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Abstract

As the number of cores increase in chip multiprocessor microarchitecture (CMP)
or multicores, we often observe performance degradation due to complex memory
behavior on such systems. To mitigate such inefficiencies, we develop schemes that
can be used to characterize and improve the memory behavior of a multicore node
for scientific computing applications that require high performance.

We leverage the fact that such scientific computing applications often comprise
code blocks that are repeated, leading to certain periodic properties. We conjecture
that their periodic properties and their observable impacts on cache performance
can be characterized in sufficient detail by simple ‘α + β sin(θ)’ models. Addi-
tionally, starting from such a model of the observable reuse distances, we develop
a predictive cache miss model, followed by appropriate extensions for predictive
capability in the presence of interference.

We consider the utilization of our reuse distance and cache miss models for ac-
celerating scientific workloads on multicore system. We use our cache miss model
to determine a set of preferred applications to be co-scheduled with a given applica-
tion to minimize performance degradation from interference. Further, we propose
a reuse distance reducing ordering that improves the performance of Laplacian
mesh smoothing. We reorder mesh vertices based on the initial quality for each
node and its neighboring nodes so that we can improve both temporal and spatial
localities. The reordering results show that 38.75% of performance improvement
of Laplacian mesh smoothing can be obtained by our reuse distance reducing or-
dering when running on a single core. 75x of speedup is obtained when scaling up
to 32 cores.
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Chapter 1
Introduction

Current trends call for core counts as high as 60∼90 at a multicore node in the

near future [2]. Consequently, it is desirable to apply greater parallelism to en-

able efficient utilization of processing power and memory resources [3,4]. However,

the performance of irregular high performance computing applications (HPC) on

such multicores tend to scale poorly. We observe that many irregular applications

cause unexpected memory accesses and these become the bottleneck of perfor-

mance scalability [5]. Further, when multiple applications are run concurrently

on larger number of cores, they compete for shared resources such as on-chip

caches, main memory, memory bandwidth, and the I/O bus. Such computing

resource contention often have negative impacts on overall performance of ap-

plications. This degradation becomes even more pronounced in applications with

higher performance computing requirements. To mitigate unexpected performance

degradation for irregular high performance computing applications on multicores,

understanding memory subsystem behavior is crucial. More specifically, efficient

cache utilization for irregular applications must be considered in order to achieve

performance scalability under a fixed problem size.

For resolving significant performance issues and tuning application’s perfor-

mance, we focus on memory behavior of on-chip caches and NUMA domains for

shared memory, many-core systems. In current HPC systems, there is considerable

variation between vendors, for instance, Intel and AMD chip designs range from 4

to 12 cores per die and have significant differences in cache design [6,7]. This vari-

ation makes it challenging to predict application’s performance on these various
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computer architecture systems without costly runs of applications. Further, for a

performance prediction to be feasible it is required to be compact and efficient.

Thus, we seek mathematical model driven approach to predict memory behavior

of applications.

In this thesis, we consider the methodology for modeling memory behavior of

HPC applications by using reuse distances. It is known that there exists a rela-

tionship between reuse distance and cache miss rates for applications on multicore

systems [8]. Applications with lower reuse distances show better performance.

Figure 1.1 shows the performance variation in regards of reuse distances. Once we

develop the reuse distance models, we use it to optimize performance.
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Figure 1.1: Speedups obtained from difference reuse distances for irregular mesh
smoothing application. As the reuse distances increased, less performance gainings
are achieved.

To mathematically model the memory behavior of HPC applications through

reuse distances, we use the fact that many scientific applications show periodic

behavior. Our main contributions are based on exploiting the fact that HPC

applications often exhibit periodic behavior. This is primarily from the fact that

in many HPC codes, code segments in basic blocks are performed repeatedly. We

expect that their iterative computations will lead to certain periodic patterns in

measures such as reuse distances and cache misses that we can model compactly for

predictive purposes. As an example, the observed reuse distance profile is shown

below in Figure 1.2(a) for parallel multigrid (MG). Mesh smoothing application

considered in Chapter 5 also shows the periodic behavior in its observed reuse
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distance profile shown in Figure 1.2(b). We would like to consider how the behavior

of this and other applications can be modeled as a simple periodic function.
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Figure 1.2: The reuse distance profile for the multigid (MG) application (a). A
certain periodic behavior is observable. The reuse distance profile for the mesh
optimization application discussed in Chapter 6 also shows a periodic pattern (b).

Our contributions in this thesis are not meant to faithfully reproduce the com-

plicated time evolution patterns that can be observed of reuse distances and cache

misses. Instead, our goal is to come up with concise, reduced-order models which

can capture essential features of memory behavior including average reuse dis-

tances and average cache misses. We use the periodic patterns in their observable

reuse distances to develop models for their memory behavior in terms of cache miss

rates. Additionally, we develop a predictive cache miss model based on our con-

jecture that these periodic patterns will continue to persist even in the presence of

interference in the shared caches when two applications are co-scheduled. Further,

we will improve the performance of HPC application by using our predictive reuse

distance and cache miss models.

We start by providing notation, background material on simple periodic func-

tions and Laplacian mesh smoothing, related research on reuse distance and cache

interference miss analysis, and mesh reordering schemes in Chapter 2. We provide

our main contributions in Chapters 3, 4, and 5. Our main contributions in this

thesis can be summarized as follows:
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• Reuse Distance and Cache Miss Models. In Chapter 3, we propose

a simple α + β sin(2πtφ) model of reuse distance that can be obtained from

observed values. We assume that a small set of data can be obtained to

correlate, in general, reuse distance and cache misses for a given multicore.

We propose how to develop a model for cache misses from the reuse distance

model when an application runs by itself without interference.

• Predictive Cache Miss Models in the Presence of Interference. In

Chapter 4, we propose models of cache misses under interference for any pair

of applications. In our approach, all data needed to compute correlations

can be obtained using synthetic code segments and without running actual

applications. Actual runs are only needed to observe reuse distances for an

application when it is running alone, thus, enhancing the potential value of

our predictive model for informing co-scheduling. We verify our models for

NAS benchmarks and we show that the error rate in our predictive models

for cache misses when two applications interfere each other is on average

3.13%.

• Accelerating Scientific Workload Using Reuse Distance and Cache

Miss Models. In Chapter 5, we show that how to utilize our reuse distance

and cache miss models for improving performance. We first show that the

predictive cache model can be used to generate rankings of a preferred partner

for a given application to inform how application pairs could be co-scheduled

for best performance. We then propose reuse distance reducing ordering for

Laplacian mesh smoothing. This reordering scheme provides up to 38.75%

of performance improvement for Laplacian mesh smoothing on a single core.

When we scale up to 32 cores, 75x speedup with reuse distance ordering is

obtained as compared with a serial baseline (with original ordering mesh).

Predictive cache miss models developed in Chapter 3 were utilized to predict

cache performance for Laplacian mesh smoothing when the reuse distance

reducing ordering is applied. Prediction error rates for our predictive cache

miss models were low at 5.36% on average.

Finally, we present concluding remarks and potential directions for future re-

search in Chapter 6.



Chapter 2
Background

In this chapter, we present a brief review of the background material. We first

introduce and define terms and notation that we will use in the remainder of this

dissertation. Further, we provide a brief review of sine functions constructed by an

Fast Fourier Transformation (FFT). Additionally, we present a review of related

research about reuse distance analysis and characterization of cache interference.

We then, provide a brief explanation of Laplacian mesh smoothing that is used

for mesh quality improvement in irregular HPC applications. Finally, we discuss

related works for mesh reordering to improve the mesh smoothing performance.

2.1 Notations

We consider a set of n applications A1, A2, ...An, each of which may execute on its

own on a multicore processor or execute with any one of the other applications,

and thus as a pair of applications sharing and contending for memory resources.

We assume that for an application Ai when it is running on a multicore, we can

observe its memory accesses to calculate the reuse distance and cache miss rate for

each access as they evolve over time. The reuse distance is defined as the number of

memory references between two successive accesses to the same memory reference.

The cache miss rate is defined as the number of misses that occur in a shared cache

divided by the total number of cache accesses.

We use ORAi
, and OCAi

to denote these observed reuse distance and cache

miss profiles, respectively, for the case when the application is running by itself,
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i.e., without another co-scheduled application. Further, we expect to observe such

sequences when Ai and Aj are co-scheduled together. In the co-scheduled case,

because of interference, we expect the profiles to be different for each application

compared to when it is run on its own. Further, we expect both applications to be

impacted in different ways. To denote the observed reuse distances for application

Ai because of interference by Aj, we use OR(Ai|Aj). Similarly, the observed cache

misses for the interfered application Ai is denoted OC(Ai|Aj).

We will be developing modeled approximate representations of some of the

observable measures as part of our main contributions in Chapter 3 and Chapter 4.

We useRAi
to denote the sine model for representing the periodic behavior inORAi

.

We use symbols with an overline, CAi
to denote the model for predicting cache

misses from RAi
, the model of observed reuse distances. Similarly, the modeled

reuse distance for Ai in the presence of interference by co-scheduled application

Aj is denoted by R(Ai|Aj). The modeled cache miss rate for Ai in the presence of

interference by co-scheduled application Aj is denoted by C(Ai|Aj).

2.2 Simple Periodic α+ β sin(2πtφ) Functions and

the Role of FFTs

It is known that time-domain data that exhibit periodic behavior can be repre-

sented as a simple sine function in the form of α + β sin(2πtφ). If an observed

sequence of a measure, such as the reuse distance, is known for example, through

the trace of an application running on a multicore or from compiler or runtime

analysis, then it is conceivable that if it has periodic behavior, it could be approx-

imated by such a sine representation. In general, the process of determining the

existence of periodicity in such data involves a suitable fast fourier transformation

(FFT) [9].

Consider data with 100 elements in Figure 2.1(a) where a simple, regular,

periodic behavior is clearly observable. Now an FFT can be applied to these

data, to get an frequency-domain representation in terms of dominant magnitudes

and their frequencies as shown in Figure 2.1(b). Observe that the two highest

magnitudes are M1 = 2 and M2 = 0.5; further, they occur at frequencies I1 =
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Figure 2.1: Time variance data trace for 100 elements generated by a function
y = 2 + sin(2πt× 10) and its frequency domain data converted by FFT.

50, and I2 = 60 respectively. One way construct a sine function of the form

α + β sin(2πtφ) is to set α = M1, β = M2 × 2, and φ = abs(I1 − I2) to get

2 + 1 × sin(2πt × 10). In this simple example, we recover the original form with

accuracy. However, in general such a construction will give only an approximation.

