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ABSTRACT 

Before the advent of deregulated electricity markets in the 1990’s, hydroelectric power production 

schedules were typically coordinated with the schedules of other generating technologies by utility 

companies to meet expected regional demand. However, the growing adoption of deregulated 

markets requires the development of new methods for determining optimal utilization of 

hydroelectric resources. Much work has been performed regarding the optimization of cascaded 

hydropower systems owned and operated by single entities. However, these works fail to address 

the complexity involved in optimizing a cascaded system with owners along the same river. In those 

instances, each plant is limited to operate with whatever water flow the upstream plants choose to 

make available. In this situation, system optimal operation results in higher net system revenue than 

individual optimization of each plant with whatever water flow is available. However, such an optimal 

system solution must also result in lower net revenue for some owners compared to the value they 

would obtain through individual optimization. Hence, a novel methodology is proposed in which 

individual optimization naturally leads to system optimization through the use of iteratively 

determined water payments to direct the release of water toward a more optimal utilization. The 

proposed method alternates between dynamic programming for individual optimization and 

gradient analysis to determine and update hourly, location-specific water values for modified 

release. The sequence is repeated until there are no further additions or modifications to the 

payment schedule that results in increased total revenue. The water values are based upon local and 

downstream revenue gradients with respect to the flow rate released by the upstream facility during 

each time period. The method is applied in this thesis to a hydropower system consisting of three 

connected hydropower facilities, successfully increasing the total gross revenue of each installation. 

Although the algorithm it is not yet able to achieve the globally optimal solution, it comes quite close 

and offers unique insights into the value of water. 
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Δ𝑄𝑚𝑎𝑥 Maximum allowed change in flow between time periods. (
𝑚3

𝑠
) 

𝑉𝑗
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𝑀𝑊
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𝑘𝑔
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𝜌𝑗,𝑡 Regulation power price at plant 𝑗 during time period 𝑡. (
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𝜓𝑗,𝑡 Active set of turbines in plant 𝑗 during time period 𝑡. 
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Δ𝑄𝑔𝑟𝑖𝑑 Flow rate discretization step size. (
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𝑅 Total revenue produced by the system. ($) 

𝑆𝑈𝑖,𝑗,𝑡 Start-up costs incurred by turbine 𝑖 in plant 𝑗 at the beginning of time period 𝑡. ($) 
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𝒖𝒋,𝒕 Vector of input variables used in dynamic programming. 
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Δ𝑉𝑔𝑟𝑖𝑑 Volume discretization step size. (𝑚3) 

𝑉𝑡𝐺 Value-to-go, used in dynamic programming optimization. ($) 
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𝒙𝒋,𝒕 Vector of state variables used in dynamic programming. 

𝜂𝑖,𝑗,𝑡 The mechanical efficiency of turbine 𝑖 in plant 𝑗 during time period 𝑡. 

𝜇, 𝜆 Lagrange multipliers in the KKT analysis. 

Optimization Results 

PS𝑗
n The data vector necessary for calculating payments made to an upstream facility 𝑗, 

based on the results of the gradient analysis in the nth iteration.  

𝑄𝑜𝑝𝑡,𝑗,𝑡
𝑛  The optimal net flow rate of plant 𝑗 during time period 𝑡 from the nth iteration. (

𝑚3

𝑠
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𝑄𝑜𝑝𝑡,𝑢𝑝,𝑡
𝑛,𝑠+  The optimal net flow rate of an upstream plant during time period 𝑡 due to requiring 

that its net flow be incremented for time period 𝑠 during the nth iteration. (
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𝑠
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of the gradient analysis. ($) 

𝑅𝑜𝑝𝑡,𝑗
𝑛  The optimal revenue of plant 𝑗 from the nth iteration. ($) 

Δ𝑅𝑜𝑝𝑡
1,𝑠+ The effect on the total revenue of a pair of neighboring facilities due to requiring 

that the net flow of the upstream plant be incremented for time period 𝑠 during the 
nth iteration. ($) 

Δ𝑅𝑜𝑝𝑡,𝑑𝑜𝑤𝑛
𝑛,𝑠+  The effect on the optimal revenue of a downstream plant due to requiring that the 

net flow of the upstream plant be incremented for time period 𝑠  during the nth 
iteration. ($) 

Δ𝑅𝑜𝑝𝑡,𝑢𝑝
𝑛,𝑠+  The effect on the optimal revenue of an upstream plant of a pair due to requiring its 

net flow to be incremented for time period 𝑠 during the nth iteration. ($) 

𝑉𝑜𝑝𝑡,𝑗,𝑡
𝑛  The optimal volume of plant 𝑗 during time period 𝑡 from the nth iteration. (𝑚3) 

ψopt,j,t
𝑛  The optimal operating set of plant 𝑗 during time period 𝑡 from the nth iteration. 
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1 Introduction 

1.1 The History of Hydropower 

Hydropower has been a prominent source of power for thousands of years. In ancient times, the 

energy of falling and flowing water was harnessed to power grain mills and sawmills. This application 

remained the primary use of hydropower for over a thousand years until people began to understand 

electricity in the 19th and 20th centuries. The first recorded usage of hydropower to produce electricity 

occurred in 1880 when a hydro turbine in a chair factory was connected to a dynamo and used to 

power theater and storefront lights in Grand Rapids, Michigan [1] [2]. Thereafter, the utilization of 

hydropower to generate electricity exploded. The next year a flour mill turbine in Niagara Falls, New 

York was connected to a dynamo to generate electricity for city street lights [1]. Then, in 1882 the 

world’s first hydroelectric power plant began operation in Appleton, Wisconsin [3]. After that, 

hydropower rapidly became a primary element of the nation’s power production portfolio. By 1886 

there were over 40 hydroelectric plants either in operation or under construction in the United 

States. By 1889, two hundred different electric companies were reported to use hydropower for 

some (or even all) of their generation [1]. The development of hydroelectric power resources often 

went hand-in-hand with the development of irrigation in the West. The U.S. Bureau of Reclamation 

was established in 1902 for the primary purpose of encouraging increased settlement in the West by 

developing the water resources to provide irrigation. The Bureau’s first major project was the 

Theodore Roosevelt Dam on the Salt River, which was constructed to provide irrigation and flood 

control to the region northeast of Phoenix, Arizona. However, in 1906 the Bureau was further 

authorized by Congress to also develop and sell hydroelectric power [4]. By 1916 the Bureau’s 

installations powered nine irrigation pumps delivering water to over 10,000 acres of land while also 

supplying all of the power for the city of Phoenix [1]. By the 1940’s approximately 30% of the nation’s 

electricity was supplied by hydroelectric power. Since then the percentage of electricity supplied by 

hydropower has gradually decreased due to rapidly increasing demand as well as the decreasing 

number of sites suitable and available for hydropower development. Today hydroelectric power 

accounts for approximately 8% of the nation’s power usage, which has increased by nearly a factor 

of 10 from the 1940’s. However, throughout all of this time, hydropower has continued to develop 

as improvements have been made to the efficiencies of turbines and existing sites have been 

upgraded. Furthermore, in the 1960’s, as the power of the digital computer was becoming more 

evident, its computational abilities were increasingly applied to hydroelectric plant operation 

optimization within the constraints of regulated environments.  
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1.2 Motivation for Studying Optimization 

Before the advent of the deregulated power market, the value of hydropower production was 

typically considered to be equal to the marginal cost of producing the same amount of power using 

thermal generation sources [5]. However, in recent years many regions of the world, including parts 

of the United States, have adopted a deregulated (pool-based) market structure [6]. In this market 

structure, power production facilities submit hourly bids (sometimes even more frequently) for the 

provision of power production and ancillary services to the market. There has thus been a shift in the 

goals of hydropower operators away from simply relieving thermal power plants of peak load 

production, to simply operating in a manner that generates the highest revenue for the hydropower 

company [7]. This can be achieved with relative ease for an isolated hydropower facility, but the 

problem becomes much more complex when it is extended to multiple hydrologically connected 

hydropower stations [8].  

Many different optimization methods have been used in the past to solve the short-term hydro 

scheduling optimization problem (short-term referring to the hourly scheduling for a single day) for 

such an interconnected system. Methods used include dynamic programming, evolutionary and 

genetic algorithms, linear programming, mixed-integer linear programming, and mixed-integer 

quadratic programming [9]. Each of these methods has its own advantages and disadvantages for 

finding an optimal system commitment, but one crucial aspect that is still lacking from every 

reviewed optimization method is consideration of the fact that the ensuing commitment may not be 

optimal for all of the individual facilities. Furthermore, much of the work done in the past has overly 

simplified the relationship between flow rate, net head, and power production. The effect of flow 

rate on net head has often been neglected, as has the effect of variations in the net head on the 

power production in order to make the problem more tractable. Finally, hydropower facilities are 

typically modeled as either consisting of a number of independent turbines, each with its own power 

curve, or as a single net power curve representing total power production as a function of net flow 

rate, with predefined distributions of flow for any given operating point. Both of these approaches 

have difficulties. 

The first issue, regarding the fact that system optimization will typically result in an operation 

schedule that is sub-optimal for some of the hydropower stations is the main point addressed by this 

work. In a system comprised of independently owned hydropower stations, each owner is primarily 

interested in maximizing the revenue produced by his own hydropower facilities. Unfortunately, this 

tends to result in suboptimal operation of the whole system. There are two possible ways that such 

a system can be optimized: a regulating entity can force the various owners to operate according to 

the system optimal schedule (possibly dividing the resulting revenue among the various owners in 

some way), or the owners can cooperate financially in such a way that any increased revenue of one 
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station due to a change in the operations of another station results in a division of the resulting 

increase in total revenue. The second option is the one that is explored herein. This work also 

attempts to address some of the issues that arise from use of the following methods. 

When turbines are modeled as individual units, there is a very large number of possible operating 

conditions, because each turbine has to be either on or off, and the flow rate through each turbine 

that is on must be determined. Furthermore, there is calculation loop that occurs when any change 

is made to an operating point: a change in the flow rate through a single turbine will change the net 

flow, which will affect the net head, which will affect the efficiency of every turbine, which will affect 

the changes needed to approach the optimal operating conditions. 

When a station is modeled using a single power curve, the optimization becomes much easier, but a 

very important part of the analysis can become obscured.  Start-up costs for individual turbines are 

estimated to be approximately three dollars per rated megawatt, according to a survey made of 

various hydropower companies in 1997 [10].  Though the current value is likely a bit larger than this 

due to inflation, it is obvious that start-up costs are a significant factor in the determination of the 

optimal commitment strategy. Simply operating at maximum efficiency would result in generating 

the highest possible amount of total power for any given flow rate, but the losses incurred due to the 

increased number of required start-ups and shut-downs often outweigh the increased revenue for 

the additional power generated. 

This work attempts to address many of these issues by developing an optimization method that 

utilizes the structured nature of a hydrologically connected hydropower system (on a system-wide 

level as well as at a local station level), and the fact that optimal operation scheduling cannot occur 

without cooperation among the various owners.  

In summary, the goal of this project is create to a quantitative method whereby financial cooperation 

between the various owners of various hydrologically connected hydropower facilities results in the 

optimization of the entire interconnected system of hydropower facilities as well as the revenue of 

each individual facility, with no exceptions. This approach serves the dual purpose of both maximizing 

each installation’s revenue and maximizing the utilization of the available water in the system by 

delivering the generated power when it is most needed.  
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1.3 Hydropower Optimization Literature Review 

Some of the earliest literature relating to the application of computational methods to optimizing 

hydropower dates back to the 1960’s, but it wasn’t until the 70’s that much attention was paid to the 

development of computational models and methods for use in the optimal scheduling of 

hydropower. Perhaps the earliest and most widely used method is dynamic programming, which has 

been applied to the determination of optimal hydropower resource scheduling dating at least as far 

back as 1961 [11]. In 1970 several researchers at the University of California published a description 

of a method that utilized dynamic programming techniques to optimize the utilization of the available 

water in a single reservoir for providing on-peak power and reliable water supply [12]. The next year, 

several University of Illinois researchers published a paper describing the use of dynamic 

programming in long-term resource optimization [13]. Computers of the time were not yet powerful 

enough to consider the full range of possibilities present in a dynamic programming analysis without 

significant computing cost, so the researchers developed an iterative procedure in which several trial 

trajectories were used as bases for seeking the optimal strategy. Around the same time 

computational optimization techniques also began to be employed to assist in planning the 

development of new reservoir systems. In 1972 researchers described their utilization of mixed 

integer programming techniques to determine the optimal locations and sizes of reservoirs on a river 

system, even including considerations for the impacts on water quality control and recreation [14].  

Over the next few decades the analyses grew gradually more and more complex as the memory and 

speed capabilities of computers multiplied. By the early 1980’s significantly more complex models 

and analysis methods began to show up. In 1982 researchers in the University of California developed 

and published a method using linear programming and dynamic programming to optimize a weighted 

function of hydropower production, fish protection, water quality maintenance, water supply, and 

recreational use [15]. In the mid 1980’s more attention was devoted to the hourly coordination of 

hydrothermal power systems. Several different approaches were formulated to optimize the 

scheduling of a hydrothermal power system, including a mixture of dynamic programming, 

Lagrangian relaxation, and gradient methods used by Bertsekas [16], as well as a method utilizing 

stochastic dynamic programming developed by Pereira [17]. An excellent review of these methods, 

as well as optimization methods based on branch-and-bound techniques, nonlinear mixed-integer 

programming, and Benders decomposition was given in an invited paper in the Proceedings of the 

IEEE in 1987 [18]. 

In the 1990’s the attention devoted to operations optimization on an hourly basis continued to grow, 

but the techniques being used remained largely the same. The only novel approach was the 

introduction of genetic algorithms by Chen [19], though such methods seem to never have gained 

much prominence. However, when various regions of the world began operating under a deregulated 
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energy market, a shift in the goals of hydropower optimization occurred. In a region with a 

deregulated energy market, rather than one of coordinated hydro-thermal generation, hydroelectric 

facilities have the ability to independently determine their operating schedule. In some ways this 

made the problem of determining the optimal scheduling of hydropower more straightforward since 

the hydropower generation no longer had to be coordinated with thermal generation. However, the 

removal of this constraint also made the problem significantly more complex due to the uncertainties 

of pricing in a deregulated market.  

Hydroelectric power producers also have to consider the effect of selling not only power, but also 

various ancillary services such as voltage regulation, frequency regulation, and spinning reserves. 

These, and other, issues began to appear in the literature in the late 1990’s. Much of the work done 

relates primarily to hydroelectric facilities with little to no market power which are thus often 

referred to as “price-takers”. In 2002 Conejo published an article on scheduling a hydropower 

producer in a pool-based electricity market [6]. Using mixed integer linear programming techniques, 

they formulated piecewise-linear models of nonconcave, head dependent unit performance curves, 

which were then used to maximize the power revenue of a hydrologically connected system of 

hydroelectric power plants. Although in some respects they used a significantly more advanced 

model than many before them, they still neglected to address the effect of future price uncertainty. 

This matter of future prices was addressed by García-González in a 2007 paper that focused on 

minimizing the risk of scheduling connected hydropower resources in the day-ahead market [20]. 

Using an Input/Output Hidden Markov Model they generated possible future price scenarios along 

with probabilities for each scenario.  Two separate methods of limiting the risk were addressed.  The 

first was a simple minimum profit requirement, which they believed to be overly simplistic, and so 

proposed a second method.  This second method was the utilization of a Value-at-Risk analysis, which 

can be used to limit the risk of a negative deviation from expected profits due to low-probability 

scenarios.  Finally, a recent work relating to optimal scheduling was published in 2012 by Pousinho 

[9], and uses a similar approach to that of [20]. The main differences were the use of Conditional 

Value-at-Risk methods and the use of mixed integer quadratic programming rather than mixed 

integer linear programming. 

Although many different methods have been used to optimize the utilization of hydropower 

resources, none of the reviewed methods addressed the main focuses of this work, namely, 

optimizing multi-owner systems, and valuing released water based on future downstream revenue 

potential.   



 

6 

1.4 Complete Mathematical Problem Definition 

The optimization of a complete hydropower system is necessarily a highly complex undertaking due 

to the large number of variables that come into play. The operators of every facility in a system must 

not only determine which turbines should be active during each period in the planning horizon, but 

they must also determine the flow rate through each active turbine during each period. The 

combination of these two parameters has many far-reaching effects. The first and most obvious is 

that the active turbines and their flow rates will determine the power output of the facility. However, 

there are several other effects that must be considered, including, but not necessarily limited to: 

available power for regulation, water level in the tailrace affecting the net head, and start-up costs 

for turbine selection decisions. Furthermore, an operator may want to take into consideration the 

uncertainty of predicted electricity prices when planning daily operations, which introduces yet 

another level of complexity into the optimization. Below is a complete mathematical statement of 

the optimization problem in which the goal of the optimization is to maximize the revenue of a 

system of connected hydropower facilities.  

