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Abstract

This dissertation develops procedures for screening variables, in ultrahigh-dimensional

settings, based on their predictive significance. First, we review existing literature

on the sure screening procedures for analyzing ultrahigh-dimensional data. Second,

we develop a screening procedure by ranking the variables, according to the variance

of their respective marginal regression functions (RV-SIS). This is in sharp contrast

with existing literature on feature screening, which ranks the variables according to

some correlation measures with the response, and hence select variables with no pre-

dictive power (e.g., variables that influence aspects of the conditional distribution of

the response other than the regression function). The RV-SIS is easy to implement

and does not require any model specification for the regression functions (such as

linear or other semi-parametric modeling). We show that, under some mild technical

conditions, the RV-SIS possesses a sure independence property, which is defined by

Fan and Lv (2008). Numerical comparisons suggest that RV-SIS has competitive

performance compared to other screening procedure and outperforms them in many

different model settings. Third, we develop a test procedure for the hypothesis of a
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constant regression function, and also a test-based variable screening procedure. We

study the asymptotic theory for the variance of the regression function and use it to

introduce a new test procedure for testing the significance of a predictor. Using the

set of p-values, we introduce a variable screening procedure with a specified desirable

false discovery rate by using Benjamini and Hochberg (1995) approach.
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Chapter 1
Introduction

1.1 Background

High-dimensional data has received a lot of attention in the recent statistical litera-

tures. Various statistical methods were developed for variable selection procedure in

high-dimensional data including the Lasso (Tibshirani, 1996), the smoothly slipped

absolute deviation (SCAD) (Fan and Li, 2001), the least angle regression (LARS)

(Efron et al., 2004), the elastic net (Zou and Hastie, 2005), the adaptive Lasso (Zou,

2006), and the Dantzig selector (Candes and Tao, 2007). All these methods can

be used for analyzing the data where the number of predictors is greater than the

number of the observations.

With advancements in the data collection technology, ultrahigh-dimensional data

can be collected easily in many research areas such as genetic data, microarray data,

and high volumn financial data. In these examples, the number of predictors (p) is

some exponential function of the the number of the observations (n). In other words,

log p = O(na) for some a > 0. The sparsity assumption, according to which only a
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small set of covariates has an effect on the response, makes the inference possible in

ultrahigh-dimensional data.

The aforementioned variable selection methods may have technical difficulties and

performance issues for analyzing ultrahigh-dimensional data due to the simultaneous

challenges of computational expediency, statistical accuracy, and algorithmic stabil-

ity (Fan et al., 2009). Motivated by this, Fan and Lv (2008) recommended that

a variable screening procedure be performed prior to variable selection. Working

with a linear model, they introduced sure independence screening (SIS), a variable

screening procedure based on Pearson’s correlation coefficient. Assuming Gaussian

predictors and response variable, they showed that SIS possesses the sure screen-

ing property, which means that the true predictors will be chosen with probability

one as the sample size approaches to infinity. Arguing that linear correlation may

fail to detect important predictors which have a nonlinear effect, Hall and Miller

(2009) proposed a screening procedure based on a notion of generalized correlation

and showed that covariates with sufficiently large covariance with response Y are

ranked ahead of those with smaller covariance. Fan and Song (2010) extended the

screening procedure to a generalized linear model using the maximum marginal like-

lihood estimator. It has been shown that this method possesses the sure screening

property with vanishing false positive rate, that is the maximum marginal likelihood

estimator of inactive predictors will approach to zero as the sample size approaches

to infinity. Fan, Feng and Song (2011) introduce a nonparametric screening pro-

cedure (NIS), which uses a spline-based nonparametric estimation of the marginal

regression functions, and ranks predictors by the Euclidean norm of the estimated

marginal regression function (evaluated at the data points). Under the assumption

of an additive model, they show that this method also possesses the sure screening
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property. This method also possesses the sure screening property with the vanishing

false positive rate. Li, Zhong, and Zhu (2012b) proposed a ranking procedure using

the distance correlation (DC-SIS). DC-SIS can be used for grouped predictors and

multivariate responses. They also show that DC-SIS holds the sure screening prop-

erty under fairly general conditions. Li, Peng, Zhang, and Zhu (2012a) propose a

robust rank correlation screening (RRCS), which uses a ranking based on Kendall’s

τ rank correlation coefficient. They show that this procedure can handle semipara-

metric models under monotonic constraint to the link function. This procedure can

be also used when there exists outliers, influence points, or heavy tailed errors. Un-

der mild condition, it has been shown that the RRCS possesses the sure screening

property.

1.2 Contribution

Variables that are relevant for prediction purposes are of particular interest in most

applications. The existing screening methods fail to discern between variables that

have predictive significance from those that influence the variance function or other

aspects of the conditional distribution of the response. We propose a method that

screens out variables without (marginal) predictive significance. The basic idea is

that if variable Xi has no predictive significance, the regression function E(Y |Xi)

has zero variance. This leads to a method which ranks the predictors according the

sample variance (evaluated at the data points) of the p estimated regression func-

tions. We refer to Sure Independence Screening procedure based on the variance of

the regression function as the RV-SIS. This is a model free screening procedure. We

present the theoretical properties of the RV-SIS show that RV-SIS possesses the sure
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independence screening property under a general nonparametric regression setting.

While the proofs use Nadaraya-Watson estimators for the marginal regression func-

tions, the proofs (with mild modifications) continue to hold for other nonparametric

regressions such as local linear estimators.

We conduct numerical simulation studies to compare the RV-SIS to SIS, DC-SIS,

RRCS and NIS. The RV-SIS outperforms SIS, DC-SIS, RRCS and NIS in many

different model settings. The RV-SIS procedure shows that it takes less computing

time than both DC-SIS and NIS. We also compare the performance of the RV-SIS,

DC-SIS, and NIS on real data.

If the conditional expected value E(Y |Xi) is constant and thus has zero variance, then

a variable Xi has no predictive significance. We also propose a new test procedure

for testing the significance of a predictor by testing the hypothesis of a constant

regression function:

H0 : m(x) = c for all x

where m(x) = E(Y |X = x) is the nonparametric regression function. Under the null

hypothesis, the variance of the regression function σ2
m = var(m(X)) is zero. Under

mild technical conditions and the null hypothesis, the asymptotic distribution of the

estimated variance of the regression function is established, and used to calculate

the p-value. We also introduce a variable screening procedure using multiple testing

idea. Using the Benjamini and Hochberg (1995) approach, this test-based screening

procedure can control the false discovery rate. We conduct numerical simulation

studies.
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1.3 Organization

This dissertation is organized as follow. In Chapter 2, the existing sure independence

screening procedures for ultrahigh dimensional data are reviewed as well as their

theoretical properties. In Chapter 3, we introduce the RV-SIS and show that the

RV-SIS holds the sure screening property. Numerical studies are followed to show the

performance of the RV-SIS compared to other existing procedures. In Chapter 4, we

introduce a new test procedure for testing the significance of a predictor. Using the

set of p-values, we introduce a variable screening procedure using multiple testing

ideas. In Chapter 5, we discuss the future research projects. The curriculum vitae

is included in the end.



Chapter 2
Literature Review

2.1 Summary

High dimensional data has become popular in recent scientific research, and var-

ious statistical methods were developed for variable selection procedure in high-

dimensional data. With advancements in the data collection technology, ultra-high

dimensional data can be collected easily in many research areas such as genetic data,

microarray data, and high volume financial data. The ultra-high dimensional data is

defined by the number of predictors is some exponential function of the the number

of the observations. In other words, log p = O(na) for some a > 0. The sparsity

assumption, according to which only a small set of covariates has an effect on the

response, makes the inference possible in ultra-high dimensional data.

In this chapter, we briefly review the existing independence screening methods as

well as their theoretical properties.
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2.2 Independence Screening Procedure

2.2.1 Sure Independence Screening

For analyzing the ultrahigh dimensional model, Fan and Lv (2008) introduced the

Sure Independence Screening (SIS), a variable screening procedure based on Pear-

son’s correlation coefficient.

Consider the following linear regression model

y = Xβ + ε (2.2.1)

where y = (Y1, . . . , Yn)T is an n-vector responses, X = (x1, . . . ,xn)T is an n ×

p random design matrix with i.i.d x1, . . . ,xn, β = (β1, . . . , βp)
T is a p-vector of

parameters, and ε = (ε1, . . . , εp)
T is an n-vector of i.i.d. random errors.

Denote the true model asM = {1 ≤ j ≤ p : βj 6= 0} under sparsity assumption with

the true model size s = |M|. Let ω = (ω1, . . . , ωp)
T be a p-vector that is obtained

by componentwise regression, i.e

ω = XTy (2.2.2)

where X is the columwise standardized n × p matrix. Then ω can be viewed as

a vector of marginal Pearson’s correlation of predictors with the response variable,

rescaled by the standard deviation of the response.

The SIS procedure ranks the importance of predictors according to the magnitude

of ωj and selects predictors that have a high correlation with the response Y . More

specifically, for any given γ ∈ (0, 1), the SIS selects a submodel (M̂) that contains
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the first [γn] largest |ωj|

M̂γ = {1 ≤ i ≤ p : |ωi| is among the first [γn] largest of all}, (2.2.3)

where [·] denotes the floor function.

Fan and Lv (2008) defined the sure screening property, that is the true predictors will

be chosen with probability 1 as the sample size n approaches to ∞. The following

conditions are required to establish the sure screening property.

Define

z = Σ−1/2x, and Z = XΣ−1/2 (2.2.4)

where x = (X1, ..., Xp)
T and Σ = cov(x).

(A1) p > n and log p = O(nξ) for some ξ ∈ (0, 1− 2κ), where κ is given by (A3).

(A2) z has a spherically symmetric distribution and for the random matrix Z, there

exist some constants c1 > 1 and C1 > 0 such that the deviation inequality

P (λmax(p̃
−1Z̃Z̃T ) > c1 and λmin(p̃−1Z̃Z̃T ) > 1/c1) ≤ e−C1n

holds for any n × p̃ submatrix Z̃ of Z with cn < p̃ ≤ p, where λmax(·) and

λmin(·) denote the largest and smallest eigenvalues of a matrix, respectively.

Also, ε ∼ N(0, σ2) for some σ > 0

(A3) var(Y ) = O(1) and for some κ ≥ 0 and c2, c3 > 0,

min
i∈M
|βi| ≥

c2
nκ

and min
i∈M
|cov(β−1i Y,Xi)| ≥ c3
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(A4) For some τ ≥ 0 and c4 > 0 such that

λmax(Σ) ≤ c4n
τ

Condition (A1) shows that the proposed SIS works for the ultrahigh dimensional

setting. By setting a lower bound, Condition (A3) removes the situation where

a significant variable is marginally uncorrelated with the response Y , but jointly

correlated with Y . κ controls the rate of probability error in recovering the true

spare model. Condition (A4) excludes the situation of strong collinearity among

predictors.

Theorem 2.2.1. Under conditions (A1) - (A4), assuming the true model size s ≤

[γn], if 2κ + τ < 1 then there exist some θ < 1 − 2κ − τ such that when γ ∼ cn−θ

with c > 0, we have for some C > 0,

P(M ⊂ M̂γ) = 1−O(exp(−Cn1−2κ/logn)),

therefore,

P(M ⊂ M̂γ) → 1, as n→∞

The above theorem shows that the SIS has the sure independence screening property

and reduce the dimension of predictors from p down to d = [γn].

2.2.2 Generalized Correlation Ranking

Pearson’s correlation can perform effectively in the linear relationship case between

each predictor Xj and the response Y. However, nonliearity of response can result

in significant predictors being overlooked. Since the SIS is based on the Pearson’s
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correlation, if an active predictor Xj is nonlinearly related to the response Y , the SIS

is likely to fail to detect this predictor. In order to overcome the weakness of the SIS,

Hall and Miller (2009) proposed an approach based on ranking generalized empirical

correlations between the response variable and components of the predictors. This

procedure can capture both linear and nonlinear relationship between the predictor

and the response. Assume that (X1, Y1), ..., (Xn, Yn) are i.i.d observed pairs of p-

vectors Xi and scalars Yi. The generalized correlation between Y and Xj is defined

as

ψj = sup
h∈H

cov({h(Xj)}, Y )√
var{h(Xj)}var(Y )

(2.2.5)

where H is the vector space generated by any given set of functions h. If H is set to

be the class of linear functions, then it is the Pearson’s correlation.

The generalized correlation between Y i and the jth component Xij of Xi can be

estimated by

ψ̂j = sup
h∈H

∑n
i=1{h(Xij)− h̄j}(Yi − Ȳ )√∑n

i=1{h(Xij)2 − h̄2}
∑n

i=1(Yi − Ȳ )2
(2.2.6)

where h̄j = n−1
∑n

i=1 h(Xij).

The proposed method orders the estimators ψ̂j at (2.2.6) as ψ̂ĵ1 ≥ ψ̂ĵ2 ≥ ... ≥ ψ̂ĵp

and take

ĵ1 � ĵ2 � ... � ĵp (2.2.7)

to represent an empirical ranking of the predictor indices of X in order of their

influence expressed through a generalized coefficient of correlation. The notation
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j � j′ represents ψ̂j ≥ ψ̂j′ .

The following assumptions are required to establish the theoretical properties of the

generalized correlation ranking.

(B1) the pairs (X1, Y1), ..., (Xn, Yn) are i.i.d

(B2) H is the class of polynomial functions up to but not exceeding a given degree

d ≥ 1;

(B3) var{h(Xij)} = var{Yi} = 1 for all i and j;

(B4) for constants γ, c > 0, and sufficiently large n, p ≤ O(nγ);

(B5) for a constant C > 4d(γ + 1), sup
n

max
j≤p

E|X1j|C <∞, and sup
n
E|Y1|C <∞.

Given constant 0 < c1 < c2 < ∞, define I1(c1) = {j : |cov(Xi, Yi)| ≤ c1
√

log n/n}

and I2(c2) = {j : |cov(Xi, Yi)| ≥ c2
√

log n/n}

Theorem 2.2.2. Under above assumptions, for sufficiently small c1 and sufficiently

large c2, in the correlation-based ranking ĵ1 � ĵ2 � ... � ĵp, with the probability

converging to 1 as n→∞, all indices in I2(c2) are listed before any of the indices in

I1(c1) .

Theorem 2.2.2 shows that for predictors that have sufficiently large covariance are

ranked before predictors that have smaller covariance.

2.2.3 Sure Independence Screening for GLM

Since the SIS possesses a sure independent screening property in the context of the

linear model, Fan and Song (2010) proposed a more general version of the indepen-
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dent learning using the maximum marginal likelihood in generalized linear model.

Thus, the SIS is a special case of this proposed procedure.

Assume that Y is from an exponential family with the probability density function

taking the canonical form

fY (y|θ(x)) = exp{yθ(x)− b(θ(x)) + c(y)} (2.2.8)

for some known functions b(·), c(·) and θ(x) =
∑p

j=1 βjxj. The mean response is

b′(θ), the first derivative of b(θ) respect to θ. The dispersion parameter φ is set to be

1. Then, we estimate a (p+1)-vector of parameter β = (β0, ..., βp) from the following

generalized linear model:

E(Y |X = x) = b′(θ(x)) = g−1(
p∑
j=0

βjxj)

where x = {1, ..., xp}T is a (p+1) dimensional covariate. We assume that the covari-

ates are standardized.