Further, the original data may be noisy and may have linear or non-linear trends

that may need to be identified and removed before applying an FFT to characterize

the periodic behavior. However, this basic approach is often appropriate with

suitable variations to derive periodic function models from data in a wide variety

of applications.

2.3 Reuse Distance Analysis for Characterizing

Cache Interference

We now summarize how our results are loosely related to two prior streams of

results on (i) reuse distance analysis and (ii) characterization of contention in

the memory subsystem of CMPs/multicores when applications are co-scheduled.

Further, we comment on how our contributions are significantly different than

these earlier results.
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Many researchers have applied reuse distance analysis to capture the cache

performance of applications running on a single core system [10–12], and on mul-

ticore systems [13–16]. These results typically involve generating reuse distance

histograms and using them to predict cache miss rates. However, these results do

not take into account interference from co-scheduling of applications as we do in

this paper.

More recently, as multiple applications are run simultaneously on CMPs/multicores,

there is increasing interests in studying performance degradation effects due to

shared resource contention. Zhuravlev et al. classify levels of cache contention

in regard to increases in execution times [17]. Tang et al. used cache misses,

memory bandwidth and prefetchers to indicate an application’s contention char-

acteristics [18] with further extensions in [15, 19, 20]. Additionally, Zhao et al.

propose a two-phase regression approach involving cache misses and memory band-

width [21]. These characterization results differ substantively from the results in

this paper which provide closed form trigonometric function models of cache miss

rates with interference from co-scheduling. Further, our models derive solely from

the observable reuse distance profile of an application running alone.

The differentiating significance of our contributions in this paper is that we

bring predictive capability through modeling for the specific class of scientific ap-

plications that are iterative, and thus, with periodicity in their memory access

patterns. We observe that some others have also considered utilizing periodic be-

havior, although for very different applications such as identifying basic blocks [22]

and reuse signatures [23].

2.4 Laplacian Mesh Smoothing

Mesh smoothing application is performed to improve the quality of the mesh so

that accurate PDE solution can be obtained within a short execution time [24]. In

mesh smoothing procedure, we first compute the initial mesh quality for a given

mesh and do mesh smoothing to improve the mesh quality [25]. After smoothing,

we compute the mesh quality again and if the overall mesh quality reached a

desirable level, then we stop smoothing.

We use edge-length ratio [26], i.e., the ratio of minimum and maximum length
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edges, as a mesh quality metric for computing the mesh quality in this study. The

mesh quality for each vertex can be represented as an average quality metric value

of triangles that are attached on the vertex. The mesh quality for entire region

of the mesh can be computed by averaging all mesh quality values obtained from

each vertex. The range of edge-length ratio mesh quality values is 0 ∼ 1. If the

quality value for a triangle is closed to 1, we can say the triangle has a good shape,

i.e., closed to equilateral triangle that we desire. The goal of mesh smoothing

application will be maximizing the average quality values for each vertex.

For improving the quality of the mesh, we perform Laplacian smoothing to

replace a vertex position using neighbored vertices coordinates. Suppose there is

a vertex v we want to move and N neighbored vertices surrounding the vertex. If

we represent the position for ith neighbored vertex as pi, the new position for pv

will be

pv =
1

N

N∑
i=1

pi.

Figure 2.2 shows the initial mesh and the output mesh of Laplacian smoothing.

Figure 2.2: Laplacian smoothing performed on initial mesh. The vertex position
inside the mesh was changed.

We would like to improve the performance of the Laplacian mesh smoothing

by reordering the initial mesh. Each vertex will be reordered based on the initial

mesh quality for each vertex and details will be described in Chapter 6.
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Algorithm 1 Algorithm for Laplacian Mesh Smoothing

1: procedure Laplacian Smoothing(V , T )
2: V← mesh vertex data
3: T← mesh triangle data
4: quality = 0
5: for i← 1, V do
6: compute initial mesh quality for V[i]
7: quality = quality + qV [i]

8: end for
9: Initial quality = 1

V
quality

10: while Final quality < goal quality do
11: for i← 1, V do
12: Laplacian Smoothing
13: end for
14: quality = 0
15: for i← 1, V do
16: compute final mesh quality for V[i]
17: quality = quality + qV [i]

18: end for
19: Final quality = 1

V
quality

20: end while
21: end procedure

2.5 Mesh Reordering for Improving Mesh Smooth-

ing Performance

Several researchers suggested mesh reordering scheme for improving mesh smooth-

ing application performance. For example, Strout [27] and Hovland et al. [28]

developed a Feasible Newton mesh optimization algorithm and benchmark. Their

algorithm and benchmark employed both data and iteration reordering in order

to improve cache performance. One finding of their research was that reordering

of the input data can increase or decrease the number of iterations taken by the

inexact Newton method and can affect its success or failure [29]. The reordering

applied was a reordering of the vertices and elements in the mesh by applying

a breadth-first search and reversing the order in which the vertices were visited.

When data and iteration ordering were performed on the relevant hypergraphs,

the reorderings were found to significantly decrease the number of cache misses in
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all phases of code execution and resulted in significantly faster code [28]. However,

less amount of reuse distance reducing were observed with their reordering schemes

compared to our proposed reordering scheme. Experimental evaluation will show

these results in Chapter 6. Shontz and Knupp [30] considered mesh vertex re-

ordering techniques to reduce the total time required to improve the mesh quality.

Vertex ordering was performed for the first iteration (static) and every iterations

(dynamic). To reduce extra reordering time for dynamic cases, Park et al. [31]

considered a priori vertex reordering which performs the vertex reordering only

once when mesh smoothing is started. Unlike this study, we consider cache perfor-

mance when a reordering technique is applied to mesh smoothing. We can gain the

performance improvement since we reduce the reuse distances for mesh smoothing

applications and the reduced reuse distance can improve cache performance [32].



Chapter 3
Reuse Distance and Cache Miss

Models

In this chapter, we develop a methodology to predict the cache miss rates from

reuse distance models for HPC applications. We use the fact that our HPC ap-

plications often show periodic patterns in their memory behavior. We will show

that the periodic behavior can be utilized to characterize the cache performance

using reuse distances when it is running alone. This predictive cache miss models

are tested for actual applications represented by NAS benchmarks. Experimen-

tal evaluation for our predictive cache miss models will be provided. Finally, we

provide the summary of this chapter.

3.1 Modeling Cache Performance in an HPC ap-

plication using α + β sin(2πtφ) function

In this section, we develop α + β sin(2πtφ) models that seek to characterize peri-

odic behavior that we expect is observable in regard to reuse distance and cache

miss profiles of HPC applications. Starting from a brief description of our over-

all methodology, we develop reuse distance and cache miss models to predict and

utilize cache miss rates in an application when it is running alone, i.e., without

interference.
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3.1.1 Methodology

Our approach is based on studying the relationship between reuse distance and

cache miss rates using a simple synthetic benchmark that we call CodeP which is

described in later paragraphs. CodeP would be run on multicore system and data

will be generated to find correlations on that particular system between miss rates

and reuse distances. These data and regression analysis will be used to estimate

values of parameters in the models that we propose later in this section. Our

main conjecture is that even though these parameters are obtained using synthetic

code data, they would also be equally valid for actual high performance data

applications. This conjecture is tested later in Section 3.2. Below we provide the

details of our synthetic benchmark and how the data are collected.

CodeP Synthetic Benchmark We would like to define a logical time unit to

map to a series of discrete events. Let t be the logical time that corresponds to

N memory references. Then, the reuse distance for time t is the average reuse

distance observed in N memory accesses. Similarly, the number of cache misses

for time t is given by the total number of cache misses observed in N memory

accesses. Cache miss rates can be computed by dividing cache misses for time t

by N . In this study, we use N = 20, 000.

We develop a synthetic benchmark with built-in periodic behavior of memory

accesses. It provides time-dependent data of measures such as the reuse distances

and cache misses that we use to illustrate and develop our main contribution in

Section 3.1. We call it CodeP and it generates R unique memory references that

are repeated F number of times for a reuse distance equal to R and a set of

observations of length F ×R.

The F ×R memory references generated by CodeP should be higher than the

value of N that we use for memory references corresponding to a logical time

interval of length t. To generate observations using CodeP , multiple runs will be

made for different values of F and R such that F × R is much bigger than N by

factors of 10 or more. These observations will be used for regression of analysis to

estimate parameters for α + β sin(2πtφ) models.
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Algorithm 2 CodeP

1: procedure CodeP(R,F )
2: R← length of unique memory reference
3: F← number of repetitions
4: for i← 1, F do
5: for j ← 1, R do
6: access memory[j]
7: end for
8: end for
9: end procedure

3.1.2 Predictive Models

We start by developing a model based on observed values of reuse distances when a

single application runs on a multicore without any interference. Next, we consider

how this model could be used to derive a model for predicting cache misses.

In the rest of this section, we use simple illustrative examples based on CodeP ,

our synthetic benchmark. Further, we consider instances with small reuse distances

in the range of 10 ∼ 50, and small frequencies in the range of 10 ∼ 100 matched

with the gem5 simulation of a conventional two level cache hierarchy with a very

small 2KB cache. To estimate the parameters for the models that we will develop

in next section, we use multiple runs of CodeP and their observed cache misses to

generate the data set that we will use to estimate correlation.

RAi
: A Model for Reuse Distance from Observations for Application Ai.

We now characterize periodic behavior in observed reuse distance profiles as an

α + β sin(2πtφ) model.

Consider an observed reuse distance profile ORAi
for codeP (30, 10) as shown in

Figure 3.1 by a solid line with a step-like shape. By applying an FFT to ORAi
, we

can obtain an frequency-domain representation in terms of dominant magnitudes

and their frequencies: FFT (ORAi
) = (MR

1 ,M
R
2 , I

R
1 , I

R
2 ). We can now construct a

model RAi
as follows:

RAi
= MR

1 +MR
2 × 2 sin(2πt× abs(IR1 − IR2 )). (3.1)

Here in the α+β sin(2πtφ) notation, α = MR
1 represents the average reuse distances
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Figure 3.1: Observed reuse distance profile(solid line) and its sine function
model(dash-dot line) for CodeP (30, 10) application.

observed in ORAi
, and β = MR

2 represents the deviation of the reuse distance from

the average reuse distance value while φ = abs(IR1 − IR2 ) is the frequency. For the

observed data shown by the solid line in Figure 3.1, this method yields the model

RAi
= 29.39 + 8.94 sin(2πt× 10), which is also shown in Figure 3.1 as a dash-dot

line. Note that from our model, the average reuse distance is 29.39 which is within

0.02% error of the actual reuse distance of 30 from CodeP (30, 10). Further, observe

that although the model does not capture the corners in Figure 3.1 of the original

data, we conjecture that it may be sufficiently accurate to bring predictive ability

for co-scheduling applications.