Maximize:  

𝑅𝑒𝑣𝑒𝑛𝑢𝑒 = 𝑅 =∑∑(𝜌𝑗,𝑡𝑃𝑟𝑒𝑔,𝑗,𝑡 + 𝜋𝑗,𝑡∑𝑃𝑖,𝑗,𝑡𝜙𝑖,𝑗,𝑡

𝐼𝑗

𝑖

−∑𝑆𝑈𝑖,𝑗,𝑡

𝐼𝑗

𝑖

)

𝐽

𝑗

𝑇

𝑡

 1.1 

This equation specifies that the object of the optimization is to maximize the revenue produced by 

all of the hydropower facilities in a system. The summations are performed over the sets 𝑇, 𝐽, 𝑎𝑛𝑑 𝐼𝑗, 

which refer to the time period of the planning horizon, the set of hydropower facilities in the system, 

and the sets of turbines in each hydropower facility, respectively. The values being summed are, in 

order, the product of the regulation price (𝜌𝑗,𝑡  (
$

𝑀𝑊ℎ𝑟
))  and the regulation power 

(𝑃𝑟𝑒𝑔,𝑗,𝑡 (𝑀𝑊ℎ𝑟))  being sold by plant 𝑗  during time period 𝑡 , the product of the power price 

(𝜋𝑗,𝑡  (
$

𝑀𝑊ℎ𝑟
)), power (𝑃𝑖,𝑗,𝑡  (𝑀𝑊ℎ𝑟)), and unit status (𝜙𝑖,𝑗,𝑡) of turbine 𝑖 in plant 𝑗, during time 

period 𝑡, and lastly, the start-up costs (𝑆𝑈𝑖,𝑗,𝑡  ($)) (which are on the order of three dollars per rated 

megawatt [10] incurred by each turbine for each time period. Note that the power produced by a 

turbine becomes irrelevant if it is inactive. 

Subject To:  

𝜙𝑖,𝑗,𝑡 ∈ {0, 1} 1.2 

This term refers to the status of an individual turbine at any time. A value of 0 indicates that a turbine 

is inactive, while a value of 1 indicates that it is active. 



 

7 

𝑆𝑈𝑖,𝑗,𝑡 = 𝜙𝑖,𝑗,𝑡(𝜙𝑖,𝑗,𝑡 − 𝜙𝑖,𝑗,𝑡−1) × 𝑃𝑛𝑜𝑚,𝑖,𝑗 × 𝑘 1.3 

The start-up costs are calculated based upon the current and previous on/off status (𝜙) of a turbine. 

This cost is linearly related to the nominal capacity of the turbine (𝑃𝑛𝑜𝑚,𝑖,𝑗). 

𝑄𝑖,𝑗,𝑡 ∈ [𝑄𝑚𝑖𝑛,𝑖,𝑗, 𝑄𝑚𝑎𝑥,𝑖,𝑗] 1.4 

The flow rate through a turbine must be within given acceptable operating limits. 

𝑄𝑗,𝑡 =∑𝑄𝑖,𝑗,𝑡𝜙𝑖,𝑗,𝑡
𝑖∈𝐼𝑗

 1.5 

The net flow rate through plant 𝑗 during time period 𝑡 is the summation of the flow through each of 

its active turbines. 

𝑄𝑗,𝑡 ∈ [𝑄𝑚𝑖𝑛,𝑗, 𝑄𝑚𝑎𝑥,𝑗] ∩ [𝑄𝑗,𝑡−1 − Δ𝑄𝑚𝑎𝑥,𝑗, 𝑄𝑗,𝑡−1 + Δ𝑄𝑚𝑎𝑥,𝑗] 1.6 

The net flow rate though an installation must not only be within the release limits for the river, it 

must also be such that rate of change of the flow rate is within prescribed boundaries, preventing 

sudden changes in the downstream flow. 

𝑃𝑖,𝑗,𝑡 = 𝜌𝐻2𝑂 × 𝑔 ×𝐻𝑗,𝑡(𝑄𝑗,𝑡, 𝑉𝑗,𝑡) × 𝑄𝑖,𝑗,𝑡 × 𝜂𝑖,𝑗,𝑡(𝑄𝑖,𝑗,𝑡, 𝐻𝑗,𝑡) 1.7 

The power produced by an individual turbine is the product of the water density, the acceleration 

due to gravity, the net available head (𝐻(𝑗,𝑡)) (determined by the amount of water in the reservoir 

and the net flow rate through the station), the flow rate of water through the turbine (𝑄𝑖,𝑗,𝑡), and 

the efficiency (𝜂𝑖,𝑗,𝑡) of the turbine-generator (itself a function of the flow through the turbine and 

the net head, which is assumed to be a convex function). It is generally assumed that these values 

are constant over a single time period. 

𝑃𝑗,𝑡 =∑𝑃𝑖,𝑗,𝑡𝜙𝑖,𝑗,𝑡
𝑖∈𝐼𝑗

 1.8 

The net power produced by plant 𝑗 during time period 𝑡 is the sum of the power produced by each 

turbine in plant 𝑗 that is active during time period 𝑡. 

𝑃𝑟𝑒𝑔,𝑗,𝑡 = min(∑𝑃𝑚𝑎𝑥,𝑖,𝑗𝜙𝑖,𝑗,𝑡 − 𝑃𝑗,𝑡
𝑖∈𝐼𝑗

,∑𝑃𝑗,𝑡 − 𝑃𝑚𝑖𝑛,𝑖,𝑗𝜙𝑖,𝑗,𝑡
𝑖∈𝐼𝑗

) 1.9 

The regulation power capability of plant 𝑗 during time period 𝑡 (𝑃𝑟𝑒𝑔,𝑗,𝑡) is determined for the entire 

station at once. Regulation power is the amount by which the station operators can vary the station’s 

net power output within a 5-minute window. It is assumed here that any active turbine can vary its 
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power within its full operating range in that time. The regulation power available is considered to be 

the smaller of the available net increase and the available net decrease in power. 

𝑉𝑗,𝑡 = 𝑉𝑗,𝑡−1 − 𝑄𝑗,𝑡−1 + ∑ 𝑄𝑘,𝑡−1−𝜏𝑘,𝑗
𝑘∈𝐾𝑗

+ 𝑄𝑖𝑛,𝑗,𝑡 1.10 

The volume of water in each plant’s reservoir (𝑉𝑗,𝑡) at the beginning of each planning period is 

updated based upon the reservoir contents at the beginning of the previous period (𝑉𝑗,𝑡−1), the 

water released from the reservoir during the previous time period (𝑄𝑗,𝑡−1), the summation of water 

flow into the reservoir which was previously released from neighboring upstream reservoirs, and the 

water that flows in from uncontrolled natural sources (𝑄𝑖𝑛,𝑗,𝑡). A new set, 𝐾𝑗, is introduced here. The 

set 𝐾𝑗 consists of all stations immediately upstream from station 𝑗. The new term in the subscript of 

the flow rate in the summation, 𝜏𝑘,𝑗, is the time that it takes for water to flow from station 𝑘 to 

station 𝑗. 

𝑉𝑗,𝑡 ∈ [𝑉𝑚𝑖𝑛,𝑗 , 𝑉𝑚𝑎𝑥,𝑗] 1.11 

The volume of water in each reservoir must, at all times, adhere to appropriate bounds. 

𝑉𝑗,1 = Vj
1  1.12 

𝑉𝑗,𝑇+1 = Vj
T+1  1.13 

𝑄𝑗,0 = 𝑄𝑗
0 1.14 

𝜙𝑖,𝑗,0 = 𝜙𝑖,𝑗
0  1.15 

Finally, the initial conditions and final target reservoir volume must be given. 

The full set of optimization equations for the above constraints are compiled on the following page, 

with set notations replaced by inequalities. 
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Maximize:  

𝑅𝑒𝑣𝑒𝑛𝑢𝑒 = 𝑅 =∑∑(𝜌𝑗,𝑡𝑃𝑟𝑒𝑔,𝑗,𝑡 + 𝜋𝑗,𝑡∑𝑃𝑖,𝑗,𝑡𝜙𝑖,𝑗,𝑡

𝐼𝑗

𝑖

−∑𝑆𝑈𝑖,𝑗,𝑡

𝐼𝑗

𝑖

)

𝐽

𝑗

𝑇

𝑡

 1.16 

Subject To:  

𝜙𝑖,𝑗,𝑡 ∈ {0, 1} 1.17 

𝑆𝑈𝑖,𝑗,𝑡 = 𝜙𝑖,𝑗,𝑡(𝜙𝑖,𝑗,𝑡 −𝜙𝑖,𝑗,𝑡−1) × 𝑃𝑛𝑜𝑚,𝑖,𝑗 × 𝑘 1.18 

𝑄𝑚𝑖𝑛,𝑖,𝑗 − 𝑄𝑖,𝑗,𝑡 ≤ 0 1.19 

𝑄𝑖,𝑗,𝑡 − 𝑄𝑚𝑎𝑥,𝑖,𝑗 ≤ 0 1.20 

𝑄𝑗,𝑡 =∑𝑄𝑖,𝑗,𝑡𝜙𝑖,𝑗,𝑡
𝑖∈𝐼𝑗

 1.21 

𝑄𝑗,𝑡 − 𝑄𝑚𝑎𝑥,𝑗 ≤ 0 1.22 

𝑄𝑗,𝑡 − (𝑄𝑗,𝑡−1 + Δ𝑄𝑚𝑎𝑥) ≤ 0 1.23 

𝑄𝑚𝑖𝑛,𝑗 − 𝑄𝑗,𝑡 ≤ 0 1.24 

(𝑄𝑗,𝑡−1 − Δ𝑄𝑚𝑎𝑥) − 𝑄𝑗,𝑡 ≤ 0 1.25 

𝑃𝑖,𝑗,𝑡 = 𝜌𝐻2𝑂 × 𝑔 × 𝐻𝑗,𝑡(𝑄𝑗,𝑡 , 𝑉𝑗,𝑡) × 𝑄𝑖,𝑗,𝑡 × 𝜂𝑖,𝑗,𝑡(𝑄𝑖,𝑗,𝑡 , 𝐻𝑗,𝑡) 1.26 

𝑃𝑗,𝑡 =∑𝑃𝑖,𝑗,𝑡𝜙𝑖,𝑗,𝑡
𝑖∈𝐼𝑗

 1.27 

𝑃𝑟𝑒𝑔,𝑗,𝑡 = min(∑𝑃𝑚𝑎𝑥,𝑖,𝑗𝜙𝑖,𝑗,𝑡 − 𝑃𝑗,𝑡
𝑖∈𝐼𝑗

,∑𝑃𝑗,𝑡 − 𝑃𝑚𝑖𝑛,𝑖,𝑗𝜙𝑖,𝑗,𝑡
𝑖∈𝐼𝑗

) 1.28 

𝑉𝑗,𝑡 = 𝑉𝑗,𝑡−1 − 𝑄𝑗,𝑡−1 + ∑ 𝑄𝑘,𝑡−1−𝜏𝑘,𝑗
𝑘∈𝐾𝑗

+ 𝑄𝑖𝑛,𝑗,𝑡 1.29 

𝑉𝑗,𝑡 − 𝑉𝑚𝑎𝑥,𝑗 ≤ 0 1.30 

𝑉𝑚𝑖𝑛,𝑗 − 𝑉𝑗,𝑡 ≤ 0 1.31 

𝑉𝑗,1 − Vj
1 = 0  1.32 

𝑉𝑗,𝑇+1 − Vj
T+1 = 0  1.33 

𝑄𝑗,0 − 𝑄𝑗
0 = 0 1.34 

𝜙𝑖,𝑗,0 − 𝜙𝑖,𝑗
0 = 0 1.35 
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2 Approach 

2.1 Preliminary Analysis 

2.1.1 Preprocessing of Data 

Before performing any optimization it is necessary to first ensure that the data is organized into a 

useful format. There are two primary sets of variables in this problem for which reorganization is 

necessary. The first one is the net head at each station, which depends on the reservoir volume and 

the net flow rate through the particular station. The second set consists of the turbine efficiencies, 

which are typically assumed to be a convex function of flow rate and head (or near enough to convex 

that this approximation does not introduce significant error). The relationship between head, 

reservoir volume, and net flow rate is straightforward, as is shown in the following description of 

possible methods for determining this relationship. First, it must be recognized that the effects of the 

reservoir volume and the net flow rate on the net head are independent of each other, and can be 

treated separately. Then there are several options to determine the effect of reservoir volume on 

the net head. One option would be a direct calculation using topographical data and numerical 

integration of the surface area of the reservoir with respect to the height of the surface. This would 

result in the most accurate, but also quite complex, relationship between head and reservoir volume. 

Another option would be to empirically determine the relationship by tracking the flow rates into 

and out of the reservoir and the height of the surface of the reservoir, then generating a curve fit for 

this data. For the purpose of this work, it was assumed that the volume of water in the reservoir is a 

polynomial function of the head, measured from the bed of the tailrace. The dependence of net head 

on the net flow rate can also be determine through either analytical or empirical means. Again, for 

the purpose of this work it is assumed that the relationship between the net flow rate and net head 

can be approximated by treating the net flow rate as a polynomial function of the net head, as 

measured from the bed of the tailrace. 

The second set of variables in the problem requiring a preliminary analysis consists of the turbine 

efficiencies. Even if high quality, accurate data were available, it likely would not be in a form 

conducive to use in optimization, and must be preprocessed to transform it into a useable form. In 

this instance, the data available identifies iso-efficiency curves for a hill chart (which shows the 

efficiency of a hydro turbine as a function of nondimensionalized head and flow rate). Figure 1 shows 

an example of how these iso-efficiency curves appear when plotted. The numerical optimization calls 

for the data be discretized over the operating range such that, when given values for head and flow 

rate, the turbine power can be directly determined. Finally, it is expected that output power is a 

concave function of flow rate if the head is held constant [21]. 
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Figure 1: Iso-efficiency lines of a Hill chart. Highest efficiency occurs in the location marked with an ‘x’. 

In order to transform the given data into this more useful form, several steps are required. First, the 

power output at each operating point is determined using Eq. 1.26. Next, a triangulation of the given 

flow rate and head values is generated using MATLAB’s built-in functionality. In order for the surface 

interpolation function to accurately represent the expected shape of the power surface, it is 

necessary to impose some constraints on the triangulation. The applied constraints are selected so 

that points on the flow rate – head plane are not be connected to other points associated with non-

sequential levels of efficiency (i.e. if iso-efficiency curves were available for 0.89, 0.90, and 0.91, then 

an operating point associated with an efficiency of 0.89 could not be connected to an operating point 

with an efficiency of 0.91 or with any operating points of the same efficiency (0.89) except its 

immediate neighbors). Finally, the triangulation is used in conjunction with the previously calculated 

power values and an interpolation function to create convex power curves as functions of flow rate 

for various values of head. The values of head used are determined based upon requirements 

detailed in the next preliminary analysis stage. The particular results of this stage of the analysis are 

further detailed in Chapter 3. 
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2.1.2 Preliminary Analysis of Unit Combinations 

2.1.2.1 Utility 

The optimization of even a single hydropower facility is not a trivial task. The computational 

resources required to optimize the facility’s operations increase drastically with the number of 

turbines in the facility and with finer levels of discretization. The equation for the total number of 

possible ways to operate a facility for a single day is given by Eq. 2.1.  

𝑁 = ((𝑁𝑑𝑖𝑠𝑐 + 1)
𝑁𝑡𝑢𝑟𝑏)24 2.1 

𝑁 is the total number of possible operating strategies for a single day, 𝑁𝑑𝑖𝑠𝑐 is the number of discrete 

flow rates each turbine’s operation has been divided into, and 𝑁𝑡𝑢𝑟𝑏 is the number of turbines in the 

facility. For a single day a facility with 4 turbines, each of which has been discretized to allow for the 

analysis of 9 different flow rates (10 including a flow rate of zero indicating that the turbine is inactive) 

would have 1096 possible operating strategies. Obviously, it would be impossible, even with modern 

computers, to analyze this number of possible operating strategies. Fortunately, there are ways of 

approaching the problem that make analysis of every single possibility unnecessary. However, even 

using dynamic programming (the application of which will be detailed later, in Section 2.3), the 

number of possible operating strategies that must be analyzed is given by Eq. 2.2. 

