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ABSTRACT 

.ŜŦƻǊŜ ǘƘŜ ŀŘǾŜƴǘ ƻŦ ŘŜǊŜƎǳƭŀǘŜŘ ŜƭŜŎǘǊƛŎƛǘȅ ƳŀǊƪŜǘǎ ƛƴ ǘƘŜ мффлΩǎΣ ƘȅŘǊƻŜƭŜŎǘǊƛŎ ǇƻǿŜǊ ǇǊƻŘǳŎǘƛƻƴ 

schedules were typically coordinated with the schedules of other generating technologies by utility 

companies to meet expected regional demand. However, the growing adoption of deregulated 

markets requires the development of new methods for determining optimal utilization of 

hydroelectric resources. Much work has been performed regarding the optimization of cascaded 

hydropower systems owned and operated by single entities. However, these works fail to address 

the complexity involved in optimizing a cascaded system with owners along the same river. In those 

instances, each plant is limited to operate with whatever water flow the upstream plants choose to 

make available. In this situation, system optimal operation results in higher net system revenue than 

individual optimization of each plant with whatever water flow is available. However, such an optimal 

system solution must also result in lower net revenue for some owners compared to the value they 

would obtain through individual optimization. Hence, a novel methodology is proposed in which 

individual optimization naturally leads to system optimization through the use of iteratively 

determined water payments to direct the release of water toward a more optimal utilization. The 

proposed method alternates between dynamic programming for individual optimization and 

gradient analysis to determine and update hourly, location-specific water values for modified 

release. The sequence is repeated until there are no further additions or modifications to the 

payment schedule that results in increased total revenue. The water values are based upon local and 

downstream revenue gradients with respect to the flow rate released by the upstream facility during 

each time period. The method is applied in this thesis to a hydropower system consisting of three 

connected hydropower facilities, successfully increasing the total gross revenue of each installation. 

Although the algorithm it is not yet able to achieve the globally optimal solution, it comes quite close 

and offers unique insights into the value of water. 
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1 Introduction 

1.1 The History of Hydropower 

Hydropower has been a prominent source of power for thousands of years. In ancient times, the 

energy of falling and flowing water was harnessed to power grain mills and sawmills. This application 

remained the primary use of hydropower for over a thousand years until people began to understand 

electricity in the 19th and 20th centuries. The first recorded usage of hydropower to produce electricity 

occurred in 1880 when a hydro turbine in a chair factory was connected to a dynamo and used to 

power theater and storefront lights in Grand Rapids, Michigan [1] [2]. Thereafter, the utilization of 

hydropower to generate electricity exploded. The next year a flour mill turbine in Niagara Falls, New 

York was connected to a dynamo to generate electricity for city street lights [1]. Then, in 1882 the 

ǿƻǊƭŘΩǎ ŦƛǊǎǘ ƘȅŘǊƻŜƭŜŎǘǊƛŎ ǇƻǿŜǊ Ǉƭŀƴǘ ōŜƎŀƴ ƻǇŜǊŀǘƛƻƴ ƛƴ !ǇǇƭŜǘƻƴΣ ²ƛǎŎƻƴǎƛƴ [3]. After that, 

hydropower rapidly became a primary element of ǘƘŜ ƴŀǘƛƻƴΩǎ ǇƻǿŜǊ ǇǊƻŘǳŎǘƛƻƴ portfolio. By 1886 

there were over 40 hydroelectric plants either in operation or under construction in the United 

States. By 1889, two hundred different electric companies were reported to use hydropower for 

some (or even all) of their generation [1]. The development of hydroelectric power resources often 

went hand-in-hand with the development of irrigation in the West. The U.S. Bureau of Reclamation 

was established in 1902 for the primary purpose of encouraging increased settlement in the West by 

ŘŜǾŜƭƻǇƛƴƎ ǘƘŜ ǿŀǘŜǊ ǊŜǎƻǳǊŎŜǎ ǘƻ ǇǊƻǾƛŘŜ ƛǊǊƛƎŀǘƛƻƴΦ ¢ƘŜ .ǳǊŜŀǳΩǎ ŦƛǊǎǘ ƳŀƧƻǊ ǇǊƻƧŜŎǘ ǿŀǎ ǘƘŜ 

Theodore Roosevelt Dam on the Salt River, which was constructed to provide irrigation and flood 

control to the region northeast of Phoenix, Arizona. However, in 1906 the Bureau was further 

authorized by Congress to also develop and sell hydroelectric power [4]. By 1916 ǘƘŜ .ǳǊŜŀǳΩǎ 

installations powered nine irrigation pumps delivering water to over 10,000 acres of land while also 

supplying all of the power for the city of Phoenix [1]Φ .ȅ ǘƘŜ мфплΩǎ ŀǇǇǊƻȄƛƳŀǘŜƭȅ ол҈ ƻŦ ǘƘŜ ƴŀǘƛƻƴΩǎ 

electricity was supplied by hydroelectric power. Since then the percentage of electricity supplied by 

hydropower has gradually decreased due to rapidly increasing demand as well as the decreasing 

number of sites suitable and available for hydropower development. Today hydroelectric power 

ŀŎŎƻǳƴǘǎ ŦƻǊ ŀǇǇǊƻȄƛƳŀǘŜƭȅ у҈ ƻŦ ǘƘŜ ƴŀǘƛƻƴΩǎ ǇƻǿŜǊ ǳǎŀƎŜΣ ǿƘƛŎƘ Ƙŀǎ ƛƴŎǊŜŀǎŜd by nearly a factor 

ƻŦ мл ŦǊƻƳ ǘƘŜ мфплΩǎΦ IƻǿŜǾŜǊΣ ǘƘǊƻǳƎƘƻǳǘ ŀƭƭ ƻŦ ǘƘƛǎ ǘƛƳŜΣ ƘȅŘǊƻǇƻǿŜǊ Ƙŀǎ ŎƻƴǘƛƴǳŜŘ ǘƻ ŘŜǾŜƭƻǇ 

as improvements have been made to the efficiencies of turbines and existing sites have been 

ǳǇƎǊŀŘŜŘΦ CǳǊǘƘŜǊƳƻǊŜΣ ƛƴ ǘƘŜ мфслΩǎΣ ŀǎ ǘƘŜ Ǉower of the digital computer was becoming more 

evident, its computational abilities were increasingly applied to hydroelectric plant operation 

optimization within the constraints of regulated environments.  
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1.2 Motivation for Studying Optimization 

Before the advent of the deregulated power market, the value of hydropower production was 

typically considered to be equal to the marginal cost of producing the same amount of power using 

thermal generation sources [5]. However, in recent years many regions of the world, including parts 

of the United States, have adopted a deregulated (pool-based) market structure [6]. In this market 

structure, power production facilities submit hourly bids (sometimes even more frequently) for the 

provision of power production and ancillary services to the market. There has thus been a shift in the 

goals of hydropower operators away from simply relieving thermal power plants of peak load 

production, to simply operating in a manner that generates the highest revenue for the hydropower 

company [7]. This can be achieved with relative ease for an isolated hydropower facility, but the 

problem becomes much more complex when it is extended to multiple hydrologically connected 

hydropower stations [8].  

Many different optimization methods have been used in the past to solve the short-term hydro 

scheduling optimization problem (short-term referring to the hourly scheduling for a single day) for 

such an interconnected system. Methods used include dynamic programming, evolutionary and 

genetic algorithms, linear programming, mixed-integer linear programming, and mixed-integer 

quadratic programming [9]. Each of these methods has its own advantages and disadvantages for 

finding an optimal system commitment, but one crucial aspect that is still lacking from every 

reviewed optimization method is consideration of the fact that the ensuing commitment may not be 

optimal for all of the individual facilities. Furthermore, much of the work done in the past has overly 

simplified the relationship between flow rate, net head, and power production. The effect of flow 

rate on net head has often been neglected, as has the effect of variations in the net head on the 

power production in order to make the problem more tractable. Finally, hydropower facilities are 

typically modeled as either consisting of a number of independent turbines, each with its own power 

curve, or as a single net power curve representing total power production as a function of net flow 

rate, with predefined distributions of flow for any given operating point. Both of these approaches 

have difficulties. 

The first issue, regarding the fact that system optimization will typically result in an operation 

schedule that is sub-optimal for some of the hydropower stations is the main point addressed by this 

work. In a system comprised of independently owned hydropower stations, each owner is primarily 

interested in maximizing the revenue produced by his own hydropower facilities. Unfortunately, this 

tends to result in suboptimal operation of the whole system. There are two possible ways that such 

a system can be optimized: a regulating entity can force the various owners to operate according to 

the system optimal schedule (possibly dividing the resulting revenue among the various owners in 

some way), or the owners can cooperate financially in such a way that any increased revenue of one 
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station due to a change in the operations of another station results in a division of the resulting 

increase in total revenue. The second option is the one that is explored herein. This work also 

attempts to address some of the issues that arise from use of the following methods. 

When turbines are modeled as individual units, there is a very large number of possible operating 

conditions, because each turbine has to be either on or off, and the flow rate through each turbine 

that is on must be determined. Furthermore, there is calculation loop that occurs when any change 

is made to an operating point: a change in the flow rate through a single turbine will change the net 

flow, which will affect the net head, which will affect the efficiency of every turbine, which will affect 

the changes needed to approach the optimal operating conditions. 

When a station is modeled using a single power curve, the optimization becomes much easier, but a 

very important part of the analysis can become obscured.  Start-up costs for individual turbines are 

estimated to be approximately three dollars per rated megawatt, according to a survey made of 

various hydropower companies in 1997 [10].  Though the current value is likely a bit larger than this 

due to inflation, it is obvious that start-up costs are a significant factor in the determination of the 

optimal commitment strategy. Simply operating at maximum efficiency would result in generating 

the highest possible amount of total power for any given flow rate, but the losses incurred due to the 

increased number of required start-ups and shut-downs often outweigh the increased revenue for 

the additional power generated. 

This work attempts to address many of these issues by developing an optimization method that 

utilizes the structured nature of a hydrologically connected hydropower system (on a system-wide 

level as well as at a local station level), and the fact that optimal operation scheduling cannot occur 

without cooperation among the various owners.  

