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Abstract

Accelerated life testing (ALT) is a common way to predict the lifetime of an item at
use condition by subjecting items to extreme stress conditions that accelerate the
occurrence of failures. Weibull or lognormal lifetime assumptions are most widely
used in ALT. However, under many circumstances, it is not easy to determine
which distribution to assume. This thesis proposes a two-stage Bayesian based
design method to construct an ALT plan that is robust with respect to distribu-
tion misspecification and parameter uncertainty. In the method, the first stage
experiment gives posteriors of parameters and distribution information, which are
then used in the second stage experiment to get the final updated posteriors. The
final posteriors are used to optimize the final ALT plan, which provides the stress
levels and the allocation of the items under test to each stress level. The objective
is to minimize the weighed expected prediction variance of a given quantile of the
lifetime at use conditions. Our numerical experiments demonstrate the e�ciency
and increased robustness of the resulting Bayesian two stage ALT plans compared
to single stage ALT plans.
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Chapter 1
Introduction

1.1 Accelerated Lifetime Testing

In reliability studies, lifetimes of many products are extremely long, making it very

di�cult to conduct life tests under normal conditions. Accelerated Life Testing

(ALT) is the process of testing a product by subjecting it to higher levels of stresses

(stress, strain, temperatures, voltage, vibration rate, pressure etc.) in excess of its

use conditions to produce failures faster in an e↵ort to reduce cost and duration of

testing. Then the results are analyzed to extrapolate to the use condition, hence

obtain an estimation of lifetime at use condition. Nowadays ALT is widely used

in reliability research and during the design and testing of new products.

Most accelerated life tests are based on some known acceleration relationships,

including physical acceleration relationships and empirical acceleration relation-

ships [14]. The failure mechanisms may be either well-understood or not, thus the

models are being updated by physical/chemical scientists and reliability researchers

continuously. One common such relationship popular to model acceleration is the

Arrhenius relationship, which we will use in our study and will be introduced in

Chapter 2.

Data obtained from ALT usually involve right censoring (some of the units

haven’t failed at the end of a test). Two types of right censoring are commonly

considered in practice:

• Type I censoring: or ”time censoring”, is to remove unfailed units from test
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at a specific time, denoted as tc in this study. Type I censoring is due to

constraints on the duration of lifetime tests, thus tests have to be terminated

before all the units have failed.

• Type II censoring: or ”failure censoring”, means that a life test has to be

terminated after a specific number, often denoted as r, of test units fail.

Type II censoring is due to constraints on the number of units available in

life tests, such censoring mechanism is usually applied on expensive units to

control the cost of testing.

The reason we are considering censoring data is that censoring data contribute

di↵erent likelihood and di↵erent kind of censoring provides di↵erent Fisher infor-

mation on the parameters.

Regression models are frequently used to explain the relationship between ac-

celerating regressors and lifetimes, log-location-scale regression models (applicable

to log-location-scale distributions, including Weibull, lognormal, loglogistic etc.)

are especially widely used. A simple regression model is an example,

Pr(T  t) = F (t;µ, �) = F (t; �
0

, �
1

, �) = �



log(t)� µ

�

�

(1.1)

where µ = �
0

+ �
1

z and � is the CDF of assumed log-lifetime distribution. The

quantile function of the model is

log [tp(z)] = µ+ ��1(p)� = �
0

+ �
1

z + ��1(p)� (1.2)

where ��1 is the inverse CDF of the assumed log-lifetime distribution and p is some

specific percentile determined by researchers or test designers. The accelerating

regressor z is usually coded or transformed from real accelerating factor based on

acceleration relationships.

Before conducting a life test, test designers need to plan the test. Usually to

plan an ALT one need to specify,

• The levels of accelerating regressor(s), zi, i = 1, 2, ..., l, where l is number of

levels. The regressors are determined by accelerating variables (in original

measure)
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• The proportion of test units to allocate at each accelerating level, ⇡i, i =

1, 2, ..., l, corresponding to zi respectively, where
Pl

i=1

⇡i = 1

Some common ALT planning criteria are as follows [14],

• Estimate a particular quantile tp, or in our study log tp, in the lower tail of

the failure-time distribution under use conditions. Hence the most important

criterion is to minimize the asymptotic variance or standard error of log(t̂p),

the ML estimator of log tp, denoted as Ase
⇥

log(t̂p)
⇤

.

• The Fisher information matrix I✓ may also be used for planning an ALT,

in this case an important purpose of the test is to estimate the parameters

(�’s, �, etc.) more precisely. For example, if we maximize the determinant

of I✓, a ”D-Optimal” design is obtained, instead, if tr (I✓) is maximized, we

will get an ”A-Optimal” design for the planning.

• In recent years, the model robustness with respect to the acceleration models,

failure time distribution and regression models have become popular in the

literature [18][30][31]. Many di↵erent criteria are used in this field.

The constraints on planning ALT may include

• The length (duration) of test.

• The total number of units to be tested.

• Constraints on accelerating levels. We cannot conduct tests under impossible

or excessively costly accelerating conditions, thus there may be lower and(or)

upper bounds on the accelerating levels of the factors.

1.2 Weibull and lognormal Failure Times

Weibull and lognormal failure time models describe a broad range of ALT situ-

ations. In the earlier stage of ALT research, Kielpinski and Nelson [11], Nelson

and Kielpinski [22] investigated the ALT plans to estimate the lifetime of Class-B

insulation for electric motors when either a normal lifetime or lognormal lifetime

is assumed. Nelson and Meeker [23] studied the lifetime of insulating fluid at use
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voltage of 15kV by assuming the lifetime is Weibull or extreme value distributed.

In the following explorations, Meeker [12] compared the models based on Weibull

and lognormal lifetimes, Pascual [25] introduced ALT planning under distribution

misspecification between the two distributions.

Weibull distribution was introduced by Waloddi Weibull [29] in 1951. The

distribution function (CDF)

F (x;�, k) =

8

<

:

1� e�(x/�)k x � 0

0 x < 0
(1.3)

The Weibull distribution has two parameters, scale parameter � and shape pa-

rameter k. The shape parameter k makes Weibull distribution di↵erent and more

flexible than exponential distribution:

• A value of k < 1 indicates that the failure rate decreases over time. This

happens if there is ”infant mortality”.