𝑁 = 24 × (𝑁𝑑𝑖𝑠𝑐 + 1)
𝑁𝑡𝑢𝑟𝑏 2.2 

Obviously, the number 24 cannot be reduced as it is the number of hours in a day. However, if 

(𝑁𝑑𝑖𝑠𝑐 + 1)
𝑁𝑡𝑢𝑟𝑏  can be decreased by a preliminary analysis of each possible combination of 

operating turbines, then any further analysis will be much faster. In fact, it turns out that this can be 

pre-analyzed, resulting in large potential savings in the required computational time. 

2.1.2.2 Justification 

The second stage of the preliminary analysis could also be considered the first stage of the 

optimization. This pre-optimization of the problem definition makes the subsequent analysis less 

cumbersome by reducing the number of independent variables. To illustrate the utility of this step, 

consider the following: Using the full problem definition from Section 1.4, the efficiency, and thus 

the power production, of any given turbine depends on the net head, and thus the net flow rate. 

Therefore, in order to determine the effect of any adjustment to the flow rate through a single 

turbine, it is necessary to recalculate the net flow rate and then net head. This change in net head 

will necessarily also simultaneously affect every other operating turbine. Furthermore, during the 

optimization, adjustment of the flow rate through a single turbine necessitates adjustment of the 

flow rates through all of the other active turbines such that the gradient of the revenue with respect 

to the flow through each active turbine remains the same. Finally, it is also possible when adjusting 
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the flow through a single turbine to arrive at an operating state that would be better served by a 

different combination of turbines, requiring some turbines to be activated or deactivated, and the 

whole process to start over again. Therefore any time a change is made to the operating point of a 

single turbine in the search for the optimal operating points, a sub-problem must be solved to 

determine the corresponding required changes in the other active turbines, and it is reasonably 

projected that the same sub-problems would have to be solved multiple times throughout the course 

of each optimization. 

Consider next an operating point that is known to be the optimal operating point for the entire 

system.  

∃{𝜙𝑖,𝑗,𝑡, 𝑄𝑖,𝑗,𝑡}𝑜𝑝𝑡
 ∀ {𝑖, 𝑗, 𝑡} ∈ {𝐼𝑗, 𝐽, 𝑇} | 𝑅 ({𝜙𝑖,𝑗,𝑡 , 𝑄𝑖,𝑗,𝑡}𝑜𝑝𝑡

) = 𝑅𝑚𝑎𝑥 2.3 

This operating point defines which turbines should be active at each station for each time period in 

the planning horizon. Further, it defines the specific flow rates through each of those turbines. Thus, 

for each station 𝑗 during each time period 𝑡 in the planning horizon, the optimal operating point 

results in a known net flow (𝑄𝑗,𝑡,𝑜𝑝𝑡) and net power production (𝑃𝑗,𝑡,𝑜𝑝𝑡) for each station in the 

system. Consider the independent variables to be grouped by station and time period 

({𝜙𝑖, 𝑄𝑖}𝑗,𝑡,𝑜𝑝𝑡 , … ). Thus, each group of independent variables completely defines the status of a 

single station during a single time period of the optimization. Each of these subsets of independent 

variables must themselves result in the optimal division of each station’s net flow among its active 

turbines (where optimal division of flow among turbines is that division which results in the highest 

power production for a given net flow rate). 

(𝑅 = 𝑅𝑚𝑎𝑥) → (𝑃𝑗,𝑡,𝑜𝑝𝑡 = 𝑃𝑗,𝑡,𝑚𝑎𝑥,  for given 𝑄𝑗,𝑡 = 𝑄𝑗,𝑡,𝑜𝑝𝑡 & {ϕi}j,t ={𝜙𝑖}𝑗,𝑡,𝑜𝑝𝑡) 2.4 

To prove this, one must only consider the consequences if this were not the case. If the division of 

flow among the active turbines were not optimal, then there would exist another division of flow 

among the active turbines for which the net flow would be equal to the net flow of the optimal 

combination (shown below in Eq. 2.5), and the station’s power production would be higher than the 

power production resulting from the optimal system operating point. 

i. e. assume  ∃{𝑄𝑖}𝑗,𝑡 ≠ {𝑄𝑖}𝑗,𝑡,𝑜𝑝𝑡  | 𝑄𝑗,𝑡 = 𝑄𝑗,𝑡,𝑜𝑝𝑡  & 𝑃𝑗,𝑡 > 𝑃𝑗,𝑡,𝑜𝑝𝑡 2.5 

Were this true, more power could be produced using the same amount of water and the only effect 

on the system would be to increase the power output of the station under consideration. This would 

in turn result in a higher total revenue, contradicting the original assumption that the known optimal 

operating point is, in fact, optimal. Thus, in order to uniquely identify the optimal operating point for 

a hydropower system, it is only required that the net flow rate and active turbines be known for each 

station in the system, rather than knowing the flow through each turbine.  
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In order to use the net flow and active set of turbines as the independent variables, rather than the 

flow through and status of each turbine, it is necessary to know the power output of each station as 

a function of the net flow rate and the active set of turbines. Fortunately this is a sub-problem that 

can be predicted and preemptively solved [21] over the entire operating range through application 

of the Karush–Kuhn–Tucker (KKT) conditions. It is also straightforward to use this transformation, the 

details of which are developed below) to do away with the difficulty of constantly recalculating the 

net head for each updated value of flow rate, and instead express power as a function of the volume 

of water in the reservoir, the net flow rate through the station, and the active set of turbines.  

2.1.2.3 Methodology 

Some new definitions must be made before continuing with the optimization of this preliminary sub-

problem. Previously, in Section1.4, the set of turbines in a station was identified as 𝐼𝑗, in which each 

turbine was identified by a unique number “𝑖” within its station. Before continuing, in order to reduce 

the total number of active sets of turbines that must be analyzed, each turbine’s numeric identifier 

is changed such that identical turbines have the same identifier. This creates set 𝐼𝑗
′. Next, set Ψ𝑗 is 

defined as the set of unique elements of the power set of 𝐼𝑗
′, excluding the null set.  

With this new definition, the application of the KKT conditions to the preliminary optimization can 

begin. The objective is to determine the optimal power surfaces as functions of only reservoir volume 

(𝑉𝑗), net flow rate (𝑄𝑗), and active operating set (𝜓), thus generating power surfaces for each 

operating set in each facility. 

The formal definition of the sub-problem as required for applying the KKT conditions is as follows: 

Maximize:  

𝑃ψ,𝑗(𝑄𝑗, 𝑉𝑗) = max∑𝑃𝑖,𝑗 (𝑄𝑖,𝑗, 𝐻𝑗(𝑄𝑗, 𝑉𝑗))

𝑖∈𝜓

  2.6 

Subject To:  

∑𝑄𝑖,𝑗
𝑖∈𝜓

− 𝑄𝑗 = 0 2.7 

𝑄𝑖,𝑗 − 𝑄𝑚𝑎𝑥,𝑖,𝑗 ≤ 0 ∀ 𝑖 ∈ 𝜓 2.8 

𝑄𝑚𝑖𝑛,𝑖,𝑗 − 𝑄𝑖,𝑗 ≤ 0 ∀ 𝑖 ∈ 𝜓 2.9 

The only additional equation needed to fully specify the problem is the equation of the power output 

of a turbine as a function of flow rate and head, which is shown in Eq. 1.26. 

This problem must be solved for all discretized points in the following permissible operating domain 

for each operating set in each station:  
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𝑄𝑗 ∈ [𝑄𝑚𝑖𝑛,𝑗, 𝑄𝑚𝑎𝑥,𝑗] ∩ [𝑄𝑚𝑖𝑛,𝜓, 𝑄𝑚𝑎𝑥,𝜓] 2.10 

𝑉𝑗 ∈ [𝑉𝑚𝑖𝑛,𝑗, 𝑉𝑚𝑎𝑥,𝑗] 2.11 

These equations show the domain of the independent variables. The first equation indicates that the 

net flow rate (𝑄𝑗) can vary from the greater of the minimum station flow rate (𝑄𝑚𝑖𝑛,𝑗) and the 

minimum operating set flow rate (𝑄𝑚𝑖𝑛,𝜓) to the lesser of the maximum station flow rate (𝑄𝑚𝑎𝑥,𝑗) 

and the maximum operating set flow rate (𝑄𝑚𝑎𝑥,𝜓). The second (Eq. 2.11) simply indicates that the 

domain of the reservoir volume includes all points between the minimum and maximum allowable 

volume.  

Application of the KKT conditions results in the following set of equations (which are both necessary 

and sufficient conditions for optimality because the power equation is assumed to be concave and 

the constraints are all linear): 

∂𝑃𝑖,𝑗 (𝑄𝑖,𝑗, 𝐻𝑗(𝑄𝑗, 𝑉𝑗))

∂Qi,j
= 𝜇1,𝑖 − 𝜇2,𝑖 + 𝜆 2.12 

𝜇1,𝑖 ≥ 0, 𝜇2,𝑖 ≥ 0 2.13 

𝜇1,𝑖(𝑄𝑖,𝑗 −𝑄𝑚𝑎𝑥,𝑖,𝑗) = 0 2.14 

𝜇2,𝑖(𝑄𝑚𝑖𝑛,𝑖,𝑗 − 𝑄𝑖,𝑗) = 0 2.15 

Thus, if the turbines are working within their operating domains (𝑄𝑚𝑖𝑛,𝑖,𝑗 < 𝑄𝑖,𝑗 < 𝑄𝑚𝑎𝑥,𝑖,𝑗), then 

𝜇1,𝑖 = 𝜇2,𝑖 = 0 in order to satisfy Eq. 2.14 through Eq. 2.15, and the slopes of the turbine power 

curves (as functions of turbine flow rate) are all identical and equal to 𝜆. However, if any turbine is 

operating at an extreme of the allowable range, either 𝜇1,𝑖 or 𝜇2,𝑖 will be non-zero. The analysis of 

the effects of each possibility are similar at each extreme, so only the effect of a turbine operating at 

its minimum allowed value will be examined herein. Eq. 2.12 must be valid for each turbine under 

consideration, so it is known that 𝜆 must be equal to the slope of the power vs. flow curve for each 

turbine that is operating within its allowed domain. However, if a turbine is operating at the lower 

limit of its permissible range, then (𝑄𝑚𝑖𝑛,𝑖,𝑗 − 𝑄𝑖,𝑗) in Eq. 2.15 will be equal to zero, allowing 𝜇2,𝑖 to 

take a positive non-zero value. This further indicates that the slope of the power curve of the turbine 

can take a value other than 𝜆. In the case of a turbine operating at the lower limit of its domain, the 

slope of its power curve at the optimal operating point will be less than that of other turbines that 

are not operating at their lower limits since 𝜇2,𝑖 is constrained to be positive. This aligns with the 

requirement that the objective function be convex. 

Thus, the basic condition for optimality is that the turbines all operate such that the derivatives of 

their power curves with respect to their flow rates are the same, unless operating at a limiting flow 
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rate. This is a relatively straightforward problem to address numerically. The easiest way to do so 

begins by calculating the derivatives of power with respect to flow rate at each value of flow rate for 

which the power is known (using numerical differencing methods), for each turbine in the active set. 

Then for a known the target net flow rate, the flow through each turbine can be determined by 

iteratively incrementing the flow rate through the turbine with the highest derivative until the 

desired net flow is achieved. However, a more accurate method is desired in which operating points 

for the turbines can be found between the discretized points of flow rate for which the power 

function is known. Such an approach is especially useful when the available discretization of the flow 

rate is not uniform, as is the case with the data available for this analysis. In such a case it becomes 

desirable to accurately interpolate the power for values of flow rate between the available 

discretization. It is also desirable for the net power curve resulting from the adopted interpolation 

method to not only be continuous, but to also have continuous derivatives. Several options were 

investigated to accomplish this. First, the slopes that any interpolation function would need to match 

were calculated using 2nd order methods (central differencing for interior points, and 2nd order 

forward and backward differencing for flow rates at the edges of the domain). Thus, any interpolation 

function must have four unknowns so that all of the conditions can be matched. Since a 3rd order 

polynomial is the simplest such function, its use was the first to be examined. However, it was 

discovered that this approach would not work as the polynomial which matched the values and 

slopes already known was often not convex over the entire region between the known values for 

flow rate. With this in mind, and lacking any previously known method that would produce the 

desired result, the original interpolation function shown in Eq. 2.16 was created. 

𝑃 = sgn√𝑎 × (𝑄 − 𝑏)2 + 𝑐 + 𝑑 2.16 

This equation can take several forms, as shown in Figure 2 – Figure 4. It exhibits several characteristics 

that make it ideal for interpolating the power as a function of flow rate. First, it is concave over its 

entire domain. Second, the coefficients can be solved (though the solution is admittedly complex) for 

known values for power and slope at two values of flow rate as shown below in Eq. 2.19 – Eq. 2.23 

(Mathematica was used to solve for the coefficients). Finally, the slope is a reversible function of the 

flow rate, allowing the flow rate corresponding to any possible value of the slope to be calculated, as 

shown in Eq. 2.24. The astute reader will notice that these are simply different conic sections. Figure 

2 and Figure 4 show sections of hyperbolas, while Figure 3 shows a section of an ellipse.  

Given that 𝑞1, 𝑞2, 𝑝1 = 𝑝(𝑞1), 𝑝2 =  𝑝(𝑞2), 𝑝1
′ = 𝑝′(𝑞1), and𝑝2

′ = 𝑝′(𝑞2) are known: 2.17 

𝑑𝑞 = 𝑞2 − 𝑞1, & 𝑑𝑝 = 𝑝2 − 𝑝1  2.18 

𝑠𝑔𝑛 = −
𝑎 × 𝑐

|𝑎 × 𝑐|
 2.19 
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𝑎 =
𝑑𝑝(2 × 𝑑𝑞 × 𝑝1

′ × 𝑝2
′ − 𝑑𝑝(𝑝1

′ + 𝑝2
′ ))

𝑑𝑞(𝑑𝑞(𝑝1
′ + 𝑝2

′ ) − 2𝑑𝑝)
 2.20 

𝑏 = 𝑞1 −
𝑑𝑞 × 𝑝1

′ × (𝑑𝑝 − 𝑑𝑞 × 𝑝2
′ )

2𝑑𝑞 × 𝑝1
′ × 𝑝2

′ − 𝑑𝑝(𝑝1
′ + 𝑝2

′ )
 2.21 

𝑐 =
𝑑𝑝(𝑑𝑝 − 𝑑𝑞 × 𝑝1

′ )2(𝑝1
′ + 𝑝2

′ )(𝑑𝑝 − 𝑑𝑞 × 𝑦2
′)2

(𝑑𝑞(𝑝1
′ + 𝑝2

′ ) − 2𝑑𝑝)2 × (𝑑𝑝(𝑝1
′ + 𝑝2

′ ) − 2𝑑𝑞 × 𝑝1
′ × 𝑝2

′ )
 2.22 

𝑑 = 𝑝1 +
𝑎 × 𝑐

|𝑎 × 𝑐|
× √

𝑑𝑝2(𝑑𝑝 − 𝑑𝑞 × 𝑝2
′ )2

(𝑑𝑞(𝑝1
′ + 𝑝2

′ ) − 2𝑑𝑝)2
  2.23 

𝑞 = −
𝑐

|𝑐|
× 𝑝′ ×√

𝑐

𝑎2 − 𝑎 × 𝑝′2
+ 𝑏 2.24 

 

 

Figure 2: Interpolation curve shape when coefficients 'a' and 'c' are both positive. 
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Figure 3: Interpolation curve shape when coefficients 'a' and 'c' are negative and positive, respectively. 

 

 

Figure 4: Interpolation curve shape when coefficients 'a' and 'c' are positive and negative, respectively. 
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Utilization of this interpolation function between each pair of adjacent values of flow rate for which 

power is known allows the power to be calculated as a function of any flow rate in each turbine’s 

domain. At this point, determining the flow rates that solve the sub-problem detailed in Eq. 2.6 – Eq. 

2.9 requires only that the correct value of the slope be determined. This determination is 

accomplished via an iterative approach which yields the value of 𝜆 (and thus the flow through each 

turbine) that corresponds to the desired net flow rate. 

