
The Pennsylvania State University
The Graduate School

College of Engineering

ROBUST MODELS FOR PROPERTY TESTING

A Dissertation in
Computer Science and Engineering

by
Kashyap Dixit

© 2015 Kashyap Dixit

Submitted in Partial Fulfillment
of the Requirements

for the Degree of

Doctor of Philosophy

December 2015

The dissertation of Kashyap Dixit was reviewed and approved∗ by the following:

Martin Fürer
Professor of Computer Science
Dissertation Co-Advisor
Co-Chair of Committee

Sofya Raskhodnikova
Professor of Computer Science
Dissertation Co-Advisor
Co-Chair of Committee

Piotr Berman
Professor of Computer Science

Jason Morton
Professor of Mathematics

Raj Acharya
Professor of Computer Science
Head of Department

∗Signatures are on file in the Graduate School.

ii

Abstract

Property testing [Rubinfeld Sudan 96,Goldreich Goldwasser Ron 98] is a formal framework for
studying approximate sublinear time randomized algorithms for decision problems. These al-
gorithms have black-box query access to the input functions. Property testers are required to
distinguish between functions that satisfy a given property from those that are ‘far’ from satisfying
the property. Informally, a function is far from satisfying a given property if many function values
need to be changed to satisfy the property. The notion of distance from a property is central to
property testing. The distance of a function f : D → R from a property P is the smallest distance
between f and any function g : D → R that satisfies P . One of the most widely studied model
[Rubinfeld Sudan 96,Goldreich Goldwasser Ron 98] uses the relative Hamming distance as the
notion of distance between two functions. That is, the distance between two functions f : D → R
and g : D → R is the fraction of domain points on which f and g differ. A long line of work
has been dedicated to the design and study of sublinear time algorithms for a number of function
properties using this model.

This works focuses on studying practical generalizations of the aforementioned model. In
the first part, we work with generalizing the notion of distance between functions. The relative
Hamming distance can also be viewed as the distance between functions with respect to the uniform
distribution. As part of our study, we design optimal testers for a large class of functions properties,
called the bounded derivative properties, when the distance is measured with respect to a known or
an unknown product distribution. The class of bounded derivative properties include well studied
function properties like monotonicity and the Lipschitz property.

The second part of our work focuses on a generalization of the input access model. In many
practical scenarios, a black-box access to the whole input function might not be possible. Some of
the function values might not be available to the tester due to privacy requirements or adversarial
erasures.We refer to such domain points as erased. The location of an erasure becomes known to
the tester only upon querying the respective domain point. We design efficient erasure-resilient
sublinear time testers for a large number of properties including the bounded derivative properties
and convexity. Some of our testers are almost optimal, even in the case when a constant fraction of
points are erased.

iii

Table of Contents

Acknowledgments vi

Chapter 1
Introduction 1
1.1 Testing Bounded Derivative Properties With Respect To Product Distributions . . 3
1.2 Erasure-Resilient Property Testers . 4
1.3 Organization . 6

Chapter 2
Preliminaries 7
2.1 Properties We Consider . 8

2.1.1 Monotonicity. 8
2.1.2 The Lipschitz Property. 9
2.1.3 Bounded Derivative Properties. 9
2.1.4 Convexity of Functions. 9

Chapter 3
Optimal Property Testing on Product Distributions 11
3.1 Introduction . 11

3.1.1 Main Results . 11
3.1.2 Technical Highlights . 13
3.1.3 Search Trees and Monotonicity . 15
3.1.4 Lower Bounds for Product Distributions. 15
3.1.5 Organization. 16

3.2 Quasimetric Induced by a Bounding Family . 16
3.3 Testers For the Line [n] . 18
3.4 The Dimension Reduction Theorem . 19

3.4.1 No r-Violations Imply No r-Cross Pairs 22
3.4.2 Reducing From Arbitrary Product Distributions 26

3.5 Search Trees and BDP Testing . 29

iv

3.6 Testers For the Hypergrid . 29
3.7 Lower Bounds . 30

3.7.1 Reduction from Monotonicity to a Bounded-Derivative Property 30
3.7.2 Monotonicity Lower Bound Framework 32
3.7.3 The Line . 32
3.7.4 The Boolean Hypercube . 34
3.7.5 The Hypergrid . 37

3.7.5.1 Intuition . 37
3.7.5.2 Setup and Construction . 38

Chapter 4
Erasure-Resilient Property Testing 44
4.1 Introduction . 44

4.1.1 The Erasure-Resilient Testing Model . 45
4.1.2 Our Results . 46
4.1.3 Monotonicity on the Line . 46
4.1.4 BDPs on the Hypergrid . 47
4.1.5 Convexity on the Line . 47

4.2 Erasure-Resilient Monotonicity Tester For the Line 48
4.2.1 Analysis Outline and Technical Ingredients 49
4.2.2 Analysis of the Tester . 51

4.3 Erasure-Resilient BDP Testers For the Hypergrid 53
4.3.1 Erasure-Resilient BDP Tester For the Line 54
4.3.2 Erasure-Resilient Dimension Reduction 56
4.3.3 Erasure-Resilient BDP Tester For the Hypergrid 58

4.4 Erasure-Resilient Convexity Tester For the Line 61
4.4.1 Technical Ingredients and Analysis Overview 61
4.4.2 Analysis of the Tester . 64

Bibliography 68

v

Acknowledgments

I would like to express my heartiest gratitude to my advisors Martin and Sofya. Martin has always
given me a lot of encouragement, in all aspects of my life. He gave me total freedom to work on the
topics I like to. The discussions with him were always constructive. Every conversation with him
has made me feel better and encouraged me to work and prove results. Sofya has introduced me to
the beautiful area of property testing, where I could produce new results which are a part of this
thesis. I would like extend my gratitude towards all the instructors of Penn State whose courses
have been instrumental in enriching my knowledge and shaping my research. I would also like to
acknowledge my collaborators who have been an important part of all the research I have been a
part of during my PhD: Deeparnab Chakrabarty, Martin Furer, Madhav Jha, C. Seshadhri, Sofya
Raskhodnikova, Abhradeep Thakurta and Nithin Varma. Finally, I would like to thank my family
members for standing by all my decisions and endeavors.

I also extend my humble gratitude towards the National Science Foundation whose grants,
namely, CCF-0964655, CCF-1320814 and NSF career award CCF-0845701 supported my research.

vi

Dedication

To my parents (Mr. Harish Kumar Dixit and Mrs. Alka Dixit)

vii

Chapter 1 |
Introduction

Big data is a broad term for data so huge that traditional data processing algorithms perform poorly
on it. In some cases, the studied data might be so massive that it does not fit into memory. For
such data, even the linear time computation may be too slow or infeasible. In this thesis, we
study algorithms that run in time sublinear in the size of the input data. In particular, they access
only a small portion of the entire data and output the correct answer with high probability. More
specifically, we investigate sublinear time algorithms that determine whether the data approximately
satisfies some desired property.

Formally, we view a dataset as a function over some discrete domain D. For example, the
classical problem of testing whether an array of n numbers is sorted in nondecreasing order can be
viewed as a problem of testing whether a function f : [n]→ R is monotone (nondecreasing), where
[n] denotes the set {1, 2, . . . , n}. In this case, data at position i in the list corresponds to the value
of function f at index i. We can further generalize the property of monotonicity to two dimensional
arrays or grids. In this case, entries in every row and column must be sorted in a non-decreasing
order. In general, for any number of dimensions say d, we can test if function f : [n]d → R is
monotone. The set [n]d is referred to as hypergrid. Another important property to test is convexity.
A convex function f : [n] → R is amenable to many efficient optimization algorithms used in
machine learning. In general, we study properties of real-valued functions on hypergrid domains.

Property testing [RS96,GGR98] is a formal framework for studying approximate sublinear time
algorithms for decision problems. Property testers are required to distinguish between functions
that satisfy a given property from those that are ‘far’ from satisfying the property. Informally, a
function is far from satisfying a given property if many function values need to be changed to satisfy
the property. The notion of distance from a property is central to property testing. The distance
of a function f : D → R from a property P is the smallest distance between f and any function
g : D → R that satisfies P . One of the most widely studied model [RS96, GGR98] uses the relative

1

Hamming distance as the notion of distance between two functions. That is, the distance between
two functions f : D → R and g : D → R is the fraction of domain points on which f and g differ.

Property testers have found applications in many areas. Testers for monotonicity have ap-
plications in query optimization [BKF+11]. Property testers have also been used in program
checking [RS96], vision [KRTA13, RT14], data privacy [JR13, DJRT13] and PCP [ALM+98].

The goal of this work is to study practical generalizations of this model to overcome its current
limitations. The first limitation is the use of relative Hamming distance as notion of distance of a
function from a given property. The relative Hamming distance between two functions f : D → R
and g : D → R can be rewritten as Prx∈UD[f(x) 6= g(x)]. Here, U denotes the uniform distribution
over D and the notation x ∈U D stands for an x sampled uniformly randomly from D. The use of
uniform distribution to define distance makes the model rather restrictive. A natural generalization
of this notion of distance would be Prx∈ΓD[f(x) 6= g(x)], where Γ is an arbitrary distribution
defined over D. Many learning algorithms use this notion of distance. The authors in [GGR98]
note that this formulation of distance is inspired by PAC learning model [Val84]. Shirley and
Halevy [HK08a, HK08b] have designed efficient testers for this model for many problems. But for
monotonicity (an important property we study) over hypergrid, they give strong hardness results
in [HK05]. Therefore, instead of arbitrary distributions, we work with distances defined with respect
to an important class of distributions called product distributions.

A product distribution Π over domain [n]d is defined as follows. Each coordinate xi of a
domain point {x1, x2, . . . , xd} (1 ≤ i ≤ d) is a random variable coming from a distribution
Πi that is statistically independent from the distribution Πj for j 6= i. We note that [AC06]
were first to design monotonicity testers with respect to product distributions. Our monotonicity
testers [CDJS15] are strictly better than [AC06] in the cases where underlying product distribution
on [n]d is known or unknown. In [DJRT13], we define a new model for testing privacy and show
that the Lipschitz property testers with respect to product distributions are important for designing
efficient privacy testers. Our optimal Lipschitz testers from [CDJS15] further improve our privacy
testers in [DJRT13]. We study this model in the first part of thesis, where we design testers for a
large class of properties called bounded derivative properties (BDPs) that includes monotonicity
and the Lipschitz property. 1.

Another line of work that we pursue is to generalize property testing to scenarios where oracles
have limitations. Most algorithms studied in property testing until now assume the oracle to return
function values at all queried domain points. However, in many applications, this assumption

1We note that apart from models discussed henceforth, we have also worked on testing bounded derivative properties
in Lp-testing model defined by [BRY14a]. have not included it in this thesis to make it coherent.

2

is unrealistic. The oracle may be unable to reveal parts of the data due to privacy concerns, or
when some of the values get erased by mistake or by an adversary. Motivated by these scenarios,
we propose to study sublinear algorithms that work with partially erased data. The tester has to
check whether the function restricted to the accessible (non-erased) part of the domain satisfies a
given property or is ‘far’ from satisfying it. The distance between two functions in this case is the
Hamming distance between the functions restricted to the non-erased domain points. Our testers
can handle a large fraction of erasures, while still having sublinear query complexity.

The rest of this chapter is organized as follows. In Section 1.1, we give an overview of testing
bounded derivative properties with respect to product distribution. In Section 1.2, we discuss
erasure-resilient property testing and give a glance of the results for a large number of properties
including BDPs, convexity and linearity.

1.1 Testing Bounded Derivative Properties With Respect

To Product Distributions

Bounded derivative properties (BDPs) capture a large class of well studied properties. For example,
monotonicity, one of the first and most studied properties in the literature, is a bounded derivative
property as discussed in Chapter 3. Another well studied BDP is the Lipschitz property of functions.
With its application to privacy [JR13,DJRT13], it has gained a lot of attention recently. In particular,
we show in [DJRT13] how a Lipschitz-tester can be used to test the privacy preserving property of
an algorithm that makes queries on a sensitive database. These properties are generally studied for
the functions defined over hypergrid domains [n]d (Definition 2.0.1). In this work, we give optimal
testers for functions f : [n]d → R when distance from a property is measured with respect to a
known or an unknown product distribution (see Definition 2.0.4). Our work subsumes a plethora of
work on monotonicity and the Lipschitz property for uniform and product distribution in the past.

One of the main contributions of this work is an optimal dimension reduction lemma. Roughly,
it says that if an input function is "far" from satisfying a given BDP P , then it is likely to be far
from P when restricted to a randomly sampled axis-parallel line in [n]d. Dimension-reduction
has been studied in the previous works [GGL+00, DGL+99, AC06, HK08a, JR13] and might be of
independent interest. Our dimension reduction reduces the problem of testing a given BDP on [n]d

to testing the function on O(d/ε) randomly sampled axis-parallel lines. Therefore, if we have an
optimal tester for the functions f : [n] → R, we can use dimension reduction to get an optimal
tester for functions f : [n]d → R .

3

To get optimal tester for f : [n]→ R, we use binary search tree based tester. First we show that
if f is ε-far from satisfying a given property P , then we can find a violation on function restricted
the points that lie on a randomly chosen path in any binary search tree with probability at least ε.
Note that the query complexity in an iteration is at most the length of the longest search path in the
chosen binary search tree. Therefore, to minimize the query complexity, we choose the optimal
binary search tree for a given distribution (see Definition 2.0.5). This is the tree which minimizes
the expected depth of a path with respect to the input distribution. Note that the smallest expected
depth with respect to a given distribution is at most O(log n), which is the depth of a balanced
binary tree. We can find the minimum expected depth with respect to a distribution using Knuth’s
algorithm [Knu73].

We complement this result by giving matching lower bounds for the worst query complexity
of any (even adaptive, two-sided) tester for bounded derivative properties. To this end, first we
give a reduction from testing monotonicity to testing any bounded derivative property. Therefore,
giving the lower bound on query-complexity for testing monotonicity suffices for all BDPs. Then
we give a lower bound for testing monotonicity with respect to a product distribution by using the
framework from [Fis04, CS13b]. All the details are present in Chapter 3.

1.2 Erasure-Resilient Property Testers

Most previously studied models assume a black-box oracle access to the input function they test.
But this assumption may not be true in many realistic situations. Some subset of domain might be
inaccessible to the tester due to privacy reasons. Also, the the function value might be accidentally
or adversarially erased. A tester may not know about an erasure unless it queries that particular
point. Most of the testers in standard property testing model [RS96, GGR98] are not very useful
in these situations. We define a more robust property testing model called erasure model in order
to design useful testers in this setting. We give efficient testers for a large number of properties
including bounded derivative properties (BDPs), convexity and linearity, etc. We study algorithms
that work in the presence of adversarial erasures. In other words, the query complexity of an
algorithm is the number of queries it makes in the worst case over all α-erased input functions.

In Chapter 4, we design new erasure-resilient testers for the bounded derivative properties and
convexity. Our testers can handle a large fraction of erasures and still output correct answer with
high probability by making poly-logarithmic (in domain size) number of queries. For functions
f : [n] → R, our BDP tester has optimal dependence on n, yet it can handle a large fraction
of erasures. Our convexity tester for functions f : [n] → R can also handle a large fraction of

4

erasures while still having poly-logarithmic query complexity. Note that all our testers are optimal
when there are no erasures. Our testers are based on traversing random binary search paths over
non-erased points in [n]. In order to bound the query complexity and prove correctness of our
testers, we required new structural lemmas about randomized binary search paths.

First we give a brief overview of our monotonicity tester for functions f : [n]→ R. We can get
a tester for any BDP P of f : [n]→ R by reducing the property of testing BDP to the problem of
testing monotonicity. For monotoncity, we traverse a randomized binary search path over non-erased
points as follows. In the beginning, we keep querying the randomly sampled domain points in the
[n] to get a non-erased point called target point denoted by t. Then, we construct a randomized
search path to t. First, we randomly sample and query points in [n] until we get a non-erased point
a1 in [n]. We stop if a1 = t. We reject if the pair a1, t is violated with respect to monotonicity. Else
we choose the one of the sets {1, 2, . . . , a1 − 1} or {a1 + 1, a1 + 2, . . . , n}, that contains t. Then
we recursively proceed in the appropriate subset. We do this until we reach the point s. Note that
we traverse a randomized binary search path in the above process. The above process of traversing
a randomized search path is repeated O(ε−1) times. [Dev86] proved that the length of a randomized
search path is O(log n) with high probability. Using our new combinatorial Lemma 4.2.2, we prove
that with high probability, all the sets encountered while creating the randomized search paths (that
is, the ones containing the target point t) have sufficiently high density of non-erased points. Since
the probability of finding a violation in a randomized search path is at least ε, we get a tester with
logarithmic complexity.

The tester for convexity of functions f : [n]→ R is slightly more involved. This tester is also
based on the construction of a randomized binary search path. Here too, we test for a goodness

condition in each interval that we encounter while randomized path construction. Note that the best
known tester for convexity of functions f [n]→ R by [PRR03] also test for a goodness condition
like us. But their goodness condition is deterministic and hence not very useful in the erasure-model.
First we come up a more general goodness condition that is erasure-resilient. This also helps us
proving a more general fact. If a function is ε-far from convexity, then with probability at least
ε, it violates the goodness condition in at least one of the intervals on every randomly chosen
binary search path in a given binary search tree. In particular, this is true even for a randomly
constructed binary search path. Therefore, here we check for the goodness condition on O(ε−1)
randomly constructed binary search paths. In the first step we check for the goodness condition
in the set [n]. Eventually, we have to check goodness condition in O(ε−1 log n) contiguous sets
that we encounter in the tester. There is another complication. The goodness condition needs to
query consecutive non-erased points. This requires the tester to perform a linear search in every

5

interval that it encounters. This could result in querying a linear number of points in some interval
encountered by the tester. To overcome this issue, we prove another combinatorial Lemma 4.4.1
about every randomized binary search path. Corollary 4.4.6 of Lemma 4.4.1 is shows that with
high probability, the number of queries made during the linear search in each interval is at most
O(log n).

1.3 Organization

We give some preliminary definitions in Chapter 2. In Chapter 3, we present our optimal testers for
bounded derivative properties over product distributions. An important characterization of bounded
derivative properties is given using a quasi-metric m : [n]d× [n]d → R defined in Section 3.2. Tester
for functions f : [n] → R is presented in Section 3.5 along with the analysis. Then we present
our optimal dimension reduction in Section 3.4. First we prove the dimension reduction lemma
with respect uniform distribution over hypergrid [n]d in Section 3.4.1. Then in Section 3.4.2, we
give a generalization of quasi-metric m which directly extends the proof of dimension reduction
for uniform distribution to any product distribution. In Section 3.7, we give the matching lower
bounds for testing BDPs over product distributions. First, in Section 3.7.1 we show that testing
monotonicity of functions f : [n]d → R can be reduced to testing any bounded derivative property
with respect to a product distribution. Therefore, we can focus on getting the lower bounds for
monotonicity testing. We show a construction for a bunch of “hard to distinguish” functions for
domains [n] and [n]d. In other words, we show that any deterministic tester whose query complexity
is strictly smaller than our testers, fails to detect a violation on one of the hard functions. This,
from Theorem 3.7.5 implies our lower bounds. In Section 3.7.3, we show the construction of such
functions on domain [n]. Then, in Section 3.7.5, we generalize this construction for domains [n]d.

In Chapter 4, we propose our new erasure-resilient model for testing a large class of properties,
including bounded derivative properties, convexity and linearity. In Section 4.1.1, we formally
define our model. Then we give our erasure-resilient property testers for monotonicity of functions
f : [n] → R in Section 4.2, which we analyze in Section 4.2.2. Then in Section 4.3.1, we give a
reduction from which we derive a tester for any given BDP P using the monotonicity tester as a
subroutine. In Section 4.3.2, we give prove a dimension reduction for BDPs in our erasure-model,
using which we analyze our tester for functions f : [n]d → R given in Section 4.3.3. We conclude
this chapter by giving an erasure-resilient tester for convexity of functions f : [n]→ R.

6

Chapter 2 |
Preliminaries

Property testing [GGR98, RS96] is concerned with designing algorithms that check whether a given
function satisfies a given property. Formally, a property P is a subset of functions. A tester solves
the relaxed membership problem of distinguishing functions in P from those ‘far’ from P . We
define ‘farness’ and tester in Definition 2.0.2 and Definition 2.0.3 respectively.

In this work, we consider the functions defined over hypergrid domains which we define below.

Definition 2.0.1 (Hypergrid, line). Given n, d ∈ N, the hypergrid is of size n and dimension d is

the set [n]d associated with an order relation �, such that x � y for all x, y ∈ [n]d iff xi ≤ yi for

all i ∈ [d], where xi (respectively yi) denote the ith coordinate of x (respectively, y). The special

case [n] is called a line.

A function f is ε-far from P if dist(f, g) ≥ ε for all functions g ∈ P . When P is a property
of functions f : [n]d → R, distance to the property is usually measured in terms of the fraction of
points in the domain [n]d on which f must be modified in order to satisfy the property. We work
with this notion of farness in Chapter 4. In Chapter 3, we use a more general notion of distance,
first formulated by [GGR98], defined with respect to a probability distribution on the domain [n]d.

Definition 2.0.2 (Distance to a property). Let P be a property (i.e., a set) of functions f : [n]d → R.

Let Π be a distribution on [n]d. The distance distΠ(f, g) between functions f, g : [n]d → R (with

respect to the distribution Π) is Prx∼Π[f(x) 6= g(x)]. The distance distΠ(f,P) of a function f to

the property P is ming∈P distΠ(f, g). For convenience, we use εf as a shorthand for distΠ(f,P).
We say that f is ε-far from property P if εf ≥ ε.

Definition 2.0.3 (Property tester). Consider a function f : [n]d → R, a propertyP and a distribution

Π on [n]d. Let ε ∈ (0, 1] be the proximity parameter. A Property tester T with respect to distribution

Π on [n]d is a randomized algorithm that gets oracle access to function f : [n]d → R and oracle

access to independent samples from distribution Π. The tester satisfies the following:

7

1. If f satisfies P , then T accepts1.

2. If f is ε-far from P with respect to distribution Π, then T rejects with probability at least 2/3.

In Chapter 3, we focus on product distributions Π on [n]d.

Definition 2.0.4 (Product distribution). A distribution Π on [n]d is called a product distribution if

its marginal distributions are mutually independent. In other words, Π = Π1 × Π2 · · · × Πd, where

Πi is a distribution on [n].

For stating our bounds, we need the notion of optimal binary search trees over [n], defined with
respect to a distribution Π.