Define M = {1 ≤ j ≤ pn : β∗j 6= 0} be the true sparse model with nonsparsity size

|M |. The maximum marginal likelihood estimator (MMLE) β̂Mj , for j = 1, ..., pn is

defined as the minimizer of the componentwise regression

β̂Mj = (β̂Mj,0, β̂
M
j ) = arg min

β0,βj
Pnl(β0 + βjXj, Y ), (2.2.9)

where l(θ, Y ) is the log likelihood for the natural parameter, l(θ, Y ) = −[θY − b(θ)−

log c(Y )], and Pnf(X, Y ) = 1
n

∑n
i=1 f(Xi, Yi). Select a submodel

M̂γn = {1 ≤ j ≤ pn : |β̂Mj | ≥ γn},

where γn is a predefined threshold value.
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Although the interpretation of the marginal model is biased from the joint model,

the non sparse information about the joint model be passed along to the marginal

model under minor conditions.

Following conditions are required to establish the sure screening property

(C1) The Fisher information,

I(β) = E{[ ∂
∂β

l(XTβ, Y )][
∂

∂β
l(XTβ, Y )]T}

is finite and positive definite at β = β0.

(C2) The second derivative of b(θ) is continuous and positive. There exists and

ε1 > 0 such that for all j = 1, . . . , pn

sup
β∈B,||β−βM

j ||≤ε1
|Eb(XT

j β)I(|Xj| > Kn)| ≤ o(n−1)

(C3) For all βj ∈ B, we have E(l(XT
j βj, Y ) − l(XT

j β
M
j , Y )) ≥ V ||βj − βMj ||2, for

some positive V , bounded from below uniformly over j = 1, . . . , pn.

(C4) There exists some positive constants m0,m1, s0, s1 and α, such that for suffi-

ciently large t,

P (|Xj| > t) ≤ (m1 − s1) exp{−m0t
α} for j = 1, . . . pn

(C5) |cov(b′(XTβ∗), Xj)| ≥ c1n
−κ for j ∈M

Let kn = b′(KnB+B)+m0K
α
n/s0. The following theorem gives a uniform convergence

result of MMLEs and the sure screening property.
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Theorem 2.2.3 Suppose that conditions (C1), (C2), (C3), and (C4) hold,

(i) If n1−2κ/(k2nK
2
n) → ∞, then for any c30, there exists a positive constant c4,

such that

P ( max
1≤j≤pn

|β̂Mj − βMj | ≥ c3n
−κ) ≤ pn{exp(−c4n1−2κ/(knKn)2) + nm1 exp(−m0K

α
n )}

(ii) If, in addition, condition (C5) holds, then by taking γn = c5n
−κ with c5 ≤ c2/2

we have

P (M⊂ M̂γn) ≤ 1− sn{exp(−c4n1−2κ/(knKn)2) + nm1 exp(−m0K
α
n )},

where sn is the size of non-sparse elements.

Fan and Song (2010) also discuss the controlling the false selection rates.

Under some mild conditions, it has been shown that

max
j /∈M
|β̂Mj | = c3n

−κ for any c3 > 0

with probability approach to 1. By choosing γn = c5n
−κ , model consistency can be

achieve

P (M̂γn = M) = 1− o(1)
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2.2.4 Sure Independence Ranking and Screening

Zhu, Li, Li, and Zhu (2011) proposed a model free feature screening approach for

ultrahigh-dimensional data, called sure independence ranking and screening (SIRS).

The SIR impose a general model framework including commonly used parametric

and semi parametric methods instead of a specific model.

Let Y be the response variable with support Ψy, and Y can be both univariate

and multivariate. Let x = (X1, . . . , Xp)
T be a predictr vector. Define the notation

of active predictors and inactive predictors without specifying a regression model.

Consider the conditional distribution function F (y|x) = P (Y < y|x). Define two

index sets:

A = {k : F (y|x) functionally depends on Xk for some y ∈ Ψy},

I = {k : F (y|x) does not functionally depends on Xk for some y ∈ Ψy},

where A is the index of active predictors and I is the index of inactive predictors.

Consider that the conditional distribution of Y given x depends only through βTxA

where xA is an an active predictor vector

F (y|x) = F0(y|βTxA), (2.2.10)

where F0(·|βTxA) is an unknown conditional distribution function given βTxA,

Without a loss of generality, assume that E(Xk) = 0 and var(Xk) = 1 for k =

1, . . . , p. Define Ω(y) = E{xF (y|x)}. Then by the law of iterated expectations that

Ω(y) = E[xE{1(Y < y)|x}] = cov{x, 1(Y < y)}. Let Ωk(y) be the kth element of
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Ω(y) and define

ωk = E{Ω2
k(Y )} k = 1, . . . , p (2.2.11)

Then ωk is the population quantity of proposed marginal utility measure for predictor

ranking.

Given a random sample {(xi, Yi), i = 1, . . . , n} from {x, Y },, the sample estimator

of ωk is

ω̃k =
1

n

n∑
j=1

{ 1

n

n∑
i=1

Xik1(Yi < Yj)}2, k = 1, . . . , p. (2.2.12)

where Xik is the kth element of xi.

Following conditions are require for performing the sure independence ranking and

screening

(D1) The following inequality condition holds uniformly for p

K2λmax{cov(xA,x
T
I )cov(xI ,x

T
A)}

λ2min{cov(xA,xTA)}
<

mink∈A ωk
λmax{ΩA}

(2.2.13)

where ΩA = E{ΩA(T )ΩT
A(Y )}, and and λmax{B}, λmin{B} denote the largest

and smallest eigenvalues of a matrix B.

(D2) The linearity condition:

E{x|βTxA} = cov(x,xTA)β{cov(βTxA)}−1βTxA (2.2.14)
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(D3) The moment condition: there exists a positive constant t0 such that

max
1≤k≤p

E{exp(tXk)} <∞ for 0 < t ≤ t0. (2.2.15)

condition (D1) dictates the correlations among the predictors, and is the key as-

sumption to ensure that the proposed screening procedure works properly.

Theorem 2.2.4 Under conditions (D1)-(D3), the following inequality holds uni-

formly for p:

max
k∈I

ωk < min
k∈A

ωk (2.2.16)

Theorem 2.2.4 shows that the proposed marginal utility measure ωk for inactive

predictors are smaller than ωk for active predictors.

Theorem 2.2.5 In addition to the conditions in Theorem 1.2.3, assume that p =

o{exp(an)} for any fixed a > 0. Then for any ε > 0, there exists a sufficiently small

constant sε ∈ (0, 2/ε) such that

P ( sup
k=1,...,p

|ω̂k − ωk| > ε) ≤ 2p exp{n log(1− εsε/2)/3}

In addition, if we write δ = mink∈A ωk − maxk∈I ωk, then there exists a sufficiently

small constant sδ/2 ∈ (0, 4/δ) such that

P (max
k∈I

ω̂k < min
k∈A

ω̂k) ≥ 1− 4p exp{n log(1− δsδ/2/4)/3}

Theorem 2.2.5 demonstrates that the proposed marginal utility measure estimate ω̂k

ranks active predictors ahead of inactive ones with the probability approaches to 1.
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Compare to the hard thresholding rule for selecting a submodel by Fan and Lv (2008),

Zhu, Li, Li, and Zhu (2011) suggested a soft thresholding rule based on adding aux-

iliary variables. Generate randomly and independently d auxiliary variables where

z ∼ Nd(0, Id), and z is independent of both x and Y . Since z is a vector of inactive

predictors, we have mink∈A ωk > maxk∈z ωk. Define Cd = maxk∈z ω̂k, which can be

viewed as a benchmark that separates the active predictors from the inactive ones.

This leads to the selection

Â1 = {k : ω̂k > Cd} (2.2.17)

Theorem 2.2.6 Assume that the inactive predictors {Xj, j ∈ I} and the auxil-

iary variables{Zj, j = 1, . . . , d}are exchangeble in the sense that both the inactive

and auxiliary variables are equally likely to be recruited by the soft thresholding

procedure. Then

P (|Â ∩ I| ≥ r) ≤ (1− r

p+ d
)d

where | · | denotes the cardinaility of a set.

2.2.5 Nonparametric Independence Screening in Sparse Ultra-

High Dimensional Additive Models

Fan, Feng, and Song (2011) proposed nonparametric independence screening in ul-

trahigh dimensional additive models (NIS). By using a more flexible class of nonpara-

metric models, this procedure increases the flexibility of the ordinary linear model

proposed by Fan and Lv (2008).
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Suppose that we have a random sample (X1, Y2), . . . , (Xn, Yn), from the population

Y = m(X) + ε =

p∑
j=1

mj(Xj) + ε (2.2.18)

where Xi = (X1, ..., Xp)
T , ε is the random error with conditional mean 0. We

assume that the true regression function admits the additive structure. mj(Xj)

also assumes to have mean 0 for j = 1, . . . , p. Define the set of true predictors as

M = {j : Emj(Xj)
2 > 0}. We consider the following p marginal nonparametric

regression problems:

min
fj∈L2(P )

E(Y − fj(Xj))
2 (2.2.19)

The minimizer of (2.2.19) is fj = E(Y |Xj). This method ranks the marginal utility

of covariates according to Ef 2
j (Xj) and select a submodel by predefined thresholding.

For an estimate of the marginal nonparametric regression, a B-spline basis is used.

Let Sn be the space of polynomial spline of degree l and {Ψjk, k = 1, ..., dn} denote

a normalized B-spline basis with ||Ψjk||∞ ≤ 1. For any fnj ∈ Sn, we have,

fnj(x) =
dn∑
k=1

βjkΨjk(x), 1 ≤ j ≤ p (2.2.20)

for some coefficients {βjk}dnk=1. Under some smoothness conditions, the nonparamet-

ric projections {fj}pj=1 can be well approximated by functions in Sn. The estimate

of the marginal regression is

min
fnj∈Sn

Pn(Y − fnj(Xj))
2 = min

βj∈Rdn
Pn(Y −ΨT

j βj)

where Ψj denotes the dn-dimensional basis functions and Png(X, Y ) is the sample
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average of {g(Xi, Yi)}ni=1. Then select a set of variables

M̂vn = {1 ≤ j ≤ p : ||f̂nj||2n ≥ vn},

where ||f̂nj||2n = 1
n

∑n
i=1 f̂nj(Xij)

2

For establishing the theoretical property, following conditions are required

(E1) The nonparametric marginal projections {fj} for j = 1, . . . , p belong to a class

of functions F , whose rth derivative f (r) exists and is Lipschitz of order α,

F = {f(·) : |f (r)(s)− f (r)(t)| ≤ K|s− t|α| for s, t ∈ [a, b]}

for some positive constant K, where r is a nonnegative integer and α ∈ (0, 1]

such that d = r + α > 0.5

(E2) The marginal density function gj of Xj satisfies 0 < K1 ≤ gj(Xj) ≤ K2 < ∞

on [a, b] for 1 ≤ j ≤ p for some constants K1 and K2.

(E3) minj∈M E{E(Y |Xj)
2} ≥ c1dnn

−2κ, for some 0 < κ < d/(2d+ 1) and c1 > 0.

(E4) ||m||∞ < B1 for some positive constant B1, where || · ||∞ is the sup norm.

(E5) The random error εi are i.i.d with conditional mean 0 for i = 1, . . . , n, and for

any B2 > 0, there exists a positive constant B3 such that E[exp(B2|εi|)|Xi] <

B3.

(E6) There exist positive constants c1 and ψ ∈ (0, 1) such that d−2d−1n ≤ c1(1 −

ψ)n−2κ/C1.

Lemma 2.2.7 Under conditions (E1) - (E3), we have

min
j∈M
||fnj||2 ≥ c1ψdnn

−2κ
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Theorem 2.2.8 Under conditions (E1), (E2), (E4), and (E5),

(i) For any c2 > 0, there exist some positive constants c3 and c4 such that

P ( max
1≤j≤pn

| ||f̂nj||2n − ||fnj||2| > c2dnn
−2κ)

≤ pndn{(8 + 2dn)exp(−c3n1−4κd−3n ) + 6dn exp(−c4nd−3n )}

(ii) In addition, under condition (E3) and (E6), by taking vn = c5dnn
−2κ with

c5 ≤ c1ψ/2, we have

P (M ⊂ M̂vn) ≥ 1− sndn{(8 + 2dn) exp(−c3n1−4κd−3n ) + 6dn exp(−c4nd−3n )}

Fan, Feng, and Song (2011) also discuss about the controlling the false selection rate.

The ideal case for the vanishing false positive rate is that

max
j /∈M
||fnj||2 = o(dnn

−2κ)

so there is a gap between active and inactive predictors under the marginal non-

parametric screening. By theorem 1.2.7 (i), if theorem tends to 0 with probability

tending to 1 that

max
j /∈M
||f̂nj||2 ≤ c2dnn

−2κ for any c2 > 0 (2.2.21)

Thus, by the choice of vn in theorem 1(ii), we can achieve model selection consistency

P (M̂vn = M) = 1− o(1) (2.2.22)
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2.2.6 Feature Screening via Distance Correlation Learning

Li, Zhong, and Zhu (2012b) proposed a feature screening procedure for ultrahigh

dimensional data based on distance correlation (DC-SIS). The proposed DC-SIS

is the model free procedure which can handle grouped predictors and multivariate

responses.

Székely et al. (2009) defined the distance covariance between u and v with finite first

moments to be the nonnegative number dcov(u, v) given by

dcov2(u,v) =

∫
Rdu+dv

||Φu,v(t, s)− Φu(t)Φvv(s)||2w(t, s)dtds (2.2.23)

where ds and dv are the dimensions of u and v, and Φu(t) and Φv(s) be the respective

characteristic functions of the random vectors u and v, and ϕu,v(t, s) be the joint

characteristic function of u and v, and w(t, s) = {cducdv ||t||1+dudu
||s||1+dvdv

}−1 Székely

et al. (2009) stated that

dcov2(u,v) = S1 + S2 − 2S3 (2.2.24)

where S1, S2, and S3 are defined as

S1 = E{||u− ũ||du ||v − ṽ||dv}

S2 = E{||u− ũ||du}E{||v − ṽ||dv} (2.2.25)

S3 = E{E(||u− ũ||du|u)E(||v − ṽ||dv |v)}
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Then the estimates of S1, S2, and S3 are using the usual moment estimation,

Ŝ1 =
1

n2

n∑
i=1

n∑
j=1

||u− ũ||du ||v − ṽ||dv

Ŝ2 =
1

n2

n∑
i=1

n∑
j=1

||u− ũ||du ||
n∑
i=1

n∑
j=1

||v − ṽ||dv (2.2.26)

Ŝ3 =
1

n2

n∑
i=1

n∑
j=1

n∑
l=1

||u− ũ||du ||v − ṽ||dv

The estimate of distance correlation between u and v is defined as

d̂corr(u,v) =
d̂cov(u,v)√

d̂cov(u,u)d̂cov(v,v)

(2.2.27)

Let y = (Y1, . . . , Yq)
T be the response vector with support Ψy and x = (X1, . . . , Xp)

T

be the predictor vector. Without specifying a regression model, we define the index

set of the active and inactive predictors by

A = {k : F (y|x) functionally depends on Xk for some y ∈ Ψy},

I = {k : F (y|x) does not functionally depends on Xk for some y ∈ Ψy},

We further write xD = {Xk : k ∈ D} and xI = {Xk : k ∈ I},and refer to xD as an

active predictor vector and its complement xI as an inactive predictor vector.

The DC-SIS is a model free procedure that it allows for arbitrary regression relation-

ship of y onto x, both linear or nonlinear and also permits univariate and multivariate

response, including continuous, discrete and categorical. Select a set of a important

predictors ω̂k = d̂corr2(Xk,y). That is, define a submodel as

D̂ = {k : ω̂k ≥ cnκ, for 1 ≤ k ≤ p} (2.2.28)
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where c and κ are pre-specified threshold values.

