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Abstract

In condensed matter physics, states of matter are usually classified by symmetry.
Topological states of matter describe new quantum states of matter that cannot
adiabatically connect to conventional states of matter even though they share the
same symmetry. Thus, the discovery of topological states of matter has opened a
new research era and attracted intensive research interests in recent years. This
dissertation is devoted to the theoretical and numerical study of transport properties
of topological states of matter, mainly focusing on two topological systems, time
reversal invariant topological insulator nano-structures and the quantum anomalous
Hall insulators.

The first system studied in this dissertation is time reversal invariant topological
insulator, which is an insulating material behaving as an insulator in its interior
but with conducting channels on its surface. The conducting surface states of a
topological insulator are known as "helical states" due to the spin texture in the
momentum space and protected by time reversal symmetry. Helical surface states
have been observed in surface sensitive experiments, such as angular-resolved photon
emission spectroscopy and scanning tunneling microscopy. However, signatures
of topological surface states in transport measurements are complicated by the
dominating conduction from bulk channels and strong disorder effect. Therefore, in
this dissertation, we numerically study transport in disordered topological insulator
nano-structures, e.g. nanowires and nanotubes, which possess a larger surface-
to-volume ratio compared to bulk systems. For a topological insulator nanowire,
it is found that a gapless mode with linear dispersion, which is refered to as a
topological state in the main text, arises when a half-integer magnetic flux quantum
is inserted along the nanowire. We find that topological states possess a longer
localization length than other non-topological states. Thus, for a long nanowire
or nanotube, a larger conductance appears for half-integer magnetic flux, leading
to magnetoconductance oscillations with a period equivalent to one magnetic flux
quantum. Our numerical simulation of the magnetoconductance oscillations is
supported by experimental observations in resistive Bi2Te3 nanotubes.

iii



Another system that we study is the quantum anomalous Hall insulator. Similar
to the quantum Hall effect, the Hall conductance is quantized and the longitudinal
resistance drops to zero in the quantum anomalous Hall effect. However, the
quantum anomalous Hall effect is realized in a magnetic system in absence of
external magnetic fields and the associated Landau levels. The quantum anomalous
Hall effect was first proposed in magnetically doped HgTe quantum wells. However,
one obstacle is that this system is paramagnetic, and thus external magnetic fields
are required to polarize magnetization and inevitably leads to Landau levels. In this
study, we focus on the role of in-plane magnetic fields and find that the quantum
anomalous Hall effect can be realized by a purely in-plane magnetic field when there
is strain in the system. Symmetry analysis is adopted to provide more theoretical
insight of the underlying physics. Without any strain, we explore how to extract the
role of magnetization in the standard transport measurement of Hall resistance by
rotating magnetic fields. Our results provide a guidance to the recent experiments
in Mn doped HgTe quatnum wells with rotating magnetic fields. Besides these
studies, we also investigate anisotropic magneto-conductance in magnetically doped
(Bi,Sb)2Te3 films.

The studies in the dissertation are in a close collaboration with transport
measurements of experimental groups, including magneto-conductance oscillation
observed by Qi’s group at Penn State and the study of the Hall conductance in Mn
doped HgTe quantum wells with rotating magnetic fields by Molenkamp’s group at
Wuerzburg University.
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Chapter 1 |
Introduction : fundamentals of
topological insulators

1.1 History of topological states of matter
The story begins with a well-known phenomenon discussed widely in textbooks
of fundamental physics, the Hall effect. This phenomenon was discovered by and
named after Edwin H. Hall in 1879 [1]. It describes the build-up of a transverse
voltage when a longitudinal current is driven across a conductor in a perpendicular
magnetic field as depicted in Fig.1.1. The transverse voltage, also called Hall
voltage, is produced by the cyclotron motion and the subsequent deflection of
moving electrons due to the Lorentz force. The Hall effect has an important
application in solid-state transport measurements: it is a basic tool to characterize
carrier type and carrier concentration of the material by the sign and the magnitude
of the Hall voltage, respectively.

Soon after the discovery of the (classical) Hall effect, Hall found a significant
enhancement of the Hall voltage in a current-carrying ferromagnetic material, which
is dubbed as the anomalous Hall effect [2]. The physical origin of the anomalous
Hall effect has been studied extensively in the past 50 years [3]. Although the
general mechanism is complicated due to multiple contributions, the key ingredients
for the anomalous Hall effect are magnetism, spin-orbit coupling and disorder effects.
The recent development comes from the theoretical understanding of topological
origin of the Hall conductance , which is related to Berry curvature of electronic
bands [4]. Non-zero Berry curvature is found in electronic bands with magnetism

1



Figure 1.1. Schematic view of the geometry for the Hall effect. A specimen is under a
perpendicular magnetic field B and a current I is going through along y-direction. The
deflection of electron is in x-direction. The accumulation of the charges creates an electric
field EH that cancels the Lorentz force F+.

and spin-orbit coupling, contributing to the non-zero anomalous Hall conductance.
For this mechanism, the Hall conductance is a consequence of topology of band
structures, rather than external scattering mechanism or electromagnetic interaction.
Thus, the anomalous Hall effect induced by this mechanism is called the intrinsic
anomalous Hall effect.

One hundred years later, von Klitzing et al. [5] discovered that for a two-
dimensional electron gas (2DEG) under strong perpendicular magnetic field, the
Hall conductance is quantized at σH = n e

2

h
, where σH is the Hall conductance, e and

h are electron charge and Planck constant and n is any integer. This is called the
integer quantum Hall (IQH) effect. The underlying reason for the Hall conductance
quantization is because 2DEG forms Landau levels under strong perpendicular
magnetic field [6]. All bulk states are localized and chiral edge states, which only
propagate along one direction, appear at the boundary of the sample, contributing
to the quantized Hall conductance [8, 11]. The quantization is robust against
disorder and sample geometry as long as the gap between subsequent Landau
levels is maintained. The exact quantization originates from topological property
of electronic wave functions, as first shown by Thouless, Kohmoto, Nightingale
and den Nijs (TKNN) [12]. They derived a formula, known as the TKNN formula,
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to show that the integer value of the Hall conductance comes from a topological
integral over the whole momentum space and is characterized by a topological
invariant, called TKNN number, or mathematically known as the Chern number.

Furthermore, it was discovered that the Hall conductance can not only be a
quantized integer in unit of e2/h, but also be a rational fractions of e2/h [13]. This
phenomenon is called fractional quantum Hall (FQH) effect. Unlike IQH effect,
FQH effect occurs when Fermi level lies within a Landau level [6].The key ingredient
is the strong interaction that opens up a gap within a Landau level, thus giving
rise to a fraction of the Hall conductance when a fraction of the Landau level is
occupied. The theoretical description of the FQH states requires many-body origin.
Laughlin proposed a many-body wave function that explains the ν = 1/3 state [14].
For higher-order FQHE, which filling factor is ν = 2p/(2p±1) with p ∈integer, Jain
proposed the picture of composite fermions, which are magnetic flux - attached
electrons [15]. The physical picture is clear that the FQH effect of electrons is
actually the IQH effect of composite fermions.

The IQH effect and FQH effect provide us the first two examples of topological
states of matter. Conventionally, the states of matters are distinguished by the
underlying symmetry of the system, as described in the theory of the second order
phase transition by Landau [16]. For example, a crystalline solid is different from
a gas because it breaks translational symmetry. However, topological states of
matter cannot be adiabatically connected to conventional states of matter, even
though they share the same symmetry as the corresponding conventional states
of matter. Thus, topological states do not fall into the paradigm of Landau
theory. Instead, to classify topological states of matters, one needs to use another
mathematical tool, namely topology, to study topological property of electronic
bands.The discovery of the IQH effect and FQH effect has opened a new era in
the research of condensed matter physics. However, for quite a long period, the
study of topological states of matter had been only limited to the IQH effect and
FQH effect of two-dimensional(2D) electron gases, both of which require external
magnetic fields. It was unclear if topological states of matter exist in other systems,
in particular without external magnetic fields.

A breakthrough of this field occurred around 2005 and a new topological state,
dubbed time reversal (TR) invariant topological insulators (TIs), was theoretically
predicted [7, 17]. TR invariant TI is a new class of materials that insulates in the
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interior of the bulk and possesses gapless modes at the edge/surface. Unlike IQH
and FQH effects, magnetic field is not required for the existence of TR invariant
TIs. Instead, the physical origin of TIs is strong spin-orbit coupling, which is
TR symmetric, of the system. In contrast to chiral edge modes of the IQH effect,
gapless modes of TR invariant TIs reveal helical nature, and thus are dubbed "helical
modes". The helical modes are protected by bulk topology and TR symmetry, and
thus immune to back-scattering caused by TR symmetric disorder.

The first theoretical predictions of TI were quantum spin Hall(QSH) insulators,
also known as two dimensional (2D) TIs, proposed by Bernevig et al in HgTe/CdTe
quantum wells [7] and Kane and Mele in graphene [17]. A QSH system can be
viewed as two subsystems with opposite Hall conductances. Each copy of the system
is for one spin species and thus two subsystems are related to each other by TR
symmetry. The total Hall conductance is cancelled between two spin subsystems,
but the spin Hall conductance, defined as the difference of the Hall conductance
between two spin species, is nonzero. Soon after the theoretical prediction, the
QSH effect was observed in HgTe/CdTe quantum wells [18] and later in InAs/GaSb
quantum wells [19]. The idea of TIs was also generalized to three dimensions(3D).
The surface of a 3D TIs possesses odd number of Dirac cones with a salient feature
of spin-momentum locking. 3D TIs were experimentally observed in different classes
of materials [20–25,58].

Another striking development in this field is the experimental realization of
the so-called quantum anomalous Hall effect [59], which is the appearance of
the quantized Hall conductance without magnetic field, in magnetically doped
topological insulators. The essential difference between the QAH effect and the QH
effect is that at a zero magnetic field, there are no Landau levels and all electronic
properties can be well described by electronic band theory. In 1988, Haldane [26]
proposed the first theoretical model to realize non-zero Hall conductance at a zero
total magnetic flux in a 2D honeycomb lattice. Although the net magnetic flux
is zero in one unit cell, magnetic flux is still required for this model to break TR
symmetry. More importantly, it was unclear how to realize this model in realistic
materials at that time. Therefore, the Haldane model was overlooked for more than
two decades until recent developments in photonic [27] and cold atom systems [28].
The tunability and accessibility of these systems provide a new direction for the
realization of the Haldane model.
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The next important step towards understanding the QAH effect was the theoret-
ical proposal of two-band model by Qi et al. [29], which also realized the quantized
Hall conductance in certain parameter regimes. Compared to the Haldane model,
the importance of this model lies in the fact that no magnetic flux is required for
this model and all the key ingredients for the QAH effect in this model, such as
strong SOC and exchange coupling between magnetization and electrons, exist in
realistic materials. Thus, it is more close to experimental realization. The first
realistic material system for the QAH effect was predicted by Liu [30] in Mn doped
HgTe/CdTe quantum wells. Although the experimental realization of this proposal
has still not been achieved, mainly due to the fact that this system is paramagnetic
not ferromagnetic, this work reveals the relationship between the QSH effect and
the QAH effect and sheds light on the search for other QAH systems in magnetically
doped TIs. Later, Cr doped (BiSb)2Te3 was predicted to be ferromagnetic [31] and
shown to possess quantized Hall resistance experimentally [59].

The discovery of TIs and the QAH effect has paved the way to a new research
paradigm for the study of different types of topological states of matter in a broader
family of materials since no magnetic field is required. In particular, the research
on TIs reveals the role of symmetry in the classification of topological states of
matter. This idea was soon generalized to other systems. Intensive research activity
is focused on the search for new topological systems and new topological phases,
including topological superconductors [32–34], topological Mott insulators [35–37],
fractional Chern insulator [38–41], topological crystalline insulators(TCIs) [42–45]
and topological photonics [46–48]. In the superconducting gap of a topological
superconductor, zero-energy states exist at the boundary of a sample, which is
similar to the Majorana fermions in high energy physics and thus dubbed "Majorana
zero mode" [32–34]. Topological Mott insulators refer to topological insulating
phases induced by the electron-electron interactions, which possess edge/surface
modes in the mobility gap of Mott insulators [35–37]. Fractional Chern insulator is
shown to have fractional values of the Hall conductance without Landau levels, and
arises in the presence of strong correlation when topological bands are partially
filled, similar to FQH effect [38–41]. Another symmetry-protected states of matter
is TCI in which surface states are protected by crystal symmetries [42,43]. TCI were
experimentally realized in SnTe and Pb1−xSnxSe, which are both protected by mirror
symmetry of the crystal. Besides topological phases in solid-state systems, nontrivial

5



topology has been measured in cold atom systems as well [28, 49]. Moreover, TI
and QAH effect have their photonic counterpart. For example, at the edge of a
topological photonic crystal with non-zero Chern number, light can travel without
back-reflection even in the presence of disorder [46–48].

This thesis is devoted to the study of transport behaviors of topological states
of matter, focusing on topological insulators and the quantum anomalous Hall
insulators. Below, we will first introduce the necessary theoretical background of
topological states of matter.

1.2 Hall conductance
In this section, we will first introduce the topological invariant, the Chern number,
which characterizes the quantized Hall conductance in the QH and QAH systems.
The formula for Hall conductance and topological aspects of wave functions are
presented in this section. We consider linear response of the Hall conductivity
(Kubo formula) [12]

σαβ = ie2

~
∑
n6=m

(∂αH)nm(∂βH)mn − (α↔ β)
(En − Em)2 , (1.1)

where (∂αH)nm = 〈un| ∂H∂kα |um〉, |un(m)〉 is Bloch wave function of electronic bands,
En(m) is the corresponding eigenenergy, m denotes the occupied bands and n

denotes the unoccupied bands. Using the identities (∂αH)nm = (En−Em)〈∂αun|um〉
and ∑n6=m(|un〉〈un|+ |um〉〈um|) = 1. We can rewrite the Kubo formula into another
form

σαβ = ie2

~
∑
m

(〈∂um
∂kα
|∂um
∂kβ
〉 − (α↔ β)) (1.2)

= e2

~
∑
m

∫ d2k

(2π)2Fαβ (1.3)

,where Fαβ = ∂αAβ − ∂βAα
and ~A = i〈um|∂~k|um〉.

~A is called the Berry connection and Fαβ is the Berry curvature. Intuitively, ~A and
Fαβ can be viewed as an effective vector potential and effective magnetic field in
the momentum space. Thouless, Kohmoto, Nightingale and den Nijs (TKNN) [12]
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first derived this formula for electrons of a 2D system under magnetic fields and
periodic potentials, which can be applied to any 2D band systems. The significance
of this formula becomes more clear in the study of the intrinsic anomalous Hall
effect during the 1990s and 2000s. The topological property of this formula is
illustrated as below. If the phase of the wave function um is well-defined in the first
Brillouin zone (FBZ), Stoke’s theorem can be applied to change the surface integral∫
d2k∇× ~A into a line integral

∮
d~k · ~A. Because of the periodic boundary condition

of the FBZ: AB = DC and BC = AD in Fig.1.2, the FBZ can be identified as
a torus, which does not have a boundary. Therefore, the integral vanishes and
gives rise to a zero Hall conductance. This discussion immediately tells us that the
non-vanishing Hall conductance appears only when the phase of the wave function
can not be uniquely defined for all the momenta in the whole FBZ. To show this
more explicitly, we will discuss a two-band model in the next section.

1.3 Two-band model and the quantum anomalous
Hall effect
In this section, we will discuss a two-band model first introduced by Qi et al. [29],
which gives rise to a quantized Hall conductance without external magnetic fields.
Following the discussion by TKNN [12], we will show that the quantized Hall
conductance is a consequence of the appearance of singularity of occupied eigenstates
in the FBZ, where the phase of the wave function is not well-defined. Moreover,
we will also demonstrate geometrical meaning of the Hall conductance using the
concept of d-vector and winding number.

The explicit form of HQAH in a square lattice model is

HQAH =
 m A(sin kx − i sin ky)
A(sin kx + i sin ky) −m

 (1.4)

, where m = mo + B(2− cos kx − cos ky) and lattice constant of square lattice is
taken to be 1. The Hamiltonian can be written in a more compact form

HQAH = A sin kxσx + A sin kyσy +mσz (1.5)

= ~d · ~σ (1.6)
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,where ~d = (A sin kx, A sin ky,m) and σ are the Pauli matrices. The eigenvalues of
the Hamiltonian are ±d, where d =

√
d2
x + d2

y + d2
z. The corresponding eigenvectors

are

|uI±〉 = 1√
2d(d∓ dz)

 d−

±d− dz

 . (1.7)

The phase of the above eigenstate is ill-defined when the energy gap, or equiv-
alently d, vanishes. We find that the gap closes at the momenta that satisfy the
following conditions:

mo = 0 : (kx, ky) = (0, 0)

mo = −2B : (kx, ky) = (0, π), (π, 0)

mo = −4B : (kx, ky) = (π, π) (1.8)

We choose B > 0,mo < 0. Take the first condition as an example, near
~k = (0, 0), d ≈ |mo|

√
1 + (A2+moB2)k2

m2
o

, 2d(d+ dz) ≈ A2k2 and u− becomes

|uI−〉 ≈

 e−iθ

0

 ,
where θ = tan−1 ky

kx
. The phase θ, as well as the corresponding ~A field, are not

well-defined at ~k = (0, 0). To get a description for ~A field at ~k = (0, 0), one can do
a gauge transformation and obtain the eigenstates

|uII± 〉 = 1√
2d(d± dz)

 ±d+ dz

d+

 . (1.9)

The relation between uI and uII is uI = −eiθuII . At this gauge choice, uII− near
(0, 0) is ≈ (−1 0)T and is well-defined. To calculate the Hall conductance, we will
use Eq.(1.3). The FBZ is separated into two regions, in region I(II), the phase
of uI(II)− is well defined everywhere. Thus, one can use the Stokes theorem in the
regime I(II) for uI(II)− and the Berry connection ~AI and ~AII of the wave functions
are related by ~AII = ~AI + ∂θ

∂~k
. The line integral includes two parts (Fig.1.2)
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σxy = e2

~

∫
FBZ

d2k

(2π)2∇× ~A (1.10)

= e2

~

∫
SI

d2k

(2π)2∇× ~AI + e2

h

∫
SII

d2k

(2π)2∇× ~AII (1.11)

= e2

~
1

(2π)2

[(∮
CI
d~k · ~AI −

∮
CII

d~k · ~AI
)

+
∮
CII

d~k · ~AII
]

(1.12)

Because of the periodic boundary condition AB = DC and BC = AD in Fig.1.2,
the first line integral vanishes, i.e.

∮
CI
d~k · ~AI = 0

σxy = e2

~
1

(2π)2

∮
CII

dk( ~AII − ~AI) (1.13)

= e2

~
1

(2π)2

∮
dk · ∂θ

∂k
(1.14)

= e2

h
(1.15)

Figure 1.2. The FBZ is separated to two regions SI and SII . The boundary for SI
is CI in red, for SII is CII in blue. The inner boundary of SI is a clockwise circle by
definition. The periodic boundary condition requires that AB = DC and BC = AD.

9



From this example, one can clearly see how singularity in gauge potential leads
to the quantization of Hall conductance.