Definition 2.0.5 (Optimal Binary Search Trees [Knu73]). Given a binary search tree T over the

points in [n] and a distribution Π, let ∆Π(T) denote the expected depth of T with respect of Π, that

is, ∆Π(T) = Ex∼Π[depth(x)]. Let T denote the set of all binary search trees over [n]. An optimal

binary search tree, denoted by Topt satisfies the following equation ∆Π(Topt) = minT∈T ∆Π(T).
∆Π(Topt) is denoted by ∆∗(Π).

2.1 Properties We Consider

Next we define properties of real-valued functions considered in this article and summarize previous
work on testing them. Most properties of real-valued functions studied in the property testing
framework are for functions over the hypergrid domains.
We consider domains that are subsets of [n]d to be able to handle arbitrary erasures on [n]d.

2.1.1 Monotonicity.

Monotonicity of functions, first studied in the context of property testing in [GGL+00], is one of the
most widely investigated properties in this model [EKK+00, DGL+99, LR01, FLN+02, AC06, Fis04,
HK08a,BRW05,PRR06a,ACCL07,BGJ+12,BCGSM12,BBM12,CS13a,CS13b,BRY14b,CDJS15].
A function f : D 7→ R, defined on a partially ordered domain D with order �, is monotone if
x � y implies f(x) ≤ f(y) for all x, y ∈ D. The query complexity of testing monotonicity
of functions f : [n] 7→ R is Θ(log n/ε) [EKK+00, Fis04]; for functions f : [n]d 7→ R, it is

1This requirement precludes the tester from making an error on Lipschitz functions, i.e., as defined, the tester must
have one-sided error. More general, two-sided error testers, must accept Lipschitz functions with probability at least 2/3.
Currently, the fastest known Lipschitz testers have one-sided error.

8

Θ(d log n/ε) [CS13a, CS13b], and for functions over arbitrary partially ordered domains D, it is
O
(√
|D|/ε

)
[FLN+02].

2.1.2 The Lipschitz Property.

Lipschitz continuity is defined for functions between arbitrary metric spaces, but was specifically
studied for real-valued functions on hypergrid domains [JR13, AJMR12, CS13a, DJRT13, BRY14b,
CDJS15] because of applications to privacy [JR13, DJRT13]. For D ⊆ [n]d and c ∈ R, a function
f : D 7→ R is c-Lipschitz if |f(x) − f(y)| ≤ c · ||x − y||1 for all x, y ∈ D, where ||x − y||1
is the L1 distance between x and y. More generally, f is (α, β)-Lipschitz, where α < β, if
α · ||x − y||1 ≤ |f(x)− f(y)| ≤ β · ||x − y||1 for all x, y ∈ [n]d. All (α, β)-Lipschitz properties
can be tested with O(d log n/ε) queries [CS13a].

2.1.3 Bounded Derivative Properties.

We defined the class of bounded derivative properties (BDPs) in [CDJS15]. This is a natural
generalization of monotonicity and the Lipschitz property.

An ordered set B of 2d functions l1, u1, l2, u2, . . . , ld, ud : [n− 1] 7→ R ∪ {±∞} is a bounding

family if for all r ∈ [d] and y ∈ [n− 1], lr(y) < ur(y). Let B be a bounding family of functions
and let er be the unit vector along dimension r. Let ∂rf(x) = f(x + er) − f(x). The property
P(B) of being B-derivative bounded is the set of functions f : [n]d 7→ R such that for all r ∈ [d]
and x ∈ [n]d with xr 6= n

lr(xr) ≤ ∂rf(x) ≤ ur(xr). (2.1)

The class of BDPs includes monotonicity and the c-Lipschitz property. The bounding family for
monotonicity is obtained by setting lr(y) = 0 and ur(y) =∞ for all r ∈ [d], and for the c-Lipschitz
property, by setting lr(y) = −c and ur(y) = c for all r ∈ [d]. In general, different bounding
families allow a function to be monotone in one dimension, c-Lipschitz in another dimension and
so on. In [CDJS15], we showed that the complexity of testing BDPs of functions f : [n]d 7→ R is
Θ(d log n/ε) for uniform distribution. For arbitrary product distributions, our query complexity is

O(ε−1
d∑
i=1

∆∗(Πi)). Here ∆∗(Π) is as defined in Definition 2.0.5. We show that this is optimal.

A bounding family B = {l1, u1, . . . , ld, ud} defines a quasi-metric mB(x, y) := ∑
r:xr>yr

∑xr−1
t=yr ur(t)−∑

r:xr<yr
∑yr−1
t=xr lr(t) over the points in x, y ∈ [n]d. We investigate this further in Chapter 3 and use

a characterization of BDPs from [CDJS15] for defining BDPs on functions over domains D ⊆ [n]d

in Chapter 4.

9

2.1.4 Convexity of Functions.

A function f : D 7→ R is convex if f(tx + (1− t)y) ≤ tf(x) + (1− t)f(y) for all x,y ∈ D and
t ∈ [0, 1]. If D ⊆ [n], equivalently, f is convex if f(y)−f(x)

y−x ≤ f(z)−f(y)
z−y for all x < y < z. Parnas et

al. [PRR06a] gave a convexity tester for functions f : [n] 7→ R with query complexity O(log n/ε).
Blais et al. [BRY14b] gave an Ω(log n) bound for nonadaptive testers for this problem.

10

Chapter 3 |
Optimal Property Testing on Prod-
uct Distributions

3.1 Introduction

In this chapter, we give the testers for Bounded Derivative Properties (BDPs) of functions f : [n]d →
R. As noted in Chapter 2, these cover well studied properties like monotonicity and the Lipschitz
property. Our testers always accept if the input function f satisfies a given BDP P . They reject with
high probability if f is ε-far from satisfying P . As against most of the previous works, the farness is
measured with respect to a (known or unknown) product distribution. In a previous work [DJRT13],
we have shown that fast testers for the Lipschitz property of functions f : [n]d → R will in turn
result in fast privacy testers. We further elaborate on this below.

Consider an algorithm A that works runs on a d-dimensional data-set D, where each attribute
or entry of a particular row is an element in [n]. We can test whether the output of A preserves
the privacy of every individual entry of D. The notion of privacy that we test is a distributional
relaxation of well-studied notion of Differential Privacy [DMNS06]. We call it Differential Privacy
over Typical Databases (DPTD) [DJRT13]. Since this thesis is focused on property-testing, we to
urge the reader to read [DJRT13] for further details. In Section 3.1.1, we summarize our results
and technical contributions in designing the optimal testers on a larger class of properties called
Bounded Derivative Properties (BDP) (see Section 2.1 for the definition).

3.1.1 Main Results

Here we present the results from [CDJS15]. Our primary result is a property tester for all bounded-
derivative properties over any product distribution. The formal theorem requires some definitions of

11

search trees. Consider any binary search tree (BST) T over the universe [n], and let the depth of a
node denote the number of edges from it to the root. For a distribution Dr over [n], the optimal BST

for Dr is the BST minimizing the expected depth of vertices drawn from Dr. Let ∆∗(Dr) be this
optimal depth (see Definition 2.0.5): a classic dynamic programming solution finds this optimal
tree [Knu73, Yao82] in polynomial time. Given a product distribution D = ∏

r≤dDr, we abuse
notation and let ∆∗(D) denote the sum

∑d
r=1 ∆∗(Dr).

Theorem 3.1.1. [Main upper bound] Consider functions f : [n]d 7→ R. Let B be a bounding

family and D be a product distribution. There is a tester for P(B) w.r.t. D making 100ε−1∆∗(D)
queries.

The tester is non-adaptive with one-sided error, that is, the queries don’t depend on the answers,
and the tester always accepts functions satisfying the property. Furthermore, the same tester works
for all bounding families, that is, the set of queries made by the tester doesn’t depend on B.
Interestingly, the “worst" distribution is the uniform distribution, where ∆∗(D) is maximized to
Θ(d log n). We remark that the class of bounded derivative properties was not known to be testable
even under uniform distributions. Results were known [CS13a] (only under the uniform distribution)
for the subclass where all lr (and ur) are the same, constant function. To give perspective on the
above result, it is instructive to focus on say just monotonicity (one can repeat this for Lipschitz).
Let H(D) denote the Shannon entropy of distribution D over the hypergrid. It is well-known that
∆∗(Dr) ≤ H(Dr) (see [Meh75] for a proof), so ∆∗(D) ≤ H(D) for product distribution D.

Corollary 3.1.2. Consider functions f : [n]d 7→ R. Monotonicity testing over a product distribution

D can be done with 100H(D)/ε queries.

This is an exponential improvement over the previous best result of Ailon and Chazelle [AC06],
who give a monotonicity tester with query complexity O(2dH(D)/ε). Observe that for uniform
distributions, H(D) = Θ(d log n), and therefore the above result subsumes the optimal testers
of [CS13a]. Now consider the monotonicity testing over the boolean hypercube.

Corollary 3.1.3. Consider functions f : {0, 1}d 7→ R. Monotonicity testing over any product distri-

butionD = ∏d
r=1Dr, where eachDr = (µr, 1−µr), can be done with 100ε−1∑d

r=1 min(µr, 1−µr)
queries.

Given that monotonicity testing over the hypercube has received much attention [GGL+00,
DGL+99,LR01,FLN+02,BBM12,CS13a,CS13b], it is somewhat surprising that nothing non-trivial

was known even over the p-biased distribution for p 6= 1/2; our result implies an O(ε−1pd)-query

12

tester. The above corollary also asserts that entropy of a distribution doesn’t capture the complexity

of monotonicity testing since the entropy,
∑
r µr log(1/µr) + (1 − µr) log(1/(1 − µr)), can be

larger than the query complexity described above by a logarithmic factor. For example, if each
µr = 1/

√
d, the tester of Corollary 3.1.3 requires O(

√
d/ε) queries, while H(D) = Θ(

√
d log d).

We complement Theorem 3.1.1 with a matching lower bound, cementing the connection between
testing of bounded-derivative properties and optimal search tree depths. This requires a technical
definition of stable distributions, which is necessary for the lower bound. To see this consider
a distribution D for which there exists a product distribution D′ such that ||D′ − D||TV ≤ ε/2
but ∆∗(D′) � ∆∗(D). One could simply apply Theorem 3.1.1 with D′ to obtain a tester with a
much better query complexity than ∆∗(D). D is called (ε′, ρ)-stable if ‖D − D‖ ≤ ε′ implies
∆∗(D′) ≥ ρ∆∗(D), for any product distribution D′.

Theorem 3.1.4. [Main lower bound] For any parameter ε, there exists ε′ = Θ(ε) such that for any

bounding family B and (ε′, ρ)-stable, product distribution D, any (even adaptive, two-sided) tester

for P(B) w.r.t. D with proximity parameter ε requires Ω(ρ∆∗(D)) queries.

This lower bound is new even for monotonicity testing over one dimension. Ailon and
Chazelle [AC06] explicitly ask for lower bounds for monotonicity testing for domain [n] over
arbitrary distributions. Our upper and lower bounds completely resolve this problem. For Lips-
chitz testing, the state of the art was a non-adaptive lower bound of Ω(d log n) for the uniform
distribution [BRY14b]. Since the uniform distribution is stable, the previous theorem implies an
optimal Ω(d log n) lower bound even for adaptive, two-sided testers over the uniform distribution.
The previous upper bounds are in the setting where the tester knows the distribution D. In the

distribution-free setting, the tester only gets random samples from D although it is free to query
any point of the domain. As a byproduct of our approach, we also get results for this setting. The
previous best bound was an O(ε−1d2d log n) query tester [AC06].

Theorem 3.1.5. Consider functions f : [n]d 7→ R. There is a distribution-free (non-adaptive,

one-sided) tester for P(B) w.r.t. D making 100ε−1d log n queries.

3.1.2 Technical Highlights

Optimal dimension reduction. The main engine running the upper bounds is an optimal dimension
reduction theorem. Focus on just the uniform distribution. Given f : [n]d 7→ R that is ε-far
from P(B), what is the expected distance of the function restricted to a uniform random line in
[n]d? This natural combinatorial question has been at the heart of various monotonicity testing

13

results [GGL+00, DGL+99, AC06, HK08a]. The best known bounds are that this expected distance
is at least ε/(d2d) [AC06, HK08a]. Weaker results are known for the Lipschitz property [JR13,
AJMR12]. We given an optimal resolution (up to constant factors) to this problem not only for
the uniform distribution, but for any arbitrary product distribution, and for any bounded derivative
property. In [n]d, an r-line is a combinatorial line parallel to the r-axis. Fix some bounding
family B and product distribution D = ∏

rDr. Note that D−r = ∏
i 6=rDi is a distribution on

r-lines. If we restrict f to an r-line `, we get a function f |` : [n] 7→ R. It is meaningful to
look at the distance of f |` to P(B) (though this only involves the bounds of lr, ur ∈ B). Let
distrD(f,P(B)) := E`∼D−r [distDr(f |`,P(B))].

Theorem 3.1.6. [Optimal Dimension Reduction] Fix bounding family B and product distribution

D. For any function f ,
d∑
r=1

distrD(f,P(B)) ≥ distD(f,P(B))/4.

Let us give a short synopsis of previous methods used to tackle the case of monotonicity
in the uniform distribution case. For brevity’s sake, let εrf denote distrU(f, MON) and εf denote
distU(f, MON). That is, εrfn

d modifications makes the function monotone along the r-dimension, and
the theorem above states that 4∑r ε

r
fn

d modifications suffice to make the whole function monotone.
Either explicitly or implicitly, previous attempts have taken a constructive approach: they use the
modifications along the rth dimensions to correct the whole function. Although in principle a good
idea, a bottleneck to the above approach is that correcting the function along one dimension may
potentially introduce significantly larger errors along other dimensions. Thus, one can’t just “add up”
the corrections in a naive manner. The process is even more daunting when one tries this approach
for the Lipschitz property. Our approach is completely different, and is ‘non-constructive’, and
looks at all bounded-derivative properties in a uniform manner. We begin by proving Theorem 3.4.1
for P(B) over the uniform distribution. The starting point is to consider a weighted violation
graph G, where any two domains point forming a violation to P(B) are connected (the weight is a
“magnitude" of violation). It is well-known that the size of a maximum matching M in G is at least
εfn

d/2. The main insight is to use different matchings to get handles on the distance εrf rather than
using modifications that correct the function. More precisely, we construct a sequence of special
matchings M = M0,M1, . . . ,Md = ∅, such that the drop in size |Mr−1| − |Mr| is at most 2εrfnd,
which proves the above theorem. This requires structural properties on the Mr’s proven using
the alternating path machinery developed in [CS13a]. What about a general product distribution
D? Suppose we ‘stretch’ every point in every direction proportional to its marginal. This leads
to a ‘bloated’ hypergrid [N]d where each point in the original hypergrid corresponds to a high-

14

dimensional cuboid. By the obvious association of function values, one obtains a fext : [N]d 7→ R.
If P(B) is monotonicity, then it is not hard to show that distD(f) = distU(fext). So we can
apply dimension reduction for fext over the uniform distribution and map it back to f over D.
However, such an argument breaks down for Lipschitz (let alone general B), since distU(f ′) can
be much smaller than distD(f). The optimal fix for fext could perform non-trivial changes within
the cuboidal regions, and this cannot be mapped back to a fix for the original f . This is where the
generality of the bounded-derivative properties saves the day. For any B and D, we can define
a new bounding family Bext over [N]d, such that distD(f,P(B)) = distU(fext,P(Bext)). Now,
dimension reduction is applied to fext for P(Bext) over U and translated back to the original setting.

3.1.3 Search Trees and Monotonicity

An appealing aspect of our results is the tight connection between optimal search trees over product
distributions to bounded-derivative properties. The dimension reduction lemma allows us (for the
upper bounds) to focus on just the line domain [n]. For monotonicity testing on [n] over an arbitrary
distribution D, Halevy and Kushilevitz gave an O(ε−1 log n)-query distribution free tester [HK08a],
and Ailon and Chazelle gave an O(ε−1H(D))-query tester [AC06]. Pretty much every single
result for monotonicity testing on [n] involves some analogue of binary search [EKK+00, BRW05,
ACCL07, PRR06b, HK08a, AC06, BGJ+12]. But we make this connection extremely precise. We
show that any binary search tree can be used to get a tester with respect to an arbitrary distribution,
whose expected query complexity is the expected depth of the tree with respect to the distribution.
This argument is extremely simple in hindsight, but it is a significant conceptual insight. Firstly,
it greatly simplifies earlier results – using the completely balanced BST, we get an O(ε−1 log n)-
distribution free tester; with the optimal BST, we get O(ε−1H(D))-queries. The BST tester along
with the dimension reduction, provides a tester for [n]d whose running time can be better than H(D)
(especially for the hypercube). Most importantly, optimal BSTs are a crucial ingredient for our
lower bound construction.

3.1.4 Lower Bounds for Product Distributions.

The first step to general lower bounds is a simple reduction from monotonicity testing to any
bounded-derivative property. Again, the reduction may seem trivial in hindsight, but note that
special sophisticated constructions were used for existing Lipschitz lower bounds [JR13, BRY14b].
For monotonicity, we use the framework developed in [Fis04, CS13b] that allows us to focus on

15

comparison based testers. The lower bound for [n] uses a convenient near-optimal BST. For each
level of this tree we construct a ‘hard’ non-monotone function, leading to (roughly) ∆∗(D) such
functions in case of stable distributions. These functions have violations to monotonicity lying in
‘different regions’ of the line, and any bonafide tester must make a different query to catch each
function. In going to higher dimensions, we face a significant technical hurdle. The line lower bound
easily generalizes to the hypergrid if each marginal distribution is individually stable. However,
this may not be the case – there are stable product distributions whose marginals are unstable. As
a result, each dimension may give ‘hard’ functions with very small distance. Our main technical
contribution is to show how to aggregate functions from various dimensions together to obtain hard
functions for the hypergrid in such a way that the distances add up. This is rather delicate, and is
perhaps the most technical portion of this paper. In summary, we show that for stable distributions,
the total search-tree depth is indeed the lower bound for testing monotonicity, and via the reduction
mentioned above, for any bounded-derivative property.

3.1.5 Organization.

We give a brief outline of remainder of this chapter. In Section 3.2, we define a particular quasi-

metric corresponding to a bounding family B and give an equivalent definition of the bounded-
derivative property with respect to it. This definition is convenient and will be the one used for the
rest of the paper. In Section 3.3, we describe the tester when the domain is just the line, that uses
optimal binary search tree to get the optimal query-complexity. The dimension reduction theorem
is presented in its full glory in Section 3.4. The tester for hypergrid is an easy generalization of
the line tester via dimension reduction as presented in Section 3.6. For lower bounds, we prove
the reduction to monotonicity in Section 3.7.1, and describe the approach to montonicity lower
bounds in Section 3.7.2. The hard families for the line is given in Section 3.7.3, for the hypercube in
Section 3.7.4, and the general hypergrid lowerbound is described in Section 3.7.5.

3.2 Quasimetric Induced by a Bounding Family

It is convenient to abstract out P(B) in terms of a metric-bounded property. Such ideas was used
in [CS13a] to give a unified proof for monotonicity and Lipschitz for the uniform distribution. The
treatment here is much more general. We define a quasimetric depending on B denoted by m(x, y).

Definition 3.2.1. Given bounding family B, construct the weighted directed hypergrid [n]d, where

all adjacent pairs are connected by two edges in opposite directions. The weight of (x+ er, x) is

16

ur(xr) and the weight of (x, x+ er) is −lr(xr). m(x, y) is the shortest path weight from x to y.

Note that m is asymmetric, can take negative values, and m(x, y) = 0 does not necessarily imply
x = y. For these reasons, it is really a possibly-negative-pseudo-quasi-metric, although we will
refer to it simply as a metric in the remainder of the paper. Since B is a bounding family, any cycle
in the [n]d digraph has positive weight, and m(x, y) is well-defined. Therefore, a shortest path from
x to y is given by the rectilinear path obtained by decreasing the coordinates r with xr > yr and
increasing the coordinates r with xr < yr. A simple calculation yields

m(x, y) :=
∑

r:xr>yr

xr−1∑
t=yr

ur(t)−
∑

r:xr<yr

yr−1∑
t=xr

lr(t) (3.1)

If a function f ∈ P(B), then applying Eq. (2.1) on every edge of the path described above (the upper
bound when we decrement a coordinate and the lower bound when we increment a coordinate), we
get f(x)− f(y) ≤ m(x, y) for any pair (x, y). Conversely, if ∀x, y, f(x)− f(y) ≤ m(x, y), then
considering neighboring pairs gives f ∈ P(B). This argument is encapsulated in the following
lemma.

Lemma 3.2.2. f ∈ P(B) iff ∀x, y ∈ [n]d, f(x)− f(y) ≤ m(x, y).

When P(B) is monotonicity, m(x, y) = 0 if x ≺ y and∞ otherwise. For the c-Lipschitz property,
m(x, y) = c‖x− y‖1. The salient properties of m(x, y) are documented below and can be easily
checked.

Lemma 3.2.3. m(x, y) satisfies the following properties.

1. (Triangle Inequality.) For any x, y, z, m(x, z) ≤ m(x, y) + m(y, z).

2. (Linearity.) If x, y, z are such that for every 1 ≤ r ≤ d, either xr ≤ yr ≤ zr or xr ≥ yr ≥ zr,

then m(x, z) = m(x, y) + m(y, z).

3. (Projection.) Fix any dimension r. Let x, y be two points with xr = yr. Let x′ and y′ be the

projection of x, y onto some other r-hyperplane. That is, x′r = y′r, and x′j = xj , y′j = yj for j 6= r.

Then, m(x, y) = m(x′, y′) and m(x, x′) = m(y, y′).

Proof. m(x, x) = 0 follows since the RHS of Eq. (3.1) is empty. Triangle inequality holds
because m(x, y) is a shortest path weight. Linearity follows by noting

∑xr−1
t=yr ur(t) = ∑zr−1

t=yr ur(t) +∑xr−1
t=zr ur(t). For projection, note that if xr = yr, the RHS of Eq. (3.1) has no term corresponding

to r. Thus, m(x, y) = m(x′, y′). Suppose x′r > xr. Then, m(x, x′) = ∑x′r
t=xr ui(t) = m(y, y′). A

similar proof holds when x′r < xr.

17

Henceforth, all we need is Lemma 3.2.2 and Lemma 3.2.3. We will interchangably use the terms
P(B) and P(m) where m is as defined in Eq. (3.1). In fact, since B and therefore m will be fixed
in most of our discussion, we will simply use P including the parametrization wherever necessary.