Following conditions are required for establishing the sure screening property for the

DC-SIS

(F1) Both x and y satisfy the sub-exponential tail probability uniformly in p. That

is, there exists a positive constant s0 such that for all 0 < s ≤ 2s0,

sup
p

max
1≤k≤p

E{exp(s||Xk||21)} <∞, and E{exp(s||y||2q)} <∞.

(F2) The minimum distance correlation of active predictors satisfies

min
k∈D

ωk ≥ 2cnκ, for some constants c > 0 and 0 ≤ κ < 1/2.

Condition (F1) follows when x and y are bounded uniformly, or when they have

multivariate normal distribution. Condition (F2) requires that the marginal distance

correlation of active predictors cannot be too smal.

Theorem 2.2.9 Under condition (F1), for any 0 < γ < 1/2−κ, there exists positive

constant c1, c2 > 0 such that

Pr( max
1≤k≤p

|ω̂k − ωk| ≥ cn−κ) ≤ O(p[exp{−c1n1−2(κ+γ)}+ n exp(−c2nγ)])

Under condition (F1) and (F2)

Pr(D ⊆ D̂) ≥ 1−O(sn[exp{−c1n1−2(κ+γ)}+ n exp(−c2nγ)])

where sn is the cardinality of D. The sure screening property holds for the DC-SIS.
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2.2.7 Principled sure independence screening for Cox mod-

els with ultra-high-dimensional covariates

Zhao and Li proposed a sure independence screening for Cox model. This procedure

provides a tool for censored data in the survival setting. This procedure assumes that

the underlying survival times follow the Cox model with the true hazard function.

To perform the screening, the marginal Cox model is fitted for each Zij, namely

λ∗0(x) exp(βZij. Ni(t) = I(Xi ≤ t, δi = 1) be independent counting processes for

each subject i and Yi(t) = I(Xi ≥ t) be the at-risk processes. For κ = 0, 1, . . . ,

define

S
(k)
j (β, x) =

1

n

n∑
i=1

Zk
ijYi(x) exp(βZi), s

(k)
j (x) = E{S(k)(x)} (2.2.29)

Then the maximum marginal partial likelihood estimator β̂j solves the estimating

equation

Uj(β) =
n∑
i=1

∫ τ

0

{Zij −
S
(1)
j (β, x)

S
(0)
j (β, x)

}dNi(x) = 0. (2.2.30)

Finally, let β0j be the solution to the limiting estimation equation

uj(β) =

∫ τ

0

{s(1)j (x)−
S
(1)
j (β, x)

S
(0)
j (β, x)

}dNi(x) = 0. (2.2.31)

Define the information matrix to be Ij(β) = −δUj/δβ at β̂j. Denote the final screened

model by M̂ = {j : Ij(β̂j)
1/2|β̂j| ≥ γn}. The thresholding value γn such that we can

achieve the sure screening property while controlling the false positive rate. If the
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true model M has size s then the expected false positive rate can be written as

E(
|M̂ ∩M c|
|M c|

) =
1

p− s
∑
j∈Mc

P{Ij(β̂1/2
j |β̂| ≥ γn}.

Since Ij(β̂j)
1/2β̂j has an asymptotically standard normal distribution, γn controls the

expected false positive rate at 2{1−Φ(γm)}. If b is the number of false positive that

can be allowed, then the false positive rate is b/(p− s). Since s is unknown, choose

the conservative γn = Φ−1{1− b/2pn}, so the expected false positive rate is less than

b/(p− s).

Following conditions are required for establishing the theoretical property.

(G1) There exists a neighborhood B of β0j such that for each t <∞,

sup
x∈[0,t],β∈B

|S(0)
j (β, x)− s(0)j (β, x)| → 0

(G2) For each t <∞ and j = 1, . . . , pn,
∫ t
0
s
(2)
j (x)dx <∞.

(G3) The true parameter vector α0 belongs to a compact set such that each compo-

nent α0j is bounded by a constant A > 0. Furthermore, ||α0||1 is bounded by

a constant L > 0.

(G4) λ0(τ) is bounded by a positive constant.

(G5) There is some constant C > 0 such that n−1|Uj(β̂j)−Uj(β0j)| ≤ C|β̂− β0j| for

all j = 1, . . . , pn.

(G6) The Zij are independent of time and bounded by a constant T > 0, and

E(Zij) = 0 for all j.
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(G7) If FT (x;Zi) is the cumulative distribution function of Ti given Zi, then for

constants c1 > 0 and κ < 1/2, minj∈M |cov[Zij, EFT (Ci;Zi)|Zi]| ≤ c1n
−κ.

(G8) The Zij, j ∈M c are independent of the Zij, j ∈M ? and of Ci.

Theorem 2.2.10 Under assumptions (G1) ∼ (G8), if we choose γn = Φ(1− b/2p),

then then for κ < 1/2 and log(p) = O(n1/2−κ), there exists a constant c1 > 0 such

that

P (M ⊆ M̂) ≥ 1− s exp(−c1n1−2κ)

This procedure possesses the sure independent property. Theorem 2.2.11 Under

some mild assumptions, if we choose γn = Φ(1 − b/2p), then then for κ < 1/2 and

log(p) = O(n1/2−κ), there exists a constant c2 > 0 such that

E(
|M̂ ∩M c|
|M c|

) ≤ b/p+ c2n
−1/2

This procedure controls the false positive rate.

2.2.8 Robust Rank Correlation Based Screening

Li, Peng, Zhang, and Zhu (2012a) proposed a procedure that is based on the Kendall

τ correlation coefficient between response and predictor variable. Consider the linear

model

Y = Xβ + ε

where Y is an n-vector of response and X is n × p random matrix. Let ω =
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(ω1, . . . , ωp)
T being

ωk =
1

n(n− 1)

n∑
i 6=j

I(Xik < Xjk)I(Yi < Yj)− 1/4, k = 1, . . . , p, (2.2.32)

a p-vector of the one fourth of the Kendall τ between Y and Xk. Then we rank ωk

by its magnitude and select a submodel

M̂γn = {1 ≤ k ≤ p : |ωk| > γn}

Since the Kendall τ is robust against heavy-tailed distribution, this procedure is

more robust than the SIS. We assume that

M∗ = {1 ≤ k ≤ p : βk 6= 0}

The following conditions are required for the sure screening property.

(H1) As n approaches to infinity, the dimension of X satisfies p = O(exp(nδ)) for

some δ ∈ (0, 1), satisfying δ + 2κ < 1 for any κ ∈ (0, 1/2).

(H2) cM∗ = mink∈M∗ E|X1k| is a positive constant and free of p.

(H3) The predictors Xi and the error εi, for ı = 1, . . . , n, are independent.

Theorem 2.2.12 Under the condition (H2) and the marginal symmetrical condi-

tions, we have

(i) E(ωk) = 0 if and only if ρk = 0.

(ii) If |ρk| > c1n
−κ for k ∈ M∗ with a positive constant c1, then there exists a

positive constant c2 such that mink∈M∗ |E(ωk)| > c2n
−κ.
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Theorem 2.2.13 Under the conditions (H1) ∼ (H3) for some 0 < κ < 1/2 and

c3 > 0, there exists a positive constant c4 > 0 such that

P ( max
1≤j≤p

|ωj − E(ωj)| ≥ c3n
−κ) ≤ p{exp(−c4n1−2κ)}.

Furthermore, by taking γn = c5n
−κ with c5 ≤ c2/2, if |ρk| > c1n

−κ for j ∈ M∗, we

have

P (M∗ ⊂ M̂γn) ≥ 1− 2|M∗|{exp(−c4n1−2κ)}

Thus, the sure screening property holds for the RRCS.



Chapter 3
Independence Screening via the

Variance of the Regression Function

3.1 Introduction

In this chapter, we propose a new nonparametric screening procedure based on the

variance of the regression function (RV-SIS). We show that the RV-SIS possesses the

sure screening property that is defined by Fan and Lv (2008). We conduct numerical

simulation studies to compare the performance of the RV-SIS to other procedures.

This chapter is organized as follows. In section 3.2, we introduce the RV-SIS for ultra

high dimensional data, and we establish the sure screening property for the RV-SIS.

In section 3.3, the result of the numerical studies is presented. Technical proofs are

given in section 3.4.
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3.2 Nonparametric Independence Screening via the

Variance of the Regression Function

3.2.1 Preliminaries

Consider a random sample (X1, Y1), . . . , (Xn, Yn) of iid (p + 1)-dimensional random

vectors, where Yi is univariate and Xi = (X1i, . . . , Xpi)
T is a p-dimensional, i =

1, . . . , n. Let m(X) = E(Y |X) and write

Y = m(X) + ε, (3.2.1)

where ε = Y − m(X). For k = 1, . . . , p, we consider p marginal nonparametric

regression functions

mk(x) = E(Yi|Xki = x) (3.2.2)

of Y on each variable Xk, and define the set of active and inactive predictors by

D = {k : mk(x) is not a constant function}, Dc = {1, . . . , p} − D, (3.2.3)

respectively. The proposed screening procedure relies on ranking the significance

of the p covariates according to the magnitude of the variance of their respective

marginal regression functions,

σ2
mk

= var(mk(x)) for k = 1, . . . , p. (3.2.4)
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Note that σ2
mk

> 0 for k ∈ D, while σ2
mk

= 0 for k ∈ Dc, making σ2
mk

a natural

quantity to discriminate between the two classes of predictors. In addition, the

variance of the regression function appears as the mean shift, under local alternatives,

of the procedure for testing the significance of a covariate proposed in Wang, Akritas

and Van Keilegom (2008). This suggests that σ2
mk

is the best quantity to discriminate

between the two classes of predictors.

If m̂k denotes an estimator of mk, σ
2
mk

can be estimated by the sample variance of

m̂k(Xk1), . . . , m̂k(Xkn). The methodology described here works with any type of

nonparametric estimator of mk, but the theory has been developed for Nadaraya-

Watson type estimators.

For a kernel function K(·) and bandwidth h, set m̂k(Xki) =
∑n

j=1 YjWk;i,j, where

Wk;i,j = K(
Xkj−Xki

h
)/
∑n

j=1K(
Xkj−Xki

h
), and

S̃2
mk

=
1

n

n∑
i=1

(
m̂(Xki)−

1

n

n∑
l=1

m̂(Xkl)

)2

(3.2.5)

for the estimator of σ2
mk

. The bandwidth will be of the order h = cn−1/5, throughout

this paper. The RV-SIS estimates D by

D̂ = {k : S̃2
mk
≥ Cd, for 1 ≤ k ≤ p} (3.2.6)

for some threshold parameter Cd. Thus, the RV-SIS procedure reduces the dimension

of covariate vector from p to |D̂|, where | · | refers the cardinality of a set. The choice

of Cd, which defines the RV-SIS procedure, is discussed below.
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3.2.2 Thresholding Rule

We adopt the idea of the soft thresholding rule by Zhu et al. (2011) as a method for

choosing the threshold parameter Cd. This method consists of randomly generating

a vector Z = (Xp+1, . . . , Xp+d) of d auxiliary random variables from the uniform

distribution between (0, 1), Xp+i ∼ Unif(0, 1) for i = 1, . . . , d, that are independent

of both X and Y. By design, the auxiliary variables are inactive predictors. The

soft thresholding rule chooses the threshold parameter as

Cd = max
j∈B

S̃2
mj
, (3.2.7)

where B = {p+ 1, . . . , p+ d} denotes the set of indices of the d auxiliary variables.

Theorem 3.2.1 provides an upper bound on the probability of selecting inactive pre-

dictors from using the proposed soft thresholding rule provided the following ex-

changeability condition holds.

Exchangeability Condition: Let k ∈ Dc and j ∈ B. Then, the probability that

S̃2
mk

is greater than S̃2
mj

is equal to the probability that S̃2
mk

is less than S̃2
mj

.

Theorem 3.2.1. Under the exchangeability condition, for any integer r ∈ (0, p) we

have

P (|D̂ ∩ Dc| ≥ r) ≤
(

1− r

p+ d

)d
. (3.2.8)

3.2.3 Sure Screening Properties

In this section, we show the RV-SIS possesses the sure independent screening prop-

erty. The following conditions are required for technical proofs:
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(C1) There exists positive constants t, C1 and C2 such that,

(a) max
1≤k≤p

E{exp(t|Yj −mk(Xkj)|)} < C1 <∞,

(b) max
1≤k≤p

E(exp(t(Xki −Xkj)
2)) < C2 <∞

(C2) The kernel K(·) has bounded support, is symmetric, and is Lipschitz continu-

ous, i.e, it satisfies, for some Λ1 <∞ and for all u, u′ ∈ R,

|K(u)−K(u′)| ≤ Λ1|u− u′|.

(C3) If fk(x) denotes the marginal density of the kth predictor, we have

sup
x
|x|sE(|Y ||Xk = x)fk(x) ≤ B <∞ for some s ≥ 1

supx fk(x) < ∞, inf
x
fk(x) > 0, and fk(x) is uniformly continuous, for all k =

1, . . . , p.

(C4) The conditional expected value mk(·) is a Lipschitz continuous for all k =

1, . . . , p, that is for some Λ2 <∞ and for all u, u′ ∈ R,

|mk(u)−mk(u
′)| ≤ Λ2|u− u′|.

(C5) For some constants c > 0 and 0 < κ < 2/5,

min
k∈D

σ2
mk
≥ cn−κ + Cd,

where Cd is defined in (3.2.7).
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In words, Condition (C1) requires that the moment generating functions of the ab-

solute value of the error terms of the marginal regressions and the square difference

between two covariates, is finite at least for some t > 0. Conditions (C2) and (C3)

are standard conditions for establishing uniform convergence rates of needed for the

kernel density estimator. Condition (C5) sets a lower bound on the variance of the

marginal regression functions of the active predictors.

Theorem 3.2.2. Let σ2
mk
, S̃2

mk
, D, D̂, be defined in (3.2.4), (3.2.5), (3.2.3) and

(3.2.6), respectively.

1. Under condition (C1) ∼ (C4) for any 0 < κ < 2/5 and 0 < γ < 2/5− κ, there

exists positive constants c, c1, and c2 such that,

P ( max
1≤k≤p

|S̃2
mk
− σ2

mk
| ≥ cn−κ) ≤ O(p[n exp(−c1n4/5−2(γ+κ)) + n2 exp(−c2nγ)])

2. Under condition (C1) ∼ (C5), c, c1, c2, γ and κ as in part 1,

P (D ⊆ D̂) ≥ 1−O(|D|[n exp(−c1n4/5−2(γ+κ)) + n2 exp(−c2nγ)]),

where |D| is the cardinality of D.

The second part of Theorem 3.2.2 shows that the screened submodel includes all

active predictors with the probability approaches to 1 with an exponential rate.
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3.3 Numerical Studies

3.3.1 Simulation Studies

Here we present the result of several simulation studies comparing performance of the

SIS, DC-SIS, NIS, RRCS and RV-SIS methods. In all cases, X = (X1, X2, . . . , Xp)
T

comes from a multivariate normal with mean zero and covariance Σ = (σij)p×p,

and ε ∼ N(0, 1). We use three different covariance matrices: (i) σij = 0.5|i−j|, (ii)

σij = 0.8|i−j|, and (iii) σij = 0.5. We set the dimension of covariates p to be 2000

and the sample size n to be 200. We replicate the experiment 500 times and base

the comparisons on the following three criteria

R1: The 5%, 25%, 50%, 75%, 95% quantiles of the minimum model size that includes

all active covariates.