CAi
: A Predictive Model for Cache Misses derived from RAi

. Given

an observed cache miss profile OCAi
of application Ai, we could develop its corre-

sponding model CAi
as we had developed RAi

from the observed ORAi
. However,

this would require the trace data observed by running application Ai on a given

multicore. To limit such experimental runs and corresponding observations, we

would like in general to be able to derive a predictive model for cache misses

CAi
using only the RAi

model of its reuse distance. Additionally, we would need

a small set of “training data” to characterize how reuse distances correspond to

cache misses for a given multicore. If this method is successful, then we could

easily derive predictive models for cache miss rates for an application on a given
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multicore starting from only its reuse distance profile. Further, in some cases, the

reuse distance profile of an application can be derived through our analysis. In

such cases, no observations are needed with the application to predict its cache

behavior, thus adding to predictive capabilities.

For illustrative purposes, consider data that show average cache miss rates

corresponding to average reuse distances from a gem5 simulation of a multicore

with two level caches of very small size at 2KB. Figure 3.2 shows these data as

points and the linear model from regression between reuse distance and cache

misses as a line.
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Figure 3.2: Correlation between reuse distance and cache misses for a multicore
with 2KB cache. Consider for example, cache misses of 1,500 corresponding to a
reuse distance of 60, 24 times the reuse distance value.

Consider the reuse distance model that we derived earlier for CodeP (30, 10),

namely RAi
= 29.39 + 8.94 sin(2πt × 10). We conjecture that the miss rates will

correspond to the average reuse distances when scaled by a factor of 24 from

Figure 3.2, and we expect that the dominant frequencies for both reuse distance and

cache misses to be the same to give CAi
= 705.69 + 107.28 sin(2πt×10). Although

CAi
is a profile, we can easily recover the cache miss and rates. Recall that t

corresponds to N memory references, we use N = 20, 000, i.e., now the average

cache miss rates is given by 705.69/20, 000 (α/N) at 3.53%. This approach is

illustrated for CodeP (30, 10) in Figure 3.3, where the dash-dot line is the predicted
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CAi
and the actual observed misses OCAi

are shown by a solid line.
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Figure 3.3: Observed cache miss profile (solid line) and its sine function
model(dash-dot line) for CodeP (30, 10) application running on a system with cache
size 2KB.

Summary. Our predictive models are developed for an application Ai using

only its observed reuse distance combined with certain model parameter estimates

obtained by regression analysis of observed reuse distances and cache misses for

its synthetic CodeP . Observed cache miss rates including OCAi
are used solely to

evaluate the quality of corresponding models, namely CAi
.

We have presented our key ideas in terms of very simple α+β sin(2πtφ) models.

However, we expect that our method can be easily generalized to produce more

complex representations of periodic functions when appropriate.

3.2 Experimental Results

In this section, we examine the predictive capabilities of our models and evaluate

model accuracy. We start with a description of our experimental setup. We then

verify our models for predicting cache miss rates when an application is running

alone, i.e., with no interference.
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3.2.1 Experimental Setup

System and Simulation. We used the gem5 simulation framework [33] to collect

detailed reuse distances, cache misses, and interference statistics for evaluating our

α + β sin(2πtφ) models. We test two different types of computer system architec-

tures.

We simulated a conventional computer architecture system that has a two level

cache hierarchy. L1 cache was set up as private and L2 cache and all lower level

memory hierarchy components were set up as shared. The L1 cache size is 32KB

for instruction cache, 32KB for data cache and L2 cache size is 512KB for unified

cache of both instruction and data. All caches have a 64-byte line size and utilize

an LRU replacement policy. Private L1 caches are 8-way set associative and shared

L2 cache has 16-way set associativity.

We also considered a Network-on-Chip (NoC) architecture to test the validity

of our predictive cache miss models for S-NUCA. The network topology was set

up as a mesh with 4 mesh rows. A private 32KB L1 data cache, a private 32KB

instruction cache and a shared 512KB L2 cache were set up for NoC architecture

simulation. The associativity for L1 and L2 are 8 and 16 respectively.

Test Suite. Seven HPC applications are selected from the NAS Parallel Bench-

mark suite [34] for testing our methodology, namely, Conjugate Gradient (CG),

Multigrid (MG), Integer Sort (IS), Lower Upper diagonal (LU), Scalar Penta-

diagonal (SP), Block Tri-diagonal (BT), and Fast fourier Transform (FT), with

class A workloads. The descriptions for each application are as follow:

• Conjugate Gradient (GC) - Computes an estimation of the smallest eigen-

value of a large sparse symmetric positive-definite matrix.

• Multigrid (MG) - Solves a three-dimensional discrete Poisson equation.

• Integer Sort (IS) - Sorts the particles to the appropriate place in a particle

method application.

• Lower Upper Diagonal (LU) - Solves a regular sparse LU triangular system

using a symmetric successive over-relaxation method.
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• Scalar Penta-diagonal (SP) - Solves a nonlinear PDE using scalar pentadi-

agonal kernel.

• Block Tri-diagonal (BT) - Solves a nonlinear PDE using block tridiagonal

kernel.

• Fast Fourier Transform (FT) - Solves a three-dimensional PDE using discrete

fast Fourier Transform.

Labels assigned for each application are shown in Table 3.1.

Benchmark IS MG CG SP BT FT LU
Label A1 A2 A3 A4 A5 A6 A7

Table 3.1: Set of applications used for our model verification.

Model Parameter Estimation. We need to estimate values of parameter k1

in for the cache miss model of the form CAi
= k1RAi

without interference. We use

multiple runs of CodeP to first obtain the dataset that is then used to fit a line

using regression as discussed in Section 3.1.

k1
0.03445

Table 3.2: Model parameters. k1 is used in CAi
= k1RAi

.

3.2.2 Verification: Predicting Cache Misses from Models

of Reuse Distance, i.e., CAi
= k1RAi

.

We first test our predictive cache miss model when there is no interference during

the execution of a given application. Table 3.3 shows our reuse distance and cache

miss models for all applications. Figure 3.4(a), 3.4(b), 3.4(c), 3.4(d), 3.4(e), 3.4(f),

and 3.4(g) show the details of reuse distance model results when compared to the

observed reuse distance profiles for IS(A1), MG(A2), CG(A3), SP(A4), BT(A5),

FT(A6), and LU(A7). Our modeled average reuse distances match to observed

values with errors of 0.0008%, 0.00076%, 0.01%, 0.001%, 0.00066%, 0.00071%,
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α+ β sin(2πtφ) Models

Reuse Distance (103)

α β φ

RIS 69.177 25.747 12
RMG 43.994 7.392 42
RCG 126.719 7.628 853
RSP 65.395 22.974 208
RBT 17.948 10.302 21
RFT 11.807 3.581 26
RLU 57.196 15.683 669

Cache Miss

α β φ

CIS 2383.15 887.75 12

CMG 1515.62 254.683 42

CCG 4365.5 262.8156 853

CSP 2252.88 791.46 208

CBT 618.34 354.93 21

CFT 406.78 123.35 26

CLU 1970.41 540.303 669

Table 3.3: Reuse distance models derived from FFT conversion of observed reuse
distance profiles, RAi

= FFT (ORAi
), and cache miss models derived from CAi

=
k1RAi

, where k1 = 0.03445, for all applications when they are run alone, with no
interference.

and 0.00095%, respectively for IS, MG, CG, SP, BT, FT, and LU, thus, verifying

them as being highly accurate.

Figure 3.5(a), 3.5(b), 3.5(c), 3.5(d), 3.5(e), 3.5(f), and 3.5(g) show the details

of our predictive cache miss models when compared to the observed cache miss

profiles for IS(A1), IS(A2), MG(A3), CG(A4), SP(A5), BT(A6), and LU(A7). The

observed cache miss rates for IS, MG, CG, SP, BT, FT, and LU are 11.895%,

7.57%, 22.73%, 12.86%, 3.24%, 2.49%, and 9.79% respectively compared to the

modeled cache miss rates of 11.915%, 7.58%, 21.83%, 11.26%, 3.09%, 2.03%, and

9.85% (obtained by dividing the dominant amplitude by N = 20, 000). These

values are quite accurate with an average error of 2.01%.
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3.2.3 Verification: Predicting Cache Misses from Models

of Reuse Distance, i.e., CAi
= k1RAi

in Real Architec-

ture System.

We now test our predictive cache miss models for computing cache misses from

reuse distance models of the Laplacian mesh smoothing when the application is

running alone on a real multicore system. Recall that we estimate values of param-

eter k1 in the cache miss model of the form CAi
= k1RAi

. We used 40 runs of CodeP

synthetic benchmark to obtain the dataset that is used to find correlation between

reuse distances and cache misses in a given multicore system. We estimated the

parameter for our predictive cache miss model as CAi
= 0.003909RAi

+110.27. We

added a constant to our predictive cache miss model for covering various dataset

generated by multiple CodeP runs on Intel Westmere multicore system.

Table 3.4 shows reuse distance models we obtained using our simple periodic

function, α+ β sin(2πtφ), where φ = 8 was obtained in this test. Figure 3.6 shows

cache miss rate results obtained from our predictive cache miss models. Overall

prediction error rates are 5.36%.

3.3 Summary

We have developed a predictive cache miss model for HPC applications running on

a multicore with no interference. Our approach is based on our conjecture that the

repeated basic block structure in scientific codes on HPC multicores would result in

periodic behavior of their reuse distances. We showed that a simple α+β sin(2πtφ)

model of the observed reuse distance for each application could be utilized to build

a predictive cache miss model for a particular application when it is running alone.

The prediction error rates were low at 2.01% on average. From this predictive

cache miss models for the application when running by itself with no interference,

we will develop a predictive cache miss models for an application in the presence

of interference in the next chapter.



