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Abstract

Field development studies are at the forefront of common engineering practices

in petroleum industry to maximize the returns on a given asset. In early stages of

reservoir depletion, it is often a challenging task to accurately determine reservoir

properties that are representative of the actual field. Reservoir modeling is the

traditional way that engineers performed to develop field development and depletion

plans. Due to different scales of data obtained from various sources like seismic

data, well logs, cores, and production data, there is a lot of uncertainty in solving

the inverse problem of estimating formation rock and fluid properties from the

field data. Increase in complexity of formations and scarcity of reservoir data have

made reservoir characterization a challenging task. Soft computing techniques

have gained popularity in petroleum industry to identify complex patterns that

exist between various reservoir data collected from multiple sources and be able to

successfully characterize a reservoir.

In this work, a work-flow is developed for devising a comprehensive reservoir

characterization tool based on artificial neural network. A case study of Chevron’s

Tombua Landana Asset is used in demonstrating the tenets of the work-flow.
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The reservoir under consideration is highly heterogeneous in terms of property

distribution and is believed to be highly channelized. The ANN based tool will assist

in identifying sweet spots by predicting optimal well location/path/completion

parameters and production schedule.

The multilayer feed forward back propagation based neural network tool

developed is able to capture the correlations that exist amongst seismic data,

well logs, completion data, and production data. Well logs are correlated using

surface seismic attributes and geometric location of wells with an average testing

error of less than 15%. The range of testing errors is in between 1-30%. The tool

enables the user to predict the entire well log suite for even a horizontal well of

user defined configuration through a graphic user interface. Having correlated

seismic data with well logs, synthetic well logs are generated for the entire area

of seismic coverage. To predict production data, along with seismic data and well

logs, schedule of production and interference factors are incorporated as functional

links. Upon analyzing the relevancies of input data, functional links based on

geographic location and injection wells are included to make the prediction more

reliable and robust. Production performance networks comprising cumulative oil,

gas and water production performance prediction modules are developed to forecast

performance of wells at undrilled locations. Oil networks indicated an average

error of 21% in blind testing cases. Highly variable gas production could also

be correlated with the seismic data and well log data within 32% error. Water

production networks indicated a high error of 46% on blind testing cases. Oil, gas

and water production forecast maps are generated using production performance

networks. Maps generated indicate flow paths that exist in the field.

iv



Monte Carlo simulations are performed to predict P10/P50/P90 OOIP maps.

The developed model enables reservoir engineers to construct well paths based on

synthetic log cubes generated in conjunction with Monte Carlo OOIP estimates.

Genetic algorithms can be used to optimize selection of new well locations and

well paths enabling production from sweet spots. Further analysis using NPV (net

present value) calculations is integrated with production predictions to identify the

potential producer locations and well paths.
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Chapter 1
Introduction

With the ever increasing demand for oil and gas in modern day, it has become

necessary for engineers to develop economic ways of evaluating and producing

from an asset. A detailed reservoir model is necessary to maximize the value of

a hydrocarbon asset. Field development strategies, infill well drilling, forecasting

reservoir performance are made based on reservoir characterization studies.

Traditional ways of reservoir modeling include building static models through

extensive petrophysical analyses combined with dynamic history matching via

reservoir simulation to establish the reserves in place and propose field development

strategies. These methods are time and labor intensive, and several approximations

are made throughout this process when data is limited, and sparse in nature.

The challenge in modern day reservoirs is no longer to predict the presence of

hydrocarbons, but to quantify the uncertainty of reservoir predictions and minimize

risk associated with that (Wong et al., 2002).

Reservoir characterization increases in complexity as the reservoir becomes

increasingly heterogeneous. Core data measured at a wellbore will no more act

as a representative sample, hence would require a statistically large number of

samples to encompass the entire reservoir. In the recent times, seismic data
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is proven to be useful in estimating the interwell geologic information, thereby

aid in understanding heterogeneous reservoirs better. Rock physics discipline

deals with finding correlations that exist between seismic data and reservoir rock

and fluid properties. But, it is important to effectively reconcile and precisely

integrate various sources and scales of data obtained from 3D seismic, well logs,

core and production information. The challenge in the conventional models is

to preserve the reservoir complexity while shortening their runtime. Most often

reservoir parameters are adjusted by trial and error to obtain a history matched

model. Conventional methods of characterizing these reservoirs are not effective,

therefore, alternative methods should be explored to find a probable solution that

can efficiently understand the complexities of the reservoirs.

Soft computing techniques have tolerance for imprecision and uncertainty, and

are efficient, low cost, and robust (Nikravesh and Aminzadeh, 2001). Identifying

non-linear patterns in reservoir studies can significantly help in assisting reservoir

characterization. In recent times, artificial neural networks are being increasingly

used in science, finance and engineering for their aforementioned capabilities.

Therefore, this research focuses on building an artificial intelligence based tool

to characterize a heterogeneous reservoir by integrating geological, geophysical and

dynamic production data. The proposed methodology can be applied to a wide

variety of reservoirs to evaluate the production potential and suggest an optimal

field development strategy. Inter assisting expert systems based on artificial neural

network technology are developed that establish the complex relationship between

seismic data, well log data and production data. The dissertation is divided into

different chapters to describe development of the integrated artificial intelligence

based tool.



3

• Chapter 2 outlines the literature reviewed and presents information pertinent

to the latest research in the field of reservoir characterization.

• Chapter 3 provides a general description of problem statement and objectives

• Chapter 4 discusses the methodology developed in this study. Inter assisting

expert systems comprising of synthetic well log networks and production

performance networks are presented.

• Chapter 5 presents a case study on which the current methodology has been

tested. The case study presented is Chevron’s Tombua Landana asset from

Block 14 Angola offshore.

• Chapter 6 showcases the results and discussion of expert systems developed

in this study. Blind testing results are used to illustrate the robustness and

accuracy of the developed model.

• Chapter 7 summarizes the work, and major conclusions of this study along

with recommendations for future research.



Chapter 2
Literature Review

2.1 Reservoir characterization

The process of quantitative assignment of reservoir properties such as porosity,

permeability, and fluid contacts, etc. is known as reservoir characterization (Mohaghegh

et al., 1996). Field scale characterization of reservoirs is crucial in providing the link

between exploration/discovery process and the development/reservoir management

process. Geologic concepts developed during the exploration stage are continuously

tested and modified as appropriate during reservoir development and production.

Uncertainties associated with the inverse problem of estimating reservoir properties

through observed data need to be thoroughly understood for efficient reservoir

management. Properties such as porosity, permeability, lithology, fluid type, etc.

can be obtained using seismic reservoir characterization methods.

Areal extent of the reservoir is usually obtained from seismic exploration analysis.

Reservoir thickness, porosity, and water saturation are derived from petrophysical

well log analysis combined with core data analysis. Core data provide high resolution

information surrounding the well bore however they suffer from sampling bias. The
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obtained core data could be a small isolated section and may not be able to capture

the macroscopic features of the reservoir. Well logs provide medium resolution

information in the vicinity of wellbore. Seismic data and well log data are explained

further in the following sections.

2.1.1 Seismic exploration

There are several exploration methods such as seismic, gravity, magnetic, etc.

used in measuring physical properties of the subsurface in order to understand the

petroleum reservoirs. Seismic data acquisition is the most commonly used method

in obtaining a comprehensive image of the reservoir (Artun et al., 2005). In this

method, energy source located either on the surface of the earth or submerged

in water (for offshore applications) generates low frequency sound waves. These

sound waves are reflected off earth’s surface that comprise of information relating

to geologic interfaces and amplitudes at two way travel times (TWTT) are recorded

via series of geophones. Depending on the location of energy sources and geophones,

seismic profiles can be recorded in 2-D or 3-D. The latest technology is to shoot

a seismic survey with time and is referred to as 4-D seismic survey or 3-D time

lapse seismic survey. These 4-D seismic surveys can be used to track the saturation

changes over time for secondary recovery applications (Yilmaz, 2001). The data

gathered across these geophones over a horizontal distance can be compiled to

create a cross section of the earth (Berger and Anderson, 1981). In a 3-D seismic

survey, data recorded from numerous closely spaced seismic lines called inlines and

crosslines, provide a high spatially sampled measure of subsurface reflectivity. A

visual description of the two different types of common seismic surveys is provided

in Figure 2.1
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2D Seismic Survey 3D Seismic Survey 

Figure 2.1. Visual description of 2D and 3D seismic survey

Though seismic data is measured at a lower vertical resolution compared to a

well log, the areal coverage is extensive and spans over the entire filed. Seismic

data are primarily utilized by geophysicists to recreate the subsurface structure

and identify potential oil and gas producing regions.

Seismic attributes: Seismic attributes are information derived from the seismic

data either by direct measurement or by processing important seismic characteristics

such as time, amplitude, frequency and attenuation. Seismic attributes could be

either horizon based or sample based. The process of adding seismic traces to

improve the signal to noise ratio is called staking. Seismic attributes computed post

stacking tends to loose offset and azimuth information, but they are preferred due

to the reduced amount of data. In practice, most interpreters use instantaneous

amplitude or some variation of amplitude attribute as the primary diagnostic tool.

Amplitude is related to reflectivity providing information on subsurface impedance

contrasts. Instantaneous phase and frequency attributes are used in tracking
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reflection continuity, bed thickness and bed spacing respectively. In the current

work, amplitude based attributes are extensively used.

Any computation on the seismic trace can be categorized as a seismic attribute.

Attributes could be 3-D, 2-D and even a scalar value for the entire zone/region/surface.

Figure 2.2 outlines all the possible attributes that could be computed from

seismic data. These attributes contain several parameters that represent reservoir

characteristics and fluid properties.

Figure 2.2. Classification of seismic attributes (Brown, 2001)

A velocity model is used as a bridge between time and depth domains. Seismic

surveys are recorded in time domain, where amplitudes are plotted against two
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way travel times. Geophysicists develop a velocity model taking into account the

stratigraphic variations based on lithology. This velocity model is used to commute

between time and depth domain. Check shot surveys are used for quality control

to tie well log with the seismic trace information.

Seismic data can also be utilized to obtain a spatial distribution of reservoir

properties via principal component analysis (PCA) techniques. PCA is a long

established technique to analyze multivariate seismic attribute data sets to make

predictions of rock properties and help refine definition of reservoir geometry and

quality (Higgs et al., 2005).

2.1.2 Well logs

Well logs provide continuous measurements of physical parameters in the nearby

wellbore region. Usually most wells (conventional logs such as spontaneous potential,

gamma ray, density, resistivity, and induction) are logged upon drilling and

completion. The primary objectives of wireline logging are to identify the reservoir,

estimate hydrocarbon in place and estimate recoverable hydrocarbon through

estimation of petrophysical parameters like porosity, permeability, hydrocarbon

saturation and lithology of the zones. Hydrocarbons and reservoir rocks are

insulators, whereas connate water and brine are saline and good conductors. The

basic relationship between electrical resistivity and formation properties was first

developed by Archie,1942 (Archie et al., 1942).

He observed that rock resistivity is directly proportional to the resistivity of

brine, Rw and formation factor F . Formation factor is determined by the porosity

and pore structure factors like cementation factor m and lithology dependent

constant a as indicated in Equation 2.1.
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Ro = F ∗Rw

F = a

φm
= Ro

Rw

Sn
w = Ro

Rw

(2.1)

The porosity of a zone can be estimated from a single porosity log or a

combination of porosity logs, in order to correct for the variable lithology effects in

complex reservoirs. When using a single density porosity log, the true porosity is

derived from interpolation of values between values from matrix mineral and the

pore fluid as indicated in Equation 2.2

ρb = φ ∗ ρf + (1− φ)ρma (2.2)

where, ρb is the bulk density, φ is porosity, ρma is the matrix density and ρf is

the fluid density.

The most common way of determining net pay is to select intervals based on

log derived cutoffs. The petrophysical cutoffs are determined based on the observed

field data. Gamma ray log provided information on extent of sand/shale present in

the formation. Resistivity logs help in distinguishing hydrocarbon rich zones from

water saturated zones.

2.1.3 Monte Carlo simulations

Monte Carlo(MC) simulations are a broad class of computational algorithms

that rely on repeated sampling to obtain numerical results with probabilistic

estimates. This method was first invented and published by Metropolis and
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Stanislaw(1949) (Metropolis and Ulam, 1949) while working at Los Alamos National

Laboratory.From then on, it has been used in engineering, physical sciences,

computational biology, computer graphics, applied statistics, finance and other

fields.

Monte Carlo simulations are highly useful in risk assessment while estimating

the volumetric reserves of hydrocarbon reservoirs (Murtha et al., 1994). This

method is also popularly used to predict lithology, stratigraphic sequence from

seismic data. Statistical distributions of porosity, thickness, area, water saturation,

recovery factor, and oil formation factor affect the simulated original oil in place.

These simulations can help in establishing probabilities of expected parametric

values. Much of risk analysis techniques estimate a parameter within a range of

values rather than a single value. Original oil in place is one of the most important

parameters while evaluating a reservoir for its potential.

The oil in place is calculated through the Equation 2.3 :

OOIP (bbls) = 7758× A(acres)× netpay(ft)× φ× 1− Swi

Boi(RB/STB) (2.3)

Think of the parameters A, netpay, φ, Swi, and Boi as input parameters

and OOIP as the output. Once all the parameters are specified, OOIP can

be calculated as a point value. But if the parameters are considered random

variables with corresponding probability distribution functions describing them, a

trial consists of randomly selecting one value for each of the input parameter and

calculating an output. A simulation is a succession of thousands of repeated trials;

the outputs are recorded and plotted on a histogram or cumulative distribution

function. P10 is described as 10% probability of finding that particular output

value, P50 is 50% probability and P90 is 90% probability that the output is going
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to assume a certain value. These three parameters can be used to perform risk

analysis by incorporation of NPV to the associated outcomes.

