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ABSTRACT 

 Water that is produced from shale gas wells in three months after stimulation 

treatments and shut-in periods is called flowback water. Volume and salt concentrations of 

flowback water depend on geology, drilling and completions, stimulation and flowback 

operations. Recent studies include evaluations of geochemical origins based on the 

compostition concentrations, flowback sampling analysis and numerical studies. However, 

an in-depth understanding of chemical compositions as well as the changes of compositions 

is still needed.  

 In this work, we will firstly review the literature related to flowback in shale gas 

wells to fully understand the chemistry, geochemistry, and physics governing a fracture 

treatment, shut-in, and flowback. We will then gather all public and in-house flowback 

data, termed 3-week or 3-month flowback in this work, to build a flowback compositional 

database. After data screening, we will then analyze this compositional database which 

would potentially affect the wasterwater treatment design by using four different methods: 

geographical, changes over time, linear regression, clustering and multi-variable analysis. 

New understandings such as the magnitude and prevailing trends of concentrations for 

target constituents as well as the correlations among flowback compositions, the 

differentiation between early and late time flowback water were obtained and explained on 

the basis of geochemistry and physics.  
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Chapter 1  Introduction 

 The flowback volume is regarded as a vital parameter to estimate the effective fracture 

volume in order to appraise the production performance and to plan field operations and water 

management. Nevertheless, flowback water compositions are seldom analyzed along the 

hydrocarbon production. In this study, investigations by utilizing different datamining approaches 

on the flowback compositions are the main tasks. Prior to the execution of these analysis, a 

complete database including all sources of datasets are included. Preliminary treatments for this 

database are carried out to evaluate the variable importance as well as corrleations among 

compositions and then several datamining models are developed. The assessments of each model 

is applied by using different dataset according to available informations.  

 In Marcellus shale gas wells, 10-100 thousands of barrels water are injected with 4-5 

different chemical additives, but only about 10% of this volume flows back in 3 weeks and will 

contain inorganic solutes and organic components. An increasing or prominently decreasing 

concentrations of inorganic constituents could effectively influence the flowback attributes. 

Various possible mechanisms of different chemical processes occurred underground accounting 

for these concentration variations could be interpreted evidently, for example, dissolution of salts 

from the source rocks, mixing between flowback and formation water and reactions among active 

ions. The correlations among the compositions are still a mystery since the complexity of the 

chemical reactions and the impacts of those reactions on flowback deliverability which might 

dominate over each other along different periods. Multifarious datamining models are performed 

including geological change in concentrations, variations in concentrations along with 

chronological sequence, linear regression and multivariate approaches. These methods are adopted 

to capture the correlations among compositions. By using these models, a relative integral 
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understanding based on the flowback compositions would be generated which might be valuable 

for post-water treatment and gas production prediction. 

 Flowback water after a fracture treatment may contain high concentrations of chemicals 

which are affect to the environment as well as the human health. Being acquainted with flowback 

water compositions not only helps alleviate the environmental impacts as well as diminish the risks 

affecting the human health, but also a better understanding on flowback compositions would aid 

to optimize the operation in gas production industry. 
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Chapter 2 Literature Review 

2.1 Marcellus Shale Formation 

 The extensive Marcellus shale formation, deposited over 350 million years ago which 

underlies in a shallow inland sea located in the eastern United States. Marcellus shale covers the 

most of northern Appalachian Basin (J.Soeder & M.Kappel, 2009). The Marcellus Shale formation 

stretches from southern New York across Pennsylvania, sweeps through part of  western Maryland 

and most of West Virginia and attaches eastern Ohio as well (J.Soeder & M.Kappel, 2009). 

Stratigraphically, Marcellus shale was formed in the lowest or the basal part of a thick sequences 

of Devonian age, the stratigraphy of Devonian shales and rocks other than in the northern part of 

the Applachian Basin is shown in Fig.2-1 (Martin, 2008). Although the organic rich black shale 

dominates the lithology where the influx of the majority of the younger Devonian sediments buried 

above them. This event was triggered by sea level variation during the deposition progress almost 

400 million years ago which black shale was precipitated in relatively deep water devoid of oxygen 

(Kostelnik, Gold, Doden, & Harper, 2003). Organic matter deposited in an anaerobic circumstance 

with a series of geologic events in the Marcellus Shale. The black shales contain iron ore which 

were used to play an important role in early development of the region, and some of the radioactive 

compounds such as uranium and pyrite which are now still environmentally hazardous (McBride, 

2004). The fissile shales are easily to be crushed and eroded, indicating big challenges for civil 

and environmental engineering (P.Werne, Sageman, W.Lyons, & Hollander, 2002). 
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Figure 2-1. A geological cross section of upper to middle Devonian strata (Boughton & McCoy, 2006). 

 The Macellus Shale formation mainly consists of black shale in which the limestone might 

be interbeded and concentrations of iron pyrite (FeS2) and siderite (FeCO3) may also be noticeable 

( U.S Environmental Protection Agency, 2008). Fragments are formed after the exposure and the 

reactions between pyrite to air as well as the pyrite and limestone particles generating tiny gypsum 

(CaSO4∙2H2O) crystals. Moreover, the Marcellus also contains uranium, and isotope of the 

radioactive decay uranium-238 (238U) which a source rock for radioactive radon gas is abundant. 

The black shale was formed from flysch, a fine mud precipitated in the deep water which buried 

the underlying Onodaga limestone beds. Since the deepening sea cut-out the supply of carbonates 

that form limestone interbeded (Hand & Banikowski, 2008). The organic content, which might be 

previously settled to the bottom with an anaerobic decay process, thereby was preserved through 

epochs. The radioactive compound such as uranium was also incorporated in these organic muds 

simultaneously. What is noteworthy, recent investigation reveals that hydrocarbons are founded 

including natural gas due to the compression and heat during geologic time. The gas presents in 

fractures, pore spaces and is absorbed onto organic matters within the shale.  
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2.2 Flowback Water From Marcellus Shale  

 Shale gas plays a critical role in the future development of natural gas industry. According 

to an annual energy outlook from 2014 in Fig.2-2, a prediction of total gas will be enlarged to 31.6 

Tcf based on the natural gas consumption in 2012. The natural gas price rises with the economic 

growth (Fig.2-2 (c)) as well as the unexpected increase in production costs (Fig.2-2 (a)). As a 

consequence, 56% increase in total natural gas production from 2012 to 2040 in the AEO 2014 

Reference Case are consist of the increment in shale gas, tight gas, and offshore natural gas 

resources (Fig.2-2 (d)). What is worthy to mention is that shale gas production dominates the 

contribution of gas production growth. The rest are declined more or less instantaneously and keep 

relatively stable for a long term. A paradigm could be exemplified, Pennsylvania State covers the 

most part of the Marcellus shale and 85% of state’s shale gas production is from just 6 out of 67 

counties (Fig.2-3). Up to the latest published report, natural gas production in the Marcellus Region 

surpassed 15 billion cubic feet per day (Bcf/day) through July 2014. Broadly, the West Virginia 

and Pennsylvania are the largest producing shale gas basin in the Marcellus Region, accounting 

for 40% of U.S. shale gas production, has increased dramatically over the past four years shown 

in Fig.2-2(a),(b) which benefit from recent advanced technologies (Administration, 2014).  
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                               (a)                                                              (b) 

 

 

                   (c)                                                                 (d) 

Figure 2-2 a)b) Drilling productivity growth annual report, c)Annual average henry Hub spot natural gas prices in 

different cases, d)Natural gas production from different  sources (Administration, 2014). 

 

Figure 2-3 Unconventional gas production in different counties of Pennsylvania (PADEP, 2013) 

 In order to extract the large amount of natural gas reserves from such fine-grained rock in 

an economical and commercial level, higher permeable flow paths must be created in the formation 

by commonly using a combination technique of horizontal drilling and hydraulic (J.Soeder & 

M.Kappel, 2009). Within recent applications, hydraulic fracturing composition is one of the 
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emphasized issues and an illustration is presented in Fig.2-4. Million gallons of water in total, 

mixed with various additives, are pumped under high pressure fissuring the rock. The rock 

fractures are then propped open by sequential stages of fracturing water carrying the sand or other 

high-pressure resistance materials so as to propped a ‘Highway’ in the fissures for gas and other 

fluids to move out along the fracture towards the wellbore. The productivity of the well is changed 

after the treatment, low productivity of the reservoir is transformed into high productivity. Lower 

pressure drawdown is established within the stimulated zone. More details shown in Fig.2-5 

annotate an integral process of hydraulic fracturing process. Hydraulic fracturing in Marcellus 

occurs after a cased well perforated within the target zones containing oil or gas. The fracturing 

fluid is injected flowing through the perforation, cracking the formation under the high pressure. 

Typically, fracturing fluids is a mixture of water, proppants and different purposes of chemicals 

(Table.2-1), the fraction of each constituent is elucidated in Fig.2-4, the pie chart assesses the 

weight percentages of each function group that might be used in a fracture treatment, yet not all of 

these chemicals are utilized in each phase of the treatment. Moreover, according to the chart, water 

and sands make the greatest contribution other than the minor chemicals, nevertheless, since the 

magnitude of the total amount of fluid is enormous, the absolute number of each functional group 

are still considerable though the proportion tends to be small.   
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Figure 2-4 Volumetric Compositions in frac-fluids (Range Releases Frac Fact Sheet, 2010). 

  

Figure 2-5 Interpretation of the integral process of hydraulic fracturing (The Hydraulic Fracturing Water Cycle, 

2012) 
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Table 2-1 Basic chemical used in hydraulic fracturing (SGEIS, 2011). 

 

 With this recent advancement of technology, Marcellus Shale gas play has been so far 

predicted that 489 Tcf of technically recoverable gas are existed, it is adequate to satisfy US 

demands for roughly two decades (Shale Energy Business Briefing, 2015). Therefore, an outburst 

of hydraulic fracturing would be implemented through the entire gas play, however, a concern of 

water quality and water consumption has brought over publics (Me.E.Blauch, R.R.Myers, 

T.R.Moore, & B.A.Lipinski, 2009). Technically, after hydraulic fracturing, water flowing back 

with contaminants resulting from the contact and reaction with formation rocks and naturally 

occurrence of sedimentary basin brines as well, might be unlikely to be disposes readily  
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(O.Vazquez, et al., 2014). The term ‘flowback’ is often used to describe this early stage of water 

production. This early periods shown in Fig.2-6.  

 

Figure 2-6 The flow sequence of a typical shale well with a frac-job followed by a flowback period.  

 In 2014, Wattenbarger and Alkouh concluded utilizing gas-water two phase modeling 

compiled with early flowback data could effectively estimate the fracture volume. The observation 

of bilinear regression has been identified after the early water flowback rates are coupled. Yet none 

of them consider about the correlation within the flowback compositions or between flowback 

compositions and production profile. The fracture flowback fluids or post-frac water contains 

massive quantity and various kinds of organic and inorganic compounds. The quality of the 

flowback fluids would be diversified due to the flowback condition as well as a variety of different 

exterior attributes. For example, the retention time for flowback contacting with formation rocks 

within the reservoir is critical to have the tendency of a relatively high proportion of TDS (total 

dissolved solids) for which it is necessary to be reduced to the regulatory levels prior to disposal. 

Several possible assumptions have been made to interpret how such high concentrations of 

chemicals happened. One possible theory refers to the dissolution of minerals which has been 

deposited within the formation, for instance, the evaporation of halite (Dresel & Rose, 2010). 

However, an indication of log(Br) vs. log(Cl) shows that the conventional brines in Pennsylvania 

Days

Water Rate

Gas Rate

1                                 5                                                                           Production Day 1 90                                                            3000

Frac Treatment

Shut-In Period

Flowback + Production 
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were derived from highly evaporated seawater that had been diluted by freshwater. Yet the halite 

dissolution is still considered to be a minor possible way for such high salinity phenomenon 

(Haluszczak, Rose, & Kump, 2012). Furthermore, the encroachment of basinal brine is another 

hypothesis that the formation fluid and fracture fluid are directly mixed with each other. A clear 

example from the Barnett shale play which a deep saline aquifer in Ellenburger formation was 

breached during hydraulic fracturing (Hayden & Pursell, 2005). Besides the deep aquifer, the 

mobilization of hypersaline connate water is another issue that immobile water trapped in the pores 

by capillary pressure would be diluted by fracturing water. The connate water trapped in the 

vicinity of the fracture would tend to have ion exchange due to the concentration difference driving 

force.  

 Comprehensive understanding the chemical compositions and different types of 

constituents existed in the flowback water is critical to establish a fundamental knowledge for 

proper water treatment process which benefits to alleviate health and environmental impacts or to 

effectively develop a datamining model to predict the gas production. The fracture flowback 

volume are varied from well to well, Hayes (2009) claims in Gas Technology Institute (GTI) 

Mission Report that 19 wells are recorded within 90 days, the accumulative weighted percentage 

of water flowback volume after 90 days is at the range 10% - 88% (Hayes, 2009). Another Spotts 

well Chief Oil & Gas in Lycoming County revealed the concentration of each ion at different 

weighted percentage of flowback that has been collected (Haluszczak L. , 2011). Dresel (1985) 

and Rose only claimed the compositions of oilfield brines at random one-time sample as well as 

the Bureau of Oil and Gas Management (BOGM) dataset. None of these two includes a consecutive 

flowback time or the flowback volume. The flowback water compositions consist of high 

concentrations of diversified compounds, such as arsenic, sodium, potassium, chloride, barium, 
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strontium, magnesium, sulfates and radionuclides. The range for each constituents are widely 

spread, with sodium (50-40,000ppm), chloride (5,000-80,000ppm), and barium (50-9,000ppm), 

and total dissolved solid (1,000-150,000ppm) which are particularly abundant in water (Hayes, 

2009). The diversity of each composition depends on different locations and initial chemicals used 

in the injection fluids, in which different chemicals function properly within the formation. A 

robust case executed by Blauch et al. (2009) that over 100 flowback samples were collected 

through 18 months from the lower southwestern and upper northeastern regions of the Marcellus 

shale play. The basic idea initiated by Blauch was to address the public attention of the high salinity 

from flowback water. The concentration of chloride reaching 100,000mg/L at the highest were 

investigated which the retention time for flowback in the reservoir firstly came to the big picture. 

Other studies such as Haluszczak et al.(2012) also conducted an integral research about the 

flowback compositions from various wells and the results turned out to be identical. In Haluszczak 

et al (2012) analysis, the concentrations of Cl ranged from 1,070 to 151,000mg/L as other 

constituents which are specifically dominants in the flowback water including Ra-227(73-

6,540pCi/L), Ba(76-13,600mg/L), Mg(22-1,800mg/L), K(8-1,010mg/L), and Ca(204-

14,800mg/L). 
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Chapter 3 Problem Statement 

 The goal for this research is to understand the change of salt compositions in flowback 

water. The in-situ brines are taken as a reference to reasonably identify the characteristics of early-

time and late-time flowback water by compositional analysis using different datamining 

approaches.   

 Several datasets used to build an integral database. In this study, robust datamining 

techniques such as PCA are implemented to better understand the flowback compositions’ 

behavior. The steps to achieve the research goal is conveyed as below: 

1. Different datasets are gathered after screening, the consistency is ascertained prior to feed 

in the datamining models (Advanced imputation, List-wise deletion, etc). 

2. The time-series data and oilfield brines are sieved from the database and then plotted on 

the map by showing the variations geographically in concentrations of different 

compositions (Cl, Na).  

3. The volume-series and time-series data are singled out to perform inorganic compositions’ 

changes with time and volume such monovalent ions like sodium, chloride etc and divalent 

ions calcium, magnesium, sulfate etc. 

4. The time-series data and oilfield brines from step 2 will be applied into different linear 

regression models (Cl vs. Br, Ca vs. Br, etc). 

5. Only the major contribution constituents (13 different compositions) from time-series in 

step 2 will be feed in Principal Component Analysis (PCA) model which is introduced to 

minimize the complexity of the correlations and visualize the specified variances readily. 
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6. Time-series data for certain compositions (Na+K, Ca, Mg, Total Alkalinity, Cl, SO4) are 

transformed into proportions and then plugged into Piper trilinear diagram which yields 

the coarse characteristics of different flowback water samples. 
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Chapter 4 Database Development Based on Field Data 

 Flowback data are available in different open sources and internal reports. This chapter 

focuses on backgrounds of each datasets and the development of an integrated database based on 

the characteristics and consistency of available datasets. Three volume-series and time-series 

datasets including GTI (2009), Blauch (2009) and Chief O&G Spotts Well (2011), as well as two 

one-time sampling flowback water observations including BOGM (2011) and Pritz & Kirby (2010) 

datasets are gathered and numbered in sequences. The futile data are screened manually while 

gathering the datasets. The inconsistency among datasets cannot be avoided so that each dataset 

are performed individually. The oilfield brine compositions originated by Dresel & Rose (2010) 

are incorporated in this research so as to have the comparison between flowback samples and in-

situ brines. 

4.1 GTI Dataset (Hayes, 2009) 

 The need for the compositional analysis of flowback water propelled 17 member 

companies of the Marcellus Shale Coalition (MSC) providing 19 sampling locations where 

hydraulic fracture had been performed. The GTI dataset is generated based on detections on 19 

locations during a consistent 0, 1, 5, 14 or 15, 90-day sampling period. It comprises of almost all 

the inorganic and organic compositions under the PADEP sampling protocol. 

 Literally, 3 out of 19 well sites located upper north in West Virginia including two in Lewis 

County and one in Taylor County which are shown in and Fig.4-2. The rest are located in 

Pennsylvania, distributed on southwestern and northeastern part which are shown in Fig.4-1. At 

each of 19 well sites, samples of the influent prior to the injection was taken as the Day 0 indicated. 

A particular time series has been scheduled as the sampling criteria for each well sites so that the 

flowback water were sampled properly and in consistent. The compounds were determined and 
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divided into three groups, general chemistry or inorganic compounds, organic compounds, and 

metals. Preliminary results from this dedication turns out that magnitude values for pH, alkalinity, 

total dissolved solids (TDS), total organic carbon(TOC), oils and greases and other parameters 

from general chemical category are within the acceptable ranges for reported conventional 

produced water from USGS. In this report, sodium, calcium and potassium took part in nearly 90% 

of the TDS dominating the cations in flowback water. Metals are the second importance that make 

up to 5-9% of the TDS from the flowback, such as iron, calcium, barium, magnesium, and boron. 

Heavy metals are at low levels which might be a considerable concern in urban industrial 

wastewaters and POTW sludges. Furthermore, as for organic compounds, almost 96% of volatile 

organic constituents (VOCs) were under non-detectable levels and less than 0.5% were detected 

above 1 ppm. The similar events were also identified for semi-volatile organic constituents and 

pesticide (Hayes, 2009).  

 

Figure 4-1 Sampling locations in Pennsylvania from GTI dataset (Hayes, 2009). 
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Figure 4-2 Sampling locations in West Virginia from GTI dataset (Hayes, 2009). 

4.2 Dresel & Rose Dataset (Dresel & Rose, 2010) 

 With the growing interest on oilfield brines as well as the flowback water from Marcellus 

Shale, a dataset was generated originally in 1985 and then renewed and published in 2010 is named 

as Dresel & Rose dataset. 40 samples were taken and analyzed mostly one year or more after 

production initiated. The dataset mainly contains the inorganic compositions on which this study 

primarily concentrates based on different flowback datasets. The comparisons between each 

flowback datasets and oilfield brines is done in the following analysis. 

 Basically, despite the desired oil, gas and gas condensate production, vast wells produce 

saline solution or brine (Collins, 1975). High salinity has been found in previous analyses 

(C.W.Poth, 1962) and the major components are sodium and calcium chlorides which are along 

with other solutes at relatively low concentrations. The report was primarily to dedicate to better 

understand the geographic and geologic distribution of salinities and the pH, oxidation state, and 

chemistry of the brine depending on the depth. Minor concerns such as the origin of those solutes, 

history, and present hydrology of the brines as well as the content and trace elements discoveries 
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related to geography might be also involved in this effort. The terminology of “brine” is well 

defined that more than 35,000 mg/L (about 3.5%) total dissolved solids (Hem, 1985). But in this 

report, the terms “oil-field brine,” “saline formation water,” “oil-and-gas-field brine,” 

“sedimentary-basin brine,” are used to describe the chloride-rich waters discovered in sedimentary 

environments and brought to the atmospheric condition accompanied with oil and gas production. 

Therefore, several cases which a less than 35,000 mg/L TDS has been incorporated and under 

investigated. The structure for the dataset gathering is cultivated with 40 new analyses completed 

by Dresel (1985) and a relatively tiny amount of previously published analysis including Barb 

(1931) dedicated in some major components analysis on oilfield brines sampled from 45 wells, 

Poth (1962)’s major and trace-element data analysis from Cambrian through Pennsylvania aquifers. 

 The histories for different analysis on these datasets were variated until Dresel summarized 

and remediated the gaps in the previous data. The attempt for sampling was made for both oil wells 

and gas wells from Lower Silurian to Upper Devonian. The sample areas were subjected to avoid 

water flooding and in nearly all wells, the samples were taken after the production for a year or 

more. Thus, it indeed reduce the possibility of the contamination by drilling and completion fluids. 

Sampling dates were ranging between July and December 1982. The well locations are illustrated 

in Fig.4-3. Fourteen oil wells and twenty six gas wells were sample in which 11 of the gas wells 

and all the oil wells are sampled from the Upper Devonian. Other than that, 10 of the gas well 

samples were taken from the Medina Group, one is from the Tuscarora, the rest were sampled 

from the Ridgeley. Since the difficulties to collect adequate amount of samples for freshly 

produced Medina samples, only sample ED-82-27 is relatively completed. Sample ED-82-30 is 

only missing an alkalinity titration. Samples ED-82-28, 29 and 31 were lack of information to 

complete integral analysis. Previously, different methods including both field and laboratory 
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determinations are performed for this dataset. In this study, a variety of approaches are 

implemented for Devonian samples which would be interpreted in the following chapter. (Dresel 

& Rose, 2010). 

 

Figure 4-3 Well locations of samples by Dresel (1985) and Poth (1962) 

4.3 BOGM Dataset (Haluszczak, Rose, & Kump, 2012) 

 The Marcellus flowback data acquired by the PA Department of Environmental Protection 

Bureau of Oil and Gas Management (BOGM) includes 40 flowback water samples distributed in 

Pennsylvania. These data are collected and obtained from James Fuller of PA DEP Bureau of Oil 

and Gas Management in Harrisburg. The date for only a couple of samples are available in 18 

wells out of 40 indicated in the following interal database table.4-1. The sampling days may be 

ranged from 1 day to 51 days after fracturing. Unfortunately, time-series flowback analysis is 

unlikely to be performed because most of samples are taken only for one time and the inconsistency 
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of the sampling time. However, most of the observations are enclosed with well permit number so 

that the production prediction analysis could be performed.  

 According to the report, all the data were collected from southwestern Pennsylvania 

stretching along the orthogonal line towards the northeastern Pennsylvania as shown in Fig.4-4. 