• A value of k = 1 indicates that the failure rate is constant over time. This

case coincides with a exponential distribution.

• A value of k > 1 indicates that the failure rate increases over time. This

happens if there is an ”aging” process, such as corrosion or fatigue.

Hence the hazard function of Weibull distribution is monotone. Weibull distribu-

tion describes many failure models. Figure 1.1 illustrates the CDF under a shared

parameter � but di↵erent parameter k’s. Weibull lifetimes have such properties

that we can use on log-lifetime. If a random variable T follows a Weibull distribu-

tion, T ⇠ Weibull(�, k), then the natural logarithm of T follows a smallest extreme

value(SEV) distribution,

log(T ) ⇠ SEV(µ, �)

where µ = log 1/�, � = 1/k. The distribution function (CDF) of SEV distribution

is

�SEV (x) =

8

<

:

1� exp [� exp(x)] x � 0

0 x < 0
(1.4)
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Figure 1.1. Plots of distribution function of Weibull distribution with di↵erent k

Lognormal distribution is another distribution describing many failure models.

The CDF of lognormal distribution is

F (x;µ, �) = �

✓

log x� µ

�

◆

(1.5)

where � is cumulative distribution function of standard normal distribution. Simi-

lar to Weibull distribution, if a random variable T follows a lognormal distribution,

T ⇠ LogN(µ, �), then the natural logarithm of T follows a normal distribution,

log(T ) ⇠ N(µ, �)

A significant di↵erence of lognormal distribution from Weibull is that the hazard

function of lognormal distribution may be not monotone, as Figure 1.2 shows.

From the figure, the hazard rate may be increasing at first, then decreasing or just

decreasing. Weibull distribution and lognormal distribution can be very similar to

each other when the parameters are set particularly, some examples are shown on

Figure 1.3.
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Figure 1.2. Hazard function of lognormal distribution under di↵erent �

Figure 1.3. Plots of Weibull and lognormal distribution with di↵erent parameters
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1.3 Previous Research on ALT Planning

Research on accelerated life testing has a history of over fifty years. Towards

the end of 1970’s, reliability researchers began to investigate how to evaluate and

design ALT plans.

1.3.1 Traditional ALT Planning Methods

In the 20th century, most ALT planning investigations were based on the as-

sumption that lifetime follows one particular distribution. Weibull and lognormal

distributions have been most widely studied in the last three decades. Nelson and

Kiepimski [22], as well as Nelson and Meeker [23] proposed the theories for opti-

mum ALT planning for censored data. As the model described previously, these

theories aimed at minimizing Ase
⇥

log(t̂p(z0))
⇤

, where z
0

is the regressor corre-

sponding to use condition of the product. For �
0

, �
1

and �, the asymptotic inverse

of the Fisher information matrix is

⌃ = F�1 =

2

6

6

4

Var(�̂
0

) Cov(�̂
0

, �̂
1

) Cov(�̂
0

, �̂)

Cov(�̂
0

, �̂
1

) Var(�̂
1

) Cov(�̂
1

, �̂)

Cov(�̂
0

, �̂) Cov(�̂
1

, �̂) Var(�̂)

3

7

7

5

(1.6)

Denote

zi =
xi � x

0

xH � x
0

(1.7)

where xi is the acceleration factor at level i, note that xi may also be coded from

an acceleration relationship, such as Arrhenius equation, hence the transformation

from xi to zi is only to constrain the regressor between 0 and 1. Then denote

⇣i =
log(tc)� �

0

� �
1

zi
�

(1.8)

where tc is the specified right censoring time for Type I censoring. For Type II

censoring, ⇣i = ��1(pc,i) [25], where pc,i is the specified proportion of failures at zi.

The study showed that the Fisher information matrix of an observation at zi, Fzi
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is

Fzi =

2

6

6

4

A(⇣i) ziA(⇣i) B(⇣i)

ziA(⇣i) z2iA(⇣i) ziB(⇣i)

B(⇣i) ziB(⇣i) C(⇣i)

3

7

7

5

(1.9)

where A(), B(), C() are functions of ⇣i [6]. If ⇡i is the proportion of allocation to

zi, then the Fisher Information matrix for the design D is

I�0,�1,�(D) = n

l
X

i=1

⇡iFzi (1.10)

The inverse of the Fisher Information matrix is the variance-covariance matrix of

(�
0

, �
1

, �), denoted as ⌃. By ⌃, Ase
⇥

log(t̂p(z0))
⇤

can be easily derived then we can

optimize on zi’s and ⇡i’s. To solve the optimization problem, we need to evaluate

Ase
⇥

log(t̂p(z0))
⇤

for a large number of times.

Unfortunately, the functions A(), B(), C() are very di�cult to compute at that

time since it involves considerable numerical integration, making the optimization

problem very time-costing and hard to solve. In the early 90’s, Escobar and Meeker

[9] introduced an algorithm (AS292) to compute the Fisher information matrix for

the extreme value, normal and logistic distribution. The algorithm is an extension

of AS218 [8], AS218 only considered the case of smallest extreme value distribution

(the case of Weibull lifetime). Based on the algorithms, Escobar and Meeker

[10] summarized the planning of accelerated life tests with one or two factors by

illustrating a Weibull lifetime example. The algorithm introduced a scaled Fisher

information matrix for an observation. For ✓ = (�
0

, �, �
1

)0,

I✓(D) =
n

�2

l
X

i=1

⇡iFi (1.11)

where Fi is the scaled Fisher information matrix,

Fi =

2

6

6

4

f
11

(⇣i) f
12

(⇣i) f
11

(⇣i)zi

f
12

(⇣i) f
22

(⇣i) f
12

(⇣i)zi

f
11

(⇣i)zi f
12

(⇣i)zi f
11

(⇣i)z2i

3

7

7

5

(1.12)

where f
11

, f
12

, f
22

can be derived numerically from the algorithm. As computer
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science and numerical methods advance, the computation of the Fisher informa-

tion matrix for ALT parameters becomes faster, making the optimization on ALT

planning possible. In Chapter 3, numerical experiment will show the optimization

using MATLAB.

Besides traditional ALT planning, other accelerated tests have also been being

investigated. Nelson [21] investigated ALT step-stress models and data analysis,

Bai, Kim and Lee [2] illustrated a simple example of ALT step-stress model with

censoring.