In summary, the goal of this project is create to a quantitative method whereby financial cooperation 

between the various owners of various hydrologically connected hydropower facilities results in the 

optimization of the entire interconnected system of hydropower facilities as well as the revenue of 

each individual facility, with no exceptions. This approach serves the dual purpose of both maximizing 

ŜŀŎƘ ƛƴǎǘŀƭƭŀǘƛƻƴΩǎ ǊŜǾŜƴǳŜ ŀƴŘ ƳŀȄƛƳƛȊƛƴƎ the utilization of the available water in the system by 

delivering the generated power when it is most needed.  
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1.3 Hydropower Optimization Literature Review 

Some of the earliest literature relating to the application of computational methods to optimizing 

hydǊƻǇƻǿŜǊ ŘŀǘŜǎ ōŀŎƪ ǘƻ ǘƘŜ мфслΩǎΣ ōǳǘ ƛǘ ǿŀǎƴΩǘ ǳƴǘƛƭ ǘƘŜ тлΩǎ ǘƘŀǘ ƳǳŎƘ ŀǘǘŜƴǘƛƻƴ ǿŀǎ ǇŀƛŘ ǘƻ ǘƘŜ 

development of computational models and methods for use in the optimal scheduling of 

hydropower. Perhaps the earliest and most widely used method is dynamic programming, which has 

been applied to the determination of optimal hydropower resource scheduling dating at least as far 

back as 1961 [11]. In 1970 several researchers at the University of California published a description 

of a method that utilized dynamic programming techniques to optimize the utilization of the available 

water in a single reservoir for providing on-peak power and reliable water supply [12]. The next year, 

several University of Illinois researchers published a paper describing the use of dynamic 

programming in long-term resource optimization [13]. Computers of the time were not yet powerful 

enough to consider the full range of possibilities present in a dynamic programming analysis without 

significant computing cost, so the researchers developed an iterative procedure in which several trial 

trajectories were used as bases for seeking the optimal strategy. Around the same time 

computational optimization techniques also began to be employed to assist in planning the 

development of new reservoir systems. In 1972 researchers described their utilization of mixed 

integer programming techniques to determine the optimal locations and sizes of reservoirs on a river 

system, even including considerations for the impacts on water quality control and recreation [14].  

Over the next few decades the analyses grew gradually more and more complex as the memory and 

speed capabilities of computers ƳǳƭǘƛǇƭƛŜŘΦ .ȅ ǘƘŜ ŜŀǊƭȅ мфулΩǎ ǎƛƎƴƛŦƛŎŀƴǘƭȅ ƳƻǊŜ ŎƻƳǇƭŜȄ ƳƻŘŜƭǎ 

and analysis methods began to show up. In 1982 researchers in the University of California developed 

and published a method using linear programming and dynamic programming to optimize a weighted 

function of hydropower production, fish protection, water quality maintenance, water supply, and 

recreational use [15]Φ Lƴ ǘƘŜ ƳƛŘ мфулΩǎ ƳƻǊŜ ŀǘǘŜƴǘƛƻƴ was devoted to the hourly coordination of 

hydrothermal power systems. Several different approaches were formulated to optimize the 

scheduling of a hydrothermal power system, including a mixture of dynamic programming, 

Lagrangian relaxation, and gradient methods used by Bertsekas [16], as well as a method utilizing 

stochastic dynamic programming developed by Pereira [17]. An excellent review of these methods, 

as well as optimization methods based on branch-and-bound techniques, nonlinear mixed-integer 

programming, and Benders decomposition was given in an invited paper in the Proceedings of the 

IEEE in 1987 [18]. 

Lƴ ǘƘŜ мффлΩǎ ǘƘŜ ŀǘǘŜƴǘƛƻƴ ŘŜǾƻǘŜŘ ǘƻ ƻǇŜǊŀǘƛƻƴǎ ƻǇǘƛƳƛȊŀǘƛƻƴ ƻƴ ŀƴ ƘƻǳǊƭȅ ōŀǎƛǎ ŎƻƴǘƛƴǳŜŘ ǘƻ ƎǊƻǿΣ 

but the techniques being used remained largely the same. The only novel approach was the 

introduction of genetic algorithms by Chen [19], though such methods seem to never have gained 

much prominence. However, when various regions of the world began operating under a deregulated 
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energy market, a shift in the goals of hydropower optimization occurred. In a region with a 

deregulated energy market, rather than one of coordinated hydro-thermal generation, hydroelectric 

facilities have the ability to independently determine their operating schedule. In some ways this 

made the problem of determining the optimal scheduling of hydropower more straightforward since 

the hydropower generation no longer had to be coordinated with thermal generation. However, the 

removal of this constraint also made the problem significantly more complex due to the uncertainties 

of pricing in a deregulated market.  

Hydroelectric power producers also have to consider the effect of selling not only power, but also 

various ancillary services such as voltage regulation, frequency regulation, and spinning reserves. 

These, and other, issues began to appear in the literature in ǘƘŜ ƭŀǘŜ мффлΩǎΦ Much of the work done 

relates primarily to hydroelectric facilities with little to no market power which are thus often 

ǊŜŦŜǊǊŜŘ ǘƻ ŀǎ άǇǊƛŎŜ-ǘŀƪŜǊǎέΦ Lƴ нллн Conejo published an article on scheduling a hydropower 

producer in a pool-based electricity market [6]. Using mixed integer linear programming techniques, 

they formulated piecewise-linear models of nonconcave, head dependent unit performance curves, 

which were then used to maximize the power revenue of a hydrologically connected system of 

hydroelectric power plants. Although in some respects they used a significantly more advanced 

model than many before them, they still neglected to address the effect of future price uncertainty. 

This matter of future prices was addressed by García-González in a 2007 paper that focused on 

minimizing the risk of scheduling connected hydropower resources in the day-ahead market [20]. 

Using an Input/Output Hidden Markov Model they generated possible future price scenarios along 

with probabilities for each scenario.  Two separate methods of limiting the risk were addressed.  The 

first was a simple minimum profit requirement, which they believed to be overly simplistic, and so 

proposed a second method.  This second method was the utilization of a Value-at-Risk analysis, which 

can be used to limit the risk of a negative deviation from expected profits due to low-probability 

scenarios.  Finally, a recent work relating to optimal scheduling was published in 2012 by Pousinho 

[9], and uses a similar approach to that of [20]. The main differences were the use of Conditional 

Value-at-Risk methods and the use of mixed integer quadratic programming rather than mixed 

integer linear programming. 

Although many different methods have been used to optimize the utilization of hydropower 

resources, none of the reviewed methods addressed the main focuses of this work, namely, 

optimizing multi-owner systems, and valuing released water based on future downstream revenue 

potential.   
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1.4 Complete Mathematical Problem Definition 

The optimization of a complete hydropower system is necessarily a highly complex undertaking due 

to the large number of variables that come into play. The operators of every facility in a system must 

not only determine which turbines should be active during each period in the planning horizon, but 

they must also determine the flow rate through each active turbine during each period. The 

combination of these two parameters has many far-reaching effects. The first and most obvious is 

that the active turbines and their flow rates will determine the power output of the facility. However, 

there are several other effects that must be considered, including, but not necessarily limited to: 

available power for regulation, water level in the tailrace affecting the net head, and start-up costs 

for turbine selection decisions. Furthermore, an operator may want to take into consideration the 

uncertainty of predicted electricity prices when planning daily operations, which introduces yet 

another level of complexity into the optimization. Below is a complete mathematical statement of 

the optimization problem in which the goal of the optimization is to maximize the revenue of a 

system of connected hydropower facilities.  

Maximize:  

ὙὩὺὩὲόὩὙ ”ȟὖ ȟȟ “ȟ ὖȟȟ‰ȟȟ ὛὟȟȟ  1.1 

This equation specifies that the object of the optimization is to maximize the revenue produced by 

all of the hydropower facilities in a system. The summations are performed over the sets ὝȟὐȟὥὲὨ Ὅ, 

which refer to the time period of the planning horizon, the set of hydropower facilities in the system, 

and the sets of turbines in each hydropower facility, respectively. The values being summed are, in 

order, the product of the regulation price ”ȟ 
Α

 and the regulation power 

ὖ ȟȟ ὓὡὬὶ   being sold by plant Ὦ during time period ὸ, the product of the power price 

“ȟ 
Α

, power ὖȟȟ ὓὡὬὶ , and unit status ‰ȟȟ  of turbine Ὥ in plant Ὦ, during time 

period ὸ, and lastly, the start-up costs ὛὟȟȟ Α  (which are on the order of three dollars per rated 

megawatt [10] incurred by each turbine for each time period. Note that the power produced by a 

turbine becomes irrelevant if it is inactive. 

Subject To:  

‰ȟȟᶰπȟρ 1.2 

This term refers to the status of an individual turbine at any time. A value of 0 indicates that a turbine 

is inactive, while a value of 1 indicates that it is active. 
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ὛὟȟȟ ‰ȟȟ‰ȟȟ ‰ȟȟ ὖ ȟȟ Ὧ 1.3 

The start-up costs are calculated based upon the current and previous on/off status (‰) of a turbine. 

This cost is linearly related to the nominal capacity of the turbine ὖ ȟȟ . 

ὗȟȟᶰὗ ȟȟȟὗ ȟȟ  1.4 

The flow rate through a turbine must be within given acceptable operating limits. 

ὗȟ ὗȟȟ‰ȟȟ
ᶰ

 1.5 

The net flow rate through plant Ὦ during time period ὸ is the summation of the flow through each of 

its active turbines. 

ὗȟᶰὗ ȟȟὗ ȟ ᷊ὗȟ ɝὗ ȟȟὗȟ ɝὗ ȟ  1.6 

The net flow rate though an installation must not only be within the release limits for the river, it 

must also be such that rate of change of the flow rate is within prescribed boundaries, preventing 

sudden changes in the downstream flow. 

ὖȟȟ ” Ὣ Ὄȟὗȟȟὠȟ ὗȟȟ –ȟȟὗȟȟȟὌȟ  1.7 

The power produced by an individual turbine is the product of the water density, the acceleration 

due to gravity, the net available head Ὄ ȟ  (determined by the amount of water in the reservoir 

and the net flow rate through the station), the flow rate of water through the turbine ὗȟȟ , and 

the efficiency –ȟȟ  of the turbine-generator (itself a function of the flow through the turbine and 

the net head, which is assumed to be a convex function). It is generally assumed that these values 

are constant over a single time period. 

ὖȟ ὖȟȟ‰ȟȟ
ᶰ

 1.8 

The net power produced by plant Ὦ during time period ὸ is the sum of the power produced by each 

turbine in plant Ὦ that is active during time period ὸ. 