The TDS concentration is similar as the previous GTI dataset. The upper and lower boundaries are 

approximately 264,000 mg/L and 5,090 mg/L. The monovalent and divalent cations such as 

sodium, calcium, potassium and magnesium are of high concentration dominating the TDS 

constituents. The possible coupling anions are chloride which are abundant supremely. Relatively 

low concentration of sulfate and bromide might be still considerable since specific chemical 

reactions may be triggered by these two anions. However, the sensitivity of the probe for 

determining sulfate is unable to detect the exact value but a range could still be identified 

(Protection, 2011). 

 

 

 

 

 

Figure 4-4 Well locations of BOGM dataset  
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4.4 Pritz & Kirby Dataset (Pritz, 2010) 

 Pritz and Dr. Kirby unveiled a collection of dataset which are also included in this research. 

These data are gathered under the permission of PA DEP (2009). However, in this dataset, most 

of the flowback water samples are without the sampling time. Therefore, most of the datamining 

tactics cannot applied to this dataset, nonetheless, this dataset is set to be a testing dataset for 

potential model of gas production prediction model which will be further discussed later.   

4.5 Blauch (2009) and Chief Oil & Gas Spotts Well (2011) Dataset  

 Other than the major dataset gathering above, two relative small datasets are extracted and 

rebuilt. One of those is taken from a stimulated Marcellus Shale well belongs to Chief Oil and Gas 

Company in western Lycoming County presented in Haluszczak (2011) Bachelor thesis. An 

indication of increment in chloride in flowback water has been observed as the samples were taken 

via a two-week period. The concentration for each constituents are recorded as the volume of 

flowback returned, at the beginning the third, second third sampled and final third sampled of the 

flowback. The dataset itself interpreted a rising on ionic concentrations in the flowback flowed out 

of the Spotts Well (Haluszczak L. , 2011). The other one is coming from the Blauch et al. (2009) 

dataset. An analytical dataset of flowback waters from the Marcellus Shale well A located in 

southwestern Pennsylvania was collected as nearly 40% of flowback recovery. The similar trend 

for both sodium and calcium is identified. The major components such as divalent ions are 

analyzed in the following chapter 6. But other relative low level of components are remain 

disguised, therefore, the analysis based on this dataset is within limitation. 

4.6 Overview of Database 

 Fundamentally, all the datasets are included in the database and numbered sequentially as 

illustrated in Table.4-1. The availability of the time and volume-series as well as the well locations 
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are also presented. Totally, flowback and oilfield brine samples from 125 Marcellus wells are 

included. 

Table 4-1 Overview of database 

 

Well # Note Well-Permit Lat Long

0 1 5 14/15 90
1 x x x x x 39.1 -80.36

2 x x x x x 40.27 -80.26

3 x x x x x 39.03 -80.34

4 x x x x 39.81 -80.02

5 x x x x x 39.94 -80.29

6 x x x x x 40.26 -80.39

7 x x x x x 41.43 -77.28

8 x x x x x 40.19 -79.78

9 x x x x x 41.41 -78.23

10 x x x x 41.88 -76.97

11 x x x x 41.73 -76.62

12 x x x x 40.8 -80.07

13 x x* x* x 41.74 -78.51

14 x x x 39.41 -79.97

15 x x x x 41.66 -77.9

16 x x x x x 40.5 -79.56

17 x x x x x 41.89 -75.88

18 x x x x x 40.74 -80.06

19 x x x x 41.13 -78.05

20 115-20095 41.72631 -75.903102

21 115-20171 41.72638 -75.902975

22 035-21155 41.36923 -77.559436

23 117-20268 41.78531 -76.987285

24 117-20325 41.94702 -76.977267

25 117-20295 41.98925 -76.979561

26 063-36435 40.63046 -79.110816

27 129-27856 40.37158 -79.33216

28 115-20147 41.74964  -75.874509

29 115-20148 41.74951 -75.874432

30 Day20 035-21162 41.19671 -77.682991

31 051-24098 39.72282 -79.506643

32 051-24209 39.79976 -79.891333

33 117-20293 41.79178 -77.155424

34 x 051-24206 40.00652 -79.805407

35 x 059-25137 39.94537 -79.980466

36 111-20268 39.77665 -78.971834

37 x x x 033-26585 41.01973 -78.761283

38 027-21478 41.09236 -77.955459

39 027-21479 41.09233 -77.955481

40 115-20045 41.70379 -75.881335

41 115-20036 41.72821 -75.87909

42 027-21478 41.09236 -77.955459

43 027-21479 41.09233 -77.955481

44

45 061-20004 40.23425 -78.106021

46 019-21476 41.1228 -79.753513

47

48 125-23048 40.17897 -80.410946

49 117-20197 41.98413 -77.026332

50 059-24394

51 129-27331 40.17138 -79.75723

52 019-21476 41.1228 -79.753513

53 x 051-23926 39.95862 -79.83427

54 117-20197 41.98413 -77.026332

55 125-23023 40.33011 -80.281747

56

57

58 x 081-20063 41.37467 -77.1345

59 x 081-20063 41.37467 -77.1345

GTI

BOGM

Unknown

Unknown

Day37

Unknown

Unknown

Unknown

Unknown

Unknown

Day2 

Unknown

Unknown

Day12

Day2

Day16

Day44

Day19

Sample Collected on Flowback Days

Unknown

Unknown

Unknown

Unknown

Day7

Day51

Unknown

Unknown

Unknown

Unknown

Unknown

Unknown

Day11

Day8

Unknown

Unknown

Unknown
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60 035-21161 41.19501 -77.68769203

61 035-21156 41.36937 -77.55943694

62 015-20116 41.73669 -76.6032285

63 081-20149 41.28121 -76.631075

64 081-20109 41.27089 -76.65969119

65 027-21476 41.13093 -78.04724025

66 053-29019 41.55034 -79.16475833

67 105-21484 41.84775 -78.15733778

68 105-21298 41.61478 -77.87637681

69 117-20620 41.68941 -77.56073333

70 117-20198 41.67784 -77.58123061

71 033-26680 41.17009 -78.44976722

72 129-27866 40.27728 -79.64681389

73 129-27880 40.47877 -79.56526944

74 129-27882 40.49144 -79.56915278

75 129-27881 40.49563 -79.58927778

76 129-27879 40.49738 -79.56966389

77 063-36255 40.75149 -79.04436389

78 129-27886 40.50399 -79.57778611

79 129-27883 40.4995 -79.54335278

80 129-28022 40.49249 -79.57472778

81 129-28097 40.50397 -79.560975

82 129-28031 40.50906 -79.54695278

83 129-27865 40.2905 -79.63706389

84 100% Flowback Vol. Returned Chief O&G LLC 081-20060 41.2747 -77.2657

85 12000bbls 13000bbls 14000bbls 15000bbls Blauch Well A
86 ED–82–01 40.79 -79.07

87 –02 40.74 -79.05

88 –03 40.74 -79.05

89 –04 40.99 -78.83

90 –05 40.86 -78.85

91 –06 40.86 -78.85

92 –07 40.84 -78.81

93 –08 40.6 -79.16

94 –09 40.78 -79.14

95 –10 40.89 -78.95

96 –11 40.78 -78.98

97 –12 41.46 -79.57

98 –13 41.54 -79.53

99 –14 41.57 -79.36

100 –15 41.69 -79.56

101 –16 41.82 -79.2

102 –17 41.82 -79.21

103 –18 41.81 -79.21

104 –19 41.64 -78.96

105 –20 41.57 -78.9

106 –21 41.63 -78.97

107 –22 41.66 -80.33

108 –23 41.36 -79.8

109 –24 41.36 -79.8

110 –25 41.36 -79.8

111 –26 41.36 -79.8

112 –27 41.49 -80.14

113 –28 41.51 -80.14

114 –29 41.55 -80.16

115 –30 41.53 -80.11

116 –31 41.59 -80.07

117 –32 41.49 -80.06

118 –33 41.51 -80.06

119 –34 41.5 -80.05

120 –35 41.49 -80.06

121 –36 41 -77.84

122 –37 39.97 -79.09

123 –38 39.94 -79.12

124 –39 39.93 -79.11

125 –40 40.04 -78.92

Dresel & Rose (Oilfield Brines)Sampling after production for a year or more

x* Some of compositions are missing on that day

Unknown

Unknown

Unknown

Pritz&Kirby
Unknown

Unknown

Unknown

Unknown

Unknown

Unknown

Unknown

Unknown

Unknown

Unknown

33% Flowback Vol. Returned 66% Flowback Vol. Returned

Unknown

Unknown

Unknown

Unknown

Unknown

Unknown

Unknown

Unknown

Unknown

Unknown

Unknown
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Chapter 5 Data Analysis Methods 

 A series of tactics for data analysis are deployed in this study. The path to achieve the 

discovery of valuable information depends on the sequence from simplicity to complexity of the 

datamining approaches. By using colors and marks to represent different levels of compositions in 

different sampling groups, compositions changing geographically are able to be visualized. 

Chronological change in compositions is then generated so as to ascertain the hypothetical 

chemical reaction occurred in reservoir condition by differentiating the magnitude of increment 

and decrement on specific constituents. Singled out from the vast database, the major compositions 

are applied with linear-regression method. The distinction and similarity between flowback water 

and oilfield brines will be further discussed according to the results from linear-regression models. 

Other than that, the K-means clustering is adopted to concurrently demonstrate the phenomenon 

observed in linear-regression models. A more comprehensive approach nominated as Principal 

Component Analysis (PCA) is employed to magnify the variances among a various compositions. 

The discovered information based on PCA could be utilized in post waste water treatment industry. 

Coincidently, the Piper trilinear diagram is also an auxiliary for engineers on decision making on 

examination of waste water treatments. Ideally, a high-potential prospective datamining tool is 

exemplified by utilizing Artificial Neural Network (ANN), predicting the initial or average gas 

production based on flowback compositions from which the benefits would be amplified 

considerably. 

5.1 Flowback Compositions Change Geographically 

 Given a geographical map, a view of the integral database location is acquired. By 

visualizing the locations, the universality of the samples is convincing from which each model is 

built for quantitative and qualitative analysis. The well locations are pinned on maps which are 



25 

 

generated from built-in function of matlab mapping tool box. Furthermore, the concentrations of 

each constituent are marked with distinguished shapes and each color indicates the origin of each 

sample. Based on these locations with different marks and colors, the tendency of each 

composition in a variety of concentration could be identified geologically. More importantly, the 

statistical ratio could be also spotted from those maps to analyze the data trends chronologically. 

5.2 Flowback Compositions Change with Volume/Time 

  The compositions always variate along the time line, sometime the flowback volume are 

identical to the time line which can also record composition change with regarding to the flowback 

procedure. Therefore, each data point linked to the corresponding time are connected by straight 

lines as time point sorted in chronological sequence. The cumulative flowback volumes are 

recorded chronologically as well. The plots for flowback compositions change along with volume 

or time aim to observe the variation in various compositions at different wells. Those variation 

may introduce diverse possible hypothesis behind the piles of numbers. A momentous discovery 

from these chronologically created graphs is the reaction which might be occurred in reservoir 

conditions resulting in such magnitude of increment or decrement in specific compositions. The 

chemical reaction equations are then formulated to further explore how far the reaction goes by 

quantitative analysis on chemical equilibrium.   

5.3 Linear-Regression  

 Regression analysis is a statistical methodology utilized frequently in distinguishing 

relations between two or more quantitative variables. The corresponding outcomes between 

variables form an organized and predictive tool so that approximate outputs could be generated by 

different entries of input without knowing the output through this tool (H.Kutner, Nachtsheim, 

Neter, & Li, 2005). 
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 A linear regression model is said to be a simple where there is only one predictor variable 

and one control parameters, linear relation happens both in the parameter and in the predictor 

variable. In this study, the field data is plot in scatter and the linear fit model is built up based on 

these scatters. In order to find a relative accurate linear fit and the best of estimators of parameters 

𝛽0 and 𝛽1, the method of least squares is employed and performed appropriately.  

For each observation set (𝑋𝑖, 𝑌𝑖), the least squares is defined as the deviation from 𝑌𝑖 (Kutner, 

Nachtsheim, Neter, & Li, 2005) 

      [𝑌𝑖 − (𝛽0 + 𝛽1𝑋1)]                                              Equation 5-1 

𝛽0 = 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 

𝛽1 = 𝑠𝑙𝑜𝑝𝑒 

 Particularly, an n number of data points would require a consideration of the sum of the n 

squared deviations. 

𝑄 = ∑ (𝑌𝑖 − 𝛽0 − 𝛽1𝑋𝑖)
2𝑛

𝑖=1                                        Equation 5-2 

 The ultimate aim is to find out the best estimator 𝛽0 and 𝛽1 which are denoted as 𝑏0 and 𝑏1 

to minimized the total deviation 𝑄. By utilizing the analytical approach,  

𝑏1 =
∑(𝑋𝑖−𝑋)(𝑌𝑖−�̅�)

∑(𝑋𝑖−�̅�)
                                                Equation 5-3 

𝑏0 =
1

𝑛
(∑𝑌𝑖 − 𝑏1∑𝑋𝑖) = �̅� − 𝑏1�̅�                                  Equation 5-4 

 Where �̅�, �̅� are the means of the 𝑋𝑖, 𝑌𝑖 observations. Once the estimators are derived, the 

model is then evaluated with its accuracy.The estimated function is �̂� = 𝑏0 + 𝑏1𝑋 where �̂� is the 
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value of the estimated regression function at the level 𝑋 of the predictor variable.The mean square 

value is the sum of squares divided by the degrees of freedom. 

𝑠2 = 𝑀𝑆𝐸 =
𝑆𝑆𝐸

𝑛−2
=

∑(𝑌𝑖−�̂�𝑖)2

𝑛−2
                                     Equation 5-5 

 The root mean squared error can be denoted as 𝑠 = √𝑀𝑆𝐸  (Kutner, Nachtsheim, Neter, & 

Li, Chapter 1 Linear Regression With One Predictor Variable, 2005) 

 The confidence bounds on coefficients is well defined as followed: 

𝐶 = 𝑏 ± 𝑡√𝑆                                                   Equation 5-6 

 Where b are the coefficients derived previously [𝑏0, 𝑏1], 𝑡 depends on the confidence level 

and is computed using the inverse of Student’s 𝑡 cumulative distribution function. And 𝑆 is a 

vector of the diagonal elements estimated from covariance matrix of the coefficient estimators, in 

linear fit, 𝑋 is the design matrix which could be denoted as [𝑋𝑖 𝑋𝑖+1 … 𝑋𝑛] 

𝑆 = (𝑋𝑇𝑋)−1𝑠2                                                  Equation 5-7 

 The confidence bounds are set as 95% in default but could be also specified with any 

certainty such as 90%, 99.9% and so on. It would perhaps take a 5% chance to take risk in being 

incorrect about predicting your outcome. Then, a 95% prediction interval would be selected and 

that interval indicates a 95% chance that new observation is actually enveloped within the lower 

and upper prediction bounds (Confidence Bound, 2015). 

 Sometimes, the anomalies would distort the authenticity of the correlations, those 

anomalies may be caused by system errors or random errors. In order to have a relative general 

model to describe the discovery, the anomalies must be segregated out of the observations. Cook’s 
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distance is useful for identifying outliers or data out of trend in the 𝑋 matrix or arrays (observations 

for predictor variables). Once the outlier is distinguished, the model would be reconstructed 

excluding the outliers. Cook’s distance is the scaled change in fitted values which the original 

fitting model must be existed prior. It is defined as: 

𝐷𝑖 =
∑ (�̂�𝑗−�̂�𝑗(𝑖))

2𝑛
𝑗=1

𝑝 𝑀𝑆𝐸
                                               Equation 5-8 

where 

 �̂�𝑗 is the jth fitted response value. 

 �̂�𝑗(𝑖) is the jth fitted response value, where the fit exclude observation i. 

 MSE is the mean squared error. 

 p is the number of coefficients in the regression model. 

 In the program, an observation with cook’s distance larger than 3 times the mean Cook’s 

distance might be considered as an outlier in default shown in Fig.5-1 (Cook's Distance, 2015).  

 

 

 

 

 

 

Figure 5-1 Case order plot of Cook’s distance of one example in linear regression model, the threshold of Cook’s 

distance to identify outliers in default is set as larger than 3 times the mean Cook’s distance.  
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 Cook’s distance is always functional when the anomalies take a little part of the whole data 

pool, however, the outliers in some occasions may occupy up to 15% of the dataset which 

deteriorate the regression fit. Only small portion of the anomalies could be eliminated by cook’s 

distance, therefore, the rest would still devastate the accuracy of the fitting process. Therefore, the 

combination in the application of cook’s distance and residual check is introduced. It is critical to 

minimize the error in fitting but also to control the authenticity of the original data, thus by 

controlling the number of outliers eliminated increasing the accuracy of the regression model is 

the key in this treatment. 

 Residual check are useful to detecting the hypothetical fitting model with respect to the 

error term. Three different types of residuals is calculated in the program, each method is presented 

as below: 

Raw Residuals 

𝑟𝑖 = 𝑦𝑖 − �̂�𝑖                                                           Equation 5-9 

Where 𝑟𝑖 is the residual of the ith term, 𝑦𝑖 𝑎𝑛𝑑 �̂�𝑖 are the corresponding observed and fitted values. 

Pearson Residuals 

𝑝𝑟𝑖 =
𝑟𝑖

√𝑀𝑆𝐸
                                                           Equation 5-10 

Standardized Residuals  

𝑠𝑟𝑖 =
𝑟𝑖

√𝑀𝑆𝐸𝑖(1−ℎ𝑖𝑖)
                                                    Equation 5-11 

Where 𝑀𝑆𝐸𝑖 is the mean squared error of the regression fit calculated by removing observation i 

and ℎ𝑖𝑖 is the leverage value for observation i. The leverage value is the provided by hat matrix  
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𝐻 = 𝑋(𝑋𝑇𝑋)−1𝑋𝑇                                                    Equation 5-12 

Where the diagonal element of 𝐻 , ℎ𝑖𝑖  satisfy 0 ≤ ℎ𝑖𝑖 ≤ 1 ,∑ ℎ𝑖𝑖 = 𝑝𝑛
𝑖=1  ;  p is the number of 

coefficients and n is the number of observations (row of X) in the regression model (Residuals, 

2015).  

 However, only raw residuals is adopted to perform the evaluation in this study. The 

histogram shown in Fig.5-2 would give an indication of how good the regression model is fitted. 

The more residual frequency histogram is approaching to the normal distribution, the one could 

expect the errors to be independently distributed in which the regression model would acquire 

more possibilities to account for this dataset. Huge departures usually allude any structures 

contained in the residuals that is not sufficiently interpreted by the regression model.  

 

Figure 5-2 Histogram of residuals of one example in fitting linear regression model. 
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Figure 5-3 Normal probability plots of residuals as one example in a linear regression model  

 Another plot for examining the residuals is the normal probability plots Fig.5-3 in which it 

is useful when sample sizes of residuals are relatively small. By sorting the residuals into ascending 

order and then the cumulative probability of each residual is calculated through the equation: 

𝑃𝑖 =
𝑖

𝑁+1
                                                        Equation 5-13 

 With 𝑃𝑖 on behalf of cumulative probability at the ith ascending order. And 𝑁 is the total 

number of entries in the list. The scatter points should be lying on or in the vicinity of an 

approximately straight line only if the points possess a normal distribution property (Normal 

Probability of Residuals, 2015).  

5.4 Clustering and Multivariate Approach 

  The representative-based clustering are popular in data mining which is regarded as a 

partitioning method that the given 𝑛 number of observations in d-dimensional space 

(𝑥1, 𝑥2, 𝑥3 … 𝑥𝑛)  are aimed to be divided into 𝑘  clusters. Each cluster is assigned as 𝐶 =

-0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

0.05

0.1

0.25

0.5

0.75

0.9

0.95

Residuals

P
ro

b
a
b
ili

ty
Normal probability plot of residuals



32 

 

{𝐶1, 𝐶2, … , 𝐶𝑘} and the mean or so-called centroid 𝜇𝑖 of all points in each cluster is specified as the 

representative to summarize the cluser (Mitchell, 1997): 

𝜇𝑖 =
1

𝑛𝑖
∑ 𝑥𝑗𝑥𝑗∈𝐶𝑖

                                                    Equation 5-14 

 Where 𝑛𝑖  is the number of points in cluster 𝐶𝑖 . One approach for representative-based 

clustering is introduced as K-mean described as followed. In order to evaluate the quality of the 

given clustering 𝐶 = {𝐶1, 𝐶2, … , 𝐶𝑘}, a sum of squared errors scoring function shown below is in 

necessity . 

𝑆𝑆𝐸(𝐶) = ∑ ∑ ‖𝑥𝑗 − 𝜇𝑖‖
2

𝑥𝑗∈𝐶𝑖

𝑘
𝑖=1                                        Equation 5-15 

The goal is to find the clustering that 𝑆𝑆𝐸 score is minimized: 

𝐶∗ = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝑐

{𝑆𝑆𝐸(𝐶)}                                                  Equation 5-16 

 K-means randomly initialize k centroids in the data space. This is typically done by 

generating a value uniformly at random within the range of each dimension. Considering the 

traditional iteration includes two steps in K-means algorithm: (1) cluster assignment, and (2) 

centroid update. As k cluster means given as mentioned previously, simultaneously, each point 

𝑥𝑗 ∈ 𝐷 is allocated to the relatively closer mean point of which the certain cluster consist, with 

each cluster 𝐶𝑖 enclsoing points that are closest to 𝜇𝑖. That is, each point 𝑥𝑗 is assigned to cluster 

𝐶𝑗
∗, where 

𝑗∗ = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝑘

{‖𝑥𝑗 − 𝜇𝑖‖
2

}                                             Equation 5-17 
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 Secondly in the centroid update step, clusters 𝐶𝑖 , 𝑖 = 1, … , 𝑘  with new mean values 

calculated for each cluster from the points in 𝐶𝑖  updating along with the cluster assignment 

iteratively until the local minima is achieved. More specifically in our various cases, the number 

of 𝑘  is known precedently, thus the centroids are the main focuses. The distances between 

centroids would be changed dramatically in different scenarios (Rokach & Maimon, 2015).  

 In statistics, principal component analysis (PCA) is probably the oldest and best known of 

the techniques of multivariate analysis. The main idea of PCA is to reduce the dimensionality of a 

dataset in which the interrelated variables are identified intrinsically by orthogonal transformation. 

Converting the possibly correlated variables in the observations into a new set of variables which 

is defined as the principal components that are uncorrelated while retaining as much as possible of 

the variation existed in the raw dataset. The principal components are yielded in order so that the 

first and second principal component has the top largest possible variance in which most of the 

variability in the raw dataset is described, sometimes the third one is also coupled with the first 

two (Jackson, 2003). 

 Consider a 95 × 13 matrix  𝑡, the row number 95 indicates that 19 wells consist of 5 time 

step for each well, Day 0, Day 1, Day 5, Day 14, Day90. The column number indicates 13 

constituents of each well examined along the 5 differet times the 13 constituents are {Na, K, Ca, 

Cl, SO4, Ba, B, Fe, Li, Sr, Mg, Br, Alk} and the units for each constituent are the same.  

 The procedure in conducting PCA is well exhibited as below: 

 The size of the matrix is recorded as 𝑛 = 95; 𝑚 = 13 where 𝑛 represents the number of 

row and 𝑚 represents the number of column. In order to summarize the raw dataset, the sample 

mean vector and sample standard deviation vector is determined by following equations. 