Meeker and Escobar [15] proposed accelerated degradation tests and described

the modeling and evaluation, and made a comparison of the results of acceler-

ated degradation analysis and traditional accelerated life test failure-time analysis.

Tang, Yang and Xie [28] studied the planning of step-stress accelerated degradation

test.

1.3.2 ALT Planning Based on Bayesian Methods

All the research on ALT planning described in the last section is non-Bayesian, pa-

rameters are maximum likelihood estimated. However, in practice, before the tests,

some lifetime acceleration properties are not determined, making the selection of

models and corresponding parameters of ALT very di�cult. Hence assigning prior

distributions to the parameters becomes a potential way to plan better accelerated

life tests.

Chaloner and Larntz [4] put a point mass prior distribution on parameters �’s

and �, which is very similar to Bayesian designs, allowing for prior uncertainty in

the parameters. In this investigation, prior probabilities of Weibull or lognormal

model, �
1

and �
2

are specified. In fact, they use the priors to average the optimum

plans, assuming that the prior information will not be used in inference. Erkanli

and Soyer [7] presented optimum Bayesian ALT designs for exponential distribution

with no censoring, in this study, the authors adopted the curve fitting method of

Monte Carlo experiments, which was introduced by Müller and Parmigiani [20]

and Müller [19]. Al-Hussaini and Alla H [1] presented Bayesian Estimation of

the parameters of ALT models. Zhang and Meeker [33][32] followed the general

Bayesian design framework by Polson [26], and showed how to evaluate the e↵ect
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of the prior information on planning. Shi and Meeker [27] investigated Bayesian

methods for accelerated destructive degradation test planning using similar ideas.

1.3.3 Modeling: Asymptotic Bias and Asymptotic Mean

Square Error

Even though there are large amount of non-Bayesian or Bayesian methods based

ALT investigations, very few of them studied the model robustness with respect

to acceleration regression models or assumed distributions. Nelson [24] remarked

that robust ALT planning researches are lacking, which should be addressed.

Pascual and Montepiedra [25] showed how to compute the asymptotic bias

(ABias) and the asymptotic mean square error (AMSE) of observed bias for the

lognormal and Weibull ALT models when the wrong distribution is specified to

plan the ALT. The asymptotic mean square error of log(t̂p(z0)) is defined as,

AMSE
h

log(t̂p(z0))
�

�

�

Mi

i

= AVar
h

log(t̂p(z0))
�

�

�

Mi

i

+
n

ABias
h

log(t̂p(z0))
�

�

�

Mi

io

2

(1.13)

whereMi is the model that is assumed. If the model is true, then ABias
h

log(t̂p(z0))
�

�

�

Mi

i

=

0. If unlimited number of test units are given, it means the sample size N

is su�ciently large, AVar
h

log(t̂p(z0))
�

�

�

Mi

i

can be made arbitrarily small. How-

ever, if a model selection error is made, ABias
h

log(t̂p(z0))
�

�

�

Mi

i

can not be near

0 even if the sample size is large. Thus optimization can be done on either

AMSE
h

log(t̂p(z0))
�

�

�

Mi

i

or ABias
h

log(t̂p(z0))
�

�

�

Mi

i

. The result recommends to min-

imize ABias
h

log(t̂p(z0))
�

�

�

Mi

i

only if the sample size is relatively large.

However, the research is based on Meeker and Hanh’s 4:2:1 planning [16], which

is basically planning for the possible quadratic acceleration model, in case the linear

acceleration model fails. The planning makes the optimization problem an simple

one-dimensional search on one level of acceleration. Hence the method may be not

general for many other problems.

Monroe and Pan et al. [18] and Yang and Pan [30] used a generalized linear

model framework to conduct a sensitivity analysis of optimal designs for ALT, then

proposed optimal accelerated life test planning with interval censoring.



11

1.3.4 Bayesian Model Averaging

Yu and Chang [31] applied bayesian model averaging (BMA) for quantile estima-

tion in ALT. Denote � be the quantity of interest, after collecting some data y,

BMA gives the posterior distribution of � as,

f(�|y) =
K
X

k=1

f(�|y,Mk)Pr(Mk|y) (1.14)

where M
1

,M
2

, ...,MK are the candidate models. To compute Pr(Mk|y), Beyes
theorem gives that,

Pr(Mk|y) / Pr(Mk)f(y|Mk) (1.15)

where Pr(Mk) is the prior probability that Mk is the true model. Let ✓k denote

the vector of the parameters in model Mk with prior f(✓k|Mk), then

f(y|Mk) =

Z

f(✓k|Mk)f(y|✓k,Mk)d✓k (1.16)

where f(y|✓k,Mk) is the likelihood function. By using BMA, a Bayesian weighted

function is obtained, which can be optimized later to increase robustness to models.

More pitfalls of of accelerated tests can be found in [13][17], which were summa-

rized by William Q. Meeker and many other reliability researchers and engineers.

1.4 Motivation for the Two-Stage Bayesian ALT

Planning Methods

Previous ALT planning research, either non-Bayesian or Bayesian, is based on

information that is given or supposed. However, it is usually the case that we

don’t know exactly the acceleration lifetime properties behind the product. When

a new product is to be tested, it is possible that we are not sure about the lifetime

distribution and the acceleration parameters. This motivates our approach where

we build a two-stage design in which the second stage uses the information obtained

in the first stage.
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Chapter 2
Bayesian Two-Stage Design Model

2.1 Preliminaries

Preliminaries and notations used in the rest of this thesis are introduced in this

section.

2.1.1 Basic Model Notations

As in Zhang and Meeker’s study [33], consider a linear acceleration regression

model with only one regressor z,

log tp(z) = �
0

+ �
1

z + ���1(p) (2.1)

where � is the distribution function (CDF) of SEV distribution or standard normal

distribution. Then denote Model 1 as M
1

, that is,

log tp(z) = �
01

+ �
11

z + �
1

��1

SEV (p) (2.2)

where �SEV is the CDF of smallest extreme value distribution and denote Model

2 as M
2

, that is,

log tp(z) = �
02

+ �
12

z + �
2

��1

N (p) (2.3)

where �N is the CDF of standard normal distribution.

