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Abstract

Kirillov proved his character formula for simply connected nilpotent Lie groups

in 1962 and conjectured its universality. The validity of this conjecture has

been verified for some other classes of Lie groups, most notably for the case of

tempered representations of reductive Lie groups by Rossmann.

In this dissertation we explain how Kirillov’s character formula can be used

in the quantization of coadjoint orbits. First we prove a positivity property of

Kirillov’s character formula for some classes of Lie groups, including nilpotent

Lie groups, which possess real polarizing subgroups. Then we use this positiv-

ity property to construct group representations following the ideas of Gelfand,

Naimark, and Segal. Finally we discuss several approaches to proving positivity

in the absence of real polarizations.
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Chapter 1

Introduction

Background

The idea of classifying irreducible representations of a group G, and studying

characters of representations of G is a classical theme in representation theory

and harmonic analysis dating back to the early days of the subject.

Since Kirillov’s fundamental paper [15] in 1962, the orbit method has played

an important role in the theory of Lie groups in both directions. In [15] Kir-

illov proved that coadjoint orbits of a connected simply connected nilpotent

Lie group correspond, under quantization, to the equivalence classes of its ir-

reducible unitary representations. The theory of geometric quantization due

to Kirillov, Kostant [21], and Souriau [30] has shown that this close connec-

tion extends to many other groups. For instance, if G is a compact semisimple

Lie group, the orbit method establishes a correspondence between the integral

coadjoint orbits of G and Ĝ, the set of equivalence classes of irreducible unitary

representations of G, given by the Borel-Weil theorem [16].

Two important parts of the orbit method philosophy regarding the relation
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between irreducible unitary representations and coadjoint orbits are given in the

table below.

Table 1.1: The Orbit Method User’s Guide

Representation Theory Symplectic Geometry

Ĝ g∗/G

TrπO(expX) j(X)−1/2
∫
O e

i〈`,X〉+σ

Kirillov’s character formula says that the characters of irreducible unitary

representations of a Lie group G “should” be given by an equation of the form

TrπO(expX) = j(X)−1/2

∫
O
ei〈`,X〉+σ (1.1)

where O is the coadjoint orbit in g∗ corresponding to πO ∈ Ĝ, σ is a canonical

symplectic measure on O, and j is the analytic function on g defined by the

formula

j(X) = det

(
sinh(adX/2)

adX/2

)
.

The equation (1.1) is a character formula in the sense of Harish-Chandra and

should be interpreted as an equation of distributions on a certain space of test

functions on g.

Kirillov proved his character formula for simply connected nilpotent and sim-

ply connected compact Lie groups [15, 16] and conjectured its universality. The

validity of this conjecture has been verified for some other classes of Lie groups,

most notably for the case of tempered representations of reductive Lie groups

by Rossmann [26]. Moreover, Atiyah-Bott [2] and Berline-Vergne [4] following

the work of Duistermaat-Heckman [7], have shown that for compact Lie groups,

Kirillov’s character formula is equivalent to the Weyl character formula.

Let π be a traceable irreducible unitary representation of a Lie group G.
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Then the Harish-Chandra character of π is a positive distribution in the sense

that for any suitable test function f ,

Trπ(f ∗ f∗) ≥ 0.

The Gelfand-Naimark-Segal (GNS) construction makes the positivity of the

Kirillov character formula remarkable, since GNS implies, roughly speaking,

that any positive linear functional on a Lie group is the character of a group

representation. Note that even when the character formula is positive, it does

not obviously determine a representation, since the exponential map is neither

injective nor surjective in general. This leads to the following question by Hig-

son [14] “Is there a useful concept of partial representation corresponding to the

partially-defined Kirillov character?”

In Chapters 3, 4, and 5 we explore the positivity of Kirillov’s character

formula for the classes of nilpotent, compact, and reductive Lie groups, respec-

tively. In Chapter 6, we use the GNS construction to quantize the coadjoint

orbits of nilpotent Lie groups where the character formula is positive.

Main Results

When G is a connected simply connected nilpotent Lie group, the validity of

(1.1) implies that Kirillov’s character formula has to be positive as well. In

Chapter 3, we prove this result directly and without first constructing any un-

derlying representation.

Theorem. Kirillov’s character (1.1) is a positive distribution for nilpotent Lie

groups. More precisely, if G is a connected nilpotent Lie group with a coadjoint
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orbit O ⊂ g∗, then for all f ∈ S(G),

χ(f ∗ f∗) =

∫
O
f̂ ∗ f∗ dµO ≥ 0,

where the Fourier transform is computed on the Lie algebra as follows: for

F ∈ S(G) and ψ ∈ g∗,

F̂ (ψ) =

∫
g

F (expX)eiψ(X) dX.

We first prove this result for the important case of the Heisenberg group

where computations are short and insightful, and then we provide a separate

proof for the general case.

In Chapters 4 and 7, we discuss several approaches to proving the positivity of

(1.1) for compact Lie groups.

Theorem. Let G be a connected compact Lie group. Then if O is an integral

coadjoint orbit, Kirillov’s character formula (1.1) defines a positive distribution

for any f ∈ C∞(G) supported in a sufficiently small neighborhood of the identity.

Many coadjoint orbits from non-nilpotent Lie groups fall into the scope of

the method used in Chapter 3 for nilpotent Lie groups. In Chapter 5, we make

some adjustments to our previous methods and explain how they can be applied

to prove the positivity (1.1) when G is a reductive Lie group by focusing on the

special linear group SL(2,R). Let us write

H =

1 0

0 −1

 , X =

0 1

1 0

 , Y =

 0 1

−1 0


for a basis of the three dimensional Lie algebra sl(2,R) of 2×2 traceless matrices.

Theorem. Kirillov’s character formula (1.1) is a positive distribution for O =
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Ad∗(SL(2,R))H∗ and for any f ∈ C∞c (SL(2,R)) supported in a sufficiently

small neighborhood of the identity.

In Chapter 6 we briefly discuss how the positivity property of Kirillov’s

character can be used to construct representations of Lie groups.
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Chapter 2

Background

In this chapter we fix some notation and collect several standard facts that we

will use freely in the sequel.

2.1 The KKS and Liouville Forms on Coadjoint

Orbits

Let G be a Lie group with Lie algebra g and dual Lie algebra g∗. The group G

acts on g via the adjoint action

Ad: G→ GL(g)

whose differential is

ad: g→ End(g)
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where ad(X)(Y ) = [X,Y ] for X,Y ∈ g. The coadjoint action of G on g∗,

Ad∗ : G→ GL(g∗), is the transpose or dual of the adjoint action:

(Ad∗ g)f(X) = f((Ad g−1)X)

for g ∈ G, X ∈ g, and f ∈ g∗. The differential of the coadjoint action Ad∗ is

ad∗ : g∗ → End(g∗) given by

(ad∗X)f(Y ) = f((− adX)Y ) = f([Y,X])

for X,Y ∈ g and f ∈ g∗.

Any coadjoint orbit is a symplectic submanifold of g∗ with a canonical sym-

plectic form sometimes called the Kirillov-Kostant-Souriau (KKS) sym-

plectic structure described as follows.

Let G act on g∗ by the coadjoint action, and let O ⊂ g∗ be an orbit of this

action. Choose ` ∈ O and denote by K the restriction of the coadjoint action

to O:

K : G→ O

g 7→ g · ` = Ad∗(g)`.

The differential of this map at the identity, namely K∗,e : g → T`O, induces a

linear isomomorphism K̃∗,e between g/r` and T`O, where r` is the radical (or

kernel) of the bilinear map

g× g→ R, (X,Y ) 7→ `([X,Y ]).

Hence we can transfer the nondegenerate alternating bilinear map B` on g/r`

defined by B`(X,Y ) = `([X,Y ]) to a nondegenerate alternating bilinear form

7



ω` on T`O, such that

ω` : T`O × T`O → R, ω`

(
K̃∗,eX, K̃∗,eY

)
= B`(X,Y ).

The assignment ` 7→ ω` clearly gives a 2-form ω on O. We summarize the

basic properties of ω in the next proposition whose complete proof can be found

in [18].

Proposition 2.1.1. (O, ω) is a symplectic manifold. Furthermore, ω is G-

invariant and the inclusion map ΦG : O ↪→ g∗ is a moment map, that is, ΦG is

G-equivariant and satisfies

dΦξG = ι(ξO)ω, ξ ∈ g

Here ξO is the vector field generated by ξ and ΦξG = 〈ΦG, ξ〉 : O → R is the

ξ-coordinate of ΦG.

Suppose dimO = 2n. Then

µ =
1

n!(2π)n
ω ∧ · · · ∧ ω︸ ︷︷ ︸
n times

∈ Λ2n(O)

gives a top form on the coadjoint orbit. We shall refer to µ as the canonical

Liouville measure on O.

Remark 2.1.2. It is convenient to work with the differential form (of mixed

degree)

expω = 1 + ω +
1

2!
ω ∧ ω +

1

3!
ω ∧ ω ∧ ω + · · · .

With the convention that
∫
M
α = 0 if the degree of α is different than the

dimension ofM , the Liouville measure, the term of maximal degree in exp(ω/2π)

is given by the integration of exp(ω/2π).
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We warn the reader that the definition of the Liouville measure in some

references might differ from ours by a factor of (2π)n. This is merely due to the

existence of slightly different versions of the Fourier transform of functions.

2.2 Trace-class Operators

We define ‘traceable’ operators in analogy with the traditional way of defining

Lebesgue integrable functions where we first make sense of
∫
f dµ for f ≥ 0 and

then say that an arbitrary function f is integrable if
∫
|f | dµ <∞.

Similarly, we define the trace of a positive linear operator1 T ∈ B(H) on a

separable Hilbert space H by TrT =
∑
i〈Tei, ei〉 where {ei} is an orthonormal

basis ofH. It is easy to check that this definition is basis independent. Generally,

T ∈ B(H) is said to be a trace-class operator if Tr |T | <∞. Here as usual |T |

is the positive operator
√
T ∗T associated with the bounded operator T . In this

case, the trace of T is defined by

TrT =
∑
i

〈Tei, ei〉

which turns out to be finite and independent of the chosen basis for H. An

equivalent, but coordinate-free, way of defining trace-class operators is to say

that they are precisely the operators that are the composition of two Hilbert-

Schmidt operators.

2.3 Locally Compact Groups

It is well known that every locally compact group G possesses a left Haar mea-

sure dλ which is unique up to a multiplicative constant. The modular func-

1Recall that a self-adjoint linear operator T ∈ B(H) is said to be positive if 〈Tv, v〉 ≥ 0
for all v ∈ H or equivalently if the spectrum of T is a subset of nonnegative real numbers.
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tion ∆: G → (0,∞) is the Radon-Nikodym derivative of left Haar measure

with respect to right Haar measure, normalized to be 1 at the identity element,

measures the extent to which λ fails to be right-invariant. More precisely,

dλ(xy) = ∆(y) dλ(x)

for x and y in G. Another way of writing this equation is

∆(y)

∫
G

f(xy) dλ(x) =

∫
G

f(x) dλ(x)

for all f ∈ L1(G). We also have

∫
G

f(x−1) dλ(x) =

∫
G

f(x)∆(x−1) dλ(x),

or in other words,

dλ(x−1) = ∆(x−1) dλ(x).

Remark 2.3.1. A word of caution is in order regarding the modular function.

The notation that we have used here is standard but not universal. Some authors

denote by ∆(g) (or sometimes δ(g)) what we would call ∆(g−1).

If G is a Lie group, one can show that ∆(g) = |det Ad(g−1)|. This implies,

for instance, that any connected nilpotent Lie group is unimodular, that is,

the modular function is constant and everywhere equal to one.

Definition 2.3.2. Let G be a locally compact group with Haar measure dµ.

Given functions f and g on G, their convolution f ∗ g is the function on G

10



defined by

f ∗ g(x) = L(f)(g)(x) =

∫
G

f(y)g(y−1x) dµ(y)

=

∫
G

f(xy)g(y−1) dµ(y)

whenever one (and hence both) of these integrals makes sense.

For instance if f ∈ L1(G) and g ∈ Lp(G) for p ∈ [0,∞], then f ∗ g is defined

almost everywhere and f ∗ g ∈ Lp(G).

2.4 The Harish-Chandra Character

It is well known that an irreducible representation of a compact Lie group is

completely determined (up to equivalence) by its character. It was Harish-

Chandra who realized through his study of infinite-dimensional representations

that the correct way to think of characters of Lie groups is as distributions.