34 

 

𝜇 =
1

𝑁
∑ 𝑡𝑖

𝑁
𝑖=1                                                      Equation 5-18 

 Where 𝑁  is equivalent to 𝑛  here which the mean of each column is computed and 

formulated as a vector. And then, based on this vector, the standard deviation can be calculated. 

𝑠 = √
1

𝑁−1
∑ |𝑡𝑖 − 𝜇|2𝑁

𝑖=1                                                Equation 5-19 

 Most often, the raw data should be standardized initially. Standardization or normalization 

is a process to alleviate the variance caused by rescaling, for example, 𝜇𝑔/𝐿 is transformed into 

𝑚𝑔/𝐿, it may have impact on our principal components, the primary principal component may 

dominate over others as well. Standardize the variables by subtracting its mean from that variable 

and dividing it by its standard deviation. 

𝑍𝑖𝑗 =
𝑡𝑖𝑗−�̅�𝑗

𝑠𝑗
                                                     Equation 5-20 

 Where 𝑡𝑖𝑗 is the variable in cell (i, j), �̅�𝑗 is the sample mean at 𝑗th coloumn and 𝑠𝑗 is the 

sample standard deviation at 𝑗th coloumn (Jackson, 2003). 

 In computational terminology, the principal components are done by determining the 

eigenvectors or eigenvalues of the sample covariance matrix which is equivalent to finding the 

axis system where the covariance matrix is diagonal. The eigenvector comprising first two or three 

greatest eigenvalue are the direction of greatest variation that are also the axes orthogonal to each 

other. By assuming 𝑇 is the normalization matrix of 𝑡, the eigenvalues of covariance matrix can 

be defined as: 

𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑛𝑡(𝑐𝑜𝑣(𝑇) − 𝜆𝐼) = |(𝑐𝑜𝑣(𝑇) − 𝜆𝐼)| = 0                    Equation 5-21 
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  Where 𝐼 is the identity matrix, in order to have this equation solved, the covariance matrix 

should be solved first.  

𝐶𝑜𝑣(𝐴, 𝐵) =
1

𝑁−1
∑ (𝐴𝑖 − 𝜇𝐴) × (𝐵𝑖 − 𝜇𝐵)𝑁

𝑖=1                       Equation 5-22 

 Where 𝜇𝐴, 𝜇𝐵 are the meana of 𝐴 and 𝐵 respectively. Therefore in this study, the 𝐶𝑜𝑣(𝑇) 

would result in a diagonal matrix. 

𝐶𝑜𝑣(𝑇) = [
𝑐𝑜𝑣(𝑇1, 𝑇1) ⋯ 𝑐𝑜𝑣(𝑇1, 𝑇13)

⋮ ⋱ ⋮
𝑐𝑜𝑣(𝑇13, 𝑇1) ⋯ 𝑐𝑜𝑣(𝑇13, 𝑇13)

]                        Equation 5-23 

 For an instance, in our program, the command [𝑉, 𝐷] = 𝑒𝑖𝑔(𝑐𝑜𝑣(𝑇)) returns two matrix 

𝑉 and 𝐷, the matrix 𝑉 encompass the coefficients for the principal component but what is worthy 

to notice is that the order from this command turns out to be ascending which indicates that the 

largest three variances happen in our dataset is stored in the last three column of the 𝑉 matrix. 

Matrix 𝐷’s diagonal element storing the variance of the respective principal components that is 

also in an ascending order. The loadings indicated by arrays on the plot would be the last three 

column of the 𝑉 matrix emanating from the origin. 

 Another graphical method presented in this study is the Piper diagram, it is widely used in 

the interpretation of water chemistry. The basic chemistry of flowback water samples were taken 

at the surface condition and examined with respect to presence of key inorganic constituents, for 

example, primary cations 𝑁𝑎, 𝐾, 𝐶𝑎, 𝑀𝑔 and chief anions 𝐻𝐶𝑂3
−, 𝐶𝑂3

2−, 𝐶𝑙−and 𝑆𝑂4
2− were basic 

element to construct the Piper trilinear diagrams. Two bottom ternary diagrams, the combination 

of elements on bottom triangles projected to a diamond-shaped quadrilateral at the top, comprise 

the Piper diagram. It has great advantage over other graphical plots like Stiff and star diagrams 
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that each observation on each time-series is shown as only one point in different color and shape. 

Therefore, the similarities and differences as well as the tendency between and along with 

tremendous amount of observations is readily to be identified with piper diagram. The relative 

abundant constituents are plotted in percentages which are transformed from mg/L (Me.E.Blauch, 

R.R.Myers, T.R.Moore, & B.A.Lipinski, 2009) (Helsel & Hirsch, 2002).  

 

Figure 5-4 Piper trilinear diagram modified version (Manoj, Ghosh, & Padhy, 2013). 
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Chapter 6 Knowledge Discovery  

 In this chapter, geographical analysis on flowback compositions are firstly applied so as to 

determine whether geographical trend are existed. By comparing the late flowback water samples 

with oilfield brines in statistical manner, the similarity and imparity could be identified 

simultaneously. Simple plots among major compositions versus flowback sampling time or 

flowback volume are done, the variances occurred at different time are visualized to initiate 

different reaction mechanisms. Combined with each simple plots, diverse reaction mechanisms are 

examined thoroughly. Linear-Regression models compiled with clustering are adopted to proceed 

further investigation on distinguishing early-time flowback water and late-time flowback water. 

After this has been done, the multivariate approaches including Principal Component Analysis and 

Piper trilinear diagram are performed to better understand the variable importance and reduce the 

complexity of the correlations between different variables. Yet the Artificial Neural Network 

model is not sufficiently applicable to maximize the value in gas production industry, but it is still 

an extensively functional dataming tool and the development in gas production industry by using 

this tool shall be pervasive. 

 

 

 

 

6.1 Geographical Analysis of Flowback Compositions 

 In order to survey sampled flowback waters distributed in the specific field that the 

comparison could be made, an integral map for each dataset are constructed. All 111 sampling 
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well locations including 40 samples of oilfield brines in our database are plotted on the Fig.4-5 

which refers to the Table.4-1 in the Chapter 4 numerically displaying the location information of 

the wells. However, 6 wells, (#44, #47, #50, #56, #57 and #85) from BOGM dataset are excluded 

because the locations are not provided. Due to the difficulties to reconcile different sampling 

methods, the variance for each performance of the data still exists though field and laboratory 

analyses protocols are similar under the PA, DEP guidance. 

 

 

 

 

 

Figure 6-1 a) All 111 sampling well locations in Pennsylvania. 

 

 

 

 

 

 

 

 

 

Figure 6-1 b) All 3 sampling well locations in West Virginia. 

 As Fig.6-1a) illustrated, most wells are located in upper northwestern part of Pennsylvania. 

Besides only three wells are located in West Virginia (Fig.6-1 b)). The indications of high salinity 
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in flowback water are commonly presented in all datasets respectively no matter the flowback is 

taken at any time or at any location. Additionally, neither significant reactions would cause a major 

variance on salinity concentration nor the concentration of influent would have such great impact 

on the flowback, thus the magnitude of high salinity could be an allusion on geological 

interpretation. Several figures are created to compare which are distinguished by time series.  

 

 

 

 

 

 

Figure 6-2 a) Sodium concentration in 14 or 15-day flowback water for 15 wells vs. in in-situ brine for 33 wells. 
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Figure 6-2 b) Sodium concentration in 90-day flowback water for 10 wells vs. in in-situ brine for 33 wells. 

 The Fig.6-2 a) and b) shown above delivers a critical information that the concentration of 

sodium from late time flowback are similar to the oilfiled brines. However, the initial point when 

the flowback become identical to the oilfield brines is still under investigation. And it is hard to 

conclude or to acquire the exact time line when two types of fluid diverse. The mixing procedure 

depends on different variables which are still complicated to explain. However, the results above 

illustrate that 14 or 15 days might be a possible entry the water produced from the formation 

becomes dominant. But there is still variance among distinct wells. Similar graphs are done for 

chloride as shown below in Fig.6-3 a) and b). 
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Figure 6-3 a) Chloride concentration in 14 or 15-day flowback water for 15 wells vs. in in-situ brine for 33 wells. 

 

 

 

 

 

 

 

 

 

Figure 6-3 b) Chloride concentration in 90-day flowback water for 10 wells vs. in in-situ brine for 33 wells. 

 As the Fig.6-2 and Fig.6-3 shown, no prominent tendency based on geological graphs could 

be observed. However, one noteworthy variation along the time-series is identical for both sodium 

concentration and chloride concentration that the lower concentration accounted for the lowest 

proportion of total during the transient time from day 14 to day 90. This can be concluded via 

Fig.6-4 indicated by filled circle (for Na < 104 𝑝𝑝𝑚  and for Cl < 5 ∙ 104 𝑝𝑝𝑚) .  Another 

observation is the ratio of high concentration (shown as triangle and inversed triangle) over all are 

the dominant shown in Fig.6-4 which are also identical to oilfield brines. Similarly, in Fig.6-5, a 
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transferring tendency from low concentration of chloride to high level of chloride could be 

illustrated by comparing the ratios.  

 

Figure 6-4 Pie chart indicating the proportion of each level of sodium concentration for 14 or 15-day flowback 

samples as well as 90-day flowback samples vs. the in-situ brines. 
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Figure 6-5 Pie chart indicating the proportion of each level of chloride concentration for 14 or 15-day flowback 

samples as well as 90-day flowback samples vs. the in-situ brines. 

6.2 Analysis of Flowback Water Compositions Change with Volume/Time 

 Time-series dataset are valuable since the concentrations of each constituent are monitored 

with time. Without time, the discoveries of critical change, equilibrium or other significant 

information would remain unveiled.  
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Figure 6-6 Concentration of sodium and chloride with the cumulative flowback volume for well #85 at the late time 

flowback period. 

 Fig.6-6 shows the Na and Cl concentrations in flowback water in southwestern 

Pennsylvania. Each point represents concentration at different cumulative flowback volume. The 

concentrations increase as flowback continues.  
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Figure 6-7 The variation of different divalent cations level along with cumulative flowback volume for well #85 at late 

time flowback period. 

 Simultaneously, the relatively high level divalent cations are screened out of the data pool 

and a similar graph is generated as shown in Fig.6-7. Each point indicates the concentration 

corresponding to distinguish cumulative flowback volume. The rising of concentrations as 

flowback cumulative collected could be observed. Furthermore, the calcium is the dominant 

divalent cation superior to others such as magnesium, barium and strontium. Literally, based the 

reactivity series for divalent element, barium performs more affiliation of metal. On the contrary, 

calcium behaves the weakest affiliation of metal. In this case, the high concentration of calcium 

gives an indication of high hardness of the water as the related carbonate radical are hypothetically 

not supposed to be abundant. Besides, the barium might be reacted and precipitated with sulfate, 

details of interpretation would be discussed in the following data pretreatments.  
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Figure 6-8 Average TDS and Volume showing maximum and minimum at each flowback time from well #1 to well 

#19 vs. time. 

 Undoubtedly, the flowback water rate is decreasing progressively and the total dissolved 

solid increasing speed reduces at the mean time shown in Fig. 6-8. The variation for both TDS 

and volume of flowback are quite unpredictable, but as all the value are averaged, the key 

tendencies are destined to have such comparison. One possible interpretation for such 

phenomenon is that with less residual flowback water remaining in the formation, the maximum 

capacity for dissolving the ions is gradually approached, therefore, at initial flowback days, the 

increment of TDS is prominent and then periodically lowering the dissolution speed. 

 

Figure 6-9 Ratio of sulfate over alkalinity and pH value with the cumulative flowback volume for well #85 at the late 

time flowback period. 
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value is decreasing all along with time passing by in the late time flowback. Note that the decline 

of ratio [
𝑆𝑂4

𝐴𝑙𝑘
] at the beginning would be possibly triggered by a precipitation procedure, with the 

flowback water becoming more acid, the bicarbonate radical would possibly decomposed and as 

a consequence, the ratio [
𝑆𝑂4

𝐴𝑙𝑘
] increased progressively.  

 The total dissolved solids (TDS) is missing so that the proportion of each ion possesses is 

unknown. 

 A similar graph is drawn below in Fig.6-9 to show how much chloride occupied in TDS. 

With cumulative flowback consecutively returned in proportion, the concentrations are ascending. 

The graph also shows chloride concentration takes up to over 50% of TDS concentration. 

 

Figure 6-10 Correlation between TDS and the most abundant ion Cl with the cumulative percentage of flowback 

water returned to the surface for well #84. 
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 Wells #1 to #19 have water samples at 0, 1, 5, 14 or 15, 90 days after a fracture treatment. 

The samples were collected by an independent contractor under the protocol enacted by state 

regulators and analyzed by a single laboratory for 45 inorganic constituents and about 200 organic 

constituents. However, in this study, only inorganic constituents are investigated and discussed. 

 

Figure 6-11 Sodium concentration changes along 90 flowback days from well #1 to #19. 

 

Figure 6-12 Potassium concentration changes along 90 flowback days from well #1 to #19. 
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Figure 6-13 Lithium concentration changes along 90 flowback days from well #1 to #19. 

 According the Fig.6-11 – Fig.6-13, the concentration of sodium, potassium and lithium are 

plotted along with the sampling date in Cartesian coordinates. Samples collected from different 

wells are illustrated by different colors and the color for each well is consistent for the following 

graphs.  The major monovalent anion “sodium” could be obviously distinguished from the 

magnitude of y – axis. Tables of the raw data for each graphs including following graphs will be 

presented in the appendix. Fig.6-11 exhibits the Na content of flowback water from 19 wells, most 

of the concentration of Na tends to elevate intensively at the beginning and then with time 

extending, the rate of the increment mitigate gradually. Nonetheless, 4 wells out of 19 wells are 

spotted behaves that they encounter a relatively small decrease from the day 5 to the day 14 or 15. 

The explanation for these specific phenomenon is sophisticated, the mild decrease may correlate 

to the permeability and the formation heterogeneity or errors in sampling. But all in all, there must 

be a low concentration source contacting with the high concentration flowback so that the 

reduction of the concentration could be triggered by dilution process. Same events could be 
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identified on lithium and potassium in Fig.6-12 and Fig.6-13. The potassium chloride used to add 

in as a constituent in slick water pumped into the well cracking the formation, it is functional to 

control the clay swelling and avoid plugging the pores. Thus, the initial concentration of potassium 

chloride is crucial for itself in the flowback water. 

 

Figure 6-14 Chloride concentration changes along 90 flowback days from well #1 to #19. 

 As the statement declared above, Fig.6-14 is done to represent the Cl changes in time so 

that the origin of chloride could be differentiated. It is affirmative that the Cl take over the most 

occupancy in anions to balance the cations. Similarly, the concentration increases steeply at the 

beginning and then gently afterwards and several wells indicate a drop in contents. The level of Cl 

is 10 times to Na, therefore, the divalent cations hereby is considerable. 
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Figure 6-15 Calcium concentration changes along 90 flowback days from well #1 to #19. 

 The calcium （Fig.6-15） dominates the divalent cations content which the magnitude of 

concentration reaches 104  ppm. The barium (Fig.6-16) and strontium (Fig.6-17) as well as 

magnesium (Fig.6-18) achieve the equivalent concentration despite only one well does the barium 

reach the unusual high level. The colors correlated with well numbers help to cross out the most 

frequent event of a decrement from day 5 to day 14 or 15 including well #11, #17 and #18. The 

consequence for this phenomenon might be caused by systematic errors or random errors. It is 

unlikely to conclude any significant reactions for these divalent cations, nevertheless, the 

possibility of precipitation that sulfate bonded with barium separated out of the solution through 

crystallization with hydration is highly considered. The concentration of sulfate is then evaluated. 
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Figure 6-16 Barium concentration changes along 90 flowback days from well #1 to #19. 

 

Figure 6-17 Strontium concentration changes along 90 flowback days from well #1 to #19. 
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Figure 6-18 Magnesium concentration changes along 90 flowback days from well #1 to #19. 

 The evaluation of sulfate is done in Fig.6-19 by using semi-log plot, the variation can be 

clearly observed. The initial content of sulfate in the injection frac water at each well sites is highly 

variable. However, the concentration of sulfate seems to be not stable for which the dissolution 

process and reaction process may be incorporated simultaneously.  A couple of possible reactions 

are enumerated based on different hypothesis. The lack of other information such as the exposure 

to the air or the temperature of sample and so on impose the difficulties on ascertaining the 

hypothesis.  
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Figure 6-19 Sulfate concentration changes along 90 flowback days from well #1 to #19. 

The possible dissolution and ionization reactions: 

𝑀𝑔𝑆𝑂4 ⇌ 𝑀𝑔2+ + 𝑆𝑂4
2− 

𝐶𝑎𝑆𝑂4 ⇌ 𝐶𝑎2+ +  𝑆𝑂4
2− 

𝐵𝑎2+ + 𝑆𝑂4
2− ⇌ 𝐵𝑎𝑆𝑂4 ↓ 

 According to the low level of sulfate, the precipitation could be barely observed from the 

original database.Other reactions are also critical to be considered, the carbonate might reduce the 

concentration of carbon dioxide as the divalent cations are abundant and form the carbonate 

precipitates. Nevertheless, the hydrogen ion existed in the flowback would result in a re-dissolution 

of the precipitates back to the flowback water which may cause the concentration of both divalent 

cations and carbonate enriched. The origin of the hydrogen ion were likely coming from the sour 

gas 𝐶𝑂2 absorbed into the flowback water.  
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 The second ionization might not be significant as the first stage. 

 Therefore, the pH value which the 𝐻+ concentration can be represented are evaluated along 

with the ratio of [
𝑆𝑂4

𝐴𝑙𝑘
]. The Fig.6-20 is shown below, the ratio [

𝑆𝑂4

𝐴𝑙𝑘
] is taken as a log scale so that 

the variance could be easily identified, the highest and lowest value based on 19 wells are 

illustrated with a bar at the top and bottom therefore all the other values are within the bar range. 

Obviously, the pH value is increasing at the abrupt flowback between day 0 and day 1 and then 

decreasing gradually. Another result could be appraised accurately as the flowback remains its 

acidity after day 1 by decreasing the pH value. On the contrary, the ratio [
𝑆𝑂4

𝐴𝑙𝑘
] at the initial 

flowback from day 0 and day 1 is decreasing instantaneously and then increasing progressively 

afterwards. 

 

 

 

 

  

 

 

 

 

Figure 6-20 Average ratio of sulfate over alkalinity and pH value coupling with maximum and minimum at each 

sampling time vs. the fowback time for well #1 to #19. 
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 After all these data pretreatments done, the TDS for 19 wells is constructed as Fig.6-21 

illustrated. Most wells show an increasing tendency but several wells especially well 18 and well 

11 are the frequently to be identified a small abatement on concentration of any constituents. 

Therefore, these two wells can be well defined as the low contents source had been breached and 

mixed with the flowback water to dilute the concentration. The possible sources could be the 

formation water or connate water. 

 

Figure 6-21 TDS concentration changes along 90 flowback days from well #1-19. 
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6.3 Analysis Using Linear Regression 

  

 

Figure 6-22 Linear-regression model for sodium chloride from oilfield brines for well #86 to #125. 

 According to the linear-regression model for chloride and sodium vs. TDS (Fig.6-22), the 

dissolution and dilution as well as the crystallization of both ions are linear correlated. In this 

oilfield brines, the retention time of formation water contacted with rock in the vicinity is assumed 

to be infinite long, and the saline source rock is conceived to be an infinite large reservoir of saline, 

the sodium is more linear correlated with TDS because the confidence boundary is more 

convergent than the chloride and the R-square is closer to approach to one. 
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Figure 6-23 Linear-regression models for Cl-Br systematics on oilfield brines for well #86 to #125, injection fluid 

samples from day 0 and late time flowback water samples from well #1 to #19. 

 The late time flowback water containing Cl, Br are plotted along with Oilfield Brines. As 

illustrated in Fig.6-23, each color represent one species. The outliers are filtered and discarded by 

Cook’s distance so that the linear regression model could be applied without huge errors generated. 

The results turn out that the Cl-Br systematics could be one representative indicating the late-time 

flowback compositions acquiring affiliation to the oilfield brines. A transition in linear regression 

from injection to late time flowback could be observed. However, other proofs should be 

discovered and discussed to backup this hypothesis. 
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Figure 6-24 Linear-regression models for Ca-Br systematics on oilfield brines for well #86 to #125, injection fluid 

samples from day 0 late time flowback water samples from well #1 to #19. 

 

Figure 6-25 Linear-regression models for Mg-Br systematics on oilfield brines for well #86 to #125, injection fluid 

samples from day 0 late time flowback water samples from well #1 to #19. 

-1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Linear Regression Model for Ca-Br Systematics

Log(Br)

L
o
g
(C

a
)

 

 

Oilfield Brine

Flowback Water Day 0

Flowback Water Day 14 or 15

Flowback Water Day 90

-1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5
0

0.5

1

1.5

2

2.5

3

3.5

4

Linear Regression Model for Mg-Br Systematics

Log(Br)

L
o
g
(M

g
)

 

 

Oilfield Brine

Flowback Water Day 0

Flowback Water Day 14 or 15

Flowback Water Day 90



60 

 

 

Figure 6-26 Linear-regression models for Na-Br systematics on oilfield brines for well #86 to #125 and late time 

flowback water samples #1 to #19. 

 Fig.6-24 – Fig.6-26 show various systematics including Ca-Br, Mg-Br, Na-Br. The 

categories are distinguished by colors and the linear regression models are created in the same 

pattern as it is done for Cl-Br systematics, the outliers are filtered by Cook’s distance. According 

to the discrete data on oilfield brines, the data out of training are outcropped by residual check.  As 

for the Ca-Br systematics, the late flowback waters behave a strong affiliation with the oilfield 

brines no matter at low or high concentration of Br. Furthermore, as for the Mg-Br systematics, 

the late flowback performs a relatively small affiliation at low concentration of Br, however, it is 

not sufficient for us to draw this consequence due to the scarcity of the data points obtained from 

the original report. On the other hand, the Na-Br systematics show the affiliation in the opposite 

way, the late flowbacks indicate affiliation at high Br contents. 
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 The time-series dataset gives good indications that correlations between constituents could 

be identified by utilizing linear regression method. Nevertheless, the dataset without time 

dimension could still be analyzed under the guidance of these indications. The BOGM and 

Pritz&Kirby datasets are such datasets evaluated by linear regression method. 

  

 

Figure 6-27 Comparison on Na-Cl systematics between oilfield brines from well #86 to #125 and flowback samples 

from well #20 to #83. 

 Based on the Fig.6-27 shown above, two linear regression models set up previously in 

Fig.6-22, are reproduced here and extended with the adjusted linear regression equations. The 

adjusted linear regression equations are re-written below with the help of Cook’s distance. 

𝐶𝐶𝑙 = 0.57012𝐶𝑇𝐷𝑆 − 1579.4, 𝑅2 = 0.988 

𝐶𝑁𝑎 = 0.24432𝐶𝑇𝐷𝑆 + 670.4, 𝑅2 = 0.987 
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 Comparing with the linear equation obtained before, the adjusted 𝑅2 of the fitting models 

are closer approaching to one. By extending the linear fitting regression line, the flowback water 

compositions are well fitted at low concentration of TDS in which a possible speculation that low 

TDS flowback water performs more likely like Oilfield brines however this conjecture should be 

reevaluated with other constituents. Correspondingly, at high TDS concentration, the flowback 

water data in BOGM and Kirby&Pritz datasets are mostly out of trend (out of the 95% confidence 

boundaries). In this case, the flowback water are defined as “under-saturated”, the hierarchy of 

saturation depends on the retention time. Oilfield brines have a relatively long time contacting with 

the formation which ion exchanges reach the equilibrium. The “under-saturated” flowbacks could 

be regarded as unequilibrium status therefore the engaging time is not enough resulting in 

insufficient ion exchanges.       

