
The Pennsylvania State University
The Graduate School
College of Engineering

TOWARDS BETTER ACCESSIBILITY OF SCHOLARLY DATA

A Dissertation in
Computer Science and Engineering

by
Madian Khabsa

© 2015 Madian Khabsa

Submitted in Partial Fulfillment
of the Requirements
for the Degree of

Doctor of Philosophy

August 2015

The dissertation of Madian Khabsa was reviewed and approved∗ by the following:

C. Lee Giles
David Reese Professor of Information Sciences and Technology
Professor of Computer Science and Engineering
Dissertation Advisor, Co-Chair of Committee

Daniel Kifer
Associate Professor of Computer Science and Engineering
Co-Chair of Committee

Wang-Chien Lee
Associate Professor of Computer Science and Engineering

Murali Haran
Associate Professor of Statistics

Lee Coraor
Associate Professor of Computer Science and Engineering
Graduate Program Chair

∗Signatures are on file in the Graduate School.

ii

Abstract

This dissertation focuses on studying the accessibility of scholarly data and intro-
duces methods to facilitate researcher’s access to numerous types of scholarly data.
Four problems are investigated in the hunt for this mission. At first, an estimate of
the total number of scholarly documents on the web is provided using capture/re-
capture methods. The percentage of publicly available scholarly documents, of the
total, is further estimated and provided for each scientific field. It is found that at
least 114 million scholarly documents exist on the web as of January 2013.

Secondly, methods for automatically extracting content from scholarly docu-
ments are visited in the chemistry domains where formulae and chemical names are
extracted automatically. Two methods of extracting these entities are introduced.
The first approach introduces a probabilistic framework that combines the output
of an ensemble of extractors that can be used as-is. Joining the extractors in a
probabilistic approach is shown to achieve higher F score than each individual ex-
tractor. The second approach creates a single Conditional Random Fields extractor
with novel feature set that utilizes Soundex codes and word embeddings to achieve
high accuracy.

Thirdly, the interactions between users of a digital library and the system are
analyzed through large scale access log mining. The goal is to uncover user behavior
when interacting with a scholarly digital library and search engine. Three years of
access logs from CiteSeerX are analyzed, where user search, and download behavior
are modeled. It is found that the number of downloads a given paper receives
over a period of time can be modeled as power law distribution. Similarly, the
length of user sessions exhibits a power law distribution. Furthermore, it was
found that the top 1% most downloaded papers in a given month from a digital
library are responsible for 10-20% of the overall traffic. In addition, these most
downloaded papers exhibit a repetitive pattern where they remain highly accessed
in the following months Therefore, a logistic regression model is introduced to
predict the highly accessed papers for a given month using historical data.

Finally, academic search is studied. Search is an essential way for the discov-

iii

erability of scholarly documents. First, academic user query intent is classified in
to informational and navigational. We define the multiple facets of navigational
queries and introduce a method for identifying them using boosted trees. Later,
the clickthrough logs of academic search are studied, and found to have moderate
correlation with the relevance of a manually judged dataset, indicating that raw
click counts may be used to learn ranking functions. Finally, we use a learning to
rank model to devise a ranking function for academic search. The usefulness of the
features within the learning to rank model are examined, where it was found that
article full text is one of the key signals for predicting relevance.

iv

Table of Contents

List of Figures viii

List of Tables x

Acknowledgments xii

Chapter 1
Introduction 1
1.1 Estimate of the Number of Scholarly Documents on the Web 3
1.2 Chemical Entity Extraction . 4
1.3 Log Analysis of CiteSeerX . 5
1.4 Academic Documents Search . 5

Chapter 2
The Number of Scholarly Documents on the Public Web 6
2.1 Introduction . 6
2.2 Estimating the Number of Scholarly Documents on the Web 8
2.3 Field Level Analysis . 13
2.4 Conclusion . 18
2.5 Additional Estimates . 18

Chapter 3
Chemical Entity Extraction 21
3.1 Introduction and Related Work . 22
3.2 Methods . 25

3.2.1 Ensemble extraction - pre competition 25
3.2.1.1 Modified ChemXSeer 26
3.2.1.2 Ensemble extraction 27

3.2.2 ChemXSeer Tagger 2.0 - post competition 29
3.2.3 Tokenization . 29

v

3.2.4 Extractor and features . 31
3.2.4.1 Word embeddings 31
3.2.4.2 Soundex features 33
3.2.4.3 General token derived features 34
3.2.4.4 Dictionary look up 34

3.3 Results . 35
3.3.1 Competition extractor - ensemble approach 35
3.3.2 Post competition - ChemXSeer Tagger 2.0 37

3.4 Conclusion . 40

Chapter 4
CiteSeerX Log Mining 41
4.1 Introduction . 41
4.2 Data Processing . 43
4.3 Access Analysis . 46

4.3.1 Session . 46
4.3.2 Downloads . 49
4.3.3 Search . 52

4.3.3.1 Number of document views per query 55
4.4 User Behavior Prediction . 56

4.4.1 Download Prediction . 56
4.5 Related Work . 59
4.6 Conclusion and Future work . 61

Chapter 5
Academic Search 62
5.1 Introduction . 63
5.2 Related Work . 65
5.3 Academic Query Logs . 67
5.4 Query Type Classification . 67

5.4.1 Approach . 69
5.4.2 Dataset . 71
5.4.3 Experiments . 71

5.5 Ranking . 72
5.5.1 Dataset . 75
5.5.2 Labels and Clickthrough Rates 76
5.5.3 Experiments . 77

5.6 Conclusion and Future Work . 81

vi

Chapter 6
Conclusion and Future Work 83
6.1 Future Work . 84

Bibliography 86

vii

List of Figures

2.1 The front page of Microsoft Academic Search as captured
by the Internet Archive on 10 January 2013, at the time
of the experiments. Note that the size of MAS is listed on
the homepage. 7

2.2 An example of the list of most cited documents in MAS
in Agricultural Science. 10

2.3 To estimate the number of scientific documents on the
web, N , let n0 equal the number of citations found in both
Scholar and MAS for a collection of papers, and let ng be
the number of citations reported by Scholar. Then n0/ng
is an estimate of pm,the fraction of documents indexed by
MAS. The total number of documents N would be Sm/pm
where Sm is the size of MAS. 12

2.4 Relative number of documents by scholarly search engines
and databases. Total and Google Scholar are estimates. . . 13

2.5 The relative number of documents on the web for each of
the 15 fields as defined by MAS. 15

3.1 Precision-Recall curves for CEM task on training dataset . 38
3.2 Precision-Recall curves for CEM task on development

dataset . 39

4.1 Plot of the length of the the session (number of requests in the
session) against the frequency of this length in log log scale. 47

4.2 A state transition graph of web pages covering searching, viewing
and downloading documents . 48

4.3 Plot of the number of downloads a paper receives against the number
of papers with this many downloads in log log scale. 50

4.4 The percentage of total downloads generated by papers in the top
1% and 5% respectively of most downloaded papers within a month 53

viii

4.5 Distribution of the number of terms in a query. 54
4.6 Cache hits of the top 1% most downloaded documents for each

month. Each curve represents caching policy. LR refers to logistic
regression, BL refers to base line. April and May of 2012 are omitted
because very low traffic was recorded in them 60

5.1 Feature importance of navigational query classification. Number of
tokens does contribute the most but all other features give reasonable
contributions. 75

ix

List of Tables

2.1 The estimated number of documents on the web for each field. . . . 14
2.2 The percentage of publicly available scholarly documents found in

Google Scholar. 17

3.1 Accuracy of multiple tokenizers when tested on the chemical entities
of the test set . 30

3.2 Similar words to calcium when sorted by cosine similarity 32
3.3 Example of word embedding clusters 32
3.4 Soundex code for English letters . 33
3.5 Probability of a candidate entity conditioned on possible values of

the indicator random variables for each of the three taggers used. . 36
3.6 Performance of the ensemble extractor on the CEM task at various

confidence thresholds. 37
3.7 Performance of ChemXSeer 2.0 Tagger on the test dataset 38
3.8 Performance of ChemXSeer 2.0 Tagger using different collection of

features . 39

4.1 Percentage of traffic from the top 10 countries 50
4.2 Venues ranked by the number of downloads their papers received . . 52
4.3 Search type distribution. Blank field falls back to Document search 52
4.4 The number of result pages a user looks at when doing document

search . 55
4.5 Number of document views per query 55
4.6 Cash hit rate for the logistic regression model at each month, com-

pared to the baseline and the Oracle. 59

5.1 Navigational Query Features . 69
5.2 Navigational query classification performance for multiple learn-

ing algorithms. Numbers between parenthesis refer to standard
deviation in 5 fold cross validation. 72

x

5.3 The features used in representing every query document pair . . . 74
5.4 The performance obtained at various levels by multiple feature set

combinations and baselines by applying LambdaMART algorithm.
Training is optimized for NDCG@10 in all cases. All - [feature] de-
notes using all features except for the group listed between brackets.
Plus sign denotes using only the listed features. 80

xi

Acknowledgments

First and foremost, all praise is due to Allah for blessing me with the ability to finish
this dissertation. Second, I am eternally in debt to my advisor and mentor Dr. Lee
Giles. His guidance, advice, and motivations were indispensable through graduate
school. I am also thankful to the great senior graduate students that shared the office
space with me when I first joined the CiteSeer group: Pucktadata Treeratpituck,
Pradeep Teregowda, and Jian Huang. The discussions and interactions with them
have been a great resource in shaping my research skills. I am also grateful for
my colleagues Dayu Yuan, Sujatha Das, Wenyi Huang, Zhaoui Wu, Kyle Williams,
Hung-Hsuan Chen, and Jian Wu. It has been useful to discuss research problems
with them. I would like also to thank the instructors who taught me at Penn State
and shared their knowledge.

And to my wife, Hala, thank you very much for being by my side through this
journey. Without your support and motivation this dissertation would not have
been possible. Last, I would like to thank my friends in State College with whom I
have shared some of the best memories of my life.

The work in this dissertation was partially funded by the National Science
Foundation.

xii

Dedication

To my parents! Without your constant support and endless belief in me, I would
not have made it this far.

xiii

Chapter 1 |
Introduction

Scholarly documents are the main medium through which science is transferred
and communicated between scientists, through generations, and across disciplines.
It includes, but not limited to, journals, conference proceedings, technical reports,
theses, and white papers. However, scholarly data is not limited to documents.
A single scientific document can generate multiple collections of data that, all
together, make scholarly data big. For example, tables and figures within scientific
documents are important pieces of information that need to be extracted and made
searchable independently. Other scientific fields introduce different kinds of data
within a single document. In computer science algorithms are described as pseudo
code, and are of interest to be identified on their own. For chemistry, chemists are
especially interested in the formulae, molecules, and chemical names that appear
within a research article. When all these sub-document objects are added together,
scholarly big data is created.

As the rate at which scholarly publications are produced increases, it is inevitable
that humans will fail to carry many of the tasks required to keep track of scientific
production. Similarly, researchers will not be able to keep up with the latests
inventions in the area of their research. Therefore it is desired to study the way
by which academics access scholarly data, and explore methods to facilitate better
accessibility. But before delving into enhancing scholarly data accessibility, we
would like to find out more about the size of the data, and the characteristics of
the users who seek it.

Recent work estimates the journal production to be around 1.8 million journal
articles per year [1]. However, we do not have estimates of the total number
of scholarly documents that has been published. This estimate is important for

1

multiple reasons. First, it is intriguing to find out how much science have we
produced as humanity. And secondly, from an engineering stand point, designing
search and discovery systems that facilitate access to research requires knowing the
size of the collection which will be served in such a system. For if the the design
phase underestimated the number of papers to be included in a search system, the
quality of the service will be severely affected. Furthermore, from a scientific point
of view, devising effective algorithms that enables search and discovery at scale
benefits from knowing the underlying data on which the algorithms will operate.
Finally, it advances the state-of-the-art for estimating sizes of collections.

Scholarly data is generated both manually and automatically. While scholarly
documents are the result of human writing, much of the scholarly data, such as the
sub objects, are generated automatically using extraction algorithms. Although
it is possible to identify these objects manually, such efforts fail to scale typically.
Automatic methods for extraction have been successfully used for citation indexing,
identifying paper information such as titles authors [2], and sections within docu-
ments. These automatic methods for extraction have contributed to the birth of
many digital libraries and search engines that facilitated discoverability of scholarly
data, such as CiteSeer, later CiteSeerX1, Microsoft Academic Search2, and Google
Scholar3.

With much of the scholarly data being generated through the automated means
of information extraction, we address chemical entity extraction in chemistry
scholarly documents as an example of how information extraction may be used to
identify entities of interest within papers. By identifying the entities it is possible
to introduce new methods for accessing them such as specific search applications,
and scenarios. Furthermore, discovering chemical entities can benefit from special
indexing and tokenization that is more powerful than traditional text-based search.
We demonstrate how two methods can be used to extract chemical formulae and
names accurately from text.

Over the past twenty years, many digital libraries, repositories and academic
search engines have became popular among academics. These search engines became
the starting point for conducting research as they are used to find relevant work
on top of which new ideas and approaches are introduced. The interactions with

1http://citeseerx.ist.psu.edu
2http://academic.research.microsoft.com/
3http://scholar.google.com

2

these digital libraries provide a wealth of information that captures the interests of
users and the patterns they exhibit while accessing scholarly data. It is through
understanding user needs and patterns that better methods for accessibility can be
developed. We will be using the user access logs of CiteSeerX digital library and
search engine to study their interactions with the system and infer new insights.
The access logs used cover more than three years, from late 2009 to early 2013.
Through this dataset we will unveil the user search and download patterns, model
how papers get accessed, and how long users tend to spend on the search engine
during the session.

Later, we focus on the academic search problem which is arguably the single
most important aspect for scholarly documents discovery. Historically, librarian
search has lead to many innovations in information retrieval such as the use of
document vocabulary for indexing, and later inspired the idea behind PageRank.
Because of the popularity of typical web search, many of the same ideas and
technologies have found its way into academic search. However, the studies of
recent academic search are rare compared with that of web search. In this work
we start by studying the user query intent, which to the best of our knowledge is
the first of its kind. Later we focus on learning effective ranking functions that
help academics discover scholarly documents more effectively. We demonstrate how
learning to rank approaches can be applied to achieve good performance.

In the next few sections we give a brief introduction to each of the sub problems
that are tackled in this dissertation.

1.1 Estimate of the Number of Scholarly Documents
on the Web
The first problem introduced and tackled in this dissertation is obtaining an estimate
on the total number of scholarly documents available on the web. For convenience,
we will refer to all academic and scientific documents as “scholarly”. By scholarly
documents, we mean journal and conference papers, dissertations and masters
theses, books, technical reports and working papers. Patents are excluded.

The web has become a standard resource for such documents because individ-
ual authors, academic and research publishers, and repositories have made their

3

documents available online, with some open to the public and others limited to
subscribers.

Capture-recapture methods are used to obtain an estimate using two major
academic search engines, Google Scholar and Microsoft Academic. Each search
engine is assumed to be a snapshot of the population at a certain time, and
using the intersection of two search engines an estimate is derived. Furthermore,
size estimates for individual scientific fields are computed by reinterpreting the
experiments at the micro level.

The focus is later shifted towards estimating the percentage of publicly available
scholarly documents on the web. These documents are available at no charge
without the need of subscription or payment of any kind. Such estimate is crucial to
digital libraries and repositories such as CiteSeerX which crawl the web looking for
scholarly articles. It is far more important for policy makers looking and working
on implementing open access policies to scientific literature that was funded by
government organizations.

1.2 Chemical Entity Extraction
Identifying chemical formulae and chemical names inside chemistry research articles
is the first step for many applications including search and discovery. Besides, the
mentions of chemical entities, hereafter chemical entity refer to chemical formulae
and chemical names, comprise a large collection of data that construct part of the
scholarly big data.

In this section we introduce two methods for identifying chemical entities in
chemistry literature. One approach utilizes a group of information extraction
systems, while the other is a standalone approach. The first approach is suitable
when multiple extractors are provided, and their results need to be merged to
outperform the individual system’s in terms of accuracy. The latter method
introduces novel feature sets that identify chemical entities using a Conditional
Random Fields (CRF) extractor.

4

1.3 Log Analysis of CiteSeerX
Access logs of CiteSeerX search engine and digital library from the period of
September 2009 to March 2013 are analyzed. First bots access logs are filtered out
to keep only requests from real users using multiple heuristics. Later sessions are
inferred, and the number of clicks per session is modeled where it is found that
a power law distribution is a good fit. The number of downloads a given paper
receives is studied where it is also found that a power law distribution would be a
good approximation.

In our analysis we observe that highly accessed papers in a given month are
likely to remain highly accessed in the following months. Therefore, we use a logistic
regression model to predict the highly accessed documents for a given month using
historical data. This prediction allows the system to cache these highly accessed
documents, thus providing faster turn around time to the users in addition to
reducing resource usage.

1.4 Academic Documents Search
In this problem we first start by classifying the academic search queries based
on the user intent into two major classes: navigational, and informational. Both
classes of queries are defined. For navigational queries, the multiple facets that
makes a query navigational are listed. Boosted decision trees are then used with a
carefully crafted set of features to identify navigational queries from informational
ones.

After that we focus on devising better ranking functions for academic search.
We first create a dataset of queries along with relevance judgement for documents
that match each of the queries. The dataset is used to examine the relation between
absolute click through counts and documents relevance. After that we use a learning
to rank approach that utilizes multiple features and relevance models to learn a
ranking function using the manually labeled relevance judgments. At the end, the
contribution of some of the feature sets is examined where it is found that article
full text is one of the most informative features.

5

Chapter 2 |
The Number of Scholarly Doc-
uments on the Public Web

2.1 Introduction
Many researchers and academics are concerned about the extent to which academic
and scientific documents are available on the web, as well as their ability to access
them. For convenience, we will refer to all academic and scientific documents
as “scholarly”. By scholarly documents, we mean journal and conference papers,
dissertations and masters theses, books, technical reports and working papers.
Patents are excluded.