Monte Carlo simulations involve sampling based on probabilities to approximate

the solution of a mathematical or physical problem in a statistical way. Pseudo

wells were created by deGroot(1996) (De Groot and Bril, 1996)using this method.

He demonstrated how these results can be driven to produce only plausible cases

by having geologic constraints that enforce bounds on parametric values and steer

the simulation to honor realistic scenarios. In this dissertation, MC simulations are

used to establish OOIP values generated from synthetic logs. Further explanation

is provided in Section 6.2. There are several reservoir characterization studies that

had used seismic data, well log data through soft computing techniques and had

proven to be robust in finding quick alternate solutions. Relevant case studies are

presented in Section 2.1.4.

2.1.4 Case studies

Geostatistics is known to map spatial variations in estimating reservoir properties,

but these models often suffer when the information available does not encompass

a representative section of the reservoir. Reservoir characterization is often a

challenging task during early stages of reservoir depletion owing to uncertainty

associated with extrapolating the limited filed data to the entire field. One of the

reasons large percentage of oil left in ground is due to macroscopic heterogeneities

in the oil reservoirs. Oil wells tap into only a small fraction of reservoirs due to

impermeable layers, which effectively act as a series of disconnected oil traps. Having

closely spaced infill wells is not an economic decision due to the high cost associated



12

with drilling wells today. This calls for improved reservoir characterization techniques

that can provide better reservoir definitions.

Hard computing protocols like reservoir simulation, geophysical modeling, and

facies modeling are labor and time intensive. Several methods have been proposed

in literature that includes stochastic methods, deterministic methods, and soft

computing methods. Out of which soft-computing methods have tolerance for

imprecision, uncertainty and are low cost, robust and efficient. Soft computing

techniques are further explained in Section 2.2.

Bravo et al.(2014) (Bravo et al., 2014) presented a summary of the applications

of artificial intelligence in exploration and production. Through their survey, it is

evident that artificial neural network technology is gaining popularity in solving

problems with data mining, pattern recognition, proxy models, and automated

workflows.

Based on various case studies examined, it is known that simplified reservoir

models built merely from production data, well interference and well log correlations

may not capture the inherent heterogeneity and complex reservoir rock and fluid

properties in an accurate way.

Field development studies conducted by Thararoop et al.(2008) (Thararoop

et al., 2008) showed that production data, completion information, interference

effects, and reservoir characteristics from seismic data can be mapped using artificial

neural network. Spatial maps of gas production have revealed new sweet spots

which otherwise could not be identified based on production data alone. The work

however did not incorporate the information of well logs and had considered seismic

data only at the completed zones. This study assumes that all the productive zones

have been perforated which could not be completely accurate.
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Rolon et al.(2009) (Rolon et al., 2009) used ANNs to generate synthetic well

logs. They used a combination of wireline logs to predict the missing log using

ANN and found it superior compared to multiple-regression. However their results

did not include any information from seismic data. The regression values found

were consistently under 0.9. This methodology involves obtaining few wireline logs

prior to establishing the correlation to find the other missing logs. There was no

way presented to predict the well logs at undrilled locations. Utilizing seismic data,

if a correlation was built to estimate synthetic logs, it could potentially define the

heterogeneities across the entire field.

Bansal et al.(2013) (Bansal et al., 2013) demonstrated a workflow employing

artificial neural network for analyzing a tight gas reservoir in West Texas. Production

surfaces were created based on an inter-assisting artificial expert system that

comprised of a synthetic well log generation and production performance networks.

They successfully mapped the complex relationships between seismic data, well

log data, completion parameters, and production information for the case study

considered. In this work, seismic attributes are considered based on horizons which

included geologist’s bias into interpretation of pay zones. To date, none of the earlier

studies were able to correlate seismic data with horizontal well logs. Typically

synthetic well logs are derived based on seismic inversion methods from P-wave or

S-wave transformations, but no attempt to use the entire range of seismic attributes

available to characterize the well log has been made so far. In this dissertation, a

novel methodology capturing the attributes that correlate to directional well logs is

created.

Several works in the past utilized neural networks to predict lithology, permeability,

and fluid saturation from well logs and seismic data, as well as generation of synthetic

well logs ( (Hart et al., 2002), (Nikravesh and Aminzadeh, 2001), (Mohaghegh
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et al., 2000)) or pseudo-wells (De Groot and Bril, 1996). A combination of seismic

attributes is used to derive the reservoir properties using neural networks, by

Aminzadeh et al.(2000) (Aminzadeh et al., 2000), and Taner(2001) (Taner et al.,

2001). In the proposed methodology of this dissertation, a novel technique of

utilizing seismic data is presented that has not been used before. Computation of

seismic attributes between horizons tends to carry an interpretation bias from the

geologists and geophysicists involved. Not enough work has been done in correlating

seismic data either with directional well logs or production associated with them.

Till date none of the studies have incorporated the schedule of production while

correlating seismic data to production rates. In this dissertation, time dependence

and interwell interference from nearby producers and injectors is accounted for.

This work attempts to bridge the gaps found in correlating horizontal wells with

seismic data. Further explanation is provided in Section 6.3

2.2 Soft computing techniques

Soft computing is the collection of techniques that are based on human cognitive

processes. These methods are known for their ability to handle uncertainty

and imprecision. The objective of the soft computing methods is to produce

low cost, analytic and complete solutions for complex systems where traditional

computational methods have not yielded satisfactory results. Soft computing

techniques are comprised of fuzzy logic, neuro-computing, genetic algorithms, and

probabilistic computing. Artificial neural networks are one of the main branches of

soft computing that has been extensively used in numerous applications in signal

processing, image processing, pattern recognition, etc.
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2.2.1 Artificial neural networks

Artificial neural networks (ANN) were first introduced in late 1940’s by McColloch

and Pitts(1943) (McCulloch and Pitts, 1943) and later gained significance with

invention of perceptrons by Rosenblatt(1958) (Rosenblatt, 1958). With the advances

in computing power, Hopfield(1982) (Hopfield, 1982), Kohonen(1982) (Kohonen,

1982), and Hecht-Nielsen(1987) (Hecht-Nielsen, 1987) have reinvigorated the use of

artificial neural networks.

ANN mimics the components of biological nervous system with an axon, soma

and dendrite (Yegnanarayana, 2009). Each input is represented by a neuron, and

then information is passed on through a series of transfer functions to the output

neuron. There are hidden layers in between inputs and outputs and have a transfer

function associated with them. Typical structure of an artificial neural network is

indicated in the Figure 2.3

Figure 2.3. Sample artificial neural network
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There is a library of transfer functions from where a user can pick based on the

problem being studied. Tansig and logsig functions are widely used in generating

synthetic well logs (Gharehlo, 2012).

Tansig function: This function is also known as bipolar sigmoid. In the function

the net input is converted between -1 and 1 by the Equation 2.4,

f(x) = 2
1− e−2x

− 1 = ex − e−x

ex + e−x
(2.4)

Logsig function: This function is also known as bipolar sigmoid. In this function

the net input is converted between 0 and 1 by the Equation 2.5

f(x) = 1
1 + e−x

(2.5)

Once input and a corresponding output are specified for a neural network,

an error surface is composed based on the difference between the desired system

response and real system output. This error information is propagated back to

the system to make necessary adjustments to weights during the learning stage in

a systematic fashion according to the learning algorithm specified. The process

is repeated until the errors get reduced to a preset tolerance level. User needs to

select the number of hidden layers and number of neurons in each layer along with

the transfer functions associated with each layer.

Learning the complicated patterns and ability to successfully map the input

data to output data highly depends on the type of learning algorithms employed.

From literature, it is observed that error back propagation learning algorithm seems

to suit best for the reservoir characterization problems (Bansal et al., 2013).
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Feed-Forward back propagation network as indicated in Figure 2.4 takes the

input in forward direction. As the computed error through network is propagated

backward, weights and biases are adjusted. These kinds of networks are used to

solve static problems; whereas cascade feed forward back propagation is used in

time dependent problems. In predicting the flow rate or cumulative flow rates from

wells, cascade feed forward back propagation networks serve as a better choice.

Figure 2.4. Artificial neural network training using backpropogation

algorithm (Gharehlo, 2012)

A brief list of ANN applications in petroleum industry is listed in Table 2.1 (Shahkarami

et al., 2014)

2.2.2 Fuzzy logic

Zadeh(1965) (Zadeh, 1965) first introduced fuzzy logic almost 50 years ago.

Unlike Boolean logic, fuzzy logic allows the object to belong both true and false with

different degrees of membership from zero to one. It has been designed to handle
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Table 2.1. A brief list of applications of ANN in petroleum industry
Well Log interpretation (Baldwin et al., 1989) (Lim et al., 2004)

(Nikravesh et al., 1998a)
Well test data analysis (Al-Kaabl et al., 1990) (Ershaghi et al., 1993)

(Athichanagorn et al., 1995) (Sultan et al., 2002)
Reservoir characterization (Mohaghegh et al., 1995) (Ouenes et al., 1997)

(Singh et al., 2008) (Bansal et al., 2013)
(Thararoop et al., 2008)

Seismic attributes
calibration, Seismic pattern
recognition , Inversion of

seismic waveforms

(McCormack et al., 1993) (Yang et al., 1991)
(Roth and Tarantoia, 1992)

Prediction of PVT data (Gharbi et al., 1997) (Osman et al., 2001)
(Oloso et al., 2009)

Identifying fractures and
faults

(Sadiq et al., 2000) (Aminzadeh et al., 2005)

Detecting hydrocarbons and
forecast formation damage

(Zhou et al., 1994) (Aminzadeh et al., 2005)
(Nikravesh et al., 1998b) (Kalam et al., 1996)

concept of partial truth. This logic mimics the human mind to effectively employ

the modes of reasoning that is approximate rather than exact. The imprecise nature

of geophysical and geological information makes fuzzy set theory an appropriate

tool to utilize in reservoir characterization studies. Given the set of input-output

patterns, many fuzzy rules can be developed to cover the entire functional space.

The major applications of fuzzy logic include seismic interpretation, stratigraphic

modeling and well logging (Bois,1984 (Bois, 1984); Nordlund,1996 (Nordlund,

1996);Cuddy,2000 (Cuddy et al., 2000)). In this current work, fuzzy logic is used

to determine the lithology based on well logs and also used to identify the net pay

zones.



Chapter 3
Statement of the Problem and

Objectives

The increasing costs of drilling exploratory wells, and obtaining field-wide data

in offshore fields have prompted reservoir engineers to look for more robust ways

to estimate properties at unexplored locations. As a reservoir engineer, one needs

to find ways to gain insight into issues of uncertainty in reservoir simulations,

and try to eliminate them based on models from available information. So to

characterize heterogeneous formations, a system needs to be developed to provide a

comprehensive reservoir analysis tool that could analyze Chevron’s Tombua Landana

asset. The challenge lies in integrating different sources and scales of data to help

build a model with accurate predictive capability in identifying reservoir properties.

The first aspect is to predict reservoir properties away from wellbores and identify

net pay along with uncertainty bounds. The second aspect of characterization is to

be able to predict the production performance of a chosen location that in turn

could be used to propose the infill wells.



20

The envisioned artificial intelligence tools will operate on the basis of learning

obtained from the training data sets (seismic data, well logs, production data, and

completion data).Therefore, the objectives of the current study can be summarized

as:

• To develop synthetic well log generation network that captures the relation

between seismic data and log values,

• To develop a production performance network that captures the relation

between production data, seismic data and well logs,

• Perform Monte Carlo simulation to capture uncertainties in prediction of

porosity, net pay and other relevant parameters using P10/P50/P90 forecasts,

• Generation of net pay surfaces, gas/oil/water in place maps, ultimate recovery

estimations and infill drilling opportunities,

• Optimal drainage pattern for field development to maximize the production

from infill drilling.



Chapter 4
Proposed Methodology

As described earlier, this research aims to structure an integrative approach to

characterize a reservoir using the available data and predict reservoir properties away

from wellbores, and also identify production potential which together aid in field

development planning. This process entails three steps namely data preparation,

neural network training and prediction.

In data preparation, anomalies are identified and a consistent data set is

assembled that forms a part of the input. This involves screening of well logs for

consistency, availability, and quality. Seismic data and velocity model are checked

with respect to seismic well ties available through checkshot data. Seismic attributes

computed, are plotted to identify anomalous trends. These attribute trends are

investigated to check if they add any additional information. In this process, seismic

attributes providing null values are discarded. A detailed procedure of calculating

seismic attributes and the resolutions is further explained in Chapter 5. Well logs

provide information at a high resolution of 0.5 ft, they need to be converted to a

resolution comparable to seismic data while correlating them.
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Neural network training is performed using MATLAB1 by generating several

architectures, and establishing an optimum architecture that performs well consistently

across a variety of data sets. Mean square error performance is used as a criterion

to stop the training process. Several training algorithms are tested for optimal

performance.

Synthetic well logs are created at all the locations where seismic data is available

using the synthetic well log network. Oil, water and gas production performance

networks enable the generation of production surface maps and help in forecasting

production in future. Monte Carlo simulations coupled with production performance

networks will help in identifying the infill well locations.

4.1 Well logs

Well logs are detailed petrophysical observations around well bore that inform

reservoir engineers of the subsurface properties. To integrate the well log data

into the static model or full field reservoir model, there are several ways. The

challenge however lies in prediction of properties at interwell locations, where often

interpolation is used to estimate the properties. The following are the types of well

logs studied in this work:

• GR (Gamma ray): measures the naturally occurring gamma radiation that

helps in characterizing the rock type in the borehole. It is not a function of

grain size or carbonate content, only the proportion of radioactive elements,

which may be related to the proportion of shale content. It is used to interpret

the depositional environment.
1MATLAB (matrix laboratory) is a multi-paradigm numerical computing environment and

fourth-generation programming language developed by Mathworks.
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• NPHI (Neutron Porosity): measure the hydrogen content in a formation.