22

α+ β sin(2πtφ) Models

Reuse Distance

Ordering α β

Rcarabiner ORI 1896.46 1331.72
BFS 1349.27 1068.06

Rcrake ORI 1898.97 1012.62
BFS 1272.41 816.08

Rdialog ORI 1708.97 635.26
BFS 977.93 479.65

Rlake ORI 2478.62 849.39
BFS 1379.73 675.88

Rriverflow ORI 2794.31 1839.15
BFS 1835.05 1351.63

Rocean ORI 4425.42 2448.97
BFS 2906.54 1897.39

Rstress ORI 1557.93 735.61
BFS 932.42 510.54

Rvalve ORI 1919.92 1696.31
BFS 1242.08 679.38

Rwrench ORI 1937.08 784.04
BFS 1146.79 583.13

Table 3.4: Reuse distance models of Laplacian mesh smoothing for carabiner,
crake, dialog, lake, riverflow, ocean, stress, valve, and wrench meshes when original
ordering and BFS ordering are applied.
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Figure 3.4: Observed reuse distance profiles ORAi
and their reuse distance models

RAi
= FFT (ORAi

) for (a) IS(A1), (b) MG(A2), (c) CG(A3), (d) SP(A4), (e)
BT(A5), (f) FT(A6), and (g) LU(A7). Average reuse distances shown as lines for
IS, MG, CG, SP, BT, FT, and LU are 69118.3, 44028.6, 127999.9, 65328.8, 17937.1,
11799.5, and 57141.8 when observed and 69177.06, 43994.78, 126719.9, 65395.64,
17948.9, 11807.8, and 57196.2, respectively, when modeled. Errors are very low at
0.00085%, 0.00076%, 0.01%, 0.001%, 0.00066%, 0.00071%, and 0.00095% for IS,
MG, CG, SP, BT, FT, and CG, respectively.



24

0 100 200 300 400
0

1000

2000

3000

4000

5000

6000

7000

8000

Time

C
ac

he
 M

is
se

s

 

 

observed
model

(a) IS

0 200 400 600 800 1000
0

500

1000

1500

2000

2500

3000

3500

4000

Time

C
ac

he
 M

is
se

s

 

 

observed
model

(b) MG

0 1000 2000 3000 4000 5000 6000
0

1000

2000

3000

4000

5000

6000

7000

Time

C
ac

he
 M

is
se

s

 

 

observed
model

(c) CG

0 1000 2000 3000 4000 5000 6000
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Time

C
ac

he
 M

is
se

s

 

 

observed
model

(d) SP

0 200 400 600 800 1000 1200 1400
0

500

1000

1500

2000

2500

3000

Time

C
ac

he
 M

is
se

s

 

 

observed
model

(e) BT

0 200 400 600 800 1000
0

500

1000

1500

Time

C
ac

he
 M

is
se

s

 

 

observed
model

(f) FT

0 1000 2000 3000 4000 5000
0

500

1000

1500

2000

2500

3000

Time

C
ac

he
 M

is
se

s

 

 

observed
model

(g) LU

Figure 3.5: Observed cache miss profiles OCAi
and their cache miss models CAi

=
0.03445RAi

for (a) IS(A1), (b) MG(A2), (c) CG(A3), (d) SP(A4), (e) BT(A5), (f)
FT(A6), and (g) LU(A7). The dominant amplitudes are shown as lines for both
observed and predicted (α) values. Observe that these lines are nearly coincident
indicating a high level of match between observed and predicted values.
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Figure 3.6: Our predictive cache miss model results of Laplacian mesh smoothing
for (a) carabiner, (b) crake, (c) dialog, (d) lake, (e) riverflow, (f) ocean, (g) stress,
(h) valve, and (i) wrench meshes when ORI, BFS, and RDR ordering are applied.
Overall prediction error rates are 5.36%.



Chapter 4
Can Cache Miss Models be

Predictive in the face of

Interference?

In this chapter, we develop a methodology to predict the cache miss rates from

reuse distance models for HPC applications when they are co-scheduled. Similar to

the previous chapter, we use the fact that our HPC applications often show periodic

patterns in their memory behavior. We will show that the periodic behavior can

be used for developing predictive cache miss models for the application in the

presence of interference, i.e., two applications are running simultaneously. This

predictive cache miss models are tested for actual applications represented by NAS

benchmarks. Experimental evaluation for our predictive cache miss models will be

provided. Finally, we provide the summary of this chapter.

4.1 Modeling Interference in Co-scheduled HPC

Applications Using α + β sin(2πtφ) function

In this section, we develop a series of models to predict and utilize cache miss

rates in the presence of interference from co-scheduled applications. Starting from

a brief description of our overall methodology, we develop reuse distance and cache

miss models to predict and utilize cache miss rates in an application when it is
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interfered by co-scheduled application.

4.1.1 Methodology

We first studied the relationship between reuse distance and cache miss rates using

CodeP described in previous chapter. CodeP would be run on multicore system

and data will be generated to find correlations on that particular system between

miss rates and reuse distances. Further, multiple pairs of CodeP instances would

be run on the system to observe impacts on the reuse distances from interference.

These data and regression analysis will be used to estimate values of parameters in

the models that we propose later in this section. Our main conjecture is that even

though these parameters are obtained using synthetic code data, they would also

be equally valid for actual high performance data applications. This conjecture is

tested later in Chapter 4.

4.1.2 Predictive Models

From the predictive cache miss model we developed in previous chapter, we extend

these ideas to develop predictive cache miss models for reuse distances and cache

behavior in the presence of interference when two applications are co-scheduled on

a multicore.

In the rest of this section, we use simple illustrative examples based on CodeP ,

our synthetic benchmark. The parameters for the models that we will develop in

next section are estimated from the data set generated by multiple runs of CodeP

to find correlation.

R(Ai|Aj): A Predictive Model of Reuse Distance of Application Ai with

Interference by Application Aj. We now consider how RAi
and RAj

, namely

reuse distance models of Ai and Aj when they run alone and without interference,

can be used to obtain models in the presence of interference when they are co-

scheduled. We thus seek to derive R(Ai|Aj) of Ai in the presence of interference by

Aj based on the assumption that periodic behavior is still preserved although its

parameters will be affected by interference.

Consider the illustrative example shown in Figure 4.1. Ai corresponds to

CodeP (30, 10) and Aj corresponds to CodeP (10, 10). Their observed reuse dis-
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(b) Modeled reuse distance profiles

Figure 4.1: Observed reuse distance profiles (a) for CodeP (30, 10), namely Ai, for
CodeP (10, 10), namely Aj, and for Ai in the presence of interference by Aj. The
corresponding modeled profiles are shown below in (b).

tances, namely ORAi
and ORAj

when running alone and for Ai with interference

from Aj (OR(Ai|Aj)) are shown in Figure 4.1(a). We can see that periodic be-

havior is preserved in OR(Ai|Aj). We therefore conjecture that a model for the

interfered reuse distance of Ai can be given by a linear combination of the form

R(Ai|Aj) = c1RAi
+ c2RAj

+ c3 where c1, c2, and c3 are suitable parameters. We

consider determining the parameters by seeking correlations between interfered

and uninterfered instances. Figure 4.2 shows the regression model for a dataset

obtained from single and pairwise runs of our CodeP synthetic benchmark. The

surface gives 0.9659RAi
+ 1.389RAj

+ 0.8509. Figure 4.1(b) shows these modeled

values for R(Ai|Aj) = 77.14 + 15.93 sin(2πt× 10).

In the illustrative example above, we estimated model parameters for reuse
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distances of interfered pairs of CodeP runs using regression models of observed

reuse distance profiles and cache miss rates for CodeP . Consequently, there is no

predictive capability here. However, we expect to use model parameters estimated

from CodeP runs to also model arbitrary application pairs under interference.

Now, the only observed values for these arbitrary applications will be there reuse

distances when running alone. It remains to be seen if our conjecture is indeed

valid or not, and correspondingly, if R(Ai|Aj) will bring predictive capability.
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Figure 4.2: Correlation between reuse distances for two applications and the in-
terfered reuse distance in a given multicore system.

C(Ai|Aj): A Predictive Model of Cache Misses of Application Ai with

Interference by Application Aj. We would now like to get a predictive cache

miss model C(Ai|Aj) under interference. We conjecture that it can be obtained

much as we had earlier obtained cache miss rates from reuse distances without

interference, namely by scaling by k1. Thus, C(Ai|Aj) = k1R(Ai|Aj). Figure 4.3 shows

our overall approach for deriving this predictive cache miss model of application

Ai with interference by application Aj.

ORAi
// RAi

//

$$

CAi
= k1RAi

// C(Ai|Aj) = k1R(Ai|Aj)

ORAj
// RAj

// R(Ai|Aj)

66

Figure 4.3: Summary of our proposed approach to develop a predictive model of
cache misses of application Ai with interference by application Aj when they are
co-scheduled.

Figure 4.4 shows the observed and modeled cache miss profiles for CodeP (30, 10)

(Ai) when interfered by CodeP (10, 10) (Aj). In this example, C(Ai|Aj) = 1851.58+
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42.19 sin(2πt×10) compared to CAi
= 705.69+107.28 sin(2πt×10) indicates nearly

a doubling of miss rates.
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(a) Modeled reuse distances for Ai without and with
interference
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(c) Cache misses for Ai under interference from Aj

Figure 4.4: CodeP (30, 10) and CodeP (10, 10) are used as Ai and Aj. Reuse dis-
tance models are shown in (a) for RAi

and R(Ai|Aj), observed cache misses OCAi

and modeled cache misses CAi
are shown in (b), and finally, when co-scheduled in

the presence of interference, the observed cache misses OC(Ai|Aj) and the modeled

cache misses C(Ai|Aj) = k1R(Ai|Aj) are shown in (c).
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4.2 Experimental Results

4.2.1 Experimental Setup

System and simulation setups are exactly the same as the previous chapter. Seven

HPC applications selected from the NAS Parallel Benchmark suite are co-scheduled

for testing our methodology.

Model Parameter Estimation. We need to estimate values of parameter

k1 in for the cache miss model of the form CAi
= k1RAi

without interference

and which is also used in C(Ai|Aj) = k1R(Ai|Aj). Further, we need to estimate

parameters c1, c2, and c3 for the reuse distance model with interference of the form

R(Ai|Aj) = c1RAi
+ c2RAj

+ c3. We use multiple runs of CodeP to first obtain the

dataset that is then used to fit a line and surface using regression as discussed in

Section 4.1.

k1 c1 c2 c3
0.03445 1.178 0.1245 -9593

Table 4.1: Model parameters. k1 is used in CAi
= k1RAi

, C(Ai|Aj) = k1R(Ai|Aj).