R2: The proportion of times each individual active covariate is selected in models

of size d1 = [n/ log n], d2 = [2n/ log n] and d3 = [3n/ log n].

R3: The proportion of times all active covariates are selected in models of size

d1 = [n/ log n], d2 = [2n/ log n] and d3 = [3n/ log n].

We consider the following four models:

3.(a) Y = 2X1 + 0.5X2 + 3 · 1{X12 < 0}+ 2X22 + ε

3.(b) Y = 1.5X1 ·X2 + 3 · 1{X12 < 0}+ 2X22 + ε

3.(c) Y = 2 cos(2πX1) + 0.5X2
2 + 3 · 1{X12 < 0}+ 2X22 + ε

3.(d) Y = 2 cos(2πX1)X
2
2 + 3X12 + 2 exp(1{X22 < 0}) + ε
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All models include an indicator variable. Model 3.(a) is linear, Model 3.(b) includes

an interaction term, Model 3.(c) is additive but nonlinear, and Model 3.(d) is non-

linear with an interaction term.

Tables 3.1, 3.2 and 3.3 present the simulation results for R1 using each of the above

models with σij = 0.5|i−j|, σij = 0.8|i−j|, and σij = 0.5, respectively. Tables 3.4, 3.5

and 3.6 presents the simulation results for R2 and R3 with σij = 0.5|i−j|, σij = 0.8|i−j|,

and σij = 0.5, respectively.

These results show that the comparisons in term of the three criteria are similar. All

procedures perform worse when we use the equal covariance matrix, σij = 0.5. SIS

and RRCS perform rather poorly except in Model 3.(a) where all methods have sim-

ilar performance. For Model 3.(b), NIS performs slightly better than RV-SIS, while

RV-SIS performs somewhat better than DC-SIS when σij = 0.8|i−j|, considerably bet-

ter when σij = 0.5|i−j|, and significantly better when σij = 0.5. In Models 3.(c) and

3.(d) DC-SIS and NIS have similar performance but RV-SIS performs considerably

better than either of them.

Finally, Table 3.7 presents the execution time, in seconds, of the DC-SIS, NIS and

RV-SIS for Model 3.(d). The RV-SIS procedure takes significantly less time than the

DC-SIS and slightly less time than the NIS.

3.3.2 Thresholding Simulation

In this section we use simulations to compare the soft thresholding rule to the hard

thresholding approaches for selecting the submodel. We consider following three

models relating the response Y to covariates X1, X2, . . . , Xp, where p = 2, 000:

3.(e) Y = c1X1 + . . .+ c25X25 + ε
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3.(f) Y = c1X1 + . . .+ c10X10 + ε

3.(g) Y = c1X1 + c2X2 + c3X3 + c4X4 + c5X5 + ε,

where the covariate vector has the p-variate normal distribution with mean zero

and covariance Σ = (0.5|i−j|)p×p, ε ∼ N(0, 1), and the coefficients c1, . . . , c25 were

randomly generated from the uniform distribution between (1, 2.5), and kept fixed

throughout the simulation. From each of these models, we generated 500 data sets

of size n = 200.

For the soft thresholding approach, we randomly generate the auxiliary variable

Z = (X2001, . . . , X3000), where the Xp+i are independent Unif(0, 1). For the hard

thresholding we consider three model sizes: d1 = [n/ log n] = 37, d2 = [2n/ log n] =

75, d3 = [3n/ log n] = 113. The two approaches are compared in terms of the pro-

portion of each active covariate is selected. We also record the 5%, 25%, 50%, 75%

and 95% quantiles of the submodel size using the soft thresholding rule.

The 5%, 25%, 50%, 75% and 95% quantiles of the submodel size using the soft

thresholding rule for Models 3.(e), 3.(f) and 3.(g), are presented in Table 3.9. The

proportion that each of the active covariates is selected with the different approaches

for Models 3.(e), 3.(f) and 3.(g) are shown in Tables 3.6, 3.7 and 3.8, respectively.

From Table 3.9 it is seen that all percentiles decrease as the number of active covari-

ates decreases; this is a nice feature of the soft thresholding approach. Also, for all

models, the median submodel size falls between d1 and d2, but is always closer to

d1. Regarding the proportion that each active predictor is included in the submodel,

Tables 3.6 and 3.7 show that soft thresholding outperforms hard thresholding with

d1 in Model(e), but does slightly worse in Model(f); hard thresholding with d2 and

d3 outperform soft thresholding. Finally, Table 3.8 shows that all active predictors
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were selected 100% of the time by all approaches.

3.3.3 A Real Data Example

Here we apply the DC-SIS, NIS and RV-SIS methods to identify the most influential

genes for over-expression of a G protein-coupled receptor (Ro1) in mice in the Car-

diomyopathy microarray dataset (Segal, Dahlquist, and Conklin, 2003). In this data

set, which has also been used in Hall and Miller (2009), and Li et al. (2012b), n = 40

and p = 6, 319, with the covariates corresponding to expression levels of different

genes. Figure 3.1 shows the scatterplots of the expression levels of two genes versus

Ro1, with fitted cubic spline curves. Because these curves, which are typical for most

genes, suggest nonlinear effects, we did not apply SIS to this data.
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Figure 3.1. The spline curve of Msa.2877.0 and Msa.741.0

The top two most influential genes identified by RV-SIS, DC-SIS and NIS are (Msa.2877.0,

Msa.741.0), (Msa.2134.0, Msa. 2877.0) and (Msa.2877.0, Msa.1166.0), respectively.

To compare the models chosen by the three methods, we fit a semiparametric single

index model (SIM)
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Y = gk(β1Xk1 + β2Xk2) + ε for k= 1, 2, 3,

where (Xk1, Xk2), k = 1, 2, 3, are the top two variables chosen by RV-SIS, DC-SIS

and NIS, respectively, and use the nonparametric coefficient of determination, R2;

see Doksum and Samarov (1995). The R2-value achieved by RV-SIS, DC-SIS and

NIS are 0.927, 0.976 and 0.844, respectively.

The top four most influential genes identified by RV-SIS, DC-SIS and NIS are

(Msa.2877.0, Msa.741.0, Msa.1166.0, Msa.26025.0), (Msa.2134.0, Msa. 2877.0, Msa.26025.0,

Msa.5583.0) and (Msa.2877.0, Msa.1166.0, Msa.741.0, Msa.18571.0), respectively.

Fitting again semiparametric SIMs we obtain R2-values of 0.9995776, 0.9990484 and

0.9290883 for RV-SIS, DC-SIS and NIS, respectively.

It is seen that, though the selected sets of variables are not identical, RV-SIS, DC-

SIS have similar behavior in terms of the nonparametric R2 criterion, while NIS does

somewhat worse.

3.3.4 A Real Data Example II

Kim et al. (2014) analyzed the ovarian cancer data from The Cancer Genome Atlas

(TCGA) to identify the important genes for predicting the ovarian cancer. This

data consists of 258 subject and 12,042 gene expressions. We apply RV-SIS, NIS,

and DC-SIS procedures to identify the most influential gene expression for predicting

ovarian cancer.

The top ten influential genes identified by RV-SIS, DC-SIS, and NIS are (NDRG3,

FSTL1 SCRN1, FAM89B, AP1G2, SF3B1, C16orf45, C9orf95, C9orf61, GRK5),

(NDRG3, RFX3, GALNT10, MARCH6, ABHD6, NEBL, CPNE1, CLEC3B, C20orf3,

GNS) and (NDRG3, PADI2, ANXA4, C9orf61, SCRN1, FKBP4, C9orf95, CA7,
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STIL, GALNT10) respectively. We use top ten influential genes because RV-SIS

with soft thresholding contains 10 covariates in the submodel. To compare the mod-

els chosen by the three methods, we fit a Klein and Spady’s binary choice estimator,

Yi = 1(XT
i β ≥ ei) for i= 1, 2, 3

where Xi = (Xi1 , . . . , Xi10), i = 1, 2, 3 are the top ten variables chosen by RV-

SIS, DC-SIS, and NIS, respectively, and use the overall correct classification ratio

to compare the performance. The overall correct classification ratio by RV-SIS,

DC-SIS, and NIS are: 0.8023256, 0.7364341, and 0.7596899, respectively. We also

use the performance measure suggested by McFadden et al. (1977) for performance

comparison. This measure is achieved by RV-SIS, DC-SIS, and NIS are: 0.7824199,

0.7002284, and 0.7288925, respectively.

This result show that the top ten influential genes identified by RV-SIS have a better

classification rate than the genes identified by DC-SIS and NIS.

3.4 Theoretical Properties

3.4.1 Some Lemmas

In all that follows, f(x) is a generic notation for any of the marginal densities fk(x).

Lemmas 1, 2, 3, and 4 are used to prove the Theorem 3.2.2.

Lemma 3.4.1. For any random variable X which has a moment generating function

E{exp(tX)} for 0 < t < t0,

P (X − E(X) ≥ ε) ≤ exp(−tε)E{exp(t(X − E(X)))}, t > 0
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If P (|X| ≤M) = 1, then,

E{exp(t(X − E(X)))} ≤ exp

(
1

2
t2M2

)
, t > 0

Proof. It follows directly from Theorem 5.6.1.A of Serfling (2009, pp 201).

Lemma 3.4.2. Suppose f̂(x) be the kernel density estimator of f(x). Under condi-

tions (C2) and (C3), and h = O(1), we have

sup
x∈R
|f̂(x)− f(x)| = O

((
log(n)

nh

)1/2

+ h2

)

almost surely.

Proof. It follows by writing |f̂(x) − f(x)| ≤ |f̂(x) − Ef̂(x)| + |Ef̂(x) − f(x)|,

using Theorem 5 of Hansen (2008) with Y ≡ 1 to get supx |f̂(x) − Ef̂(x)| =

O((log(n)/nh)1/2), and |Ef̂(x) − f(x)| = O(h2), which follows by a direct calcu-

lation.

Lemma 3.4.3 Let Wj(x) = K(
x−Xj

h
)/
∑n

i=1K(x−Xi

h
) be the weight function of the

Nadaraya-Watson estimator. Then, under the same assumptions as in Lemma 3.4.2,

we have

n∑
j=1

W 2
j (x) = O

(
1

nh

)
, almost surely.

Proof. Noting that K2(·)/
∫
K2(u)du is a symmetric kernel function, by Lemma

3.4.2 it is easily seen that

n∑
j=1

W 2
j (x) =

1

nh

(
1

nh

n∑
j=1

K2(
x−Xj

h
)

)
(

1

nh

n∑
i=1

K(
x−Xi

h
)

)2 = O

(
1

nh

)
, almost surely.
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Lemma 3.4.4. Under condition (C1)-(a), (C2), (C3), and (C4) and any 0 < γ < 2/5

there exists positive constants c1, and c2 such that,

P (max
i
|m̂(Xi)−m(Xi)| > ε) ≤ O(n exp(−c1ε2n4/5−2γ) + n2 exp(−c2nγ))

Proof. By adding and subtracting
∑

jm(Xj)Wj(Xi) we have the inequality

P (|m̂(Xi)−m(Xi)| > ε)

≤ P (|
n∑
j=1

(yj −m(Xj))Wj(Xi)| >
ε

2
) + P (|

n∑
j=1

(m(Xj)−m(Xi))Wj(Xi)| >
ε

2
)

≡ A+B.

Note that the dependence of A and B on i is suppressed for convenience. Consider

first A. Letting I1j = I{|yj −m(Xj)| ≤M}, where M will be allowed to tend to ∞

with n, and I2j = 1− I1j, and noting that E[
∑n

j=1(yj−m(Xj))Wj(Xi)] = 0, we have

the following inequality

A ≤ P (|
n∑
j=1

(yj −m(Xj))Wj(Xi)I1j −
n∑
j=1

E((yj −m(Xj))Wj(Xi)I1j)| >
ε

4
)

+P (|
n∑
j=1

(yj −m(Xj))Wj(Xi)I2j −
n∑
j=1

E((yj −m(Xj))Wj(Xi)I2j)| >
ε

4
)

≡ A1 + A2.

Arguing conditionally on (X1, . . . , Xn), and using Markov’s inequality and Lemma

3.4.1,

P (
n∑
j=1

(yj −m(Xj))Wj(Xi)I1j −
n∑
j=1

E((yj −m(Xj))Wj(Xi)I1j) >
ε

4
)
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≤ exp(−t1
ε

4
)

n∏
j=1

E(exp(t1[(yj −m(Xj))Wj(Xi)I1j − E((yj −m(Xj))Wj(Xi)I1j)]))

≤ exp(−t1
ε

4
)

n∏
j=1

exp(
1

2
t21W

2
j (Xi)M

2) = exp(−t1
ε

4
)exp(

1

2
t21M

2

n∑
j=1

W 2
j (Xi))

= exp(− 1

32

ε2∑
jW

2
j (Xi)M2

), by choosing t1 =
ε

4
n∑
j=1

W 2
j (Xi)M2

' exp(− 1

32

ε2nh

M2
), by Lemma 3.4.3

Similarly,

P (
n∑
j=1

(yj −m(Xj))Wj(Xi)I1j −
n∑
j=1

E((yj −m(Xj))Wj(Xi)I1j) < −
ε

4
) ≤ exp(− 1

32

ε2nh

M2
)

Thus, also unconditionally, we have that for each i,

A1 ≤ 2 exp

(
− 1

32

ε2nh

M2

)

For the A2 part,

A2 ≤ P (|
n∑
j=1

(yj −m(Xj))Wj(Xi)I2j|+
n∑
j=1

|E((yj −m(Xj))Wj(Xi)I2j)| >
ε

4
)

We first show that
∑n

j=1 |E((yj −m(Xj))Wj(Xi)I2j)| is bounded by ε/8 for n large

enough. By the Cauchy-Schwartz and Markov inequalities, we have

|E[(yj −m(Xj))Wj(Xi)I2j]| ≤
√

E[{(yj −m(Xj))Wj(Xi)}2]P (|yj −m(Xj)| > M)

≤
√

E[{yj −m(Xj)}2W 2
j (Xi)] exp(−tM)E{exp(t|yj −m(Xj)|)}
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By condition (C1)-(a), there exists a constant t such that E{exp(t|yj −m(Xj)|)} <

C1. Also, by Lemma 3.4.2, E[{yj −m(Xj)}2W 2
j (Xi)] = O(1/(nh)2), uniformly in i.

Then, by choosing M = nγ, some γ > 0, we have
∑n

j=1 |E((yj−m(Xj))Wj(Xi)I2j)| <

ε/8, for n large enough. Hence, for n large enough,

A2 ≤ P (|
n∑
j=1

(yj −m(Xj))Wj(Xi)I2j| >
ε

8
).

To bound this, note first that

{
|

n∑
j=1

(yj −m(Xj))Wj(Xi)I2j| > ε/8

}
⊂

n⋃
j=1

{|yj −m(Xj)| > M}.