Provides us with useful information on fluid filled porosity values. In shale-free,

water-bearing formations, the hydrogen concentration reflects the porosity

and lithology.

• PHIT (Total Porosity): measures the porosity of clean sand

• RHOB (Bulk Density) : measures bulk density, which can estimate the porosity

of the formation through the wellbore. These logs along with sonic logs are

used in calculating impedance that is used in seismic well tie process. This

can help identify evaporite minerals, detect gas-bearing zones and determine

hydrocarbon density.

• RESD (Deep Resistivity): measures the electrical resistivity of the formation.

High resistivity indicates presence of hydrocarbon bearing formation. It is

also useful in picking tops and bottoms of formations and correlating between

wells.

4.2 Seismic data

Seismic attributes are computed at the chosen stratal slices as described in

section 5.2.1. All the available attributes from Petrel2 are considered in this study to

maximize the available seismic information. The chosen amplitude based attributes

describe heterogeneity, stratigraphic sequence, map direct hydrocarbon indicators,

isolated geologic features, formation thickness, and porosity/fluid changes. All the

available attributes are extracted through the surface attribute model and then
2Petrel is a Schlumberger owned Windows PC software application intended to aggregate oil

reservoir data from multiple sources
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analyzed individually to identify the uniqueness of attribute computations at the

well locations. Attributes that resulted in zero values at all the well locations

are identified as redundant and hence removed from the input data. Appendix A

provides the list of seismic surface attributes used in this study. The descriptions

of the seismic attributes used in the study is provided in Section 5.2.1.

Amplitudes from seismic traces are directly correlated to acoustic impedance,

which in turn used bulk density log values. Hence it is expected to have a direct

correlation with bulk density log. In selecting the methodology to map the reservoir,

it is critical that the chosen input parameters will effectively represent the important

variables that capture the heterogeneity of the system under consideration. It is

known that production rate at a well location is related to a combination of well

logs and seismic attributes from literature. In this work, an attempt will be made

to recognize the pattern that exists between seismic data and well logs via synthetic

well log generation networks. Once synthetic well logs are populated over the entire

seismic coverage, logs in conjunction with seismic data will then be mapped to

production data using a production performance network. The production network

is expected to capture the interference effects of nearby producers and injectors

in oil, gas and water predictions. Using Monte-Carlo simulations, P10/P50/P90

surfaces of reservoir properties will be generated from the synthetic well logs. This

comprehensive reservoir tool will then enable generation of log surfaces; net pay

maps indicating sweet spots, spatial oil, gas, water maps, and assists in optimizing

the field development plan.

An inter-assisting group of artificial neural networks as indicated in Figures 4.1

and 4.2 will be developed consisting of the following networks
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Synthetic Well Log 

Generation Network 
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Well location determination(X, Y) 

Figure 4.1. Proposed methodology overview
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Figure 4.2. Proposed methodology detailed - module wise

In addition to the input and output parameters indicated in the proposed

methodology, functional links based on the physical relationships that exist between

input and output parameters will be employed wherever necessary.



Chapter 5
Case Study - Tombua Landana Asset

5.1 Location

In 2015, Angola’s oil production has surged owing to a variety of wide-ranging,

high potential plays (Koning, 2014). Production of 2.0 million bopd has been

achieved starting from 750,000 bopd a decade ago. Even though first drilling

for oil happened in 1915, it’s not until 1956 the Benfica oil field, near Luanda

marked the significant oil production in Angola. Since 1996, several deep water to

ultra-deep-water blocks have been identified and put to production.As indicated in

Figure 5.1, deep water assets have been contributing to more than 80% of the oil

production in Angola in the recent past.

Tombua Landana is located in Block 14 approximately 100 km offshore from

Cabinda in Angola with a water depth ranging from 200m to 1500m. Chevron

is the majority stakeholder (31%) along with Agip Angola (20%), Sonangol

(20%), Total Angola (20%), and Petrogal (9%). The area of the current study is

56km×55km. The block lies in the lower Congo basin and produces medium light

crude oil. The first exploration well was drilled in 1999 and is currently undergoing
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Figure 5.1. Angola’s oil production 1956-2014(Koning, 2014)

secondary recovery through water injection. Additional production and injection

well opportunities are pursued to improve the recovery factor. This asset is believed

to have 350 million barrels of oil in place and 60 million barrels has been produced

out of 20 wells as of October 2012.

5.1.1 Geologic setting of Angola

High quality turbidite sands deposited in a middle bathyal slope valley/incised

canyon environment make up the reservoirs(Higgs et al., 2005). Reservoir sands

are believed to form vertically stacked and nested channel complexes that both

erode and aggrade preexisting sediments . The turbidite complexes are known to

be 500-2,000m wide, 10-60m thick, composed on intercutting sand-rich turbidite

channels, shale-rich mudflows, debris flows and slumps.
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Figure 5.2. Location of Block 14 Angola offshore(Mapsofworld, 2014)

Traps comprise of channels draped over four-way structural highs or in normal

fault trap geometries and are likely controlled by Aptian salt movement and

subsequent late stage extensional faulting (Figure 5.3).

Figure 5.3. Schematic cross section through BBLT discovery wells showing stacked
channel traps which are influenced by later extensional faulting (Higgs et al., 2005)

Combination of Labe and Lower Malembo serve as source rocks with the onset

of peak oil generation at 13 Ma and 5 Ma. Migration pathways into the Miocene

channels are provided by deep penetration normal faults. Typically, all Miocene
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sands in trap position have encountered hydrocarbons of various quality and

quantity (Higgs et al., 2005).

5.2 Data availability/Inputs

All the available data is summarized in Figure 5.4. Seismic data is the geophysical

information that yields seismic attributes at each of the inline and crossline locations.

Directional surveys in combination with check shot data is used to verify the time

slice intersections of wells and their corresponding depths. Production rates are

used in building the production performance networks. Perforation information is

used as a functional link to inputs. Results are discussed in Chapter 6.

Geologic 
Information  

13 3-D Seismic 
volumes 

Interpreted 
horizons 

Well 
information 

 43 Well logs 

•GR, PHIT , 
NPHI, RHOB, 
RESD 

Directional 
surveys 

Check shot 
information 

Completion 
information 

Perforations 
information 

Top and bottom 
of the formation 

Production 
information 

 23 well 
Production rates 

of oil, water, 
gas  

Injection rates 
of water 

Figure 5.4. Available data from Tombua Landana

5.2.1 Seismic data input

Seismic data in the form of attributes at a given X, Y location (corresponding to

a well point) is computed by inverse square interpolation method from four nearest
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neighboring seismic data points as indicated in Figure 5.5. Hence, the training data

input is a matrix with 42 surface attribute values as rows at each X, Y, with 38

columns corresponding to the well locations for a given surface. 39 attribute values

are calculated from seismic data and X, Y, Z coordinates constitute the remaining

three attributes.

  

  

S1 S2 

S3 S4 

Well - Point 

 

                                                                                             

 

Figure 5.5. Inverse square interpolation

The following is a description of the available surface attributes in Petrel2. The

Table 5.1 outlines the list of the seismic attributes used in this study.

Arc length: Arc length measures reflection heterogeneity, and can be used to

quantify lateral changes in reflection patterns. It is calculated using the following

formula:

Arc Length =
∑n−1

j=1
√
amp(j)− amp(j + 1)2 + Z2

(n− i)× sample− rate (5.1)

where, Z is in milliseconds in time domain, or in feet or meters in depth domain.

Arc length is a stratigraphic sequence indicator.

Average duration of negative loops: Gives the average duration of all negative

loops in a given interval. It is undefined if there is no loop (a loop requires two
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Table 5.1. Surface attributes considered in this study
S.no Attribute Name S.no Attribute Name
1 Arc Length 21 Threshold >0
2 Average Energy 22 Time at Max Amplitude
3 Average Magnitude 23 Time at Min Amplitude
4 Average Peak 24 Average duration of negative

loops
5 Average Trough 25 Average duration of positive

loops
6 Interval Average-Arithmetic 26 Average loop duration
7 Maximum Amplitude 27 Average negative amplitude
8 Maximum Magnitude 28 Average negative trough value
9 Mean Amplitude 29 Average peak value between

zero crossings
10 Median 30 Average positive amplitude
11 Minimum Amplitude 31 Average positive peak value
12 Most of 32 Average trough value between

zero crossings
13 Number of negative crossings 33 Half energy
14 Number of positive crossings 34 Maximum loop duration
15 Number of Zero crossings 35 Minimum loop duration
16 RMS Amplitude 36 Positive to negative ratio
17 Standard deviation of

amplitude
37 Standard deviation of loop

duration
18 Sum of Amplitudes 38 Sum of negative amplitudes
19 Sum of Magnitudes 39 Sum of positive amplitudes
20 Extract value

zero crossings)

Dan =
∑

i=I,k di

K
(5.2)

where, di represents loops with negative amplitude and K is the number of negative

loops.

Average duration of positive loops: Gives the average duration of positive

loops in a given interval. It is undefined if there is no loop with two zero crossings
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with positive amplitudes.

Dap =
∑

i=I,k di

K
(5.3)

where, di represents loops with negative amplitude and K is the number of positive

loops.

Average energy:This is the squared RMS amplitude. This attribute is a measure

of reflectivity within a time or depth window and can be used to map direct

hydrocarbon indicators in a zone. Average energy is computed using the following

formula:

Average Energy =
∑n

i amp
2

k
(5.4)

where, k is the number of live samples.

Average loop duration: Average loop duration is defined as the average duration

of all loops. It is undefined if there is no loop (requires two zero crossings). Its

reciprocal (e.g. 500/Dav if the sample rate is 4 ms), gives an approximate average

frequency of the seismic data within the extraction window.

Dav =
∑

i=l,m di

m
(5.5)

where, di represents loops with positive and negative amplitude and m is the

number of loops.

Average magnitude: This operation measures the reflectivity within a time or

depth window, but is less sensitive to large numbers than RMS amplitude. Average

magnitude is computed using the following formula:

Mavg =
∑n

i=i |amp|
k

(5.6)
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where, k is the number of live samples. This attribute can be used as a hydrocarbon

indicator as well as isolated geologic features which express themselves as anomalous

amplitudes relative to background values.

Average negative amplitude: Gives the average of all negative amplitudes

values within the analysis window. The amplitude range to be included in the

calculation can be controlled with the parameter selector. The data range to be

included can be within the defined interval or outside the defined interval. By

default, all data values will be used.

Average negative trough value: Measures the negative reflectivity within a

time or depth window. Only trough values which are negative are included in the

average. This allows discrimination of local minima in the positive lobes of the

seismic waveform.

Average peak value: This is the average of all peak values in a window. These

peak values can be local maximums, in which case negative peaks are also averaged

in. This attribute can be a measure of the positive reflectivity within a time/depth

window. Large or small values can be used as a direct hydrocarbon indicator.

Average peak value between zero crossings: This operation is similar to

the average peak value, but instead of taking all peak values, only the largest

peak between each pair of zero crossings is taken.The output can provide a better

measure of reflectivity when tracking a single event.

Average positive amplitude: Gives the average of all positive amplitudes values

within the analysis window. The amplitude range to be included in the calculation

can be controlled with the parameter selector. The data range to be included can

be within the defined interval or outside the defined interval. By default, all data

values will be used.

Average positive peak value: This operation is similar to average peak value,
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but instead of taking all peak values, only the peaks in the positive lobe of the

seismic waveform are taken.

Average trough value: This operation measures the average of negative reflectivity

within a time or depth window. Its uses are similar to those of average peak value.

Average trough value between zero crossings: This operation is similar to

average peak value, but instead of taking all peak values, only the largest negative

peak between each pair of zero crossings is taken. This attribute can give a better

measure of reflectivity when tracking a single event.

Extract value: Extract value is the utility to extract the input seismic value

relative to a single horizon or an existing interpretation. This utility allows one to

produce surface attribute maps from seismic volumes created as volume attributes

with methods not available directly as surface attributes or from volumes created

with seismic calculator options.

Interval average: Calculates the average over an interval based on one of the

following methods; arithmetic, harmonic, geometric, RMS, summation, minimum,

maximum, most of or median. Provides one with the same interval averaging

options that were available in pre-Petrel 2007.1

Maximum amplitude: Measures reflectivity within a time or depth window.

Returns the maximum positive number in the defined window. It is used to detect

positive direct hydrocarbon indicators such as bright spots.

Maximum loop duration: Defined as the maximum duration (longest half-cycle)

of all loops, both positive and negative in the extraction window. It is undefined if

there is no loop (requires two zero crossings).

Dmx = maxi=l,k(di) (5.7)
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Maximum magnitude: Measures reflectivity within a time or depth window.

Returns the maximum positive number in the defined window. It is used to detect

positive direct hydrocarbon indicators such as bright spots.

Mean amplitude: This is the arithmetic mean of the amplitude and is a measure

of trace bias. If the seismic trace has general bias, perhaps from the data processing,

this can be removed from the seismic volume using the graphic equalizer attribute

and removing the zero hertz component. Mean amplitude is computed using the

following formula:

Ampmean = (
∑n

i amp)
k

(5.8)

where, k is the number of live samples. Positive or negative bias may indicate the

presence of bright spots.

Median: The median of the analysis window can be found by arranging all the

values from lowest to highest value and picking the middle one (i.e. 50% of the

values in the window are below the median value). The median is less sensitive to

extreme values (outliers) than the computation of the mean.

Minimum amplitude: This operation measures the reflectivity within a time or

depth window. This is the maximum negative number in the defined window. It is

used to detect negative direct hydrocarbon indicators such as bright spots.

Minimum loop duration: It is defined as the minimum duration (shortest

half-cycle) of all loops, both positive and negative in the extraction window. It is

undefined if there is no loop (requires two zero crossings).