ὖ ȟȟ ÍÉÎ ὖ ȟȟ‰ȟȟ ὖȟ
ᶰ

ȟ ὖȟ ὖ ȟȟ‰ȟȟ
ᶰ

 1.9 

The regulation power capability of plant Ὦ during time period ὸ ὖ ȟȟ  is determined for the entire 

ǎǘŀǘƛƻƴ ŀǘ ƻƴŎŜΦ wŜƎǳƭŀǘƛƻƴ ǇƻǿŜǊ ƛǎ ǘƘŜ ŀƳƻǳƴǘ ōȅ ǿƘƛŎƘ ǘƘŜ ǎǘŀǘƛƻƴ ƻǇŜǊŀǘƻǊǎ Ŏŀƴ ǾŀǊȅ ǘƘŜ ǎǘŀǘƛƻƴΩǎ 

net power output within a 5-minute window. It is assumed here that any active turbine can vary its 
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power within its full operating range in that time. The regulation power available is considered to be 

the smaller of the available net increase and the available net decrease in power. 

ὠȟ ὠȟ ὗȟ ὗȟ ȟ

ᶰ

ὗ ȟȟ 1.10 

The volume of water in ŜŀŎƘ ǇƭŀƴǘΩǎ ǊŜǎŜǊǾƻƛǊ ὠȟ  at the beginning of each planning period is 

updated based upon the reservoir contents at the beginning of the previous period ὠȟ , the 

water released from the reservoir during the previous time period ὗȟ , the summation of water 

flow into the reservoir which was previously released from neighboring upstream reservoirs, and the 

water that flows in from uncontrolled natural sources ὗ ȟȟ . A new set, ὑ, is introduced here. The 

set ὑ consists of all stations immediately upstream from station Ὦ. The new term in the subscript of 

the flow rate in the summation, †ȟ, is the time that it takes for water to flow from station Ὧ to 

station Ὦ. 

ὠȟᶰὠ ȟȟὠ ȟ  1.11 

The volume of water in each reservoir must, at all times, adhere to appropriate bounds. 

ὠȟ 6  1.12 

ὠȟ 6   1.13 

ὗȟ ὗ  1.14 

‰ȟȟ ‰ȟ 1.15 

Finally, the initial conditions and final target reservoir volume must be given. 

The full set of optimization equations for the above constraints are compiled on the following page, 

with set notations replaced by inequalities. 
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Maximize:  

ὙὩὺὩὲόὩὙ ”ȟὖ ȟȟ “ȟ ὖȟȟ‰ȟȟ ὛὟȟȟ  1.16 

Subject To:  

‰ȟȟᶰπȟρ 1.17 

ὛὟȟȟ ‰ȟȟ‰ȟȟ ‰ȟȟ ὖ ȟȟ Ὧ 1.18 

ὗ ȟȟ ὗȟȟ π 1.19 

ὗȟȟ ὗ ȟȟ π 1.20 

ὗȟ ὗȟȟ‰ȟȟ
ᶰ

 1.21 

ὗȟ ὗ ȟ π 1.22 

ὗȟ ὗȟ ɝὗ π 1.23 

ὗ ȟ ὗȟ π 1.24 

ὗȟ ɝὗ ὗȟ π 1.25 

ὖȟȟ ” Ὣ Ὄȟὗȟȟὠȟ ὗȟȟ –ȟȟὗȟȟȟὌȟ  1.26 

ὖȟ ὖȟȟ‰ȟȟ
ᶰ

 1.27 

ὖ ȟȟ ÍÉÎ ὖ ȟȟ‰ȟȟ ὖȟ
ᶰ

ȟ ὖȟ ὖ ȟȟ‰ȟȟ
ᶰ

 1.28 

ὠȟ ὠȟ ὗȟ ὗȟ ȟ

ᶰ

ὗ ȟȟ 1.29 

ὠȟ ὠ ȟ π 1.30 

ὠ ȟ ὠȟ π 1.31 

ὠȟ 6 π  1.32 

ὠȟ 6 π  1.33 

ὗȟ ὗ π 1.34 

‰ȟȟ ‰ȟ π 1.35 

  



 

10 

2 Approach 

2.1 Preliminary Analysis 

2.1.1 Preprocessing of Data 

Before performing any optimization it is necessary to first ensure that the data is organized into a 

useful format. There are two primary sets of variables in this problem for which reorganization is 

necessary. The first one is the net head at each station, which depends on the reservoir volume and 

the net flow rate through the particular station. The second set consists of the turbine efficiencies, 

which are typically assumed to be a convex function of flow rate and head (or near enough to convex 

that this approximation does not introduce significant error). The relationship between head, 

reservoir volume, and net flow rate is straightforward, as is shown in the following description of 

possible methods for determining this relationship. First, it must be recognized that the effects of the 

reservoir volume and the net flow rate on the net head are independent of each other, and can be 

treated separately. Then there are several options to determine the effect of reservoir volume on 

the net head. One option would be a direct calculation using topographical data and numerical 

integration of the surface area of the reservoir with respect to the height of the surface. This would 

result in the most accurate, but also quite complex, relationship between head and reservoir volume. 

Another option would be to empirically determine the relationship by tracking the flow rates into 

and out of the reservoir and the height of the surface of the reservoir, then generating a curve fit for 

this data. For the purpose of this work, it was assumed that the volume of water in the reservoir is a 

polynomial function of the head, measured from the bed of the tailrace. The dependence of net head 

on the net flow rate can also be determine through either analytical or empirical means. Again, for 

the purpose of this work it is assumed that the relationship between the net flow rate and net head 

can be approximated by treating the net flow rate as a polynomial function of the net head, as 

measured from the bed of the tailrace. 

The second set of variables in the problem requiring a preliminary analysis consists of the turbine 

efficiencies. Even if high quality, accurate data were available, it likely would not be in a form 

conducive to use in optimization, and must be preprocessed to transform it into a useable form. In 

this instance, the data available identifies iso-efficiency curves for a hill chart (which shows the 

efficiency of a hydro turbine as a function of nondimensionalized head and flow rate). Figure 1 shows 

an example of how these iso-efficiency curves appear when plotted. The numerical optimization calls 

for the data be discretized over the operating range such that, when given values for head and flow 

rate, the turbine power can be directly determined. Finally, it is expected that output power is a 

concave function of flow rate if the head is held constant [21]. 
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Figure 1: Iso-efficiency lines of a Hill chart. IƛƎƘŜǎǘ ŜŦŦƛŎƛŜƴŎȅ ƻŎŎǳǊǎ ƛƴ ǘƘŜ ƭƻŎŀǘƛƻƴ ƳŀǊƪŜŘ ǿƛǘƘ ŀƴ ΨȄΩΦ 

In order to transform the given data into this more useful form, several steps are required. First, the 

power output at each operating point is determined using Eq. 1.26. Next, a triangulation of the given 

flow rate and head values ƛǎ ƎŜƴŜǊŀǘŜŘ ǳǎƛƴƎ a!¢[!.Ωǎ ōǳƛƭǘ-in functionality. In order for the surface 

interpolation function to accurately represent the expected shape of the power surface, it is 

necessary to impose some constraints on the triangulation. The applied constraints are selected so 

that points on the flow rate ς head plane are not be connected to other points associated with non-

sequential levels of efficiency (i.e. if iso-efficiency curves were available for 0.89, 0.90, and 0.91, then 

an operating point associated with an efficiency of 0.89 could not be connected to an operating point 

with an efficiency of 0.91 or with any operating points of the same efficiency (0.89) except its 

immediate neighbors). Finally, the triangulation is used in conjunction with the previously calculated 

power values and an interpolation function to create convex power curves as functions of flow rate 

for various values of head. The values of head used are determined based upon requirements 

detailed in the next preliminary analysis stage. The particular results of this stage of the analysis are 

further detailed in Chapter 3. 
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2.1.2 Preliminary Analysis of Unit Combinations 

2.1.2.1 Utility 

The optimization of even a single hydropower facility is not a trivial task. The computational 

ǊŜǎƻǳǊŎŜǎ ǊŜǉǳƛǊŜŘ ǘƻ ƻǇǘƛƳƛȊŜ ǘƘŜ ŦŀŎƛƭƛǘȅΩǎ ƻǇŜǊŀǘƛƻƴǎ ƛƴŎǊŜŀǎŜ ŘǊŀǎǘƛŎŀƭƭȅ with the number of 

turbines in the facility and with finer levels of discretization. The equation for the total number of 

possible ways to operate a facility for a single day is given by Eq. 2.1.  

ὔ ὔ ρ  2.1 

ὔ is the total number of possible operating strategies for a single day, ὔ  is the number of discrete 

flow rates each turbineΩs operation has been divided into, and ὔ  is the number of turbines in the 

facility. For a single day a facility with 4 turbines, each of which has been discretized to allow for the 

analysis of 9 different flow rates (10 including a flow rate of zero indicating that the turbine is inactive) 

would have ρπ possible operating strategies. Obviously, it would be impossible, even with modern 

computers, to analyze this number of possible operating strategies. Fortunately, there are ways of 

approaching the problem that make analysis of every single possibility unnecessary. However, even 

using dynamic programming (the application of which will be detailed later, in Section 2.3), the 

number of possible operating strategies that must be analyzed is given by Eq. 2.2. 

ὔ ςτ ὔ ρ  2.2 

Obviously, the number ςτ cannot be reduced as it is the number of hours in a day. However, if 

ὔ ρ  can be decreased by a preliminary analysis of each possible combination of 

operating turbines, then any further analysis will be much faster. In fact, it turns out that this can be 

pre-analyzed, resulting in large potential savings in the required computational time. 

2.1.2.2 Justification 

The second stage of the preliminary analysis could also be considered the first stage of the 

optimization. This pre-optimization of the problem definition makes the subsequent analysis less 

cumbersome by reducing the number of independent variables. To illustrate the utility of this step, 

consider the following: Using the full problem definition from Section 1.4, the efficiency, and thus 

the power production, of any given turbine depends on the net head, and thus the net flow rate. 

Therefore, in order to determine the effect of any adjustment to the flow rate through a single 

turbine, it is necessary to recalculate the net flow rate and then net head. This change in net head 

will necessarily also simultaneously affect every other operating turbine. Furthermore, during the 

optimization, adjustment of the flow rate through a single turbine necessitates adjustment of the 

flow rates through all of the other active turbines such that the gradient of the revenue with respect 

to the flow through each active turbine remains the same. Finally, it is also possible when adjusting 
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the flow through a single turbine to arrive at an operating state that would be better served by a 

different combination of turbines, requiring some turbines to be activated or deactivated, and the 

whole process to start over again. Therefore any time a change is made to the operating point of a 

single turbine in the search for the optimal operating points, a sub-problem must be solved to 

determine the corresponding required changes in the other active turbines, and it is reasonably 

projected that the same sub-problems would have to be solved multiple times throughout the course 

of each optimization. 

