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ABSTRACT

Proton andanion exchange membranase of great importance in the function of fuel
cells, one of the most promising technologies for renewable energiersionProton exchange
membrane fuel cells (PEMFQ@avebeen studied extensively in the past couple of decades, and
there have been tremdous advances in the developmenttliadse systemsespecially in
industries such as automotiand portable powerAnion exchange membrandsEM) have
caught the attention of scientists because they would allow for the development of fuel cells
without stly precious metal catalysts, among other advantages. Efforts are being made in
developingonglived and high performanc®EMs for fuel cell applications.

Primarily, the focus in AEM research has been membrane stability. It has been observed
that AEMs a@e not as stable as the stafethe-art NAFION® PEM and demonstrations of cell
performance beyond 1000 hours is rdfer this reason, scientists are in the search for more
stable AEMs. The first step to developing more stable membranes is to undefsand t
mechanisms by which these membranes degiadeoth in exsitu and insitu stability
assessmentdt is the focus of this thesis to provide insight in the degradation mechanisms of
AEMSs under highly basic conditions

The topic of this thesis is the uséalkyl spacers between the polymeric backbone and
cationic group, and alkyl pendant chains replacing one of the methyl groups in the quaternary
ammonium moiety, to provide steric hindrance around the cation and lower the degradation rate
of the nitrogercentered catian Samples were developedith systematically differing
architectures, for example, different lengths of alkyl spacers. The samples were then degraded
under highly basic conditions at high temperatufé® strategy choseda detect degradati was

the analysis of the degradation-psoducts of the degraded small moleculag,two different
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characterization technique$i NMR and LGMS. 'H NMR was chosen to provide gquantitative
information of the degradation rates of various analogue smalkamels with distinct
chemistriesL. C-MS was chosen to identify the degradationfrgducts and thus, determine the
degradation mechanismsThese results on small molecules can be extended to membranes as
described in some preliminary membrane experimamdsin future work.

It is the aim of this work todeeply probethe steric hindrance stratedyp stable
ammonium cationss well as provide a clearethodologyfor determining the degradation rates

and mechanismaf analogue small molecules fAEMs.
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Chapter 1

Introduction

The search for clean energy soureesl energy conversion technololggs become one
of the most important topics among the scientific community for the benefit of our society. With
an increasing population worldwide, thiblgal energy consumption is projected torease 56%
from 2010 to 2040, according to the InternatidBaergy Outlook 2018 Additionally, according
to the United States Environmental Protection Agency (EPA), electricity production was
responsible in 2013 for 31% of the greenhouse gas emi&siwhich create significant and
harmful impacts on the envirorent and our health. In contrast, most renewable energy source
generate little to no global warming emissionshe need for cleaner, renewable energy sources
has become undeniable and fuel cells are one of the pronuemgonents of clean energy
systemsThe U.S. Office of Energy Efficiency & Renewable Energy considers that fuel cells can
address critical challenges in all energy sectors, including commercial, industrial and
transportation, while offering a broad range of benefits for the environment éand nat i on 6
energy security, not only by reducing the greenhouse gas emissions as mentioned before, but also
by reducing oil consumption, air pollution and expanding the use of renewablée power

In fuel cells, electrical energy is generated by an aleb&mical reaction between
hydrogen and oxygen, with heat and water as the onjyrdigucts. Among the various types of
fuel cells,proton exchange membrane fuel c§ EEMFC) andanion exchange membrane fuel
cells (AEMFC) are two of the most important tewlogies in lowtemperaturemobile systems.
In PEMFCs, hydrogen is oxidized to form two proton$)(k&hd two electrons (e The electrons

generate the current in an external circuit and the protons are transported through a proton
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exchange membrane (PEKfom the anode to the cathode. At the cathode, protons and electrons

reduce oxygen from air and form water. In AEMFCs, hydroxide ions’)(@k¢ transported

through an anion exchange membrane (AEM) from cathode to anode, opposite to PEMFC, where

they reconbine with protons to generate water (Bagurel1-1).

PEMFGs require the use of expensiveliztsed catalysts for the reactions to occur, while

the hgher pH in AEMFCs makes costly precious metals catalysts unnecessary. There is less

corrosion at higher pH and the nprecious metal catalysts can be inexpensive. However, AEM

show less stability that that achieved for PEMs currently.
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Figure1-1. Comparison between PEMFC (left) and AEMFC (rifjht)

An AEM consists of a polymeric backbone with pendant cation groups. Several

membrane chemistries have been studied, and typical polymer backbones include poly(styrene)

(PS), poly(sulfones) (PES) and poly(phenylene oxide) (PPO). Among the cationic gtbhepsde
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to the backbones, the most widely used are benzyl trimethyl quaternary ammonium (BTMA)

groups (QA) (se€igurel-2 for BTMA QA-PPO).