We are considering both models in the same problem, hence the two models
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share the same desired percentile p. For each of the models M
1

and M
2

, respec-

tively, the parameters are denoted as,

✓
01

= (�
01

, �
1

, �
11

)0

✓
02

= (�
02

, �
2

, �
12

)0 (2.4)

2.1.2 Arrhenius Relationship

The Arrhenius relationship is a widely used model describing the e↵ect temperature

has on a chemical reaction rate. The relationship can be written as,

R(temp) / exp

✓

�Ea ⇥
11605

temp(K)

◆

(2.5)

where R is the reaction rate and temp(K) = temp(�C)+273.15 is the temperature

in absolute Kelvin scale, and Ea is a parameter that is determined by material

characteristics. Hence the Arrhenius acceleration factor is

AF(temp, temp
0

) =  (z) =
R(temp)

R(temp
0

)
= exp



�Ea

✓

11605

temp
0

(K)
� 11605

temp(K)

◆�

(2.6)

where temp
0

is the temperature under use condition. When temp > temp
0

, AF >

1, thus higher temperature helps increasing reaction rate. Recall the model in

Equation 2.1,

tp(z) = exp(�
0

+ ���1(p))
| {z }

tp(0)

⇥ exp(�
1

z) =
tp(0)

 (z)
(2.7)

[6] where  (z) = � exp(�
1

z). To make the model an AL model, we can make

�
1

= Ea

z =
11605

temp(K)
� 11605

temp
0

(K)
(2.8)

hence  (0) = 1, ensuring the model is an AL model.
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2.1.3 Standardization of Variables

The proposed acceleration regression model is only valid in a range of z, (zU , zH),

where zU is the use level and zH is the highest level we can set in the test. Testing

beyond zH is either impossible practically or breaking the accelerating model,

hence the extrapolation is dangerous, the planning levels should be set in the

range (zU , zH). For simplicity, the accelerating variable is standardized, denote ⇠

as the variable after standardization,

⇠ =
z

zH � zU
=

✓

11605

temp(K)
� 11605

tempU(K)

◆

,

✓

11605

tempH(K)
� 11605

tempU(K)

◆

(2.9)

where tempU and tempH denote the use-level and highest level of temperatures

respectively, so that ⇠ 2 [0, 1]. In addition, the parameters need to be transformed

corresponding to ⇠, denote

log tp(⇠) = �
0

+ �
1

⇠ + ���1(p) (2.10)

In this transformation, let

�
0

= �
0

�
1

= (zH � zU)�1 (2.11)

Hence the model is equivalent to that in equation 2.1, and µU = �
0

and µH = �
0

+�
1

are the location parameters of the log-lifetime distribution at use condition level

and highest level respectively. At the stage we can denote M
1

and M
2

in the

standardized way,

M
1

: log tp(⇠) = �
01

+ �
11

⇠ + �
1

��1

SEV (p) (2.12)

with parameters ✓
1

= (�
01

, �
1

, �
11

)0. Similarly,

M
2

: log tp(⇠) = �
02

+ �
12

⇠ + �
2

��1

N (p) (2.13)

with parameters ✓
2

= (�
02

, �
2

, �
12

)0
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2.2 Final Objective Function

To design the two-stage ALT planning, first we need to determine the final objective

function. Denote the function as C(D), where D is the ALT plan to be optimized.

Thus
C(D) = E✓1|D

�

AVar✓1|t,D [log tp(0)|M1

]
 

Pr(M
1

|t)

+E✓2|D
�

AVar✓2|t,D [log tp(0)|M2

]
 

Pr(M
2

|t)
(2.14)

where

• AVar✓1|t,D
h

log tp(0)
�

�

�

M
1

i

is the asymptotic posterior variance of log tp(0) after

observing data t in the first stage by assuming that M
1

is the true model,

i.e., the Weibull case.

• AVar✓2|t,D
h

log tp(0)
�

�

�

M
2

i

is the asymptotic posterior variance of log tp(0) after

observing data t in the first stage by assuming that M
2

is the true model,

i.e., the lognormal case.

• Pr(M
1

|t) is the posterior of probability that M
1

is the true model after ob-

serving data t, i.e., the Weibull case.

• Pr(M
2

|t) is the posterior of probability that M
2

is the true model after ob-

serving data t, i.e., the lognormal case.

The objective function is the weighed expectation of posterior asymptotic variances

by posterior weights. The reason why there are expectations on the asymptotic

variance is that ✓
1

|t and ✓
2

|t follows posterior distributions, instead of being as-

sumed. By minimizing the objective function, a final ALT plan will be obtained

after observing data in the first stage.

2.3 First Stage Design

The first stage design of the ALT is completely based on priors, no data are col-

lected before the design. Thus determining the priors is the key preparation for

the first stage design. This is analogous to choosing “planning parameters” in

frequentist ALT plans.
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2.3.1 Priors

Priors of parameters ✓
1

, ✓
2

and the information which distribution is more likely to

be true need to be specified. To describe the information regarding the distribution,

a Bernoulli random variable is good to explain the model selection event. Denote

U =

8

<

:

0 if M
1

is true

1 if M
2

is true
(2.15)

The distribution has one parameter, denotes as a, making

Pr(U = 0) = a

Priors of ALT model parameters have no general disciplines. Zhang and Meeker

[33] proposed that available prior information can be quantified in terms of a

joint prior distribution of ✓, denoted as w(✓). Actually the priors are usually

given by experienced engineers, and the parameters are commonly believed to be

independent. Let S denote the variance-covariance matrix of the prior distribution

of ✓. Hence S�1 is the prior precision matrix of ✓. In the examples in Chapter 3,

some further details will be given.

For the Bernoulli parameter a in formula 2.15, several candidate prior distri-

butions may be considered.

• Degenerate distribution. To use degenerate distribution as prior for a, we

only need to specify a constant c making Pr(a = c) = 1, thus the prior is

simply a constant with no variance. For example, as showed in the upper-left

plot in Figure 2.1, c = 0.5.

• Discrete distribution. Instead of specifying only one constant c, we can spec-

ify several possible values for a and assign probabilities to them, making the

prior distribution a discrete distribution. The possible values of the distri-

bution should be inside [0, 1].

• Continuous Distribution. Compared with degenerate and discrete distribu-

tion, continuous distribution provides more flexible choices for the prior.