Example 2.4.1. Let G be a finite group acting by translation on V = L2(G).

Then the character of this group representation is

χreg(g) =


0 if g 6= e

dimV = |G| if g = e.

Thus for infinite G we might expect χreg to be zero away from e, and infinite at

e, that is, to be the Dirac delta function.

It is easy to make sense of this in the case of the regular representation of

G = T and get the most basic example of a Harish-Chandra (or global)

character.

11



Example 2.4.2. The group T acts on S1 by eiθ · z = eiθz, and thus on L2(S1)

by L(eiθ)(f)(z) = f(e−iθz). Now we know that L2(S1) has an orthonormal

basis { zn }n∈Z and T acts diagonally on this basis: L(eiθ)zn = e−inθzn, so that

we obtain

TrL(eiθ) =
∑
n∈Z

e−inθ.

Of course, this sum does not converge in the usual sense. However it converges

weakly to 2πδ1 in the sense of distributions, where δ1 is the Dirac delta function

at the identity.

Let (π, Vπ) be a unitary representation of a locally compact group G. Then

π induces a continuous homomorphism of Banach ∗-algebras via Bochner in-

tegration from L1(G) to the space of bounded operators B(Vπ). Here the key

observation is that L1(G) is a Banach algebra under convolution, which is just

the usual group ring CG if G is finite, and that L1(G) has a natural isometric

(conjugate-linear) involution f 7→ f∗, where

f∗(x) = f(x−1)∆(x−1).

By abuse of notation, we denote this homomorphism by π,

π : L1(G)→ B(Vπ), π(f) =

∫
G

f(g)π(g) dg.

For instance, in Example 2.4.2 the matrix of L(f) with respect to the basis

{ zn }n∈Z is the diagonal matrix with the Fourier coefficients of f on its diagonal.

Therefore, TrL(f) is finite for f ∈ C∞(G) and f 7→ TrL(f) = δ1(f) defines a

distribution.

Inspired by the above examples, we can define the character of (π, Vπ) to

be the distribution f 7→ π(f) provided that the operator π(f) is trace class.

12



Thus it is important to know when the operators π(f) are traceable. The main

results are as follows.

Theorem 2.4.3 (Harish-Chandra [11, 12]). Let G be a connected semi-simple

Lie group with finite center. Then for every irreducible unitary representation

π of G and every f ∈ C∞c (G), the operator π(f) is trace class and the map

f 7→ Trπ(f) is continuous, that is, it is a distribution on G.

Theorem 2.4.4 (Kirillov). Let G be a nilpotent Lie group. Then for every

irreducible representation π of G and every Schwartz function f ∈ S(G), the

operator f 7→ Trπ(f) is trace class and the map f 7→ Trπ(f) is a tempered

distribution on G.

It follows that since π(f ∗ f∗) = π(f)π(f)∗, the Harish-Chandra character

of (π, Vπ), whenever defined, is a convolution-positive (or positive for short)

distribution in the sense that

Trπ(f ∗ f∗) = Trπ(f)π(f)∗ = ‖π(f)‖2HS ≥ 0. (2.1)

2.5 Kirillov’s Character Formula

2.5.1 The Abelian Case via Pontryagin Duality

Let G be a Locally compact abelian group and consider its convolution algebra

L1(G). Then the Pontryagin dual of G, denoted by Ĝ, is canonically homeomor-

phic to the maximal ideal space ML1(G) of the commutative Banach algebra

L1(G). In fact, the map χ 7→ mχ from the dual group Ĝ to the maximal ideal

space ML1(G) with

mχ(f) = f̂(χ)

13



is a homeomorphism. Here the Fourier transform f̂ : Ĝ → C of a function

f ∈ L1(G) is defined as

f̂(χ) =

∫
G

f(x)χ(x) dx.

Suppose π is a representation of the abelian group Rn. Since the trace map

f 7→ Trπ(f) is a nonzero multiplicative functional on L1(Rn) and R̂n ' Rn,

after a suitable identification, we conclude that

Trπ(f) = f̂(x) (2.2)

for some point x ∈ Rn depending only on the representation π. If we think of

the right-hand side of the equation (2.2) as an integral of the Fourier transform

over the singleton set {x}, then we get the Kirillov character formula in this

setting.

For the case of the circle group G = T, since the dual group T̂ ' Z is discrete,

the above argument shows that we need to impose some integrality condition

for the orbits over which we integrate (or evaluate) the Fourier transform to

obtain the trace.

2.5.2 The General Case

Kirillov’s character formula says that the characters χ of irreducible unitary

representations of a Lie group G “should” be given by an equation of the form

χ(expX) = j(X)−1/2

∫
O
ei`(X) dµO(`) (2.3)

14



where O is a coadjoint orbit in g∗, µO is the canonical Liouville measure on O,

and j is the analytic function on g defined by the formula

j(X) = det

(
sinh(adX/2)

adX/2

)
;

this is the Jacobian of the exponential map exp: g→ G for a unimodular group

G. This character formula should be interpreted as an equation of distributions

on a certain space of test functions on g as follows. For all smooth functions f

compactly supported in a sufficiently small neighborhood of the origin in g,

Tr

∫
g

f(X)π(expX) dX =

∫
O

∫
g

ei`(X)f(X)j(X)−1/2 dXdµO(`) (2.4)

where π is the representation with character χ.

Definition 2.5.1. Suppose G is a Lie group and f ∈ g∗. An integral orbit

datum at f is an irreducible unitary representation (π,Hπ) of the isotropy

group Gf subject to the condition

π(expX) = eif(X) · idHπ , X ∈ gf .

The orbit G · f is called integral if it admits an integral orbit datum.

Theorem 2.5.2 (Kirillov). Suppose G is a connected (but not necessarily simply

connected) nilpotent Lie group. Then the irreducible unitary representations of

G are in natural one-to-one correspondence with the integral orbits of G.

Theorem 2.5.3 (Kirillov). Let G be a connected, simply connected nilpotent

Lie group and π an irreducible unitary representation of G. Then there is a

coadjoint orbit O in g∗ such that (2.4) holds.

Kirillov proved his character formula for simply connected nilpotent and

simply connected compact Lie groups [15, 16] and conjectured its universality.
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The validity of this conjecture has been verified for some other classes of Lie

groups, most notably for the case of tempered representations of reductive Lie

groups by Rossmann [26].

2.6 The Stationary Phase Method

In this section we review the stationary phase method that is used in study-

ing the asymptotic behavior of oscillatory integrals of the form

I(t) =

∫
R
g(x)eitf(x) dx. (2.5)

Here we assume that the phase and amplitude functions f and g are real-

valued and sufficiently smooth and that g is compactly supported over the real

line.

For large t > 0 the main contribution into the integral (2.5) is given by the

neighborhood of the critical points of f where the derivative vanishes. Let x0

be such a critical point. Then one can approximate f(x) near x0 by the first

two terms of the Taylor series

f(x) = f(x0) +
1

2
f ′′(x0)(x− x0)2 + · · · .

The main contribution of the critical point x0 into the integral I(t) is given by

the Gaussian integral

I0(t) = g(x0)eitf(x0)

∫
R
e

1
2 f
′′(x0)(x−x0)2 dx

that can be computed explicitly as

I0(t) = g(x0)ei(tf(x0)+σ π4 )

(
2π

t|f ′′(x0)|

) 1
2

,
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where σ denotes sign of the second derivative f ′′(x0).

A similar formula holds for multivariable functions with nodegenerate critical

points, that it, critical points at which the Hessian matrix is invertible.

Adding up the contributions of all (finitely many) critical points of the phase

function, we get the following approximation of I(t) for t� 0:

I(t) =

(
2π

t

)n
2 ∑

i

g(xi)e
itf(xi)

eiσi
π
4

|det d2
xif |

1
2

+O(t−
n
2−1) (2.6)

as t→∞. Here n is the number of the variables of f and g, and σ = σ+−σ− is

the signature of the Hessian matrix, defined as the difference of the numbers

of positive and negative eigenvalues of the Hessian matrix.

Example 2.6.1. The inner product function

R2 × R2 → R

(x, y) 7→ 〈x, y〉

has a critical point at (0,0) with signature 0. Therefore, by the stationary phase

formula (2.6) applied to a compactly supported function ψ we get the equality

∫
R2

∫
R2

ψ(x, y)eit〈x,y〉 dx dy =

(
2π

t

)2

ψ(0,0) +O(t−3) as t→∞.

Note that this particular example illustrates an instance of the “exact sta-

tionary phase formula,” meaning that the error term O(t−3) is indeed zero, as

we know by the Fourier inversion formula. For another example of the exact

stationary phase see the Subsection A.2 in the Appendix.

In 1982 Duistermaat and Heckman [7] found a symmetry principle giving a

geometric explanation for such exactness in the stationary phase formula. The

Duistermaat–Heckman Theorem was later generalized by Berline–Vergne [4] and
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Atiyah–Bott [2] and also was used to establish the equivalence of the Kirillov

and Weyl character formulae for compact Lie groups. We will not go into

the details of such results here, but instead we shall explain how the Fourier

inversion formula which is an ‘exact formula’ can be derived from the principle

of stationary phase. For the sake of illustration, let us go back to our above

example and make a shift in the inner product function to obtain

∫
R2

∫
R2

ψ(x, y)eit〈x,y−y0〉 dx dy =

(
2π

t

)2

ψ(0, y0) +O(t−3) as t→∞.

To extract an ‘exact formula’ out of this, first replace ψ(x, y) with the product

f(x)g(y) of two smooth compactly supported functions f and g:

∫
R2

∫
R2

f(x)g(y)eit〈x,y−y0〉 dx dy =

(
2π

t

)2

f(0)g(y0) +O(t−3).

Next make the change of variable x 7→ x/t and multiply both sides by t2 to

simplify:

∫
R2

∫
R2

f
(x
t

)
g(y)ei〈x,y−y0〉 dx dy = (2π)2f(0)g(y0) +O(t−1). (2.7)

Clearly, the left-hand side of (2.7) equals
∫
R2 f

(
x
t

)
ĝ(x)e−i〈x,y0〉 dx. Thus if we

choose f such that f(0) = 1 and let t → ∞ we recover the Fourier inversion

formula

g(y0) =
1

(2π)2

∫
R2

ĝ(x)e−i〈x,y0〉 dx.
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Chapter 3

Nilpotent Lie Groups

Nilpotent Lie groups and their representations have been studied extensively

in the literature. From the many papers by Corwin, Greanleaf, Lipsman,

Pukanzsky and others we only cite [19], [24], and [29] and refer the reader

to [6] for a more comprehensive list of bibliographies.

3.1 The Heisenberg Group

The Heisenberg group plays a fundamental role in many areas of harmonic anal-

ysis, differential equations, number theory, and quantum physics. It also gives

a mathematical formulation of the Heisenberg uncertainty principle of quantum

mechanics, and reveals close connections to the harmonic oscillator.

In this section we shall develop the representation theory of the Heisenberg

group following the works of Stone, von Neumann, and Kirillov, and at the end

we give a direct proof of the positivity of Kirillov’s character formula without

invoking any representation theoretic results.

19



Consider the time-frequency translations on L2(R):

Txf(t) = f(t+ x), Myf(t) = eityf(t).

We have TxMy = eixyMyTx, so the collection of operators

{ eizMyTx | x, y, z ∈ R }

forms a group, essentially the Heisenberg group. More precisely, the real

Heisenberg group H is R3 equipped with the group law

(x, y, z) · (x′, y′, z′) = (x+ x′, y + y′, z + z′ + xy′).

We remark that the Heisenberg group H can be realized by the 3 × 3 upper

triangular matrices

H =




1 x z

0 1 y

0 0 1


∣∣∣∣∣ x, y, z ∈ R


with the usual matrix multiplication. In fact, thanks to a theorem of Engel [6],

we can view any nilpotent Lie group as an abstract generalization of such matrix

groups of unipotent upper triangular matrices. We can also think of nilpotent

Lie groups as somehow arising from nilpotent Lie algebras that we now define.

Definition 3.1.1. The descending central series of a Lie algebra g is defined

inductively by

g(1) = g,

g(n+1) = [g, g(n)].
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We say that g is an n-step nilpotent Lie algebra if g(n+1) = 0 but g(n) 6= 0.

The Lie algebra h of the Heisenberg group has three generators X, Y , and

Z satisfying the canonical commutation relation (CCR)

[X,Y ] = Z.

