTVs provide a joint constraint on planet masses, eccentricities and pericenter
directions (Hadden & Lithwick, 2014).

Unfortunately, a near-degeneracy between these parameters leads to a poste-
rior probability density with highly correlated uncertainties. Nevertheless, the
population encodes valuable information about the distribution of planet masses,
orbital eccentricities and the planet mass-radius relationship. We characterized
the distribution of masses and eccentricities for near-resonant transiting planets
by combining a hierarchical Bayesian model with an analytic model for the TTV
signatures of near-first-order-resonant planet pairs (Lithwick et al., 2012) to ac-
celerate exploration of this complex parameter space. By developing a rigorous
statistical framework for analyzing the TTV signatures of a population of planetary
systems, we improved upon previous analyses. For example, our analysis includes
transit timing measurements of near-resonant transiting planet pairs regardless of
whether there is a significant detection of TTVs, thereby avoiding biases due to
only including TTV detections.

Finally, we applied the methods from our eccentricity distribution analysis
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presented in Chapter 2 on a sample of 795 eclipsing binary (EB) systems, for which
we have transit and occultation projected eccentricity measurements. First, we
applied a two-component Gaussian mixture HB model to the sample of EB projected
eccentricities. In this HB model regime, we found that the mixture fractions and
dispersions are flow = 53 ±2.2

1.6 %, fhigh = 47 ±1.8
1.9 %, and σlow = 0.0067±0.0003

0.0003,
σhigh = 0.21±0.007

0.005, respectively. Here, “low” refers to the smaller dispersion
component and “high” refers to the component where EBs may have significant
eccentricities. Next, we applied an HB model using a piece-wise function, where the
parameters for the eccentricity distribution depend on whether the orbital period
are below or above a threshold in orbital period. In this scenario, the threshold,
which we call the period break point, is simultaneously inferred along with the
eccentricity distribution for each sub-population below and above the break point.
In the case where we allowed the eccentricity distribution on either side of the
period break point to be modeled as a mixture of two Gaussian distributions, we
found that the inferred period break point is at 10.74±0.26

0.027 days. This is consistent
with previous findings from Latham et al. (2002); Mayor et al. (2001), where they
observed a period break point at around 10 days for EBs from disk and halo
parent populations, indicative of tidal circularization operating on this population
of short-period EBs.

Furthermore, the eccentricity distribution of EBs below ∼ 10.74 days, has
population level parameters flow = 0.72±0.024

0.022, fhigh = 0.28 ±0.025
0.02 %, and σlow =

0.0055±0.0004
0.0002, σhigh = 0.1±0.0047

0.0048 for the mixture fractions and dispersions, respec-
tively. The eccentricity distribution for EBs with periods above ∼ 10.74 days
has population level parameters flow = 0.13±0.024

0.023, fhigh = 0.87 ±0.027
0.02 %, and

σlow = 0.018±0.0035
0.0018, σhigh = 0.26±0.0074

0.011 for the mixture fractions and dispersions,
respectively. This suggests that ∼ 72% of EBs below the inferred period break
point are very circularized, where as ∼ 87% of EBs above the inferred period break
point can take on a wide range in eccentricity values including some with significant
eccentricities. It will be interesting to apply our analysis beyond orbital period and
eccentricity in the future, perhaps investigating any correlations of eccentricity with
the EB mass ratio, tidal circularization times and EB metallicity. Furthermore, an
important part of the development of an HB model is testing for model robustness
and refining model set up iteratively. Model comparison techniques are being
developed in order to quantitatively evaluate whether the data are able to constrain
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a given model better than another given model. We hope to develop practical
model comparison techniques for these analyses in the future.

5.2 Future Work
This dissertation research has largely focused on sub-samples of Kepler planets,
tackling each specific problem using hierarchical Bayesian (HB) inference. In
§1.2, we explain that without properly accounting for the impact of selection
effects, detection-efficiency/completeness and the false-positive-rates/reliability of
the Kepler sample, biases will affect estimates for the occurrence rate of Earth-like
planets on year long orbits around solar-like stars, η⊕, and other population level
science will remain significantly less accurate. To address the problem of properly
accounting for selection effects, completeness, and reliability, future research should
develop a comprehensive analysis of the Kepler candidate sample, building a
framework of hierarchical Bayesian models for probabilistic population-level analysis.
This research should incorporate the forthcoming advanced Kepler data products
and account for selection effects and biases better than previous studies. The results
of these inferences can help develop tools for high-impact exoplanet population
synthesis with the ability to incorporate theoretical models with ease, which are
useful for testing hypotheses, planning of future science objectives, and motivating
new research projects and mission design.

