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ABSTRACT 

    Tungsten ditelluride (WTe2) is a transition metal dichalcogenide (TMD) with physical 

and electronic properties that make it attractive for a variety of electronic applications. 

Although WTe2 has been studied for decades, its structure and electronic properties have 

only recently been correctly described. We explored WTe2 synthesis via chemical vapor 

transport (CVT) method for bulk crystal, and chemical vapor deposition (CVD) routes for 

thin film material. We employed both experimental and theoretical techniques to 

investigate its structural, physical and electronic properties of WTe2, and verify that WTe2 

has its minimum energy configuration in a distorted 1T structure (Td structure), which 

results in metallic-like behavior. Our findings confirmed the metallic nature of WTe2, 

introduce new information about the Raman modes of Td-WTe2, and demonstrate that Td-

WTe2 is readily oxidized via environmental exposure. These findings confirm that, in its 

thermodynamically favored Td form. From our approach of developing WTe2 thin film 

materials via CVD processes, we have noticed that more reactive tungsten precursors could 

be the key to carry out WTe2 growth due to hydrogen reduction is the dominant reaction 

for tungsten trioxide (WO3) tellurization process. We successfully obtain Td-WTe2 thin 

film on various substrates from changing tungsten precursor to tungsten hexacarbonyl 

(W(CO)6). We verify the WTe2 film in Td structure by confirming Raman signature with 

synthesized WTe2 from CVT process. Further characterization and optimization of the 

growth process may be needed to understand WTe2 growth mechanism, substrate effects 

and growth conditions and achieve large area atomic layered growth of WTe2. All of these 

findings will help the utilization of WTe2 in electronic device architectures such as field 

effect transistors (FETs) may be reevaluated. More application should be explored for this 

special 2D layered WTe2 materials.   
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Chapter 1. 

Int roduction and Literature Review  

 

 Two-dimensional Materials and Their Applications  

    The rise of graphene was a defining point for the discovery and development of stable 

two-dimensional layered materials (2DLM).1,2 This breakthrough has stimulated the 

exploration of 2D materials such as hexagonal boron nitride (hBN)3 and transition-metal 

dichalcogenides (TMDs)4 of formula MX2, where M is a IVB-VIB transition metal atom 

(IVB: Ti and Zr; V-B: Nb and Ta; VI-B: Mo and W) and X is a chalcogen (S, Se, or Te). 

Due to the d-orbitals involved in their electronic structure, the TMDs exhibit a wide range 

of electronic properties that have led to advances in practical devices, including field effect 

transistors,5ï12 photodetectors,13,14 chemical15 and biosensors,16ï18 and nano-

electromechanical systems (NEMS).19,20  

 

Figure 1.1.1. The transitional metals and three chalcogen elements compounds which 

crystallize in layered structure. The half-highlighted elements means only some of the 

dicalcogenides with these elements are in layered structures.21   
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    Two-dimensional (2D) TMD systems have been widely explored both experimentally 

and theoretically for its electronic properties and device capability.4,21ï27 Unlike three-

dimensional (3D) materials, they have weak van der waal bonds between layers which is a 

great feature for device design to avoid shield electric field and electron traps when 

compare to the defects and broken or dangling bonds on conventional semiconductor (e.g. 

Si and GaAs) materials. Recent research on single layer single layered MoS2 FETs has 

demonstrated its moderate carrier mobility (60-70 cm2Ns79-81) and up to ~108 on/off ratio 

at room temperature.5,28 Figure 1.1.2. the comparison of field effect mobilities and on/off 

ratios for all candidate semiconductor materials, and TMDs are comparable to organics, 

amorphous oxide and carbon nanotube semiconductor materials.29  

 

Figure 1.1.2. Field-effect mobility and on/off ratios of TMD materials in comparison 

with other unconventional semiconductor materials.29  

  The relative pristine interface without dangling bonds gives 2D materials great potential 

moving on ultrathin tunneling field effect transistors (TFETs), while 3D semiconductor 

materials suffer from interlayer transport properties. TFET is one of the leading candidate 

for low voltage and low power consumption transistors. By changing the MOSFET 
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mechanism from field-controlled barrier to band-to-band tunneling, TFETs are expected to 

achieve subthreshold swing (SS) < 60mV/dec for ideal thermionic devices at room 

temperature. Tunneling effect for bulk semiconductors are often limited abrupt p-n 

junctions and solubility of dopants in the crystal, while TMDs with energy bandgaps in ~1-

2eV range and no surface dangling bonds are perfect for lower power TFETs. Figure 1.1.3. 

shows the experimentally measured TMD TFETs SSs as a function of drain current, as well 

as the simulated tunneling current of TMDs homojunctions against electric field.      