Definition 3.2.4 (Violation Graph). The violation graph of a function f with respect to property

P , denoted as Gviol(f,P), has [n]d as vertices, and edge (x, y) if it forms a violation to P , that is

either f(x)− f(y) > m(x, y) or f(y)− f(x) > m(y, x).

The triangle inequality of m suffices to prove the following version of a classic lemma [FLN+02]
relating the distance of a function to P to the vertex cover of the violation graph.

Lemma 3.2.5. For any distribution D on [n]d, any bounded-derivative property P , and any func-

tion f , distD(f,P) = minX µD(X) where the minimum is over all vertex covers of Gviol(f,P).
Thus, if M is any maximal matching in Gviol(f,P), then for the uniform distribution, |M | ≥
distU(f,P)nd/2.

3.3 Testers For the Line [n]

Let T be any binary search tree (BST) with respect to the totally ordered domain [n]. Every node
of T is labeled with a unique entry in [n], and the left (resp. right) child, if it exists, has a smaller
(resp. larger) entry. The depth of a node v in the tree T , denoted as depthT (v), is the number of
edges on its path to the root. So the root has depth 0. Given a distribution D on [n], the expected
depth of T w.r.t. D is denoted as ∆(T ;D) = Ev∼D[depthT (v)]. The depth of the optimal BST
w.r.t. D is denoted by ∆∗(D). It has long been observed that the transitivity of violations is the key
property required for monotonicity testing on [n] [BRW05, EKK+00, ACCL07, JR13]. We distill
this argument down to a key insight: Given any BST T , there exists the following tester BST(T)
for P on the line.

It is clear that the tester never rejects a function satisfying P . (To connect with previous work,
observe that the list of ancestor-descendant pairs forms a 2-Transitive Closure spanner [BGJ+12].)

Lemma 3.3.1. For any bounded derivative property P , Pr[BST tester rejects] ≥ distD(f,P).

Proof. Let X be the set of non-root nodes v of T with the following property: (u, v) is a violation
to P for some node u on the path from v to the root of T . The probability of rejection of the
BST tester is precisely µD(X). We claim that X is a vertex cover of Gviol(f,P) which proves
the lemma using Lemma 3.2.5. Pick any violation (x, y) and assume without loss of generality
f(x)−f(y) > m(x, y). Let z be the lowest common ancestor of x and y in T . By the BST property,

18

either x < z < y of x > z > y. By the linearity property of m, we get m(x, y) = m(x, z) +m(z, y).
This implies either f(x)− f(z) > m(x, z) or f(z)− f(y) > m(z, y), that is, either (x, z) or (y, z)
is a violation implying one of them is in X .

Lemma 3.3.2. For any BST T , there is a 24ε−1∆(T ;D)-query line monotonicity-tester.

Proof. The expected number of queries made by the BST tester is
∑
v: non-root Pr[v] · (depthT (v) +

1) = (1− Pr[root]) + ∆(T ;D) ≤ 2 ·∆(T ;D).

∑
v: non-root

Pr[v] · (depthT (v) + 1) = (1− Pr[root]) + ∆(T ;D) ≤ 2 ·∆(T ;D)

The expected depth is at least (1−Pr[root]) since non-roots have depth at least 1. To get a bonafide
tester with deterministic query bounds, run the BST tester 2/ε times, aborting (and accepting)
if the total number of queries exceeds 24∆(T ;D)/ε. The expected total number of queries is at
most 4∆(T ;D)/ε. By Markov’s inequality, the probability that the tester aborts is ≤ 1/6. By
Lemma 3.3.1, if distD(f ;P) > ε, the probability that this tester does not find a violation is at most
(1−ε)2/ε ≤ 1/6. With probability≥ (1−1/6−1/6) = 2/3, the tester rejects an ε-far function.

Choose T to be the optimal BST to get the following theorem.

Theorem 3.3.3. There exists a 24ε−1∆∗(D)-query tester for any bounded derivative property over

the line.

Note that once the tree is fixed, the BST tester only needs random samples from the distribution.
Pick T to be the balanced binary tree of depth O(log n) to get a distribution-free tester.

Theorem 3.3.4. There exists a 24ε−1 log n-query distribution free tester for any bounded-derivative

property over the line.

3.4 The Dimension Reduction Theorem

For any combinatorial line ` in [n]d, f |` : [n] 7→ R is f restricted to `. It is natural to talk of P for
any restriction of f , so distDr(f|`,P) is well-defined for any r-line `. For any 1 ≤ r ≤ d, define the
r-distance of the function:

distrD(f,P) := E`∼D−r [distDr(f|`,P)] (3.2)

19

Call a function f r-good if there are no violations along r-lines, that is, for any x and y on the
same r-line, we have f(x)− f(y) ≤ m(x, y). Observe that distrD(f,P) is the minimum µD-mass of
points on which f needs to be modified to make it r-good. The following is the optimal dimension
reduction theorem which connects the r-distances to the real distance.

Theorem 3.4.1 (Dimension Reduction). For any function f , any bounded-derivative property P ,

and any product distribution D = ∏
1≤r≤dDi,

d∑
r=1

distrD(f,P) ≥ distD(f,P)/4.

(It can be easily shown that
∑d
r=1 distrD(f,P) ≤ distD(f,P), by simply putting the same 1D

function of all, say, 1-lines.) We first prove the above theorem for the uniform distribution. Recall
the violation graph Gviol(f,P) whose edges are violation to P . We define weights on the edges
(x, y).

w(x, y) := max(f(x)− f(y)−m(x, y), f(y)− f(x)−m(y, x)) (3.3)

Note that w(x, y) > 0 for all edges in the violation graph. Let M be a maximum weight matching of
minimum cardinality (MWmC). (Introduce an arbitrary tie-breaking rule to ensure this is unique.) A
pair (x, y) ∈M is an r-cross pair if xr 6= yr. The following theorem (proof defered to Section 3.4.1)
establishes the crucial structural result about these MWmC matchings in violated graphs of r-good
functions.

Theorem 3.4.2 (No r-violations ⇒ no r-cross pairs). Let f be an r-good function. Then there

exists an MWmC matching M in Gviol(f,P) with no r-cross pairs.

We proceed with the proof of Theorem 3.4.1 over the uniform distribution starting with some
definitions.

Definition 3.4.3 (Hypergrid slices). Given an r-dimensional vector a ∈ [n]r, the a-slice is Sa :=
{x ∈ [n]d : xj = aj, 1 ≤ j ≤ r}.

Each a-slice is a (d− r)-dimensional hypergrid, and the various a-slices for a ∈ [n]r partition [n]d.
Let f|a denote the restriction of f to the slice Sa. For two functions f, g we use ∆(f, g) := |{x :
f(x) 6= g(x)}| = distU(f, g) · nd. The following claim relates the sizes of MWmC matchings to
∆(f, g).

Claim 3.4.4. Let f, g : [n]d 7→ R. Let M and N be the MWmC matchings in the violation graphs

for f and g, respectively. Then, ||M | − |N || ≤ ∆(f, g).

20

Proof. The symmetric difference of M and N is a collection of alternating paths and cycles.
||M | − |N || is at most the number of alternating paths. Each alternating path must contain a
point at which f and g differ, for otherwise we can improve either M or N , either in weight or
cardinality.

Define a sequence of d+ 1 matchings (M0,M1, . . . ,Md) in Gviol(f,P) in non-increasing order
of cardinality as follows. For 0 ≤ r ≤ d, Mr is the MWmC matching in Gviol(f,P) among
matchings that do not contain any i-cross pairs for 1 ≤ i ≤ r. By Lemma 3.2.5, we have
|M0| ≥ distU(f,P)nd/2. The last matching Md is empty and thus has cardinality 0.

Lemma 3.4.5. For all 1 ≤ r ≤ d, we have |Mr−1| − |Mr| ≤ 2 · distrU(f,P) · nd.

Adding the inequalities in the statement of Lemma 3.4.5 for all r, we get distU(f,P)nd/2 ≤
|M0| − |Md| ≤ 2∑d

r=1 distrU(f,P) · nd. This completes the proof of Theorem 3.4.1 for the uniform
distribution. Now we prove Lemma 3.4.5.

Proof. Since Mr−1 has no j-cross pairs for 1 ≤ j ≤ r − 1, all pairs of Mr−1 have both endpoints
in the same slice Sa for some a ∈ [n]r−1. Thus, Mr−1 partitions into sub-matchings in each Sa.
Let Ma

r−1 be the pairs of Mr−1 with both endpoints in slice Sa, so |Mr−1| = ∑
a∈[n]r−1 |Ma

r−1|.
Similarly, Ma

r is defined. Since Mr has no r-cross pairs either, ∀a ∈ [n]r−1, |Ma
r | =

∑n
i=1 |M (a◦i)

r |,
where (a ◦ i) is the r-dimensional vector obtained by concatenating i to the end of a. Observe that
for any a ∈ [n]r−1, Ma

r−1 is an MWmC matching in Sa w.r.t. f|a. Furthermore, for any i ∈ [n],
M (a◦i)

r is an MWmC matching in S(a◦i) w.r.t. f|(a◦i). Let f (r) be the closest function to f with no
violations along dimension r. By definition, ∆(f, f (r)) = distr(f,P) · nd. Now comes the crucial
part of the proof. Fix a ∈ [n]r−1 and focus on the a-slice Sa. Since f (r) has no violations along
the r-lines, neither does f (r)

|a. By Theorem 3.4.2, there exists an MWmC matching Na in Sa w.r.t.
f (r)

|a which has no r-cross pairs. Therefore, Na partitions as Na = ⋃n
i=1N

(a◦i). Furthermore, each
matching N (a◦i) is an MWmC matching in S(a◦i) with respect to the weights corresponding to the
function f (r)

|(a◦i). Since Ma
r−1 is an MWmC matching w.r.t. f|a and Na is an MWmC matching w.r.t.

f
(r)
|a in Sa, Claim 3.4.4 gives

|Na| ≥ |Ma
r−1| −∆(f|a, f (r)

|a) (3.4)

Since M (a◦i)
r is an MWmC matching w.r.t. f|(a◦i) and N (a◦j) is an MWmC matching w.r.t. f (r)

|(a◦i) in
S(a◦i), Claim 3.4.4 gives us |M (a◦i)

r | ≥ |N (a◦i)| −∆(f|(a◦i), f (r)
|(a◦i)). Summing over all 1 ≤ i ≤ n,

|Ma
r | ≥ |Na| −∆(f|a, f (r)

|a) (3.5)

21

Adding Eq. (3.4), Eq. (3.5) over all a ∈ [n]r−1, |Mr| ≥ |Mr−1| − 2∑a∈[n]r−1 ∆(f|a, f (r)
|a)

= |Mr−1| − 2 · distr(f,P) · nd.

3.4.1 No r-Violations Imply No r-Cross Pairs

In this subsection we prove Theorem 3.4.2.

Theorem 3.4.2 (No r-violations ⇒ no r-cross pairs). Let f be an r-good function. Then there

exists an MWmC matching M in Gviol(f,P) with no r-cross pairs.

This requires the alternating path setup of [CS13a]. Recall the weight function w(x, y) =
max(f(x) − f(y) − m(x, y), f(y) − f(x) − m(y, x)) defined on pairs of the domain. Note that
(x, y) is a violation iff w(x, y) > 0. Let M be a maximum weight minimum cardinality (MWmC)
matching of Gviol(f,P(m)) with the minimum number of r-cross pairs. Recall an r-cross pair
(x, y) has xr 6= yr. We will prove that this minimum value is 0. Let cr(M) be the set of r-cross
pairs in M . Let st(M) := M \ cr(M). For contradiction’s sake, assume cr(M) is nonempty. Let
(x, y) ∈ cr(M) be an arbitrary r-cross pair with xr = a and yr = b with a 6= b. Define matching
H := {(u, v) : ur = a, vr = b, uj = vj, j 6= i}. This is a matching by projection between points
with rth coordinate a and b. For convenience, we denote the points with rth coordinate a (resp. b)
as the a-plane (resp. b-plane). Consider the alternating paths and cycles in H∆ st(M). The vertex
y is incident to only an H-pair, since (x, y) ∈ cr(M). Let y = s1, s2, . . . , st be the alternating path
starting from y, collectively denoted by S. We let s0 := x. The end of S, st, may be either M -
unmatched or cr(M)-matched. In the latter case, we define st+1 to be such that (st, st+1) ∈ cr(M).
For even i, (si−1, si) is an H-pair and (si, si+1) is an M -pair. We list out some basic claims about
S.

Claim 3.4.6. If strictly positive j ≡ 0, 1 mod 4, then sj is in the b-plane. Otherwise, sj is in the

a-plane.

Claim 3.4.7. For strictly positive even i, f(si−1)− f(si)−m(si−1, si) ≤ 0 and f(si)− f(si−1)−
m(si, si−1) ≤ 0.

Proof. Since f is r-good and H-pairs differ only in the rth coordinate, w(si−1, si) ≤ 0 for all even
i. The definition of w(si−1, si) completes the proof.

Claim 3.4.8. For strictly positive i ≡ 0 mod 4, m(si−1, si) = m(s2, s1). For i ≡ 2 mod 4,

m(si, si−1) = m(s2, s1).

22

Proof. The point s0 (which is x) lies in the a-plane. Hence, for any i ≡ 2 mod 4, si lies in the
b-plane. Similarly, for i ≡ 0 mod 4, si lies in the a-plan. For strictly positive even i, (si−1, si) is
an H-pair. An application of the projection property completes the proof.

Claim 3.4.9. For strictly positive even i, m(si, si+1) = m(si−1, si+2) and m(si+1, si) = m(si+2, si−1).

Proof. Consider st(M)-pair (si, si+1). Both points are on the same (a or b-)plane. Observe that si−1

is the projection of si and si+2 is the projection of si+1 onto the other plane. Apply the projection
property of d to complete the proof.

Now we have all the ingredients to prove the theorem. The strategy is to find another matching
M ′ such that either w(M ′) > w(M) or w(M ′) = w(M) and M ′ has strictly fewer cross pairs. Let
us identify certain subsets of pairs to this end. For even k, define

E−(k) := (s0, s1), (s2, s3), . . . , (sk, sk+1) = {(sj, sj+1) : j even, 0 ≤ j ≤ k}

These are precisely the st(M)-pairs in S in the first k-steps. Note that |E−(k)| = k/2 + 1. Now we
define E+(k). In English: first pick pair (s0, s2); subsequently pick the first unpaired si and pair it
with the next unpaired sj of the opposite parity. More precisely, for even k,

E+(k) := (s0, s2), (s1, s4), (s3, s6), . . . , (sk−3, sk) = (s0, s2) ∪ {(sj−3, sj) : j even, 4 ≤ j ≤ k}

Note that |E+(k)| = k/2. Wlog, assume that w(x, y) = f(x) − f(y) − m(x, y). It turns out the
weights of all other M -pairs in S are determined. We will assert that the pattern is as follows.

w(si, si+1) =

f(si)− f(si+1)−m(si, si+1) if i ≡ 0 mod 4

f(si+1)− f(si)−m(si+1, si) if i ≡ 2 mod 4
(♣)

The following lemma determines the weights of all other M -edges in the alternating path S. Recall
(si, si+1) ∈ st(M) for even i.

Lemma 3.4.10. Suppose si exists. If Eq. (♣) holds for all even indices < i, then si is matched in

M .

Proof. Assume i ≡ 2 mod 4. (The other case is analogous and omitted.) We prove by contradic-
tion, so suppose si is not matched in M . We set M ′ := M − E−(i − 2) + E+(i). Note that M ′

is a valid matching, since si is not matched. We compare w(M ′) and w(M). By Eq. (♣), we can

23

express w(E−(i− 2)) exactly.

w(E−(i− 2)) =
∑

j:even, 0≤j≤i−2
w(sj, sj+1)

= [f(s0)− f(s1)−m(s0, s1)] + [f(s3)− f(s2)−m(s3, s2)] +

[f(s4)− f(s5)−m(s4, s5)] + [f(s7)− f(s6)−m(s7, s6)] + · · ·

[f(si−2)− f(si−1)−m(si−2, si−1)] (3.6)

We lower bound w(E+(i)). Since each individual weight term is a maximum of two expressions,
we can choose either. We set the expression up to match w(E−(i− 2)) as best as possible.

w(E+(i)) ≥ [f(s0)− f(s2)−m(s0, s2)] + [f(s4)− f(s1)−m(s4, s1)] +

[f(s3)− f(s6)−m(s3, s6)] + [f(s8)− f(s5)−m(s8, s5)] +

[f(si−3)− f(si)−m(si−3, si)] (3.7)

Note that w(M ′) − w(M) = w(E+(i)) − w(E−(i − 2)). Observe that any f term that occurs in
both Eq. (3.6) and Eq. (3.7) has the same coefficient. By Claim 3.4.9, m(s3, s2) = m(s4, s1),
m(s4, s5) = m(s3, s6), etc.

w(E+(i))− w(E−(i− 2)) ≥ f(si−1)− f(si)−m(s0, s2) + m(s0, s1)

The points s0 and s1 lie is different planes, and (s1, s2) ∈ H . We can apply the linearity property to
get m(s0, s1) = m(s0, s2) + m(s2, s1). Plugging this in, applying Claim 3.4.7 and Claim 3.4.8 for i,

w(E+(i))−w(E−(i− 2)) ≥ f(si−1)− f(si) +m(s2, s1) = −[f(si)− f(si−1)−m(si, si−1)] ≥ 0

Hence w(M ′) ≥ w(M). Note that |M ′|−|M |= |E+(i)|−|E−(i−2)|= i/2−((i−2)/2+1) = 0.
Finally, observe that E+(i) has no r-cross pairs, but E−(i − 2) has one (pair (s0, s1)). This
contradicts the choice of M as a MWmC matching with the least r-cross pairs.

Claim 3.4.11. If Eq. (♣) holds for all even indices < i, then s0, s1, . . . , si+1 are all distinct.

Proof. (This is trivial if i < t. The non-trivial case if when S ends as si.) The points s1, . . . , si are all
distinct. If si 6= x, the claim holds. So assume si = x = s0. By Claim 3.4.6, i ≡ 2 mod 4. Replace
pairs A = {(s0, s1), (si−2, si−1)} by (si−2, s1). Note that m(s0, s1) = m(s0, si−1) + m(si−1, s1).

24

By Eq. (♣),

w(A) = [f(s0)− f(s1)−m(s0, s1)] + [f(si−2)− f(si−1)−m(si−2, si−1)]

= [f(si−2)− f(s1)−m(si−2, si−1)−m(si−1, s1)] + [f(s0)− f(si−1)−m(s0, si−1)]

≤ [f(si−2)− f(s1)−m(si−2, s1)] ≤ w(si−2, s1)

The total number of pairs has decreased, so we complete the contradiction.

Lemma 3.4.12. Suppose si exists. If Eq. (♣) holds for all even indices < i, then Eq. (♣) holds for

i.

Proof. We prove by contradiction, so Eq. (♣) is false for i. (Again, assume i ≡ 2 mod 4. The
other case is omitted.) By Claim 3.4.11, E+(i− 2)∪ (si−3, si+1) is a valid set of matched pairs. Let
M ′ := M −E−(i) + (E+(i− 2)∪ (si−3, si+1)). Observe that |M ′| = |M | − 1 and the vertices si−1

and si are left unmatched in M ′. By Eq. (♣) for even indices < i and the opposite of Eq. (♣) for i,

w(E−(i)) = [f(s0)− f(s1)−m(s0, s1)] + [f(s3)− f(s2)−m(s3, s2)] +

[f(s4)− f(s5)−m(s4, s5)] + [f(s7)− f(s6)−m(s7, s6)] + · · ·

[f(si−2)− f(si−1)−m(si−2, si−1)] + [f(si)− f(si+1)−m(si, si+1)] (3.8)

We stress that the last weight is “switched". We lower bound w(E+(i− 2) ∪ (si−3, si+1)) appropri-
ately.

w(E+(i− 2) ∪ (si−3, si+1)) ≥ [f(s0)− f(s2)−m(s0, s2)] + [f(s4)− f(s1)−m(s4, s1)]+

[f(s3)− f(s6)−m(s3, s6)] + [f(s8)− f(s5)−m(s8, s5)] + · · ·

[f(si−7)− f(si−4)−m(si−7, si−4)] + [f(si−2)− f(si−5)−

m(si−2, si−5)] + [f(si−3)− f(si+1)−m(si−3, si+1)] (3.9)

As before, we subtract Eq. (3.8) from Eq. (3.9). All function terms from Eq. (3.9) cancel out. By
Claim 3.4.9, all m-terms except the first and last cancel out.

w(M ′)−w(M) ≥ f(si−1)−f(si)−m(s0, s2)−m(si−3, si+1)+m(s0, s1)+m(si−2, si−1)+m(si, si+1)

By linearity, m(s0, s1) = m(s0, s2) + m(s2, s1). Furthermore, by Claim 3.4.8, m(s2, s1) =
m(si, si−1). By Claim 3.4.9, m(si−2, si−1) = m(si−3, si). By triangle inequality, −m(si−3, si+1) +

25

m(si−3, si) + m(si, si+1) ≥ 0. Putting it all together and applying Claim 3.4.7,

w(M ′)− w(M) ≥ −[f(si)− f(si−1)−m(si, si−1)] ≥ 0

So M ′ has at least the same weight but lower cardinality than M . Contradiction.

Lemma 3.4.13. Suppose si exists. If Eq. (♣) holds for all even indices < i, then si is matched in

st(M).

Proof. Suppose not. (Again, assume i ≡ 2 mod 4.) By Lemma 3.4.10, si is matched in M , so
(si, si+1) ∈ cr(M). We set M ′ = M − E−(i) + (E+(i) ∪ (si−1, si+1)). By Claim 3.4.11, M ′ is a
valid matching. We have |M ′| = |M |. M has two r-cross pairs (s0, s1) and (si, si+1), but M ′ has at
most one (si−1, si+1). It suffices to show that w(M ′) ≥ w(M) to complete the contradiction. By
Lemma 3.4.12 and Eq. (♣),

w(E−(i)) = [f(s0)− f(s1)−m(s0, s1)] + [f(s3)− f(s2)−m(s3, s2)] +

[f(s4)− f(s5)−m(s4, s5)] + [f(s7)− f(s6)−m(s7, s6)] + · · ·

[f(si−2)− f(si−1)−m(si−2, si−1)] + [f(si+1)− f(si)−m(si+1, si)]

w(E+(i) ∪ (si−1, si+1)) ≥ [f(s0)− f(s2)−m(s0, s2)] + [f(s4)− f(s1)−m(s4, s1)] +

[f(s3)− f(s6)−m(s3, s6)] + [f(s8)− f(s5)−m(s8, s5)] + · · ·

[f(si−3)− f(si)−m(si−3, si)] + [f(si+1)− f(si−1)−m(si+1, si−1)]

All function terms and all but the first and last m-terms cancel out. The second inequality below
holds by linearity and triangle inequality. The last equality is an application of Claim 3.4.8.

w(M ′)− w(M) ≥ m(s0, s1)−m(s0, s2) + m(si+1, si)−m(si+1, si−1)

≥ m(s2, s1)−m(si, si−1) = 0

Finally, we prove Theorem 3.4.2.