The web has become a standard resource for such documents because individ-
ual authors, academic and research publishers, and repositories have made their
documents available online, with some open to the public and others limited to
subscribers.

Numerous databases and search engines such as Google Scholar and CiteSeer
track scholarly documents and thus facilitate research. However, the coverage of
some of these search engines and databases is unknown. An important question
that a scholar or researcher might ask is whether a single search engine or database
is sufficient to obtain comprehensive results in a particular field. For example, Web
of Science reported that as of January 2013 it comprises more than 49.4 million
records [3], and Microsoft Academic Search (MAS) stated that it covers 48.7 million
documents [4] (A snapshot of the main page of MAS which used to show this
statistic is shown in Figure 2.1). However the size of Google Scholar is unknown

6

despite studies that have tried to determine the extent to which Scholar’s citations
overlap with those of other citation indices [5,6]. Relatively smaller digital libraries
and databases, such as CiteSeer and PubMed, tend to focus on documents from
certain fields, most of which are also indexed by large search engines such as Google
Scholar and MAS. Bjork et al. [7] estimated the number of published papers in 2006
to be roughly 1.35 million, whereas a similar estimate for 2011 put the number at
1.8 million [1]. But despite the availability of per year estimates, researchers have
yet to provide an estimate of the total number of published scholarly documents.

Figure 2.1. The front page of Microsoft Academic Search as captured by the
Internet Archive on 10 January 2013, at the time of the experiments. Note
that the size of MAS is listed on the homepage.

Estimating the number of scholarly documents available on the web is quite
different from estimating the size of the web itself, and thus presents different
challenges. Studies that offer estimates of the size of the web such as Lawrence and

7

Giles [8, 9], Bharat and Broader [10], or Dobra and Fienberg [11] can not be used
to estimate the number of scholarly documents on the web for many reasons. For
example, search engines are no longer receptive to automated requests for fear of
denial of service attacks or reverse engineering of their ranking function. Checking
that a document indexed by search engine A is also available in the index of search
engine B is nontrivial. To estimate the size of the web, one strategy would be to
check whether a particular URL is available in both engines. However, in the case
of scholarly documents the search engines might not have obtained their copies
from the same location since the same document might be available at different
URLs. Therefore, it is necessary to explore the content of the document and not
just the location from which it was obtained. Even when a search engine returns
the location of a certain document, it could be that the publisher offers full access
to subscribers only and has a limit on the number of downloads allowed per day,
thus making automated methods impractical. Finally, many publishers restrict
access for many web crawlers.

2.2 Estimating the Number of Scholarly Documents
on the Web
To estimate the number of scholarly documents on the web, we use the relative
size of two major academic search engines: Google Scholar (Scholar) and Microsoft
Academic Search (MAS). We note that our estimates are limited to English docu-
ments only. We used the option offered by Google Scholar of filtering results by
language, whereas for MAS we ran a language detection algorithm on the title of
each document. Only those identified as English were used. Our approach can be
described as follows. Assuming that each academic search engine would sample the
web independently for papers, then each index would contain a subset of available
documents. Next, we considered each search engine to be a random capture of the
document population at a certain time. Using the intersection of these two captures,
we estimate the entire size of the population. However, since obtaining the database
of both academic search engines was not feasible, we approximated the overlap
by randomly sampling from each search engine and then determining the size of
overlap in the random sample. The simplest approach for sampling from two search

8

engines is to send queries to each and then measure the overlap of the results. This
approach was used by Lawrence and Giles [8, 9] and by Bharat and Broader [10].
However, it is known to suffer from many biases and statistical dependencies. To
mitigate the effect of bias and dependence and to obtain a selection that was as
random as possible, we sampled from each academic search engine with the following
methodology: if we choose a random paper p that is in the database of an academic
search engine, then the set of papers S that cite p is a random collection from this
search engine. If we collect the set of papers citing p from both Google Scholar and
MAS, then the overlap between these two is an estimate of the overlap between
the two search engines. This method provides a good estimate of the coverage of
each search engine because when an academic search engine builds its database by
indexing a new document, it has no knowledge of the incoming citations to this
document. Therefore, the search engine has to obtain all the available manuscripts
and analyze them in order to determine whether there are any citations to a target
paper. In contrast to references, which the search engine can extract from the
document and try to obtain a copy of each referenced item, incoming citations are
not embedded with a document. Hence, to build a complete citation network, it is
necessary for a search engine to obtain all the available scholarly documents. The
more documents the search engine obtains, the larger its citation network.

Based on the methodology described, we chose 10 documents from each of the
fifteen fields specified by Microsoft Academic Search: Agriculture Science, Arts
and Humanities, Biology, Chemistry, Computer Science, Economics and Business,
Engineering, Environmental Sciences, Geosciences, Material Science, Mathematics,
Medicine, Physics, Social Sciences, and Multidisciplinary. The list of papers used
as queries for which we retrieved the collection of incoming citations was randomly
chosen from the most cited documents in each field. Special care was taken in regard
to choosing documents because search engines impose a limit on the maximum
number of retrievable results. Therefore, the chosen documents each had fewer than
1,000 citations in Scholar and likewise fewer than 1,000 citations in MAS. Figure
2.2 shows an example of a page that contains the most cited papers in agricultural
science, according to MAS as of January 2013.

The experiments were performed during the period of January 10-12, 2013 by, (1)
sending 150 requests to each search engine requesting the list of incoming citations
to each paper such that each request corresponds to one paper, and (2) storing the

9

Figure 2.2. An example of the list of most cited documents in MAS in
Agricultural Science.

returned metadata about each citation which included the document’s title, list of
authors, number of citations, year of publications, and the venue of publication (if
available). Overall, we obtained 41,778 citations from MAS and 86,870 citations
from Google Scholar. Matching the citations across results from different sources
(Scholar and MAS) cannot be achieved solely on the basis of verbatim matching
of title and authors. The reason is that academic search engines obtain their
metadata in different ways. For example, a publisher might provide some or all of
the metadata. Alternatively, the metadata of the document might be automatically
extracted from a downloaded document from the web. In the latter case, errors are
inevitably introduced in the extraction stage resulting in noisy metadata. Though
we have no way of establishing whether a certain paper’s metadata was provided
by a publisher or automatically extracted, we found evidence that the results are
mix of both cases. Another issue was that Scholar and MAS differed occasionally
in terms of their respective result encoding, especially with regard to Latin letters.

10

Therefore, the records returned by MAS and Scholar for a given paper were matched
as follows. To match the Scholar citation collection Cg with the MAS citation
collection Cm, for the same paper, we first matched each paper in Cg with its
counterpart in Cm such that the papers’ titles were exact textual match. Later, we
constructed shingles of size two for all the titles in both Cg and Cm. The collection
of size two shingles for a title is the set containing every two continuous words
appearing in that title [12]. For example, the size two shingles for the sentence: “A
Brief History of Time" would be {ABrief, Brief History, History of, of T ime}.
Given the set of shingles S1 for a paper in Cm, and the set S2 for a paper appearing
in Cg, we computed Jaccard similarity between S1 and S2 as follows:

Similarity(S1, S2) = S1 ∩ S2

S1 ∪ S2

We computed the Jaccard similarity between every pair of documents appearing
in Cg and Cm, and considered a pair S1, S2 to be a match when their similarity was
above a certain threshold. Based on our experiments with different values of the
threshold for accuracy, we empirically selected 0.50. After matching the collections
Cg and Cm as described, we manually evaluated the matched records individually
for mistakes. We found mistakes in less than 2% of the matched records, and all
false negatives and positives were corrected. Overall, more than 4,000 record pairs
were manually inspected.

We computed the overlap between the results for all the 150 query documents,
and measured the total number of unique documents that cited the query docu-
ments. The overall size of scholarly documents on the web can be estimated using
capture/recapture (refer to the supplementary material for an introduction to
capture/recapture). Assuming that the total number of documents on the web is
N , and each search engine samples the web independently, then the quantity n0/ns

where n0 is the number of documents returned by both Scholar and MAS, and
ns is the number of documents returned by Scholar is an estimate of the fraction
of scholarly documents, pm, indexed by MAS. Then, the number of documents
on the web N can be estimated as sm/pm where sm is the number of documents
indexed by MAS. These variables are illustrated in Figure 1. At the time of this
study, sm was listed as 48,774,763 by MAS. However, according to our analysis
98% of the returned papers from MAS were found to be in English. Therefore, in

11

Figure 2.3. To estimate the number of scientific documents on the web,
N , let n0 equal the number of citations found in both Scholar and MAS for
a collection of papers, and let ng be the number of citations reported by
Scholar. Then n0/ng is an estimate of pm,the fraction of documents indexed
by MAS. The total number of documents N would be Sm/pm where Sm is the
size of MAS.

our estimates we used 0.98 * 48774764 = 47799267 as an estimate of the number
of English papers in MAS, sm. Next, pm was estimated to be 0.418, yielding an
estimate size of N , the total number of documents on the web, of 114,000,000.

We argue that this estimate is a lower bound of the number of scholarly
documents on the web because the likelihood that a document is in an academic
search engine given that it was found in another academic search engine, is larger
than the likelihood that any given document is indexed by an academic search
engine. Although we designed our experiments to mitigate any possible statistical
dependence by relying on citations instead of query results, the experiments do
introduce a bias against documents with more than 1,000 citations. Search engines
impose a restriction on the number of retrievable results for all type of queries,
unless an Application Programmable Interface (API) is provided. Hence, any
study based on sampling from a search engine, regardless of the approach, would
encounter this bias. For our study it is relevant to note that Google Scholar at this
time does not provide an API.

Using the statistics calculated above, we estimated Google Scholar to have 99.3
million documents, which is, approximately, 87% of the total number of scholarly

12

documents found on the web. This percentage is close to the 86% reported by
Norris, Oppenheim and Rowland [13] when they tested the coverage of Google
and Google Scholar for finding Open Access documents. With this estimated size,
Google Scholar is more than twice as large as the nearest alternative, as MAS and
Web of Science are both reported to have fewer than 50 million records. However,
we estimate that Scholar fails to index 13% of all web accessible documents. This
implies that it is necessary to search across multiple search engines in order to
retrieve a comprehensive list of results. The relative size of each database/search
engine is depicted in Figure 2.4.

Total Scholar Web of Science Academic PubMed

S
iz

e
 in

 M
ill

io
n

s

0
2
0

4
0

6
0

8
0

1
0
0

1
2
0

Figure 2.4. Relative number of documents by scholarly search engines and
databases. Total and Google Scholar are estimates.

2.3 Field Level Analysis
In addition to computing statistics about the total number of scholarly documents
on the web, we can reinterpret the experiments at the field-scale, making it possible
to obtain estimates of the size of each of the fifteen scholarly fields defined in MAS.
To obtain these estimates, we assumed that a paper and its citations belonged to

13

Table 2.1. The estimated number of documents on the web for each field.

Discipline Size in MAS Estimate of Size #1 Estimate of Size #2
Agriculture Science 447,134 1,088,711 1,026,904
Arts & Humanities 1,373,959 5,286,355 3,155,485
Biology 4,135,959 8,019,640 9,498,798
Chemistry 4,428,253 10,704,454 10,170,091
Computer Science 3,555,837 6,912,148 8,166,468
Economics & Business 1,019,038 2,733,855 2,340,360
Engineering 3,683,363 7,947,425 8,459,349
Environmental Sciences 461,653 975,211 1,060,249
Geosciences 1,306,307 2,302,957 3,000,113
Material Science 913,853 3,062,641 2,098,789
Mathematics 1,207,412 2,634,321 2,772,987
Medicine 12,056,840 24,652,433 27,690,190
Physics 5,012,733 13,033,269 11,512,430
Social Science 1,928,477 6,072,285 4,429,012
Multidisciplinary 9,648,534 25,798,026 22,159,184
Total Sum 121,223,731 117,540,415

the same field. Though this assumption does not always hold, we assumed that it
would be a good approximation to the number of citations within a discipline. We
also noted that it is possible for some papers to be classified into multiple fields
especially in closely related fields, e.g. engineering and mathematics. Nevertheless,
as the number of citations grew for a given paper, we anticipated more papers from
the same field would cite it.

Using the classification provided by MAS, and the number of papers reported in
each field, we used the 10 queries in the experiments for each field to compute the
overlap between Scholar and MAS in that particular field. Table 2.1 reports the
estimate of the total number of available documents using the procedure described
above (method #1 in the table).

The sum of the individual field estimates yields a total of 121 million, (last row
of Table 2.1) which is close to the 114 million estimate obtained earlier for the
total number of documents across all fields. This supports our assumption that
the per field estimate is fairly accurate, and is not much affected by cross field
references or the chance of assigning a paper to multiple fields. Hence, the numbers
estimated in Table 1 are indicative of the actual size of each field. The relative size

14

of each field is shown in the pie chart in Figure 2.5. In addition to computing a
capture/recapture estimate for the size of each field, we report on another method
for this estimate. In this approach, each field’s size is computed as the percentage
of total available documents on the web based on our previous estimate of 114
million for the total number of scholarly documents. The percentage is obtained
by computing the field’s percentage size in MAS. For example, MAS is reported
to have 4,135,959 documents in biology. Therefore the percentage of biology to
the total number of scholarly documents is Size(Biology)

Size(MAS) = 4,135,959
48,774,763 = 0.08. Thus,

with this method (method #2), the estimate of the total number of documents in
biology is 0.08 ∗ 114, 000, 000 = 9.6 million. We notice here that the assumption of
citations belonging to the same field is under sampling certain fields, while over
sampling others. However, it is quite close to the percentage-based estimate in
many fields.

Agriculture Science

Arts & Humanities

Biology

Chemistry

Computer ScienceEconomics & Business
Engineering

Environmental Sciences
Geosciences

Material Science

Mathematics

Medicine

Physics

Social Science

Multidisciplinary

Figure 2.5. The relative number of documents on the web for each of the
15 fields as defined by MAS.

Another interesting estimate is the percentage of scholarly documents on the
web that are freely available, i.e. can be accessed without paying a fee or needing a
subscription. We used Google Scholar to estimate this percentage because Scholar

15

provides a direct link to the publicly available document next to each search
result where a link is available. Note that there is no easy way to distinguish
between publisher’s links and public links in MAS. As our estimate found that
Scholar contains only 87% of the available scholarly documents on the web, our
estimate of the percentage of public documents is limited to the coverage of Scholar.
However, this is still a good indicator of the relative availability of publicly available
documents. To estimate the percentage of publicly available documents for each
field, we randomly sampled 100 documents from MAS belonging to each field
such that each document had at least one citation. We imposed a citation limit
to filter out documents that are collected by MAS that were not real scholarly
documents (although it is rare to find such documents, they nevertheless exist).
Then, each of the 100 documents was searched on Google Scholar to establish
whether the document was freely available on any site. The percentage of freely
available documents for each field is reported in Table 2.2. In the last two columns,
we multiply the estimate of the percentage of freely available documents by the
size estimate of the field in Table 2.1 (method #1), resulting in the total number
of freely available documents in that field.

The 95% one sided lower bound confidence interval for the estimated number of
freely available documents is 27.8 million, which accounts for roughly 24% of the
total estimate of scholarly documents. This estimate is a weighted average of the
one sided 95% lower bound confidence interval of the percentage of freely available
documents in each field multiplied by the respective estimated field size. The lower
end of the one sided confidence interval is for the proportion size, and is computed
as:

y

n
− zα

√
(y/n)(1− y/n)

n

where y is the number of publicly found documents, n = 100, and zα = 1.645 is
the standard normal distribution at α = 0.95 [14].

It would be interesting, however, to determine the quality of these freely available
documents. It is also worth pointing out that this estimate of 24% for the percentage
of publicly accessible scholarly documents is a bit higher than the 15-20% documents
estimated to be self-archived [15,16].

Note here that our sampling is uniform, because we retrieved the document

16

Table 2.2. The percentage of publicly available scholarly documents found in Google
Scholar.

Field % of Public 95% CI Estimate of Size 95% Lower Bound
Agriculture Science 12 ±6.3 130,645 72,446
Arts & Humanities 24 ±8.3 1,268,725 897,331
Biology 25 ±8.4 2,004,910 1,433,666
Chemistry 22 ±8.1 2,354,979 1,625,540
Computer Science 50 ±9.8 3,456,074 2,887,549
Economics & Business 42 ±9.6 1,148,219 926,256
Engineering 12 ±6.3 953,691 528,852
Environmental Sciences 29 ±8.8 282,811 210,017
Geosciences 35 ±9.3 806,034 625,341
Material Science 12 ±6.3 367,516 203,799
Mathematics 27 ±8.7 711,266 518,878
Medicine 26 ±8.5 6,409,632 4,630,828
Physics 35 ±9.3 4,561,644 3,539,034
Social Science 19 ±7.6 1,153,734 761,868
Multidisciplinary 43 ±9.7 11,093,151 8,992,160
Total 36,703,036 27,853,573

IDs of all the documents in each given field from MAS, then uniformly chose 100
that conformed to the citation sampling restriction. To the best of our knowledge,
this is the only uniform sampling method for estimating the percentage of freely
available scholarly documents. The numbers reported in Table 2 differ from other
recent estimates in regard to the number of documents available on the web as open
access, e.g. Bjork et. al. [17]. We believe this difference arises from the sources
from which they sampled. For the other recent estimate researchers considered only
journals over the period of one year, whereas our definition of scholarly documents
is not limited to journals and sampling was cumulative, i.e. not limited to any
time period. Compared to other kinds of publications, journal publications are
more likely to be indexed by databases such as Web of Science [7]. However, other
documents such as conference proceedings and technical reports, though influential
may not be indexed by Web of Science. As an example, the famous PageRank
paper [18], which presents the seminal algorithm for Google ranking was published
as a technical report. Therefore, Web of Science does not index it.