Once all of the preliminary analysis is complete, the problem definition is reduced to the following: 

Maximize:  

𝑅𝑒𝑣𝑒𝑛𝑢𝑒 = 𝑅 =∑∑(𝜌𝑗,𝑡𝑃𝑟𝑒𝑔,𝜓𝑗,𝑗,𝑡 + 𝜋𝑗,𝑡𝑃𝜓𝑗,𝑗,𝑡 − 𝑆𝑈𝑗,𝑡)

𝐽

𝑗

𝑇

𝑡

 2.25 

Subject To:  

𝜓 ∈ Ψ𝑗 2.26 

𝑆𝑈𝑗,𝑡 = 𝑆𝑈(𝜓𝑗,𝑡 , 𝜓𝑗,𝑡−1) 2.27 

𝑄𝑗,𝑡 − 𝑄𝑚𝑎𝑥,𝑗 ≤ 0 2.28 

𝑄𝑚𝑖𝑛,𝑗 − 𝑄𝑗,𝑡 ≤ 0 2.29 

𝑄𝑗,𝑡 − (𝑄𝑗,𝑡−1 + Δ𝑄𝑚𝑎𝑥) ≤ 0 2.30 

(𝑄𝑗,𝑡−1 − Δ𝑄𝑚𝑎𝑥) − 𝑄𝑗,𝑡 ≤ 0 2.31 

𝑃𝜓,𝑗,𝑡 = 𝑃𝜓,𝑗(𝑄𝑗,𝑡, 𝑉𝑗,𝑡) 2.32 

𝑃𝑟𝑒𝑔,𝑗,𝑡 = min(𝑃𝑚𝑎𝑥,𝜓,𝑗 − 𝑃𝜓,𝑗,𝑡 , 𝑃𝜓,𝑗,𝑡 − 𝑃𝑚𝑖𝑛,𝜓,𝑗) 2.33 

𝑉𝑗,𝑡 = 𝑉𝑗,𝑡−1 − 𝑄𝑗,𝑡−1 + ∑ 𝑄𝑘,𝑡−1−𝜏𝑘,𝑗
𝑘∈𝐾𝑗

+ 𝑄𝑖𝑛,𝑗,𝑡 2.34 

𝑉𝑗,𝑡 − 𝑉𝑚𝑎𝑥,𝑗 ≤ 0 2.35 

𝑉𝑚𝑖𝑛,𝑗 − 𝑉𝑗,𝑡 ≤ 0 2.36 

𝑉𝑗,1 − Vj
1 = 0  2.37 

𝑉𝑗,𝑇+1 − Vj
T+1 = 0  2.38 

𝑄𝑗,0 − 𝑄𝑗
0 = 0 2.39 

𝜓𝑗,0 − 𝜓𝑗
0 = 0 2.40 

Thus, the preliminary analysis has reduced what was previously an optimization problem involving 

three nested summations to a problem with only two nested summations.  
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2.2 Proposed New Optimization Approach 

The final goal of this thesis is to produce a method whereby optimal system commitment can be 

achieved in a set of hydropower facilities owned by various individuals or corporations, which 

inherently seek out only their own optimal strategy. Along the way to achieving this goal, a 

considerable simplification of the system optimization objective function has been accomplished by 

developing the analysis described in the previous section, which led to the mathematical problem 

statement given in Eq. 2.25. However, the optimization objective of this equation does not yet 

include any means of ensuring that the individual stations in the system are optimally operated. In 

fact, even without this insightful simplification, the original problem as stated in Eq. 1.1 can be (and 

has been) solved for hydropower systems via mixed-integer optimization strategies. Yet, since the 

goal of this optimization includes not only optimizing the system as a whole, but also optimizing each 

individual plant’s operations, use of mixed-integer methods become less desirable due to the 

increase in complexity necessary to accommodate multiple objective functions, to determine optimal 

operating points, as well as the corresponding financial interactions that allow for individual as well 

as system optimization. 

In order to optimize both the system and each of the individual stations, a model is needed whereby 

system optimization and individual optimization are intrinsically linked. This necessarily introduces a 

large new set of independent variables to the optimization (which will be detailed in Section 2.4). The 

method developed herein incorporates a financial compensation approach whereby plant operators 

can regard the delivery of water at particular times as a valued commodity with specific monetary 

value, and pay upstream facilities for such delivery. Furthermore, the monetary value of the water is 

tied to the value of electrical energy so that the strategy yields results of consequence. Finally, 

hydropower systems are inherently non-linear, and the introduction of the requirement that both 

the system and the individual station operations be optimal introduces another layer of nonlinear 

interactions which makes previously used mixed-integer methods undesirable. Thus, the following 

method was developed, as outlined in the next three paragraphs, and further described in Sections 

2.3 and 2.4.  

In order to overcome the shortcomings of mixed integers methods, and determine the degree of 

cooperation between neighboring facilities necessary to reach a globally optimal commitment, the 

problem is approached by iterating between two stages. We label this method a dual iterative 

optimization.  Note that the word “dual’ refers only to the two stages; in each many different stations 

and interactions are analyzed. Iterations continue between the two stages, until a regional optimum 

solution is obtained. 
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The first stage of the method consists of optimizing the operation of each individual facility, without 

regard to its effects on other facilities in the system. Since the flow into each station’s reservoir is 

determined by the flow released from upstream facilities, the order in which the facilities are 

optimized is based on the physical structure of the system. The farthest upstream facilities are the 

first to be analyzed, and the furthest downstream are the last. This ensures that all of the relevant 

inputs are available when each optimization is performed. The details of this stage of the 

optimization are given in Section 2.3. 

The second stage of the optimization consists of first analyzing revenue gradients of neighboring pairs 

of stations with respect to changes in the upstream facility’s flow release during each individual time 

period. Then, for each pair of facilities, the time period during which adjusting the upstream facility’s 

flow release results in the greatest total increase in the two station’s revenue is determined. Finally, 

the value that must be added to the flow release (in addition to the value of the electricity being 

produced) of the upstream facility is determined and recorded for use in the next iteration of the 

first stage. Further details of this stage of the optimization are given below in Section 2.4. 

2.3 Iteration Stage 1: Individual Hydro Station Optimization 

Optimizing a single power station with known values for price and water inflow, while certainly much 

simpler than optimizing a hydropower system, is still far from a trivial problem. First, the problem 

definition is as follows: 

Maximize:  

𝑅𝑜𝑝𝑡,𝑗
1 = max(𝑅𝑗 =∑(𝜌𝑗,𝑡𝑃𝑟𝑒𝑔,𝜓,𝑗,𝑡 + 𝜋𝑗,𝑡𝑃𝜓,𝑗,𝑡 − 𝑆𝑈𝑗,𝑡)

𝑇

𝑡

) 2.41 

The constraints of this optimization are the same as those given in Eq. 2.26 – Eq. 2.36. 

The only difference between this problem statement and the one given in Eq. 2.25 – Eq. 2.36, is that 

now the summation over the different stations has been removed, and the optimization is only 

concerned with the results for a single station. 

The use of mixed-integer programming for solving this simpler problem was considered, but 

ultimately dynamic programming was selected due to its flexibility and robustness (two 

characteristics that are more difficult to achieve using mixed-integer methods). An overview of 

dynamic programming can be found in most optimization text books, or alternatively, Wikipedia 

given an excellent overview of the topic and links to many other helpful references. 

The following shows the definitions necessary to utilize dynamic programming to solve the 

optimization problem.  



 

22 

Value Function:  

𝑉𝑡𝐺𝑗,𝑡(𝒙𝒋,𝒕) = max
𝒖𝒋,𝒕

(𝑅𝑗,𝑡(𝒙𝒋,𝒕, 𝒖𝒋,𝒕) + 𝑉𝑡𝐺𝑗,𝑡+1(𝒙𝒋,𝒕+𝟏)) 2.42 

State Variables (𝒙𝒕):  

𝐱𝐣,𝐭 = {Vj,t, Qj,t−1, ψj,t−1} 2.43 

Input Variables (𝒖𝒕):  

𝐮𝐣,𝐭 = {Qj,t, ψj,t} 2.44 

State Update Function:  

𝐱𝐣,𝐭+𝟏 = {(𝑉𝑗,𝑡 − 𝑄𝑗,𝑡 + ∑ 𝑄𝑘,𝑡−1−𝜏𝑘,𝑗
𝑘∈𝐾𝑗

+ 𝑄𝑖𝑛,𝑗,𝑡) , Qj,t, ψj,t} 2.45 

In the above equations, the only new variables introduced are 𝑉𝑡𝐺 , which it the “value-to-go,” 

and 𝑅𝑗,𝑡, which is the revenue of station 𝑗 during time period 𝑡. The value-to-go function is iteratively 

calculated from the state of the system at the end of the final time period to the state before the 

initial time period for every possible combination of states at each intermediate time. When 

calculating the value-to-go at each iteration stage, the values of all future state combinations are 

known, and thus, for each possible current state, the optimal set of inputs is determined based on 

the revenue the inputs would produce for the current time period and the future revenue (value-to-

go) that is possible.  

Additionally, the selection of state variable bears an explanation. The selection of the volume of 

water in the reservoir (𝑉𝑗,𝑡) as a state variable should be an obvious choice, but the reasons for the 

inclusion of the previous flow rate (𝑄𝑗,𝑡−1) and operating set (𝜓𝑗,𝑡−1) likely are not quite so obvious. 

They are, however, easily accounted for. The flow during the previous time period must be known in 

order to enforce the constraint on the maximum change in flow rate during a single time period 

(shown in Eq. 2.30 and Eq. 2.31). The previously active operating set must be known in order to 

determine the start-up costs that would be incurred by each possible selection of the current 

operating set (shown in Eq. 2.27). 

Additionally, this formulation of the problem introduces an extra requirement regarding the method 

of discretization employed for the flow rates and reservoir volume. When using dynamic 

programming it is advantageous for each set of possible inputs to lead directly from one state to 

another. While it is possible to apply an interpolation function to determine the value of the future 

value-to-go function in Eq. 2.42, doing so would result in an avoidable loss of accuracy, and is thus 

best circumvented if possible. Thus, since flow rate and volume are linked in the state update 

function shown in Eq. 2.45, the discretization of the volume and flow rates must be such that when 
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the state update function is evaluated, the value found for the updated volume will lie on an existing 

discretized value rather than between two values in the volume discretization. 

The results generated from this optimization include the optimal operating set, net flow rate, and 

reservoir volume for each facility during each time period of the planning horizon, as well as the 

resulting optimal total revenue of each facility. These results (shown below in Eq. 2.46) are then used 

in the next stage of the system optimization routine. The superscript of each term indicates that 

these are the results from the first optimization of each individual facility. 

{ψopt,j,t
1 , 𝑄𝑜𝑝𝑡,𝑗,𝑡

1 , 𝑉𝑜𝑝𝑡,𝑗,𝑡
1 , 𝑅𝑜𝑝𝑡,𝑗

1 } 2.46 

2.4 Iteration Stage 2: River System Optimization through Gradient Analysis 

This section uses the results of the individual station optimizations and links the optimization of 

neighboring stations. The procedure developed herein is the mechanism that ties together the 

individual station optimizations with the total system optimization. Using this procedure, it becomes 

possible for the optimization of the individual components of the system to drive the overall system 

optimization. This is achieved by allowing communication of the future, downstream value of water 

between neighboring stations. This value takes the form of payments offered for altered release 

levels from downstream facilities to upstream facilities. 

The basic concept behind this approach can be 

easily demonstrated using a simple example. 

Figure 5 shows a sample electricity price profile, 

the resulting revenues with no communication, 

and the resulting revenue if the value of water is 

communicated between neighboring facilities. In 

this example there are two facilities that are 

connected by a river. The upstream facility has a 

reservoir and is able to hold water until the most 

beneficial time, but the downstream facility is run-

of-river, and can only use water when it is received from an upstream facility. In this example, the 

flow time between the two facilities is one hour, the upstream facility has enough water to flow for 

a two hour period, and it is assumed that both facilities can convert water to electricity at the same 

rate. As shown in Figure 5(a), without communication of the future downstream value, the upstream 

facility would choose to operate during the two hours with the highest price (the $50 and $40 time 

periods). This would then constrain the downstream facility to operate at times during which the 

electricity price is much lower (the $40 and $35 time periods). Without communication, the total 

 
(a) (b) 

Figure 5: Water value concept example. 
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revenue of the two plants amounts to $165. If, however, the changes in total revenue were evaluated 

for various different possibilities then the total revenue of the system would be maximized if the 

upstream facility operated during the time periods with prices of $30 and $50 (a decrease of $10), 

which would allow the downstream facility to operate during the time periods with prices of $50 and 

$40 (an increase of $15), generating a total revenue of $170. However, the upstream facility would 

not be willing to operate during these time periods because of the decrease in revenue it would 

experience. Thus, in order to incentivize the upstream facility to release water during the earlier time, 

it is necessary for the downstream facility to use some of its increased profits to pay for water to be 

released during the $30 time period. A possible result is shown in Figure 5(b). In this scenario both 

plants generate greater revenue than previously, and the system as a whole is optimized. It is further 

seen here that there are many possible payments that would result in the desired change in release. 

The payment that is necessary to induce the desired change in a real market is a matter of negotiation 

between neighboring stations and is beyond the scope of this thesis. However, this example 

successfully demonstrates that enabling communication between neighboring reservoirs using water 

payments can drive the system toward optimal operation. 

Of course, applying this concept to a real system is much more complex, but the basic idea transfers 

over quite nicely. In order to detail the methods used in this section of the optimization, it is first 

necessary to first describe the discretization scheme that is used for the variables in the optimization. 

Specifically, it is necessary to describe the discretization of the operating sets, the net flow, and the 

volume. Since the operating sets are already divided into discrete groups, it is unnecessary to do 

anything further with them in this regard. Hence, only the net flow and the reservoir volume must 

be considered. As was stated at the end of Section 2.3, the discretization of these two variables is 

linked. First, a discretization size is selected for the net flow, which will be referred to as Δ𝑄𝑔𝑟𝑖𝑑. The 

same discretization is used for all operating sets in a station. This then determines the discretization 

that must be used for the volume according to Eq. 2.47. 

Δ𝑉𝑔𝑟𝑖𝑑 = Δ𝑄𝑔𝑟𝑖𝑑 ∗ 3600 s  2.47 

Thus, the possible flow rates for any given combination of turbines will consist of all of the values of 

flow rate that are divisible by Δ𝑄𝑔𝑟𝑖𝑑 and between the minimum and maximum flow limits for that 

particular operating set.  

In order to apply the gradient analysis to a hydropower system consisting of multiple hydropower 

plants, the facilities are divided into pairs, each consisting of two neighboring facilities (the water 

released from one flows into the reservoir of the other). Since the same analysis is performed for 

every pair of stations, the equations developed below apply to calculations within a pairing. After all 

of the pairs of plants are determined, the first step of this second stage of the optimization is to 
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determine, for each upstream facility in each pair, the effect on the optimal commitment of 

increasing or decreasing the net flow during each time period in the planning horizon. In particular, 

the effect of requiring an increase or decrease in the net flow during time period “𝑠” on the optimal 

station revenue and the optimal net flow profile are sought (Eq. 2.48). Since the procedure required 

to determine the effect of an increase is basically the same as that required for a decrease, everything 

developed below will be for the analysis of a flow increment, and can easily be extended to the 

analysis of a flow decrement. Further, the subscript “𝑗 ,” which refers to which facility is being 

considered, is replaced with either “𝑢𝑝” or “𝑑𝑜𝑤𝑛,” indicating whether the calculation is for the 

upstream or downstream facility within a pair. 

Δ𝑅𝑜𝑝𝑡,𝑢𝑝
1,𝑠+ = 𝑅𝑜𝑝𝑡,𝑢𝑝

1,𝑠+ − 𝑅𝑜𝑝𝑡,𝑢𝑝
1  ,  𝑄𝑜𝑝𝑡,𝑢𝑝,𝑡

1,𝑠+  2.48 

Of course, requiring an increase in the net flow during one time period means that the net flow must 

decrease at some other time in order for the constraint on the final reservoir volume to be met. 

Furthermore, it has been found that requiring the flow to increase at a particular time commonly 

results in changes in the optimal flow profile during several time periods. Thus, to determine the 

exact effect of increasing the flow at any particular time, the optimization problem given in Eq. 2.41 

(repeated below for reference) must be solved again with an additional constraint specifying the 

required change in the final flow profile. 