 

Figure 1.1.3. (a) Experimental subthreshold swing (SS) as a function of drain current 

compared with simulated results from Ghosh and Mahapatra30 for MoTe2, MoS2, and 

WS2 materials. (b) Simulated tunneling current versus electric field for various TMD 

homojunctions showing the potential of low-power TMD TFET transistors.31    

  Weak van der waal interlayer bonding and relative low lattice mismatch facilitate 2D 

materials integration simply by stacking layers in principle. 2D Heterostructures provide a 

platform for new devices design such as tunneling transistors, memory devices and 
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ultrathin photodetectors. Monolayered Mo- and W- dichalcogenides heterostructures with 

direct bandgap are predicted to have type-II band alignment,10,32,33 while the conduction 

band minimum and valence band maximum are separated in the stacked materials. In this 

case, electrons and holes are confined in different materials, and in the valence band of one 

side can easily tunnel into the conduction band of the other material. This is highly expected 

with the combination monolayered VIB-TMDs and IVB-TMDs. Figure 1.1.4. shows the 

bandgap offset for bulk and monolayered TMDs materials and candidates to form this 

heterojunction. First principal calculation has demonstrated the TFET performance of 

different TMDs and TMD-combinations in Figure 1.1.5. Among these materials, single-

layer 2H-WTe2 is expected to have the narrowest band gap of the semiconducting VIB-

TMDs at ~0.7eV.11,22,34,35 This suggests a high electron mobility in all TMD candidates 

that could maximize the efficiency of electron injection in TMD TFETs.8,12    

 

Figure 1.1.4. Band alignment and band gap information of bulk and monolayer 2D 

TMDs. The grey area indicates the band gaps for bulk TMDs materials, and the slash 

green blocks indicates the band gaps for monolayer TMDs. The blue horizontal line 

is the Fermi level for each materials.11  
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Figure 1.1.5. (a) TFETs device schematic design plot using double-gated MX2 TMD 

materials simulated in Lam et al.7 Band offsets data were calculated and similar to 

Figure 1.1.2. (b), (c) and (d) showed the current vs. surface potential simulation data 

for (b) p-type; (c) n-type TFETs and (d) for paired TMD materials.  
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1.2 Fundamental Information of Transitional Metal Dichalcogenides (TMDs)   

    Transitional metal dichalcogenides (TMDs) in MX2 formula have been widely 

explored for their electronic properties and device performances in recent years. They have 

graphene/graphite-like layered structure in hexagonal crystal system, where transitional 

metal atom in sandwiched with two layers of chalcogenide atoms and form 6~7Ȕ thick for 

single layer TMD. The M-X coordination of layered TMD crystals can be either trigonal 

prismatic or octahedral. Depending on the stacking sequence, there are 2H and 3R structure 

for trigonal prismatic coordination, and 1T structure for octahedral coordination for bulk 

TMD crystals, showed in Figure 1.2.1. For single-layer TMD crystals, there are typically 

two polymorphs: trigonal prismatic coordinated 1H structure, and octahedral coordinated 

1T structure.  
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Figure 1.2.1. Crystal structures of bulk TMD materials in different stacking sequence. 

It demonstrates the MX2 hexagonal structure of M and X sandwiched layers, and the 

side and top view of 1T, 2H and 3R layers stacking.36,37   

  Electronic properties of TMDs vary with M-X coordination and their d-orbitals splitting 

of the transitional metal. Depending on the number of long-pair electrons of transitional 

metals filling the d-orbitals splitting with different coordination, TMDs can be either 

semiconductors or metallic materials. Due to the character that d-electrons would 

aggressively fill the non-bonding orbitals, TMDs with partially filled d-orbitals will 

demonstrate metallic conductive feature, while the fully-filled ones will show as 



8 
 

 

semiconductors. For VI-B groups MX2, which means the MoX2 and WX2 (X=S, Se, Te),  

are widely investigated based on 2H structure as semiconductors, and 1T phase as metallic 

materials.21  

 

Figure 1.2.2. The configuration and d-orbital splitting of two dominant coordination 

of TMD crystals. 