An important example of the Heisenberg pair is given by the multiplication and

differentiation operators

Pf(x) =
d

dx
f(x), Qf(x) = iλxf(x) (3.1)

which satisfy the relation [P,Q] = iλ, λ 6= 0. In fact, by a celebrated theorem

of Stone and von Neumann, the equation (3.1) serves as a model example for

the Heisenberg relations.

Theorem 3.1.2 (Stone-von Neumann). A pair of antisymmetric (unbounded)

operators P and Q in the Hilbert space H satisfying the Heisenberg commuta-

tion relations [P,Q] = iλI, λ 6= 0 can be realized as a differentiation and a

multiplication:

Pf(x) =
d

dx
f(x), Qf(x) = iλxf(x),

on scalar or vector-valued functions f ∈ L2(R). In other words, there exists a

unitary intertwining map W : H → L2(R) that sends Q to iλx and P to d/dx.

It follows from the Stone-von Neumann Theorem that the irreducible unitary

representations of the Heisenberg group H fall into two classes:

• The one-dimensional representations (characters) of the commutative quo-

tient group H/Z ' R2,

χr,s(a, b, c) = ei(ra+st) for (a, b, c) ∈ H,
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and,

• A one-parameter family of infinite-dimensional representations πt with

t ∈ R realized in the Hilbert space H = L2(R) by operators

πt(a, b, c)φ(x) = ei(bx+c)tφ(x+ a).

To apply Theorem 3.1.2 to irreducible unitary representations of the Heisenberg

group H, we observe that any such representation π restricted to the center

Z = Z(H) must be scalar by Schur’s Lemma; T|Z = eit. If t = 0, then π

factors through the representation of the commutative quotient group H/Z,

so it becomes a character. If t 6= 0, generators of the Lie algebra of H obey

the Heisenberg CCR. So by Theorem 3.1.2, we get the subgroups {(a, 0, 0)}

and {(0, b, c)}, acting by translations and modulations on L2(R) as we claimed

above.

Remark 3.1.3 (Historical Remarks). The Heisenberg commutation relations

first appeared in the context of quantum mechanics. The states of a quantum

system are usually described by vectors in a Hilbert space H, while the observ-

ables are given by certain (typically symmetric, but often unbounded) operators

in H. Examples include the so-called position and momentum operators

Pf(x) =
d

dx
f(x), Qf(x) = iλxf(x) on H = L2(R).

The precise knowledge of an observable A at state ψ is attainable only for

special states: the eigenvectors of A. Thus, measurability (or observability) of

A becomes paramount to its diagonalization.

Obviously, any pair of commutating observables can be simultaneously diag-

onalized, that is, observed to any degree of precision. However, noncommuting
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observables like position {Qi} and momenta {Pi} cannot be diagonalized.

It was observed experimentally that the position and momentum of an electron

cannot be accurately measured at once; the product of errors always remained

greater than the Plank constant ~. This led Heisenberg to state his famous

Uncertainty Principle of the quantum theory in the form of the commutation

relation

[P,Q] = i~.

3.1.1 The Symplectic Structure of the Coadjoint Orbits

Let G be a group acting on g∗ by the coadjoint action. We shall always regard

the coadjoint orbits as injectively immersed submanifolds of g∗ diffeomorphic

to G/Gf , where Gf = { g ∈ G | Ad∗(g)f = f } is the isotropy group of the

coadjoint action at a point f in the orbit.

We now describe the tangent vectors to coadjoint orbits. For a coadjoint

orbit O and f ∈ O,

F (t) = Ad∗(g(t))f

is a curve in O with F (0) = f where g(t) is a curve in G. Differentiating F (t)

at t = 0 we get

F ′(0) = ad∗(ξ)f where ξ = g′(0) ∈ g.

Thus we have the vector space isomorphism

TfO ∼= { ad∗(ξ)f | ξ ∈ g } ⊂ g∗.

Let the Heisenberg group H act on h∗ by the coadjoint action. Then for a

coadjoint orbit O ⊂ h∗ and ξ ∈ h we can define the vector field ξO generated
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by ξ as follows:

ξOf =
d

dt

∣∣∣
t=0

Ad∗(exp tξ)f, for f ∈ O

= ad∗(ξ)f = −f([ξ, ·]) ∈ TfO.

Now let X, Y , and Z be the standard basis vectors for h satisfying the CCR and

assume that f(Z) = γ 6= 0 so that the coadjoint orbit O is the plane Z∗ = γ in

the X∗Y ∗Z∗-coordinate system in h∗.

Figure 3.1: Coadjoint orbits for the Heisenberg group

Then for the Lie algebra elements

ξ = ξ1X + ξ2Y + ξ3Z

and

η = η1X + η2Y + η3Z

one computes f([ξ, η]) = γ(ξ1η2 − ξ2η1), and therefore

ωf (ξOf , η
O
f ) = f([ξ, η])

= γ(ξ1η2 − ξ2η1). (3.2)
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On the other hand, writing out ξOf and ηOf in terms of basis vectors in h∗ we

find

ξOf = γ(ξ2X
∗ − ξ1Y ∗) (3.3)

ηOf = γ(η2X
∗ − η1Y

∗). (3.4)

Putting equations (3.2), (3.3), and (3.4) together and identifying h∗∗ with

h we obtain the KKS symplectic form of the coadjoint orbit O, namely ω =

1
γ dX ∧ dY . We shall use the Liouville form

µ =
ω

2π
=

1

2πγ
dX ∧ dY (3.5)

as the volume form on O when integrating functions on O.

One might wonder why the multiplicative constant γ appears in the KKS

symplectic form ω. In the next section we will give a justification for this using

the Plancherel Formula for the Heisenberg group.

3.1.2 Positivity of Kirillov’s Character

Let f ∈ S(H) be a function in the Schwartz space of the Heisenberg group and

identify the maximal coadjoint orbit O and the Lie algebra h with the plane

R2×{γ} = { (α, β, γ) | α, β ∈ R } and R3 = { (a, b, c) | a, b, c ∈ R }, respectively.

Then

χO(f) =

∫
O

∫
h

f(expX)ei(aα+bβ+cγ) dX dµO

=
1

2π|γ|

∫
c

∫
(α,β)

∫
(a,b)

f(expX)ei(aα+bβ+cγ) da db dα dβ dc by (3.5)

=
2π

|γ|

∫
c

f(exp(0, 0, c))eicγ dc
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where in the last step we have used the exact stationary phase formula, or simply

the Fourier Inversion Theorem.

Thus we have found the following simplified form of Kirillov’s formula for

the maximal coadjoint orbit O of the Heisenberg group

χO(f) =
2π

|γ|

∫
R
f(exp tZ)eitγ dt, f ∈ S(H). (3.6)

Now checking the positivity of character formula or equivalently the right-hand

side of the above equality is easy. First note that

χO(f ∗ f∗) =
2π

|γ|

∫
R

∫
H

f(exp tZ · h)f(h)eitγ dλ dt

where dλ = dx∧dy∧dz is the Haar measure on H after the usual identification

of H with R3. Setting h = exp(xX + yY + zZ), that is possible due to the

surjectivity of exp: h→ H, and using the fact that Z ∈ Z(H) the last expression

equals

2π

|γ|

∫
R

∫
R3

f(exp(xX + yY + (z + t)Z))f(exp(xX + yY + zZ))eitγ dλ dt

=
2π

|γ|

∫
R

∫
R3

f(exp(xX + yY + (z + t)Z))ei(z+t)γf(exp(xX + yY + zZ))eizγ dλ dt

=
2π

|γ|

∫
R2

∣∣∣∣∫
R
f(exp(xX + yY + zZ))eizγ dz

∣∣∣∣2 dy dx ≥ 0.

Kirillov’s character is positive for point-orbits essentially by the discussion in
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Subsection 2.5.1 about the abelian groups. To be more precise,

χO(f ∗ f∗) =

∫
h

f ∗ f∗(expX)ei`(X) dX =

∫
H

f ∗ f∗(x)ei`(log x) dλ(x)

=

∫
H

∫
H

f(xy)f(y) dλ(y)ei`(log x) dλ(x)

=

∫
H

∫
H

f(x)f(y)ei`(log xy−1) dx dy

=

∣∣∣∣∫
H

f(x)ei`(log x) dx

∣∣∣∣2 ≥ 0.

The last equality is due to the fact that if ξ, η ∈ h, then

exp ξ exp η = exp(ξ + η +
1

2
[ξ, η])

and moreover `([ξ, η]) = 0, since [ξ, η] ∈ Z(h). Therefore, the map from G to C

defined by exp(X) 7→ `(X) is a group homomorphism.

3.1.3 The Plancherel Theorem

In this section we state a version of the Plancherel Formula for the Heisenberg

group. This provides an answer to the question that we asked earlier about the

existence of the multiplicative constant in the KKS symplectic form (3.5).

Theorem 3.1.4 (Plancherel Theorem). Let G be a second countable, unimod-

ular, locally compact group of type I. There is a unique measure µ on Ĝ such

that for f ∈ L1(G) ∩ L2(G) one has

‖f‖22 =

∫
Ĝ

‖π(f)‖2HS dµ(π).

The measure µ is called the Plancherel measure on Ĝ associated with the

Haar measure of G.

Remark 3.1.5. If G is a locally compact abelian group, then the classical
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Plancherel theorem shows that the Plancherel measure is just the (suitably

normalized) Haar measure of the dual group Ĝ.

The Plancherel formula for a nilpotent Lie group G follows from the abelian

Plancherel for the vector space g:

f(e) = f ◦ exp(0) =

∫
g∗
f̂ ◦ exp(`) d`

=

∫
O∈g∗/G

(∫
`∈O

f̂ ◦ exp(`) dµO(`)

)
dm(O)

where dm is the quotient measure of the Lebesgue measure d` by the Liouville

measure dµO. Thus we obtain

f(e) =

∫
O∈g∗/G

TrπO(f) dm(O).

Proposition 3.1.6 (A Plancherel Type Formula). Let f ∈ S(H) be a Schwartz

function. Then

f(I) =

∫
R×

χOγ (f)|γ| dγ.

This implies that the Plancherel measure of H is |γ| dγ and that the set of one-

dimensional representations in Ĥ has Plancherel measure zero.

Proof. The proof is an immediate consequence of Equation (3.6) and the Eu-

clidean Fourier Inversion Theorem.

∫
R×

χOγ (f)|γ| dγ =
1

2π

∫
R×

∫
R
f(exp tZ)eitγ dt dγ by Equation (3.6)

= f(exp tZ)
∣∣∣
t=0

= f(I).

28



3.2 Positivity of Kirillov’s Character for Nilpo-

tent Lie Groups

Let g be a real finite dimensional Lie algebra and let f ∈ g∗. Denote by Bf the

alternating bilinear form on g defined by

Bf (X,Y ) = f([X,Y ]), X, Y ∈ g.

Definition 3.2.1. A subalgebra m ⊂ g is said to be a real polarization at

f ∈ g∗ if m is a maximal totally isotropic subspace for Bf , that is, f([X,m]) = 0

if and only if X ∈ m.

A subalgebra h with f([h, h]) = 0 is said to be subordinate to f . If g

is nilpotent, maximal subordinate subalgebras are real polarizations, but that

need not be so in general.

Lemma 3.2.2.

(a) Let V be a 2n-dimensional vector space with a nondegenerate alternating

bilinear form. Then any isotropic subspace of V which is maximal under

inclusion has dimension n.

(b) Let g be a nilpotent Lie algebra and ` ∈ g∗. Then there exists a maxi-

mal isotropic subalgebra associated to the alternating bilinear form given by

〈X,Y 〉 = `([X,Y ]). Moreover, by the previous part, any such subalgebra lies

halfway between the radical r` and the Lie algebra g.

Remark 3.2.3. Maximal isotropic subalgebras, whose existence is guaranteed

for nilpotent Lie algebras, are sometimes called polarizing subalgberas in the

literature.

Let m be a polarizing subalgebra subordinate to `. In the light of the above
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lemma,

dimM/R` = dim g/m.

Motivated by the equality of dimensions, we formulate the following about coad-

joint actions.

Lemma 3.2.4. Let G be a nilpotent Lie group with Lie algebra g and a polarizing

subalgebra m subordinate to an element ` ∈ g∗. Then the mapping

θ : M/R` → (g/m)∗

m mod R` 7→ m · `− `.

is a diffeomorphism.

The proof of this lemma hinges upon a technical result due to Chevalley and

Rosenlicht.