Maximize:  

𝑅𝑜𝑝𝑡,𝑢𝑝
1,𝑠+ = max(𝑅𝑗 =∑(𝜌𝑗,𝑡𝑃𝑟𝑒𝑔,𝜓𝑗,𝑗,𝑡 + 𝜋𝑗,𝑡𝑃𝜓𝑗,𝑗,𝑡 − 𝑆𝑈𝑗,𝑡)

𝑇

𝑡

) 2.49 

Subject To:  

Eq. 2.26 – Eq. 2.36 2.50 

𝑄𝑗,𝑡=𝑠 = 𝑄𝑜𝑝𝑡,𝑗,𝑡=𝑠
1 + Δ𝑄𝑔𝑟𝑖𝑑 2.51 

Of course, repeating the full optimization analysis for each upstream facility twice for each time 

period in the planning horizon is computationally quite expensive. Thus, additional constraints are 

added which restrict the values of reservoir volume and flow rate to be considered in the 

optimization. These additional constraints are given below in Eq. 2.52 – Eq. 2.54. They specify that 

no flow rate (or volume) that is greater than some integer multiple of the grid size away from the 

previously determined optimal solution is to be considered in the analysis. Further, the number of 

allowed grid-sized steps the volume can take away from the previously found optimal values is itself 

a positive integer multiple of the number of allowed grid-sized steps the flow rate can take away 

from its previously found optimal values. 

𝑄𝑗,𝑡≠𝑠 ∈ {𝑄𝑜𝑝𝑡,𝑗,𝑡
1 − 𝑛 × Δ𝑄𝑔𝑟𝑖𝑑 , 𝑄𝑜𝑝𝑡,𝑗,𝑡

1 + 𝑛 × Δ𝑄𝑔𝑟𝑖𝑑} 2.52 
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𝑉𝑗,𝑡 ∈ {𝑉𝑜𝑝𝑡,𝑗,𝑡
1 −𝑚 × Δ𝑉𝑔𝑟𝑖𝑑 , 𝑉𝑜𝑝𝑡,𝑗,𝑡

1 +𝑚 × Δ𝑉𝑔𝑟𝑖𝑑} 2.53 

𝑛 ∈ ℤ>0,
𝑚

𝑛
∈ ℤ>0 2.54 

While the addition of these constraints greatly reduces the required computational time, it is possible 

that the result of this more constrained optimization will not be the true optimum of the problem 

given in Eq. 2.49 – Eq. 2.51. However, since only a small deviation from the previously found optimal 

solution is required in the constraint given in Eq. 2.51, it is expected that the flow profile obtained 

when adhering to this constraint will be close to the previous results. Furthermore, since the ultimate 

purpose of this stage in the process is to identify when it is beneficial for downstream facilities to 

subsidize the revenue of the upstream facilities for increases in flow, small inaccuracies likely would 

not lead to significant error in the resulting payment schedule. Analysis of the effect of the value of 

“𝑛” and “𝑚” is given in Section 3.4. 

Once this step of the second stage is complete, several new data sets are available for further 

analysis. The data that is saved for use in the next step includes, for incremented flow during each 

time period, the revenue lost due to the forced deviation from the optimal flow, and the resulting 

net flow profile: 

Δ𝑅𝑜𝑝𝑡,𝑢𝑝
1,𝑠+ , 𝑄𝑜𝑝𝑡,𝑢𝑝,𝑡

1,𝑠+  ∀ {𝑗, 𝑠, 𝑡} ∈ 𝐽𝑢𝑝 × 𝑇 × 𝑇 2.55 

Note that here (and in Eq. 2.56) the subscript “up” refers to the indices of the facilities that are the 

upstream member in any pair of facilities. The second step of stage two consists of analyzing the 

effects of the changes in flow rate on the downstream facility in each pair. In this step the only effect 

that is important is the effect on the revenue of the downstream station receiving the modified flow 

profile. This also requires an additional optimization analysis for each increase (and decrease) that 

was analyzed for the upstream facility, though with the constrain in Eq. 2.34 (the volume updating 

constraint) replaced by the constraint shown below in Eq. 2.56 in order that the modified flow profile 

will be considered. 

𝑉𝑗,𝑡 = 𝑉𝑗,𝑡−1 − 𝑄𝑗,𝑡−1 + ∑ {𝑄𝑘,𝑡−1−𝜏𝑘,𝑗}
{𝑘≠𝑢𝑝}∈𝐾𝑗

+ 𝑄𝑖𝑛,𝑗,𝑡 + 𝑄𝑜𝑝𝑡,𝑢𝑝,𝑡−1−𝜏𝑢𝑝,𝑗
1,𝑠+    2.56 

Again, running this optimization twice for each time period in the planning horizon would be 

computationally very expensive, and thus the optimizations again include the constraints in Eq. 2.52 

– Eq. 2.54. The same argument is made for the reasonableness of these constraints as was made 

above. The resulting changes in revenue of the downstream facilities (Eq. 2.57) are then used in 

conjunction with the changes in revenue of the upstream facilities (Eq. 2.55) in the final step of this 

stage of the optimization. 
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  Δ𝑅𝑜𝑝𝑡,𝑑𝑜𝑤𝑛
1,𝑠+ = 𝑅𝑜𝑝𝑡,𝑑𝑜𝑤𝑛

1,𝑠+ − 𝑅𝑜𝑝𝑡,𝑑𝑜𝑤𝑛
1  2.57 

The final step is the determination of the water flow payments that, if implemented, would motivate 

the upstream facilities to increase their release at the appropriate times, thus driving the total system 

toward more optimal operations. Selecting the proper method of implementing a payment is crucial 

to ensure that every concerned party will benefit: primarily each individual owner/operator (since 

their decisions determine the operation of the system), but also the whole system by producing more 

power when demand is high, and less power when demand is low (as reflected by the power prices). 

Beyond simply benefiting the revenue of power companies, this is also of benefit to society, likely 

resulting in decreased CO2 emissions and lower energy prices because of the increase in the efficiency 

of producing power when it is most needed using clean hydropower. 

When neighboring stations both seek optimal revenue, some tension may inevitably arise. Referring 

back to the example in Figure 5, it is clear that the operation reflected in Figure 5(b) is optimal for 

the system as a whole, but whether it is optimal for each station remains questionable. Whereas 

both stations generate additional revenue as compared to that generated while operating 

independently (Figure 5(a)), the downstream facility might have paid a smaller amount for the water. 

On the other hand, the upstream facility might have refused to cooperate unless the downstream 

facility paid them a majority of the increased revenue. These possibilities lead to a re-examination of 

what it means to optimize the operation of each individual facility. For the purposes of this work, we 

define optimal station operation as any operation capable of generating higher revenue than what is 

accrued under independent operation. Obviously, this leaves a great deal of variability in the decision 

regarding how the payments will be determined. In a real-world application payment would be 

negotiated by the lawyers and financial officers of the companies owning neighboring facilities, but 

since modeling human behavior is far beyond the scope of this work, the decision has been 

automated via what we hope is an insightful and acceptable way of splitting additional revenue. 

The algorithm developed below applies to a pair of neighboring hydropower facilities for the revenue 

resulting from a required increment in the flow rate. The methodology can, however, easily be 

extended to include the changes in revenue resulting from a required decrement and any number of 

pairs of neighboring stations in a system.  

First, the total changes in revenue due to each flow adjustment for the pair of neighboring facilities 

are calculated:  

Δ𝑅𝑜𝑝𝑡
1,𝑠+ = Δ𝑅𝑜𝑝𝑡,𝑢𝑝

1,𝑠+ + Δ𝑅𝑜𝑝𝑡,𝑑𝑜𝑤𝑛
1,𝑠+  2.58 

Next, the time of the change in flow released from the upstream facility that caused the greatest 

increase in total revenue is determined. 
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Determine ∶   𝑠1 | Δ𝑅𝑜𝑝𝑡
1,𝑠+ = max

𝑡
(Δ𝑅𝑜𝑝𝑡

1,𝑡+) > 0 2.59 

This time (𝑠) is the time at which the upstream facility will receive payment for increasing the net 

flow released (applied during the next iteration of individual optimizations). Note that if there is not 

time period for which the total revenue of the two stations increases, then this stage of the 

optimization stops without determining a flow payment to be made. However, it is possible that in 

some future iteration changes in other parts of the system could result in possible increases in 

revenue, so the pair cannot yet be removed from further consideration.  

The question of appropriate compensation for water released has not yet been addresses. Several 

options for determining this payment were considered. The first option considered was to pay the 

upstream facility enough to compensate it for the lost revenue (−Δ𝑅𝑜𝑝𝑡,𝑢𝑝
1,𝑠+ ) plus half of the total 

revenue increase (
1

2
Δ𝑅𝑜𝑝𝑡

1,𝑠+) for any release above the previously determined optimum during time 

period “𝑠”. This option was quickly abandoned because of the many iterations that would have likely 

been required to achieve any meaningful shift in operations. Next, it was considered to pay the 

upstream facility an amount equal to its lost revenue (−Δ𝑅𝑜𝑝𝑡,𝑢𝑝
1,𝑠+ ) plus half of the total revenue 

increase for each increment beyond the previously determined optimum (
1

2
Δ𝑅𝑜𝑝𝑡

1,𝑠+ ×
𝑄𝑢𝑝,𝑠−𝑄𝑜𝑝𝑡,𝑗,𝑠

1

𝑄𝑔𝑟𝑖𝑑
). 

However, this option could easily result in a downstream station continuing to pay for an upstream 

station to increase its flow release far beyond the value that would be optimal for the downstream 

station, also potentially causing the total revenue of the two stations to decrease, and was therefore 

discarded. The option finally implemented generates a payment schedule in which each increment 

of the upstream facility’s release beyond the previous optimum results in an additional payment 

following a geometrically decreasing trend. The total resulting payment is shown below in Eq. 2.60 

and Eq. 2.61. Equation 2.60 represents the payment schedule using a summation, and thus the 

payment for each increment in flow rate can be easily determined, while Eq. 2.61 yields the same 

result, but with the result of the summation presented in a simpler form.  

if: 𝑄𝑢𝑝,𝑠 > 𝑄𝑜𝑝𝑡,𝑢𝑝,𝑠
1 , then: 𝑅𝑓𝑙𝑜𝑤 = −Δ𝑅𝑜𝑝𝑡,𝑢𝑝

1,𝑠+ +

(

  
 

∑ (
1

2
)
𝑛

𝑄𝑢𝑝,𝑠−𝑄𝑜𝑝𝑡,𝑢𝑝,𝑠
1

𝑄𝑔𝑟𝑖𝑑

𝑛=1

)

  
 
Δ𝑅𝑜𝑝𝑡

1,𝑠+ 2.60 

if: 𝑄𝑢𝑝,𝑠 > 𝑄𝑜𝑝𝑡,𝑢𝑝,𝑠
1 , then: 𝑅𝑓𝑙𝑜𝑤 = −Δ𝑅𝑜𝑝𝑡,𝑢𝑝

1,𝑠+ +(1 − (
1

2
)

𝑄𝑢𝑝,𝑠−𝑄𝑜𝑝𝑡,𝑢𝑝,𝑠
1

𝑄𝑔𝑟𝑖𝑑
)Δ𝑅𝑜𝑝𝑡

1,𝑠+ 2.61 

The utility of this approach may not be immediately apparent, so the various terms bear explanation. 

First, the payment only occurs if the upstream facility releases more water than the amount that it 
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previously found to be optimal. Second, since the upstream station was previously optimized, 

Δ𝑅𝑜𝑝𝑡,𝑢𝑝
1,𝑠+  must be negative. In this equation this term appears to ensure that the upstream station is, 

at the very least, compensated for its lost revenue. Third, the payment is not linearly related to 

increased release (in the way that power revenue depends linearly on the amount of power 

produced). The amount of the payment does depend on how much the flow has increased, but not 

via a simple multiplicative value function. Finally, the amount of the total increase in revenue paid to 

the upstream facility depends on how many increments away from its previously determined optimal 

flow rate it operates. According to the coefficient of the total increase in revenue (Δ𝑅𝑜𝑝𝑡
1,𝑠+), if the 

upstream station increases its flow release by one grid step, the upstream station receives 50% of 

the total increase in revenue; if it increases by two grid steps, then the upstream station receives 

75% of the total increase that the two stations received for a single grid step increase. The payment 

schedule is further demonstrated in Figure 6, which shows the payments that would occur for various 

increases in flow rate based on a loss in revenue of upstream facility equal to $3 and an increase in 

revenue by the downstream facility of $7, resulting in a total increase in revenue of $4.  

 

Figure 6: Payments for flow changes of an upstream facility. Payments correspond to upstream facility lost 
revenue of $3 and total revenue increase of $4 (for a single increment of flow). 

The intent of this geometric progression is twofold. Its first purpose is to prevent the downstream 

station from making a payment beyond the amount its own revenue increased due to the analyzed 

single increment in the upstream station’s flow rate. This is important since there is no guarantee 
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that further increases in the flow released by the upstream facility will be beneficial for the 

downstream facility. Second, it allows for the optimization to identify directions of steepest ascent 

and make more than a single step in the identified direction. As shown in Figure 6, the upstream 

facility can continue to receive higher payments for release beyond the single increment that was 

analyzed. This is important to reduce the number of iterations (and thus computational time) 

required to converge on a final solution. 

The final result of this stage of the optimization is the payment schedule shown in Eq. 2.61. In order 

to communicate the proper payment to the next iteration, several pieces of information must be 

saved. These include the time period for which a new payment has been calculated, whether the 

payment corresponds to an increment or a decrement in flow (indicated by a 𝑠𝑔𝑛 taking a value of 1 

or -1), the previous optimal flow rate at that time, the revenue loss of the upstream station, and the 

total increase in revenue of the pair of stations (all listed in Eq. 2.62). This information is then added 

to a list of payments to be made to the upstream facility and utilized by the updated value function 

shown in Section 2.5, which details the iterative procedure. 

PS𝑗=𝑢𝑝
1 = {𝑠1, 𝑠𝑔𝑛1, Q𝑜𝑝𝑡,𝑢𝑝

1 , Δ𝑅𝑜𝑝𝑡,𝑢𝑝
1 , Δ𝑅𝑜𝑝𝑡,𝑡𝑜𝑡

1 } 2.62 

2.5 Iterative Procedure 

The procedure and equations developed above in Sections 2.3 and 2.4 refer specifically to the first 

iteration of the optimization (superscripts indicate the iteration number). A few slight modifications 

are necessary for the second and following iterations. Hence, the equations developed above in 

Section 2.4 all have a superscript of “1” indicating that they result from analysis of the first iteration. 

In order for the equations to apply to all subsequent iterations of the optimization, this “1” only 

needs to be replaced by the index “𝑛.” Next, the objective function of the single station optimization 

procedure of Section 2.3 requires a modification to include the effects of the water payments. This 

modification is determined using two steps. First, the water payments for each allowable flow rate 

are determined according to Eq. 2.63: 

𝑊𝑃𝑗,𝑡
𝑛 (𝑄𝑗,𝑡) =∑

if((𝑠𝑚 = 𝑡) ⋀ (𝑠𝑔𝑛𝑚 × (𝑄𝑗,𝑡 − 𝑄𝑜𝑝𝑡,𝑗,𝑡
𝑚 ) > 0)) ,

then(−Δ𝑅𝑜𝑝𝑡,𝑢𝑝
𝑚,𝑠 + (1 − (

1

2
)

𝑄𝑗,𝑡−𝑄𝑜𝑝𝑡,𝑗,𝑠𝑚
𝑚

𝑄𝑔𝑟𝑖𝑑
)Δ𝑅𝑜𝑝𝑡

𝑚,𝑠) ,

else 0

𝑛−1

𝑚=1

 2.63 

This equation results in a matrix of values of flow rate for each facility. The resulting matrices are 

then included in the optimization objective function previously given in Eq. 2.41, and shown below 

in Eq. 2.64 with the new water payment term included. 
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𝑅𝑜𝑝𝑡,𝑗
𝑛 = max(𝑅𝑗 =∑(𝜌𝑗,𝑡𝑃𝑟𝑒𝑔,𝜓,𝑗,𝑡 + 𝜋𝑗,𝑡𝑃𝜓,𝑗,𝑡 − 𝑆𝑈𝑗,𝑡 +𝑊𝑃𝑗,𝑡

𝑛 )

𝑇

𝑡

) 2.64 

The same modification must also be made to Eq. 2.49 in all further iterations. 

Finally, there are a couple of problems that could arise as the iterations progress. The first and most 

obvious potential problem is that because this is a gradient shooting method, applying a payment 

schedule may result in the upstream installation releasing more water than is beneficial for the 

downstream installation, causing the revenue of the downstream installation to decrease after water 

payments are made. This would indicate that the value applied to increased flow rates beyond the 

already considered single increment is too large. If the method developed in Section 2.4 were 

followed, a payment would be made for decreased flow at the same time. However, such a payment 

would result in the downstream facility first paying for increased flow, and subsequently paying for 

the flow to be decreased. Obviously, this would not make sense. Fortunately, this problem is easy to 

rectify. Since it is known that a single increment in flow rate by the upstream facility is beneficial, the 

base payment that compensates the upstream facility for lost revenue must stay the same. However, 

the magnitude of payments for further increases in flow rate can be easily reduced by decreasing the 

value of the recorded total revenue change between the two stations (Δ𝑅𝑜𝑝𝑡
𝑚 ) by half until the 

problem is rectified. Reducing this recorded value would cause the geometric series portion of the 

payment to decrease, in turn causing the incremental benefit of increased flow by the upstream 

facility to decrease, and thus the optimum release of the upstream facility will be lower at the 

relevant time.  