Consider next an operating point that is known to be the optimal operating point for the entire 

system.  

ᶬ‰ȟȟȟὗȟȟ  ᶅ ὭȟὮȟὸᶰὍȟὐȟὝ  Ὑ ‰ȟȟȟὗȟȟ Ὑ  2.3 

This operating point defines which turbines should be active at each station for each time period in 

the planning horizon. Further, it defines the specific flow rates through each of those turbines. Thus, 

for each station Ὦ during each time period ὸ in the planning horizon, the optimal operating point 

results in a known net flow ὗȟȟ  and net power production ὖȟȟ  for each station in the 

system. Consider the independent variables to be grouped by station and time period 

‰ȟὗ ȟȟ ȟȣ . Thus, each group of independent variables completely defines the status of a 

single station during a single time period of the optimization. Each of these subsets of independent 

variables must themselves result in the optimal division of each statƛƻƴΩǎ ƴŜǘ flow among its active 

turbines (where optimal division of flow among turbines is that division which results in the highest 

power production for a given net flow rate). 

Ὑ Ὑ ᴼ ὖȟȟ ὖȟȟ ȟ ÆÏÒ ÇÉÖÅÎ ὗȟ ὗȟȟ Ǫ ה ȟ ‰ ȟȟ  2.4 

To prove this, one must only consider the consequences if this were not the case. If the division of 

flow among the active turbines were not optimal, then there would exist another division of flow 

among the active turbines for which the net flow would be equal to the net flow of the optimal 

combination (shown below in Eq. 2.5), and the ǎǘŀǘƛƻƴΩǎ ǇƻǿŜǊ production would be higher than the 

power production resulting from the optimal system operating point. 

ÉȢÅȢÁÓÓÕÍÅ  ɱ ὗ ȟ ὗ ȟȟ  ȿ ὗȟ ὗȟȟ  Ǫ ὖȟ ὖȟȟ  2.5 

Were this true, more power could be produced using the same amount of water and the only effect 

on the system would be to increase the power output of the station under consideration. This would 

in turn result in a higher total revenue, contradicting the original assumption that the known optimal 

operating point is, in fact, optimal. Thus, in order to uniquely identify the optimal operating point for 

a hydropower system, it is only required that the net flow rate and active turbines be known for each 

station in the system, rather than knowing the flow through each turbine.  
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In order to use the net flow and active set of turbines as the independent variables, rather than the 

flow through and status of each turbine, it is necessary to know the power output of each station as 

a function of the net flow rate and the active set of turbines. Fortunately this is a sub-problem that 

can be predicted and preemptively solved [21] over the entire operating range through application 

of the KarushςKuhnςTucker (KKT) conditions. It is also straightforward to use this transformation, the 

details of which are developed below) to do away with the difficulty of constantly recalculating the 

net head for each updated value of flow rate, and instead express power as a function of the volume 

of water in the reservoir, the net flow rate through the station, and the active set of turbines.  

2.1.2.3 Methodology 

Some new definitions must be made before continuing with the optimization of this preliminary sub-

problem. Previously, in Section1.4, the set of turbines in a station was identified as Ὅ, in which each 

turbine was identified by a unique number άὭέ within its station. Before continuing, in order to reduce 

the total number of active sets ƻŦ ǘǳǊōƛƴŜǎ ǘƘŀǘ Ƴǳǎǘ ōŜ ŀƴŀƭȅȊŜŘΣ ŜŀŎƘ ǘǳǊōƛƴŜΩǎ ƴǳƳŜǊƛŎ ƛŘentifier 

is changed such that identical turbines have the same identifier. This creates set Ὅ. Next, set ɰ is 

defined as the set of unique elements of the power set of Ὅ, excluding the null set.  

With this new definition, the application of the KKT conditions to the preliminary optimization can 

begin. The objective is to determine the optimal power surfaces as functions of only reservoir volume 

ὠ , net flow rate ὗ , and active operating set ‪ , thus generating power surfaces for each 

operating set in each facility. 

The formal definition of the sub-problem as required for applying the KKT conditions is as follows: 

Maximize:  

ὖȟὗȟὠ ÍÁØ ὖȟ ὗȟȟὌ ὗȟὠ

ᶰ

  2.6 

Subject To:  

ὗȟ
ᶰ

ὗ π 2.7 

ὗȟ ὗ ȟȟ π ᶅ Ὥɴ ‪ 2.8 

ὗ ȟȟ ὗȟ π ᶅ Ὥɴ ‪ 2.9 

The only additional equation needed to fully specify the problem is the equation of the power output 

of a turbine as a function of flow rate and head, which is shown in Eq. 1.26. 

This problem must be solved for all discretized points in the following permissible operating domain 

for each operating set in each station:  
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ὗ ᶰὗ ȟȟὗ ȟ ᷊ὗ ȟȟὗ ȟ  2.10 

ὠᶰὠ ȟȟὠ ȟ  2.11 

These equations show the domain of the independent variables. The first equation indicates that the 

net flow rate ὗ  can vary from the greater of the minimum station flow rate ὗ ȟ  and the 

minimum operating set flow rate ὗ ȟ  to the lesser of the maximum station flow rate ὗ ȟ  

and the maximum operating set flow rate ὗ ȟ . The second (Eq. 2.11) simply indicates that the 

domain of the reservoir volume includes all points between the minimum and maximum allowable 

volume.  

Application of the KKT conditions results in the following set of equations (which are both necessary 

and sufficient conditions for optimality because the power equation is assumed to be concave and 

the constraints are all linear): 

Ћὖȟ ὗȟȟὌ ὗȟὠ

Ћ1ȟ
‘ȟ ‘ȟ ‗ 2.12 

‘ȟ πȟ ‘ȟ π 2.13 

‘ȟὗȟ ὗ ȟȟ π 2.14 

‘ȟὗ ȟȟ ὗȟ π 2.15 

Thus, if the turbines are working within their operating domains ὗ ȟȟ ὗȟ ὗ ȟȟ , then 

‘ȟ ‘ȟ π in order to satisfy Eq. 2.14 through Eq. 2.15, and the slopes of the turbine power 

curves (as functions of turbine flow rate) are all identical and equal to ‗. However, if any turbine is 

operating at an extreme of the allowable range, either ‘ȟ or ‘ȟ will be non-zero. The analysis of 

the effects of each possibility are similar at each extreme, so only the effect of a turbine operating at 

its minimum allowed value will be examined herein. Eq. 2.12 must be valid for each turbine under 

consideration, so it is known that ‗ must be equal to the slope of the power vs. flow curve for each 

turbine that is operating within its allowed domain. However, if a turbine is operating at the lower 

limit of its permissible range, then ὗ ȟȟ ὗȟ  in Eq. 2.15 will be equal to zero, allowing ‘ȟ to 

take a positive non-zero value. This further indicates that the slope of the power curve of the turbine 

can take a value other than ‗. In the case of a turbine operating at the lower limit of its domain, the 

slope of its power curve at the optimal operating point will be less than that of other turbines that 

are not operating at their lower limits since ‘ȟ is constrained to be positive. This aligns with the 

requirement that the objective function be convex. 

Thus, the basic condition for optimality is that the turbines all operate such that the derivatives of 

their power curves with respect to their flow rates are the same, unless operating at a limiting flow 
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rate. This is a relatively straightforward problem to address numerically. The easiest way to do so 

begins by calculating the derivatives of power with respect to flow rate at each value of flow rate for 

which the power is known (using numerical differencing methods), for each turbine in the active set. 

Then for a known the target net flow rate, the flow through each turbine can be determined by 

iteratively incrementing the flow rate through the turbine with the highest derivative until the 

desired net flow is achieved. However, a more accurate method is desired in which operating points 

for the turbines can be found between the discretized points of flow rate for which the power 

function is known. Such an approach is especially useful when the available discretization of the flow 

rate is not uniform, as is the case with the data available for this analysis. In such a case it becomes 

desirable to accurately interpolate the power for values of flow rate between the available 

discretization. It is also desirable for the net power curve resulting from the adopted interpolation 

method to not only be continuous, but to also have continuous derivatives. Several options were 

investigated to accomplish this. First, the slopes that any interpolation function would need to match 

were calculated using 2nd order methods (central differencing for interior points, and 2nd order 

forward and backward differencing for flow rates at the edges of the domain). Thus, any interpolation 

function must have four unknowns so that all of the conditions can be matched. Since a 3rd order 

polynomial is the simplest such function, its use was the first to be examined. However, it was 

discovered that this approach would not work as the polynomial which matched the values and 

slopes already known was often not convex over the entire region between the known values for 

flow rate. With this in mind, and lacking any previously known method that would produce the 

desired result, the original interpolation function shown in Eq. 2.16 was created. 

ὖ ÓÇÎὥ ὗ ὦ ὧ Ὠ 2.16 

This equation can take several forms, as shown in Figure 2 ς Figure 4. It exhibits several characteristics 

that make it ideal for interpolating the power as a function of flow rate. First, it is concave over its 

entire domain. Second, the coefficients can be solved (though the solution is admittedly complex) for 

known values for power and slope at two values of flow rate as shown below in Eq. 2.19 ς Eq. 2.23 

(Mathematica was used to solve for the coefficients). Finally, the slope is a reversible function of the 

flow rate, allowing the flow rate corresponding to any possible value of the slope to be calculated, as 

shown in Eq. 2.24. The astute reader will notice that these are simply different conic sections. Figure 

2 and Figure 4 show sections of hyperbolas, while Figure 3 shows a section of an ellipse.  

Given that ήȟήȟὴ ὴή ȟὴ  ὴή ȟὴ ὴή ȟÁÎÄὴ ὴή  are known: 2.17 

Ὠή ή ήȟǪ Ὠὴ ὴ ὴ  2.18 

ίὫὲ
ὥ ὧ

ȿὥ ὧȿ
 2.19 
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ὥ
Ὠὴς Ὠή ὴ ὴ Ὠὴὴ ὴ

ὨήὨήὴ ὴ ςὨὴ
 2.20 

ὦ ή
Ὠή ὴ Ὠὴ Ὠήὴ

ςὨήὴ ὴ Ὠὴὴ ὴ
 2.21 

ὧ
ὨὴὨὴ Ὠήὴ ὴ ὴ Ὠὴ Ὠή ώ

Ὠήὴ ὴ ςὨὴ Ὠὴὴ ὴ ςὨή ὴ ὴ
 2.22 

Ὠ ὴ
ὥ ὧ

ȿὥ ὧȿ

Ὠὴ Ὠὴ Ὠή ὴ

Ὠήὴ ὴ ςὨὴ
  2.23 
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ὧ

ȿὧȿ
ὴ

ὧ

ὥ ὥ ὴ
ὦ 2.24 

 

 

Figure 2: Interpolation curve shape when coefficients 'a' and 'c' are both positive. 
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Figure 3: Interpolation curve shape when coefficients 'a' and 'c' are negative and positive, respectively. 