Indeed, if the event on the left hand side holds it must be that |yj−m(Xj)| > M for

at least one j since, otherwise |(yj−m(Xj))Wj(Xi)I2| = 0 for all j which contradicts

|
∑n

j=1(yj −m(Xj))Wj(Xi)I2| > ε/8. Thus, by condition (C1)-(a), it follows that

A2 ≤ P (
⋃
j

{|yj −m(Xj)| > M}) ≤ nP (|yj −m(Xj)| > M)

≤ n exp(−tM)E[exp(t|yj −m(Xj)|)] = nC1 exp(−tM)

Then by choosing M = nγ, 0 < γ < 2/5, we have

A ≤ 2 exp(− 1

32

ε2nh

M2
) + nC1 exp(−tM)

= 2 exp(− 1

32
ε2n1−2γh) + nC1 exp(−tnγ) (3.4.1)
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Consider now part B. By condition (C4) and for n large enough, we have

B ≤ P (
n∑
j=1

|(m(Xj)−m(Xi))Wj(Xi)| >
ε

2
)

≤ P (
n∑
j=1

|Λ2(Xj −Xi)Wj(Xi)| >
ε

2
)

≤ P (Λ2h
n∑
j=1

Wj(Xi) >
ε

2
) = P (Λ2h >

ε

2
) = 0. (3.4.2)

Therefore, by (3.4.1) and (3.4.2), we have that for all n large enough

P (|m̂(Xi)−m(Xi)| > ε) ≤ 2 exp(− 1

32
ε2n1−2γh) + nC1 exp(−tnγ).

It follows that under condition (C1)-(a), (C2), (C3), and (C4), and any 0 < γ < 2/5,

there exists positive constants c1 and c2 such that,

P (max
i
|m̂(Xi)−m(Xi)| > ε) ≤ O(n exp(−c1ε2n1−2γh) + n2 exp(−c2nγ))

≤ O(n exp(−c1ε2n4/5−2γ) + n2 exp(−c2nγ)),(3.4.3)

by substituting n−1/5 for h.

3.4.2 Proof of Theorem 3.2.2

For part 1 write

P (|S̃2
mk
− σ2

mk
| ≥ ε) ≤ P (|S̃2

mk
− S2

mk
| ≥ ε/2) + P (|S2

mk
− σ2

mk
| ≥ ε/2) ≡ T1 + T2,(3.4.4)
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where S2
mk

= 1
n

∑n
i=1[mk(Xi) − ( 1

n

∑n
l=1mk(Xi))]

2. For convenience in notation, we

will omit the subscript k from mk and Xkj, j = 1, . . . , n, for the rest of this proof.

For T1 we have

T1 = P (| 1
n

n∑
i=1

(m̂2(xi)−m2(Xi))− ((
1

n

n∑
l=1

m̂(Xi))
2 − (

1

n

n∑
l=1

m(Xi))
2| > ε

2
))

≤ P (| 1
n

n∑
i=1

(m̂(Xi)−m(Xi))(m̂(Xi) +m(Xi))| >
ε

4
)

+P (| 1
n

n∑
i=1

(m̂(Xi)−m(Xi))(
1

n

n∑
l=1

(m̂(Xi) +m(Xi))| >
ε

4
))

≤ P (| 1
n

n∑
i=1

(m̂(Xi)−m(Xi))
2| > ε

8
) + P (| 1

n

n∑
i=1

(m̂(Xi)−m(Xi))(2m(Xi))| >
ε

8
)

+P ([
1

n

n∑
i=1

(m̂(Xi)−m(Xi))]
2 >

ε

8
) + P (| 1

n

n∑
i=1

(m̂(Xi)−m(Xi))
1

n

n∑
i=1

2m(Xi)| >
ε

8
)

≡ A1 + A2 + A3 + A4.

The following inequalities all follow by Lemma 3.4.4 (so that 0 < γ < 2/5):

A1 ≤ P (max
i

(m̂(Xi)−m(Xi))
2 >

ε

8
)

≤ O(n exp(−c1ε2n4/5−2γ) + n2 exp(−c2nγ)),

A2 ≤ P (max
i
|(m̂(Xi)−m(Xi))| >

ε

16 supx |m(x)|
)

≤ O(n exp(−c1ε2n4/5−2γ) + n2 exp(−c2nγ)),

A3 ≤ P (max
i
|(m̂(Xi)−m(Xi))| > ε)

≤ O(n exp(−c1ε2n4/5−2γ) + n2 exp(−c2nγ)),

A4 ≤ P (| 1
n

n∑
i=1

(m̂(Xi)−m(Xi))| >
ε

16 supx |m(x)|
)

≤ O(n exp(−c1ε2n4/5−2γ) + n2 exp(−c2nγ)).
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Combining the above we have

T1 ≤ O(n exp(−c1ε2n4/5−2γ) + n2 exp(−c2nγ)). (3.4.5)

Consider now T2, and let h(Xi, Xj) be the kernel of the U -statistic Um = [n/(n −

1)]S2
m. For a constant M , we decompose Um as Um = U1m + U2m, where

U1m =
1

n(n− 1)

∑
i 6=j

h(Xi, Xj)I{h(Xi, Xj) ≤M} and U2m = Um − U1m.

Similarly, we decompose σ2
m = E(Um) as σ2

m = σ2
1m + σ2

1m, where

σ2
1m = E(h(Xi, Xj)I{h(Xi, Xj) ≤M}) and σ2

2m = σ2
m − σ2

1m.

Then we have following inequality

T2 = P

(
|n− 1

n
Um − σ2

m| ≥ ε/2

)
≤ P

(
|n− 1

n
(U1m − σ2

1m)| ≥ ε/4

)
+ P

(
|n− 1

n
(U2m − σ2

2m)− 1

n
σ2
m| ≥ ε/4

)
≡ C1 + C2 (3.4.6)

By Lemma 3.4.1 we have that for any t > 0,

P

(
n− 1

n
(U1m − σ2

1m) ≥ ε/4

)
≤ exp

(
− tεn

4(n− 1)

)
exp(−tσ2

1m)E(exp(tU1m)).(3.4.7)

Next, using the representation Um1 = 1
n!

∑
n!W (Xi1 , . . . , Xin), whereW (X1, . . . , Xn) =

1
m

∑m
i=1 h(X2i−1, X2i)I{h(X2i−1, X2i) ≤ M} is an average of m = [n/2] i.i.d random

variables, and
∑

n! denotes the summation over all possible permutations of (1, . . . , n)
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(cf. Serfling, 1981, pp. 180-181), we have

E(exp(tU1m)) = E

(
exp

(
t

n!

∑
n!

W (Xi1 , . . . , Xin)

))

≤ 1

n!

∑
n!

E[exp{tW (Xi1 , . . . , Xin)}]

= E

(
exp

(
m∑
i=1

t

m
h(X2i−1, X2i)I{h(X2i−1, X2i) ≤M}

))

= Em

(
exp

(
t

m
h(X2i−1, X2i)I{h(X2i−1, X2i) ≤M}

))
,

where Jensen’s inequality was also used. Substituting this in (3.4.7) we have,

P

(
n− 1

n
(U1m − σ2

1m) ≥ ε/4

)
≤ exp

(
− tnε

4(n− 1)

)
Em(exp(

t

m
(h(X2i−1, X2i)I{h(X2i−1, X2i) ≤M} − σ2

m1)))

≤ exp

(
− tεn

4(n− 1)
+
t2M2

2m

)
by Lemma 3.4.1

≤ exp

(
− n2ε2m

32M2(n− 1)2

)
by choosing t =

nεm

4M2(n− 1)

Therefore, for C1 given in (4.4.2) we have

C1 ≤ 2 exp

(
− n2ε2m

32M2(n− 1)2

)
≤ 2 exp

(
− ε2n

64M2

)
(3.4.8)

Consider now C2 given in (4.4.2). Note first that σ2
m/n < ε/16 for all n sufficient

large. Also, by the Cauch-Schwartz and Markov inequalities, we have

σ2
2m ≤

√
E(h2(Xi, Xj))P (h(Xi, Xj) > M)

≤
√
E(h2(Xi, Xj))exp(−tM)E(exp(th(Xi, Xj))
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so that, by choosing M = nγ, γ > 0, condition (C1)-(b) yields (n− 1)σ2
2m/n < ε/16

for n sufficient large. Thus, for n large enough,

C2 ≤ P

(
|n− 1

n
U2m| > ε/8

)
.

To bound this, observe that {|n−1
n
U2m| ≥ ε/8} ⊆

⋃
i 6=j{|h(Xi, Xj)| ≥ M}. Thus, by

Markov’s inequality and condition (C1)-(b), it follows that

C2 ≤ P

(⋃
i 6=j

|h(Xi, Xj)| ≥M

)
≤ n2 exp(−tM)E(exp(t|h(Xi, Xj)|)) (3.4.9)

≤ n2C3 exp(−tnγ) (3.4.10)

Combining (4.4.2), (3.4.8) with M = nγ, for γ < 1/2, and (3.4.9), we have

T2 ≤ 2 exp

(
−ε

2n1−2γ

64

)
+ n2 exp (−tnγ) = O(exp(−c3ε2n1−2γ) + n2 exp(−c4nγ)),(3.4.11)

for some positive constants c3 and c4.

By (3.4.4), (3.4.5) and (3.4.11), for 0 < γ < 2/5 we have

P (|S̃2 − σ2
m| ≥ ε) = O(n exp(−c1ε2n4/5−2γ) + n2 exp(−c2nγ))

It follows that for 0 < γ < 2/5

P (max
k
|S̃2
k − σ2

mk
| ≥ ε) ≤ O(p[n exp(−c1ε2n4/5−2γ) + n2 exp(−c2nγ)])

= O(p[n exp(−c1n4/5−2(γ+κ)) + n2 exp(−c2nγ)])

The last equality holds by choosing ε = cn−κ for a constant c > 0, 0 < κ < 2/5 and
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0 < γ < 2/5− κ.

For part 2 of Theorem 3.2.2, if D 6⊆ D̂, then there must exists some k ∈ D such that

k 6∈ D̂. Thus S̃2
k > Cd, and by condition (C5) it follows that σ2

mk
− S̃2

k > cn−κ. Thus,

{D 6⊆ D̂} ⊆ {max
k∈D
{|S̃2

k − σ2
mk| > cn−κ}.

Using part 1 of this theorem we have

P (D ⊆ D̂) ≥ 1− P (min
k∈D
|S̃2
k − σ2

mk| > cn−κ)

= 1− |D|P (|S̃2
k − σ2

mk| > cn−κ)

≥ 1−O(|D|[exp(−n exp(−c1n4/5−2(γ+κ)) + n2 exp(−c2nγ)]).
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Table 3.1. The 5%, 25%, 50%, 75%, and 95% quantiles of the minimum model size that
includes all active covariates when the covariance matrix is σij = 0.5|i−j|.

Model 3.(a)
SIS DC-SIS

5% 25% 50% 75% 95% 5% 25% 50% 75% 95%

4.00 4.00 4.00 5.00 7.00 4.00 4.00 4.00 5.00 6.00

NIS RRCS
4.00 4.00 4.00 5.00 7.05 4.00 4.00 4.00 5.00 6.00

RV-SIS
4.00 4.00 4.00 5.00 9.05

Model 3.(b)
5% 25% 50% 75% 95% 5% 25% 50% 75% 95%

SIS DC-SIS
84.60 526.75 1179.00 1655.00 1923.35 9.00 26.00 68.50 169.25 516.50

NIS RRCS
4.00 4.00 6.00 14.00 100.20 214.85 786.50 1355.50 1708.75 1931.10

RV-SIS
4.00 4.00 7.00 22.00 273.20

Model 3.(c)
SIS DC-SIS

5% 25% 50% 75% 95% 5% 25% 50% 75% 95%

232.00 853.50 1363.50 1689.75 1933.00 103.95 316.25 565.00 860.00 1420.50

NIS RRCS
55.00 312.25 749.00 1264.25 1786.15 255.65 929.00 1384.50 1732.25 1943.10

RV-SIS
5.00 15.00 62.50 277.00 1208.10

Model 3.(d)
SIS DC-SIS

106.90 583.75 1149.50 1628.75 1930.00 102.90 326.25 654.50 1069.00 1583.70

NIS RRCS
33.50 389.00 882.00 1463.25 1915.00 231.55 832.25 1337.00 1678.25 1944.05

RV-SIS
6.00 20.00 89.00 327.25 1144.55



53

Table 3.2. The 5%, 25%, 50%, 75%, and 95% quantiles of the minimum model size that
includes all active covariates when the covariance matrix is σij = 0.8|i−j|.

Model 3.(a)
SIS DC-SIS

5% 25% 50% 75% 95% 5% 25% 50% 75% 95%

8.00 11.00 17.00 37.25 249.55 6.00 9.00 12.00 17.00 76.05

NIS RRCS
6.00 9.00 13.00 26.00 153.40 6.00 9.00 13.00 22.00 141.35

RV-SIS
5.00 8.00 11.00 26.25 146.60

Model 3.(b)
5% 25% 50% 75% 95% 5% 25% 50% 75% 95%

SIS DC-SIS
29.90 256.50 924.00 1544.75 1935.05 8.00 10.00 13.00 18.00 40.00

NIS RRCS
4.00 6.00 8.00 10.00 22.00 111.60 502.50 1133.00 1636.00 1938.10

RV-SIS
4.00 6.00 7.00 10.00 32.05

Model 3.(c)
SIS DC-SIS

5% 25% 50% 75% 95% 5% 25% 50% 75% 95%

93.90 520.25 1122.50 1647.25 1925.15 40.95 148.00 334.00 629.00 1149.85

NIS RRCS
16.00 74.00 239.50 625.00 1454.60 145.85 595.50 1207.00 1585.25 1930.10

RV-SIS
9.00 17.00 55.50 244.00 978.30

Model 3.(d)
SIS DC-SIS

34.80 183.75 701.50 1449.25 1899.40 31.90 142.00 344.00 675.25 1322.10

NIS RRCS
18.00 106.00 418.00 1111.00 1815.20 83.90 373.50 979.50 1534.25 1930.05

RV-SIS
9.00 20.00 45.00 171.50 893.40
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Table 3.3. The 5%, 25%, 50%, 75%, and 95% quantiles of the minimum model size that
includes all active covariates when the covariance matrix is σij = 0.5.

Model (a)
SIS DC-SIS

5% 25% 50% 75% 95% 5% 25% 50% 75% 95%

36.00 47.00 55.00 67.00 91.00 36.95 47.00 55.00 67.00 95.00

NIS RRCS
36.00 47.00 55.00 67.00 90.10 36.00 47.00 56.00 68.00 94.00

RV-SIS
37.95 47.00 55.00 67.00 94.00

Model (b)
5% 25% 50% 75% 95% 5% 25% 50% 75% 95%

SIS DC-SIS
145.95 232.00 411.00 910.75 1979.70 122.00 196.75 322.00 651.25 1716.40

NIS RRCS
78.00 119.75 180.00 267.75 919.40 150.95 273.00 449.00 1089.00 2000.00

RV-SIS
77.00 119.75 180.50 314.00 1164.50

Model (c)
SIS DC-SIS

5% 25% 50% 75% 95% 5% 25% 50% 75% 95%

151.90 245.75 417.00 806.50 1999.05 132.90 227.00 367.50 732.25 1902.45

NIS RRCS
115.95 192.75 310.50 593.25 1713.60 148.95 251.75 451.50 1013.00 2000.00

RV-SIS
69.00 99.00 142.00 208.00 456.05

Model (d)
SIS DC-SIS

29.00 41.00 54.00 84.00 160.05 27.95 39.00 53.00 77.00 169.10

NIS RRCS
28.00 39.00 52.00 78.00 164.40 27.95 39.00 53.00 82.00 181.35

RV-SIS
24.00 31.00 40.00 54.25 101.15
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Table 3.4. The proportion of times each individual active covariate and all active covari-
ates are selected in models of size d1 = [n/ log n], d2 = [2n/ log n] and d3 = [3n/ log n] when
the covariance matrix is σij = 0.5|i−j|.