Proof. We started with a MWmC matching M with the minimum number of r-cross pairs. If there
exists at least one such cross pair (x, y), we can define the alternating path sequence S. Wlog, we

26

assumed Eq. (♣) holds for i = 0. Applications of Lemma 3.4.12 and Lemma 3.4.13 imply that S
can never terminate. Contradiction.

3.4.2 Reducing From Arbitrary Product Distributions

We reduce arbitrary product distributions to uniform distributions on what we call the bloated
hypergrid. Assume without loss of generality that all µDr(j) = qr(j)/N , for some integers qr(j)
and N . Consider the d-dimensional N -hypergrid [N]d. There is a natural many-to-one mapping
from Φ : [N]d 7→ [n]d defined as follows. First fix a dimension r. Given an integer 1 ≤ t ≤ N , let
φr(t) denote the index ` ∈ [1, n] such that

∑
j<` qr(j) < t ≤ ∑j≤` qr(j). That is, partition [N] into

n contiguous segments of lengths qr(1), . . . , qr(n). Then φr(t) is the index of the segment where t
lies. The mapping Φ : [N]d 7→ [n]d is defined as

Φ(x1, x2 . . . , xd) = (φ1(x1), φ2(x2), . . . , φm(xd)) .

We use Φ−1 to define the set of preimages, so Φ−1 maps a point in [n]d to a ‘cuboid’ in [N]d.
Observe that for any x ∈ [n]d,

|Φ−1(x)| = Nd
d∏
r=1

µDr(x) = NdµD(x). (3.10)

Claim 3.4.14. For any set X ⊆ [n]d, define Z ⊆ [N]d as Z := ⋃
x∈X Φ−1(x). Then µD(X) =

µU(Z).

Proof. The set Z = ⋃
x∈X Φ−1(x) is the union of all the preimages of Φ over the elements of X .

Since preimages are disjoint, we get |Z| = ∑
x∈X |Φ−1(x)| = NdµD(X). Therefore, µU(Z) =

µD(X).

Given f : [n]d 7→ R, we define its extension fext : [N]d 7→ R:

fext(x1, . . . , xd) = f(Φ(x1, . . . , xd)). (3.11)

Thus, fext is constant on the cuboids in the bloated hypergrid corresponding to a point in the
original hypergrid. Define the following metric on [N]d.

For x, y ∈ [N]d, dext(x, y) = m(Φ(x),Φ(y)) (3.12)

27

The following statements establish the utility of the bloated hypergrid, and the proof of the dimension
reduction of f over [n]d w.r.t. D follows easily from these and the proof for the uniform distribution.

Lemma 3.4.15. If m satisfies the conditions of Lemma 3.2.3 over [n]d, then so does dext over [N]d.

Proof. Consider x, y, z ∈ [N]d. Triangle inequality and well-definedness immediately follow from
the validity of m. Now for linearity. If xr ≤ yr ≤ zr, then so is φr(xr) ≤ φr(yr) ≤ φr(zr). Thus,
Φ(x),Φ(y),Φ(z) satisfy linearity w.r.t. m. So, dext(x, z) = m(Φ(x),Φ(z)) = m(Φ(x),Φ(y)) +
m(Φ(y),Φ(z)) = dext(x, y) + dext(y, z). Now for projection. Suppose xr = yr and x′r = y′r.
Note that Φ(x) and Φ(y) have same rth coordinate, and so do Φ(x′) and Φ(y′). Furthermore, Φ(x′)
(resp. Φ(y′)) is the projection of Φ(x) (resp. Φ(x)). Thus we get dext(x, y) = m(Φ(x),Φ(y)) =
m(Φ(x′),Φ(y′)) = dext(x′, y′), and similarly dext(x, x′) = dext(y, y′).

Theorem 3.4.16. distD(f,P(m)) = distU(fext,P(dext)).

Proof. (≥). LetX ⊆ [n]d be a vertex cover in Gviol(f,P(m)) minimizing µD(X). From Lemma 3.2.5,
distD(f,P(m)) = µD(X). We claim Z = ⋃

x∈X Φ−1(x) is a vertex cover of Gviol(fext,P(dext)).
This implies distU(fext,P(dext)) ≤ µU(Z) = µD(X) = distD(f,P(m)), where the first equality
follows from Claim 3.4.14. Consider a violated pair (u, v) in this graph and so wlog fext(u) −
fext(v) > dext(u, v). Hence, f(Φ(u)) − f(Φ(v)) > m(Φ(u),Φ(v)) implying (Φ(u),Φ(v)) is
an edge in Gviol(f,P(m)). Thus, either Φ(u) or Φ(v) lies in X implying either u or v lies in
Z.(≤). Let Z ⊆ [N]d be a vertex cover in Gviol(fext,P(dext)) minimizing µU(Z). Therefore,

distU(fext,P(dext)) = µU(Z). Define X ⊆ [n]d as X = {x ∈ [n]d : Φ−1(x) ⊆ Z}. Therefore,
Z ⊇ ⋃x∈X Φ−1(x) and from Claim 3.4.14 we get µU(Z) ≥ µD(X). It suffices to show that X is a
vertex cover of Gviol(f,P(m)). Consider a violated edge (x, y) in this graph such that f(x)−f(y) >
m(x, y). Suppose neither x nor y are in X . Hence, there exists u ∈ Φ−1(x) \Z and v ∈ Φ−1(y) \Z.
So fext(u) − fext(v) = f(Φ(u)) − f(Φ(v)) = f(x) − f(y) > m(x, y) = dext(Φ(u),Φ(v)),
implying (u, v) is a violation in Gviol(fext,P(dext)). This contradicts the fact that Z is a vertex
cover.

Fix a dimension r and r-line `. Abusing notation, let Φ−1(`) denote the collection of r-lines in
[N]d that are mapped to ` by Φ. Note that |Φ−1(`)| = Nd−1µD−r(`). A proof identical to one above
yields the following theorem.

Theorem 3.4.17. For any r-line, distDr(f|`,P(m)) = distUr(fext|`′ ,P(dext)) for all `′ ∈ Φ−1(`).

28

Now we can complete the proof of Theorem 3.4.1.

distrD(f,P(m)) =
∑
r-line `

µD−r(`) · distDr(f|`,P(m))

= 1
Nd−1

∑
r-line `

|Φ−1(`)| · distDr(f|`,P(m))

= 1
Nd−1

∑
r-line `

∑
`′∈Φ−1(`)

distUr(fext|`′ ,P(dext))

= E`′∼U−r [distUr(fext|`′ ,P(dext))] = distrU(fext,P(dext)).

We can apply the dimension reduction to fext for property P(dext) over the uniform distribution.
The proof of Theorem 3.4.1 for f follows directly.

3.5 Search Trees and BDP Testing

As a result of dimension reduction, we can focus on designing testers for the line [n]. Our analysis
is simple, but highlights the connection between bounded-derivative property testing and optimal
search trees.

3.6 Testers For the Hypergrid

Given a series of BSTs T1, T2, . . . , Td corresponding to each dimension, we have the following
hypergrid BST tester.

Lemma 3.6.1. For any set of BSTs T1, T2, . . . , Td, the probability of rejection is at least distD(f,P)/4d.

Proof. Condition on an r-line being chosen. The probability distribution over r-lines for this tester
is D−r. By Lemma 3.3.1, the rejection probability is at least E`∼D−r [distDr(f|`,P)] = distrD(f,P).
The overall rejection probability is at least

∑d
r=1

distiD(f,P)
d

≥ distD(f,P)
4d , by Theorem 3.4.1.

The expected number of queries made by this procedure is at most 1
d
·∑d

r=12∆(Tr;Dr). Repeating it
O(d/ε) times to get the desired tester. The proof of the following is identical to that of Lemma 3.3.2
and is omitted.

Lemma 3.6.2. For any collections of BSTs (T1, . . . , Td), there is a 100ε−1∑d
i=1 ∆(T ;D)-query

tester for any bounded derivative property.

As in the case of the line we get the following as corollaries.

29

Theorem 3.1.1. [Main upper bound] Consider functions f : [n]d 7→ R. Let B be a bounding

family and D be a product distribution. There is a tester for P(B) w.r.t. D making 100ε−1∆∗(D)
queries.

Theorem 3.1.5. Consider functions f : [n]d 7→ R. There is a distribution-free (non-adaptive,

one-sided) tester for P(B) w.r.t. D making 100ε−1d log n queries.

The upper bound
∑d
r=1 ∆∗(Dr) is at mostH(D), but can be much smaller, and it is clearest in the

case of the hypercube. In the hypercube, eachDr is given by (µr, 1−µr). Set θr := min(µr, 1−µr).
The optimal BST places the point of larger mass on the root and has expected depth θr.

Corollary 3.1.3. Consider functions f : {0, 1}d 7→ R. Monotonicity testing over any product distri-

butionD = ∏d
r=1Dr, where eachDr = (µr, 1−µr), can be done with 100ε−1∑d

r=1 min(µr, 1−µr)
queries.

It is instructive to open up this tester. It samples a point x from the distribution D and picks a
dimension r uniformly at random. With probability θr, it queries both endpoints of (x, x⊕er). With
probability (1− θr), it does nothing. This process is repeated O(d/ε) times. When θr = µr = 1/2,
this is the standard edge tester.

3.7 Lower Bounds

We prove that the upper bounds of Section 3.5 are tight up to the dependence on the distance
parameter ε. As alluded to in Section 3.1.2, we can only prove lower bounds for stable product
distributions. These are distributions where small perturbations to the mass function do not change
∆∗ drastically.

Definition 3.7.1 (Stable Distributions). A product distribution D is said to be (ε, ρ)-stable if for

all product distributions D′ with ||D − D′||TV ≤ ε, ∆∗(D′) ≥ ρ∆∗(D).

The uniform distribution on [n]d is (ε, 1− o(1))-stable, for any constant ε < 1. The Gaussian
distribution also shares the same stability. An example of an unstable distribution is the following.
Consider D on [n], where the probability on the first k = log n elements is (1 − ε)/k, and is
ε/(n− k) for all other elements. Let D′ have all its mass uniformly spread on the first k elements.
We have ||D − D′||TV = ε but ∆∗(D) ≈ ε log n and ∆∗(D′) ≈ log k = log log n.

Theorem 3.1.4. [Main lower bound] For any parameter ε, there exists ε′ = Θ(ε) such that for

any bounding family B and (ε′, ρ)-stable, product distribution D, any (even adaptive, two-sided)

tester for P(B) w.r.t. D with proximity parameter ε requires Ω(ρ∆∗(D)) queries.

30

3.7.1 Reduction from Monotonicity to a Bounded-Derivative Prop-
erty

Consider a function f : [n]d 7→ [R] with where R ∈ N. Let m be the distance function obtained
by bounding family B. We let 0 ∈ [n]d be (0, 0, . . . , 0). We use ≺ to denote the natural partial
order in [n]d, and let hcd(x, y) be the highest common descendant of x, y ∈ [n]d. We first prove an
observation about triangle equality.

Observation 3.7.2. If m(0, x) + m(x, y) = m(0, y), then x ≺ y.

Proof. By linearity, m(x, y) = m(x, hcd(x, y)) + m(hcd(x, y), y). Since hcd(x, y) ≺ x, by
linearity again, m(0, x) = m(0, hcd(x, y)) + m(hcd(x, y), x). (Similarly for y.) Putting it all into
the ‘if’ condition,

m(0, hcd(x, y)) + m(hcd(x, y), x) + m(x, hcd(x, y)) + m(hcd(x, y), y) = m(0, hcd(x, y)) + m(hcd(x, y), y)

This yields m(hcd(x, y), x) + m(x, hcd(x, y)) = 0. Suppose hcd(x, y) 6= x. The length (in terms
of B) of the path from hcd(x, y) to x involves a sum of ui(t) terms, and the reverse path involves
corresponding −li(t) terms. Since ui(t) > li(t), the total path length from hcd(x, y) to x and back
is strictly positive. Therefore, hcd(x, y) = x and x ≺ y.

Let U be the set of incomparable (ordered) pairs in [n]d. Define δ := min(x,y)∈U{m(0, x) +
m(x, y)−m(0, y)}. By Observation 3.7.2, δ > 0. Define

g(x) := δ

2R · f(x)−m(0, x)

Lemma 3.7.3. distD(g,P) = distD(f, MON).

Proof. We show that (u, v) violates P(m) of g iff it violates monotonicity of f . First, the ‘only if’
case. Assume g(u)− g(v) > m(u, v). Plugging in the expression for g(·) and rearranging,

δ

2R(f(u)− f(v)) > m(0, u) + m(u, v)−m(0, v)

By triangle inequality on the RHS, f(u) > f(v). Note that f(u) − f(v) ≤ R so δ
2R(f(u) −

f(v)) ≤ δ/2. So δ/2 > m(0, u) + m(u, v)−m(0, v). By choice of δ, the RHS must be zero. By
Observation 3.7.2, u ≺ v, and (u, v) is a violation to monotonicity of f . Now the ‘only if’ case, so

31

u ≺ v and f(u) > f(v). Note that m(0, v) = m(0, u) + m(u, v). We deduce that (u, v) is also a
violation to P(m) for g.

g(u)− g(v) = δ

2R(f(u)− f(v)) + m(0, v)−m(0, u) = δ

2R(f(u)− f(v)) + m(u, v) > m(u, v)

Our main reduction theorem is the following.

Theorem 3.7.4. Fix domain [n]d and a product distribution D. Suppose there exists a Q-query

tester for testing a bounded-derivative property P with distance parameter ε. Then there exists a

Q+ 10/ε-query tester for monotonicity for functions f : [n]d 7→ N over D with distance parameter

2ε.

Proof. The monotonicity tester first queries 10/ε points of [n]d, each i.i.d. from D. Let the
maximum f -value among these be this M . Consider the truncated function f ′ : [n]d 7→ [M], where
f ′(x) = M if f(x) ≥M and f ′(x) = f(x) otherwise. If f is monotone, f ′ is monotone. Note that
distD(f, f ′) < ε. So if f is 2ε-far from monotone, f ′ is ε-far from monotone. We can apply the
P(B) tester on the function g obtained from Lemma 3.7.3.

3.7.2 Monotonicity Lower Bound Framework

The lower bound for monotonicity testing goes by the proof strategy set up in [CS13b]. This is
based on arguments in [Fis04, CS13b] that reduce general testers to comparison-based testers. We
encapsulate the main approach in the following theorem, proven implicitly in [CS13b]. (We use
MON to denote the monotonicity property.)

Theorem 3.7.5. Fix domain [n]d, distribution D, proximity parameter ε, and positive integer L

possibly depending on D and ε. A pair (x, y) distinguishes function g from h if h(x) < h(y) and

g(x) > g(y). Suppose there is a collection of ‘hard’ functions h, g1, . . . , gL : [n]d 7→ N such that

• The function h is monotone.
• Every distD(gi, MON) ≥ ε.
• Pairs in any set Q ⊂ [n]d, can distinguish at most |Q| of the gi’s from h.

Then any (even adaptive, two-sided) monotonicity tester w.r.t. D for functions f : [n]d 7→ N with

distance parameter ε must make Ω(L) queries.

In Section 3.7.3 and Section 3.7.4, we first describe hard functions for the line and the hypercube
domain, respectively. The general hypergrid is addressed in Section 3.7.5.

32

3.7.3 The Line

Theorem 3.7.6. Fix a parameter ε. If D is (2ε, ρ)-stable, then any ε-monotonicity tester w.r.t. D
for functions f : [n]d 7→ N requires Ω(ρ∆∗(D)) queries.

Not surprisingly, the lower bound construction is also based on BSTs. We specifically use the
median BST [Meh75]. When n = 1, then the tree is the singleton. For a general n, let t ∈ [n] be the
smallest index such that µ({1, · · · , t}) ≥ 1/2 (henceforth, in this section, we use µ to denote µD).
The root of T is t. Recur the construction on the intervals [1, t− 1] and [t+ 1, n]. By construction,
the probability mass of any subtree together with its parent is greater than the probability mass
of the sibling subtree. This median property will be utilized later. We follow the framework of
Theorem 3.7.5 to construct a collection of hard functions. The monotone function h can be anything;
h(i) = 3i works. We will construct a function gj (j ≥ 1) for each non-root level of the median BST.
Consider the nodes at depth j− 1 (observe the use of j− 1, and not j). Each of these corresponds to
an interval, and we denote this sequence of intervals by I1j , I2j , (Because internal nodes of the tree
are also elements in [n], there are gaps between these intervals.) Let L≥j := {x : depthT (x) ≥ j}
be the nodes at depth j and higher. We have the following simple claim.

Claim 3.7.7. Ikj can be further partitioned into Ik,left
j and Ik,right

j such that
∑
k min

(
µ(Ik,left

j), µ(Ik,right
j)

)
≥

µ(L≥j)
2 .

Proof. Consider the node uk corresponding Ikj , and let the nodes in the left and right subtrees be
S` and Sr. If µ(S`) ≤ µ(Sr), then Ik,left

j = S` ∪ uk and Ik,right
j = Sr. Otherwise, Ik,left

j = S` and
Ik,right
j = uk∪Sr. By the median property of the BST, min(µ(Ik,left

j), µ(Ik,right
j)) = max(µ(S`), µ(Sr))

≥ (µ(S`) + µ(Sr))/2.

We describe the non-monotone gj’s and follow up with some claims. Let lca(x, y) denote the
least common ancestor of x and y in T .

gj(x) =

2x if x /∈ ⋃k Ikj
2x+ 2(b−m) + 1 if x ∈ Ik,left

j = [a,m], where Ikj = [a, b].
2x− 2(m− a)− 1 if x ∈ Ik,right

j = [m+ 1, b], where Ikj = [a, b].
(3.13)

Claim 3.7.8. (i) distD(gj, MON)≥ µ(L≥j)
2 . (ii) If (x, y) distinguishes gj from h, then lca(x, y) lies in

level (j − 1).

33

Proof. All elements in Ik,left
j are in violation with all elements in Ik,right

j for all k. To see this, let
x ∈ Ik,left

j and y ∈ Ik,right
j , and so x ≺ y. Denote Ikj = [a, b],

gj(x)− gj(y) = 2x+ 2(b−m) + 1− 2y + 2(m− a) + 1 = 2(x− a) + 2(b− y) + 2 > 0

The vertex cover of the violation graph of gi has mass at least
∑
k min(µ(Ik,left

j), µ(Ik,right
j)) ≥

µ(L≥j)/2 (Claim 3.7.7). This proves part (i). To prove part (ii), let x ≺ y distinguish gj from h, so
gj(x) > gj(y). We claim there exists a k∗ such that x ∈ Ik

∗,left
j and y ∈ Ik

∗,right
j . For any Ikj = [a, b],

the gj values lie in [2a + 1, 2b + 1]. Hence, if x ∈ Ikj and y /∈ Ikj (or vice versa), (x, y) is not a
violation. So x and y lie in the same Ik∗j , But the function restricted to Ik

∗,left
j or Ik

∗,right
j is increasing,

completing the proof.

The following claim is a simple combinatorial statement about trees.

Claim 3.7.9. Given a subset Q of [n], let lca(Q) = {lca(x, y) : x, y ∈ Q}. Then |lca(Q)| ≤ |Q|−1.

Proof. The proof is by induction on |Q|. The base case of |Q| = 2 is trivial. Suppose |Q| > 2.
Consider the subset P ⊆ Q of all elements of Q, none of whose ancestors are in Q. Also observe
that if P = Q, then lca(Q) are precisely the internal nodes of a binary tree whose leaves are
Q, and therefore |lca(Q)| ≤ |Q| − 1. If P is a singleton, then lca(Q) = lca(Q \ P) + 1 ≤
|Q \ P | − 1 + 1 = |Q| − 1 (inequality from induction hypothesis). So assume P ⊂ Q and
|P | 6= 1. For p ∈ P , let Sp be the set of elements of Q appearing in the tree rooted at p. For
every x ∈ Sp and y ∈ Sp′ (p 6= p′), lca(x, y) = lca(p, p′). Furthermore, the sets Sp non-trivially
partition Q. Therefore, lca(Q) = lca(P) ∪ ⋃p∈P lca(Sp). Applying the induction hypothesis,
|lca(Q)| ≤ |P | − 1 +∑

p∈P |Sp| − |P | = |Q| − 1.

Let `ε be the largest ` such that µ(L≥`) ≥ 2ε. By Claim 3.7.8.(i), the collection of functions
{g1, . . . , g`ε} are each ε-far from monotone. By Claim 3.7.8.(ii) and Claim 3.7.9, a subset Q ⊆ [n]
can’t distinguish more than |Q| of these functions from h. Theorem 3.7.5 gives an Ω(`ε) lower
bound and Theorem 3.7.6 follows from Claim 3.7.10.

Claim 3.7.10. `ε ≥ ρ∆∗(D).

Proof. Consider the distribution D′ that transfers all the mass from L≥`ε+1 to the remaining vertices
proportionally. That is, if ν := µ(L≥`ε+1), then µD′(i) = 0 for i ∈ L≥`ε+1, and µD′(i) =
µD(i)/(1− ν) for the rest. Observe that ||D −D′||TV = µD(L≥`ε+1) < 2ε. Also observe that since
T is a binary tree of height `ε, `ε ≥ ∆∗(D′): the LHS is the max depth, the RHS is the (weighted)
average depth. Now, we use stability of D. Since D is (2ε, ρ)-stable, ∆∗(D′) ≥ ρ∆∗(D).

34

3.7.4 The Boolean Hypercube

For the boolean hypercube, the lower bound doesn’t require the stability assumption. Any product
distribution over {0, 1}d is determined by the d fractions (µ1, . . . , µd), where µr is the probability
of 0 on the r-th coordinate. Let θr := min(µr, 1− µr).

Theorem 3.7.11. Any monotonicity tester w.r.t. D for functions f : {0, 1}d 7→ N with distance

parameter ε ≤ 1/10 must make Ω
(∑d

r=1 min(µr, 1− µr)
)

queries.