The second potential problem is that the payment schedule determined in the current iteration 𝑛 

may indicate a payment at the same time as a payment determined by a previous iteration 𝑚, but in 

the opposite direction (a decrease in flow instead of an increase, for example). As was stated above, 

simultaneously paying for a decrease and an increase is not conducive to a valid solution. The method 

for dealing with this problem is only slightly more complex than the method for dealing with the 

previous problem. The first step is the same as for the previous problem, namely, to decrease Δ𝑅𝑜𝑝𝑡
𝑚  

by half until the analysis indicates a payment at a different time. However, in some instances that 

may not be enough, and the flow of the upstream facility will need to be decreased (or increased) 

further than is possible by simply decreasing  Δ𝑅𝑜𝑝𝑡
𝑚 . This possibility bears further explanation. 

Suppose that a previous iteration 𝑚  indicated that the flow of a facility should be increased at 

time 𝑠𝑚, and water payments occur when flow at that time is greater than Q𝑜𝑝𝑡,𝑢𝑝
𝑚  (the flow that was 

determined to be optimal at time 𝑠𝑚  during stage 1 of iteration 𝑚). Suppose further that in the 

current iteration 𝑛  it has been determined that at that same time (𝑠𝑚)  the flow ought to be 

decreased, and the first step of decreasing Δ𝑅𝑜𝑝𝑡
𝑚  has been performed until Q𝑜𝑝𝑡,𝑢𝑝,𝑠𝑚

𝑛 = Q𝑜𝑝𝑡,𝑢𝑝
𝑚 +
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Δ𝑄𝑔𝑟𝑖𝑑 (i.e. the flow released is only large enough for the upstream facility to receive the smallest 

possible payment indicated by Eq. 2.60). At this point decreasing Δ𝑅𝑜𝑝𝑡
𝑚  further will have no effect 

since the facility is receiving a base payment for this flow rate of Δ𝑅𝑜𝑝𝑡,𝑢𝑝
𝑚 , which cannot be 

decreased. In this instance the previous payment must be completely removed, and the analysis 

continues as before. 

The contour plot shown below in Figure 7 gives a two dimensional graphical demonstration of the 

concepts discussed above. The contours represent constant values of the total revenue of a system 

consisting of two neighboring hydropower facilities, while the parameters represent flow rates. 

Individual optimization of the two facilities could result in initial operation on the lower left side of 

the outermost curve, while system optimal operation occurs near the upper left side. Analysis of the 

system via a gradient technique would then indicate that the greatest increase in revenue would 

result from increasing parameter 1, and so a payment would be made to the upstream facility to 

increase it. Once parameter 1 is increased sufficiently, the greatest rise would instead result from 

increasing parameter 2, and again, a payment would be made for its increase. The gradient 

optimization would switch back and forth between increasing parameter 1 and parameter 2 until 

parameter 2 increased beyond the zero value. At that point parameter 1 would have to start 

decreasing to approach the global optimum. As discussed above, paying for an increase in a 

parameter, then subsequently paying for it to be decreased does not make sense. Thus, the payments 

previously determined to increase parameter 1 would be decreased or reversed until convergence 

on the final optimal value is achieved. 
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Figure 7: Two dimensional graphical demonstration of the necessity of the ability to reverse or eliminate 
previously determined payments to change a parameter in a particular direction. Also shown is a possible 
gradient based optimization path. 
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3 Results 

3.1 Preliminary Analysis 

3.1.1 Preprocessing of Data 

As the results of the work rest on the foundation formed in the preliminary analysis, the results of 

those initial steps are shown here. The available data describing the efficiency of a hydro turbine 

consisted of iso-efficiency curves for varying levels of efficiency (as shown in Figure 1 in Section 2.1.1). 

In order to apply numerical methods to this problem, power production was needed as a function of 

evenly discretized values of flow rate and net head. As previously stated in Section 2.1.1, the first 

step to producing this is creating a triangulation of the points on the head – flow rate plane for which 

the efficiency is known for use in an interpolation function. Four stages of this process and the 

resulting interpolation of the efficiency surface are shown in Figure 8 – Figure 15. Note that in each 

of these figures, the axes are nondimensional head (EwD) and nondimensional flow rate (QwD). 

Figure 8 and Figure 9 show the initial triangulation and the resulting interpolation of the efficiency 

surface. It is immediately apparent that that this is not a good interpolation because of the flat 

sections half way down the slope to the left of the peak and immediately to the right of the peak.  

Examination of the triangulation quickly showed that some of the edges connecting points together 

spanned across efficiency levels. This observation resulted in the addition of the first constraint to 

the triangulation, namely, a requirement that neighboring points of the same efficiency be 

connected. This resulted in the triangulation and interpolation shown in Figure 10 and Figure 11, 

respectively.  

While the addition of the iso-efficiency curve connection constraint greatly improved the 

triangulation and the smoothness of the resulting efficiency interpolation, the approach is still not 

yielding a sufficiently orderly triangulation or a sufficiently smooth surface. The next step taken was 

to normalize the axes with respect to each other, so that the triangulation was performed on points 

for which the x-axis and y-axis both ranged from 0 to 1. This resulted in the far superior triangulation 

and interpolation shown in Figure 12 and Figure 13, respectively. 

Finally, there were still a few locations in which the interpolation resulted in flat areas on the 

efficiency surface due to the connection of non-neighboring points of the same efficiency. The 

locations in which this occurred were identified, and additional constraints were strategically added 

to cross the offending edges, thus eliminating them. The resulting triangulation, efficiency surface, 

and nondimensional power surface are shown in Figure 14, Figure 15, and Figure 16, respectively.  
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Figure 8: Initial unconstrained triangulation. 

 

Figure 9: Interpolated surface from Figure 8 triangulation. 
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Figure 10: Triangulation with constraints along iso-efficiency curves. 

 

Figure 11: Interpolated surface from Figure 10 triangulation. 
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Figure 12: Triangulation with iso-efficiency curve constraints and axes normalized to range from 0 to 1. 

 

Figure 13: Interpolated surface from Figure 12 triangulation. 
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Figure 14: Final triangulation with iso-efficiency curve constraints, normalization, and constraints added as 
needed to prevent flat areas on the interpolated efficiency surface. 

 

Figure 15: Interpolated surface from Figure 14 triangulation. 
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Figure 16: Power surface resulting from the final triangulation shown in Figure 14. 

3.1.2 Preliminary Analysis of Unit Combinations 

As outlined in Section 2.1.2, the goal of the preliminary analysis of unit combinations was to 

determine the maximum power surface of each possible combination of operating units as a function 

of net flow through the hydropower plant and the volume of water held in the reservoir. This 

combination of known parameters ensures that the operating head can be known, and thus, finding 

the maximum power only requires determination of the flow rate through each active turbine. The 

required steps to apply the KKT conditions to solve this portion of the problem include, in order: (1) 

using the previously determined power surface interpolation functions, extract the power curves as 

a functions of flow rate for each active turbine at the calculated value of net head, (2) ensuring that 

those curves are convex so that the KKT conditions are necessary and sufficient, (3) identifying the 

coefficients of the interpolation functions between the points of the extracted curves, and finally, (4) 

identifying the flow through each active turbine resulting in the maximum power output for the given 

net flow rate. 

The first step is a straightforward application of the power surface interpolation function that was 

previously generated to the calculated head and the full range of possible flow rates. The second step 

immediately analyzes the extracted curve. All data points which cause the curve to be non-convex 

are first removed, then the center points of any group of collinear points are removed, and finally, 

the remaining points are shifted vertically to minimize the error between the points interpolated 

using power surface interpolation function and a linear interpolation of the power using the 
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remaining points. The various stages of this process are shown in Figure 17. The red line shows the 

power as determined by interpolation using MALAB’s built in TriScatteredInterp function and the 

previously determined triangulation of the available data. This curve is very nearly convex, as 

expected, but it is not perfectly so, as it must be to directly apply the KKT conditions. Since the curve 

is reasonably expected to be convex as previously established, all points that cause the curve to be 

non-convex are removed first, resulting in the set of points identified by the squares. Next, any sets 

of collinear points further complicate application of the KKT conditions. Thus, any point that is 

collinear with the points immediately before and after was removed. Again, it was reasonable to do 

so since the curve is expected to be convex. The points remaining after this step are identified by 

circles in the figure. Finally, the remaining points are shifted vertically to minimize the difference 

between the original interpolation and a linear interpolation between the remaining points. The 

percent difference between the final piecewise linear curve and the original curve is shown by the 

blue line. As expected, it is, in all cases, quite small, never differing by more than 1.5% from the 

original interpolation of the curve in all cases studied. 

 

 

Figure 17: Various stages of the process of extracting the convex power curve for a single turbine at a known 
value of net head. 
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These curves were generated for values of head spanning the range of possible values for each 

turbine. After all of the relevant curves were generated for any particular turbine, the vertical shifts 

were averaged, and the amount by which each curve was shifted was adjusted to the average. These 

curves were then used to solve for the optimal division of flow among each set of active turbines for 

all allowed flow rates. The results for one of each of three differently sized turbines are shown below 

in Figure 18 – Figure 21. Figure 18 shows three surfaces representing the optimal division of net flow 

rate (shown on the x-axis) among three active turbines of differing design capacity based upon the 

net flow through the three turbines and the volume of water currently in the reservoir that feeds 

them. Figure 19 is very similar to Figure 18, except it shows the power generated by each of the three 

turbines. Figure 20 shows the total power produced by the combination of three turbines. Note that 

though the power surfaces of the individual turbines appear rough, the net effect when the power 

of the individual turbines is added together is that the total power produced by the combination is a 

very smooth function of the net flow rate and reservoir volume. Finally, Figure 21 shows the net 

efficiency of the combination when the net flow rate is distributed optimally among the active 

turbines. Again, note that the efficiency surface is quite smooth. 

 

 

Figure 18: Optimal division of net flow rate among three turbines of differing design capacity. 
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Figure 19: Power production of three turbines when operating at the flow rates shown in Figure 18 

 

Figure 20: Optimal power of the combination when each turbine is operated as shown in Figure 18. 
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Figure 21: Optimal net efficiency of the combination when each turbine is operated as shown in Figure 18. 

Finally, the actual savings in the number of operating states that must be examined during each stage 

of the DDP analysis bears discussion. The savings for various levels of each of the parameters (number 

of turbines and discretization size) are shown in Table 1 and Figure 22. Table 1 shows the savings for 

three levels of each parameter, while the other parameter is held constant. The Discretization Size 

row indicates the number of discrete flow rates possible for each turbine (not including the value of 

zero for when the turbine is off). The Before Pre-Analyzing and After Pre-Analyzing rows indicate the 

number of operating states before and after the preliminary optimization analysis. It becomes 

immediately apparent that though the savings for a facility with a small number of turbines are not 

very significant (though still worthwhile), as the number of turbines increases and the discretization 

is refined, the savings become very significant, with only a tiny fraction of the previous possible 

number of states remaining to be considered. The data from the table (with the data for n = 3, 4, 5, 

7, 8, and 9 added) is plotted in Figure 22 to further demonstrate the savings. For each curve the 

independent parameter is varied from 2 to 10, while the constant parameter is held at a value of 6. 

Additionally, curve fits were performed for each of the resulting curves, which indicate that the 

savings roughly follow a negative exponential with respect to the number of turbines, and a negative 

power with respect to the discretization size. 
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Table 1: Computational savings of the preliminary unit combination analysis. 

Discretization Size 6 6 6 2 6 10 

Number of Turbines 2 6 10 6 6 6 

Before Pre-Analyzing 49 117,649 282,475,249 729 117,649 1,771,561 

After Pre-Analyzing 24 1,024 26,624 256 1,024 1,792 

Percentage Remaining 49% 0.87% 0.0094% 35% 0.87% 0.10% 

 

Figure 22: The fraction of operating states that must be analyzed during each single station analysis, as 
compared to the number of operating states before the preliminary analysis of unit combinations. 

3.2 Individual Hydro Station Optimization through DDP 

As with the preliminary analyses, the final results depend heavily upon the foundation established 

by the single station optimization. Thus once the single station DDP optimization was completed, 

several analyses were performed to ensure that all of the constraints were being met, and that 

modifying various constraints and inputs in certain ways yielded reasonable results in the final 

outcome of the optimization. 

The constraints analyzed included hourly flow rate change limits, initial and final volume (assumed 

herein that these are the same), and the grid size used. Input parameters considered included the 

start-up cost, regulation price, and flow into the reservoir. The variations in the determined optimal 

inputs and the resulting revenues were then examined for variations of each input parameter, while 

the other parameters took a median value. The results of each study are shown below. 
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Figure 23: Price profile for power sales on a typical winter day. 

Each of the studies was performed using a standard winter price profile as shown above in Figure 23. 

This winter price profile was chosen because the double peak provides the clearest demonstration 

of the effects of many of the parameters being studied. Each figure demonstrates the effect of 

varying a single parameter. The lines indicate the optimal trajectories of flow rate, the numbers 

indicate the optimal operating sets, and the resulting revenues from each analysis are shown in the 

legends. 
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Figure 24: Optimal flow rates and operating sets for various levels of maximum allowed hourly change in 
flow rate (in m^3⁄s). 

The first constraint studied was the maximum allowed hourly change in flow rate. Three levels were 

studied, and the results are shown above in Figure 24. It can be seen that when allowed, the flow 

rate released by the station will quickly peak during the times at which the price is the highest. As 

expected, the revenue is higher when the constraint on the hourly change in flow rate is looser. 
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Figure 25: Optimal trajectories for initial reservoir volume levels (in m^3) ranging from minimum to 
maximum. Final volume is always equal to initial volume. 

Figure 25 shows the optimal flow rates for various levels of the initial and final volume of the 

reservoir. This study confirmed several expectations about the optimization results. First, it 

confirmed that it is better for the reservoir to be near capacity than for the level to be low (as long 

as the water level doesn’t encounter an upper or lower bound). This is indicated by the higher 

revenue when the reservoir volume is at the third level (𝑉 = 1.217 × 108 𝑚3) as compared to the 

revenue when the volume is at the second level (𝑉 = 1.208 × 108 𝑚3). Second, it confirmed the 

expectation that encountering the upper or lower volume limits causes the resulting optimal revenue 

to be less than that which would result from operating away from the volume limits. The effect of 

operating near the volume limits can also be seen in the deviation of optimal flow rate trajectories 

in the first and fourth cases from the optimal trajectories found in the second and third cases. Finally, 

the fact the second and third trajectories are identical indicates that precisely tracking the volume of 

the reservoir may not be necessary for optimization unless an upper or lower limit is encountered. 

This, however, is beyond the scope of the current work, and would be a topic for future studies. 
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Figure 26: Optimal trajectories resulting from various discretization resolutions (in m^3⁄s). 

The results from the variation of the resolution of the discretization shown in Figure 26 and Figure 

27 were not entirely as expected. Finer discretizations, of course, always resulted in higher revenue 

than coarser discretizations. However, what was a bit unexpected was that the flow rate trajectories 

determined using finer discretizations were not always close to the trajectories obtained from 

coarser discretizations. Upon further consideration it was realized that this happens for two reasons. 

First, such cases can result from the presence of two (or more) trajectories that yielded revenues 

close to the optimal one, as seen in the difference between the red line and all of the other lines in 

Figure 26. When such a case occurs, the exact values of flow rate considered by each discretization 

become very important, as a coarse discretization may include points very close to one of the 

trajectories, but not include values as close to the other trajectory.  
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Figure 27: Alternate results for optimal trajectories resulting from various discretization resolutions (in 
m^3⁄s) obtained using slightly different input parameters. 