Dmn = maxi=l,k(di) (5.9)



36

Most of : The most of attribute captures the most commonly occurring data value

within the analysis window. A histogram is computed from the input window and

the value from the bin with the highest count is output for each trace location.

Number of negative zero crossings: This operation results in a value representing

a counter for the number of zero crossings encountered within the analysis window

that match the criteria of the sample values going from negative values to positive.

Changes in the number of zero crossings can be related to the complexity of the

stratigraphy. A high number of zero crossings generally indicates a greater degree

of vertical lithologic complexity.

Number of positive zero crossings: This operation results in a value representing

a counter for the number of zero crossings encountered within the analysis window

that match the criteria of the sample values going from positive values to negative.

Changes in the number of zero crossings can be related to the complexity of the

stratigraphy. A high number of zero crossings generally indicates a greater degree

of vertical lithologic complexity.

Number of zero crossings: This operation results in a value representing a

counter for the number of zero crossings encountered within the analysis window

that match the criteria of the sample values going both from positive values to

negative ranges and from negative to positive ranges. See also number of negative

zero crossings.

Positive to negative ratio: Ratio of positive to negative is the number of

positive values in an interval, divided by the number of negative values in the

interval. If there are no negative values found in the interval to be used as a divisor,

the application returns a value of zero. This operation can be used to look for

lateral changes in thickness and also lithology, such as a pinchout or a sand that is

thickening within a shale sequence.
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RMS Amplitude: RMS amplitude is the square root of the sum of the squared

amplitudes, divided by the number of live samples as shown in the following formula:

RMSamp =
√

(
∑n

i amp
2)

k
(5.10)

where, k is the number of live samples. RMS amplitude can map directly to

hydrocarbon indications in the data and other geologic features which are isolated

from background features by amplitude response.

Standard deviation of amplitude: Standard deviation of amplitude measures

the variability of the seismic amplitude values within the extraction window. It is

undefined if n is less than 2.

Ds =
{∑

i=l,n (di −Dav)2

(n− 1)

}0.5

(5.11)

where, Dav is the average duration and n is the number of loops.

Sum of amplitudes: This is arithmetic mean of the amplitude, multiplied by

number of samples in the window. This operation provides a measure of brightness

multiplied by the formation thickness (time or depth) and may be regarded as a

measure of brightness volume. The sum of amplitudes over the given window is

calculated as follows:

Ampsum =
n∑
i

amp (5.12)

A large value may indicate a high net sand ratio

Sum of magnitudes: This operation measures the reflectivity within a time

or depth window, but multiplied by the number of samples in the window. The

operation can be used in a similar way to sum of amplitudes but is independent

of amplitude sign. The sum of magnitudes over a given window is calculated as
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follows:

Msum =
n∑
i

|amp| (5.13)

Sum of negative amplitudes: This is the arithmetic mean of the negative

amplitudes, multiplied by the number of samples in the window. This operation

provides a measure of brightness multiplied by the formation thickness (time or

depth) and can be regarded as a measure of brightness volume. A large value may

indicate a high net sand ratio.

Sum of positive amplitudes: This is the arithmetic mean of the positive

amplitudes, multiplied by the number of samples in the window. This operation

provides a measure of brightness multiplied by the formation thickness (time or

depth) and may be regarded as a measure of brightness volume. A large value may

indicate a high net sand ratio.

Threshold value: The threshold value attribute computes the percentage of

samples that satisfy the threshold value parameter. The threshold value is controlled

by the data range selected with the value parameter. One can select the threshold

as greater than, less than, or equal to the defined data range value. Amplitudes in

the seismic data can be analyzed using the user-defined threshold values that may

infer porosity or fluid changes, when amplitude driven.

Time at maximum amplitude: This operation results in a z-value (time or

depth) as the output attribute, where the z-value corresponds to the vertical position

of the maximum amplitude within the analysis window.

Time at minimum amplitude: This operation results in a z-value (time or

depth) as the output attribute, where the z-value corresponds to the vertical

position of the minimum amplitude within the analysis window.
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In the surface attribute extraction workflow, stratal slice of constant two-way

travel time (TWTT) are used to compute the seismic attributes. Unlike earlier

studies (Bansal et al., 2013) and (Thararoop et al., 2008), the current work does not

consider any mapped horizons to prevent interpretation bias. Further explanation

on extraction of seismic attributes in provided in Section 5.3. Impedance contrast

attributes are computed, but did not help in improving the correlations with well

log data. Hence, attributes based on amplitude alone are used in this study.

5.2.2 Well log data input

The well logs are relatively high resolution data compared to the seismic data.

Well logs in LAS files along with their directional surveys are provided by Chevron

Corporation. The entire length of the well log is divided into three zones for

improved characterization. The resolutions used in this study have been obtained

after several iterations of data extraction and correlation processes as outlined in

Section 6.1. The synthetic log network is developed to predict 150 average well

log values in a given zone. Zone-1, top surface corresponds to TWTT=1800ms

and bottom surface corresponds to TWTT=2200ms. Zone-2 extends from 2200 ms

to 2600 ms and Zone-3 from 2600 ms to 3000 ms. Figure 5.6 displays a sample

interval averaged gamma ray log for Zone-1. These values are computed along

the trajectory of the well bore following equally spaced points in measured depth

(For e.g. Zone-1: Top surface corresponds to TWTT=1800ms and bottom surface

corresponds to TWTT=2200ms). Data preparation detailing zonal information is

outlined in section 5.3.
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Figure 5.6. Comparison of field observed data with modified data

To maintain the consistency of the data for training purposes, 38 out of 43 wells

are used to train the ANN model for GR prediction of zones one, two and three.

The target data set is 150 × 38 (150 − rows correspond to the number of interval

averaged gamma ray values, and 38 columns correspond to the number of wells

used for developing the model). Figure 5.6 indicates the actual gamma ray and

interval averaged value of the gamma ray vs. depth

The top and bottom corresponding to a time surface are calculated through

interpolating checkshot data. If the depth of the well is found shallower than the

given the time surface, bottom depth is set at the bottom of the wellbore. Various
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resolutions of the well logs are tested and it was found that dividing the well log

into 150 values between each zone resulted in highest correlation coefficients.

High resolution well logs are developed in this module. 150 log values in each

seismic zone (400 ms) for the wells (two expert systems to predict five types of well

logs)

• GR/NPHI/PHIT Network (three networks one for each zone)

• RESD/RHOB Network (three networks one for each zone)

Gamma ray, neutron porosity log, total porosity log with first network and

deep resistivity and bulk density, with second network each predicting 150 interval

averaged log values at equally spaced values of measured depth in a zone/well.

5.2.3 Production data

Cumulative oil, water and gas produced based on the observed data is represented

in the following surface maps. As of September 2012, 58 MMSTB of oil has been

produced from this field. The field was put on to production in 2006 and continues

to produce with ongoing water injection that supports the reservoir pressure.

Figure 5.7 indicates the surface map of the cumulative oil produced from TOMBUA

LANDANA field. Yellow color indicates high values of cumulative oil close to 11

MMSTB. The northern region has one of the most prolific wells in the field.
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Figure 5.7. Cumulative oil production in STB observed until September 2012

Figure 5.8. Cumulative oil production bubble map observed until September 2012
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The earliest well, Well #6 in the Landana region (Northern region) as shown in

Figure 5.8 has produced 11 million barrels until September 2012, and is still on

production. Well #22 is the well with least cumulative oil produced of 0.82 million

barrels and is located on the southern fringe of the considered area.

Figure 5.9. Cumulative water production in STB observed until September 2012

The bright red spot in Figure 5.9 indicates the well with highest water production.

There are two injectors operating nearby, which could have been probable cause

for the high water production observed at this location. Figure 5.10 showcases the

cumulative gas produced from until September 2012.
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Figure 5.10. Cumulative gas production in MSCF observed until September 2012

Figure 5.11. Cumulative produced GOR (SCF/STB) bubble map
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Gas oil ratio (GOR) variation is highlighted in Figure 5.11. Gas oil ratios vary

widely in this region ranging from 350 SCF/STB to 7000 SCF/STB. Based on

the well operating conditions and the bottomhole pressure, gas oil ratio fluctuates

throughout the life of the well. Ideally, if the reservoir is being produced above

bubble point pressure, GOR remains constant. In this case, the pressure is

sometimes lower than the bubble point pressure and ongoing injection does seem to

have an effect on the producing GOR. Figure 5.11 shows that the western region of

the reservoir under consideration generally has higher GOR values. Highest GOR

value is from a well that has less than 1 year of production history. Average GOR

value observed in this region is 2000 SCF/STB.

Figure 5.12. Cumulative produced WOR bubble map

Water oil ratio (WOR) is defined as number of barrels of water produced

for every barrel of oil produced. This ratio qualitatively indicates the water cut

evolution (see Figure 5.12) that is evident in the field. It is interesting to note
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that wells in the southern part of the reservoir tend to produce more water than

northern parts. The injector wells do influence the water cut observed in the nearby

producers. In the current work, the influence of the injectors on the producing

WOR is captured in water production network.

The histogram of all the production wells with their production times is presented

in Figure 5.13. Wells with less than one year history are not used in the current

study. Some of the wells encountered very low amounts of oil, so they were

either recompleted to a different zone or production rates declined quickly reaching

abandonment conditions. One of the production wells with less than two years

history is converted to an injection well.
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Figure 5.13. Histogram of wells with their production times
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5.3 Data Preparation

In order to capture the information obtained through 3-D seismic surveys, a

‘surface attribute’ based approach is used to extract seismic data at the top of the

chosen surfaces. For converting the seismic volumes from SGY files to multihorizon

surface attributes, a project is created in Petrel.

To exclude geophysical interpretation bias, the seismic information is considered

in its raw format without the horizons provided in the data. In the current work,

the full angle stack file is cropped in between two way travel times 1800-3000ms.

The chosen seismic volume has over nine million traces with spacing of 12.5 meters

between each of the inlines/crosslines representing an area of 56km×55km of Block

14, Angola. Computational efficiency has driven creation of low resolution surfaces.

Time slices/surfaces are created at every 40 ms starting from 1800ms to 3000ms

by skipping 5 inlines and 5 crosslines. The resulting surfaces have a resolution

of 75 meters (resolution reduced from 3007×3351 to 750×835 as indicated in

Figure 5.14). Surface attributes at top of each of these time surfaces are extracted

and converted to interpretation as illustrated in Figure 5.15. Appendix A lists the

surface attributes currently considered as the seismic input data set.
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Figure 5.15. Seismic surface attributes considered

Seismic attributes that required a loop to be completed for computations could

not computed at certain locations resulting in null values. A boundary is created
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around the seismic data set and attribute values within the boundary are computed

using convergent interpolation technique available in Petrel. See Figures 5.16

and 5.17.

Figure 5.16. Visual representation of missing data in the initial surface attribute

computation module

Figure 5.17. Comparison between the densities of the 60k points (Low Res) vs. 157k

points (Full Res)
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Obtained seismic attribute data set comprises of 157,348 × 42 matrixes at each of

the 30 surfaces. (157,348 rows correspond to the total number of locations at which

surface attributes are computed, 42 columns indicate 39 attributes followed by X

coordinate and Y coordinate and Z coordinate). Zone-1 is defined as 1800-2200ms

and Zone-2 as 2200-2600 ms and Zone-3 as 2600-3000 ms. The division of these

zones at the current resolution is a result of the improved correlation coefficients

observed in the synthetic well log networks.

Four sample surface attributes arc length, peak value, minimum loop duration,

and number of zero crossings computed at 2800 ms are shown in the Figure 5.18.

Production data is processed to obtain the curve fit parameters that result

in cumulative flow rate being described with three parameters a, b, c using the

following power law formula. Figure 5.19 represents the cumulative flow rate data

of Well #5 along the assumed curve fit parameters.

qcum(STB) = atb + c (5.14)

Various curve fitting models are considered as indicated in Table 5.2 with their

corresponding average regression values. These values correspond to cumulative oil

production profiles.

Table 5.2. Curve fitting models considered for cumulative oil production

Type of Model Curve fit equation R2 Adjusted R2

Model 1 (Exponential) qcum=aebt 0.898 0.897

Model 2 (Polynomial) qcum=at2+bt+c 0.996 0.996

Model 3 (Power) qcum=atb+c 0.994 0.994
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Figure 5.18. Sample surface attributes computed at 2800 ms surface

From Table 5.3, it is evident that Model 2 and Model 3 are able to characterize

the cumulative flow rate profiles with high regression coefficients. However, in

finding an optimum architecture, it was found that curve fit parameters a, b, c

based on Model 3 are predicted with higher correlation coefficients and lower blind
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test errors consistently. Following Model 3, the ranges of parameters observed for

each of the oil, gas and water networks are listed in the tables below:

Table 5.3. Curve fit parameters for cumulative oil production

Parameter Min Max Average

a 1.33e+03 1.05e+05 2.79e+04

b 0.4401 1.0526 0.7539

c -7.43e+05 1.26e+05 -1.55e+05

Table 5.4. Curve fit parameters for cumulative gas production

Parameter Min Max Average

a 3.28e+03 2.38e+05 6.12e+04

b 0.5079 1.0983 0.7313

c -1.36e+06 2.23e+05 -3.68e+05

Table 5.5. Curve fit parameters for cumulative water production

Parameter Min Max Average

a 6.09e-13 2.29e+05 2.58e+04

b 0.0067 6.1043 1.5301

c -2.55e+05 1.49e+04 -4.06e+04

The parameters predicted for cumulative water production profiles have a wide

range of the parameters a, b, c observed. These extreme variations in the curve

fit parameters make the model predictions difficult to converge. Hence alternate

ways of correlating water production profiles are explored (Details are illustrated

in Section 6.3.3).
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Figure 5.19. Cumulative production profile of well #5 indicating goodness of curve fit

5.4 ANN architectures and performance criterion

Obtaining an optimal architecture is of prime importance in bridging the

uncertainty in predictions. In the current work, a new methodology has been

developed that employs the parallel processing capabilities of MATLAB with the

help of a script that enables efficient search for optimal network architecture.