Distribution defined on an interval may be considered as the prior,
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– Uniform distribution. Uniform distribution on [0,1] corresponds to a

di↵use or approximately noninformative prior distribution. As in the

upper right plot in Figure 2.1, the prior does not express strong prefer-

ence to the value of a.

– Triangular distribution. Triangular distribution has a single mode,

showing a preference of a value of a. As in the lower right plot in

Figure 2.1, the distribution must be defined on [0, 1]

– Beta distribution. Beta distribution is a family of continuous probabil-

ity distributions defined on interval [0, 1] parametrized by two positive

shape parameters, making it a model for the random behavior of per-

centages or proportions, as in the lower right plot of Figure 2.1 and

Figure 2.2. From the figures, we can see by modifying the two parame-

ters, a very flexible range of shapes are obtained from the distribution.

Figure 2.1. Examples of PDF plots for candidate prior distribution for a



18

Figure 2.2. PDF Plots of Beta distribution with di↵erent ↵ and �

2.3.2 Optimization at the First Stage

The first stage ALT planning is figured out by optimization based on the priors.

Denote the objective function for the first stage as C
0

, and denote

C
01

(D) = AVarD(log tp(0)|M1

)

C
02

(D) = AVarD(log tp(0)|M2

) (2.16)

If the prior for a is degenerate or discrete,

C
0

= Pr(a = c)
X

all c

⇢

c

Z

C
01

w(✓
1

)d✓
1

+ (1� c)

Z

C
02

w(✓
2

)d✓
2

�

(2.17)

where c is the possible values a can be. If the prior for a is continuous,

C
0

=

Z

1

0

p(a)



a

Z

C
01

w(✓
1

)d✓
1

+ (1� a)

Z

C
02

w(✓
2

)d✓
2

�

da (2.18)

Denote

c
1

= (1,��1

SEV (p), 0)
0
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c
2

= (1,��1

N (p), 0)0

Hence by model in equation 2.12 and 2.13,

C
01

(D) = c0
1

AVarD(✓1

)c
1

C
02

(D) = c0
2

AVarD(✓2

)c
2

(2.19)

To calculate the objective function for the first stage, we need to get the asymptotic

variance of ✓ first, Clyde, Müller and Parmigiani [5], and Berger [3] showed that

when the sample size is relatively large (in ALT’s the sample size is usually greater

than 30), a multivariate normal distribution gives reasonable approximation for

variances. Then denote ✓ = (�
0

, �, �
0

)0, for both models, the following steps are

applicable.

AVarD(✓) ⇡ [S�1 + I✓(D)]�1 (2.20)

where as in Chapter 1, S�1 is the prior precision matrix of ✓, I✓(D) is the Fisher

information for plan D. For I✓(D), the equation 1.11 still holds. Similar to equa-

tion 1.12 the scaled Fisher Information after standardization for each observation

is,

Fi =

2

6

6

4

f
11

(⇣i) f
12

(⇣i) f
11

(⇣i)⇠i

f
12

(⇣i) f
22

(⇣i) f
12

(⇣i)⇠i

f
11

(⇣i)⇠i f
12

(⇣i)⇠i f
11

(⇣i)⇠2i

3

7

7

5

(2.21)

We assume Type I right censoring, thus

⇣i =
log(tc)� �

0

� �
1

⇠i
�

(2.22)

The elements in Fi is calculated as,

f
11

(⇣i) =  0

(⇣i) + ⌘(⇣
0

)

f
12

(⇣i) =  1

(⇣i) + ⇣
0

⌘(⇣
0

)

f
22

(⇣i) =  2

(⇣i) + ⇣2
0

⌘(⇣
0

) (2.23)
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where ⇣
0

= (��
0

� �
1

⇠i)/�,

 i(⇣i) =

Z ⇣i

⇣0

[1 + xH(x)]i H(x)2�ig(x)dx i = 0, 1, 2

H(x) =
g0(x)

g(x)
+

g(x)

1�G(x)

⌘(x) =
g(x)

[1�G(x)]G(x)

where g(x) and G(x) is the PDF and CDF of assumed log-lifetime distribution,

in the study, it is either SEV or standard normal distribution. Now the objective

function for first stage can be derived and optimized.

A brief introduction of constraints in ALT planning has been given in section

1.1. Because the objective of first stage test is mainly updating the prior informa-

tion, both time and cost should be constrained. A small proportion of total test

units should be used in the first stage. In addition, it is not appropriate for the

first stage test to take a long time because this may cause less time in the second

stage, even leading to some biases in the results. However, the setting of constrains

is a tradeo↵. When more resource is used in the first stage, more precise posterior

will be obtained, helping us updating the prior more e�ciently, on the other hand,

the remaining resource in the second stage reduces. The setting of censoring time,

which is the total test time of the first stage, denoted as tc1, should ensure that at

higher levels of acceleration, a relatively small proportion of test units are expected

to be right censored. For example, at the highest level of acceleration, if there is

only 10% of test units failed when the test is over, the planning is not considered

to be a good one.

2.3.3 Results

After planning the ALT in stage 1, an AL test is expected to be conducted, exper-

iment data should be collected, denoted as t. The size of t is n
1

, number of test

units in the first stage. For each element in t, there are two properties:

• Corresponding ⇠. Each data element must be labeled with ⇠, the standardized

variable of the accelerating factor.
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• Censored or not. If a test unit failed in test time, tc1, the observation is exact,

otherwise it is right censored. Denoted as �i, for each of the observation,

�i =

8

<

:

1 if the observation is not censored

0 if the observation is right censored
(2.24)

2.4 Second Stage Experiment

Once the data are obtained in the first stage, we recommend planning and con-

ducting the second stage experiment as soon as possible, ensuring the condition of

test units remain the same and racing for more testing time.

2.4.1 Updating the Priors

We need to update two parts of the priors to get posteriors: acceleration model

parameters and distribution specification parameter a.