For a two-band model, there is another simple way to show the geometric
meaning of the Hall conductance Eq.(1.3). The Hall conductance for a 2 × 2
Hamiltonian can be written into a linear combination of Pauli matrices H2×2 = ~d ·~σ.
The coefficients are called a d-vector. It was shown that the Hall conductance can
be written in the forms of the vector d̂ [50]

σxy = e2

2~

∫ d2k

(2π)2 d̂ · ∂d̂
∂kx
× ∂d̂
∂ky

(1.16)

, where d̂ = ~d/d. It gives geometrical meaning of the Hall conductance for a 2× 2
Hamiltonian [29]. Consider the mapping for d̂ from FBZ to a unit sphere: T 2 → S2,
the integration

∫
d2kd̂ · ∂d̂

∂kx
× ∂d̂

∂ky
gives the total area of S2 that d̂ covers. The

integral equals to 4πn, where n is an integer. n is also called winding number
interpreted as the number of times the d-vecor wraps around the unit sphere.
Therefore, for a 2× 2 Hamiltonian, the Hall conductance can be determined by the
configuration of the d-vector in FBZ.

The parameter mo changes the d-vector configuration in FBZ as well as changes
the Hall conductance. When mo → ±∞, the d-vector does not wrap in the FBZ
and σxy = 0 according to Eq.(1.16). Numerical methods can be applied to the direct
calculation of the Hall conductance in the full FBZ. Here we adopt an alternative
way to determine Hall conductance using analytic solution and the geometric
meaning of d-vector. The idea is to calculate the change of Hall conductance across
the transition point analytically based on low-energy effective Hamiltonian. We
take the transition at mo ≈ 0 as an example. The change in Hall conductance
is independent of the large-momentum contribution because in that regime mo

is negligible and d̂ configuration does not change [51]. The integral in Eq.(1.2)
is cut off at a finite momentum. When mo ≈ 0, the expansion near (0, 0) gives
H(0, 0) = Akxσx + Akyσy +moσz and the change of Hall conductance is

∆σxy = −e2

~

∫ Λ

0

kdk

4π
A2mo

2(A2k2 +m2
o)3/2

= −e2

2h
mo

|mo|
(1.17)
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This equation only gives the change in Hall conductance near the points where dz
flips signs, i.e. σxy(mo > 0) − σxy(mo < 0) = − e2

h
. The Hamiltonian for mo > 0

adiabatically connects to the Hamiltonian formo →∞, thus σxy(mo > 0) = 0. From
the change in the Hall conductance, we obtain σxy(mo < 0) = e2

h
. Similarly, when

mo ≈ −2B, dz flips sign at (0,±π), (±π, 0). Take mo+2B = δ → 0. The expansion
near these points are H(0,±π) = Akxσx −Akyσy + δσz and H(±π, 0) = −Akxσx +
Akyσy + δσz. The change in Hall conductance is σxy(δ → 0+)− σxy(δ → 0−) = 2 e2

h

, in which σxy(δ → 0+) = e2

h
because it is adiabatically connected to the regime

−2B < mo < 0. Therefore, we obtain σxy(δ → 0−) = −e2

h
. When mo < −4B, the

d-vector does not change sign in FBZ, the Hall conductance is zero. The d-vector
configuration and the corresponding Hall conductance as a function of mo are
summarized in Fig.1.3.

Similar to the QH effect, non-zero bulk Hall conductance also suggests the
existence of chiral edge modes for a finite sample with a boundary. This type of
chiral edge modes can also be directly shown by solving the above two-band model
in a slab geometry with an edge. It is shown that the edge state is spin polarized
and exponentially localized at the edge [34]. A schematic plot of chiral edge modes
is depicted in Fig.1.3(c). From this two-band model, one can see that the quantized
Hall conductance can indeed be realized in a band model without any Landau level.

1.4 Time-reversal symmetry and quantum spin Hall
effect
In the above, we have shown how topological properties of electronic bands can
lead to the QAH effect with quantized Hall conductance. In this section, we will
illustrate the role of symmetry in the classification of topological phases. This was
first unveiled by theoretical prediction and experimental realization of the QSH
effect [7, 17, 18, 52, 53](also known as 2D TR invariant TIs), for which topologically
non-trivial electronic band structures are protected by TR symmetry. To see this,
we consider a simple four-band model, which is two copies of the two-band QAH
model Eq.(1.4). A variation of this model was first discussed in the context of
HgTe/CdTe quantum wells by Bernevig, Hughes and Zhang, and thus also dubbed
the BHZ model [7]. The Hamiltonian is given by
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Figure 1.3. (a)The d-vector configuration in the FBZ(b) and the corresponding Hall
conductance as a function of mo. dx,y are zero at these particular points.

⊙
mean dz is

positive, whereas
⊗

means dz is negative. (c)Chiral edge mode of the QAH insulator.

HQSH =
 HQAH(k) 0

0 H∗QAH(−k)

 . (1.18)

The Hamiltonian contains two QAH Hamiltonians, which are related by TR sym-
metry. Each block Hamiltonian carries Hall conductance of ±e2/h, respectively.
Consequently, the overall Hall conductance is zero, while the spin Hall conductance,
which is the difference between two conductances for opposite spins, is quantized.
This system gives us a simple model for a QSH insulator. To see the existence of the
edge states, the Hamiltonian is solved for a slab geometry. Each block Hamiltonian
gives rise to one chiral edge state with opposite propagating directions and spin
polarizations as depicted in Fig.1.4(a). This type of edge states are dubbed "helical
edge states" [34]. Remarkably, there is no backscattering between the two counter
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propagating edge states. In other words, the edge states are ballistic. This property
is protected by TR symmetry of the Hamiltonian. Any disorder type which obeys
TR symmetry does not ruin ballistic transmission.

The experimental realizations of the QSH states are in HgTe quantum wells [18],
and later in InAs/GaSb quantum wells [19]. Both materials have inverted band
sequence. In most semiconductors, the valence band is composed of p-orbitals and
the conduction band is s-orbitals. When there is strong spin-orbit coupling, like in
bulk HgTe, the band inversion happens at low energy, namely, the p-orbital bands
are pushed above the s-orbital band. This unusual sequence of energy bands is
called inverted band structure. For the HgTe/CdTe quantum wells, band gap and
energy dispersion depend on the well thickness. When the thickness is large, the
band remains in the inverted regime. In contrast, when the HgTe layer becomes
thinner, energy bands are shifted and the band sequence becomes normal. The
QSH effect is predicted to exist in the HgTe/CdTe quantum wells when the well
thickness is above some critical value and the corresponding band structure is in the
inverted regime. This theoretical prediction was soon confirmed by the transport
measurement by König et al [18]. A similar situation also occurs in the InAs/GaSb
quantum wells, in which the valence band top of the GaSb is higher than the
conduction band bottom of the InAs due to large band off-set between these two
materials. The existence of helical edge modes in this system was demonstrated by
Knez et al [19].

The confirmation of helical edge modes was mainly through transport experi-
ments. In ballistic regime, each one-dimensional channel contributes a conductance
of e2/h. For helical modes in a QSH insulator, conductance of 2e2/h is expected.
In the measurement on a Hall bar of HgTe quantum wells, the longitudinal four-
terminal conductance was shown to be quantized at 2e2/h in the inverted regime,
while vanishing in the normal regime [18]. In addition, nonlocal measurements help
to confirm transport current flowing through the edge in QSH insulators [53]. The
result agrees with the Landauer-büttiker formula for two counter-propagating edge
channels. In addition to its transport signature, the edge current is ’seen’ with an
imaging technique by measuring magnetic flux produced by edge currents [54] as
shown in Fig.1.4(b). The current image directly confirms spatial distribution of
conducing channels in QSH insulators.
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Figure 1.4. (a)A six-terminal Hall bar of the QSH insulator. There are two counter
propagating edge currents with opposite spin polarization. Green denotes the spin-up
current, pink denotes the spin-down current. The figure was taken from Bernevig et
al. [7]. (b)The longitudinal four-terminal resistance of normal(I) and inverted(II,III,IV)
HgTe quantum wells. From Konig el al. [9](c) The image of edge current of a π bar QSH
insulator. The figure was taken from Spanton et al. [10]

1.5 Three-dimensional topological insulator
Different from the QH or QAH effect, which does not have three-dimensional (3D)
counterpart, the 2D QSH effect can be generalized to 3D, which is called the 3D
TIs [55, 56]. For 3D TIs, nontrivial topology of the bulk Hamiltonian ensures
helical surface states on the 2D surface. In this section, the model Hamiltonian,
properties of surface states and experimental realization of 3D TIs are presented.
The model Hamiltonian for a 3D TI can be regarded as a generalization of 2D QSH
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Hamiltonian(E.q.(1.18)) to the third dimension and is given by [57]

H = εoI +


M(k) A1(kz) 0 A2k−

A1kz −M(k) A2k− 0
0 A2k+ M(k) −A1kz

A2k+ 0 −A1kz −M(k)

 , (1.19)

where εo = C+D1k
2
z+D2(k2

x+k2
y),M(k) = mo−B1k

2
z−B2(k2

x+k2
y), C,D,A1, A2, B1, B2,mo

are material-dependent parameters.
This Hamiltonian, Eq.(1.19), is an effective Hamiltonian for the Bi2Se3 family,

which are the most studied materials because the bulk insulating gap is larger
than thermal energy at room temperature [57, 58]. For Bi2Se3, the basis for the
effective Hamiltonian is |P1+

z ↑〉, |P2−z ↑〉, |P1+
z ↓〉, |P2−z ↓〉, where ↑, ↓ denotes

spin eigenstates and ± are for opposite parities. By comparing this model to
the Hamiltonian (E.q.(1.18)) for the 2D QSH effect, we can see that the two
Hamiltonians share two similar features: TR symmetry and band inversion. The
Hamiltonian satisfies TH(k)T−1 = H(−k) where the TR operator is given by
T = iσyK, where σy is a Pauli matrix and K is the complex conjugation operator.
Similar to the Hamiltonian (E.q.(1.18)), the band inversion occurs in a certain
parameter regime for this Hamiltonian where mo and B1,2 possess the same sign.
Band ordering is inverted at k = 0, where mo term is dominant, compared with
that at large k, where B1,2 terms dominate. The band inversion in the momentum
space characterizes the topology of this effective Hamiltonian.

In order to study surface states, one needs to solve the Hamiltonian (Eq.(1.19))
with open boundary condition, similar to the case of 2D systems. For a surface
perpendicular to the z-axis, kx, ky are still good quantum numbers, but kz is replaced
with −i∂z. There are two surface state solutions with opposite spin at kx, ky = 0.
By projecting the Hamailtonian onto the subspace of surface states, a effective
surface Hamiltonian [57]

Hsf = −i~vf (σx∂x + σy∂y) (1.20)

is obtained, where ~σ denotes spin. Hsf gives rise to a Dirac cone that the charge car-
rier behaves like a relativistic massless particle, schematically depicted in Fig.1.5(a).
Moreover, the spin is locked to the momentum, forming the helical nature of surface
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states. . The helical nature and the relativistic dispersion have been proved by
spin-resolved angle-resolved photoemission spectroscopy (ARPES) measurement
in Bi2Se3 and Bi1−xSbx [20, 58], Fig.1.5(b). ARPES measurement on the Bi2Te3

Figure 1.5. (a)The schematic figure of a single Dirac cone on the surface of 3D TI.
(b)Spin-resolved ARPES shows the helicity at a cross section of the single Dirac cone on
the surface of BiSe. The image is taken from Xia et al. [58]

surface has shown a hexagonal surface state, rather than a circular one [21].
In contrast to the QSH systems, the transport of surface states is not ballistic

in 3D TI. Even though backscattering is forbidden by TR symmetry, scattering
to other directions is allowed. Thus, the transport of surface Dirac cones will not
reveal quantized conductance. Several proposals to transport signatures of surface
states have been made, including measurement of weak localization effect [60],
in-plane anisotropic magnetoresistance [61], integer quantum Hall effect [22, 24],
etc. One of the unambiguous transport evidence of topological surface state is the
anomalous Ahronov-Bohm effect of a TI nanowire [23,25], where the topological
surface states only appear when a half-integer of flux quantum threads through the
nanowire.

Unlike the 2D QSH effect, the experimental study of which is still only limited
in one or two materials, 3D TIs have been theoretically proposed in tens of

16



materials [62]. The HgTe-related TI material has a similar band structure to HgTe:
inverted band structure and zero energy gap. Materials of this type include strained
HgTe [24,63], α−Sn [64], β−HgS [65], α− and β−Ag2Te [66], Heusler compounds
such as LnPtBi [67] and LaPtBi [68], HgSe [69], chalcopyrite semiconductors such as
AuTlS2 [70], Cu2 HgPbSe4 , Cu2CdPbSe4, Ag2 HgPbSe4, Ag2CdPbSe4 [71,72], filled
skutterudites such as CeOs4As12 and CeOs4Sb12 [73]. Another large family of TI
materials is the variation of Bi2Se3 family which are composed of elements with the
strongest atomic spin-orbit coupling. This group includes TlBiSe2 family [74–79],
LaBiTe3 family [80], PbBi2Se4 family [81, 82], Bi2Te2Se [83] and (Bi1−xSbx)2Te3

[84,85], CuxBi2Se3 [86,87], PdxBi2Te3 [88], and strained Bi2Te3 [89]. 3D TIs also
exist in other systems and for more details, one can refer to the Ref. [62]

1.6 Magnetic topological insulators
In the section 1.3, we have shown that two-band model can possess non-zero Hall
conductance. However, it is still unclear how to realize the two-band model in
realistic materials. Instead, we have shown that the Hamiltonian for the QSH effect,
which can be viewed as two copies of the two-band Hamiltonian for the QAH effect,
has been realized in HgTe/CdTe and InAs/GaSb quantum wells. If one of the block
Hamiltonian in Eq.(1.18) becomes a normal insulator, while the other is still in
the QAH phase, the overall Hall conductance is nonzero. This can be achieved by
introducing magnetic doping, which breaks TR symmetry, into the QSH insulators.
Magnetic moments can induce the so-called exchange coupling of electron spin and
lead to spin splitting of both conduction and valence bands. This spin splitting
can drive a QSH insulator into a QAH phase. Therefore, magnetic doping in TIs
provides a practical approach to achieve the QAH state in realistic materials. For
different TIs, the forms of exchange coupling are different. Below we will introduce
the model Hamiltonian for magnetically doped HgTe/CdTe quantum wells and
magnetically doped (Bi,Sb)2Te3 films.

The HgTe quantum well can be described by the BHZ Hamiltonian (Eq.1.18).
With magnetic doping, the exchange coupling between electron spin and magneti-
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zation is given by the Hamiltonian [90]

Hm,BHZ =


ge 0 0 0
0 gh 0 0
0 0 −ge 0
0 0 0 −gh

 , (1.21)

in the basis of |E ↑〉, |H ↑〉, |E ↓〉, |H ↓〉. Recall that in the previous section, we
have shown that tuning the parameter mo can effectively vary the Hall conductance
(Fig.1.3). The above exchange coupling Hamiltonian is equivalent to tuning mo but
with different amplitudes and signs for opposite spin block in the BHZ Hamiltonian.
As a consequence, it was found that the QAH phase can be realized when gegh < 0
[30]. Indeed, early studies have shown that ge and gh possess opposite signs in
Mn-doped HgTe [91,92].

However, HgMnTe is paramagnetic and needs an external magnetic field to
polarize magnetization. The out-of-plane magnetic field can cause Landau levels and
also leads to quantized Hall conductance (conventional QH effect). This prevents
to conclusively distinguish the QAH effect from the conventional QH effect in Mn
doped HgTe quantum wells. To distinguish these two effects, other mechanisms,
such as in-plane magnetization and strain, need to be introduced. These topics are
further discussed in chapter 4.

Another widely studied magnetic topological insulator is thin film of the BiSe/Te
family with magnetic doping. The essential difference between HgMnTe quantum
wells and magnetically doped (Bi,Sb)2Te3 lies in different mechanisms of mag-
netism. In HgMnTe quantum wells, the super-exchange mechanism dominates,
leading to antiferromagnetic coupling between different magnetic moments, while
for magnetically doped (Bi,Sb)2Te3 films, the so-called Van Vleck magnetism dom-
inates. Van Vleck magnetism refers to the nonzero matrix element of the spin
operator between conduction and valence band, which can be enhanced by band
inversion. It is shown that in Fe,Cr doped (Bi,Sb)2Te3 , this mechanism leads to
ferromagnetism [31]. Thus, the advantage of this system is that no magnetic field
needed and the QH effect can be excluded. For (Bi,Sb)2Te3 thin films, when the
thickness decreases, the top and bottom surface states become hybridized. The ef-
fective Hamiltonian can be written in the hybridized basis |+ ↑〉, |− ↓〉, |+ ↓〉, |− ↑〉,
where ± denotes the bonding/anti-bonding of the top and bottom surface states
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|± ↑〉 = (|t ↑〉±|b ↑〉)/
√

2; |± ↓〉 = (|t ↓〉±|b ↓〉)/
√

2. In this basis, the Hamiltonian
has the same form as for BHZ model. However, exchange Hamiltonian in this
system is slightly different under the above basis |+ ↑〉, |−, ↓〉, |+, ↓〉, |−, ↑〉 and is
given by

Hm,BiSe =


g+ 0 0 0
0 −g− 0 0
0 0 −g+ 0
0 0 0 g−

 , (1.22)

The above exchange Hamiltonian can naturally drive the system into the QAH phase
and the first-principle calculation by Yu et al [31] has indeed shown that (Cr,Fe)
doped Bi2Se3, Bi2Te3, Sb2Te3 are magnetically-ordered and exhibit quantized
Hall conductance. This theoretical prediction was first confirmed by Chang et
al’s experiments [59], in which a quantized Hall conductance and a negligible
longitudinal resistance were observed by transport measurements, as shown in
Fig.1.6. The experimental observation of the exact quantization of Hall conductance
and negligible longitudinal resistance confirm dissipationless nature of transport
for the QAH effect [93–96].

Figure 1.6. The first Hall measurement of the QAH system in Cr0.15(Bi0.1Sb0.9)1.85Te3
film. (a) The Hall resistivity(blue) and the longitudinal resistivity(red). (b)The conduc-
tance is obtained from the resistivity through the relation σxy = ρyx/(ρ2

yx + ρ2
xx) and

σxx = ρxx/(ρ2
yx + ρ2

xx) .The figures is taken from Ref [59].
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1.7 Overview and organization of this dissertation
The research of TIs and the QAH states, as well as other new topological states, pro-
vide a new research era of the interplay between symmetry and topological phases. It
also inspires potential applications in nano-electronics with low energy consumption.
Experimentally, the existence of boundary modes in topological phases can be ex-
plored by different experimental techniques, including ARPES [20,21,58], scanning
transmission microscopy(STM) [97–99] and transport measurements [60,61,100].
ARPES and STM measurements directly probe energy dispersions of surface states
of a TI, which agree well with theories. However, transport measurements are
complicated by disorder and additional bulk carriers. The objective of this work is
to understand transport properties of topological insulators theoretically.