  Change in number of layers may also affect the band structure of TMDs. Because of 

interlayer coupling and the arise of quantum confinement effects, TMDs have indirect-to-

direct bandgap transition from bulk to monolayer.21 This can be verified by 

photoluminescence of MoS2 from weak emission in bulk form and enhanced in monolayer 

form.21,38 It is observed that the bandgap of monolayered MoS2, MoSe2, WS2, and WSe2 is 

typically ~50% larger than bulk form.38,39  
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Figure 1.2.3. Band structure change from bulk to monolayered MoS2. The arrow from 

top valence band (blue line) to lowest conduction band (green line) indicates the 

transition from indirect bandgap to direct bandgap of MoS2.37,40   

  Base on the assumption of the VIB-dichalcogenide polymorph, plus the fact of indirect-

to-direct band structure change with decrease of layer thickness, WTe2 was expected to 

crystalize in 2H phase with direct bandgap in single layer that could extract high device 

efficiency. Figure 1.2.4. shows the band structure of bulk and single layer WTe2 calculated 

with first principal calculation. The 0.7eV indirect bandgap for bulk-WTe2 changes to 

1.2eV direct bandgap for single layered-WTe2, which demonstrates the potential of 

designing single layered 2H-WTe2 for highly efficient and atomically thin transistors. 

10,21,22,25,34,35,41ï43  
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Figure 1.2.4. Band structure for bulk  (2H)-WTe2 and single layer(1H)-WTe2. The 

indirect bandgap of bulk-WTe2 changes to direct bandgap near K point for single 

layered-WTe2.  

 

 

1.3 Synthetic Routes for  Tungsten Ditelluride (WTe2)   

  Despite the expectation on single layered 2H-WTe2 from device-orientated research, the 

lack of the mineral sources has delayed the development progress of WTe2 FETs. Synthetic 

materials is essential to push forward the studies regarding to WTe2.  

 

1.3.1 Chemical Vapor Transport (CVT) Method 

  Chemical vapor transport (CVT) method is one of the promising ways to obtain bulk, 

high purity crystals, and bulk TMDs crystals are one of them. This method was used to 
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synthesize a wide range of TMDs that could not be easily find in natural sources, such as 

TaS2, TaSe2,
44,45 MoTe2,

46ï48 NbSe2.
49 In this method, accurately weighted transitional 

metal and chalcogen element powders were mixed and heat up in a vacuum-sealed ampule 

with a temperature gradient between two ends. A relative long synthesis time usually from 

days to weeks are needed for insuring obtaining bulk crystals.50 Typically, a volatile 

halogens such as chloride (Cl2), bromide (Br2) and Iodine (I2) is needed in CVT method in 

order to transform the nonvolatile product into gaseous form diffuse in the ampule. The 

crystalline formation will take place if the conditions of chemical equilibrium is at 

crystallization rather than volatilization. Depends on the thermodynamic nature of the 

reaction of gaseous product and transport agent, crystallization may happen at the cold 

zone while the reaction is endothermic, or hot zone while exothermic.51,52 

  From the tungsten-tellurium binary phase diagram,53,54 tungsten and tellurium would 

form liquid alloy in a tellurium-rich phase, which also means the reduction of tungsten 

melting temperature with tellurium. WTe2 could possibly form from tungsten and tellurium 

liquid alloy under a pertitectic reaction at 1020ęC.53 Knop and Haraldsen54 studied W-Te 

phase diagram54 and verified that WTe2 is the only W-Te compound that could be formed 

obtained by direct synthesis in vacuum ampules with different W:Te element ratio. CVT 

method was then used for growing single bulk crystals by adding transport agents such as 

tellurium tetrabromide (TeBr4),
55,56 Br2,

57,58 tellurium tetrachloride (TeCl4)
59. The chemical 

equilibrium reaction for synthesis of bulk WTe2 is 

ὡὝὩ ὼὄὶᵶὡὄὶ ὝὩ    where x=2, 3 or 4.58 
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in a two-zone or three-zone furnace for controlling the temperature gradient. Depending 

on the partial pressure of transport agents, synthesis temperature could range from 973 to 

1173K for 15 hours to 5 days.54,58,59     

 

Figure 1.3.1. Phase diagram of Tungsten (W) ï Tellurium (Te)  with temperature T 

against tungsten percentage .53,54,60 

 

1.3.2. Chemical Vapor Deposition (CVD) Method 

  Although high-quality bulk TMD crystals are suitable for studying basic material 

properties and provide a platform for studying exfoliated TMD materials, they are still ideal 

for small batches production. The high demand on thin film or single-layered TMD 
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materials promoted studies of synthesizing TMDs via thin film deposition methods. 

Among various deposition techniques including pulsed laser deposition,61 spray 

pyrolysis,62 sputtering,63 dip coating and annealing64 and atomic layer deposition (ALD),65 

chemical vapor deposition (CVD) method has been very successful to carry out large-area 

single-layered TMD materials. 

    Recent research involved CVD growth of monolayer TMD materials are mostly 

transitional metal sulfides and selenides (formula: MX2 where M: Mo, W; X: S, Se). 