For the acceleration model parameters ✓
1

and ✓
2

, very similar processes to

update the priors are conducted. In this section ✓
1

, corresponding to model M
1

, is

used as an example to illustrate the steps. As in section 2.3.1, the joint distribution

for ✓
1

is denoted as w(✓
1

), the posterior can be expressed as,

w(✓
1

|t) = L(t|✓
1

)w(✓
1

)
R

L(t|✓
1

)w(✓
1

)d✓
1

(2.25)

where L(t|✓
1

) is the likelihood of t evaluated at ✓
1

, the likelihood is calculated as

follows,

L(t|✓
1

) =
n
Y

i=1



1

�
1

⇠i
�SEV

✓

log(ti)� �
01

� �
11

⇠i
�
1

◆��i 

1� �SEV

✓

log(ti)� �
01

� �
11

⇠i
�
1

◆�

1��i

(2.26)

In addition to obtaining the posterior distribution of ✓
1

, we also need to specify the

posterior variance of ✓
1

to compute the variance of log tp(0). Similar to equation

2.20,

Var✓1|t,D(✓1

) = [S�1

1

+ Î✓1(D)]�1 (2.27)
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where Î✓1(D) is the Fisher information matrix evaluated at ✓̂
1

, maximum likelihood

estimator of ✓
1

estimated by the data in the first stage. By the relationship,

Var✓1|t,D
h

log tp(0)
�

�

�

M
1

i

= c0
1

Var✓1|t,D(✓1

)c
1

(2.28)

where c
1

= (1,��1

SEV (p), 0)
0, the posterior of variance of log tp(0) assuming that M

1

is true is obtained. By replacing ✓
1

with ✓
2

, and change the SEV distribution to

standard normal distribution, the posteriors for M
1

can be derived by conducting

the same previous steps.

Besides updating the information regarding acceleration model parameters, the

distribution specification parameter a is also updated. Similar to the equation 2.25,

p(a|t) = L(t|a)p(a)
R

L(t|a)p(a)da
(2.29)

where L(t|a) is the likelihood of t evaluated at a, which can be calculated as,

L(t|a) =
Qn

i=1

(

a
h

1

�1⇠i
�SEV

⇣

log(ti)��01��11⇠i
�1

⌘i�i h

1� �SEV

⇣

log(ti)��01��11⇠i
�1

⌘i

1��i
+

(1� a)
h

1

�2⇠i
�N

⇣

log(ti)��02��12⇠i
�2

⌘i�i h

1� �N

⇣

log(ti)��02��12⇠i
�2

⌘i

1��i

)

(2.30)

where we can use the the MLE of ✓
1

and ✓
2

to replace the model parameters to

get the likelihood of the data, that is,

L(t|a) =
Qn

i=1

(

a
h

1

�̂1⇠i
�SEV

⇣

log(ti)� ˆ�01� ˆ�11⇠i
�1

⌘i�i h

1� �SEV

⇣

log(ti)� ˆ�01� ˆ�11⇠i
�̂1

⌘i

1��i
+

(1� a)
h

1

�̂2⇠i
�N

⇣

log(ti)� ˆ�02� ˆ�12⇠i
�̂2

⌘i�i h

1� �N

⇣

log(ti)� ˆ�02� ˆ�12⇠i
�̂2

⌘i

1��i

)

(2.31)

Thus we can get the posterior distribution of a.
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2.4.2 Explanations of the Objective Function and Modifi-

cation

Recall the objective function 2.14, what weighed the expected asymptotic vari-

ance are not probability densities, but constant probabilities. In fact it is more

appropriate to take double expectation respect to both ✓’s and a. However, when

conducting the numerical experiment, the integration for the expectation is very

computationally intensive, thus what is included the objective function is Pr(M
1

|t)
and Pr(M

2

|t). By taking expectation on the posterior a,

Pr(M
1

|t) =
Z

ap(a|t)da

Pr(M
2

|t) = 1� Pr(M
1

|t) (2.32)

At this stage we can compute all the elements in function 2.14, so that optimization

for the second stage is ready to be conducted.

2.5 Assumptions and Settings for Optimization

Usually if a linear model is assumed as an accelerated lifetime model, it is rea-

sonable to only set two levels of acceleration to estimate the desired lifetime, on

the other hand, if the model is suspected to be quadratic or higher-order polyno-

mial, more levels need to be added to the test. In this study we are assuming a

linear model, thus we only need to optimize on four variables, ⇠L, ⇡L and ⇠H , ⇡H

corresponding to low level and high level of the test respectively.
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Chapter 3
Numerical Example

3.1 Software Utilized

The numerical experiments were conducted mainly in MATLAB 2014b, Statistics

and Machine Learning Toolbox was employed to assist the computation. Some

numerical ALT model maximum likelihood estimation was conducted in R version

3.1.3.

3.2 Adhesive Bond Test Background

The example originates from Meeker and Hahn [16]. Engineerings were investi-

gating the reliability of adhesive bond, aiming at estimate the 0.1 quantile of the

failure-time distribution at the use temperature 50�C. The 0.1 quantile of the life-

time was expected to be more than 10 years. Hence an accelerating lifetime test

was needed to demonstrate this, and there were 300 test units for testing. The

failure process of the adhesive bond was believed to be simple chemical degrada-

tion process, which can be modeled by Arrhenius relationship. The acceleration

model was assumed is to be linear and after standardization it satisfies,

µ(⇠i) = 9.35715� 4.64533⇠i (3.1)

In the model, engineers believe the parameters are near �
0

= 9.35715, �
1

=

�4.64533, in the example[16] the lifetime distribution was assumed to be Weibull
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and the shape parameter was thought to be near k = 1.667, which made � =

1/k = 0.6. To conduct our two stage experiment, we need another model based

on lognormal lifetime distribution, thus denote,

✓
1

= (9.35715, 0.6,�4.64533)0

✓
2

= (9.35715, 0.76953,�4.64533)0 (3.2)

and

c
1

= (1,��1

SEV (p), 0)
0

c
2

= (1,��1

N (p), 0)0

We set � = 0.75953 for the lognormal model because the standard deviation � of

log lifetime is �
1

when it is lognormal model and ⇡�
2

/
p
6 when it is a Weibull one

[25]. Thus in summary,

M
1

: log tp(⇠) = 9.35715� 4.64533⇠ + 0.6��1

SEV (p)

M
2

: log tp(⇠) = 9.35715� 4.64533⇠ + 0.76953��1

N (p) (3.3)

3.3 Case 1: Prior of a is Degenerately Distributed

The simplest case is that the prior of a is degenerately distributed, and we don’t

imply any information in �’s. Hence for �’s, it is a likelihood method. We assume

the right censoring time is 183 days for each of the two stages. And there are 100

test units for stage 1 and 200 for stage 2, denoted N
1

= 100, N
2

= 200

3.3.1 First Stage Planning

Because prior of a is assumed to be degenerately distributed. The objective func-

tion in the first stage is simplified as,

C
0

= AVarD(log tp(0)|M1

)p
1

+AVarD(log tp(0)|M1

)(1� p
1

) (3.4)
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where p
1

is the value of a which has probability 1. Firstly for each of model M
1

and M
2

, we have the numerically optimal plans respectively as the following tables

show.