17

2.4 Conclusion
In summary, the lower bound estimate of the number of scholarly documents,
published in English, available on the web is roughly 114 million, of which Google
Scholar covers nearly 87%, approximately 100 million documents. Therefore, it
would be useful for researchers to consider as a standard practice querying multiple
databases and academic search engines in order to gain the most comprehensive
result for their query. Also, we estimate that almost 1 in 4 of web accessible
scholarly documents are freely and publicly available. Our estimates for specific
academic fields differs significantly, such that some fields have 4 times greater
percentage of freely available documents than others.

2.5 Additional Estimates
This section reports how we estimated the number of scholarly documents on the
web using another method based on Poisson regression capture/recapture. The
estimates obtained using this method are similar to the estimates reported earlier
and provide validation for our approach.

The approach we used to estimate the total number of scholarly documents on
the web is usually reported in the literature as the Lincoln-Petersen method [19,20].
It also happens to be the maximum likelihood estimator of a population size when
the captures are modeled as a hypergeometric distribution [21]. These methods
are based on the assumption that the population size does not change between
captures, and that the probability of capturing an object in the later captures
does not change after the first capture. Assume that n1 items were captured, then
released after being labeled. A second capture results in n2 items, of which m are
labeled from the first capture. Then, the estimate of the population size N is given
by

N̂ = n1n2

m

In our experiment for estimating the total number of scholarly documents, the
assumption of a closed population size is not completely preserved because search
engines constantly add new documents. But since we confined the time window of

18

the experiment to two days, and given that the number of citations grows slowly
(unlike news articles), we argue that the assumption of a closed population is a
reasonable approximation. However, as we previously point out, the conditional
probability of search engine B capturing a document previously captured by a
search engine A is larger than or equal to the probability of capturing a document
by B. This is primarily due to the tendency of web crawlers to index pages that are
connected to other pages, i.e. more popular pages (a similar argument was made
by Lawrence and Giles [8]). Although in practice the capture probabilities differ
between captures, we argue that this approach produces a good estimate of the
total population size, and a good approximation of the total number of scholarly
documents on the web.

To test the validity of this assumption, we used an estimate that allows the
probability of capturing items across different occasions to vary. As such, the
probability of capturing an item i on the second capture can differ from the
probability of capturing i at the first capture. Next, with Rcapture [22], Poisson
regression was used to estimate the parameters of the capture/recapture model
[23–25]. Using Poisson regression, the estimate of the population size as computed
by Rcapture, while allowing for variability with regard to capture probability across
time, would put the percentage of scholarly documents covered by MAS at 0.418,
hence estimating the number of scholarly documents on the web to be 114 million.
This is exactly the Maximum Likelihood Estimator value obtained using the Lincoln-
Petersen method. And it is also the approach with the lowest Akaike Information
Criterion (AIC) [26], a measure of relative goodness of fit. Note that the lower
the value of the AIC, in this case 41, the better fit of the data. A 95% confidence
interval of the population size results in a coverage percentage for MAS in range of
(0.416,0.419). However, if the probability by which items are captured is assumed to
be the same across the captures, then the Poisson regression model would estimate a
population size that would put the coverage percentage of MAS at 0.366. Therefore,
the total number of scholarly documents on the web would be estimated as 130
million. This approach, on the other hand, has a high AIC of 41914 which indicates
poor goodness of fit compared with the varying capture probabilities model.

In conclusion, our experiments are supported by two methods for estimating
the document population. As both methods obtain the same estimate, we reported
earlier the simpler method based on the maximum likelihood estimator, Lincoln-

19

Petersen.

20

Chapter 3 |
Chemical Entity Extraction

In this chapter we describe an example of sub-objects that are extracted from schol-
arly documents that make scholarly data big. We focus on chemistry documents,
and describe methods for extracting chemical formulas and chemical names.

We have been witnessing a great interest in identifying and extracting chemical
entities in academic articles, with many approaches being proposed. Each of the
proposed methods, spanning from rule based systems to machine learning ap-
proaches, has its own strengths and shortcomings. Here, we describe a probabilistic
framework that allows for the output of multiple information extraction systems to
be combined in a systematic way. The identified entities are assigned a probability
score that reflects the extractors’ confidence, without the need for each individual
extractor to generate a probability score. Previously, as part of the CHEMDNER
challenge, we used an ensemble of extractors by combining the output of three
prominent extractors. Later, we quantitively compared the performance of multiple
chemical tokenizers to measure the effect of tokenization on extraction accuracy.
Then, a single Conditional Random Fields (CRF) extractor that utilizes the best
performing tokenizer is built using a unique collection of features such as word
embeddings and Soundex codes.

The ensemble of multiple extractors outperforms each extractor’s individual
performance during the CHEMDNER challenge. When the performance was
optimized to favor recall, the ensemble approach achieved the second highest recall
on unseen entities. As for the single CRF model with novel features, the extractor
achieves an F1 score of 83.3% on the test set, without any post processing or
abbreviation matching.

21

3.1 Introduction and Related Work
Automatically extracting information from free text has been of interest in many
fields because the task is too labor intensive to be carried by humans at scale. Some
of the applications try to identify person names and locations that appear in news
articles, extract product information from online retailers website, and identify
author and title information in scientific publication. Scientists have their share
of interest in information extraction. In the case of chemists, they are interested
in identifying chemical entities appearing in scientific publications and internal
reports of companies. Identifying mentions of chemical entities is crucial for the
follow up task of indexing. Some of the leading companies in the chemical domain
employ teams that manually identify all chemical entities appearing in their internal
reports. Should identifying chemical entities become feasible automatically with
high accuracy, the extraction tasks can be done on faster pace, and cover larger
collections of documents.

Many approaches have been proposed to tackle the problem of automatically
extracting information from free text. The simplest methods relied on dictionar-
ies, sometimes referred to as gazetteers, that are compiled by domain experts.
Computer programs would check if the document contains terms that are found
in the dictionary; for these terms would be extracted as entities. It is, however,
challenging to keep a comprehensive dictionary that contains all the entities of
interest. Furthermore, dictionary based approaches can not identify new terms that
are not in the dictionary. In other words, they fail to generalize beyond the list of
chosen terms.

Rule based systems were later introduced as a step forward from dictionaries.
Rule based information extraction systems define a set of rules that identify mentions
of the entity type of interest. The rules are carefully crafted to capture descriptors of
the entity that can be used to describe terms of a given entity type. For example, a
rule for identifying chemical formulas might be that the term has no two consecutive
small case letters. Rules can be cascaded and joined with dictionary look up where
the term is inspected for existence in a given dictionary. Although rules provide a
way to generalize beyond dictionaries and identify terms that have not been seen
before, it is daunting to keep the rules up to date. In fact, crafting the rules in the
first place is a very challenging task in many domains. Efforts were made to craft

22

the rules automatically using Inductive Logic Programming (ILP) [27,28] .
Machine learning methods for information extraction became prevalent in the

late 1990s and early 2000s with the introduction of Maximum Entropy Markov
Models (MEMM) [29] and Conditional Random Fields (CRF) [30]. Both algorithms
were applied successfully on information extraction tasks, achieving improvements
in precision and recall over existing approaches. It seems as if CRF has taken over
other methods for sequence labeling (information extraction is an application of
sequence labeling, where the sequence is a sentence and the labels are the classes of
interest that a word can take on) mainly because it solves the label bias problem [30]
that other approaches suffer from, including MEMM. However, in many scenarios
CRF models do not outperform MEMM models because the large number of
parameters that need to be learned in CRFs might lead to overfitting [31].

In the chemical domain, applications of information extraction include iden-
tifying chemical formulas and chemical names appearing in research articles and
technical reports. OSCAR3 [32] was one of the early systems that used automatic
information extraction to extract chemical names and formulas from free text.
After that, many researchers introduced new methods and tools for extracting and
indexing chemical entities [33–37].

One of the main challenges in chemical information extraction was the lack
of annotated corpus in which mentions of chemical entities within documents are
identified by human experts. Building an annotated corpus is expensive, and can be
challenging to share as the underlying documents might not be copyright-friendly.
Therefore, many research teams resort to creating their own annotated corpus
on which machine learning extraction algorithms were trained and tested. This,
however, has made fairly comparing extraction approaches and systems challenging
because it is hard to isolate the source of improvement as it might have came from
the approach itself, the features used in the learning algorithm, or the quality of
the training corpus.

This obstacle was mainly addressed in the BioCreative’s CHEMDNER task with
the release of an annotated corpus of 10,000 PubMed abstracts. The CHEMDNER
challenge had two tasks. The first is to identify all chemical formulas and names
mentioned within abstracts of selected PubMed records. Formally it is referred to
as the Chemical Entity Mention (CEM) task. The second is Chemical Document
Indexing (CDI) which requires participants to rank all the unique chemical names

23

and formulas within each document. The 10,000 PubMed abstracts were divided
into 3,500 abstracts for training, 3,500 abstracts for development, and 3,000 for
testing. For details about the CHEMDNER task, please refer to [38].

We have participated in both tasks of the CHEMDNER challenge by submitting
5 runs for each task [39]. For the challenge, our approach involves an ensemble
approach that utilized multiple off-the-shelf extractors and allowed for combining
their output in a probabilistic fashion. The ensemble framework assigns a probability
score to each extracted entity that depends on which extractors have identified or
failed to identify a given term as an entity. The individual extractors that were used
in the ensemble approach were: OSCAR4 [36,40], ChemSpot [37,41], and a modified
version of ChemXSeer formula and name tagger [33, 34]. The probability score was
used later as a confidence measure that allowed for optimizing the extraction result
in respect to either precision or recall. When a balanced cut off point was selected
for confidence, the F1 score is optimized. This paper discusses our contribution in
the CEM task only. For our experiments and results on CDI please refer to [39].

After the end of the competition we revisited the challenge tasks to investigate
potential sources of improvement. We started by studying the effect of tokenization
on the accuracy of the extractor. The performance of three prominent tokenizers
was studied were it was found that OSCAR4 had the highest accuracy in tokenizing
the test set of PubMed abstracts. Later, a new Conditional Random Fields extractor
was designed using a unique collection of features that utilizes state of the art
word embedding algorithms along with Soundex code of each term. Soundex is
an algorithm that is usually used by the USA Census Bureau to encode surnames
phonetically. The generated code contains the first letter of the surname combined
with three digits representing the the last name phonetically (how do they sound).
It is used for matching names with multiple spellings. The rationale here for
borrowing this last name matching algorithm is that many chemical names tend to
sound similar, albeit being spelled and structured differently. To the best of our
knowledge, this is the first work that utilizes Soundex code to identify chemical
entities.

Using the new extractor and the features, we are able to achieve F1 score
of 83.3% on the test dataset without doing any post processing on the tags. In
the challenge task, most of the top performing teams carried a post processing
step that was optimized for this dataset only. As we are interested in building

24

a general extractor, we did not do any post processing to boost the F1 score.
The CHEMDNER annotation guideline lists abbreviations to chemical entities as
valid entity. However, we did not implement or tackle the problem of identifying
abbreviations because we believe it is a different problem that can be solved
with existing third party solutions such as [42]. Given that the best performing
team obtained an F1 score of 88% using multiple extractors and sophisticated
post processing and abbreviation matching algorithms, we believe our system
achieves a very competitive F1 score as a standalone system that can be easily
used as an API or as a program. The source code has been released on Github:
https://github.com/SeerLabs/chemxseer-tagger

3.2 Methods
The Methods is split into two sections. In the first section, the approach used
during the competition is described in detail, while the second section describes the
new extractor created after the competition which we call ChemXSeer Tagger 2.0.

3.2.1 Ensemble extraction - pre competition

Our interest was initially in the Chemical Entity Mention (CEM) task as it is the
prerequisite to the following Chemical Document Indexing (CDI) task. We started
by running a distribution of ChemXSeer’s formula and name extractor [33–35] that
is released for the general public on the training and development datasets. The
tagger is based on Conditional Random Fields (CRF) [30] models, with additional
rules for pre and post processing documents. The off-the-shelf ChemXSeer tagger
was originally trained on a subset of papers from the Royal Society of Chemistry
(RSC). The extractor performed well when evaluated on precision, but the mediocre
recall ended up penalizing the overall F1 score.

We then explored the use of other open source and free chemical information
extraction systems, in particular OSCAR4 [36,40], ChemSpot [37, 41], Reflect [43],
Whatizit [44], and MiniChem [45], on the BioCreative dataset. ChemSpot [37] and
OSCAR4 (Originally we used the standard setting of OSCAR4, but experiments
with the PubMed setting yielded similar results) [36] were promising since the
former’s result had high F1 score, and the latter’s reported high recall compared

25

to the other extractors. To balance the performance and boost both the precision
and the recall, we chose two paths to explore. First, modify ChemXSeer’s tagger
and retrain it on the corpus at hand since the distribution of vocabulary might be
different in the BioCreative dataset from the original Royal Society of Chemistry
(RSC) articles that were used to train ChemXSeer’s CRF. The second was to merge
the results from all the aforementioned taggers along with ChemXSeer in a way
that would improve recall, while sustaining high levels of precision.

3.2.1.1 Modified ChemXSeer

ChemXSeer utilizes two CRF modules, one for extracting formulas and another
for extracting chemical names. We created a new unified CRF extractor for all
chemical entities. The unified extractor merges features that were used for chemical
formulas and chemical names. The used features include

• The word itself

• Character level n-grams

• Prefix, postfix, inclusion of punctuation, has superscript

• Regular expressions to match alphanumeric patterns such as the state of
capital letters in the word (starts with, mixed caps, ends with cap), the
occurrence of digits

• Dictionary look up against a collection of chemical names, chemical elements,
known symbols and abbreviations

We also use a window of size n for features of the previous and following n
words to be included in each word’s features, where n is set to 1 or 2 based on
the feature. After tokenization with the ChemXSeer chemical tokenizer which
is based on Lucene StandardAnalyzer [46], each token is assigned to one of the
following classes: {B, I,O}, where B denotes a start of chemical entity, I denotes
a continuation from the previous entity, and O for everything else. Three models
are created for the purpose of evaluation, one is trained on the training data, the
second is trained on the development dataset, and the third is trained on both
training and development datasets.

26

After tagging the sequence of words in a document, those identified as class
B or I are passed to a chemical entity parser which validates that the token is
actually a chemical entity. Also we compile a list of common false positives which
we denote to as a blacklist. The list can be found on code repository website. An
entity candidate is ignored if it is found in the blacklist.

3.2.1.2 Ensemble extraction

We run all the three extractors, ChemxSeer, OSCAR4, and ChemSpot, on the
datasets and combine their output as follows. Let token t be identified as a chemical
entity by at least one of the extractors where t is defined as an offset and length
only therefore it can refer to unigram or multi-gram token. Assume we have n
chemical entity extractors, then we are interested in measuring the probability of
t being an actual entity given the predictions from the n extractors. That is, we
would like to estimate

P (t = Entity|E1..En) (3.1)

where Ei is an indicator random variable representing the prediction of chemical
entity extractor i, i ∈ {1, n}, for the token t. This represents a discriminative
model that tries to infer t given all the results form E1..En. Luckily, estimating
the probabilities and the final conditional probability is not hard because it follows
from the performance of each extractor on the annotated dataset. In the case of
a single extractor i, we can estimate P (t|Ei) as the precision of extractor i on
the annotated corpus. When two extractors are used, i and j, the conditional
probability P (t|EiEj) can be estimated by computing the precision resulting from
intersecting the list of chemical entities identified by extractor i and j. P (t|EiEj)
is interpreted as the probability of correctly identifying a chemical entity when both
extractors i and j identified t as a chemical entity. In other words, both extractors
are used to identify chemical entities, and the intersection of their output is used
to compute the precision, which is the estimated conditional probability. Finally,
estimating P (t|EiĒj), meaning that extractor i has identified t as a chemical entity
while extractor j has not identified it as such, is carried by computing the precision
resulting from extractor i and not j. In other words, it is the precision of an
extractor whose output is given by {x : x ∈ i∧ x /∈ j}. This approach is generalized

27

to estimate the probabilities using n extractors.
For example, let CO2 be a token that was identified by ChemSpot and OSCAR4

only where ChemXSeer failed to recognize it as a chemical entity. So Echemspot = 1,
Eoscar = 1, and Echemxseer = 0. The confidence of the term CO2 is given by

P (CO2|Echemspot = 1, Eoscar = 1, Echemxseer = 0) = Precision(Y)

Y = {x : x ∈ chemspot ∧ x ∈ oscar ∧ x /∈ chemxseer}

So Y is an extractor whose output results from the intersection between OSCAR4
and ChemSpot, minus ChemXSeer.

Since there are 2n possible combination for the output of extractors, we need to
estimate 2n−1 parameters for the probabilistic framework to output probability for
every possible combination (note that we do not need to estimate the probability
when none of the extractors identifies a token to be a chemical entity). While this
scales exponentially, it is actually quite easy and fast to estimate the parameters
because the expensive part is the extraction itself, and not merging or intersecting
results. Since the extraction is done before hand, estimating the parameters only
takes fraction of the time needed for extraction. In our case, we have used 3 taggers
only, hence there was 7 parameters to estimate.