Further, c1,c2, and c3 are used in R(Ai|Aj) = c1RAi
+ c2RAj

+ c3.

4.2.2 Verification: Predicting Reuse Distances in the Pres-

ence of Interference, i.e., R(Ai|Aj) = c1RAi
+ c2RAj

+ c3.

We now predict the reuse distances of Ai when interference occurs due to co-

scheduled applicationAj as a linear combination: R(Ai|Aj) = 1.178RAi
+0.1245RAj

−
9593.

Table 4.2 shows the average reuse distances results for Ai in the presence of

interference derived from our predictive reuse distance model. For example, when

IS(A1) is interfered by FT(A6), the least amount of increase of reuse distance is

obtained; BT, MG, LU, SP, and CG reflect an increasing ordering of their impacts

on reuse distance. The range of average reuse distance for IS in the presence of

interference is 73367.65–87674.2. Other applications’ pairs are also ordered based

on average reuse distances increased by interference from co-scheduling.
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Interference Range of Interfered

Ai least ←→ most Average Reuse Distance(103)

IS FT BT MG LU SP CG 73.367∼87.674
MG FT BT LU SP IS CG 44.467∼58.009
CG FT BT MG LU SP IS 141.153∼148.295
SP BT FT MG LU IS CG 69.677∼83.219
BT FT MG LU SP CG IS 18.671∼27.327
FT BT MG SP LU IS CG 12.458∼20.093
LU FT BT MG SP IS CG 59.254∼73.561

Table 4.2: Predicted reuse distances in the presence of interference using R(Ai|Aj) =
1.178RAi

+ 0.1245RAj
− 9593 for each application when paired with one of the

remaining six in order of increasing levels of interference. The ranges of interfered
reuse distances are also shown.

Ai Aj Reuse Distance Model (103)

IS FT R(IS|FT ) = 73.367 + 30.776 sin(2πt× 12)

CG R(IS|CG) = 87.674 + 31.280 sin(2πt× 12)

CGFT R(CG|FT ) = 141.153 + 9.432 sin(2πt× 26)

IS R(CG|IS) = 145.259 + 12.192 sin(2πt× 26)

SP BT R(SP |BT ) = 69.677 + 28.346 sin(2πt× 208)

CG R(SP |CG) = 83.219 + 28.013 sin(2πt× 208)

Table 4.3: Reuse distance models for IS(A1), CG(A3) and SP(A4) in the presence
of interference. Pairs shown in the reuse distance models represent the least and
the most increased reuse distances for IS, CG, and SP.

Table 4.3 shows the reuse distance models for IS, CG, and SP in the presence

of interference from co-scheduled applications. For each application, the least

interfered and the most interfered case results are shown.

Figure 4.5 show the reuse distance models for IS(A1) in the presence of inter-

ference from FT(A6) and CG(A3). When IS is interfered by co-scheduled FT, the

observed average reuse distance increases to 73909.96, as compared to 73367.65

predicted by our reuse distance model R(IS|FT ). When IS is interfered by co-

scheduled CG, the most increase of average reuse distance, 87003.18 is observed,

which is close to the predicted value of 87674.2. Compared to the observed reuse

distances for IS in the presence of interference from FT and CG, the average reuse

distances computed by our reuse distance models are sufficiently accurate with

0.7% error on average.

Figure 4.6 show the reuse distance models for CG(A3) in the presence of inter-
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(a) IS with no interference
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(b) IS interfered by FT
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(c) IS interfered by CG

Figure 4.5: Observed reuse distance profile ORAi
and the reuse distance model

RAi
= FFT (ORAi

) for IS(A1)(a).Observed reuse distance profiles OR(Ai|Aj) and

the reuse distance models R(Ai|Aj) = c1RAi
+ c2RAj

+ c3, where c1 = 1.178,
c2 = 0.1245, and c3 = −9593, in the presence of interference from FT(A6)(b)
and CG(A3)(c).

ference from FT(A6) and IS(A1). When CG is interfered by co-scheduled FT, the

observed average reuse distance increases to 137964.64, as compared to 141153.1

predicted by our reuse distance model R(CG|FT ). When CG is interfered by co-
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(a) CG with no interference
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(b) CG interfered by FT
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(c) CG interfered by IS

Figure 4.6: Observed reuse distance profile ORAi
and the reuse distance model

RAi
= FFT (ORAi

) for CG(A3)(a). Observed reuse distance profiles OR(Ai|Aj)

and the reuse distance models R(Ai|Aj) = c1RAi
+ c2RAj

+ c3, where c1 = 1.178,
c2 = 0.1245, and c3 = −9593, in the presence of interference from FT(A6)(b) and
IS(A1)(c).

scheduled IS, the most increase of average reuse distance, 147072.13 is observed,

which is close to the predicted value of 145259.58. Compared to the observed reuse

distances for CG in the presence of interference from FT and IS, the average reuse
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distances computed by our reuse distance models are sufficiently accurate with

1.5% error on average.

0 1000 2000 3000 4000 5000 6000
0

2

4

6

8

10

12
x 10

5

Time

R
e

u
s
e

 D
is

ta
n

c
e

 

 

observed
model

(a) SP with no interference
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(b) SP interfered by BT
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(c) SP interfered by CG

Figure 4.7: Observed reuse distance profile ORAi
and the reuse distance model

RAi
= FFT (ORAi

) for SP(A4)(a). Observed reuse distance profiles OR(Ai|Aj)

and the reuse distance models R(Ai|Aj) = c1RAi
+ c2RAj

+ c3, where c1 = 1.178,
c2 = 0.1245, and c3 = −9593, in the presence of interference from BT(A5)(b) and
CG(A3)(c).

Figure 4.7 show the reuse distance models for SP(A4) in the presence of in-
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Interference Range of Interfered
Ai least ←→ most Cache Misses

IS FT BT MG LU SP CG 2527.51∼3020.37
MG FT BT LU SP IS CG 1505.55∼1998.42
CG FT BT MG LU SP IS 4862.73∼5108.78
SP BT FT MG LU IS CG 2400.4∼2866.91
BT FT MG LU SP CG IS 448.56∼941.43
FT BT MG SP LU IS CG 225.69∼692.23
LU FT BT MG SP IS CG 2067.65∼2534.17

Table 4.4: Predicted cache misses in the presence of interference using C(Ai|Aj) =

0.03445R(Ai|Aj) for each application when paired with one of the remaining six in
order of increasing levels of interference. The ranges of interfered cache misses are
also shown.

terference from BT(A5) and CG(A3). When SP is interfered by co-scheduled BT,

the observed average reuse distance increases to 69104.57, as compared to 69677.7

predicted by our reuse distance model R(SP |BT ). When SP is interfered by co-

scheduled CG, the most increase of average reuse distance, 82081.64 is observed,

which is close to the predicted value of 83219.69. Compared to the observed reuse

distances for SP in the presence of interference from BT and CG, the average

reuse distances computed by our reuse distance models are sufficiently accurate

with 1.1% error on average.

4.2.3 Verification: Predicting Cache Misses from Reuse

Distance in the Presence of Interference, i.e., C(Ai|Aj) =

k1R(Ai|Aj).

We now test our model for predicting cache miss rates when an application is

interfered by another co-scheduled application. Our methodology includes starting

from RAi
= FFT (ORAi

), deriving CAi
= k1RAi

, and R(Ai|Aj) to obtain C(Ai|Aj) =

k1R(Ai|Aj).

Table 4.4 shows the predicted cache miss results for Ai in the presence of

interference. For application Ai, the co-scheduled applications are shown in order

of the increases in miss rates they cause; the range of cache misses are also provided.

Table 4.5 shows the cache miss models for IS, CG, and SP in the presence
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Ai Aj Cache Miss Model

IS FT C(IS|FT ) = 2527.51 + 1060.25 sin(2πt× 12)

CG C(IS|CG) = 3020.37 + 1077.62 sin(2πt× 12)

CG FT C(CG|FT ) = 4862.73 + 324.95 sin(2πt× 26)

IS C(CG|IS) = 5108.78 + 420.03 sin(2πt× 26)

SP BT C(SP |BT ) = 2400.39 + 1007.18 sin(2πt× 208)

CG C(SP |CG) = 2866.92 + 843.283 sin(2πt× 208)

Table 4.5: Cache miss models for IS(A1), CG(A3), and SP(A4) in the presence
of interference. Pairs shown in the cache miss models represent the least and the
most increased cache misses for IS, CG, and SP.

of interference from co-scheduled applications. Applications which cause the least

and the most interferences are paired. The cache miss models for IS in the presence

of interference from FT and CG, C(IS|FT ) and C(IS|CG), are shown in Figure 4.8.

When IS is interfered by FT and CG, the cache miss rates computed from our

cache miss models are 12.64% and 15.1%, as close to the observed cache miss rates

of, 12.67% and 16.8%, respectively.

Figure 4.9 shows the cache miss models for CG in the presence of interference

from FT and IS, C(CG|FT ) and C(CG|IS). When CG is interfered by FT and IS, the

cache miss rates computed from our cache miss models are 24.31% and 25.54%, as

close to the observed cache miss rates of, 21.07% and 24.74%, respectively.

Figure 4.10 shows the cache miss models for SP in the presence of interference

from BT and CG, C(SP |BT ) and C(SP |CG). When SP is interfered by BT and CG,

the cache miss rates computed from our cache miss models are 12% and 14.33%,

as close to the observed cache miss rates of, 11.92% and 17.03%, respectively.

Figure 4.11(a) and Figure 4.11(a) show the predicted cache miss rates when

interference occurs in the original applications tested on the conventional computer

architecture and NoC architecture set up in gem5 Simulation framework. These

results are for all seven NAS Benchmarks. These summarizing verification results

support the validity of our predictive models. The overall error rates for our

predictive cache miss rate model is 3.13% for conventional architecture and 3.98%

for NoC architecture.
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(b) IS interfered by FT
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(c) IS interfered by CG

Figure 4.8: Observed cache miss profile OCAi
and the cache miss model CAi

=
k1RAi

, where k1 = 0.03445, for IS(A1)(a). Observed cache miss profiles OC(Ai|Aj)

and the cache miss models C(Ai|Aj) = k1R(Ai|Aj) in the presence of interference
from FT(A6) (b) and CG(A3) (c).

