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ABSTRACT 

More recently, interest in designing products and manufacturing processes with major 

consideration given to the resources used and waste produced over the entirety of 

product/process life cycle, viz. sustainable manufacturing has increased. Unlike design and 

manufacturing process development activities that generally have access to a wealth of material 

information, sustainability assessment activities are generally made difficult by lack of a 

centralized source of information to incorporate sustainability knowledge into current 

manufacturing life cycle strategies. Even though considerable research has been accomplished in 

sustainable manufacturing domain, its application to real life problems is known to be in the 

early stages due to complexity in information representation, model compositions, system 

integrations, and computation. Moreover, isolated activities of process planning within the gate-

to-gate life cycle can lead to localized solutions in sustainability assessment. Integrating 

operation plans and process plans provides globalized sustainable and productive solutions in the 

manufacturing gate-to-gate life cycle. This thesis, first, presents an attempt to understand 

these complexities for building material information model by addressing the requirements for 

defining a high-level material information model for sustainability that can capture this 

information across different life cycle stages as well as primary stakeholders.  Second, the 

performance of job shop manufacturing is often related to diversified activities that impact 

sustainability and productivity. Process and operation plans are particularly considered as the 

main activities that significantly impact different key performance indicators. The research 

proposed a systematic methodology for supporting manufacturing decision-making regarding 

sustainability and productivity assessment by integrating these plans. 
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In the first stage the different ways in which materials and material information influence 

the decision-making process were analyzed. For this purpose information modeling techniques 

were employed to generate manufacturing scenarios. Activity models were generated and 

analyzed to collect and categorize key concepts towards constructing a Materials Information 

Model for Sustainability. The analysis helped in identifying locations where materials factor into 

the decision-making process, the key information requirements that help build a material 

information model for sustainability. In the second stage of this research, a systematic 

methodology was developed for enabling the sustainability and productivity performance 

assessment for integrated process and operation plans at the machine cell level of manufacturing 

systems. Selection of processes and operations is accomplished through building a Multi-

Criteria-Decision-Making formulation. This formulation enables the combined assessment of 

sustainability and productivity in selecting the optimum process and operation plans. Analytical 

Hierarchical Process (AHP) is employed to address the problem of conflicting key performance 

indicators during process planning. Discrete event simulation (Arena
TM

) and optimization 

techniques (heuristic search algorithms in OptQuest) are combined to determine the set of inputs 

out of a number of possible planning scenarios and their interactions that optimize system 

sustainability and productivity performances. The possibility of applications of the approach to 

real-world production is demonstrated through a case study that uses the proposed methodology 

to analyze and understand manufacturing floor-level scenarios.  
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CHAPTER 1 

 

INTRODUCTION 

 

Introduction 

 

Sustainability and sustainable manufacturing are becoming increasingly important from 

social, economic and manufacturing contexts. Though sustainability is a well-researched 

area, very little work is done in defining a material information model and using that 

model, and hence the information it provides to arrive at optimal decisions in the 

manufacturing context. This thesis precisely addresses this gap. 

The first part this thesis provides a set of information requirements that support 

building a centralized material information model, which address variations in the way 

the material information is used, and provide transparency for viewing material 

information across the life cycle stages of product. This type of material information 

model (MIM) will be an important resource in the development and assessment of 

sustainable products and processes. MIM will also define the interfaces among different 

stakeholders’ activities that are involved in manufacturing life cycle as well as allowing 

for a better understanding of sustainability tradeoffs for design-time decisions. 

Centralizing information will be supported through globalized information, which can be 

shared between different life cycles and stakeholders activities. An interface between 

different activities within the manufacturing life cycle gate-to-gate (G2G) is, therefore, 



 
 

2 

imperative. A review of literature suggests that process planning and operation planning 

are the most dominant activities for process planning in their large impact on 

sustainability and productivity. In the second part, therefore, this thesis addresses a 

systematic methodology for integrating process and operation planning through 

simulation and optimization techniques for assessing sustainability and productivity of a 

manufacturing life cycle.  

1.1 Background and motivation  

 

Sustainable manufacturing is now considered a vital feature of global economy 

and sustainability. According to the World Commission on Environment and 

Development (WCED), sustainability will be attained when the remaining natural 

resources of the earth are used in a manner that satisfy the developmental needs of the 

present generation without compromising the ability of future generations to meet their 

own needs [1].  Industry efforts were often focused at the enterprise level aimed at large-

scale implementation [2]. As sustainability practices have matured, industry has redirected 

its efforts to address smaller-scale needs particularly in sustainable manufacturing efforts 

[3] for increasing efficiency and decreasing waste during manufacturing [4]. As the costs 

of energy, water, and resources increase, sustainability-conscious companies must 

benchmark sustainability metrics. These include metrics like carbon footprint to facilitate 

adequate energy, water, and resource reduction strategies to lower operational cost.  

Research suggests that the practice of sustainable manufacturing can be scoped to 

address the creation of sustainable impact at all stages of a product’s life cycle, from 

material extraction to product disposal [5]. As such, recently more efforts are being 
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directed towards understanding product life cycle interactions, and their implications on 

sustainability. The designs for sustainability, disassembly, and recycling, etc., are the 

outcome of such efforts. Many, if not most, of these efforts are to bring life cycle analyses 

into design-time consideration [6]. However, in the context of sustainability, there is still 

much to learn about the interactions between design-time decisions and their 

manufacturing implications. In studying these interactions, efforts are prone to rely on 

available manufacturing process data, such as that available with Life Cycle Inventories 

(LCIs), and how this data can be used to incorporate sustainability into design 

considerations. Moreover, the lack of models that could support standardized decision-

making activities at their life cycle domains presents a major challenge in this field. 

The major activities involved in the manufacturing life cycle (i.e. gate-to-gate life 

cycle; henceforth, G2G life cycle) concentrate on: making the part, identifying the types 

of machines, identifying stock materials or components to be used, selecting and 

sequencing the major processes to be performed that include cutting and forming 

processes, assembly processes, and finishing processes and inspection processes. Material 

properties may decide what processes can be used, and how these processes should be 

controlled. Assigning the appropriate materials to the appropriate manufacturing 

production processes thus becomes rapidly critical for sustainability assessement 

specially environmental impacts [7]. Consequently in the context of sustainability, 

material and process selection play a vital part in determining the total life cycle impact.  
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1.2 Statement of the research problem and discussion 

 

Although support for sustainable decision-making continues to mature, challenges 

to its standardization and implementation remain. This section elaborates on the research 

problem and the solutions proposed through this research.  

1.2.1: Problem 1: Material information model for sustainable manufacturing 

 

Sustainability assessment activities are generally made difficult by a lack of 

understanding of the information requirements for determining the sustainability impacts 

pertaining to both engineering materials and manufacturing processes. This lack of 

information leads to scenarios where localized and suboptimal solutions may be reached 

at the cost of exploring more inclusive global alternative options. Moreover, cost savings, 

customer demands, tightening legal requirements and a building pressure for 

environmentally friendly products are increasing awareness of sustainability in global 

industries. Industries are also held accountable for assessing organizational sustainability 

performance and operational efficiency. To facilitate sustainability assessment, 

information should be adequately incorporated at the design stage and uniformly 

represented to the design community in the same location as other information such as 

material structure and propertie. Moreover, the stakeholders’ (decision-makers) activities 

interactively contribute to manufacturing methods. Knowledge of how each stakeholder 

relates to a particular stage of the manufacturing life cycle, and knowledge of which 

criteria/metrics of the sustainability that each stakeholder considers, facilitate 

sustainability assessment. 
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Material information offers a solid foundation to support sustainability assessment 

as materials impact the entire life cycle of a product. However, access to this information 

is constrained by the many different views through which materials are understood and 

represented. As a product progresses through the different life cycle stages, the 

perspectives from which the material is viewed may change. This inconsistency is 

reflected in the many different ways material information is captured, stored, and 

presented. In a given scenario, to produce a given design, the manufacturer needs to 

select a particular material and a particular process from among a set of materials and 

processes. Each combination contributes to sustainability and productivity differently and 

the challenge lies in selecting the best combination. For example, water consumption and 

energy consumption can be considered as two sustainability metrics. Therefore, a 

stakeholder first requires computing each of these metrics for a given design-material-

process combination. However, assessing individual metric values could cause 

optimizing one metric at the cost of another. Thus, one must define and develop a 

methodology for aggregating different key indicators for sustainability and productivity.  

The basic objective of selecting any manufacturing processes, material removal or 

additive processes, is to produce a given part blueprint at a minimum cost where the 

design requirements and master production schedule are met. Yet today, the increasing 

awareness for sustainability issues is forcing product designers and manufacturers to be 

conservative in shop floor decisions including process selections and sequencing. 

Understanding these challenges will help decision-makers to advance not only their 

sustainability knowledge, but also performance knowledge on productivity, and agility 

regarding the influences and interrelationship of the manufacturing activities that 
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contribute in fabricating/assembling a given design. A product may also be realized 

through different activities that typically result in different environmental and 

productivity impacts. These activities affect resources usage such as of tool, lubricant, 

energy and cost, and also impact the quality of the product. Additionally, the settings 

determine how long it takes the product to be processed through the shop floor thereby 

affecting overall throughput and productivity. If this information regarding sustainability 

and productivity impacts is available at the design stage, the designer can specify the 

product and associated processes with combined minimal impact. 

A MIMS thus needs to focus on the identification of core information 

requirements at the design time throughout the life cycle of the product, and supporting 

the information needs of different decision-makers at different stages of the product life 

cycle. Supporting these information needs requires the understanding of decision-time 

criteria from sets of globally dispersed information from across the life cycle.  

1.2.2: Problem 2: Integrated optimization and simulation modeling framework for 

sustainable manufacturing 

 

With a unified MIMS for sustainability all the information that will be mapped for 

designing a specific process plan will be based on the sustainability objective such as 

selecting processes that has less environmental impact or selecting process settings that 

are more productive. However, besides sustainability, productivity and agility also play a 

significant role in how the manufacturing system performs, or how it complements the 

design systems. One of these problems is selecting processes and process settings that are 

sustainable and productive. Conventional process and operation plans have been 

sequential activities within the process-planning framework. With the help of MIMS 
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these can be integrated. The second part of this research, therefore, examines the 

candidate process and operation plans for a given design that has less impact on 

sustainability, and which improves productivity among other different candidates. This 

methodology thus can also help in two ways: in the first phase it proposes process and 

operation plans that are more sustainable and productive; and in the second phase, it 

utilizes the information to modify a given design for sustainability and productivity.  

Traditionally, process planing and operation planning have been two sequential 

activities within the overall process planning framework. These activities are often 

performed by different stakeholders in the production organization. Process planning 

activities such as machine tool and tool assignment, determining process sequence, and 

defining tool paths are created by a processing engineer [8],[9]. On the other hand, 

operation planning activities are usually formed by production engineers who evaluate 

current production activities and make recommendations for improvements, develop best 

practices to improve production capacity, quality and reliability, and develop operating 

instructions and equipment specifications for production activities [10],[11]. Production 

engineers, thus, are not involved at the decision-making stage for establishing a sequence 

of manufacturing operations that are based on examining the engineering drawing of the 

part and enterprise strategic planned goals. The process sequence is decided at early 

stages in process planning and is later provided to secondary levels for process settings. 

Various manufacturing technologies such as main shape generating processes, joining 

techniques, assembly systems and surface engineering processes require that selection is 

based on the factors appropriate to that specific technology [12].   
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The need for more flexible process planning in which information can be shared 

and integrated to better support product fabrication with respect to sustainable, profitable, 

productive, and technical concerns has underscored the importance of combining 

different decision-makers at machining operation planning. The research goal is to build 

a stepwise novel reasoning information model at the machine level of the manufacturing 

system that systematically models process planning information. To ensure that machined 

part sustainability and productivity criteria satisfy the required specification, simulating 

the manufacturing system will provide meaningful and practical plans. Quantitative 

determination of energy, cost and time associated with manufacturing operations will 

enable quantitative evaluation of optimal plans based on pre-defined goals. The proposed 

methodology has been applied in a job shop framework. The simulation model 

establishes feasible manufacturing process sequences and searches for optimal plans 

abased on the respective goals from various stakeholders. 

To assist in planning for the manufacturing processes, methods and tools are 

required for assessing the sustainability and productivity impacts in the early stages of 

product and process design and planning. Process planning is influenced by production 

requirements for each job and available technology. The effective utilization of resources 

(e.g., machines and workforce) has to satisfy both the strategic and operational goals. 

Therefore, to properly address, describe, analyze, and optimize the performance 

indicators for these manufacturing activities, a systematic methodology for building a 

multi-criteria optimization model for evaluating alternate process plans is presented in 

this research. The solution is generated with the use of discrete-event simulation.  
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Simulation enables decision-makers to represent a system in a virtual 

environment, and to test and evaluate the system’s performance under different operating 

conditions. Moreover, making decisions from the large number of possible alternatives 

requires combining simulation with optimization methods.  

Brady and Yellig [9] proposed two approaches for integrating simulation and 

optimization. The first one is to construct an external optimization framework around the 

simulation model. The second one is the internal approach, to investigate the relationship 

between input variables based on the dynamics of their interaction within the simulation 

model. This methodology builds on the second approach to optimize the simulated 

process planning scenarios and in cases where aggregated indicators are required to be 

simultaneously optimized, a multi-criteria decision making (MCDM) was utilized. The 

overall methodology is designed to provide decision-makers with guidance for selecting 

the best sustainable and productive scenario in relation to resources, processes, machines, 

tools, materials, and auxiliary materials selections for manufacturing a given part design. 

To test this methodology, different machining shop floor scenarios are developed as 

simulation inputs to predict system sustainability and productivity performance.  

1.3 Research objectives 

 

From the above discussions and evaluation, the following research objectives are 

defined: 

(1) To analyze the requirements for material information model for sustainability 

(2) To build a data model that captures the parameters needed for determining targeted 

sustainability and productivity metrics 
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(3) To map the sources of data for the sustainability and productivity assessments  

(4) To build a multi-criteria decision model to aggregate productivity and sustainability 

indicators for evaluating process planning scenarios, and 

(5) To use optimization and simulation models to integrate process and operation 

planning activities for evaluating their performances under different realistic scenarios. 

1.4 Innovations and contributions 

 

 In this thesis a material information model based on activity modeling is 

developed. Specifically, G2G manufacturing is addressed through the use of activity 

models. By analyzing these activity models, the research collects and categorizes the key 

concepts towards constructing MIMS. The requirement analysis provides the context for 

the sustainability decision criteria that must be supported to facilitate decision-making, 

driving the information requirements of a MIMS. 

Selection of process and operation is accomplished through building a multi-

criteria-decision-making model formulation. This formulation enabled the combined 

assessment of sustainability and productivity in selecting the optimum process and 

operation plans. This thesis formulates an Analytical Hierarchical Process (AHP). The 

analyses addressed the problem of conflicting key performance indicators that affect one 

another during process planning – for example, the improvement of one performance 

indicator (e.g., energy consumption) may be at the cost of the others (e.g., tool usage). 

To evaluate alternative scenarios and to generate outputs for optimization-based 

modeling, this thesis builds a simulation platform using a discrete event simulation 

package (Arena
TM

) and optimization algorithms embedded in OptQuest. The synthesis of 
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optimization and simulation in capturing the complexities and dynamics of the 

manufacturing system are novel in this thesis.The systematic methodology employs the 

search algorithm embedded in the OptQuest optimization to perform a non-monotonic 

search. The successively generated inputs produce comparable evaluations. Although, not 

all of the solutions (output) improve the scope of the analysis, over time they provide a 

highly efficient trajectory to offer solutions. The process continues until the termination 

amount criterion is satisfied. This is usually based on the decision-maker’s preference for 

the time to be devoted to the search, which has been exemplified through a case study. 