Ensemble information extraction has been applied before in many applications,
including the CHEMDNER challenge that we participated in. One of the popular
methods in using multiple extractors together is to feed the output of one extractor
as an input to a second extractor to be used as a feature. This approach is often
referred to in the literature to as stacking [47, 48], where multiple extractors are
stacked on top of each other such that the output of of several base learners is
used as input for the following layer learner. In CHEMDNER multiple teams
applied stacking by using the output of ChemSpot as a feature, with a CRF model
comprising the final extractor [49–51]. In this case, stacking introduces a serious
limitation as the model parameters of the CRF become highly-dependent on the
output from individual extractors resulting in smaller weight being assigned to
other important features [31]. Another limitation of stacking appears when the
extractors use different tokenizers and do not allow tokenization to be performed
outside of the classifier software package. In this case, the tokens are not the same,
therefore the receiving extractor cannot benefit from the output of the preceding

28

extractor.
Combining the output of multiple extractors in a probabilistic way has been

introduced earlier [52]. The approach used in [52] relies on linear interpolation of
the classifier class probabilities. The final probability is a weighted average of the
individual classifier probability multiplied by the importance of each classifier. The
parameters are estimated using cross validation. When the weights are symmetric,
each classifier is given equal vote, and the problem becomes majority voting by
the collection of extractors. Our method, on the other hand, estimates the actual
probabilities of merging the results which can use certain dependencies between the
random variables. This way, probabilities depend on the combination of underlying
classifiers that generated the output, and not simply on the number of classifiers
that generated that output which is the case in majority voting. Furthermore, we
do not assume independence of the extractors. This allows us to capture certain
relations like what is the probability of an entity being a chemical entity when only
ChemSpot and OSCAR4 recognized it as such, while ChemxSeer failed to? This is
more powerful than relying on the conditional probability when any two extractors
identified the entity as the case of majority voting.

3.2.2 ChemXSeer Tagger 2.0 - post competition

After the end of the CHEMDNER challenge, we seek to identify areas of improve-
ments that would enhance the extractor’s performance. We start by examining the
tokenization process as it is the first step in any information extraction application.
We later focus on crafting new set of features that would capture the characteristics
of chemical entities. These features are used to build a Conditional Random Fields
extractor.

3.2.3 Tokenization

Tokenization has a significant effect on the performance of any information ex-
traction system as tokenizers provide the tokens on which the extractor operates.
However, very little attention was paid to the quality of the tokenizers in the
CHEMDNER challenge. Therefore, a study of the performance of tokenizers is
needed to justify using one tokenizer instead of the other. The performance of three
prominent tokenizers is studied here by examining how accurately they identify

29

Measure ChemSpot OSCAR4 ChemXSeer
Correct 17149 20491 17869
Split Correct 2379 1744 3190
Total Correct 19528 22235 21059
Incorrect 5823 3116 4292
Accuracy Percentage 77.03% 87.7% 83.06%

Table 3.1. Accuracy of multiple tokenizers when tested on the chemical entities of the
test set

the boundaries of the chemical entities in the test data set of the CHEMDNER
task. The test set was chosen instead of the training and the development dataset
because the annotations were corroborated by a second annotator.

Each tokenizer, ChemSpot, OSCAR4, and ChemXSeer is run to generate offset
and length of each token in the test corpus. The results of the tokenizers are
given in Table 3.1. In the table, Correct refer to the number of chemical entities
in the test set that were tokenized correctly by the tokenizer. In other words,
the tokenizer correctly identified the offset and the end of the token within the
document in accordance to the tags provided in the test set. The split correct refers
to the number of tokens spanning multiple words where space is the only allowed
word separator, that were identified correctly by the tokenizer. Overall, there were
25,351 chemical entities in the test set. OSCAR4 had the highest accuracy rate in
tokenizing chemical entities at 87%.

The tokenization accuracy on the chemical entities provide an upper bound for
the highest possible recall by an extractor using the provided tokenizer without
performing any post processing on the identified tokens. So, the highest possible
recall of an extractor using OSCAR4 tokenizer would be 87%, unless this extractor
uses post processing techniques. This helps in explaining the sources of error and
potential areas for improvement when it comes to designing better extractors.

Since OSCAR4 tokenizer had the highest accuracy, we adapt it as the default
tokenizer in the ChemXSeer Tagger 2.0. The other two tokenizers are available to
the CRF extraction software, but OSCAR4 is the default tokenizer.

30

3.2.4 Extractor and features

ChemXSeer Tagger 2.0 uses the Conditional Random Fields implementation pro-
vided in Mallet [53] to identify chemical entities in the CHEMDNER corpus.

We train the CRF using a “first-order model”, thus each pair of labels and
observations is assigned a weight. This configuration captures global state informa-
tion effectively while at the same time avoid over-fitting. Limited Memory BFGS
algorithm is used to train the model. Similar to the CRF model developed before
the competition, BIO is used to label the words.

As CRF works on the sentence level to identify the true labels of the words
within each sentence, Apache openNLP [54] is used to detect sentence boundaries.
Each sentence is then tokenized using OSCAR4 tokenizer. Later, features are
extracted to represent each token in the sentence. The feature classes are described
below:

3.2.4.1 Word embeddings

Often in many information extraction applications, new terms will show in the
test cases that have not been seen previously in the training dataset. To overcome
this challenge, word embedding features are incorporated while building the model.
The idea behind word embedding is to assign the words of a chosen corpus into
multiple clusters such that all the words belonging to a single cluster are related to
each other. At test time, the cluster Id of the term is used as a feature allowing
the model to link the term to other terms that appeared previously in the training
dataset using cluster information. Since the words in each cluster are related, a new
unseen word that belongs to a given cluster that often contains named entities is
likely to be a named entity. Word embeddings can be thought of as a transformation
of the term to a finite space where elements from this space have been observed
previously during the training phase.

The corpus is usually chosen to be large enough such that large number of terms
will be observed. In addition, the corpus needs to be representative of the domain
of the documents that contain entities which need to be extracted. For example, to
extract people names and location information, a corpus about news articles can
be used, while to extract chemical entities, a corpus that is built with chemical
documents is needed.

31

Word Cosine Similarity
Ca2 0.838966
Ca 0.692185
Thapsigargin 0.565048
Stores 0.562570
Potassium 0.549055
Magnesium 0.539387

Table 3.2. Similar words to calcium when sorted by cosine similarity

Term Cluster Id
Tetralinoleoyl 8
thiophosphocholine 8
Phosphoethanolamines 8
y505f 10
Vav 10
Tsad 10

Table 3.3. Example of word embedding clusters

Many approaches have been proposed to observe word embeddings features
including Brown Clustering [55] and Word2Vec [56]. In Brown Clustering unigrams
are clustered hierarchically based on the bigrams in which they appear, thus forming
a dendogram that is encoded using Hoffman code. At training and testing, the
Hoffman code or a prefix of the code are used as features to describe the term. In
word2vec each term is transformed into a vector based on the surrounding terms
appearing next to it in a predefined window. Neural nets are used to infer the
vector space representation of each term. For example, Table 3.2 shows the list of
words whose vector representation is similar to calcium when cosine similarly is
used as distance measure. Later, the vector representaiton of each word is used to
cluster the terms using K-Means. Table 3.3 lists examples from two clusters. Note
that words in cluster 8 are chemical entities.

We run word2vec on a corpus containing 700,000 PubMed abstracts for articles
appearing in journals where the journal name had the word chemistry in it. The
corpus contains 213,030 unique terms, that appear 143,301,537 times. We use the
default parameter values of word2vec and choose the number of clusters to be 1000.
A hash map between the terms and the cluster Ids is created to be used in training

32

Soundex Code Letters
1 B, F, P, V
2 C, G, J, K, Q, S, X, Z
3 D, T
4 L
5 M,N
6 R
No Code A, E, I, O, U, H, W, Y

Table 3.4. Soundex code for English letters

and evaluation. As part of the feature generation, each term will be looked up in
the hash map for the value of the cluster Id. If the term has not been seen in the
corpus, i.e. does not have a cluster Id, the feature is not set.

3.2.4.2 Soundex features

Soundex is an algorithm that is used by the USA Census Bureau to encode surnames
phonetically. The generated code contains the first letter of the surname combined
with three digits representing the the last name phonetically (how do they sound).
Each digit represents a collection of letters that are phonetically similar. Table
3.4 shows the letter mapping that is used by the Soundex algorithm implemented
at the Census office [57]. If the word contains more than three encodable letters ,
which is the default Soundex implementation, the remaining letters are ignored.

Soundex is especially effective in matching names with multiple spellings and
overcoming spelling mistakes. Soundex provides a powerful mechanism for matching
homophones (words that are pronounced similarly but are written differently). For
this reason, we borrow this technique as many chemical names tend sound similar,
albeit being spelled and structured differently. For example, carbon, carbonate,
carbonic, and carbonyl all have the same Soundex code C-615. This transformation
helps the extractor in identifying chemical entities that did not appear in the
training set, but a phonetically similar entity appeared.

We are not aware of any work that utilizes Soundex code to identify chemical
entities. In our extractor we use the implementation of Apache openNLP, while
we set the maximum number of allowed digits at 7. Thus we allow the algorithm
to encode more letters than the typical Soundex implementation. At training and

33

evaluation, each term is converted to its Soundex code, and a feature is set for each
unique value of the Soundex code.

3.2.4.3 General token derived features

A collection of features are derived from the term itself and its shape. These are
the following:

• The word itself and lower case version of the word

• Regular expressions to identify if the term contains digits, starts with a capital
letter, all capped, all small, mixed cap and small, ends in a sign, ends in a
number, contains dash, starts with a number

• Character level n-grams of length 2, 3, and 4

• Heuristic to identify formulas by setting a feature when no two consecutive
characters in the term are small case

• Selected features from neighboring terms

• Whether the term marks beginning of a sentence. This is useful in distin-
guishing proverbs that are capitalized at the sentence beginning from others
that are intentionally capitalized

• NLP features based on BANNER [58] including lemmatization, and word
class conversion

3.2.4.4 Dictionary look up

Dictionaries are used to generate features corresponding to the existence of a given
term, or part of it, in the dictionary. The main dictionary used was Jochem [59]
which contains more than 1.6 million chemical names that were captured from
multiple databases. The chemical entities in Jochem were tokenized using OSCAR4
tokenizer because many of them are multi-term entities that would not match
a unigram token, which is the unit of tagging in the CRF model. Dictionary
tokenization is necessary to ensure that dictionary look up is effective and to avoid
the need for prefix matching with a huge dictionary like that of Jochem.

34

Beyond Jochem, smaller dictionaries were compiled to capture amino acids
and their abbreviations. Another dictionary was used to match common prefixes
and postfixes that appear in specific groups of chemicals like organic chemistry.
A special dictionary of boost terms was used to boost certain terms that were
occasionally missed by the extractor. In this extractor, the black list has been
dropped.

3.3 Results
In this section the results are presented and discussed for the classifier used during
the competition, and the CRF classifier developed after the competition.

3.3.1 Competition extractor - ensemble approach

The performance of the ensemble extractor is presented on both the CEM and
CDI tasks. In the ensemble approach, OSCAR4 was combined with the output of
ChemSpot and a modified version of ChemXSeer. While ChemSpot and OSCAR4
were used out of the box and did not make use of the provided training dataset,
ChemXSeer was trained and tested on opposite datasets. That is, to test ChemXSeer
on the development dataset, the model was built using the training dataset only.
The parameters of Equation 1 were found to be close enough whether estimated
using training or development datasets. Therefore, the final test dataset used the
development estimate probabilities. Table 3.5 shows the estimated probabilities
when conditioned on all the possible values for the extractors outcome.

35

C
he
m
xS

ee
r

O
SC

A
R
4

C
he
m
Sp

ot
Pr

ob
ab

ili
ty

Es
tim

at
e
on

D
ev

Pr
ob

ab
ili
ty

Es
tim

at
e
on

Tr
ai
n

1
0

0
0.
25
2

0.
26
15
9

0
1

0
0.
08
9

0.
08
50
7

0
0

1
0.
24
9

0.
25
58
8

1
1

0
0.
82
08
3

0.
81
75
5

1
0

1
0.
72
79
9

0.
67
36
1

0
1

1
0.
55
86
9

0.
53
26
7

1
1

1
0.
93
31
6

0.
93
38
6

T
ab

le
3.
5.

Pr
ob

ab
ili
ty

of
a
ca
nd

id
at
e
en
tit

y
co
nd

iti
on

ed
on

po
ss
ib
le

va
lu
es

of
th
e
in
di
ca
to
r
ra
nd

om
va
ria

bl
es

fo
r
ea
ch

of
th
e
th
re
e

ta
gg

er
s
us
ed

.

36

Dataset Threshold Precision Recall F-Measure
Dev 0.01 0.31543 0.8924 0.46611
Dev 0.24 0.67406 0.73650 0.70390
Dev 0.25 0.70871 0.71598 0.71232
Dev 0.5 0.79486 0.67544 0.7303
Dev 0.7 0.87369 0.55663 0.6800
Dev 0.8 0.88315 0.52835 0.66116
Dev 0.9 0.93316 0.30973 0.46509
Train 0.01 0.30711 0.88147 0.45552
Train 0.25 0.66208 0.73126 0.69495
Train 0.26 0.78473 0.66680 0.72098
Train 0.5 0.78473 0.6668 0.72098
Train 0.6 0.86928 0.55312 0.67607
Train 0.7 0.88266 0.52568 0.65893
Train 0.9 0.93386 0.31135 0.467

Table 3.6. Performance of the ensemble extractor on the CEM task at various confidence
thresholds.

Using the probabilities generated from our probabilistic framework, we can
apply cut off points based on the confidence assigned to each extracted entity. We
have experimented with multiple thresholds and found out that at low threshold
values, the recall is favored. The precision is favored over recall as the threshold
value increases. Some of the obtained results for the CEM task are summarized
in Table 3.6. The highest obtained F-measure was 73% on the development data,
and 72% on training data. Similarly the recall reached a maximum of 89% for
development, and 88% for training. Interestingly, one will be able to obtain near
73% recall at 66% of precision. That is, we are able to identify nearly 3/4 of all
chemical entities in a document with only 1/3 of these identified entities being false
positives. In Figures 3.1 and 3.2, we plot precision against various values of recall
for the CEM task using both training and development datasets.

3.3.2 Post competition - ChemXSeer Tagger 2.0

The single CRF extractor with the novel feature set was trained using both the
training and the development dataset, and tested on the test set. The test was done
on the CEM task only, as the extractor was optimized for this task rather than
CDI. Multiple runs with different collection of feature set were conducted, and the

37

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Recall

P
re
c
is
io
n

Figure 3.1. Precision-Recall curves for CEM task on training dataset

Run Precision Recall F Score
ChemxSeer Tagger 2.0 0.89569 0.78009 0.83390

Table 3.7. Performance of ChemXSeer 2.0 Tagger on the test dataset

best performance was obtained using the combination of all the features. The result
is shown in Table 3.7. The F1 score was 83.3%, a significant improvement over
previous standalone extractor performance. It is worth mentioning that ChemXSeer
Tagger 2.0 does not perform any post processing or abbreviation matching, despite
the existence of abbreviations in the dataset. That is because abbreviation matching
can be performed by third party tools without the need to complicate the code
base.

The effectiveness of the CRF extractor when multiple set of features are used is
shown in Table 3.8. When word2vec features are removed, the extractor’s accuracy
drops the most. Soundex features have relatively small contribution in the presence
of word2vec features. However, varying the Soundex code length have an effect

38

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Recall

P
re
c
is
io
n

Figure 3.2. Precision-Recall curves for CEM task on development dataset

Feature Precision Recall F Score
All 0.89730 0.77646 0.83252
All - NLP 0.89749 0.74151 0.81208
All - Word2Vec 0.88993 0.75393 0.81631
All - Soundex 0.89784 0.77342 0.83100
Soundex 3 0.88937 0.76869 0.82464
Soundex 5 0.89647 0.77606 0.83193
Soundex 7 0.89730 0.77646 0.83252
Soundex 100 0.88868 0.76995 0.82507

Table 3.8. Performance of ChemXSeer 2.0 Tagger using different collection of features

on the extractor’s accuracy as a very short code is not powerful in discriminating
chemical entities while a very long code, 100, is counter productive.

ChemxSeer Tagger 2.0 has room for improvement. By recalling that the tokenizer
had an accuracy of 87%, which is an upper bound on the attainable recall, and
comparing that with the 78% recall that ChemxSeer Tagger 2.0 achieved, the tagger

39

can still enhance its performance significantly by identifying the missing 10% of
the total entities.

3.4 Conclusion
We introduced an ensemble approach for chemical entity recognition that employs
multiple extractors and output probabilities that represent the confidence score
for each entity. We showed how these probabilities can be estimated using the
training dataset in an effective way. In implementing this approach, we use a
modified version of ChemXSeer along with ChemSpot and OSCAR4. Our approach
generates probability values that can be used for thresholding each prediction. This
aspect can be used to trade-off precision vs. recall. With a higher threshold for
probability, our method extracts highly-accurate entities whereas for optimizing
recall, a lower threshold on probability can be enforced.

We have also conducted a study about the accuracy of chemical text tokenizers
where it was found that OSCAR4 tokenizer outperform others on the CHEMDNER
test set. A new extractor, ChemXSeer Tagger 2.0, is built as a CRF extractor
that utilizes OSCAR4 tokenizer. We introduced a set of novel features, including
word embedding and Soundex that are used in building the CRF extractor which
achieves 83.3% F1 score on the test se without any post processing or abbreviation
matching. ChemXSeer Tagger 2.0 is designed as an API and can be used as stand
alone program. The source code is available on Github: https://github.com/
SeerLabs/chemxseer-tagger

40

Chapter 4 |
CiteSeerX Log Mining

With academics and scholars relying more on digital libraries available on the
web to obtain copies of research articles than waiting for the printed journals and
proceedings to arrive, it is of interest to examine how scholars access these articles
by studying their access logs for such digital libraries. In this chapter we perform a
large scale study on a public digital library’s access logs for a period of three years,
within which more than 3 billion records have been accumulated. More than 200
million of these records are identified to originate from human users and not search
engine bots. The access patterns of users are studied along with the papers they are
interested in and their downloading behavior. We model the number of downloads
a paper receives and show that a power law distribution is a good approximation.
Furthermore, analysis shows that the top downloaded papers show a repetitive
pattern. As such, we try to predict the popular papers for a given month based on
the access behavior from the previous months. Additionally, analysis of the queries
issued by users to the digital library’s search engine indicate a significant interest
in searching for author names more than those with typical full text queries.