 

 

Figure 4: Interpolation curve shape when coefficients 'a' and 'c' are positive and negative, respectively. 
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Utilization of this interpolation function between each pair of adjacent values of flow rate for which 

ǇƻǿŜǊ ƛǎ ƪƴƻǿƴ ŀƭƭƻǿǎ ǘƘŜ ǇƻǿŜǊ ǘƻ ōŜ ŎŀƭŎǳƭŀǘŜŘ ŀǎ ŀ ŦǳƴŎǘƛƻƴ ƻŦ ŀƴȅ Ŧƭƻǿ ǊŀǘŜ ƛƴ ŜŀŎƘ ǘǳǊōƛƴŜΩǎ 

domain. At this point, determining the flow rates that solve the sub-problem detailed in Eq. 2.6 ς Eq. 

2.9 requires only that the correct value of the slope be determined. This determination is 

accomplished via an iterative approach which yields the value of ‗ (and thus the flow through each 

turbine) that corresponds to the desired net flow rate. 

Once all of the preliminary analysis is complete, the problem definition is reduced to the following: 

Maximize:  

ὙὩὺὩὲόὩὙ ”ȟὖ ȟ ȟȟ “ȟὖ ȟȟ ὛὟȟ  2.25 

Subject To:  

‪ᶰɰ 2.26 

ὛὟȟ ὛὟ‪ȟȟ‪ȟ  2.27 

ὗȟ ὗ ȟ π 2.28 

ὗ ȟ ὗȟ π 2.29 

ὗȟ ὗȟ ɝὗ π 2.30 

ὗȟ ɝὗ ὗȟ π 2.31 

ὖȟȟ ὖȟὗȟȟὠȟ  2.32 

ὖ ȟȟ ÍÉÎὖ ȟȟ ὖȟȟȟὖȟȟ ὖ ȟȟ  2.33 

ὠȟ ὠȟ ὗȟ ὗȟ ȟ

ᶰ

ὗ ȟȟ 2.34 

ὠȟ ὠ ȟ π 2.35 

ὠ ȟ ὠȟ π 2.36 

ὠȟ 6 π  2.37 

ὠȟ 6 π  2.38 

ὗȟ ὗ π 2.39 

‪ȟ ‪ π 2.40 

Thus, the preliminary analysis has reduced what was previously an optimization problem involving 

three nested summations to a problem with only two nested summations.  
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2.2 Proposed New Optimization Approach 

The final goal of this thesis is to produce a method whereby optimal system commitment can be 

achieved in a set of hydropower facilities owned by various individuals or corporations, which 

inherently seek out only their own optimal strategy. Along the way to achieving this goal, a 

considerable simplification of the system optimization objective function has been accomplished by 

developing the analysis described in the previous section, which led to the mathematical problem 

statement given in Eq. 2.25. However, the optimization objective of this equation does not yet 

include any means of ensuring that the individual stations in the system are optimally operated. In 

fact, even without this insightful simplification, the original problem as stated in Eq. 1.1 can be (and 

has been) solved for hydropower systems via mixed-integer optimization strategies. Yet, since the 

goal of this optimization includes not only optimizing the system as a whole, but also optimizing each 

indivƛŘǳŀƭ ǇƭŀƴǘΩǎ ƻǇŜǊŀǘƛƻƴǎΣ ǳǎŜ ƻŦ ƳƛȄŜŘ-integer methods become less desirable due to the 

increase in complexity necessary to accommodate multiple objective functions, to determine optimal 

operating points, as well as the corresponding financial interactions that allow for individual as well 

as system optimization. 

In order to optimize both the system and each of the individual stations, a model is needed whereby 

system optimization and individual optimization are intrinsically linked. This necessarily introduces a 

large new set of independent variables to the optimization (which will be detailed in Section 2.4). The 

method developed herein incorporates a financial compensation approach whereby plant operators 

can regard the delivery of water at particular times as a valued commodity with specific monetary 

value, and pay upstream facilities for such delivery. Furthermore, the monetary value of the water is 

tied to the value of electrical energy so that the strategy yields results of consequence. Finally, 

hydropower systems are inherently non-linear, and the introduction of the requirement that both 

the system and the individual station operations be optimal introduces another layer of nonlinear 

interactions which makes previously used mixed-integer methods undesirable. Thus, the following 

method was developed, as outlined in the next three paragraphs, and further described in Sections 

2.3 and 2.4.  

In order to overcome the shortcomings of mixed integers methods, and determine the degree of 

cooperation between neighboring facilities necessary to reach a globally optimal commitment, the 

problem is approached by iterating between two stages. We label this method a dual iterative 

optimization.  Note that the ǿƻǊŘ άŘǳŀƭΩ refers only to the two stages; in each many different stations 

and interactions are analyzed. Iterations continue between the two stages, until a regional optimum 

solution is obtained. 
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The first stage of the method consists of optimizing the operation of each individual facility, without 

regard to its effects on other facilities in the system. Since ǘƘŜ Ŧƭƻǿ ƛƴǘƻ ŜŀŎƘ ǎǘŀǘƛƻƴΩǎ ǊŜǎŜǊǾƻƛǊ ƛǎ 

determined by the flow released from upstream facilities, the order in which the facilities are 

optimized is based on the physical structure of the system. The farthest upstream facilities are the 

first to be analyzed, and the furthest downstream are the last. This ensures that all of the relevant 

inputs are available when each optimization is performed. The details of this stage of the 

optimization are given in Section 2.3. 

The second stage of the optimization consists of first analyzing revenue gradients of neighboring pairs 

of stations with respect to changes in the upstream facilityΩǎ Ŧƭƻǿ ǊŜƭŜŀǎŜ ŘǳǊƛƴƎ ŜŀŎƘ individual time 

period. Then, for each pair of facilities, ǘƘŜ ǘƛƳŜ ǇŜǊƛƻŘ ŘǳǊƛƴƎ ǿƘƛŎƘ ŀŘƧǳǎǘƛƴƎ ǘƘŜ ǳǇǎǘǊŜŀƳ ŦŀŎƛƭƛǘȅΩǎ 

flow release results in the greatest total ƛƴŎǊŜŀǎŜ ƛƴ ǘƘŜ ǘǿƻ ǎǘŀǘƛƻƴΩǎ ǊŜǾŜƴǳŜ ƛǎ ŘŜǘŜǊƳƛƴŜŘΦ Cƛnally, 

the value that must be added to the flow release (in addition to the value of the electricity being 

produced) of the upstream facility is determined and recorded for use in the next iteration of the 

first stage. Further details of this stage of the optimization are given below in Section 2.4. 

2.3 Iteration Stage 1: Individual Hydro Station Optimization 

Optimizing a single power station with known values for price and water inflow, while certainly much 

simpler than optimizing a hydropower system, is still far from a trivial problem. First, the problem 

definition is as follows: 

Maximize:  

Ὑ ȟ ÍÁØὙ ”ȟὖ ȟȟȟ “ȟὖȟȟ ὛὟȟ  2.41 

The constraints of this optimization are the same as those given in Eq. 2.26 ς Eq. 2.36. 

The only difference between this problem statement and the one given in Eq. 2.25 ς Eq. 2.36, is that 

now the summation over the different stations has been removed, and the optimization is only 

concerned with the results for a single station. 

The use of mixed-integer programming for solving this simpler problem was considered, but 

ultimately dynamic programming was selected due to its flexibility and robustness (two 

characteristics that are more difficult to achieve using mixed-integer methods). An overview of 

dynamic programming can be found in most optimization text books, or alternatively, Wikipedia 

given an excellent overview of the topic and links to many other helpful references. 

The following shows the definitions necessary to utilize dynamic programming to solve the 

optimization problem.  
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Value Function:  

ὠὸὋȟ●▒ȟ◄ ÍÁØ
◊▒ȟ◄

Ὑȟ●▒ȟ◄ȟ◊▒ȟ◄ ὠὸὋȟ ●▒ȟ◄  2.42 

State Variables ●◄:  

ὀἲȟἼ 6ȟȟ1ȟ ȟʕȟ  2.43 

Input Variables ◊◄:  

ἽἲȟἼ 1ȟȟʕȟ  2.44 

State Update Function:  

ὀἲȟἼ ὠȟ ὗȟ ὗȟ ȟ

ᶰ

ὗ ȟȟ ȟ1ȟȟʕȟ  2.45 

In the above equations, the only new variables introduced are ὠὸὋ, which it the άvalue-to-go,έ 

and Ὑȟ, which is the revenue of station Ὦ during time period ὸ. The value-to-go function is iteratively 

calculated from the state of the system at the end of the final time period to the state before the 

initial time period for every possible combination of states at each intermediate time. When 

calculating the value-to-go at each iteration stage, the values of all future state combinations are 

known, and thus, for each possible current state, the optimal set of inputs is determined based on 

the revenue the inputs would produce for the current time period and the future revenue (value-to-

go) that is possible.  

Additionally, the selection of state variable bears an explanation. The selection of the volume of 

water in the reservoir ὠȟ  as a state variable should be an obvious choice, but the reasons for the 

inclusion of the previous flow rate ὗȟ  and operating set ‪ȟ  likely are not quite so obvious. 

They are, however, easily accounted for. The flow during the previous time period must be known in 

order to enforce the constraint on the maximum change in flow rate during a single time period 

(shown in Eq. 2.30 and Eq. 2.31). The previously active operating set must be known in order to 

determine the start-up costs that would be incurred by each possible selection of the current 

operating set (shown in Eq. 2.27). 

Additionally, this formulation of the problem introduces an extra requirement regarding the method 

of discretization employed for the flow rates and reservoir volume. When using dynamic 

programming it is advantageous for each set of possible inputs to lead directly from one state to 

another. While it is possible to apply an interpolation function to determine the value of the future 

value-to-go function in Eq. 2.42, doing so would result in an avoidable loss of accuracy, and is thus 

best circumvented if possible. Thus, since flow rate and volume are linked in the state update 

function shown in Eq. 2.45, the discretization of the volume and flow rates must be such that when 



 

23 

the state update function is evaluated, the value found for the updated volume will lie on an existing 

discretized value rather than between two values in the volume discretization. 