In this thesis, life cycle stages and stakeholders’ perspectives are represented 

using activity models. Analyzing these activity models with respect to the needs of 

stakeholders and information model helped in providing the key requirements on which a 

MIMS can be designed. Based on this idea a methodological approach was constructed to 

select the optimum process and operation plans in gate-to-gate life cycle for assessing 

sustainability and productivity. The methodology comprised of building a data model that 

captured the parameters required in determining the sustainability and productivity 

metrics (i.e. energy, time, cost, and carbon emission).  

1.5 Outline of the thesis 

 

In Chapter 2, requirements to establish sustainability material information model 

is analyzed in terms of life cycle stages and their significant stakeholders. Chapter 3 

describes the new systematic methodology that is developed in this research. Chapter 4 

illustrates a case study that demonstrates the methodology. Chapter 5 concludes and 

summarizes this dissertation. And Chapter 6 discusses the directions for future research.  
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The Appendices include a description of the types of database and the summaries 

of Arena models.  
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CHAPTER 2 

 

INFORMATION MODELING REQUIREMENTS TO SUPPORT 

SUSTAINABLE MANUFACTURING 

 

In chapter 1, we have defined two problems addressed in this research. In this chapter, we 

elaborate on problem one, which is to identify the core information requirements at the 

design time throughout the life cycle of the product, and supporting the information 

requirements of different decision-makers at different stages of the product life cycle.  

2.1 Background  

 

To support manufacturing for sustainability, the impacts of material choice need 

to be considered early in the product design phase, when resources are being committed. 

Materials provide a path for studying interactions between design and manufacturing, 

promising to offer valuable insight into the sustainability consequences of a 

manufactured product. Many different factors determine the sustainability of a product 

and its associated processes, and these factors need to be made explicit when it is time to 

make a decision. In this chapter, the different ways in which materials, and material 

information, influence decision-making processes are analyzed. This research analyzes 

these scenarios and identifies locations where materials factor into the decision-making 

process. Moreover, key information requirements factoring in to the development of a 

Material Information Model for Sustainability (MIMS) are identified. Based on these 

investigations, a set of core information requirements that will aid the development of an 
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adaptable material information model to support decision-making in sustainable 

manufacturing are proposed.
1
 

Researchers at the National Institute of Standards and Technology (NIST) have 

proposed the development of a material information model for sustainability (MIMS) to 

facilitate sustainability-driven decisions across the life cycle [14], [15], [16]. Starting 

with design time and throughout the life cycle of a product, a MIMS focuses on the 

identification of core information requirements to support material information from 

across the life cycle. While the synthesis of such material information is a daunting task 

in itself, one of the foremost challenges is supporting the information needs of different 

decision-makers at different times. This requires the understanding of decision-time 

criteria from sets of globally dispersed information from across the life cycle. To this end, 

the work detailed in this chapter investigates the role of material information in 

sustainability-driven decision-making across a life cycle, and particularly in 

manufacturing.  

2.2 Understanding Life Cycle and Stakeholder Perspectives  

 

Sustainability is a distributed, life cycle-driven problem, but decision-making is 

often constrained by available information and may result in localized solutions. To 

evaluate, and predict the sustainability impact of a product, it is critical for decision 

criteria to provide insight into its overall bearing, from product design, to production, to 

use and end of life impacts. In practice, decision-makers are often asked to focus on a 

                                                             
1
 Qais Hatim, Paul Witherell, KC Morris, Sudarsan Rachuri, Christopher Saldana, and Soundar Kumara Requirement Analysis for a 

Material Information Model to Enable Sustainability Assessment – submitted to  Information Systems Frontiers and in NIST peer 

review process (Editorial Review Board ERB) 
Al-Khazraji, Qais.Y., Saldana, C., Sudarsan, R., Kumara, S. (2013). Material Information Model across Product Life Cycle for 

Sustainability Assessment. Appeared in 20th CIRP Conference on Life Cycle Engineering LCE 2013 

Al-Khazraji, Qais.Y., Saldana, C., Donghuan, T., and Kumara, S. (2013). Information Modeling to Incorporate Sustainability into 

Production Plans. Appeared in 9th 2013 IEEE International Conference on Automation Science and Engineering (CASE 2013) 
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single, localized stage of the life cycle, such as design for remanufacture at end of life, or 

lean manufacturing during production. One might focus on product composition, such as 

with the use of recycle materials. These decisions are often made in the context of the life 

cycle stage. The decision criteria are often presented in a limited context, overlooking the 

possible incorporation of inputs from across the life cycle. A goal for MIMS, a 

crosscutting, globalized approach, is to support the incorporation of distributed life cycle 

impacts through material-related information. The value of material information when 

making decisions regarding sustainability is greatly influenced by how the information is 

represented, and how it can be interpreted. The challenge is to provide the right 

information at the right time, to help make an informed decision. This context requires 

understanding 1) what life cycle stage(s) are providing the context that sustainability with 

which information is being associated (beginning of life, end of life, overall impact), and 

2) to whom the information is being provided.   

2.2.1 Sustainability Information by Life Cycle Stages 

 

Materials can play significantly different roles in sustainability impact depending 

on the life cycle stage with which the information is associated or at which decision is 

being made. For example, material density may affect sustainability impact at the usage 

stage while melting point may affect sustainability impact during the manufacturing 

stage. In addition, it is important to realize the challenges that can be created by different 

information representations associated with different stages. The ability of a MIMS to 

support inputs from across life cycle stages is crucial as it (1) provides decision-makers 

with a holistic view of a problem, (2) supports decision-making based solutions in the 

context of stakeholders’ objectives and constraints, and (3) provides a unified 
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communication structure among stakeholders at different life cycle stages to facilitate 

information sharing and exchange. 

Design and planning stages: At the early stages of the product life cycle, 

information requirements focus mostly on design details. These may be the most critical 

stages, as the early stages of the product life cycle have been shown to determine about 

70% of the overall costs [17], [18], [19]. This cost commitment reflects the significant 

amount of resource utilization determined in the early design stages, when it is important 

to make as much sustainability-related information as possible. Material information at 

the earliest stages of the product life cycle traditionally focuses on the metrics needed to 

meet performance, quality, and cost requirements. Material representation at the design 

stage varies in detail depending on the application. Material information is, however, 

different at the manufacturing and end-of-life cycle stages. For instance, at the 

manufacturing stage, it will include attributes of density, strength, and cost resistance to 

corrosion. Also any product design requests a certain profile of the material attributes. 

There are conflicting objectives that engineers and designers have to optimize in 

choosing the optimum material for specified applications within G2G. These objectives 

can be from selection of a cheaper material for more economic benefits to lighter material 

for reducing energy consumption (e.g., fuel) and carbon footprint emission. While at the 

end-of-life cycle stage, the value of a product is determined by whether it is disposed, 

recycled, remanufactured or is handled in some other way within the retrieval 

infrastructure. Work at NIST on the Core Product Model (CPM) [20] and later the 

Semantic Product Meta Model (SPMM) [21] focused on developing core representations 

of product information, providing placeholders for material without defining many 



 
 

17 

specifics. Standards such as ISO 10303 (e.g., STEP) [22] and ISO 13584 [23] have been 

developed to support product requirements, but also offer some material support.  

Manufacturing stages and systems: The manufacturing stages emphasize the 

processing and production aspects of products. Material information may include details 

on process materials, tooling materials, or the raw material being processed (i.e., 

inventory or storage requirements). The material information represented at this stage 

may be leveraged to reflect how the processing of different components will affect a 

product’s sustainability impacts. The information representations employed during 

manufacturing may depend on the type of manufacturing (i.e., discrete, batch, 

continuous). For instance, ISA88 [24] is a standard for batch control applied to 

production processes, while ISA95 [25] or IEC 62264 [26] integrate production processes 

with the supply chain at the enterprise level. Some standards used during the 

manufacturing stages are not specific to manufacturing, but to systems in general. One 

such standard came with the development of GEIA-927 [27]. Primarily based on ISO/TS 

18876 [28] and ISO 15926-2 [29], GEIA-927 [30] builds on and integrates several 

existing standards for product information.   

Use to end-of-life stages: Details specific to the end-of-life product 

representations may include metrics such as recyclability or amount of material 

recoverable, and remanufacturing. Additionally, material information can play an 

important role in determining the sustainability impact of a product on human health and 

ecosystem quality. End of Life (EoL) strategies and standards often aim to evaluate 

which “EoL process” would be most cost-effective for an enterprise [31]. Information 

related to the material impact of EoL strategies prompted the development of several 
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sustainability standards such as Restriction of Hazardous Substances (RoHS) [32]. These 

standards require information to assess environmental performance at a product’s end of 

life.     

2.2.2 Sustainability Information by Stakeholder 

 

A decision-maker, the stakeholder’s perspective will also influence decision 

criteria. For example, material designers are primarily interested in structure (e.g., 

chemical composition, microstructure) and property data (e.g., yield strength, 

conductivity, and transformation temperatures). Product designers may also be interested 

in functional performance data (e.g., fatigue characteristics, creep resistance). 

Manufacturing engineers may be interested in accessing data that describes effective 

parameters for materials processing. Decision criteria can be strongly driven by the 

perspective from which a decision is being made. A manufacturing engineer may be 

primarily interested in a sustainable metric (e.g., embodied energy) for the production 

activities that occur solely within his/her facility. In contrast, a manager may evaluate the 

sustainability of an entire production sequence, including the intermediate manufacturing 

operations that are outsourced.  

2.3 Material Information Modeling Requirements 

 

Given the diverse set of stakeholders faced with decisions, and the documented 

challenges presented by sustainability decision-making, a methodological approach is 

necessary to develop a MIMS. Stakeholder needs must drive the requirements of an 

information model, as it is their decisions that require support. At the same time, 

information modeling requirements must be satisfied to effectively manage and 
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communicate decision criteria. To analyze different scenarios, and begin to understand 

the decision support requirements of a material information model, a list of stakeholder 

needs as shown in Table 2.1 and derived from [16] is adopted. When representing 

material information to support decision-making, a conceptual material data model 

should meet necessities such as completeness, generality, extensibility, flexibility, 

reusability, and must consist of a minimum number of necessary concepts [33], [34]. 

Table 2.1 also identifies four information modeling requirements that should be 

considered in development of a MIMS: 1) Explicit metrics and decision criteria [35], (2) 

Transparent information flow and traceability [36], (3) Information accessibility [37], and 

(4) Transparent domain interactions and interoperability [38]. It is with these stakeholders 

and modeling needs that the information requirements of a MIMS will be recognized. To 

support sustainability-driven decisions in manufacturing decision criteria diversified by 

individual stakeholders as well as life cycle stages must be fulfilled, thereby requiring the 

synthesis of multiple scenarios. Figure 2.1 depicts how views of material information 

may differ by stakeholder, and by usage.  
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Table 2.1 Organizing Stakeholder and Modeling Needs 

Stakeholder Needs Modeling Needs 

 Allow material selection based on customer performance requirements  

 Allow material selection based on recycling/remanufacturing ratio 

 Account for effect of material choice on product lifespan 

 Provide material metrics to processes in Gate-to-Gate operations to 

predict efficiency 

EXPLICIT METRICS 

AND DECISION 

CRITERIA 

 Bring manufacturing process information into design 

 Depict dependency, independency, interdependency, and conditionality 

of information flow between stakeholders 

 Provide supply chain traceability for sustainability metrics 

TRANSPARENT 

INFORMATION 

FLOW AND 

TRACEABILITY 

 Account for material information in different phases (material phase 

change) during manufacturing processes to predict efficiency 

 Analyze/support information flow within and between decision makers 

 Provide material sample information after processing  

 Identifying opportunities for improvement stakeholder requirement  

INFORMATION 

ACCESSIBILITY 

 Account for effect of material/process choice through product lifespan  

 Investigating system behavior and performance   

Transparent domain 

interactions and 

interoperability 

 

 

Figure 2.1 Material information and access from various stakeholders 

 

Providing stakeholders access to different factors that are related to each other is 

key for sustainable decisions during a product’s design and manufacture. Explicit metrics 

(i.e., performance indicators) and decision criteria are necessary to eliminate ambiguities 

from decision-making. For example, when developing performance metrics it is 

important to assure that they efficiently and effectively capture useful and relevant 

information. Resource utilization, quality and productivity are some examples of different 

decision criteria. Formalized definitions should be able to highlight the purpose of 
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decision metric and the associated level of details required, with respect to time, cost, and 

data, necessary for any measurements.  

When considering modeling needs, the most vital criteria that should be 

considered in constructing a comprehensive MIMS are gathering related data resources, 

standardization of the data representation, and managing sustainability assessment across 

life cycle stages and/or various perspectives. Different data sources represent and store 

information regarding material in different levels of detail and/or granularity. Information 

management techniques can provide a means for mapping material properties from and 

between different data sources and can enable examination of the use of material 

information based on stakeholder perspective at different levels of granularity.  

In addition, MIMS must be able to incorporate a dynamic view of material 

information, wherein each of these stakeholders will be interested in specific information 

elements. The information model should be able to access various data types such as 

testing data, standardized data as well as distributed databases. A MIMS should enable 

mappings between hierarchical material taxonomies and hierarchical property taxonomies 

to support different views of material information for multiple stakeholders through 

mappings into the hierarchies.  Table 2.2 categorizes the requirements of a multi-faceted 

information model to support sustainable thinking. Three stakeholder’s objectives (i.e., 

material selection, information management, and design-time decision-making) are 

discussed and related them back to stakeholder needs and how meeting such needs 

facilitates sustainable thinking. 
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Table 2.2 Sustainable MIM requirements to enable different stakeholders' objectives 

Information Model 

Use Case  

Material Information Model for Sustainability (MIMS) Requirements 

SUPPORT 

TRANSPARENT 
INFORMATION 
FLOW AND 
TRACEABILITY 
THROUGH 
INFORMATION 
MANAGEMENT  
 

 Support access to material information to engineers from other life cycle stages, such 

as  material sample information and product related aspects (factor in cost associated 
with the material from other life cycle phases) 

 Support access to gate-to-gate process information (relative to material and energy 

efficiency) at design time 

 Integrate data from different systems, CAD, CAM,CAE, CAPP,MRP,ERP, 

MES,CRM,SCADA, CAx and provide material information based on specific 
requirements 

 Support the mapping and classification of material properties 

 Support the accurate assessment of supply chain sustainability conformance and 

status 

 Support the mapping of production plan constraints regarding material types to 

product upside  supply chain adaptability and flexibility 

DEFINE  EXPLICIT 
METRICS AND 
DECISION CRITERIA 

THROUGH 
INFORMATION 
STRUCTURE  

 Express assessment metrics as a function of control variable for representing trade-

offs 

 Ability to represent different form of material properties representations (graph, table, 

linear and nonlinear formula) 

 Offering material metrics to processes  to predict efficiency of processes 

PROVIDE 
INFORMATION 
ACCESSIBILITY 
THROUGH USER 

INTERFACES 

 Enables material selection based on different sustainable metrics (e.g., better 

recycling/remanufacturing ratio) 

 Allow material selection based on customer performance 

requirements/specification/functions of multiple properties associated with  products 
and process properties 

 Support the sustainability measurement frameworks by aggregation of similar 

sustainability metrics across the supply chain-from component to assembly to product 
and enabling comparing performance versus the benchmark 

 Provide material information based on requirements/ viewpoint of each stakeholder 

(Language/ Detail/ etc.) 

 Specifying metrics for performance measurements at different levels of 

details/granularity. 

