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ABSTRACT

Tungsten ditelluride (WT# is a trangion metal dichalcogenide (TMD) with physical
and electronic properties that make it attractive for a variety of electronic applications.
Although WTe has been studied for decades, its structure and electronic properties have
only recently been correctlyescribed. Wexplored WTe synthesis via chemical vapor
transpor{CVT) method for bulk crystal, and chemical vapor deposition (CVD) routes for
thin film material. We employed both experimental and theoretical techniques to
investigatats structura) physicaland electronic properties of Waend verify that WTe
has its minimum energy configuration in a distorted 1T structure (Td structure), which
results in metallidike behavior Our findings confirned the metallic nature of Wbe
introduce new inforration about the Raman modes of Wi e;, and demonstrate that -Td
WTe is readily oxidized via environmental exposuféese findings confirm that, in its
thermodynamically favored Td fornfrrom our approach of developing WTin film
materials via CVD proesses, & have noticed that more reactive tungsten precursors could
be the key to carry out WIgrowth due to hydrogen reduction is the dominant reaction
for tungsten trioxide (W¢) tellurization processWe successfully obtaid-WTe> thin
film on variaus substrateffom changing tungsten precursor to tungsten hexacarbonyl
(W(CO)). We verify the WTefilm in Td structure by confirmingRaman signaturevith
synthesizedNTe, from CVT process. Further characterization and optimization of the
growth processnay be needed to understand Wemwth mechanism, substrate effects
and growth conditions and achieve large area atomic layered growth of X1 these
findings will help the utilization of WTe in electronic device architectures such as field
effecttransistor{FETs)may be reevaluate®lore application should be explored for this

special 2D layered WTe2 materials.
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Chapter 1.

Int roduction and Literature Review

Two-dimensionalMaterials and Their Applications

The rise of graphengasa defining point fothediscoveryand development of stable
two-dimensional layered materiai2DLM).2? This breakthrough has stimulated the
exploration of 2D materials such as hexagonal boron nitride (KBl transitionmetal
dichalcogenides (TMD$)f formulaMX 2, where Mis alVB-VIB transition metalatom
(IVB: Ti and Zr; V-B: Nb and Ta; VAB: Mo and W) and Xs achalcoger(S, Se, or Tp
Due to thed-orbitalsinvolved in their electronistructurethe TMDs exhibit awide range
of electronic propertiethathaveled to advances in practical devices, including field effect
transistors! 12 photodetector$®!* chemical® and biosensor€® and nane

electromechanical syster(iSEMS) 1920

H MXZ He
M = Transition metal

Li Be X = Chalcogen B cC N o] F  Ne

Na Mg 3 4 5 6 7 8 9 10 " 12 Al Si P S Cl Ar

K Ca Sc Ti A" Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr
Rb Sr Y Zr Nb Mo Te Ru Rh Pd Ag Cd In Sn  Sb Te | Xe

Cs Ba La-Lu Hf Ta w Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn

Fr Ra Ac-Lr Rf Db Sg Bh Hs Mt Ds Rg Cn  Uut FI' Uup Lv Uus Uuo

Figure 1.1.1 The transitional metals and three chalcogen element®mpaunds which
crystallize in layered structure. The halthighlighted elements means only some of the

dicalcogenides with theselements are in layered struaires?!



Two-dimensional 2D) TMD systemdhave been widely explored both experimentally
and theoretically for its electronic properties and device capabffits/ Unlike three
dimensional 3D) materials, they haweeak van der waal bonds between layengch is a
great feature for device design to avoid shield atedteld and electron trapshen
compare tdhe defects androken or dangling bonds @onventional semiconduct@e.qg.

Si and GaAs) materialfkecent research on single laygngle layeredMoS, FETs has
demonstrated itsoderate carriemobility (60-70 cn?Ns’®®1) and up to ~1Don/off ratio

at room temperatur®?® Figure 1.12. the comparison of field effect mobilities and on/off
ratios for all candidate semiconductor materials, and TMDs are comparable to organics,

amorphous oxide and carbon n&rbe semiconductor materigfs.