Various CVD synthesis routes have been outlined, majority involved thermally-assisted 

sulfurization or selenization of transitional metals or transitional metal compounds. 

Considering the high melting and boiling temperature of tungsten (M.P.=3695K, 

B.P.=6203K) and molybdenum (M.P.=2896K, B.P.=4912K) which makes vapor phase 

reaction impossible, they were pre-deposited on designed substrates by electron-beam 

evaporation for sulfurization and selenization.66ï69 Instead of elemental Mo and W sources, 

transitional metal oxides such as MoO3
70ï73 and WO3

68 were also often chosen as 

transitional metal sources for their low sublimation temperature (MoO3: ~1073K; WO3: 

~823K). These oxides can be either pre-deposited on the substrates, or used as Mo and W 

precursors for vapor phase reaction in CVD processes. 

    It was easy and straight forward to achieve chalcogenization by thermally evaporating 

pure chalcogenides powders. When considering tellurization, it may be more challenging 

compare to selenization and sulfurization due to small electronegativity difference between 

Mo/W and Te, which means weaker bonding energy. This may also affect the stability for 

Mo and W ditellurides at high temperature.74 Large-area molybdenum ditelluride (MoTe2) 

was successfully prepared by CVD telluirzation reaction by Lin et al.74 using MoO3 and 
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Te powder evaporation in a flowing argon and hydrogen mixed gas at 700ęC. However, 

there is NO reports via CVD processes on tungsten ditelluride (WTe2) to date.  

    The crystalline quality and coverage of Mo/W dichalcogenide thin film done by solid-

vapor deposition was limited due to residue from the impurity in the oxides, and defects 

from oxygen atoms. In order to improve the crystallinity and control large domain sizes of 

Mo/W dichalcogenide growth without residue, more sophisticated routes were developed 

by using metal-organics or metal-halogen precursors. Vapor phase reaction in CVD 

systems were very often seen for TMD monolayer growth. For transitional metal resources, 

transitional metal-organic precursors such as Mo(CO)6
75 and W(CO)6

75,76 can be used as 

precursor. Since they are stable in powder form, they can also be thermal evaporated for 

chalcogenization processes. Other transitional metal sources including transitional metal-

halides such as MoF6,
77 MoCl5,

78 WCl6,
79 and oxo-halogen precursors WOCl4

80 are also 

successful employed in TMD materials synthesis with proper filtration system in the 

downstream.  

    For chalcogen sources, a few selection of chalcogen compounds other than elemental 

S/Se/Te have successfully applied for CVD growth of TMDs. Simple but highly reactive 

hydride gas such as H2S,75,76 H2Se81 has been successfully carried out high-quality Mo/W 

sulfide and selenide monolayer growth. Delicate control of chalcogen precursor is needed 

for achieving large-area growth, a wide variety of metal-organic precursors including 

dimethyl-sulfide ((CH3)2S), 1,2-ethanedithiol (HS(CH2)2SH),80 2-methyl-propanethiol 

(CH3)3CSH),
80 and the series of diakyl-sulfides/selenides like dimethyl-selenide 

((CH3)2Se),82 diethyl-selenide (C2H5)2Se)81 and di-tert-butylselenide81 were used for 

synthesizing thin film Mo/W sulfides and selenides via CVD. Chalcogen chloride 
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precursors (SeCl4, TeCl4) are also effective precursors for CVD method, however, yet 

being explored for layered TMD synthesis possibly due to their deliquescence.  

    Up to date, there is no report on CVD-growth WTe2 thin film materials yet. Although 

many tungsten sources have already successfully brought out sulfides and selenides layered 

growth, proper tellurium sources has not yet be explored for WTe2 CVD growth. Tellurium 

has a higher sublimation temperature at 450ęC than elemental sulfur and selenium, and the 

W-Te liquid phase at Te-rich region in W-Te binary system could potentially be an issue 

for WTe2 formation in short time CVD processes. On the other hand, the highly reactive 

hydride for tellurium, H2Te, is commercially unavailable due to its unstable nature83. All 

of these indicates that controllable and reactive Te sources would be the key to carry out 

WTe2 synthesis by CVD processes.      
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Figure 1.3.2. Summary of techniques for monolayer TMD material synthesis. 

Methods including chemical vapor transport (CVT) for bulk TMD single crystals, 

powder vaporization carried out with flowing transfer gases in chemical vapor 

deposition (CVD) furnace, and metal-organic chemical vapor deposition (MOCVD) 

using metal-organic or metal-halogen precursors.84 

 

 

 

 