HaC
0

® CH
/N\ 3
H3C CH,

Figure1l-2. An example of a typical AEM, PRBTMA. A i CHs in the PPO has been replaced
with abenzyl trimethyl quaternary ammonium group

The gability of the AEM depends of both the polymer backbone and the¢etlsationic
group. It is hypothesized that degradation occurs via &tdck, but other reactive oxygen
species in an electrochemical environment cannot be ruleduoing device operatiorPolymer
backbones chemistries, liIkBES, PS and PRQvere studtd and PPO showed comparable
stabilities to PS and much better stability than PBS for the cationic heagdroup, different
architectures are still undeonsideratiorfor an optimized AEM. As mentioned before, BTMA
shows promising AEM capabilities berse of its alkaline stability, low cost and ease of
synthesis. However, BTMA as presented-igure 1-2 undergoes degradatiamder accelerated
conditions of high base concentration and high temperafime positive charge of the nitrogen
attracts the electrons further apart from the alphborey, creating partial positive charges over
these carbons, making them prone to hydroxide attack. Two different degradation pathways are
shown inFigure1-3 for the quaternary ammonium analodgrenzyltrimethylammoniuBTMA).

If the hydroxide attacks the benzyl carbon, then the QA group is displaced and a benzyl alcohol is
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formed (a). If the hydroxide attacks the methyl cartimnzyldimethylaminand methanolare

formed as byproducts (b).

a)
HsC. _CHj
— + ’}‘ Substitution
CHj3
~
e @®,CH3
OH A N, OH
H;C CHj
b)
I (P + CH3;0OH Dealkylation
@,CH3 /CHS
N \
o H3C CH3 CH3
OH -/

Figurel-3. Two different degradation pathways for BTMA. (a) Hydroxide attack in the benzyl
carbon forms a benzyl alcohol ammomethylamine as byproducts. (b) Hydroxide attack in the
methyl carbon forms benzyldimethylare and methanol as fproducts

Both these reactions are substitution type reaction S and i n the prese
hydrogen, the cationic group can under@o elimination type reaction (Ealso known as
Hofmann elimination. The Oth t t a c khgdrogeh te théitrogen leaving to form a molecule
of water. The electronsthenfor a doubl e bond careonforeiregan atkéne. U an o

The remai ni ng p a-darbororéatea btableenaylamingas seén ifighre1-4.0



OH CHg
( —_— + H-C—N Hofmann elimination
H S
H CH,
)
®_CH
- 'T'\CHS |
CH; °
Figurel-4. Hof mann el i mination mecHymgessm occur s

Other degradation mechanisms can also take place, depending on the structure of the
ammonium groupsuch as Stevens amangement, Sometletausser rearrangement and-1,4
eliminatior?. Degradation is thought to occur because of the electrophilic character of the QA,
enhanced by the presence of the adjacent elewfitbdrawing benzyl group Several strategies
have been deloped to decrease the pressure on the adjacent carbons by either charge
delocalization or steric hindrarfce Charge delocalization strategies include the use of
imidazolium or guanidinium as the cationic groups, but they have shown rapid degradation in
alkaline media. For this reason, Kreuer concluded that steric hindrance to lower the reactivity of
the QA is one of the most promising strategies to achieve high stabilities in AEM. One means of
acquiring steric hindrance is by the addition of an alkyl spaetween the QA and the polymer
backbone. Another approach is by addition of a terminal alkyl chain pendant to the QA. It is
logical to expect that a cation with both architectures shows exceptional stability.

The aim of this work is to understand thdemt of the influence of alkyl spacers and
pendant chains on stability for AEM applications. This work examines different cationic
architectures in order to identify the best strategies for increased stability. Moreover, it is the
intention of this work @ characterize the different degradation pathways by identifying the
degradation products in the presence of base. The analysis is simplified by investigating analogue
small molecules under mimic fuel cell conditiankigh temperature and presence of rsirbase

T to identify possible new chemistries for AEM.
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Chapter 2

Literature Review

Introduction

This chapter will provide eeview andanalysis of the literature consulted for this watk.
will begin with a description of fuel cells and their main features. Different types of fuel cells will
be described and Anion Exchange Membrane Fuel Cells (AEMFC) will be explained in more
detail. The advantages of AEMFC over other types of fuel adlllbe explained, altogether with
the challenges that need to be addressed to utilize them as everyday technology. Membrane
stability and degradation mechanisms will be described, as well as strategies for achieving
enhanced stability. Since Liquid Chrotography Mass Spectrometry (H@S) and Nuclear
Magnetic Resonance (NMR) were used to study degradation rates and mechanisms, a review of
these characterization techniques is included, as well as previous studies thatMSeand

NMR to characterize degation.