Mean square error regression is used as a criterion while training the networks.

Various training algorithms are tested during this stage to accelerate the convergence.

Scaled conjugate gradient method of training has proved to be the most successful

training method compared to other available methods. This network training

function updates weight and bias values according to the scaled conjugate gradient
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method. Levenberg-Marquardt and BFDS Quasi-Newton and Conjugate gradient

with Powell/Beale restarts are amongst the other training algorithms tested.

Gradient descent with momentum weight and bias learning function was implemented

as a learning algorithm. Number of epochs was limited at 10,000 to avoid overfitting

the data. The goal for training was set at 10−4. In all the numerical experiments

conducted, 80% (30 wells) data is used for training, 10% (4 wells) data is used for

validation and 10%( 4 wells) data is used for testing purposes in case of synthetic

log networks. In some synthetic log networks the sample data set is limited to

34 wells to ensure consistency and availability of all the logs in the suite. For

production performance networks, 14 wells consistently had data that could be

used. So 80%(12 wells) data is used for training, 10%(one well) for validation, and

10%(one well) for testing. Mean average testing error for a given synthetic log

network is computed according to Equation 5.15:

e = 100 ∗
ntest∑
i=1

Length∑
j=1

(Predictedvaluei,j − Targetvaluei,j)
Targetvaluei,j

1
(ntest)(Length) (5.15)

Where, ntest = 3 or 4 , Depending on the number of testing cases available for each

of the networks

Length=150 log values for all the networks.

Even for the production performance networks, similar criterion is used in

generating the optimal architectures. In evaluating the error, month by month

production is computed and error is composed based on average monthly percentage

error in cumulative flow rates.



55

5.4.1 Parallel computation algorithm

In the current work 100,000 artificial neural network architectures are tested and

data sets are shuffled 6 times for each of the architectures . The speed of convergence

depends of various factors namely error tolerance, learning algorithm used, number

of cores in the computer, processor speed and data set itself. In this work it typically

took from 8hrs-24 hrs for the program to return the optimal architecture for each

of the synthetic well log architectures. The inputs for these architectures like range

of number of neurons, transfer functions, minimum and maximum number of layers,

learning algorithms, error performance criterion are manually adjusted based on

the performance. The workflow illustrated in Figure 5.20 enables implementation of

parallel computational ability in MATLAB helping user to save time in generating

multiple scenarios and evaluating them.
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Figure 5.20. Parallel computation algorithm



Chapter 6
Results and Discussions

6.1 Synthetic well log networks

Synthetic well log networks correlate seismic attributes to well logs and help in

generating synthetic well logs across the entire area of the reservoir. Initially the

well logs are trained individually with the seismic attribute data and later it has

been observed that combining the well logs and using them together as target has

improved the correlations. In the past works, a variety of wireline logs have been

individually predicted with limited to moderate success. In this work, an attempt is

made to test the hypothesis that well log signatures are codependent. During trials

with individual well log pattern identification networks, blind test errors of greater

than 15% were observed for GR log. Several numerical experiments concluded

that neutron porosity log (NPHI), gamma ray log (GR) and total porosity log

(PHIT) together yield better correlations and reduced error in the blind tests. Bulk

density log (RHOB) and deep resistivity logs (RESD) together did perform better

than individual networks. Therefore six network architectures are established, two

network architectures for each of the three zones.
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The resolution of the well log parameters was critical to obtaining meaningful

correlations. Predicting the well logs at 0.5 ft resolution resulted in extreme

variations that often resulted in noisy data. On moving to coarser resolutions, there

is a risk of losing detailed information provided by the log signature. At the same

time, the lowest possible vertical resolution that could be obtained from a seismic

trace data in the current field considered is 4ms. Hence resolutions of well logs, and

seismic data were altered intelligently to improve the correlations. This process

has resulted in the final resolutions used in generating synthetic well log networks.

Using the parallel processing algorithm outlined in Figure 5.20, about 100,000

architectures are tested to arrive at optimal architecture. It has been observed that

tansig and logsig transfer functions performed better than the rest of the available

transfer functions. The maximum and minimum was set at 300 and 100 neurons for

the hidden layers. The optimal architecture obtained for Zone-1 NPHI GR PHIT

network has three hidden layers with logsig, tansig, logsig and 368, 398, and 99

neurons. Purelin is used for the output later. To improve the prediction, mean log

values are added as an output functional links for all the synthetic log networks.

The optimal network architecure is shown in Figure 6.1.
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Figure 6.1. Zone one - three log architecture
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Figure 6.2 showcases the errors encountered while generating the optimal

architecture. The figure on the left displays the blind testing average error results

observed with the optimal architecture on six numerical trials. In each of the

numerical trials , data sets are randomly shuffled to obtain a different training,

testing and validation data. The figure on the right shows the blind testing error

observed in prediction of individual logs.

Figure 6.3 shows the relevancy of the input attributes in predicting the suite

of NPHI, GR and PHIT logs for Zone-1. All the seismic attributes more or less

had similar contributions around 3%. Sum of negative amplitudes and average

peak value between zero crossings have turned out to be slightly significant on

comparison with other seismic attributes. Sum of negative amplitudes provides a

measure of brightness multiplied by the formation thickness and may be regarded

as a measure of brightness volume. This explains the reason GR log is found to be

highly correlated with seismic data in Zone-1 as a result the observed blind testing

error is less than 10%
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Figure 6.3. Relevancy of seismic attributes

It is evident from Figure 6.4, that seismic attributes did have a good correlation

with NPHI log. The mean average testing error was found to be 4.3% out of 3

testing cases. In the above figure, the red line indicates the ANN predicted log

value and blue indicates the actual log value. Y axis represents the depth in feet.

Each time zone is split up into 150 average log values. Zone-1 corresponds to

1800-2200 ms. The depths corresponding to these time zones are computed using

the check shot information.
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Figure 6.4. Comparison of model predicted data vs. field data for Well #13
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Figure 6.5. Comparison of model predicted data vs. field data for Well #18
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Gamma ray log testing cases resulted in a mean testing error of 7.3%. The

peaks and troughs are not completely captured, but the trend of the well log seems

to be captured in the testing cases. The test cases shown in Figure 6.5 represent

the median error cases. A mean average testing error of 11.7% is observed in

three testing cases used for PHIT log prediction. In testing case 1(refer Figure 6.4)

and testing case 3 (refer Figure 6.6, model predictions are slightly different actual

field GR log data. In Well #18, model is able to capture the variation of GR log

satisfactorily .
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Figure 6.6. Comparison of model predicted data vs. field data for Well #36

Pruning methods have been tried with limited to no success in improving the

correlations. On removing the two least relevant seismic attributes, it was found

that the regression coefficients started to go below 0.9. Relevancy plots for other
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five networks look very similar to the above plot with small variations. Not one

seismic attribute has consistently proved to be more relevant than the others. In

this field, it can be said that all the seismic attributes do contribute to the synthetic

well log correlation.
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Figure 6.7. Comparison of model predicted data vs. field data for Well #2

Zone-1: RHOB RESD Network: As discussed earlier, Zone-1 bulk density

log (RHOB) and deep resistivity logs (RESD) are trained together to obtain better

correlations. While developing correlations to predict deep resistivity(RESD) logs,

it is observed that the abnormal deviations from the regularly observed values tend

to skew the correlation and therefore higher errors are observed consistently across

all zones for resistivity log predictions. Log and antilog scheme was introduced to

deal with the sharp variations in resistivity values, that in turn helped improve

the correlations. Optimal architecture obtained for this network has four hidden
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layers with tansig, tansig, logsig and logsig as the transfer functions and 257, 126,

248, 185 neurons on each of the hidden layers respectively. Schematics of the

networks developed for zone one RHOB RESD network and rest of the networks

are indicated in the Appendix C. Average testing error of 8.37% indicates the

robustness of the correlation obtained between seismic attributes and RHOB, RESD

logs for Zone-1. The schematics of the optimal network and the error percentages

observed while testing these architectures is presented in Appendix C. For brevity

purposes, all the subsequent network architectures, error percentages while training

for optimal architectures, individual log wise blind testing errors and relevancy

plots are presented in Appendix C.
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Figure 6.8. Comparison of model predicted data vs. field data for Well #7

The mean average testing error observed in the four testing cases is 8.37% for

the entire network. The models RHOB trend and log value prediction seems to be
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Figure 6.9. Comparison of model predicted data vs. field data for Well #21
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Figure 6.10. Comparison of model predicted data vs. field data for Well #22
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very well captured in testing Wells #7, #21 and #22(refer Figures 6.8 to 6.10).

Testing case, Well #2 seems to have unrealistic values of bulk density observed.

It is interesting to note that bulk density values increase as the depth increases

across all the well logs. The average testing error resulted in predicting the RHOB

logs is 1.1%.

For RESD logs, a mean average testing error of 12.1% was observed amongst

four testing cases. Some of the peak values could not be accurately captured in a

few test cases.

Zone-2: NPHI GR PHIT network: Zone-2 in this study is defined as region

between 2200-2600 ms of two way travel time. The optimal architecture established

for this has four hidden layers each with a transfer function of logsig. Number of

neurons in each hidden layers is 191, 191, 161, and 168 respectively. Functional

links based on X, Y, Z coordinates are used. This network could capture the

correlation well at an mean observed error of 6.05%.

The trends in prediction of NPHI log values in all the three testing wells are

well captured. Sharp contrast in NPHI values as it approaches Zone-3 is evident in

Wells #27 and #32 (See Figures 6.11 and 6.12, where the model is able to predict

those as well.

NPHI log in Zone-2 resulted in good correlations with seismic attribute data

with a mean average testing error of 5.7% over three testing cases. Amongst

these testing cases, Well #35 (refer Figure 6.13) has relatively high error between

predicted log value and actual NPHI value. The model predictions tend to estimate

lower GR log values at locations with high shale content. The model seems to be

marginally over predicting sands and under predicting the shaly layer GR values.

Model predictions of PHIT values are in line with the actual field data at all the

three testing wells. The sharp transition in Figure 6.13 PHIT value could be an
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Figure 6.11. Comparison of model predicted data vs. field data for Well #27
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Figure 6.12. Comparison of model predicted data vs. field data for Well #32
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Figure 6.13. Comparison of model predicted data vs. field data for Well #35

error in the logging environment. The average testing errors for NPHI log at 5.7% ,

GR log at 5.9%, and PHIT log at 6.5% indicate the relatively strong correlations

obtained between the seismic data and well log data in Zone-2.

Zone-2: RHOB RESD Log network: The optimal architecture established

for Zone-2 RHOB RESD network has four hidden layers with 151, 281, 144, 259

neurons each. The transfer functions associated with these layers are logsig, logsig,

tansig, tansig. The output layer is fed through a purelin transformation. The overall

mean testing error observed for this entire network is 9.5%.

Bulk density log correlated well with seismic data in zone two resulting in a

mean average testing error of less than 1%. All four blind testing cases for bulk

density are predicted very well as shown in Figure 6.14 through Figure 6.17.

The peak values of over 5 ohm-m could not be accurately predicted by the

network. The resistivity log trends for Well #21 and Well #24 are captured

satisfactorily by the network. However in Well #15 and Well #30, the peak values
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Figure 6.14. Comparison of model predicted data vs. field data for Well #15

of over 10 ohm-m could not be accurately predicted. The mean average testing

error observed over four blind testing cases is 13.1%. The model predictions are in

line with actual field data for RESD log from Well #24 as seen in Figure 6.16.

Zone-3: NPHI GR PHIT Log network: The three log network optimal

architecture is found to have four hidden layers with 162, 154, 239, 177 neurons

each with tansig, logsig, tansig, logsig as their respective transfer functions. Output

layer has purelin as the transfer function. The mean average testing error for the

network is at 21%.

Figure 6.18 highlights model’s ability to capture sand bodies that exist within

the layers by predicting the gamma ray log accurately. NPHI log correlations show
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Figure 6.15. Comparison of model predicted data vs. field data for Well #21
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Figure 6.16. Comparison of model predicted data vs. field data for Well #24



72

RHOB value(g/cm3)
2.3 2.35 2.4 2.45 2.5 2.55

D
ep

th
 in

 f
t.

6600

6800

7000

7200

7400

7600

7800

8000

8200

Field data
ANN

RESD (ohm.m)
0 2 4 6 8 10 12

Field data
ANN

Figure 6.17. Comparison of model predicted data vs. field data for Well #30
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Figure 6.18. Comparison of model predicted data vs. field data for Well #1
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promise with an observed error less than 2% in this case. PHIT log variations are

well captured in Figures 6.19 to 6.21.
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Figure 6.19. Comparison of model predicted data vs. field data for Well #8

A mean average testing error of 22% is observed in NPHI log predictions for

Zone-3. For predicting GR log, the model resulted with an average error of 25.7%.

PHIT logs are predicted with an average testing error of 18.4%. NPHI and GR

trends are predicted in line with field data for the Well #1 as indicated in Figure 6.18.

PHIT log trends as bottom of the 3000 ms is approached are predicted accurately.

In some instances, low GR troughs could not be satisfactorily captured.

The model is having difficulty to predict the log values below 40 API on a

few occasions. Lower API values indicate the presence of sand in the lithographic

section. Higher API values indicated the presence of shale.

Zone-3: RHOB RESD log network: Zone-3 correlations were more difficult

to establish owing to the sharp variations of log values. RHOB log is converted to



74

NPHI value
0 0.1 0.2 0.3 0.4 0.5

D
ep

th
 in

 f
t.