In view of the broad objective stated above, our specific studies include predic-
tions of the QAH effect in magnetic TI without orbital effect and to understand
transport signatures of 3D TI nano-structures. The organization of this dissertation
is as the following: Chapter 2 introduces the methods used for numerical calculation
of transport properties in the remaining of the thesis. Chapter 3 discusses the
origin of the magnetoconductance oscillation in TI nanowires and the localization
physics of topological surface states. The topological sates appear at half-integer
flux quanta threading through the nanowire and show a much longer localization
length than non-topological states. Our results are supported by magneto-transport
measurements in TI nanotubes. Chapter 4 and 5 discuss the realization of the QAH
effect in magnetic TI without orbital effects. The effect of in-plane magnetization
on the Hall conductance in Mn doped HgTe quantum wells is discussed in Chapter
4. The inclusion of Zeeman coupling causes a reentrant QAH conductance as the
in-plane magnetic field increases. Moreover, we present an argument about the
relationship between in-plane reflection symmetry and the QAH states. Using sym-
metry analysis, we show that the QAH effect can be realized in strained HgMnTe
quantum wells without any orbital effect. In chapter 5, the resistance of disordered
QAH system is studied when rotating magnetization. The quantization of the Hall
conductance is robust against disorder. In the end, conclusions and open problems
are given in Chapter 6.
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Chapter 2 |
Theoretical fundamentals for trans-
port in topological insulator nanos-
tructures

2.1 Landauer-Büttiker formalism
In this chapter, we will first briefly introduce the Landauer-Büttiker formalism,
which has been widely used for the calculation of transport properties of mesoscopic
systems [101]. This formalism simulates experimental condition of electronic
transport by connecting the device with macroscopic contacts(electron reservoirs)
via leads. Leads are ballistic conductors with M transverse modes and are assumed
to be in equilibrium with contacts. For a mesoscopic system, in which the phase
coherence is maintained and the interference effect can be neglected in the sample,
the conductance is independent of the width and the length of the sample. Landauer
found that for a mesoscopic system in a two-terminal structure, the conductance is
given by G = e2

h
MT , where T is the average probability of an electron transmit

between the two leads. The conductance only depends the number of transverse
modes and transmission probability in the conductor. For multi-terminal structures,
Büttiker noted that there is no qualitative difference between the current and
voltage probes. He generalized Landauer’s formula to multi-probe problems by
treating the current and voltage probes on an equal footing. As shown in Fig.2.1,
we consider N leads with the current and voltage in each lead denoted as Ip and Vp,
respectively, where p denotes the p− th lead. From the Landauer-Büttiker formula,
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the current is related to voltage by Ip = ∑
q Gpq(Vp − Vq). Gqp is the conductance

coefficient related to the transmissions functions by

Gqp = e2

h
Tqp, (2.1)

where Tqp is the transmission matrix that describes the transmission probability
from lead p to lead q, as depicted in Fig.2.1.

Figure 2.1. A schematic plot showing the transmission between leads.

This formula has been used to explain the transport of edge modes in the QH,
QSH and QAH systems. Here we will take a QH system with one chiral edge mode
in a four-terminal geometry (Fig.2.2) as an example. Let us assume the chiral
edge mode is counter-clockwise. The transmissions are given by T41 = T24 = T32 =
T13 = 1 and other transmissions are 0. Landauer-Büttiker formula gives the matrix
equation


I1

I2

I3

I4

 = e2

h


1 0 −1 0
0 1 0 −1
0 −1 1 0
−1 0 0 1




V1

V2

V3

V4

 . (2.2)
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Figure 2.2. (a) is the conductor connecting to semi-infinite leads. (b) is the conductor
adding the lead self-energy. The two are conceptually equivalent.

The matrix equation can be simplified by current conservation I1 + I2 + I3 + I4 = 0.
Moreover, because the current depends on voltage differences, we can set any probe
voltage to 0. Here, we set V4 = 0 and the matrix equation is simplified as


I1

I2

I3

 = e2

h


1 0 −1
0 1 0
0 −1 1



V1

V2

V3

 . (2.3)

The resistance matrix is defined as the inversion of conductance matrix

R =


R11 R12 R13

R21 R22 R23

R31 R32 R33

 = h

e2


1 1 1
0 1 0
0 1 1

 . (2.4)

To calculate the Hall resistance, we set voltage probes at terminal 3, 4 and
current probes at terminal 1,2. The Hall resistance is given by RH = V3−V4

I1
with

V4 = 0, I2 = −I1 and V3 = R31I1 + R32I2. Thus, RH = R31 − R32 = h
e2 . To

calculate the longitudinal resistance, we set voltage probes at terminal 1, 4 and
current probes at terminal 2, 3. The longitudinal resistance is given by RL = V1−V4

I3

with V4 = 0, I3 = −I2 and V1 = R12I2 + R13I3. Thus, RL = R12 − R13 = 0.
Landauer-Büttiker formula gives the expected values of the resistances for a system
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with chiral edge modes which are experimentally confirmed in QH systems [93–96].
The central task of transport calculations is to evaluate the transmission func-

tions Tqp, which can be obtained from the S-matrix. The S-matrix connects
the incoming and outgoing wave amplitudes at the different leads. Consider the
propagation between two leads, the S-matrix is

S =
 r t′

t r′

 , (2.5)

where r is the reflection matrix in one lead and its size is determined by the number
of modes in the lead. t is the transmission matrix across the conductor from one
lead to the other. r′ and t′ describe the transport along the reversed direction of r
and t. Different methods can be applied to evaluate the S-matrix, depending on
the type of the problem. One useful technique is to express the S-matrix in terms
of Green’s function by the Fisher-Lee relation [101],

snm,qp = −δnmδqp + i~
a

√
vnqvmp

∑
qi,pj

χ∗n(qi)GR
qp(qi, pj), χm(pj), (2.6)

where n(m) denotes the conducting channel in lead q(p), qi denotes the transverse
lattice site in lead q, vnq is the longitudinal velocity in the lead, χn is the transverse
wave function in the lead, a is the lattice constant, GR

qp(qi, pj) is the retarded
Green’s function that gives the propagation amplitude from transverse site i in
lead q to transverse site j in lead p. It is a submatrix of Green’s function of the
full system.The Green’s function is defined as

GR/A = 1
E −H ± iη

, (2.7)

where H is the full Hamiltonian, η is the imaginary energy, R/A refers to the
retarded/advanced solutions. They are related by GR∗(qi, pj) = GA(pj, qi).

The transmission function can be written in a more compact form Tq 6=p =∑
n,m |snm,qp|2 = Tr[ΓqGRΓpGA], where Γq(qi, q′i) = χn(qi)~vnq

a
χ∗n(q′i) describes the

coupling between the conductor and the lead. In the clean limit, an electron injected
from one terminal transport smoothly to another without any scattering. The
electron preserves its eigenstate, and thus Tnm = δnm. For the system with disorder,
we need to evaluate the Green’s functions explicitly. The diagrammatic perturbation
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method is an analytical approach with (kf l)−1 as an expansion parameter [102],
where kf is the Fermi wave vector and l is the mean free path. However, in an
extremely disordered regime or when Fermi level is low such that kf l � 1, this
method is no longer valid and numerical methods are required [102]. In this thesis,
we adopt the recursive Green’s function method which will be introduced in this
chapter.

In this study, the Hamiltonian is written in the tight-binding (TB) representation,
which is suitable for describing a lattice of a finite system. It is also easier to
introduce disorder and magnetic field in the TB representation. Numerically, to
invert the matrix to obtain the Green’s function is not computationally efficient
since the time cost for computation scales as (NW )3, where W is the number of
transverse sites of the sample and N is the length of the sample. Here we adopt a
method called the recursive Green’s function method, for which the computational
time scales as NW 3. The time reduction is because of the slicing treatment of
the full Hamiltonian in this method. The sample is cut into several slices and
connected by the hopping matrices. The Hamiltonian inversion is done slice by slice.
Thus, the matrix size involved in the inversion is W by W . The recursive Green’s
function method is efficient to compute the S-matrix for a disordered system in TB
representation.

In order to understand transport properties in TI nanostructures, we combine
the Landauer-Büttiker formalism together with the recursive Green’s function
method. This chapter is dedicated to describe the methods as the theoretical and
numerical background for the following chapter.

2.2 Recursive Green’s function method

2.2.1 Derivation of the recursive equations

This section aims in introducing recursive Green’s function method and show
that it provides a more efficient route for the calculation of the Green’s function.
This method is used to calculate scattering amplitudes of a noninteracting system
described in the TB representation. We will show the slicing scheme (Fig.2.3) of
the Hamiltonian and how to use the Dyson’s equation to obtain the left-sweep
recursive equations that give the scattering amplitude between the first and the
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Figure 2.3. The schematic slicing scheme of a free-end system.

last slice. The full Hamiltonian is written in the form

H =



h0 Uf 0 · · · · · · 0
Ub h1 Uf 0 · · · ...
0 Ub h2 Uf 0 ...
... ... . . . . . . . . . ...
... ... . . . . . . . . . Uf

0 0 0 · · · Ub hN+1


, (2.8)

where hn, n = 0 · · · , N + 1, is the Hamiltonian of each slice, Uf is the forward
hopping from nth slice to n+ 1th slice and Ub is the backward hopping from nth
slice to n− 1th slice.

For clarity, we use bras and kets to express the full Hamiltonian:

H = HN + |N + 1〉hN+1〈N + 1|+H′ (2.9)
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, where the kets |i〉 represent the state at the i−th slice and HN = ∑N
i {|i〉hi〈i|+

|i〉Ub〈i+1|+ |i+1〉Uf〈i|} is the Hamiltonian for the first N slices. H′ is the hopping
between the N-th and the N+1-th slice and is treated as the perturbing term

H′ = |N〉Ub〈N + 1|+ |N + 1〉Uf〈N |, (2.10)

where Uf/b denotes the forward/backward hopping matrix.
The underlying concept in recursive Green’s function method is to assume that

the Green’s function of HN is known and treat the hopping between the N-th and
the N+1-th slice as a perturbation. The exact Green’s function can be obtained by
Dyson equation

GN+1 = Go +GoH′GN+1, (2.11)

where Go = GN + |N + 1〉〈N + 1|
E − hN+1

. (2.12)

By plugging Eq. 2.10 and 2.12 into Eq. 2.11, we get

GN+1 =
(
GN + |N + 1〉〈N + 1|

E − hN+1

)
(
1 + (|N〉Ub〈N + 1|+ |N + 1〉Uf〈N |)GN+1

)
. (2.13)

The submatrix that gives the propagation from the slice 0 to N + 1 is

〈0|GN+1|N + 1〉 = 〈0|GN |N〉Ub〈N + 1|GN+1|N + 1〉, (2.14)

where

〈N + 1|GN+1|N + 1〉 = 1
E − hN+1

(1 + Uf〈N |GN+1|N + 1〉)

= 1
E − hN+1

(1 + Uf〈N |GN |N〉Ub〈N + 1|GN+1|N + 1〉)

= 1
E − hN+1 − Uf〈N |GN |N〉Ub

(2.15)

In the above equation, the sub-matrix 〈N |GN+1|N + 1〉 is obtained by calculating
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the sub-matrix of Eq. (2.13). Eq.(2.14) and (2.15) are the two main equations used
to obtain the Green’s function. The first two steps of the iteration are presented in
the following with the initial condition of free Green’s function

〈0|G0|0〉 = 1
E − h0

. (2.16)

At the first step of the iteration, Eqs.(2.14) and (2.15) give

〈0|G1|1〉 = 〈0|G0|0〉Ub〈1|G1|1〉 (2.17)

〈1|G1|1〉 = 1
E − h1 − Uf〈0|G0|0〉Ub

. (2.18)

At the second step of the iteration , Eqs.(2.14) and (2.15) give

〈0|G2|2〉 = 〈0|G1|1〉Ub〈2|G2|2〉 (2.19)

〈2|G2|2〉 = 1
E − h2 − Uf〈1|G1|1〉Ub

. (2.20)

We can follow this iteration to get the Green’s function at the slice N . So far,
we have introduced the left-to-right sweep Green’s function. It can be generalized
easily to the right-to-left sweep only by changing slice indices. For two-terminal
transmission functions, one sweep is enough for determination of transmission. In
some cases, for example, density of states, multi-terminal transmission, both sweeps
are needed. However, for the above calculation, the influence from the lead has
not been taken into account, which will be included as a boundary condition, as
described in the next subsection.

2.2.2 Connection to leads

In this section, we will discuss how to take into account the influence of leads.
Leads are ballistic conductors with a semi-infinite length, and consequently, the
matrix of the full Hamiltonian that includes the leads and a central conductor has
infinite dimensions. It is not possible to obtain the Green’s function by inverting
the full Hamiltonian. A method of truncating the matrix for computing the Green’s
function will be described. In this method, the effect of the semi-infinite lead
enters the Hamiltonian of the conductor through the form of self-energy. The
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self-energy is obtained from the Green’s function of a semi-infinite lead which can
be evaluated numerically by calculating 〈N |GN |N〉 using Eq.(2.15). A convergence
test is required to ensure that N is large enough to simulate a semi-infinite lead.
Nevertheless, for the case of parabolic band dispersion in the leads, analytical
expressions for the Green’s functions of leads can be obtained. This analytical
solution will be given later in this section.

First, we consider how to truncate the matrix when there is one lead. The
retarded Green’s function of the whole system is GR = (E − H + iη)−1 (the
superscript R will be dropped for simplicity below). The overall Green’s function
is partitioned into submatrices and defined as follows:

 GL GLC

GCL GC

 ≡
 E −HL + iη τ

τ † E −HC

−1

, (2.21)

where (E + iη −HL) represents the isolated lead, (E −HC) represents the isolated
conductor and τ is the coupling matrix that couples the lead and the conductor.

For one-dimensional case, τ is a NL ×NC matrix, of which NL is the length of
the lead and NC is the length of the conductor. When only the nearest neighbor
hopping is taken into account, the matrix τ takes the following form

τ =


0 . . . 0
... ... 0
t 0 . . . 0

 , (2.22)

where t describes the hopping between the lead and the conductor. By multiplying
by (E −H + iη) on both sides of the Eq (2.21), one gets

(E −HL + iη)GLC + τGC = 0 (2.23)

τ †GLC + (E −HC)GC = I. (2.24)

Eq.(2.23) gives

GLC = −gLτGC (2.25)

,where gL = (E −HL + iη)−1 (2.26)
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which is the retarded Green’s function of a semi-infinite lead. By substituting
Eq.(2.25) into Eq.(2.24), we obtain

GC = (E −Hc − ΣL)−1 (2.27)

ΣL = τ †gLτ, (2.28)

where ΣL is called the self-energy of the lead and GC gives the propagation of
electrons between two sites inside the conductor taking into account the effect of
leads.

By introducing ΣL, the infinite large matrix of the original Hamiltonian is
reduced to a finite-size matrix. The self-energy ΣL contains the information from
the semi-infinite lead. It is added as a boundary condition of the conductor
(Fig.2.2). When there are more than one lead, it is assumed that different leads are
independent, thus the effective self-energy is the sum ΣL = ∑

p ΣL
p .

Next, we will show the analytic solutions for the self-energy and the Green’s
function of the lead. If the lead is a simple normal metal with a parabolic dispersion,
the Green’s function can be computed analytically. In TB representation, the
Hamiltonian for the 1D chain is −t∑j(C†j+1Cj + C†j−1Cj) and the eigenenergy is
E = −2t cos(ka), where t = ~2

2ma when compared to the continuum limit a→ 0. For
a 1D semi-infinite lead lying along the x-direction with the open boundary at x = 0,
the wave function in TB representation is Ψ(x) =

√
2
NL

sin(kx) which satisfies the
boundary condition Ψ(0) = 0. We start with the eigenfunction expansion of the
Green’s function

gL(E, x, x′) =
∑
k

Ψ∗(x′)Ψ(x)
E − εk + iη

. (2.29)

To compute the self-energy of the lead, we only need to evaluate the Green’s
function on the interface. Thus, we will set x′ = x in Eq.(2.29). Substitute the
wave functions into the expansion and replace the summation by the integral∑
k → L

π

∫
dk, where L = NLa and L→∞, we obtain

gL(E, x, x) = a

2π

∫ ∞
0

dk
2− e2ikx − e−2ikx

E − εk + iη

= −ma
π~2

∫ ∞
−∞

dk
1− e2ikx

(k +
√
E ′ + iη)(k −

√
E ′ − iη)
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= ima

~2k
(e2ikx − 1)

= −2ma
~2k

eikx sin(kx), (2.30)

where
√
E ′ =

√
2mE/~ = k in the continuum limit. Take the continuum limit

a → 0, then we have sin(ka) → ka. E.q.(2.30) gives gL = −eikx/t. To obtain
the surface Green’s function, we set x = a, which is the first lattice site in the
conductor. Thus, the surface Green’s function is gL(E, x = a) = −eika/t and the
self-energy from the lead is ΣL = −teika given by E.q.(2.28) [101].

For a quasi-1D semi-infinite lead, the retarded surface Green’s function can
also be obtained by eigenfunction expansion. We assume the lead lies along the
x-direction and the transverse side is along the y-direction. The wave function is

Ψ(x, y) =
√

2
NL

sin(kx)χm(y), (2.31)

where χm(y) is the transverse wave function. Substituting the wave functions
into the wave function expansion of the Green’s function gL(E, x, y, x′, y′) =∑
k,m

Ψ∗(x′,y′)Ψ(x,y)
E−εk+iη and follow the same procedure as the 1D case, we obtain

gL(E, x, y′, x, y) = −eika

t

∑
m

χ∗m(y′)χm(y). (2.32)

In this dissertation, we assume hard-wall boundary condition for the transverse direc-
tion with the edges at y = 0 and y = (Ny+1)a. Thus, the transverse wave functions
are χm(y) =

√
2

Ny+1 sin(kyy) with ky = mπ
(Ny+1)a and m = 1 . . . Ny. The longitudinal

wave vector k is given by the dispersion relation k = 1
a

cos−1
(
E+2t cos(kya)

−2t

)
.

The generalization to 3D systems is straightforward from Eq.(2.32). The
transverse modes include the modes along the third dimension. Thus, χm(y) is
replaced by χm,n(y, z) =

√
4

(Ny+1)(Nz+1) sin(kyy) sin(kzz). The longitudinal wave
vector is k = 1

a
cos−1

(
E+2t cos(kya)+2t cos(kza)

−2t

)
.

With the surface Green’s function at hand, we can turn back to the boundary
conditions for the recursive equations Eq.(2.14) and Eq.(2.15).

For a two-terminal device (Fig.2.4), the initial condition E.q.(2.16) is replaced
with 〈0|G0|0〉 = gL. At the rightmost slice (say, the N -th slice), the conductor is
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Figure 2.4. The schematic slicing scheme with two-terminal leads. The leftmost and
rightmost slices are dressed with the self-energy of the lead.

connected to the right lead. (E − hN+1) in Eq.(2.15) is replaced with gL−1. The
Green’s function 〈0|GN+1|N + 1〉 is the final result that we need for the calculation
of transmission. It gives the transmission probability from slice 0 to N + 1 taking
into account the influence of the leads. We will show an example of the calculation
of the transmission function for a two-terminal device in the next section.