Fuel cells

Fuel cells are one of the most promising technologies in the search for new, clean energy
conversion devicesA fuel cell is a device that converts the chemical energy of a fuel into
electricity by an electrochemical reaction. There difeerent designs of fuel cells, but they all
consist of three main components: two electrodes, the anode and the cathode, which are separated
by the electrolyte. At the anode, the direct oxidation of hydrogen or the oxidation of methanol

occurs. At the athode, the oxygen is reduced, in most cases from air. The net reaction is the
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formation of a molecule of water with the generation of heat and electrons, which in a closed

external circuit generate the curreBg(ationl).

Equation 1

o 25 000
C
Some fuel cells are divided according to the type of electrode and which species
it transports. Fuel cells with a proton duwcting electrolyte are known as Proton Exchange
Membrane Fuel Cells (PEMFEjgure2-1, left). In this type of devices, hydrogen is oxidized at
the anode into protons and electroigation2)!. The electrons flow in the external circuit and
the protons are transported through the membrane and to the cathode. At the cathode, oxygen
from air is recombined with the protons and electrons to generate ®wgteation3).
Equation 2
VO q¢0 ¢Q
Equation 3

gﬂ ¢Q ¢'0 ©° 00

In anAEMFC, Figure2-1 right, hydroxide ions (OHl instead of protons are generated in
the cathodeEquation4) and transported to the anode were they recombine with hydrogen to

generate watelgguationb).

Equation 4

0 ™0 ¢QOo¢0©O

el el

Equation 5

O ¢00O° 00 ¢Q
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Figure2-1. PEMFC schematic (left) and AEMFC schematic (rifjht)

In both types of fuel cells, the electrolyte is a solid membrane that is responsible for
transporting the ions from one electrode to the other, depending on the type of device, as
describedbefore. In an AEMFC, the electrolyte consists of a membrane (Anion Exchange
Membrane, AEM) that selectively allows the passage of hydroxide ions from the cathode and
transports it to the anode. AEMs will be described in more depth in the next section.

In PEMFCs, the oxidation reaction of hydrogen occurs very fast dragetd
catalysts, while the higpH of AEMFC allows for the use of a low level of Pt catalyst or a
cheaper noprecious metal orieAlso, AEMFCs allow for an extended range of materialsand
wider choice of fuels in addition th,. However the disadvantages related with AEM include
low OH conductivitied and low stability in the highly alkaline environment created by the
presence of OHgroup$. Research on AEM has focused on these twticakiaspects for

achieving great device performances.
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Anion Exchange Membranes

Introduction

An AEM consists of a polymer backbone with tethered cationic groups. The AEM
functionsas the electrolyte in an AEMFC aitcallows the transport of hydroxide isnfrom the
cathode to the anode, as showrrigure 2-1. For this reason, it is essential for the membrane to
have high ionic conductivity; however, conductivities for AEMs reported early in the literature
show significantly lower conductivity tinathat of protons for PEMFC. It has become evident that
the low hydroxide conductivity in AEMFC is caused in partd®» contamination, which causes
the conversion of hydroxide ions into carbonates f¢G@nd bicarbonates (HG(P. Other
important requirenents for fuel cell application are good mechanical properties, high stability in
the alkaline media, provide effective anode/cathode separation, carrier for hydroxyl transport and
low cost. This work will focus on different strategies to achieve hidilisgaln order to achieve
high overall stability in the AEM, stability of the backbone and cationic group are both réquired

while maintaining the functionality of the cationic groups.

Polymer backbone

Typical polymer backbone architectures includeyfstyrene) (PS), poly(phenylene

oxide) (PPO), and poly(arylene ether sulfone) (PSHyure2-2.
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Figure2-2. Poly(sulfone) (left), poly(styrene) (center) and poly(phenylene oxide) (right) as
materials for AEM backbonés

Several works have studiecomparative stability with different backbones.
Poly(sulfone)s contain strong electron withdrawing groups that promote nucleophilic attack and
cause chain scissi&in On the contrary, PS and PPO do not contain electron withdrawing groups
and present bett@otential as backbones for AEM. Between these two different materials, PPO is
usually chosen as the polymeric backbone of AEMFC because it consists of a hydrophobic
polymer with great mechanical strength and high glass transition temperajure2(0 °C¥.
Moreover, it is possible to synthetically modify its structure in various different sites to provide

the desired charge densities for ion conduction.