6.4 Variable Importance Discovery by Cluster and Multivariate Approach 

 The theorem of K-means clustering has been explained in chapter 5, the algorithm is 

applied to well #1 to #19. 

 

 

 

 

 

 

 

Figure 6-28 K-means clusterings in data analysis of  [
𝐶𝑎

𝐵𝑟
] over [

𝐶𝑙

𝐵𝑟
] between oilfield brines for well #86 to #125 and 

early flowback samples at Day 1 from well #1 to #19. 
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Figure 6-29 K-means clusterings in data analysis of  [
𝐶𝑎

𝐵𝑟
] over [

𝐶𝑙

𝐵𝑟
] between oilfield brines for well #86 to #125 and 

early flowback samples at Day 5 from well #1 to #19. 

 

Figure 6-30 K-means clusterings in data analysis of  [
𝐶𝑎

𝐵𝑟
] over [

𝐶𝑙

𝐵𝑟
] between oilfield brines for well #86 to #125 and 

early flowback samples at Day 14 from well #1 to #19. 
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Figure 6-31 K-means clusterings in data analysis of  [
𝐶𝑎

𝐵𝑟
] over [

𝐶𝑙

𝐵𝑟
] between oilfield brines for well #86 to #125 and 

early flowback samples at Day 90 from GTI dataset from well #1 to #19. 

 Fig.6-28 – Fig.6-31 as illustrated above are ascribed to the time-series GTI dataset, the 

indication of the flowback water attributes could be identified by K-mean clusters, the distance 

between oilfield brines and flowback waters centroids significantly changes as the flowbacks 

varies from time to time. Four time records are plotted by consistent color with consistent shapes 

in each sample collected from the same source. The ratio Cl/Br and Ca/Br are chosen to relegate 

the variances in magnitude among different wells. Yet the abnormal magnitude are neglected to 

display on the plots. Different trials are executed, the abnormalities have little impacts on the 

centroids due to the high volume of datasets. As the flowback water contents altered from early 

time towards the late time, the centroids is moving from far apart to adjacent. These events 

combined with linear regression model somehow prove that the late time flowback tends to behave 

affiliated in chemistry with the oilfield brines. The reason why bromide is chosen is that bromide 
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is always the target toxic element the water treatment plant would like to eliminate. Different trials 

are applied. 

 

Figure 6-32 K-means clusterings in data analysis of  [
𝑀𝑔

𝐵𝑟
] over [

𝐶𝑙

𝐵𝑟
] between oilfield brines for well #86 to #125 and 

early flowback samples at Day 1 from well #1 to #19. 

 

Figure 6-33 K-means clusterings in data analysis of  [
𝑀𝑔

𝐵𝑟
] over [

𝐶𝑙

𝐵𝑟
] between oilfield brines for well #86 to #125 and 

early flowback samples at Day 5 from well #1 to #19.. 
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Figure 6-34 K-means clusterings in data analysis of  [
𝑀𝑔

𝐵𝑟
] over [

𝐶𝑙

𝐵𝑟
] between oilfield brines for well #86 to #125 and 

early flowback samples at Day 14 from well #1 to #19. 

 

Figure 6-35 K-means clusterings in data analysis of  [
𝑀𝑔

𝐵𝑟
] over [

𝐶𝑙

𝐵𝑟
] between oilfield brines for well #86 to #125 and 

early flowback samples at Day 90 from well #1 to #19. 
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 Similarly, the Fig.6-32 – Fig.6-35 is done with the coordinates in ratio Mg/Br and Cl/Br. 

The change of the distance between centroids is not as prominent as the former features but still 

could be distinguished. Numerically, the results of distance are shown in table. 

Table 6-1 Distance between centroids as flowback time proceeding 

 

 Before the principal component analysis (PCA) is applied, a simple interpretation is 

performed on GTI dataset by utilizing the boxplots. In this case, 13 constituents are chosen to be 

exhibited including monovalent ions (Na, Cl, Li, K, Br) and divalent ions (Mg, Ca, Sr, Ba, SO4) 

and also other abundant parameters (B, Alk, Fe). 

 

Figure 6-36 Boxplot for 13 different compositions in flowback at Day 0 from well #1 to #19. 

Day 1 Day 5 Day 14 or 15 Day 90

Ca/Br vs. Cl/Br 7.37 8.39 7.18 3.20

Mg/Br vs. Cl/Br 1.74 7.58 6.77 3.07
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Figure 6-37 Boxplot for 13 different compositions in flowback at Day 1 from well #1 to #19. 

 

Figure 6-38 Boxplot for 13 different compositions in flowback at Day 5 from well #1 to #19. 
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Figure 6-39 Boxplot for 13 different compositions in flowback at Day 14 from well #1 to #19. 

 

Figure 6-40 Boxplot for 13 different compositions in flowback at Day 90 from well #1 to #19. 
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 By plotting Fig.6-36 – Fig.6-40, the data distribution could be visualized more primitively. 

The outliers are varied randomly. Despite the Day 0 dataset, the significant shifts for specific boxes 

could be pointed out, for instance, the divalent ions and the alkalinity, while the divalent ions tend 

to increase, simultaneously the alkalinity decreases. As it is mentioned before, the outlier effects 

are minimized by the adoption of dimensionless ratio, other researchers also use dimensional ratio 

which is functional as well. It is of certain that dataset are divided into 5 groups to represent each 

flowback days during to the data variation during multivariate approach. 

 In this study, the dataset contains random ‘NaN’ value which errors would be definitely 

caused. Thus, the alternating least squares (ALS) algorithm (PCA Using ALS for Missing Data, 

2015) is utilized to remediate the missing data. The relative importance of each principal 

component is determined after the original matrix is reduced to lower dimension, and the result is 

shown below: 

 

 

 

 

 

 

 

Figure 6-41 Scree plot shows major first 6 components that account for over 95% of the total variance. 
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 In this Fig.6-41, the first 2 principal component take up to over 70% variance of the total 

variance. However, the first 3 considerably make up to over 80% in which 3 components is 

outweigh to be selected to perform the PCA. 

 

 

 

 

 

 

 

 

 

Figure 6-42 XZ view of PCA model in 3-D (3 principal components) is built up based on 13 independent flowback 

compositions from well #1 to #19. 

 

 

 

 

 

 

 

 

 

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Na
K CaCl

SO4

BaB Fe Li
SrMg
Br

Alk

Principal Component 1 (63.12%)

P
ri
n
c
ip

a
l 
C

o
m

p
o
n
e
n
t 

3
 (

8
.1

0
%

)

 

 

Flowback-Day 0

Flowback-Day 1

Flowback-Day 5

Flowback-Day 14

Flowback-Day 90

-3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11

-9.5

-9

-8.5

-8

-7.5

-7

-6.5

-6

-5.5

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Score 1

S
c
o
re

 3



72 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-43 YZ view of PCA model in 3-D (3 principal components) is built up based on 13 independent flowback 

compositions from well #1 to #19.  

 

 

Figure 6-44 Over view of PCA model in 3-D (3 principal components) is built up based on 13 independent flowback 

compositions from well #1 to #19.  
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Figure 6-45 PCA model in 2-D (2 principal components) or 3-D XY view is built up based on 13 independent 

flowback compositions in from well #1 to #19.  

 A more comprehensive picture of how relative importance of all the 13 constituents is 
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first principal component successfully distinguishes the prevailing trend in time dependence. PC 

2 also somehow discriminates a discrete trend in time series. 

 Possible interpretations of the PCA biplots could be proposed that most constituents tend 

to be dominant in late stage flowback waters except the alkalinity and SO4. Rationally to be 

concluded in the late change on the concentration of alkalinity and SO4, complicated reaction under 

the ground and on the surface might be the issues. However, the early stage flowback water might 

be influenced by the injection fluid compositions in which a transferring tendency appear on 

flowback day 5, a cluster of Day-0 points moved slowly from cluster Day-1 and then transfer to 

Day-5, discretizing during and after Day-5. When looking at Fig.6-43, SO4, alkalinity and barium 

are most likely to be controlled by PC 3. Others are controlled by PC 1 and PC 2 including barium. 

 By using piper diagram to distinguish each observation at different flowback days, the back 

square indicates the flowback day 1 and each single one represents one observation. Similarly, the 

red circle, green triangle and blue inverse triangle illustrate different observation at different time 

respectively. As shown in Fig.6-46, one anomaly happens on day 1 which might be deteriorated 

by the injection frac-water compositions and thus it is reasonable to be classified as an outlier. In 

the left bottom cations triangle, with retention time gradually increased on the flowback samples, 

the proportion of monovalent ion combination 𝑁𝑎 + 𝐾 decreases consorting with the significant 

increment of proportion on 𝐶𝑎  and a slightly augment on 𝑀𝑔 . On the contrary, due to the 

significant comparison of proportion between 𝐶𝑙  and the rest of anions, it seems that low 

proportion of anions are invisible at the right corner of the right bottom triangle. However, as time 

passing by, part of the 𝐶𝑙 proportion is taken over by other anions so that the increasing of other 

ions at late flowback period is more considerable than 𝐶𝑙. When the projections of cations and 

anions are done in the upper diamond, the flowback water samples induced by the arrow shows 
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the early flowback time towards the late flowback. In this transferring period, the divalent cations 

tend to increase as the monovalent cations decrease, coincidently, the 𝐶𝑙 + 𝑆𝑂4   incline to be 

stabilized after reaching the equilibrium with total alkalinity mildly decreases. Based on the 

illustration of Fig.6-46, the major cations in the flowback are at domain D where 𝑁𝑎 − 𝐾 type 

represents. 𝐶𝑙 type dominates in anions and when the combination of cations and anions is done, 

it is conclusive that the transfer period of early flowback towards the late flowback is accompanied 

with the transferring from 𝑁𝑎 − 𝐶𝑙  type to 𝑀𝑖𝑥𝑒𝑑 𝐶𝑎 − 𝑀𝑔 − 𝐶𝑙  type, however, most cases 

would remain in 𝑁𝑎 − 𝐶𝑙 type. 
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Figure 6-46 Piper trilinear diagram for entire flowback time series from well #1 to #19. 
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Chapter 7 Conclusions 

 In this work, an integrated flowback water database was built, including chemical 

compositions in water samples from 125 Marcellus wells and compositions in in-situ brines from 

40 wells. By performing four different datamining techniques on the geographic change in 

concentrations, and the variation in concentrations across time, with linear-regression as well as 

multivaraiate approaches, a broad view and changes of  chemicals in flowback have been generated 

and understood based on geochemistry and physics. Main conclusions are included as following: 

 Geographic analysis indicates most wells have sodium concentration similar to in-situ brine 

after 14 days, while chloride concentration takes more than 14 days up to 90 days to reach 

the level of in-situ brine. 

 Most non-H2O constituents show a consistent increase in concentration over time during 

entire flowback period, however, there is no consistent change of sulfate concentration 

during flowback period. 

 pH values in flowback water decreases with time and are less than 7 indicating in a weak 

acid. These phenomenon could be possibly triggered by dissolution of carbon dioxide and 

the first order of deionization of carbonic acid. 

 Late time flowback water samples tends to have an affiliation with oilfield brines and the 

traditional treatment methods in coping with oilfield brines could also be feasible for late 

time flowback as it is limited in inorganic consitutents. 

 An examination on water treatments based on PCA models is developed so as to better 

understand the features of side products along with hydrocarbon production, any 

implementation based on the existed PCA model could be performed for current treatment 

affairs.       



77 

 

 A preliminary-Artificial Neural Network (ANN) datamining model was built up upon 5 

compositions and it seems that reasonable prediction salt concentrations could be made. It is worth 

the efforts in future research.  

  Many fundamental questions about the geochemical processes and hydrodynamic 

influences are still veiled. Despite the behavior of early flowback are capable to be one possible 

recycle source of fracture fluids to alleviate the abuse of surface freshwater, the late flowback 

compositions especially after 3 months are yet to be fully understood. 

 Water samples during the treatment 

 One water sample per day during the  the first 5 days  

 One water sample per week week for the following three weeks.  

 After this, one water sample per month for the flowback period. 

 Then one water sample per year if see fit by the operator 

 In summary, at least 14 water samples should be taken at day 0, 1, 2, 3, 4, 5, 12, 19, 26, 30, 

60, 90, 120, 365.  
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Appendix Program 

Program Code 

Hayes (2010) 

 

clc; 
clear all; 
clf; 
close all; 
%% 
Ha=xlsread('Data(Hayes2009)_PAN','TDS'); 
save ('Ha') 

  
%% 
load ('Ha'); 

  
%% TDS vs. Flowback Volume 

  
i=19 %Note that i~ 1 to 19 since we just have 19 wells. 
t=[0 1 5 14 90];% if we do not consider neither the influent concetration or 

the influent volume 
                 % delete '0' 

  

  
if i==4; 
    i_TDS=[log10(Ha(i,1:3)) log10(Ha(i,5))]; 
    t1=[0 1 5 90];% if we do not consider neither the influent concetration 

or the influent volume 
                  % delete '0' 
i_Vol=[log10(Ha(i,6)) log10(Ha(i,7)) log10((Ha(i,8)-Ha(i,7))/4) 

log10((Ha(i,9)-Ha(i,8))/9) log10((Ha(i,10)-Ha(i,9))/76)];  
                  % if we do not consider neither the influent concetration 

or the influent volume 
                  % delete Ha(i,6) 
[ax,p1,p2] = plotyy(t1,i_TDS,t,i_Vol,'plot'); 
elseif i==13; 
    i_TDS=[log10(Ha(i,1)) log10(Ha(i,4))]; 
    t13=[0 14]; 
    i_Vol=[log10(Ha(i,6)) log10(Ha(i,7)) log10((Ha(i,8)-Ha(i,7))/4) 

log10((Ha(i,9)-Ha(i,8))/9) log10((Ha(i,10)-Ha(i,9))/76)];  
    [ax,p1,p2] = plotyy(t13,i_TDS,t,i_Vol,'plot'); 
else 
    i_TDS=log10(Ha(i,1:5)); 
    i_Vol=[log10(Ha(i,6)) log10(Ha(i,7)) log10((Ha(i,8)-Ha(i,7))/4) 

log10((Ha(i,9)-Ha(i,8))/9) log10((Ha(i,10)-Ha(i,9))/76)];  
                  % if we do not consider neither the influent concetration 

or the influent volume 
                  % delete Ha(i,6) 
    [ax,p1,p2] = plotyy(t,i_TDS,t,i_Vol,'plot'); 
end 
set(p1,'LineStyle','-','Marker','d','LineWidth',2) 
set(p2,'LineStyle','-','Marker','d','LineWidth',2) 
title(sprintf('Log(C_T_D_S) vs. Log(V_F_L_B) at Well %i', i)); 
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ylabel(ax(1),'Log(C_T_D_S)') % left y-axis 
ylabel(ax(2),'Ave Flowback Log(V_F_L_B) in the Interval') % right y-axis 
xlabel('Flowback Time (Days)') 
legend('Log(C_T_D_S)','Ave Flowback Log(V_F_L_B) in the 

Interval','location','best') 

  
%% 
t=[0 1 5 14 90]; 
TDS=Ha(:,1:5); 
Vol=[log10(Ha(:,6)) log10(Ha(:,7)) log10((Ha(:,8)-Ha(:,7))/4) log10((Ha(:,9)-

Ha(:,8))/9) log10((Ha(:,10)-Ha(:,9))/76)] 
for j=1:1:5; 
for i=1:1:19; 
   K2(i,j)=isnan(TDS(i,j)); 
   row=find(K2(:,j)==0); 
   TDS_mean(j)=mean(TDS(row,j),1); 
end 
end 

  
for j=1:1:5; 
for i=1:1:19; 
   K3(i,j)=isnan(TDS(i,j)); 
   row=find(K2(:,j)==0); 
   TDS_std(j)=std(TDS(row,j),1); 
end 
end 

  
for j=1:1:5; 
for i=1:1:19; 
   K4(i,j)=isnan(Vol(i,j)); 
   row=find(K4(:,j)==0); 
   Vol_mean(j)=mean(Vol(row,j),1); 
end 
end 

  
for j=1:1:5; 
for i=1:1:19; 
   K5(i,j)=isnan(Vol(i,j)); 
   row=find(K5(:,j)==0); 
   Vol_std(j)=std(Vol(row,j),1); 
end 
end 

  
figure() 

  
[ax,p1,p2] = plotyy(t,log10(TDS_mean),t,Vol_mean,'plot'); 
hold(ax(1)) 
hh1=errorbar(ax(1),t,log10(TDS_mean),log10(TDS_std),'bo'); 
hold(ax(2)) 
hh2=errorbar(ax(2),t,Vol_mean,Vol_std,'o'); 
set(hh2,'Color',[0,0.5 0]); 
set(ax,'xlim',[-5,95]); 
set(ax(1),'ylim',[-1,11]); 
set(ax(1),'YTick',-1:1:11); 
set(ax(2),'ylim',[1,5.5]); 
set(ax(2),'YTick',1:1:5.5) 
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set(p1,'LineStyle','-','LineWidth',2) 
set(p2,'LineStyle','-','LineWidth',2) 
set(hh1,'MarkerFace','b') 
set(hh2,'MarkerFace',[0,0.5,0]) 
title('Time Series of Log(TDS) vs. Log(Vol) for All 19 Wells'); 
ylabel(ax(1),'Log(TDS) (ppm)') % left y-axis 
ylabel(ax(2),'Log(Vol) (ppm)') % right y-axis 
xlabel('Flowback Time (Days)') 
legend([p1;p2],'Log(TDS)','Log(Vol)','location','best'); 
%% Not useful 

  
i=1   %Note that i~ 1 to 19 since we just have 19 wells. 
t=[1 5 14 90];% if we do not consider neither the influent concetration or 

the influent volume 
Int=[1:2 2:5 5:14 ];                 % delete '0' 

  

  
if i==4; 
    i_TDS=[Ha(i,2:3) Ha(i,5)]; 
    t1=[1 5 90];% if we do not consider neither the influent concetration or 

the influent volume 
                  % delete '0' 
i_Vol=[Ha(i,7) (Ha(i,8)-Ha(i,7))/4 (Ha(i,9)-Ha(i,8))/9 (Ha(i,10)-

Ha(i,9))/76];  
                  % if we do not consider neither the influent concetration 

or the influent volume 
                  % delete Ha(i,6) 
[ax,p1,p2] = plotyy(t1,i_TDS,Int,i_Vol,'plot','area'); 
else 
    i_TDS=Ha(i,2:5); 
    i_Vol=[ones(1,2).*Ha(i,7) ones(1,4).*((Ha(i,8)-Ha(i,7))/4) 

ones(1,10).*((Ha(i,9)-Ha(i,8))/9) ];  
                  % if we do not consider neither the influent concetration 

or the influent volume 
                  % delete Ha(i,6) 
    [ax,p1,p2] = plotyy(Int,i_Vol,t,i_TDS,'area','plot'); 
end 
set(p1,'LineWidth',2) 
xlim([0 90]) 
title(sprintf('Concentration of TDS vs. Water Volume at Well %i', i)); 
ylabel(ax(2),'TDS (mg/L)') % left y-axis 
ylabel(ax(1),'Ave Flowback Vol in the Interval (bbls/Day)') % right y-axis 
xlabel('Flowback Time (Days)') 

  

  

  
%% Concentration for each ion from 19 wells 

  
Ha_Ions=xlsread('Data(Hayes2009)_PAN','sheet1'); 
t=[0 1 5 14.5 90]; % t=0 is the influent of fracing water 

  
Na=Ha_Ions(1:11:199,1:5); 
K=Ha_Ions(2:11:200,1:5); 
Ca=Ha_Ions(3:11:201,1:5); 
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Cl=Ha_Ions(4:11:202,1:5); 
SO4=Ha_Ions(5:11:203,1:5); 
Ba=Ha_Ions(6:11:204,1:5); 
B=Ha_Ions(7:11:205,1:5); 
Fe=Ha_Ions(8:11:206,1:5); 
Li=Ha_Ions(9:11:207,1:5); 
Sr=Ha_Ions(10:11:208,1:5); 
Mg=Ha_Ions(11:11:209,1:5); 
TDS=Ha(:,1:5); 
rng('default'); % For reproducibility 
for i=1:19;  
XX(i,:)=(randi([0,10],1,3))./10; %Fixed the index color for each well 
end 

  
load XX 

  
figure() 
for i=1:1:19; 
hold on 
 I(i,:)=isnan(Na(i,:)); 
 col=find(I(i,:)==0);   
h=plot(t(col),Na(i,col)./1000,'marker','d'); 
set(h,'color',XX(i,:),'linewidth',1.5); 
hold on 
legendInfo{i} = ['C_N_a at Well ' num2str(i)]; 
end 
legend(legendInfo) 
xlabel('Flowback Time (Days)'); 
ylabel('Concentration (ppm)'); 
title('Concentration of Sodium') 

  
figure() 
for i=1:1:19; 
hold on  
 I(i,:)=isnan(K(i,:)); 
 col=find(I(i,:)==0);  
h=plot(t(col),K(i,col)./1000,'marker','d'); 
set(h,'color',XX(i,:),'linewidth',1.5); 
hold on 
legendInfo{i} = ['C_K at Well ' num2str(i)]; 
end 
legend(legendInfo) 
xlabel('Flowback Time (Days)'); 
ylabel('Concentration (ppm)'); 
title('Concentration of Potassium') 

  
for i=1:1:19; 
hold on  
 I(i,:)=isnan(Ca(i,:)); 
 col=find(I(i,:)==0); 
h=plot(t(col),Ca(i,col)./1000,'marker','d'); 
set(h,'color',XX(i,:),'linewidth',1.5); 
hold on 
legendInfo{i} = ['C_C_a at Well ' num2str(i)]; 
end 
legend(legendInfo) 
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xlabel('Flowback Time (Days)'); 
ylabel('Concentration (ppm)'); 
title('Concentration of Calcium') 

  
for i=1:1:19; 
hold on     
I(i,:)=isnan(Cl(i,:)); 
 col=find(I(i,:)==0); 
h=plot(t(col),Cl(i,col),'marker','d'); 
set(h,'color',XX(i,:),'linewidth',1.5); 
hold on 
legendInfo{i} = ['C_C_l at Well ' num2str(i)]; 
end 
legend(legendInfo) 
xlabel('Flowback Time (Days)'); 
ylabel('Concentration (ppm)'); 
title('Concentration of Chloride') 

  
figure() 
for i=1:1:19; 
hold on  
I(i,:)=isnan(SO4(i,:)); 
 col=find(I(i,:)==0); 
h=plot(t(col),log10(SO4(i,col)),'marker','d'); 
set(h,'color',XX(i,:),'linewidth',1.5); 
hold on 
legendInfo{i} = ['Log(C_S_O_4) at Well ' num2str(i)]; 
end 
legend(legendInfo) 
xlabel('Flowback Time (Days)'); 
ylabel('Log(SO_4) (ppm)'); 
title('Semi-Log Concentration of Sulfate') 