Theorem 3.2.5 (Chevalley-Rosenlicht). Let G be a connected Lie group acting

unipotently on a real vector space V . For each v ∈ V there are X1, . . . , Xn ∈ g

such that

G · v = {(expx1X1 . . . expxnXn) · v | x1, . . . , xn ∈ R}.

The map

(x1, . . . , xn) 7→ (expx1X1 . . . expxnXn) · v

is a diffeomorphism between Rn and the orbit G ·v which is a closed submanifold

of V .

Proof. See [6, Theorem 3.1.4].

We now turn to the proof of Lemma 3.2.4.
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Proof of Lemma 3.2.4. By the identity ad∗(eX) = ead∗X , or the Baker-Campbell-

Hausdorff formula,

m · `(P ) = `(P ) for P ∈ m and m ∈M. (3.7)

Using this it is a straightforward matter to check that θ is well defined.

Injectivity is clear since m1 · `− ` = m2 · `− ` implies m1m
−1
2 ∈ R` and hence

m1 mod R` = m2 mod R`. Surjectivity of θ, on the other hand, is equivalent to

surjectivity of its lift θ̃ to the group M defined by m 7→ m · ` − `. Computing

the differential of the equivariant map θ̃ at a point g ∈M one infers that

θ̃∗,g(X) =
d

dt

∣∣∣
t=0

θ̃(g exp tX) = g · ((ad∗X)`) where X ∈ TgM,

and

rank θ̃∗,g = dimTgM − dim{X ∈ TgM | (ad∗X)` = 0}

= dimm− dim r`.

Consequently, θ̃ is a submersion, indeed a local diffeomorphism, and hence an

open map. On the other hand, we know from Theorem 3.2.5 that the image

of θ̃ is a closed submanifold of (g/m)∗ and the surjectivity of θ follows. We

emphasize that it is exactly in the last step that we are using the fact that G is

nilpotent to conclude that the image of θ̃ is closed.

Theorem 3.2.6 (Weil’s Formula). Let G be a locally compact group, and let H

be a closed subgroup. There exists a G-invariant Radon measure ν 6= 0 on the

quotient G/H if and only if the modular functions ∆G and ∆H agree on H. In

this case, the measure ν is unique up to a positive scalar. Given Haar measures

on G and H, there is a unique choice for ν such that for every f ∈ Cc(G) one

31



has the quotient integral formula

∫
G

f(g) dg =

∫
G/H

∫
H

f(xh) dh dν(xH).

We will have an occasion for using a slightly more general form of this

theorem involving a tower of three groups which we now state.

Corollary 3.2.7. Let G be a locally compact group with closed subgroups H

and K such that K ⊂ H ⊂ G. Then

∆G|H = ∆H , ∆H |K = ∆K ,

if and only if there exist nonzero suitably normalized invariant Radon measures

on the quotient spaces such that the equality

∫
G/K

f(g) dgK =

∫
G/H

∫
H/K

f(xh) dhK dxH

holds for any f ∈ Cc(G/K).

Proof. First assume the equality of restrictions of modular functions. Let F ∈

Cc(G) and apply Theorem 3.2.6 twice to obtain

∫
G

F (t) dt =

∫
G/K

∫
K

F (gk) dk dgK

=

∫
G/H

∫
H

F (xs) ds dxH =

∫
G/H

(∫
H/K

∫
K

F (xhk) dk dhK

)
dxH.

Fix f ∈ Cc(G/K) and choose a function α ∈ Cc(G) with the property that for

every gK ∈ supp (f) we have
∫
K
α(gk) dk = 1, then substitute F = fα. For

the standard proof of existence of such α we refer to [8, Lemma 2.47].

The converse is immediate from the first part of Theorem 3.2.6.
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For a geometric proof of this ‘chain rule for integration’ formula see [13,

Proposition 1.13].

Remark 3.2.8. Our next goal is proving that, with suitable choices of measure,

the map θ of Lemma 3.2.4 is measure preserving. Here we collect some of

standard conventions and results about installing measures on various spaces

that we shall need shortly.

1. (Lebesgue measure on vector spaces) Let V be an n-dimensional vector

space with a basis B = {b1, . . . , bn}. Then one can put a Lebesgue measure

on V via the isomorphism T : Rn → V sending the standard basis vector

ei of Rn to bi. For f ∈ Cc(V ) define

∫
V

f dµ =

∫
Rn
f ◦ T dx.

The usual properties of Lebesgue measure such as translation invariance

are easy to check.

2. (The Lebesgue measure on the Lie algebra of a nilpotent Lie group is

invariant under the adjoint action.) It is well known and easy to see that

for locally compact Hausdorff spaces X and Y and a homeomorphism1 Φ,

∫
X

fΦ dµ =

∫
Y

f dµΦ (Change of variables formula)

holds for any Borel function f where fΦ is the pull back of f given by

fΦ(x) = f(Φ(x)) and µΦ is the push forward of the Borel measure µ given

by µΦ(S) = µ(Φ−1(S)).

Fix a Haar measure µ on a nilpotent Lie group G, then according to the

1The change of variables formula is true with the weaker assumption of measurability of
Φ; however we shall assume that Φ is a homeomorphism so that µ and µΦ enjoy the same
measure theoretic properties such as regularity.
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change of variables formula,

∫
g

f dµlog =

∫
G

f ◦ log dµ.

It is not hard to see, for instance, by direct computations in strong Malcev

bases as in [6, Theorem 1.2.10], that µlog is a Lebesgue measure. For any

g ∈ G, ∫
G

f(Ad(g) log x) dµ(x) =

∫
G

f(log x) dµ(x)

using the power series expansion of logarithm and unimodularity of G.

This proves our claim. An immediate consequence that we mention for

later use is the invariance of the Lebesgue measure on g∗ under the coad-

joint action.

3. Let G be a nilpotent Lie group and H a closed subgroup of G. Then the

Lebesgue measure on g/h is invariant under the adjoint action of group

H.

For f ∈ Cc(g/h) we proceed as in the proof of Corollary 3.2.7 and choose

α ∈ Cc(g) such that for any Yg+h ∈ supp(f) we have
∫
h
α(Yg+Yh) dγ(Yh) =

1. Let π : g → g/h denote the natural projection map. Then it is clear

that ∫
g/h

f dµ =

∫
g

(f ◦ π)αdλ.

Thus, by the invariance of Lebesgue measures under the adjoint action
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that we discussed above, for any h ∈ H,

∫
g/h

f(Ad(h)X) dµ(X) =

∫
g

f(Ad(h)π(Y ))α(Y ) dλ(Y )

=

∫
g

f(π(Y ))α(Ad(h−1)Y ) dλ(Y )

=

∫
g/h

f dµ(Yg)

∫
h

α(Ad(h−1)(Yg + Yh)) dγ(Yh)︸ ︷︷ ︸
=1

=

∫
g

f(π(Y ))α(Y ) dλ(Y ) =

∫
g/h

f(X) dµ(X)

as we wanted to show.

4. It follows from the definition of m that m/r` ⊂ g/r` is a Lagrangian sub-

space for B` and the assignment φ defined by X 7→ B`(·, X) is a canonical

linear isomorphism between m/r` and (g/m)∗.

5. Any nonzero Lebesgue measure λ on m/r` can be pushed forward to an

M -invariant measure λẽxp on M/R` via the exponential map. Also one

can use the linear isomorphism φ described above to transfer the measure

λ to (g/m)∗.

6. (Dual Measure) Let V be a vector space equipped with a Lebesgue measure

µ. Then we can uniquely determine a dual measure λ on V ∗ via the Fourier

transform. More precisely, if

φ̂(f) =

∫
V

φ(X)eif(X) dµ(X),

then we choose λ so that

φ(0) =

∫
V ∗
φ̂(f) dλ(f),

and therefore V ⊕ V ∗ carries a canonical measure in the sense that if we
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scale the Lebesgue measure on V by a nonzero constant c, then the dual

measure on V ∗ is scaled by c−1. We shall be interested in the following

decomposition of a Lie algebra

g = g/m⊕ (g/m)∗ ⊕ r`

which helps us assign a measure to R and obtain canonical measures on

G and hence on G/R. (cf. Weil’s Formula, Theorem 3.2.6)

Theorem 3.2.9 ([6, Theorem 1.1.13]). Let g1 ⊂ g2 ⊂ · · · ⊂ gk be subalgebras

of a nilpotent Lie algebra g with dim gj = nj. Then

(a) there exists a basis {X1, . . . , Xn } of g such that

(i) for each m, Span{X1, . . . , Xm } is a subalgebra of g, and

(ii) Span{X1, . . . , Xnj } = gj for 1 ≤ j ≤ k.

(b) If gj are ideals of g, the above basis can be chosen so that each Span{X1, . . . , Xm }

is an ideal of g.

A basis satisfying these properties is called a Malcev basis for g through

g1, . . . , gk.

Lemma 3.2.10. With the above choices of measure, the map θ of Lemma 3.2.4

is measure preserving.

Proof. Let {D1, . . . , Dr, X1, . . . , Xk} be a Malcev basis for m through r` =

Span{D1, . . . , Dr}. Identify m/r` with the subspace Span{X1, . . . , Xk} of m.

Now we can define

ẽxp: m/r` →M/R`

x1X1 + · · ·+ xkXk 7→ exp(x1X1) · · · exp(xkXk)R`
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which is automatically well defined and gives a polynomial relation between the

domain and the codomain.

Consider the following diagram summarizing our above measure assignment

to the quotient spaces.

(m/r`, λ) (M/R`, λẽxp)

((g/m)∗, λφ) ((g/m)∗, λφ)

ẽxp

φ ∼= θ

Define the change of basis transformation T : Rk → m/r` as before. By virtue

of the change of variables formula, for any function f ∈ Cc((g/m)∗),

∫
M/R`

f ◦ θ dλẽxp =

∫
m/r`

f ◦ θ ◦ ẽxp dλ =

∫
Rk
f ◦ θ ◦ ẽxp ◦ T dx.

To show that θ is measure preserving, we have to check that these integrals are

equal to

∫
(g/m)∗

f dλφ =

∫
m/r`

f ◦ φdλ =

∫
Rk
f ◦ φ ◦ T dx.

It suffices to prove that the Jacobian determinant of the diffeomorphism

T−1 ◦ φ−1 ◦ θ ◦ ẽxp ◦ T

is constant, everywhere equal to one. Observe that

Rk 3 x =
∑

xiei
T7→ X =

∑
xiXi

ẽxp7→ ẽxp(X)
θ7→ ẽxp(X) · `− `

=
∑

yi(x)φ(Xi)
φ−1

7→
∑

yi(x)Xi
T−1

7→ y =
∑

yi(x)ei ∈ Rk

where we have used the fact that φ(Xi) are basis vectors for (g/m)∗. Choose
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a basis {Xk+1, . . . , X2k} for g/m such that its dual basis in (g/m)∗ is precisely

{φ(X1), . . . , φ(Xk)}, that is, with the usual notation from linear algebra of dual

spaces, X∗k+i = φ(Xi). Now we are ready to compute the Jacobian at the origin.

yi(x) = θ ◦ ẽxp ◦ T (Xk+i) = 〈Ad∗ ẽxp(x1X1 + · · ·+ xkXk)`− `,Xk+i〉

= 〈`, (Ad ẽxp(−x1X1 − · · · − xkXk)− id)Xk+i〉

∂yi
∂xj

(0) =
d

dxj
〈`, (e− ad(xjXj) − id)Xk+i〉

= −`[Xj , Xk+i] = φ(Xj)(Xk+i) = X∗k+j(Xk+i) = δij

Thus,

∂(y1, . . . , yk)

∂(x1, . . . , xk)
(0) = Ik.

Our next objective is to prove that the latter equality implies that the Jacobian

determinant is constant, everywhere equal to one .

We can push forward λφ to an M -invariant measure on M/R` via θ−1. To

check M -invariance of (λφ)θ−1 , observe that for p ∈M ,

pθ−1(ψ) = θ−1(p · ψ + p · `− `) (3.8)

and therefore

∫
M/R`

f(px) dλθ−1◦φ(x) =

∫
(g/m)∗

f(pθ−1(ψ)) dλφ(ψ)

=

∫
(g/m)∗

f(θ−1(p · ψ)) dλφ(ψ)

=

∫
(g/m)∗

f(θ−1(ψ)) dλφ(ψ) =

∫
M/R`

f(x) dλθ−1◦φ(x)

where the second and third equalities hold by Equation (3.8) and translation
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invariance of the Lebesgue measure, and part (2) of Remark 3.2.8, respectively.