2.3 Analytic solution for an one-dimensional example
To get a better understanding of the Landauer-Büttiker formula for transport
calculation, we study a simple example of the transport in a 1D chain, which can be
solved analytically. Without adding any disorder or potential barrier, the Green’s
function given by Eq.(2.28) is the same as the Green’s function of an infinite long
conductor. The 1D conductor is separated into 3 pieces, a left lead, the conductor
and a right lead. For simplicity, we consider a conductor with two lattice sites
(N = 2), in which the analytic solutions can be easily achieved. The Hamiltonian
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of the conductor with two sites is

HC =
 0 −t
−t 0

 . (2.33)

In TB representation, the energy dispersion and the velocity of the incident particles
are

E = −2t cos(ka) (2.34)

v = 1
~
∂H

∂k
= 2at

~
sin(ka). (2.35)

The influence of the leads to transmission can be dealt with in the form of
self-energy added to the Hamiltonian HC

ΣL = −t
 eika 0

0 eika

 . (2.36)

The Green’s function of the whole system (including the conductor and leads)
is obtained by inversion

G(E) = 1
E −HC − ΣR

(2.37)

=
 E + teika −t

−t E + teika

 /[(E + teika)2 − t2]. (2.38)

Now we can calculate transmission probability T = |S1N |2. According to Fisher-
Lee relation, the scattering amplitude is S1N = i~v

a
GR

1N for transmission and
S11 = −1 + i~v

a
GR

11 for reflection, so we have

S1N = −i2t2 sin(ka)
[(E + teika)2 − t2] = eika, (2.39)

S11 = 0, (2.40)

where we have substituted E = −2t cos(ka) and made the use of −2t cos(ka) +
teika = −te−ika. Therefore, the transmission probability is T1N = 1 and T11 =
|S11|2 = 0. This is reasonable because there is no disorder nor potential barrier in
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the wire, an electron should have perfect transmission.

2.4 Summary of the calculation
In this chapter, the Landauer-Büttiker formula and the recursive Green’s function
method for calculating the conductance in mesoscopic systems are introduced.
The important steps in the calculation for the transmission are summarized in
this section. The main parts of the calculation include input of the Hamiltonian,
iteration and the calculation of transmission.

I. Input of the Hamiltonian:
The Hamiltonian is written in the form given in E.q.(2.8) , where in clean limit,

h1 = h2 = · · · = hN . For a two-terminal structure, h0 and hN+1 are the slices that
connect to leads. h0 = h1 + ΣL, where ΣL is the self-energy of the lead. In this
study, all leads are taken to be the same. Thus, hN+1 = h0. The self-energy of the
lead is ΣL(E, y, y′) = t2gL(E, y, y′), where gL(E, y, y′) is given by E.q.(2.32).

II. Iteration: After the input of the sliced Hamiltonian and the self-energy,
there is enough information to calculate the Green’s function by iteration equations
E.q.(2.14) and E.q.(2.15) with the boundary conditions taking into account the
effect of lead.

III. Calculation of transmission: The transmission function is calculated
with the compact form Tqp = Tr[ΓqGRΓpGA], in which the Green’s functions and
the Gamma matrices are written in the site indices along the transverse directions.
The trace is over the site indices:

Tqp =
∑

qi,pj ,q′i,p
′
j

{
Γq(qi, q′i)GR

0,N+1(q′i, p′j)Γp(p′j, pj)GA
0,N+1(pj, qi)

}
, (2.41)

where Γq = (qi, q′i) = ∑
n

~vnq
a
χn(qi)χ∗n(q′i) and Γp(p′j, pj) = ∑

m
~vmp
a
χm(p′j)χ∗m(pj).

GR
0,N+1(q′i, p′j) is obtained from the iteration equations in the previous step. The

advanced Green’s function is obtained by the complex conjugate of the retarded
Green’s function: GA

0,N+1(pj, qi) = GR
0,N+1(qi, pj)∗.
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Chapter 3 |
Transport in disordered topolog-
ical insulator nano-structures

TIs are bulk insulators with unusual gapless metallic surface states protected by TR
symmetry [52,55,103]. The topological surface states are expected to yield salient
phenomena, such as spin-momentum locking and the suppression of non-magnetic
backscattering. However, the current experimental observation of gapless surface
states mainly comes from the surface sensitive technique, such as ARPES and STM.
The signatures of topological surface states in electrical transports are complicated
by the fact that the samples often have dominating conduction from bulk channels
due to high density of carriers from the impurity states. One of the approaches
to enhance the surface contribution is to increase the surface-to-volume ratio by
reducing the sample size down to nanometer scale. Pioneering study in this direction
has been carried out in Bi2Se3 nanoribbons [23,104,105] and Bi2Te3 nanowires [106].
Another possible strategy is to increase disorder scattering in nanoscale samples. A
sufficiently strong disorder should localize bulk conduction but may not significantly
affect topological surface states since the surface conduction is predicted to be
more robust against disorder compared to that of bulk carriers. In this chapter,
we study transport of disordered topological insulator nanostructures based on the
numerical methods discussed in the last chapter and demonstrate the robustness
of topological states.Moreover, our numerical results agree with the experimental
observation that the magneto-conductance oscillates with φ0-periodicity in highly
disordered Bi2Te3 nanotubes.
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3.1 Theoretical study of surface states of TI nanowires
in the clean limit
In this section, we will present the energy dispersion, wave function distribution
and magneto-conductance of TI nanowire in the clean limit. The analytical solution
will be given first for a physical understanding and then followed by numerical
results.

Figure 3.1. The cross section of a nanowire (a) and a nanotube (b) used in the numerical
calculation.

We first consider a topological insulator nanowire with only one closed surface,
as shown in Fig.3.1(a). The behavior of surface states of a TI nanowire can be
understood by the effective Hamiltonian of topological surface states(E.q.(1.20)).

We may start from the four band Dirac type of Hamiltonian of bulk TIs to
obtain the effective Hamiltonian of topological surface states that has been obtained
in Ref [107], also see Appendix A. The nanowire is modeled by a cylinder with
the radius R and an infinite length. When a magnetic field is applied to penetrate
into the nanowire, we need to apply Pierels substitution ~p → ~p − e

~
~A to the

momentum. The total magnetic flux enclosed by the surface of the nanowire is
BπR2 = Aφ2πR = ηφ0. Thus, we can choose the vector potential as ~A = Aφφ̂ = ηφ0

2πR

and the corresponding Hamiltonian is

Hn
eff = ~vf

2R + ~vf

 − 1
R

(i∂φ + η) ike−iφ

−ikeiφ 1
R

(i∂φ + η).

 (3.1)
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The eigenenergy for this Hatmiltonian is

Ekl = ±~vf

√
k2 + ( l + 1/2− η

R
)2, (3.2)

where vf is the Fermi velocity, k is the wave vector along the wire direction and
l+1/2 is the angular momentum of surface electrons with l to be an integer number
and equals to 0,±1± 2 . . . .

The energy dispersion depends on the value of the magnetic flux. TR symmetry
exists in this system when η takes the integer or half-integer values in units of
flux quantum and will lead to double degeneracy. When η is an integer, the bands
are parabolic and doubly degenerate(l + 1/2 = ±1/2,±3/2 . . . ). There is a gap of
2~vf l+1/2

R
. In contrast, when η equals to half- integers, a pair of linear mode with

l + 1/2 = η appears and the gap closes.
This result can be understood by Berry’s phase. When a surface electron moves

along a closed trajectory around the curved surface of a nanowire, the electron spin
equivalently rotates by 2π due to spin-momentum locking, leading to a Berry phase
π. It means that the wave function satisfies antiperiodic boundary condition along
the perimeter direction. Thus, the allowed angular momentum takes half-integer
value l + 1/2, which leads to a gap for all surface sub-bands. However, when there
is magnetic flux threading through the nanowire, the surface electron gains an
additional phase from magnetic flux. When magnetic flux takes half-integer value of
flux quanta ((n+ 1/2)φ0), which gives rise to an additional phase of π and cancels
out the Berry phase, the gap of a pair of surface sub-bands closes again.

We applied the bulk Hamiltonian to a cuboid, for which the cross sectional
surface is a N ×N square as in Fig.3.1(a). We consider the wire lying along the
x-direction, so as the magnetic field. The cross section of the nanowire is on the
yz plane. We employed the tight-binding Hamiltonian on a simple cubic lattice in
which only the nearest neighbor hopping is considered [108]. The Hamiltonian is
written as

H = H0 +Hsoc +Hγ (3.3)

H0 = (ε− t
∑
i,δ

(C†i+δCi + C†i−δCi))Γ0 (3.4)
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Hsoc = iA
∑
i,δ

(C†i+δCi − C
†
i−δCi)Γi (3.5)

Hγ = γ
∑
i,δ

(2− C†i+δCi − C
†
i−δCi)I, (3.6)

where i denotes the x, y, z direction. Γx = sz ⊗ σx, Γy = −I ⊗ σy, Γz = sx ⊗ σx,
Γ0 = I ⊗ σz, where σi acts on the orbital space and si acts on the spin degree of
freedom. a is the lattice constant, which we set to unity in the calculation. t is the
hopping term between the two nearest neighbor atoms and ε−6t corresponds to the
mass term. A is the strength of spin-orbit coupling and taken to be 1. γ term breaks
particle-hole symmetry. In our calculation, the parameters were chosen such that
ε = 4t, t = 1. The choice of the parameter is in the regime 2t < |ε| < 6t to realize
the strong topological insulator phase [107] and gives a maximum bulk band gap of
4t. Since γ does not affect the topology, we set it to be zero in our calculations for
simplicity. Below, all energies are in units of t and length in units of a. The magnetic
field is included through the standard Peierls substitution. To simulate the magnetic
field B applied along the wire (the x-direction), we choose the Landau gauge for
the vector potential ~A = (0,−Bz, 0), corresponding to an additional phase factor
in the hopping term along the y-direction (tC†i,y+1Ci,y → te(i2πzφ/φ0)C†i,y+1Ci,y).

3.1.1 Dispersion and wave function distribution

We first calculate energy dispersion and wave functions in three different magnetic
flux distributions. In the calculation, the x-direction is taken to be infinite. Due to
the translation symmetry along the x direction, we can apply the Fourier transform
to the x position in the Hamiltonian, leading to

H0 = (ε− t
∑
y,z,δ

(C†i+δCi + C†i−δCi)− 2t
∑
kx

cos kx)Γ0 (3.7)

Hsoc = i
∑
y,z,δ

(C†i+δCi − C
†
i−δCi)Γi − 2

∑
kx

sin kxΓi (3.8)

Hγ = γ
∑
y,z,δ

(2− C†i+δCi − C
†
i−δCi)I − γ

∑
kx

(2− 2 cos kx)I. (3.9)

The parameters are chosen as ε = 4t, γ = 0 and t is set to unity. We diagonalize
the Hamiltonian at each kx numerically and compare three different magnetic flux
distributions, (1) no magnetic flux, (2) half magnetic flux quantum at the center
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plaquette, (3)half magnetic flux quantum homogeneously distributed over the whole
cross section. In the case (1) and (2), the Hamiltonians have TR symmetry, while
in the case (3), the TR symmetry is broken. However, in the case (3), since the
surface state is mainly localized at the boundary of the nanowire, the enclosed
magnetic flux by the surface state is still approximately π. Thus, we expect TR
symmetry still approximately exists for surfaces in the case (3). In the following,
we will present the results and discussions for these three cases.

(1)No magnetic flux. The full Hamiltonian is time-reversal invariant. Fig.3.2(a)
shows parabolic dispersion. All the subbands are doubly degenerate due to TR
symmetry, and a gap opens up as a result of the Berry phase.

(2)Magnetic flux of φ0/2 only at the center plaquette. For a nanowire with a
φ0/2 flux at the center, the Hamiltonian is still time-reversal invariant. In the TB
representation, only the hopping across the plaquettes that are below the center
one gains a phase π, see Fig.3.3(a). Under time-reversal operation, the magnetic
flux flips sign but the hopping terms are invariant since teiπ = te−iπ. The gap closes
because the surface modes gain an additional phase that cancels out the Berry’s
phase as discussed at the beginning of this section. Due to the TR symmetry,
gapless linear modes are doubly degenerate as shown in Fig.3.2(b). The wave
function of each mode is plotted in Fig.3.3(b) and (c), and we can see that one pair
of linear mode reside on the surface(Fig.3.3(b)), whereas the other pair is localized
at the center plaquette(Fig.3.3(c)).

(3)Magnetic flux of φ0/2 is homogeneously distributed on the cross sectional
area. We insert a π flux along the whole cross section of the nanowire, and the flux
for each plaquette is π/N2, and breaks TR symmetry. Thus, there is no Kramers’
degeneracy in this system. However, in this case, the system is still gapless with
ONE pair of linear mode, see Fig.3.4(a). The wave function plots show that the
linear modes are localized at the surface of the nanowire with sharp peaks at the
corners of the cross section (see Fig.3.4(b)). For surface wave functions, the enclosed
flux is nearly φ0/2 and thus, time reversal symmetry is preserved approximately.
It’s important to note that TR is an approximate symmetry only for surface states,
but not for bulk states. This approximate TR symmetry protects linear modes
from backscattering to some extent and leads to nearly quantized conductance at
this flux, which was also pointed out in Ref. [109].
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Figure 3.2. Dispersion when (a) there is no magnetic flux (b) a magnetic flux of φ0/2
is at the center plaquette.

3.1.2 Magneto-oscillation of conductance

Next, we adopt the Landauer-Buttiker formula to study two-terminal conductance
of a long cuboid along the x-direction with the N ×N square cross section under
magnetic fields. The semi-infinite metallic leads are described by the Hamiltonian
Ho (Eq.3.4). The method is described in Chapter 2.

Fig.3.5 (a) shows the surface gap oscillation in terms of magnetic flux. The
gap closes at every half-integer of φ/φ0. Accordingly, for Ef lies in the middle of
the gap, the conductance follows oscillating behavior with a period of φ0 as shown
in Fig.3.5 (b). For a large Fermi energy, other non-topological subbands will also
contribute to transport, leading to a noisy signal of conductance as given in Fig.3.6.
In the section 3.3, we will show how disorder suppresses these non topological
subbands.
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Figure 3.3. (a)Schematic plot of the hopping when the half magnetic flux quantum is
at the center plaquette. (b) and (c)The wave function of the linear modes for flux φ0/2
at the center plaquette at k = 0.02, Ef = 0.04. The linear modes are doubly degenerate,
but the wave function distributions behave very differently. One of which is localized on
the surface of the nanowire(b), the other is localized at the center(c).

Figure 3.4. (a) dispersion when flux = φ0/2 is homogeneously distributed on the cross
section. The degeneracy has been lifted due to TR breaking. (b)The wave function
distribution at the flux value as (a). k=0.04 and E=0.079.
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Figure 3.5. (a)The oscillations of the surface gaps. (b)Conductance oscillation when
Ef lies in the middle of the gap (Ef = 0) in the clean limit.

Figure 3.6. The magneto-conductance for Ef = 0.6 in the clean limit.

3.2 Magneto-oscillation of TI nanotube in the clean
limit
Another nanostruture studied in this thesis is TI nanotube, in which there are
two surfaces. Without magnetic flux, its energy dispersion is doubly degenerate
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due to TR symmetry and possesses a gap as a result of π Berry phase, Fig.3.7(a).
When magnetic flux is applied along the nanotube axis and homogeneously on
the cross section of the nanotube, the degeneracy is lifted (see Fig.3.7(d)). When
one of the surfaces encloses a half flux quantum, a pair of linear modes shows
up, as shown in Fig.3.7(b) and (c). This pair of linear modes is either on the
outer surface or the inner surface, depending on the value of the magnetic flux.
Based on our understanding of topological states on closed surfaces discussed in
the previous section, each surface contributes to a period in the oscillation of
magnetoconductance for a TI nanotube. In this section, we present wave function
distribution, the oscillation of the gaps, the magnetoconductance of TI nanotube
and the corresponding Fourier transform in the clean limit.

Figure 3.7. The dispersions of a TI nanotube with N = 17, Nin = 6 at φ = 0(a),
φ0/2(b), 2.255φ0 corresponding to a half flux quantum enclosed by the inner surface
state(c), 3φ0(d)

The model Hamiltonian is still described by E.q.(3.3) and the geometry is as
in Fig.3.1(b). The outer width is N and the inner width is Nin. Thus, the flux
enclosed by the inner surface, denoted by φin, is given by φ×N2

in/N
2, where φ is

the total applied magnetic flux. However, we found that from the wave function
distribution, the inner surface state usually has a thickness, which is assumed to
be Lth, larger than one lattice constant, see Fig.3.8(b). To correctly estimate the
effective magnetic flux enclosed by the inner surface state, we replace Nin with
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Figure 3.8. (a)The wave function distribution of the outer edge state with eigenenergy=
0. (b)The wave function distribution of the inner edge state with eigenenergy≈ 0.1. N eff

in

is depicted in the figure. N = 20, Nin = 12, φ = φ0/2.

N eff
in = Nin + Lth, and φeffin = φ×N eff

in

2
/N2. In contrast, the outer surface state

is well-localized at the outermost lattice (Fig.3.8(a)). The enclosed magnetic flux
is just φ.

Fig.3.9 shows the oscillation of the surface gaps for the nanotube with N = 50
and Nin = 42. The gap closes when either φ/φ0 or φeffin /φ0 equals to a half-integer.
To calculate the effective magnetic flux for the inner surface, we have accounted
for the thickness of the inner surface state, which is about two lattice constants.
Thus, we obtain φeffin = φ ∗ 442/N2 = 0.77φ. Fig.3.10(a) gives the conductance
for Ef in the middle of the gap in the clean limit. The conductance oscillation is
complicated but shows clearly the beating feature. Thus, we perform the Fourier
transform of conductance oscillation and find two peaks with the frequency φ0 and
1.28φ0, as shown in Fig. 3.10 (b). This corresponds to the the oscillations coming
from the half flux quantum encircled by outer surface state and the inner surface
state, respectively.

We have shown in this section, a pair of gapless linear modes appears when one
of the surfaces of a TI nanotube encloses magnetic flux of half quantum and cancels
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the π Berry phase. The transmission at Ef = 0 shows two oscillation periods
associated with the inner and the outer surface state. The results demonstrate the
potential of magnetic control of topological states in TI nanostructures.

Figure 3.9. The energy gap of the surface state closes at φ/φ0 or φeffin /φ0 is a half-integer
a TI nanotube with N = 50, Nin = 42. The top x-axis is the effective flux enclosed by the
inner surface state of the nanotube. The blue(green) dashed lines indicate the positions
where φineff/φ0(φ/φ0) are half-integers.

Figure 3.10. The two-terminal conductance for a TI nanotube with N = 50, Nin = 42
and L = 40. (a) The magneto-conductance. (b) The fast Fourier transform of the
magneto-conductance.
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3.3 Numerical simulation of conductance oscillation
in disordered TI nanowire
In real experiments, bulk conduction and disorder are inevitable. In fact, our
experimental collaborator has found an interesting result of magnetoconductance
of nanotubes. They found that despite of low conductance, a very clear feature of
oscillations is shown. The resistivity of nanotubes is in the range 6.5− 100mΩ.cm,
which is at least one order of magnitude larger than all the existing experiments
[23,25]. This suggests that the conduction oscillation can exist in a highly disordered
and resistive topological nanostructures. Moreover, the period in unit of magnetic
flux is only related to the outer diameter of nanotube, suggesting that the inner
surface states do not contribute to oscillations.