  

  
for i=1:1:19; 
hold on   
I(i,:)=isnan(Ba(i,:)); 
 col=find(I(i,:)==0); 
h=plot(t(col),Ba(i,col)./1000,'marker','d'); 
set(h,'color',XX(i,:),'linewidth',1.5); 
hold on 
legendInfo{i} = ['C_B_a at Well ' num2str(i)]; 
end 
legend(legendInfo) 
xlabel('Flowback Time (Days)'); 
ylabel('Concentration of Barium (ppm)'); 
title('Concentration of Barium') 

  
for i=1:1:19; 
hold on  
I(i,:)=isnan(B(i,:)); 
 col=find(I(i,:)==0); 
h=plot(t(col),B(i,col)./1000,'marker','d'); 
set(h,'color',XX(i,:),'linewidth',1.5); 
hold on 
legendInfo{i} = ['C_B at Well ' num2str(i)]; 
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end 
legend(legendInfo) 
xlabel('Flowback Time (Days)'); 
ylabel('Concentration (ppm)'); 
title('Concentration of Boron') 

  
for i=1:1:19; 
hold on   
I(i,:)=isnan(Fe(i,:)); 
 col=find(I(i,:)==0); 
h=plot(t(col),Fe(i,col)./1000,'marker','d'); 
set(h,'color',XX(i,:),'linewidth',1.5); 
hold on 
legendInfo{i} = ['C_F_e at Well ' num2str(i)]; 
end 
legend(legendInfo) 
xlabel('Flowback Time (Days)'); 
ylabel('Concentration (ppm)'); 
title('Concentration of Iron') 

  
for i=1:1:19; 
hold on 
I(i,:)=isnan(Li(i,:)); 
 col=find(I(i,:)==0); 
h=plot(t(col),Li(i,col)./1000,'marker','d'); 
set(h,'color',XX(i,:),'linewidth',1.5); 
hold on 
legendInfo{i} = ['C_L_i at Well ' num2str(i)]; 
end 
legend(legendInfo) 
xlabel('Flowback Time (Days)'); 
ylabel('Concentration (ppm)'); 
title('Concentration of Lithium') 

  
for i=1:1:19; 
hold on  
I(i,:)=isnan(Sr(i,:)); 
 col=find(I(i,:)==0); 
h=plot(t(col),Sr(i,col)./1000,'marker','d'); 
set(h,'color',XX(i,:),'linewidth',1.5); 
hold on 
legendInfo{i} = ['C_S_r at Well ' num2str(i)]; 
end 
legend(legendInfo) 
xlabel('Flowback Time (Days)'); 
ylabel('Concentration (ppm)'); 
title('Concentration of Strontium') 

  

  
for i=1:1:19; 
hold on     
I(i,:)=isnan(Mg(i,:)); 
 col=find(I(i,:)==0); 
h=plot(t(col),Mg(i,col)./1000,'marker','d'); 
set(h,'color',XX(i,:),'linewidth',1.5); 
hold on 



87 

 

legendInfo{i} = ['C_M_g at Well ' num2str(i)]; 
end 
legend(legendInfo) 
xlabel('Flowback Time (Days)'); 
ylabel('Concentration (ppm)'); 
title('Concentration of Magnesium') 

  
for i=1:1:19; 
hold on     
I(i,:)=isnan(TDS(i,:)); 
 col=find(I(i,:)==0); 
h=plot(t(col),TDS(i,col),'marker','d'); 
set(h,'color',XX(i,:),'linewidth',1.5); 
hold on 
legendInfo{i} = ['C_T_D_S at Well ' num2str(i)]; 
end 
legend(legendInfo) 
xlabel('Flowback Time (Days)'); 
ylabel('Concentration (ppm)'); 
title('Concentration of TDS') 

  
Well_A=Ha_Ions(1:11,1:5); 
for i=1:1:11; 
hold on    
if i==4; 
    h=plot(t,Well_A(i,:)); 
elseif i==5; 
     h=plot(t,Well_A(i,:)); 
     else h=plot(t,Well_A(i,:)./1000); 
end 
set(h,'color',rand(1,3),'linewidth',1.5); 
hold on 
legend('Sodium','Potassium','Calcium','Chloride','Sulfate','Barium','Boron','

Iron','Lithium','Strontium','Magnesium') 
end 

  
xlabel('Flowback Time (Days)'); 
ylabel('Concentration (ppm)'); 

  

  
%% Same thing as above but more detail 
% Change the TDS vs. Ions. Details of each well and each ions 
i=3 % i index stands for each well 
t=[0 1 5 14 90]; 

  
I1(i,:)=isnan(TDS(i,:)); 
 col1=find(I1(i,:)==0); 
I2(i,:)=isnan(Ba(i,:)); % The Ions can be changed 
 col2=find(I2(i,:)==0); 

  
        h1 =plot(t(col1),log(TDS(i,col1)),'d-'); 
    hold on 
        h2=plot(t(col2),log(Ba(i,col2)./1000),'d-'); % The Ions can be 

changed 
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set(h1,'color','blue','LineWidth',2) 
set(h2,'color',[0 0.5 0],'LineWidth',2) 
title(sprintf('Semi-Log Plot for Concentration of TDS vs. Ion at Well %i', 

i)); 
ylabel('Log(Concentration)')  
xlabel('Flowback Time (Days)') 
legend('TDS','Ba') % Don't forget to change the name of ions  

  

  
%% Time Series Divalent Ions 
i=1; 
t=[0 1 5 14 90]; 
I3(i,:)=isnan(Ba(i,:)); 
 col3=find(I3(i,:)==0); 
I4(i,:)=isnan(Sr(i,:)); 
 col4=find(I4(i,:)==0); 
I5(i,:)=isnan(Ca(i,:)); 
 col5=find(I5(i,:)==0); 
I6(i,:)=isnan(Mg(i,:)); 
 col6=find(I6(i,:)==0); 
I7(i,:)=isnan(SO4(i,:)); 
 col7=find(I7(i,:)==0); 
h1=plot(t(col3),log(Ba(i,col3)/1000),'d-'); 
hold on 
h2=plot(t(col4),log(Sr(i,col4)/1000),'d-'); 
h3=plot(t(col5),log(Ca(i,col5)/1000),'d-'); 
h4=plot(t(col6),log(Mg(i,col6)/1000),'d-'); 
h5=plot(t(col7),log(SO4(i,col7)),'d-'); 

  
set(h1,'color','red','LineWidth',2); 
set(h2,'color','blue','LineWidth',2); 
set(h3,'color','green','LineWidth',2); 
set(h4,'color','cyan','LineWidth',2); 
set(h5,'color','magenta','LineWidth',2); 
xlabel('Flowback Time (Days)') 
ylabel('Log(Concentration)')  
legend('Ba','Sr','Ca','Mg','SO_4','Location','best') 
title(sprintf('Time Series Divalent Ions at Well %i', i)); 

  
%% Bad Results 
i=5 
h1=plot(log(SO4(:,i)),log(Ba(:,i)/1000),'r.'); 
hold on 
h2=plot(log(SO4(:,i)),log(Sr(:,i)/1000),'b.'); 
h3=plot(log(SO4(:,i)),log(Ca(:,i)/1000),'m.'); 
h4=plot(log(SO4(:,i)),log(Mg(:,i)/1000),'c.'); 

  

  
set(h1,'MarkerSize',20); 
set(h2,'MarkerSize',20); 
set(h3,'MarkerSize',20); 
set(h4,'MarkerSize',20); 

  
%% Principal Component Results 
Ha2=xlsread('Data(Hayes2009)_PAN','Sheet4'); 
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Br=Ha2(1:4:73,1:5); 
S=Ha2(2:4:74,1:5); 
Alk=Ha2(3:4:75,1:5); 
pH=Ha2(4:4:76,1:5); 

  
names = cell(5,1); 
t=[0 1 5 14 90] 
for i=1:5; 
    names{i}=['Day ' num2str(t(i))]; 
end 

  

  
figure() % Boxplots for each ion for different days 
boxplot(Na/1000,'orientation','horizontal','labels',names) 
xlabel('Concentration of Sodium (ppm)') 
title('Boxplot of Sodium') 

  
% Boxplots for all ions on each flowback days 
for i=1:5; 
    figure(i) 

  
day_i=[Na(:,i)/1000 K(:,i)/1000 Ca(:,i)/1000 Cl(:,i) SO4(:,i) 

Ba(:,i)/1000 ... 
    B(:,i)/1000 Fe(:,i)/1000 Li(:,i)/1000 Sr(:,i)/1000 Mg(:,i)/1000 Br(:,i) 

Alk(:,i)]; 
Categories = cell(13,1) 
Categories={'Na';'K';'Ca';'Cl';'SO4';'Ba';'B';'Fe';'Li';'Sr';'Mg';'Br';'Alk'} 
boxplot(log(day_i),'plotstyle','traditional','orientation','horizontal','labe

ls',Categories) 
xlabel('Log(Concentration (ppm))') 
title(sprintf('Boxplot on Day %i',t(i))) 
xlim([-5 12.5]); 
end 

  
% PCA Datapool 
i=1; 
Day_0=[Na(:,i)/1000 K(:,i)/1000 Ca(:,i)/1000 Cl(:,i) SO4(:,i) 

Ba(:,i)/1000 ... 
    B(:,i)/1000 Fe(:,i)/1000 Li(:,i)/1000 Sr(:,i)/1000 Mg(:,i)/1000 Br(:,i) 

Alk(:,i)]; 
i=2; 
Day_1=[Na(:,i)/1000 K(:,i)/1000 Ca(:,i)/1000 Cl(:,i) SO4(:,i) 

Ba(:,i)/1000 ... 
    B(:,i)/1000 Fe(:,i)/1000 Li(:,i)/1000 Sr(:,i)/1000 Mg(:,i)/1000 Br(:,i) 

Alk(:,i)]; 
i=2; 
i=3; 
Day_5=[Na(:,i)/1000 K(:,i)/1000 Ca(:,i)/1000 Cl(:,i) SO4(:,i) 

Ba(:,i)/1000 ... 
    B(:,i)/1000 Fe(:,i)/1000 Li(:,i)/1000 Sr(:,i)/1000 Mg(:,i)/1000 Br(:,i) 

Alk(:,i)]; 
i=4; 
Day_14=[Na(:,i)/1000 K(:,i)/1000 Ca(:,i)/1000 Cl(:,i) SO4(:,i) 

Ba(:,i)/1000 ... 
    B(:,i)/1000 Fe(:,i)/1000 Li(:,i)/1000 Sr(:,i)/1000 Mg(:,i)/1000 Br(:,i) 

Alk(:,i)]; 
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i=5; 
Day_90=[Na(:,i)/1000 K(:,i)/1000 Ca(:,i)/1000 Cl(:,i) SO4(:,i) 

Ba(:,i)/1000 ... 
    B(:,i)/1000 Fe(:,i)/1000 Li(:,i)/1000 Sr(:,i)/1000 Mg(:,i)/1000 Br(:,i) 

Alk(:,i)]; 

  
Datapool=[Day_0 Day_1 Day_5 Day_14 Day_90]; 

  
for i=1:1:19; 
for    j=1:1:65; 
   K0(i,j)=isnan(Datapool(i,j)); 

    
end 
end 
for j=1:65; 
[row,col]=find(K0(:,j)==0); 
for i=1:size(row,1); 
Data_New(i,j)=Datapool(row(i),j); 
end 
end 

  

  
Datapool_Categories=[Day_0; Day_1; Day_5; Day_14; Day_90]; 

  
for i=1:1:95; 
for    j=1:1:13; 
   K1(i,j)=isnan(Datapool_Categories(i,j)); 

    
end 
end 
for j=1:13; 
[row,col]=find(K1(:,j)==0); 
for i=1:size(row,1); 
Data_New1(i,j)=Datapool_Categories(row(i),j); 
end 
end 

  
Datapool_Categories(isnan(Datapool_Categories))=0; 
Data_New2=Datapool_Categories 

    
Categories_new = cell(11,1) 
Categories_new={'Na';'K';'Ca';'Cl';'SO4';'Ba';'B';'Fe';'Li';'Sr';'Mg';'Br';'A

lk'}   
w = 1./var(Data_New2); 

  
[wcoeff,score,latent,tsquared,explained] = pca(Data_New2,... 
'VariableWeights',w); 

  
 coefforth = inv(diag(std(Data_New2)))*wcoeff; 

  
 biplot(coefforth(:,1:3),'score',score(:,1:3),'varlabels',Categories_new); 
 hold on 

  
 sc_Day0=score(1:19,:); 
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 sc_Day0=sc_Day0(:); 
 sc_Day1=score(20:38,:); 
 sc_Day1=sc_Day1(:); 
 sc_Day5=score(39:57,:); 
 sc_Day5=sc_Day5(:); 
 sc_Day14=score(58:76,:); 
 sc_Day14=sc_Day14(:); 
 sc_Day90=score(77:95,:); 
 sc_Day90=sc_Day90(:); 

  
 scatter3( sc_Day0,sc_Day1,sc_Day5,'r^') 

  

  
%  hold on 
%  [wcoeff,score,latent,tsquared,explained] = pca(Day_0,... 
% 'VariableWeights',w); 
% plot(score(:,1),score(:,2),'r^') 
%  [wcoeff,score,latent,tsquared,explained] = pca(Day_1,... 
% 'VariableWeights',w); 
% plot(score(:,1),score(:,2),'bv') 
%  [wcoeff,score,latent,tsquared,explained] = pca(Day_5,... 
% 'VariableWeights',w); 
% plot(score(:,1),score(:,2),'go') 
%  [wcoeff,score,latent,tsquared,explained] = pca(Day_14,... 
% 'VariableWeights',w); 
% plot(score(:,1),score(:,2),'c*') 
%  [wcoeff,score,latent,tsquared,explained] = pca(Day_90,... 
% 'VariableWeights',w); 
% plot(score(:,1),score(:,2),'md') 
% xlabel('1st Principal Component') 
% ylabel('2nd Principal Component') 
% legend on 
% xlim([-1.5,1.5]) 
% ylim([-1.5,1.5]) 
%% Log(Br) vs. Log(Cl) 

  
i=4 
% hh=plot(log(Br(:,i)),log(Cl(:,i)),'r.'); 
% hold on 
% set(hh,'MarkerSize',15); 
mdl = LinearModel.fit(log(Br(:,i)),log(Cl(:,i))) 
h=plotAdded(mdl) 
title('Log(Br) vs. Log(Cl)') 

  
xlabel('Log(Br)') 
ylabel('Log(Cl)') 

  
%% 
i=2 
Rat=SO4./Alk 
figure() 
t=[0 1 5 14 90];% if we do not consider neither the influent concetration or 

the influent volume 
                 % delete '0' 
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I(i,:)=isnan(Rat(i,:)); 
 col=find(I(i,:)==0); 
 I0(i,:)=isnan(pH(i,:)); 
 col0=find(I0(i,:)==0); 

                   
    [ax,p1,p2] = plotyy(t(col),Rat(i,col),t(col0),pH(i,col0),'plot'); 

  

  
set(p1,'LineStyle','-','Marker','d','LineWidth',2) 
set(p2,'LineStyle','-','Marker','d','LineWidth',2) 
title(sprintf('[SO4/Alk] vs. pH at Well %i', i)); 
ylabel(ax(1),'[SO4/Alk]') % left y-axis 
ylabel(ax(2),'pH ') % right y-axis 
xlabel('Flowback Time (Days)') 
legend('[SO4/Alk]','pH','location','best') 

  
%% 
t=[0 1 5 14.5 90]; 
for j=1:1:5; 
for i=1:1:19; 
   K2(i,j)=isnan(Rat(i,j)); 
   row=find(K2(:,j)==0); 
   y_mean(j)=mean(Rat(row,j),1); 
end 
end 

  
for j=1:1:5; 
for i=1:1:19; 
   K3(i,j)=isnan(Rat(i,j)); 
   row=find(K2(:,j)==0); 
   s_std(j)=std(Rat(row,j),1); 
end 
end 

  
for j=1:1:5; 
for i=1:1:19; 
   K4(i,j)=isnan(pH(i,j)); 
   row=find(K4(:,j)==0); 
   pH_mean(j)=mean(pH(row,j),1); 
end 
end 

  
for j=1:1:5; 
for i=1:1:19; 
   K5(i,j)=isnan(pH(i,j)); 
   row=find(K5(:,j)==0); 
   pH_std(j)=std(pH(row,j),1); 
end 
end 

  
figure() 

  
[ax,p1,p2] = plotyy(t,log10(y_mean),t,pH_mean,'plot'); 
hold(ax(1)) 
hh1=errorbar(ax(1),t,log10(y_mean),log10(s_std),'bo'); 
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hold(ax(2)) 
hh2=errorbar(ax(2),t,pH_mean,pH_std,'o'); 
set(hh2,'Color',[0,0.5 0]); 
set(ax,'xlim',[-5,95]); 
set(ax(1),'ylim',[-3,9]); 
set(ax(1),'YTick',-3:1:9) 

  
set(p1,'LineStyle','-','LineWidth',2) 
set(p2,'LineStyle','-','LineWidth',2) 
set(hh1,'MarkerFace','b') 
set(hh2,'MarkerFace',[0,0.5,0]) 
title('Time Series of Log([SO_4/Alk]) vs. pH for All 19 Wells'); 
ylabel(ax(1),'Log([SO_4/Alk])') % left y-axis 
ylabel(ax(2),'pH') % right y-axis 
xlabel('Flowback Time (Days)') 
legend([p1;p2],'Log([SO_4/Alk])','pH'); 

  
%% Prework for Piper Diagram 
Ba_pre=[Ba(:,2);Ba(:,3);Ba(:,4);Ba(:,5)]; 
Ca_pre=[Ca(:,2);Ca(:,3);Ca(:,4);Ca(:,5)]; 
Mg_pre=[Mg(:,2);Mg(:,3);Mg(:,4);Mg(:,5)]; 
Na_pre=[Na(:,2);Na(:,3);Na(:,4);Na(:,5)]; 
K_pre=[K(:,2);K(:,3);K(:,4);K(:,5)]; 
Cl_pre=[Cl(:,2);Cl(:,3);Cl(:,4);Cl(:,5)]; 
SO4_pre=[SO4(:,2);SO4(:,3);SO4(:,4);SO4(:,5)]; 
Alk_pre=[Alk(:,2);Alk(:,3);Alk(:,4);Alk(:,5)]; 
TDS_pre=[TDS(:,2);TDS(:,3);TDS(:,4);TDS(:,5)]; 
Br_pre=[Br(:,2);Br(:,3);Br(:,4);Br(:,5)]; 
Piper=[(Ca_pre./1000)./TDS_pre (Mg_pre./1000)./TDS_pre... 
    (Na_pre./1000+K_pre./1000)./TDS_pre Cl_pre./TDS_pre  ... 
    SO4_pre./TDS_pre Alk_pre./TDS_pre TDS_pre]; 

  
Sample_ID = cell(5,1) 
Sample_ID ={'Day 1';'Day 5';'Day 14/15';'Day 90'} 

  

  
%% Prework for Ternary Diagram 

  

  
Ter=[Ba_pre./1000 SO4_pre Cl_pre]; 

  
j=3; 
for i=1:1:76; 
   L2(i,j)=isnan(Ter(i,j)); 
   row=find(L2(:,j)==0); 
end 
Ter_new=[Ba_pre(row)./1000 SO4_pre(row) Cl_pre(row)] 
alf= [1 2; 3 4]; 

  
aa=normr(Ter_new) 

  
[Pn,ps] = mapminmax(Ter_new,0,1) 
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Mapping tool 

clc; 
clear all; 
clf; 
close all; 

  
%% Integral Map 
GTI_L=xlsread('Location','GTI'); 
Dresel_L=xlsread('Location','Dresel'); 
ChiefOG_L=xlsread('Location','ChiefO&G'); 
PritKir_L=xlsread('Location','PritzKirb'); 
BOGM_L=xlsread('Location','BOGM'); 

  
states = geoshape(shaperead('usastatehi', 'UseGeoCoords', true)); 
oceanColor = [.5 .7 .9]; 
latlim = [39.7 42.3]; 
lonlim = [-80.7 -74.5]; 

  
Lat_GTI_PA=[GTI_L(2,1);GTI_L(4:13,1);GTI_L(15:19,1)]; 
Lon_GTI_PA=[GTI_L(2,2);GTI_L(4:13,2);GTI_L(15:19,2)]; 
Lat_GTI_WV=[GTI_L(1,1);GTI_L(3,1);GTI_L(14,1)]; 
Lon_GTI_WV=[GTI_L(1,2);GTI_L(3,2);GTI_L(14,2)]; 
Lat_Dresel=Dresel_L(:,1); 
Lon_Dresel=Dresel_L(:,2); 
Lat_ChiefOG=ChiefOG_L(:,1); 
Lon_ChiefOG=ChiefOG_L(:,2); 
Lat_PritKir=PritKir_L(:,1); 
Lon_PritKir=PritKir_L(:,2); 
Lat_BOGM=BOGM_L(:,1); 
Lon_BOGM=BOGM_L(:,2); 

  
Lat_Flo=[Lat_GTI_PA;Lat_ChiefOG;Lat_PritKir;Lat_BOGM]; 
Lon_Flo=[Lon_GTI_PA;Lon_ChiefOG;Lon_PritKir;Lon_BOGM]; 

  
ax = usamap(latlim, lonlim); 
setm(ax, 'FFaceColor', oceanColor); 
geoshow(states,'DefaultFaceColor', 'white','DefaultEdgeColor', 'black'); 
[latlim, lonlim] = bufgeoquad(latlim, lonlim, .05, .05); 
% h=geoshow(Lat, 

Lon,'DisplayType','point','Color','r','Marker','.','MarkerSize',20); 
% title({'Map of Well or Sample Locations Based on the Integral Datasets', 

'Pennsylvania'}); 

  
% t1=scatterm(Lat1,Lon1,50,'r','d','filled'); 
t1= geoshow(Lat_Flo,Lon_Flo, 'DisplayType', 'Point', 'Marker', 'o', 

'MarkerFaceColor', 'b', 'MarkerEdgeColor', 'b','MarkerSize',5); 
hold on 
t2=geoshow(Lat_Dresel,Lon_Dresel, 'DisplayType', 'Point', 'Marker', 's', 

'MarkerFaceColor', 'r', 'MarkerEdgeColor', 'r','MarkerSize',5); 
% t3=geoshow(Lat_ChiefOG,Lon_ChiefOG, 'DisplayType', 'Point', 'Marker', '^', 

'MarkerFaceColor', 'g', 'MarkerEdgeColor', 'g','MarkerSize',5); 
% t4=geoshow(Lat_PritKir,Lon_PritKir, 'DisplayType', 'Point', 'Marker', 'd', 

'MarkerFaceColor', 'c', 'MarkerEdgeColor', 'c','MarkerSize',5); 
% t5=geoshow(Lat_BOGM,Lon_BOGM, 'DisplayType', 'Point', 'Marker', 'v', 

'MarkerFaceColor', 'm', 'MarkerEdgeColor', 'c','MarkerSize',5); 
legend([t1,t2],{'Flowback Water Sampling Locations',... 
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     'Oilfield Brines Sampling Locations'}); 