4.3 Summary

We have developed a predictive cache miss model in the presence of interference

due to co-scheduling of application pairs on a multicore. Our approach is based on
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(c) CG interfered by IS

Figure 4.9: Observed cache miss profile OCAi
and the cache miss model CAi

=
k1RAi

, where k1 = 0.03445, for CG(A3)(a). Observed cache miss profiles OC(Ai|Aj)

and the cache miss models C(Ai|Aj) = k1R(Ai|Aj) in the presence of interference
from FT(A6) (b) and IS(A1) (c).

our conjecture that the periodic behavior of applications reuse distances happens

because the basic code segment block in HPC applications performs repeatedly.

From the simple α + β sin(2πtφ) model of the observed reuse distance for each

application, we compose appropriately to finally yield a model for predicting cache
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Figure 4.10: Observed cache miss profile OCAi
and the cache miss model CAi

=
k1RAi

, where k1 = 0.03445, for SP(A4)(a). Observed cache miss profiles OC(Ai|Aj)

and the cache miss models C(Ai|Aj) = k1R(Ai|Aj) in the presence of interference
from BT(A6) (b) and CG(A3) (c).

misses for a particular application in the presence of interference. Similar to the

methodology we developed in Chapter 3, our parameter estimation for these models

involves regression with data observed from about a hundred runs of a simple

synthetic code on the target system. When these models were verified using the
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Figure 4.11: Prediction results for our cache interference miss model on conven-
tional computer architecture (a) and NoC architecture system (b). Overall pre-
diction error rates are 3.13% for conventional architecture with a two level cache
hierarchy system and 3.98% for NoC architecture.

NAS benchmarks and gem5 simulation, we observed low error rates of less than

3.13% on average for a conventional multicore with a two-level cache hierarchy and

3.98% for an NoC architecture.

We expect that our models can be extended to include more complex periodic

behavior of applications including those with linear trends. Additionally, we expect

that our approach can be extended to three co-scheduled applications by composing

the model for a pair with the model for a single application. However, parameter

estimation will likely need to be more sophisticated to control error rates to find

approximations that have sufficient predictive capability. Further, we see the need

to add stochastic elements if other factors such as core variation or transient effects

of resource contention are to be represented. Finally, we expect that our models

could be used in additional useful applications, such as for studying the scalability

of multicore cache hierarchies. We anticipate studying these aspects in future work.



Chapter 5
Accelerating Scientific Workloads

using Reuse Distances and Cache

Miss Models

We now show how to utilize our predictive reuse distances and cache miss models

developed in Chapters 3 and 4 for improving the performance of scientific appli-

cations. We first test the effectiveness of our cache miss models under interference

for informing the choice of application pairs to minimize performance degradation

when they are co-scheduled. Additionally, we propose a reuse distance reducing

ordering to improve the performance of Laplacian mesh smoothing. We summarize

experimental results to demonstrate the utility of reuse distance and cache miss

models developed in the preceding chapters.

5.1 Co-scheduling using Ranking Results of our

Predictive Cache Miss Models under Inter-

ference

We would like to consider how to utilize our predictive cache miss models for co-

scheduling applications efficiently. Suppose there are n applications A1, A2, .... An

that have to be co-scheduled. We randomly pick an application, for example, A1,
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and we predict the cache miss rates when A1 is co-scheduled with other applications

such as C(A1|A2), C(A1|A3) and so on. We then rank the paired applications based on

the predicted cache miss rates. We select the best partner for A1 that is ranked as

top and this application pair will be co-scheduled. Among the rest of applications,

we randomly pick an application again and rank the pair applications based on our

predictive cache miss models. This processes are repeated until all applications

are scheduled. These application pairs reduce performance degradation due to

resource contention, and thus, we can obtain the performance improvement in

their execution times.

Figure 5.1 shows how to co-schedule applications efficiently using our ranking

system. For example, if there are three candidate applications Aj, Ak, Al that

could be co-scheduled with the application Ai, we can predict C(Ai|Aj), C(Ai|Ak)

and C(Ai|Al) and rank them based on the predicted cache miss rates. The best

partner for Ai is the application that causes the least increase in interfered cache

miss rates among all.

Figure 5.1: Total execution times when four applications A1, A2, A3, and A4 are co-
scheduled. When applications are scheduled in a random way (a), we obtained the
worst performance. When applications are co-scheduled with our ranking system
(b), we first co-schedule applications A1 and A2 since the pair of A1 and A2 show
the least increase of cache misses. The best co-scheduling performance can be
obtained through our ranking results of predictive cache miss models.
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5.1.1 Experimental Results

We demonstrate using our C(Ai|Aj) models to rank applications so that we can

determine application pairs for co-scheduling. By comparing the predicted cache

miss rates and choosing the pair applications which show least negative impact on

cache interference, we can do co-scheduling with minimum performance degrada-

tion. Figure 5.2 shows the predicted cache miss rates for IS, MG, CG, SP, BT,

FT, and LU applications for choosing the pair applications to be co-scheduled.

Table 5.1 shows the ranking results for IS, MG, CG, SP, BT, FT, and LU to

determine the best partner for co-scheduling. By comparing the predicted with the

actual observed rankings, we can see that the first and the last match consistently.

This shows the pictorial predictive capability for gaining application pairs for high

performance.

We test our ranking system for co-scheduling six applications, IS, MG, SP, BT,

FT, and LU efficiently. Figure 5.3 shows the execution time results when IS, MG,

SP, BT, FT, and LU are co-scheduled using our ranking system. We select the

application pair FT and BT that show the least increased cache misses among

all. We then apply our ranking system to the remaining applications IS, MG, LU,

and SP and select the pair of applications IS and MG among them. Finally, the

remaining applications, LU and SP, are co-scheduled. We are able to obtain the

performance improvement when IS, MG, SP, BT, FT, and LU applications are

co-scheduled using our ranking system. Execution time with our ranking system

was 5863.46 sec, as compared to the worst case scenario, 7439.45 sec.

5.1.2 Summary of Co-scheduling

We showed the usage of our predictive cache miss models to improve the perfor-

mance of HPC applications. The predicted best application pairs in regard to

least degradation in performance when co-scheduled, matched with observed per-

formance in our tests, supporting how our models could be utilized in a practical

setting. This ranking system can be more precise if more complicated linear mod-

els are built for predicting cache miss rates. As a future work, we will improve

the ranking results to meet all ranking orders between predicted and observed

performance.
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For Co-scheduling Rank
IS MG CG SP BT FT LU

Predicted 3 6 5 2 1 4
Observed 4 6 3 2 1 5

For Co-scheduling Rank
MG IS CG SP BT FT LU

Predicted 5 6 4 2 1 3
Observed 4 6 2 3 1 5

For Co-scheduling Rank
CG IS MG SP BT FT LU

Predicted 6 3 5 2 1 4
Observed 6 5 2 4 1 3

For Co-scheduling Rank
SP IS MG CG BT FT LU

Predicted 5 3 6 1 2 4
Observed 3 4 6 1 2 5

For Co-scheduling Rank
BT IS MG CG SP FT LU

Predicted 6 2 5 4 1 3
Observed 6 3 5 2 1 4

For Co-scheduling Rank
FT IS MG CG SP BT LU

Predicted 5 2 6 3 1 4
Observed 4 3 6 2 1 5

For Co-scheduling Rank
LU IS MG CG SP BT FT

Predicted 5 3 6 4 2 1
Observed 5 4 6 3 2 1

Table 5.1: Predicted ranking of applications for co-scheduling with IS, MG, CG,
SP, BT, FT, and LU.
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Figure 5.2: Prediction results for our cache interference miss models for (a)IS,
(b)MG, (c)CG, (d)SP, (e)BT, (f)FT, and (g)LU. From the predicted cache miss
rates, we rank the best pair application for each application to co-schedule each
other.
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Figure 5.3: Total execution times when six applications IS, MG, SP, BT, FT, and
LU are co-scheduled. When applications are scheduled in a random way (a), we
obtained the worst performance, 7439.45 sec. When applications are co-scheduled
with our ranking system (b), we first co-schedule applications FT and BT since the
pair of FT and BT show the least increase of cache misses. Next, we co-schedule
applications IS and MG for obtaining the least increase of cache misses among
the remaining applications. Improved co-scheduling performance can be obtained
through our ranking results of predictive cache miss models, 5863.46 sec.
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5.2 Reuse Distance Reducing Ordering for Lapla-

cian Mesh Smoothing

In this section, we show how to utilize our reuse distance models to improve the

performance of irregular HPC application, namely, the Laplacian mesh smoothing.

In HPC systems, when solving partial differential equations using finite element

methods for unstructured meshes in parallel on multicore system, high quality

meshes are requited [35]. This is due to the fact that mesh quality plays a significant

role in both the accuracy of the solution produced by a PDE solver, as well as the

solver’s execution time [36]. However, when attempting to parallelize the mesh

smoothing application to obtain solution of PDE efficiently, we do not obtain full

performance scalability due to the irregular memory accesses of the application [37].

Thus, in order to increase the cache utilization and achieve the benefits of high

quality meshes for PDE solvers efficiently, we explore the development of a mesh

reordering scheme in this section.

In Chapter 3, we have established that reuse distance plays a significant role

in cache performance of HPC applications on multicore [32]. Figure 5.4 shows the

performance results for Laplacian mesh smoothing when difference reuse distances

are applied. There is a huge range of reuse distances for Laplacian mesh smoothing.

When the Laplacian mesh smoothing runs on a randomly ordered mesh, the reuse

distances for Laplacian smoothing increase from 4449.64 to 90100.06. Our predic-

tive cache miss model shows that cache miss rates for Laplacian mesh smoothing

increase from 0.65% to 2.31% when random ordering is applied to the nodes for

Laplacian mesh smoothing. However, when the Laplacian mesh smoothing runs

with BFS ordered mesh [28], we observe that the reuse distances for Laplacian

smoothing decrease from 4449.64 to 2926.52. Further, our predictive cache miss

models show that the reduced reuse distance improves the cache performance of

Laplacian mesh smoothing. When the reuse distance for Laplacian mesh smooth-

ing is reduced, cache miss rates decreased from 0.65% to 0.6%. We want to make

sure how reuse distances can affect the performance of Laplacian mesh smoothing.
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Figure 5.4: Performance results for Laplacian mesh smoothing according to the
difference reuse distances with (a) original mesh, (b) BFS ordered mesh, and (c)
random ordered mesh.

5.2.1 Factors Affecting Temporal and Spatial Locality

There are two factors that affect the performance of Laplacian mesh smoothing.