4.1 Introduction
As digital libraries available on the web such as ACM DL and IEEE Xplore along
with online versions of many journals become increasingly popular, it is natural to
study the characteristics and interests of the users based on their interactions with
the websites and the implicit feedback left in the form of access logs. This is further
supported by the shift of users towards obtaining digital copies of research articles
more than print versions [60–62]. Examining access logs can be used to understand

41

the user experience with the digital library, track down paper level of interest, and
later use such information to provide a better service to the users. Analyzing access
logs has a long history, e.g. to be used as an implicit feedback tool to learn ranking
functions of search engines [63], or measure affinity between a social network of
friends [64]. Here, we aim to uncover the characteristics of user interactions with
a publicly accessible digital library using the logs from September 2009 to March
2013. During this period, the library’s web servers have collected more than 3
billion entries with nearly 133 million of them being download attempts. To the
best of our knowledge, this is the largest study of digital library’s access logs in
terms of volume and duration.

The access logs of CiteSeerX digital library and search engine are used in this
work. CiteSeerX contains more than 5 million scientific documents, including
papers, dissertations, books, and technical reports in the area of computer and
information science with the recent addition of physics, economics, medicine and
other areas. The metadata of these articles is extracted automatically including
authors, title, and citations. CiteSeerX receives more than 2 million requests per
day from more than 200 countries, making it one of the most popular repositories
in the world1. We focus on the paper download behavior and queries issued to
CiteSeerX search engine. These two tasks are the most common interactions a user
would have with a digital library. Furthermore, none of them requires registering
on the site which unlike making corrections to the metadata would require logging
in with an active account. Therefore these two activities capture the behavior of a
wide variety of users.

Upon examining the top downloaded papers in each month it was found that
the top 1% most downloaded papers tend to show up again in the top downloads
later. Given that the top 1% most downloaded papers account for 10 to 20% of the
total download requests received by CiteSeerX from users identified as humans and
not bots, we investigate the ability to predict the top downloaded articles of the
upcoming month. Indeed predicting the most downloaded articles is beneficial for
the users and the system, since the system can use a caching server to store the
predicted highly accessed papers which in turn would reduce the latency for the
user, and reduce the workload on the servers.

The second most frequent interaction users have with a digital library is discov-
1http://repositories.webometrics.info/en/world

42

ering and searching for articles and author profiles. CiteSeerX is unique in that
sense as it provides many items that can be searched within a research document
such as tables and algorithms. In addition, advanced search can be used to query
certain fields, such as the year in which the article was published, title based search,
and abstract search. With CiteSeerX’s indices being searched 8 million times, by
human users, in the period of the study, we were able to study the distribution
of queries sent by users. The search behavior combined with the click through
logs can be used to learn ranking functions that better serve the user queries by
returning more relevant documents first.

4.2 Data Processing
The data with which this work was carried consist of the web access logs of CiteSeerX
web servers. In production, CiteSeerX uses two web servers that are behind a load
balancer. The web servers run Apache Tomcat 6 and write rotating logs in the
combined log format2. The stored information include: the client’s IP address,
the client’s name, the time of the request, the requested URL, the referrer URL,
the user agent, the response code, the amount of bytes sent back, and the session
identifier. The logs generated during the months of September 2009 to March
2013 were used in this study, totaling 100 GB of compressed files. The log files
are processed using Pig scripts [65,66], and each of the above mentioned fields is
extracted before being imported into a Hive table [67,68]. The number of imported
hive entries came to 3,317,634,711.

Studying the logs at the session granularity is important to understand the
context in which interactions with the site are taking place. We apply an automatic
session detection heuristic to cluster the different requests from the same IP address
into multiple sessions. We use the approach proposed by Radlinksi and Joachims [69],
which later became an established approach [70] in the industry. In this method, all
requests from the same IP are grouped together and sorted in chronological order.
Then, consecutive requests with no more than 30 minutes of idle time between any
two consecutive requests are assigned to the same session. That is, whenever 30
minutes pass without receiving a request from the IP address, the next received
request will start a new session. The total number of sessions in the logs was

2http://httpd.apache.org/docs/1.3/logs.html#combined

43

241,777,051.
Since we are mainly interested in the behavior of real users and not search

engine bots, we have to exclude sessions generated by bots. We obtain a list3

containing 16988 IP addresses along with user agent information of known search
engine bots. This list was used to filter out sessions coming from IPs in this list or
having a user agent that was tied to a bot IP in the same list. While this list may
not be complete, it is the largest we were able to obtain. We further filtered out any
session in which the user agent contained any of the words crawler, bot, or spider.
The last step targets crawlers that are not widely known, but take the courtesy to
identify themselves as such. However, these steps are not enough to detect bots
masquerading as human users, therefore we use a heuristic approach similar to
that of Tanasa [71] after augmenting it with more rules. Basically, a session S is
considered to be from a bot, and not a human user if one of the followings are true:

• There is a request in S that used ‘Head’ request method

• The session S requested /robots.txt

• The session reached CiteSeerX’s page that is shown when the daily download
limit is exceeded

• The session S contains at least θ1 requests, with k1% of them sharing the
same referrer.

• The session S contains at least θ2 requests, with k2% of them sharing the
same referrer.

• The session S contains at least θ3 requests, with more than k3 request received
per second.

• The session S contains at least θ1 requests, with more than k4 request received
per second.

• The requests within the session had more than one unique user agent. This
can be an indication of proxy servers. While it might not be necessarily a
bot session, it is however a mix of multiple sessions.

3http://user-agent-string.info/rpc/get_data.php?botIP-All=csv

44

• The session S contains at least θ1 requests, with k5% of them being referred
from DBLP.

• The session S contains at least θ1 requests with the requests being an ordered
enumeration of paper Ids in CiteSeerX. For example, requests to download
papers 5, 6, 7, 8, 9, ..,100.

• The session S contains at least θ1 requests with the macro average of number
of requests per second, only for the seconds at which requests were received,
is larger than m

• The session S contains at least θ1 requests with at least n% of them returning
a 302 response code. This is an indication of an attack that is automatically
trying to generate URLs that do not exist.

• The session S contains at least θ1 requests with the most common timespan
between two consecutive requests in the session happening at least w% of the
times. That rule identifies robots that idle for a fixed amount of time before
sending a request. If this idle time is too frequent, the session is flagged to
be that of a bot.

In the above rules, the following values were chosen for the parameters. θ1 = 100,
k1 = 80, θ2 = 1000 , k2 = 30, θ3 = 20 , k3 = 1 , k4 = 0.25, k5 = 50, , m = 3, n = 25,
and w = 30.

Also excluded are the static media files such as javascript, icons, and images.
This resulted in keeping 203,505,481 log entries out of the 3,317,634,711 total.

After generating sessions IDs and filtering out bot requests we create a hive
table for paper downloads, which contains the DOI (digital object identifier) of the
downloaded paper, the time of request, and the IP address downloading the paper.
This information was extracted from the processed logs using a regular expression
matching requests to the download handler. Any download request that returned a
response code other than 200 was filtered out. This is important because CiteSeerX
imposes a daily limit on the number of allowed downloads per IP; beyond this
limit requests are redirected to an error message page. Similarly, search requests
were identified using regular expressions that matched the search query handler
in CiteSeerX. The query text along with timestamp, session, the order of results
page, the client’s IP address as well as the search type were extracted and stored

45

in a Hive table. There are three types of search that are supported directly by
CiteSeerX: Document Search, Author Search, and Table Search with Document
Search being the default type of search when no type is specified.

4.3 Access Analysis
In this section we report the results of our analysis on multiple fields. Note that
only requests identified to originate from humans are used in this analysis, unless
otherwise stated.

4.3.1 Session

We begin by examining statistics of the session information. The average length
of the session is 1.85 requests, with the minimum length being 1 request and
the maximum being 2447 requests. These numbers indicate that most visits to
CiteSeerX digital library are approximately of length 2.

In Figure 4.1 the length of the session in terms of the number of requests is
plotted against the frequency of this length where both axis are in log scale. The
figure resembles that of a power law distribution, albeit with more distortions
towards the tail. Therefore we try to fit a power law distribution using Clauset
method [72]. In a power law distribution the probability of observing a given
quantity, x, is given by Pr(x) ∝ x−γ where γ is constant. Here x refers to the
length of a given session in terms of number of requests. The estimated γ parameter
of the power law distribution was 1.391 with p-value of 0.99 using the Kolmogorv-
Smirnov goodness of fit test, when the minimum x value is 6542. This means that
the power law distribution is a very good fit for the empirical distribution. It is
worth mentioning that real world observation rarely follows power law distribution,
and in most cases they can only be approximated with a power law towards the
tail of the distribution [72].

46

1 5 10 50 100 500 1000

1e
+0

0
1e

+0
2

1e
+0

4
1e

+0
6

1e
+0

8

Log Session Length

Lo
g

N
um

be
r

of
 S

es
si

on
s

Figure 4.1. Plot of the length of the the session (number of requests in the session)
against the frequency of this length in log log scale.

47

0.
04

41

/v
ie

w
do

c/
si

m
ila

r

0.
00

43

/s
ho

w
ci

tin
g

0.
00

43

/a
dv

an
ce

d_
se

ar
ch0.

00
18

/v
ie

w
do

c/
do

w
nl

oa
d

0.
08

30

se
ss

io
n_

en
ds

0.
63

93

/in
de

x

0.
00

12

/s
ea

rc
h

0.
21

19
/v

ie
w

do
c/

su
m

m
ar

y

0.
00

99

0.
09

38

0.
14

91

0.
01

73

0.
01

72

0.
43

30

/v
ie

w
do

c/
ve

rs
io

ns

0.
04

62

0.
00

99

0.
23

21

0.
00

65

0.
06

07

0.
84

14

0.
00

49

0.
08

61

0.
01

86

0.
04

95

0.
31

60

0.
00

27

0.
61

32

/v
ie

w
do

c/
cl

us
te

re
d

0.
02

23 0.
00

11

0.
97

16

0.
00

50

0.
01

44

0.
01

62 0.
96

90

se
ss

io
n_

be
gi

ns

0.
07

50

0.
00

27

0.
06

05

0.
46

39

0.
00

99

0.
16

97

0.
21

72

0.
01

84

0.
00

47

0.
00

24

0.
76

62

0.
11

87

0.
08

95

0.
02

69

0.
07

31

0.
00

67

0.
03

54

0.
60

40

0.
14

77

0.
01

18

0.
09

27

0.
00

67

0.
00

13
0.

00
30

0.
87

74

0.
07

04

0.
04

10

0.
07

92

0.
00

76

0.
04

21

0.
07

31

0.
62

48

0.
00

22

0.
00

66

0.
16

39

F
ig
ur
e
4.
2.

A
st
at
e
tr
an

sit
io
n
gr
ap

h
of

w
eb

pa
ge
s
co
ve
rin

g
se
ar
ch
in
g,

vi
ew

in
g
an

d
do

w
nl
oa

di
ng

do
cu

m
en
ts

48

It is often informative to examine the transition behavior between different web
pages in the same session as it helps explaining where most of the users start their
session and where do they bounce off the site. Therefore, the transition behavior
between a selected group of pages is examined in order to build a state transition
diagram. To build the diagram we first cluster the requests based on a predefined
collection of URL prefixes such that each prefix matches a certain task a user would
take like download, search, advanced search, look at similar documents ..etc. For
each of the clusters we create a state in a state diagram. We then create a directed
edge between two states, from a to b, representing that a user transits from a to
b with probability estimated as the proportion of times users move from a to b
compared to navigating from a to all states. The state transition graph for search,
downloads, and viewing documents is given in Figure 4.2. Interestingly, we find
that 46% of the sessions starts at a download page which they arrived to from an
outside referral, and 7% of the sessions began at the main page indicating that
more users arrive at the site to obtain a copy of a paper than any other task. On
the other hand, 96% of the sessions ended after the user downloads a paper.

With CiteSeerX being an internationally known digital library and repository, it
receives requests from more than 200 countries world wide. Table 4.1 lists the top
10 countries from which requests originate along with the percentage of traffic from
that country. The top 10 countries account for more than 70% of CiteSeerX traffic,
and 64% of download requests. The top sources of traffic in order are Google, direct
traffic, Baidu, Bing, DBLP, Yahoo, Wikipedia, ScientificCommons, and Google
Scholar with Google accounting for 69% of the traffic. In addition, the table shows
the top 10 countries when sorted by the number of downloads received from that
country.

4.3.2 Downloads

The download behavior analysis started by examining the number of downloads
each paper received during the time of the study. In Figure 4.3 the number of
downloads a paper receive is plotted against the number of papers with this many
downloads in log-log scale. A power law distribution is fit to the distribution of
number of downloads using Clauset method again. The γ parameter is estimated
to be 1.69. The p-value from the Kolmogorov-Smirnov goodness of fit test is

49

Table 4.1. Percentage of traffic from the top 10 countries
Country Traffic % Country Download %
USA 24.31% USA 23.99%
India 8.83% India 10.58%
China 7.63% China 6.13%
UK 5.44% UK 5.87%
Germany 4.81% Germany 3.89%
Canada 2.61% Canada 2.75%
France 2.51% Iran 2.22%
Iran 1.96% France 2.03%
Japan 1.79% Australia 1.98%
Australia 1.74% Korea 1.74%
Other 38.33% Other 38.76%

1 100 10000

1
10

0
10

00
0

Log Number of Downloads

Lo
g

N
um

be
r

of
 P

ap
er

s

Figure 4.3. Plot of the number of downloads a paper receives against the number of
papers with this many downloads in log log scale.

50

0.41 which is achieved when x is limited to be above 820. This indicates that a
power law distribution is good in modeling the number downloads a paper receives.
Again, we reiterate that real world observation rarely follows power law distribution,
and in most cases they can only be approximated with a power law towards the
tail of the distribution [72]. This is the first work to analyze the distribution of
number of downloads a paper receives, opening up the door for future work in this
area, therefore a power law distribution is the first step towards understanding the
popularity of paper downloads. The obtained exponent for modeling the download
behavior is far from the exponent obtained when CiteSeer citation networks is
modeled as power law [73]. The exponent obtained for the citation data was 2.75
while the estimated exponent for the download data is 1.69.

Given that both power law distribution is used to fit both download behavior
and citation data, it motivates the study of correlation between the number of
times the paper is downloaded and the number of citations it has in CiteSeerX. The
Pearson Correlation Coefficient is estimated to be 0.1, indicating a small positive
correlation between the number of downloads and the number of citations. On the
other hand, the correlation becomes 0.16 when taking the log of both number of
downloads and number of citations, which helps in reducing the variance. However,
we suspect that the true correlation value is higher as when we examined the papers
receiving high number of downloads yet having zero citations, it turned out that
in many of them the automatic metadata extractor of CiteSeerX had mistakes
extracting author and title information which led to mis-assigning citations to these
papers. Upon checking the citation count in Google Scholar for these papers, it
was found to be significantly higher.

In Table 4.2 the top 10 most downloaded venues are listed. The first row
indicates a missing venue name for a given paper, while the third venue “In” stems
from an extraction error of the automatic metadata extractor. Both values are left
to exhibit the limitations and challenges faced by digital libraries that automatically
extracts paper metadata.

An interesting observation that would motivate Section 4 of this paper is drawn
by computing the percentage of download requests generated by papers in the top
k% most downloaded list. For k = 1, we see in Figure 4.4 that for most months
the top 1% most downloaded papers are responsible for 10 to 20% of the total
download requests. For k = 5 this number goes up to more than 40%.

51

Table 4.2. Venues ranked by the number of downloads their papers received
Venue Number of

downloads
90,783,801

IEEE Transactions on Pattern Analysis and
Machine Intelligence

234,273

In 215,248
Journal of Personality and Social Psychology 134,582
ACM Computing Surveys 129,214
Psychological Review 115,169
Communications of the ACM 113,355
Journal of Machine Learning Research 104,991
Journal of Finance 101,884
IEEE Trans. Inform. Theory 92,130
Proceedings of the IEEE 88,768

Table 4.3. Search type distribution. Blank field falls back to Document search
Search Type Number Percentage
Document 7,488,321 92.73%
Author 563,801 6.9%
Table 22,845 0.2%
Total 8,074,967 100%

4.3.3 Search

CiteSeerX offers three types of search where users can perform document search,
author search , and table search. Each of these types of search is powered by a
separate index. In addition, an advanced search page is available on the document
index to complement the single query box default search. During the period of
this study, CiteSeerX received 8,074,967 search requests. The proportion of search
types are presented in Table 4.3. As seen in the table, there is a reasonable
interest in searching for author names with 6.9% of the search requests targeting
the authors index. It was reported in [74] that author queries account for 36% of
query categories in Pubmed, however. We conjecture two possible reasons for this.
In the first scenario users are interested in searching for papers by author name
assuming they remember one of the authors of a paper but do not recall the title.
The second reason is that individual authors are searching for themselves to track

52

20
09

10
20

09
11

20
09

12
20

10
01

20
10

03
20

10
04

20
10

05
20

10
06

20
10

07
20

10
08

20
10

09
20

10
10

20
10

11
20

10
12

20
11

01
20

11
02

20
11

03
20

11
04

20
11

05
20

11
06

20
11

07
20

11
08

20
11

09
20

11
10

20
11

11
20

11
12

20
12

01
20

12
02

20
12

03
20

12
04

20
12

05
20

12
06

20
12

07
20

12
08

20
12

09
20

12
10

20
12

12
20

13
01

20
13

02

Top 1%

Top 5%

P
er

ce
nt

0

20

40

60

80

Figure 4.4. The percentage of total downloads generated by papers in the top 1% and
5% respectively of most downloaded papers within a month

down the number of citations they received, the number of papers they have in
the repository, or correct any metadata that was incorrectly extracted. Similarly,
tenure and promotion committees would use the author search to track down the
body of work for a given scholar. Validating these assumptions and exploring the
real motivation is left for future work. We also notice that advanced search was a
popular choice, with that 24% of the document search using the advanced search
box.