We begin with the basic setup. A tester for non-trivial ε makes at least 1 query, so we can
assume that

∑d
r=1 θr > 1. For ease of exposition, assume θr = µr, for all 1 ≤ r ≤ d. (If not,

we need to divide into two cases depending on θr and argue analogously for each case.) Assume
wlog θ1 ≤ θ2 ≤ · · · ≤ θd. Partition [d] into contiguous segments I1, . . . , Ib, Ib+1 such that for each
1 ≤ a ≤ b,

∑
r∈Ia θr ∈ [1/2, 1). Observe that b = Θ (∑r θr). For 1 ≤ a ≤ b, define the indicator

functions χa : {0, 1}d 7→ {0, 1} as follows:

χa(x) =

 1 if ∀i ∈ Ia, xi = 1
0 otherwise (∃i ∈ Ia, xi = 0)

By Theorem 3.7.5, we need to define the set of functions with appropriate properties. The monotone
function h(·) is defined as h(x) = ∑b

a=1 χa(x)2a. The functions g1, . . . , gb are defined as

ga(x) =

 h(x)− 2r − 1 if χa(x) = 1
h(x) if χa(x) = 0

We prove all the desired properties.

Claim 3.7.12. For all a, distD(ga, MON) ≥ 1/10.

Proof. Let I denote Ia, and J = [n] \ I . Think of x = (xI , xJ). Fix v in {0, 1}|J |, and define
sets X1(v) := {x|χa(x) = 1, xJ = v} (a singleton) and X0(v) = {x|χa(x) = 0, xJ = v}.
Note that

⋃
v(X1(v) ∪X0(v)) forms a partition of the cube. For c 6= a, χc(x) is the same for all

x ∈ (X0(v) ∪ X1(v)). Hence, for any x ∈ X0(v) and y ∈ X1(v), x ≺ y and ga(x) > ga(y).
Any vertex cover in the violation graph must contain either X1(v) or X0(v), for each v. Let DI
be the conditional distribution on the I-coordinates. In the following, we use the inequalities∑
i∈I θi ∈ [1/2, 1) and 1− t ∈ [e−2t, et] for t ≤ 1/2.

µDI (X1(v)) =
∏
i∈I

(1− θi) ≥ exp(−2
∑
i∈I

θi) ≥ e−2 > 1/10

35

µDI (X0(v)) = 1−
∏
i∈I

(1− θi) ≥ 1− exp(−
∑
i∈I

θi) ≥ 1− e−1/2 > 1/10.

For each v, the conditional mass of the vertex cover is at least 1/10, and therefore, the µD mass of
the vertex cover is at least 1/10.

A pair x, y in [n]d captures index a if a is the largest index such that χa(x) 6= χa(y). Furthermore,
a set Q captures a if it contains a pair capturing a.

Claim 3.7.13. If Q distinguishes ga from h, then Q must capture a.

Proof. Consider x, y ∈ Q where h(x) < h(y) but ga(x) > ga(y). It must be that χa(x) = 0 and
χa(y) = 1. Suppose this pair does not capture a. There must exist index c > a (let it be the
largest) such that χc(x) 6= χc(y). Because h(x) < h(y), χc(x) = 0 and χc(y) = 1. By definition,
ga(y)− ga(x) = (h(y)− 2a − 1)− h(x). We have h(y)− h(x) = ∑c

t=1(χt(y)− χt(x))2t. Since
χa(x) = χc(x) = 0 and χa(y) = χc(y) = 1, h(y)− h(x) ≥ 2c + 2a −∑t<c:t6=a 2t. Combining,

ga(y)− ga(x) ≥ 2c + 2a −
∑

t<c:t6=a
2t − 2a − 1 = 2a > 0.

Claim 3.7.14. [Lifted from [CS13b].] A set Q captures at most |Q| − 1 coordinates.

Proof. We prove this by induction on |Q|. When |Q| = 2, this is trivially true. Otherwise, pick
the largest coordinate j captured by Q and let Q0 = {x : xj = 0} and Q1 = {x : xj = 1}. By
induction, Q0 captures at most |Q0| − 1 coordinates, and Q1 captures at most |Q1| − 1 coordinates.
Pairs (x, y) ∈ Q0 ×Q1 only capture coordinate j. The total number of captured coordinates is at
most |Q0| − 1 + |Q1| − 1 + 1 = |Q| − 1.

We can now invoke Theorem 3.7.5 to get an Ω(b) = Ω(∑r θr) lower bound thereby proving
Theorem 3.7.11. The hypercube lower bound can be generalized to give a weak lower bound for

hypergrids, which will be useful for proving the stronger bound. Fix a dimension r. For any
1 ≤ j ≤ n, define θjr := min(∑k≤j µDr(k), 1 −∑k≤j µDr(k)). Define θr := max1≤j≤nθ

j
r. Note

that θr generalizes the above definition for the hypercube. The following theorem follows by a
reduction to the hypercube lower bound.

Theorem 3.7.15. Any monotonicity tester on the hypergrid with distance parameter ε ≤ 1/10,

makes Ω
(∑d

r=1 θr
)

queries.

36

Proof. For 1 ≤ r ≤ d, let 1 ≤ jr ≤ n be the j such that θr = θjr. Project the hypergrid onto
a Boolean hypercube using the following mapping ψ : [n]d → {0, 1}d: for x ∈ [n]d, ψ(x)r = 0
if xr ≤ jr, and 1 otherwise. The corresponding product distribution D′ on the hypercube puts
µD′r(0) = ∑

k≤jr µDr(k), for all r. Note that min(µr, 1−µr) = θr. Given any function f on {0, 1}d,
extend it to g over the hypergrid in the natural way: for x ∈ [n]d, g(x) = f(ψ(x)). Note that
distD′(f, MON) = distD(g, MON). (This is akin to Theorem 3.4.16.) Any tester for g over [n]d induces
a tester for f on {0, 1}d with as good a query complexity: whenever the hypergrid tester queries
x ∈ [n]d, the hypercube tester queries ψ(x). Therefore, the lower bound Theorem 3.7.11 for the
hypercube implies Theorem 3.7.15.

3.7.5 The Hypergrid

Our main lower bound result is the following, which implies Theorem 3.1.4 via Theorem 3.7.4.

Theorem 3.7.16. For any parameter ε < 1/10, and for any (120ε, ρ)-stable, product distribution

D, any (even adaptive, two-sided) montonicity tester w.r.t. D for functions f : [n]d 7→ N with

proximity parameter ε requires Ω(ρ∆∗(D)) queries.

3.7.5.1 Intuition

Since we already have a proof for d = 1 in Section 3.7.3, an obvious approach to prove The-
orem 3.1.4 is via some form of induction on the dimension. Any of the gj-functions on [n] in
Section 3.7.3 can be extended the obvious way to a function on [n]d. Given (say) gj : [n] 7→ N,
we can define f : [n]d 7→ N as f(x) = gj(x1). Thus, we embed the hard functions for D1 along
dimension 1. One can envisage a way do the same for dimension 2, and so on and so forth, thereby
leading to

∑
i ∆∗(Di) hard functions in all. There is a caveat here. The construction of Section 3.7.3

for (say) D1 requires the stability of D1. Otherwise, we don’t necessarily get Ω(∆∗(D1)) functions
with distance at least ε. For instance, if the root of the median BST has more than (1− ε) fraction of
the weight, we get at most one hard function of distance at least ε. So, the above approach requires
stability of all the marginals of D. Unfortunately, there exist stable product distributions with all
marginals unstable. Consider D = ∏

rDr, where each Dr = (1
(n−1)d , . . . ,

1
(n−1)d , 1−

1
d
). Note that

∆∗(D) ≈ log n. Each Dr is individually unstable (for ε > 1/d), since there is a D′i with all the mass
on the nth coordinate, such that ‖Di −D′i‖TV = 1/d and ∆∗(D′i) = 0. On the other hand, it is not
hard to see that D is (1/100, 1/100)-stable. A new idea is required to construct the lower bound. To
see this, suppose there is a product distribution D′ such that ∆∗(D′) < ∆∗(D)/100 = (log n)/100.
Markov’s inequality implies that for Ω(d) dimensions, ‖D′r − Dr‖TV = Ω(1/d). A calculation

37

shows that ‖D − D′‖TV must be at least 1/100. In sum, for any constants ε, ρ, there exist (ε, ρ)-
stable distributions D such that each marginal Dr is only (ε/d, ρ)-stable. This is a major roadblock
for a lower bound construction, and therefore a new idea is required. We design an aggregation

technique that does the following. Start with 1D functions g1
j1 and g2

j2 that are hard functions from
Section 3.7.3 for D1 and D2 respectively. Suppose the corresponding distances to monotonicity
are ε(1) and ε(2). We construct a function f : [n]d 7→ N that is ε(1) + ε(2)-far, so we can effectively
add their distances. If we can aggregate Ω(d) 1D functions, each with distance ε/d, then we get a
desired hard function. As can be expected, this construction is quite delicate, because we embed
violations in many dimensions simultaneouly. Furthermore, we need to argue that this aggregation
can produce enough “independent" hard functions, so we get a large enough lower bound (from
Theorem 3.7.5). And that is where the hard work lies.

3.7.5.2 Setup and Construction

Fix ε and let ε′ = 120ε. Fix the (ε′, ρ)-stable distribution D. Since D is (ε′, ρ)-stable, for any D′

with ‖D′ −D‖TV ≤ ε′, we have ∆∗(D′) ≥ ρ∆∗(D). We denote the median BST for Dr as Tr, ∆r

as the expected depth w.r.t. Dr, and ∆(D) = ∑d
r=1 ∆r. The following shows that the median BST

is near optimal.

Lemma 3.7.17. For any product distribution D = ∏
rDr, ∆(D) ≤ 5∆∗(D).

Proof. Fix a coordinate r. The depth of a vertex u in Tr is at most log2(1/µDr(u)), so we get
∆r ≤ H(Dr), the Shannon entropy of Dr. It is also known (cf. Thm 2 in [Meh75]) that H(Dr) ≤
log2 3(∆∗(Dr) + 1). To see this, notice that any BST can be converted into a prefix-free ternary
code of expected length (∆∗(Dr) + 1), say, over the alphabet ‘left’,‘right’, and ‘stop’. Therefore, if
∆∗(Dr) ≥ 1/2, we have ∆r ≤ 5∆∗(Dr). If ∆∗(Dr) < 1/2, then since ∆∗(Dr) ≥ 1− Pr[root], we
get µ∗ := µDr(u∗) > 1/2 where u∗ is the root of the optimal BST T ∗. But this implies u∗ is also
the root of Tr by construction of the median BST. Now we can prove via induction. If p and q are
the total masses of the nodes in the left and right sub-tree of T ∗ (and therefore also Tr), and ∆∗1
(resp. ∆1) and ∆∗2 (resp. ∆2)be the expected depths of these subtrees in T ∗ (resp. Tr), then we get,
∆∗(Dr) = p∆∗1 + q∆∗2 + (1− µ∗) ≤ 5p∆1 + 5q∆2 + (1− µ∗) ≤ 5∆r.

Theorem 3.7.5 requires the definition of a monotone function and a collection of ε-far from
monotone functions with additional properties. The monotone function is val(x) := ∑d

r=1 2(2n+
1)rxr. The non-monotone functions (which we refer to as “hard" functions) are constructed via
aggregation. From Section 3.7.3, for each dimension r and each level j ≥ 1 in tree Tr, we have a

38

1D “hard" function grj : [n] 7→ N. It is useful to abstract out some of the properties of grj that were
proved in Section 3.7.3. Let Lrj be the nodes in Tr at level j. Each level corresponds to a collection
of intervals of [n]. We use Lr≥j := ⋃

j′≥j L
r
j′ and Lr<j = ⋃

j′<j L
r
j′ . We use the shorthand µr≥j to

denote µDr(Lr≥j). The following lemma is a restatement of Claim 3.7.7 and Claim 3.7.8.

Lemma 3.7.18. Consider grj : [n] 7→ N, for j ≥ 1 All violations to monotonicity are contained in

intervals corresponding to Lrj−1, and the distance to monotonicity is at least µr≥j/2. Furthermore,

any violation (x, y) has lca(x, y) in Lrj−1.

The aggregation process takes as input a map ψ : [d] 7→ {⊥} ∪ {2, 3, 4, . . .}. Note that if
ψ(r) 6= ⊥, then ψ(r) > 1. Informally, ψ(r), when not equating to ⊥, tells us the level of Tr whose
hard function is to be included in the aggregation. We define Ψ−1 := {r|ψ(r) 6= ⊥}, the subset of
relevant dimensions. Given the map ψ, we aggregate the collection of 1D functions {grψ(r)|r ∈ Ψ−1}
into a single hard function for [n]d as follows.

� (x) :=
∑

r∈Ψ−1

(2n+ 1)rgrψ(r)(xr) +
∑

r/∈Ψ−1

2(2n+ 1)rxr (3.14)

Observe that the latter sum is identical to the corresponding portion in val(x). The first summand
takes the hard function corresponding to the ψ(r)th level of Tr for r ∈ Ψ−1 and aggregates them
via multiplying them with a suitable power of (2n+ 1).

Definition 3.7.19. A map ψ is useful if the following are true.

•
∑
r∈Ψ−1 µr≥ψ(r) ∈ (ε′, 1)

• For all r ∈ Ψ−1, µr≥ψ(r) ≥
µr≥ψ(r)−1

2 .

In plain English, the first point states that total distance of the hard functions picked should be
at least ε′. The second point is a technicality which is required to argue about the distance of the
aggregated function. It states that in each relevant Tr, the total mass on the nodes lying in the ψ(r)th
layer and below shouldn’t be much smaller than the total mass on the nodes lying on the (ψ(r)−1)th
layer and below.

Lemma 3.7.20. If ψ is useful, distD(�, MON) ≥ ε.

Proof. It is convenient to consider restrictions of� where all coordinates in [d] \ Ψ−1 are fixed.
This gives rise to |Ψ−1|-dimensional functions. We argue that each such restriction is ε-far from
monotone, which proves the lemma. Abusing notation, we use � to refer to an arbitrary such
restriction. Fix some r ∈ Ψ−1. Define the subset Sr := {x ∈ [n]d : xs ∈ Ls<ψ(s)−1, ∀s 6= r} to be

39

the set of points x with the sth coordinate appearing in the first (ψ(s) − 2) layers of the tree Ts,
for all s 6= r. We stress that this is well-defined because ψ(s) ≥ 2 by definition of ψ. Note that
each Sr is a collection of r-lines and the restriction of� on each line exactly a multiple of grψ(r).
By Lemma 3.7.18, all violations to monotonicity in such lines lie in the intervals corresponding to
Lr≥ψ(r)−1, and the mass of the vertex cover of the violation graph (restricted to the line) is at least

µr≥ψ(r)/2. Thus the total contribution to distance of� from Sr is at least
µr≥ψ(r)

2 ·µD−r(
∏
s 6=r L

s
<ψ(s)−1).

What is crucial to note is that the regions of violations in Sr is disjoint from the regions of violation
in Sr′ for r′ 6= r. Therefore, the contributions to the distance of� add up, and this gives

distD(�, MON) ≥ 1
2
∑

r∈Ψ−1

µr≥ψ(r) · µD−r
(∏
s 6=r

Ls<ψ(s)−1

)

= 1
2
∑

r∈Ψ−1

µr≥ψ(r)

∏
s 6=r

(1− µs≥ψ(s)−1)

≥ 1
2
∑

r∈Ψ−1

µr≥ψ(r)

∏
s 6=r

(1− 2µs≥ψ(s)) (point 2 in def. of useful map)

We can apply the bound,
∑
r∈Ψ−1 µr≥ψ(r) ∈ (ε′, 1), since ψ is useful. We lower bound the prod-

uct by exp(−4∑s 6=r µ
s
≥ψ(s)), which by the above bound, is at least e−4. So, distD(�, MON) ≥∑

r∈Ψ−1 µr≥ψ(r)/120 ≥ ε′/120 = ε.

Definition 3.7.21. Two maps ψ1, ψ2 are disjoint if: {(r, ψ1(r))|r ∈ Ψ−1
1 } and {(r, ψ2(r))|r ∈ Ψ−1

2 }
are disjoint.

That is, for every tree Tr, ψ1 and ψ2 point to different layers of the tree (or they point to ⊥).

Lemma 3.7.22. Consider a set of maps ψ1, ψ2, . . . that are all pairwise disjoint. A set of Q queries

can distinguish at most |Q| − 1 of these functions from val.

Proof. Say a pair (x, y) of queries captures the (unique) tuple (r, j) if the largest coordinate in
which x and y differ is r, and furthermore lca(xr, yr) in Tr lies in level (j − 1). A set Q captures
(r, j) if some pair in Q captures (r, j). We first show that if (x, y) distinguishes� from val for some
map ψ, then (x, y) captures a pair (r, ψ(r)) for some r ∈ Ψ−1. Assume wlog val(x) < val(y), and
so� (x) >� (y). Let a be the largest coordinate at which x and y differ; since val(x) < val(y),
we get xa < ya. Suppose gaψ(a)(xa) and gaψ(a)(ya) is not a violation. By the construction, this implies
that gaψ(a)(ya)− gaψ(a)(xa) ≥ 1. Furthermore, grψ(r) is always in the range [1, 2n] for any r.

� (y)− � (x) = (2n+ 1)a(gaψ(a)(ya)− gaψ(a)(xa)) +
∑

r<a,r∈Ψ−1

(2n+ 1)r(grψ(r)(yr)− grψ(r)(xr))

40

≥ (2n+ 1)a − (2n)
∑
r<a

(2n+ 1)r

= (2n+ 1)a − (2n) · (2n+ 1)a − 1
2n > 0,

So (gaψ(a)(xa), gaψ(a)(ya)) is a violation. Immediately, we deduce that ψ(a) 6= ⊥, so a ∈ Ψ−1. By
Claim 3.7.8, lca(xa, ya) lies in level ψ(a) − 1 of Ta, and hence, (x, y) captures (a, ψ(a)). As we
prove in Claim 3.7.23, Q queries can capture at most |Q| − 1 such tuples. The proof is completed
by noting the maps ψ1, ψ2, . . . are pairwise disjoint.

Claim 3.7.23. A nonempty set Q can only capture at most |Q| − 1 tuples (r, j).

Proof. Proof is by induction on |Q|. If |Q| = 2, then the claim trivially holds. Assume |Q| > 2.
Let s be the largest dimension such that there are at least two points in Q differing in that dimension.
For c = 1 to n, let Qc := {x ∈ Q : xs = c}. By definition, Qc ⊂ Q. Reorder the dimensions such
that Qc is non-empty for c = 1 . . . q ≤ n. By induction, each Qc captures at most |Qc| − 1 pairs for
1 ≤ c ≤ q. Consider (x, y) with x ∈ Qc and y ∈ Qc′ for c 6= c′. The largest coordinate where they
differ is exactly s. All tuples captured by such pairs is of the form (s, `), where ` is the lca in Ts of
some c, c′ ∈ {1 . . . , q}. By Claim 3.7.9, the total number of such points is at most q − 1. Thus, the
total number of tuples captured is at most

∑q
a=1 |Qa| − q + (q − 1) = |Q| − 1.

Now we are ready to construct the hard functions. Let us go back to the framework of Theo-
rem 3.7.5. From Lemma 3.7.20 and Lemma 3.7.22, it suffices to construct a sequence ψ1, ψ2, . . .

of pairwise disjoint, useful maps. The number of such maps will exactly be our lower bound. The
exact construction is a little tricky, since the conditions of usefulness are somewhat cumbersone.
We use the following definition.

• Allowed levels: A level j is allowed w.r.t. dimension r if j > 1 and µr≥j ≥ µr≥j−1/2. This is
in lines with point 2 of the usefulness definition.

• Level sets Ar: Ar is the set of allowed levels of tree Tr.
It is convenient to define an abstract procedure that constructs these maps. We have a stack Sr for
each r ∈ [d], whose elements are allowed levels. The stack Sr is initialized with Ar in increasing
order, that is the head (top entry) of the stack is the least (that is, closest to root) level in Ar. In each
round, we will construct a map ψ. Denote the head of Sr by hr. Note that hr > 1 by definition of
allowed levels. Maintain a running count initialized to 0. We go through the stacks in an arbitrary
order popping off a single element from each stack. In a round, we never touch the same stack more
than once. When we pop Sr, we set ψ(r) := hr and add µr≥hr to the running count. We stop as soon
as the running count enters the interval [ε′, 1]. For all r for which ψ(r) hasn’t been defined, we

41

set ψ(r) = ⊥. This completes the description of a single map. Observe, by definition of allowed
levels and the stopping condition, ψ is useful. When

∑d
r=1 µ

r
≥hr < ε′, we cannot complete the

construction. So the procedure terminates, discarding the final map. Let the set of maps constructed
be Ψ. By construction, the maps are useful. Furthermore, they are pairwise disjoint, because once
a layer is popped out, it never appears again. We now basically show that |Ψ| is large, using the
(ε′, ρ)-stability of D. This proves that the number of hard functions is large. We have to first deal
with an annoying corner case of D.

Theorem 3.7.24. If
∑
r µ

r
≥1 > ρ∆(D)/12, then any monotonicity tester requires Ω(ρ∆∗(D))

queries.

Proof. We simply apply the hypercube lower bound. Recall the definition of θr described before
Theorem 3.7.15. Note that µr≥1 is simply the total Dr-mass of everything in Tr other than the root.
By the median property of the Tr, θr is ensured to be at least half of this mass, and hence θr ≥ µr≥1/2.
Combining with Theorem 3.7.15, we get a lower bound of Ω(∑r µ

r
≥1), which by assumption, is

Ω(ρ∆(D)). An application of Lemma 3.7.17 completes the proof.

Now we come to the main bound of |Ψ|. We need some setup for the proof. The following
simple observation is crucial. This follows since E[Z] = ∑

k∈N Pr[Z ≥ k], for any non-negative,
integer valued random variable.

Claim 3.7.25. For all r,
∑
j≥1 µ

r
≥j = Ex∼Dr [depthTr(x)] = ∆r.

The following lemma completes the entire lower bound.

Lemma 3.7.26. Suppose
∑
r µ

r
≥1 ≤ ρ∆(D)/12. Then |Ψ| = Ω(ρ∆(D)).