Model 3.(a)
X1 X2 X12 X22 ALL X1 X2 X12 X22 ALL X1 X2 X12 X22 ALL

SIS DC-SIS RRCS
d1 1.00 1.00 0.99 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

d2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

d3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

NIS RV-SIS
d1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 0.99

d2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

d3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Model 3.(b)
X1 X2 X12 X22 ALL X1 X2 X12 X22 ALL X1 X2 X12 X22 ALL

SIS DC-SIS RRCS
d1 0.08 0.08 1.00 1.00 0.03 0.51 0.51 1.00 1.00 0.33 0.03 0.04 1.00 1.00 0.01

d2 0.12 0.14 1.00 1.00 0.05 0.68 0.68 1.00 1.00 0.52 0.07 0.07 1.00 1.00 0.02

d3 0.16 0.17 1.00 1.00 0.06 0.76 0.78 1.00 1.00 0.65 0.09 0.10 1.00 1.00 0.02

NIS RV-SIS
d1 0.95 0.93 1.00 1.00 0.89 0.89 0.88 1.00 1.00 0.80

d2 0.97 0.96 1.00 1.00 0.94 0.94 0.93 1.00 1.00 0.88

d3 0.98 0.97 1.00 1.00 0.96 0.95 0.94 1.00 1.00 0.90

Model 3.(c)
X1 X2 X12 X22 ALL X1 X2 X12 X22 ALL X1 X2 X12 X22 ALL

SIS DC-SIS RRCS
d1 0.01 0.03 1.00 1.00 0.00 0.04 0.13 1.00 1.00 0.01 0.01 0.02 1.00 1.00 0.00

d2 0.03 0.05 1.00 1.00 0.00 0.08 0.26 1.00 1.00 0.04 0.04 0.03 1.00 1.00 0.00

d3 0.06 0.07 1.00 1.00 0.01 0.12 0.37 1.00 1.00 0.06 0.06 0.05 1.00 1.00 0.00

NIS RV-SIS
d1 0.04 0.59 1.00 1.00 0.03 0.94 0.42 1.00 1.00 0.40

d2 0.09 0.68 1.00 1.00 0.07 0.97 0.54 1.00 1.00 0.53

d3 0.12 0.74 1.00 1.00 0.10 0.99 0.60 1.00 1.00 0.59

Model 3.(d)
X1 X2 X12 X22 ALL X1 X2 X12 X22 ALL X1 X2 X12 X22 ALL

SIS DC-SIS RRCS
d1 0.05 0.10 1.00 0.99 0.02 0.04 0.11 1.00 1.00 0.01 0.04 0.04 1.00 1.00 0.01

d2 0.08 0.17 1.00 1.00 0.04 0.08 0.24 1.00 1.00 0.03 0.06 0.07 1.00 1.00 0.01

d3 0.11 0.21 1.00 1.00 0.06 0.11 0.35 1.00 1.00 0.06 0.08 0.10 1.00 1.00 0.02

NIS RV-SIS
d1 0.09 0.35 1.00 0.99 0.05 0.58 0.61 1.00 0.97 0.35

d2 0.14 0.41 1.00 1.00 0.09 0.71 0.69 1.00 0.98 0.49

d3 0.19 0.46 1.00 1.00 0.12 0.79 0.72 1.00 0.99 0.57
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Table 3.5. The proportion of times each individual active covariate and all active covari-
ates are selected in models of size d1 = [n/ log n], d2 = [2n/ log n] and d3 = [3n/ log n] when
the covariance matrix is σij = 0.8|i−j|.

Model 3.(a)
X1 X2 X12 X22 ALL X1 X2 X12 X22 ALL X1 X2 X12 X22 ALL

SIS DC-SIS RRCS
d1 1.00 1.00 0.75 1.00 0.75 1.00 1.00 0.90 1.00 0.90 1.00 1.00 0.84 1.00 0.84

d2 1.00 1.00 0.85 1.00 0.85 1.00 1.00 0.95 1.00 0.95 1.00 1.00 0.91 1.00 0.92

d3 1.00 1.00 0.89 1.00 0.89 1.00 1.00 0.97 1.00 0.97 1.00 1.00 0.94 1.00 0.94

NIS RV-SIS
d1 1.00 1.00 0.82 1.00 0.82 1.00 1.00 0.81 1.00 0.81

d2 1.00 1.00 0.91 1.00 0.92 1.00 1.00 0.90 1.00 0.90

d3 1.00 1.00 0.94 1.00 0.94 1.00 1.00 0.92 1.00 0.93

Model 3.(b)
X1 X2 X12 X22 ALL X1 X2 X12 X22 ALL X1 X2 X12 X22 ALL

SIS DC-SIS RRCS
d1 0.10 0.11 0.98 1.00 0.07 0.97 0.96 1.00 1.00 0.94 0.02 0.04 1.00 1.00 0.01

d2 0.16 0.18 0.99 1.00 0.11 0.99 0.99 1.00 1.00 0.99 0.07 0.08 1.00 1.00 0.03

d3 0.20 0.23 1.00 1.00 0.15 0.99 1.00 1.00 1.00 0.99 0.11 0.12 1.00 1.00 0.05

NIS RV-SIS
d1 1.00 1.00 0.99 1.00 0.98 1.00 1.00 0.96 1.00 0.96

d2 1.00 1.00 1.00 1.00 0.99 1.00 1.00 0.99 1.00 0.98

d3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 0.99

Model 3.(c)
X1 X2 X12 X22 ALL X1 X2 X12 X22 ALL X1 X2 X12 X22 ALL

SIS DC-SIS RRCS
d1 0.03 0.05 0.99 1.00 0.02 0.09 0.12 1.00 1.00 0.05 0.02 0.03 0.99 1.00 0.01

d2 0.07 0.09 1.00 1.00 0.05 0.17 0.24 1.00 1.00 0.11 0.05 0.07 1.00 1.00 0.03

d3 0.09 0.11 1.00 1.00 0.06 0.27 0.33 1.00 1.00 0.18 0.07 0.09 1.00 1.00 0.04

NIS RV-SIS
d1 0.16 0.55 1.00 1.00 0.14 0.99 0.43 1.00 1.00 0.43

d2 0.29 0.68 1.00 1.00 0.26 1.00 0.54 1.00 1.00 0.55

d3 0.38 0.74 1.00 1.00 0.35 1.00 0.62 1.00 1.00 0.62

Model 3.(d)
X1 X2 X12 X22 ALL X1 X2 X12 X22 ALL X1 X2 X12 X22 ALL

SIS DC-SIS RRCS
d1 0.09 0.20 1.00 0.86 0.06 0.07 0.20 1.00 0.99 0.06 0.03 0.09 1.00 0.96 0.02

d2 0.17 0.27 1.00 0.94 0.15 0.17 0.34 1.00 0.99 0.15 0.07 0.14 1.00 0.98 0.05

d3 0.23 0.31 1.00 0.96 0.19 0.24 0.44 1.00 1.00 0.21 0.10 0.19 1.00 0.99 0.08

NIS RV-SIS
d1 0.20 0.38 1.00 0.88 0.13 0.88 0.60 1.00 0.83 0.45

d2 0.28 0.46 1.00 0.95 0.21 0.94 0.70 1.00 0.92 0.61

d3 0.34 0.50 1.00 0.96 0.26 0.96 0.76 1.00 0.94 0.69
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Table 3.6. The proportion of times each individual active covariate and all active covari-
ates are selected in models of size d1 = [n/ log n], d2 = [2n/ log n] and d3 = [3n/ log n] when
the covariance matrix is σij = 0.5.

Model (a)
X1 X2 X12 X22 ALL X1 X2 X12 X22 ALL X1 X2 X12 X22 ALL

SIS DC-SIS RRCS
d1 0.09 0.09 0.64 1.00 0.06 0.13 0.12 0.43 1.00 0.06 0.13 0.12 0.40 1.00 0.05

d2 0.85 0.85 1.00 1.00 0.86 0.86 0.86 0.99 1.00 0.86 0.87 0.86 0.98 1.00 0.86

d3 0.99 0.99 1.00 1.00 0.99 0.98 0.98 1.00 1.00 0.99 0.99 0.99 1.00 1.00 0.99

NIS RV-SIS
d1 0.09 0.09 0.71 1.00 0.07 0.10 0.09 0.73 1.00 0.07

d2 0.87 0.86 1.00 1.00 0.87 0.85 0.85 1.00 1.00 0.85

d3 0.98 0.98 1.00 1.00 0.98 0.98 0.98 1.00 1.00 0.98

Model (b)
X1 X2 X12 X22 ALL X1 X2 X12 X22 ALL X1 X2 X12 X22 ALL

SIS DC-SIS RRCS
d1 0.00 0.00 0.13 1.00 0.00 0.00 0.00 0.08 1.00 0.00 0.00 0.00 0.07 1.00 0.00

d2 0.00 0.00 0.92 1.00 0.00 0.00 0.00 0.86 1.00 0.00 0.00 0.00 0.84 1.00 0.00

d3 0.01 0.01 1.00 1.00 0.01 0.03 0.03 0.99 1.00 0.03 0.01 0.01 0.99 1.00 0.01

NIS RV-SIS
d1 0.00 0.00 0.27 1.00 0.00 0.00 0.00 0.31 1.00 0.00

d2 0.04 0.04 0.96 1.00 0.04 0.04 0.04 0.97 1.00 0.04

d3 0.22 0.21 1.00 1.00 0.23 0.21 0.21 1.00 1.00 0.22

Model (c)
X1 X2 X12 X22 ALL X1 X2 X12 X22 ALL X1 X2 X12 X22 ALL

SIS DC-SIS RRCS
d1 0.00 0.00 0.15 1.00 0.00 0.00 0.00 0.07 1.00 0.00 0.00 0.00 0.07 1.00 0.00

d2 0.00 0.00 0.91 1.00 0.00 0.00 0.00 0.83 1.00 0.00 0.00 0.00 0.81 1.00 0.00

d3 0.01 0.01 1.00 1.00 0.01 0.02 0.03 0.97 1.00 0.03 0.02 0.02 0.96 1.00 0.02

NIS RV-SIS
d1 0.00 0.00 0.27 1.00 0.00 0.00 0.00 0.32 1.00 0.00

d2 0.00 0.00 0.95 1.00 0.00 0.09 0.09 0.96 1.00 0.09

d3 0.05 0.05 1.00 1.00 0.05 0.32 0.32 1.00 1.00 0.34

Model (d)
X1 X2 X12 X22 ALL X1 X2 X12 X22 ALL X1 X2 X12 X22 ALL

SIS DC-SIS RRCS
d1 0.19 0.19 1.00 1.00 0.18 0.22 0.24 1.00 1.00 0.22 0.24 0.23 1.00 1.00 0.23

d2 0.71 0.71 1.00 1.00 0.72 0.74 0.74 1.00 1.00 0.74 0.72 0.72 1.00 1.00 0.72

d3 0.88 0.88 1.00 1.00 0.88 0.87 0.87 1.00 1.00 0.88 0.86 0.86 1.00 1.00 0.86

NIS RV-SIS
d1 0.22 0.21 1.00 1.00 0.21 0.45 0.45 1.00 1.00 0.44

d2 0.73 0.74 1.00 1.00 0.74 0.87 0.87 1.00 1.00 0.87

d3 0.88 0.88 1.00 1.00 0.88 0.97 0.97 1.00 1.00 0.97
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Table 3.7. The comparison of execution time of DC-SIS and RV-SIS in seconds for Model
3.(d) when the covariance matrix is σij = 0.5|i−j|.

DC-SIS NIS RV-SIS
Model 5% 25% 50% 75% 95% 5% 25% 50% 75% 95% 5% 25% 50% 75% 95%

(d) 18.92 19.17 19.30 19.45 19.86 2.32 2.35 2.36 2.38 2.46 1.81 1.82 1.82 1.83 1.90

Table 3.8. The proportion of times each individual active covariate are selected in models
of size d1, d2, d3 and using soft thresholding rule for Model(e)

Model 3.(e)
Hard Threshold with model size d1

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

0.718 0.786 0.806 0.880 0.878 0.910 0.582 0.512 0.704 0.918

X11 X12 X13 X14 X15 X16 X17 X18 X19 X20

0.862 0.744 0.934 0.892 0.882 0.944 0.770 0.730 0.688 0.930

X21 X22 X23 X24 X25

0.960 0.948 0.974 0.888 0.388

Hard Threshold with model size d2
X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

0.924 0.868 0.974 0.950 0.950 0.986 0.840 0.834 0.816 0.970

X11 X12 X13 X14 X15 X16 X17 X18 X19 X20

0.884 0.858 0.922 0.894 0.890 0.918 0.796 0.792 0.754 0.920

X21 X22 X23 X24 X25

0.986 0.978 0.988 0.952 0.554

Hard Threshold with model size d3
X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

0.884 0.920 0.928 0.958 0.952 0.968 0.776 0.750 0.862 0.970

X11 X12 X13 X14 X15 X16 X17 X18 X19 X20

0.946 0.902 0.982 0.966 0.964 0.990 0.904 0.876 0.878 0.984

X21 X22 X23 X24 X25

0.992 0.984 0.988 0.960 0.634

Soft Threshold
X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

0.746 0.816 0.844 0.898 0.894 0.920 0.650 0.602 0.742 0.928

X11 X12 X13 X14 X15 X16 X17 X18 X19 X20

0.892 0.800 0.942 0.918 0.900 0.954 0.788 0.770 0.750 0.942

X21 X22 X23 X24 X25

0.966 0.952 0.970 0.918 0.462
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Table 3.9. The proportion of times each individual active covariate are selected in models
of size d1, d2, d3 and using soft thresholding rule for Model(f)

Model 3.(f)
Hard Threshold with model size d1

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.976 0.986 0.988

Hard Threshold with model size d2
X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.990 0.992 0.994

Hard Threshold with model size d3
X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.996 0.996 1.000

Soft Threshold
X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

1.000 1.000 1.000 1.000 1.000 1.000 0.994 0.968 0.978 0.986

Table 3.10. The proportion of times each individual active covariate are selected in models
of size d1, d2, d3 and using soft thresholding rule for Model(g)

Model 3.(g)
Hard Threshold with model size d1
X1 X2 X3 X4 X5

1.000 1.000 1.000 1.000 1.000

Hard Threshold with model size d2
X1 X2 X3 X4 X5

1.000 1.000 1.000 1.000 1.000

Hard Threshold with model size d3
X1 X2 X3 X4 X5

1.000 1.000 1.000 1.000 1.000

Soft Threshold
X1 X2 X3 X4 X5

1.000 1.000 1.000 1.000 1.000
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Table 3.11. The 5%, 25%, 50%, 75%, and 95% quantiles of submodel size using soft
thresholding rule for Models 3.(e), 3.(f), and 3.(g).

Model 3.(e)
5% 25% 50% 75% 95%

20.00 37.00 53.00 75.00 116.00
Model 3.(f)

5% 25% 50% 75% 95%
13.00 26.00 43.00 66.25 109.00

Model 3.(g)
5% 25% 50% 75% 95%
8.00 19.75 38.00 62.00 100.15



Chapter 4
Hypothesis testing of a constant

regression function and Test-based

Screening

4.1 Introduction

In this chapter, we first develop the asymptotic theory for the variance of the regres-

sion function and use it to introduce a new test procedure for testing the significance

of a predictor. Using the set of p-values we introduce a variable screening procedure

using multiple testing ideas.

This chapter is organized as follows. In section 4.2, we introduce a test procedure

for the hypothesis of a constant regression function, and also a test-based variable

screening procedure. In section 4.3, we present the result of simulation studies. In

section 4.4, we present the technical proofs for the asymptotic theory of the test

statistics and a method for estimating the percentiles of the limiting distribution,
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which is used in the simulation in section 4.3.