The results generated from this optimization include the optimal operating set, net flow rate, and 

reservoir volume for each facility during each time period of the planning horizon, as well as the 

resulting optimal total revenue of each facility. These results (shown below in Eq. 2.46) are then used 

in the next stage of the system optimization routine. The superscript of each term indicates that 

these are the results from the first optimization of each individual facility. 

ʕ ȟȟȟὗ ȟȟȟὠ ȟȟȟὙ ȟ  2.46 

2.4 Iteration Stage 2: River System Optimization through Gradient Analysis 

This section uses the results of the individual station optimizations and links the optimization of 

neighboring stations. The procedure developed herein is the mechanism that ties together the 

individual station optimizations with the total system optimization. Using this procedure, it becomes 

possible for the optimization of the individual components of the system to drive the overall system 

optimization. This is achieved by allowing communication of the future, downstream value of water 

between neighboring stations. This value takes the form of payments offered for altered release 

levels from downstream facilities to upstream facilities. 

The basic concept behind this approach can be 

easily demonstrated using a simple example. 

Figure 5 shows a sample electricity price profile, 

the resulting revenues with no communication, 

and the resulting revenue if the value of water is 

communicated between neighboring facilities. In 

this example there are two facilities that are 

connected by a river. The upstream facility has a 

reservoir and is able to hold water until the most 

beneficial time, but the downstream facility is run-

of-river, and can only use water when it is received from an upstream facility. In this example, the 

flow time between the two facilities is one hour, the upstream facility has enough water to flow for 

a two hour period, and it is assumed that both facilities can convert water to electricity at the same 

rate. As shown in Figure 5(a), without communication of the future downstream value, the upstream 

facility would choose to operate during the two hours with the highest price (the $50 and $40 time 

periods). This would then constrain the downstream facility to operate at times during which the 

electricity price is much lower (the $40 and $35 time periods). Without communication, the total 

 
(a) (b) 

Figure 5: Water value concept example. 
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revenue of the two plants amounts to $165. If, however, the changes in total revenue were evaluated 

for various different possibilities then the total revenue of the system would be maximized if the 

upstream facility operated during the time periods with prices of $30 and $50 (a decrease of $10), 

which would allow the downstream facility to operate during the time periods with prices of $50 and 

$40 (an increase of $15), generating a total revenue of $170. However, the upstream facility would 

not be willing to operate during these time periods because of the decrease in revenue it would 

experience. Thus, in order to incentivize the upstream facility to release water during the earlier time, 

it is necessary for the downstream facility to use some of its increased profits to pay for water to be 

released during the $30 time period. A possible result is shown in Figure 5(b). In this scenario both 

plants generate greater revenue than previously, and the system as a whole is optimized. It is further 

seen here that there are many possible payments that would result in the desired change in release. 

The payment that is necessary to induce the desired change in a real market is a matter of negotiation 

between neighboring stations and is beyond the scope of this thesis. However, this example 

successfully demonstrates that enabling communication between neighboring reservoirs using water 

payments can drive the system toward optimal operation. 

Of course, applying this concept to a real system is much more complex, but the basic idea transfers 

over quite nicely. In order to detail the methods used in this section of the optimization, it is first 

necessary to first describe the discretization scheme that is used for the variables in the optimization. 

Specifically, it is necessary to describe the discretization of the operating sets, the net flow, and the 

volume. Since the operating sets are already divided into discrete groups, it is unnecessary to do 

anything further with them in this regard. Hence, only the net flow and the reservoir volume must 

be considered. As was stated at the end of Section 2.3, the discretization of these two variables is 

linked. First, a discretization size is selected for the net flow, which will be referred to as ɝὗ . The 

same discretization is used for all operating sets in a station. This then determines the discretization 

that must be used for the volume according to Eq. 2.47. 

ɝὠ ɝὗ σzφππ Ó  2.47 

Thus, the possible flow rates for any given combination of turbines will consist of all of the values of 

flow rate that are divisible by ɝὗ  and between the minimum and maximum flow limits for that 

particular operating set.  

In order to apply the gradient analysis to a hydropower system consisting of multiple hydropower 

plants, the facilities are divided into pairs, each consisting of two neighboring facilities (the water 

released from one flows into the reservoir of the other). Since the same analysis is performed for 

every pair of stations, the equations developed below apply to calculations within a pairing. After all 

of the pairs of plants are determined, the first step of this second stage of the optimization is to 
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determine, for each upstream facility in each pair, the effect on the optimal commitment of 

increasing or decreasing the net flow during each time period in the planning horizon. In particular, 

the effect of requiring an increase or decrease in the net flow during time period άίέ on the optimal 

station revenue and the optimal net flow profile are sought (Eq. 2.48). Since the procedure required 

to determine the effect of an increase is basically the same as that required for a decrease, everything 

developed below will be for the analysis of a flow increment, and can easily be extended to the 

analysis of a flow decrement. Further, the subscrƛǇǘ άὮΣέ ǿƘƛŎƘ ǊŜŦŜǊǎ ǘƻ ǿƘƛŎƘ ŦŀŎƛƭƛǘȅ ƛǎ ōŜƛƴƎ 

ŎƻƴǎƛŘŜǊŜŘΣ ƛǎ ǊŜǇƭŀŎŜŘ ǿƛǘƘ ŜƛǘƘŜǊ άόὴέ ƻǊ άὨέύὲΣέ ƛƴŘƛŎŀǘƛƴƎ ǿƘŜǘƘŜǊ ǘƘŜ ŎŀƭŎǳƭŀǘƛƻƴ ƛǎ ŦƻǊ ǘƘŜ 

upstream or downstream facility within a pair. 

ɝὙ ȟ
ȟ Ὑ ȟ

ȟ Ὑ ȟ  ,  ὗ ȟ ȟ
ȟ  2.48 

Of course, requiring an increase in the net flow during one time period means that the net flow must 

decrease at some other time in order for the constraint on the final reservoir volume to be met. 

Furthermore, it has been found that requiring the flow to increase at a particular time commonly 

results in changes in the optimal flow profile during several time periods. Thus, to determine the 

exact effect of increasing the flow at any particular time, the optimization problem given in Eq. 2.41 

(repeated below for reference) must be solved again with an additional constraint specifying the 

required change in the final flow profile. 

Maximize:  

Ὑ ȟ
ȟ ÍÁØὙ ”ȟὖ ȟ ȟȟ “ȟὖ ȟȟ ὛὟȟ  2.49 

Subject To:  

Eq. 2.26 ς Eq. 2.36 2.50 

ὗȟ ὗ ȟȟ ɝὗ  2.51 

Of course, repeating the full optimization analysis for each upstream facility twice for each time 

period in the planning horizon is computationally quite expensive. Thus, additional constraints are 

added which restrict the values of reservoir volume and flow rate to be considered in the 

optimization. These additional constraints are given below in Eq. 2.52 ς Eq. 2.54. They specify that 

no flow rate (or volume) that is greater than some integer multiple of the grid size away from the 

previously determined optimal solution is to be considered in the analysis. Further, the number of 

allowed grid-sized steps the volume can take away from the previously found optimal values is itself 

a positive integer multiple of the number of allowed grid-sized steps the flow rate can take away 

from its previously found optimal values. 

ὗȟ ᶰὗ ȟȟ ὲ ɝὗ ȟὗ ȟȟ ὲ ɝὗ  2.52 
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ὠȟᶰὠ ȟȟ ά ɝὠ ȟὠ ȟȟ ά ɝὠ  2.53 

ὲᶰᴚ ȟ
ά

ὲ
ᶰᴚ  2.54 

While the addition of these constraints greatly reduces the required computational time, it is possible 

that the result of this more constrained optimization will not be the true optimum of the problem 

given in Eq. 2.49 ς Eq. 2.51. However, since only a small deviation from the previously found optimal 

solution is required in the constraint given in Eq. 2.51, it is expected that the flow profile obtained 

when adhering to this constraint will be close to the previous results. Furthermore, since the ultimate 

purpose of this stage in the process is to identify when it is beneficial for downstream facilities to 

subsidize the revenue of the upstream facilities for increases in flow, small inaccuracies likely would 

not lead to significant error in the resulting payment schedule. Analysis of the effect of the value of 

άὲέ ŀƴŘ άάέ ƛǎ ƎƛǾŜƴ ƛƴ {ŜŎǘƛƻƴ 3.4. 

Once this step of the second stage is complete, several new data sets are available for further 

analysis. The data that is saved for use in the next step includes, for incremented flow during each 

time period, the revenue lost due to the forced deviation from the optimal flow, and the resulting 

net flow profile: 

ɝὙ ȟ
ȟ ȟὗ ȟ ȟ

ȟ  ᶅ Ὦȟίȟὸᶰὐ Ὕ Ὕ 2.55 

Note that here (and in Eq. 2.56) ǘƘŜ ǎǳōǎŎǊƛǇǘ άǳǇέ ǊŜŦŜǊǎ ǘƻ ǘƘŜ ƛƴŘƛŎŜǎ ƻŦ ǘƘŜ ŦŀŎƛƭƛǘƛŜǎ ǘƘŀǘ ŀǊŜ ǘƘŜ 

upstream member in any pair of facilities. The second step of stage two consists of analyzing the 

effects of the changes in flow rate on the downstream facility in each pair. In this step the only effect 

that is important is the effect on the revenue of the downstream station receiving the modified flow 

profile. This also requires an additional optimization analysis for each increase (and decrease) that 

was analyzed for the upstream facility, though with the constrain in Eq. 2.34 (the volume updating 

constraint) replaced by the constraint shown below in Eq. 2.56 in order that the modified flow profile 

will be considered. 

ὠȟ ὠȟ ὗȟ ὗȟ ȟ

ᶰ

ὗ ȟȟ ὗ ȟ ȟ ȟ

ȟ    2.56 

Again, running this optimization twice for each time period in the planning horizon would be 

computationally very expensive, and thus the optimizations again include the constraints in Eq. 2.52 

ς Eq. 2.54. The same argument is made for the reasonableness of these constraints as was made 

above. The resulting changes in revenue of the downstream facilities (Eq. 2.57) are then used in 

conjunction with the changes in revenue of the upstream facilities (Eq. 2.55) in the final step of this 

stage of the optimization. 
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  ɝὙ ȟ
ȟ Ὑ ȟ

ȟ Ὑ ȟ  2.57 

The final step is the determination of the water flow payments that, if implemented, would motivate 

the upstream facilities to increase their release at the appropriate times, thus driving the total system 

toward more optimal operations. Selecting the proper method of implementing a payment is crucial 

to ensure that every concerned party will benefit: primarily each individual owner/operator (since 

their decisions determine the operation of the system), but also the whole system by producing more 

power when demand is high, and less power when demand is low (as reflected by the power prices). 