10 10° 10° 10°
110°
'g single
e CNT }
% {10°
B
5 R — ]
S 10°} {10’
|
a3 - graphene-
L e Tt
10* 10° 10° 10*

Field effect mobility (cmst)
Figure 1.12. Field-effect mobility and on/off ratios of TMD materials in comparison

with other unconventional semiconductor materials?®

The relative pristine interface without dangling bonds gives 2D materials great potential
moving on ultrathin tunnelingdld effect transistor¢TFETs) while 3D semiconductor
materials suffer from interlayer transport propertidsET is one of the leading candidate

for low voltage and low power consumption transistddy changing the MOSFET



mechanism from fielgtontrolled barrier to bando-band tunneling, TFETare expected to
achieve subthreshold swing (S8)60mV/dec for ideal thermionic devices atoom
temperature Tunneling effect for bulk semiconductors are often limited abrupt p
junctions and solubility of dopasitn the crystal, whil@ MDs with energy bandgaps in =1

2eV rangeand no surface dangling boraieperfect for lower power TFETS. Figure B31.
showsthe experimentally measured TMD TFETs SSs as a function of drain current, as well

asthe simulated tunniglg current ofTMDs homojunctions againstectric field

(@) 120- (b) 0%
100 - s-SiGe 3
10 — _ =1
~ ~ S— f— - 1,,=800 pApum  (LP)— —
8 ] £ HiSe, /
= P A < HfS,
£ :102 | WTe, ZrS2 :
£ 2 3
s 60— “
B s
—_§ i § 10"
£ 40 .j 3 1
S -
3 A 2
wv
20| 10°
InAs/Si / i
O — Ty 107 e
1078 107 107 1072 10° 102 0 2
Drain current (uA pm™) Electric field (MV cm™)

Figure 1.13. (a) Experimental subthreshold swing (SS) as a function of drain curren
compared with simulated results from Ghosh and Mahapatré& for MoTe 2, MoSz, and
WSz materials. (b) Simulated tunneling current versus electric field for various TMD

homojunctions showing the potential of lowpower TMD TFET transistors.3!

Weak van der waal interlayer bonding and relatiwe lattice mismatch facilitate2
materials integration simply by stacking layers in princip[2Heterostructure provide a

platform for new devices desigsuch astunneling transistors, memory devices and



ultrathin photodetectors. Monolayerbtb- and W dichalcogenides heterostructureish
direct bandgaare predicted to have typeband alignment?3233while the conduction
band minimum and valence band maximumsagarateah the stackedmaterials.n this
case dectronsand holes are confined in different materials, iarttie valence band ane
sidecaneadly tunnel into the conduction bandtbie other material. This is highly expected

with the combination monolayeradB-TMDs andIVB-TMDs. Figure 1.14. shows the

bandgap offset for bulk and monolayered TMDs materials and candidates to form this

heterojuntion. First principal calculation has demonstrated TeET performance of
different TMDs and TMDcombinations in Figure 13.. Among these materialsjngle

layer 2HWTe> is expected to have the narrowest band gap of the semicondutiing
TMDs at ~0.7e\i1223435Thjs suggests a high electron mobilityall TMD candidates

thatcould maximize the efficiency of electron injectionTMD TFETs812
% %

Figure 1.14. Band alignment and band gap information of bulk and monolayer 2D

2.5 17
-3.04
-3.5 1
4.0
4.5 -
5.0

-5.5 4

Energy (eV)

-6.0
-6.5
-7.0 4
-7.54

TMDs. The grey area indicates the band gaps for bulk TMDs materials, and the slash
green blocks indcates the band gaps for monolayer TMDs. The blue horizontal line

is the Fermi level for each materiald?
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Figure 1.15. (a) TFETs device schematiaesign plotusing doublegated MX2 TMD
materials simulated in Lam et al/ Band offsets data were calculated andimilar to
Figure 1.1.2. (b), (c) and (d) showed the current vs. surface potential simulation data

for (b) p-type; (c) ntype TFETs and (d) for paired TMD materials.