The goals of future research will be to achieve the following:

1. A fully marginalized frequency of small, potentially habitable planets orbiting
F, G, K, and M stars, enabling a comprehensive result for the Kepler mission
objective to discover the occurrence rate of Earth analogs.

2. An encompassing distribution linking planet and host star properties observed
by Kepler, uncovering correlations between planet and host star properties
that will support or refute planet formation theories.

3. Flexibility to incorporate data products from continued ground based ob-
servations of exoplanet systems, the upcoming Transiting Exoplanet Survey
Satellite (TESS), and the European Space Agency’s upcoming mission de-
signed for astrometry (GAIA) into the developed population models, informing
future mission objectives and design.
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4. Exoplanet population synthesis tools based on Kepler data allowing for inter-
changeable theoretical models and a platform to compare existing population
models to the Kepler sample, providing a framework for theorists to compare
theoretical models to the Kepler data.

Finalizing the Kepler mission objectives in a comprehensive Bayesian framework
is not only paramount for the full realizations of the Kepler mission but sets a
new standard for the quality of analysis required to draw conclusions from data
in future exoplanet surveys. The computing resources and theory of today make
it possible to implement these techniques as a gold standard in future population
analysis efforts.

The Kepler pipeline detects transiting planets that 1) have enough SNR to
be detected and 2) transit their host star as seen by Kepler. This introduces
selection effects into the sample of planets. To reach towards studying the exoplanet
population as a whole, we must work to account for these selection effects in our
population studies. Future research should go beyond previous studies by accounting
for these selection effects in two ways: first by testing robust population inference
models; and secondly, by incorporating the forthcoming advanced data products
from the Kepler mission planned for release on or before September 2017. These
data products will include a catalog of exoplanet candidates 1) obtained from
a uniform search process using auto-vetting (McCauliff et al., 2015; Catanzarite
et al., 2015), 2) the associated measurements of pipeline completeness (detection
efficiency) (Christiansen et al., 2013) and reliability (false positive rate) for the
Kepler pipeline (Désert et al., 2015), and 3) posterior distributions of uniform
planet and star properties that serve to properly account for the non-negligible
measurement uncertainties (Rowe & Thompson, 2015a) and are a record of the
uncertainty introduced by unaccounted-for systematics and stochastic processes in
nature. These data products will be optimized for statistical analyses built on a
Bayesian framework - the state-of-the art in probabilistic data analysis.

Constructing a sophisticated probabilistic population analysis using the up-
coming data products described above is paramount for the full and accurate
realization of the Kepler mission’s science goals. Developing comprehensive Ke-
pler data products that are optimized for a Bayesian framework has been a large
collaborative effort years in the making, and these products are only now nearing
completion. With this advancement on the horizon, timely development of tested
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state-of-the-art population-level analysis tools are needed. Using the upcoming
Kepler data products is necessary to properly calculate the occurrence rates of the
Kepler sample, among other population distributions of interest. The completed
baseline data products being developed by the Kepler science team will include the
posterior distributions of the properties describing planet candidate and host stars
obtained through transit photometry and follow-up observations. These posterior
distributions are probabilistic estimates for the planet candidate and host star
parameters, encapsulating the information regarding systematics and noise.

By using the upcoming catalog of planet candidate and host star posterior
distributions in a hierarchical Bayesian Framework and employing well-motivated
noise models, the planet candidate population can be characterized in a robust
probabilistic manner. Furthermore, characterizing the Kepler planets and their
occurrence rates with more accuracy is possible with hierarchical Bayes because
incorporating the cataloged posteriors of the parameter measurements being studied
factors in their large fractional measurement uncertainty (e.g., the ratio of the %68.3
credible interval to the median value), and provides the framework to properly
characterize the noisy incomplete Kepler data.