Cationic groups

Among the various cationic groups considered for AEM are trimethyl ammonium
(TMA), trimethyl phosphonium (TMP) and dimethyl sulfonium groups (DMS). The cationic

groups are usually tethered to the backbone via single carbon chains, showarabs R in

Figure2-3.
R R R
N o) |
N P ®S
R1/|\R3 H3C/|\CH3 /N
R, CHs Ri Ra

Figure2-3. Ammonium (left), phosphonium (center) and sulfonium (right) groups as cationic
groups for AEMC.,
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In this work®, Arges studied the stability of PSF functionalized membranes with different
cations, including TMA and TMP. He subjected saidnheanes to degradation in 1 M KOH at
60°C and his results showed greater alkaline stability of TMA in comparison with TMP, as can be

seen inFigure2-4.
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Figure2-4. Alkaline stability of different cations functionalized to PSF at 1 M KOH, 60°C

The imidazdium group Figure 2-5) is also usually considered as a candidate AEM
cationic group. Many studies have shown high alkaline stability fomtigazolium group“!?
however, in a study performed by Var&tere is profound evidence that the imidazolium group

presents relatively less thermochemical stability than the benchmark BTMA.
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Figure2-5. Study on relative stability of benzyltrimethylammonium chloride (left) aedzyt
3-methylimidazolium (rightperformedby Varcoe et af.

In this study, chmical stability was measured by {REman spectroscopy and analyzed
in conjunction with other techniques such as ion exchange capacity (IEC) measurements, water
uptake, ionic conductivity and fuel cell test data to provide ateth profile of the perfonance
of such ions. A simple experiment performed in this study is shown below, were both ions were
subjected to a heat treatment at 60°C in deionized water and aqueous KOH (1 M) for 14 days. A
decrease in the intensity of the imidazolivefated bands (% cm! and 13001500 cmt range)

suggests lower stability on the alkali treatméitj(re2-6).
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Figure2-6. FT-Raman spectra offienzyt3-menthylimidazolium chloride (bottom) and
benzyltrimethylammonium chloride (top) after 14 days in heat treatment reveals decrease
intensity n the imidazoliurrrelated bands.
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It is worth mentioning that in this study, Varcoe reveals the importance of analyzing the
stability of the cationic groups by utilizing a combination of chromatography/emessdata
analysis with other techniques, such as IEC or ionic conductivity to fully understand the
degradation of cationic groups in an alkaline environment. This thesis focuses on this approach.

From the different literature references shown above, it calisbiaguished that there is
no sustainable evidence on cations with significantly higher stability than benzyltrimethyl
ammonium groups. This work will focus on strategies to increase the stabilifjyaternary

ammoniumbased cations.

Stability of Anion Exchange Membranes

As it was mentioned before, stability of AEMs dependsboth the stability of the
backbone and the cationic group. Some studies even show evidence that polymer backbone
degradation can be triggered by the added cationic ¢roup consguence, the challenge is to
find anionexchange head groups with high stabilities and excellent conductivities. It was also
stated that BTMA is the leader cation for AEM. It is the focus of this work to explore methods for

achieving better cation stabilignd to understand the underlying degradation mechanisms.

Degradation mechanisms

The mechanisms by which the cationic group is attadkethydroxidedepend on the
chemical compositiorof the membrane. The BTMA catioifrigure 2-3) has an electrophilic
character, and is prone to attack by the nucleophilictd is present in the environment of the
anion exchange membrarieel cell. Several mechanisntan take place, as stated before,

according to the chemistry of the cation.
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In a nucleophilic substitution, a nucleophile replaces a leaving group from the
electrophile using its lone pair of electrons to form a new bond. A general reaction for this
mechaism is shown inFigure 2-7. Specifically, a nucleophilic substitution is calleg2Svhen
the rate limiting step involves the collision of twaolecules, and 8 when there is only one

molecule involved in the transition state of the rate limiting step.

|| o |

—C-C— + Nuw: — —CC— + X
V) | |
H=X: H Nuc

Figure2-7. Nucleophilic substitution mechanism

Usually compting with substitution reactions are elimination reactions, which involve
the loss of two atoms or groups from the substrate, usually with the formatignibafral. These
reactions are usually called Because they are second order transitions in vihiinucleophiles
attack the alkyl halide faster than it ionizes to give a first order reaction. An overall reaction for a

general Emechanism, also known as Hofmann elimination, is shovigore 2-8.

Y
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o el —a Na—p~T L e
NuG: C(|3~—/CC\—|—NUCH—|—X
X

Figure2-8. Elimination mechanism

BTMA cations have two different hydrogens atoms that can be attacked by tren®H
undergo degradation by a substitution reacti ol

the nitrogen; however, they can be differentiated by being in the methyl groups or in the benzyl
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position. For the first one, the Obpproaches the methgtoup in which the carbon has a partial
positive charge. The electrons in the carbdrogen bond then migrate to the nitrogen,
stabilizing thebenzyldimethylamineand allowing the OHo form a new bond with the carbon
and givingmethanolas a producfFigure 2-9). This reaction is known asdealkylationreaction

due to the loss of the methyl group of the BTMA.