But the M -invariant measure λẽxp on M/R` is unique up to a positive scalar

by Theorem 3.2.6. Therefore,

λθ−1◦φ = (λφ)θ−1 = cλẽxp, for some c ∈ R+

and our calculation of the Jacobian at the origin shows that c = 1, as claimed.

Remark 3.2.11. Each yi in the above proof is a polynomial in x, thanks to the

Baker-Campbell-Hausdorff formula. However, since the Jacobian determinant

det ∂(y1,...,yk)
∂(x1,...,xk) is a nonzero constant, the Jacobian Conjecture implies that the

map

x 7→ (y1(x), . . . , yk(x))

has a regular inverse. This is to say that the coadjoint map θ has a polynomial

inverse.

For a nilpotent Lie group G and ` ∈ g∗, let χ` denote Kirillov’s character

corresponding to the coadjoint orbit of `. That is,

χ`(f) =

∫
O`
f̂ ◦ exp(φ) dµ(φ), f ∈ S(G).

Proposition 3.2.12. Let G be a connected nilpotent Lie group with a polarizing

subalgebra m. Then for any f ∈ S(G) and ` ∈ g∗,

χ`(f) =

∫
G/M

∫
m

f(eAd(x)P )ei`(P ) dP dxM. (3.9)

Proof. First we use the diffeomorphism G/R` ∼= O` to make a change of vari-
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ables:

χ`(f) =

∫
O`

∫
g

f(expX)eiφ(X) dX dµ(φ)

=

∫
G/R`

∫
g

f(expX)eig·`(X) dX dgR`,

where we write g · ` = Ad∗(g)` for the left action of G on the dual space g∗.

Let m be a maximal isotropic subalgebra of g with M = expm containing the

isotropy group R`. Corollary 3.2.7 allows us to write the latter expression as

∫
G/M

∫
M/R`

∫
g

f(expX)eixm·`(X) dX dmR` dxM.

Since the measure on g is G-invariant we can use the change of variable X 7→

x · X where dot denotes the adjoint action. This together with a measure

decomposition on the Lie algebra gives

∫
G/M

∫
M/R`

∫
g/m

∫
m

f(ex·(P+Y ))eim·`(P+Y ) dP dY dmR` dxM.

Define

F xf (Y ) =

∫
m

f(ex·(P+Y ))ei`(P+Y ) dP.

In view of (3.7) the above integration can be stated in the more compact form

∫
G/M

∫
M/R`

∫
g/m

F xf (Y )eim·`(Y )−i`(Y ) dY dmR` dxM.

Now we apply the measure-preserving diffeomorphism introduced in Lemma 3.2.4

to make a change of variables and to transform the second domain of integration
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from M/R` to (g/m)∗:

∫
G/M

∫
M/R`

∫
g/m

F xf (Y )eim·`(Y )−i`(Y ) dY dmR` dxM

=

∫
G/M

∫
(g/m)∗

∫
g/m

F xf (Y )eiγ(Y ) dY dγ dxM.

by the Fourier Inversion Theorem this equals

∫
G/M

F xf (0)dxM =

∫
G/M

∫
m

f(ex·P )ei`(P ) dP dxM.

When G is a connected nilpotent group, the notions of Harish-Chandra char-

acter and Kirillov character coincide as distributions over S(G), and therefore

if follows from the Equation (2.1) that Kirillov’s character has to be a positive

distribution. We are now ready to prove this result directly and without giving

any reference to the underlying representation.

Theorem 3.2.13. Let G be a connected (but not necessarily simply connected)

nilpotent Lie group and and let f ∈ S(G) be any Schwartz function. Then

χ`(f ∗ f∗) ≥ 0

for any ` in a coadjoint orbit O ⊂ g∗.

Proof. For convenience we switch to the Lie group M in the equation (3.9) by

choosing p ∈M such that P = log p. Then

χ`(f) =

∫
G/M

∫
M

f(xpx−1)ei`(log p) dp dxM

since exp∗,X = eX
(

id−e− adX

adX

)
and det

(
id−e− adX

adX

)
= 1 by nilpotency of adX.
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Thus,

χ`(f ∗ f∗) =

∫
G/M

∫
M

f ∗ f∗(xpx−1)ei`(log p) dp dxM

=

∫
G/M

(∫
M

∫
G

f(xpx−1g)f∗(g−1)ei`(log p) dg dp

)
dxM

=

∫
G/M

(∫
M

∫
G

f(xpx−1g)f(g)ei`(log p) dg dp

)
dxM.

Applying the change of variable g 7→ xg−1 to the innermost integral and using

the unimodularity of G the last integral simplifies to

∫
G/M

(∫
M

∫
G

f(xpg−1)f(xg−1)ei`(log p) dg dp

)
dxM.

Next we apply the quotient integral formula to G to decompose the measure

over M and G/M

∫
G/M

(∫
M

∫
G/M

∫
M

f(xpq−1y−1)f(xq−1y−1)ei`(log p) dq dyM dp

)
dxM.

Finally we change the order of the two integrations in the middle and use the

change of variable p 7→ p−1q, and by unimodularity of M we find

χ`(f ∗ f∗)

=

∫
G/M

∫
G/M

∫
M

∫
M

f(xp−1y−1)f(xq−1y−1)ei`(log p−1q) dq dp dyM dxM

=

∫
G/M

∫
G/M

∣∣∣∣∫
M

f(xp−1y−1)e−i`(log p) dp

∣∣∣∣2 dyM dxM ≥ 0.
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Chapter 4

Compact Lie Groups

Localization theorems of Atiyah–Bott [2] and Berline–Vergne [4] that can be

regarded as generalizations of the exact stationary phase method due to Duis-

termaat and Heckman [7] express integrals of equivariant forms as sums over

fixed points and provide a method for proving Kirillov’s character formula for

compact Lie groups by showing its equivalence to the Weyl character formula.

In this chapter we study the positivity of Kirillov’s character formula for

compact Lie groups, and as before we start with the simplest non-abelian ex-

ample, in this case the special unitary group SU(2). Of course, validity of

Kirillov’s character formula for compact Lie groups implies its positivity over

the integral coadjoint orbits.
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4.1 SU(2)

4.1.1 Coadjoint Orbits

Let us temporarily assume that G is a semisimple Lie group. Since semisimplic-

ity is equivalent to non-degeneracy of the Cartan-Killing form

κ : g× g→ R

(X,Y ) 7→ Tr(adX ◦ adY )

we can identify g and g∗ via the pairing

ι : g→ g∗

X 7→ κX where κX(Y ) = κ(X,Y ).

Then for any g ∈ G we have

κAd(g)X(Y ) = κ(Ad(g)X,Y )

= κ(X,Ad(g−1)Y ) since κ is Ad-invariant

= κX(Ad(g−1)Y )

= Ad∗(g)(κX)(Y )

and thus we see that for a semisimple Lie group G the coadjoint orbits in g∗

correspond to the Adjoint orbits of G in g. This is reflected in the commutativity

of the following diagram:

g g∗

g g∗

ι

Ad(g) Ad∗(g)

ι
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Example 4.1.1. For G = SU(2) the covering map Φ: SU(2)→ SO(3) and the

Cartan-Killing form give the following equivariant identifications

su(2)∗ ∼= su(2) ∼= so(3)

and therefore the coadjoint orbits of SU(2) are in correspondence with the Ad-

joint orbits of SO(3) which are concentric spheres in R3.

Figure 4.1: Integral coadjoint orbits for the group SU(2)

To define the norm of a Lie algebra element X ∈ su(2) we think of X as a

two-by-two Hermitian matrix of trace zero

X =

 it z

−z −it

 t ∈ R, z ∈ C

and let ‖X‖ = (t2 + ‖z‖)1/2. We shall use this normalization in the future

without further comment.

4.1.2 The Symplectic Structure of the Coadjoint Orbits

Let the group SU(2) act on su(2)∗ by the coadjoint action. For a coadjoint orbit

O ⊂ su(2)∗ and ξ ∈ su(2) we define the vector field ξO generated by ξ as usual:

ξOf =
d

dt

∣∣∣
t=0

Ad∗(exp tξ)f, for f ∈ O

= ad∗(ξ)f = −f([ξ, ·]) ∈ TfO.
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Now let i, j, and k be the standard basis vectors for (R3,×) ∼= (su(2), [·, ·])

satisfying the cyclic relations

[i, j] = k, [j, k] = i, [k, i] = j

and assume momentarily that O ⊂ (R3)∗ and f = ai∗ + bj∗ + ck∗ ∈ O. Then

for the Lie algebra elements

ξ = ξ1i+ ξ2j + ξ3k

and

η = η1i+ η2j + η3k

one computes

f([ξ, η]) = ξ1η2c− ξ1η3b+ ξ2η3a− ξ2η1c+ ξ3η1b− ξ3η2a

and therefore

σf (ξOf , η
O
f ) = f([ξ, η])

= ξ1η2c− ξ1η3b+ ξ2η3a− ξ2η1c+ ξ3η1b− ξ3η2a. (4.1)

On the other hand, writing out ξOf and ηOf in terms of basis vectors in h∗ we

find

ξOf = (ξ2c− ξ3b)i∗ + (ξ3a− ξ1c)j∗ + (ξ1b− ξ2a)k∗ (4.2)

ηOf = (η2c− η3b)i
∗ + (η3a− η1c)j

∗ + (η1b− η2a)k∗. (4.3)

For f ∈ O as before, assume f(i) = a 6= 0. Putting equations (4.1), (4.2),
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and (4.3) together and identifying (R3)∗∗ with R3 we obtain the KKS symplectic

form of the coadjoint orbit O ⊂ (R3)∗:

σf =
dj ∧ dk
a

.

A similar calculation at other points in O yields

σ =



dy∧dz
x for x 6= 0,

dz∧dx
z for y 6= 0,

dx∧dy
z for z 6= 0

which in spherical coordinates is equivalent to ω = r sinφdφ∧ dθ where r is the

radius of the coadjoint orbit O.

Remark 4.1.2. To transfer the above calculation of the KKS form from (R3)∗

to su(2)∗ we need to take into account the fact that the usual isomorphism of

Lie algebras between su(2) and R3 is not an isometry and in fact it changes the

norm by a factor of 2; see, for instance, the Appendix. Therefore, the canonical

KKS form on O ⊂ su(2)∗ is given by

ω =



dy∧dz
2x for x 6= 0,

dz∧dx
2z for y 6= 0,

dx∧dy
2z for z 6= 0.

We shall use the Liouville form

µ = ω/2π (4.4)

as the volume form on O when integrating functions on O.

47



4.1.3 The Plancherel Theorem

According to the Plancherel Theorem, or the Fourier Inversion Theorem, if G is

a compact Lie group and f is a continuously differentiable function on G, then

f(eG) =
∑

[π]∈Ĝ

(dimπ) Trπ(f). (4.5)

For G = SU(2), we know that the unitary dual contains representations of any

dimension n ∈ N and that there are one-to-one correspondences

N←→ ŜU(2)←→ integral coadjoint orbits.

If f is a smooth function on SU(2) supported sufficiently close to the identity

element, then for any unitary irreducible representation [π] ∈ ŜU(2), the trace

can be computed by Kirillov’s character formula over some integral coadjoint

orbit On. Thus the Plancherel Formula (4.5) can be rewritten as

f(I) =
∑

[π]∈ŜU(2)

(dimπ) Trπ(f)

=

∞∑
n=1

nχOn(f). (4.6)

We shall give a direct proof of (4.6) in Proposition 4.1.7.

The following lemma explains what happens in the above equation if the sum

is taken over all of the coadjoint orbits of SU(2), rather than only the integral

ones.

Proposition 4.1.3 (A Continuous Plancherel Type Formula). Let U be a suffi-

ciently small neighborhood of 0 ∈ su(2) such that the restriction of the exponen-

tial function exp: su(2) → SU(2) to U is a diffeomorphism onto exp(U). Let
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f ∈ C∞(SU(2)) be a function with supp(f) ⊂ exp(U). Then

f(I) = 2

∫ ∞
0

rχOr (f) dr. (4.7)

Proof. The Liouville form of Or computed in (4.4) is 1/4πr times the area form

of a sphere of radius r with respect to the Euclidean metric. Thus,

2

∫ ∞
0

rχOr (f) dr = 2

∫ ∞
0

∫
Or

∫
U

√
j(X)f(expX)ei`(X) dX r dr dµ(`)

=
1

2π

∫
su(2)∗

∫
U

√
j(X)f(expX)ei〈Y,X〉 dX dY

=
1

2π

∫
su(2)∗

∫
su(2)

√
j(X)f(expX)1Ue

i〈Y,X〉 dX dY

by the Euclidean Fourier Inversion Theorem this equals

=
√
j(X)f(expX)1U

∣∣∣
X=0

= f(I).