Condition Level(Standardized) Level (TEMPC) Proportion Number

i ⇠i
�C ⇡i ni

Use 0 50 0 0

Low 0.6821 94.67 0.706 71

High 1 120 0.294 29

AVarD(✓1

|M
1

)=0.4339

Table 3.1. Optimal design for M
1

in stage 1 when N
1

= 100

Condition Level(Standardized) Level (TEMPC) Proportion Number

i ⇠i
�C ⇡i ni

Use 0 50 0 0

Low 0.6496 92.26 0.660 66

High 1 120 0.340 34

AVarD(✓1

|M
2

)=0.4144

Table 3.2. Optimal design for M
2

in stage 1 when N
1

= 100

We can find that the optimal plans for M
1

and M
2

are slightly di↵erent. The log-

normal model (M
2

) suggests lower temperature on the low level and less allocation

at it, while the Weibull model (M
1

) suggests the opposite.

By varying the value of p
1

from 0 to 1, di↵erent optimal plans are expected to

be obtained, Figure 3.1 and 3.2 show the plot of optimal plan to minimize C
0

in

formula 3.4 vs. p
1

. Because the ⇠ for high level is always 1 in the planning, only

⇠’s and ⇡’s of low level are demonstrated in the figures.

From the two figures, we can find that when the prior prefers Weibull distribution

(when p
1

increases), the optimal planning suggests higher temperature and higher

allocation for the low level. However, the patterns of increase for ⇠L and ⇡L are

di↵erent. In Figure 3.1, ⇠L vs. p
1

is an increasing convex function, when p
1
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Figure 3.1. Plot of optimal ⇠L vs. p
1

Figure 3.2. Plot of optimal ⇡L vs. p
1

increases linearly, the increase in the optimal ⇠L will become faster. In the other

Figure 3.2, the function is also convex, however, it is very near to a linear function.

Figure 3.3 shows how the weighed asymptotic variance of log tp(0) varies when

p
1

is between 0 and 1. The function is an increasing concave function.



28

Figure 3.3. Plot of optimal weighed AVarD(log tp(0)) vs. p1

In the first stage, we set a = 0.5 as an example, that is to say, the priors can be

written as follows,

Pr(M
1

) = 0.5

Pr(M
2

) = 0.5 (3.5)

Under the assumption, the optimal design for the first stage is as follows,

Condition Level(Standardized) Level (TEMPC) Proportion Number

i ⇠i
�C ⇡i ni

Use 0 50 0 0

Low 0.6594 92.99 0.6819 68

High 1 120 0.3181 32

C
0

(D)=0.4276

Table 3.3. Optimal design at stage 1 (Case 1)

3.3.2 Simulation of Data from the First Stage

After the planning of the first stage, a test is expected to be conducted. To

illustrate how the methods work in practice, we simulate some data as the test
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data. The steps of simulation can be found in Chapter 19 in Meeker and Escobar’s

book [14], and the settings of the simulation were as follows,

Variable Setting

�
0

9.35715

� 0.76953

�
1

�4.64533

Distribution lognormal

Number of simulations 100

Table 3.4. Setting of simulation of data for stage 1 (Case 1)

The simulation settings indicate that the true model is M
2

. However, at this

stage, whether the model is correct is unknown. And for ✓
1

and ✓
2

, we need to use

maximum likelihood estimation to move to the next step. The maximum likelihood

estimates from the experimental data are as follows,

Parameter MLE Standard Error 95% CI

�
01

9.03340 0.796 (7.47,10.59)

✓
1

�
1

0.503767 0.078 (0.372,0.683)

�
11

�4.07940 0.832 (-5.71,-2.45)

�
02

8.65502 0.548 (-7.58,9.73)

✓
2

�
1

0.637065 0.083 (0.484,0.813)

�
22

�3.91318 0.599 (-5.09,-2.74)

Table 3.5. MLEs from the simulated data (Case 1)

3.3.3 Update the Prior for Distribution Specification

Because we assume a degenerate prior for ✓’s, hence the posterior is also degenerate

and is the same as the priors. For the prior in equation 3.5, we can update as

follows,

Pr(M
1

|t) = Pr(M
1

)L(t|M
1

)

Pr(M
1

)L(t|M
1

) + Pr(M
2

)P (t|M
2

)
(3.6)
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where L(t|M
1

) and L(t|M
2

) is the likelihood of t evaluated at M
1

and M
2

respec-

tively. From the data we have simulated, we can compute

L(t|M
1

) = exp(�54.152)

L(t|M
2

) = exp(�48.620) (3.7)

The likelihood for M
2

is apparently larger than M
1

, which results in,

Pr(M
1

|t) = 0

Pr(M
2

|t) = 1 (3.8)

3.3.4 Second Stage Planning and Comments

Because Pr(M
1

|t) = 0, we are minimizing only over the lognormal model based on

MLEs, which will result the plan shown in Table 3.6 in the second stage, noting

thattN
2

= 200. The plan is reasonable because in the simulation, we simulate

based on the fact that M
2

is true (lognormal is the true lifetime distribution).

Condition Level(Standardized) Level (TEMPC) Proportion Number

i ⇠i
�C ⇡i ni

Use 0 50 0 0

Low 0.650 92.29 0.6599 66

High 1 120 0.3401 34

C(D)=0.1336

Table 3.6. Final optimal design (Case 1)

3.3.5 Comparison and Comments

We compared the plan with the traditional statistically optimum plan in Meeker

and Escobar’s book [14] (labeled as ”Traditional” in the following content) and

Zhang and Meeker [33]’s Bayesian method which only uses the priors, which is

labeled as ”One Stage Bayesian”. By computing the mean square errors of log tp(0)

from the simulated data, the comparison is as the table shows.
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Method MSE[log tp(0)]

Traditional 0.1522

One Stage Bayesian 0.1522

Two Stage Bayesian 0.1321

Table 3.7. Comparison with other methods (Case 2)

In this case, the first two methods provide the same plan. Because our method

helps eliminating the wrong model, its result is better than those of the traditional

planning and one stage bayesian method. This is the simplest case of the two

stage design, although it would be atypical to specify degenerate distributions

over priors. In Bayesian studies, it is more common to specify some non-degenerate

information on the priors, making the posterior also non-degenerate. However, the

example shows that the two-stage design helps eliminating the wrong model, at

least, the wrong distribution of the model. A more complex and practical example

will be introduced in the next section.