 Account for decisions space to provide alternative sustainable decisions for different 

stakeholders 

ESTABLISH  
TRANSPARENT 
DOMAIN 
INTERACTIONS AND 
INTEROPERABILITY 

THROUGH DEFINED 
RELATIONSHIPS 
 

 Integrating material knowledge regarding people, systems, and technology  

 Define and support a close linkage of information between engineering material 

properties and manufacturing processes 

 Capture interactions between design characteristics and material/ process interaction 

 Supporting connection/transparent between product and process models 

 Ability to map materials to product category rule definitions and functional units used 

therein 

 Integrate with life cycle analysis tools and data structures 

 Provide insight into material choice impact on use-stage efficiency when applicable 

 

 

Transparent information flow and traceability through information management 

provides a means to ensure that all aspects of a quality management system are satisfied.  

This means that the provenance of information can be traced, including any established 

source or uncertainty. To meet this need, and to provide that ability to establish 
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provenance, several conditions a MIMS must satisfy have been identified. Specifically, a 

MIMS for sustainable manufacturing must be able to provide information support for 

various stages of the life cycle, it must be able to accommodate information needs of 

heterogeneous systems, and must provide traceability across the supply chain. 

Supporting explicit decision criteria is essential in order to aid decision-makers in 

their activities. A MIMS must provide deliberately structured information, supporting 

explicit metrics and decision criteria, to evaluate sustainability criteria related to these 

activities. A MIMS must be able to accommodate different stakeholder views, meaning 

the metrics must be presented in a manner that they can be interpreted from multiple 

perspectives. Material metrics, at the process level, can provide a quantitative mapping of 

performance and efficiency evaluation. This mapping function can be used to define 

control space, including firm assets, productivity analysis, and product information. 

The current trend of many decision-makers is to leverage technology in such a 

way that sustainability development is possible. Information accessibility, or ease of 

access, is vital to decision support, and must be considered in a MIMS development. User 

interfaces must be accommodated where environmental, economic, and social aspects are 

provided at each stage in the life cycle of a product. A MIMS seeks to support 

sustainability measurement frameworks through the aggregation of similar sustainability 

metrics, associated with inputs and outputs, across systems’ activities. For example, in 

the supply chain domain, from component to assembly to product, material information 

accessibility enables the comparison of effectiveness and efficiency against a benchmark. 

Effectiveness of a supply chain will be measured by comparing it with target goals, while 

efficiency will be measured by linking supply chain performances to resources employed.    
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Improving manufacturing activities at both the system and process levels (i.e., 

shop scheduling optimization, process planning, process improvement, optimization) will 

have a significant impact on manufacturing sustainability. Establishing transparent 

domain interactions and interoperability requires, for instance, integrating material 

knowledge regarding people, systems, and technology and supporting 

connections/transparency between product and process models. MIMS must map 

manufacturing activities by identifying operational conditions (i.e., input, output, and 

constraints) and merging different resources, thereby capturing interactions between 

design characteristics and material/ process interactions.         
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CHAPTER 3 

INTEGRATED SIMULATION AND OPTIMIZATION MODEL FOR 

SUSTAINABILITY-BASED PROCESS PLANNING 

 

Chapter 2 identified the core requirments that need to be taken into consideration when 

building a Materials Information Model. This chapter addresses the second problem 

identified in chapter 1. It presents a systematic methodology for building a multi-criteria 

optimization model for evaluating alternate process plans that will properly address, 

describe, analyze, and optimize the performance indicators for these manufacturing 

activities. 

3.1 Background 

 

In this chapter, a model is developed to enable the environmental sustainability 

and productivity performance assessment for integrated process and operation plans at 

the machine cell level of manufacturing systems. It aims to determine the best possible 

process and operation plans out of all possible alternatives that satisfy multiple objectives 

and constraints. The simulation and optimization model enables “what-if” analysis for 

candidate scenarios and the selection of the best or preferred alternative from a finite set 

of alternate process and operation plans. A discrete event simulation (DES) tool is used to 

model the sustainability metrics (e.g., energy consumption, cost) and productivity metric 

(e.g., production time) of a shop floor. The methodology provides a systematic procedure 

to encompass all relevant parameters that have a significant impact on these metrics. 

Moreover, sensitivity analysis is performed to determine the importance of process 



 
 

26 

parameters on the sustainability and productivity metrics for different process and 

operation alternatives.
2
   

Traditionally, cost and quality are the major factors for considering when 

selecting manufacturing processes. Today, the increasing awareness of environmental 

issues is forcing product designers and manufacturers to be more prudent in shop floor 

decision-making. To assist in planning for the manufacturing processes with 

consideration of not only productivity, but also sustainability; methods and tools are 

required for assessing the environment, cost, and productivity impacts in the early stages 

of the G2G life cycle production and process design [39], [40]. The main focus of process 

planning is the manufacturing requirements for each job. Operation planning focuses on 

determining the resources and process settings of each operation of a process plan. The 

challenge is to assess and optimize the combined impact of the process and operation 

plans with the consideration of both sustainability and productivity performance. 

Machining processes consume materials, energy, and cutting tools and also use auxiliary 

materials such as coolants and lubricants. A process planner can select a process from a 

set of processes with different parameter settings that typically have different 

environmental impacts for producing the same product. The combination of both process 

and process settings affect tools and lubricant usage, energy consumption, emissions, 

cost, and quality of the product. As noted by [41], in G2G life cycle assessment (LCA), 

the biggest impact on product sustainability depends on the selected manufacturing 
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methods and sequences. In addition, the machine settings determine the manufacturing 

time and thereby affect the overall throughput, productivity, and sustainability. If this 

information is fed back or available to the designer, s/he can specify the product such that 

it would have the optimal combined impacts on both productivity and sustainability by 

using analysis techniques.  

Modeling and simulation are effective techniques that help reduce manufacturing 

costs, improve product quality, and shorten time-to-market [42]. A simulation model of a 

production shop allows users to investigate the combined impacts of process selection 

and process settings. Simulation of manufacturing operations, in combination with 

optimization, can be utilized to determine the performance of the shop. The output can be 

used for actionable recommendations that optimize the process with respect to the key 

performance indicators (KPIs) such as energy, resources, emissions, and waste. Previous 

research work has developed heuristics for assessing and optimizing sustainability of a 

given product, process, or system (e.g., waste minimization, material efficiency, resource 

efficiency, eco-efficiency) [43]. These studies aimed at guiding decision-making for 

selecting machines, skills, and stock materials or components and sequencing the 

processes of cutting, forming, assembly, finishing, and inspection processes [44]. In 

addition to process selection, machine parameter settings for the process must be 

determined. For example, higher speeds or depths of cut can be used to produce parts at 

higher rates [45], [46]. This must be balanced with sustainability concerns. 

The major contribution of this chapter is to propose an integrated and systematic 

methodology that aids for assessing sustainability performance and decision-making for 

process planning of producing machining parts. Specifically, the detailed contributions 
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within the methodology include (a) the relaxation of the design requirement of the feature 

sequence selection; (b) application of multiple-criteria decision-making and analytic 

hierarchy process (AHP) methods [47] when making decisions on KPIs; (c) the 

generation of generic data structures for integrated process and operation planning.  

3.2 Related Work in Process Planning for Manufacturing 

3.2.1 Conventional Process Planning Approaches 

 

Process planning deals with the selection of the necessary manufacturing 

processes and the determination of their operation sequence to convert the designer ideas 

(i.e. Computer Aided Design (CAD) models) into a physical part. Necessary activities in 

process planning include process sequence generation that assigns and sequences design 

features, tooling assignment, set-up generation, machine instruction, and determination of 

optimal machine settings. In detail, it includes the following activities [48]: interpretation 

of drawings, evaluation of materials and process selection, selection of machines and 

appropriate tooling, determination of process settings, identification of set-up devices, 

selection of quality methods, determination of cost, preparation of routing sheets, and 

preparation of operations lists. Srinivasan et al. categorized the process planning into two 

areas: micro-planning [49] and macro-planning [50]. The macro-planning designs an 

operation sequence to manufacture a part, called ‘process plan’, while micro-planning 

determines the resources and process settings of each operation of the process plan, called 

as ‘operation plan.’ In general, process planning can contain one predefined operation 

sequence (linear) or a set of alternative ones (non-linear or undefined) [51].  

Two main methods exist for process planning: manual and computer-aided 

process planning (CAPP). The former method is often time-consuming, sub-optimal and 
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inconsistency exists between different process planners. In order to address these 

limitations, CAPP approaches have been proposed over the past several decades [52]. 

Two types of CAPP approaches exist: variant and generative. The variant approach 

utilizes a computer database and retrieval system. The procedure is as follows: (1) match 

a new product with a geometrically similar product manufactured in the past and (2) 

retrieve its process plan for modification as needed. In contrast, the generative approach 

uses geometric analysis, process knowledge, and logic to semi-automatically develop a 

process plan. Most of the current research is focusing on the generative process planning, 

which includes feature-based technologies, artificial neural networks, knowledge-based 

systems, genetic algorithms, Petri nets, fuzzy logic, fuzzy-set theory, agent-based 

approaches, and STEP-compliant CAPP. The advantages and disadvantages of each 

method are discussed in review papers [51], [52]. Although tremendous efforts have been 

made in developing CAPP systems, the systems have only achieved limited success to 

provide practical solutions to manufacturing industry in contrast to CAD/CAM systems 

[53]. It is reported many large companies use a hybrid approach of CAPP and knowledge 

from experienced process planners, Small and Medium-Sized Enterprises (SMEs) rely 

more on manual process planning approaches. As the manufacturing industry becomes 

more globalized and sustainability-aware, process planning should become more 

integrated, agile, adaptive, and distributed for sustainability and productivity. Therefore, 

more sophisticated techniques/methods are required to integrate the process planning and 

sustainability into one unified scheme for better decision-makings. 

  



 
 

30 

3.2.2 Process Planning for Sustainable Manufacturing  

 

Integrating sustainability considerations into process planning is a challenge and 

trade-off between sustainability, asset utilization, and agility exists. Due to the broadness 

and complexity in process planning, in this subsection, the focus is only on the related 

work in categories of: environmental-awareness, non-linear process planning, modeling 

and simulation methods, optimal selection of process settings, multi-criteria and multi-

objective decision-making, integrated model for sustainability and productivity, and data 

structure model. More recently, process-planning researchers have paid attention to 

environmental awareness. Duflou et al. [54] provided a systematic overview of the state 

of the art in energy and resource efficiency increasing methods and techniques at multiple 

manufacturing levels. Le and Pang [55] developed a unified decision support system 

(DSS) architecture with considerations of energy-efficiency, cost-effectiveness, and 

reliability by using real-time energy measurements and process operational states. 

Newman et al. [56] established an energy efficient process planning framework for CNC 

machining and showed that energy consumption of different machining processes can 

vary significantly (6% at low loads and 40% at higher loads). Yin et al. [57] proposed a 

process planning method for carbon emission reduction including four steps: feature 

identification, generation of alternative operations, selection of operations with lower 

carbon emissions, and generation of process plan based on a genetic algorithm.  

Non-linear process planning (undefined process planning) can provide flexibility 

when designing and manufacturing a part/product. In contrast, the pre-defined process 

sequence is difficult to adapt to the unexpected events, which means it is not easy to 

adjust the process plans in dynamic manufacturing environments. Chung and Suh [58] 
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proposed a new heuristic method for optimizing the non-linear process planning based on 

ISO 14649 and STEP-NC. Pellegrinelli and Tolio [59] aimed to solve the pallet operation 

sequencing problem by combining the flexible process planning, network part program 

logic, and the STEP-NC concept. Zhang et al. [60] proposed a method for process 

planning optimization with energy efficiency consideration and also used the network 

part program technique to generate multiple alternative process plans. These approaches 

will be systematically unified into an integrated methodology in this chapter.   

Modeling and simulation has been considered as one of promising solutions for 

enabling efficient use of resource, resiliency, and agility [61]. In this context, Heilala et 

al. [62] [63] proposed a simulation-based DSS that can evaluate the capacity of 

production systems for new orders and unexpected events (e.g., equipment downtime and 

changes in operations) in those systems. The main idea is to combine the strengths of 

automatic data analysis, calculations, and simulation with a graphical user interface 

(GUI). Sproedt et al. [64] developed a simulation-based DSS that combines LCA and 

discrete-event simulation (DES) for eco-efficiency improvements that incorporated 

resource accounting, simulation and production control/evaluation. Larek et al. [65] 

proposed another DES approach to predict workpiece-specific power consumption and 

energy footprints of a two-axis turning process. Andersson et al. [66] developed a method 

that performs an economic and environmental impact analysis by combining two 

methods: activity based costing and DES. Diaz and Dornfeld [67] proposed an 

optimization methodology for the reduction of cost and energy by utilizing DES. Kohl et 

al. [68] proposed an efficient DES-based methodology that predicts the energy 

consumption of each product and the variants without the need for new data model 
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generation. However, these methods are not designed to support the modeling and 

simulation tasks for process planning that considering both sustainability and 

productivity. 

Optimal process settings with specific objectives can also help achieve 

sustainability improvements. Rajemi et al. [69] developed a methodology for optimizing 

energy footprint for a specific part and derived an economic tool-life that satisfies 

minimum energy footprint. Campatelli et al. [70] proposed a method that determines 

optimal process settings for minimizing the power consumption in machining by using an 

experimental approach and response surface method. Kim et al. [71] developed a 

decision-guidance framework for improving sustainability in manufacturing processes 

while addressing the deficiencies in existing LCA frameworks and performed a case 

study of a turning process to find optimal parameter setting. Unfortunately, the above 

methods only focused on optimal selection of process settings. A holistically integrated 

method is required in process planning. To this end, multi-criteria and multi-objective 

decision-making methods have been used in assessment/optimization of manufacturing 

problems. Vinodh et al. [72] developed a DSS that can assess the sustainability level of a 

manufacturing organization. Arslan et al. [73] also developed a DSS for machine tool 

selection by using multi-criteria weighted average with respect to productivity, flexibility, 

space, adaptability, precision, cost, reliability, safety and environment, and maintenance 

and service. Zhao et al. [53] proposed an LCA-supported environmentally conscious 

process planning methodology with a set of ranking/weighting schemes for impact 

aggregation. It includes (1) an existing process plan, (2) identification of impactful 

process steps, (3) determination of design features, (4) generation of alternative process 
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plans, and (5) evaluation of the alternative process plans in terms of manufacturing cost 

and environmental impact to identify the Pareto-optimal process plans. These features 

will be integrated for the comprehensive methodology in this research.   

Recently, integrated models of sustainability and productivity have also been 

proposed. Singh et al. [74] proposed an integrated method for environmental process 

planning, which consists of five steps: (1) list all product configurations, (2) utilize the 

product environmental performance indicators (EPIs) model, (3) select appropriate EPIs, 

(4) analyze selected EPIs, and (5) evaluate and score product variations. Wang et al. [75] 

presented an integrated method to simultaneously improve economic benefit and 

environmental performance and verified the feasibility and validity by applying it to a 

small machining workshop. Guo et al. [76] proposed a systematic energy-efficient 

approach that provides optimal results of material stock allowance and process settings 

considering surface roughness and energy consumption in a machining process. Wang et 

al. [77] proposed a systematic approach for process planning and scheduling optimization 

by using multiple objectives (e.g., energy efficiency, productivity) and constraints (e.g., 

surface quality). In addition, they used an artificial neural network method to establish 

complex nonlinear relationships between process settings and energy consumption 

datasets as well as surface quality.  

Sustainability-related and productivity-related data are generated via sensing and 

networking techniques; this information needs to be efficiently managed. To do this, data 

structure models are built to represent and classify information. STEP-NC standards 

provide a data model for representing manufacturing information, which enables the 

representation of product geometry information with the feature catalogue, cutting tools, 



 
 

34 

and technological details. Vichare et al. [78] proposed a unified manufacturing resource 

model (UMRM) to complement the data models for remaining manufacturing resources 

in STEP-NC, such as machine tools and auxiliary devices. Dhokia et al. [79] developed a 

data model for a dematerialized machine tool based on the Unified Modeling Language 

(UML) models and implemented a relational database and its data schema for life cycle 

data related to each machine tool using PostgreSQL. However, current data structure 

models for process planning are neither comprehensive nor generalized for analysis with 

respect to sustainability and productivity. A generalized data structure model is required 

to store and represent data to support process planning accurately and efficiently.   