Another source of the discrepancy is strict adherence to some of the input parameters. In particular, 

maximum hourly change in flow rate was manipulated to obtain the results shown above. The results 

shown in Figure 26 were obtained when using a maximum hourly change of 8
𝑚3

𝑠
, whereas the results 

shown in Figure 27 were obtained when using a maximum hourly change of 7.8
𝑚3

𝑠
. Thus the effective 

maximum hourly change was always 8
𝑚3

𝑠
 in Figure 26, but the effective maximum hourly changes 

for the results in Figure 27 were 6
𝑚3

𝑠
, 7
𝑚3

𝑠
, 7.5

𝑚3

𝑠
, 7.8

𝑚3

𝑠
,  and  7.8

𝑚3

𝑠
 when the grid size 

was 2
𝑚3

𝑠
, 1
𝑚3

𝑠
, 0.5

𝑚3

𝑠
, 0.2

𝑚3

𝑠
, and 0.1

𝑚3

𝑠
, respectively. 
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Figure 28: Variations in optimal operations resulting from varying levels of the turbine startup costs. 

The start-up cost was a very interesting parameter to study. As expected, higher start-up costs 

resulted in lower revenues, as seen in the legend of Figure 28. However, the higher revenues 

obtained when the start-up costs were lower are caused by two factors. First and most obviously, 

lower costs incurred when starting the turbines correspond to higher incomes. However, that is not 

the most significant effect of the start-up cost. Incorporating the start-up cost causes the benefits of 

starting a turbine to be weighed against the cost of turning it on. If starting up a new turbine to either 

add it to the set of operating turbines or to replace a currently operating turbine cannot result in an 

increase in revenue at least equal to the start-up cost, then that turbine will be left inactive. This 

effect is most clearly seen by observing the flow rate and active operating set during the time of the 

earlier peak in the daily price profile when the start-up cost went from $0 to $2 and from $3 to $9. It 

is also quite interesting to note that the differences between the resulting optimal flow rates for 

start-up costs of $2 and $3 (per rated MW of capacity) are very small, indicating that exact 

determination of the start-up costs may be unnecessary for the determination of the optimal flow 

rates, so long as the start-up costs are known to be within a certain range. 
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Figure 29: Variations in the optimal operations due to changes in the price of regulation capacity. 

The regulation price contains considerable variability, and so this analysis has simply considered 

scenarios in which regulation has a constant value during each hour of the day. The results shown in 

Figure 29 indicate two effects. The most obvious result of varying the value of regulation is that when 

regulation is valued more highly, a higher net revenue results. The second observation relates to the 

resulting optimal flow rate trajectories. It is seen that it is possible for a higher regulation price to 

cause operation during times of lower power price to be more beneficial; resulting in the net flow 

rate being more evenly distributed between the two price peaks. 
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Figure 30: Effect of the hourly flow (in m^3⁄s) into the reservoir on the optimal trajectories. 

The final parameter examined was the hourly flow into the reservoir. Again, the results from this 

study were entirely as expected. Increasing the flow rate into the reservoir required that the net flow 

through the turbines over the course of the day be higher so that the target final volume could be 

reached. This, of course, also resulted in higher revenue. 

Once the functionality of the DDP optimization of a single station was confirmed, consideration had 

to be made of how it would be incorporated into the overall optimization. Of primary interest in this 

regard is the trade-off between the discretization resolution and the optimization time required. 

Relating to this trade-off, it is interesting to examine the difference between the results when 

different levels of discretization are used.  

The first set of interesting results relates to the optimal revenue resulting from various levels of 

discretization. Several single station optimizations were performed for a hydropower facility with a 

large reservoir (so that the reservoir capacity limits would not affect the results) and three turbines 

of differing sizes. The nominal output power of the three turbines occurs at flow rates of 6, 10, and 

20 
𝑚3

𝑠
. It is assumed that each turbine can operate from 60% to 110% of its nominal flow rate. (Note 

that all turbines have unique ranges in which they can operate without incurring cavitation damage. 
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This range is only an approximation of the operating range of a real turbine.) Finally, the optimization 

is performed for winter operations, during which time the price typically has two peaks each day. 

The results are shown below in Table 2.  

Table 2: Results of grid refinement for DDP optimization. 

Optimization # 
Flow Rate 

Grid Size (
𝒎𝟑

𝒔
) 

Max Difference Optimal 

Revenue 

% Increase of 

Revenue 

Optimization 

Time (s) Flow Volume 

1 2.0 N/A N/A $6771.47 N/A 0.44 

2 1.0 3.5 17.5 $6878.07 1.574% 1.38 

3 0.5 1.0 1.5 $6911.97 0.493% 5.85 

4 0.2 15.6 41.8 $6939.86 0.404% 58.02 

5 0.1 2.0 3.5 $6940.37 0.007% 493.20 

Note: The Max Flow Difference and Max Volume Difference columns are comparisons with the results of the 
previous optimization and have units based on the grid size of the previous optimization. For instance, 

optimization #4 shows a maximum flow difference of 15.6. The previous grid size of flow rate was 𝟎. 𝟓
𝒎𝟑

𝒔
. 

Thus the maximum difference between the flow rates determined by optimization #3 and #4 was   

𝟏𝟓. 𝟔 × 𝟎. 𝟓
𝒎𝟑

𝒔
= 𝟕. 𝟖

𝒎𝟑

𝒔
. 

This table contains two interesting results. First, note that the revenue increase from using a grid size 

of 0.2
𝑚3

𝑠
 to using a grid size of 0.1

𝑚3

𝑠
 is very small (0.007%). It is obvious that the point of diminishing 

returns has been reached, and that further refinement past 0.2
𝑚3

𝑠
 is unnecessary for this facility.  

Second, observe the large change (15.6 grid steps) in the optimal flow rate between optimizations 3 

and 4. This large difference is indicative of a change in the optimal operating set at the time at which 

the difference arises (and likely at other nearby times as well). This type of change is difficult to 

predict, and thus renders any attempt to utilize successive refinement to speed up the run time also 

difficult. However, the run time of nearly one minute required for the grid size of 0.2
𝑚3

𝑠
 is far too 

long for it to be utilized in the iterative procedure in the next stage of the optimization. 

In order to attempt to decrease the run time of the single station optimization, a successive 

refinement strategy was implemented. The refinement strategy utilizes the results of each successive 

optimization to eliminate from future consideration any flow rate or volume trajectory that deviates 

more than a set amount from the previously determined optimal trajectory. This can significantly 

decrease the number of unique states and inputs that must be considered, thus decreasing the run 

time significantly. The results shown below in Table 3 are for a flow rate limitation of 10x the grid 

size and a volume limitation of 30x the grid size. 

Table 3: Results of grid refinement for DDP optimization with refinement restrictions. 

Optimization # Max Difference 
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Flow Rate 

Grid Size (
𝒎𝟑

𝒔
) 

Flow Volume 
Optimal 

Revenue 

% Difference 

of Revenue 

Optimization 

Time (s) 

1 2.0 N/A N/A $6771.47 0% 0.47 

2 1.0 3.5 17.5 $6878.07 0% 1.45 

3 0.5 1.0 1.5 $6911.97 0% 3.04 

4 0.2 4.6 12 $6934.35 -0.079% 7.84 

5 0.1 0.5 1.5 $6935.67 -0.068% 16.64 

Note: The % Difference of Revenue column is the difference with respect to the values shown in Table 2. 

These results are similar to those in Table 2. Even though the large difference between the optimal 

flow rates that previously occurred between optimizations 3 and 4 is no longer present, the optimal 

revenue resulting from the analysis with successive refinement restrictions is within 0.1% of the 

optimal revenue determined in the full analysis. 

It is also of note that the optimization time when successive refinement is used is only slightly 

difference for the first two analyses. This is because for the first two cases the savings in the 

optimization time were offset by the increased calculation time required to run multiple 

optimizations to zero in on the final result. However, the savings in the running time of the program 

quickly become quite significant as the grid size is refined past 0.5
𝑚3

𝑠
. 

In order to perform the iterative analysis in a reasonable amount of time, a grid size of 0.5 was used 

for all applications of the DDP optimization of a single station. Although this grid size does not provide 

results quite as good as might be desired, it provides to best balance of required run time and quality 

of results of the grid sizes studied. 

3.3 River System Optimization through Iterative DDP and Gradient Analysis 

3.3.1 Optimization Results 

The results of the analysis of a system consisting of three hydro plants along the same river are 

presented and discussed here. The river flow time is three hours between each pair of neighboring 

plants. The first one (farthest upstream) had a large reservoir, while the reservoirs of the second and 

third facilities were small enough that they could be considered to be run-of-river installations. Each 

plant has three turbines of varying sizes, and each one operates at approximately the same head. 

The predicted price profile used in the analysis was a typical summer price profile in order to most 

clearly show the shifting of the expected single peak in flow rate. This price profile is shown below in 

Figure 31. 
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Figure 31: Typical summer price profile used in system optimization analysis. 

The initial and final flow rate profiles for each facility are shown below in a set of three figures, namely 

Figure 32, Figure 34, and Figure 36, while the group composed of Figure 33, Figure 35, and Figure 37 

shows the hourly distribution of power revenue, water revenue, and water payments. Finally, the 

progression of the iterative process is shown for each facility in yet another set of similar graphs, 

Figure 38, Figure 39, and Figure 40. Several observations and comments can be made regarding the 

general results as well as those depicted in each of these three groups of figures. 

First, the analysis has succeeded in increasing the expected revenue for each facility in the system, 

and thus also for the system as a whole, using only communication of water values between stations. 

From upstream to downstream, the facility revenues were increased by 2.8%, 10.0%, and 21.1%, for 

a net increase in revenue for the system of 10.1%. Further details regarding the final revenues of the 

facilities are given below in Table 4. 

Second, the water payments indicated are for both increases and decreases in flow. Whether 

payment at any particular time is for an increase in flow or a decrease in flow can only be determined 

by examining the payment schedule, though in general payments made before the peak in the price 

are generally for increased release, and payments made after the price peak are generally for 

decreased flow. This is as expected because before the plants begin communicating water values, 

the first installation releases the most water during the peak price time, delivering that water to the 

run-of river plants after the peak price time. Thus the run-of river facilities desire more water at 

earlier times and less water at later times. It is also certain that at any particular time payment is only 

made for either increases or decreases in flow due to the methodology discussed in the last 

paragraph of Section 2.5. 
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Another observation is that in the final results the temporal flow profile of the middle and last 

facilities resemble the initial profiles of the first and middle facilities, respectively. This meets 

expectations. Since each facility operates at approximately the same head, highest total system 

revenue would be expected to result from a distribution of flow such that as much water is released 

around the peak price time as possible. Thus, for an optimally operated system, the middle reservoir 

should be releasing the most water around the time of the peak price, while the upstream and 

downstream facilities should be releasing the most a few hours earlier and a few hours later, 

respectively. This is achieved by a chain reaction effect in which water value at the last plant are 

communicated to the middle plant, which in turn communicates its water value (which is influenced 

by the last facility) to the first installation, which controls the propagation of water throughout the 

whole system. 

Finally, the water transactions make up a relatively small, though significant portion of the final 

revenue of each facility. In this example the total value of the water transactions (summed over the 

course of the day) tended to be approximately 5% – 8% of the final total revenues. Strategically, 

located, these payments were sufficient to increase the system revenue by more than 10% of the 

value obtained by optimization of the three plants without coordination. 

Table 4: Final breakdown of revenue sources for each facility in the system. 

 Facility 1 Facility 2 Facility 3 

Water Payment $               - $     645.64 $     423.36 

Water Revenue $     645.64 $     423.36 $               - 

Power Revenue $  8,088.22 $  8,365.42 $  7,268.07 

Total Revenue $  8,733.87 $  8,143.14 $  6,844.70 
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Figure 32: Initial and final flow rate trajectory of farthest upstream facility with a large reservoir. 

 

 

Figure 33: Hourly revenue distribution of farthest upstream facility. 
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Figure 34: Initial and final flow rate trajectory of middle run-of-river facility. 

 

 

Figure 35: Hourly revenue distribution of middle facility. 
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Figure 36: Initial and final flow rate trajectory of farthest downstream run-of-river facility. 

 

 

Figure 37: Hourly revenue distribution of farthest downstream facility. 

It is also interesting to consider the progression of the iterative method from the first iteration to the 

final one. The first item of note is that not every step of the iteration is guaranteed to result in 

increasing the revenue of each facility. At times the revenue can fail to increase because of the 

complexity of the interactions between neighboring plants. For instance, a change in the flow 
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changes to the flow into the third facility, causing a temporary decline in its revenue. However, such 

events are a large part of the reason the process needs to be iterative, allowing for corrections to 

arise in later iterations. This type of interaction cannot, however, account for the large decline in the 

revenue of the first facility that begins after the 33rd iteration. This decline results due to a completely 

different reason. In this particular instance the determination had been made in a previous iteration 

that increased release by the first facility during the 9th hour of the day had a very high value, 

prompting this installation to increase its release during that time period. However, the 33rd iteration 

determined that the flow should be decreased (from its now higher value) during the 9th hour. As 

was detailed in the last paragraph of Section 2.5, paying for a change in flow in one direction, then 

subsequently paying for the change to be reversed is not reasonable, so the prior payment for the 

flow to increase during the 9th hour was decreased. The previously determined value of increased 

release was quite high, so it took several iterations for it to decrease sufficiently. 

 

Figure 38: Revenue progression of first facility. No upstream facility, so flow payment is zero. 
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Figure 39: Revenue progression of middle facility. Flow payments are being made to the first plant, and flow 
revenue is from payments made by the last plant. 

 

Figure 40: Revenue progression of last facility. No flow revenue because there is no downstream facility. 
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3.3.2 Comparison to another Optimization Technique 

Since the goal of the optimization is to maximize both the revenue of the individual stations and of 

the system as a whole, the results shown above need to be compared to some measure of optimality. 

Since the problem is highly complex, determining a global optimum can be a difficult task. However, 

using some knowledge of the constraints of the system, a reasonable prediction of the inputs 

resulting in the global optimum can be made. 

In this case, since the system is composed of three facilities with similar heads and sets of operating 

turbines, and because the second and third installations are run-of-river, approximating the global 

optimum was a relatively straightforward matter of adjusting the price profile of the first plant to 

reflect the expected total value of the power production as the water flows through the system. Thus, 

in order to reflect the revenue of all three facilities in the price profile of only the first one, three 

different price profiles were added together: the base price profile, a price profile shifted 3 hours 

earlier in the day (representing the expected revenue of the second facility), and a price profile 

shifted 6 hours earlier in the day (representing the expected revenue of the third facility). This price 

profile, shown below in Figure 41, was then used to analyze the first facility only, and the resulting 

optimal flow rates for the first facility were sent downstream to the second installation. The 

operation of the two downstream power plants was then determined using the iterative method, 

which had very little effect on their operations as determined by DDP alone since they are run-of-

river installations and their available water is predetermined by the release of the first plant. 

 

Figure 41: Combined price profile used in the comparison analysis. 
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The results of this optimization are compared with the results from the iterative optimization results 

below in Figure 42 – Figure 44. It is seen that the general result is that the flow is essentially shifted 

one hour earlier than it was mapped by the iterative system optimization. This result is indeed closer 

to what might be expected for the system optimization since the total shift away from the initial 

analysis in which each facility was optimized independently is now three hours, matching the flow 

time between each pair of power plants. Thus the flow rate peaks before the peak in price for the 

first facility, during the peak in price for the middle one, and after the peak in price for the last one.  

Quantitatively, the revenue results of the two different methods are shown below in Table 5. Note 

that while both methods increase the expected revenue above what was determined when each 

facility was optimized independently of the others, the more direct method described above resulted 

in a slightly higher final expected revenue for the system as a whole (a 12.1% increase above the 

initial, independently determined total revenue as opposed to a 10.1% increase), but it did nothing 

to distribute the resulting higher net revenue among the different facilities. Thus, while the second 

and third facilities would enjoy higher revenue, the first facility would generate a significantly lower 

one than the case in which they operate independently. Furthermore, though the direct method 

results in higher total revenue for the system, there is no clear indication on how a group of 

independent facility owners should cooperate to reach this operation method. 

It is prudent at this point to highlight the value of the system iterative method subject of this thesis 

over the more direct method described above. The iterative method developed herein is finely 

balanced via power and water valuation, and seeks to unearth not only the optimal solution for the 

system, but a solution that is also optimal for each operator. The operational strategy thus unveiled 

is bound to interest all significant parties. Although the direct method achieves greater total revenue, 

it does not show why facilities generating lower revenue than they would if they operated 

independently should act cooperatively with the other facilities. 

Table 5: Revenue comparisons between iterative method and direct method. 

 Facility 1 Facility 2 Facility 3 Total 

Initial Revenue $  8,498.95 $  7,402.37 $  5,652.20 $  21,553.52 

Iterative Final Revenue $  8,733.87 $  8,143.14 $  6,844.70 $  23,721.71 

Direct Final Revenue $  7,461.87 $  8,630.80 $  8,061.61 $  24,154.28 
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Figure 42: Comparison of the flow rates for the first facility determined by the iterative method for system 
optimization, the direct method, and the initial, independently optimized flow rates. 