8000

8500

9000

9500

10000

10500

Field data
ANN

Gamma Ray(API)
0 50 100 150

Field data
ANN

PHIT value
0.05 0.1 0.15 0.2 0.25 0.3

Field data
ANN

Figure 6.20. Comparison of model predicted data vs. field data for Well #26
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Figure 6.21. Comparison of model predicted data vs. field data for Well #34
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a pseudo porosity log via density porosity equation and then used as a target data

for generating the correlation. This process has resulted in significant reduction of

error while predicting RHOB log. Log and anti-log schemes have helped in reducing

the errors in the process of establishing RESD log correlation. Zone-3 optimal

networks have four hidden layers with 294, 214, 272, and 115 each. The transfer

functions between the hidden layers are logsig, tansig, logsig, logsig and purelin for

the output layer. The overall mean testing error for the entire network is observed

to be 26.2%. The three blind test cases are displayed in Figures 6.22 to 6.24.
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Figure 6.22. Comparison of model predicted data vs. field data for Well #4

RHOB logs consistently correlate well with the seismic data across all the zones.

In zone three, the mean average testing error is found to be 1.5% and the network

is able to capture the variation in the bulk density for the testing cases. Some of

the peaks are not captured completely through ANN predictions, but the trends
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Figure 6.23. Comparison of model predicted data vs. field data for Well #5

are in line with the actual logs. The RHOB values do not seem to increase with

depth as observed in Zone-2. This phenomenon could be attributed to the presence

of hydrocarbon in Zone-3 which alters the bulk density values significantly.

Zone-3 log predictions had the highest error amongst all zones. This is due to

sharp variations in the properties of the zone along the depth. This zone is believed

to be the prolific production zone because of which the resistivity variations are

large. Hence, the mean average testing error observed for resistivity logs is around

35%. The RHOB logs consistently performed better than the rest of the logs. This

is due to their relationship to seismic amplitudes through impedance. Impedance

log is generated through combining bulk density log with sonic log. It is then used to

construct seismic well ties throughout the field to validate the velocity model. The

errors observed during prediction of RHOB logs are lower than 2% in any given zone
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Figure 6.24. Comparison of model predicted data vs. field data for Well #23

due to the fact that they correlate well with seismic amplitudes. The correlation

coefficient values R2 observed in generating synthetic well log correlation fall in the

range of 0.7-0.95. Higher correlation coefficient values indicate a high degree of

accuracy. Attempts to train the entire length of well log in one model has resulted

in lower correlation coefficients, thus indicating different zones of the log do carry

unique information in this field. With the help of these synthetic well log networks,

log cubes are created with all the five logs at every location seismic data is available.

Average GR, NPHI, PHIT and RHOB logs generated from Zone-1 logs is displayed

in Figure 6.25. These plots clearly indicate that the sands are deposited along the

north to south direction with high porosity channels that could be potential flow

channels. From the average PHIT logs it is evident that high porosity channels

run from north to south. RHOB logs indicate that the eastern part of the field
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could be having lower porosity. But the density porosity calculations are performed

according to lithology. The south east region is known to be closer to oil water

contact, that is one of the reasons why the density porosity logs indicate a higher

values, that translate to lower effective porosity values. The generation of these

log surfaces aided in understanding the complex lithology patterns exhibited by

this field. These synthetic logs can be populated back to static model for better

informing the facies model at the highest possible resolution. With these synthetic

log networks described above, model is able to generate well log suite for undrilled

wells of any directional configuration.
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Figure 6.25. Average logs generated from log cubes for Zone-1

6.1.1 Washed out log predictions

Synthetic well log module can aid in completing the log suite at any given

location. For instance in Figure 6.26: PHIT log is washed out in zones one and two.

Using the network the log can be reconstructed as indicated by the ANN based

prediction outline by red curve.
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Figure 6.26. Well #28 washed out log reconstructed using synthetic log network

The complete log suite for all the 38 wells is completed using the synthetic

well log network module. All the 157,348 points of seismic trace data are used to

develop synthetic well logs assuming a vertical well passing through each of these

points with well head at X, Y coordinate of these seismic traces. These synthetic

logs are further used to predict production profiles with a hypothetical well at each

of these location to result in spatial oil, gas and water distribution maps that is

discussed in Section 6.3

6.2 Monte Carlo Simulations

The goal of net pay determination is to eliminate nonproductive hydrocarbon

rock intervals, and calculations provide a solid basis for quality 3D reservoir

characterization with quantitative hydrocarbons in place.

Oil in place calculations require accurate estimation or determination of net pay

which could be obtained by point by point summation of the producing reservoir



81

rocks on the basis of core descriptions and log characteristics. Typical approach

includes determining net pay by applying cut offs to gamma ray, porosity and

resistivity logs. Other approaches are mobility or permeability based cutoff that

allows a reservoir engineer define net pay by applying a fluid flow cutoff. These

mobility based calculations are different based on the reservoir fluid being produced.

For oil reservoirs these cutoffs generally tend to be higher than gas reservoirs.

The choice however also depends on the relative permeability effects and interwell

connectivity. For this study, gamma ray, and resistivity are used to establish net

pay, since permeability logs are not being predicted. An assumption pertaining the

logs used in building synthetic well log architectures are normalized is made. The

net pay cutoff calculations are verified with the exiting well net pay summaries.

Gamma ray cutoff of 50 API along with resistivity cutoff of 4 ohm-m is established

as a norm for this field.

In order to accurately estimate the reserves in place, one needs to account for all

the uncertainties that exist within the data being used. A Monte Carlo simulation

is a stochastic way of estimating a parameter given the variables used in prediction

has uncertainty. Probability density functions (PDFs) are computed for each of

the variables and are fed to the Monte Carlo simulation algorithm for obtaining

the cumulative distribution function for original oil in place (OOIP) at each of

the locations present in the field. OOIP is calculated with the help of following

equation 6.1:

OOIP (bbls) = 7758× A(acres)× netpay(ft)× φ× 1− Swi

Boi(RB/STB) (6.1)

OOIP ( bbls

acre− ft
) = 7758× φ× 1− Swi

Boi(RB/STB) (6.2)
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To calculate OOIP per unit acre-ft, porosity φ, initial water saturation Swi and

initial volume formation factor Boi values need to be estimated. Using the synthetic

logs developed earlier, it is possible to estimate these parameters for the layers

contributing to net pay.

Porosity, φ is computed from the PHIT log, initial water saturation, Swi is

calculated using the Archie equation as described in equation below:

Sw = a

φm
( Rw

RESD
)1/n (6.3)

where, Sw - water saturation, φ - porosity, Rw - formation water resistivity, assumed

as 0.2 for this field, RESD -observed bulk resistivity, a-a constant (considered 0.81

in this case), m- cementation factor (assumed to be 2), n- saturation exponent

(assumed to be 2). Initial oil volume formation factor Boi is calculated based on

the average pressure of the pay zone assuming a constant pressure gradient of 0.42

psi/ft.

Figure 6.27. Top 100 locations based on normalized P90 OOIP overlaid with net pay

maps



83

P90 (Probability of finding this value is 90%) OOIP maps are overlaid with net

pay maps to estimate the top 100 locations for potential drilling are indicated in

Figure 6.27(Normalized values). Therefore in a given field, if one has to estimate

the best location for drilling, it needs to be based on oil in place estimates. Hence

the results generated from this exercise are used in finding the optimal locations to

drill the infill wells. The locations chosen based on OOIP maps generated from this

exercise are then evaluated based on various well trajectories to develop the infill

well paths. NPV module is used in evaluating the proposed well paths to identify

the optimal locations and paths based on five-year production trends.

6.3 Production performance networks

Production performance networks are trained to correlate production data to

seismic data and well log data observed at a well location. Seismic data, well log

data long with schedule of production have been provided as the input parameters

to the network. In the past, most researchers attempted to correlate production

data directly with seismic data or well log data independently. In this current

work, synthetic well logs provide the additional information required for the model

to understand the petro-physical characteristics of a chosen location along with

the geophysical data from seismic attributes. Predicting production data through

monthly average data points( from 78 months) is attempted. Figure 6.28 shows

a good match between model predictions and actual field data. The errors vary

between 30-80%. In addition to high errors, this way of correlating might not be

able to predict production rates beyond 78 month time period.

The instantaneous flow rate profiles are erratic, hence could not result in a

confident fit with any one particular model. The wells in this field are undergoing
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Figure 6.28. Predicting cumulative oil production via monthly rates for Well #27

work-over operations, and injectors simultaneously starting around the producers,

hence fitting a flow rate profile lead to erroneous and false estimations of the

instantaneous flow rates. Hence cumulative flow rates are subjected to curve fit

models to generate appropriate parameters. The model used to fit the flow rates has

already been presented in Chapter 5. This process has not only resulted in improved

correlations, but also the ability of model to forecast oil, water, gas productions. It

is essential to incorporate the input parameters that have an influence on fluid flow

from a given well. On iterating, it was found that the following parameters listed

as network inputs below have resulted in the optimal correlations established as a

part of production performance module.

Network inputs:

• Seismic attribute data for all the three zones
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• Well log data for the three zone and five log types

• Production schedule with a binary values of one and zero indicating the

activity status of the well in any given month starting 2006 until 2012.

• Production well interference from the nearby wells: This is computed at each

month with the Equation 6.4

Interferencejthwell =
Numberofproducers∑

i=1

qcumoil−ithwell/dij (6.4)

where, dij is the distance between wells i, and j

• Injection well interference from the nearby wells: This is computed at each

month with the Equation 6.5

Interferencejthwell =
Numberofinjectors∑

i=1

qcumwater−ithwell/dij (6.5)

where, dij is the distance between wells i, and j

• Completion parameters

Completion parameters include the following items listed in Table 6.1
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Table 6.1. Completion parameters used

S.no parameter units

1 Total length of perforated interval ft.

2 First perforation measured depth ft.

3 First perforation TVD SubSea ft.

4 Bottom perforation measure depth ft.

5 Bottom perforation TVD SubSea ft.

6 Net reservoir ft.

7 Net pay ft.

8 Total depth ft.

9 KB ft.

There are 78 inputs each from production and injection well interference terms that

correspond to number of months of total production in the field.

Network outputs: Parameters a, b, c assuming the cumulative oil production

follows a trend of qcum = atb + c ( where t is in days, qcum is in STB)

The following Figure 6.29 provides a schematic for oil and gas production

performance networks built in this work. For water production performance, 12

months of production data is predicted instead of curve fit parameters. Further

explanation provided in section 6.3.3.

6.3.1 Oil production performance network

Fourteen of the 20 wells consistently had all the data and made up the sample

data set. Out of which 12 are used for training, 1 for validation and 1 for testing in

a given numerical trial. The zero flow rate part as indicated in the plots is given as
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Figure 6.29. Schematic for the production performance networks

an input parameter. The comparison is only made for the time period after the

wells are subject to production. In the input functional links, production schedule

with binary parameters of 1 or 0 are provided for informing the network of well’s

operating conditions. The red curve in these plots indicate the curve generated

through the model predicted parameters a, b, c. The blue curve depicts the actual

field oil production observed.

Mean average testing error of 21% is observed between the ANN cumulative oil

predicted and observed cumulative oil produced in the field. On the contrary, if

the monthly cumulative oil rates were predicted, the optimal architecture resulted

had an average blind test error of 30%. The output parameters used in building

the optimal architecture are curve fit parameters a, b, c. Magnitude of errors in

prediction of parameters do not directly correlate with the magnitude of deviation

in oil cumulative flow rates. Hence, error in the cumulative oil prediction is used to
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find the optimal network architecture. The negative flow rate values observed is

an artifact of the error in prediction of parameter ‘c’. In trials, where the error in

parameter prediction was used as a metric in establishing optimal architectures, it

was found small errors in parameter b had a significant impact on the blind test

errors on comparison with parameters a and c. So in order to constrain the output

vector, mean monthly production is used as a functional link in outputs.

The summary of the best architecture is outlined in Figure 6.30. Four hidden

layers with 47, 33, 46 and 34 neurons with transfer functions tansig, tansig, tansig

and logsig was found to be the optimal architecture. The blind testing errors

observed while testing the optimal architecture is indicated in Figure 6.31. Most of

the error contribution has consistently been coming from parameter ‘c’ because of

which some of the test cases indicate a negative production at the first month due

to the nature of curve fit parameters.
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Figure 6.30. Cumulative oil production performance network architecture

The testing errors ranged between 5% to 35% (see Figure 6.31) while generating

the optimal architecture for predicting cumulative oil production.
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Training experiments
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Figure 6.31. Blind testing errors observed for oil production network
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Figure 6.32. Relevancy of input attributes
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From Figure 6.32, it is evident that well logs have a significant contribution to

the oil production performance. They are found to be 60% relevant, seismic data

is second most relevant input attribute at 32%.

Gamma ray log as indicated in Figure 6.33 is about 13.5% relevant in predicting

cumulative oil production. This is intuitive due to the fact that information on

geology informing the network of sand/shale presence is crucial in predicting the

oil production.