The first is cache misses around reuses of nodes in Laplacian mesh smoothing.

When the Laplacian mesh smoothing needs a node, if the node is already prefetched

in the cache, it improves temporal locality, which in turn, reduces cache miss

rates. The second is how to stream the nodes for Laplacian mesh smoothing.

Suppose that the nodes are spatially stored in the memory. If a node is selected,

the node is streamed to the cache along with its neighboring nodes. Since the

Laplacian smoothing method processes a node and its neighbors successively, this

prefetching of the neighboring nodes into cache improves the applications cache

performance. Figure 5.5 shows two partial traces of node visiting observed from

Laplacian mesh smoothing when two different reuse distances are applied. When

the reuse distances for Laplacian mesh smoothing are reduced by applying BFS

ordering, temporal and spatial localities are significantly improved. This example

dictates the interplay between temporal and spatial localities on one hand and

reducing reuse distances on the other.
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… 613,640,701,115,125,613,623,115,121,124,84,173,315,316,342,740,128,173,179,257,315 … 

(a) Original ordering

… 164,166,181,151,152,164,169,181,182,183,184,185,186,187,188,189,151,154,182,185,187,190 … 

(b) BFS ordering

Figure 5.5: Partial traces observed from node visiting for Laplacian mesh smooth-
ing. (a) Traces for Laplacian mesh smoothing with original ordering. (b) Traces
for Laplacian mesh smoothing with BFS ordering. When the reuse distances for
Laplacian mesh smoothing are reduced by BFS ordering, temporal and spatial
localities are significantly improved.

5.2.2 Toward a Reuse Distance Reducing Ordering

We now would like to consider how to reduce the reuse distances for Laplacian

mesh smoothing. By the time the Laplacian mesh smoothing terminates, there is

a certain order in which nodes have been considered. Consider a synthetic mesh

consisting of nodes that have, almost, the same qualities for all nodes, shown

in Figure 5.6. Initially, there are certain node traces that the Laplacian mesh

smoothing visits during the execution. After that, we permute the nodes in the

mesh by applying BFS ordering. The reordered nodes are stored in their updated

memory locations. Figure 5.7 shows the mesh reordered by BFS ordering. The

nodes in the mesh reordered by BFS ordering store their nodes spatially. This

causes the access patterns for Laplacian mesh smoothing to become similar to the

memory access of nodes streamed in the cache. Though the accessed node list

becomes similar to the streamed node list, there are still spaces for improvement

for obtaining optimal reuse distance of Laplacian mesh smoothing.

We now consider improving temporal locality for Laplacian mesh smoothing.

When Laplacian smoothing executes, nodes which have bad qualities are visited

more frequently than other nodes. Since the Laplacian mesh smoothing is a greedy

algorithm, when smoothing the mesh, the Laplacian mesh smoothing visits the
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Figure 5.6: Original Mesh that have have almost same qualities for each vertex.
The node traces visited by Laplacian mesh smoothing are shown.

Figure 5.7: BFS ordered Mesh. The node traces showing the visit of Laplacian
mesh smoothing have higher spatial locality than original mesh.

node which has bad quality first. Once the smoothing process for the node is over,

the Laplacian mesh smoothing selects another node that has the worst quality

among nodes nearby the node, i.e., neighboring nodes. We conjecture that the

access patterns for Laplacian mesh smoothing can be controlled by the initial

qualities of each node in the mesh. If we order nodes and their neighboring nodes

based on the qualities they have, the temporal locality will be improved. Figure 5.8
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shows the reordered mesh based on the qualities that each node has. Compared

to the BFS ordered mesh, the accessed node list becomes even more closed to the

streamed node list. Significant reduction of reuse distances for Laplacian mesh

smoothing is also observed.

Figure 5.8: Reordered mesh based on the qualities that each node has. The node
traces observed from Laplacian mesh smoothing have higher spatial locality and
higher temporal locality than original mesh.

By using this conjecture, we propose a mesh reordering scheme that reduces

reuse distance of Laplacian mesh smoothing. When mesh smoothing application is

executed, the application calculates the initial qualities of each vertex in a mesh,

smoothes the mesh vertices, and then computes the quality of the mesh to see the

difference between initial and final quality of the mesh. We find that a vertex which

has a bad quality in the beginning requires more time to be smoothed compared to

other vertices. If such vertices are processed earlier than other vertices, the neigh-

bors of the vertex which has the worst quality are already in the cache and thus,

we can improve the spatial locality. The neighboring vertices are also reordered

in increasing order. By reordering all the vertices based on the methodology we

described above, we are able to obtain the node trace which is very similar to

the streamed node list for Laplacian mesh smoothing so that both temporal and

spatial localities are improved. The node traces have the reduced reuse distances

and consequently we can improve the performance of Laplacian mesh smoothing.
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Algorithm 3 Algorithm for Reuse Distance Reducing Ordering

1: procedure Reuse Distance Reducing Ordering(V , T )
2: V← mesh vertex data
3: T← mesh triangle data
4: quality = 0
5: for i← 1, V do
6: compute initial mesh quality for V[i]
7: quality = quality + qV [i]

8: end for
9: reordering list = empty

10: while i← 1, V do
11: Pick the vertex V[i] which has the worst quality and put it to the list
12: Put the neighbored vertices of V[i] to the reordering list
13: based on the increasing order of quality
14: end while
15: for i← 1, V do
16: Laplacian Smoothing
17: end for
18: end procedure

Figure 5.9 shows the reuse distance profiles for original mesh and the mesh

reordered by our reuse distance reducing ordering. Reuse distances are significantly

reduced from 1803.83 to 59.48 when our reuse distance reducing ordering is applied.

(a) Original mesh (b) Reordered mesh

Figure 5.9: Observed reuse distance profiles for original mesh (a) and reordered
mesh (b).
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5.2.3 Experimental Results

In this section, we evaluate our reuse distance reducing ordering for improving

the performance of Laplacian mesh smoothing. We first describe the experimental

setup used in this study. We then show the execution times for Laplacian mesh

smoothing reduced by our reuse distance reducing ordering. Next, We verify our

predictive cache miss models developed in Chapter 3 to confirm that reuse distance

can be used to predict cache miss rates for an application when it is running

alone. We also test the scalability of the Laplacian mesh smoothing with our reuse

distance reducing ordering.

5.2.3.1 Experimental Setup

System Setup. We used an Intel Westmere-EX architecture system to evaluate

our reuse distance reducing ordering and to verify our predictive cache miss models

developed in Chapter 3. The Intel Westmere-EX architecture equipped with 4

eight-core Intel Xeon E7-8837 processors. It supports 32 concurrent threads. Each

core has 32K L1 private cache and 256K L2 private cache, and they share 24MB

L3 cache. The machine is an inclusive cache hierarchy. Each processor is directly

connected to other three processors via 3.2 GHz QPI links. Figure 5.10 shows the

high-level view of the Intel Westmere-EX processor.

For multi-thread running, OpenMP library is used for both systems. Thread

affinity is set via KMP AFFINITY=compact, granularity=fine for pinning each

thread to each core. In all cases, thread scheduling is set to be static for sim-

ply collecting the application trace of each thread by evenly dividing the ver-

tices. We implemented parallel Laplacian mesh smoothing based on the modular

in Mesquite [38].

Test Suite. To determine the impact of reuse distance reducing ordering on the

mesh smoothing process, we tested nine meshes shown in Figure 5.11(Coarse ap-

proximations are shown). The meshes were generated by Triangle [1] and Table 5.2

gives their configurations.
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Figure 5.10: High-level views of Intel Westmere-EX processor. Ovals denote to
cores and rectangles represent on-chip caches (L1, L2, and L3). The machine has
four sockets, which are connected directly via 3.2 GHz OPI links. Each socket has
8 cores with the inclusive cache hierarchy; 32K L1 private cache, 256K L2 private
cache, and 24MB shared L3 cache are in the socket, highlighted using dashed box.

Label Mesh vertex triangle

M1 carabiner 328082 652920
M2 crake 298898 595638
M3 dialog 306824 611620
M4 lake 375288 747676
M5 riverflow 332699 661615
M6 ocean 392674 783040
M7 stress 312763 622868
M8 valve 300985 599368
M9 wrench 386757 771097

Table 5.2: Input Mesh Configuration

5.2.3.2 Performance: Execution Time and Reduced Reuse Distance

We first test our reuse distance reducing ordering on a serial run of Laplacian

mesh smoothing. Figure 5.12 shows the execution time results of Laplacian mesh

smoothing when reuse distance reducing ordering was applied. For evaluation

purpose, we provide the Breath First Search (BFS) reordering results developed

by Strout [28] together. Compared to the original ordering, average execution

time was 38.57% faster when we applied reuse distance reducing ordering to the
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(a) carabiner (b) crake (c) dialog

(d) lake (e) riverflow (f) ocean

(g) stress (h) valve (i) wrench

Figure 5.11: 2D meshes generated by Triangle [1]. These meshes are coarser,
representative versions of the meshes used in the experiments.
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Laplacian mesh smoothing.
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Figure 5.12: Execution time results for Laplacian mesh smoothing when reuse
distance reducing ordering was applied. Reuse distance reducing ordering is 38.57%
faster than original ordering.

Figures 5.13∼5.21 show the observed reuse distance profiles for original, BFS,

and reuse distance reducing orderings of the Laplacian mesh smoothing with cara-

biner, crake, dialog, lake, riverflow, ocean, stress, valve, and wrench meshes. Reuse

distance models using our methodology developed in Chapter 3 are also provided in

the Figures. Reuse distances were significantly reduced when we applied our reuse

distance reducing ordering to the Laplacian mesh smoothing, thus, less execution

times were required.

Table 5.3 shows reuse distance models we obtained using our simple periodic

function we developed in Chapter 3, α+ β sin(2πtφ), where φ = 8 was obtained in

this test. These reuse distance models will be used for predicting cache miss rates

for Laplacian mesh smoothing application.

5.2.3.3 Cache Performance

We collected the cache performance counter using PAPI 5.1.0.2 [39] to compute

cache performance improvement when reuse distance reducing ordering was applied

to Laplacian mesh smoothing. Figures 5.22(a)(b) and (c) show the L1, L2, and

L3 cache performance for Laplacian mesh smoothing running on a single core
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(c) Reuse distance reducing ordering

Figure 5.13: Observed reuse distance profiles and reuse distance models for (a)
original ordering, (b) BFS ordering, and (c) reuse distance reducing ordering of
the Laplacian mesh smoothing with carabiner mesh.

when reuse distance reducing ordering was applied. After reordering applied to

Laplacian mesh smoothing, cache miss rates decreased from 0.67% to 0.5% for

L1, from 44.7% to 17.4% for L2, and from 47.7% to 26.1% for L3 on average.