Jessie Christiansen of the Kepler science team has done work to account for many
different effects that can impact the empirical detection efficiency of the current
Kepler pipeline (Christiansen et al., 2013). This can now be incorporated into an
advanced auto-vetting process. The current catalog of Kepler planet candidates
was constructed using a pipeline that selected many threshold crossing events (or
incidents of potential transits) (Tenenbaum et al., 2013, 2012; Jenkins et al., 2010b).
The Threshold Crossing Event Review Team then went through and selected cases
that appeared to be real transits (Batalha et al., 2010). Although this method
is best for detecting planets, it created a catalog of planet candidates that were
classified by different people with different biases. To solve this problem we will use
the upcoming catalog of planet candidates, which will be selected via an auto-vetter.
The new auto-vetter can be used to better classify the threshold-crossing events and
create a more uniformly selected list of planet candidates (Catanzarite et al., 2015;
Jenkins et al., 2014). This auto-vetter, although worse at finding planet candidates
than humans, is reproducible, removing many of the human selection effects in the
current catalog. All current population studies of the Kepler sample to date ignore
this issue.
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In Chapter 2, we show that the fractional uncertainties and population size
impacts the ability of data to constrain particular hierarchical Bayesian models in
eccentricity parameter space. More complex models may require more observations,
more precise measurements, or both. For example, in Chapter 4, we successfully
constrain a period-eccentricity distribution model for eclipsing binary stars from
Kepler, using a sample of 795 precisely measured projected eccentricities. We
attempted to apply this model the the projected eccentricities of a sample of
50 short-period planet candidates from Kepler in Chapter 2, however, the small
sample size limited our ability to infer the period-eccentricity distribution. With
this in mind, the procedure for developing a comprehensive population model,
incorporating the full catalog of Kepler planet candidates, can be structured to
harness the power of the large sample size, which could support more complex
models.

Furthermore, by initially characterizing the eccentricity distribution of a subset
of Kepler planet candidates in a probabilistic manner, future research can include
the impact of eccentricity in future models. Eccentricity has largely been ignored for
Kepler population studies, but the impact can be non-negligible and may influence
the empirically measured detection efficiency of the Kepler planet candidates
Kipping (2014b). Planets on eccentric orbits can have shortened or lengthened
transit durations, which transit injection methods may need to account for in
the future. The research in this dissertation can inform advancements in the
characterization of the detection efficiency via the incorporation of the eccentricity
distribution.

Many practical choices for population models exist. Future research should aim
to test different population models and the impact of the model on the results.
Robust models will be less sensitive to outliers in the data, and posterior solutions
will be insensitive to small departures in the choice of the model. To accomplish
this, models such as a single Normal distribution, single beta, or power law (Pareto)
distribution can be used when characterizing planet and host star parameters. The
complexity of the models can then be increased gradually, trying mixture models to
look for evidence of multiple populations as implemented in this dissertation research.
In some cases, Gaussian process models, a nonparametric Bayesian approach, can be
used to model the detailed structure in the data. After incorporating these findings,
transitioning back to simpler models can improve computational tractability. With
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this procedure, the population models can be refined to increase the number of
variables being modeled in a robust manner, and capturing correlations between
these variables. Using the results of the full joint-posteriors, occurrence rates can
be calculated by marginalizing over all other parameters to obtain results with
improved accuracy. The discovery of correlations between planet and host star
properties within the joint posterior can help to support or refute planet formation
theories.

There are multiple approaches for developing population synthesis models:
(1) Use simple analytical relations as physical models to infer information about

planet parameters that are not observable with Kepler. These simple relations will
relate model parameters to transit observables from the Kepler data. Examples
of this approach from the literature include: the envelope fraction in Wolfgang
& Lopez (2015), transit timing variation amplitude for mass-radius-eccentricity
relation in Shabram et al. (2015 accepted to ApJ ), and the rocky gaseous transition
in Rogers (2015a).

(2) Use semi-analytical approximations for planet formation models from theo-
rists (e.g., Schlichting, 2014; Ida & Lin, 2004) as physical models in a hierarchical
bayesian model. By coupling these analytic planet formation models with the infer-
ence models, we can infer the values of the tunable parameters in these analytical
models that give a good match to Kepler data.

(3) Forward model: Obtain simulated catalogs of planets from detailed the-
oretical population synthesis models (e.g., Kenyon & Bromley, 2015; Raymond
et al., 2014). The theoretical population synthesis models used in this forward
process will be computationally expensive and poorly approximated by analytical
relations. Future research can convert these catalogs into simulated Kepler data
and run these simulated observations through inference models developed for the
Kepler data. We can then compare the population level parameters of the simu-
lated data to the population level parameters of the updated Kepler data. These
comparisons can help tune and constrain theoretical planet formation simulations.
Furthermore, these inference models can serve as analytical approximations for
these computationally expensive planet formation models.