We mention in passing that in the above computation
√
j(X) could be any

smooth function p with p(0) = 1.

4.1.4 Positivity of Kirillov’s Character

We begin with reviewing a classical theorem of H. Weyl and applying it to the

group SU(2). Weyl proved this result together with some other formulae in a

series of three papers in 1925–1926.

Theorem 4.1.4 (Weyl Integration Formula). Let T be a maximal torus of the

compact connected Lie group G, and let invariant measures on G, T , and G/T
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be normalized as in Theorem 3.2.6. Then every f ∈ C(G) satisfies

∫
G

f(g) dg =
1

|WG(T )|

∫
T

D(t)

∫
G/T

f(gtg−1) dgT dt

where D(t) = det
([

id−Ad(t−1)
]∣∣

g/t

)
and WG(T ) is the Weyl group of G.

Example 4.1.5. In this example we compute the density function D and the

Weyl group for G = SU(2). In this case, since the Cartan subalgebra t equals

iR, with respect to the basis B = { j + t, k + t } for su(2)/t, we have

[
id−Ad(t−1)

]
B =

1− cos 2θ − sin 2θ

sin 2θ 1− cos 2θ


and so

D(t) = det

1− cos 2θ − sin 2θ

sin 2θ 1− cos 2θ


= (1− cos 2θ)2 + (sin 2θ)2 = 2(1− cos 2θ) = 4 sin2 θ.

The normalizer of T in SU(2) is the disjoint union

NSU(2)(T ) = T
⊔ 0 1

−1 0

T
thus the Weyl group WSU(2)(T ) = NSU(2)(T )/T is isomorphic to the two-element

group Z/2Z.

Recall from Proposition 3.2.12 that when G is a nilpotent Lie group with a

polarizing subgroup M , Kirillov’s character for the coadjoint orbit O containing
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a functional ` ∈ g∗ equals the distribution

f 7→
∫
G/M

∫
M

f(xpx−1)ei`(log p) dp dxM, f ∈ S(G).

Now we state and prove an analogue of this proposition for SU(2) in the absence

of a polarizing subgroup.

Proposition 4.1.6. Let U be a sufficiently small neighborhood of 0 ∈ su(2)

such that the restriction of the exponential function exp: su(2) → SU(2) to

U is a diffeomorphism onto exp(U). Let f ∈ C(SU(2)) be a function with

supp(f) ⊂ exp(U). Then

χO(f) = 2

∫
SU(2)/T

∫
T

f(xtx−1) sin(rθ) sin θ dt dxT

where t = diag(eiθ, e−iθ), T = { diag(eiθ, e−iθ) | θ ∈ R } is a maximal torus in

SU(2), and O is a coadjoint orbit of radius r.

Proof. We interpret Kirillov’s character formula (2.4) as the distribution

f 7→ χO(f) =

∫
O

∫
U

√
j(X)f(expX)ei`(X) dX dµ(`)

where the coadjoint orbit O passes through ` ∈ g∗ with ‖`‖ = r and µ is the

Liouville form of O as in Equation (4.4). Explicit computation, carried out in

the Appendix, shows that
√
j(X) = sin ‖X‖

‖X‖ and that
∫
O e

i`(X) dµ(`) = sin r‖X‖
‖X‖ .

Thus

χO(f) =

∫
U

f(expX)
sin ‖X‖
‖X‖

sin(r‖X‖)
‖X‖

dX.
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Since det exp∗,0 = j(X) = sin2 ‖X‖
‖X‖2 this equals

=

∫
SU(2)

f(x)
sin(r‖ log x‖)
sin ‖ log x‖

dx

and by the Weyl integration formula calculations in Example 4.1.5 we obtain

=

∫
T

1

|WSU(2)(T )|

∫
SU(2)

f(xtx−1)
sin(r‖ log xtx−1‖)
sin ‖ log xtx−1‖

D(t) dxT dt

= 2

∫
SU(2)/T

∫
T

f(xtx−1) sin(rθ) sin θ dt dxT.

The last step is justified by the equalities

(i) ‖ log xtx−1‖ = ‖ log t‖, and

(ii) sin(r|θ|) sin |θ| = sin(rθ) sin θ.

The first equality holds because x ∈ SU(2) and the second one is valid since the

right-hand side is an even function of θ.

With this proposition at hand we can give a direct proof of the Plancherel

Formula (4.6).

Proposition 4.1.7 (A Plancherel Type Formula). Let U be a sufficiently small

neighborhood of 0 ∈ su(2) such that the restriction of the exponential function

exp: su(2)→ SU(2) to U is a diffeomorphism onto exp(U). Let f ∈ C∞(SU(2))

be a function with supp(f) ⊂ exp(U). Then

f(I) =

∞∑
n=1

nχOn(f).

For f = g ∗ g∗ the proposition immediately implies the following positivity

result:

0 ≤ ‖g‖22 = g ∗ g∗(I) =

∞∑
n=1

nχOn(g ∗ g∗).
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Proof. Define Ff (θ) = sin θ
∫

SU(2)/T
f(xtx−1) dxT where t denotes diag(eiθ, e−iθ).

Now use Proposition 4.1.6 to compute:

∞∑
n=1

nχOn(f) = 2

∞∑
n=1

n

∫
T

∫
SU(2)/T

f(xtx−1) sin θ sin(nθ) dxT dt

= 2

∞∑
n=1

∫
T

Ff (θ)n sin(nθ) dt

integrating by parts we get

= 2

∞∑
n=1

∫
T

dFf (θ)

dθ
cos(nθ) dt

assuming that dt is normalized so that T has unit volume, this simplifies to

=
dFf (θ)

dθ

∣∣∣
θ=0

= f(I)

Note that Ff is an odd function of θ and hence its derivative is an even function.

Therefore, the sum of the Fourier coefficients in the above Fourier (cosine) series

is given by evaluation at 0.

In the special case of r = 1, χO1(f) =
∫

SU(2)
f(x) dx and thus χO1 is easily

seen to be positive:

χO1
(f ∗ f∗) =

∫
SU(2)

∫
SU(2)

f(xy)f(y) dy dx =

∣∣∣∣∣
∫

SU(2)

f(x) dx

∣∣∣∣∣
2

≥ 0

as expected since the sphere of radius one corresponds to the trivial represen-

tation of SU(2). To discuss the positivity of χOr for other values of r we need

the following lemma.
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Lemma 4.1.8. Let c ∈ R be any real number. Then the assignment

f 7→
∫

SU(2)/T

∫
T

f(xtx−1)eicθ dt dxT

defines a positive distribution, where t = diag(eiθ, e−iθ), and T = { diag(eiθ, e−iθ) |

θ ∈ R } is a maximal torus in SU(2). In fact,

∫
SU(2)/T

∫
T

f ∗ f∗(xtx−1)eicθ dt dxT =∫
SU(2)/T

∫
SU(2)/T

∣∣∣∣∫
T

f(xt−1y−1)e−icθ dt

∣∣∣∣2 dyT dxT (4.8)

Proof. The proof of Theorem 3.2.13, namely the positivity of Kirillov’s character

for nilpotent Lie groups, gives, mutatis mutandis, the following. We repeat the

argument and include the details for completeness and easy reference.

∫
SU(2)/T

∫
T

f ∗ f∗(xtx−1)eicθ dt dxT

=

∫
SU(2)/T

(∫
T

∫
SU(2)

f(xtx−1g)f∗(g−1)eicθ dg dt

)
dxT

=

∫
SU(2)/T

(∫
T

∫
SU(2)

f(xtx−1g)f(g)eicθ dg dt

)
dxT.

Applying the change of variable g 7→ xg−1 to the innermost integral and using

the unimodularity of SU(2) the last integral simplifies to

∫
SU(2)/T

(∫
T

∫
SU(2)

f(xtg−1)f(xg−1)eicθ dg dt

)
dxT.

Next we apply the quotient integral formula to SU(2) to decompose the measure
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over T and SU(2)/T

∫
SU(2)/T

(∫
T

∫
SU(2)/T

∫
T

f(xts−1y−1)f(xs−1y−1)eicθ ds dyT dt

)
dxT

where s = diag(eiφ, e−iφ) ∈ T . Finally we change the order of the two integra-

tions in the middle and use the change of variable t 7→ t−1s, and by unimodu-

larity of T we find

∫
SU(2)/T

∫
SU(2)/T

∫
T

∫
T

f(xt−1y−1)f(xs−1y−1)eic(φ−θ) ds dt dyT dxT

=

∫
SU(2)/T

∫
SU(2)/T

∣∣∣∣∫
T

f(xt−1y−1)e−icθ dt

∣∣∣∣2 dyT dxT ≥ 0. (4.9)

It is tempting to assume that Lemma 4.1.8 combined with Proposition 4.1.6

should immediately imply the positivity of f 7→ χO(f) for any coadjoint orbit

O ⊂ g∗. However, since

sin(rθ) sin θ =
ei(r−1)θ + e−i(r−1)θ

2
− ei(r+1)θ + e−i(r+1)θ

2

if we apply Lemma 4.1.8 to this trigonometric identity directly, we will end up

with the difference (rather than the sum) of two non-negative quantities which

a priori might be negative.

Remark 4.1.9. Recall that integral coadjoint orbits in su(2)∗ are in one-to-one

correspondence with the irreducible unitary representation of SU(2). Hence one

can argue, on the basis of Atiyah-Bott and Berline-Vergne localization theo-

rems, that since Kirillov’s character formula is equivalent to the Weyl character

formula when dealing with integral coadjoint orbits, the assignment f 7→ χO(f)

is indeed a positive distribution. We conjecture, however, that the Kirillov’s
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character is positive even for non-integral coadjoint orbits.
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Chapter 5

Reductive Lie Groups

Rossmann has shown that for a semisimple Lie group Kirillov’s formula is valid

for characters of irreducible tempered representations.1 Characters of non-

tempered irreducible representations, on the other hand, usually do not arise

as Fourier transforms of invariant measures on coadjoint orbits. Rossmann pro-

poses a different type of integral formula: irreducible characters-even of non-

unitary representations- can be expressed as Fourier transforms of certain cycles

in coadjoint orbits of the complexified group. Schmid and Vilonen have proved

some Rossmann type integral formulas in [28].

5.1 SL(2,R)

Many coadjoint orbits of general Lie groups admit real polarizations and they

fall into the scope of the method outlined in Chapter 3 for nilpotent Lie groups.

Because of the importance of this result for the special linear group SL(2,R),

we state a separate theorem for this case and we will prove it in this section.

1A representation is called tempered if its Harish-Chandra character is tempered as a
distribution in the sense of Schwartz.
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To streamline the notation, write

H =

1 0

0 −1

 , X =

0 1

1 0

 , Y =

 0 1

−1 0

 (5.1)

for a basis of the three dimensional Lie algebra sl(2,R) of 2×2 traceless matrices.

5.1.1 Quasi-invariant Measures on Quotient Spaces

To carry out similar computations as in the case of nilpotent Lie groups, we need

to be able to decompose the Haar measure on the locally compact group G over

a closed subgroup H and G/H even when G/H does not admit a G-invariant

measure.

Definition 5.1.1. Let G be a locally compact group and H a closed subgroup

of G. A Radon measure µ on G/H is called quasi-invariant under G if there

exist functions λg defined on G/H such that

∫
G/H

f(Λgx) dµ(xH) =

∫
G/H

f(x)λg(x) dµ(xH)

for all g ∈ G and f ∈ Cc(G/H) where Λg(xH) = g−1xH.

Note that if λg = 1 for all g ∈ G, then µ is invariant under G, and hence

quasi-invariance extends the notion of invariance.

The next theorem is standard and it generalizes Weil’s Formula, Theo-

rem 3.2.6, that we used for nilpotent Lie groups.

Theorem 5.1.2 (Mackey-Bruhat). Let G be a locally compact group. Given a

closed subgroup H of G, there is always a continuous, strictly positive solution

ρ of the functional equation

ρ(xh) = ρ(x)
∆H(h)

∆G(h)
, x ∈ G, h ∈ H. (5.2)
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Moreover, there is a quasi-invariant measure dρxH on G/H such that

∫
G

f(g)ρ(g) dg =

∫
G/H

∫
H

f(xh) dh dρxH.