By examining the queries with type document search we found that the average
length of a query is 4.76 terms. This is significantly higher than average Web search
query length of 2.35 terms [75] found in AltaVista and similarly in Excite [76].

53

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Query terms

N
um

be
r

of
 q

ue
rie

s

0
50

00
00

10
00

00
0

15
00

00
0

Figure 4.5. Distribution of the number of terms in a query.

However more recent studies of Web search query length put the average at 2.9 [77]
and 3.08 [78]. It is, therefore, believed that the number of query terms has increased
over time [78], which explains the different in the number of query terms we found
with that found in the Elsevier’s ScienceDirect OnSite query logs where the reported
average query length was 2.27 [79]. Figure 4.5 shows a bar plot of the number of
search requests received with a particular number of query terms up to 30 terms.

Majority of the users, 91.57% of them, looked at the first result page only,
however users were more likely to look at 10 results pages than looking at 7, 8, or
9 pages as shown in Table 4.4. This indicates that users either found what they
want on the first few result pages (or did not find it and gave up), or they were
willing to explore more results to find a satisfactory result. On the other hand, in
the case of of author search, 99% of the users browsed one result page only.

54

Table 4.4. The number of result pages a user looks at when doing document search
Number of Pages Percentage
1 91.57%
2 3.57%
3 2.18%
4 0.7%
5 0.5%
6 0.2%
10 0.2%

Table 4.5. Number of document views per query

#views ratio cumulative ratio
1 71.14% 71.14%
2 14.94% 86.08%
3 6.02% 92.1%
4 2.88% 94.97%
5 1.56% 96.53%
6 0.97% 97.5%
7 0.59% 98.1%
8 0.4% 98.5%
9 0.3% 98.8%
10 0.2% 99%

> 10 0.8% 100.00%

4.3.3.1 Number of document views per query

We study the number of document views after submitting a query. We ignore the
sessions where users issue a query but do not click on any returns. The results are
presented in Table 4.5: most users click very few documents from the returned
list. This suggests that most users follow the Cascade Model – a popular model
where users view search results from top to bottom and leave as soon as they find
a document of interest [80]. The multiple browsing models [81], i.e., the models
that assume an query will lead to more clicks, play minor roles on CiteSeerX. The
mean number of clicks was 1.36, and the maximum was 796. We suspect that the
few large view counts come from crawlers that masqueraded real users.

55

4.4 User Behavior Prediction

4.4.1 Download Prediction

This section studies whether it is possible to predict the number of downloads each
paper would receive using its download activity in the previous months. For if this
is possible, the top to-be downloaded papers can be cached on a specific server that
holds the files in memory, leading to a reduction in the request turn around time,
and burden reduction on the web servers. However, the number of downloads a
given paper receives varies from month to month, which makes it harder to predict
the actual number. Instead, we focus on a similar problem, yet simpler, that is to
identify the top 1% most downloaded papers. This problem is easier than predicting
exact counts as it is not concerned with predicting an exact value or predicting the
ordering. Nevertheless, from a practical standpoint it achieves the same goals that
are being pursued by the count prediction problem; that is caching documents and
predicting relative popularity.

Figure 4.4 shows that the papers in the top 1% most downloaded papers within
a month account for more than 10 to 20% of the total download volume (except for
three months). The top 5% most downloaded papers account for more than 30% of
the total download traffic. However, we only try to predict the top 1%, because
caching the top 1% in memory is feasible, assuming that on average each document
is 1 MB. On the other hand, if we are to consider the top 5%, the number of papers
in this category can be as high as 47,000, which can not be cached in memory using
average server hardware with 32 GB of memory.

We study the potential of caching as follows: for an upcoming month x, we
would like to build a caching service containing the papers that will be in the top
1% in that month. The candidate list for inclusion in the cache are the papers in
the top y% of the previous k months. For example, assume x = 2013/11, k = 1,
and y = 5 then the cache will choose from the papers in the top 5% of 2013/10.
For the remainder of this work, we use k = 1 and y = 5 as they were enough to
predict downloads with high accuracy.

A logistic regression model is built to predict the top 1% most downloaded
papers. Logistic regression was chosen after experimenting with multiple classifiers
including Support Vector Machines, decision trees, and naive bayes. In the logistic

56

regression model, the probability of a paper Xi belonging to the top 1% is given by:

P (Xi) = eXiB

eXiB + 1

The weights vector B is learned using Quasi-Newton method [82] to assign weights
to the paper features. The following features are used in representing a given paper,
Xi.

• count_in_top_1_previous_months: The number of times this paper appeared
in the top 1% in the previous 12 months

• count_in_top_5_previous_months: The number of times this paper appeared
in the top 5% in the previous 12 months

• is_in_top_1_at_previous_month: Was the paper in the top 1% in the
previous month

• is_in_top_5_at_previous_month: Was the paper in the top 5% in the
previous month

• average_previous_rank: The average rank of this paper when sorted by
number of downloads in the previous 12 months

• rank_at_last_month: The rank of the paper when sorted by number of
downloads in the previous month

• rank_at_last_year : The rank of the paper in the same month last year

• num_citations: The number of citations this paper received

• highest_hindex : The highest h-index4 of the authors

• avg_hindex : The average h-index of the authors

Assuming that in each month the prediction model can be learned again from
the latest data, we test the approach by building a model at the end of each month,
then test it on the following month. LetMi be a given month, whereMi+1 andMi−1

4h-index for an author is the highest number K such that K of his papers received at least K
citations

57

are the following and preceding month, respectively. Let Ti(k) be the list of the
top k% most downloaded papers in month Mi. Then, at the end of month Mi, we
can compute Ti(1), the list of top 1% most downloaded papers in Mi. Similarly, we
have already recorded Ti−1(5) from the previous month, Mi−1. Hence, the positive
examples of the training data are those appearing in

{∀x, x ∈ Ti−1(5) ∩ Ti(1)}
while the negative training examples are the papers in
{∀x, x ∈ Ti−1(5) ∧ x /∈ Ti(1)}
The testing data set can be built similarly but using months Mi+1 and Mi. The

logistic regression model is built using the training data.
To compare the performance of the logistic regression classifier we consider

the following baseline: for month Mi, the baseline consists of the top K most
downloaded papers in month Mi−1, where K is the number of papers identified to
be in the top 1% using the logistic regression model. Indeed, this is a reasonable
baseline because the coefficient of the is_in_top_1_at_previous_month parameter
had the highest positive value among all other coefficients. Since our candidate
list was limited to the articles appearing in the top 5% in the previous month, we
define an Oracle classifier which knows the correct classification for each paper
in the candidate set. The measure by which we compare the performance of the
logistic regression (LR) classifier and the baseline (BL) is hit rate. Hit rate is the
percentage of articles in the top 1% in a given month that were found in the caching
server. Therefore, higher hit rates are desirable.

In Figure 4.6 we plot the hit rate of the logistic regression classifier compared
with that of the baseline and the Oracle. The hit rate of the model is also provided
in Table 4.6 As shown in the figure and the table, the logistic regression model
outperforms the baseline in 13 out of the 17 months. While the difference between
the baseline and the model might not look significant, it is actually significant once
you realize that the absolute numbers are in the thousands. Furthermore, because
these cash hits for the top 1% most downloaded papers, they actually contribute to
more than 10% of the overall traffic, as shown before. Hence, the slightest increase
in the hit rate would translate to thousands of requests being served through the
cash.

58

Table 4.6. Cash hit rate for the logistic regression model at each month, compared to
the baseline and the Oracle.

Month Baseline LR Oracle
2012/10 84.84% 84.88% 94.13%
2012/09 78.89% 80.19% 93.58%
2012/08 80.60% 81.82% 96.03%
2012/07 80.63% 81.94% 94.24%
2012/06 73.11% 66.30% 96.01%
2012/03 86.35% 86.55% 91.83%
2012/02 91.30% 91.06% 97.35%
2012/01 91.95% 90.81% 94.74%
2011/12 85.42% 82.69% 95.90%
2011/11 80.88% 81.47% 93.71%
2011/10 89.02% 90.34% 97.91%
2011/09 86.68% 88.37% 97.96%
2011/08 86.24% 87.52% 97.30%
2011/07 83.83% 85.45% 96.71%
2011/06 87.39% 88.19% 96.42%
2011/05 85.50% 85.98% 96.49%
2011/04 81.25% 81.39% 96.24%

4.5 Related Work
Previous research in web log analysis is as old as the web itself, and digital library
log analysis can be traced back to before the web age with the TULIP project which
ran from 1991 to 1995 [83]. Jamali et al. provided a survey about log analysis for
digital libraries [84]. Jones et al. studied the transaction logs to a collection of
computer science technical report comprising 46000 documents hosted on the New
Zealand Digital Library [85]. Their work focused on queries and search patterns.
The closest work to ours studied user behavior accessing Elsevier’s ScienceDirect in
Taiwan [79]. Their work examined query patterns as well as downloading patterns.
However, their analysis is limited to the Taiwanese population, unlike our analysis
which considers a service with world wide user base. In addition, our analysis
spans longer period and contains more access logs. More importantly, we model
the access patters and fit it to a power law distribution. Furthermore, we notice
the high traffic generated by the top 1% most downloaded papers and introduce a
method to predict paper downloads.

59

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

2
0
1
2
1
0

2
0
1
2
0
9

2
0
1
2
0
8

2
0
1
2
0
7

2
0
1
2
0
6

2
0
1
2
0
3

2
0
1
2
0
2

2
0
1
2
0
1

2
0
1
1
1
2

2
0
1
1
1
1

2
0
1
1
1
0

2
0
1
1
0
9

2
0
1
1
0
8

2
0
1
1
0
7

2
0
1
1
0
6

2
0
1
1
0
5

2
0
1
1
0
4

LR

BL

Oracle

Figure 4.6. Cache hits of the top 1% most downloaded documents for each month.
Each curve represents caching policy. LR refers to logistic regression, BL refers to base
line. April and May of 2012 are omitted because very low traffic was recorded in them

Work load analysis based on the study of CiteSeer logs were performed earlier
[86,87]. However it was conducted on a short time period of two weeks only. Our
work aggregates data over three years, which allows us to observe behaviors not
limited to short periods. In addition we introduce models to capture the observed
behaviors. Download prediction was the topic of KDD Cup 2003 [88, 89]. However
it is different from the problem we tackle here, as the original KDD Cup challenge
focused on predicting download counts in the first 60 days after the paper was
published. Our problem is different as it focuses on monthly download prediction,
rather than the short time after publication.

Search log analysis was studied before in the theme of Web search. Jansen
et al. [76] studied the logs of less than 100,000 queries to Excite, while Taghavi
and others [78] studied the query logs to multiple search engines by examining
the requests going through a proxy server. Dogan et al. [74] studied the search

60

logs of Pubmed for a period of one month. Their work is only focused on the
biomedical domain covered by Pubmed, whereas our analysis is on top of a computer
and information sciences digital library. Furthermore, our analysis is on a much
larger scale of three years, where in [74] the collected logs were for one month
only. Earlier work has studied Pubmed queries on an even smaller scale of one day
only [90]. Recently, book search behavior has been studied [91] . Although books
can be part of a digital libraries, digital libraries contains different document types
including papers that form a proceeding or a journal. Hence it is imperative to
study the behavior at the paper level to get insight about each work, as users may
be interested in specific sections of the book only.

Web caching of media resources have been investigated before for general web
documents. Yang et al. combined association mining from web logs with standard
caching algorithms to improve the hit rate [92]. Recker et al. used a window of 7
days to predict access logs on Georgia Tech network [93]. Smith and Wilbur used
PubMed access logs to measure the popularity of articles and learn a model to
predict popularity [94].

4.6 Conclusion and Future work
We have conducted a large scale analysis of access logs to the CiteSeerX digital
library using logs from September 2009 to March 2013. Our analysis uses more
than 3.3 billion log entries describing user queries, downloads, and other behavior.
We have demonstrated that the number of downloads a paper receives can be
modeled as as a power law distribution. Also, we have showed that the top 1%
most downloaded papers in a given month are likely to be highly downloaded in
the following months. Furthermore, we observed a positive correlation, yet small,
between the number of downloads and the number of citations for a given paper.
A logistic regression model is introduced to predict the top 1% most downloaded
articles in a given month. The model is shown to have improvement over simple
baselines. Our analysis on the query logs shows a significant interest in author
search, and advanced search more than typical full text search. In the future we
plan to investigate better models to fit the download behavior associated with each
paper and investigate new approaches to predict the number of downloads a paper
receives.

61

Chapter 5 |
Academic Search

Academics have relied heavily on search engines to identify and locate research
manuscripts that are related to their research areas. Many of the early information
retrieval systems and technologies were developed while catering for librarians to
help them sift through books and proceedings, followed by recent online academic
search engines such as Google Scholar and Microsoft Academic Search. Despite of
their popularity among academics and importance to academia, the usage, query
behaviors, and retrieval models for academic search engines have not been well
studied.

To this end, we study the distribution of queries that are received by an academic
search engine, and analyze the click-through logs generated by the users. The
click-through logs over a large period of time is found to positively correlate with
an optimal ranking. Later we model the task of designing ranking function for
academic queries as a learning to rank task, and show that it’s effective to learn
rankers. We also study the effect of multiple feature groups on the effectiveness
of the learned ranking function, and realize that the article’s full text is very
important for the purpose of ranking. Furthermore, we delve deeper into academic
search queries and classify them into navigational and informational queries. This
work introduces a definition for navigational queries in academic search engines
under which a query is considered navigational if the user is searching for a specific
paper or document. We describe multiple facets of navigational academic queries,
and introduce a machine learning approach with a set of features to identify such
queries.

62

5.1 Introduction
Academic search engines have become the starting point for many researchers when
they draft research manuscripts or work on proposals. Typically, there are two
main retrieval systems that are used by academics. The first one is a citation
database that is more of a traditional librarian search such as Web of Science
and Pubmed, while the other is more similar to typical web search such as Google
Scholar, and Microsoft Academic Search. Usage statistics tend to reflect user’s
preference for each type of systems. For example, 30% of Ph.D researchers relied on
Google and Google Scholar as their main source for finding information in a survey
conducted by the researchers of tomorrow project in 2012 [95]. On the other hand,
usage statistics from the University of California, Santa Cruz indicate that Google
Scholar was used as a secondary source of information rather than a primary one
in 2010 [96].

Academics are different than regular web search users. First, they are either
experts in the field they are searching about or they are being trained to become
experts – in a graduate program. Secondly, it is typical for academic search to entail
spanning beyond the first result page when researchers are performing literature
review. Thirdly, recall can be of greater importance in academic search than of it
in the case of typical web search. This is similar to legal retrieval where the fail
to retrieve a relevant document may have significant repercussion. Furthermore,
academics have good sense for judging the relevance of documents by examining
certain information such as the number of citations a paper has received, the venue
into which it was published, and author information. After all, algorithms such as
PageRank [97] were inspired by the citation count model.

The need for retrieving relevant information in scientific domains have lead to
many contributions in information retrieval [98]. For example, the idea behind index-
ing documents using keywords have originated from the field of librarianship [98,99].
Similarly, the intuition behind PageRank goes back to citation indexing, and using
the number of citation as a proxy for measuring importance [97]. In addition, the
OHSUMED dataset which became a standard benchmark for the quality of retrieval
systems was built on top of Medline dataset [100].

In this chapter we focus on academic search systems that use keyword base
search. We study user behavior of an academic search engine using query logs of

63

three years. By observing user query patterns, we were then motivated to study
the user query intent by classifying academic search queries into navigational and
informational queries. Search engine queries have typically been classified into three
main categories [101,102]: 1)Informational: the user is seeking some information
available on the web; 2) Navigational: the user is trying to reach a particular
website; and 3) Transactional: where the user is trying to perform some type of
transaction. Query intent classification is an important part of any search engine for
the effect of the query type has on the way it gets handled. Identifying navigational
queries is essential for devising specific ranking functions that rank navigational
queries only. Similarly, if a query is known to be navigational, the search engine
may choose present the results page differently by either showing a single result or
few results. In this work we introduce the concept of academic navigational query,
and define multiple facets through which a query should be considered navigational.
To the best of our knowledge, this is the first work that studies academic query
classification.

Later we explore learning a ranking function that is suitable for academic search.
In that regard, we observe a correlation between aggregate click through over
time with the position at which the documents should be ranked, suggesting that
aggregate click through rates can be effective in learning ranking functions for
academic search. We hypothesize that this can be traced to the fact that academic
search users are more knowledgeable than average web search users. Indeed, many
academic search engine users are established researchers or PhD students with
experience and training in the subject they are searching about.

Our experiments on learning a ranking function for academic search are con-
ducted on top of manually judged dataset that contains 120 queries, with at least
20 documents tagged per query. The queries were sampled from real users of an
academic search engine that indexes the full-text of the papers, along with title and
abstract content. This is a clear distinction from other relevance datasets that were
built on top of Medline, such as OHSUMED. In fact, including papers fulltext in
the index and relevance judgment process reflects the real scenario when academics
perform search tasks to retrieve documents. The lack of article fulltext in datasets
such as OHSUMED makes the dataset not representative of real academic retrieval
tasks. Therefore, as part of this work we will be later releasing the manually judged
dataset for the public.

64

The contributions of the work include:

• We conduct the first study of academic search engines usage based on three
years’ user query logs and show some significant uniqueness of academic
search from general web search.

• We introduce the concept of academic navigational queries and the problem
of academic query type classification. To explore the problem, we construct a
new dataset using real queries and propose a set of features.

• We further study the feasibility of learning academic document ranking
functions from user click-through data. We contribute a new dataset for IR
community that contains real user queries and full text of academic documents,
based on which, we investigate various ranking signals. Specially, we find full
text features, which are usually ignored by academic search engines, play an
important role.