Although many research and development efforts focus on each in-depth research 

area as explained above, most of them are researched, developed, and applied standalone. 

An integrated and systematic view of process planning for assessing sustainability and 

productivity performances and its decision-making is necessary. To the best of our 

knowledge, there is no generalized and integrated methodology that can provide decision-

supports for non-linear process planning that considers both productivity and 

sustainability. To address these issues, an integrated and systematic methodology is 

proposed in this study. The methodology can provide the optimal operation sequence as 

well as the optimal process settings by combining the non-linear process planning 

approach, DES modeling, and MCDM technique. In addition, a generalized data model 

for the integrated process planning is proposed. The methodology and generic model for 

the integrated process planning will be explained in the next section. 
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3.4 Integrated Simulation and Optimization Model Formulation 

 

This section describes a methodology for assessing sustainability and productivity 

impacts when both process and operation plans are integrated into the G2G life cycle. 

The steps of the activities in the methodology are shown in Figure 3.1. It includes the 

following steps: (1) definition of the goal and scope of the model, (2) data structure 

modeling, (3) generation of the simulation/optimization model, (4) database integration, 

and (5) result visualization.  

 

 

Figure 3.1 Methodology Steps 

 

To use the proposed methodology, users should first define the goals and the 

scope of the integrated model. For example, the goal may be to assess sustainability 
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performance and selection of an optimal process-operation strategy. The scope of the 

model can include identification of relevant system applications, parameters, variables, 

constraints, and stakeholders. Data structure models must be developed to support 

integration of material information needed for facilitating analytical and numerical unit 

process models that underlie the integrated simulation and optimization model. The data 

needed to populate these data structure models is available and can be retrieved from 

several different archival databases. The mapped local database provides the right data at 

the right time for decision-making regarding the process and operation plan selection. 

This requires the understanding of (1) the context in which data is used in a process plan, 

operation plan, or environmental impact and productivity assessments and (2) how and 

where the data can be collected. Based on the stated objective, stakeholders have to 

identify related metrics that can be best used to measure the chosen objectives. Moreover, 

stakeholders need to interact with the model by inputting user-specified data or forming a 

query for information located in a specific database. After execution of the 

simulation/optimization models, a recommended resource and production plan that fits 

within the context of the identified KPIs’ objectives will be provided to the user.  

3.4.2 Data Structure Model  

 

Relevant information needs to be managed using well-defined data structures. 

Data structures to support process planning should include information about part’s 

features and the fabrication process. The main steps in the process of generating a data 

structure include conceptual data modeling, activity modeling, and formal data structure 

generation and each are described in the ensuing. 
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Conceptual Data Modeling: A well-developed conceptual model enables 

stakeholders to highlight their concerns, provide the appropriate level of abstraction for 

the problem, identify information exchanged between model’s entities, and incorporate 

objectives and constraints. A schematic representation is necessary to characterize the 

information flow and resource allocation for a specific goal. In Figure 3.2, eight 

information layers are designed: design, feature sequence, material, process, machine, 

tool, process setting, and performance indicator layers. The design layer describes the 

part’s design information, including features’ forms, shapes complexities, dimensions, 

tolerances, and surface conditions. The alternative networks that describe possible feature 

processing precedence are instantiated at the feature sequence layer. According to the 

part functionalities and design requirements, preferred material(s) are identified in the 

material layer. In general, material selection determines a set of processes that can be 

used in manufacture. Information about material properties and geometrical knowledge 

are used in mapping suitable processes to manufacture at the process layer. The 

combinations of machines and tools that can handle the material type and satisfy the 

design requirements are designated at the machine and tool layers. At the process setting 

layer, each combination of material, process, machine, and n process setting options are 

represented. Finally, the performance indicator layer provides information for 

determining strategies to meet objectives.  

Activity Modeling: Activity diagrams illustrate the activities that are performed 

when assessing system performance, logical processing, and the data flow between 

activities by incorporating stakeholder inputs. Stakeholder-defined scenarios determine 
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the required information. The data associated with these scenarios are keys for carrying 

out an effective performance analysis and decision support.  

 

Figure 3.2 Conceptual Data Model 

 

Formal Data Structure Models: The developed conceptual and activity models 

provide the foundation for building a comprehensive data model of performance analysis. 

The primary challenge in developing such a model is the ability to capture relevant data 

to support process planning. Efficiently managing the relevant data based on the activity 

models and different planning scenarios will effectively reduce modeling and analysis 
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time since 31% of the total project time is used for gathering, extracting, and processing 

data [80]. Building such a data model requires (1) linking local databases with external 

databases containing relevant material, design and process information and (2) building 

information queries to support data exchange across the databases. First, based on the 

activity model scenarios, different sets of input data must be stored in a local database to 

support analysis. Building a local database and populating it with data mined from 

external sources require data categorization. Generally, data is divided into eight distinct 

groups [41]: abstracting and indexing services, full-text databases, industrial standards 

and specifications, patents, product information, technical reports, industrial data, and 

other resources. Data content, units, and formats of these types should also be identified. 

Different techniques such as hierarchical, network or relational database models could be 

employed to support design and management of content. Records may store information 

related to mathematical techniques, statistical methods, and experimental procedures that 

support the activity entities’ requirements. The dispersed data should be integrated to 

provide required information for designing planning strategies and evaluating their 

performance. Second, valid queries must be formulated to support data transmission 

between existing records and management of their contents to support process planning.  

3.4.3 Model Generation  

 

Simulation enables setting and modeling production scenarios, identifying the 

interactions among KPIs and their influence on stakeholder decisions. It provides 

actionable recommendations on the process plan performance. Simulating the process 

planning scenarios to determine the impacts on different performance indicators could be 

time consuming because of extensive comparisons of many alternative planning options. 
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The solution presented here is to combine simulation with optimization, mathematically 

formulate process and production planning activities, control variables, data, and 

constraints for supporting KPI assessments. Mathematical programming models describe 

optimization of the performance indicator objective function subject to planning 

constraints. A feasible solution is an instantiation of values of decision variables that 

satisfy all constraints. The procedure to select the best production and process plans with 

respect to various KPIs is shown in Figure 3.3 and details are discussed below.  

 

 

Figure 3.3 Simulation and optimization model generation 
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1. Identify Process Plan: Based on product geometric features and design 

specifications, different process plans are chosen as candidates to be studied to determine 

their impacts. 

 

2. Identify Operation Plan: A variety of resources may be required to perform a 

single operation of a given part design. An operation method matrix is constructed by 

identifying those candidate resources that can be used to fabricate the geometric features. 

Mapping of processes to resources is also influenced by product design specifications.  

 

3. Design Process Planning: Given that alternative resources can generate the 

same feature on a part, specifying the best set of resources is the main objective of the 

model. The resources and corresponding processes are specified in the operation method 

matrix. Before determining the process plan that has the optimal impact on the 

environmental sustainability and productivity, a range of process plan parameters has to 

be assigned according to operation method matrix entities. The main steps to employ the 

process plan evaluation procedure are: 

- Assign initial settings: Initial process settings are selected according to the operation 

method matrix, in which processes, machines, and tools are specified for the part 

features. Based on the provided information, each performance indicator can be 

quantified using a known analytical model/expression.  

- Perform linear normalization: For each specified process plan, stakeholders must 

quantify an aggregated environmental and productivity impact using a score matrix. 

However, aggregating different KPIs is difficult because of the different units used to 
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describe these quantities. Normalization is required to non-dimensionalize each 

parameter [81]. Two cases of normalization can be used as follows. If the target value 

of the performance indicator should be maximized (e.g., quality), then the normalized 

values for the indicator are evaluated by: 

 

           
                      

   (             )                   
 ,                         , (1) 

 

If the target value of the performance indicator should be minimized (e.g., energy), 

then the normalized values are evaluated by:  

       

         
   (             )    

   (             )                   
,                        ,  

(2) 

 

- Perform pairwise comparisons: After normalizing the performance indicators, 

evaluating the relative importance of each KPI is necessary to prioritize various 

processes for each feature operation.  MCDM methods rank the alternatives from best 

to the worst based on stakeholder preferences [82], [83]. The analytic hierarchy 

process (AHP) method, one of the most commonly used ranking methods, uses 

pairwise comparisons to determine the importance of each indicator. To ensure the 

preferences provided by the decision-makers at the pairwise comparison matrix are 

valid and consistent, consistency of the preferences entered by the decision-makers is 

tested. A stakeholder does not have to decide the exact percentage of the importance 

(weight) of a specific metric (attribute) and only needs to decide its relative 

importance. Thus, a square and reciprocal pairwise comparison matrix of order n will 
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be formed based on the relative importance of the performance indicators. AHP 

utilizes pairwise comparisons to enable the stakeholders to model the importance of 

each indicator, qualitative or quantitative, relevant to others. A square and reciprocal 

pairwise comparison matrix   will be formed based on the relative importance of 

performance indicators. For instance, if n=3, this matrix will be:  

 

      [

         

         

         

], 

 

where,     is the importance of indicator   relative to another indicator  ,           

for   ≠   and the diagonal values (   ) of   matrix all assigned a value of 1. A 

common scale to assign importance is as follows: 1 indicates ‘equal importance’ 

where two indicators contribute equally to the object, 3 indicates ‘somewhat more 

important’ where experience and judgment slightly favor one over the other, 5 

indicates ‘much more important’ where experience and judgment strongly favor one 

over the other, 7 indicates ‘very much more important’ and 9 indicates ‘absolutely 

more important’ where evidence favoring one over the other is of the highest possible 

validity. Intermediate values of importance are also possible. 

To make sure the preferences given by the stakeholders at the A matrix are 

validated and consistent, the following checks must be performed to verify the 

importance intensities are consistent if they are transitive, that is            for all 

     .  
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Find both eigenvector     and eigenvalue   ), where the eigenvector and 

eigenvalue should hold the following relation: 

 

           , (3) 

 

where for a consistent matrix     and the eigenvector is calculated using the 

geometric mean method: 
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where ∑   
 
    must be 1. From this a consistency index is calculated, given by CI: 

 

         
      

   
, (5) 

 

where      = average  
  

 
 . The consistency ratio CR represents the consistency of 

the preferences entered by the decision-maker and is computed from CI as follows: 

       

        
  

  
, 

(6) 

 

where, RI is random consistency attribute entered by the stakeholders. If CR is higher 

than 10%, the set of judgments given by the stakeholders is inconsistent. This 

threshold level is a user-specific decision criterion. 
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- Computation of the Score Matrix: After specifying the weights, the total score for 

combined environmental and productivity impacts for each process plan can be 

calculated by applying an additive form of value theory [84]. This theory is selected 

to rank the plans by obtaining a single aggregate score for each process plan with 

regard to targeted KPIs. To this end, a score matrix Table 3.1 is constructed based on 

the normalized data and the subjective weights assigned to the KPIs. A process plan 

that has the highest score stands for the best choice for fabricating the designed part. 

 Using the additive form of the value theory, the score    is computed as: 

  

      ,  ,  )=∑      
 
             (          , 

(7) 

 

where    is the weight of each performance indicator (x, y, z, and r) with  ∑     
   

  and                  conditions. Also, each performance metric measured 

across different operations for each process plan is aggregated into a single score. 

Equation 2 is to identify the impact of different process plans on that indicator.  

 

     ∑    
 
     (8) 

 

where,    is a number of performance indicators and   is a resource utilized at 

operation   .  
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Table 3.1 Score Matrix 

Operation 
Resource 

   

Sustainability Metrics 
Productivity 

Metric 
Score 

(  ) Power 

   

Water 

Consumption 

   

CO2 

Emission 

   

Production 

Time           

   

                         

                         

                         

                             

                         

Score (   )                  

 

- Validation of the Score Matrix: The knowledge gained by decision-makers is 

understanding how the change in process settings can affect the outcome for each set 

of selected processes.  The analysts can follow these steps described to obtain the best 

score value (  ) and return the associated optimal processes and their settings. 

Moreover, for the optimal score value (i.e.,   ), an aggregated score (i.e.,    ) of 

each performance metric is reported.   

3.5 Conclusions and Future Work 

 

The above formulation presents a systematic methodology for enabling the 

environmental sustainability and productivity performance assessment for integrated 

process and operation plans at the machine cell level of manufacturing systems. It 

provides steps to assist decision-making by finding out the best process and operation 

plan out of all possible alternatives. In addition, it allows the relaxation of the design 

requirement of the feature sequence selection, the applications of MCDM when deciding 

KPIs, and the generation of generic data structures for the integrated process and 

operation planning. The utilization of simulation and optimization techniques enables 
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“what-if” analysis for the candidate scenarios and the selection of the optimal or 

preferred alternative from a finite set of alternate processes and operation plans. A DES 

tool is used to model the sustainability and productivity metrics.  

Future research includes: (1) applying this methodology to problems at other 

manufacturing system levels (e.g., enterprise and facility levels) and evaluating 

production activities’ impacts on process and operation planning; (2) modeling and 

studying different performance indicators for environmental sustainability, productivity, 

agility, and quality; (3) classifying required information (e.g., potential operation 

sequences) supports process planning activities in local databases based on both product 

design specification and implementation as well as goal(s) of a manufacturing system; (4) 

implementing systems that automate the local database creation; (5) researching and 

applying non-subjective method such as Knowledge-Based System (KBS) and Artificial 

Neural Network (ANN) to overcome the subjective disadvantages of the MCDM method 

when assigning weight for different KPIs; and (6) performing more real world case 

studies for various manufacturing processes including primary shaping processes, 

secondary processes, and assembly and test processes to assess their processing and 

production planning interrelation impacts on selected KPIs. 
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CHAPTER 4 

CASE STUDY: SUSTAINABLE MANUFACTURING OF ACRYLIC 

GRIDING SHELLS 

 

This chapter demonstrates the applicability of the proposed methodology in chapter 3 

through a case study at the G2G life cycle stage. This case study combines multi-criteria 

optimization model with discrete event simulation in order to integrate process and 

operation planning activities for evaluating their performances under different realistic 

scenarios. It pertains to both research problem one and two. 

4.1 Background 

 

Among various manufacturing technologies (e.g., primary shaping, secondary, 

assembly, and test processes), a case study was conducted to study the secondary 

processes in a small machine shop that produces about 200 parts per day. The processes 

in the shop are turning, milling, drilling, and boring. A model of this shop is developed to 

demonstrate the integrated simulation and optimization methodology. A 250 grinding 

head shell shown in Figure 4.1 is chosen to be a representative part. Based on the given 

part design, the specific fabricating operations include facing, grooving, threading, spot 

drilling, and drilling. A DES tool, Arena, is used to model the production/machine cell 

with a set of KPIs and evaluate the impact of the selected processes and their settings on 

individual and combined KPIs. OptQuest® is used to optimize the process performance. 

The objective of the study is to minimize costs and resource usage while maximizing 

productivity. This chapter will systematically describe and demonstrate the use of the 

integrated methodology developed in this thesis. The scope of the study is to perform 
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process planning for machining processes in production-to-order domain (i.e., batch 

manufacturing). The goal is to evaluate the sustainability (i.e., energy consumption and 

machining cost in this case) and productivity (production time) performance and to assist 

examination of the effectiveness and reliability of integrated process and operation plans.  