Remark 5.1.3. Henceforth we will always assume that our quotient spaces are

equipped with measures as in Theorem 5.1.2 and we will drop the index ρ in

the measure. A short calculation shows that in this situation

λg(xH) =
ρ(gx)

ρ(x)
, x, g ∈ G.

See Definition 5.1.1 and, for instance, [25, Proposition 8.1.4]. If G/H carries

a G-invariant measure, then we shall assume that ρ ≡ 1; this happens, for

instance, when we study quotients diffeomorphic to coadjoint orbits G/R ∼= O

which are naturally equipped with a Liouville form.

Example 5.1.4. In this example we compute the ρ function for two pairs of

groups consisting of the Lie group G = SL(2,R) and its closed subgroups M

and R that we introduce below.

Consider the basis {H,X, Y } for the Lie algebra g as in (5.1) and let ` = H∗

be the functional dual to H with respect to this basis. Then a maximal isotropic

subalgebra of g subordinate to ` is given by the upper triangular matrices

m = Span{H,X + Y }.
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Let M denote the subgroup generated by m. A short calculation shows that

M = expm =


a ∗

0 a−1

 ∣∣∣∣∣ a > 0


R = {g ∈ G | Ad∗(g)` = `} =


a 0

0 a−1

 ∣∣∣∣∣ a ∈ R×

 .

To solve the functional equation (5.2) for ρ for the pairs (G,M) and (M,R)

we need to know the modular functions of M and R. That’s what we compute

next.

∆M (t) = det Ad(t−1), t ∈M

∆M

a b

0 a−1

 = a−2, a > 0.

Also,

∆R(t) = det Ad(t−1), t ∈ R

∆R

a 0

0 a−1

 = 1, a ∈ R×.

Since G is unimodular, ∆G ≡ 1, and therefore,

ρ(G,M)(gp) = ρ(G,M)(g)
∆M (p)

∆G(p)
by (5.2)

= ρ(G,M)(g)a−2, for g ∈ G, and p =

a b

0 a−1

 ∈M. (5.3)
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The function ρ(G,M) : G→ R defined by

ρ(G,M)

g1 g2

g3 g4

 =
1

g2
1 + g2

3

clearly solves the functional equation (5.3). Likewise, since ∆R ≡ 1 as we saw,

ρ(M,R)(pr) = ρ(M,R)(p)
∆R(r)

∆G(r)
by (5.2)

= ρ(M,R)(p)a
2, for p ∈M, and r =

a 0

0 a−1

 ∈ R. (5.4)

The function ρ(M,R) : M → R defined by

ρ(M,R)

a b

0 a−1

 = a2

is easily seen to solve the functional equation (5.4).

Now we record a corollary to Theorem 5.1.2 that will be used in proving our

main result in this section.

Corollary 5.1.5. Let G be a locally compact group with closed subgroups H and

K such that K ⊂ H ⊂ G. Then there exist suitably normalized quasi-invariant

measures on the quotient spaces such that the equality

∫
G/K

f(g) dgK =

∫
G/H

∫
H/K

f(xh)
ρ(G,K)(xh)

ρ(G,H)(xh)ρ(H,K)(h)
dhK dxH

holds for any f ∈ Cc(G/K).
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Proof. Let F ∈ Cc(G) and apply Theorem 5.1.2 twice to obtain

∫
G

F (t) dt =

∫
G/K

∫
K

F (gk)

ρ(G,K)(gk)
dk dgK

=

∫
G/H

∫
H

F (xs)

ρ(G,H)(xs)
ds dxH

=

∫
G/H

(∫
H/K

∫
K

F (xhk)

ρ(G,H)(xhk)ρ(G,K)(hk)
dk dhK

)
dxH.

Fix f ∈ Cc(G/K) and choose a function α ∈ Cc(G) with the property that for

every gK ∈ supp (f) we have
∫
K
α(gk) dk = 1, then substitute F = fαρ(G,K).

For the standard proof of existence of such α we refer to [8, Lemma 2.47]. The

above computation implies

∫
G/K

f(g) dgK =

∫
G/H

∫
H/K

∫
K

f(xhk)α(xhk)ρ(G,K)(xhk)

ρ(G,H)(xhk)ρ(G,K)(hk)
dk dhK dxH

=

∫
G/H

∫
H/K

f(xh)

∫
K

α(xhk)ρ(G,K)(xh)∆K(k)
∆G(k)

ρ(G,H)(xh)∆H(k)
∆G(k)ρ(G,K)(h)∆K(k)

∆H(k)

dk dhK dxH

=

∫
G/H

∫
H/K

f(xh)
ρ(G,K)(xh)

ρ(G,H)(xh)ρ(H,K)(h)
dhK dxH.

For a Lie group G with Lie algebra g write jg for the Jacobian of the expo-

nential map exp: g → G. According to a fundamental result in the theory of

Lie groups by F. Schur (not to be confused with I. Schur)

jg(X) = det exp∗,X = det

(
id−e− adX

adX

)
, where X ∈ g and adX : g→ g.

In the next example we compute this function for g = sl(2,R) and one of its

subalgebras and indicate a a relation between the two.

62



Example 5.1.6. Consider the maximal isotropic subalgebra

m = Span{X + Y,H }

subordinate to ` = H∗ consisting of upper triangular matrices in g = sl(2,R).

For W = aH + b(X + Y ), the matrix of admW : m → m with respect to the

basis B′ = {X + Y,H } of m is

[admW ]B′ =

2a −2b

0 0

 .
Therefore,

jm(W ) = det

(
id−e− admW

admW

)
=

1− e−2a

2a
(5.5)

by the Spectral Mapping Theorem applied to the eigenvalues of admW , namely

2a and 0.

Extend the basis B′ of m to the basis B = {X + Y,H,X } of g. Then the

matrix of adgW : g→ g with respect to the basis B is

[adgW ]B′ =


2a −2b 2a

0 0 2b

0 0 −2a

 .

Therefore,

jg(W ) = det

(
id−e− adgW

adgW

)
=

(
1− e−2a

2a

)(
1− e2a

−2a

)
=

(ea − e−a)2

4a2
(5.6)

by the Spectral Mapping Theorem applied to the eigenvalues of adgW , namely

2a, 0, and −2a.

Equations (5.5), and (5.6) reveal an interesting relation between jm(W ) and
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jg(W ):

jg(W ) = j2
m(W )/∆M (expW ). (5.7)

This turns out to play a key role in the proof of Theorem 5.1.7. Using the fact

that ∆M (expW ) = det AdM (exp−W ) = det e− admW we obtain

j2
m(W )/∆M (expW ) = det

(
id−e− admW

admW

)2

det eadmW

= det

(
sinh(admW/2)

admW/2

)2

Since SL(2,R) is unimodular, ∆G ≡ 1, and hence the left-hand side of (5.7) can

be written in a similar fashion in terms of hyperbolic functions. Therefore we

get the following neat reformulation of (5.7):

det

(
sinh(adgW/2)

adgW/2

)
= det

(
sinh(admW/2)

admW/2

)2

, for W ∈ m.

5.1.2 Positivity of Kirillov’s Character

Let H ∈ sl(2,R) be as in (5.1). Then in a suitable coordinate system the

coadjoint orbit O = Ad∗(SL(2,R))H∗ is a hyperboloid of one sheet.

Figure 5.1: The coadjoint orbit O = Ad∗(SL(2,R))H∗

Before we embark on proving positivity of Kirillov’s character for the orbit

O, let us mention that thanks to the existence of a real polarization, as in the

case of nilpotent Lie groups, the coadjoint orbit O exhibits some affine structure,
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so we can expect Fourier analysis techniques to be very useful. In this way, the

symplectic geometry can be seen as contributing in a significant way to our

proof of the positivity of Kirillov’s character.

Theorem 5.1.7. Let U be a sufficiently small neighborhood of 0 ∈ sl(2,R)

such that the restriction of the exponential function exp: sl(2,R)→ SL(2,R) to

U is a diffeomorphism onto exp(U). Then Kirillov’s character f 7→ χO(f) is a

positive distribution for O = Ad∗(SL(2,R))H∗ and any f ∈ C∞c (SL(2,R)) with

supp(f) ⊂ exp(U).

Proof. To simplify the notation we shall write G and g for SL(2,R) and sl(2,R),

respectively.

χ`(f) =

∫
O`

√
jg(X)f(expX)(φ) dX dµ(φ)

using the diffeomorphism O` ∼= G/R` we make a change of variables

=

∫
G/R`

∫
g

√
jg(X)f(expX)eig·`(X) dX dgR`

now we apply Corollary 5.1.5 with the computations carried out in Exam-

ple 5.1.4

=

∫
G/M

∫
M/R`

∫
g

√
jg(X)f(expX)eixm·`(X)(x2

11 + x2
21) dX dmR` dxM

=

∫
G/M

∫
M/R`

∫
g/m

∫
m

√
jg(P + Y )f(ex·(P+Y ))eim·`(P+Y )(x2

11 + x2
21) dP dP dmR` dxM

Define F xf (Y ) =
∫
m

√
jg(P + Y )f(ex·(P+Y ))eim·`(P+Y )(x2

11 +x2
21) dP . Then the
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last integral in the displayed formula equals

χ`(f) =

∫
G/M

∫
M/R`

∫
g/m

F xf (Y )eim·`(Y )−i`(Y ) dY dmR` dxM

=

∫
G/M

∫
(g/m)∗

∫
g/m

F xf (Y )eiγ(Y ) dY dγ dxM

=

∫
G/M

F xf (0) dxM

=

∫
G/M

∫
m

√
jg(P )f(ex·P )ei`(P )(x2

11 + x2
21) dP dxM

where in the second to last equality we have used the Fourier Inversion Theorem.

The change of variables formula applied to the restriction of exp to U implies

that ∫
G

f(g)

jg(log g)
dg =

∫
U

f(expX) dX.

Therefore we have in fact simplified Kirillov’s character formula to

χ`(f) =

∫
G/M

∫
m

√
jg(P )f(ex·P )ei`(P )(x2

11 + x2
21) dP dxM =∫

G/M

∫
M

√
jg(log p)

f(xpx−1)

jm(log p)
(x2

11 + x2
21) dp dxM

and this concludes the first part of the proof. Next we replace f with the

convolution f ∗ f∗ to prove the positivity of Kirillov’s character:

χ`(f ∗ f∗)

=

∫
G/M

∫
M

√
jg(log p)

jm(log p)
f ∗ f∗(xpx−1)ei`(log p)(x2

11 + x2
21) dp dxM
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the next two equalities are simply obtained by writing out f ∗ f∗

=

∫
G/M

(∫
M

∫
G

√
jg(log p)

jm(log p)
f(xpx−1g)f∗(g−1)ei`(log p)(x2

11 + x2
21) dg dp

)
dxM

=

∫
G/M

(∫
M

∫
G

√
jg(log p)

jm(log p)
f(xpx−1g)f(g)ei`(log p)(x2

11 + x2
21) dg dp

)
dxM.

Applying the change of variable g 7→ xg−1 to the innermost integral and using

the unimodularity of G the last integral simplifies to

∫
G/M

(∫
M

∫
G

√
jg(log p)

jm(log p)
f(xpg−1)f(xg−1)ei`(log p)(x2

11 + x2
21) dg dp

)
dxM.

Next we apply the quotient integral formula in Theorem 5.1.2 combined with

the computations in Example 5.1.4 to G to decompose the measure over M and

G/M

∫
G/M

(∫
M

∫
G/M

∫
M

√
jg(log p)

jm(log p)
f(xpq−1y−1)f(xq−1y−1)ei`(log p)

(x2
11 + x2

21)(y2
11 + y2

21)q2
11 dq dyM dp

)
dxM.

Finally we change the order of the two integrations in the middle and use the

change of variable p 7→ p−1q, to find

χ`(f ∗ f∗)

=

(∫
G/M

∫
G/M

∫
M

∫
M

√
jg(log p−1q)

jm(log p−1q)
f(xp−1y−1)f(xq−1y−1)ei`(log p−1q)

(x2
11 + x2

21)(y2
11 + y2

21)p2
11 dq dp dyM dxM

)

67



and in the final step we make a crucial use of the Equation (5.7) about the

relation between the functions jg and jm to finish the proof

=

(∫
G/M

∫
G/M

∣∣∣∣∫
M

f(xp−1y−1)e−i`(log p)p2
11 dp

∣∣∣∣2
(x2

11 + x2
21)(y2

11 + y2
21)dyM dxM

)
≥ 0.