4.2 Hypothesis testings of a constant regression

function for variable screening and test-based

screening

4.2.1 Preliminaries

Consider a random sample (X1, Y1), . . . , (Xn, Yn). Consider a nonparametric regres-

sion function

m(x) = E(Yi|Xi = x). (4.2.1)

We propose a hypothesis test of a constant regression function:

H0 : m(x) = c for all x (4.2.2)

for some unknown constant c. Under the null hypothesis, the variance of the regres-

sion function σ2
m = var(m(x)) = 0. Suppose m̂(x) is a Nadaraya Watson estimator of

m(x), then sample variance of estimators S̃2
m estimates the variance of the regression

function σ2
m,

S̃2
m =

1

n

n∑
i=1

m̂2(Xi)− (
1

n

n∑
i=1

m̂(Xi))
2

The bandwidth of a Nadaraya Watson estimator is set to be of the order h = C0n
−1/5.
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Let Zi = (Xi, Yi) and ψ(Zi1 , Zi2 , Zi3) and ψ2(Z1, Z2) are defined as following

ψ(Zi1 , Zi2 , Zi3) =
1

3h
(Yi2Yi3Ki2i1Ki3i1

1

f 2(Xi1)
+ Yi1Yi3Ki1i2Ki3i2

1

f 2(Xi2)

+Yi1Yi2Ki1i3Ki2i3

1

f 2(Xi3)
) (4.2.3)

ψ2(Z1, Z2) = E(ψ(Z1, Z2, Z3)|Z1 = z1, Z2 = z2) (4.2.4)

where Ki2i1 = K(
Xi2
−Xi1

h
).

4.2.2 Asymptotic Properties

The following conditions are required for the technical proofs:

(C1) The kernel K(·) has bounded support, is symmetric, and is Lipschitz continu-

ous, i.e, it satisfies, for some Λ1 <∞ and for all u, u′ ∈ R,

|K(u)−K(u′)| ≤ Λ1|u− u′|.

(C2) If fk(x) denotes the marginal density of the kth predictor, we have

sup
x
|x|sE(|Y ||Xk = x)fk(x) ≤ B <∞ for some s ≥ 1

supx fk(x) < ∞, inf
x
fk(x) > 0, and fk(x) is uniformly continuous, for all k =

1, . . . , p.



64

Lemma 4.2.1. Suppose f̂(x) be the kernel density estimator of f(x). Under condi-

tions (C1) and (C2), and h = O(1), we have

sup
x∈R
|f̂(x)− f(x)| = O

((
log(n)

nh

)1/2

+ h2

)

almost surely.

Theorem 4.2.2 Under conditions (C1) and (C2), and H0 defined in Equation 4.2.6,

as n→∞

nhS̃2
m → 3

∞∑
ν=1

λν(Z
2
ν − 1) + 3θ2

where the Zν are i.i.d N(0, 1) and λν are the eigenvalues of the integral equation

∫ ∞
−∞

ψ2(z1, z2)f(z2)dF (z2) = λf(z1)

and θ2 = Eψ(Z1, Z1, Z2).

4.2.3 Estimating the Asymptotic Distribution of Theorem

4.4.2

Let Un be degenerate U -statistics with kernel ψ2,

Un =

(
n

2

)−1∑
i<j

ψ2(Zi, Zj).

The asymptotic distribution of nUn is
∑∞

ν=1 λν(Z
2
ν − 1), where λν and Zν are as in

Theorem 4.4.2. As shown in Koltchinskii and Giné (2000), the asymptotic distribu-

tion of U -Statistics with degenerate Hilbert-Schmidt kernel ψ2 can be approximated
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by the finite spectrum of the empirical matrix version of the operator, Ψ. Let Ψ̃ be

the n by n matrix with Ψ̃i,j = 1
n
ψ2(Zi, Zj), and let Ψ̄ be obtained by by deleting

the diagonal in the matrix Ψ̃n. According to Koltchinskii and Giné (2000), Ψ̄ is the

empirical version of Ψ.

Since by Theorem 4.2.2, nhS̃2
m/3 has an asymptotic distribution of

∑∞
ν=1 λν(Z

2
ν −

1)+θ2, we propose the following method for computing the p-value. The asymptotic

distribution of
∑∞

ν=1 λν(Z
2
ν − 1) is approximated by

∑n
ν=1 λ̂ν(Z

2
ν − 1), which can be

obtained by simulation. First, we obtain n eigenvalues λ̂1, . . . , λ̂n from the empirical

matrix Ψ̄ of the operator Ψ. Then, we randomly generate N sets of n standard normal

random variables, Zl,1, . . . , Zl,n, l = 1, . . . , N , and then calculate N realizations of∑n
i=1 λ̂i(Z

2
l,i − 1) + θ̂2 for l = 1, . . . , N , where θ̂2 is defined (4.4.4). Finally, the

p-value is calculate as 1/N
∑N

l=1 I(nhS̃2
m/3 <

∑n
i=1 λ̂i(Z

2
l,i − 1) + θ̂2).

4.2.4 Test-based Screening

We can use this test procedure to propose a new test-based variable screening proce-

dure. Consider a random sample (X1, Y1), . . . , (Xn, Yn), where Xi = (X1i, . . . , Xpi)
T

is a p-dimensional vector for i = 1, . . . , n. Consider p marginal nonparametric re-

gression functions

mk(x) = E(Yi|Xki = x) for k = 1, . . . , p (4.2.5)

of Y on each variable Xk, and the corresponding p hypotheses testing problem.

Hk : mk(x) = c for k = 1, . . . , p (4.2.6)
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Let P1, . . . , Pp be the corresponding p-values. First, we order p-values, P(1) ≤ . . . ≤

P(p), and define H(i) to be the corresponding hypothesis with p-value P(i). Let c

be the largest index j for which P(j) ≤ j
p
q and q be the desirable false discovery

rate. The proposed procedure defines the set of active predictors to consist of the

predictors corresponding to H(i), i = 1, . . . , c. This method is introduced by Simes

(1986) and shown by Benjamini and Hochberg (1995) to control the false discovery

rate. Thus, this test-based screening procedure controls the false discovery rate.

4.3 Numerical Studies

4.3.1 Simulation Studies

We present the simulation results on the performance of the test-baed screening pro-

cedure. The covariate matrix X = (X1, X2, . . . , Xp)
T is generate from a multivariate

normal with mean zero, covariance matrices Σ = (σij)p×p, and ε ∼ N(0, 1). We

use three different covariance matrices: σij = 0.3|i−j|, 0.5|i−j|, and 0.7|i−j|.We set the

dimension of covariates p to be 2000 and the sample size n to be 200. We repeat the

experiment 100 times. We consider the following three models:

4.(a) Y = 2X1 + 1.5X5 +X20 + 2X21 + ε

4.(b) Y = 1.5X1 + 2 cos(πX5) + 2X20 + 1.5 sin(π/2X21) + ε

4.(c) Y = 1.5X1 +X2
5 + 1.5X20 + 2 log(|X21|) + ε

We recorded following three outcomes

R1: The minimum, 25%, 50%, 75% quantiles, and maximum submodel size.
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R2: The proportion of times each individual active predictor is selected in a sub-

model.

R3: The proportion of times all active predictors are selected in a submodel.

We compare the result of test based screening procedure to the RV-SIS. For test

based screening, we use two multiple testing procedure: Benjamini and Hochberg

(BH) approach and Bonferroni correction. We use the false discovery rate (FDR)

to be 0.01 and 0.05 for BH approach and α = 0.05 for Bonferroni correction. For

the RV-SIS, we randomly generate the auxiliary variable of size p/2 from uniform

distribution, U(0, 1).

Model 4.(a) is linear, and Models 4.(b) and 4.(c) includes additive nonlinear. All

models have four active predictors (X1, X5, X20, and X21).

Tables 4.1, 4.2, and 4.3 present the simulation result for R1. Tables 4.4, 4.5 and 4.6

present the result for R2 and R3. Tables 4.1, 4.2 and 4.3 show that the submodel

size of RV-SIS is smaller than test-based screening procedure for all Models and all

covariance. Tables 4.4, 4.5, and 4.6 show that the test-based screening procedure

with BH (FDR=0.1) approach and RV-SIS have similar performance of capturing

the active predictors, but test-based procedure with Bonferroni correction performs

slightly worse.

4.3.2 A Real Data Example

Hall and Miller (2009) and Li et al. (2012b) use screening procedures to identify

the most influential genes for over-expression of a G protein-coupled receptor (Ro1)

in mice in the Cardiomyopathy microarray dataset (Segal, Dahlquist, and Conklin,

2003). In this data set, the number of subjects n = 40 and the number of gene
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expressions p = 6, 319. We apply the test-based screening and RV-SIS procedure to

identify the influential genes.

For the RV-SIS, we randomly generate the auxiliary variable of size bp/2c from

uniform distribution, U(0, 1). Th RV-SIS identifies that there are only three influen-

tial genes, (Msa.1166.0, Msa.2877.0, Msa.741.0). However, the test-based screening

procedure with FDR=0.01 identifies that there are 41 influential genes, (Msa.1024.0,

Msa.1088.0, Msa.1194.0, Msa.14089.0, Msa.14686.0, Msa.15442.0, Msa.15467.0, Msa.1590.0,

Msa.1637.0, Msa.19368.0, Msa.2000.0, Msa.2134.0, Msa.21996.0, Msa.2228.0, Msa.22488.0,

Msa.25655.0, Msa.26025.0, Msa.2668.0, Msa.27429.0, Msa.28021.0, Msa.2888.0, Msa.3097.0,

Msa.3214.0, Msa.3248.0, Msa.3269.0, Msa.32975.0, Msa.33332.0, Msa.451.0, Msa.4636.0,

Msa.5595.0, Msa.5727.0, Msa.657.0, Msa.668.0, Msa.736.0, Msa.7780.0, Msa.84.0,

Msa.8671.0, Msa.8673.0, Msa.916.0, Msa.925.0, Msa.978.0).

None of influential genes that are identified by RV-SIS is included in the set of

influential genes that is identified by the test-based screening procedure.

We fit the nonparametric regression and use the nonparametric coefficient of deter-

mination (Doksum and Samarov, 1995) to compare the performance. We obtain

R2-values of 0.9384 and 1 for RV-SIS and the test-based screening, respectively.

4.4 Theoretical Properties

4.4.1 Proof of Theorem 4.2.2

Let Ki2i1 denotes K(
Xi2
−Xi1

h
). Let Y ∗i = Yi − c be the centered Yi under the null

hypothesis. Then under H0, the sample variance of the regression function, S̃2
m can
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be expressed as following,

S̃2
m =

1

n

∑
i

m̂2(Xi)− (
1

n

∑
i

m̂(Xi))
2

=
1

n

∑
i

(m̂(Xi)− c)2 + 2c
1

n

∑
i

m̂(Xi)− c2

−(
1

n

∑
i

m̂(Xi)− c)2 −
2c

n

∑
i

(m̂(Xi)− c)− c2

=
1

n

∑
i

(m̂(Xi)− c)2 − (
1

n

∑
i

m̂(Xi)− c)2

=
1

n

∑
i1

(
1

nh

∑
i2

(Yi2 − c)Ki2i1

1

f̂(Xi1)
)2 − (

1

n2h

∑
i1

∑
i2

(Yi2 − c)Ki2i1

1

f̂(Xi1)
)2

=
1

n3h2

∑
i1

∑
i2

∑
i3

Y ∗i2Y
∗
i3
Ki2i1Ki3i1

1

f̂ 2(Xi1)
− (

1

n2h

∑
i1

∑
i2

Y ∗i2Ki2i1

1

f̂(Xi1)
)2

=
1

n3h2

∑
i1

∑
i2

∑
i3

Y ∗i2Y
∗
i3
Ki2i1Ki3i1

1

f 2(Xi1)
− (

1

n2h

∑
i1

∑
i2

Y ∗i2Ki2i1

1

f̂(Xi1)
)2

+
1

n3h2

∑
i1

∑
i2

∑
i3

Y ∗i2Y
∗
i3
Ki2i1KXi3i1(

1

f̂ 2(Xi1)
− 1

f 2(Xi1)
)

≡ T1 + T2 + T3

For convenience in notation, we omit * from the centered Y ∗i for the rest of the proof.

First, we consider T1. Then the following representation of T1 as a V -statistic and

U -statistic is useful

T1 =
1

n3h2

∑
i1

∑
i2

∑
i3

Yi2Yi3Ki2i1Ki3i1

1

f 2(Xi1)

=
1

n3h

∑
i1

∑
i2

∑
i3

ψ(Zi1 , Zi2 , Zi3)

=
6

n3h

(
n

3

)
U (3) +

6

n3h

(
n

2

)
U (2) +

1

n3h

(
n

1

)
U (1)
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where U (j) is a U -statistic of degree j. Define H
(2)
n be

H(2)
n =

(
n

2

)−1 ∑
i1<i2

ψ2(Zi1 , Zi2).

Since E(ψ(Z1, Z2, Z3)) = 0 and ψ1(z1) = E(ψ(Z1, Z2, Z3)|Z1 = z1) = 0, nU
(3)
n and

3nH
(2)
n have the same asymptotic distribution. By Corollary 1 of Lee (1990, pp 83),

we have

nh(
6

n3h

(
n

3

)
U (3))→ 3

∞∑
ν=1

λν(Z
2
ν − 1)

and

nh(
6

n3h

(
n

2

)
U (2) +

1

n3h

(
n

1

)
U (1))→ 3θ2 as n→∞

Therefore,

nhT1 → 3
∞∑
ν=1

λν(Z
2
ν − 1) + 3θ2 (4.4.1)

Consider now T2. We show that nhT2 → 0 in probability. First, we show
√
nhT2 → 0

in probability by showing E(
√
nhT2)

2 → 0 as n approaches to infinity.

Under the null hypothesis, we have

E(
√
nhT2)

2 = E(
1

n

∑
i1

∑
i2

Yi2K(
Xi2 −Xi1

h
)

1

f̂(Xi1)
)

= E(
1

n

∑
i1

∑
i2

εi2K(
Xi2 −Xi1

h
)

1

f̂(Xi1)
)

→ 0 as n→∞
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Thus we have
√
nhT2 → 0 in probability. In addition, we have

nhT2 → 0 in probability. (4.4.2)

Now we consider T3. For some constantC1, we can express T3 as following

T3 =
1

n3h2

∑
i1

∑
i2

∑
i3

Yi2Yi3Ki2i1Ki3i1(
1

f̂ 2(Xi1)
− 1

f 2(Xi1)
)

=
1

n3h2

∑
i1

∑
i2

∑
i3

Yi2Yi3Ki2i1Ki3i1(
(f(Xi)− f̂(Xi))(f(Xi) + f̂(Xi))

f̂ 2(Xi1)f
2(Xi1)

)

≈ C0(

√
log(n)

n
+ h2)

1

n3h2

∑
i1

∑
i2

∑
i3

Yi2Yi3Ki2i1Ki3i1(
f(Xi) + f̂(Xi)

f̂ 2(Xi1)f
2(Xi1)

) by Lemma 1

≤ C1(

√
log(n)

n
+ h2)(

supXi
(f(Xi) + f̂(Xi))

infXi
f̂ 2(Xi1)

)
1

n3h2

∑
i1

∑
i2

∑
i3

Yi2Yi3Ki2i1Ki3i1

1

f 2(Xi1)

= C1(

√
log(n)

n
+ h2)C2

1

n3h2

∑
i1

∑
i2

∑
i3

Yi2Yi3Ki2i1Ki3i1

1

f 2(Xi1)

where C2 = (supXi
(f(Xi) + f̂(Xi))/infXi

f̂ 2(Xi1)).