1.2 Fundamental I nformation of Transitional Metal Dichalcogenides (TMDs)

Transtional metal dichalcogenideéTMDs) in MX> formula have been widely
exploredfor their electronic properties and device performantescent yearsThey have
graphene/graphiteke layered structurén hexagonal crystal systemheretransitional
metalatomin sandwiched withwo layers of chalcogenide atoms and f@&#7U thick for
single layer TMD The MX coordination oflayeredTMD crystalscan be eithetrigonal
prismatt oroctahedralDepending on the stacking sequence, there are 2H and 3R gructur
for trigonal prismatic coordination, and 1T structure for octahedral coordirfatidoulk
TMD crystals showed in Figure 1.2.For singlelayer TMD crystals, there argypically
two polymorphstrigonal prismaticcoordinated 1H structurend octahediacoordinated

1T structure.
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Figure 1.2.1. Crystal structures of bulk TMD materials in different stacking sequence.

It demonstrates the MX hexagonal structure of M and X sandwiched layers, and the

side and top view of 1T, 2H and 3R layers stackin:3"

Electronic propertiesf TMDs vary with MX coordimationand theird-orbitals splitting

of the transitional metaDepending on theumberof long-pair electrons of transitional

metalsfilling the d-orbitals splitting with different coordinatiopnTfMDs can beeither

semiconductorsor metallic materials Due to the character that-electrons would

aggressively fill the noibonding orbitals, TMDs with partially filled -drbitals will

demonstrate metallic conductive feature, while the fiillgd ones will show as



semiconductorg-or VI-B groups MX, which meas the MoX% and WX (X=S, Se, Te),
arewidely investigatedased or2H structure as semiconductors, and 1T phase as metallic

materials!

Trigonal Prismatic (D,,,)

2H
¢

Octahedral (O,)
1T
?

Figure 1.22. The configuration and d-orbital splitting of two dominant coordination

of TMD crystals.

Changein number of layers may also affdbie band structure of TMDs. Because of
interlayer couplingandthearise of quantum confinement effects, TMDs havereudito-
direct bandgap transition from bulk to monolaferThis can be verified by
photoluminescence ®floS; from weak emission in bulk form and enhadan monolayer
form 21|t is observed that the bandgap of monolayered Mei8Se, WS, and WSeis

typically ~50% larger than bulk ford§:3°



MoS, bulk MoS, 8-layer MoS, 6-layer

=N\

MoS,, quadrilayer

E-E, [eV]

r M KA TT M KA TT M K A T
Figure 1.2 3. Band structure change frombulk to monolayeredMoSz. The arrow from
top valence band (blue line) to lowest conduction band (green line) indicates the

transition from indirect bandgap to direct bandgap of M0$.37:40

Base orthe assumption dheVIB -dichalcogenidg@olymorph plusthe fact ofindirect
to-direct band structure change with decrease of layer thickness; Wa% expectedio
crystalize in 2H phase with direct bandgap in single layer that could extract high device
efficiency. Figure 1.2.4. shows the band structure of bulk and single layes t&ltelated
with first principal calculation The 0.7eV indirect bamghp for bulkWTe, changes to
1.2eV direct bandgap for single layer@dTe,, which demonstrates the potential of

designing single layered 2WTe2 for highly efficient and atomically thin transistors.

10,21,22,25,34,35,443
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Bulk (2H)-WTe, Single Layer (1H) — WTe,
Energy(eV) Energy(eV)
31 ~ ~ 3 - \/
24 2
g 1
- Direct Bandgap
Indirect Bandgap 4 1.218eV
0.706eV N

I M K r F M K r

Figure 1.2.4.Band structure for bulk (2H)-WTe2 and single layer(1H}WTe2. The
indirect bandgap of bulk-WTe2 changes to direct bandgp near K point for single

layered-WTez.