Example 5.1.8. Let Eij be the 3 × 3 matrix with a one in the ij entry and

zeros elsewhere. To simplify the notation, let us write F and G for E11 − E22

and E11 −E33, respectively. Then a basis for the eight-dimensional Lie algebra

g = sl(3,R) is given by

B = {F,G,E12, E23, E13, E21, E32, E31 }.

Consider the maximal isotropic subalgebra

m = Span{F,G,E12, E23, E13 }

subordinate to ` = F ∗ consisting of upper triangular matrices in sl(3,R). For

W = fF + gG + e3E12 + e2E13 + e1E23 in m, the matrix of admW : m → m

with respect to the basis B′ = {F,G,E12, E23, E13 } of m is

[admW ]B′ =



0 0 0 0 0

0 0 0 0 0

−2e3 −e3 2f + g 0 0

e1 −e1 0 g − f 0

−e2 −2e2 −e1 e3 f + 2g


.
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Extend the basis B′ of m to the basis B of g. Then the matrix of adgW : g→ g

with respect to the basis B is

[adgW ]B =



[admW ]B′

e3 0 −e1

0 e2 e1

0 0 e2

−e2 0 0

0 0 0

0
−2f − g 0 e1

0 f − g −e3

0 0 −f − 2g



.
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Chapter 6

Quantization of Coadjoint

Orbits

In this chapter we use a GNS-type method, based on the positivity of Kirillov’s

character, to construct some unitary representations of a given nilpotent Lie

group.

As an evidence for the effectiveness of the orbit method in quantization we

mention the following theorem due to Auslandar and Kostant.

Theorem. Let G be a simply-connected solvable Lie group and O an integral

coadjoint orbit. Then this orbit can be quantized to obtain an irreducible repre-

sentation of G. Moreover, if G is of Type I, then any irreducible representation

can be obtained in this way.
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6.1 Nilpotent Lie Groups

Let G be a connected, simply connected nilpotent Lie group. We know from

Chapter 3 that Kirillov’s character (1.1) defines a complex-valued distribution

χ : C∞c (G)→ C

on C∞c (G). The positivity of Kirillov’s character for connected nilpotent Lie

groups, Theorem 3.2.13, implies that χ(f ∗ f∗) ≥ 0 for each f ∈ C∞c (G) and

hence the sesquilinear form

〈f1, f2〉χ = χ(f1 ∗ f∗2 ) (6.1)

on C∞c (G) satisfies all the axioms for an inner product except for definiteness,

that is, 〈f, f〉χ = 0 need not imply f = 0. The remaining axioms are enough to

prove the Cauchy-Schwarz inequality

|〈f1, f2〉χ|2 ≤ 〈f1, f1〉χ〈f2, f2〉χ, (6.2)

and it follows that the set

N = { f ∈ C∞c (G) | 〈f, f〉χ = 0 }

is a vector subspace of C∞c (G). The formula

〈f1 +N, f2 +N〉χ = 〈f1, f2〉χ (6.3)

defines an inner product on the quotient space C∞c (G)/N and we let Hχ denote

the Hilbert space completion of C∞c (G)/N .
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Lemma 6.1.1. The left- and right-translations preserve the sesquilinear form

(6.1):

〈λgf1, λgf2〉χ = 〈f1, f2〉χ

〈ρgf1, ρgf2〉χ = 〈f1, f2〉χ

Proof. Since G is unimodular and f1 ∗ f∗2 (x) =
∫
G
f1(xy)f2(y) dy, the right-

translation invariance of the sesquilinear form is clear. On the other hand,

λgf1 ∗ (λgf2)∗(x) =

∫
G

f1(g−1xy)f2(g−1y) dy

=

∫
G

f1(g−1xgy)f2(y) dy

and the left-translation invariance of the sesquilinear form, namely,

〈λgf1, λgf2〉χ = 〈f1, f2〉χ

follows from the conjugation invariance of the character formula.

Corollary 6.1.2. The operators

Lg : Hχ → Hχ, Lg[f ] = [λgf ]

Rg : Hχ → Hχ, Rg[f ] = [ρgf ]

give rise to the unitary representations (L,Hχ) and (R,Hχ) of the group G.

Proof. The well definedness and unitarity of the operators Lg and Rg are imme-

diate from the Cauchy-Schwarz inequality (6.2) and Lemma 6.1.1, respectively.

Moreover, the strong continuity of the left and right regular representations

(λ,C∞c (G)) and (ρ, C∞c (G)) at g = eG is transferred to (L,Hχ) and (R,Hχ) via

the inner product formula (6.3) and this completes the proof.
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Chapter 7

Future Directions

7.1 Compact Lie Groups

7.1.1 Positivity of Kirillov’s Character

Lemma 7.1.1. Let χ be a distribution of the compact group G satisfying the

relations

(a) χ∗ = χ, and

(b) χ = c χ ∗ χ for some c > 0.

Then χ is a positive distribution.

Proof. Let f be a test function and compute:

〈χ, f ∗ f∗〉 = 〈χ ∗ f∗, f∗〉
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using the assumptions (a) and (b) this equals

= c〈χ ∗ χ ∗ f∗, f∗〉

= c〈χ ∗ f∗, χ ∗ f∗〉 = c

∫
G

|(χ ∗ f∗)(g)|2 dg ≥ 0.

Examples of distributions satisfying the conditions of the above lemma can

be found in abundance by considering the characters of irreducible representa-

tions of G. To be more precise, let π and σ be irreducible unitary representations

of a compact group G with characters χπ and χσ, respectively. Then the Schur

orthogonality relations [20] immediately imply that

χ∗π = χπ, (7.1a)

χπ ∗ χσ =


0 if π 6∼ σ,

1
dimπχπ if π ∼ σ

(7.1b)

and hence (dimπ)χπ is an idempotent in C(G). Now if we regard χ = χπ as a

distribution over C∞(G) we get a positive distribution by Lemma 7.1.1. This

suggests using Lemma 7.1.1 for proving positivity of Kirillov’s character.

Lemma 7.1.2. Kirillov’s character χO satisfies the condition (a) of Lemma 7.1.1,

namely χ∗O = χO.

Proof. We have to show that χ∗O = χO, where 〈χ∗O, f〉 = 〈χO, f∗〉 and as usual

〈χO, f〉 =

∫
O

∫
U

√
j(X)f(expX)ei`(X) dX dµ(`).

This is clear since f∗(x) = f(x−1), and moreover j(X) = det
(

sinh(adX/2)
adX/2

)
is

an even function of X.
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However the problem of computing χO ∗ χO for integral coadjoint orbits of

a compact Lie group seems to be computationally involved.

Here we sketch another approach to proving positivity of Kirillov’s character.

By the Plancherel Theorem for compact Lie groups,

∑
integral O

(dimO)χO = δe.

We proved this in Proposition 4.1.7 for SU(2) by a direct computation. However

since the right-hand side of this equality, namely the Dirac delta function, is a

positive distribution, one might try to show the positivity of each individual χO

by choosing test functions for which only one of the summands on the left-hand

side is nonzero.

7.1.2 Quantization of Coadjoint Orbits

An obvious obstacle in applying the GNS-type method that we used for nilpotent

Lie groups in Chapter 6 for other classes of Lie groups is that, generally speaking,

the exponential map is no longer a diffeomorphism and hence Kirillov’s character

formula is only a local formula. Therefore, we need to be able to extend Kirillov’s

character χ from

S = { f ∈ C∞(G) | supp(f) ⊂ V }

to a positive distribution over C∞(G).

The next lemma shows that χ is a bounded linear functional on S and so

one can hope to be able to extend χ to a C∞(G) in a norm-preserving way using

the tools from Operator Theory.1

1Note that such an extension exists and is given by the Weyl character formula, but with
this approach we are not allowed to take the positivity of Weyl’s character for granted.
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Lemma 7.1.3. let G be a compact Lie group. Then

|χ(f)| ≤ C · ‖f‖L1(G)

for all functions f ∈ C∞(G) with supp(f) ⊂ V where V = expU and U is an

open neighborhood of 0 in g over which the exponential map is a diffeomorphism.

Proof. The coadjoint orbits of G are compact being the continuous images of

the compact space G under Ad∗. Therefore,

|χ(f)| =
∣∣∣∣∫
O

∫
U

√
j(X)f(expX)ei`(X) dX dωO

∣∣∣∣
≤ Vol(O)

∫
g

∣∣∣√j(X)f(expX)
∣∣∣ dX

≤ Vol(O)

∫
V

∣∣∣∣∣ f(x)√
j(log x)

∣∣∣∣∣ dx
≤ C · ‖f‖L1(G)

where C = Vol(O) · supX∈U |j(X)−1/2|.

7.2 Possible Extensions of Theorem 5.1.7

A basic concept in symplectic geometry is polarization and in particular La-

grangian fibration. Recall that for a symplectic manifold W , a Lagrangian

fibration p : W → B is a fibration such that every fiber is a Lagrangian sub-

manifold of W . In this Lie theoretic context the map p : G/R → G/M gives a

Lagrangian fibration for the isotropy and polarizing subgroups R and M of G.

The following “Theorem” is a plausible extension of Theorem 5.1.7 that we

proved for SL(2,R).

Target Theorem 1. Let G be a unimodular Lie group with Lie algebra g and

ψ ∈ g∗. Then Kirillov’s character formula is positive over the coadjoint orbit O
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of ψ for any function f ∈ C∞c (G) supported in a sufficiently small neighborhood

of G if

(a) g∗ admits a polarizing subalgebra m subordinate to ψ,

(b) The fibers of the Lagrangian map p : G/R→ G/M are globally affine spaces,

and

(c) [m,m] ∩ rψ = {0}.

The last condition above is about the “smallness” of rψ. This kind of re-

striction is definitely necessary since Kirillov’s formula is valid only for “generic”

orbits. For instance, in the case of point orbits, that is, when g = rψ and the

radical is as big as possible, the formula (1.1) is not correct.

It can certainly be the case that the group has no real polarization. This

happens, for instance, for any compact group; even for SU(2) as su(2) has no

2-dimensional subalgebra.

One might try to apply a similar method to complex polarizations; this is

justified by the following result of Dixmier (see for instance [18]): for a Lie

algebra g over an algebraically closed field K the set of functionals in g∗ which

admit a K-polarization contains a Zariski open subset and hence is dense in g∗.

The above fact about complex polarizations of complex Lie algebras suggests

that some variant of the following Target Theorem should be true.

Target Theorem 2. Let G be a complex unimodular Lie group with Lie alge-

bra g. Then there exists a dense subset D of g∗ such that Kirillov’s character

formula (1.1) is positive for the coadjoint orbit O of any ψ ∈ D and for any

function f ∈ C∞c (G) supported in a sufficiently small neighborhood of G provided

that

(a) The fibers of the Lagrangian map p : G/R→ G/M are globally affine spaces,

and
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(b) The coadjoint orbit O satisfies a maximality condition.
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Appendix

A Some Computations

A.1 jsu(2)

For X = ai + bj + ck, the matrix of adX : R3 → R3 with respect to the basis

B = { i, j, k } of (R3,×) ∼= (su(2), [·, ·]) is

[adX]B =


0 −c b

c 0 −a

−b a 0

 .

Therefore, letting ‖X‖ = 2
√
a2 + b2 + c2,

jsu(2)(X) = det

(
id−e− adX

adX

)
=

(
1− e−i

√
a2+b2+c2

i
√
a2 + b2 + c2

)(
1− ei

√
a2+b2+c2

−i
√
a2 + b2 + c2

)

=
sin2 ‖X‖
‖X‖2

by the Spectral Mapping Theorem applied to the eigenvalues of adX, namely

0 and ±i
√
a2 + b2 + c2, over the field of complex numbers.
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A.2 Fourier Transform of the Surface Measure of the Sphere

To prove Proposition 4.1.6 one needs to compute the integral I(X) =
∫
O e

i`(X) dµ(`),

or equivalently

1

4πr

∫
S2
r

ei〈X,Y 〉 dσ(Y )

where the surface measure σ is normalized so that S2 has total mass one. We

can assume without loss of generality that X = ‖X‖e3 using the rotational

symmetry of σ. Thus by considering the spherical coordinates, we find

I(X) =
1

4πr

∫
S2
r

ei‖X‖Y3 dσ(Y ) =
1

4πr

∫ 2π

0

∫ π

0

ei‖X‖r cosφr2 sinφdφ dθ

=
sin r‖X‖
‖X‖

.

This is an instance of the exact stationary phase method and the decay and

asymptotics of µ̂(X) = I(X) as ‖X‖ → ∞ are studied in the literature.
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