 

Figure 43: Comparison of the flow rates for the second facility determined by the iterative method for system 
optimization, the direct method, and the initial, independently optimized flow rates. 
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Figure 44: Comparison of the flow rates for the third facility determined by the iterative method for system 
optimization, the direct method, and the initial, independently optimized flow rates. 

3.4 Sensitivity Analysis 

3.4.1 Sensitivity to Price Profile 

Since the price profiles used are only predictions of the day’s prices, it is important to look at the 

effect of variation in the price profile on the resulting optimization. Good predictions of the day-

ahead price profile can have mean absolute percentage errors as high as 10% [22]. Thus, in order to 

test the sensitivity to the accuracy of the predicted price profile, 20 variations of the summer price 

profile were randomly generated in such a way that the general shape and smoothness of the price 

profile was preserved, while positive and negative variations were introduced. The resulting set of 

price profiles is shown below in Figure 45. 
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Figure 45: Randomized price profiles used in sensitivity analysis. 

The iterative analysis was performed for each of these price profiles to determine the expected 

optimal revenue for each one. Then, again for each price profile, the total revenue was calculated 

using the optimal flow rates for the original price profile, and the differences between these values 

and the optimal expected previous values were calculated. Since the iterative water valuing method 

is not guaranteed to return globally optimal inputs, the differences found were both positive and 

negative. The average value of the differences was 0.36% of the predicted revenue of the original 

price profile, the absolute value of the differences was 0.61%, and the standard deviation of the 

differences was 0.99%. When compared to the expected 10.1% increase in revenue beyond that 

which would be produced without cooperation and water valuation (from Section 3.3.1), this is an 

acceptably small variation.  
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3.4.2 Sensitivity to Gradient Analysis Constraints 

During the determination of the revenue gradients to be used in the second stage of the iteration 

(Δ𝑅  in Equation 2.55 and Equation 2.57) limits were imposed upon the flow rates and reservoir 

volumes that would be included in the analyses in order to reduce the run time. These limits took the 

form of a narrow band of flow rates and volumes to be considered, centered about the optimal path 

determined in the first stage of each step of the process. These bands restricted the flow rates being 

considered to those within a certain number of grid steps away from the previously determined 

optimum. The band of volumes to be considered consisted of those within a number of volume grid 

steps, equal to a multiple of the size of the flow rate band, of the previous optimal path. 

In order to determine the effect of the grid size on the final result, the analysis was performed for 

many different combinations of band sizes for flow rate and volume, and for both a summer price 

profile and a winter price profile. The results are shown below in Table 6 and Table 7. 

Table 6: Sensitivity analysis results for a summer price profile. 

  Flow rate band size in number of grid sized steps 
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Total Rev. 1 2 4 6 10 50 

x1 $21,882  $21,933  $23,481  $23,332  $23,481  $23,481  

x2 $21,933  $23,271  $23,486  $23,486  $23,481  $23,481  

x4 $23,028  $23,335  $23,486  $23,486  $23,481  $23,481  

x6 $23,475  $23,335  $23,486  $23,486  $23,481  $23,481  

x10 $23,475  $23,335  $23,486  $23,486  $23,481  $23,481  

 

% of Max 1 2 4 6 10 50 

x1 93.17% 93.39% 99.98% 99.35% 99.98% 99.98% 

x2 93.39% 99.09% 100.00% 100.00% 99.98% 99.98% 

x4 98.05% 99.36% 100.00% 100.00% 99.98% 99.98% 

x6 99.95% 99.36% 100.00% 100.00% 99.98% 99.98% 

x10 99.95% 99.36% 100.00% 100.00% 99.98% 99.98% 

 

Run Time 
(minutes) 1 2 4 6 10 50 

x1 2.27 1.63 23.02 18.32 37.92 187.20 

x2 1.38 11.05 22.87 29.32 37.95 202.95 

x4 10.52 14.65 23.12 29.73 38.83 227.02 

x6 15.62 14.72 23.48 29.70 39.53 241.42 

x10 15.62 14.77 23.68 29.85 40.12 248.22 
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Table 7: Sensitivity analysis for a winter price profile. 

  Flow rate band size in number of grid sized steps 

V
o

lu
m

e
 b

an
d

 s
iz

e
 a

s 
a 

m
u

lt
ip

le
 o

f 
th

e 
fl

o
w

 r
at

e
 b

an
d

 s
iz

e
 

Total Rev. 1 2 4 6 10 

x1 $18,172  $19,070  $13,713  $13,707  $19,608  

x2 $19,126  $19,407  $19,576  $13,700  $19,610  

x4 $19,617  $19,560  $19,619  $13,700  $19,610  

x6 $19,492  $19,560  $19,619  $13,700  $19,610  

x10 $19,492  $19,560  $19,619  $13,700  $19,610  

 

% of Max 1 2 4 6 10 

x1 92.62% 97.20% 69.89% 69.87% 99.94% 

x2 97.49% 98.92% 99.78% 69.83% 99.95% 

x4 99.99% 99.69% 100.00% 69.83% 99.95% 

x6 99.35% 99.69% 100.00% 69.83% 99.95% 

x10 99.35% 99.69% 100.00% 69.83% 99.95% 

 

Run Time 
(minutes) 1 2 4 6 10 

x1 6.88 28.45 19.14 24.87 57.68 

x2 19.20 12.98 26.93 25.30 54.10 

x4 11.92 15.73 23.32 25.89 56.20 

x6 9.07 15.80 23.56 26.32 58.25 

x10 9.10 15.88 23.81 26.81 59.85 

Note: The crossed out cells correspond to analyses which returned a result in which the final installation 

was not able to find any inputs which adhered to the constraints.  

For simplicity, the band sizes will be referred to using integers representing the number of grid 

steps away from the previously determined optimal path for both flow rate and volume.  

Examination of these results indicated that using a flow rate band size of 2 or 4 with a volume band 

size of 8 (x4 and x2, of 2 grid steps and 4 grid steps, respectively). Using a flow rate band size of 4 

and a volume band size of 8 resulted in the higher total revenues, but also in longer run times. On 

the other hand, the flow rate band size of 2 with a volume band size of 8 resulted in slightly lower 

revenue, though the run time was significantly lower. Furthermore, it was found that utilizing a 

flow rate band size larger than 4 or a volume band size more than 4 times the flow rate band size 

typically did not result in any further increases in revenue. For the purpose of this work, identifying 

the inputs that result in the highest total revenue is more important than low run times. Therefore 

the results presented herein were obtained with band sizes of 4 and 8 for flow rate and volume, 

respectively. These selections result in an expected run time on the order of 25 minutes. 
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3.4.3 Sensitivity to Payment Amount 

The final sensitivity analysis regards sensitivity to the amount paid for increased flow rate released 

by upstream facilities. The amount paid that yielded the results shown above, as detailed in Section 

2.4, consisted of a base payment equal to the loss incurred by the upstream facility, plus an additional 

amount determined by a finite geometric series with a base value of one half the net increase in 

revenue due to the evaluated increment in flow, a ratio of one half, and a number of terms equal to 

the number of increments the upstream facility increases its flow rate beyond the previously 

determined optimal value.  

In order to examine the sensitivity to payment amounts, different values of the base value used in 

the geometric series were tested in order to examine the effects on the final solution. The resulting 

revenues are shown below in Table 8. Note that although the total increases in final system revenue 

are largely very similar (in fact, several of them are identical), the water revenues, and thus payments 

and total revenue of facilities receiving payments, differ a great deal. This occurs due to the fact that 

the final optimal flow rates for each facility are very similar in each case, as shown below in Figure 

46 – Figure 48, but the payments being made are changing a great deal. 

These results indicate that the method is consistent in its predictions of the optimal flow rate profiles 

(though there is room for improvement as was demonstrated in Section 3.3.2). However, the 

payments necessary to arrive at the target flow rate profiles are not unique.  

Table 8: Results of the analysis of the sensitivity to the base value of the geometric portion of the payments. 

   Facility 1  Facility 2  Facility 3  Total  

 Initial Revenue $8,498.95 $7,402.37 $5,652.20 $21,553.52 
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Water Revenue  $460.22 $287.02 $0.00 $747.24 

Power Revenue  $8,074.46 $8,376.76 $7,285.59 $23,736.81 

Total Revenue  $8,534.68 $8,203.57 $6,998.57 $23,736.81 

Percent Increase  0.42% 10.82% 23.82% 10.13% 
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Water Revenue  $508.69 $280.54 $0.00 $789.22 

Power Revenue  $8,074.46 $8,405.58 $7,408.87 $23,888.91 

Total Revenue  $8,583.15 $8,177.43 $7,128.34 $23,888.91 

Percent Increase  0.99% 10.47% 26.12% 10.84% 
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Water Revenue  $646.58 $444.24 $0.00 $1,090.81 

Power Revenue  $8,049.39 $8,381.82 $7,350.07 $23,781.28 

Total Revenue  $8,695.97 $8,179.48 $6,905.84 $23,781.28 

Percent Increase  2.32% 10.50% 22.18% 10.34% 
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Water Revenue  $645.64 $423.36 $0.00 $1,069.01 

Power Revenue  $8,088.22 $8,365.42 $7,268.07 $23,721.71 

Total Revenue  $8,733.87 $8,143.14 $6,844.70 $23,721.71 

Percent Increase  2.76% 10.01% 21.10% 10.06% 
6
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Water Revenue  $690.90 $432.84 $0.00 $1,123.74 

Power Revenue  $8,074.46 $8,376.76 $7,285.59 $23,736.81 

Total Revenue  $8,765.36 $8,118.71 $6,852.75 $23,736.81 

Percent Increase  3.13% 9.68% 21.24% 10.13% 
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Water Revenue  $848.86 $464.85 $0.00 $1,313.71 

Power Revenue  $8,074.46 $8,376.76 $7,285.59 $23,736.81 

Total Revenue  $8,923.33 $7,992.75 $6,820.74 $23,736.81 

Percent Increase  4.99% 7.98% 20.67% 10.13% 
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Water Revenue  $949.43 $451.44 $0.00 $1,400.86 

Power Revenue  $8,194.35 $8,271.98 $7,071.72 $23,538.05 

Total Revenue  $9,143.78 $7,773.99 $6,620.28 $23,538.05 

Percent Increase  7.59% 5.02% 17.13% 9.21% 

 

Figure 46: Flow profiles of first facility resulting from various payment amounts. 
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Figure 47: Flow profiles of middle facility resulting from various payment amounts. 

 

Figure 48: Flow profiles of last facility resulting from various payment amounts. 
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4 Conclusions 

In conclusion, the methodology developed successfully increased the revenue of all parties in a 

multiple owner hydropower system. Although the global optimum for the system was not achieved, 

the final results of the iterative DDP-gradient analysis compared favorably to those obtained using a 

more direct optimization method. Furthermore, a number of insights into the nature of hydropower 

optimization and the value of water were gained. 

First, regarding the modeling of hydropower facilities, many improvements were made over 

previously existing methods. Those methods frequently failed to account for the variation of the 

operating head with the net flow rate through a facility. However, more importantly than that, most 

previous methods either attempted to use a single power versus flow rate curve for the entire facility, 

or treated each turbine in the facility as an individual unit. None were found that utilized a 

preliminary analysis such as that described in Section 2.1.2. This preliminary analysis sacrifices none 

of the accuracy provided by modelling each turbine individually, but provides drastically reduced 

optimization run times. 

Second, regarding the optimization of a single hydropower facility, application of DDP is not a new 

approach. However, much work was done to accelerate the run time of optimizing a single plant, 

primarily focused on eliminating infeasible states and inputs from the analysis and utilizing a 

successive refinement technique. Ultimately the run time was reduced to the order of a few seconds 

for a hydropower facility with a large reservoir and three turbines. Furthermore, DDP was found to 

be particularly useful in optimizing hydropower facilities because of its flexibility, which allows it to 

easily account for both discrete and continuous constraints, states, and inputs.  

Finally, the chief contribution of this work is the hybrid DDP-gradient shooting iterative method. 

Nothing resembling this method was found in any of the reviewed literature, either in its attempt to 

address the problem of optimizing a system with multiple owner/operators or in its valuation of 

water based on future downstream revenue potential. The hybrid method was successful in 

achieving its goal of increasing the expected revenue of both the system and of each individual 

installation. It is interesting to note that the problem is essentially a Nash game in which players solve 

dynamic programs that capture multi-period optimization problems representing the operations of 

each facility. Notably, each player’s problem is parametrized by the strategies of its competitors and 

the game allows for the possibility for each player to offer payments to its neighbor(s) for specific 

changes in operations. A Nash equilibrium point is then defined by the final flow rates and operating 

sets of each facility, along with the payments used to motivate those changes. As was discussed in 

Section 3.4.3, the final flow rates determined are relatively independent of the payments being 

made. In fact, it is expected that if the method were able to consistently arrive at the global optimum, 
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then the final flow rates determined would all be identical, no matter the method of dividing the 

increased revenue. Thus, the Nash equilibrium is not unique, though the final flow rates are expected 

to be. This does not diminish the utility of the approach; rather, it allows neighboring facilities to 

enter into pricing schedule negotiations. 

In conclusion, although the proposed scheme did not produce the centralized optimal solution, the 

numerical studies suggest that the obtained solution does not differ significantly from its global 

counterpart (the estimated global optimum revenue was 12.1% higher than total individually 

optimized revenue, but only 1.8% higher than the solution obtained using the proposed technique). 

More importantly, perhaps, considerable insight was gained into the valuation of water in a 

hydrologically connected system of hydropower facilities. This insight, and the methods developed 

will hopefully provide an excellent foundation for future work in this area. 
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5 Future Work 

There are a number of avenues that this work has revealed as having potential for future 

investigation. Some of the possibilities for future work relate to the optimization of single 

hydropower facilities and the DDP used to optimize single facilities, while others relate to the 

gradient approach used to link the stations together.  

The optimization of a single hydropower facility could be improved in several ways. Of particular 

interest is any way in which the optimization could be improved so that the analysis would be sped 

up. Several possibilities for this were mentioned earlier. Using an interpolation function to determine 

the future value-to-go function based on the inputs and states currently under consideration could 

drastically decrease the number of volume states required, thus significantly decreasing the 

computational time required. Additionally, as was noted in the discussion of the results shown in 

Figure 25, it is possible that the optimal flow rates and operating sets depend very little on the volume 

of the reservoir, as long as the reservoir limits are not encountered. Thus it may be possible for future 

refinements of the DDP optimization of a single hydropower station to incorporate a volume 

discretization that not only does not match the flow rate discretization, but perhaps also volume 

discretization that is very coarse when not near a limit, and more refined nearer to the operating 

limits. 

Another way in which the optimization of a single hydropower facility could be improved is the 

inclusion of the ability to apply a final value to the water in the reservoir so that the target volume of 

the reservoir does not have to be known. Such a final value would be reflective of the expected future 

value of water in the following days, and would be determined a mid-term optimization analysis. This 

would allow the daily optimization to not only optimize the operation of the facility for the day, but 

also extend the optimization to including determination of the optimal final volume of water left in 

the reservoir at the end of the day.  

There are also several ways in which the hybrid system optimization might be enhanced by further 

work. As was noted earlier, it does not successfully achieve a global optimum, and it is believed that 

development and application of these ideas would greatly improve the final results obtained.  

First, due to the tight constraints on the volume of water held by run-of-river facilities, the methods 

used to determine the revenue gradients and corresponding payments frequently cannot properly 

analyze the gradients when the upstream member of a pair of facilities is run-of-river. Thus, another 

method may better serve this type of situation. One possibility would be to simply determine the 

appropriate payment by analyzing the effect of increased flow into the downstream member during 

each time period. Such a method would have to take into account that the downstream installation 
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would be receiving more water than the upstream one can release, but that could easily be 

accounted for by normalizing the resulting revenue. 

A second possible modification that could improve the final results of the iterative method would be 

the addition of an additional phase to the analysis to take place before the analysis described above. 

This new phase would consist of two stages that would be identical to the two stages described 

above, with one key difference: the power surfaces of each operating set in each facility would be 

adjusted so that they would conform to a single convex power surface for the entire station. This 

would eliminate the possibility of the optimization stopping due to encountering the local low 

efficiency operating regions that occur near the transition from one operating set to another. This 

new first phase of the analysis would iterate to convergence, and then the water payments found 

would be used with the more accurate system model to zero in on the final solution. Such a method 

would likely provide final results much closer to the global optimum than were achieved with only 

the two stages developed in this thesis. 
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