+ CH5;OH
@  CHj

3C CH3
OH

Hs

Figure 2-9. Dealkylation mechanism

Opposite to the previous mechanism, the” ©&h also attack the carbon in the benzyl
position. The mechanism is similar: the cardmitnogen electrons stabilize themethybmine
while the OHforms a new bond with the benzene, giving as a produdieheylalcohol (Figure

2-10). This reaction will be referred to agbditution.

, HaCuy-CHs
|
- CHs
© ®,CH
OHA N ° OH
HsC' CH,

Figure2-10. Substitution mechanism.
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In the case of BT MA, Hof mann el i mination <c
hydrogens (se€igure2-11) . However, when the deshydgpogensof t he
are introduced, this mechanism begins to take place and distinct degradafioodibgts are
obtained. This isllustrated with a cation with an elongated alkyl chain between the benzyl group

and the quaternary ammoniubgnzypropyltrimethylammoniugrin Figure2-11.

OH CHs O
H( —_ + H3C_N\CH + 2
H 3
)® CH
N,
CH; °

Figure2-11. Hofmann elimination mechanism.

In this reaction, the OHa p p r 0 a ¢ khydogen tb the ritrogen, which donates its
electronstofom@bond bet ween the U an dberryl grapentandn s , gi
forms a molecule of water . The U carbon then
deficient nitrogen, which leaves as a stahiaethylamine

Additionally, other degradatiomechanisms can also be predicted to occur, depending on
the structure of the cation, including Sommeétietuser and Stevens rearrangeménénd anion
induced 1,4elimination®. However, these mechanisms have not been widely observed in either
membrane or cation degradati&rend will not be considered for this work.

The three most important degradation mechanisms mentioned before have kbijstinct
products, thus, it is possible to identify which mechanism takes place if the degradation by
product is identified. This strategy is the one used throughout the course of this work to

characterize the degradation mechanisms for each of the samples.
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Alkyl spacers for enhanced stability

As was explained in the previous section, the presence of electron withdrawing groups
like TCN allows for the occurrence of degradation mechanisms. In a recent’pépeuer
cl ai med that il appr oa uid charge datocalgzdtienbmay nozhave beere a mi
successful as they trade increased stability through delocalization with reduced stability from
dramatically reduced steric shieldingo and t
stabilization is through these of alkyl spacers to introduce a high degree of steric shielding. In
fact, when the nucleophile approaches the back side of the electrophilic carbon atom, it must
come within bonding distance of the back lobe of thdl g orbital. If the carbon atons
crowded by the presence of bulky groups, this process is difficult and the rate of reaction is
expected to be significantly lowér

Strategies to suppress the reactive benzyl carbon were attempted by Haltbbyeraf
Dow Chemical in anion exchange sies® by substituting the benzyl hydrogens in a
benzyltrimethylammoniumesin for methyl groups, thus creating a resin with neither benzylic
c ar b o n-ydrogens, wihich was expected to show improved stability compared with the
common resins with benzgroups. However, this resin lost strong base capacity more rapidly
than the later ones.oF the benzylic resins, about 60% of the breakdown would occur at the
benzyl carbon. The authors hypothesized that the neophyl group in the
neophylbenzyltrimethylammimm resin somehow caused the methyl carbons to be more
susceptible t&y2 attack.

Alkyl spacers between the aromatic ring and the catmmspacer chainswere initially
introduced by Tomoi in 1996 In this work, Tomoi synthesized various anion exgearesins
with different lengths of carbon spacers to examine their relative stabilgyreé2-12 andTable

2-1).
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Figure2-12 Ani on exchange resiths. RO indicat

+
R'-N(CHa); Br’

Table2-1. Spacer chains utilized for the anion exchange ré&sins

Spacer Chain® (R")

(CHs)4
CH,CH,CH(CH,)CH,

(CH,),CH(CH,)CH,CH,
(CHs),

CHZCHE@ CH,

CH,O(CHy),
CH,O(CHy),

CH;O(CHay)g

The thermal stability of said resins was examined by immersion in deionized water at
100-140 °C for 30 to 90 days and the stability was measured as a comparison of the strong base
capacity of the resin after and before thmperature treatment. The study concluded that the
introduction of alkyli or alkyleneoxymethylené& spacers between the benzyl ring and the

quaternary nitrogen improved the thermal stability of the reSiigsi(e2-13).
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Figure2-13. Thermal stability of alkyleneoxymethylene spaoedified anion exchangefs