1.3 Synthetic Routesfor Tungsten Ditelluride (WTe2)
Despite the expectation on single layered\®He, from deviceorientated researcthe
lack of the mineral sourcéss delayethedevelopmenprogresof WTe, FETS.Synthetic

materialss essentiato push forwardhe studes regarding to WTe

1.3.1 Chemical Vapor Transport (CVT) Method

Chemical vapor transport (CVT) methalone of thepromising ways to obtaibulk,

high purity crystals and bulk ™MDs crystals are one of therfihis method was used to
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synthesize a wide range of TMDs that could noeasilyfind in natural sourcesuch as
TaS, TaSe,** MoTe;,*¥48 NbSe.*® In this method,accurately weighté transitional
metalandchalcogen elememowdes were mixed and heapin avacuumsealed ampule
with a temperature gradient between ®vwals A relativelong synthesis time usually from
days to weeks are needed for insuring obtaining bulk cryStalgpically, a volatile
halogens such ashloride (C}), bromide (Bf) and lodine () is neededn CVT methodn
order to transform the nonvolatifroductinto gaseous forndiffuse in the ample. The
crystalline formation will take place if the conditions of chemical equilibrium is at
crystallization rather than volatilization. Depends on the thermodynaatiaeof the
reactionof gaseougproductandtransport agentrystallization may happeat the cold

zone while the reaction is endothermic, or hot zone while exothétiftic.

From the tungstetellurium binary phase diagra?®®* tungsten and tellurium would
form liquid alloy in a telluriurarich phasewhich also meanthe reduction of tungsten
melting temperature with telluriuriavTe: couldpossiblyformfrom tungsten and tellurium
liquid alloy under gertitectic reactiom t 1 03K@op &hd Haraldséhstudied WTe
phase diagraffi andverified thatWTe; is the onlyW-Te compoundhat could béormed
obtained by direct synthesis in vacuum ampwih different W:Te element raticCVT
methodwas then used for growing single bulk crysta}sadding transport agentach as
tellurium tetrabromid€TeBz),>>%°Br,,>">8tellurium tetrachloride (TeG)*°. The chemical
equilibriumreaction forsynthesis obulk WTe is

WY wbdz w6 YR  where x=2, 3 or 48
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in a twozone or thregone furnace for controlling the temperature gradient. Depending

on the partial pressure of transport agents, synthesis tempeaailoleange from 973 to

1173K for 15 hours to 5 day$>8>9
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Figure 1.3.1. Phase diagram of Tungsten (W) Tellurium (Te) with temperature T

against tungsten percentage®>460

1.3.2. Chemical Vapor Deposition (CVDM ethod

Although highquality bulk TMD crystalsare sutable for studying basicmaterial

propertiesand provide a platform for studying exfoliated TMD materials, they are still ideal

for small batches production.h& high demand on thin film or singl@yered TMD
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materialspromoted studies of synthesizing TMDvia thin film deposition methods.
Among various depositiortechniques including pulsed laser deposifiorspray
pyrolysis®? sputtering® dip coating and annealifftand atomic layer depositiqALD),5°
chemical vapor deposition (CVIMethodhas been very successful to carry out laaga

singlelayeredTMD materials

Recentresearchinvolved CVD growth of monolayer TMD nerials are mostly
transitional metal sulfides and selenidésrmula: MX,; where M: Mo, W; X: S, Se)
Various CVD synthesis routebBave beeroutlined, majority involved thermallyassisted
sulfurization or selenizatiorof transitional meta or transitionalmetal compounds
Considering the high melting and boiling temperature of tungsten (M.P.=3695K,
B.P.=6203K) and molybdenum (M.P.=2896K, B.P.=4912Kjich makes vapor phase
reaction impossiblethey were pre-deposited on designeslibstrates by electrdmeam
evaporation for sulfurization and selenizat?di® Instead of elemental Mo and W sources,
transitional metal oxides such as MB®3 and WQ® were also often chosenas
transitional metal sourcder their low sublimation temperatu(®oOs: ~1073K; WQ:
~823K). These oxides can be either qteposited on the subsiea, or used as Mo and W

precursors for vapor phase reaction in CVD processes.