Some quantum conductance oscillations have been studied extensively in normal
metal rings and cylinders [110]. In the clean limit, the oscillations are due to
the Aharonov-Bohm (AB) effect [111], with the oscillation period of φ0. When
a electron wave encircles the ring perimeter in the ballistic regime, it picks up
a phase of 2πφ/φ0 and interferes by itself. The enclosed phase is a periodic
function of the enclosed magnetic flux, thus gives rise to the period φ0. While
in the diffusive limit with disorder, oscillations with a period of φ0/2 arise from
the Altshuler-Aronov-Spivak (AAS) effect [112], resulting from the interference
between time-reversed loops of electrons. When the system becomes diffusive, in
which a carrier experiences multiple scattering events while preserves its phase
coherence length in transport, the interference between two time-reversed paths
needs to be taken into account. The phase difference between the clockwise and
the counter-clockwise paths is 2× 2πφ/φ0. Therefore, the oscillation period is φ0/2.
Both kinds of oscillations require the phase coherence length to be comparable to
the ring circumference.

To gain further insight into the conductance oscillation in TI nanotubes observed
in experiments, we have performed extensive numerical simulations on transports
in TI nanostructures. We consider a four band model on a simple cubic lattice for
TIs with the Hamiltonian [108] as used in the previous sections. We also add an
on-site potential whose strength is randomly distributed in the range [−W,W ] to
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simulate disorder Hamiltonian

Hdis =
∑
i

UiC
†
iCiI. (3.10)

To understand the behavior of surface states in extreme disorder, we consider
a nanowire, rather than a nanotube. We study a nanowire with a N ×N square
cross section with N = 9 and evaluate conductance using the Landauer-Büttiker
formalism combined with the iterative Green function method as a function of flux
φ through the cross section. We find that transport behaviors are qualitatively
different for integer and half-integer values of magnetic flux measured in units of
flux quantum φ0 = h/e. In the clean limit, there is an energy gap for integer values
of φ0, and a gapless linear mode for half-integer values, as seen, for example, in
Fig.3.11(a). When the Fermi level is located at a position where several other
bands are occupied, the system is metallic at both integer and half integer fluxes.
However, the transport of these two cases behave dramatically different when
disorder is introduced. The conductance for φ = 0 is dominated by non-topological
carriers, while the conductance for any half-integer flux quantum is dominated by
topological carriers. These two types of carriers react differently to disorder in
terms of localization length, which is defined by assuming the conductance drop
exponentially as G ∼ e−L/λnon/top , where L is the length of the nanowire and λnon/top
is the localization length of non-topological/topological bands. Fig.3.11(c) shows
the dependence of the conductance on the length L of the system for a fixed random
disorder. It clearly demonstrates two vastly different localization lengths for these
two fluxes.

To further gain the insight of difference between topological and non-topological
carriers, we perform a calculation for the dependence of localization length as a
function of disorder strength at different magnetic flux (φ = 0, φ0/2 and 7φ0/2), as
shown in Fig. 3.12/ For φ = φ0/2 and 7φ0/2, we find a peak value of localization
length near W = 2, for which the disorder strength is half of the gap at φ = 0.
For φ = 0, localization length monotonically decreases. At weak disorder, λtop and
λnon are similar in magnitude, and thus both bands contribute to the transports.
On the contrary, for a disorder with an intermediate strength, λtop can be several
magnitudes larger than λnon, and thus the topological bands are dominant. When
disorder strength is extremely strong, both λnon and λtop reduce significantly and
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Figure 3.11. (a) and (b) Band dispersions for a disorder-free system are shown for φ = 0
and φ = φ0/2, respectively. The solid blue line marks the Fermi energy at Ef = 0.6,
which is used for the calculations in (c) and Fig.3.17. The cross section is taken to be
9a× 9a for all calculations in this section. (c) Length dependence of the conductance is
shown for φ = 0 and φ = φ0/2 with W = 2.8 and Ef = 0.6. The solid lines are linear
fits, from which we can extract the localization lengths to be λnon = 150a for φ = 0 and
λtop = 4800a for φ = φ0/2.

when both of them are less than the nanotube length L, none of the carrier types
contribute to transport. Moreover, comparing the localization length at φ0/2 and
7φ0/2, the localization length is shorter when magnetic flux increases. It implies
that at a higher magnetic field, the conductance maximum decreases. This behavior
has been found in the numerical and experimental data which will be shown in the
following discussion.

Comparing the localization length at φ = 0 (λnon) and φ0/2 (λtop) with the
length of the nanowire(L), we can find three regimes of which L lies in and the
corresponding oscillation patterns. I: λnon, λtop > L with multiple oscillation,
II: λnon < L < λtop with AB/AAS oscillation and III: λnon, λtop < L with no
oscillations. The localization lengths depends on Fermi energy Ef and disorder
strength W , and thus we identify three regimes on the phase diagram explicitly for
L = 100 (Fig. 3.13(a)) as a function of Ef and W . We will discuss the oscillation
pattern in each regime shown in Fig.3.13 in the following:

In regime I, the conductance shows multiple oscillations coming from both
topological and non-topological bands. Its Fourier Transform shows φ0−periodicity
and its higher harmonics (Fig.3.13(b) and its inset). In the weak disorder limit,
surface carriers can encircle the perimeter multiple times before it leaves the
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Figure 3.12. The localization length (in nature log scale) for non-topological states(
φ = 0) and topological states (φ0/2 and 7φ0/2). The disorder configuration is 100.
L=800a. Ef = 0.6

nanowire. The phase gained by encircling the perimeter n times is n× (2πφ/φ0 +π),
and thus addition oscillation with the period φ0/n can exist. In contrast, in the
regime II, there are well-defined oscillations as shown in Fig.3.13(c), (d) and the
insets. When Ef and W are chosen in the regime II, higher harmonic oscillations
are suppressed and only AB-dominant oscillations are observed. This is because
the scattering rate increases and consequently the probability of the surface carriers
circling the perimeter more than once while maintaining phase coherence decreases.
Nonetheless, in the regime II, there is not only AB oscillation, but also AAS
oscillation when L is the same order as λnon. Fig.3.13(d) and the inset show
evidence for AAS oscillation. However, we found that AAS oscillation is gone
and AB oscillation sets in when L becomes much longer than λnon. Fig.3.14 gives
the evolution of the oscillation with the nanowire length L. Fig.3.14(a) and its
inset show a strong AAS oscillation for L = 100, which is the same order as
λnon. As L gets larger, AAS oscillation diminishes and AB oscillation becomes
prominent as shown in Fig.3.14(b) and (c). It suggests that AAS is mainly from the
nontopological surface states. In the regime III, the conductance is exponentially
suppressed and does not show any periodic oscillations (Fig.3.13(e) and its inset).
This corresponds to the strong disorder limit in which both types of carriers are
localized. The phase diagram predicts that for the disorder with intermediate
strength, AB oscillation dominates due to the formation of topological states when
a half-integer magnetic flux quantum is inserted. Indeed, this prediction has been
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observed in disordered Bi2Te3 nanotubes. In the following section, the relevant
experimental data are presented.

3.3.1 Experimental observation of magnetoconductance in Bi2Te3

nanotubes and theoretical interpretation

Our theory was supported by the experiments from Prof. Qi Li’s group at Penn
State. The experimentalists made Bi2Te3 nanotubes and measured the magneto-
conductance. Two nanotubes and their oscillation patterns are reported in this
chapter. Both of the nanotubes show AB oscillations associated with the outer
diameter. Nanotube A has an outer diameter of 125 ± 6 nm and wall thickness
of 13 ± 3 nm. Nanotube B has similar wall thickness, but a slightly smaller outer
diameter of 95 ± 6 nm. The magnetoconductance of the nanotube (with the
smooth background subtracted) is shown in Fig.3.15 and Fig. 3.16(a) for nanotube
A and B, respectively, with external magnetic field applied along the nanotube
axis. Conductance oscillations are observed with a period of 3.53± 0.20 kOe for
the nanotube A and 4.69 ± 0.25 kOe for the nanotube B. The amplitude of the
oscillations decays when the magnetic field is increased, but more than 7 oscillation
periods can be resolved up to 30 kOe for both nanotubes. We emphasize that the
oscillations are observed only in these insulating samples but not in other more
conducting samples. This is similar to the regime II in the phase diagram in which
nontopological surface states are localized and transport is dominated by topological
states. The angular dependence of magnetoconductance shows that the oscillation
period depends solely on the parallel component of the applied field shown in
Fig. 3.16(b). To our knowledge, such magnetoconductance oscillations have not
been reported in any other purely insulating systems with a similar magnitude of
resistance.

By extracting the area of the inserted flux that is responsible for the oscillation
period, we can explore the origin of the observed oscillations. Here we take
the nanotube A with a period of 3.53 ± 0.20 kOe as an example. Considering
∆B = ((0.5 or 1)φ0)/(πr2) where φ0 = h/e is the flux quantum, this period
corresponds to a diameter of 122 ± 1.8 nm for h/e oscillations, or a diameter of
86.5± 2.5 nm for h/2e oscillations. The images from high-resolution field emission
scanning electron microscopy on this Bi2Te3 nanotube show the outer diameter to
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Figure 3.13. (a) The phase diagram. The length of the nanowire is 100a. The oscillation
and its FFT at the representative points are shown in the lower panels with color coding.
(b) AB oscillations and its higher harmonics at W = 0.2, Ef = 0.8 (c) AB oscillation
at W=0.8, Ef =1.3 (d) AAS oscillation at W = 2.4, Ef = 0.8 (e) no oscillation at
W = 3.6, Ef = 1.3.
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Figure 3.14. The oscillation and the corresponding FFT at various nanowire length:
L=100(a), 400(b), 2000(c) with disorder strength W = 2.8 and Ef = 0.6.

be 125± 6 nm, suggesting that the observed oscillations are consistent with the
h/e oscillations associated with the outer surface of the nanotube.

An interpretation of the main oscillations in terms of the AAS h/2e oscillations
may be ruled out because the corresponding area is much smaller than the cross-
sectional areas of either the outer or the inner surface. Besides the main oscillation
period, there are also smaller conductance peaks observed in the data. These
peaks may come from AAS oscillation of the outer surface. However, because we
cannot determine the period of the smaller peaks, we cannot determine whether
the AAS oscillation are also presence. Normal AB oscillations from bulk carriers
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Figure 3.15. Magneto-conductance oscillations of Device A (background subtracted).
Magnetic field is applied parallel to the nanotube axis (current flow direction). The
observed period is 3.53 ± 0.20 kOe. This period is consistent with h/e oscillations
associated with the outer surface of the nanotube which has diameter of 125± 6 nm.

Figure 3.16. Magneto-conductance oscillations on Device B (background subtracted).
(a) Conductance oscillations for Device B. The oscillations show an h/e period associated
with the outer surface of the nanotube. (b) Conductance oscillations for different field
directions, plotted as a function of parallel component of applied field. Evidently, the
period depends solely on the parallel component of applied field.
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Figure 3.17. (a) The magneto-conductance oscillations as a function of magnetic flux
φ in the regime II for W = 2.8, L = 800a and Ef = 0.6. (b) The magneto-conductance
oscillations for a system with variations in the cross sectional area along the length of
the nanotube with Γ = 0.4. The cross section is taken to be 9a× 9a for all calculations.

are also unlikely to be a cause of the observed oscillations, because the bulk is
highly resistive with a short bulk localization length ∼ 10nm, which is much shorter
than the inner and outer perimeters of the nanotube. Finally, the inner diameter
is estimated to be 100± 6 nm for Nanotube A and the corresponding oscillation
period is approximately 5.28± 1.26 kOe. From our data, we cannot clearly resolve
oscillations with this period. It is tempting to attribute some smaller peaks in
the conductance oscillations in Fig. 3.15 and 3.16(a) to the inner surface, but the
signal is much weaker than the principal oscillations. This could be due to the
relatively larger roughness of the inner surface of the nanotubes, as expected from
the outward diffusion growth process. The detailed analysis based on the oscillation
period thus supports the origin of main peaks in conductance oscillations from the
anomalous AB oscillation from the outer surface of the nanotube.

As shown in Fig. 3.17(a), the sharp peaks for the magnetic flux φ = (n+ 1/2)φ0

indicate that only gapless topological surface modes contribute to transports in
the regime II in Fig.3.13(a). This behavior is consistent with the experimental
observation that the conductance oscillations do not appear in metallic samples,
but only in insulating samples in which non-topological states are localized and
transport is dominated by Dirac surface states. The peaks observed in experiments
are not as sharp as those in our calculations. We believe the rounding arises from
variation in the experimental sample of the cross-sectional area along the length
of the nanotube, which translates into a distribution for the enclosed magnetic
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flux. We model the fluctuations in the magnetic flux with a Lorenzian distribution
Lφ(ξ) = 1

π
Γ

Γ2+(ξ−φ)2 where Γ, φ is the average magnetic flux and ξ is the variable
flux. The average conductance obtained with Ḡ(φ) =

∫ 5φ0
0 dξLφ(ξ)G(ξ)dξ, with

φ = 0.5φ0 is shown in Fig. 3.17(b), and qualitatively resembles the experimental
behavior. If the variations of the cross section are sufficiently large, they can suppress
the oscillations altogether, which we believe to be the case with the oscillations
associated with the topological states at the inner surface of the nanotube. In the
regime II where the surface state dominates transport, we expect a conductance
minimum at φ = 0, which we have confirmed in our simulations. In the regime I,
the situation is more complex, and whether the conductance shows a minimum
or a maximum at zero field depends on parameters such as Fermi levels and
disorder strengths [113]. Experimentally, the nanotube B with a lower conductance
indeed shows a conductance minimum at φ = 0(Fig. 3.16a), consistent with our
expectation. In contrast, the nanotube A shows a conductance maximum (Fig.3.15),
which suggests that it lies close to the boundary between the regime I and II.

Moreover, we compared the decrease of the oscillation amplitude of the numerical
and experimental results as shown in Fig.3.18. The experimental result is without
subtracting background signal. Both data show qualitatively the same behavior:
the overall conductance and the amplitude decrease as magnetic flux increases. It is
because the localization length decreases at higher magnetic flux (Fig.3.12), leading
to the reduction of maximum conductance at half-integer flux quanta (Fig.3.17(a))
and the reduction of overall conductance of the averaged conductance.

3.4 Conclusions
In summary, the robustness of surface states of TI nanostructures inserted with
magnetic flux are studied numerically. Topological surface states arise at magnetic
flux of half-integer in unit of magnetic flux quantum. The conductances at these
values of magnetic flux prevail over disorder. Nontopological states are shown to
have shorter localization length in the regimes of intermediate disorder strength
and thus easier to be localized by disorder when the sample size is larger than their
localization length. Moreover, our experiment collaborators have studied Bi2Te3

nanotubes with sufficiently strong disorder that freezes out bulk conduction. The
observed quantum oscillations in magnetoconductances with a period φ0 that can be
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Figure 3.18. Comparison between numerical and experimental magnetoconductance
without subtracting the background. For numerical calculation, the parameters are
W = 2.8, Ef = 0.6,Γ = 0.8.

attributed to the outer surface states. The numerical results verify a fundamental
aspect of the three-dimensional topological insulators, namely that the surface
states are robust against strong disorder, which is supported by magneto-transport
measurement in TI nanotubes.
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Chapter 4 |
Quantum anomalous Hall effect
in Mn doped HgTe quantum
wells

The QAH effect has been the long-sought-after family member of the quantized
Hall family, in which QH and QSH effects has been experimentally verified in
1980 [5] and 2007 [18], respectively. Only until recently that the QAH effect has
been realized in magnetic doped TIs [59] . The theoretical predictions, which was
followed by experimental realization, of the quantized Hall conductance induced
by the exchange coupling between magnetic moments and electron spins [50]
opened the door to the realization of this effect in magnetic materials. Among
several proposals [31, 114–116], Mn doped HgTe quantum wells [30] was one of
the earliest proposals for realizing the QAH effect. However, this material is
paramagnetic and an out-of-plane magnetic field is needed to induce magnetization.
Topologically, the QAH state can be adiabatically connected to the QH state, so it
is not easy to distinguish them when the out-of-plane magnetic field coexists with
the magnetization. This study aims in proposing experimentally feasible approaches
for observation of the QAH effect without the coexistence of QH effect in HgMnTe
quantum wells. In this chapter, detailed theoretical studies and proposed experiment
setup are reported. The remainder of the chapter follows closely Ref. [117] and [118].
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4.1 Model Hamiltonian for HgxMn1−xTe quantum wells
In this section, we first introduce our model Hamiltonian for the Mn-doped HgTe
quantum wells. The effective Hamiltonian is written in the basis of |E1+〉, |H1+〉, |E1−〉, |H1−〉,
with E1 and H1 denote electron and heavy hole sub-bands and ± for opposite spin
states. The form of the effective Hamiltonian is given by [52]

H = ε(k) +HBHZ +Hm (4.1)

ε(k) = C −Dk2,

where HBHZ is given by the continuum limit of E.q. (1.18) and ε(k) is introduced to
break the particle-hole symmetry, while preserving the topology of the Hamiltonian.
We denote the growth direction as the z-direction and the quantum well plane
as xy plane. The parameters m, B, A, C, D in the Hamiltonian depend on the
material details and can be found in Ref. [119,120]. Hm describes the spin splitting
of electron and hole sub-bands and its form is given by

Hm = g1 · ~στ0 + g2 · ~στz, (4.2)

, where g1 = 1
2(ge + gh) and g2 = 1

2(ge − gh). Here the vectors ge (gh) couples
to electron (hole) spin and describe spin splitting for the E1 (H1) sub-bands for
magnetic fields along different directions. There are two types of contribution for
spin splitting, one from Zeeman coupling of magnetic fields and the other from
exchange coupling to Mn doping, so the form of spin splitting is given by [30,91]

ge(h)i = gzme(h)iBi + gexce(h)i, i = x, y, z. (4.3)

The first term gives the Zeeman coupling with g-factor gzme(h)i and magnetic field Bi
, while the second term describes exchange coupling to Mn doping, given by

gexce(h)i = g̃e(h)i〈S〉i, i = x, y, z (4.4)

〈S〉 = −êS0B5/2

(
5gMnµBB

2kB(T + T0)

)
, (4.5)
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where g̃e(h)i is the coupling constant between electron (hole) band and Mn spin S.
Eq.(4.5) is the mean field approximation of Mn magnetization and ê denotes the
direction of magnetic field, S0 = 5/2 is the Mn spin, gMn = 2 is the g-factor of Mn
, T0 ≈ 2.6K is to rescale the temperature to take into account antiferromagnetic
interaction between Mn ions [121] and B5/2 is the Brillouin function. In spin
splitting (E.q.(4.3)), Zeeman terms depends linearly on magnetic fields while
exchange coupling has a complicated non-linear dependence. Due to the quantum
wells configuration, the g-factors gzme(h)i and g̃exce(h)i for spin splitting are assumed
to be isotropic in the xy plane, but different for the z direction. Without loss of
generality, we only consider the x direction for in-plane magnetic fields below. The
parameters of the Hamiltonian (E.q.(4.2)) can be found in Ref. [30, 119]. In the
realistic systems, in-plane spin splitting for heavy hole sub-bands depends on the
cubic order of magnetic field B and magnetic moments S [118], which is neglected
in the following (g̃hx = g̃hy = gzmhx = gzmhy = 0).