Beyond simply benefiting the revenue of power companies, this is also of benefit to society, likely 

resulting in decreased CO2 emissions and lower energy prices because of the increase in the efficiency 

of producing power when it is most needed using clean hydropower. 

When neighboring stations both seek optimal revenue, some tension may inevitably arise. Referring 

back to the example in Figure 5, it is clear that the operation reflected in Figure 5(b) is optimal for 

the system as a whole, but whether it is optimal for each station remains questionable. Whereas 

both stations generate additional revenue as compared to that generated while operating 

independently (Figure 5(a)), the downstream facility might have paid a smaller amount for the water. 

On the other hand, the upstream facility might have refused to cooperate unless the downstream 

facility paid them a majority of the increased revenue. These possibilities lead to a re-examination of 

what it means to optimize the operation of each individual facility. For the purposes of this work, we 

define optimal station operation as any operation capable of generating higher revenue than what is 

accrued under independent operation. Obviously, this leaves a great deal of variability in the decision 

regarding how the payments will be determined. In a real-world application payment would be 

negotiated by the lawyers and financial officers of the companies owning neighboring facilities, but 

since modeling human behavior is far beyond the scope of this work, the decision has been 

automated via what we hope is an insightful and acceptable way of splitting additional revenue. 

The algorithm developed below applies to a pair of neighboring hydropower facilities for the revenue 

resulting from a required increment in the flow rate. The methodology can, however, easily be 

extended to include the changes in revenue resulting from a required decrement and any number of 

pairs of neighboring stations in a system.  

First, the total changes in revenue due to each flow adjustment for the pair of neighboring facilities 

are calculated:  

ɝὙȟ ɝὙ ȟ
ȟ ɝὙ ȟ

ȟ  2.58 

Next, the time of the change in flow released from the upstream facility that caused the greatest 

increase in total revenue is determined. 
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$ÅÔÅÒÍÉÎÅḊ  ί ȿ ɝὙȟ ÍÁØɝὙȟ π 2.59 

This time ί is the time at which the upstream facility will receive payment for increasing the net 

flow released (applied during the next iteration of individual optimizations). Note that if there is not 

time period for which the total revenue of the two stations increases, then this stage of the 

optimization stops without determining a flow payment to be made. However, it is possible that in 

some future iteration changes in other parts of the system could result in possible increases in 

revenue, so the pair cannot yet be removed from further consideration.  

The question of appropriate compensation for water released has not yet been addresses. Several 

options for determining this payment were considered. The first option considered was to pay the 

upstream facility enough to compensate it for the lost revenue ɝὙ ȟ
ȟ  plus half of the total 

revenue increase ɝὙȟ  for any release above the previously determined optimum during time 

ǇŜǊƛƻŘ άίέ. This option was quickly abandoned because of the many iterations that would have likely 

been required to achieve any meaningful shift in operations. Next, it was considered to pay the 

upstream facility an amount equal to its lost revenue ɝὙ ȟ
ȟ  plus half of the total revenue 

increase for each increment beyond the previously determined optimum ɝὙȟ
ȟ ȟȟ . 

However, this option could easily result in a downstream station continuing to pay for an upstream 

station to increase its flow release far beyond the value that would be optimal for the downstream 

station, also potentially causing the total revenue of the two stations to decrease, and was therefore 

discarded. The option finally implemented generates a payment schedule in which each increment 

of the ǳǇǎǘǊŜŀƳ ŦŀŎƛƭƛǘȅΩǎ release beyond the previous optimum results in an additional payment 

following a geometrically decreasing trend. The total resulting payment is shown below in Eq. 2.60 

and Eq. 2.61. Equation 2.60 represents the payment schedule using a summation, and thus the 

payment for each increment in flow rate can be easily determined, while Eq. 2.61 yields the same 

result, but with the result of the summation presented in a simpler form.  

ÉÆȡ ὗ ȟ ὗ ȟ ȟȟÔÈÅÎȡ Ὑ ɝὙ ȟ
ȟ

ở

ỞỞ
ờ ρ

ς

ȟ ȟ ȟ

Ợ

ỡỡ
Ỡ
ɝὙȟ  2.60 

ÉÆȡ ὗ ȟ ὗ ȟ ȟȟÔÈÅÎȡ Ὑ ɝὙ ȟ
ȟ ρ

ρ

ς

ȟ ȟ ȟ

ɝὙȟ  2.61 

The utility of this approach may not be immediately apparent, so the various terms bear explanation. 

First, the payment only occurs if the upstream facility releases more water than the amount that it 
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previously found to be optimal. Second, since the upstream station was previously optimized, 

ɝὙ ȟ
ȟ  must be negative. In this equation this term appears to ensure that the upstream station is, 

at the very least, compensated for its lost revenue. Third, the payment is not linearly related to 

increased release (in the way that power revenue depends linearly on the amount of power 

produced). The amount of the payment does depend on how much the flow has increased, but not 

via a simple multiplicative value function. Finally, the amount of the total increase in revenue paid to 

the upstream facility depends on how many increments away from its previously determined optimal 

flow rate it operates. According to the coefficient of the total increase in revenue ɝὙȟ , if the 

upstream station increases its flow release by one grid step, the upstream station receives 50% of 

the total increase in revenue; if it increases by two grid steps, then the upstream station receives 

75% of the total increase that the two stations received for a single grid step increase. The payment 

schedule is further demonstrated in Figure 6, which shows the payments that would occur for various 

increases in flow rate based on a loss in revenue of upstream facility equal to $3 and an increase in 

revenue by the downstream facility of $7, resulting in a total increase in revenue of $4.  

 

Figure 6: Payments for flow changes of an upstream facility. Payments correspond to upstream facility lost 
revenue of $3 and total revenue increase of $4 (for a single increment of flow). 

The intent of this geometric progression is twofold. Its first purpose is to prevent the downstream 

station from making a payment beyond the amount its own revenue increased due to the analyzed 

ǎƛƴƎƭŜ ƛƴŎǊŜƳŜƴǘ ƛƴ ǘƘŜ ǳǇǎǘǊŜŀƳ ǎǘŀǘƛƻƴΩǎ Ŧƭƻw rate. This is important since there is no guarantee 
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that further increases in the flow released by the upstream facility will be beneficial for the 

downstream facility. Second, it allows for the optimization to identify directions of steepest ascent 

and make more than a single step in the identified direction. As shown in Figure 6, the upstream 

facility can continue to receive higher payments for release beyond the single increment that was 

analyzed. This is important to reduce the number of iterations (and thus computational time) 

required to converge on a final solution. 

The final result of this stage of the optimization is the payment schedule shown in Eq. 2.61. In order 

to communicate the proper payment to the next iteration, several pieces of information must be 

saved. These include the time period for which a new payment has been calculated, whether the 

payment corresponds to an increment or a decrement in flow (indicated by a ίὫὲ taking a value of 1 

or -1), the previous optimal flow rate at that time, the revenue loss of the upstream station, and the 

total increase in revenue of the pair of stations (all listed in Eq. 2.62). This information is then added 

to a list of payments to be made to the upstream facility and utilized by the updated value function 

shown in Section 2.5, which details the iterative procedure. 

03 ίȟίὫὲȟ1 ȟ ȟɝὙ ȟ ȟɝὙ ȟ  2.62 

2.5 Iterative Procedure 

The procedure and equations developed above in Sections 2.3 and 2.4 refer specifically to the first 

iteration of the optimization (superscripts indicate the iteration number). A few slight modifications 

are necessary for the second and following iterations. Hence, the equations developed above in 

Section 2.4 ŀƭƭ ƘŀǾŜ ŀ ǎǳǇŜǊǎŎǊƛǇǘ ƻŦ άρέ ƛƴŘƛŎŀǘƛƴƎ ǘƘŀǘ ǘƘŜȅ ǊŜǎǳƭǘ ŦǊƻƳ ŀƴŀƭȅǎƛǎ ƻŦ ǘƘŜ ŦƛǊǎǘ ƛǘŜǊŀǘƛƻƴΦ 

Lƴ ƻǊŘŜǊ ŦƻǊ ǘƘŜ Ŝǉǳŀǘƛƻƴǎ ǘƻ ŀǇǇƭȅ ǘƻ ŀƭƭ ǎǳōǎŜǉǳŜƴǘ ƛǘŜǊŀǘƛƻƴǎ ƻŦ ǘƘŜ ƻǇǘƛƳƛȊŀǘƛƻƴΣ ǘƘƛǎ άρέ only 

needs to ōŜ ǊŜǇƭŀŎŜŘ ōȅ ǘƘŜ ƛƴŘŜȄ άὲΦέ bŜȄǘΣ ǘhe objective function of the single station optimization 

procedure of Section 2.3 requires a modification to include the effects of the water payments. This 

modification is determined using two steps. First, the water payments for each allowable flow rate 

are determined according to Eq. 2.63: 

ὡὖȟὗȟ

ÉÆί ὸ Ẓ ίὫὲ ὗȟ ὗ ȟȟ π ȟ

ÔÈÅÎɝὙ ȟ
ȟ ρ

ρ

ς

ȟ ȟȟ

ɝὙ ȟ ȟ

ÅÌÓÅπ

 2.63 

This equation results in a matrix of values of flow rate for each facility. The resulting matrices are 

then included in the optimization objective function previously given in Eq. 2.41, and shown below 

in Eq. 2.64 with the new water payment term included. 
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Ὑ ȟ ÍÁØὙ ”ȟὖ ȟȟȟ “ȟὖȟȟ ὛὟȟ ὡὖȟ  2.64 

The same modification must also be made to Eq. 2.49 in all further iterations. 