5.2 Related Work
Although there is a rich literature related to academic search in both information
retrieval and data mining community, few work studies the usage of academic
search engines and seeks to understand academic search using real world user query
data. We briefly review the related research on academic search in the following
directions.

Existing academic search engines. Earlier academic search engines that
build upon automatic citation indexing and metadata extraction include Citeseer [2,
103], followed by Arnetminer which focuses more on extraction, analysis and mining
of academic social network and providing academic rankings [104, 105]. In the
industry, two typical instances of academic search engines are Google Scholar and
Microsoft Academic Search.

Academic document ranking. A key problem in academic search is ranking
academic documents for user queries. Existing work studied general information
retrieval models such as BM25, language models, HITS, PageRank, as well as
academic specific metrics such as citations, venue impact and popularity factor,
and author topics [106,107]. However, they either lacked proper evaluation or used

65

a small private dataset. Our dataset is constructed by uniformly sampling from
user queries of an academic search engine and we plan to make it publicly available.
We also note that more recently Amolochitis etc. proposed a heuristic hierarchical
scheme by combining heuristics including term-frequency, citation distribution and
topics’ inter-relations [108]. However, their evaluation is conducted by making
comparison to ACM digital library ranking results, thus it does not necessarily
reflect the real world user query performance. We not only evaluate our ranking
methods on human labeled query document dataset, but also show that a reasonable
academic document ranker can be learned from user click through data.

Instead of ranking academic document alone, some work studied co-ranking or
bi-type entity ranking for academic documents and authors [109], which estimates
entity scores by considering both citation based link features and language model
based content features in the bibliographic network. Besides, Zhou el al. studied
similar work in a heterogeneous network based on coupling two random ranks on
citation network and co-authorship network [107]. However, their evaluation is
not based on real user queries, but synthetic queries that are selected from topical
words generated by LDA models.

Query type identification. Most query type identification has focused on
general Web search engines, with different methods applied in different settings.
For example, Kang and Kim used the difference of distribution, mutual information,
the usage rate as anchor texts, and the POS information for the classification [110];
Jansen et. al. proposed a rule based method based on a set of heuristics [111]; and
Lee et. al. studied user-click behavior and anchor-link distribution [112]. However,
to the best of our knowledge, no previous work studied identifying navigational
queries in academic search.

Expert search. Similar to ranking authors given topics, a large amount of
related work focused more on expert search [113]. Gollapalli etc. proposed a
PageRank-like model that accommodates multiple sources of evidence for ranking
experts in a particular topic [114]. Tang et al. presented a topic level expert
search framework for heterogeneous networks by considering different entities in an
academic network [115]. In this paper, our main focus is on academic document
search, not author ranking or expert search, as we found most of the user queries
are for document search.

Personalized academic search. Some research also investigated the person-

66

alized academic search by user modeling based on query log [116] or volunteer
users [117]. It is worth noting that traditional user models such as collaborative
filtering that do not consider document content features may fail since they play a
more important role in ranking document than user similarity. Although we do not
study personalized ranking in this work, we somehow show a consistent result: full
text of academic documents matter a lot for some queries.

It is also worth noting that a research line on modeling the content of academic
documents is author topic model, which associates each author with a multinomial
distribution over topics and each topic is a multinomial distribution over words [118].
It has been applied to ranking authors by topics and providing interactive explo-
ration of academic corpora [119]. Tang et al. also presented an author-venue-paper
topic model and applied it on ArnetMiner [120]. However, the problem of the topic
model based approach is that it might not be easily scaled to real world search
engines due to the computation cost.

5.3 Academic Query Logs
Our work was motivated by examining the usage behavior of academic users of
a major academic search engine that indexes publications in computer science
and engineering, physics, and economics. The search engine provides multiple
search types, most notably document search and author search. The search sessions
received by the search engine between September of 2009 and March of 2013 are
used to study multiple facets of user usage such as search types, query types, and
document views. For deeper discussion into the query logs of the academic search
engine, please refer to Chapter 4 of this dissertation.

5.4 Query Type Classification
Most of query intent identification has focused on general search engines with many
approaches being applied [110–112]. However, there has not been any work that
identifies navigational queries in academic search, to the best of our knowledge. In
fact, we are not aware of any work that categorizes query intent in the academic
search. Perhaps because traditional library search was the defacto standard in
academic search until recently. The ease of use of current academic search engines

67

such as Google Scholar, combined with their similarity to traditional web search
that most people have become familiar with creates an opportunity to study the
query intent of the users.

In academic search it is possible to categorize queries into at least two types:
navigational and informational. It is not straightforward how to define transactional
queries, if they exist, in the academic setting. Providing a complete taxonomy of
query intent in academic search is beyond the scope of this work. Rather, we focus
on identifying navigational queries. We define a navigational query as a query
for which the user is looking for a specific scholarly document, which can be a
paper, book, thesis, etc. Correctly identifying navigational queries is important,
because rankers are heavily influenced by citations which can lead to highly cited
papers being ranked higher than the target paper if the target paper is new or not
well cited. Furthermore, papers whose title contains general terms are more likely
to be susceptible because there are large number of matches. There are multiple
facets for navigational queries in academic search. For example, a user might look
for a given document by:

• Document Object Identifier (DOI): 10.1038/nature14106

• Full title query: The Google file system

• A combination of an author and title information: jeff dean mapreduce

• Author and year/venue information: leskovec 2009 news cycle

• Author names for a well known work: Cormen Leiserson Rivest Stein, or
hopcroft motwani ullman

• A combination of author names along with some paper’s distinguishing terms:
dic brin motwani

In the first scenario when users search by DOI, it is sufficient to check if the
query matches a database of DOIs or not. However, other cases are not as trivial.
For example, title queries are not easily detectable. First of all, extracting titles
from papers is not always accurate. In addition, although a query can be checked
against a list of titles, there are many short and ambiguous queries that might match
at multiple title positions. On top of that, no search engines contain all academic
documents [121], hence identifying a title navigational query that the search engine

68

Table 5.1. Navigational Query Features

Feature Description
#_tokens the number of tokens in the query
has_year whether a term in the query matches a

regex for identifying year
has_stop_word whether the query has stop words
has_punctuation whether the query has punctuation
#_authors the number of tokens in the query iden-

tified as author name
author_ratio the ratio of query terms identified as

author names to the query length
is_title_match whether the query matches a title in the

search engine’s index

does not have a result for it may be used as signal to locate this missing document.
However, other cases can be more subtle to identify. For example the following
queries that were found in the logs of the academic search engine are not as obvious.
In the query leskovec 2009 news cycle there exists an author name and a year along
with subset of a title that would identify the work 1. Similarly, dic brin motwani
and lift brin motwani ullman both refer to the dynamic itemset counting paper
by S. Brin and R. Motwani2. Finding the correct matching of those queries might
need more sophisticated approach than simple rules.

5.4.1 Approach

The problem is modeled as a binary classification problem. Given a query q, we
would like to classify into one of the following classes {Navigational, Informational}.
Each query q is represented as vector of the features described in Table 5.1. The
features are crafted to capture the multiple facets that represent navigational
queries. For example, #_tokens is chosen after noticing that many navigational
queries have more terms than informational queries because they contain a title.
On the other hand, is_title_match can be a good signal in general, but if the
query term is general, a match does not necessarily make the query navigational.

1Meme-tracking and the dynamics of the news cycle (KDD’09).
2Dynamic itemset counting and implication rules for market basket data (SIGMOD’97).

69

Other syntactic features such as has_stop_word , and has_punctuation are aimed
at identifying title queries. The intuition is that users rarely use such terms in
informational queries, and they are more likely to be part of title.

As shown in the examples, the mention of author names is one facet of naviga-
tional queries. However, it is not always the case that a mention of an author means
a navigational query. For example, the following query that was found in the logs
of the academic search engine is not considered navigational: mccallum nigam3

because these two authors have coauthored more than one paper together, and this
query cannot be interpreted to refer to a single paper. Nevertheless, the presence
of an author name is one of the indicators of navigational queries. Therefore, we
create a feature to represent the number of query tokens that are identified to be an
author name. Identifying whether a token refers to an author name or not was not
as trivial as checking against a dictionary of all possible names. Initially we started
by using the author list of DBLP4 as a names dictionary assuming that it would
have low false positive rate since it is manually curated. However, the false positive
identification was still high as tokens such as network matched as an author.

Therefore, we adapted a language model approach to identify author names.
For every token t we estimate three probabilities: P (t|author), P (t|title), and
P (t|abstract) where author, title, and abstract refer to the token appearing in the
author, title, or abstract section of the paper, respectively. We estimate each of
the probabilities for every token over all the fields in the academic search engine’s
index. A token t is considered an author iff:

P (t|author) > P (t|abstract) ∧ P (t|author) > P (t|title)

Gradient Boosted Trees (GBT) are used to train a classifier for identifying
navigational queries. The number of stumps and the learning rate parameter
are chosen using grid search over the range [10, 400] and [10−4, 10−1], respectively.
SMOTE [122] oversampling is used to oversample the navigational queries because
the dataset is imbalanced.

3Andrew McCallum and Kamal Nigam
4http://www.dblp.org/search/index.php

70

5.4.2 Dataset

To build the dataset, we first randomly sample 1000 queries from the user search
logs and then keep only the queries in document search type, which results in 553 in
total. However, notice that this small number of samples might not give reasonable
coverage of all possible positive samples (navigational queries), we did multiple
rounds of sampling and use the aforementioned heuristics to match possible positive
candidates. The dataset was then augmented by those positive examples that
might not have enough presence in the randomly sampled dataset, such as examples
with author names. We also added comparable number of negative examples to
counter for that effect. At the end, the dataset contained 579 queries. Each query
was manually inspected by two human judges and tagged as either navigational
or informational. When the judges had mismatching labels, they conferred and
agreed on a mutual tag. In the manually tagged queries, 12.5% were found to be
navigational. This percentage is smaller than that of general web queries as reported
by Broder [101]. For queries tagged as informational, we found a large part of them
are single word and phrase such as "802.3x", "iommu", and "nearest-neighbor based
image classification", which actually refer to very specific concepts that might lead
to only a small number of relevant results. That being said, it is possible that users
are actually doing navigational search but using some simple informational queries,
since they have a strong ability to quickly locate the best result from the returned
list.

5.4.3 Experiments

The performance of the classifier is shown in Table 5.2. The numbers are for
a 5 fold cross validation, with the training fold being randomly split into 90:10
with the 10% used to validate the grid search parameters. Oversampling using
SMOTE was only conducted on the training fold, with the test fold remaining
untouched. We compared the performance of the boosted tree classifier with that
of an SVM with RBF kernel, and with that of a random forest. All parameters
for both baseline classifiers are configured with grid search, similar to the GBT.
The highest precision, and overall F score was attained with GBT as can be seen
in table 5.2. The numbers in the table refer to the average precision, recall and
F score obtained through the 5 fold cross validation, with the standard deviation

71

Table 5.2. Navigational query classification performance for multiple learning algorithms.
Numbers between parenthesis refer to standard deviation in 5 fold cross validation.

Method Precision Recall F1
GBT 0.68 (0.03) 0.68 (0.09) 0.677 (0.04)
SVM (RBF) 0.67 (0.05) 0.63 (0.12) 0.64 (0.07)
Random Forest 0.71 (0.06) 0.59 (0.14) 0.62 (0.09)

reported between parenthesis. The importance of each of the features is shown in
Figure 5.1. The number of tokens within a query is the most important feature,
which can be explained by title queries that tend to have higher number of tokens.
Similarly, the title match feature which is closely related to the number of tokens in
the query ranks second in terms of importance, followed by author ration feature.

It is worth noting that classifying navigational queries is notoriously a hard
task in the web domain, and it would be at least as hard within the academic
realm. For example, Jansen et al. [111] were only to obtain 74% for overall web
query intent classification, which is not limited to navigational. Others were able
to obtain 70% precision with high recall for informational queries [123]. Many
studies for navigational query classification at web search engines have relied on
click through rates [112,124,125]. While these methods were effective overall, they
remain passive and depend on the presence of queries and clicks in the logs to be
able to accurately classify them. This presents a challenge when new queries that
have not been seen before arrive, or when users refer to an academic paper using a
new combination of keywords.

5.5 Ranking

Id Feature Description
F1-4 tf_sum Sum of all term frequencies. One feature per

stream
F5-8 tf_max Max term frequency within query. One fea-

ture per stream

72

F9-12 tf_min Min term frequency within query. One fea-
ture per stream

F13-16 tf_avg Average term frequency within query. One
feature per stream

F17-20 tf_norm_sum Sum of normalized term frequency. One fea-
ture per stream

F21-24 tf_norm_min Min of normalized term frequency. One fea-
ture per stream

F25-28 tf_norm_max Max of normalized term frequency. One fea-
ture per stream

F29-32 tf_norm_avg Average of normalized term frequency. One
feature per stream

F33-36 idf_sum Sum of all term IDFs . One feature per steam
F37-40 idf_max Max of all term IDFs . One feature per steam
F41-44 idf_min Min of all term IDFs . One feature per steam
F45-48 idf_avg Average of all term IDFs . One feature per

steam
F49-52 tf_idf Similarity using TFIDF . One feature per

steam
F53-56 tf_idf_norm Similarity using normalized TFIDF . One

feature per steam
F57-60 bm25 Similarity using BM25 model. One feature

per stream
F61-64 lm_jm Similarity using language model smoothed

using Jelinek-Mercer. One feature per stream
F65-68 lm_dr Similarity using language model smoothed

using Dirichlet smoothing. One feature per
stream

F69-72 lm_as Similarity using language model smoothed us-
ing absolute discount smoothing. One feature
per stream

F73-76 num_covered Number of covered query tokens in the docu-
ment. One feature per stream

73

F77-80 ratio_covered Ratio of covered query tokens in the docu-
ment. One feature per stream

F81-84 stream_length Length of stream. One feature per stream
F85 n_cites number of citations an article received
F86 log_n_cites log number of citations an article received

Table 5.3: The features used in representing every query
document pair

Relevance ranking is one of the most important aspects of any retrieval system,
and it is the case within an academic search engine as well. While academics have
developed their own intuition about relative ranking of scholarly work through
citations, impact factors, and other measures that allow them to use explicit aspects
of the work to judge its quality and relevance, they would still benefit from a more
general method for ranking. Our contribution for ranking in academic search is
three fold. First, given that academic users are more knowledgeable than average
web search users, we want to study if the wisdom of the crowd can be used to learn
effective ranking functions. Previous work has shown that aggregate click-through
logs over time can be used to learn ranking functions [126], despite presentational
biases that make click orders unrepresentative of relevance within the session.In [126]
it was found that click-through data over a period of time has 0.20 Kendall tau-b
correlation with labels of human judges, when considering clicked documents only.
When unclicked documents were added, the correlation became 0.35. Later, the
click-through data was fed as training examples to a learning to rank algorithm
that achieved competitive NDCG. We want to study if this would be the case for
academic search. Secondly, we want to study the effectiveness of learning a ranking
function for academic search, and what class of features would have a significant
contribution. Thirdly, we are creating a dataset of human judged queries and
papers that can be used not only for academic search, but also as benchmark for
learning to rank. We believe that our dataset is more representative of academic
search than other benchmarks such as OHSMUND because it contains article’s full
text as well.

74

!"

!#!$"

!#%"

!#%$"

!#&"

!#&$"

!#'"

!#'$"

!#("

!#($"

!#$"

)"*+,-./"" 0/"1*2-"34*56"" 47*6+8"841+"" 64/"97.5*741+."")"47*6+8/"" 64/"/*+9":+8;"" 64/"<-48""

!"#$%&"'()*+&$#,-"'

Figure 5.1. Feature importance of navigational query classification. Number of tokens
does contribute the most but all other features give reasonable contributions.

5.5.1 Dataset

Our dataset contains 120 queries that were randomly sampled from the access logs
of the academic search engine where for each query there exist at least one clicked
result. Again, we only consider queries from document search type since it is the
majority search type in our system. All the list of documents that were ever clicked
on as a result of a query were manually judged by two human judges using 5 level
grades: Perfect, Good, Fair, Not Good, Bad.

• Perfect: This paper is what exactly I am looking for and I will read it
immediately.

• Good: This paper is relevant to the query and I would like to read it.

• Fair: The paper seems relevant to some extent and I need to do further check
to see if I need it.

75

• Not Good: The paper might be a little relevant but it is not what I need.

• Bad: The paper is not relevant at all and I definitely do not need it.

For each query and document, the judges were presented by the query text, doc-
ument title, abstract, authors, and number of citations. The number of documents
that were tagged for each query varied between 3 up to 100.

The kappa inter annotator agreement between the human judges was 0.39. This
is a reasonable measure given that binary scale annotations typically have a kappa
statistic in the range (0.67, 0.8) [127]. However, the value of the kappa statistic was
0.79 when allowing the ratings of the two judges to vary by 1 point only. Overall,
there are 2344 query document pairs that were manually judged in our dataset.