  

  
figure() 
states = geoshape(shaperead('usastatehi', 'UseGeoCoords', true)); 
oceanColor = [.5 .7 .9]; 
latlim = [37.2 40]; 
lonlim = [-82.5 -79]; 

  
ax = usamap(latlim, lonlim); 
setm(ax, 'FFaceColor', oceanColor); 
geoshow(states,'DefaultFaceColor', 'white','DefaultEdgeColor', 'black'); 
[latlim, lonlim] = bufgeoquad(latlim, lonlim, .05, .05); 
% h=geoshow(Lat, 

Lon,'DisplayType','point','Color','r','Marker','.','MarkerSize',20); 
% title({'Map of Well or Sample Locations Based on the Integral Datasets', 

'West Virginia'}); 

  
% t1=scatterm(Lat1,Lon1,50,'r','d','filled'); 
t11= geoshow(Lat_GTI_WV,Lon_GTI_WV, 'DisplayType', 'Point', 'Marker', 'o', 

'MarkerFaceColor', 'b', 'MarkerEdgeColor', 'b','MarkerSize',5); 
legend([t11],{'Flowback Water Sampling Locations'}) 

  
%% BOGM locations 
states = geoshape(shaperead('usastatehi', 'UseGeoCoords', true)); 
oceanColor = [.5 .7 .9]; 
latlim = [39.7 42.3]; 
lonlim = [-80.7 -74.5]; 

  
ax = usamap(latlim, lonlim); 
setm(ax, 'FFaceColor', oceanColor); 
geoshow(states,'DefaultFaceColor', 'white','DefaultEdgeColor', 'black'); 
[latlim, lonlim] = bufgeoquad(latlim, lonlim, .05, .05); 
t1= geoshow(Lat_BOGM,Lon_BOGM, 'DisplayType', 'Point', 'Marker', 'o', 

'MarkerFaceColor', 'k', 'MarkerEdgeColor', 'k','MarkerSize',5); 
legend([t1],{'BOGM Flowback Water Sampling Locations'}); 

  
%% Sodium Concentration in Geological Distribution 

  
Na=xlsread('Location','Sodium'); 
Na_GTI=Na(1:19,:); 
Na_GTI_1_PA=[Na_GTI(2,1);Na_GTI(4:13,1);Na_GTI(15:19,1)]; 
Na_GTI_5_PA=[Na_GTI(2,2);Na_GTI(4:13,2);Na_GTI(15:19,2)]; 
Na_GTI_14_PA=[Na_GTI(2,3);Na_GTI(4:13,3);Na_GTI(15:19,3)]; 
Na_GTI_90_PA=[Na_GTI(2,4);Na_GTI(4:13,4);Na_GTI(15:19,4)]; 
Na_GTI_1_WV=[Na_GTI(1,1);Na_GTI(3,1);Na_GTI(14,1)]; 
Na_GTI_5_WV=[Na_GTI(1,2);Na_GTI(3,2);Na_GTI(14,2)]; 
Na_GTI_14_WV=[Na_GTI(1,3);Na_GTI(3,3);Na_GTI(14,3)]; 
Na_GTI_90_WV=[Na_GTI(1,4);Na_GTI(3,4);Na_GTI(14,4)]; 
Na_Dresel=Na(20:59,1); 

  
states = geoshape(shaperead('usastatehi', 'UseGeoCoords', true)); 
oceanColor = [.5 .7 .9]; 
latlim = [39.7 42.3]; 
lonlim = [-80.7 -74.5]; 
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Lat_GTI_PA=[GTI_L(2,1);GTI_L(4:13,1);GTI_L(15:19,1)]; 
Lon_GTI_PA=[GTI_L(2,2);GTI_L(4:13,2);GTI_L(15:19,2)]; 
Lat_GTI_WV=[GTI_L(1,1);GTI_L(3,1);GTI_L(14,1)]; 
Lon_GTI_WV=[GTI_L(1,2);GTI_L(3,2);GTI_L(14,2)]; 
Lat_Dresel=Dresel_L(:,1); 
Lon_Dresel=Dresel_L(:,2); 

  

  
Lat1_PA=Lat_GTI_PA(find(isnan(Na_GTI_1_PA)==0)); 
Lon1_PA=Lon_GTI_PA(find(isnan(Na_GTI_1_PA)==0)); 
Lat5_PA=Lat_GTI_PA(find(isnan(Na_GTI_5_PA)==0)); 
Lon5_PA=Lon_GTI_PA(find(isnan(Na_GTI_5_PA)==0)); 
Lat14_PA=Lat_GTI_PA(find(isnan(Na_GTI_14_PA)==0)); 
Lon14_PA=Lon_GTI_PA(find(isnan(Na_GTI_14_PA)==0)); 
Lat90_PA=Lat_GTI_PA(find(isnan(Na_GTI_90_PA)==0)); 
Lon90_PA=Lon_GTI_PA(find(isnan(Na_GTI_90_PA)==0)); 
Lat0_Dresel=Lat_Dresel(find(isnan(Na_Dresel)==0)); 
Lon0_Dresel=Lon_Dresel(find(isnan(Na_Dresel)==0)); 

  

  
Na_Dresel=Na_Dresel(find(isnan(Na_Dresel)==0)); 
for i=1:length(Lat0_Dresel); 
    if Na_Dresel(i)>0&&Na_Dresel(i)<=10000; 
        i1(i)=i; 
    elseif Na_Dresel(i)>10000&&Na_Dresel(i)<=30000; 
        i2(i)=i; 
    elseif Na_Dresel(i)>30000&&Na_Dresel(i)<=60000; 
        i3(i)=i; 
    elseif Na_Dresel(i)>60000; 
        i4(i)=i; 
    end 
end 

  
Lat1=Lat0_Dresel(i1(find(i1~=0))); 
Lon1=Lon0_Dresel(i1(find(i1~=0))); 
Lat2=Lat0_Dresel(i2(find(i2~=0))); 
Lon2=Lon0_Dresel(i2(find(i2~=0))); 
Lat3=Lat0_Dresel(i3(find(i3~=0))); 
Lon3=Lon0_Dresel(i3(find(i3~=0))); 
Lat4=Lat0_Dresel(i4(find(i4~=0))); 
Lon4=Lon0_Dresel(i4(find(i4~=0))); 

  
% 14 day 
Na_GTI_14_PA=Na_GTI_14_PA(find(isnan(Na_GTI_14_PA)==0)); 
for i=1:length(Lat14_PA); 
    if Na_GTI_14_PA(i)>0&&Na_GTI_14_PA(i)<=10000; 
        i11(i)=i; 
    elseif Na_GTI_14_PA(i)>10000&&Na_GTI_14_PA(i)<=30000; 
        i22(i)=i; 
    elseif Na_GTI_14_PA(i)>30000&&Na_GTI_14_PA(i)<=60000; 
        i33(i)=i; 
    elseif Na_GTI_14_PA(i)>60000; 
        i44(i)=i; 
    end 
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end 
Lat11=Lat14_PA(i11(find(i11~=0))); 
Lon11=Lon14_PA(i11(find(i11~=0))); 
Lat22=Lat14_PA(i22(find(i22~=0))); 
Lon22=Lon14_PA(i22(find(i22~=0))); 
Lat33=Lat14_PA(i33(find(i33~=0))); 
Lon33=Lon14_PA(i33(find(i33~=0))); 
Lat44=Lat14_PA(i44(find(i44~=0))); 
Lon44=Lon14_PA(i44(find(i44~=0))); 
% 14 Day 
ax = usamap(latlim, lonlim); 
setm(ax, 'FFaceColor', oceanColor); 
geoshow(states,'DefaultFaceColor', 'white','DefaultEdgeColor', 'black'); 
[latlim, lonlim] = bufgeoquad(latlim, lonlim, .05, .05); 
% title({'Sodium Concentraiton of Oilfield Brine and GTI Flowback Sampled at 

90 Days', 'Pennsylvania'}); 
t1= geoshow(Lat1,Lon1, 'DisplayType', 'Point', 'Marker', 'o', 

'MarkerFaceColor', 'b', 'MarkerEdgeColor', 'b','MarkerSize',5); 
hold on 
t2=geoshow(Lat2,Lon2, 'DisplayType', 'Point', 'Marker', 'd', 

'MarkerFaceColor', 'b', 'MarkerEdgeColor', 'b','MarkerSize',5); 
t3=geoshow(Lat3,Lon3, 'DisplayType', 'Point', 'Marker', '^', 

'MarkerFaceColor', 'b', 'MarkerEdgeColor', 'b','MarkerSize',5); 
t4=geoshow(Lat4,Lon4, 'DisplayType', 'Point', 'Marker', 'V', 

'MarkerFaceColor', 'b', 'MarkerEdgeColor', 'b','MarkerSize',5); 
tt1=geoshow(Lat11,Lon11, 'DisplayType', 'Point', 'Marker', 'o', 

'MarkerFaceColor', 'r', 'MarkerEdgeColor', 'r','MarkerSize',5); 
tt2=geoshow(Lat22,Lon22, 'DisplayType', 'Point', 'Marker', 'd', 

'MarkerFaceColor', 'r', 'MarkerEdgeColor', 'r','MarkerSize',5); 
tt3=geoshow(Lat33,Lon33, 'DisplayType', 'Point', 'Marker', '^', 

'MarkerFaceColor', 'r', 'MarkerEdgeColor', 'r','MarkerSize',5); 
tt4=geoshow(Lat44,Lon44, 'DisplayType', 'Point', 'Marker', 'V', 

'MarkerFaceColor', 'r', 'MarkerEdgeColor', 'r','MarkerSize',5); 
legend([t1,t2,t3,t4,tt1,tt2,tt3,tt4],{'Oilfiled Brine Na  0 - 10000 mg/L',... 
     'Oilfiled Brine Na 10000 - 30000 mg/L'... 
    ,'Oilfiled Brine Na  30000 - 60000 mg/L'... 
    ,'Oilfiled Brine Na  > 60000 mg/L' ... 
    ,'GTI Flowback 14 or 15 Day Na 0 - 10000 mg/L'... 
    ,'GTI Flowback 14 or 15 Day Na 10000 - 30000 mg/L'... 
    ,'GTI Flowback 14 or 15 Day Na  30000 - 60000 mg/L'... 
    ,'GTI Flowback 14 or 15 Day Na  > 60000 mg/L'}); 

  
% 90 days 
Na_GTI_90_PA=Na_GTI_90_PA(find(isnan(Na_GTI_90_PA)==0)); 
for i=1:length(Lat90_PA); 
    if Na_GTI_90_PA(i)>10000&&Na_GTI_90_PA(i)<=30000; 
        i22(i)=i; 
    elseif Na_GTI_90_PA(i)>30000&&Na_GTI_90_PA(i)<=60000; 
        i33(i)=i; 
    elseif Na_GTI_90_PA(i)>60000; 
        i44(i)=i; 
    end 
end 

  
Lat22=Lat90_PA(i22(find(i22~=0))); 
Lon22=Lon90_PA(i22(find(i22~=0))); 
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Lat33=Lat90_PA(i33(find(i33~=0))); 
Lon33=Lon90_PA(i33(find(i33~=0))); 
Lat44=Lat90_PA(i44(find(i44~=0))); 
Lon44=Lon90_PA(i44(find(i44~=0))); 
% 90 day 
ax = usamap(latlim, lonlim); 
setm(ax, 'FFaceColor', oceanColor); 
geoshow(states,'DefaultFaceColor', 'white','DefaultEdgeColor', 'black'); 
[latlim, lonlim] = bufgeoquad(latlim, lonlim, .05, .05); 
% title({'Sodium Concentraiton of Oilfield Brine and GTI Flowback Sampled at 

90 Days', 'Pennsylvania'}); 
t1= geoshow(Lat1,Lon1, 'DisplayType', 'Point', 'Marker', 'o', 

'MarkerFaceColor', 'b', 'MarkerEdgeColor', 'b','MarkerSize',5); 
hold on 
t2=geoshow(Lat2,Lon2, 'DisplayType', 'Point', 'Marker', 'd', 

'MarkerFaceColor', 'b', 'MarkerEdgeColor', 'b','MarkerSize',5); 
t3=geoshow(Lat3,Lon3, 'DisplayType', 'Point', 'Marker', '^', 

'MarkerFaceColor', 'b', 'MarkerEdgeColor', 'b','MarkerSize',5); 
t4=geoshow(Lat4,Lon4, 'DisplayType', 'Point', 'Marker', 'V', 

'MarkerFaceColor', 'b', 'MarkerEdgeColor', 'b','MarkerSize',5); 

  
tt2=geoshow(Lat22,Lon22, 'DisplayType', 'Point', 'Marker', 'd', 

'MarkerFaceColor', 'r', 'MarkerEdgeColor', 'r','MarkerSize',5); 
tt3=geoshow(Lat33,Lon33, 'DisplayType', 'Point', 'Marker', '^', 

'MarkerFaceColor', 'r', 'MarkerEdgeColor', 'r','MarkerSize',5); 
tt4=geoshow(Lat44,Lon44, 'DisplayType', 'Point', 'Marker', 'V', 

'MarkerFaceColor', 'r', 'MarkerEdgeColor', 'r','MarkerSize',5); 
legend([t1,t2,t3,t4,tt2,tt3,tt4],{'Oilfiled Brine Na  0 - 10000 mg/L',... 
     'Oilfiled Brine Na 10000 - 30000 mg/L'... 
    ,'Oilfiled Brine Na  30000 - 60000 mg/L'... 
    ,'Oilfiled Brine Na  > 60000 mg/L' ... 
     'GTI Flowback 90 Day Na 10000 - 30000 mg/L'... 
    ,'GTI Flowback 90 Day Na  30000 - 60000 mg/L'... 
    ,'GTI Flowback 90 Day Na  > 60000 mg/L'}); 

  

  
%% Chloride Concentration in Geological Distribution 
Cl=xlsread('Location','Chloride'); 
Cl_GTI=Cl(1:19,:); 
Cl_GTI_1_PA=[Cl_GTI(2,1);Cl_GTI(4:13,1);Cl_GTI(15:19,1)]; 
Cl_GTI_5_PA=[Cl_GTI(2,2);Cl_GTI(4:13,2);Cl_GTI(15:19,2)]; 
Cl_GTI_14_PA=[Cl_GTI(2,3);Cl_GTI(4:13,3);Cl_GTI(15:19,3)]; 
Cl_GTI_90_PA=[Cl_GTI(2,4);Cl_GTI(4:13,4);Cl_GTI(15:19,4)]; 
Cl_GTI_1_WV=[Cl_GTI(1,1);Cl_GTI(3,1);Cl_GTI(14,1)]; 
Cl_GTI_5_WV=[Cl_GTI(1,2);Cl_GTI(3,2);Cl_GTI(14,2)]; 
Cl_GTI_14_WV=[Cl_GTI(1,3);Cl_GTI(3,3);Cl_GTI(14,3)]; 
Cl_GTI_90_WV=[Cl_GTI(1,4);Cl_GTI(3,4);Cl_GTI(14,4)]; 
Cl_Dresel=Cl(20:59,1); 

  
states = geoshape(shaperead('usastatehi', 'UseGeoCoords', true)); 
oceanColor = [.5 .7 .9]; 
latlim = [39.7 42.3]; 
lonlim = [-80.7 -74.5]; 

  
Lat_GTI_PA=[GTI_L(2,1);GTI_L(4:13,1);GTI_L(15:19,1)]; 
Lon_GTI_PA=[GTI_L(2,2);GTI_L(4:13,2);GTI_L(15:19,2)]; 
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Lat_GTI_WV=[GTI_L(1,1);GTI_L(3,1);GTI_L(14,1)]; 
Lon_GTI_WV=[GTI_L(1,2);GTI_L(3,2);GTI_L(14,2)]; 
Lat_Dresel=Dresel_L(:,1); 
Lon_Dresel=Dresel_L(:,2); 

  

  
Lat1_PA=Lat_GTI_PA(find(isnan(Cl_GTI_1_PA)==0)); 
Lon1_PA=Lon_GTI_PA(find(isnan(Cl_GTI_1_PA)==0)); 
Lat5_PA=Lat_GTI_PA(find(isnan(Cl_GTI_5_PA)==0)); 
Lon5_PA=Lon_GTI_PA(find(isnan(Cl_GTI_5_PA)==0)); 
Lat14_PA=Lat_GTI_PA(find(isnan(Cl_GTI_14_PA)==0)); 
Lon14_PA=Lon_GTI_PA(find(isnan(Cl_GTI_14_PA)==0)); 
Lat90_PA=Lat_GTI_PA(find(isnan(Cl_GTI_90_PA)==0)); 
Lon90_PA=Lon_GTI_PA(find(isnan(Cl_GTI_90_PA)==0)); 
Lat0_Dresel=Lat_Dresel(find(isnan(Cl_Dresel)==0)); 
Lon0_Dresel=Lon_Dresel(find(isnan(Cl_Dresel)==0)); 

  

  
Cl_Dresel=Cl_Dresel(find(isnan(Cl_Dresel)==0)); 
for i=1:length(Lat0_Dresel); 
    if Cl_Dresel(i)>0&&Cl_Dresel(i)<=50000; 
        i1(i)=i; 
    elseif Cl_Dresel(i)>50000&&Cl_Dresel(i)<=100000; 
        i2(i)=i; 
    elseif Cl_Dresel(i)>100000&&Cl_Dresel(i)<=150000; 
        i3(i)=i; 
    elseif Cl_Dresel(i)>150000; 
        i4(i)=i; 
    end 
end 

  
Lat1=Lat0_Dresel(i1(find(i1~=0))); 
Lon1=Lon0_Dresel(i1(find(i1~=0))); 
Lat2=Lat0_Dresel(i2(find(i2~=0))); 
Lon2=Lon0_Dresel(i2(find(i2~=0))); 
Lat3=Lat0_Dresel(i3(find(i3~=0))); 
Lon3=Lon0_Dresel(i3(find(i3~=0))); 
Lat4=Lat0_Dresel(i4(find(i4~=0))); 
Lon4=Lon0_Dresel(i4(find(i4~=0))); 

  
% 14 
Cl_GTI_14_PA=Cl_GTI_14_PA(find(isnan(Cl_GTI_14_PA)==0)); 
for i=1:length(Lat14_PA); 
    if Cl_GTI_14_PA(i)>0&&Cl_GTI_14_PA(i)<=50000; 
        i11(i)=i; 
    elseif Cl_GTI_14_PA(i)>50000&&Cl_GTI_14_PA(i)<=100000; 
        i22(i)=i; 
    elseif Cl_GTI_14_PA(i)>100000&&Cl_GTI_14_PA(i)<=150000; 
        i33(i)=i; 
    elseif Cl_GTI_14_PA(i)>150000; 
        i44(i)=i; 
    end 
end 
Lat11=Lat14_PA(i11(find(i11~=0))); 
Lon11=Lon14_PA(i11(find(i11~=0))); 
Lat22=Lat14_PA(i22(find(i22~=0))); 
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Lon22=Lon14_PA(i22(find(i22~=0))); 
Lat33=Lat14_PA(i33(find(i33~=0))); 
Lon33=Lon14_PA(i33(find(i33~=0))); 
Lat44=Lat14_PA(i44(find(i44~=0))); 
Lon44=Lon14_PA(i44(find(i44~=0))); 

  
ax = usamap(latlim, lonlim); 
setm(ax, 'FFaceColor', oceanColor); 
geoshow(states,'DefaultFaceColor', 'white','DefaultEdgeColor', 'black'); 
[latlim, lonlim] = bufgeoquad(latlim, lonlim, .05, .05); 
% title({'Chloride Concentraiton of Oilfield Brine and GTI Flowback Sampled 

at 90 Days', 'Pennsylvania'}); 
t1= geoshow(Lat1,Lon1, 'DisplayType', 'Point', 'Marker', 'o', 

'MarkerFaceColor', 'b', 'MarkerEdgeColor', 'b','MarkerSize',5); 
hold on 
t2=geoshow(Lat2,Lon2, 'DisplayType', 'Point', 'Marker', 'd', 

'MarkerFaceColor', 'b', 'MarkerEdgeColor', 'b','MarkerSize',5); 
t3=geoshow(Lat3,Lon3, 'DisplayType', 'Point', 'Marker', '^', 

'MarkerFaceColor', 'b', 'MarkerEdgeColor', 'b','MarkerSize',5); 
t4=geoshow(Lat4,Lon4, 'DisplayType', 'Point', 'Marker', 'V', 

'MarkerFaceColor', 'b', 'MarkerEdgeColor', 'b','MarkerSize',5); 
tt1=geoshow(Lat11,Lon11, 'DisplayType', 'Point', 'Marker', 'o', 

'MarkerFaceColor', 'r', 'MarkerEdgeColor', 'r','MarkerSize',5); 
tt2=geoshow(Lat22,Lon22, 'DisplayType', 'Point', 'Marker', 'd', 

'MarkerFaceColor', 'r', 'MarkerEdgeColor', 'r','MarkerSize',5); 
tt3=geoshow(Lat33,Lon33, 'DisplayType', 'Point', 'Marker', '^', 

'MarkerFaceColor', 'r', 'MarkerEdgeColor', 'r','MarkerSize',5); 
tt4=geoshow(Lat44,Lon44, 'DisplayType', 'Point', 'Marker', 'V', 

'MarkerFaceColor', 'r', 'MarkerEdgeColor', 'r','MarkerSize',5); 
legend([t1,t2,t3,t4,tt1,tt2,tt3,tt4],{'Oilfiled Brine Cl  0 - 50000 mg/L',... 
     'Oilfiled Brine Cl 50000 - 100000 mg/L'... 
    ,'Oilfiled Brine Cl 100000 - 150000 mg/L'... 
    ,'Oilfiled Brine Cl  > 150000 mg/L' ... 
    ,'GTI Flowback 14 or 15 Day Cl 0 - 50000 mg/L'... 
    ,'GTI Flowback 14 or 15 Day Cl 50000 - 100000 mg/L'... 
    ,'GTI Flowback 14 or 15 Day Cl 100000 - 150000 mg/L'... 
    ,'GTI Flowback 14 or 15 Day Cl  > 150000 mg/L'}); 

  
% 90 
Cl_GTI_90_PA=Cl_GTI_90_PA(find(isnan(Cl_GTI_90_PA)==0)); 
for i=1:length(Lat90_PA); 
    if Cl_GTI_90_PA(i)>50000&&Cl_GTI_90_PA(i)<=100000; 
        i22(i)=i; 
    elseif Cl_GTI_90_PA(i)>100000&&Cl_GTI_90_PA(i)<=150000; 
        i33(i)=i; 
    elseif Cl_GTI_90_PA(i)>150000; 
        i44(i)=i; 
    end 
end 

  
Lat22=Lat90_PA(i22(find(i22~=0))); 
Lon22=Lon90_PA(i22(find(i22~=0))); 
Lat33=Lat90_PA(i33(find(i33~=0))); 
Lon33=Lon90_PA(i33(find(i33~=0))); 
Lat44=Lat90_PA(i44(find(i44~=0))); 
Lon44=Lon90_PA(i44(find(i44~=0))); 
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ax = usamap(latlim, lonlim); 
setm(ax, 'FFaceColor', oceanColor); 
geoshow(states,'DefaultFaceColor', 'white','DefaultEdgeColor', 'black'); 
[latlim, lonlim] = bufgeoquad(latlim, lonlim, .05, .05); 
% title({'Chloride Concentraiton of Oilfield Brine and GTI Flowback Sampled 

at 90 Days', 'Pennsylvania'}); 
t1= geoshow(Lat1,Lon1, 'DisplayType', 'Point', 'Marker', 'o', 