Interestingly, however, thmaterialwith the propyleneoxymethylerspacer showed less
stability than the one with a singleCH. tethering, which could be explain by an additional
electronwithdrawing effect of thepropylenegr ou p, which increased the
carbon. Consequently, the authors argued that enhanced stability can be achieved for resins with
alkyl spacers longer than the propylene chain and that the main deconmpasitEnion
exchangers containing spacer chains would be likely to occur at the methylene or methyl carbon.
Additionally, this strategy was further investigated by Hibbs by comparing the stability of
poly(phenylenebased AEMs containing (i) a single tetbeétrimethylammoniunfATMPP) and
(i) an hexanel-one6-trimethylammoniunfTMAC6PPY!. The stability was tested by exposing
membrane samples to 4 M KOH at 90°C for 14 days and comparing batim@iictivity and ion

exchange capacity. Other samples studiettlude a resonanesabilized benzyl
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pentamehtylguanidinium (PMGTMPP), an imidazolimased poly(phenylene) (ImMTPP) and a

sidechain ketone (TMAKC6PRIFigure2-14 andFigure2-15).

Figure2-14. Poly(phenylene)s with benzylic cations studied by H#bs

® ®

/ o / O
N N
oj)/\/\/\ Br H/\/\/\ Br

TMAKC6PP TMACG6PP

Figure2-15. Poly(phenylene)s with sidechain tethdreationsstudied by Hibb%.

Figure 2-16 shows the change in Gtonductivity during the temperature test foe th
different cations. The open triangle (TMAC6PP) and filled circle (ATMPP) show the greatest

stability, with a comparatively greater stability of the spamedified cation.
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Figure2-16. Changes in chlodie ion conductivity during test in 4 M KOH at 9G°C

Pendant chains

Another strategy towards gaining exceptional stability is the incorporation of pendant
chains to the cationic center. This approach also focuses on creating steric hindrance around the
electrophilic carbons to lower the rate of the reaction. A series of quaternized PPOs containing
long pendant chains of 6, 10 and 16 carbons were synthelsizdd and their hydroxide
conductivity and ion exchange capacity were measured to determine their relative Ztaliléy
hexadecyl pendant chain with 40% functionalization showed the best properties, including higher
hydroxide conductivity although it®Wwer IEC value; however, the inability to form films made
this polymer not suitable for membrane capabilities. The membranes containing a hexyl chain
showed great potential for highly stable AEMs, as it can be seen from the plots of conductivity as

a functon of IEC and IEC over time~gure2-17).
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Figure2-17. Hydroxide conductivity at 20°C as a function of ion exchange capacity (left) and

Conductivity (mSicm)
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Nuclear Magnetic Resonance (NMR)

NMR is one of the most powerful tools availabie determining organic structures. The
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ef fects

t he
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NMR spectrum provides great information about the structure of the sample, and it is sometimes

used with other spectroscopy techniques to determine the structures of complicated organic

molecules. A wide variety ofutlei are studied by NMR, being proto) and carbofl3 (*C)

the most useful because they are the major components of organic comfounds

Theory of Nuclear Magnetic Resonance

A nucleus with an odd atomic number or an odd atomic mass, like hydrogen, has a

nuclear spin and the number of allowed spin states it may adopt is quantized and determined by
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its spin nuclear quantum number I. The spigwar momentum generates a magnetic field B,

also called the magnetic moment. When the proton is placed in an external magnetic field, it can
re-orient with or against it. The lower energy state of the proton is with its spin aligned with the
external figd, and the energy difference between the low and high state is quantized and
proportional to the fie. When a nucleus is subjected to the exact combination of magnetic

field and electromagnetic radiation to flip its spin, it becomes in resonancehwifteld, and the
absorption of energy can be detected by the NI
resonanceo. However, el ectrons that circul at e
the applied external field, which generateé§ a hi el do around the proton
magnetic field at the nucleus is weaker than the external field, so the applied field must be
increased for resonance to occur. The way a proton is surrounded by a chemical environment
changes the differee between the magnetic field at the nucleus and the external one, giving each
proton a characteristic energy difference to be absorbed to gain resonance, also called chemical
shifts. Chemical shifts are recorded in a spectrum against a reference prutate relative

positions of the chemical shifts are unique to specific protons. An example of ethyl acetate is

shown inFigure2-18.
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Figure2-18. 'H NMR spectrum of ethyl acetate, intensigrsuschemical shift.

H NMR and stability of AEMs

The versatility ofH NMR has made it a powerful tathlat has been widely used to study
AEMs, mainly to onfirm synthetized polymers and membr&fiesowever, this spectroscopy
technique has various applications and was also reported to be used as a comparative technique
for relative stability®, and to determine degradation profifeé\n example of the firstgproach is
shown inFigure 2-19, where an imidazoliusbased alkaline anion exchange membrane was
subjected to a stability test of oscillating relattuemidity (RH) at 30 °C. No major changes in

the spectrum before and after the test suggest
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Figure2-19. Comparison ofH NMR spectrums of an imidazoliutmased membrareefore and
after stability te<f.