Using this expression, we show that nhT3 converges to zero in probability by showing

that E(nhT3)
2 approaches to zero as n→ 0.

E((nhC1(

√
log(n)

n
+ h2)C2

1

n3h2

∑
i1

∑
i2

∑
i3

Yi2Yi3Ki2i1Ki3i1

1

f 2(Xi1)
)2)

= O(
log(n)

n
+ h4 +

√
log(n)

n
h2)E((

1

n2h

∑
i1

∑
i2

∑
i3

Yi2Yi3Ki2i1Ki3i1

1

f 2(Xi1)
)2)

= O(
log(n)

n
+ h4 +

√
log(n)

n
h2)

1

n4h2
×

E(
∑
i1

∑
i2

∑
i3

∑
i4

∑
i5

∑
i6

Yi3Yi4Yi5Yi6Ki3i1Ki4i1Ki5i2Ki6i2

1

f 2(Xi1)f
2(Xi2)

)
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= O(
log(n)

n
+ h4 +

√
log(n)

n
h2)

1

n4h2
× {E(

∑
i1

∑
i2

∑
i3

Y 4
i3
K2
i3i1
K2
i3i2

1

f 2(Xi1)f
2(Xi2)

)

+E(
∑
i1

∑
i2

∑
i3 6=

∑
i5

Y 2
i3
Y 2
i5
K2
i3i1
K2
i5i2

1

f 2(Xi1)f
2(Xi2)

)

+2E(
∑
i1

∑
i2

∑
i3 6=

∑
i4

Y 2
i3
Y 2
i4
Ki3i1Ki3i2Ki4i1Ki4i2

1

f 2(Xi1)f
2(Xi2)

)}

→ 0 as n→ 0

Thus, we have

nhT3 → 0 in probability (4.4.3)

Therefore, by 4.4.1, 4.4.2, and 4.4.3 we have

nS2
m → 3

∞∑
ν=1

λν(Z
2
ν − 1) + 3θ2

4.4.2 Estimating the percentile of the limiting distribution

Following estimations are required to estimate the percentile of the limiting distribu-

tion in Section 4.2.3. Using the uniform kernel, we estimate ψ2(Z1, Z2) as following,

E(ψ(Z1, Z2, Z3)|Z1 = z1, Z2 = z2)

= E(
1

3h
(Y2Y3K21K31

1

f 2(X1)
+ Y1Y3K12K32

1

f 2(X2)
+ Y1Y2K13K23

1

f 2(X3)
|Z1 = z1, Z2 = z2)

= E(
1

3h
Y1Y2K13K23

1

f 2(X3)
|Z1 = z1, Z2 = z2)

=

∫
1

3h
y1y2K13K23

1

f(X3)
dX3
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=
y1y2
3h

∫
K(

x1 −X3

h
)K(

x2 −X3

h
)

1

f(X3)
I(0 ≤ |x2 − x1| < 2h)dX3

y1y2
3

∫ 1

−1+x2−x1
h

K(u)K(
x2 − x1

h
− u)

1

f(x1 − hu)
I(0 ≤ |x2 − x1| < 2h)I(x2 > x1)du

+
y1y2

3

∫ 1+
x2−x1

h

−1
K(u)K(

x2 − x1
h

− u)
1

f(x1 − hu)
I(0 ≤ |x2 − x1| < 2h)I(x2 < x1)du

≈ y1y2
3

1

4

1

f(x1)

∫
I(−1 +

x2 − x1
h

≤ u ≤ 1)duI(0 ≤ |x2 − x1| < 2h)I(x2 > x1)du

+
y1y2

3

1

4

1

f(x1)

∫
I(−1 ≤ u ≤ 1 +

x2 − x1
h

)duI(0 ≤ |x2 − x1| < 2h)I(x2 < x1)du

=
y1y2
12

1

f(x1)
(2− |x2 − x2

h
|)I(0 ≤ |x2 − x1| < 2h)

We can express θ2 as following,

θ2 = Eψ(Z1, Z1, Z2)

= E(
1

3h
(Y1Y2K11K21

1

f 2(X1)
+ Y1Y2K11K21

1

f 2(X1)
+ Y 2

1 K
2
21

1

f 2(X2)
))

= E(
1

3h
Y 2
1 K

2
21

1

f 2(X2)
)

= E(
1

3h
σ2(X1)K

2
21

1

f 2(X2)
)

= E(
1

3h
E(σ2(X1)K

2(
X2 −X1

h
)

1

f 2(X2)
|X2 = x2))

= E(
1

3h

1

f 2(X2)

∫
σ2(X2 − hu)K2(u)f(X2 − hu)hdu

= E(

∫
K2(u)du

3

1

f 2(X2)
(σ2(X2)f(X2) +O(h2)))

≈
∫
K2(u)du

3
E(
σ2(X2)

f(X2)
)
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Thus we can estimate θ by θ̂, where

θ̂ =
1

6n

n∑
i=1

(
S2
X

f̂(Xi)
) (4.4.4)

by using the uniform kernel.

Table 4.1. The minimum, 25%, 50%, 75% quantiles, and maximum selected submodel
size when σij = 0.3|i−j|

Model 4.(a)
Min 25% 50% 75% Max

Test-based (BH, FDR = 0.05) 513.00 615.00 648.50 685.20 754.00
Test-based (BH, FDR = 0.01) 51.00 75.00 87.00 144.00 163.00

Test-based (Bonferroni, α = 0.05) 51.00 71.75 79.00 87.00 103.00
RV-SIS 4.00 21.00 39.50 60.50 206.00

Model 4.(b)
Min 25% 50% 75% Max

Test-based (BH, FDR = 0.05) 539.00 621.00 649.50 675.20 728.00
Test-based (BH, FDR = 0.01) 56.00 69.75 75.50 140.00 163.00

Test-based (Bonferroni, α = 0.05) 56.00 69.00 74.00 80.25 104.00
RV-SIS 4.00 20.00 31.50 47.00 144.00

Model 4.(c)
Min 25% 50% 75% Max

Test-based (BH, FDR = 0.05) 502.00 608.00 625.50 653.00 737.00
Test-based (BH, FDR = 0.01) 76.00 98.00 106.00 116.00 223.00

Test-based (Bonferroni, α = 0.05) 76.00 98.00 106.00 115.20 156.00
RV-SIS 3.00 31.00 47.00 63.25 184.00
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Table 4.2. The minimum, 25%, 50%, 75% quantiles, and maximum selected submodel
size when σij = 0.5|i−j|

Model 4.(a)
Min 25% 50% 75% Max

Test-based (BH, FDR = 0.05) 512.00 625.00 653.50 694.20 784.00
Test-based (BH, FDR = 0.01) 53.00 74.75 136.00 127.00 181.00

Test-based (Bonferroni, α = 0.05) 53.00 73.75 80.50 87.00 128.00
RV-SIS 5.00 24.75 39.50 62.25 140.00

Model 4.(b)
Min 25% 50% 75% Max

Test-based (BH, FDR = 0.05) 517.00 626.00 661.50 698.20 758.00
Test-based (BH, FDR = 0.01) 56.00 72.00 81.00 138.00 170.00

Test-based (Bonferroni, α = 0.05) 56.00 71.75 78.00 84.00 99.00
RV-SIS 5.00 20.75 37.50 54.75 105.00

Model 4.(c)
Min 25% 50% 75% Max

Test-based (BH, FDR = 0.05) 451.00 608.00 644.00 672.00 761.00
Test-based (BH, FDR = 0.01) 71.00 100.00 113.00 125.20 225.00

Test-based (Bonferroni, α = 0.05) 71.00 100.00 113.00 122.00 147.00
RV-SIS 4.00 22.75 38.50 68.25 136.00

Table 4.3. The minimum, 25%, 50%, 75% quantiles, and maximum selected submodel
size when σij = 0.7|i−j|

Model 4.(a)
Min 25% 50% 75% Max

Test-based (BH, FDR = 0.05) 563.00 638.80 667.50 700.50 791.00
Test-based (BH, FDR = 0.01) 59.00 86.50 141.00 150.20 191.00

Test-based (Bonferroni, α = 0.05) 59.00 79.00 84.00 93.00 126.00
RV-SIS 10.00 28.00 42.50 71.00 199.00

Model 4.(b)
Min 25% 50% 75% Max

Test-based (BH, FDR = 0.05) 554.00 620.00 652.50 698.00 781.00
Test-based (BH, FDR = 0.01) 55.00 74.00 134.00 142.20 165.00

Test-based (Bonferroni, α = 0.05) 55.00 72.75 80.00 86.25 103.00
RV-SIS 7.00 23.00 35.00 64.00 125.00

Model 4.(c)
Min 25% 50% 75% Max

Test-based (BH, FDR = 0.05) 460.00 610.80 644.50 687.00 782.00
Test-based (BH, FDR = 0.01) 66.00 102.00 113.50 127.20 223.00

Test-based (Bonferroni, α = 0.05) 66.00 102.00 113.00 124.20 155.00
RV-SIS 8.00 31.75 47.00 67.25 162.00
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Table 4.4. The proportion of times each individual active predictor is selected and all
active predictors are selected in a submodel when σij = 0.3|i−j|

Model 4.(a)
X1 X5 X20 X21 ALL

Test-based (BH, FDR = 0.05) 1.00 1.00 1.00 1.00 1.00
Test-based (BH, FDR = 0.01) 1.00 0.99 1.00 1.00 0.99

Test-based (Bonferrnoi, α = 0.05) 1.00 0.99 0.99 1.00 0.99
RV-SIS 1.00 0.98 1.00 1.00 0.98

Model 4.(b)
X1 X5 X20 X21 ALL

Test-based (BH, FDR = 0.05) 1.00 1.00 1.00 1.00 1.00
Test-based (BH, FDR = 0.01) 1.00 0.99 1.00 1.00 0.99

Test-based (Bonferrnoi, α = 0.05) 0.99 0.99 1.00 1.00 0.98
RV-SIS 1.00 0.99 1.00 1.00 0.99

Model 4.(c)
X1 X5 X20 X21 ALL

Test-based (BH, FDR = 0.05) 1.00 1.00 1.00 1.00 1.00
Test-based (BH, FDR = 0.01) 0.98 0.90 0.99 1.00 0.88

Test-based (Bonferrnoi, α = 0.05) 0.98 0.90 0.99 1.00 0.88
RV-SIS 0.99 0.98 1.00 1.00 0.98

Table 4.5. The proportion of times each individual active predictor is selected and all
active predictors are selected in a submodel when σij = 0.5|i−j|

Model 4.(a)
X1 X5 X20 X21 ALL

Test-based (BH, FDR = 0.05) 1.00 1.00 1.00 1.00 1.00
Test-based (BH, FDR = 0.01) 1.00 0.99 1.00 1.00 0.99

Test-based (Bonferrnoi, α = 0.05) 1.00 0.98 1.00 1.00 0.98
RV-SIS 1.00 0.98 1.00 1.00 0.98

Model 4.(b)
X1 X5 X20 X21 ALL

Test-based (BH, FDR = 0.05) 1.00 1.00 1.00 1.00 1.00
Test-based (BH, FDR = 0.01) 0.99 0.98 1.00 1.00 0.97

Test-based (Bonferrnoi, α = 0.05) 0.99 0.96 1.00 1.00 0.95
RV-SIS 1.00 0.98 1.00 1.00 0.98

Model 4.(c)
X1 X5 X20 X21 ALL

Test-based (BH, FDR = 0.05) 1.00 1.00 1.00 1.00 1.00
Test-based (BH, FDR = 0.01) 0.99 0.91 1.00 1.00 0.90

Test-based (Bonferrnoi, α = 0.05) 0.99 0.90 1.00 1.00 0.89
RV-SIS 0.99 0.97 0.99 1.00 0.96
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Table 4.6. The proportion of times each individual active predictor is selected and all
active predictors are selected in a submodel when σij = 0.7|i−j|

Model 4.(a)
X1 X5 X20 X21 ALL

Test-based (BH, FDR = 0.05) 1.00 1.00 1.00 1.00 1.00
Test-based (BH, FDR = 0.01) 1.00 1.00 1.00 1.00 1.00

Test-based (Bonferrnoi, α = 0.05) 1.00 1.00 1.00 1.00 1.00
RV-SIS 1.00 1.00 1.00 1.00 1.00

Model 4.(b)
X1 X5 X20 X21 ALL

Test-based (BH, FDR = 0.05) 1.00 1.00 1.00 1.00 1.00
Test-based (BH, FDR = 0.01) 1.00 0.99 1.00 1.00 0.99

Test-based (Bonferrnoi, α = 0.05) 0.99 0.98 1.00 1.00 0.97
RV-SIS 0.98 0.97 1.00 1.00 0.96

Model 4.(c)
X1 X5 X20 X21 ALL

Test-based (BH, FDR = 0.05) 1.00 0.99 1.00 1.00 0.99
Test-based (BH, FDR = 0.01) 0.96 0.93 1.00 1.00 0.89

Test-based (Bonferrnoi, α = 0.05) 0.96 0.92 0.99 1.00 0.87
RV-SIS 0.99 0.97 1.00 1.00 0.96



Chapter 5
Conclusion and Future Work

5.1 Conclusion

In this dissertation, we reviewed the existing sure independence screening procedures

for analyzing the ultrahigh dimensional data. We proposed a new sure independence

screening procedure using the variance of the regression function (RV-SIS) in Chapter

3 and a hypothesis testing of a constant regression function and test-based screening

in Chapter 4.

In Chapter 3, RV-SIS is introduced for variable screening in ultrahigh dimensional

setting. The RV-SIS procedure is based on their predictive significance while other

existing screening methods fail to discern between variables that have predictive

significance from those that influence the variance function. We presented the the-

oretical properties of the RV-SIS and showed that the RV-SIS possesses the sure

independence screening property. The simulation studies showed that the perfor-

mance of RV-SIS is considerably better than other screening procedures.

In Chapter 4, we presented a hypothesis testing of a constant regression function.
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Under the hypothesis of a constant regression function, the regression function has

zero variance. The asymptotic distribution of the estimated variance of the con-

stant regression function was presented. Using p-value from the hypothesis test, we

introduced a variable screening procedure using multiple testing. The test-based

screening procedure controls the false discovery rate by using the Benjamini and

Hochberg (1995) approach. This approach does not require to set a thresholding

value for the submodel. Numerical studies showed the performance of the proposed

procedure.

5.2 Future Work

We are in the process of developing a goodness-of-fit test for testing the significant

of the kth covariate based on the variance, σ2
mk

, of the regression function mk(x) =

E(Y |Xk = x). Again the idea is that mk(x) is constant if and only if σ2
mk

= 0.

Define the selected covariate in the submodel as XA from the RV-SIS procedure and

its complement as XAc . There can be some covariates that are jointly influential,

but not marginally, and these covariates will not be selected using the RV-SIS. We

develop a test statistic that provides a way for these covariates to be included in the

submodel. The next step will be to apply selected covariates XA to get the residuals

ei = Yi − m̂A(XA,i)

For estimating m̂A(·), we will use the single index model. For each covariate Xk in

XAc , we perform a goodness-of-fit test for each covariate using the variance σ∗2mk
of
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the regression function m∗k(x) = E(ei|Xki = x). Specifically, we want to test

H0 : σ∗2mk
= 0 (5.2.1)

for each Xk in XAc . Then, we include covariates from XAc that are highly significant

in the submodel.
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