Proof. Let hr denote the head of Sr when the procedure terminates. So,
∑d
r=1 µ

r
≥hr < ε′. For any

ψ ∈ Ψ,
∑
r∈Ψ−1 µr≥ψ(r) ≤ 1. Hence, |Ψ| is at least the total sum over popped elements µr≥j. Writing

this out and expanding out a summation,

|Ψ| ≥
∑
r∈[d]

∑
j<hr,j∈Ar

µr≥j =
∑
r∈[d]

[hr−1∑
j=1

µr≥j − µr≥1 −
∑

1<j<hr:j /∈Ar
µr≥j

]

Recall that hr > 1 and so the summations are well-defined. For any level 1 < j /∈ Ar, we have
µr≥j < µr≥j−1/2. Therefore,

∑
1<j<hr:j /∈Ar µ

r
≥j <

∑hr−2
j=1 µr≥j/2. Plugging this bound in and applying

the lemma assumption,

|Ψ| ≥
∑
r∈[d]

hr−1∑
j=1

µr≥j/2−
∑
r∈[d]

µr≥1 ≥
∑
r∈[d]

hr−1∑
j=1

µr≥j/2− ρ∆(D)/12 (3.15)

42

We need to lower bound the double summation above. Observe that the second summation is∑
j≥1 µ

r
≥j − (µr≥hr + µr≥hr+1 + · · ·). The first term, by Claim 3.7.25 is precisely ∆(D), and by

definition of hr, each of the terms in the parenthesis is at most ε′. However, the number of terms in
the parenthesis can be quite large, and this doesn’t seem to get any lower bound on the summation.
Here’s where stability of D saves the day. Construct a distribution D′r be the distribution on [n]
as follows. Move the entire probability mass away from Lr≥hr and distribute it on the ancestral
nodes in level (hr − 1) of Tr. More precisely, µD′r(u) = 0 if u ∈ Lr≥hr , µD′r(u) = µDr(u) if
u ∈ Lr<hr−1, and µD′r(u) = ∑

v µDr(v) for u ∈ Lrhr−1 where the summation is over children v
of u in Tr. Letting D′ := ∏

rD′i, we see that ||D − D′||TV ≤
∑d
r=1 µ

r
≥hr < ε′. Since D is

(ε′, ρ)-stable, we get ∆∗(D′) ≥ ρ∆∗(D). Now we can apply Claim 3.7.25 on D′r and Tr to get
Ex∼D′r [depthTr(x)] = ∑

j≥1 µD′r(Lr≥j) = ∑hr−1
j=1 µr≥j. This expected depth is by definition at least

∆∗(D′r). Therefore, we get a lower bound of
∑d
r=1 ∆∗(D′r)/2 = ∆∗(D′)/2 on the double summation

in Eq. (3.15). Using the stability of D′ this is at least ρ∆∗(D)/2. Substituting we get

|Ψ| ≥ ρ∆∗(D)/2− ρ∆(D)/12

≥ ρ∆∗(D)/2− 5ρ∆∗(D)/12 = Ω(ρ∆∗(D)) (by Lemma 3.7.17)

We put it all together to prove the main lower bound, Theorem 3.7.16. If
∑
r µ

r
≥1 > ρ∆(D)/12,

Theorem 3.7.24 proves Theorem 3.7.16. Otherwise, by Lemma 3.7.26 we have constructed Ω(ρ∆∗(D))
pairwise disjoint, useful maps. Each map yields a hard function of distance at least ε (by
Lemma 3.7.20), and these functions satisfy the conditions of Theorem 3.7.5, which implies Theo-
rem 3.7.16.

43

Chapter 4 |
Erasure-Resilient Property Testing

4.1 Introduction

In this chapter, we revisit the question of how sublinear-time algorithms access their data. With very
few exceptions, all algorithms studied in the literature on sublinear-time algorithms have oracle

access to data1. However, in many applications, this assumption is unrealistic. The oracle may be
unable to reveal parts of the data due to privacy concerns, or when some of the values get erased by
mistake or by an adversary. Motivated by these scenarios, we propose to study sublinear algorithms
that work with partially erased data.

Formally, we view a dataset as a function over some discrete domainD, such as [n] = {1, . . . , n}
or [n]d. For example, the classical problem of testing whether a list of n numbers is sorted in
nondecreasing order can be viewed as a problem of testing whether a function f : [n] → R is
monotone (nondecreasing). Given a parameter α ∈ (0, 1), we say that a function is α-erased if at
most an α fraction of its domain points are marked as “erased” or protected (that is, an algorithm is
denied access to these values). An algorithm that takes an α-erased function as its input does not
know which values are erased until it queries the corresponding domain points. For each queried
point x, the algorithm either learns f(x) or, if x is an erased point, gets back a special symbol ⊥.
We study algorithms that work in the presence of adversarial erasures. In other words, the query
complexity of an algorithm is the number of queries it makes in the worst case over all α-erased
input functions. An algorithm is required to be correct only on the non-erased part of the domain.
E.g., it should test whether the input function is monotone on that part of the domain.

In this work, we initiate a systematic study of property testers that are resilient to the presence

1Some known sublinear-time algorithms only require random labeled samples from the domain, and this is another
type of access that has received some attention [GR15]. There is also a line of work, initiated by [BFR+13], that studies
sublinear algorithms that access distributions, as opposed to fixed datasets. In this work, we focus on fixed datasets.

44

of adversarial erasures. An α-erasure-resilient ε-tester is given parameters α, ε ∈ (0, 1), along with
oracle access to an α-erased function f . The tester has to accept with high probability if f , restricted
to non-erased part of the domain, satisfies the desired property P and reject with high probability if
it is ε-far from P .

Erasure-resilient testers for more challenging properties. One challenge in designing
erasure-resilient testers by using existing algorithms in the standard model as a starting point
is that many existing algorithms are more likely to query certain points in the domain. Therefore, if
these points are erased, the algorithms will break. Specifically, the optimal algorithms for testing
whether a list of numbers is sorted (and there are at least three different algorithms for this prob-
lem [EKK+00, BGJ+12, CS13a]) have this feature. Moreover, it is known that an algorithm that
makes uniformly random queries is far from optimal. (It will have to make Θ(

√
n) queries instead

of Θ(log n) for n-element lists [EKK+00, Fis04].)
There is a number of well-studied properties for which all known optimal algorithms heavily

rely on querying specific points. Most prominent examples include monotonicity, the Lipschitz
properties and, more generally, bounded-derivative properties of real-valued functions on [n] and
[n]d, as well as convexity of real-valued functions on [n]. It is especially challenging to deal with
real-valued functions in our model, because there are many possibilities for erased values. We give
efficient erasure-resilient testers for all aforementioned properties of real-valued functions.

4.1.1 The Erasure-Resilient Testing Model

We formalize our erasure-resilient model for the case of property testing [RS96, GGR98]. Erasure-
resilient versions of other computational models, such as tolerant testing [PRR06a], can be defined
analogously.

Definition 4.1.1 (α-erased function). Let D be a domain,R be a range, and α ∈ (0, 1). A function2

f : D 7→ R ∪ {⊥} is α-erased if f evaluates to ⊥ on at most an α fraction of domain points. The

points on which f evaluates to ⊥ are called erased. The set of remaining (non-erased) points is

denoted by N .

A function f is ε-far from a property (set) P if it needs to be changed on at least an ε fraction of
domain points to obtain a function in P . A function f ′ : D → R that differs from a function f only
on points erased in f is called a restoration of f .

2Any object can be viewed as a function. E.g., an n-element array of real numbers can be viewed as a function
f : [n]→ R, an image—as a map from the plane to the set of colors, and a graph—as a map from the set of vertex pairs
to {0, 1}.

45

Definition 4.1.2 (Erasure-resilient tester). An α-erasure-resilient ε-tester of property P gets input

parameters α, ε ∈ (0, 1) and oracle access to an α-erased function f : D → R∪ {⊥}. It outputs,

with probability3 at least 2/3,

• accept if there is a restoration f ′ : D → R of f that satisfies P;

• reject if every restoration f ′ : D → R of f needs to be changed on at least an ε fraction of

N , the non-erased portion of f ’s domain, in order to satisfy P (that is, f ′ is ε · |N ||D| -far from

P).

The tester has 1-sided error if the first item holds with probability 1.

Let f|N denote the function f restricted to the set N of non-erased points. Observe that we
can define a property P ′ such that the erasure-resilient tester is simply required to distinguish the
case that f|N satisfies P ′ from the case that it is ε-far from satisfying it. (For example, if P is
monotonicity of functions on a partially-ordered domain D then P ′ is monotonicity of functions on
N .) However, it is different from the standard property testing problem because the tester does not
know in advance which points are erased.

4.1.2 Our Results

We give efficient erasure-resilient testers for all properties discussed in Section 2.1. All our testers
have optimal complexity for the case with no erasures and have an additional benefit of not relying
too heavily on the value of the input function at any specific point.

4.1.3 Monotonicity on the Line

We start by giving (in Section 4.2) an erasure-resilient monotonicity tester on [n].

Theorem 4.1.3 (Monotonicity tester on the line). There exists a one-sided error α-erasure-resilient

ε-tester for monotonicity of real-valued functions on the line [n] that works for all α, ε ∈ (0, 1),
with query complexity O

(
α

1−α ·
1
ε2

log 1
ε
· log n

)
. Moreover, if α = O(ε) then the query complexity

is O
(

1
1−α ·

1
ε

log 1
ε
· log n

)
, and if α < ε then it is O

(
1
ε

log 1
ε
· log n

)
.

3In general, the error probability can be any δ ∈ (0, 1). For simplicity, we formulate our model and the results with
δ = 1/3. To get results for general δ, by standard arguments, it is enough to multiply the complexity of an algorithm by
log 1/δ.

46

Without erasure resilience, the complexity of testing monotonicity of functions f : [n] 7→ R
is Θ(log n/ε) [EKK+00, Fis04]. Thus, the query complexity of our erasure-resilient tester has
optimal dependence on the domain size and, for α < ε, has nearly optimal dependence (up to the
logarithmic factor) on ε.

The starting point of our algorithm is the tester for sortedness from [EKK+00]. This tester picks
a random element of the input array and performs a binary search for that element. It rejects if
the binary search does not lead to the right position. The first challenge is that the tester always
queries the middle element of the array and is very likely to query other elements that are close to
the root in the binary search tree. So, it will break if these elements are erased. To make it resilient
to erasures, we randomize the binary tree with respect to which it performs the binary search. The
second challenge is that the tester does not know which points are erased. To counteract that, our
tester samples sample points from appropriate intervals until it encounters a non-erased point. To
analyze the tester, we use Devroye’s bound [Dev86] on the depth of a random binary search tree, as
well as our own combinatorial lemma (Lemma 4.2.2) that bounds, for every binary search tree, the
fraction of search paths that contain some intervals “dense” with erasures. This lemma might be
of independent interest because it applies when density of any type of bad points, not necessarily
erasures, needs to be limited.

4.1.4 BDPs on the Hypergrid

In Section 4.3, we generalize our monotonicity tester in two ways: (1) to work over general hypergrid
domains, and (2) to apply to all BDPs. We achieve it by giving (1) a reduction from testing BDPs
on the line to testing monotonicity on the line that applies to erasure-resilient testers and (2) an
erasure-resilient version of the dimension reduction from [CDJS15]. We obtain the following result.

Theorem 4.1.4 (BDP tester on the hypergrid). For every BDP P , there exists a one-sided error

α-erasure-resilient ε-tester for P of real-valued functions on the hypergrid [n]d that works for

all α, ε ∈ (0, 1), where α ≤ ε/161d, with query complexity O
(

d2

ε2(1−α)2 · log d
ε(1−α) ·H

)
, where

H = max{log n, log d
ε(1−α)}.

4.1.5 Convexity on the Line

Finally, in Section 4.4, we develop additional techniques to design a tester for convexity (not a BDP)
on the line. When α is small, the query complexity of our tester has optimal dependence on n and
nearly optimal (up to the log factor) dependence on ε.

47

Theorem 4.1.5 (Convexity tester on the line). There exists a one-sided error α-erasure-resilient

ε-tester for convexity of real-valued functions on the line [n] that works for all α, ε ∈ (0, 1),
with query complexity O

(
α

1−α ·
1
ε3

log 1
ε
· log2 n

)
. Moreover, the query complexity simplifies to

O
(

1
1−α ·

1
ε

log 1
ε
· log n

)
when α = O

(
ε2

logn

)
and to O

(
1
ε

log 1
ε
· log n

)
when α < ε2

logn .

Our algorithm builds on the convexity tester by Parnas et al. [PRR06a] and our erasure-resilient
monotonicity tester for the line. Our convexity tester for the case when no erased points are present
is conceptually simpler than the original tester in [PRR06a]. To make it erasure-resilient, we pick a
random (non-erased) point and do a binary search for it in a random binary search tree. However,
instead of checking whether the selected point can be found, as in our monotonicity tester, the
convexity tester checks a more complicated “goodness condition” in each visited interval of the
binary search tree. It boils down to checking that the slope of the functions between pairs of
carefully selected points satisfies the convexity condition.

The analysis of our convexity tester is more involved than for other properties. The further
complication is that, in addition to sampling queries in each interval to catch non-erased points, we
also need walking queries to find the next (or previous) non-erased point adjacent to a given point.
We prove another combinatorial lemma (Lemma 4.4.1) that limits a number of points with a long
run of adjacent erased points.

4.2 Erasure-Resilient Monotonicity Tester For the Line

In this section, we prove Theorem 4.1.3. Recall that, for a function f : N 7→ R ∪ {⊥}, the set
of non-erased points (the ones that map to R) is denoted by N , and that, for N ⊆ [n], a function
f : N 7→ R is monotone if x < y implies f(x) ≤ f(y) for all x, y ∈ N . Also recall that the tester
does not know N .

We first give a high level overview of the algorithm. The algorithm has oracle access to f and
takes α and ε as inputs. In each iteration, it samples points uniformly at random from [n] until it
gets a non-erased point s, and then does a randomized binary search for s. It rejects if a violation to
monotonicity is found in its search. It accepts if either no violation is found, or if the the number of
queries exceed Q, where Q is a function of ε,α and n. In the description of our tester (Algorithm 1),
we use I[i, j] to denote the set of natural numbers from i until and including j. We alternatively
refer to it as the interval from i to j.

48

Algorithm 1 Erasure-Resilient Monotonicity Tester for the Line
Input: parameters α, ε ∈ (0, 1); oracle access to f : [n] 7→ R ∪ {⊥}

1: Set Q = c · log n, where c =
⌈

14
ε

(
1 + ln

(
28
ε

)) (
1 + 28α

ε(1−α)

)⌉
.

2: Accept at any point if the number of queries exceeds Q.
3: repeat 2/ε times:
4: Sample points uniformly at random from I[1, n] and query them until we get a point s ∈ N .
5: Set `← 1, r ← n.
6: while ` ≤ r do
7: Sample and query points uniformly at random from I[`, r] until we get a point m ∈ N .
8: if s < m then
9: Reject if f(s) ≥ f(m). Otherwise, set r ← m− 1.

10: if s > m then
11: Reject if f(s) ≤ f(m). Otherwise, set `← m+ 1.
12: if s = m then
13: Go to Step 3. . Search completed.
14: Accept.

4.2.1 Analysis Outline and Technical Ingredients

Every iteration of Algorithm 1 can be viewed as a traversal of a uniformly random search path in a
uniformly random binary search tree defined on the set N of non-erased points. A search path is a
path from the root to some node Γ of T . Given a binary search tree T over N , we associate every
node of T with a unique sub-interval I of I[1, n] as follows. The root of T is associated with I[1, n].
Suppose the interval associated with a node Γ in T that contains s ∈ N is I[i, j]. Then the interval
associated with the left child of Γ is I[i, s− 1] and the interval associated with the right child of Γ
is I[s+ 1, j].

If f|N is ε-far from monotone, we prove that, with high probability, the tester finds a violation.
It is easy to prove this, using a generalization of an argument from [EKK+00], for the case when
Algorithm 1 manages to complete all iterations of Step 3 before it runs out of queries.

The challenge is that the algorithm might get stuck pursuing long paths in a random search tree
and waste many queries on erased points. Using a result by [Dev86], we deduce that, with high
probability, the depth of a uniformly random binary search tree on N is O(log n). To resolve the
issue of many possible queries to erased points, we prove a combinatorial lemma on the structure
of binary search trees, which shows that all the intervals in most of the search paths in any binary
search tree have sufficiently many non-erased points. We first define some terminology that we use
to prove our combinatorial lemma.

49

Definition 4.2.1 (Dense and Sparse Intervals). The density of a interval I ⊆ [1, n] is defined as

the fraction of erased domain points in I . An interval is δ-dense if its density is at least δ, where

δ ∈ (0, 1). Otherwise, the interval is δ-sparse.

The following lemma bounds the fraction of search paths that contain some δ-dense intervals,
for every binary search tree. Recall that, a search path in a search tree T is a path from the root to
some node of T . We believe that the lemma is of independent interest.

Lemma 4.2.2 (Combinatorial lemma). Consider an arbitrary binary search tree T on N . For all

δ ∈ [0, 1), the fraction of search paths in T that contain some δ-dense intervals is at most

α

1− α ·
1− δ
δ

.

Proof. A search path is called δ-heavy if it contains a δ-dense interval. Non-erased points in the
leaves of δ-heavy paths are called δ-heavy points. Note that the number of δ-heavy paths and the
number of δ-heavy points are equal. We will bound the fraction of δ-heavy paths in T .

Let the largest δ-dense interval on a δ-heavy path be called its primary δ-dense interval. Let I
denote the set of primary δ-dense intervals corresponding to the δ-heavy paths of T . More than one
δ-heavy path can have the same primary δ-dense interval. By definition, no interval in I can be an
ancestor or descendant of another interval from I and hence the intervals in I are disjoint. Also, by
definition, every δ-heavy non-erased point belongs to some interval in I.

Let η denote the fraction of δ-heavy paths in T . Consider I ∈ I. Since I is δ-dense, |I\N||I| ≥ δ.
Putting this together with the fact that |I| = |I \ N |+ |I ∩N|, we get |I\N||I∩N| ≥

δ
1−δ . It follows that∑

I∈I |I \ N | ≥ δ
1−δ ·

∑
I∈I |I ∩N|. Since the intervals in I are disjoint,

∑
I∈I |I \ N | is at most

the number of erased domain points in the domain and
∑
I∈I |IN | is equal to the number of δ-heavy

non-erased domain points, which is η · |N |. Putting all of this together,

nα ≥
∑
I∈I
|I \ N | ≥ δ

1− δ ·
∑
I∈I
|I ∩N| ≥ δ

1− δ · η · |N | ≥
δ

1− δ · η · n(1− α).

The last inequality uses the fact that the number of non-erased points in the whole instance is at
least n(1 − α). This implies that, n(1 − α)δη ≤ nα(1 − δ). Solving for η, the statement of the
lemma follows.

50

4.2.2 Analysis of the Tester

Now we analyze the tester. The query complexity of the tester is clear from its description. The main
statement of Theorem 4.1.3 follows from Lemma 4.2.3, proved next. The “moreover” part of the
theorem follows by substituting appropriate values of parameters in the query bound in Algorithm 1.

Lemma 4.2.3. Algorithm 1 accepts if f|N is monotone, and rejects with probability at least 2/3 if

f|N is ε-far from monotone.

Proof. The tester accepts whenever f|N is monotone. To prove the other part of the lemma, assume
that f|N is ε-far from monotone. Let A be the event that the tester accepts f . Let q denote the total
number of queries made. We prove that Pr[A] ≤ 1/3. The event A occurs if either q > Q or the
tester does not find a violation in any of the 2

ε
iterations of Step 3. Thus,

Pr [A] ≤ Pr [A|q ≤ Q] + Pr [q > Q] .

First, we bound the probability that the tester does not find violations in one iteration of Step 3
conditioned on the event that q ≤ Q. Each iteration of the tester can be viewed as a traversal of a
uniformly random search path P in a uniformly random binary search tree defined overN . Consider
an arbitrary binary search tree T defined over points in N . A point s ∈ N is called searchable

with respect to T if Algorithm 1 does not detect a violation to monotonicity while traversing the
search path to s in T . Consider two indices i, j ∈ N , where i < j, both searchable with respect to
T . Let a ∈ N be the pivot corresponding to the lowest common ancestor of the leaves containing
i and j. Since i and j are both searchable, it must be the case that f(i) < f(a) and f(a) < f(j)
and hence, f(i) < f(j). Thus, for every tree T , the function restricted to the domain points that
are searchable with respect to T is monotone. Therefore, if f|N is ε-far from monotone, for every
binary search tree T , at least an ε-fraction of the points in N are not searchable. Thus, the tester
detects a violation with probability ε in each iteration. Consequently,

Pr [A|q ≤ Q] ≤ (1− ε) 2
ε .

In the rest of the proof, we will bound Pr[q > Q]. We will do this by proving that, with high
probability, in each iteration the number of queries made by the tester is at most Q/(2

ε
). Let us

first show that the length of a root to leaf path in a random binary search tree is O(log n) with high
probability.

51

Claim 4.2.4 ([Dev86], Lemma 3.1). Fix n ≥ 2. Let Hn be the depth of a random binary search

tree over n points. Then, for any positive integer H ≥ log n,

Pr [Hn ≥ H] ≤ 1
n

(
2e log n
H

)H
.

Corollary 4.2.5. The number of non-erased domain points in a random binary search path traversed

by the algorithm is at most 7 log n with probability at least 1− 1/n2.

Next, we show using Lemma 4.2.2 that, with high probability, the fraction of non-erased points
in each interval encountered by the tester is large.

Claim 4.2.6. If P is a search path traversed by the algorithm, with probability 1− η, the density of

every interval on P is at most
(
1 + (1−α)·η

α

)−1
.

Proof. Let δ =
(
1 + (1−α)·η

α

)−1
. The fraction of δ-heavy search paths with respect to any binary

search tree T is at most α
1−α ·

1−δ
δ

from Lemma 4.2.2, which is equal to η when δ =
(
1 + (1−α)·η

α

)−1
.

Since the algorithm traverses a uniformly random search path in each iteration, the lemma follows.

Next, we prove that, with high probability, the total number of queries made by the algorithm to
traverse a random search path is small, if the number of intervals on the path is bounded and the
densities of those intervals are small. We use a tail bound from [Jan14] on the sum of geometric
random variables to do this.

Claim 4.2.7 ([Jan14], Corollary 2.4). Let X = ∑k
i=1Xi, where k ≥ 1 and Xi, for i ∈ [k], are

independent geometric random variables. That is, Xi is the number of tosses until the first head

when tossing a coin with heads probability pi, where 0 < pi ≤ 1 for all i ∈ [k]. Then, for any

λ ≥ 1,

Pr [X ≥ λ · E [X]] ≤ e1−λ.

Corollary 4.2.8. Consider a random search path P traversed by the algorithm. Let H denote the

length of P , and suppose that the density of each interval encountered by the algorithm along P

is at most δP . Then the total number of queries made by the algorithm to traverse P is at most
(1+ln 1/η)·H

1−δP with probability at least 1− η.