The QAH effect in HgMnTe quantum wells with only z-direction magnetization
has been investigated in Ref. [30]. For zero in-plane magnetic field, it has been shown
that the QAH phase can be realized in the regime gezghz < 0 and |g2z| > |m|, while
it is a normal insulator when |g2z| < |m| (g1z does not change the topology because
it only shifts the band edge, but does not cause band inversion). Since the quantized
Hall conductance can only be changed when the bulk band gap is closed, two phases
will share the same Hall conductance if they can be adiabatically connected without
closing band gap. Therefore, one can identify the Hall conductance in a finite
in-plane magnetic field by adiabatically connecting to the regime with zero in-plane
magnetic field.

To understand the normal-QAH transition in the presence of in-plane magne-
tization, we first consider the case with either g1 = 0 or g2 = 0, in which the
Hamiltonian can be solved analytically. In both cases, the results are qualitatively
the same. Here, we show the result of g1 = 0. After diagonalization, the dispersion
is

Es,t = s

√
A2k2 +M2 + g2 + t2

√
2A2k2

xg
2
2x +M2g2 (4.6)

where s, t = ±, k2 = k2
x+k2

y, and g2 = g2
2x+g2

2z is the strength of spin splitting. The

energy gap is given by E+− − E−− = 2
√
A2k2 +M2 + g2 − 2

√
2A2k2

xg
2
2x +M2g2,
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which vanishes under the condition

[A2k2 +M2 − g2]2 + 4A2g2
2zk

2 + 4A2g2
2xk

2
y = 0. (4.7)

This equation can be simplified as g2 = m2 or g2
2x = A2 + (m − Bk2)2 > m2

at g2z = 0. The gap-closing lines in terms of g2x and g2z are shown in Fig.4.1,
separating three insulating phases. When |g| > |m| and g2z 6= 0, the system
always stays in the QAH phase, regardless of the magnetization direction. The
Hall conductances for positive and negative Bz have opposite signs [30], which
are separated by the metallic lines along g2z = 0 and |g| > |m|. In the following
sections, we will present the phase diagrams with more realistic parameters in
different conditions.

Figure 4.1. The phase diagram obtained from analytical calculation where gex = ±ghx.

4.2 The effect of exchange coupling
We first neglect the Zeeman coupling and study the behavior of the system when
only exchange coupling is taken into account. Without Zeeman coupling, the spin
splitting is determined by Mn magnetization, which will saturate after magnetic
field achieves a certain value, as shown in Eq.4.5 and Fig.4.3(c). Because spin-

60



splitting saturates and the coupling constants are anisotropic, there exists a critical
angle beyond which the QAH state no longer exists. Following the derivation of
the gap-closing condition in the previous section, we first analytically solve for the
critical angle with g1 = 0. The spin-splitting is g2 = g2

2x + g2
2z with g2x and g2z

given by E.qs.(4.3) - (4.5)

g2i = 1
2(gexcei − gexchi )

= g̃2i〈S〉i, (4.8)

where g̃2i = 1
2(g̃ei − g̃hi). The x(z)- components of Mn magnetization is 〈S〉x(z) =

−〈S〉 sin θ(cos θ) , where θ is defined as between magnetization and z-axis as
depicted in Fig.4.2 and 〈S〉 is given by E.q.(4.5). When magnetization saturates,
〈S〉 reaches its maximum value, S0. Thus, the saturated spin-splitting is g2 =
(g̃2zS0 cos θc)2 + (g̃2xS0 sin θc)2. From the analytical solution in the previous section,
the gap-closing condition is g2 = m2. Thus, the critical angle is determined by
m2 = (g̃2zS0 cos θc)2 + (g̃2xS0 sin θc)2. It suggests that if |g̃2xS0| < |m|, θc never
reaches π/2 and an out-of-plane magnetization is necessary to achieve the transition.

Figure 4.2. θ is defined as the angle between magnetic field and z-axis.

For more realistic parameters, we perform a numerical calculation of energy
gap as a function of Bx and Bz, from which one can determine phase diagram, as
shown in Fig. 4.3 (a), by the adiabatic continuity argument. Here the dependence
of magnetization on magnetic field is determined by Eq. (4.5). We choose g̃ex =
1meV, g̃hx = 0 (all the other parameters are given in the caption), such that the
maximum in-plane exchange coupling for the electron subband g̃exS0 is smaller than
|m|. We find that with increasing Bx, the critical z-direction magnetic field keeps
increasing. Fig. 4.3(b) is the phase diagram in terms of the spin splitting. Along
gex = 0, the gap closes at |g2z| = |m| which agrees with the previous study [30].
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The maximum in-plane spin splitting for electron is |g̃exS0| = 0.8m, which is smaller
than m. According to the analytic discussion in the previous paragraph, gap does
not close when there is only in-plane spin splitting in this case. The critical angle
of the magnetic field is given in Fig.4.3(d), it reaches 0.44π after the magnetization
saturates for the current parameters.

Figure 4.3. The phase diagram at 1K for the Hamiltonian without Zeeman coupling.
(a) Phase diagram in terms of the magnetic field. (b) Phase diagram in terms of the
strength of spin splitting. The y-axis is only g2z because only this term contributes to
gap closing. (c)Magnetization of the Mn atoms under the same range of magnetic fields
in (a). It saturates at 2.5. (d) The critical angle of magnetic field for metallic lines.
The parameters used for are g̃ex = −1meV, ghx = 0, g̃ez = −3meV, g̃hz = 9meV,A =
0.38eV/nm,B = 0.85eV/nm2, D = 0.67eV/nm2,m = 3meV .
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Next, we compare the phase boundary for different values of g̃ex as shown in
Fig.4.4(a). The spin-splitting for hole band g̃hx is taken to be zero. The critical
Bz increases faster for smaller g̃ex. The critical angle of the magnetic field for each
value of g̃ex is given in Fig.4.4(b).

Figure 4.4. (a)The phase boundary for different values of g̃ex at T=4.2K. From top to
bottom, the values are −1,−2,−2.5,−3meV. (b) Critical angle of magnetic field of the
phase boundary for different values of g̃ex at T=4.2K. The values are given in the legend
with the unit of meV . The right vertical axis gives the critical angle in degrees. For both
(a) and (b), the parameters are ghx = 0, g̃ez = −3meV, g̃hz = 3meV,A = 0.38eV/nm,B =
0.85eV/nm2, D = 0.67eV/nm2,m = 4.5meV .

From the phase diagram based on the numerical calculation, we conclude
that when the in-plane spin splitting for the hole band and Zeeman coupling are
negligible, the magnetic field reaches a critical angle less than π/2 for gap-closing.
The critical angle depends on the in-plane g-factor for electron band and becomes
larger when g̃ex gets larger. All these predictions can be examined experimentally
in Mn doped HgTe quantum wells with rotating magnetic fields.

4.3 The interplay between exchange coupling and Zee-
man coupling: the reentrant QAH effect
The above section has neglected Zeeman coupling (gzme(h) = 0), and obtained a critical
magnetic field beyond which no quantized Hall conductance will be observed. In this
section, we will investigate how Zeeman coupling change this picture. In particular,
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we predict a reentrant behavior of the QAH effect due to the competition between
Zeeman coupling and exchange coupling.

Similar to what we did in the last section, we also plot the energy gap for the
Hamiltonian (4.1) in Fig. 4.5(c) for Bx and Bz with the realistic parameters taken
from Ref. [119] for HgMnTe quantum wells. The phase diagram is separated into
three insulating regimes by metallic lines, as depicted by the black lines in Fig.
4.5(c). For Bx = 0, the Hall conductance is known [30] to be ± e2

h
when |Bz| is

larger than a critical value |Bzc| and zero when |Bz| < Bzc. Therefore, the Hall
conductance of each insulating regime can be identified by adiabatic connection,
as shown in Fig.4.5(c). We find that with increasing Bx, the critical z-direction
magnetic field, as depicted by the metallic lines, first increases and then drops
down to zero. For a fixed small Bz (the line Bz = 0.2T in Fig.4.5(c)), the system is
driven from a normal insulator to a QAH insulator with Hall conductance −e2/h

by increasing Bx. More interestingly, when Bz = 0.6T , the Hall conductance σxy
undergoes the transitions from −e2/h to 0 to −e2/h, showing a reentrant behavior
for the QAH effect. This behavior is merely due to Zeeman coupling and exchange
coupling rather than orbital effect since Landau levels are not considered in this
calculation. In the following, we will discuss the physical picture of reentrant
behavior of the QAH effect due to in-plane magnetic fields.

The analytic model in the section 4.1 suggests that the key factor for the normal
insulator-QAH insulator transition is the strength of spin splitting |g|, instead of
the direction of magnetic fields or magnetization. The magnetization direction does
not have to be out-of-plane for the QAH effect to arise. For Bz = 0.2T , the spin
splitting induced by z-direction magnetic field is not strong enough to induce the
QAH state. With increasing the in-plane magnetic field, the total spin splitting
is significantly enhanced, leading to the transition from the normal insulator to
the QAH insulator at Bx = 9.5T , which is consistent with the above analytical
solution. The reentrant behavior at Bz = 0.6T results from the competition between
the exchange coupling of magnetic moments and the direct Zeeman coupling of
magnetic fields. For a small in-plane magnetic field Bx, the exchange coupling
is much stronger than the direct Zeeman coupling. So the spin splitting ge(h) is
dominated by the exchang term gexce(h) and the direct Zeeman coupling part can
be neglected. From the Kane model calculation, it turns out that the coupling
constant of exchange coupling is strongly anisotropic [119, 120], and the z-direction
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Figure 4.5. (a)The effective spin splitting as a function of Bx at a fixed Bz=0.6T.
(b) The schematic plot of the Hall conductance in the unit of e2/h as a function of
the Bx for the indicated Bz=0.6T . (c)The phase diagram at 1K. The diagram is on a
logarithmic scale to enhance the contrast. The black lines indicate the phase boundaries
of different topologies. (d)The schematic plot of the Hall conductance in the unit of
e2/h as a function of the Bx for the indicated Bz=0.2T. The parameters used for Fig.
(a) and (c) are g̃ex = −0.84meV, gzmex = −0.8meV/T, ghx = 0, g̃ez = −2.13meV, gzmez =
1.5meV/T, g̃hz = 9meV, gzmhz = −0.08meV/T,A = 0.38eV/nm,B = 0.85eV/nm2, D =
0.67eV/nm2,m = 3meV .

coupling is much stronger than the in-plane coupling. Consequently, when magnetic
moments of Mn atoms are tilted into the x-direction due to the increase of Bx, spin
splitting is reduced significantly, leading to the transition from the QAH phase to
the normal insulating phase. With further increasing in-plane magnetic field, the
direct Zeeman term, which grows linearly with Bx, is eventually dominant over
the exchange term, which saturates at high magnetic fields. Thus, the system is
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driven back to the QAH phase. To verify this physical picture, we plot the spin
splitting of E1 and H1 sub-bands as a function of Bx in Fig.4.5(a). The green and
blue curves show the rapid reduction of the z-direction spin splitting of E1 and H1
sub-bands respectively, as Bx increases. As a result, it leads to the transition from
a QAH state to a normal insulating state at Bx ≈ 2.3T . The red curve shows the
growth of x-direction spin splitting and it eventually leads to the transition from
normal insulating to QAH phase at Bx = 7T . We would like to emphasize that the
reentrant behavior is unique for the HgTe quantum wells with Mn doping. Without
Mn doping, there is no exchange coupling to magnetic moments and consequently,
we only find the transition from the normal insulator to the QH insulator regime,
which is shown in Fig 4.6.

Figure 4.6. The phase diagram at 1K for the Hamiltonian without the exchange
coupling. The diagram is on a logarithmic scale to enhance the contrast. The black lines
indicate the phase boundaries of different topologies. The parameters used are g̃ex =
0meV, gzmex = −0.8meV/T, ghx = 0, g̃ez = 0meV, gzmez = 1.5meV/T, g̃hz = 0meV, gzmhz =
−0.08meV/T,A = 0.38eV/nm,B = 0.85eV/nm2, D = 0.67eV/nm2,m = 3meV .

For all the calculations above, the g-factors were estimated from Kane model
calculation, which, to the best of our knowledge, have never been carefully identified
in experiments. The anisotropy of the hole g-factor has been shown experimentally
in p-type bulk HgMnTe [122], which is consistent with parameters estimated from
the Kane model. The qualitative picture of the reentrant behavior is independent
of the parameter details.

In the above, we show the phase diagram of the QAH effect with both the
in-plane and out-of-plane magnetic fields and find a novel reentrant behavior due to
the combination of the exchange coupling and the direct Zeeman coupling. However,
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due to the non-zero Bz, the formation of Landau level is inevitable. Therefore, it
is natural to examine whether the reentrant behavior still exists after taking into
account the orbital effect of Landau levels. Landau levels can be calculated by
taking into account the orbital effect of magnetic fields in the model Hamiltonian
(4.1) with the standard Peierls substitution [91,123], which is described in details
in the appendix B. The Landau level fan chart is plotted in Fig. 4.7, with the
Fermi level set at 0.3 meV (the blue line). Fig. 4.7 (a) shows the Landau levels
without Bx, while Fig. 4.7 (b) and (c) show how the Landau level evolves with Bx
at Bz = 0.2T and Bz = 0.6T , respectively. In Fig. 4.7 (b), the system stays in the
normal insulating regime for zero Bx, and is driven to the regime with −e2/h with
increasing Bx, similar to the line Bz = 0.2T in Fig.4.5(c). For Bz = 0.6T, before
turning on Bx, the Hall conductance is σxy = −e2

h
. The Fermi level crosses the

electron zero mode twice and the Hall conductance undergoes the transitions from
−e2/h to 0 to −e2/h as increasing Bx. Fig. 4.7 demonstrates the stability of the
phase diagram given in Fig. 4.5 in the presence of Landau levels and the underlying
reason for the reentrant behavior is the change of spin splitting, rather than the
orbital effect.

In conclusion, we have shown that the in-plane magnetic field can induce the
QAH effect in HgMnTe quantum wells. A reentrant QAH effect is predicted as
a result of the interplay between the exchange coupling and the direct Zeeman
coupling. In addition, the reentrant behavior is stable in the presence of Landau
levels. Although the reentrant QAH effect has not been observed in the current
experiment due to the negligible in-plane g factor for Zeeman coupling, it might be
observed for an even larger magnetic field or in other materials such as InAs/GaSb
QWs.
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Figure 4.7. Landau Level fan chart. The parameters are the same as in Fig.4.5.
The blue line indicate the Fermi level at 0.3meV. (a)Landau level fan chart without
in-plane magnetization. (b)Landau level at Bz = 0.2T in terms of in-plane magnetic field.
(c)Landau level at Bz = 0.6T in terms of in-plane magnetic field. The inset zooms in
near Fermi level and shows the reentrant behavior.

4.4 HgxMn1−xTe quantum wells with shear strains
It is shown in the previous section that the conditions for the QAH phase are
|g| > |m| and a nonzero g2z. To exclude the orbital effect completely, we would like to
further study the conditions for QAH phase without the out-of-plane magnetization.
We start from a general symmetry analysis of the necessary conditions for the
appearance of non-zero Hall conductance. First, the Hall conductance must be
zero in a TR invariant system, so a magnetic field or magnetization is required.
Besides TR symmetry, the 2D point group (PG) symmetry gives an additional
constraint for the Hall conductance, as first shown by Fang [124]. The 2D PGs
consist of two families, the n-fold rotation symmetry Cn and the n-fold dihedral
symmetry Dn [125]. The dihedral group Dn in 2D PGs is generated by the rotation
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Cn and the reflection M . Here we emphasize that reflection M in 2D PGs always
corresponds to the reflection in three dimensional (3D) PGs with the reflection plane
perpendicular to the 2D plane. The reflection in 2D PGs plays the role of inversion
in 3D and distinguishes the pseudo-scalar (pseudo-vector) from the scalar (vector).
The Hall conductance is zero if the 2D system has any reflection symmetry M . For
example, let’s consider a system with the reflection symmetry Mx (x→ −x, y → y)
in the 2D plane, denoted as xy plane. For the Hall response jx = σxyEy, under Mx

the current jx changes its sign (jx → −jx) while the electric field Ey keeps its sign,
so the Hall response equation is changed to jx = −σxyEy. If the system is invariant
under Mx, the response equation should also be invariant under Mx, constraining
the Hall conductance σxy to be zero. Similar arguments can be applied to any 2D
reflection symmetry. The out-of-plane magnetization is a pseudo-scalar in the 2D
PGs, breaking any reflection symmetry M . In contrast, the in-plane magnetization,
denoted as m, is a pseudo-vector, and there is still a surviving reflection symmetry
Mm with the reflection plane perpendicular to m, thus the in-plane magnetization
by itself can not induce a non-zero Hall conductance and it is necessary to introduce
other mechanisms to break the remaining reflection symmetry Mm. The symmetry
analysis gives us a guidance to search for the non-zero Hall conductance with
in-plane magnetization and in below, we will present in HgMnTe quantum well ,not
only the non-zero Hall conductance, but also the QAH effect can be realized with
in-plane magnetization.

The effective model for Mn doped HgTe quantum wells is described by the (BHZ)
Hamiltonian, Eq.(4.1), with spin-splitting, E.q.(4.2). The BHZ Hamiltonian has the
D∞ symmetry, so any plane perpendicular to the xy plane can serve as the reflection
plane. The in-plane magnetization m preserves the reflection symmetry Mm, so
the Hall conductance is zero for the BHZ model with the in-plane magnetization.

To obtain a non-zero Hall conductance, we need to break the remaining reflection
symmetry, which can be achieved by introducing a new term due to the shear
strains εxz and εyz, written as

Hstr = F [εxz(kxσx + kyσy) + εyz(kxσy − kyσx)] τx, (4.9)

with the parameter F . This form of the Hamiltonian can be derived from the six-
band Kane model [126,127], as described in details in the appendix. Experimentally,
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Figure 4.8. In-plane magnetization induced QAH effect in HgMnTe quantum wells. (a)
The band gap as a function of g2z and εxz with a finite g1x = 8 meV. (b) The band
gap as a function of εxz and εyz with g1x = 4 meV, g2x = 3 meV. (c) Schematic plot
of the experimental setup. The angle between the strain vector ε (green arrow) and
the magnetization vector m (red arrow) is denoted as ϕ. The green plane denotes the
reflection plane preserved by the strain vector ε while the red plane denotes the reflection
plane preserved by the magnetization vector m. (d) The band gap as a function of g1x
and εxz with g2z = 0. The other parameters are taken as M = −3 meV, B = 0.85 eV·nm2,
D = 0.67 eV·nm2, A = 0.38 eV·nm, g1(2)y = g1z = 0, and εyz = 0.

the shear strain appears in the HgTe-HgCdTe superlattices grown on CdZnTe
substrate along an asymmetric direction, such as (112) direction [128–130]. εxz
(εyz) term breaks the x-direction reflection Mx = iσxτo (the y-direction reflection
My = iσyτz) and preserves My (Mx). Fig.4.8 a shows the band gap for the
Hamiltonian HBHZ +Hm +Hstr as a function of εxz and g2z with a finite in-plane
magnetization g1x. When εxz = 0, the Hall conductance is + e2

h
(− e2

h
) for positive
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(negative) g2z, as obtained in Ref. [90]. The system is metallic for g2z = 0, separating
the two QAH phases with opposite Hall conductances. With a finite εxz, we find
the gapless line derives away from the line of g2z = 0 and the regime with positive
(negative) εxz and g2z = 0 is adiabatically connected to the regime with positive
(negative) g2z, which indicates that the Hall conductance for a postive (negative) εxz
is + e2

h
(− e2

h
), as shown in Fig. 3a. In Fig.4.8 b, the band gap is plotted as a function

of εxz and εyz with a finite g1x, and a gapless line along εxz = 0 separates two QAH
phases with the Hall conductance ± e2

h
. The Hall conductance vanishes along the

gapless line, because both the shear strain εyz and the in-plane magentization g1(2)x

preserves the reflection My. More generally, the Hall cnductance is always zero
when two vectors, the shear strain ε = (εxz, εyz) and the in-plane magnetization m,
are perpendicular to each other. We emphasize that the shear strain εij is a tensor
in 3D PGs, but we can treat ε as a vector in 2D PGs. According to Fig.4.8 b, we
can consider the experimental configuration for the magnetization and shear strain
for the HgMnTe quantum wells, as shown in Fig.4.8 c. When the angle ϕ between
the strain vector ε and the magnetization vector m is rotated across π

2 or 3π
2 , the

Hall conductance switches between ± e2

h
of the two insulating phases. In Fig.4.8 d,

we verify the stability of the QAH phases for different values of g1 and the QAH
phase always exists when the in-plane magnetization is large enough.