Similar cache performance is obtained when the Laplacian mesh smoothing runs

on multicores ( 32 cores).
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(b) BFS
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(c) Reuse distance reducing ordering

Figure 5.14: Observed reuse distance profiles and reuse distance models for (a)
original ordering, (b) BFS ordering, and (c) reuse distance reducing ordering of
the Laplacian mesh smoothing with crake mesh.

5.2.3.4 Performance Scalability

We consider relative speedups per mesh on 1,2,4,8,16,24 and 32 cores. All speedup

measurements are relative to serial baseline (Original ordering at 1 core). Aggre-

gate results report geometric mean. We compute speedup relative to the serial

baseline as Speedup(ordering, p) = TORI(1)
Tordering(p)

, where Tordering(p) is the execution



60

0 100 200 300 400 500 600 700 800
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Time

R
e

u
s
e

 D
is

ta
n

c
e

 

 

observed
model
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(c) Reuse distance reducing ordering

Figure 5.15: Observed reuse distance profiles and reuse distance models for (a)
original ordering, (b) BFS ordering, and (c) reuse distance reducing ordering of
the Laplacian mesh smoothing with dialog mesh.

time with p cores, and ordering is either ORI, BFS, or RDR. Figures 5.23(a)(̃g)

present the speedup results for each mesh at 1, 2, 4, 8, 16, 24, and 32 cores and

Figure 5.23(h) shows mean speedup results of all aggregate meshes for all cores.

Speedup of 75.32x with reuse distance reducing ordering over the serial baseline

was obtained.
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(c) Reuse distance reducing ordering

Figure 5.16: Observed reuse distance profiles and reuse distance models for (a)
original ordering, (b) BFS ordering, and (c) reuse distance reducing ordering of
the Laplacian mesh smoothing with lake mesh.

5.2.4 Summary of Reuse Distance Reducing Ordering

We have developed and evaluate reuse distance reducing ordering for an irregular

application, Laplacian mesh smoothing. We defined a reuse distance reducing

ordering scheme that observes the initial mesh qualities for each vertex and reorders
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(c) Reuse distance reducing ordering

Figure 5.17: Observed reuse distance profiles and reuse distance models for (a)
original ordering, (b) BFS ordering, and (c) reuse distance reducing ordering of
the Laplacian mesh smoothing with riverflow mesh.

the mesh based on the quality in ascending order to improve both temporal and

spatial localities for memory accesses of Laplacian mesh smoothing. Additionally,

we applied our predictive cache miss models developed in Chapter 3 and utilized

to predict the cache performance of Laplacian mesh smoothing with difference

reordered meshes. Our parameter estimation for these cache miss models were
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(c) Reuse distance reducing ordering

Figure 5.18: Observed reuse distance profiles and reuse distance models for (a)
original ordering, (b) BFS ordering, and (c) reuse distance reducing ordering of
the Laplacian mesh smoothing with ocean mesh.

performed on Intel Westmere architecture system.

In summary, our experimental evaluation shows that when reuse distance re-

ducing ordering was applied to Laplacian mesh smoothing, 38.58% of performance

improvement was obtained. Cache miss rates decreased as well, from 0.67% to 0.5%

for L1, from 44.7% to 17.3% for L2, and from 47.4% to 26.1% for L3 on average
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(c) Reuse distance reducing ordering

Figure 5.19: Observed reuse distance profiles and reuse distance models for (a)
original ordering, (b) BFS ordering, and (c) reuse distance reducing ordering of
the Laplacian mesh smoothing with stress mesh.

when Laplacian mesh smoothing runs on a single core. Similar cache performance

is obtained when we run the application on multicores ( 32 cores). We observed

mean speedup of 75x with reuse distance reducing ordering when we scale up to 32

cores. This reuse distance reducing ordering will improve other mesh application

performance such as mesh untangling mesh [40], constraint mesh smoothing [41],
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(c) Reuse distance reducing ordering

Figure 5.20: Observed reuse distance profiles and reuse distance models for (a)
original ordering, (b) BFS ordering, and (c) reuse distance reducing ordering of
the Laplacian mesh smoothing with valve mesh.

and mesh swapping [42] .
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(b) BFS
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(c) Reuse distance reducing ordering

Figure 5.21: Observed reuse distance profiles and reuse distance models for (a)
original ordering, (b) BFS ordering, and (c) reuse distance reducing ordering of
the Laplacian mesh smoothing with wrench mesh.
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α+ β sin(2πtφ) Models

Reuse Distance

Ordering α β

Rcarabiner ORI 1896.46 1331.72
BFS 1349.27 1068.06
RDR 59.29 5.79

Rcrake ORI 1898.97 1012.62
BFS 1272.41 816.08
RDR 88.27 26.65

Rdialog ORI 1708.97 635.26
BFS 977.93 479.65
RDR 173.35 57.27

Rlake ORI 2478.62 849.39
BFS 1379.73 675.88
RDR 241.27 127.05

Rriverflow ORI 2794.31 1839.15
BFS 1835.05 1351.63
RDR 156.01 45.33

Rocean ORI 4425.42 2448.97
BFS 2906.54 1897.39
RDR 179.05 76.61

Rstress ORI 1557.93 735.61
BFS 932.42 510.54
RDR 132.22 49.51

Rvalve ORI 1919.92 1696.31
BFS 1242.08 679.38
RDR 174.87 76.04

Rwrench ORI 1937.08 784.04
BFS 1146.79 583.13
RDR 167.38 68.02

Table 5.3: Reuse distance models of Laplacian mesh smoothing for carabiner,
crake, dialog, lake, riverflow, ocean, stress, valve, and wrench meshes when original
ordering, BFS ordering and reuse distance reducing ordering are applied.
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(a) L1
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(c) L3

Figure 5.22: Cache performance results when reuse distance reducing ordering was
applied to Laplacian mesh smoothing for (a) L1, (b) L2, and (c) L3. Cache miss
rates decreased from 0.67% to 0.5% for L1, from 44.7% to 17.3% for L2, and from
47.4% to 26.1% for L3 on average.
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(g) 32 cores
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(h) Mean speedup versus TORI(1).

Figure 5.23: Observed speedup relative to the serial ORI baseline. Reuse distance
reducing ordering (RDR) provides significant performance improvement.



Chapter 6
Conclusions and Future Work

This thesis considers the development of reuse distance models of irregular high

performance computing (HPC) applications to enable the prediction of cache miss

rates for a single application or pairs of co-scheduled applications. Further, we

consider the utilization of these models for improving performance of HPC appli-

cations in the presence of interference due to co-scheduling of application pairs on

multicore systems. Additionally, we develop and test a reuse distance reducing

ordering to improve the performance of an irregular HPC application, namely, the

Laplacian mesh smoothing application.

Our main contributions are based on our conjecture that the repeated basic

block structure in scientific codes on HPC multicores would result in periodic

behavior of their reuse distances. We test our conjecture to show that a simple

α+β sin(2πtφ) model of the observed reuse distances for an application can capture

the periodic behavior of the application. This reuse distance model is scaled to

yield a model for predicting cache miss rates for the application using the linear

model obtained by multiple runs of synthetic benchmark, CodeP . The proposed

predictive cache miss models achieved prediction error rates as low as 2.01% on

average.

Further, we derive a cache miss model for a certain application in the pres-

ence of interference. We conjecture that the periodic behavior for the application

still exists when interfered by another co-scheduled application. We derive reuse

distance profiles of an application when it is interfered by another co-scheduled

application through linear combination of two applications’ reuse distance models.
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These predicted reuse distance profiles are then used to derive our predictive cache

miss models. The parameters for our predictive cache miss models were estimated

by regression with datasets obtained from a hundred runs of a simple synthetic

code CodeP on the target system. When verifying these models using the NAS

benchmarks and gem5 simulation, we observe error rates of less than 3.13% on av-

erage for a conventional multicore with a two-level cache hierarchy, and 3.98% for

an NoC architecture. We show that when the application with low reuse distances

is interfered by another application with high reuse distances, performance degra-

dation is more prominent. This is due to the fact that the memory accesses of the

application with lower reuse distances are easily interfered by other co-scheduled

applications.

Using these predictive cache miss models, we select the best application pairs for

co-scheduling to improve their performance. We rank the application pairs based

on increasing cache miss rates due to co-scheduling and pick one application pair

which shows the least performance degradation when co-scheduled. When we test

our ranking system to NAS benchmarks on gem5 simulation, the predicted best

application pairs in regard to least degradation in performance when co-scheduled,

matched with observed performance. The worst application pairs which showed

the most performance degradation due to co-scheduling also matched the observed

results. The variations of cache miss rates for the remaining application pairs are

not enough to allow for detecting their ranking precisely. We would like to see how

sensitive to co-schedule for all application pairs using our ranking system results.

Additionally, using the reuse distance models we developed, we propose a reuse

distance reducing ordering for improving performance of an irregular HPC appli-

cation, Laplacian mesh smoothing. We reorder the meshes based on the initial

mesh quality so that the vertex which has the worst quality can undergo Lapla-

cian mesh smoothing before than other vertices. This reordering reduces the reuse

distance of Laplacian mesh smoothing, and thus, improves the performance. Our

experimental results show that when reuse distance reducing ordering is applied

to Laplacian mesh smoothing, we gain 38.58% of performance improvement when

running on a single core. In the experimental tests, our predictive cache miss mod-

els achieve prediction error rates as low as 5.36%. The thesis shows that the overall

cache performance is improved when reuse distance reducing ordering is applied
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to Laplacian mesh smoothing as compared to original ordering. Moreover, 75x of

mean speedup is obtained when scaling up to 32 cores.

In the near future, we plan to extend our predictive reuse distance and cache

miss models to include more complex periodic behavior of HPC applications. We

also plan to expand our co-scheduling approach for two applications, to three co-

scheduled applications. This can be achieved by composing the model for a pair

with the model for a single application. However, more sophisticated parameter

estimation will be required to control error rates to find such approximations. Fur-

ther, we expect to improve the ranking results to meet all ranking orders between

predicted and observed performance. We conjecture that considering distinct reuse

distances for modeling memory behavior will provide us better performance of our

predictive cache miss models.
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