Relevancy %
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GR

NPHI

PHIT

RHOB

RESD

Figure 6.33. Relevancy of well logs

The best case, worst case, and median error case are indicated in Figures 6.34

through 6.36. In Figure 6.34, zero flow rate till end of month 51 is provided via

the schedule in inputs. Curve fit parameters a, b, c are predicted through the

expert system based on network inputs as discussed earlier. Using those curve

fit parameters, red curve is generated for the active production months 52 till

78. Blue curve indicates the cumulative oil production data observed in the field.
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Cumulative oil produced in STB is compared in the given plot. Well #5 resulted

in least error while testing for optimal architecture. Instantaneous error computed

at each month is displayed in Figures C.16 to C.18.
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Figure 6.34. Well #5 blind testing best case - an error of 8% is observed

Well# 5 has been the best blind testing case. An average error of 8% is observed

in predicting the cumulative oil production through model. A large contribution

to the error comes from the first month production data, since the prediction is

made through curve fit parameters. This well has been operating steadily with

no major interventions, hence the model could accurately capture the production

characteristics at this well location through seismic data, and well log data along

with other functional links.
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Figure 6.35. Well #17 blind testing worst case - an error of 45% is observed

For Well #17 (refer Figure 6.35), the model has under predicted the production

data by about 45%. This location has an unusually high gas oil ratio. That

probably could mean that this is producing from a different reservoir than its

neighboring wells. With time, model predictions deviate from actual field data

owing to smaller ’b’ value predicted by model. The deviation is highest at the first

two data points post production, where the model predicted extremely low values

that resulted in large errors. In case of Well #27 (refer Figure 6.36), the model has

over predicted the production data by about 32%. This can be attributed to two

reasons, first is that a work-over operation that happened three months after the

start of production and secondly, the interference effects of nearby injection well

may not be well understood by the model. This well is at the bottom most fringe

of reservoir and is the southernmost of all the wells in the existing dataset. In the

later part of the well, an additional zone was re-completed. All these conditions
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add to the complexity of the resultant production profile. One of the assumptions

made in building the model was that all perforations are available to flow at all

times. It is possible because of the assumption made in model building process, the

expert system has consistently over predicted the cumulative oil production in this

case. By adding new wells to the existing data sets, the model can be improved by

having supplemental information.
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Figure 6.36. Well #27 blind testing median case - an error of 32% is observed

Rest of the cases are presented in Appendix D.

6.3.2 Gas production performance network

The optimal architecture found for cumulative gas production performance

network is outlined in Figure 6.37. Four hidden layers with 42, 37, 44 and 26

neurons each and logsig, tansig, logsig, logsig were the respective transfer functions
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associated with these layers. Output layer has purelin function as the transfer

function. The zero flow rate part as indicated in the plots is given as an input

parameter. Mean average error from blind testing results is at 32%.
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Figure 6.37. Cumulative gas production performance network architecture

The errors encountered while testing the optimal architecture are displayed in

Figure 6.38. The testing errors ranged between 6% to 55%. The relevancy of the

input attributes is shown in Figures 6.39 and 6.40. Well logs remained to be the

most important input attribute while correlating cumulative gas production with

seismic data, well logs, interference and completion parameters. All five well logs

together have 61.5% relevancy as indicated by the weights of the input neurons.

Seismic data at 33.1% is the second more relevant input attribute. Interference

attributes contributed to approximately 3.5% of the input neuron weights.
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Figure 6.38. Blind testing errors observed for gas production network
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Figure 6.39. Relevancy of input attributes
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Figure 6.40. Relevancy of well logs

The best, worst and median blind testing cases are indicated in Figures 6.41

to 6.43. It is noteworthy to see the good correlations obtained in predicting

cumulative gas production inspite of varying gas oil ratio throughout the field. In

case of Well#17, the bottomhole pressure at the end of 15 months of production has

dropped to less than bubble point pressure. Owing to the two phase region, more

gas is being produced at the later stages of production. There has been an intial

decrease in GOR in this region from 9,000 SCF/STB to 7,000 SCF/STB and in

later times, it has increased to values greater than 10,000 SCF/STB. Instantaneous

error plots computed at each month for all the test cases are shown in Figures C.19

to C.21.
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Figure 6.41. Well #17 blind testing best case - an error of 14% is observed

The worst blind test case as displayed in Figure 6.42 is observed in predicting

cumulative gas production from Well #21. Well # 21 has declining GOR from

2,000 SCF/STB to 800 SCF/STB at the later times of production. The network

was not able to capture the decline in GOR, due to which model predicted higher

gas production at later times for this well.
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Figure 6.42. Well #21 blind testing worst case - an error of 90% is observed

The median blind test case is cumulative gas production from Well# 27. An

average error of 20% was observed while predicting the cumulative gas rates. Errors

are mostly from the initial part and later parts of the production. The initial

error is due to the parameter ‘c’ being under-predicted. The gas oil ratio has been

highly fluctuating in this region owing to interference from neighboring injectors

and producers.
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Figure 6.43. Well #27 blind testing median case - an error of 20% is observed

6.3.3 Water production performance network

The curve fit parameters even though have obtained a good correlation coefficient,

the parameters a, b, c have a large range because of which the ANN model could not

capture the coefficients effectively. Errors consistently higher than 200% were found

while trying to establish an architecture. Water cut behavior has been influenced

by nearness of a given well to oil water contact and the injectors interference. The

water cut behavior of the production wells is indicated in Figures D.3 to D.6(in

Appendix D. They clearly indicate how water production has been erratic with

time. So fitting it through a curve fit procedure did not yield satisfactory results.

Hence 12 months of water production data was used as the target data set for

training water production performance networks.
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The optimal architecture correlating cumulative water production consists of

five hidden layers with 15, 50, 10, 47, and 11 neurons and transfer functions logsig,

logsig, tansig, tansig and logsig associated with them. The output layer with 12

hidden neurons is fed through purelin transformation.

The errors obtained while testing this architecture are given in Figure 6.44:
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Figure 6.44. Blind testing errors observed for water production network

The input attribute relevancy plots indicated in Figure 6.45 show that well log

data is consistently the most important attribute in the production performance

networks. Gamma ray log is slightly the more relevant log compared to other logs

in this network.
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Figure 6.45. Relevancy of input attributes for water network

Well#30 has been re-completed to a different reservoir after one year. That

could be one of the reasons for error in predicting water production. First reservoir

produced at almost twice the amount of water oil ratio(WOR) as compared to the

second reservoir. That partly explains the reason for consistently higher predictions

of water by the model. Instantaneous error plots showing error at each month for

all the test cases are displayed in Figures C.22 to C.24.
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Figure 6.46. Well #30 blind testing best case - an error of 30% is observed

The worst case blind test comes from Well #31. Extremely high water

production has been predicted for this well as shown in Figure 6.47. The results

can still be improved. This well has an unusually low water production compared

to the neighboring wells. This is the southernmost well in the field. The model

could not accurately capture the extremely low water cut in this well.
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Figure 6.47. Well #31 blind testing worst case - an error of 70% is observed
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Figure 6.48. Well #21 blind testing median case - an error of 40% is observed

The decrease in cumulative flow rate is not a physical solution. This is a

statistical artifact of predicting each month’s production by the network. Additional
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trials are underway to improve the water production performance module to reduce

the blind test errors. Innovative ways of incorporating injection effects are being

studied.

6.4 Directional well log generation

One of the principal objectives of the work is to map directional(horizontal)

well logs to their corresponding seismic attributes and be able to correlate with

them. With the use of synthetic well log module, the correlation is established as

discussed in section 6.1. Once a user provides a trajectory to the tool developed in

this work, the work flow as demonstrated in Figure 6.49 is adopted in generating

the directional log signatures. Well log values from each of the vertical wells drilled

at the X,Y locations are used as input logs which are further resampled at the

ellipses indicated in the Figure 6.49 to obtain the directional well log suite.
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Figure 6.49. Horizontal well log generation workflow

For each zone, X,Y coordinates for 150 points along the trajectory are computed,

and vertical synthetic well logs are generated. Based on the depth vector, the

directional log values are picked from the vertical well log sections. This ensures

the highest resolution of log to be generated using the workflow.

There are multiple ways of specifying a trajectory for a wellbore. In this

work, the acceptable inputs are well top, kick off point and end of lateral X, Y,

Z coordinates. Once the kick off point is specified the trajectory of wellbore is

automatically computed using biggest arc that can be fit to minimize the length of

curved part of the wellbore.

Once the location is identified as indicated in Figure 6.50, various directional

well log architectures indicated in plot on the right are tested for evaluating the

best production profile. As observed from Figure 6.51,the best trajectory at the
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given location is given by profile four. Once all the potential well locations are

identified, NPV analysis is performed to optimize the drilling schedule.

Figure 6.50. Horizontal well log evaluation
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Figure 6.51. Production profiles of chosen well log trajectories
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6.5 Net present value (NPV) analysis

NPV is net present value calculated by adjusting revenue with discounted cash

flows. In calculating flow rate from the horizontal wells, the production performance

module predictions are used rather than considering wellbore flow dynamics and

related factors that affect the fluid flow performance. The minimum and maximum

lengths of the horizontal well are considered from the history of the field. Minimum

total drilled depth for a directional well in this field is 13,388 ft and maximum is

19,583 ft. Therefore, the range of the lateral length explored is 3,000 ft to 9,000

ft for evaluating the NPV of the well to be drilled. There are other factors that

determine the economics of the horizontal well as follows:

• Drainage area

• Friction loss

• Productivity index

• Early time production increase

• Reserves increase

But in this work, only the increase in revenue based of oil production is considered.

Well construction costs can be estimated either through JAS method or MRI

method (Syed, 2014).

Models to estimate well cost: There are several ways of estimating the drilling

cost of a directional well in deep water environments. Mechanical risk index (MRI )

was first developed in late 1980s by Conoco engineers to compare offset drilling data

for a collection of offshore wells in Gulf of Mexico (Kaiser, 2007). In mid 1990’s,

Dodson modified the MRI using key drilling factors. Through time, this method
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has undergone changes to incorporate new factors into qualitative indicators. This

model is defined in terms of four component factors and a weighted composite

key drilling factor. The component factors are described in terms of six primary

variables and key drilling factor represents composite impact of 14 qualitative

indicators. Six primary variables of the MRI include the total measured depth

(TD), vertical depth (VD), horizontal displacement (HD), water depth (WD),

number of casing string (NS), and mud weight at total depth (MW ). All distances

are measured in feet. Mud weight is reported in pounds per gallon (PPG). Casing

is one of the more important factors that can cost up to 10-20% of a completed

well.

ϕ1 = (TD +WD

1000 )2,

ϕ2 = ( V D1000)2.
TD +HD

VD
,

ϕ3 = (MW )2.
WD + V D

V D
,

ϕ4 = ϕ1.

√
NS + MW

NS2 .

(6.6)

The units of ϕ1 and ϕ2 are ft2; the unit of ϕ3 is ppg2 ; the unit of ϕ4 is ftppg0.5.

Each component factor is nonlinear in the primary variables.

Key drilling factors are defined to capture drilling characteristics that are encountered

or are expected to be encountered, but not described by the component factors.

The key drilling factors are user-defined qualitative variables ϕi that are assigned

an integer-valued weight ϕi(w) according to the occurrence of the condition and

degree of complexity. The composite key drilling factor is determined by the sum

of the drilling factor weights:

ψ =
14∑

i=1

ψi(w) (6.7)
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where the variables and corresponding weights are as follows:

ψ1= horizontal section (ψ1(w) = 3),

ψ2= J-curve directional(ψ2(w) = 3),

ψ3= S-curve directional(ψ3(w) = 2),

ψ4= subsea well installed(ψ4(w) = 2),

ψ5= H2S/CO2 environment(ψ5(w) = 1),

ψ6= hydrate environment(ψ6(w) = 1),

ψ7 = depleted sand section(ψ7(w) = 1),

ψ8 = salt section(ψ8(w) = 1),

ψ9 = slimhole(ψ9(w) = 1),

ψ10 = mudline suspension system installed(ψ10(w) = 1),

ψ11 = coring(ψ11(w) = 1),

ψ12 = shallow water flow Drilling Cost and Complexity Estimation Models 11

potential(ψ12(w) = 1),

ψ13 = riser less mud to drill shallow water flows(ψ13(w) = 1),

ψ14 = loop current(ψ14(w) = 1).

MRI = (1 + ψ

10).
4∑

i=1

ϕi (6.8)

The protocol followed is illustrated with the example given below:

1. Specify the well characteristics encountered/expected: e.g., TD=15,000

ft, WD =150 ft, V D=13,800 ft, HD =2500 ft, MW=16 ppg, NS=6

Specify the risk factors encountered/expected ; e.g., : ψ1= horizontal

section, ψ3 = S-curve directional, ψ7 = depleted sand section, ψ9 = slimhole,

ψ12 = shallow water flow potential
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2. Compute component factors and key drilling factors: :ϕ1 = 229.5, ϕ2 = 241.5,

ϕ3 = 258.5, ϕ4 = 582.6, ψ = 8.

3. Compute MRI:

MRI = (1 + ψ

10).
4∑

i=1

ϕi = 2, 362 (6.9)

There are other factors like directional difficulty index, proposed by Schlumberger

that could be incorporated to further refine the model and obtain precise estimates.

These calculations are possible and feasible given the cost of existing wells is known.

In this work, since the actual cost of the wells is not known, an alternate approach

of revenues generated through five year production is used to compare the well

trajectories. Following parameters are used in estimating NPV:

Parameter Value

Oil cost, in $/per barrel 50

Well cost, in $/per foot 3500

Discount rate, in % 7

Time period, in years 5

The four well trajectories analyzed in horizontal well section are analyzed with

respect to the NPV generated by each of the scenarios. The revenues from gas

production and costs associated with water disposal is assumed to be zero for a

simplified analysis. Construction and capital costs are included in the cost of well

per foot. Taxes are assumed to be 10%. Royalty costs are ignored. Revenue thus

generated is by sales of oil produced. The fourth log profile has the highest NPV
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of 340 million dollars.

∑
NetCashF low =

∑
Revenue−

∑
Operatingcost−

∑
Overhead−∑

ConstructionCost−
∑

Captialcost−
∑

taxes

(6.10)
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Figure 6.52. NPV value in MMUSD for the four log profiles considered

6.6 Sensitivity analysis

To check the sensitivity of the input parameters with production rates, the

following input parametric sensitivities are conducted. Since oil production is of

prime importance in the current study, all of the sensitivities are tested with respect

to the oil production. Learnings from this study were incorporated to improve the

gas production and water production networks. Input parameters constitute:
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• Seismic attribute data alone

Seismic attributes from full angle stack data (mean error − 27%)

Seismic attributes from full angle stack data and inversion products (mean

error − 32%)

• Well log data alone

50 average log values (mean error − 26%)

350 average log values (mean error − 25%)

• Both seismic data and well log data together (mean error − 21%)

Sensitivity analysis of input parameters has suggested the use of both seismic data

along with well log data for better correlations. Seismic data together with well log

data have resulted in the best performing network architecture with mean average

testing error of less than 21%. Seismic data alone resulted with an architecture

that performs with an error of 27%. Well log data alone when used to predict the

production parameter a, b, c has resulted in mean average testing error of 25%.