Finally, we would like to emphasize the breaking of reflection symmetry is essen-
tial for the in-plane magnetization induced QAH effect. Generally, the pseudo-scalar,
such as the out-of-plane magnetization, can break all the reflection symmetries in
2D PGs. Therefore, one should also construct a pseudo-scalar with the in-plane
magnetization. For example, a pseudo-scalar, the dot product of a vector and a
pseudo-vector ε ·m, can be defined to characterize the Hall conductance in the
HgMnTe quantum wells with shear strains. As shown in Fig. 4.8d, the sign of the
Hall conductance is determined by the sign of the product of εxz and g1x. We expect
this strategy can also be applied to search for the QAH phase in other systems.

4.5 Experimental relevance and conclusions
Recently, experiments done by Molenkamp’s group on the QAH effect in HgxMn1−xTe
quantum wells found that the QAH-normal phase boundary never falls on the
Bz = 0 line irrespective of the magnitude of Bx. The magnetic field reaches a
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critical angle at the phase boundary. This result suggests that the in-plane spin
splitting is insignificant such that the in-plane splitting never overcomes the insu-
lating gap. Moreover, the result also implies that Zeeman coupling is negligible
because the value of spin splitting is limited. From the discussion in the section
4.2, we numerically determined the QAH-normal phase transition by the adiabatic
continuity argument and found a critical angle, which is similar to these experi-
ments. Without Zeeman coupling, the phase boundary lies at a critical angle of
magnetic field after the exchange coupling saturates. The critical angle is less than
π/2 because the in-plane exchange coupling is much weaker than the out-of-plane
exchange coupling. Our predictions provide the possibility to extract the strength
of in-plane and out-of-plane exchange coupling strength by quantitatively fitting
to the experiments. The relevant collaboration with Prof. Molenkamp’s group
about this experiment is still on progress. With Zeeman coupling, we found a
reentrant QAH effect as a result of the interplay between the exchange coupling and
Zeeman coupling. The reentrant behavior is unique to Mn-doped HgTe quantum
well, not pure HgTe quantum well. In addition, the reentrant behavior is stable
in the presence of Landau levels, so it is feasible under the present experimental
condition to verify this effect in magnetic QSH insulators.

With shear strain, we propose the experiments with rotating in-plane magnetic
fields, as shown in Fig.4.8(c), to confirm the predicted effect. Since no out-of-plane
magnetization is required, the orbital effect from Landau levels of magnetic fields
can be excluded completely. Therefore, the proposed setups can provide a clear
experimental signal to distinguish the orbital effect of magnetic fields from the
exchange effect of magnetic ions.
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Chapter 5 |
Disordered Quantum anomalous
Hall insulators

We have discussed how to realize the QAH effect and distinguish it from the
conventional QH effect in Mn doped HgTe quantum wells. The Hall conductance is
determined by adiabatic connection in the clean limit in the previous discussion.
In this chapter, we present direct calculations of the conductance for a disordered
QAH system within the Landauer-Büttiker formalism. Recently, the QAH effect
has been observed in Cr or V doped (Bi,Sb)2Te3 films by [59, 93–96]. Therefore, in
this chapter we focus on the disorder effect in this system due to its experimental
relevance. An effective model taking into account two surface states is adopted to
describe this system. We calculate the two-terminal conductance for this system in
the periodic or open boundary condition, as well as anisotropy in magneto-resistance
in the presence of a rotating magnetization. The robustness of chiral edge modes
against disorder is examined in our numerical calculations.

5.1 Model Hamiltonian
Bi or Sb based chalcogenides have been demonstrated to be a 3D TI with a single
Dirac cone on each surface. For thin film geometry, the low energy physics is
dominated by two surface states from the top and bottom surfaces. Two surface
states become hybridized and lead to a gap opening when the thickness reduces.
Once the ferromagnetic order is introduced into the thin film and breaks TR
symmetry, the QAH effect can be realized in a certain parameter regime, as shown
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by Yu. et al [31]. The effective model Hamiltonian for this system reads [31]

Ho =


0 ivk− mk 0

−ivk+ 0 0 mk

mk 0 0 −ivk−
0 mk ivk+ 0

 (5.1)

= mkτ̃xσ̃o − vkxτ̃zσ̃y + vky τ̃zσ̃x (5.2)

with the basis of |t ↑〉, |t ↓〉, |b ↑〉, |b ↓〉, where t, b denote the top and bottom
surfaces, and ↑, ↓ refer to spin up and down states. mk describes the tunneling
between the top and bottom layers and can be expanded to the second order as
mk = m − B(k2

x + k2
y). mk vanishes when the film is thick enough to prevent

hybridization between the two layers. In the second line, τ̃ acts on the orbital space
and σ̃ acts on the spin space.

Ho can be rewritten into a block-diagonal form by the unitary transformation U

U = 1√
2


1 0 1 0
0 1 0 −1
0 1 0 1
1 0 −1 0

 . (5.3)

The new basis are the hybridized bonding and anti-bonding states of the top and
bottom surfaces: |+ ↑〉, |− ↓〉, |+ ↓〉, |− ↑〉 , where |± ↑〉 = (|t ↑〉 ± |b ↑〉)

√
2; |± ↓

〉 = (|t ↓〉 ± |b ↓〉)
√

2 and the Hamiltonian Ho in the new basis is

H ′o = UHoU
†

=


mk ivk− 0 0
−ivk+ −mk 0 0

0 0 mk −ivk+

0 0 ivk− −mk

 (5.4)

= mkτoσz − vkxτzσy + vkyτoσx, (5.5)

where τ acts on the orbital space and σ acts on the spin space. This Hamiltonian
takes the same form as the BHZ Hamiltonian for HgTe/CdTe quantum wells [7],
although the basis are different. In the numerical calculation of conductance, we use
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the model Hamiltonian (5.5). The parameters are measured in unit of B, which is
set to be unity. The other parameters are m = 0.27 and A = 1 for the calculations
below.

After the ferromagnetic order is achieved, the effective Zeeman energy in the
old basis is given by hex = gτ̃o ~M · ~̃σ, where τ̃o is identity, ~M is the exchange field.
The exchange energy, hex has three components hexj = gτ̃oMjσ̃j, j = x, y, z. For
simplicity, we assume that the effective g-factor is isotropic.

The exchange energy in the new basis is given by h′ex = UhexU
†. The explicit

forms of the exchange energy are

h′exz = gMzτzσz

= gMz


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1


h′exx = gMxτxσo

= gMx


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0


h′exy = gMyτyσz

= gMy


0 0 −i 0
0 0 0 i

i 0 0 0
0 −i 0 0

 . (5.6)

Because of rotational symmetry around the z-axis, we take the in-plane magne-
tization to be along the x-direction without the loss of generality. For the angle θ
between M and the z-axis, we define Mx = M sin θ,Mz = M cos θ.

5.2 Anisotropic magneto-conductance
The anisotropic magneto-conductance in thin films of ferromagnetic TIs is presented
in this section. In the calculation, magnetization strength is fixed and the exchange
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energy |gM | is kept larger than |m| to drive the system into the QAH phase,
whereas the magnetization direction is varied.

We define transport direction along the x-axis. In order to compare transport
properties with and without edge modes, we consider two boundary conditions
for the y-axis: open boundary condition (OBC) and periodic boundary condition
(PBC). OBC gives rise to edge states, while only bulk states appear in the PBC.
The structure of the device is shown in Fig.2.4. The leads are assumed to be
semi-infinite normal metal as described in Chapter 2.

The dispersions at several angles θ are given in Fig.5.1. (a)-(c) are for Hamilto-
nian with the OBC at θ = 0, π/4, π/2, respectively. (d)-(f) are for bulk Hamiltonian
with the PBC at θ = 0, π/4, π/2, respectively. The edge states are intact as long as
the bulk gap remains finite. The bulk gap closes when the magnetization is rotated
to the in-plane direction, as seen Fig.5.1(f). For OBC, there is a gap of ≈ 0.045
(Fig.5.1(c)). It is a consequence of the finite size effect, rather than the property of
the bulk Hamiltonian.

Next, we will verify the chirality of edge modes for gMz > 0 and gMz < 0 by
computing the four-terminal transmission in the clean limit. The four-terminal
device is depicted in Fig.5.2(a). According to the analysis based on the adiabatic
connection in the Chapter 4, in the regime |gM | > m, the Hall conductances
for gMz > 0 and gMz < 0 are opposite in sign, suggesting opposite chiralities.
The phase transition occurs when the magnetization is rotated into the in-plane
direction and the bulk energy gap closes. For the gapped phases, because of the
perfect transmission of chiral edge states, the transmission Tp←q equals to 1 only
when p and q are neighboring leads and p← q is along the propagating direction
of the chiral edge mode [101]. The other transmission coefficients are zero. The
numerical calculation indeed shows that the transmission from the lead q to p
denoted by Tp←q equals to 1 only if (p ← q) is equal to (4←1), (2←4), (3←2),
(1←3) for θ > π/2 and (1←4), (4←2), (2←3), (3←1) for θ < π/2. The other
transmission coefficients are zero. The schematic plot of the edge current flow is
shown in Fig.5.2.

The two-terminal conductances for both OBC and PBC in the clean limit are
shown in Fig.5.3. When Fermi level lies at the Dirac point, for OBC, the conductance
equals to e2/h(the QAH phase) at θ = 0 then drops to 0.1(the insulating phase) at
θ = π/2, see Fig.5.3(a). Only one chiral edge mode contributes to the conductance
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Figure 5.1. (a)-(c) are for the open boundary condition, (d)-(f) are for the periodic bound-
ary condition. The corresponding angle from the top to the bottom row is 0, π/4, π/2.
The parameters used in the calculation are m = 0.27, A = 1, B = 1, g = 1,M = 0.5. The
number of the transverse sites is 60. 77



Figure 5.2. (a)The four-terminal device of QAH system for determination of the chirality.
The leads are attached at the black parts. The red block between the leads is infinite
potential barrier. It prevents unwanted scattering between two neighboring leads. (b)The
chiral mode flips direction when the magnetization rotates from above to below the plane.

when magnetization has a large enough out-of-plane component, while for the
in-plane magnetic field with θ = π/2, a trivial gap of finite size effect opens up.
There is no mode at Dirac point and thereby the conductance drops. For PBC
(Fig.5.3(d)), conductance is zero at θ = 0 then suddenly increases at θ = π/2
as a consequence of bulk gap closing at this angle. As the Fermi level is shifted
higher to 0.2 where at θ = 0 it crosses only the edge mode, the conductance for
OBC is quantized when θ = 0− 0.36π, 0.64π − 1.36π and 1.64π − 2π as given in
Fig.5.3(b). For PBC, conductance is zero before bulk gap closes. Near θ = π/2,
the conductance for both OBC and PBC increase because the Fermi energy crosses
the bulk sub-bands, leading to a large contribution from bulk conductance. When
the Fermi level lies inside the bulk bands, for both OBC and PBC(Fig.5.3(c) and
(f)), the conductance is higher than e2/h at θ = 0 and increases at θ = π/2 as bulk
bands become closer in energy.

The conductance in disordered QAH systems is examined and shown in Fig.5.4.
We find the qualitative feature of the conductance remains the same. The chiral
mode is robust against disorder and the quantized conductance still exists even
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for the strong disorder strength W = 0.4, which is almost close to the bulk gap
edge(≈0.46)(Fig.(a)). At a higher Fermi energy, the bulk states are mixed with
the edge mode by disorder; thus, the transmission starts to deviate away from
unity even at a weaker disorder strength. The conductance peak is broadened
as disorder gets stronger, irrespective of the Fermi energy because the bulk gap
becomes smaller as θ gets closer to π/2.

5.3 conclusion
The anisotropic magneto-conductance of a ferromagnetic TI thin film is numerically
studied in this chapter. When the out-of-plane component of the magnetization
is strong enough, a magnetic gap is developed. The two-terminal conductance is
e2/h given by the ballistic transmission of the edge mode when the Fermi level
is inside the gap. In the presence of disorder, the chiral edge mode of the QAH
state, as well as the quantized conductance, is still robust up to a disorder strength
close to half of the bulk band gap. When the magnetization is parallel to the plane,
the gap is closed and the conductance is no longer quantized. The transport is
dominated by bulk states and affected by disorder. This anisotropy is a result of
the QAH-to-gapless state transition as shown by the dispersion.

Another way to directly calculate the Hall conductance is by Kubo formula in
tight-binding representation. For a disordered system, the translational symmetry
is broken, the twisted boundary condition is implemented [131]. More details on
this calculation can be found in Appendix D.
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Figure 5.3. Two-terminal conductance in clean limit. (a)-(c) are for OBC. (d)-(f) are
for PBC. The Fermi energy from the top to bottom row is 0, 0.2, 0.3. The number of the
longitudinal/transverse sites is 100/60.
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Figure 5.4. Two-terminal conductance in the presence of disorder. (a)-(c)are for
OBC. (d)-(f) are for PBC. The Fermi energy from the top to bottom row is 0, 0.2, 0.3.
The number of the longitudinal/transverse sites is 100/60. The number of disorder
configuration is 100.

81



Chapter 6 |
Summary and outlook

This dissertation is devoted to the study of transport behaviors in topological
phases. In particular, we studied how the QH states and the QAH states behave
when exchange coupling and Zeeman coupling coexist and are controlled by a
rotating magnetic field and we also propose transport signatures of topological
surface states of TI nanostructures. We summarize some of the principle results, as
well as discussing possible new directions, in this chapter.

Transport signatures of topological surface states in TI nanostructures are
studied. The magnetoconductance of TI nanowire is shown to have φ0-periodicity
when the non-topological surface states are localized by disorder. When a magnetic
flux in the value of a half-integer of φ0 is inserted along the nanowire, the surface
electron gains an additional phase that cancels the Berry phase π from the curved
surface of a TI nanostructure. A pair of topological modes appears at these values of
magnetic flux. We have shown that topological surface states are much more robust
against disorder than the nontopological states by comparing their localization
lengths. The numerical results are supported by experimental measurements of
magnetoconductance in BiTe nanotubes. The conductance oscillation is attributed
to the contribution from outer surface states. We have argued that the inner radius
fluctuates greatly along the nanotube direction leading to the disappearance of
conductance oscillation related to the inner surface. The calculation in the clean
limit has shown that the inner surface states have a longer penetration length
than the outer surface states. Thus, the inner surface states are expected to be
destroyed by magnetic flux more easily. One of the open problems is to numerically
study the robustness of the inner surface state of a TI nanotube. It will provide
a better understanding of the mechanism of the oscillation related to the inner
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surface states. Another nontrivial effect of disorder is to produce the so-called
topological Anderson insulator, in which an ordinary metal (with a positive gap) is
driven into a topological insulator by disorder [108,132,133]. That physics is not
relevant here because our system has an inverted band gap even in the absence
of disorder. However, it would be worth exploring if our method for producing
highly disordered systems can suggest ways of experimentally realizing topological
Anderson insulators starting from materials with positive but small band gaps.

The QAH effect in Mn-doped HgTe quantum wells is investigated when rotation
magnetic field, as well as the corresponding magnetization are present. Since the in-
plane g-factors in HgMnTe quantum wells have not been determined experimentally
to the best of our knowledge, we studied the normal-QAH phase transition with
and without the in-plane Zeeman coupling. With Zeeman coupling, we predicted
a reentrant QAH effect when both in-plane and out-of-pane magnetization are
present in the system. On the contrary, if the in-pane Zeeman effect is negligible,
there is no reentrant QAH effect. Instead, there is a critical angle of magnetic field
below which the QAH effect can be observed. Moreover, with symmetry analysis,
we reported that breaking the reflection symmetry is essential for the QAH effect.
By introducing shear strain into the system, we find that the QAH effect can even
be realized with purely in-plane magnetic fields. Since no out-of-plane magnetic
field is involved, the QH effect can be excluded.

We also studied the anisotropic magnetoresistance in magnetic TI thin films
When the magnetization is out-of-plane, the system is in the QAH state. When
the magnetization is rotated into the in-plane direction, the gap closes and the
transport is dominated by bulk states. In the QAH state, in which the helical
edge state dominates the transport, the conductance is intact in the presence of
disorder. One of the future studies is to generalize the two-terminal calculations to
multi-terminal devices to obtain the Hall and longitudinal resistances.
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Appendix A|
Effective Hamiltonian of the TI
surface states

A.1 Derivation of the Effective Hamiltonian of topo-
logical surface states
A 3D massive Dirac Hamiltonian is [134]

H =
 −M vf~σ · ~p
vf~σ · ~p M

 (A.1)

First, we consider a semi-infinite system extending from −∞ to x = 0. We are
interested in the surface state solution, which is a bound state at the interface
x = 0 and decays for x→ −∞. We separate the Hamiltonian into two parts

H = h1D + ∆H (A.2)

h1D(ky, kz = 0) = −Mτzσo + vfpxτxσx (A.3)

∆H(ky, kz) = ~vf (kyτxσy + kzτxσz). (A.4)

and consider the Hamiltonian h1D at ky = kz = 0 first. The eigen-equation is
(−Mτzσo + vfpxτxσx)Ψ = 0 and here we are interested in the solution with zero
energy. With the trial wave function for h1D is (without normalization yet)

Ψ = eαxξ, (A.5)

84



the eigen-equation can be simplified as M(iτyσx)ξ = i~vfαξ, which suggests that ξ
is the eigenspinor of τyσx with eigenvalue s = ±1. α can be solved

α = s
M

~vf
s = +1 for x < 0 . (A.6)

Thus, the degenerate eigenstates with s = 1 for the zero-energy solution are

Ψ1 = N√
2
eαx


1
0
0
i

 ; Ψ2 = N√
2
eαx


0
1
i

0

 , (A.7)

N is the normalization factor.
The eigenstates for h1D are used as basis and ∆H is treated as perturbation to

the one-dimensional Hamiltonian. Then we obtain an effective Hamiltonian of the
helical surface states by projecting ∆H to the basis Ψ1,Ψ2 [135]

Heff =
 〈Ψ1|
〈Ψ2|

∆H
(
|Ψ1〉 |Ψ2〉

)
(A.8)

= (~p× ~σ)x . (A.9)

The above effective Hamiltonian can be generalized to a curved surface with
the normal vector n. We can separate the Hamiltonian into

h1D = −Mτzσo + vfp⊥τx(~σ · n) (A.10)

∆H = vfτx(~σ · ~p‖), (A.11)

where ~p‖ is the momentum operator tangent to the surface.
Following the same procedure, we can also solve the solution of surface states

for a curved space by assuming the curvature of space is quite small. Then we
project the Hamiltonian ∆H into the subspace spanned by eigen states of surface
states at p‖ = 0 and obtain the effective Hamiltonian of the surface state

Heff = ivf
2
[
~σ · ~p‖, ~σ · n

]
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= ivf
2
{

(~p‖ · n) + i~σ · (~p‖ × n)− (n · ~p‖)− i~σ · (n× ~p‖)
}

= ~vf
2 O‖ · n + −i~vf2 n · (O‖ × ~σ) + −i~vf2 (O‖ × ~σ) · n (A.12)

From the first to the second line, the identity (~σ· ~A)(~σ· ~B) = ~A· ~B+i~σ·( ~A× ~B) is used.
Here one should note that ~p‖ also differentiates on n, and O‖ · n = (O‖ · n) + n ·O‖.
From the second to the third line, the identity ~A·( ~B× ~C) = ~B ·(~C× ~A) = ~C ·( ~A× ~B)
is used.