'MarkerFaceColor', 'b', 'MarkerEdgeColor', 'b','MarkerSize',5); 
hold on 
t2=geoshow(Lat2,Lon2, 'DisplayType', 'Point', 'Marker', 'd', 

'MarkerFaceColor', 'b', 'MarkerEdgeColor', 'b','MarkerSize',5); 
t3=geoshow(Lat3,Lon3, 'DisplayType', 'Point', 'Marker', '^', 

'MarkerFaceColor', 'b', 'MarkerEdgeColor', 'b','MarkerSize',5); 
t4=geoshow(Lat4,Lon4, 'DisplayType', 'Point', 'Marker', 'V', 

'MarkerFaceColor', 'b', 'MarkerEdgeColor', 'b','MarkerSize',5); 
% tt1=geoshow(Lat11,Lon11, 'DisplayType', 'Point', 'Marker', 'o', 

'MarkerFaceColor', 'r', 'MarkerEdgeColor', 'r','MarkerSize',5); 
tt2=geoshow(Lat22,Lon22, 'DisplayType', 'Point', 'Marker', 'd', 

'MarkerFaceColor', 'r', 'MarkerEdgeColor', 'r','MarkerSize',5); 
tt3=geoshow(Lat33,Lon33, 'DisplayType', 'Point', 'Marker', '^', 

'MarkerFaceColor', 'r', 'MarkerEdgeColor', 'r','MarkerSize',5); 
tt4=geoshow(Lat44,Lon44, 'DisplayType', 'Point', 'Marker', 'V', 

'MarkerFaceColor', 'r', 'MarkerEdgeColor', 'r','MarkerSize',5); 
legend([t1,t2,t3,t4,tt2,tt3,tt4],{'Oilfiled Brine Cl  0 - 50000 mg/L',... 
     'Oilfiled Brine Cl 50000 - 100000 mg/L'... 
    ,'Oilfiled Brine Cl 100000 - 150000 mg/L'... 
    ,'Oilfiled Brine Cl  > 150000 mg/L' ... 
    'GTI Flowback 90 Day Cl 50000 - 100000 mg/L'... 
    ,'GTI Flowback 90 Day Cl 100000 - 150000 mg/L'... 
    ,'GTI Flowback 90 Day Cl  > 150000 mg/L'}); 

 
Dresel (2010) 

clc; 
clear all; 
clf; 
close all; 
%% 
Dresel_Raw1=xlsread('DreselData','Raw1'); 
save ('Dresel_Raw1') 
Dresel_Raw2=xlsread('DreselData','Raw2'); 
save ('Dresel_Raw2') 
%% Na-Cl-TDS systematics 
load ('Dresel_Raw1') 
load ('Dresel_Raw2') 

  
TDS=Dresel_Raw1(:,3)*10^3; 
Cl=Dresel_Raw2(:,10); 
Na=Dresel_Raw1(:,9); 

  
figure(1) 
h=scatter(TDS,Cl,'filled','r^'); 
hold on 
hh=scatter(TDS,Na,'filled','bv'); 
xlabel('Concentration of TDS (mg/L)') 
ylabel('Concentration of Ions (mg/L)') 
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mdl1 = LinearModel.fit(TDS,Cl,'linear','RobustOpts','on'); 
hold on 
h1=plot(mdl1); 
set(h1,'color','red'); 
mdl2=LinearModel.fit(TDS,Na,'linear','RobustOpts','on'); 
h2=plot(mdl2); 
set(h2,'color','blue'); 

  
xlabel('Concentration of TDS (mg/L)') 
ylabel('Concentration of Each Ion(mg/L)') 
title('Sodium vs. Chloride within the indication of TDS') 
text(3*10^5,1.5*10^5,'C_{Cl} = 0.56995C_{TDS} -1460.1; R^2=0.98') 
text(3*10^5,0.6*10^5,'C_{Na} = 0.24487C_{TDS} + 511.39; R^2=0.979') 

  
legend([h,hh],{'Chloride','Sodium'},'location','best'); 

  
%% Cl-Br systematics Compiled with Flowback 
Cl_Dre=Dresel_Raw2(:,10); 
Br_Dre=Dresel_Raw2(:,11); 
Br_Dr=Br_Dre(find(isnan(Br_Dre)==0)) 
Cl_Dr=Cl_Dre(find(isnan(Br_Dre)==0)) 
% Flowback  
Ha2=xlsread('Data(Hayes2009)_PAN','Sheet4'); 
Br_Flo=Ha2(1:4:73,1:5); 
Ha_Ions=xlsread('Data(Hayes2009)_PAN','sheet1'); 
Cl_Flo=Ha_Ions(4:11:202,1:5); 

  
Br_Day14=Br_Flo(:,4); 
Br_Day14=Br_Day14(find(isnan(Br_Day14)==0)); 
Br_Day90=Br_Flo(:,5); 
Br_Day90=Br_Day90(find(isnan(Br_Day90)==0)); 
Cl_Day14=Cl_Flo(:,4); 
Cl_Day14=Cl_Day14(find(isnan(Cl_Day14)==0)); 
Cl_Day90=Cl_Flo(:,5); 
Cl_Day90=Cl_Day90(find(isnan(Cl_Day90)==0)); 

  
figure() 
h3=plot(log10(Br_Dr),log10(Cl_Dr),'bs'); 
set(h3,'MarkerFaceColor','blue','MarkerSize',5) 
mdl1=LinearModel.fit(log10(Br_Dr),log10(Cl_Dr)); 
hold on 
% plotDiagnostics(mdl1,'cookd') 
% plotResiduals(mdl1) 
% plotResiduals(mdl1,'probability') 
larg=find((mdl1.Diagnostics.CooksDistance)>3*mean(mdl1.Diagnostics.CooksDista

nce)); 
mdl21 = LinearModel.fit(log10(Br_Dr),log10(Cl_Dr),'Exclude',larg); 
hold on  
L1=plot(mdl21) 
set(L1,'color','blue','LineWidth',1.5); 

  

  
h4=plot(log10(Br_Day14),log10(Cl_Day14),'rs'); 
set(h4,'MarkerFaceColor','red','MarkerSize',5) 
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mdl2=LinearModel.fit(log10(Br_Day14),log10(Cl_Day14)); 
% plotDiagnostics(mdl2,'cookd') 
larg=find((mdl2.Diagnostics.CooksDistance)>3*mean(mdl2.Diagnostics.CooksDista

nce)); 
mdl22 = LinearModel.fit(log10(Br_Day14),log10(Cl_Day14),'Exclude',larg); 
hold on  
L2=plot(mdl22) 
set(L2,'color','red','LineWidth',2); 

  
h5=plot(log10(Br_Day90),log10(Cl_Day90),'s'); 
set(h5,'MarkerEdgeColor',[0 0.5 0],'MarkerFaceColor',[0 0.5 

0],'MarkerSize',5) 
mdl3=LinearModel.fit(log10(Br_Day90),log10(Cl_Day90)); 
% plotDiagnostics(mdl3,'cookd') 
larg=find((mdl3.Diagnostics.CooksDistance)>3*mean(mdl3.Diagnostics.CooksDista

nce)); 
mdl23 = LinearModel.fit(log10(Br_Day90),log10(Cl_Day90),'Exclude',larg); 
hold on  
L3=plot(mdl23) 
set(L3,'color',[0 0.5 0],'LineWidth',2.5); 

  
xlabel('Log(Br)','FontSize',15) 
ylabel('Log(Cl)','FontSize',15) 

  
legend([h3,h4,h5],{'Oilfield Brine','Flowback Water Day 14 or 15','Flowback 

Water Day 90'},'location','best') 

  
title('Linear Regression Model for Cl-Br Systematics','FontSize',15) 

  
%% Other  

  
Br_Dre=Dresel_Raw2(:,11); 
Br_Dr=Br_Dre(find(isnan(Br_Dre)==0)); 
Ca_Dre=Dresel_Raw1(:,12); 
Ca_Dr=Ca_Dre(find(isnan(Br_Dre)==0)); 
Ca_D=Ca_Dr(find(isnan(Ca_Dr)==0)); 
Br_D=Br_Dr(find(isnan(Ca_Dr)==0)); 

 
Ha_Ions=xlsread('Data(Hayes2009)_PAN','sheet1'); 
Na_Flo=Ha_Ions(1:11:199,1:5); 
K_Flo=Ha_Ions(2:11:200,1:5); 
Ca_Flo=Ha_Ions(3:11:201,1:5); 
SO4_Flo=Ha_Ions(5:11:203,1:5); 
Ba_Flo=Ha_Ions(6:11:204,1:5); 
Mg_Flo=Ha_Ions(11:11:209,1:5); 

  

  
% Flowback  
Br_Day14=Br_Flo(:,4); 
Br_Day14=Br_Day14(find(isnan(Br_Day14)==0)); 
Br_Day90=Br_Flo(:,5); 
Br_Day90=Br_Day90(find(isnan(Br_Day90)==0)); 
Ca_Day14=Ca_Flo(:,4); 
Ca_Day14=Ca_Day14(find(isnan(Ca_Day14)==0)); 
Ca_Day90=Ca_Flo(:,5); 
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Ca_Day90=Ca_Day90(find(isnan(Ca_Day90)==0)); 
Mg_Day14=Mg_Flo(:,4); 
Mg_Day14=Mg_Day14(find(isnan(Mg_Day14)==0)); 
Mg_Day90=Mg_Flo(:,5); 
Mg_Day90=Mg_Day90(find(isnan(Mg_Day90)==0)); 
Na_Day14=Na_Flo(:,4); 
Na_Day14=Na_Day14(find(isnan(Na_Day14)==0)); 
Na_Day90=Na_Flo(:,5); 
Na_Day90=Na_Day90(find(isnan(Na_Day90)==0)); 

  
% Ca-Br 
figure() 
hh3=plot(log10(Br_D),log10(Ca_D),'bs'); 
set(hh3,'MarkerFaceColor','blue','MarkerSize',5) 
hold on 
mdl1=LinearModel.fit(log10(Br_D),log10(Ca_D)); 
% plot(mdl1) 
% plotDiagnostics(mdl1,'cookd')  
% plotResiduals(mdl1) 
% plotResiduals(mdl1,'probability') 
larg=find((mdl1.Diagnostics.CooksDistance)>3*mean(mdl1.Diagnostics.CooksDista

nce)); 
mdl21 = LinearModel.fit(log10(Br_D),log10(Ca_D),'Exclude',larg); 
hold on  
L1=plot(mdl21) 
set(L1,'color','blue','LineWidth',1.5); 

  

  
hh4=plot(log10(Br_Day14),log10(Ca_Day14./1000),'rs'); 
set(hh4,'MarkerFaceColor','red','MarkerSize',5) 
mdl2=LinearModel.fit(log10(Br_Day14),log10(Ca_Day14./1000)); 
% plotResiduals(mdl2,'probability') 
% plotDiagnostics(mdl2,'cookd') 
larg=find((mdl2.Diagnostics.CooksDistance)>3*mean(mdl2.Diagnostics.CooksDista

nce)); 
mdl22 = 

LinearModel.fit(log10(Br_Day14),log10(Ca_Day14./1000),'Exclude',larg); 
hold on  
L2=plot(mdl22) 
set(L2,'color','red','LineWidth',2); 

  
hh5=plot(log10(Br_Day90),log10(Ca_Day90./1000),'s'); 
set(hh5,'MarkerEdgeColor',[0 0.5 0],'MarkerFaceColor',[0 0.5 

0],'MarkerSize',5) 
mdl3=LinearModel.fit(log10(Br_Day90),log10(Ca_Day90./1000)); 
% plotResiduals(mdl3,'probability') 
% plotDiagnostics(mdl3,'cookd') 
larg=find((mdl3.Diagnostics.CooksDistance)>3*mean(mdl3.Diagnostics.CooksDista

nce)); 
mdl23 = 

LinearModel.fit(log10(Br_Day90),log10(Ca_Day90./1000),'Exclude',larg); 
hold on  
L3=plot(mdl23) 
set(L3,'color',[0 0.5 0],'LineWidth',2.5); 

  
xlabel('Log(Br)','FontSize',15) 
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ylabel('Log(Ca)','FontSize',15) 

  
legend([hh3,hh4,hh5],{'Oilfield Brine','Flowback Water Day 14 or 

15','Flowback Water Day 90'},'location','best','FontSize',15) 

  
title('Linear Regression Model for Ca-Br Systematics','FontSize',15) 

  
% Mg-Br 
Mg_Dre=Dresel_Raw1(:,11); 
Mg_Dr=Mg_Dre(find(isnan(Br_Dre)==0)); 
Mg_D=Mg_Dr(find(isnan(Mg_Dr)==0)); 
Br_D=Br_Dr(find(isnan(Mg_Dr)==0)); 

  
figure() 
hh3=plot(log10(Br_D),log10(Mg_D),'bs'); 
set(hh3,'MarkerFaceColor','blue','MarkerSize',5) 
hold on 
mdl1=LinearModel.fit(log10(Br_D),log10(Mg_D)); 
% plotResiduals(mdl1,'probability') 
% plotDiagnostics(mdl1,'cookd') 
outl = find(mdl1.Residuals.Raw > 0.2 | mdl1.Residuals.Raw < -0.2) 
mdl21 = LinearModel.fit(log10(Br_D),log10(Mg_D),'Exclude',outl); 
hold on  
L1=plot(mdl21) 
set(L1,'color','blue','LineWidth',1.5); 

  

  
hh4=plot(log10(Br_Day14),log10(Mg_Day14./1000),'rs'); 
set(hh4,'MarkerFaceColor','red','MarkerSize',5) 
mdl2=LinearModel.fit(log10(Br_Day14),log10(Mg_Day14./1000)); 
% plotResiduals(mdl2,'probability') 
% plotDiagnostics(mdl2,'cookd') 
larg=find((mdl2.Diagnostics.CooksDistance)>3*mean(mdl2.Diagnostics.CooksDista

nce)); 
mdl22 = 

LinearModel.fit(log10(Br_Day14),log10(Mg_Day14./1000),'Exclude',larg); 
hold on  
L2=plot(mdl22) 
set(L2,'color','red','LineWidth',2); 

  
hh5=plot(log10(Br_Day90),log10(Mg_Day90./1000),'s'); 
set(hh5,'MarkerEdgeColor',[0 0.5 0],'MarkerFaceColor',[0 0.5 

0],'MarkerSize',5) 
mdl3=LinearModel.fit(log10(Br_Day90),log10(Mg_Day90./1000)); 
% plotResiduals(mdl3,'probability') 
% plotDiagnostics(mdl3,'cookd') 
larg=find((mdl3.Diagnostics.CooksDistance)>3*mean(mdl3.Diagnostics.CooksDista

nce)); 
mdl23 = 

LinearModel.fit(log10(Br_Day90),log10(Mg_Day90./1000),'Exclude',larg); 
hold on  
L3=plot(mdl23) 
set(L3,'color',[0 0.5 0],'LineWidth',2.5); 

  
xlabel('Log(Br)','FontSize',15) 
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ylabel('Log(Mg)','FontSize',15) 

  
legend([hh3,hh4,hh5],{'Oilfield Brine','Flowback Water Day 14 or 

15','Flowback Water Day 90'},'location','best','FontSize',15) 

  
title('Linear Regression Model for Mg-Br Systematics','FontSize',15) 

  
% Na-Br 
Na_Dre=Dresel_Raw1(:,9); 
Na_Dr=Na_Dre(find(isnan(Br_Dre)==0)); 
Na_D=Na_Dr(find(isnan(Na_Dr)==0)); 
Br_D=Br_Dr(find(isnan(Na_Dr)==0)); 

  
figure() 
hh3=plot(log10(Br_D),log10(Na_D),'bs'); 
set(hh3,'MarkerFaceColor','blue','MarkerSize',5) 
hold on 
mdl1=LinearModel.fit(log10(Br_D),log10(Na_D)); 
% plotResiduals(mdl1,'probability') 
% plotDiagnostics(mdl1,'cookd') 
larg=find((mdl1.Diagnostics.CooksDistance)>3*mean(mdl1.Diagnostics.CooksDista

nce)); 
outl = find(mdl1.Residuals.Raw > 0.15|mdl1.Residuals.Raw < -0.3) 
mdl21 = LinearModel.fit(log10(Br_D),log10(Na_D),'Exclude',outl); 
hold on  
L1=plot(mdl21) 
set(L1,'color','blue','LineWidth',1.5); 

  

  
hh4=plot(log10(Br_Day14),log10(Na_Day14./1000),'rs'); 
set(hh4,'MarkerFaceColor','red','MarkerSize',5) 
mdl2=LinearModel.fit(log10(Br_Day14),log10(Na_Day14./1000)) 
% plotResiduals(mdl2,'probability') 
% plotDiagnostics(mdl2,'cookd') 
larg=find((mdl2.Diagnostics.CooksDistance)>3*mean(mdl2.Diagnostics.CooksDista

nce)); 
outl = find(mdl2.Residuals.Raw > 0.2) 
mdl22 = 

LinearModel.fit(log10(Br_Day14),log10(Na_Day14./1000),'Exclude',outl); 
hold on  
L2=plot(mdl22) 
set(L2,'color','red','LineWidth',2); 

  
hh5=plot(log10(Br_Day90),log10(Na_Day90./1000),'s'); 
set(hh5,'MarkerEdgeColor',[0 0.5 0],'MarkerFaceColor',[0 0.5 

0],'MarkerSize',5) 
mdl3=LinearModel.fit(log10(Br_Day90),log10(Na_Day90./1000)); 
% plotResiduals(mdl3,'probability') 
% plotDiagnostics(mdl3,'cookd') 
larg=find((mdl3.Diagnostics.CooksDistance)>3*mean(mdl3.Diagnostics.CooksDista

nce)); 
outl = find(mdl3.Residuals.Raw > 0.2) 
mdl23 = 

LinearModel.fit(log10(Br_Day90),log10(Na_Day90./1000),'Exclude',larg); 
hold on  
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L3=plot(mdl23) 
set(L3,'color',[0 0.5 0],'LineWidth',2.5); 

  
xlabel('Log(Br)','FontSize',15) 
ylabel('Log(Na)','FontSize',15) 

  
legend([hh3,hh4,hh5],{'Oilfield Brine','Flowback Water Day 14 or 

15','Flowback Water Day 90'},'location','best','FontSize',15) 

  
title('Linear Regression Model for Na-Br Systematics','FontSize',15) 

 

 

BOGM 

clc; 
clear all; 
clf; 
close all; 
%% Linear-Regression [Sodim vs. Chloride with Increment of TDS] 
BG_data1=xlsread('PreliminaryAnalysisBOGM.XLSX','MajorComp'); 
KP_Well=xlsread('KirbyPritz.XLSX','Sheet1'); 
save ('BG_data1') 
save('KP_Well') 
%% Na-Cl-TDS systematics 
load ('BG_data1') 
load ('Dresel_Raw1') 
load ('Dresel_Raw2') 
load ('KP_Well') 

  
TDS_Dre=Dresel_Raw1(:,3)*10^3; 
Cl_Dre=Dresel_Raw2(:,10); 
Na_Dre=Dresel_Raw1(:,9); 

  
TDS_BG=BG_data1(:,8); 
Na_BG=BG_data1(:,1); 
Cl_BG=BG_data1(:,4); 

  
TDS_KP=KP_Well(:,5); 
Cl_KP=KP_Well(:,18); 
Na_KP=KP_Well(:,15); 

  
TDS_Dr=TDS_Dre(find(isnan(TDS_Dre)==0)); 
Cl_Dr=Cl_Dre(find(isnan(TDS_Dre)==0)); 
Cl_D=Cl_Dr(find(isnan(Cl_Dr)==0)); 
TDS_D=TDS_Dr(find(isnan(Cl_Dr)==0)); 

  
TDS_B=TDS_BG(find(isnan(TDS_BG)==0)); 
Cl_B=Cl_BG(find(isnan(TDS_BG)==0)); 
Cl_B1=Cl_B(find(isnan(Cl_B)==0)); 
TDS_B1=TDS_B(find(isnan(Cl_B)==0)); 

  
TDS_K=TDS_KP(find(isnan(TDS_KP)==0)); 
Cl_K=Cl_KP(find(isnan(TDS_KP)==0)); 
Cl_K1=Cl_K(find(isnan(Cl_K)==0)); 
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TDS_K1=TDS_K(find(isnan(Cl_K)==0)); 

  
figure() 
l=scatter(TDS_B1,Cl_B1,'ro','filled'); 
hold on 
m=scatter(TDS_K1,Cl_K1,'rd','filled') 
h=scatter(TDS_Dre,Cl_Dre,'r^'); 
mdl12=LinearModel.fit(TDS_D,Cl_D); 
[~,larg] = max(mdl12.Diagnostics.CooksDistance); 
mdl2 = LinearModel.fit(TDS_D,Cl_D,'Exclude',larg); 
L2=plot(mdl2) 
set(L2,'color','red'); 

  

  

  
TDS_Dr=TDS_Dre(find(isnan(TDS_Dre)==0)); 
Na_Dr=Na_Dre(find(isnan(TDS_Dre)==0)); 
Na_D=Na_Dr(find(isnan(Na_Dr)==0)); 
TDS_D=TDS_Dr(find(isnan(Na_Dr)==0)); 

  
TDS_B=TDS_BG(find(isnan(TDS_BG)==0)); 
Na_B=Na_BG(find(isnan(TDS_BG)==0)); 
Na_B1=Na_B(find(isnan(Na_B)==0)); 
TDS_B1=TDS_B(find(isnan(Na_B)==0)); 

  
TDS_K=TDS_KP(find(isnan(TDS_KP)==0)); 
Na_K=Na_KP(find(isnan(TDS_KP)==0)); 
Na_K1=Na_K(find(isnan(Na_K)==0)); 
TDS_K1=TDS_K(find(isnan(Na_K)==0)); 

  

  
ll=scatter(TDS_B1,Na_B1,'bo','filled'); 
hh=scatter(TDS_D,Na_D,'bd'); 
mm=scatter(TDS_K1,Na_K1,'b^','filled'); 
mdl11=LinearModel.fit(TDS_D,Na_D); 
[~,larg] = max(mdl11.Diagnostics.CooksDistance); 
mdl1 = LinearModel.fit(TDS_D,Na_D,'Exclude',larg); 
hold on  
L1=plot(mdl1) 
set(L1,'color','blue'); 

  
x1=0:0.4*10^5:3.8*10^5; 
y1=0.57012.*x1-1579.4; 
y2=0.24432.*x1+670.4; 
plot(x1,y1,'r--') 
plot(x1,y2,'b--') 
ylim([0, 2.5*10^5]); 
legend([l,m,h,ll,mm,hh],{'Cl-BOGM','Cl-Kirby&Pritz','Cl-Oilfield Brines','Na-