It waseasy and straight forwatd achievechalcogenization by thermally evaporating
pure chalcogenides powdeWhen considering tellurization, it may be more challenging
compare to selenization and sulfurization dugemallelectronegativity differendeetween
Mo/W and Te, which meangeaker bonding energyhis may also affect thetability for
Mo and Wditellurides at highlemperaturé? Large-area nolybdenumditelluride (MoTez)

was succssfully prepared byCVD tdluirzation reactionby Lin et al’* using MoQ and
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Te powder evaporation inflowing argon and hydrogemixed gasat  C. 6i@dwvever,

there is NO reports via CVD processes on tungsten ditell(fde) to date.

Thecrystallinequality and coerage of Mo/W dichalcogenide thin fildoneby solid-
vapordepositionwas limited due to residue from the impurity in the oxjdesl defects
from oxygen atoms. In order to improve the crystallinity eontrollarge domain sizes of
Mo/W dichalcogenidgrowth without residugmore sophisticatebuteswere developed
by using metatorganics or metahalogenprecursors.Vapor phase reaction in CVD
systems wereary often seen for TMD monolaygrowth.For transitional metal resources,
transitional metabrgaric precursors such ado(CO)’> andW(CO)">®can be used as
precursor. Since thegre stablen powder form, theyxan also behermalevaporated for
chalcogenizatiomproceses Othertransitionalmetal sourcgincludingtransitionalmetat
halides such asvioFs,”” MoCls,”® WCls,”® and oxo-halogenprecursordVOCI.E are also
successfulemployedin TMD materialssynthesis with propefiltration system in tk

downstream.

Forchalcogen sourcea few selection of chalcogen compountizer tharelemental
S/SelTehave successfully appligdr CVD growth of TMDs Smple but highly reactive
hydridegassuch as B5,/>"*H,Sé has been successfulbarried out highguality Mo/W
sulfide and selenidmonolayer growthDelicate control of chalcogen presar is needed
for achieving largearea growth, a wide variety ohetalorganic precursorgncluding
dimethyksulfide ((CHs)2S), 1,2-ethanedithiol (HS(CH)2SH),8° 2-methykpropanethiol
(CH3)sCSH)® and the series of diakgulfides/selenides likedimethykselenide
((CHs)2Se)®? diethykselenide (GHs).Sef! and ditertbutylselenid&' were used for

synthesizing thin film Mo/W sulfides and selenides via CMChalcogen kloride
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precursorgSeCk, TeCly) are also effedive precursordor CVD method, howeveryet

being explored folayered TMDsynthesigossibly due teheir deliquescence

Up to date, there is no report on C\goowth WTe thin film materialsyet. Although
manytungstersourcedave already succes#ifubrought outsulfides and selenidésyered
growth, proper tellurium sources has not yet be exploretiMde, CVD growth Tellurium
has a higher sublimation temperatatd 5 0 tha@elementabulfur and seleniumand the
W-Te liquid phase at Teich regionin W-Te binarysystemcould potentially be an issue
for WTe: formation in short time CVD processé&3n the other handhe highly reactive
hydride for telluriumH2Te, is commercially unavailable due to its unstable n&tusdl
of these indicates thabntrollable andeactive Tesourcesvould be the key to carry out

WTe synthesis byCVD processes.
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Figure 1.3.2. Summary of techniques for monolayer TMD material synthesis.
Methods including chemical vapor transport (CVT) for bulk TMD single crystals,
powder vaporization crried out with flowing transfer gases in chemical vapor
deposition (CVD) furnace, and metalorganic chemical vapor deposition (MOCVD)

using metalorganic or metathalogen precursorsé