3.4 Case 2: Priors are Non-degenerately Dis-

tributed

In this case, the priors of the acceleration model parameters, ✓
1

, ✓
2

and the dis-

tribution specification parameter a are non-degenerately distributed.

3.4.1 Setting of Priors

For the priors of ✓
1

and ✓
2

, uniform distributions are set as priors, and in addition,

we assume the three parameters in each of ✓
1

and ✓
2

are independent with each

other. And for a, a uniform distribution on [0, 1] is assumed to be the prior. Hence

the priors are as showed in the following table
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Variable Distribution

�
01

Uniform(8, 11)

✓
1

�
1

Uniform(0.55, 0.65)

�
11

Uniform(�5,�3)

�
02

Uniform(8, 11)

✓
2

�
2

Uniform(0.72, 0.82)

�
12

Uniform(�5,�3)

a Uniform[0, 1]

Table 3.8. Priors for stage 1 (Case 2)

The variance-covariance matrices for ✓
1

and ✓
2

are

S
1

= S
2

=

2

6

6

4

3/4 0 0

0 1/1200 0

0 0 1/3

3

7

7

5

(3.9)

Thus the precision matrices are

S�1

1

= S�1

2

=

2

6

6

4

4/3 0 0

0 1200 0

0 0 3

3

7

7

5

(3.10)

3.4.2 First Stage Planning

In this case the first stage objective function is as function 2.18. In the function, we

can employ numerical integration to get
R

C
01

w(✓
1

)d✓
1

and
R

C
02

w(✓
2

)d✓
2

, and

by conducting the optimization, we get the plan as follows,
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Condition Level(Standardized) Level (TEMPC) Proportion Number

i ⇠i
�C ⇡i ni

Use 0 50 0 0

Low 0.66 93 0.68 68

High 1 120 0.32 32

C
0

(D)=0.1183

Table 3.9. Optimal design at stage 1(Case 2)

We can find that the plan is very near to the plan when p
1

= 0.5 in Case 1.

The reason is that the prior of a is uniform distribution, which also indicates no

preference between the models.

3.4.3 Simulation of Data from the first stage

By using the same simulation settings as in Table 3.4, however we need to conduct

another simulation, even though the settings are completely the same. From the

simulated data, the MLEs are as follows,

Parameter MLE Standard Error 95% CI

�
01

10.5917 1.163 (8.31,12.87)

✓
1

�
1

0.510603 0.079 (0.376,0.693)

�
11

�5.75797 1.193 (-8.10,-3.42)

�
02

9.61111 0.689 (8.26,10.96)

✓
2

�
1

0.625 0.087 (0.476,0.821)

�
22

�5.04995 0.727 (-6.48,-3.62)

Table 3.10. MLEs from the simulated data (Case 2)

3.4.4 Second Stage Planning

The priors of ✓
1

and ✓
2

are updated as in function 2.25, and updating for a results

in,

Pr(M
1

|t) = E [p(a|t)] = 0.3622
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Pr(M
2

|t) = 1� Pr(M
1

|t) = 0.6378 (3.11)

Thus we have all the elements in the objective function, the final plan is as the

following table shows,

Condition Level(Standardized) Level (TEMPC) Proportion Number

i ⇠i
�C ⇡i ni

Use 0 50 0 0

Low 0.7212 97.61 0.6547 65

High 1 120 0.3453 35

C(D)=0.0713

Table 3.11. Final optimal design (Case 2)

3.4.5 Comparison and Comments

For case 2, a similar comparison is conducted as in section 3.3.5. The result is as

follows,

Method MSE[log tp(0)]

Traditional 0.2055

One Stage Bayesian 0.1942

Two Stage Bayesian 0.1707

Table 3.12. Comparison with other methods (Case 2)

From the result we can find that the bayesian methods are better than the

traditional planning because priors increase the amount of information, helping

the planning and making the mean square error smaller. Compared with the one

stage bayesian, our two stage method also shows an obvious smaller mean square

error by reducing the posterior probability of the wrong model.

In the case, the two stage design also tells us the lognormal model is more likely

to be true, as in equation 3.11. Thus it is also e�cient to specify the distribution by

Bayesian methods in this case. Compared to case 1, the objective weighed expected

asymptotic variance is much lower, because we have priors for all the parameters,
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including acceleration model parameters and distribution specification parameter

a, making the than that in case 1, resulting a much smaller objective.
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Chapter 4
Conclusions

4.1 Summary of Modeling and Experiment Re-

sults

We have presented a Bayesian two-stage ALT planning methods under linear mod-

els with one experimental variable. From the experiment results, the two-stage

design is very e�cient to specify the lifetime distribution, avoiding distribution

misspecification. In addition, we find that by adding some prior information on

the parameters and combine it with data, the posterior will result in much smaller

asymptotic variance of desired quantile of lifetime at use condition.

The two-stage design costs more time to conduct tests under the same exper-

imental constraints. The second stage can be repeated to make use of all of the

priors and posteriors before the stage, thus there are continuous modifications on

the planning.

4.2 Discussion and Future Research

The method described in this thesis can be extended to ALT planning with more

experimental variables, and also with more complex models, such as quadratic and

higher order polynomial. However, even under the simple assumption, the numer-

ical integration and optimization takes considerable computation, especially when

the priors are non-degenerate, and this is the reason that we made modification
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in section 2.4.2. Without the modification, the modeling is more precise and bet-

ter results are expected, but better numerical optimization methods to solve the

problem will be required.

In addition, in both of the two steps, there is a large sample approximation

made, other methods, such as simulation methods, are also of interest to be in-

vestigated as they allow to estimate the small sample behavior of the two stage

plans.
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