 

 

Figure 4.1 Custom-made 250 grinding head 

4.2 Data Structure Model 

 

Design Conceptual Model: The eight layers that were shown in Figure 3.2 

describe the necessary information flow required to assess the environmental 

sustainability and productivity for a selected process plan. Important decisions are made 

at each level regarding suitable manufacturing processes and methods, clamping strategy, 

machining strategies, cutting tools, and cutting data. In this case study, three feature 
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sequence plans (i.e., predefined, partially defined, and undefined sequences) are 

discussed. In the predefined plan, a strict machining flow is defined. A partially defined 

plan relaxes some of these constraints on machining flow while the undefined plan does 

not specify any priority for features precedence during machining. Despite the fact that 

Clear Acrylic has been chosen in this case study, other materials could be also allocated 

at this layer and the same analysis procedure could be performed. The process layer 

provides alternative processes such as turning, milling, drilling and boring. The planning 

also involves specifying machine types for each process selected. Three-axis CNC lathe, 

three-axis vertical milling, drill press-upright drill, and boring mills-horizontal boring are 

machines selected, respectively. For each operation, one or more tools can be chosen to 

meet required specification. Cutting tools for turning (single-point tipped tool, form 

turning, drill), milling (slot milling, mill cutter, form milling), drilling (center drill, 

reamer), and boring (boring tool) are specified at the tool layer. At the process setting 

layer, priority is given to establishment of feasible ranges of three cutting parameters 

(i.e., cutting speed, feed rate, and depth of cut). Data regarding feasible process settings 

are mapped from published data to the process setting layer. Finally, energy 

consumption, time, and cost are performance indicators that will verify optimal selection 

out of different alternatives on previous layers. 

Build Activity Models: Activity models illustrate the requirements for supporting 

the high-level activities performed at each layer described in the conceptual model. For 

illustration, at the process layer, among many stakeholders’ scenarios, the main 

manufacturing engineering scenario is: for a given material type and product design, 

select process from a set of processes that has optimum impact on environmental 
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sustainability. The activity model will be built for evaluating process selection impact on 

energy consumption. The highest level of abstraction for the activity model is shown in 

Figure 4.2. The following requirements are identified: (1) part nominal geometry 

constraints, (2) part dimensioning and tolerance specifications, (3) material type 

properties and processability, (4) surface and subsurface specification, and (5) process 

type constraints. At the second tier, the machinability of a material dominates the quality 

of surface finish and integrity, tool life, and force and power requirements. Therefore, 

stakeholders should consider the machinability of a material in process selection 

activities. In this scenario, processes that consume less energy will be assigned to 

produce the features. Thus, at the sustainability tier, information from previous tiers that 

contribute to energy evaluation will be aggregated. A data model is necessary to facilitate 

this type of information mapping. 
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Figure 4.2 Activity diagram for sustainability evaluation of process selection 

 

Build Data Structure Models: A relational database is designed for functional 

assessments regarding different performance indicators. A database management system, 

MySQL, is used to build various local databases to store data extracted from sourcing 

databases. This data model is developed to classify activity model information in an 

efficient way so that it enables the easy accessing of appropriate KPI information 

required to assess the performance. Moreover, the data model also fulfills various 

stakeholders’ query requirements. The data model is represented using the entity-

relationship (ER) diagram as shown in Figure 4.3, where the development of the entities 

and their relationships is based on activities listed in the activity model. In the ER 

diagram, the “material” table represents material, while material categories are stored in 
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the “mat_cat” table. For processes and process category, the information is stored in the 

“mfg_process” table and the “process_cat” table, respectively. Machine information is 

stored in the “machine” table. The selection of manufacturing processes and machines is 

limited by what material is considered so that the “material”, “mfg_process”, and 

“machine” tables are correlated by the “material_process_machine” table. Given the 

combination of material, process, and machine, recommended values of process setting 

are stored in the “process_setting_value” table. Information about tool, cutting fluid, and 

fixture are stored in the “tool”, “cutting_fluid”, and “fixture” tables, respectively. Even 

though in the “user-defined_setting” table, part nominal geometries of hole initial and 

final diameters are tabulated and provide a model for the purpose of demonstration, part 

shape complexities, tolerance, and surface specification are out of the scope of this work. 

Different mathematical models are adopted to evaluate indicators and the 

“calculation_result” stores the result for the selected performance indicator. 

 

 

Figure 4.3 Entity relationship diagram 
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4.3 Simulation and Optimization Model Generation 

 

4.3.1 Model Framework  

 

Identify Process Plan: In this case study, three alternative networks for feature 

processing precedence (i.e., operations sequence), called process plan scenarios, are 

chosen to assess the plans impacts. First, the parts were run according to a predefined 

process plan where constraints on feature sequencing are predetermined.  Next, some 

restrictions are relaxed on the operational order of some parts features in a partially 

defined process plan. Finally, the undefined process plan is tested such that there are no 

restrictions on feature precedence. For each of these three types, different operation plans 

are tested and for each combination (process plan, operation plan), impacts on the KPIs 

are evaluated. 

Identify Operation Plan: The activity model for process selection provides the 

knowledge for assigning processes for each feature. Processes that can fabricate a part 

according to the blueprint specification are listed as potential process for that specific 

feature. Resources compatible to fabricate a 250 Grinding Head Shell part of Clear 

Acrylic material are listed in Table 4.1. Based on the associated activity model, each part 

feature (i.e., cylindrical shape, groove, external thread, spotting a hole, through hole) is 

assigned to relevant resources (i.e., process, machine, tool) based on Table 4.1 and this 

information is utilized to form an operation method selection matrix.  
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Table 4.1 Resources information for the 250 grinding head shell part 

Process Machine Tool 

No. Type No. Type No. Type 

P1 Turning M1 Three-axis CNC lathe T1 

T2 

T3 

Single-point tipped tool 

Form turning 

Drill  

P2 Milling M2 Three-axis vertical milling 

machine 

T4 

T5 

T6 

Slot milling 

Mill cutter 

Form milling 

P3 Drilling M3 Drill press-upright drill T7 

T8 

Center Drill 

Reamer 

P4 Boring M4 Boring mills-horizontal boring T9 Boring tool 

 

Design Process Planning: To explicitly identify the unique resources for each 

part’s feature, an integrated simulation and optimization model is generated to investigate 

the sustainability and productivity impacts for all the alternatives when several processes 

and operation plans scenarios are employed. Before building simulation and optimization 

models, key operation parameters (i.e., process settings, tool wear, tool angle, cutting 

fluid types, material specifications, temperature rise) are categorized as dependent or 

independent variables. Process settings are considered as the control variables in 

optimizing process plan while the other parameters are system attributes (i.e., constants). 

For example, regarding the resources in the operation method selection matrix, the 

optimal process settings may be the ones that enable the minimization of energy 

consumption, production time, and operation cost. Relevant machining constraints need 

to be considered when optimizing these objectives. Since this case study is focusing on 

rough machining, several constraints such as tool life, surface roughness, tolerance, and 

operation are adopted and modeled for feasible solutions. The model inputs include 

everything that enters or is consumed by the manufacturing process such as intermediate 
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products, work-in-progress, raw materials, lubrication, energy, and disturbance factors 

that occur during production. The required manufacturing process operations for the part 

design are facing, grooving, threading, spot drilling, and drilling. Arena™ is used to 

model the machine shop with a set of KPIs and OptQuest® for Arena™ is used to 

optimize these KPIs. The simulation model of the shop is used to evaluate the impact of 

selected plans and processes, machine parameter settings on individual and/or combined 

KPIs. Within Arena™, the main simulation modules are part arrival, data requirements 

for the part and process, the part routing to various machines, part exit, and statistics 

generation. This research defines manufacturing processes as events, parts as entities, 

buffers as queues, parts and processes specification data as attributes, and KPIs 

parameters as variables. Mathematical expressions are used for evaluating the 

productivity and sustainability metrics, and parameters are defined as variables. 

Depending on process plan type, a sequence is used to define feature precedence 

constraints. Constant distribution with a mean of 120 is defined as the inter-arrival time 

between successive batch arrivals; each batch includes 15 identical parts.   

The first section of the model deals with parts arrival and data assigning. A part is 

assigned its property information such as feature dimensions, operation list, and the 

operation orders. The part is then sent to the second section of the model where 

operations are chosen. From the operation method selection matrix, numerous 

permutations of feature-process-machine-tool assignments can be implemented in the 

model. Visual Basic® is used to simplify the model logic and determine what feature is 

performed next and which operation will be used. This is done by considering all the 

resources that a part could use and using a specified performance indicator to decide the 
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best possible combination. Moreover, queuing times and machining time are modeled. 

Once an operation is completed, the routing of the part will be decided according to the 

information assigned earlier.  

Once the part arrives at a particular machine for specific operations, various 

possibilities for process settings can be assigned. To specify exactly what decision to 

make at the process level, performance indicators are assessed for an optimal impact 

based on stakeholder preference. Thus, an optimization model is constructed using 

OptQuest® and integrated with the simulation model to reduce the search space of each 

performance indicator for optimal process settings. In OptQuest®, system constraints on 

all resources, such as machine, material; control variables, attributes; constraints and 

objective function are established. Integration of the simulation and optimization models 

allows what-if analysis and optimal process planning.   

4.3.2 Mathematical Models for Process Planning 

 

The accuracy of the simulation and optimization results is highly related on the 

availability and quality of data within these models as well as the expressions to calculate 

tool life and cost during turning. In this case study, two main methods are identified for 

populating data for these models. Published data in previous studies and mathematical 

models are used in these models. Mathematical expressions and published data for 

estimating the energy consumption, production time, and cost are listed in Table 4.2.   
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Table 4.2 Mathematical expression use 

Indicator Turning process Milling process Drilling process 
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In general, machine tool energy consumption contains both a constant energy 

consumption, which includes the startup operations (e.g., servos, spindle key, and coolant 

pump) and certain runtime operations (e.g., tool changes), and variable energy 
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consumption that fluctuates with different machine loads. Energy is consumed at any 

machine tool regardless whether they are idle or cut a workpiece. In this case study, 

standby and additional load loss power is ignored, so the energy consumed during 

processing is the only energy considered. Since main power source is electricity; 

therefore, carbon emission generated by the electricity consumption is also evaluated. 

Operation time required to fabricate part features is a function of material removal rate, 

cutting tool life, set-up time per feature, machining time per feature, and tool change 

time. For machining cost, cost is given by the sum of the cost for machining a part and 

associated tooling cost. 

Manufacturing organizations must continuously strive for higher levels of 

production rate where the resource usage, such as materials, machines, energy, labor, 

capital, and technology, are optimized [95]. For optimizing these objectives (i.e., cost, 

energy consumption, carbon emission, time), constraints need to be identified to define 

the feasible search space. Equations (1) to (9) are the constraint expressions. Power 

should not be higher than the operational power transmitted to cutting point by the 

machine tool: 

 

 

 

   
  

 
   . (1) 

For the permissible quality tolerance, both the surface roughness and radial 

deflection of the workpiece are considered. Machine tool, operation type, cutting tool 

geometry, and process settings are the main parameters that affect surface roughness [96]. 

In this case study, the geometric factors is considered as they result in ideal or theoretical 
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surface roughness in the absence of the other factors. The surface roughness of turning, 

boring, and drilling is given by [97] [98] and should not exceed the design permitted 

value. 

 

     
                

     
          

, (2) 

 

While the ideal surface roughness in milling can be evaluated using equation (3)  

[99]:  

 

 

 

    
    

   
 

     
          

 (3) 

Since the clamping conditions affect directly the radial deflection of the 

workpieces, the permissible radial deflection on turning, milling, and drilling processes 

are given below (expressions (4), (5), and (6) respectively) [100], [101]:  
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 (5) 

 
    

         
         

 

   
      

 (6) 

 

Tool-chip interface temperature is estimated to predict the effect of process 

settings (i.e., cutting speed, depth of cut, feed rate) on cutting temperature [102]. High 
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temperatures have main effects on tool life (i.e., shortening tool life), product quality (i.e., 

uncontrollable thermal expansion), and dangerous work conditions (i.e., worker subjects 

to hot chips). The temperature during machining can be calculated using expression (7):  

 

 
   

     

    
(
        

  
)

   

      (7) 

 

Machines specification is the source for retrieving specific machine data (e.g., 

permissible maximum power) [103]. For the tool life, there is an acceptable range where 

the tool replacement time can be achieved by using equation (8) [104][105]: 

 

 
      

    

     

                  . (8) 

Finally, the maximum and minimum process settings values must be in the range 

determined by the selected process specifications.  

 

                   

      
           

 

      
           

 

(9) 

4.4 Database Integration and Visualization 

 

Tables in Appendix A.1 represent several of the databases that provide most of 

the data used in this research. However, to use the databases, the designers must provide 

part information, such as material type and geometric specification/description. Blueprint 
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information is intended to act as a guide in selecting processes, machines, process 

settings, cutting tools, fixtures, and cutting fluids for the manufacturability. Finally, 

manufacturing engineers and production planners utilize these data to design process and 

operation planning. A GUI has been developed to provide a user-friendly interface. Once 

a query is created, the GUI extracts the required inputs to run both simulation and 

optimization models to produce the corresponding outputs. The GUI is built using 

HTML, Java Script, and PHP. The PHP, MySQL, and Apache server are employed 

together to realize the development of the web application. PHP is used to perform the 

following tasks: connect to the database in MySQL, write SQL queries and retrieve the 

query results, and write HTML codes. A visualization of this GUI is provided in Figure 

4.4. All information regarding the process and production plans will be stored in the 

MySQL database once the “Submit” button is clicked.  
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Figure 4.4 The graphical user interface 
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4.5 Simulation and Optimization Model Results 

 

4.5.1 Single-Objective (SO) Decision Making Scenarios 

 

The results ar discussed in this section. For each operation’s resource(s) with the 

three feature precedence scenarios (feature sequence plans), the sustainability indicators 

(cutting power consumption,     emission, production cost) and the productivity 

indicator (machining time) are given. Table 4.3 shows that one or more resources could 

be allocated for each operation based on the capability of these resources and the 

stakeholders’ objective function (e.g., minimizing production time). Various process 

plans are considered in fabricating the given part according to its design as shown in 

Table 4.4. The stakeholders could recognize the best process plan(s) that minimizes 

production time at each feature sequence plan, its energy consumption (e.g., cutting 

power required for machining), and the production cost as shown in Figure 4.5. The 

process plans    ,      and     are the ones that fabricate the given part design with 

minimum production times at the predefined, partially defined, and undefined feature 

sequence plans, respectively. However, stakeholders will probably select the predefined 

plan since the process plan     has the minimum production time among the others 

(         and    ).  
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Table 4.3 Resources' performance indicators impacts for minimizing production time 

Feature 

Sequence 

Plan  

Operation 
Resource 

   

Sustainability Indicators 
Productivity 

Indicator 

Cutting Power 

(KWh) 

CO2 Emission 

(Kg) 
Cost(US $) Time (hr.) 