As mentioned before, NMR has also been used to develop degradation profiles of desired
samplesFigure2-20 shows the degradation profile of two small molecule imidazolium salts in a
solution of 1 M NaOH in 4:1 BED:CDsOD at 60°C over the course of 48 hours. The appearance
of new peaks in the region of 6750 ppm suggest a greater instability of compoamdmpared

to compound, the later which was designed with more bulky groups around the cation site.
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Figure2-20. Degradhtion profile from 1H NMR spectra for small molecule imidazolium salts in 1
M NaOH in 4:1 D20:CD30Dat 60°C for 48 hotits
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Liquid Chromatography Mass Spectrometry

Liquid chromatographyand mass spectrometry are two very important analytical
techniques that combined provide a great deal of information aboutngplesaThe
chromatography portion is a physical method of separation in which components of different
characteristics are distributed between two pHas&ébe mass spectrometer will then generate
ions for either the organic or inorganic compounds by artgldei method, such as electric fields
or energetic electrons, separate the ions according to theirtoretsarge ratio (m/z) and detect
them both quantitatively and qualitatively by their respective m/z abundaritiee two
techniques combined are able deparate distinct components of a sample and identify their

different m/z, which can be further translated into molecular weight.

Liquid Chromatography

As it was explained before, chromatography is a physical method of separating
components which are digiuted in two phases, one that does not move (stationary phase) and
another one that moves in a definite direction (mobile pffase)liquid chromatography (LC),
the sample is passed through a column at a finite rate. Once the sample has been injected, it starts
to flow through the column, where a partial separation begins. The separation improves as the
sample moves further through the colummtil the distinct components are essentially separated
from each other and elute at different times. The distribution and separation of the different
components is both related to the identity of the column and the chosen solvents. The strength of
thesapl eds i nteraction with the mobile and stat.]
LC. An appropriate solvent should have low viscosity, be compatible with the detection system,

be easily available with high purity, and have low flammability andctty. Common LC
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solvents are water, acetonitrile and methanol. Additionally, it is sometimes necessary to add
additives such as acetic acid to improve selectivity, reproducibility and peak shape.

It is estimated that approximately 65% of all LC separetiare executed in the reverse
phase mode; this is, on columns where the stationary phase surface is less polar than the mobile
phase. The universality of reversgldase LC arises from the fact that organic molecules have
hydrophobic regions that interaefffectively with the stationary phase. Columns used for
reverseephase LC usuallypossessa ligand such as octadecyl -(@) chemically bonded to

microporous silica particlés

Mass Spectrometry

Mass spectrometry (MS) is a technique in which a samptmizdd, separated according
to their masdo-charge ratio (m/z) and then detected and recorded. The instrument is called a
mass spectrometer and it is a destructive technique since the sample is*doifizedmass
spectrometer usually consists of five campnts: the sample inlet, an ion source, the mass
analyzer, the detector and the data systeigu¢e 2-21). In the inlet, the sample is pressurized
and transported tthe ion source, where it is transformed into gas phase ions. There are different
ionization techniques, including electron ionization, fast atom bombardment, chemical ionization
and electrospray ionization. Once the sample is ionized, it is acceleratad digctromagnetic
field. The mass analyzer separates the ion based on their m/z ratio and the detector then counts
the ions. The signal is recorded and processed by the data system and the information in given in
a mass spectrum, a graph of the numbéors detected (or abundance) as a function of their m/z

ratio’s.
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Figure2-21. General scheme of a mass spectrometer.

One of the most commonly used ionization techniques is electrospray ionizationisand it
also the method of choice for EKZS. It is a soft ionization technique and it has extraordinary

high-mass capabilifi/.

LC-MS in polymer degradation

Understanding the degradation mechanisms arardguct distribution of AEMs in fuel
cell working conditions allows for the«te si gn of the membranesd chen
stability. The most common approach towards analyzing AEMs isyabds been to compare
properties such as ion exchange capécityconductivity and mechanical properties before and
after certain degradation tests. However, little information of the degradation mechanisms can be
obtained with said approaches. IMS ha the advantage of being able to separate the
degradation byproducts, thus understanding the degradation mechanisms.