Finally, there are a couple of problems that could arise as the iterations progress. The first and most 

obvious potential problem is that because this is a gradient shooting method, applying a payment 

schedule may result in the upstream installation releasing more water than is beneficial for the 

downstream installation, causing the revenue of the downstream installation to decrease after water 

payments are made. This would indicate that the value applied to increased flow rates beyond the 

already considered single increment is too large. If the method developed in Section 2.4 were 

followed, a payment would be made for decreased flow at the same time. However, such a payment 

would result in the downstream facility first paying for increased flow, and subsequently paying for 

the flow to be decreased. Obviously, this would not make sense. Fortunately, this problem is easy to 

rectify. Since it is known that a single increment in flow rate by the upstream facility is beneficial, the 

base payment that compensates the upstream facility for lost revenue must stay the same. However, 

the magnitude of payments for further increases in flow rate can be easily reduced by decreasing the 

value of the recorded total revenue change between the two stations ɝὙ  by half until the 

problem is rectified. Reducing this recorded value would cause the geometric series portion of the 

payment to decrease, in turn causing the incremental benefit of increased flow by the upstream 

facility to decrease, and thus the optimum release of the upstream facility will be lower at the 

relevant time.  

The second potential problem is that the payment schedule determined in the current iteration ὲ 

may indicate a payment at the same time as a payment determined by a previous iteration ά, but in 

the opposite direction (a decrease in flow instead of an increase, for example). As was stated above, 

simultaneously paying for a decrease and an increase is not conducive to a valid solution. The method 

for dealing with this problem is only slightly more complex than the method for dealing with the 

previous problem. The first step is the same as for the previous problem, namely, to decrease ɝὙ  

by half until the analysis indicates a payment at a different time. However, in some instances that 

may not be enough, and the flow of the upstream facility will need to be decreased (or increased) 

further than is possible by simply decreasing ɝὙ . This possibility bears further explanation. 

Suppose that a previous iteration ά indicated that the flow of a facility should be increased at 

time ί , and water payments occur when flow at that time is greater than 1 ȟ  (the flow that was 

determined to be optimal at time ί  during stage 1 of iteration ά). Suppose further that in the 

current iteration ὲ it has been determined that at that same time ί  the flow ought to be 

decreased, and the first step of decreasing ɝὙ  has been performed until 1 ȟ ȟ 1 ȟ
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ɝὗ  (i.e. the flow released is only large enough for the upstream facility to receive the smallest 

possible payment indicated by Eq. 2.60). At this point decreasing ɝὙ  further will have no effect 

since the facility is receiving a base payment for this flow rate of ɝὙ ȟ , which cannot be 

decreased. In this instance the previous payment must be completely removed, and the analysis 

continues as before. 

The contour plot shown below in Figure 7 gives a two dimensional graphical demonstration of the 

concepts discussed above. The contours represent constant values of the total revenue of a system 

consisting of two neighboring hydropower facilities, while the parameters represent flow rates. 

Individual optimization of the two facilities could result in initial operation on the lower left side of 

the outermost curve, while system optimal operation occurs near the upper left side. Analysis of the 

system via a gradient technique would then indicate that the greatest increase in revenue would 

result from increasing parameter 1, and so a payment would be made to the upstream facility to 

increase it. Once parameter 1 is increased sufficiently, the greatest rise would instead result from 

increasing parameter 2, and again, a payment would be made for its increase. The gradient 

optimization would switch back and forth between increasing parameter 1 and parameter 2 until 

parameter 2 increased beyond the zero value. At that point parameter 1 would have to start 

decreasing to approach the global optimum. As discussed above, paying for an increase in a 

parameter, then subsequently paying for it to be decreased does not make sense. Thus, the payments 

previously determined to increase parameter 1 would be decreased or reversed until convergence 

on the final optimal value is achieved. 
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Figure 7: Two dimensional graphical demonstration of the necessity of the ability to reverse or eliminate 
previously determined payments to change a parameter in a particular direction. Also shown is a possible 
gradient based optimization path. 
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3 Results 

3.1 Preliminary Analysis 

3.1.1 Preprocessing of Data 

As the results of the work rest on the foundation formed in the preliminary analysis, the results of 

those initial steps are shown here. The available data describing the efficiency of a hydro turbine 

consisted of iso-efficiency curves for varying levels of efficiency (as shown in Figure 1 in Section 2.1.1). 

In order to apply numerical methods to this problem, power production was needed as a function of 

evenly discretized values of flow rate and net head. As previously stated in Section 2.1.1, the first 

step to producing this is creating a triangulation of the points on the head ς flow rate plane for which 

the efficiency is known for use in an interpolation function. Four stages of this process and the 

resulting interpolation of the efficiency surface are shown in Figure 8 ς Figure 15. Note that in each 

of these figures, the axes are nondimensional head (EwD) and nondimensional flow rate (QwD). 

Figure 8 and Figure 9 show the initial triangulation and the resulting interpolation of the efficiency 

surface. It is immediately apparent that that this is not a good interpolation because of the flat 

sections half way down the slope to the left of the peak and immediately to the right of the peak.  

Examination of the triangulation quickly showed that some of the edges connecting points together 

spanned across efficiency levels. This observation resulted in the addition of the first constraint to 

the triangulation, namely, a requirement that neighboring points of the same efficiency be 

connected. This resulted in the triangulation and interpolation shown in Figure 10 and Figure 11, 

respectively.  

While the addition of the iso-efficiency curve connection constraint greatly improved the 

triangulation and the smoothness of the resulting efficiency interpolation, the approach is still not 

yielding a sufficiently orderly triangulation or a sufficiently smooth surface. The next step taken was 

to normalize the axes with respect to each other, so that the triangulation was performed on points 

for which the x-axis and y-axis both ranged from 0 to 1. This resulted in the far superior triangulation 

and interpolation shown in Figure 12 and Figure 13, respectively. 

Finally, there were still a few locations in which the interpolation resulted in flat areas on the 

efficiency surface due to the connection of non-neighboring points of the same efficiency. The 

locations in which this occurred were identified, and additional constraints were strategically added 

to cross the offending edges, thus eliminating them. The resulting triangulation, efficiency surface, 

and nondimensional power surface are shown in Figure 14, Figure 15, and Figure 16, respectively.  
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Figure 8: Initial unconstrained triangulation. 

 

Figure 9: Interpolated surface from Figure 8 triangulation. 
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Figure 10: Triangulation with constraints along iso-efficiency curves. 

 

Figure 11: Interpolated surface from Figure 10 triangulation. 
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Figure 12: Triangulation with iso-efficiency curve constraints and axes normalized to range from 0 to 1. 

 

Figure 13: Interpolated surface from Figure 12 triangulation. 
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Figure 14: Final triangulation with iso-efficiency curve constraints, normalization, and constraints added as 
needed to prevent flat areas on the interpolated efficiency surface. 

 

Figure 15: Interpolated surface from Figure 14 triangulation. 
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Figure 16: Power surface resulting from the final triangulation shown in Figure 14. 

3.1.2 Preliminary Analysis of Unit Combinations 

As outlined in Section 2.1.2, the goal of the preliminary analysis of unit combinations was to 

determine the maximum power surface of each possible combination of operating units as a function 

of net flow through the hydropower plant and the volume of water held in the reservoir. This 

combination of known parameters ensures that the operating head can be known, and thus, finding 

the maximum power only requires determination of the flow rate through each active turbine. The 

required steps to apply the KKT conditions to solve this portion of the problem include, in order: (1) 

using the previously determined power surface interpolation functions, extract the power curves as 

a functions of flow rate for each active turbine at the calculated value of net head, (2) ensuring that 

those curves are convex so that the KKT conditions are necessary and sufficient, (3) identifying the 

coefficients of the interpolation functions between the points of the extracted curves, and finally, (4) 

identifying the flow through each active turbine resulting in the maximum power output for the given 

net flow rate. 

The first step is a straightforward application of the power surface interpolation function that was 

previously generated to the calculated head and the full range of possible flow rates. The second step 

immediately analyzes the extracted curve. All data points which cause the curve to be non-convex 

are first removed, then the center points of any group of collinear points are removed, and finally, 

the remaining points are shifted vertically to minimize the error between the points interpolated 

using power surface interpolation function and a linear interpolation of the power using the 
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remaining points. The various stages of this process are shown in Figure 17. The red line shows the 

ǇƻǿŜǊ ŀǎ ŘŜǘŜǊƳƛƴŜŘ ōȅ ƛƴǘŜǊǇƻƭŀǘƛƻƴ ǳǎƛƴƎ a![!.Ωǎ ōǳƛƭǘ ƛƴ ¢Ǌƛ{ŎŀǘǘŜǊŜŘLƴǘŜǊǇ function and the 

previously determined triangulation of the available data. This curve is very nearly convex, as 

expected, but it is not perfectly so, as it must be to directly apply the KKT conditions. Since the curve 

is reasonably expected to be convex as previously established, all points that cause the curve to be 

non-convex are removed first, resulting in the set of points identified by the squares. Next, any sets 

of collinear points further complicate application of the KKT conditions. Thus, any point that is 

collinear with the points immediately before and after was removed. Again, it was reasonable to do 

so since the curve is expected to be convex. The points remaining after this step are identified by 

circles in the figure. Finally, the remaining points are shifted vertically to minimize the difference 

between the original interpolation and a linear interpolation between the remaining points. The 

percent difference between the final piecewise linear curve and the original curve is shown by the 

blue line. As expected, it is, in all cases, quite small, never differing by more than 1.5% from the 

original interpolation of the curve in all cases studied. 

 

 

Figure 17: Various stages of the process of extracting the convex power curve for a single turbine at a known 
value of net head. 
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These curves were generated for values of head spanning the range of possible values for each 

turbine. After all of the relevant curves were generated for any particular turbine, the vertical shifts 

were averaged, and the amount by which each curve was shifted was adjusted to the average. These 

curves were then used to solve for the optimal division of flow among each set of active turbines for 

all allowed flow rates. The results for one of each of three differently sized turbines are shown below 

in Figure 18 ς Figure 21. Figure 18 shows three surfaces representing the optimal division of net flow 

rate (shown on the x-axis) among three active turbines of differing design capacity based upon the 

net flow through the three turbines and the volume of water currently in the reservoir that feeds 

them. Figure 19 is very similar to Figure 18, except it shows the power generated by each of the three 

turbines. Figure 20 shows the total power produced by the combination of three turbines. Note that 

though the power surfaces of the individual turbines appear rough, the net effect when the power 

of the individual turbines is added together is that the total power produced by the combination is a 

very smooth function of the net flow rate and reservoir volume. Finally, Figure 21 shows the net 

efficiency of the combination when the net flow rate is distributed optimally among the active 

turbines. Again, note that the efficiency surface is quite smooth. 

 

 

Figure 18: Optimal division of net flow rate among three turbines of differing design capacity. 








































