P
r
e
d

e
fi

n
e
d

 F
e
a

tu
r
e
 S

e
q

u
e
n

c
e
 P

la
n

 

Facing 
  =P1-M1-T1 25.977 5.01367E-08 2.4279132 0.1987088 

  =P2-M2-T5 16.204 3.12754E-08 0.1704893 0.014185 

Grooving   =P2-M2-T4 16.204 3.12754E-08 0.1704893 0.014185 

Threading   =P1-M1-T2 7.793 1.5041E-08 0.7164750 0.0596126 

Spot Drill 
  =P1-M1-T3 6.927 1.33698E-08 0.6368667 0.0529890 

  =P3-M3-T7 5.9150 1.1416E-08 2.6577420 0.2213626 

Drill 

  =P1-M1-T3 17.318 3.34245E-08 1.5921667 0.1324725 

  =P4-M4-T9 8.4769 1.63604E-08 1.6971622 0.1413561 

P
a

r
ti

a
ll

y
 D

e
fi

n
e
d

 F
e
a

tu
r
e
 

S
e
q

u
e
n

c
e
 P

la
n

 

Facing   =P2-M2-T5 16.204 3.12754E-08 0.1704047 0.014185 

Grooving   =P2-M2-T4 16.207 3.12754E-08 0.1704047 0.014185 

Threading   =P1-M1-T2 9.1331 1.76269E-08 1.3507773 0.1124441 

Spot Drill 

  =P1-M1-T3 8.1183 1.56684E-08 1.2006909 0.0999503 

  =P3-M3-T7 5.9150 1.1416E-08 2.9166734 0.2429692 

Drill   =P4-M4-T9 8.47690 1.63604E-08 1.6968811 0.1413561 

U
n

d
e
fi

n
e
d

 F
e
a

tu
r
e
 S

e
q

u
e
n

c
e
 P

la
n

 

Facing   =P2-M2-T5 16.3139 3.14858E-08 0.1746218 0.0145290 

Grooving 

  =P1-M1-T1 5.19551 1.00273E-08 0.4776500 0.0397417 

  =P2-M2-T4 16.3139 3.14858E-08 0.1746218 0.0145290 

Threading   =P1-M1-T2 7.79327 1.5041E-08 0.7164750 0.0596126 

Spot Drill   =P3-M3-T7 6.16903 1.19062E-08 3.1445062 0.261905 

Drill 

  =P1-M1-T3 17.31838 3.34245E-08 1.5921667 0.1324725 

  =P3-M3-T8 15.75751 3.0412E-08 8.033609 4.7172487 

  =P4-M4-T9 16.039056 3.04858E-08 16.971622 1.4135619 
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Table 4.4. Types of process plans for different feature sequence when minimizing the production time 

Feature Sequence Plan   

Process 

Plan 

    

Facing Grooving Threading Spot Drill Drill 

Predefined Feature 

Sequence Plan 

                   

                   

                   

                   

                   

                   

                   

                   

Partially Defined 

Feature Sequence Plan 

                   

                   

Undefined Feature 

Sequence Plan 
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Figure 4.5 KPIs' values for minimizing process plan time 
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The impact of minimizing production power on selecting process planning is 

listed in Table 4.5.  

Table4.5 Resources' performance indicators impacts when minimizing production power 

Feature 

Sequen

ce Plan 

Operation 
Resource 

   

Sustainability Indicators 
Productivity 

Indicator 

Cutting 

Power 

(KWh) 

 

CO2 Emission 

(Kg) 

 

Cost(U

S $) 

 

Time (hr.) 

 

P
re

d
e
fi

n
e
d

 F
e
a
tu

r
e 

S
e
q

u
e
n

c
e 

P
la

n
 

Facing 
  =P1-M1-T1 9.67646 1.86756E-08 3.44506 0.28681 

  =P2-M2-T5 16.96128 3.27353E-08 0.29000 0.02414 

Grooving   =P2-M2-T4 16.96128 3.27353E-08 0.29000 0.02414 

Threading   =P1-M1-T2 2.90293 5.60267E-09 1.03352 0.08604 

Spot Drill 
  =P1-M1-T3 2.58039 4.98015E-09 0.91868 0.07648 

  =P3-M3-T7 6.48424 1.25146E-08 5.64257 0.47006 

Drill 

  =P1-M1-T3 6.45097 1.24504E-08 2.29671 0.19120 

  =P3-M3-T8 16.56261 3.19659E-08 
14.4144

7 
1.20068 

P
a

r
ti

a
ll

y
 

D
e
fi

n
e
d

 F
e
a

tu
re

 

S
e
q

u
e
n

c
e 

P
la

n
 Facing   =P1-M1-T1 8.79037 1.69654E-08 2.66796 0.22207 

Grooving   =P1-M1-T1 1.75807 3.39309E-09 0.53359 0.04441 

Threading   =P1-M1-T2 2.63711 5.08963E-09 0.80031 0.06662 

Spot Drill   =P1-M1-T3 2.34410 4.52411E-09 0.71145 0.05921 

Drill   =P1-M1-T3 5.86025 1.13103E-08 1.77864 0.14804 

U
n

d
e
fi

n
e
d

 

F
e
a

tu
r
e 

S
e
q

u
e
n

c
e 

P
la

n
 Facing   =P1-M1-T1 8.79031 1.69654E-08 2.66796 0.22207 

Grooving   =P1-M1-T1 1.75807 3.39309E-09 0.53359 0.04441 

Threading   =P1-M1-T2 2.63711 5.08963E-09 0.80039 0.06662 

Spot Drill   =P1-M1-T3 2.34410 4.52411E-09 0.71145 0.05921 

Drill   =P1-M1-T3 5.86025 1.13103E-08 1.77864 0.148047 

 

As indicated in the table above, one or more resources could be allocated for each 

operation based on the capability of these resources to address the stakeholders’ objective 

function (minimizing production power). Therefore, various process plans are considered 

in fabricating the given part design Table 4.6.    
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Table 4.6 Types of process plans at different feature sequence when minimizing production power 

Feature Sequence 

Plan   

Process 

Plan 

    

 

Facing Grooving Threading Spot Drill Drill 

Predefined Feature 

Sequence Plan 

                   

                   

                   

                   

                   

                   

                   

                   

Partially Defined 

Feature Sequence 

Plan 

                   

Undefined Feature 

Sequence Plan 
                   

 

The stakeholders could recognize the best process plan(s) that minimizes 

production power at each feature sequence plan, its production time, and production cost 

is shown in Figure 4.6.  

 

Figure 4.6 KPI's values for minimizing process plan power 
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The process plan,      fabricates the given part design with minimum production 

power at the predefined, partially defined, and undefined feature sequence plans. 

However, at the partially defined and undefined scenarios the resources for grooving vary 

as compared to the fully defined scenario, which is indicated in Table 4.6. The 

stakeholders will select the partially and undefined plans since their best process plans 

have the minimum production power than the best predefined plan. The impact of 

minimizing production cost on selecting process planning will be discussed. Table 4.7 

listed the sustainability and productivity indicators values for each operation’s resource 

(s) at the three feature precedence scenarios.  

Table4.7 Resources' performances indicators impacts when minimizing production cost 

Feature 

Sequence 

Plan 

Operation 

Resource 

   

Sustainability Indicators Productivity Indicator 

Cutting Power 

(KWh) 

CO2 Emission 

(Kg) 

Cost(US $) Time (hr.) 

P
r
e
d

e
fi

n
e
d

 F
e
a

tu
r
e
 S

e
q

u
e
n

c
e
 P

la
n

 Facing 

  =P1-M1-T1 19.90097 3.840E-08 2.58309 0.21495 

  =P2-M2-T5 16.20486 3.127E-08 0.17046 0.01418 

Grooving   =P2-M2-T4 16.20481 3.127E-08 0.17046 0.01418 

Threading   =P1-M1-T2 5.97029 1.152E-08 0.77492 0.06448 

Spot Drill 

  =P1-M1-T3 5.30692 1.024E-08 0.68882 0.05732 

  =P3-M3-T7 6.33649 1.224E-08 3.49993 0.29152 

Drill 

  =P1-M1-T3 13.26731 2.569E-08 1.722067 0.14330 

  =P4-M4-T9 8.81718 1.701E-08 2.19107 0.18251 

P
a

r
ti

a
ll

y
 D

e
fi

n
e
d

 

F
e
a

tu
r
e
 S

e
q

u
e
n

c
e
 P

la
n

 Facing   =P2-M2-T5 16.20487 3.127E-08 0.170481 0.01419 

Grooving   =P2-M2-T4 16.20487 3.125E-08 0.17048 0.01419 

Threading   =P1-M1-T2 7.79326 1.501E-08 0.71647 0.05963 

Spot Drill   =P1-M1-T3 6.92735 1.338E-08 0.63686 0.05299 

Drill   =P1-M1-T3 17.31838 3.342E-08 1.59216 0.13247 

U
n

d
e
fi

n
e
d

 F
e
a

tu
r
e
 

S
e
q

u
e
n

c
e
 P

la
n

 

Facing   =P2-M2-T5 16.20487 3.127E-08 0.17048 0.01419 

Grooving   =P2-M2-T4 16.20487 3.127E-08 0.17048 0.01419 

Threading   =P1-M1-T2 7.79326 1.504E-08 0.71647 0.05963 

Spot Drill   =P1-M1-T3 6.92735 1.336E-08 0.63686 0.05299 

Drill   =P1-M1-T3 17.31838 3.342E-08 1.59216 0.13247 
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The best process plan(s) among various process plans listed in Table 4.8 can be 

recognized based on the minimal production cost as illustrated in Figure 4.7.  

 

Table 4.8 Types of process plans at different feature sequence when minimizing production cost 

Feature Sequence 

Plan   

Process 

Plan 

    

 

Facing Grooving Threading Spot Drill Drill 

Predefined Feature 

Sequence Plan 

                   

                   

                   

                   

                   

                   

                   

                   

Partially Defined 

Feature Sequence 

Plan 

                   

Undefined Feature 

Sequence Plan 
                   

 

 

Figure 4.7 KPIs' values for minimizing process plan cost 
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Moreover, production time and power for all process plans including the optimal 

one are shown in this figure. The process plans    ,      and     are the ones that 

fabricate the given part design with minimum production cost at the predefined, partially 

defined, and undefined feature sequence plans, respectively. However, stakeholders will 

select the partially and undefined plans since their best process plans (i.e.    ) have the 

minimum production cost than the best predefined plan (i.e.    ).  

4.5.2 Multi-Criteria Decision Making (MCDM) Scenarios  

 

The MCDM technique was used to identify the best process plan when relative 

importance weights are assigned to the targeted indicators. Weights are allocated to the 

indicators using the specified technique discussed in the methodology section. Sensitivity 

analysis is performed to determine the impacts on the outcomes by varying the KPIs 

weights. In this study, the combined model that aggregate time, energy, carbon emission, 

and cost uses two different settings for the weight values of [0.35, 0.4, 0, 0.25] and [0.2, 

0.2, 0, 0.6], respectively. To avoid duplicating the influence of energy and carbon 

emission on the aggregated objective function, zero weight is assigning to the carbon 

emission indicator since both carbon emission and energy consumption are dependent on 

each other. Selecting the best compromise process plan at each feature sequence plan is 

based on users’ preferences since the notion of optimal alternatives does not exist in 

MCDM. Consequently, the MCDM method is to rank the alternatives from the best to the 

worst, based on the stakeholder’s preferences. A combined model 0.35/0.4/0/0.25 is built 

that aggregate time, energy, carbon emission, and cost in one model when 0.35, 0.4, 0, 

and 0.25 weights are assigned to these KPIs, respectively. Process plans for different 
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sequence plan, including the best ones, are listed in Table 4.9 and their KPIs’ values are 

shown in Figure 4.8.  

 

Table 4.9 Process plans at different sequence plans when minimizing combined 0.35/0.4/0/0.25 objective function 

Feature 

Sequence Plan   

Process 

Plan 

    

Facing Grooving Threading Spot Drill Drill 

Predefined  

Plan 

                   

                   

                   

                   

                   

                   

                   

                   

Partially Defined 

Plan 

                   

                   

Undefined Plan                    

 

 

 

Figure 4.8 KPIs' values for the 0.35/0.4/0/0.25 objective function model 
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For instance, process plan     as the predefined plan shows the minimum power 

consumption among other process plans using the predefined sequence while     is not 

optimal with regard to production cost and time. However,     is selected as the best 

process plan as it is the optimal plan that minimizes the combined objective function for 

the predefined sequence with specific weights assigned for the three individual objectives 

(i.e., power, cost, and time).    

A combined model 0.2/0.2/0/0.6 is built that aggregate time, energy, carbon 

emission, and cost in one model when 0.2, 0.2, 0, and 0.6 weights are assigned to these 

KPIs, respectively. Score matrix Table 4.10 is formulated based on the normalized KPIs. 
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Table 4.10 Score matrix for combined 0.2/0.2/0/0.6 model 

F
ea

tu
re

 S
eq

u
en

ce
 

P
la

n
  
 

Operation 
Resource 

   

Sustainability Metrics 
Productivity 

Metric 

Score (  ) Rank Cutting 

Power 

(0.2) 

CO2 

Emission 

(0) 

Cost 

(0.6) 

Time 

(0.2) 

P
re

d
ef

in
ed

 P
la

n
 

Facing 
  =P1-M1-T1 0.53493 0.53495 0.65696 0.65709 0.63256 2 

  =P2-M2-T5 0 0 1 1 0.8 1 

Grooving   =P2-M2-T4 0 0 1 1 0.8 1 

Threading   =P1-M1-T2 0.97889 0.97887 0.92284 0.92288 0.93406 1 

Spot Drill 
  =P1-M1-T3 1 1 0.93551 0.93551 0.94841 1 

  =P3-M3-T7 0.74232 0.74237 0.63105 0.63089 0.65329 2 

Drill 
  =P1-M1-T3 0.74635 0.74636 0.78356 0.78366 0.77613 1 

  =P3-M3-T8 0.07927 0.07908 0 0 0.01582 2 

P
ar

ti
al

ly
 D

ef
in

ed
  
P

la
n
 Facing 

  =P1-M1-T1 0 0 0 0.11222 0.02244 2 

  =P2-M2-T5 0.33189 0.38481 0.37064 1 0.48865 1 

Grooving 
  =P1-M1-T1 0.86192 1 0.88952 0.90192 0.88632 1 

  =P2-M2-T4 0.33189 0.38481 1 1 0.86627 2 

Threading   =P1-M1-T2 0.75343 0.87521 0.77834 0.80321 0.77833 1 

Spot Drill   =P3-M3-T7 0.82909 0.96278 1 0 0.76581 1 

Drill   =P1-M1-T3 1 0.41667 0.37064 0.44126 0.51063 1 

U
n
d
ef

in
ed

  
P

la
n
 Facing   =P2-M2-T5 0 0 1 1 0.8 1 

Grooving   =P1-M1-T1 0.74629 0.74628 0.87557 0.87571 0.84974 1 

Threading   =P1-M1-T2 0.57517 0.57511 0.77886 0.77912 0.73816 1 

Spot Drill   =P3-M3-T7 0.69129 0.69124 0 0 0.13825 1 

Drill   =P4-M4-T9 1 1 0.38637 0.38639 0.50909 1 

 

At each sequence plan, the resource that has the highest score is selected as the 

best choice for fabricating that operation. Process plans at different sequence plans, 

including the best ones, are listed in Table 4.11 and their KPIs’ values are shown in 

Figure 4.9. 
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Table 4.11 Process plans at different sequence plans when minimizing combined 0.2/0.2/0/0.6 objective function 

Feature Sequence 

Plan   

Process 

Plan 

    

 

Facing Grooving Threading Spot Drill Drill 

Predefined  

Plan 

                   

                   

                   

                   

                   

                   

                   

                   

Partially Defined Plan 

                   

                   

                   

                   

Undefined Plan                    
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Figure 4.9 KPIs' values when minimizing a combined 0.2/0.2/0/0.6 objective function 

As illustrated in Figure 4.9 that process plan    , for example, at the predefined 

plan displays the minimum production cost and time among other process plans at the 

predefined sequence while     is not optimal regarding power consumption compared to 

other plans with the same sequence.     is selected as the best process plan as it is the 

optimal plan that minimizes the combined objective function for the predefined sequence 

with specific weights assigned for the three individual objectives (i.e., power, cost, and 

time).    
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4.5.3 Comparisons between MCDM and SO Decision Scenarios  

 

Time versus MCDM (0.35/0.4/0/0.25) Scenarios 

The best process plans operation time, power, and cost for both models for the 

three plans sequences are shown in Figure 4.10.  