In a study previously mention&dmass spectrometry was used to confirm the suspected
degradation byroducts of a cation for potential AEMs after a degradation procedure. The
sample in question, a small molecule imidazolium $agure2-22), was degraded in 1 M NaOH

at 60°C for 48 hours.
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Figure2-22. Degradation pathways of the small molecule imidazoliuni®salt
The sample was also studied by-MS (Figure2-23). The peak of m/z 229.2 is assigned

to the model compound, and two degradatiorpinducts were observed (m/z 263.2 and m/z

195.1), the alcoholysis and dealkylation mechanisms products tiespec
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Figure2-23. MS of the model compound after the alkaline stability’test

LC-MS was also used talentify the chain end unzipping degradation mechanism in
Nafion and related perfluoro sulfonic acid model compotfndhis mechanism was verified by

the analysis of a molecule containing a carboxylic group on a linear perfluorinated aliphatic chain
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(Ri--COOH). A full chromatograph showed a series of peaks at different elution thigad

2-24, top). Specific ion molecular weights were extracted fromfull chromatograph to show
the relative intensity of those specific ions at different elution tifRegire2-24). This becomes

an extracted chromatograph. The difference between the six deconvoluted peaks arise from the

loss of a CF- unit (50 Da.), which is consistent with the unzipping degradatechamism.

Time (Minute)

100, MBI 7 m
50% 1058 A2 Full
3 17B 194 471 1048 1262 1412 1769 1888) 205 2472 3563 2895 299 M
100- 2084 2102 Extracted
wj MS1 Chromatograph
o 235416 504 725 1018 1378 1544 1787 1985] U 372 563 2910 a5 MW: 412413 Da
g 100- 1966 1993 Extracted
§ ~ | MS2 Chromatograph
T 52w 4z srazes wm  wum masJ, 2191 2500 2741 3025 208 MW:362-363 Da
2 100 1856 4904 MS 3 Extracted
-« ﬂé % N Chromatograph
,2 d 228 566 7.60 849 1125 1600 17.78 ) S _2110 2472 2635 2867 3000 3377 w
.._“'v' 100 AT MS 4 Extracted
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Figure2-24. LC chromatographic trace of degraded model comptund

The MS spectrums of each paakFigure2-24 were recorded as shownkigure2-25.
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Figure2-25. MS spectra of LC trace of degraded model compound product mixture at different
elution timeg*.

Summary

This chapter has explained the fundamentals of fuel cells and the need of more stable
AEMs. Examples of both polymeric backbones and cationic groups were exposed and the most
stable cationic group was presented. Additionally, the degradation mechanismsxplereed
and strategies to achieve more stable AEMs were introduced, along with examples of previous
work in the area. Moreover, the techniques and equipment used for this work were exhibited for

some understanding of the advantages they present.
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Chapter 3

Experimental procedures for sample preparation and characterization

Introduction

This section will describe the details of sample preparation, degradation treatments and
posttest characterization and analysis. The firstiseaif the chapter will explain the procedure
for the synthesis of all the samples used for this work. The second section will describe the
degradation experiments performed on the samples and the last section will explain the methods
and procedures used analyze the samples after they were exposed to the degradation treatment.
In this work, two characterization methods were employed for the andly&i$ Nuclear

Magnetic Resonance (NMR) and Liquid ChromatograpMass Spectrometry (L®&S).

Synthesis ofSmall Molecule Cations as Analogues for AEM Degradation

Degradation of AEMs is being thoroughly investigated because of the interest in
developing clean, renewable energy sources. However, it has been difficult for the scientific
community to come to eonsensus on the main degradation pathways of AEM because of (a) the
different methodologies and experimental setups, which include concentration -oardH
temperature and (b) the fact that reactivity of AEMs depends on a variety of factors, including
solvation, water uptake and chemical structure. As explained by Kreuer, the complexity of sorting
out the degradation pathways in these materials can be lowered by studying analogue small
molecule cations to obtain reliable conclusfoWith undeniable peedents of this approach in

the literature, small molecule cations were synthesized to serve as cases of study for AEMs.
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In order to investigate the influence of alkyl spacers and pendant chains as means of
stabilizing cations for AEMSs, five different sthanolecule cations with distinctive chemistries

were designed, as shownhRigure3-1.

Figure3-1. Small Molecule Cations synthesized for degradation experjirent left to right,
BTMA, 3QA1,4QA1, 6QA1and 3QAG in their salt form.

Samples BTMA-1QAL if following the same classification as the other samples, but will
be called BTMA for simplification 3QA1, 4QA1, and6QA1 exemplify the concept of alkyl
spacers, introducing an extra methyl wowhen going from sampl@QAl to 4QA1 and two
extra methyl groups when going from samples BTMA3@AL and4QA1 and6QA1l. Sample
3QA6 was designed to introduce the concept of pendant chain, as discussed in the literature
review. In this sample, a pendastiain of six carbons was used in addition to an alkyl spacer
consisting of three carbons.

Samples BTMA3QAL 4QA1, and6QA1 were all synthesized using the same synthetic
route. The bromide versions of the samples were reactedtnmitbthylamineto form the QA,

Figure3-2.

























































































































