Proof. Let v1, v2, . . . , vH denote the non-erased domain points sampled while traversing P in the
order in which they were sampled. Let X1 denote the number of queries made until v1 was sampled
from [n]. For 1 < i ≤ H , let Xi denote the number of queries made to sample vi after vi−1 was

52

sampled. The total number of queries made by the algorithm to traverse P is then X = ∑H
i=1Xi.

Clearly, each Xi is a geometric random variable with parameter pi for i ∈ [H], where 1− pi is the
density of the interval from which vi was sampled. Since the density of every interval on P is at
most δP , we have mini{pi} ≥ 1− δP . Therefore,

E[X] =
H∑
i=1

1
pi
≤ H

1− δP
.

Hence, by Claim 4.2.7, for all λ ≥ 1,

Pr
[
X ≥ λ · H

1− δP

]
≤ Pr[X ≥ λ · E[X]] ≤ e1−λ.

Setting η = e1−λ, we get the corollary.

We now prove an upper bound on Pr[q > Q], where q is the total number of queries made
by Algorithm 1. Let δ =

(
1 + η (1−α)

α

)−1
, H = 7 log n and η = ε/28. Let qi denote the number of

queries made in iteration i, respectively, for 1 ≤ i ≤
⌈

2
ε

⌉
.

By a union bound,

Pr [q > Q] ≤
d 2
εe∑
i=1

Pr
[
qi > Q/

(2
ε

)]
.

Let Gi denote the (good) event that the length of Pi is at most H and that the density of each
interval in Pi is at most δ. Let |Pi| stand for the length of the path Pi. For each iteration i,

Pr
[
qi >

Qε

2

]
≤ Pr

[
qi >

Qε

2 |Gi

]
+ Pr

[
Gi

]
≤ Pr

[
qi >

H · (1 + ln(1/η))
(1− δ) |Gi

]
+ Pr

[
Gi

]
≤ η + η + 1

n2

where the third inequality uses Corollary 4.2.8, Claim 4.2.6 and Corollary 4.2.5. Since η = ε/28, the
error probability in this case becomes ε/14+1/n2 ≤ ε/12. Consequently, Pr [q > Q] ≤ 2

ε
· ε12 = 1/6.

Thus, Pr [A] ≤ (1− ε) 2
ε + 1/6 ≤ 1/3.

4.3 Erasure-Resilient BDP Testers For the Hypergrid

In this section, we present our erasure-resilient testers for all bounded derivative properties over
hypergrid domains (see Definition 2.0.1) and prove Theorem 4.1.4. First, we show in Lemma 4.3.4

53

that testing of any BDP on [n] reduces to testing monotonicity on [n]. A consequence of this
reduction is Theorem 4.3.5. Next, we prove Lemma 4.3.7 and Lemma 4.3.8 that reduces the problem
of erasure-resilient testing of a BDP over hypergrid domains to testing of the same property over
the line.

4.3.1 Erasure-Resilient BDP Tester For the Line

In Lemma 4.3.4, we show that (erasure-resilient) testing of bounded derivative properties (BDPs)
on the line reduces to monotonicity testing on the line and prove Theorem 4.3.5. As noted
in Section 2.1, BDPs comprise of a large class of properties that have been studied in the property
testing literature.

Given a function f : [n] 7→ R ∪ {⊥}, and a bounded derivative property P , we first define the
notion of a violated pair in f with respect to P .

Definition 4.3.1 (Violated pair). Given a function f : [n] 7→ R ∪ {⊥} and bounding family B
consisting of functions l, u : [n− 1] 7→ R, two points x, y ∈ N such that x < y violate the property

P(B) with respect to f if f(x)− f(y) > mB(x, y) = −∑y−1
t=x l(t) or f(y)− f(x) > mB(y, x) =∑y−1

t=x u(t). The pairs (x, y) and (y, x) are called violated.

Consider a bounded derivative property P of functions defined over [n] and associated bounding
functions l, u : [n− 1] 7→ R. The following claim states that, we may assume w.l.o.g. that
l(i) = −u(i) for all i ∈ [n− 1]. We use it in the proof of Claim 4.3.3.

Claim 4.3.2. Consider a function f : [n]→ R∪{⊥} and a bounding function family B over [n] with

l, u : [n− 1] 7→ R. Let g : [n] 7→ R ∪ {⊥} be a function that takes the value f(i) +∑n−1
j=i

l(j)+u(j)
2

for each i ∈ N and is erased on the remaining points. Let B′ be a bounding function family over

[n] with l′, u′ : [n− 1] 7→ R such that u′(i) = −l′(i) = u(i)−l(i)
2 for all i ∈ [n− 1]. Then x, y ∈ N

violate P(B) with respect to f iff x, y violate P(B′) with respect to g.

Proof. Note that (x, y) ∈ N , where x < y, is not violated with respect to f if and only if
max{f(x)− f(y)−mB(x, y), f(y)− f(x)−mB(y, x)} ≤ 0. We have

g(x)− g(y)−mB′(x, y) = f(x)− f(y) +
y−1∑
i=x

u(i) + l(i)
2 −

y−1∑
i=x

u(i)− l(i)
2

= f(x)− f(y)−
y−1∑
i=x

l(i) = f(x)− f(y)−mB(x, y).

54

Also,

g(y)− g(x)−mB′(y, x) = f(y)− f(x)−
y−1∑
i=x

u(i) + l(i)
2 −

y−1∑
i=x

u(i)− l(i)
2

= f(y)− f(x)−
y−1∑
i=x

u(i) = f(y)− f(x)−mB(y, x).

Thus, max{g(x)−g(y)−mB′(x, y), g(y)−g(x)−mB′(y, x)} = max{f(x)−f(y)−mB(x, y), f(y)−
f(x)−mB(y, x)}. The claim follows.

The following claim shows a reduction from testing BDPs over [n] to testing monotonicity over
[n].

Claim 4.3.3. Consider an α-erased function f : [n] 7→ R ∪ {⊥} and bounding functions l, u :
[n− 1] 7→ R such that −l(i) = u(i) = γ(i) for all i ∈ [n− 1]. Let P be the BDP defined by l

and u. Let g, h : [n] 7→ R ∪ {⊥} be two functions that take the values g(i) = f(i) −∑n−1
r=i γ(r)

and h(i) = −f(i) −∑n−1
r=i γ(r) for all i ∈ N and are erased on the remaining points. Then, the

following conditions hold:

1. x, y ∈ N violate P with respect to f iff x, y violate monotonicity with respect to either g or h.

2. If f is in P , then both g and h are both monotone.

3. If f is ε-far from P , then either g or h is at least ε/4-far from monotonicity.

Proof. Consider a pair (i, j) ∈ N ×N where i < j. We have,

g(i)− g(j) = f(i)− f(j)−
j−1∑
r=i

γ(r) and h(i)− h(j) = f(j)− f(i)−
j−1∑
r=i

γ(r).

If (i, j) is not violated with respect to f , we have f(j)−f(i)−∑j−1
r=i γ(r) ≤ 0 and f(i)−f(j)−∑j−1

r=i γ(r) ≤ 0. Thus, (i, j) satisfies the monotonicity property with respect to g and h. If (i, j) is
violated with respect to f , then either f(j)−f(i)−∑j−1

r=i γ(r) > 0 or f(i)−f(j)−∑j−1
r=i γ(r) > 0.

That is, either g or h violates monotonicity.
Define the violation graph Gf as follows. The vertex set corresponds to N . There is an

(undirected) edge between i ∈ N and j ∈ N iff the pair (i, j) violates the property P . By Lemma
2.5 in [CDJS15], the size of every maximal matching is at least ε · |N |/2. Consider a maximal
matching M in Gf . From the discussion above, every edge in M violates monotonicity with respect
to either g or h. Therefore, at least ε · |N |/4 edges are violated with respect to at least one of g and

55

h. Assume w.l.o.g. that at least ε · |N |/4 edges from M are violated with respect to h. One has to
change the function value of at least one endpoint of each edge to repair it. Since M is a matching
in the violation graph Gh as well, at least ε · |N |/4 function values of h have to change to make h
monotone. This means that h is at least ε/4-far from monotone.

Therefore, in order to test the bounded derivative property P on f with proximity parameter ε,
one can test monotonicity on g and h with proximity parameter ε/4 and error probability 1/6 and
accept iff both tests accept.

Lemma 4.3.4. Let Qmon(α, ε, n) denote the query complexity of α-erasure-resilient ε-testing of

monotonicity of real-valued functions on the line. Then, for every BDP, α-erasure-resilient ε-testing

of real-valued functions on the line has query complexity O(Qmon(α, ε/4, n)). The same statement

holds for 1-sided error testing.

The following theorem is a direct consequence of Lemma 4.3.4 and Theorem 4.1.3.

Theorem 4.3.5 (BDP tester on the line). For every BDP P , there exists a one-sided error α-erasure-

resilient ε-tester for P of real-valued functions on the line that works for all α, ε ∈ (0, 1), with

query complexity O
(

α
1−α ·

1
ε2

log 1
ε
· log n

)
. Moreover, if α = O(ε) then the query complexity is

O
(

1
1−α ·

1
ε

log 1
ε
· log n

)
, and if α < ε then it is O

(
1
ε

log 1
ε
· log n

)
.

4.3.2 Erasure-Resilient Dimension Reduction

Consider an α-erased function f : [n]d 7→ R ∪ {⊥}. Let P be a bounded derivative property
of functions defined over [n]d. Let L denote the set of all axis-parallel lines in [n]d. In this
section, we prove two important properties of a uniformly random axis parallel line in Lemma 4.3.7
and Lemma 4.3.8, which we jointly call erasure-resilient dimension reduction. We first introduce
some notation.

Let PD denote the set of functions over a domain D ⊆ [n]d satisfying P . Let P iD denote the
set of functions over D with no violations to P along dimension i for all i ∈ [d]. We use P i as
shorthand for P i[n]d . Given a function f : D 7→ R, the Hamming distance of f from PD, denoted
by dist(f,PD), is the least number of points on which f needs to be changed to satisfy PD. The
relative Hamming distance between f and PD is dist(f,PD)/|D|. Let ` ∼ L be a uniformly random
axis-parallel line. Let N` denote the set of non-erased points on ` and f` denote the function f|N
restricted to `. Lemma 4.3.7 shows that the expected relative Hamming distance of f` from PN` is
roughly proportional to the relative Hamming distance of f|N from PN . First, we prove Claim 4.3.6
that we use in our proof of Lemma 4.3.7.

56

Claim 4.3.6.
1
4dist(f|N ,PN) ≤

d∑
i=1

dist(f|N ,P iN) + α · d · nd.

Proof. Let g : [n]d 7→ R be a function in P such that g|N is the closest function to f|N in PN . Such
a function can be constructed as shown in [CDJS15]. We define f∗ : [n]d 7→ R, a restoration of f ,
such that f∗(x) = f(x) for all x ∈ N and f∗(x) = g(x) for all x /∈ N . Note that g is the function
closest to f∗ in P .

Also, let f i∗ : [n]d 7→ R in P i be such that f i∗|N is the closest function to f|N in P iN for all i ∈ [d].
Therefore, we have,

1
4dist(f|N ,PN) = 1

4dist(f∗,P)

≤
d∑
i=1

dist(f∗,P i) by dimension reduction from [CDJS15]

≤
d∑
i=1

dist(f∗, f i∗) because f i∗ ∈ P i

≤
d∑
i=1

dist(f|N ,P iN) + d · α · nd.

The last inequality holds because, for all i ∈ [d], dist(f∗, f i∗) ≤ dist(f|N ,P iN) + α · nd.

We now use Claim 4.3.6 to prove the first part of our dimension reduction.

Lemma 4.3.7 (Dimension reduction: distance). Let εf be the relative Hamming distance of f|N
from PN . Given ` ∈ L, let ε` denote the relative Hamming distance of f` from PN` . Then

E`∼L[ε`] ≥
(1− α) · εf

4d − α.

Proof. There are d axis-parallel directions and, therefore, dnd−1 axis-parallel lines in [n]d. Thus,
the probability of picking a specific axis parallel line ` uniformly at random is 1/dnd−1. Let Li
denote the set of axis parallel lines along dimension i.

E`∼L[ε`] =
∑
`∈L

ε` · Pr(`)

=
d∑
i=1

∑
`∈Li

ε` · Pr(`)

57

= 1
dnd−1 ·

d∑
i=1

∑
`∈Li

dist(f`,PN`)
|N`|

≥ 1
dnd
·
d∑
i=1

∑
`∈Li

dist(f`,PN`) since |N`| ≤ n

= 1
dnd
·
d∑
i=1

dist(f|N ,P iN)

≥ 1
dnd
·
(

dist(f|N ,PN)
4 − αd · nd

)
by Claim 4.3.6

≥ 1− α
4d · εf − α.

We conclude this section with the second part of our dimension reduction.

Lemma 4.3.8 (Dimension reduction: fraction of erasures). Consider an α-erased function f :
[n]d 7→ R ∪ {⊥}. Given an axis-parallel line ` ∈ L, let α` denote the fraction of erased points in `.

Then, for every η ∈ (0, 1),

Pr
`∼L

[α` > α/η] ≤ η.

Proof. Note that a uniformly randomly sampled point in [n]d is erased with probability α. We can
sample a point uniformly at random by first sampling a line ` ∈ L uniformly at random and then
sampling a point uniformly randomly on `, which is erased with probability α`. Therefore we have

α =
∑
`∈L

Pr[`] · α` = E`∼L[α`].

The claim then follows from Markov inequality.

4.3.3 Erasure-Resilient BDP Tester For the Hypergrid

In this section, we show that for every BDP P , there exists an erasure-resilient tester for functions
f : [n]d 7→ R ∪ {⊥}. We first present and analyze an erasure-resilient monotonicity tester for
functions defined over [n]d and then present our erasure-resilient testers for all bounded derivative
properties. Theorem 4.1.4 follows from the analysis of our monotonicity tester and Claim 4.3.3.

As before, we use L to denote the set of axis parallel lines in [n]d. In each iteration, all our
testers sample a line ` uniformly at random from L and does a random binary search for a uniformly

58

sampled non-erased point in `. It rejects if it detects a violation to the desired property in any of its
iterations.

We present our erasure-resilient tester for monotonicity in Algorithm 2.

Algorithm 2 Erasure-Resilient Monotonicity Tester for [n]d

Input: parameters ε ∈ (0, 1), α ∈ (0, ε/81d]; oracle access to f : [n]d → R
1: Set Q =

⌈
H ·

(
1 + 40d

ε(1−α)

)
·
(
1 + ln

(
40d

ε(1−α)

))⌉
, where H = 7 log

(
max

{
n,
√

40d
ε(1−α)

})
.

2: repeat 16d/ε(1− α) times:
3: Sample a line ` ∈ L uniformly at random.
4: Sample points uniformly at random from ` and query them until we get a non-erased point
s.

5: Perform a randomized binary search for s on ` as in Algorithm 1.
6: Reject if any violation to monotonicity is found.
7: Go to Step 2 if the number of queries made in this iteration exceed Q.
8: Accept

We now analyze the above tester. The bound on the query complexity of Algorithm 2 is evident
from the description of the tester. In the following lemma, we prove that the algorithm, with high
probability, rejects an α-erased function that is ε-far from monotonicity.

Lemma 4.3.9. If f|N is ε-far from monotone, then the tester accepts with probability at most 1/3.

Proof. For ` ∈ L, let f` denote f restricted to the line `. Let ε` denote the relative Hamming
distance of f` from monotonicity and let α` denote the fraction of erasures on `. As shown in the
proof of Lemma 4.2.3, the probability that a random binary search on ` does not find a violation to
monotonicity is at most 1− ε`.

Consider a particular iteration of the tester. Let P` denote the random search path traversed
by Algorithm 2 if it samples the line ` ∈ L in that iteration and let q` denote the number of queries
made. Let A be the event that the tester does not find a violation to monotonicity in that iteration.
Then

Pr[A] ≤
∑
`∈L

(Pr[A|q` ≤ Q] + Pr[q` > Q]) Pr[`]

≤
∑
`∈L

(1− ε`) · Pr[`] +
∑
`∈L

Pr[q` > Q] · Pr[`]

≤ 1− ε(1− α)
4d + α +

∑
`∈L

Pr[q` > Q] · Pr[`]. by Lemma 4.3.7

59

Next we bound Pr[q` > Q] for ` ∈ L. Assume for now that n ≥
√

40d/(ε(1− α)). Therefore
H = 7 log n in the description of the tester. Let η = ε(1−α)

40d and let δ` = (1 + η (1−α`)
α`

)−1. Our
choice of α implies that α` ≤ α/η ≤ 1/24 and hence we have δ` ≤ (1 + η)−1. It is not hard to see
that the limit on the the number of queries in each iteration, Q, satisfies,

Q ≥ 7 log n(1 + ln (1/η))
(1− (1 + η)−1) ≥ 7 log n(1 + ln (1/η))

(1− δ`)
.

Let G` denote the (good) event that α` ≤ α/η, that the density of each interval in P` is at most δ`
and that the length of P` is at most 7 log n. Therefore,

Pr [q` > Q] ≤ Pr [q` > Q|G`] + Pr
[
G`

]
≤ Pr

[
q` >

7 log n(1 + ln (1/η))
(1− δ`)

|G`

]
+ Pr

[
G`

]
≤ η + η + η + 1

n2 .

The last inequality above uses Corollary 4.2.8, Lemma 4.3.8, Claim 4.2.6 and Corollary 4.2.5
respectively. Therefore we have,

Pr[q > Q] =
∑
`∈L

Pr[q` > Q] Pr[`]

≤
∑
`∈L

(
3η + 1

n2

)
Pr[`] = 3η + 1

n2 .

Note that 1
n2 ≤ η for n ≥

√
40d/(ε(1− α)). Therefore Pr[A] ≤ 1− ε(1−α)

4d +α+4η ≤ 1− ε(1−α)
8d .

Hence, the probability that Algorithm 2 fails to detect a violation is at most 1/3 since we have
16d

ε(1−α) iterations. The analysis in the case when n <
√

40d/(ε(1− α)) is similar to the above and
results in the same bound on failure probability.

We now present our (erasure-resilient) tester for a BDP P of functions f : [n] 7→ R ∪ {⊥}
in Algorithm 3. In addition to α, ε and oracle access to f , it takes in the bounding function family
B defining the BDP that we are testing for.

The analysis of this tester is along the lines of that for Algorithm 2. We give an outline of that
here. Let P be the property that we test for. From Lemma 4.3.7 it follows that if f|N : N 7→ R is far
from satisfying P , then f` : N` 7→ R is also far from satisfying P , where ` is a uniformly randomly

4It is not hard to see that α ≤ ε
81d ≤

ε
80d+ε ≤

ε
80d = η

2 .

60

Algorithm 3 Erasure-Resilient BDP Tester for [n]d

Input: parameters ε ∈ (0, 1), α ∈ (0, ε/161d]; oracle access to f : [n]d → R; B =
{l1, u1, . . . , ld, ud}.

1: Set Q =
⌈
H ·

(
1 + 80d

ε(1−α)

)
·
(
1 + ln

(
80d

ε(1−α)

))⌉
, where H = 7 log

(
max

{
n,
√

80d
ε(1−α)

})
.

2: repeat 200d/ε(1− α) times:
3: Sample a line ` ∈ L uniformly at random.
4: Let i ∈ [d] be such that ` ∈ Li.
5: Let g and h be functions as defined in Claim 4.3.3 using f`, li and ui.
6: Sample points uniformly at random from ` and query them until we get a non-erased point
s.

7: Perform a randomized binary search for s on ` as in Algorithm 1.
8: Reject if any violation to monotonicity is found in either g or h.
9: Go to Step 2 if the number of queries made in this iteration exceed Q.

10: Accept.

chosen line in L, f` is the function f|N restricted to ` and N` is the set of non-erased points on `.
From Claim 4.3.3, it is clear that testing for P of functions f : [n] 7→ R ∪ {⊥} can be reduced
to testing monotonicity. Using these facts and setting η = ε(1−α)

80d , the statement of Theorem 4.1.4
follows.

4.4 Erasure-Resilient Convexity Tester For the Line

In this section, we prove Theorem 4.1.5. Given an α-erased function f : [n] 7→ R ∪ {⊥}, let νi
denote the i-th non-erased domain point in [n]. The derivative of f at a point νi ∈ N , denoted by
∂f(νi), is f(νi+1)−f(νi)

νi+1−νi , whenever νi+1 ≤ n. The function f is convex iff ∂f(νi) ≤ ∂f(νi+1) for
all i ∈ [|N | − 2]. Our tester builds upon the ideas in the convexity tester from [PRR06a] and is
conceptually simpler than their tester.

A high level idea of the tester is as follows. Our tester (Algorithm 4) has several iterations. In
each iteration, it traverses a uniformly random search path in a binary search tree chosen uniformly
at random. For each interval on the search path that it takes, it performs some checks. The algorithm
accepts if none of these checks fail.

4.4.1 Technical Ingredients and Analysis Overview

We now give an overview of the analysis of the tester. We refer the reader to the full version for
the complete analysis. Every iteration of the tester can be thought of as a traversal of a uniformly

61

Algorithm 4 Erasure-Resilient Convexity Tester
Input: parameters ε, α ∈ (0, 1); oracle access to f : [n] 7→ R ∪ {⊥}.

1: Set Q = c log2 nα log(8/ε)
ε3(1−α) , where c is a sufficiently large constant.

2: Accept if the number of queries exceeds Q.
3: repeat 2/ε times
4: Sample points in I[1, n] uniformly at random and query them until we get a point νp ∈ N .
5: TEST-INTERVAL(I[1, n], ∗,−∞,+∞, νp) and reject if it rejects. . ∗ is a placeholder

argument.
6: Accept.

Procedure 5 TEST-INTERVAL(I[i, j],A = 〈a1, a2, . . . , ak〉,m`,mr, νp)
Input: interval I[i, j]; a sorted list of non-erased points A or a placeholder ∗; left slope m` ∈ R;

right slope mr ∈ R; target point νp ∈ N .
1: Sample points uniformly at random from I[i, j] and query them until we get a point νλ ∈ N .
2: Sequentially query points νλ + 1, νλ + 2 . . . until we get the next non-erased point νλ+1.
3: Sequentially query points νλ − 1, νλ − 2 . . . until we get the next non-erased point νλ−1.
4: Let A′ denote the sorted list of points in the set {a1, a2, . . . , ak} ∪ {νλ, νλ−1, νλ+1}.
5: Let mi = f(bi+1)−f(bi)

bi+1−bi
6: Reject if m` ≤ m1 ≤ m2 ≤ · · · ≤ mk−1 ≤ mr is not true. . Reject if mis are non-increasing.
7: if νp < νλ then
8: Let A′` denote the sorted list of points in A′ that are smaller than νλ.
9: Reject if TEST-INTERVAL(I[i, νλ − 1],A′`,m`, ∂f(νλ−1), νp) rejects.