 

Figure 4.10 Time, power and cost values for the best plan process in 'time only' and the ‘combined with weight 

values of 0.35/0.4/0/0.25’ models 

 

For instance, the impacts of the best process plan regarding facing, grooving, 

threading, spot drill, and drilling times at each sequence plan can be recognized when 

comparing the two models as shown in the left section in Figure 4.10 under the “Best 

process plans operations’ time: Time in hr.” Stakeholders can then identify the 

operation(s) that have a significant impact on each indicator modeled for additional 

examination. Furthermore, regarding all process plans, including the best ones in Table 

4.4 and Table 4.9, the impacts for each operation are mainly dependent on the optimal 



 
 

79 

process settings of cutting speed, feed rate, depth of cut, the queue capacity at each 

operation, tool change time, and part transport time from one operation to another. The 

depths of cut are assumed as constants and their values are adopted from different 

published data. Cutting speed and feed rate for each process (turning, milling, press drill, 

and boring) and each machining operation (facing, grooving, threading, spot drill, and 

drill) for the best process plan in the “time only” model and the “combined with weight 

values of 0.35/0.4/0/0.25” model are shown clearly in Figure 4.11.   

   

 

Figure 4.11 Cutting speed and feed rate values for the 'time only' and  

the 'combined with weight values of 0.35/0.4/0/0.25' models 

 

 



 
 

80 

Table 4.12 lists the impacts of the optimal process plans on KPIs for the two 

models. Adopting a predefined process plan for these two models decreases average 

processing time for a given part design about 49.83% and 22.23% compared to the other 

two scenarios (i.e., partially defined, undefined plan), respectively. Moreover, utilizing 

the predefined plan also lowers the cost on average about 50% and 22.3% as well. 

However, the partially defined plan lowers the power consumption on average 13.63% 

and 13.67% than the predefined and undefined plans, respectively. In summary, the 

predefined plan provides significant time and cost reductions while the partially defined 

plan results in the decrease of energy consumption. 

Table 4.12 Optimal process plans KPIs' impacts at different feature sequence plans 

KPI 
Feature Sequence 

Plan   

Model 

Time 
Combined 

0.35/0.4/0/0.25 

Time (hr.) 

Predefined 0.27345 0.47259 

Partially Defined 0.38212 1.10492 

Undefined 0.48305 0.47626 

Power (KWh) 

Predefined 64.4487 35.83671 

Partially Defined 58.13809 28.48321 

Undefined 63.90848 36.42758 

Cost (US $) 

Predefined 3.28649 5.67103 

Partially Defined 4.58916 13.26881 

Undefined 5.80241 5.71952 

 

Time versus MCDM (0.2/0.2/0/0.6) Scenarios 

Figure 4.12 compares the best process plan for the two models and impacts on 

facing, grooving, threading, spot drill, and drilling time, power, and cost.  
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Figure 4.12 Time, power and cost values at the best process plans in Time and Combined 0.2/0.2/0/0.6 models 

 

Regarding all the process plans, including the optimal plans of Table 4.4 and 

Table 4.11, the impact of each operation mainly depends on the optimal process settings 

of cutting speed, feed rate, depth of cut, queue capacity at each operation, tool change 

time, and part transport time from one operation to another. While depth of cut is 

assumed as constant, optimal settings for both cutting speed and feed rate for each 

process (turning, milling, press drill, and boring) and each machining operation (facing, 

grooving, threading, spot drill, and drill) are shown clearly in Figure 4.13.  
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Figure 4.13 Cutting speed and feed rate values at the Time and Combined 0.2/0.2/0/0.6 models 

 

Therefore, adopting a predefined sequence plan, production time and cost 

decreases on average about 35.916% and 34.2% compared to the other two scenarios 

(i.e., partially defined and undefined plan), respectively. However, adopting partially 

defined plan lowered power on average by 1% and 11.1%, respectively, compared to the 

other plans.   

 

Power versus MCDM (0.2/0.2/0/0.6) and MCDM (0.35/0.4/0/0.25) Scenarios 

Comparisons between Power scenario and the MCDM scenarios listed above are 

illustrated in Figure 4.14 and Figure 4.15.  
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Figure 4.14 Time, power and cost values at the best process plans in Power and Combined 0.35/0.4/0/0.25 
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Figure 4.15  Time, power and cost values at the best process plans in Power and Combined 0.2/0.2/0/0.6 models 
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The optimal process settings for the best process plans for the power model of 

Table 4.6 in comparison to both combined 0.35/0.4/0/0.25 model of Table 4.9, and 

combined 0.2/0.2/0/0.6 model of Table 4.11, are shown in Figure 4.16 and Figure 4.17, 

respectively. 

 

 

Figure 4.16 Cutting speed and feed rate values at the Power and Combined 0.35/0.4/0/0.25 models 
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Figure 4.17 Cutting speed and feed rate values at the Power and Combined 0.2/0.2/0/0.6 models 

 

From the figures, adopting partially defined and undefined plans with the Power 

model decreases on average processing time, power and cost by about 18.7%, 44.5% and 

18.68% than the predefined process sequence, respectively. However, adopting a partially 

defined sequence plan for the combined 0.35/0.4/0/0.25 reduced power on average by 

15.668% compared to the predefined and undefined plans, and reduced time and cost on 

average by 22.233% compared to the partially defined and undefined sequence plans. A 

predefined plan for the Combined 0.2/0.2/0/0.6 scenario decreases average processing 

time and cost for a given part design by about 34.2% compared to the other two 
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scenarios. Further, adopting a partially defined plan for the Combined 0.2/0.2/0/0.6 

scenario reduced power on average by 11.1% compared to other plans. 

 

Cost versus MCDM (0.2/0.2/0/0.6) and MCDM (0.35/0.4/0/0.25) Scenarios 

Figures 4.18 and 4.19 compare the impacts on sustainability and productivity 

indicators for the Combined 0.35/0.4/0/0.25 and Combined 0.2/0.2/0/0.6 scenarios, 

respectively.  

 

 

Figure 4.18 Time, power and cost values at the best process plans in Cost and Combined 0.35/0.4/0/0.25 models 
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Figure 4.19 Time, power and cost values at the best process plans in Cost and Combined 0.2/0.2/0/0.6 models 

 

The optimal process settings for all operations and the optimal process plans for 

the cost model in comparison to both combined 0.35/0.4/0/0.25 and combined 

0.2/0.2/0/0.6 models are also illustrated in Figures 4.20 and 4.21, correspondingly.    



 
 

89 

 

Figure 4.20 Cutting speed and feed rate values at the Cost and Combined 0.35/0.4/0/0.25 models 
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Figure 4.21 Cutting speed and feed rates values at the Cost and Combined 0.2/0.2/0/0.6 models 

 

From these figures, adopting partially defined and undefined plans with the Cost 

model decreases average processing time and cost for a given part design by about 

6.825% and 7% compared to the predefined sequence, respectively. A predefined 

sequence plan using the Cost model decreases average processing power by 11.63% 

compared to the partial and undefined plans. Adopting a partially defined sequence plan 

for the combined 0.35/0.4/0/0.25 scenario reduces power on average by 15.668% 

compared to the predefined and undefined plans, respectively. Further, a predefined 

sequence plan for the combined 0.35/0.4/0/0.25 scenario minimizes time and cost on 

average by 22.233% compared to the other two scenarios. A predefined plan for the 

combined 0.2/0.2/0/0.6 scenario decreases average processing time and cost for a given 
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part design by about 34.2% compared to the other two. Finally, adopting partially defined 

plan for the Combined 0.2/0.2/0/0.6 scenario lowers power on average by 11.1% 

compared to other plans. 

4.6 Conclusions and Future Work 

 

A machining case study of a machine shop that produces grinding head shells has 

been performed to demonstrate the methodology. Different scenarios of sequencing the 

processes and machine settings are analyzed to determine one with optimal performance 

for the selected KPIs. Sensitivity analysis is performed to determine the importance of the 

parameters on these metrics for different process and production alternatives. The 

simulation results indicate that using this methodology is more effective in encompassing 

all relevant parameters that have a significant impact on these performance metrics. This 

provides the basis for future work in more complex part manufacturing sequences that 

encompass a greater range of product manufacturing activities. 

4.7 Nomenclature 

 

       = workpiece   processed by process  , 

   = production cost, 

   = cost per unit time of the labor and machine tool, 

    
= machining time,  

     
= tool life,  

     
= tool cost, 

     = workpiece diameter and length, 
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           = cutting speed, feed rate, and depth of cut, 

  = diameter of the milling cutter or the drill diameter,   

 = No. of teeth in milling cutter or No. of flutes in a tap, 

 = drill point angle, 

   =volume of the removed material, 

     = material removal rate,  

  = time required to exchange a tool, 

  = tool replacement time, 

   = workpiece hardness (Brinell hardness number), 

 = young’s modulus of elasticity, 

  = nose radius on the tool point, 

    
= tool radius nose 

  = mean temperature rise at tool-chip interface 

  = density of workpiece material   

  = specific heat capacity of workpiece material  

  = thermal diffusivity of the workpiece material 
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CHAPTER 5 

SUMMARY AND CONCLUSIONS 

 

This thesis, first, is an attempt to understand the complexity of material information 

models, the requirements for defining a high level material information model and to 

explore the possibility of formalizing material information model for sustainability 

MIMS that can capture this information across different stakeholders and life cycle 

stages. Therefore, this thesis addresses these requirements. In the first stage the different 

ways in which materials and material information influence the decision-making process 

were analyzed. The proposed methodology offers insights into material choices that offer 

sustainable solutions. For this purpose information modeling techniques were employed 

to generate manufacturing scenarios. The analysis helped in identifying locations where 

materials factor into the decision-making process, the key information requirements that 

help build a material information model for sustainability. This is highly relevant to the 

increased emphasis on sustainable solutions in the global industry, particularly as the 

ability to assess the manufacturing life cycle sustainability at the design stage enables 

better utilization of resources that optimize and maintain system desired performance(s). 

Assessing environmental sustainability impacts regarding material/process selection for 

fabricating a given design is a complex issue that requires detailed understanding of the 

necessary information with respect to this selection over the entirety of product life cycle.  

A comprehensive Material Information Model (MIM) is central to evaluating the impact 

of material properties on sustainability in the product life cycle. It is almost imperative 

that standardized distributed material information models be developed to address the 
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needs from both different perspectives in the product life cycle (manufacturing, quality 

and testing perspectives etc.) and different types of life cycles (i.e. cradle-to-gate, gate-to-

gate, and cradle-to-grave). In the second stage of this research, a systematic methodology 

was developed for enabling the sustainability and productivity performance assessment 

for integrated process and operation plans at the machine cell level of manufacturing 

systems. This methodology is aimed to help find out the best plan(s) out of all possible 

alternatives.  

5.1 Summary  

 

This research addressed a number of important objectives. First, activity models 

were used as a means of analyzing manufacturing life cycle scenarios to collect and 

categorize key concepts towards building a material information model for sustainability 

(MIMS). Second, a methodology was proposed to incorporate relevant information in the 

manufacturing life cycle, which particularly has a significant impact on sustainability and 

productivity performances. Third, techniques were developed to calculate different 

sustainability and productivity metrics. Fourth, sources of data needed for sustainability 

and productivity assessments were mapped. Lastly, a data model was constructed that 

captures the parameters needed for determining these metrics. 

Both Unified Modeling Language (UML) and local MySQL database were used 

to support the data structure generation. MySQL stored activity diagrams data in tables 

and facilitated these data flow by creating relationships among tables. Arena simulation 

and OptQuest optimization technique and Visual Basic were used in the model generation 

phase. The information in mapped databases was retrieved by writing SQL queries to 
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relate these data and retrieve precise information for performing sustainability and 

productivity analysis. For the purpose of result visualization and analysis, a graphical 

user interface (GUI) was built to compile information and results for different 

stakeholders. The GUI maintained a connection with the MySQL database so that the 

stakeholders can directly deal with the user interface without knowledge of SQL queries 

to the database. PHP and Apache server were utilized to develop a user interface and 

provide a good data visualization. Finally, to identify the techniques to calculate different 

sustainability and productivity metrics, DES was combined with OptQuest optimization 

to search for optimal solutions for process and operation planning. 

5.3 Conclusions 

 

This research helped accomplish a requirement analysis for building MIMS. It also 

led to the conceptualization and implementation of a decision support methodology for 

integrating machining process and operation planning. The results establish the feasibility 

of applying performance analysis at different manufacturing levels in the manufacturing 

enterprise and supply chain.  

In the course of this research the following specific features have been observed: 

 Activity models provide a means to analyze manufacturing life cycle scenarios to 

collect and categorize key concepts towards building a Materials Information Model 

for Sustainability. 

 Without integrating the process and operation plan only local assessments could be 

reached. In this research process and operation plans are integrated through a 
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systematic gate-to-gate life cycle methodology for a globalized assessment of 

sustainability and productivity. 

 Multi-Criteria-Decision-Making framework using AHP are developed to optimize 

process planning activities based on the impact of conflicting sustainability (energy, 

carbon dioxide and cost) and productivity (time) metrics. 

 Discrete event simulation is utilized to enable ‘what if’ analysis for the candidate 

process and operation plan scenarios (i.e. feature sequencing).  

 Sensitivity analysis is performed to determine the significant parameters of the 

simulated models on the sustainability and productivity metrics for the modeled 

process planning scenarios. 

 The synthesis of optimization and simulation assisted in capturing the complexities 

and dynamics of process planning activities.  

 This approach brings an additional viewpoint to discrete event manufacturing 

simulation analysis by optimizing simulation models to find optimal configurations or 

operating policies for the G2G life cycle process and operation plans. 

 Local database and graphical user interface are built to complile information and 

results for different stakeholders’ usage in process planning. Systematizing how 

information regarding the G2G life cycle activities related to the sustainability and 

productivity implications can help not only the design of new products but also the 

improvement of manufacturing from a sustainability and productivity point of view. 
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CHAPTER 6 

FUTURE WORK 

 

6.1 Future research 

 

Several techniques exist for assessing the sustainability of a given product, process, or 

service designs. Waste minimization, material efficiency, resource efficiency, and eco-

efficiency are some sustainability strategies that stakeholders could utilize. Even though 

these techniques tackle economic, environmental, and social domains regarding the 

sustainability analysis, almost all these techniques are limited in their scope. They do not 

declare the systematic way to understand the relationship between the stakeholders’ 

functionalities and various assessment principles, strategies, actions, and tools related to 

the three sustainability pillars, economy, society, and environment. With future research 

in this area, the material information model can thus be extended to provide the right 

combinations of information to each stakeholder at other life cycle domains i.e. cradle-to-

gate, gate-to-gate, and cradle-to-grave. This will reduce product and process life cycle 

time for other domains as it shares inputs with other systems (e.g workforce welfare as a 

social impact), and produces outputs for other systems (e.g. enterprise).   

With a careful analysis of the feasible activities during the entire life cycle of 

product and process, the obstacles in integrating materials’ information from various life 

cycle stages beyond the G2G life cycle can be addressed. By examining, quantifying, 

interpreting, and comparing activities within different domains, the requirement anaylsis 

could be extended to other life cycles within a unified material information model. 
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Moreover, the most vital criteria that should be considered in constructing such a material 

information model are effective gathering of data resources, standardizing material data 

model and demonstration. To ease the stakeholders’ navigation and support queries, 

future research should aim to meet necessities such as completeness, generality, 

extensibility, flexibility, ease of understanding, reusability, and must consist of a 

minimum number of necessary concepts. These necessities can be achieved by utilizing 

standards in manufacturing systems.  