BOGM','Na-Kirby&Pritz','Na-Oilfiled 

Brines'},'location','best','FontSize',20); 
xlabel('Concentration of TDS (mg/L)','FontSize',20) 
ylabel('Concentration of Each Ions (mg/L)','FontSize',20) 
title('Na vs. Cl along with the indication of TDS','FontSize',20) 
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%% Br-Cl Br-Na Br-Ca Br-Mg Classification 
Cl_Dre=Dresel_Raw2(:,10); 
Br_Dre=Dresel_Raw2(:,11); 
Br_Dr=Br_Dre(find(isnan(Br_Dre)==0)) 
Cl_Dr=Cl_Dre(find(isnan(Br_Dre)==0)) 

  
% Flowback  
Br_BG=BG_data1(:,11); 
Na_BG=BG_data1(:,1); 
Cl_BG=BG_data1(:,4); 
Ca_BG=BG_data1(:,3); 
Mg_BG=BG_data1(:,9); 

  
% Cl-Br 
Br_B=Br_BG(find(isnan(Br_BG)==0)); 
Cl_B=Cl_BG(find(isnan(Br_BG)==0)); 
Cl_B1=Cl_B(find(isnan(Cl_B)==0)); 
Br_B1=Br_B(find(isnan(Cl_B)==0)); 

  
figure() 
h3=plot(log10(Br_Dr),log10(Cl_Dr),'bs'); 
set(h3,'MarkerFaceColor','blue','MarkerSize',5) 
mdl1=LinearModel.fit(log10(Br_Dr),log10(Cl_Dr)); 
hold on 
[~,larg] = max(mdl1.Diagnostics.CooksDistance); 
mdl21 = LinearModel.fit(log10(Br_Dr),log10(Cl_Dr),'Exclude',larg); 
hold on  
L1=plot(mdl21) 
set(L1,'color','blue','LineWidth',1.5); 

  

  
h4=plot(log10(Br_B1),log10(Cl_B1),'rs'); 
set(h4,'MarkerFaceColor','red','MarkerSize',5) 
mdl2=LinearModel.fit(log10(Br_B1),log10(Cl_B1)); 
[~,larg] = max(mdl2.Diagnostics.CooksDistance); 
mdl22 = LinearModel.fit(log10(Br_B1),log10(Cl_B1),'Exclude',larg); 
hold on  
L2=plot(mdl22) 
set(L2,'color','red','LineWidth',2); 

  
xlabel('Log(Br)','FontSize',15) 
ylabel('Log(Cl)','FontSize',15) 

  
legend([h3,h4],{'Oilfield Brine','Flowback Water Day 14 or 15','Flowback 

Water Day 90'},'location','best') 

  
title('Linear Regression Model for Cl-Br Systematics','FontSize',15) 
 

PCA 

clc; 
clear all; 
clf; 
close all; 
%% 
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load ('Ha'); 
load ('DOC'); 
Ha_Ions=xlsread('Data(Hayes2009)_PAN','sheet1'); 
Ha2=xlsread('Data(Hayes2009)_PAN','Sheet4'); 

  
Vol=[Ha(:,6) Ha(:,7) (Ha(:,8)-Ha(:,7))/4 (Ha(:,9)-Ha(:,8))/9 (Ha(:,10)-

Ha(:,9))/76]; 

  
Na=Ha_Ions(1:11:199,1:5); 
K=Ha_Ions(2:11:200,1:5); 
Ca=Ha_Ions(3:11:201,1:5); 
Cl=Ha_Ions(4:11:202,1:5); 
SO4=Ha_Ions(5:11:203,1:5); 
Ba=Ha_Ions(6:11:204,1:5); 
B=Ha_Ions(7:11:205,1:5); 
Fe=Ha_Ions(8:11:206,1:5); 
Li=Ha_Ions(9:11:207,1:5); 
Sr=Ha_Ions(10:11:208,1:5); 
Mg=Ha_Ions(11:11:209,1:5); 
TDS=Ha(:,1:5); 

  
Br=Ha2(1:4:73,1:5); 
S=Ha2(2:4:74,1:5); 
Alk=Ha2(3:4:75,1:5); 
pH=Ha2(4:4:76,1:5); 

  
% PCA Datapool 
i=1; 
Day_0=[Na(:,i)/1000 K(:,i)/1000 Ca(:,i)/1000 Cl(:,i) SO4(:,i) 

Ba(:,i)/1000 ... 
    B(:,i)/1000 Fe(:,i)/1000 Li(:,i)/1000 Sr(:,i)/1000 Mg(:,i)/1000 Br(:,i) 

Alk(:,i)]; 
i=2; 
Day_1=[Na(:,i)/1000 K(:,i)/1000 Ca(:,i)/1000 Cl(:,i) SO4(:,i) 

Ba(:,i)/1000 ... 
    B(:,i)/1000 Fe(:,i)/1000 Li(:,i)/1000 Sr(:,i)/1000 Mg(:,i)/1000 Br(:,i) 

Alk(:,i)]; 
i=2; 
i=3; 
Day_5=[Na(:,i)/1000 K(:,i)/1000 Ca(:,i)/1000 Cl(:,i) SO4(:,i) 

Ba(:,i)/1000 ... 
    B(:,i)/1000 Fe(:,i)/1000 Li(:,i)/1000 Sr(:,i)/1000 Mg(:,i)/1000 Br(:,i) 

Alk(:,i)]; 
i=4; 
Day_14=[Na(:,i)/1000 K(:,i)/1000 Ca(:,i)/1000 Cl(:,i) SO4(:,i) 

Ba(:,i)/1000 ... 
    B(:,i)/1000 Fe(:,i)/1000 Li(:,i)/1000 Sr(:,i)/1000 Mg(:,i)/1000 Br(:,i) 

Alk(:,i)]; 
i=5; 
Day_90=[Na(:,i)/1000 K(:,i)/1000 Ca(:,i)/1000 Cl(:,i) SO4(:,i) 

Ba(:,i)/1000 ... 
    B(:,i)/1000 Fe(:,i)/1000 Li(:,i)/1000 Sr(:,i)/1000 Mg(:,i)/1000 Br(:,i) 

Alk(:,i)]; 

  
% Datapool=[Day_0 Day_1 Day_5 Day_14 Day_90]; 
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% for i=1:1:19; 
% for    j=1:1:65; 
%    K0(i,j)=isnan(Datapool(i,j)); 
%     
% end 
% end 
% for j=1:65; 
% [row,col]=find(K0(:,j)==0); 
% for i=1:size(row,1); 
% Data_New(i,j)=Datapool(row(i),j); 
% end 
% end 

  

  
Datapool_Categories=[Day_0; Day_1; Day_5; Day_14; Day_90]; 

  
% for i=1:1:95; 
% for    j=1:1:13; 
%    K1(i,j)=isnan(Datapool_Categories(i,j)); 
%     
% end 
% end 
% for j=1:13; 
% [row,col]=find(K1(:,j)==0); 
% for i=1:size(row,1); 
% Data_New1(i,j)=Datapool_Categories(row(i),j); 
% end 
% end 

  
% Datapool_Categories(isnan(Datapool_Categories))=0; 

  
[coeff1,score1,latent1,tsquared1,explained1,mu1] = 

pca(Datapool_Categories,... 
'algorithm','als'); 
coeff1 
mu1 
t = score1*coeff1' + repmat(mu1,95,1); 

  

  
Categories_new = cell(13,1); 
Categories_new={'Na';'K';'Ca';'Cl';'SO4';'Ba';'B';'Fe';'Li';'Sr';'Mg';'Br';'A

lk'};   

  

  
% [coeff2,score2,latent2,tsquared2,explained2,mu2] = pca(t,... 
% 'algorithm','eig'); 
% [coeff3,score3,latent3,tsquare3,explained3,mu3] = 

princomp(t,'algorithm','svd'); 
% cumsum(latent3)./sum(latent3) 

  
% figure() 
% biplot(coeff1(:,1:2),'Scores',score1(:,1:2),'VarLabels',... 
%       Categories_new) 
%      
% figure() 
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% biplot(coeff2(:,1:2),'Scores',score2(:,1:2),'VarLabels',... 
%       Categories_new) 
%   
%      
%      
% figure() 
%     biplot(coeff3(:,1:2),'Scores',score3(:,1:2),'VarLabels',... 
%       Categories_new) 
%   
%      

     

  
w = 1./var(t); 
[wcoeff,score,latent,tsquared,explained,mu] = pca(t,... 
'VariableWeights',w); 
 coefforth = inv(diag(std(t)))*wcoeff; 
  coefforth2 = diag(sqrt(w))*wcoeff; 
% figure() 
% pareto(explained) 
%  coefforth*coefforth' 
%  cumsum(latent)./sum(latent) 

  

  
%  figure() 
% biplot(coefforth(:,1:2),'Scores',score(:,1:2),'varlabels',Categories_new); 

  

  
figure() 

  
hp=biplot(coefforth(:,1:3),'VarLabels',Categories_new); 
set(hp,'LineWidth',2) 
grid on 
xlabel('Principal Component 1 (63.12%)','FontSize',20);   
ylabel('Principal Component 2 (9.99%)','FontSize',20);   
zlabel('Principal Component 3 (8.10%)','FontSize',20); 
title('PCA on 13 Flowback Compositions in Time-series','FontSize',20) 
xlim([-1,1]) 
ylim([-1,1]) 
zlim([-1,1]) 

  
hold on 
xxx = coefforth (:,1:3); 
yyy= score(:,1:3); 
%Taken from biplot.m; This is alter the data the same way biplot alters data 

- having the %data fit on grid axes no larger than 1.** 
[n,d2] = size(yyy);   
[p,d] = size(xxx); %7 by 3   
[dum,maxind] = max(abs(xxx),[],1);   
colsign = sign(xxx(maxind + (0:p:(d-1).*p)));  
% xxx = xxx .* repmat(colsign, p, 1)  
% yyy= (yyy ./ max(abs(yyy(:)))) .* repmat(colsign, 95, 1)   

  
 maxCoefLen = sqrt(max(sum(xxx.^2,2))); 
    scores_new = bsxfun(@times, maxCoefLen.*(yyy ./ max(abs(yyy(:)))), 

colsign); 
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nans = NaN(n,1);   
ptx = [scores_new(:,1) nans]';  
pty = [scores_new(:,2) nans]';  
ptz = [scores_new(:,3) nans]';   
%I grouped the pt matrices for my benefit**  
plotdataholder(:,1) = ptx(1,:);   
plotdataholder(:,2) = pty(1,:); 
plotdataholder(:,3) = ptz(1,:);   
% %my original score matrix is 42x3 - wanted each 14x3 to be a different 

color** 
size=350; 
sc0=scatter3(plotdataholder(1:19,1),plotdataholder(1:19,2),plotdataholder(1:1

9,3),size,'marker', '.');    
% 

scatter3(mean(plotdataholder(1:19,1)),mean(plotdataholder(1:19,2)),mean(plotd

ataholder(1:19,3)),'marker', 'o'); 
sc1=scatter3(plotdataholder(20:38,1),plotdataholder(20:38,2),plotdataholder(2

0:38,3),size,'marker', '.') ; 
% 

scatter3(mean(plotdataholder(20:38,1)),mean(plotdataholder(20:38,2)),mean(plo

tdataholder(20:38,3)),'marker', 'd') ; 
sc5=scatter3(plotdataholder(39:57,1),plotdataholder(39:57,2),plotdataholder(3

9:57,3),size,'marker', '.') ; 
% 

scatter3(mean(plotdataholder(39:57,1)),mean(plotdataholder(39:57,2)),mean(plo

tdataholder(39:57,3)),'marker', '^') ;   
sc14=scatter3(plotdataholder(58:76,1),plotdataholder(58:76,2),plotdataholder(

58:76,3),size,'marker', '.') ; 
% 

scatter3(mean(plotdataholder(58:76,1)),mean(plotdataholder(58:76,2)),mean(plo

tdataholder(58:76,3)),'marker', 's') ; 
sc90=scatter3(plotdataholder(77:95,1),plotdataholder(77:95,2),plotdataholder(

77:95,3),size,'marker', '.') ; 
% 

scatter3(mean(ploataholder(77:95,1)),mean(plotdataholder(77:95,2)),mean(plotd

ataholder(77:95,3)),'marker', 'V') ; 
legend([sc0,sc1,sc5,sc14,sc90],{'Flowback-Day 0','Flowback-Day 1','Flowback-

Day 5','Flowback-Day 14','Flowback-Day 90'},'FontSize',20); 
 

ANN 

clc; 
clear all; 
clf; 
close all; 
% %% 
%  
% ANN_Raw=xlsread('ANN_Data','sheet1'); 
%  
% save('ANN_Raw'); 
% ANN_Predict=xlsread('ANN_Data','sheet2'); 
% save('ANN_Predict'); 
%% 
load('ANN_Raw') 
load('ANN_Predict') 
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Na=ANN_Raw(:,1); 
K=ANN_Raw(:,2); 
Ca=ANN_Raw(:,3); 
Cl=ANN_Raw(:,4); 
Sr=ANN_Raw(:,5); 
Ba=ANN_Raw(:,6); 
Fe=ANN_Raw(:,7); 
TDS=ANN_Raw(:,8); 
Mg=ANN_Raw(:,9); 
Br=ANN_Raw(:,11); 
Gas_Prod=ANN_Raw(:,12); 
Prod_Day=ANN_Raw(:,13); 

  
Na_KP=ANN_Predict(:,1); 
K_KP=ANN_Predict(:,2); 
Ca_KP=ANN_Predict(:,3); 
Cl_KP=ANN_Predict(:,4); 
Sr_KP=ANN_Predict(:,5); 
Ba_KP=ANN_Predict(:,6); 
Fe_KP=ANN_Predict(:,7); 
TDS_KP=ANN_Predict(:,8); 
Mg_KP=ANN_Predict(:,9); 
Br_KP=ANN_Predict(:,11); 
Gas_Prod_KP=ANN_Predict(:,12); 
Prod_Day_KP=ANN_Predict(:,13); 

  

  

  
%% 
for i=1:1000; 
Pn=[log10(Na./TDS) log10(Cl./Br) log10(Ca./Br) log10(Br)]'; 
Tn=[log10(Gas_Prod./Prod_Day)]'; 

  
[Pn,ps] = mapminmax(Pn,0,1); % gives all values between 0 & 1 
[Tn,ts] = mapminmax(Tn,0,1); % gives all values between 0 & 1 
[mi,ni] = size(Pn); 
[mo,no] = size(Tn); 

  
N_in = mi; % number of inputs in the network 
N_out = mo; % number of outputs in the network 
Tot_in = ni; %total no. of simulations 
N_train = 699; 
% N val = 50; 
N_test = 80; 
%seperating training, testing & validation data when random 
%selection command is available through higher version dividing random 
[Pn_train,Pn_val,Pn_test,trainInd,valInd,testInd] = 

dividerand(Pn,0.7,0.15,0.15); 
[Tn_train,Tn_val,Tn_test] = divideind(Tn,trainInd,valInd,testInd); 

  

  
val.T = Tn_val; 
val.P = Pn_val; 
test.T = Tn_test; 
test.P = Pn_test; 
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%Initiating network parameters 
NNeu1 =28;   
NNeu2 = 31;   
NNeu3 = 27;   
% NNeu5 = 69;NNeu6 = 50; 
% NNeu3 = 50;NNeu3 = 12; 
% creating the cascade backpropagation network 
net = newff(Pn,Tn,[NNeu1,NNeu2,NNeu3]... 
,{'logsig','logsig','logsig','purelin'},'trainscg','learngdm','msereg'); 
%setting training parameters for the network 
 net.performFcn = 'msereg'; 
%net.performParam.ratio = 0.5; 
net.trainParam.goal = 0.0001; %accuracy within this range 
net.trainParam.epochs = 10000; % number of iteration sets 
net.trainParam.show = 1; 
net.trainParam.max_fail = 500; 
NET.efficiency.memoryReduction = 60; %to reduce memory requirements 

  
[net,tr] = train(net,Pn_train,Tn_train,[],[],test,val); 
plotperf(tr) 

  
Tn_train_ann = sim(net,Pn_train); 
Tn_test_ann = sim(net,Pn_test); 
%denormalizing the data sets obtained 
%output reversal 
T_train = mapminmax('reverse',Tn_train,ts); 
T_test = mapminmax('reverse',Tn_test,ts); 
T_train_ann = mapminmax('reverse',Tn_train_ann,ts); 
T_test_ann = mapminmax('reverse',Tn_test_ann,ts); 
% %input reversal 
Pn_train = mapminmax('reverse',Pn_train,ps); 
Pn_val = mapminmax('reverse',Pn_val,ps); 
Pn_test = mapminmax('reverse',Pn_test,ps); 

  
[row,col]=size(T_test); 
n_funcLinks=0; 
logorizeOutput=0; 

  
if logorizeOutput==1 
    Target=10.^T_test((1:row-n_funcLinks),:); 
    Prediction= 10.^T_test_ann((1:row-n_funcLinks),:); 
 elseif logorizeOutput==2     
        Target=exp(T_test((1:row-n_funcLinks),:)); 
    Prediction=exp(T_test_ann((1:row-n_funcLinks),:)); 

  
     elseif logorizeOutput==3     
        Target=[10.^(T_test((1:11),:));exp(T_test((12:23),:))]; 
    Prediction=[10.^(T_test_ann((1:11),:));exp(T_test_ann((12:23),:))]; 
else 
    Target=T_test((1:row-n_funcLinks),:); 
    Prediction=T_test_ann((1:row-n_funcLinks),:);    
end 

  
e=100*abs(Target-Prediction)./(Target); 
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Target_crossplot=reshape(Target,(row-n_funcLinks)*col,1); 
Prediction_crossplot=reshape(Prediction,(row-n_funcLinks)*col,1); 
%plot(Prediction_crossplot,Target_crossplot,'.'); 
MeanE=mean(mean(e)); 
fprintf('\n Overall Training Error is %.3f %s', MeanE,'%'); 

  
if MeanE<20; 
    break; 
end 
end 

  
%% 
filename=sprintf('net_BOGM4') 
save(filename,'net'); 
filename2=sprintf('tr_BOGM4') 
save(filename2,'tr'); 

  
%% Pritz & Kirby 
% load net_BOGM4 
% load tr_BOGM4 
%denormalizing the data sets obtained 
%output reversal 
Pn=[log10(Na./TDS) log10(Cl./Br) log10(Ca./Br) log10(Br)]'; 
Tn=[log10(Gas_Prod./Prod_Day)]'; 

  
[Pn,ps] = mapminmax(Pn,0,1); % gives all values between 0 & 1 
[Tn,ts] = mapminmax(Tn,0,1); % gives all values between 0 & 1 
% Pn_predict=[log10(Na_KP./TDS_KP) log10(Cl_KP./Br_KP) log10(Ca_KP./Br_KP) 

log10(Br_KP)]'; 

  

  
% 
Pn_predict=[-0.608542119    2.131932358 1.062899281 2.36361198 
            -0.570880387    2.170214383 1.120096072 2.394451681 
            -0.620314857    2.23949617  1.128554865 2.475671188 
            -0.578873933    2.1180306   1.292285516 2.779596491 
            -0.598204466    2.08020432  1.198708946 2.928395852 
            -0.623361967    1.912798593 0.924230277 2.324282455 
            -0.503356606    1.925935685 0.997850023 2.908485019]' 

  

  

  
[Pn_predict,ps] = mapminmax(Pn_predict,0,1); % gives all values between 0 & 1 
% view(net); 
outputs=net(Pn_predict); 
e=gsubtract(outputs,Pn_predict); 
GAS_prod_ann= sim(net,Pn_predict); 
GAS_prod_ann=mapminmax('reverse',GAS_prod_ann,ts); 
GAS_prod_ann=10.^GAS_prod_ann; 
%% 
view(net) 
plotperform(tr) 

  

  



117 

 

  
Inputs=[Na./TDS Cl./Br Ca./Br Br]'; 
Targets=[Gas_Prod./Prod_Day]'; 
[Inputs,ps] = mapminmax(Inputs,0,1); % gives all values between 0 & 1 
[Targets,ts] = mapminmax(Targets,0,1); % gives all values between 0 & 1 

  
Outputs=net(Inputs) 
trOut =Outputs(tr.trainInd); 
vOut = Outputs(tr.valInd); 
tsOut = Outputs(tr.testInd); 
trTarg = Targets(tr.trainInd); 
vTarg = Targets(tr.valInd); 
tsTarg = Targets(tr.testInd); 
plotregression(trTarg,trOut,'Train',vTarg,vOut,'Validation',... 
tsTarg,tsOut,'Testing') 
%% Production Curve 
figure() 
hold on 
plot(1:length(GAS_prod_ann),GAS_prod_ann,'r'); 
Tn_Predict=[4703.181818 
5323.129032 
1229.847909 
50.68327402 
90.17808219 
100.8541096 
42.38389041]; 
plot(1:length(Tn_Predict),Tn_Predict,'b'); 
% plot(1:length(Gas_Prod_KP./Prod_Day_KP),Gas_Prod_KP./Prod_Day_KP,'b'); 
legend('ANN Predicted Gas Production','Production Curve','Location','best') 
ylabel('Gas Production (Mcf/Day)') 
xlabel('Well Index') 
%% Mapping 
figure() 
% Lat_KP=ANN_Predict(:,15); 
Lat_KP=[41.36936633 
41.28121389 
41.27089244 
41.13093381 
41.61478442 
40.50398611 
40.50906111 
]; 
% Lon_KP=ANN_Predict(:,16); 
Lon_KP=[-77.55943694 
-76.631075 
-76.65969119 
-78.04724025 
-77.87637681 
-79.57778611 
-79.54695278 
]; 

  
axesm sinusoid;view(3) 
states = geoshape(shaperead('usastatehi', 'UseGeoCoords', true)); 
oceanColor = [.5 .7 .9]; 
latlim = [39.7 42.3]; 
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lonlim = [-80.7 -74.5]; 

  
ax = usamap(latlim, lonlim); 
setm(ax, 'FFaceColor', oceanColor); 
geoshow(states,'DefaultFaceColor', 'white','DefaultEdgeColor', 'black'); 
[latlim, lonlim] = bufgeoquad(latlim, lonlim, .05, .05); 

  

  
ptz = GAS_prod_ann'; 

  
for i=1:length(ptz); 
    if ptz(i)<1000; 
        i1(i)=i; 
    elseif ptz(i)>1000 && ptz(i)<3000; 
        i2(i)=i; 
    elseif ptz(i)>3000; 
        i3(i)=i; 
end 
end 

  
i1=i1(find(i1~=0)); 
i2=i2(find(i2~=0)); 
i3=i3(find(i3~=0)); 

  
hh1=stem3m(Lat_KP(i1),Lon_KP(i1),50*ptz(i1),'r-','LineWidth', 3)  
hold on 
hh2=stem3m(Lat_KP(i2),Lon_KP(i2),50*ptz(i2),'b-','LineWidth', 3) 
hh3=stem3m(Lat_KP(i3),Lon_KP(i3),50*ptz(i3),'g-','LineWidth', 3) 

  
legend([hh1(1),hh2(1),hh3(1)],{'Gas Production Prediction 0-1000 Mcf/Day'... 
    ,'Gas Production Prediction 1000-3000 Mcf/Day'... 
    ,'Gas Production Prediction over 3000 Mcf/Day'},'FontSize',15); 

  

   
title('ANN Gas Production Prediction for Kirby&Pritz Dataset','FontSize',15) 

 

  

  

  

  

  

  

  

  

  

 
 