Now we can write down the effective Hamiltonian for the surface states on a cylin-
drical surface with n = (cosφ, sinφ, 0). O‖ = φ̂ 1

R
∂
∂φ

+ ẑ ∂
∂z

= (− sinφ, cosφ, 0) 1
R

∂
∂φ

+
ẑ ∂
∂z
. Here, −i ∂

∂z
can be replaced with wave vector k because of translational

symmetry along the z direction.

O‖ · n = (− sinφ, cosφ, 0) 1
R

∂

∂φ
· (cosφ, sinφ, 0) = 1

R
(A.13)

O‖ × ~σ = (σz cosφ, σz sinφ,−σy sinφ− σx cosφ) 1
R

∂

∂φ
+ ik(−σy, σx, 0)

(A.14)

Substitute Eq.(A.13) and (A.14) into Eq.(A.12), the effective Hamiltonian for
the carriers moving on the cylindrical surface is

Hn
eff = ~vf

2R + ~vf

 −i
R

∂
∂φ

ike−iφ

−ikeiφ i
R

∂
∂φ

 . (A.15)

A.2 Eigen-solution of the effective Hamiltonian
When an flux ηφo (η is any number)is inserted into the nanowire, the flux is included
by Pierels substitution ~p→ ~p− e ~A [123], where ~A = ηφo

2πR φ̂. Thus, Eq.A.15 becomes

Hn
eff = ~vf

2R + ~vf

 −1
R

(i ∂
∂φ

+ η) ike−iφ

−ikeiφ 1
R

(i ∂
∂φ

+ η)

 (A.16)
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The eigen function is

χ =
 fk

gke
iφ

 eiφl, (A.17)

where l is an integer = 0,±1,±2... and is the quantum number for the azimuthal
symmetry of the Hn

eff . The eigen-equation becomes

Hn
effχ =⇒ ~vf

 l+1/2−η
R

ik

−ik −l−1/2+η
R

 fk

gk

 = E

 fk

gk

 . (A.18)

Therefore, the eigenenergy is

Ekl = ±~vf

√
k2 + ( l + 1/2− η

R
)2 (A.19)

A.3 Time-reversal invariance of the effective Hamil-
tonian
The time reversal operator is T = iσyK, where K is the complex conjugate operator.
From E.q.(A.18), we can define (fk gk)T as the eigenstate of the effective Hamiltonian
H̃n
eff (k, l) = ~vf( l+1/2−η

R
σz − kσy). The time reversal operation of H̃n

eff (k, l) gives
H̃n′
eff (k, l) = T †H̃n

eff (k, l)T = −~vf ( l+1/2−η
R

σz− kσy). The full Hamiltonian is given
by the sum of H̃n

eff (k, l) with all l, i.e. H̃n
eff (k) = ∑

l H̃
n
eff (k, l). If the Hamiltonian

is time-reversal symmetric, then H̃n′
eff(k) = H̃n

eff(−k). The dummy index l in
H̃n
eff (−k, l) can be changed to l′ without the loss of generality. Thus, time-reversal

symmetry gives l′ = −l − 1 + 2η. However, this condition is only satisfied only
when η equals to zero or half-integers because both l and l′ are integers.
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Appendix B|
Landau level calculation

In this appendix, we show the Landau level calculation in the presence of in-plane
magnetization for the BHZ Hamiltonian under a magnetic field [136]. The full
Hamiltonian is HBHZ +Hm, where Hm = Hmx +Hmz and Hmx(z) = g1x(z)~σx(z)τ0 +
g2x(z)~σx(z)τz. Hmx is the in-plane magnetization and is regarded as the perturbation
to Landau levels. The unperturbed Hamiltonian HBHZ +Hmz with the standard
Peierls substitution [91,123] is

Ho = HBHZ +Hmz =
 Ho↑ 0

0 Ho↓

 , (B.1)

where the Hamiltonian for each spin-component is a 2 by 2 matrix.

Ho↑ =
 C +M − 2(B+D)

l2B
(a+a− + 1

2) + gez
√

2A
lB
a+

√
2A
lB
a− C +M − (B−D)

l2B
(a+a− + 1

2) + ghz


Ho↓ =

 C +M − (B+D)
l2B

(a+a− + 1
2)− gez −

√
2A
lB
a−

−
√

2A
l2B
a+ C +M − (B−D)

l2B
(a+a− + 1

2)− ghz

 ,
where lB =

√
~
eBz is the magnetic length and a± = lB√

2~(∓ipy + ~kx + eBzy). The
Landau gauge for the vector potential ~A = (−Bzy, 0, 0) has been used.

Ho is block-diagonal, while Hmx is off block diagonal. First, we calculated the
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eigenenergies and eigenstates for Ho. The eigenstates are written as

|n, l〉 =


fnl1|n〉

fn−1l2|n− 1〉
fn−1l3|n− 1〉

fnl4|n〉

 , (B.2)

where fnlj (j = 1, 2, 3, 4) are the coefficients of each eigenlevel of the Harmonic
oscillator. n denotes the eigenlevel of the Harmonic oscillator, l = 1, 2, 3, 4, denotes
the eigenstates of the effective 4× 4 Hamiltonian, and j denotes the components of
eigenvectors.

For convenience, we define

gs = ghz + gez
2 (B.3)

ga = ghz − gez
2 . (B.4)

In this basis, the eigenvalues for the zero modes are

E↑,0 = C +M − (B +D)
l2B

+ gez (B.5)

E↓,0 = C −M + (B −D)
l2B

− ghz (B.6)

(B.7)

The eigenvalues for the non-zero modes are

E↑,n± = C − (B + 2nD)
l2B

+ gs ±

√√√√(M − ga −
(2nB +D)

l2B
)2 + A2

√
2n
lB

(B.8)

E↓,n± = C + (B − 2nD)
l2B

− gs ±

√√√√(M + ga −
(2nB −D)

l2B
)2 + A2

√
2n
lB

.(B.9)

And the eigenvectors for zero-modes are
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| ↑, 0〉 =


|0〉
0
0
0

 ; | ↓, 0〉 =


0
0
0
|0〉

 . (B.10)

The eigenvectors for non-zero modes are

| ↑, n±〉 = −lB√
2nA


−M + ga + e

~(D + 2nB)±
√

(M − ga − e(2nB+D)
~ )2 + 2A2

√
2n
lB

)|n〉
|n− 1〉

0
0



| ↓, n±〉 = lB√
2nA



0
0

−M − ga − e
~(D − 2nB)±

√
(M + ga + e(D−2nB)

~ )2 + 2A2
√

2n
lB

)|n− 1〉
|n〉


The positive sign is for the hole eigenstates, while the negative sign is for the
electron states. In this basis, H0 is diagonal. Then we project Hmx onto this
basis and the total Hamiltonian is diagonalized up to 20 basis of Landau levels
numerically.

90



Appendix C|
Effective Hamiltonian for HgM-
nTe quantum well

In this appendix, we discuss the form of the effective four band model of HgMnTe
quantum wells with shear strains based on the symmetry argument, as well as the
microscopic derivation based on k · p theory.

The effective Hamiltonian of HgMnTe quantum wells with shear strains is
constructed on the basis |E1+〉, |H1+〉, |E1−〉 and |H1−〉, including three terms
HBHZ , Hm and Hstr. The BHZ Hamiltonian HBHZ has been discussed in the early
literature [7, 34]. The most important feature of the BHZ Hamiltonian is the linear
coupling between |E1±〉 and |H1±〉 due to opposite parities between these two
sub-bands.

The Hamiltonian Hm is described by two vectors g1 = 1
2(ge + gh) and g2 =

1
2(ge−gh), which can be related to the spin splitting of the electron and heavy-hole
sub-bands. As described in the main text, Hm has two origins: one is due to the
direct Zeeman coupling to the external magnetic field, while the other orginates from
the exchange coupling of magnetization. The direction of the vectors g1,2 or ge,h are
along the direction of the external magnetic fields, as well as the magnetization of
the Mn magnetic moments. However, the dependence of g1,2 or ge,h on the external
magnetic field is quite complicted. Due to the quantum well configuration, there is
also anisotropy between the spin splitting along the z-direction and that along the
in-plane direction. For the z-direction, the form of spin splitting has already been
obtained [126], given by

ge(h)z = µB
2 g̃e(h)zBz + χe(h)zSz (C.1)
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with the effective g factor g̃e(h)z and the exchange coupling strength χe(h) for
the electron (heavy-hole) sub-bands, respectively. Sz denotes the magnetization
of Mn atoms Sz = −S0B5/2

(
5gMnµBBz
2kB(T+T0)

)
where S0 = 5/2, the effective g factor

for Mn gMn, the Bhor magneton µB, the characteristic temperature of the anti-
ferromagnetic coupling T0. B5/2(x) is the Brillioun function, given by B5/2(x) =
6
5coth(6

5x)− 1
5coth(1

5x). For the in-plane magnetic fields, the dependence of spin
splitting on magnetic fiels is a little complicated. For the electron sub-band |E1±〉,
the spin splitting is given by

gex + igey = µB
2 g̃e‖B+ + χe‖S+, (C.2)

with the in-plane g factor g̃e‖ and the in-plane exchange coupling strength χe‖.
Here B± = Bx ± iBy and S± = Sx ± iSy with Sx(y) = −S0B5/2

(5gMnµBBx(y)
2kB(T+T0)

)
. In

contrast, the spin splitting for the heavy-hole sub-bands is given by

ghx + ighy = µB
2 g̃h‖B

3
+ + χh‖S

3
+. (C.3)

The B3
+ and S3

+ dependence for the heavy-hole sub-bands is because the heavy-hole
sub-bands carry the angular momentum ±3

2 .
For the shear strain term, the Hamiltonian (E.q.(4.9)) can be written explicitly

as

Hstrain = F


0 0 0 k−(εxz − iεyz)
0 0 k−(εxz − iεyz) 0
0 k+(εxz + iεyz) 0 0

k+(εxz + iεyz) 0 0 0

(C.4)

in the basis |E1+〉, |H1+〉, |E1−〉 and |H1−〉, with the shear strains εxz and εyz
and the coefficient F . εxz and εyz have even parity and ε± = εxz ± iεyz carry the
angular momentum ±1. Therefore, the term k±(εxz ± iεyz) carries the angular
momentum ±2, corresponding to the change of the angular momentum between
the electron sub-band |E1+〉 (|E1−〉) with the angular momentum 1

2 (−1
2) and the

heavy-hole sub-band |H1−〉 (|H1+〉) with the angular momentum −3
2 (3

2).
In order to confirm our discussion of the strain term, we may also consider the

perturbation theory for the derivation of this term. We may start from the six
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band Kane model with the strain term, with the Hamiltonian given by

H = HK +Hstr, (C.5)

in the basis |Γ6, 1/2〉, |Γ6,−1/2〉, |Γ8, 3/2〉, |Γ8, 1/2〉, |Γ8,−1/2〉 and |Γ8,−3/2〉,
which we denote as |1〉, |2〉, |3〉, |4〉, |5〉, |6〉 for short in the following. In the conven-
tional semiconductor, the Γ6 bands have higher energy than the Γ8 bands while in
HgTe, the bands sequence is opposite. The strain term can be described by the
Bir-Pikus Hamiltonian with the substituion kikj in the Kane Hamiltonian of the
strain tensor component εij. For the present model, we obtain

Hstr =



Tε 0 0 0 0 0
0 Tε 0 0 0 0
0 0 Uε + Vε Sε Rε 0
0 0 S†ε Uε − Vε 0 Rε

0 0 R†ε 0 Uε − Vε −Sε
0 0 0 R†ε −S†ε Uε + Vε


(C.6)

with

Tε = Ctr(ε), (C.7)

Uε = atr(ε), (C.8)

Vε = 1
2b(εxx + εyy − 2εzz), (C.9)

Sε = −d(εxz − iεyz), (C.10)

Rε = −
√

3
2 b(εxx − εyy) + idεxy. (C.11)

Here tr(ε) = εxx + εyy + εzz gives the trace of the tensor ε. Here we are interested
in the influence of εxz and εyz and keep only εxz andεyz non-zero. From the above
expressions, we find only Sε terms remaining.

Next let’s consider the projection of the Hamiltonian into the subspace of the
quantum well sub-bands and derive the effective Hamiltonian for the low energy
physics. We consider a quantum well structure frabricated along z direction and
separate the Hamiltonian H into two parts, H = Hk‖=0 +H

(1)
k‖

with k‖ = (kx, ky).
Hk‖=0 describes the Hamiltonian with vanishing k‖ and is solved with numerical
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methods. The eigen wave functions of Hk‖=0 is denoted as |Uξ(z)〉 = ∑
λ fξ,λ(z)|λ〉,

where |λ〉 = |Γ6,±1
2〉 or |Γ

8,±3
2(±1

2)〉. We use again 1 to 6 to denote λ for short. ξ
denote different sub-bands and here we are interested in four sub-bands |E1,+〉,
|H1,+〉, |E1,−〉 and |H1,−〉, denoted as |A〉, |B〉, |C〉, |D〉, with the forms given by

|A〉 = fA,1(z)|1〉+ fA,4(z)|4〉, |B〉 = fB,3|3〉

|C〉 = fC,2(z)|2〉+ fC,5(z)|5〉, |D〉 = fD,6|6〉. (C.12)

The symmetry property of the functions fξ,λ is discussed in the Ref. [126]. We also
consider other sub-bands, such as |E1,±〉, |LH,±〉, |HH2,3,···,±〉, in the second
order perturbation calculation.

The effective Hamiltonian in the four bands (A,B,C,D sub-bands) can be
obtained from the second order perturbation, which is illustrated in Ref. [126] for
the details. Here we are only interested in the terms related to the shear strains.
For the first order term, the possible term is 〈A|Hstr|B〉 = −(εxy + iεyz)〈fA,4|d|fB,3〉,
which vanishes because of the opposite party between fA,4 and fB,3 (see Ref. [126]
for more details). Similar situation happens for 〈C|Hstr|D〉. For the second
order perturbation, the terms with the form 〈A|HK |LH,−〉〈LH,−|Hstr|D〉 and
〈B|Hstr|LH,+〉〈LH,−|HK |C〉 remains, yielding the Hamiltonian (C.4), with the
coefficient F given by

F =
∑

α=LH,E2

1
2
√

6
(〈fA,1|P |fα−,5〉 − 〈fA,4|P |fα−,2〉)〈fα−,5|d|fD,6〉

( 1
EA − Eα−

+ 1
ED − Eα−

)
.
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Appendix D|
Quantized Hall conductance and
extended states

The localization theory predicted that all electronic states are localized in the
absence of magnetic field in two-dimensional systems. When there is magnetic field
and the electronic states form Landau levels, in contrast, there are extended states
that carry Hall conductance. Great interest has been attracted to study in the
evolution of extended states when the gap between Landau levels collapses [137].
In this appendix, we show the fate of extended state in the presence of disorder in
IQH insulators. The generalization to the QAH insulators has been investigated
and shown similar behavior as in the IQH effect [138].

Niu et al [131] generalized the Kubo formula to disordered systems and showed
that the Hall conductance is still a quantized value as long as the Fermi gap does
not close. Moreover, Hall conductance is insensitive to the boundary condition.
The boundary condition averaged Hall conductance takes the form

σ = −e
2

h
C (D.1)

C = 4π
∑

Eo<Ef

∑
En>Ef

1
4π2

∫ 2π

0
dθx

∫ 2π

0
dθy

Im〈ψo|~vx|ψn〉〈ψn|~vy|ψo〉
(Eo − En)2 , (D.2)

where vi = 1
~
∂H
∂θi

and θx,y are the phase for boundary conditions as defined in the
following. In the tight-binding representation, the Hamiltonian for a square lattice
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in the presence of magnetic field is

H =
∑
m,n

tC†m+1,nCm,n + tei2πmφ/φoC†m,n+1Cm,n (D.3)

φ is the magnetic flux per unit cell and C†m,n/Cm,n is the creation/annihilation
operator at lattice site (m,n). The lattice site index runs from 0 to Nx(y) for
the x(y)−direction. To restore periodic boundary condition along x-direction, we
set φ/φo = p/q and Nx = qd, where p, q and d are integers. The phases only
appear for the hopping between the opposite edges: hNx→0 = eiθxC†0,yCNx,y and
hNy→0 = eiθyC†x,0Cx,Ny . Therefore, the only nonzero matrix elements for vi are the
boundary terms. Eq.D.2 has the same form as in the clean limit only by replacing
wave vector with phase. In the calculation, we focus on the case φ/φo = p/q = 1/3.
We should point out that in this calculation, Kubo formula is a bulk property and
there is no edge effect.

The extended states are defined as the states that carry nonzero Hall conductance
[137, 139]. The calculation is for the magnetic flux per lattice for a 9× 9 square
lattice. The density of state and the Hall conductances are averaged over boundary
conditions and disorder configurations. Fig.D.1(a) and (b) give the density of states
and the Hall conductance at disorder strength 1 and 2.5, respectively. Fig.D.1(a)
shows that the extended states locate at the center of each subband. The Hall
conductance of each subband is 1,−2, 1. Comparing Fig.D.1(a) and (b), as disorder
strength increases, the extended states with opposite Hall conductance merge and
disappear. Our results match that of Ref [137].

The fate of the extended states in the Haldane model has been studied by
Onoda and Nagaosa [138]. Based on the scaling analysis, they showed that the two
extended states merge and disappear at a critical disorder strength. This behavior
is the same as in the integer quantum Hall effects [137].
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Figure D.1. Total density of states, extended density of states and Hall conductance for
W = 1(a) andW = 2.5(b). p/q = 1/3 for systems of size 9×9. The disorder configuration
is 400. The number of grid for boundary condition is 24× 24.
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