Research could also guide how to establish metrics selection in the conceptual 

foundation of MIMS for sustainable decision-making in product design and 

manufacturing stages. A successful MIMS will support classification and multiple 

representations of a single metric within these stages. As different stakeholders may refer 

to the same material property in different ways, this could be expanded to support 

multiple representations of a single material property. For example, one stakeholder may 

represent a varying material property as an equation, while another stakeholder may 

represent the same property as a table. In this research, to select a set of model 

specifications (input parameters and assumptions) a wide range of parameters are 

possible as inputs for the scenarios discussed in previous chapters. Models are, therefore, 

required for selecting the best parameters and their combinations capable to capture the 

complexities and dynamics of the system. Applying data analytics (data mining methods) 

for the existing manufacturing data will enable researchers to discover relevant variables, 

attributes and rules that dynamically change with real world scenarios and those that are 

significantly relevant to the scope of the model.  
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APPENDICES 

A.1: Data Used in Populating the Local MySQL Database 

 

Table A.1 A list of the most involved databases in this research 

Database Publisher Coverage Reference Type 

MatWeb Material 

Property Data 

 

MatWeb 

Data sheets for over 64,000 

metals, plastics, ceramics, and 

composites. Free registration 

www.matweb.com/ Open Access, 

documents are free 

CISTI  
National Research 

Council, Canada 

All fields of engineering, 

technology 

and sciences 

http://cisti-icist.nrc-

nrc.gc.ca/main_e.html 

Free searching, 

documents may be 

purchased 

Compendex  Elsevier 

Engineering 

Information, Inc. 

One of the most comprehensive 

interdisciplinary databases for 

engineering 

www.ei.org/databases/compendex

.html 

Subscription based 

product 

CSA Materials Research 

Database with Metadex 

 

CSA / ProQuest 

Composites industry, engineered 

materials, and Metadex. 

www.csa.com/factsheets/engineeri

ng-set-c.php 

Subscription based 

product 

INSPEC  

The Institution of 

Engineering and 

Technology 

Information technology, 

manufacturing, mechanical 

engineering, physics, electrical 

and electronic engineering. 

www.iee.org/publish/inspec/ Subscription based 

product 

Recent Advances in 

Manufacturing – RAM 

 

TechXtra, Heriot 

Watt 

University 

It covers all aspects of 

manufacturing engineering, 

management, and technology 

www.techxtra.ac.uk/ram/index.ph

p 

Free searching, 

documents may be 

purchased 

IHS Global Engineering 

Documents  
USA 

With over 800,000 it is one of the 

major worldwide distributors for 

industrial standards, specifications 

and codes 

http://global.ihs.com/ Free searching, 

documents may be 

purchased. 

Machinery guide of UK 

manufacturing 

and engineering data.  

 

Findlay 

Publications Ltd 

It covers 39,000 suppliers for 

production engineering 

equipment, supplies or services 

www.machinery.co.uk/Buyers-

uide/index.aspx 

Free searching, 

documents may be 

purchased. 

Energyfiles  US Department of 

Energy –OSTI 

This portal provides access to 

over 500 databases and web sites.  

www.osti.gov/energyfiles/ Free searching and 

Open Access. 

 
  

http://global.ihs.com/
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Table A.2 Constant parameters' values in Taylor's tool life formula (C) 

 
                                                                 “C” 

                                                          Non-steel cutting                         Steel cutting 

Tool Material   m/min ft/min m/min ft/min 

Plain carbon tool 

steel 

0.1 70 200 20 60 

High-speed steel 0.125 120 350 70 200 

Cemented carbide 0.25 900 2700 500 1500 

Cermet 0.25   600 2000 

Coated carbide 0.25   700 2200 

Ceramic 0.6   3000 10000 

 
 

Table A.3 Allowable cutting speed for some cutting tool material type 

 

 

Tool Material 

Allowable Cutting Speed 

Non-steel cutting                                      Steel cutting 

m/min ft/min m/min ft/min 

Plain carbon tool steel Below 10 Below 30 Below 5 Below 15 

High-speed steel 25-65 75-200 17-33 50-100 

Cemented carbide 330-650 1000-2000 100-300 300-900 

Cermet   165-400 500-1200 

Coated carbide   165-400 500-1200 

Ceramic   330-650 1000-2000 
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Table A.4 Carbon emission signature values 

Countries Total Energy 

            

C% G% O%   

[g O2/kJ] 

 

EIE[kg 

CO2/kWh] 

 

G8 Countries 

 

      

France 575 5% 4% 1% 0.023 0.083 
 

Germany 637 46% 14% 1% 0.173 0.622 

Italy 

 

319 15% 54% 10% 0.147 0.530 

Japan 1082 27% 26% 13% 0.150 0.541 
 

United Kingdom (UK) 

 

389 33% 45% 2% 0.176 0.632 

United States (USA) 4369 49% 21% 1% 0.193 0.696 
 

Canada 

 

651 17% 6% 2% 0.069 0.247 

                  

 

100 8% 14% 0% 0.047 0.169 

Russia 

 

1040 19% 48% 2% 0.134 0.481 

Emerging Countries 

 

      

Brazil 

 

463 3% 6% 4% 0.025 0.091 

China 

 

3457 79% 1% 1% 0.263 0.946 

India 

 

830 69% 10% 4% 0.248 0.893 

Mexico 259 8% 51% 19% 0.137 0.493 
 

Other 

 

      

Australia 257 77% 15% 1% 0.277 0.995 

 

Notes: 

a Data acquired for 2008 from IEA Statistics -Electricity/Heat (by Country) 

b Data for 2010 from IESO 
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Table A.5 General surface roughness related to some machining operations 

 
 Tolerance Capability 

 

Surface Roughness 

Machining Operation  mm in  m  -in 

Turning, Boring 

D < 25 mm 

25 mm < D < 50 mm 

D > 50 mm 

 

  0.025                                0.001 

  0.05                                 0.002 

  0.075                               0.003 

6.3<  <0.4                        250<  <16 

Drilling 

D < 2.5 mm 

2.5 mm <D < 6 mm 

6 mm <D < 12 mm 

12 mm <D < 25 mm 

D > 25 mm 

 

 

  0.05                                0.002 

  0.075                              0.003 

  0.10                               0.004 

  0.125                             0.005 

  0.20                             0.008 

6.3<  <1.6                        250<  <63 

Milling 

    Peripheral 

    Face 

    End 

 

  0.025                                0.001 

  0.025                                0.001 

  0.05                                0.002 

 

6.3<  <0.8                        250<  <32 

 
 

Table A.6 Kb at different clamping conditions 

 
Type of clamping condition    

Workpiece held between chuck and tailstock 0.6 

Workpiece held between centers 1.4 

Workpiece held in chuck 22.4 
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Table A.7 Power requirement in milling process 

 
Type of Milling cut Cutter Diameter 

(in.) 

MRR 

Maximum 

(
    

    
  

Power 

Maximum 

(kW) 

Rough 3/4 80 20.142 

1 100 25.364 

1.5 150 37.3 

2 200 49.236 

Semi-rough 3/4 80 20.142 

1 100 25.364 

1.5 150 37.3 

2 200 49.236 

Semi-finish 3/4 50 12.682 

1 60 14.92 

1.5 100 25.364 

2 120 29.84 

Finish 3/4 36 8.952 

1 50 12.682 

1.5 60 14.92 

2 75 18.65 
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Table A.8 General recommendations for turning operations (Kennametal, Inc.) 

 
Workpiece material Cutting tool Depth of cut 

mm                    in. 

Feed rate 

mm/rev        in./rev 

Cutting speed 

m/min            ft/min 

Low- C and free 

machining steel 

Uncoated carbide 1.5-6.3 0.06-0.25 0.35 0.014 90 300 

Ceramic coated carbide 1.5-6.3 0.06-0.25 0.35 0.014 245-

275 

800-900 

Triple coated carbide 1.5-6.3 0.06-0.25 0.35 0.014 185-

200 

600-650 

TiN coated carbide 1.5-6.3 0.06-0.25 0.35 0.014 105-

150 

350-500 

      ceramic 1.5-6.3 0.06-0.25 0.25 0.010 395-

440 

1300-

1450 

Cermet 1.5-6.3 0.06-0.25 0.30 0.012 215-

290 

700-950 

Medium and 

high-C steels 

Uncoated carbide 1.2-4.0 0.05-0.20 0.30 0.012 75 250 

Ceramic coated carbide 1.2-4.0 0.05-0.20 0.30 0.012 185-

230 

600-750 

Triple coated carbide 1.2-4.0 0.05-0.20 0.30 0.012 120-

150 

400-500 

TiN coated carbide 1.2-4.0 0.05-0.20 0.30 0.012 90-200 300-650 

      ceramic 1.2-4.0 0.05-0.20 0.25 0.010 335 1100 

Cermet 1.2-4.0 0.05-0.20 0.25 0.010 170-

245 

550-800 

Cast iron, gray Uncoated carbide 1.25-6.3 0.05-0.25 0.32 0.013 90 300 

Ceramic coated carbide 1.25-6.3 0.05-0.25 0.32 0.013 200 650 

TiN coated carbide 1.25-6.3 0.05-0.25 0.32 0.013 90-135 300-450 

      ceramic 1.25-6.3 0.05-0.25 0.25 0.010 455-

490 

1500-

1600 

SiN ceramic 1.25-6.3 0.05-0.25 0.32 0.013 730 2400 

Stainless steel, 

austenitic 

Triple coated carbide 1.5-4.4 0.06-0.175 0.35 0.014 150 500 

TiN coated carbide 1.5-4.4 0.06-0.175 0.35 0.014 85-160 275-525 

Cermet 1.5-4.4 0.06-0.175 0.30 0.012 185-

215 

600-700 

High-

temperature 

alloys, nickel 

based 

Uncoated carbide 2.5 0.1 0.15 0.006 25-45 75-150 

Ceramic coated carbide 2.5 0.1 0.15 0.006 45 150 

TiN coated carbide 2.5 0.1 0.15 0.006 30-55 95-175 

      ceramic 2.5 0.1 0.15 0.006 260 850 

SiN ceramic 2.5 0.1 0.15 0.006 215 700 

Polycrystalline cBN 2.5 0.1 0.15 0.006 150 500 

Titanium alloys Uncoated carbide 1.0-3.8 0.04-0.15 0.15 0.006 35-60 120-200 

TiN coated carbide 1.0-3.8 0.04-0.15 0.15 0.006 30-60 100-200 

Aluminum alloys  

Free machining 

Uncoated carbide 1.5-5.0 0.06-0.20 0.45 0.018 90 300 

TiN coated carbide 1.5-5.0 0.06-0.20 0.45 0.018 105-

150 

350-500 

Cermet 1.5-5.0 0.06-0.20 0.45 0.018 395-

440 

1300-

1450 

Polycrystalline diamond 1.5-5.0 0.06-0.20 0.45 0.018 215-

290 

700-950 

Copper alloys Uncoated carbide 1.5-5.0 0.06-0.20 0.25 0.010  260 850 

Ceramic coated carbide 1.5-5.0 0.06-0.20 0.25 0.010 365 1200 

Triple coated carbide 1.5-5.0 0.06-0.20 0.25 0.010 215 700 

TiN coated carbide 1.5-5.0 0.06-0.20 0.25 0.010 90-275 300-900 

Cermet 1.5-5.0 0.06-0.20 0.25 0.010 245-

425 

800-1400 
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Polycrysalline 1.5-5.00 0.06-0.20 0.25 0.010 520 1700 

Tungsten alloys Uncoated carbide 2.5 0.10 0.2 0.008 75 250 

TiN coated carbide 

Cermet 

2.5 0.10 0.2 0.008 85 275 

Thermoplastics 

and thermosets 

TiN coated carbide 1.2 0.05 0.12 0.005 170 550 

Polycrystalline diamond 1.2 0.05 0.12 0.005 395 1300 

Composite, 

graphite reinforced 

TiN coated carbide 

Polycrystalline diamond 

1.9 

1.9 

0.075 

0.075 

0.2 

0.2 

0.008 

0.008 

200 

760 

650 

2500 
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Table A.9 General recommendations for milling operations (Kennametal, Inc.) 

 
Workpiece material Cutting tool Feed 

mm/tooth                        

in./tooth 

Speed 

m/min                                

ft/min 

Low-carbon and free 

machining steels 

Uncoated carbide, 
coated carbide, cermets 

0.13-0.20 0.005-
0.008 

120-180 400-600 

Alloy steels, Soft  

Alloy steels, Hard 

Uncoated, coated, 
cermets 
Cermets, PcBN 

0.10-0.18 
0.10-0.15 

0.004-
0.007 
0.004-
0.006 

90-170 
180-210 

300-550 
600-700 

Cast iron, gray, Soft 

Cast iron, gray, Hard 

Uncoated, coated, 

cermets, SiN 
Cermets, PcBN, SiN 

0.10-0.20 

0.10-0.20 

0.004-

0.008 
0.004-
0.008 

0.08-0.38 

120-210 

90-1370 

400-700 

Stainless steel, Austenitic Uncoated, coated, 
cermets 

0.13-0.18 0.005-
0.007 

120-370 400-1200 

High-temperature alloys, 

Nickel based 

Uncoated, coated, 
cermets, SiN, PcBN 

0.10- 0.18 0.004-
0.007 

30-370 100-1200 

Aluminum alloys, Free 

machining  

Aluminum alloys, High 

silicon  

 

Uncoated, coated, PCD 
PCD 

0.13-0.23 
0.13 

0.005-
0.009 

0.005 

610-900 
610 

2000-3000 
2000 

Copper alloys Uncoated, coated, PCD 0.13-0.23 0.005-
0.009 

300-760 1000-2500 

Plastics Uncoated, coated, PCD 0.13-0.23 0.005-
0.009 

270-460 900-1500 

 
Table A.10 General recommendations for drilling operations (Kennametal, Inc.) 

Workpiece 

material 

Surface speed 

 

m/min             ft/min 

Feed, mm/rev (in./rev) 

Drill diameter 

1.5 mm (0.060 in.)            12.5 mm 

(0.5 in.) 

rpm 

Drill diameter 

1.5 mm                    12.5 

mm 

Aluminum 

alloy 

30-120 100-400 0.025 (0.001) 0.30 (0.012) 6400-25000 800-3000 

Magnesium 

alloys 

45-120 150-400 0.025 (0.001) 0.30 (0.012) 9600-25000 1100-3000 

Copper alloys 15-60 50-200 0.025 (0.001) 0.25(0.010) 3200-12000 400-1500 

Steel 20-30 60-100 0.025 (0.001) 0.30 (0.012) 4300-6400 500-800 

Stainless steels 10-20 40-60 0.025 (0.001) 0.18 (0.007) 2100-4300 250-500 

Titanium 

alloys 

6-20 20-60 0.010 (0.0004) 0.15 (0.006) 1300-4300 150-500 

Cast irons 20-60 60-200 0.025 (0.001) 0.30 (0.012) 4300-12000 500-1500 

Thermoplastics 30-60 100-200 0.025 (0.001) 0.13(0.005) 6400-12000 800-1500 

Thermosets 20-60 60-200 0.025 (0.001) 0.10(0.004) 4300-12000 500-1500 
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Table A. 11  Power factor values for different material types 

 
Material Hardness Bhn   factor 

Plain carbon & alloy steels 90-200 

200-275 

300-375 

375-450 

45-52    

0.75 

0.92 

1.02 

1.18 

1.45 

Gray cast iron 300 0.25 

Alloy cast irons & ductile irons 300 0.50 

Stainless steel (austenitic) 300 0.96 

Stainless steel (martensitic) 300 0.81 

Titanium alloys 300 0.87 

Aluminum alloys 300 0.20 

Magnesium alloys 300 0.15 

Copper alloys Soft -    20-80 

Hard -    80-100 

 

Tool steels 300 1.10 

Cobalt based alloys 300 1.25 

High-temperature alloys 300 1.45 

Non-ferrous free-machining alloys 300 0.45 
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A.2 Arena™Models  

Sample of Arena
TM 

models that run in this work are represented through Figures A.1 to 

A.3. 

  



 
 

109 

 

 Figure A.1 An ArenaTM sample model for the production time at the predefined scenario 
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Figure A.2 An ArenaTM sample model for the production cost at the partially defined scenario 
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Figure A.3 An ArenaTM sample model for the energy consumption at the undefined scenario 
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