In this dissertation, we use summary statistics of the planet and host star
properties. Using summary statistics and posterior distributions of probabilistic
parameter estimates in lieu of pixel-level data renders the hierarchical model more
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computationally tractable. This allows us to treat each observation of each system
as independent variables. In reality, the pixel-level observations of each system are
not independent (e.g., data from one pixel can be affected by photons hitting other
pixels on the same detector from electronic artifacts), however, using these summary
statistics and in turn posteriors is an excellent approximation. In future research, we
encourage the use of full posterior distributions of probabilistic parameter estimates,
as the reporting of full posteriors in the literature and cataloged data becomes the
norm.

Accounting for selection effects from geometrical transit probability, pipeline
sensitivity, reliability, and the large measurement uncertainties is critical when
studying the Kepler planet candidates as a representative sample of all planets.
In future research, an innovative aspect will be including the large measurement
uncertainties in the data. An example case is illustrated in Figure 1 below. Figure
1 shows a toy model of the detection efficiency function versus the SNR. In previous
studies, point estimates of the SNR were used in the detection efficiency function.
This introduces many problems because in reality the SNR is imprecisely known.
The figure shows how using a point estimate instead of the posterior distribution
for the SNR leads to systematic biases. When including the detection efficiency
in hierarchical Bayesian models, we need to marginalize over the SNR to properly
include the large measurement uncertainty. This effect is particularly pronounced
for planets near the detection threshold, and thus is critically important when
pushing the limits of Kepler data to measure the frequency of Earth-size planets.

The Kepler mission objective to accurately characterize the occurrence rate of
Earth analogs has yet to be accomplished. Many studies have chiseled away at this
goal but have not yet yielded a complete analysis. Future research will be able to
complete this analysis at a state-of-the-art level, exactly when the advanced data
products become available. Furthermore, many outstanding questions about planet
formation remain. By searching for and examining correlations between planet
and host star properties, we can start to gain insight about the mechanisms that
impact how a planetary system plays out. For instance, it would be interesting
to learn if there exists fundamental differences between planetary systems that
form around cool dim stars versus more massive hotter stars (Burke et al., 2015;
Moorhead et al., 2011). The advanced Kepler data will be able to place empirical
constraints on these mechanisms.
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Figure 5.1: Probabilistic detection efficiency toy model. The red curve shows a
detection efficiency function, the black dashed line shows a point estimate of the
SNR, and the blue curve shows the full posterior measurement of the SNR for this
example observation. Using the posterior for the measured SNR instead of a point
estimate avoids biases in the inference models.

The inference models developed in future research could provide the means for
theorists to synthesize exoplanet populations for their studies. An example would
be understanding planet density. The Kepler sample provides us with information
about planet radii, but only some systems have measured masses (calculated from
transit-timing-variations for planets in near-mean-motion resonances, or from radial
velocity observations) (Weiss & Marcy, 2014). Theoretical models incorporated
into the population inference models will help to inform us about the distributions
of planet bulk density and composition regimes (Wolfgang & Lopez, 2015). These
studies provide clues as to whether the planet has formed in situ or migrated.

By understanding the types of planetary systems that exist around different
types of stars, we can inform future mission objectives and design. A straight
forward example for future transit observations is the SNR for the observed planet-
to-star radius ratio. If planetary systems around most stars are comparable in
size and orbital architecture, then stars with smaller radii, such as M stars, would
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typically be better targets for detecting planetary systems. On the other hand, if
planetary systems scale with host star surface density (Youdin & Kenyon, 2013;
Johnson et al., 2010), the frequency of small planets around M stars that are
amenable to Doppler/transit spectroscopy characterization might be low. M stars
peak in the infrared where low energy photons and increased read noise make
observations more challenging than in the optical. Therefore, characterizing even
the nearest such planets with existing/near future observatories may be impractical.

Furthermore, transit spectroscopy is practical for planets with puffy atmospheres
and low surface gravities. Although many targets in the Kepler field are too faint
for current transit spectroscopy follow-up, understanding the distribution in planet
density and composition could provide insight for future atmospheric studies with
missions such as the James Webb Space Telescope (Seager et al., 2009). Moreover,
the Kepler sample will be much larger and more uniform than future exoplanet
observation missions. For instance, TESS will find planets around brighter targets
but will not characterize the population well (Sullivan et al., 2015). By using the
population information gained through the robust analysis of the Kepler sample,
planets found by TESS can be better selected for follow-up observations and
atmospheric characterization.
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