10: if νp > νλ then
11: Let A′r denote the sorted list of points in A′ that are larger than νλ.
12: Reject if TEST-INTERVAL(I[νλ + 1, j],A′r, ∂f(νλ),mr, νp) rejects.
13: Accept.

random search path of a uniformly random binary search tree on N , just as Algorithm 1. For
each interval on such a path, we check a set of conditions computed based on the values at some
non-erased points in the interval, called anchor points, and two real numbers, called the left and
right slopes. First, we prove that, with high probability, the algorithm does not run out of its budget
of queries Q. In the second part of the analysis we prove that, conditioned on the aforementioned
event happening, in every iteration, with probability ε, the tester will detect a violation while testing
for a function that is ε-far from being convex.

To analyze the query complexity, we classify the queries that the tester makes into two kinds
and analyze them differently. The queries where the tester repeatedly samples and queries from
an interval until it finds a non-erased domain point are called sampling queries. The queries
where the tester keeps querying consecutive points, starting from a non-erased point, until it gets

62

the next non-erased point are called walking queries. To deal with sampling queries, we use the
combinatorial lemma (Lemma 4.2.2) and Claim 4.2.6. To analyze the walking queries, we prove a
different combinatorial lemma (Lemma 4.4.1) that bounds the fraction of points with many erased
points in their vicinity. Since all the walking queries start from points that we sample uniformly at
random, with high probability, the number of walking queries made in any iteration is small. The
remaining ideas in this part of the proof are similar to those in the analysis of Algorithm 1.

Lemma 4.4.1 (Combinatorial Lemma 2). Let I be a δ-sparse interval (see Definition 4.2.1). For

every non-erased point νx ∈ I , let e(νx) denote the number of erased points between νx−1 and νx+1.

Let β` denote the fraction of points νp ∈ N such that e(νp) ≥ `. Then β` is at most 4δ
(1−δ)` .

Proof. We have
∑
νx∈I∩N e(νx) ≤ 2|I \ N | < 2δ|I|. The first inequality follows from the observa-

tion that each erased point falls in the interval I[νx−1, νx+1] for at most two non-erased points νx ∈ I .
The second inequality holds because I is δ-sparse. Then β` ·|I∩N|·` ≤ 2·∑νx∈I∩N e(νx) < 4δ ·|I|.
Since |I ∩N| > (1− δ)|I|, the lemma follows.

We now define notation for the latter part of the proof. Consider a search path traversed by
the algorithm. Let I[i, j] be an interval on the path. Consider the execution of TEST-INTERVAL

(Procedure 5) called with I[i, j] as the first argument. We call the non-erased point νλ sampled
in Step 1 its pivot, the sorted list of non-erased points A′ in Step 4 its anchor sequence and the
values m` and mr as its left and right slopes, respectively. That is, given a binary search tree T , we
associate each interval appearing in the tree with a pivot, an anchor sequence and two slopes.

Consider a binary search tree T and a function f : [n] 7→ R ∪ {⊥}. Let I[i, j] be an interval
appearing in T with an anchor sequence A = 〈b1, b2, . . . , bk〉 and slopes m` and mr. Let mi =
f(bi+1)−f(bi)

bi+1−bi ∀i ∈ [k − 1].

Definition 4.4.2 (Good Interval, Bad Interval). An interval I[i, j] is good if m` ≤ m1 ≤ m2 ≤
· · · ≤ mk−1 ≤ mr. Otherwise, it is bad.

Definition 4.4.3 (Violator Interval). An interval I[i, j] is a violator if it is bad and all its ancestor

intervals in T are good.

Definition 4.4.4 (Witness). A non-erased domain point is a witness with respect to T if it belongs

to a violator interval in T .

In Claim 4.4.7, we prove that if f|N is ε-far from being convex, then, for every binary search
tree T , the fraction of non-erased domain points that are witnesses is at least ε. To prove this, we
start by assuming that there is a tree in which the fraction of witnesses is less than ε. We show

63

that we can correct the function values on the witnesses and get a convex function, which gives a
contradiction.

4.4.2 Analysis of the Tester

In this section, we analyze Algorithm 4. The bound on the query complexity of the algorithm is
evident from its description. It remains to prove its correctness.

Lemma 4.4.5. Algorithm 4 accepts if f|N is convex, and rejects with probability at least 2/3 if f|N
is ε-far from convex.

The tester accepts whenever f|N is convex. To prove the other part of the lemma, assume that
f|N is ε-far from being convex. Let A be the event that the tester accepts f . Let q denote the total
number of queries made. We prove that Pr[A] ≤ 1/3. The event A occurs if either q > Q or the
tester does not find a violation in any of the 4/ε iterations of Step 3. Thus,

Pr [A] ≤ Pr [A|q ≤ Q] + Pr [q > Q] .

First, we bound Pr[q > Q]. It is enough to prove that, with high probability, in each iteration
the number of queries made by the tester is at most Q/(2

ε
), since, by a union bound,

Pr [q > Q] ≤
d 2
εe∑
i=1

Pr
[
qi > Q/

(2
ε

)]
,

where qi is the number of queries made in the i-th iteration.
Let δ =

(
1 + η (1−α)

α

)−1
, H = 7 log n and η = ε/38. Consider the ith iteration of the tester. Let

Pi denote the search path taken by the algorithm, and let |Pi| denote the number of intervals on Pi.
Let qwi and qsi denote the number of walking queries and sampling queries in iteration i.

LetGi denote the (good) event that the length of Pi is at most 7 log n, the density of each interval
in Pi is at most δ. By Corollary 4.2.8,

Pr
[
qsi > c1

(
1 + log 1

ε

)
·
(

1 + α

ε(1− α)

)
· log n|Gi

]
≤ η, (4.1)

where c1 is a large enough constant. To analyze the walking queries, we use Corollary 4.4.6
of Lemma 4.4.1.

64

Corollary 4.4.6. Let I be a δ-sparse interval. Then the number of walking queries made in Step 2

and Step 3 of Procedure 5 is more than 14α logn
η2(1−α) with probability at most η

7 logn .

Proof. By Lemma 4.4.1, the fraction of non-erased domain points νλ in I with e(νλ) > 14α logn
η2(1−α) is

at most η
7 logn . Since the pivot in I is chosen uniformly at random from I ∩ N , the claim about

probability follows.

For a large enough constant c1, by Corollary 4.4.6 and a union bound over all the intervals in Pi,

Pr
[
qiw > c1 ·

α log2 n

ε2(1− α) |Gi

]
≤ η. (4.2)

Therefore,

Pr
[
qi >

Qε

2

]
≤ Pr

[
qiw > c1 ·

α log2 n

ε2(1− α) |Gi

]
+

Pr
[
qsi > c1

(
1 + log 1

ε

)
·
(

1 + α

ε(1− α)

)
· log n|Gi

]
+ Pr[Gi]

≤ η + η +
(
η + 1

n2

)
,

where the second inequality uses Eq. (4.1), Eq. (4.2), Claim 4.2.6 and Corollary 4.2.5 with a union
bound, . Since η = ε

38 , the error probability in this case becomes 3ε/38 + 1/n2 ≤ ε/12. Hence,
Pr [q > Q] ≤ 4

ε
· ε12 = 1/6.

Next, we bound Pr[A|q ≤ Q]. To do this, we first prove that the fraction of witnesses (see Defi-
nition 4.4.4) in any binary search tree T is at least ε. We do it in the following claim.

Claim 4.4.7. If f|N is ε-far from convex, then the fraction of witnesses in every binary search tree

T is more than ε.

Proof. Assume for the sake of contradiction that there is a binary search tree T such that the fraction
of witnesses with respect to T is at most ε. In the following, we will construct a convex function
g : [n] 7→ R ∪ {⊥} by changing the values of f only on witnesses with respect to T . Since the
fraction of witnesses is at most ε, functions f and g will differ on at most an ε fraction of non-erased
domain points, which results in a contradiction. Since, by our assumption, the fraction of witnesses
is at most ε, the interval I[1, n] cannot be a violator.

Consider a violator interval I[i, j] in T . Let the anchor sequence and slopes associated with
the parent interval of I[i, j] be A = 〈b1, b2, . . . , bk〉 and m` and mr, respectively. Assume that
I[i, j] is the right child of its parent. The case when I[i, j] is the left child of its parent is similar.

65

Let bx, bx+1, . . . , bk be the set of points common to I[i, j] and A. By definition, bx is the smallest
non-erased domain point in I[i, j]. Also, the left slope of I[i, j] is f(bx)−f(bx−1)

bx−bx−1
and its right slope is

equal to mr.
Let my = f(by+1)−f(by)

by+1−by for all integers y such that y ∈ [x− 1, k). We define g as follows.

• For each t ∈ {bx, bx+1, . . . , bk}, set g(t) = f(t) .

• For each integer y ∈ [x, k) and t ∈ N ∩ (by, by+1), set

g(t) = f(by) +my · (t− by)

• For each t ∈ N such that t > bk, set

g(t) = f(bk) +mk−1 · (t− bk).

Since I[i, j] is a violator, the parent interval of I[i, j] is good, by definition. This implies that
mx−1 ≤ mx ≤ . . . ≤ mk ≤ mr. Therefore, the derivatives of non-erased points in I[i, j] are
non-decreasing with respect to g, by virtue of our assignment.

To prove that g|N is convex, we first show that every interval in T is good with respect to g.

1. Consider an interval I in T that is good with respect to f . If I has no ancestors or descendants
that are violators, it remains good with respect to g as well, since g(t) = f(t) for all t ∈ I[i, j].

2. Consider an interval I that has a descendant I ′ that is a violator. The definition of g on points
in I ′ ensures that g(t) = f(t) for every point t common to the anchor sequence of I and the
interval I ′. Thus, I remains good with respect to g.

3. Consider a node I that is either a violator or has a violator ancestor I ′. By definition, the
parent of I ′ is good with respect to f . Therefore, by the definition of g on I ′, we have
∂g(t− 1) ≤ ∂g(t) for all t ∈ N such that t ∈ I ′. Therefore, I ′ is good with respect to g, and
hence I is also good with respect to g.

We proved that every interval in the tree T is good with respect to g. We now prove that g|N is
convex. Consider a point νt ∈ N such that 2 ≤ t ≤ |N |−1. This point occurs in T either as a pivot
in a non-leaf interval or as the sole non-erased domain point in a leaf interval. In the former case,
the condition ∂f(νt−1) ≤ ∂f(νt) is part of the goodness condition of the corresponding interval
and is satisfied. In the latter case, ∂f(νt−1) and ∂f(νt) are the left and right slopes of the leaf and

66

are compared as part of the goodness condition of the leaf. Thus, ∂f(νt−1) ≤ ∂f(νt) for all νt ∈ N
such that 2 ≤ t ≤ |N | − 1. Thus, g|N is convex.

We conclude our analysis by bounding the probability that the tester does not find a violation.
Since the target point νp is chosen uniformly at random from the set of non-erased domain points,
the probability that it is a witness is at least ε and thus, the tester detects a violation to convexity
with probability at least ε in every iteration. Therefore,

Pr [A] ≤ Pr[A|q ≤ Q] + Pr[q > Q] ≤ (1− ε) 2
ε + 1/6 ≤ 1/3.

67

Bibliography

[AC06] N. Ailon and B. Chazelle. Information theory in property testing and monotonicity
testing in higher dimension. Inform. and Comput., 204(11):1704–1717, 2006. 2, 3, 8,
12, 13, 15

[ACCL07] N. Ailon, B. Chazelle, S. Comandur, and D. Liu. Estimating the distance to a
monotone function. Random Structures Algorithms, 31(3):371–383, 2007. 8, 15, 18

[AJMR12] P. Awasthi, M. Jha, M. Molinaro, and S. Raskhodnikova. Testing Lipschitz functions
on hypergrid domains. In Proceedings, International Workshop on Randomization
and Computation (RANDOM), 2012. 9, 14

[ALM+98] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy.
Proof verification and the hardness of approximation problems. J. ACM, 45(3):501–
555, 1998. 2

[BBM12] E. Blais, J. Brody, and K. Matulef. Property testing lower bounds via communication
complexity. Comp. Complexity, 21(2):311–358, 2012. 8, 12

[BCGSM12] J. Briët, S. Chakraborty, D. García-Soriano, and A. Matsliah. Monotonicity testing
and shortest-path routing on the cube. Combinatorica, 32(1):35–53, 2012. 8

[BFR+13] Tugkan Batu, Lance Fortnow, Ronitt Rubinfeld, Warren D. Smith, and Patrick White.
Testing closeness of discrete distributions. J. ACM, 60(1):4, 2013. 44

[BGJ+12] Arnab Bhattacharyya, Elena Grigorescu, Kyomin Jung, Sofya Raskhodnikova, and
David P. Woodruff. Transitive-closure spanners. SIAM J. Comput., 41(6):1380–1425,
2012. 8, 15, 18, 45

[BKF+11] Sagi Ben-Moshe, Yaron Kanza, Eldar Fischer, Arie Matsliah, Mani Fischer, and
Carl Staelin. Detecting and exploiting near-sortedness for efficient relational query
evaluation. In Tova Milo, editor, Database Theory - ICDT 2011, 14th International
Conference, Uppsala, Sweden, March 21-24, 2011, Proceedings, pages 256–267.
ACM, 2011. 2

[BRW05] T. Batu, R. Rubinfeld, and P. White. Fast approximate PCP s for multidimensional
bin-packing problems. Inform. and Comput., 196(1):42–56, 2005. 8, 15, 18

68

[BRY14a] P. Berman, S. Raskhodnikova, and G. Yaroslavtsev. Testing with respect to lp distances.
In Proceedings, ACM Symp. on Theory of Computing (STOC), 2014. 2

[BRY14b] E. Blais, S. Raskhodnikova, and G. Yaroslavtsev. Lower bounds for testing prop-
erties of functions on hypergrid domains. In Proceedings, IEEE Conference on
Computational Complexity (CCC), March 2014. 8, 9, 10, 13, 15

[CDJS15] Deeparnab Chakrabarty, Kashyap Dixit, Madhav Jha, and C. Seshadhri. Property
testing on product distributions: Optimal testers for bounded derivative properties. In
Piotr Indyk, editor, Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2015, San Diego, CA, USA, January 4-6, 2015, pages
1809–1828. SIAM, 2015. 2, 8, 9, 11, 47, 55, 57

[CS13a] Deeparnab Chakrabarty and C. Seshadhri. Optimal bounds for monotonicity and
Lipschitz testing over hypercubes and hypergrids. In STOC, pages 419–428, 2013. 8,
9, 12, 14, 16, 22, 45

[CS13b] Deeparnab Chakrabarty and C. Seshadhri. An optimal lower bound for monotonicity
testing over hypergrids. In APPROX-RANDOM, pages 425–435, 2013. 4, 8, 12, 15,
32, 36

[Dev86] Luc Devroye. A note on the height of binary search trees. J. ACM, 33(3):489–498,
1986. 5, 47, 49, 52

[DGL+99] Y. Dodis, O. Goldreich, E. Lehman, S. Raskhodnikova, D. Ron, and A. Samorodnit-
sky. Improved testing algorithms for monotonicity. In Proceedings, International
Workshop on Randomization and Computation (RANDOM), 1999. 3, 8, 12, 13

[DJRT13] Kashyap Dixit, Madhav Jha, Sofya Raskhodnikova, and Abhradeep Thakurta. Testing
the lipschitz property over product distributions with applications to data privacy. In
TCC, pages 418–436, 2013. 2, 3, 9, 11

[DMNS06] C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise to sensitivity in
private data analysis. In Proceedings, Theory of Cryptography Conference (TCC),
2006. 11

[EKK+00] F. Ergun, S. Kannan, R. Kumar, R. Rubinfeld, and M. Viswanathan. Spot-checkers. J.
Comput. System Sci., 60(3):717–751, 2000. 8, 15, 18, 45, 47, 49

[Fis04] E. Fischer. On the strength of comparisons in property testing. Inform. and Comput.,
189(1):107–116, 2004. 4, 8, 15, 32, 45, 47

[FLN+02] Eldar Fischer, Eric Lehman, Ilan Newman, Sofya Raskhodnikova, Ronitt Rubinfeld,
and Alex Samorodnitsky. Monotonicity testing over general poset domains. In
Proceedings of the thiry-fourth annual ACM symposium on Theory of computing,
STOC ’02, pages 474–483, New York, NY, USA, 2002. ACM. 8, 12, 18

69

[GGL+00] O. Goldreich, S. Goldwasser, E. Lehman, D. Ron, and A. Samorodnitsky. Testing
monotonicity. Combinatorica, 20:301–337, 2000. 3, 8, 12, 13

[GGR98] O. Goldreich, S. Goldwasser, and D. Ron. Property testing and its connection to
learning and approximation. J. ACM, 45(4):653–750, 1998. 1, 2, 4, 7, 45

[GR15] Oded Goldreich and Dana Ron. On sample-based testers. In Tim Roughgarden,
editor, Proceedings of the 2015 Conference on Innovations in Theoretical Computer
Science, ITCS 2015, Rehovot, Israel, January 11-13, 2015, pages 337–345. ACM,
2015. 44

[HK05] S. Halevy and E. Kushilevitz. A lower bound for distribution-free monotonicity
testing. In Proceedings, International Workshop on Randomization and Computation
(RANDOM), pages 330–341, 2005. 2

[HK08a] S. Halevy and E. Kushilevitz. Testing monotonicity over graph products. Random
Structures Algorithms, 33(1):44–67, 2008. 2, 3, 8, 13, 15

[HK08b] Shirley Halevy and Eyal Kushilevitz. Distribution-free connectivity testing for sparse
graphs. Algorithmica, 51(1):24–48, 2008. 2

[Jan14] Svante Janson. Large deviations for sums of geometric and exponential variables.
2014. http://www2.math.uu.se/~svante/papers/sjN14.pdf. 52

[JR13] Madhav Jha and Sofya Raskhodnikova. Testing and reconstruction of Lipschitz
functions with applications to data privacy. SIAM J. Comput., 42(2):700–731, 2013.
2, 3, 9, 14, 15, 18

[Knu73] D. E. Knuth. The Art of Computer Programming Vol III: Sorting and Searching,
volume 3. Addison-Wesley, 1973. 4, 8, 12

[KRTA13] Simon Korman, Daniel Reichman, Gilad Tsur, and Shai Avidan. Fast-match: Fast
affine template matching. In 2013 IEEE Conference on Computer Vision and Pattern
Recognition, Portland, OR, USA, June 23-28, 2013, pages 2331–2338. IEEE, 2013. 2

[LR01] E. Lehman and D. Ron. On disjoint chains of subsets. J. Combin. Theory Ser. A,
94(2):399–404, 2001. 8, 12

[Meh75] K. Mehlhorn. Nearly optimal binary search trees. Acta Informatica, 5:287–295, 1975.
12, 32, 38

[PRR03] Michal Parnas, Dana Ron, and Ronitt Rubinfeld. On testing convexity and submodu-
larity. SIAM J. Comput., 32(5):1158–1184, 2003. 5

[PRR06a] M. Parnas, D. Ron, and R. Rubinfeld. Tolerant property testing and distance approxi-
mation. J. Comput. System Sci., 6(72):1012–1042, 2006. 8, 10, 45, 48, 61

70

http://www2.math.uu.se/~svante/papers/sjN14.pdf

[PRR06b] M. Parnas, D. Ron, and R. Rubinfeld. Tolerant property testing and distance approxi-
mation. J. Comput. System Sci., 6(72):1012–1042, 2006. 15

[RS96] R. Rubinfeld and M. Sudan. Robust characterization of polynomials with applications
to program testing. SIAM J. Comput., 25:647–668, 1996. 1, 2, 4, 7, 45

[RT14] Dana Ron and Gilad Tsur. Testing properties of sparse images. ACM Transactions
on Algorithms, 10(4):17:1–17:52, 2014. 2

[Val84] Leslie G. Valiant. A theory of the learnable. Commun. ACM, 27(11):1134–1142,
1984. 2

[Yao82] F. F. Yao. Speed-up in dynamic programming. J. Alg. Discrete Math., 3:532–540,
1982. 12

71

Vita
Kashyap Dixit

Kashyap Dixit is a Ph.D candidate in the Department of Computer Science and Engineering at the
Pennsylvania State University. Kashyap completed his Bachelor and Master of Technology degrees
from Indian Institute of Technology in 2008. Thereafter, he worked as a software engineer in IBM
Research, India until July 2010. Kashyap started his PhD program in August 2010. His research
interests are sublinear algorithms, property testing, random sampling and counting algorithms.

	Acknowledgments
	Introduction
	Testing Bounded Derivative Properties With Respect To Product Distributions
	Erasure-Resilient Property Testers
	Organization

	Preliminaries
	Properties We Consider
	Monotonicity.
	The Lipschitz Property.
	Bounded Derivative Properties.
	Convexity of Functions.

	Optimal Property Testing on Product Distributions
	Introduction
	Main Results
	Technical Highlights
	Search Trees and Monotonicity
	Lower Bounds for Product Distributions.
	Organization.

	Quasimetric Induced by a Bounding Family
	Testers For the Line [n]
	The Dimension Reduction Theorem
	No r-Violations Imply No r-Cross Pairs
	Reducing From Arbitrary Product Distributions

	Search Trees and BDP Testing
	Testers For the Hypergrid
	Lower Bounds
	Reduction from Monotonicity to a Bounded-Derivative Property
	Monotonicity Lower Bound Framework
	The Line
	The Boolean Hypercube
	The Hypergrid
	Intuition
	Setup and Construction

	Erasure-Resilient Property Testing
	Introduction
	The Erasure-Resilient Testing Model
	Our Results
	Monotonicity on the Line
	BDPs on the Hypergrid
	Convexity on the Line

	Erasure-Resilient Monotonicity Tester For the Line
	Analysis Outline and Technical Ingredients
	Analysis of the Tester

	Erasure-Resilient BDP Testers For the Hypergrid
	Erasure-Resilient BDP Tester For the Line
	Erasure-Resilient Dimension Reduction
	Erasure-Resilient BDP Tester For the Hypergrid

	Erasure-Resilient Convexity Tester For the Line
	Technical Ingredients and Analysis Overview
	Analysis of the Tester

	Bibliography