Therefore for the optimal architecture both seismic data and well log data are used

together.

6.7 Production surface maps

Using the cumulative oil production performance module, surface maps are

generated assuming a vertical well drilled at each of the seismic data point, following

production surface maps as shown in Figure 6.53 are created. The plot on the left

indicates normalized end of year one production and plot of the right indicates

the end of year two production surface. The production maps clearly indicate
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permeability channels that exist within the field. The lighter green channels indicate

the pathways where the oil could have been trapped. The best well in the field

(highest cumulative oil observed in field) is in the northern most region of the field.

Figure 6.53. Oil production surface maps at the end of year one(Left) and two(Right)

Similarly using the gas production performance module, surface maps are

generated assuming vertical wells drilled all over the area where seismic data

is present. Maps of end of year one and year two productions are indicated in

Figure 6.54. Figure 6.54 exhibits an interesting trend of expected gas production

profiles. On detailed examination it was found that the areas of northen region,

namely Landana is prolific in gas production. Towards the southern part of the field,

the gas production tends to be lower. This prediction is inline with the observed

gas production in the southern region of the field with each well producing around

5 Bcf on average in first two years of production.
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Figure 6.54. Gas production surface maps at the end of year one(Left) and two(Right)

Water production networks enable generation of 12 months cumulative water

production data at a chosen location.



Chapter 7
Conclusions

A novel methodology of mapping a well log suite from directional wells with

seismic data is developed. In this work, an artificial neural network based tool is

successfully developed to map the seismic attributes to well logs that can generate

synthetic gamma ray, neutron porosity, total porosity, bulk density, deep resistivity

logs. Production performance networks established correlation between seismic data,

well log data completion data, and production data. The tool has two modules, first

module generates synthetic logs, and the second module generates the production

profiles for a chosen location. Results indicate that the best performance was

obtained while training logs in conjunction than isolation. Two sets of synthetic

well log modules are developed, first one predicting NPHI, GR, and PHIT together

and second set predicting RHOB and RESD. Robustness of the results indicate

the capabilities of ANN technology to successfully map the correlations that exist

within complex reservoirs. This workflow enables generation of synthetic log suites

at all the locations where seismic data is available, and also predict expected oil,

gas and water flow rates at any undrilled location. Monte Carlo simulations help
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Table 7.1. Summary of synthetic well log networks
Hidden layer

neurons
Transfer
functions

Average error

Zone 1 NPHI,GR,PHIT 369, 398, 99 logsig, tansig,
logsig, purelin

7.7% (4.3, 7.3,
11.7)

RHOB,RESD 257, 126, 248,
185

tansig, tansig,
logsig, logsig,

purelin

8.37% (1.1, 12.1)

Zone 2 NPHI,GR,PHIT 191, 191, 161,
168

logsig, logsig,
logsig, logsig,

purelin

6.05% (5.7, 5.9,
6.5)

RHOB,RESD 151, 281, 144,
259

logsig, logsig,
tansig, tansig,

purelin

9.52% (0.8, 13.1)

Zone 3 NPHI,GR,PHIT 162, 154, 239,
177

tansig, logsig,
tansig, logsig,

purelin

21.04% (22, 25.7,
18.4)

RHOB,RESD 294, 214, 272,
115

logsig, tansig,
logsig, logsig,

purlein

33.1% (1.9, 45)

in estimating the risk associated with reserve estimation by providing probabilistic

estimates.

The proposed method do not involve any horizons or horizon based seismic

attributes, thereby reducing the uncertainty associated with geophysical interpretation

of horizons. This method can potentially reduce the interpretation time significantly,

providing a quick estimate of production potential of a given zone.

Overall mean testing error of the chosen synthetic well log networks is less than

20%. The Table 7.1 presents a summary of the synthetic well log networks created

in this work. The errors indicated in the parentheses indicate the individual errors

corresponding to each of the logs. For example, for Zone-1, mean error in blind

testing for NPHI logs resulted in 4.3% error, GR logs in 7.3% error, and PHIT logs

11.7% error.
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Table 7.2. Summary of production performance networks
Parameters Hidden layer

neurons
Transfer
functions

Average
error

Oil a, b, c 47, 33, 46, 34 tansig, tansig,
tansig, logsig,

purelin

21%

Gas a, b, c 42, 37, 44, 26 logsig, tansig,
logsig, logsig,

purelin

32%

Water 12 months
production

15, 50, 10, 47, 11 logsig, logsig,
tansig, tansig,
logsig, purelin

46%

Table 7.2 presents a summary of the production performance networks. The

production data of oil could be correlated with the seismic attributes, well log

data, and production schedule with a mean testing error of less than 21%. Gas

production is highly variable in this field due to altering bottomhole conditions;

and bottomhole pressure’s proximity to bubble point. Well bottomhole pressures

staying close to bubble point pressure at reservoir conditions create uncertainties

in oil and gas production rates. Gas oil ratio varies over a wide range in the given

field, since different reservoirs are producing at different conditions. Cumulative

gas production prediction module resulted in 32% testing errors while obtaining

the optimal architecture. Water production however could not be correlated well

with the chosen input attributes. Water production is highly variable in this field

owing to varying OWC in the field and changing injection conditions are some

of the reasons. The interwell connectivity could not be completely established in

this study. Further work needs to be done to investigate the injection effects on

water cut behavior. Summary of production performance networks is indicated in

Table 7.2:
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Water production networks correlations are slightly poorer compared to oil

and gas production. This is due to the effect of injection wells and continuously

changing bottomhole conditions at the wellbore. These changes have resulted in

a dataset that has quite a large number of variations in the flow rates and sharp

transition of water cut performance. Using MC simulations, P90 OOIP maps

are analyzed for areas with high production potential. Synthetic logs together

with production performance module characterize the reservoir and aid in field

development planning. It is observed that these networks work for specific field,

upon following the methodology, this work can be extended to wide varieties of

reservoirs and fields. A graphic user interface(GUI) has been created as a part of

this study to aid a user in predicting the well logs,and oil, water, gas production

profiles at any given location. Additionally a user can specify the trajectory of the

well bore and the tool would be able to generate a well log along the trajectory of the

well bore along with the production forecasts. Surface maps indicating production

potentials of oil and gas can be generated with the help of developed GUI. This

methodology serves as an alternative form of effective reservoir characterization

for complex reservoirs that are often misunderstood through simplified reservoir

models.

7.1 Future Work

• Integration of this model with a high fidelity economic forecast model(that

includes MRI method of directional well cost evaluation) and predict infill

drilling strategies.

• Use genetic algorithms to evaluate the optimal horizontal well trajectories.
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• Include additional well data to retrain and improve the performance of

production networks

• Globalize the network generation process to incorporate variety of operating

conditions and well logs to make it a universal expert system.
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Appendix A
Graphic User Interface

A graphic user interface has been created in MATLAB to enable a user to
generate synthetic well logs and predict oil, water, gas production at any desired
location. The tool will also be able to generate horizontal well log profiles as per
the user specification as indicated in Figure A.1. Well logs could be generated
along the trajectory of the given well configuration. Well logs are created at every
point of X, Y space using the synthetic well log module and then 150 points are
re sampled according to their respective X coordinate and Y coordinate. The
user could click on any location within the boundaries indicated by blue dots. On
clicking the pushbutton vertical well, log suite comprising of GR, NPHI, PHIT,
RHOB, and RESD logs will be computed and displayed on the right side panel. The
user will also be able provide with a wellbore trajectory and the GUI will be able
to generate well logs along the trajectory of the directional well. For demonstration
purposes, two configurations as indicated in Figure A.3 are provided with push
buttons horizontal well 1 and horizontal well 2.

On clicking the location corresponding X and Y coordinates are read through
and populated into the X Coord Y Coord static boxes. Then user has an option of
generating a vertical well log profile or two types of horizontal well log profiles. On
selecting the option for horizontal wells, another pop up window appears indicating
the progress of log generation as indicated in Figure A.2.

The push-buttons oil, water and gas will enable generation of production profiles.
Figure A.4 displays a sample prediction of cumulative oil produced at the chosen
location. Gas and water productions can be obtained via pushbuttons gas, and
water.
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Figure A.1. Graphical User Interface

Figure A.2. Pop up window indicating the progress of synthetic log generation

This GUI also enables a user to predict surface maps at the end of n’th year as
well as view the cross sections of well log surfaces at any desired locations.
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Figure A.3. Sample directional well log configurations
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Figure A.4. Cumulative oil production forecast



Appendix B
Petrel Work-flows Used

This appendix includes the workflows used in generating seismic attributes.

Load the 3D seismic data in SegY format and specify the appropriate 

coordinate system 

Crop the seismic data to the necessary resolution 

Convert the Segy files to realized ZGY bricked format  

  

Open Geophysics –Surface attribute module – Generate Arc length attribute and 

add as a new surface 

Stack all the attributes for a given surface using points calculator 

workflow 

Generate all other 38 attributes by appending them to the first surface attribute 

at chosen Z-Z stratal slice 

Generate a boundary using the limits of seismic data  

Interpolate the surface attribute values at null value  

Figure B.1. Workflow used in petrel to create seismic attribute data set
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Vertical Resolution: All the attributes are extracted at default settings of
petrel based on z-z approach every 40 ms.
Areal Resolution: The original resolution of seismic data is 12.5m × 12.5m. A
reduced resolution of 62.5m × 62.5m is used in generating the realized cropped
volume. The volume is cropped to 1800ms - 3000 ms as the region of interest
lies in between. Points calculator workflow: For appending points with attributes,
automated workflow in Petrel2 is created and is as follows:

Figure B.2. Points calculator workflow in Petrel

Detailed workflow steps:
Line 1: User drop in folder of surfaces that need to be converted to points
Line 2: User drops in one surface from the list of surfaces from the folder. This
surface will be the one that is converted to points and used as the main points
object. The X, Y points will be taken from this surface so it may be useful if the
user drops in the largest surface here.
Line 3: A folder is created to store the points (Optional)
Line 4: The surface provided in line 2 is converted to points.
Line 5: A reference is set to the points so that we can refer to these points later on
in the workflow
Line 6: The points are moved into the Points 2 folder (Optional)
Line 7: The name of the main point set is changed to ‘All points’
Line 8: All of the surfaces are extracted from the folder supplied in Line 1.
Line 9: The name of the surface is extracted in order to rename the attributes later.
Line 10: The points are set to the same Z values as the surface. The point set will
change Z value many times throughout the workflow and it current Z position will
be recorded as an attribute. For example, the first run will set the point equal to
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Arc length-the Z value is then extracted as an attribute called ‘Arc length’.
Line 11: An attribute ‘New’ is created to record the current Z value of the points -
this will change every time the workflow loops around to the next surface
Line 12: The name of the attribute is set to the name of the surface.
Line 13: The loop ends and moves on to the next surface if one exists.
Conclusion: This workflow results in a folder that contains a single point set with
an attribute that represents each surface at each XY -coordinate.
The subsequently generated point set if contains null values at a few locations;
those locations can be appended with attributes via convergent interpolation in
Petrel2. This above process is repeated for all the 30 surfaces extracted between
1800ms - 3000ms at every 40ms.
The subsequently generated point set if contains null values at a few locations;
those locations can be appended with attributes via convergent interpolation in
Petrel2. This above process is repeated for all the 30 surfaces extracted between
1800ms - 3000ms at every 40ms.



Appendix C
Summary of Network Architectures

The summary of the network architectures built for synthetic logs are as follows:
Zone-1 blind testing results for two log architectures

185 neurons 

logsig 

257 neurons 126 neurons 
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Figure C.1. Zone-1 - Two log architecture
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Relevancy in %
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Figure C.3. Relevancy of seismic attributes
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Zone-2 blind testing results for three log architecture
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Figure C.4. Zone-2 - Three log architecture
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Figure C.6. Relevancy of seismic attributes
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Zone-2 blind testing results for two log architectures
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Figure C.7. Zone-2 - Two log architecture
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Figure C.9. Relevancy of seismic attributes
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Zone-3 blind testing results for three log architecture
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Figure C.10. Zone-3 - Three log architecture
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Figure C.11. Blind testing errors observed
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Figure C.12. Relevancy of seismic attributes
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Zone-3 blind testing results for two log architectures
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Figure C.13. Zone-3 - Two log architecture
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Figure C.14. Blind testing errors observed
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Figure C.15. Relevancy of seismic attributes
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Figure C.16. Monthly cumulative oil flow rate error observed at Well #5
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Figure C.17. Monthly cumulative oil flow rate error observed at Well #17
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Figure C.18. Monthly cumulative oil flow rate error observed at Well #27
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Figure C.19. Monthly cumulative gas flow rate error observed at Well #17
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Figure C.20. Monthly cumulative gas flow rate error observed at Well #21
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Figure C.21. Monthly cumulative gas flow rate error observed at Well #27
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Figure C.22. Monthly cumulative water flow rate error observed at Well #30
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Figure C.23. Monthly cumulative water flow rate error observed at Well #31



148

time(in months)
0 2 4 6 8 10 12

E
rr

o
r 

in
 %

0

10

20

30

40

50

60

Figure C.24. Monthly cumulative water flow rate error observed at Well #21



Appendix D
Additional results from production
performance networks
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Figure D.1. Blind testing results of cumulative oil production networks
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Figure D.2. Blind testing results of cumulative oil production networks
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Figure D.3. Cumulative water curve fit -1

Figure D.4. Cumulative water curve fit -2
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Figure D.5. Cumulative water curve fit -3

Figure D.6. Cumulative water curve fit -4
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