5.5.2 Labels and Clickthrough Rates

In this section we study whether the aggregate clickthrough counts of documents
for a given query agree with the human judges labels. Kendal tau test statistic is
used to estimate the agreement between the two ranked lists, which measures the
agreement between two ranked lists by counting the number of concordant pairs,
along with the number of disconcordant pairs. For every query q and document di,
we define label(q, di) as the label assigned to document di when querying for query
q by the judges. Similarly, we define click(q, di) as the number of times document
di was clicked as result of searching for q. Hence, given the documents di and dj
that are both annotated for query q we define:

• di and dj are concordant if (1) click(q, di) > click(q, dj) and label(q, di) >
label(q, dj), or (2) click(q, di) < click(q, dj) and label(q, di) < label(q, dj)

• di and dj are discordant if (1) click(q, di) > click(q, dj) and label(q, di) <
label(q, dj), or (2) click(q, di) < click(q, dj) and label(q, di) > label(q, dj)

• di and dj are tied otherwise

The Kendall Tau rank correlation statistic is a value between -1 and 1, with
1 meaning complete agreement, and -1 meaning complete negative association.
We found a positive correlation of 0.34 when considering queries for which KT
correlation is defined. This is a significantly larger positive correlation than that

76

was found between number of clicks and relevance in general web search. In fact, it
was found that only by treating unclicked results as irrelevant document that the
correlation in web search would be 0.35 [126] . This further supports our assumption
that academic search users are in fact more knowledgeable than average web search
users. Furthermore, since it was possible to learn effective ranking results based
simply on click counts with 0.20 correlation for general web search [126], it would
be more effective to learn a ranking function in academic search because there is a
stronger correlation between the absolute click count and the relevance.

5.5.3 Experiments

In this section we study the effectiveness of learning to rank approaches on academic
queries. We devise the features presented in Table 5.3 to represent each query
document pair. Each document consists of four streams: title, abstract, authors,
and fulltext. The title stream refers to the automatically identified title of the
paper; similarly for the abstract and authors. All features are generated per stream,
except for citation features (F85 and F86) that are per document only. For example,
features 1-4 consist of the sum of the term frequencies within each of streams. The
first group of features (F1 - 48) contains statistics about term frequencies and
inverse document frequencies for the terms appearing in the query. Features 49-56
represent the similarity between the query and each of the streams using TFIDF
and weighted TFIDF. For BM25 in features 57-60 we set k1 = 2.5 and b = 0.8. We
use language model similarity using three smoothing methods in features 61-72.
Jelinek-Mercer smoothing is used in features 61-64 with λ = 0.7. This value was
found to be optimal for longer queries [128], which is the case in academic search
with average query length being longer than web search. Drichlet smoothing is
used in features 65-68 with µ set to the average stream length. In features 69-72,
the absolute discount smoothing is used with δ = 0.7 per [128]. Finally, features
77-84 capture the number of covered query tokens within each streams.

We have considered multiple learning to rank algorithms, but obtained the
best performance when using LambdaMART5 [129]. [130] LambdaMART is a
boosted tree version of LambdaRank [131] using MART [132]. The parameters of
LambdaMART ranking function are set as follows: number of trees = 100, number

5We used RankLib implementation http://sourceforge.net/p/lemur/wiki/RankLib/

77

of leaves per tree = 20, learning rate = 0.2, and minimum number of instances in
a leaf is 10. The experiments are conducted in 5 fold cross validation where the
algorithm is trained to maximize Normalized Discounted Cumulative Gain at 10
(NDCG@10).

NDCG@K = 1
DCG@KOPT

k∑
i=1

2reli − 1
log2(i+ 1)

where DCG@KOPT corresponds to the discounted gain for an optimal ranking.
For queries that had less than 20 judged documents, we randomly sampled docu-
ments that match the query from the index, but were not judged before and gave
them a relevant judgment of 0. Unless we do that, then accurately ranking a list of
3 documents would be equal to ranking a list of 50 documents, which we wanted
to avoid because it would artificially boost overall average NDCG. We have also
removed 8 queries that we found to be very general and ambiguous, such as cisco,
certificate, and bibtex.

The results of the 5 fold cross validation of the LambdaMART ranker along
with multiple baselines are reported in Table 5.4. In all the results, LambdaMART
is trained to optimized NDCG@10, regardless of the test measure. The best
performing model that utilizes all the features achieves NDCG@1 of 0.64, well
better than any other baseline. We consider multiple baselines that included subset
of the features with the weights being also learned using LambdaMART. The first
baseline is a BM25 model, with 4 features (F 57-60 in Table 5.3). Another baselines
adds citation features (F85 - 86) to the base BM25 model. It is obvious from
the results that a model with all the features outperforms a BM25 learned model.
Similarly we used a ranker that utilizes language model features only (F 61-72) as a
baseline, which is also shown in Table 5.4 to have lower NDCG than the model with
all features. In addition, we compare against a TFIDF ranking function baseline
that includes features 49-56 along with citation features. The model with all the
features consistently outperformed all the baselines across multiple values of k when
testing for NDCG@k.

We also study the contribution of certain feature classes to the best obtained
ranker. To test the importance of a given feature group, LambdaMART is used
to learn a ranker using all the features except this given feature group. Through
this process we realize two observations. First, citations are very important for

78

learning a ranking function in academic search, with NDCG@1 dropping by 5%,
and NDCG@3 dropping 3%. This is expected because academics have always used
citations to measure impact and quality. In addition to citations, the full text of
the papers is very important to learn a ranking function. In fact NDCG@1 would
drop by 4% when full text features are dropped. Similarly, NDCG@3 would drop
by 3%. This finding is of importance to both users of academic search engines
and for developers of the search engines. Based on this, it is imperative to include
the papers full text into the index to be able to learn a better ranking function.
Similarly, users of academic search engines should prefer to use engines which
indexes the full text of the academic papers for it would be able to present more
relevant results to the users.

These results would suggest that the more the academic papers are open and
available to academic search engines, the better they will be able to cater to user
needs. With policies and subscription governing the access to publisher’s papers,
it is challenging to devise effective ranking functions. Furthermore, our findings
suggest that open access would have positive impact on the discoverability of
research articles, thus saving researchers time locating articles.

79

T
ab

le
5.
4.

T
he

pe
rf
or
m
an

ce
ob

ta
in
ed

at
va
rio

us
le
ve
ls

by
m
ul
tip

le
fe
at
ur
e
se
t
co
m
bi
na

tio
ns

an
d
ba

se
lin

es
by

ap
pl
yi
ng

La
m
b-

da
M
A
RT

al
go

rit
hm

.
Tr

ai
ni
ng

is
op

tim
iz
ed

fo
r
N
D
C
G
@
10

in
al
lc

as
es
.
A
ll
-[
fe
at
ur
e]

de
no

te
s
us
in
g
al
lf
ea
tu
re
s
ex
ce
pt

fo
r
th
e

gr
ou

p
lis
te
d
be

tw
ee
n
br
ac
ke
ts
.
Pl
us

sig
n
de

no
te
s
us
in
g
on

ly
th
e
lis
te
d
fe
at
ur
es
.

Fe
at
ur
es

N
D
C
G
@
1

N
D
C
G
@
3

N
D
C
G
@
5

N
D
C
G
@
10

N
D
C
G
@
20

A
ll

0.
64
84

0.
67
44

0.
69
52

0.
74
2

0.
82
47

A
ll
-f
ul
lte

xt
0.
60
63

0.
64
78

0.
68
43

0.
73
51

0.
81
57

A
ll
-c

ita
tio

ns
0.
59
16

0.
64
36

0.
66
08

0.
71
16

0.
80
59

BM
25

0.
59
87

0.
62
75

0.
63
68

0.
69
9

0.
79
75

BM
25

+
ci
ta
tio

ns
0.
56
77

0.
62
94

0.
65
46

0.
71
42

0.
79
96

La
ng

ua
ge

M
od

el
0.
59
08

0.
62
37

0.
64
02

0.
69

0.
79
38

La
ng

ua
ge

M
od

el
+

ci
ta
tio

ns
0.
56
77

0.
64
36

0.
66
66

0.
72
65

0.
80
56

T
FI

D
F

0.
53
99

0.
60
53

0.
62
63

0.
68
45

0.
78
28

T
FI

D
F
+

ci
ta
tio

ns
0.
53
59

0.
61
92

0.
65
04

0.
71
3

0.
79
54

80

5.6 Conclusion and Future Work
We studied academic search based on user query logs and investigated two important
IR tasks: academic query type classification and document ranking. We started by
showing some interesting statistics and findings mined from three years’ real world
user query history. We found that 1) document and author search are the two main
types for academic search while document search is the majority; 2) distribution
of query length follows a long tail with an average of 3.85, which is longer than
general web queries; 3) the majority (92+%) of users only looked at the first result
page but user were more likely to look at 5 results pages than at 2, 3, and 4; and 4)
the user clicks would be more likely follow the cascade model than the multiple
browsing model. We then introduced the concept of academic navigational query
and studied the problem of academic query type classification on a new dataset
with human judgments. To the best of our knowledge, this was the first attempt at
classifying academic search queries. We then proposed a set of features to learn
the classifier. The results showed the effectiveness of the proposed features and
demonstrated the challenge of the problem. In addition, we studied the academic
document ranking using real world user queries. Specifically, we presented a ranking
model for academic document search that leverages multiple ranking signals and
contributed a new dataset for ranking with 5 level judgment on real user queries.
In particular, we found that adding full text features would be helpful for the
academic document ranking, which indicates the importance of full text indexing
for academic search engines. Although our results also reconfirm the importance
of citation based features for ranking academic papers, a thorough experimental
evaluation shows that our learned model outperforms the strong baselines such as
BM25 or language model along with citation features. Our findings suggest that
academic search engines that are able to index the full text of the articles might be
able to rank relevant results higher.

We have several promising future directions. One of our ongoing work is
on implementing our new academic ranking methods in to the academic search
engine by taking advantage of both navigational query classification and the learned
academic document rank functions. More specifically, we could add the navigational
query classification result as a new feature for the learning to rank model or we
could train separate rankers for different types of queries. Besides, we plan to

81

explore more possibility on using much larger scale user click-through data to train
rankers periodically in an automatic way. However, there would be challenges
on data selection and cleaning. Another possible future work is to explore the
personalized academic search using the query logs for different academic entities
such as documents and authors.

82

Chapter 6 |
Conclusion and Future Work

This dissertation has studied the accessibility of scholarly data in general, and
scholarly documents in specific. It first started by obtaining an estimate of the total
number of scholarly documents on the web. Capture-recapture methods are used
by considering two academic search engines to be a random capture of the scholarly
documents on the web. Using both Google Scholar and Microsoft Academic Search
it is estimated that at least 114 million scholarly documents are available on the
web. Furthermore, estimates are obtained for each scientific discipline. Later,
the percentage of openly accessible scholarly documents are estimated using the
coverage of Google Scholar where it is found that this percentage varies significantly
across scientific disciplines. Nevertheless, we estimate that at least 24% of the
scholarly documents can be found freely on the web.

After that we focus on extracting chemical formulae and names from chemistry
documents as an example of information extraction that provides better accessibility
to sub objects of scholarly documents. Two methods are introduced. The first
approach is a probabilistic framework for ensemble extraction where the output
of multiple independent extractors are combined together probabilistically. In the
second approach a conditional random fields extractor is used with a combination
of novel features that include phonetic encoding through the Soundex algorithm, in
addition to utilizing word embeddings. Furthermore, we provide a study on the
effect of tokenizing on the accuracy of the overall extraction process where we show
that it can be used as an upper bound of the the attainable recall in the absence of
any post processing.

Later we study the user interactions with the CiteSeerX digital library and
search engine by mining the access logs of more than 3 years. Through the log

83

analysis we are able to gain a better understanding of user behavior which can be
used in designing next generation repositories and search engine. We also model
the session length and the number of downloads a given paper receives over a time
as a power law distribution. In addition, we notice that the highly accessed papers
present a repetitive pattern where they remain highly accessible in the following
months. We capitalize on that by showing that the highly accessed documents in
a given month can be predicted using a logistic regression model that relies on
historical data as features.

In the final chapter of this thesis we focused on studying academic search to aid
the discovery of scholarly documents. First we categorized user queries based on
the user’s intent into two classes: navigational and informational queries, where we
defined navigational queries. Later we showed how users may have a navigational
intention using variety of forms. A gradient boosting tree method is used to identify
navigational queries from the majority of informational ones using multiple features.
Furthermore, we show that user clicks in academic search correlate positively with
the optimal ranking that documents should be ranked according to. Later, we focus
on devising a ranking function for academic search using a newly created dataset
of human judgements. The impact of certain features on the performance of the
ranker is studied as well.

6.1 Future Work
Building on the work described within this dissertation can take multiple avenues.
First, our work on size estimates was limited to English documents only. It would
be interesting to get an estimate of the total number of scholarly documents in
all languages. In addition, a longitudinal study would provide an estimate to the
annual growth of scholarly documents on the web. Developing another sampling
method would be a welcomed addition to the literature, and a contribution that
may have an effect beyond scholarly domain itself, and rather into other problems
that rely on sampling to get size estimates.

For log mining, there is tremendous opportunity to unveil even more interesting
observations. In our work we have relied on historical access logs that were collected
using default configuration of web servers. However, by tracking users through
browser cookies it would be possible to track user preference over time and link

84

sessions by the user. Furthermore, new scholarly documents may be recommended
to the user based on her personal click through history. Aside from the users,
individual paper popularity can be traced over time. Previous work has shown that
download patterns can be used as an early sign of citations, but the distribution
of downloads over time for a given paper can be used to learn more about the life
cycle of a given scholarly document. There is also room for improvement when it
comes to predicting highly accessed papers. Perhaps, a time series model might be
explored here.

Academic search may also benefit from fine grained user tracking which may
reveal relation between search sessions. Better indicators and methods for identifying
query intent in academic search should be explored. To the best of our knowledge,
our work is the first to make the distinction between query goals in academic search,
and it should open the door for further explorations. Similarly, novel signals may
be introduced to learn a more effective ranking functions.

85

Bibliography

[1] Noorden, R. V. (2013) “Open access: The true cost of science publishing,”
Nature, 495(7442), pp. 426–429.

[2] Giles, C. L., K. D. Bollacker, and S. Lawrence (1998) “CiteSeer:
An automatic citation indexing system,” in Proceedings of the third ACM
conference on Digital libraries, ACM, pp. 89–98.

[3] Web of Science fact page: http://wokinfo.com/realfacts/qualityandquantity/.

[4] Based on the statistics reported at the homepage of Microsoft Academic
Search as of January 10, 2013: http://academic.research.microsoft.com.

[5] Bar-Ilan, J. (2008) “Which h-index? A comparison of WoS, Scopus and
Google Scholar,” Scientometrics, 74(2), pp. 257–271.

[6] ——— (2010) “Citations to the “Introduction to informetric” indexed by
WOS, Scopus and Google Scholar,” Scientometrics, 82(3), pp. 495–506.

[7] Björk, B.-C., A. Roos, and M. Lauri (2009) “Scientific journal publishing–
yearly volume and open access availability,” Information Research, 14(1), p.
391.

[8] Lawrence, S. and C. Giles (1998) “Searching the world wide web,” Science,
280(5360), pp. 98–100.

[9] ——— (1999) “Accessibility of information on the web,” Nature, 400(6740),
pp. 107–9.

[10] Bharat, K. and A. Broder (1998) “A technique for measuring the relative
size and overlap of public web search engines,” Computer Networks and ISDN
Systems, 30(1), pp. 379–388.

[11] Dobra, A. and S. E. Fienberg (2004) “How large is the world wide web,”
Web Dynamics, pp. 23–44.

86

[12] Broder, A. Z., S. C. Glassman, M. S. Manasse, and G. Zweig (1997)
“Syntactic clustering of the web,” Computer Networks and ISDN Systems,
29(8), pp. 1157–1166.

[13] Norris, M., C. Oppenheim, and F. Rowland (2008) “The citation
advantage of open-access articles,” Journal of the American Society for
Information Science and Technology, 59(12), pp. 1963–1972.

[14] Hogg, R. and E. Tanis (2010) Probability and Statistical Inference, Pear-
son/Prentice Hall.

[15] Gargouri, Y., C. Hajjem, V. Larivière, Y. Gingras, L. Carr,
T. Brody, and S. Harnad (2010) “Self-selected or mandated, open access
increases citation impact for higher quality research,” PloS ONE, 5(10), p.
e13636.

[16] Hajjem, C., S. Harnad, and Y. Gingras (2005) “Ten-Year Cross-
Disciplinary Comparison of the Growth of Open Access and How it Increases
Research Citation Impact,” IEEE Data Engineering Bulletin, 28(4), pp.
39–47.

[17] Björk, B.-C., P. Welling, M. Laakso, P. Majlender, T. Hedlund,
and G. Guðnason (2010) “Open access to the scientific journal literature:
situation 2009,” PloS one, 5(6), p. e11273.

[18] Page, L., S. Brin, R. Motwani, and T. Winograd (1999) The PageRank
Citation Ranking: Bringing Order to the Web., Technical Report 1999-66,
Stanford InfoLab.

[19] Lincoln, F. C. (1930) “Calculating Waterfowl Abundance on the Basis of
Banding Returns,” US Department of Agriculture Circular, 118.

[20] Petersen, C. (1896) “The yearly immigration of young plaice into the
Limfjord from the German Sea,” Report of the Danish Biological Station, 6,
pp. 1–48.

[21] Sheldon, R. et al. (2009) A First Course In Probability, 8/E, Pearson
Education.

[22] Baillargeon, S. and L.-P. Rivest (2007) “Rcapture: loglinear models
for capture-recapture in R,” Journal of Statistical Software, 19(5), pp. 1–31.

[23] Cormack, R. M. (1989) “Log-linear models for capture-recapture,” Bio-
metrics, pp. 395–413.

[24] Cormack, R. and P. Jupp (1991) “Inference for Poisson and multinomial
models for capture-recapture experiments,” Biometrika, 78(4), pp. 911–916.

87

[25] Cormack, R. (1992) “Interval estimation for mark-recapture studies of
closed populations,” Biometrics, pp. 567–576.

[26] Akaike, H. (1974) “A new look at the statistical model identification,”
Automatic Control, IEEE Transactions on, 19(6), pp. 716–723.

[27] Craven, M., A. McCallum, D. PiPasquo, T. Mitchell, and D. Fre-
itag (1998) Learning to extract symbolic knowledge from the World Wide
Web, Tech. rep., DTIC Document.

[28] Cohen, W. W. and Y. Singer (1999) “A simple, fast, and effective rule
learner,” in Proceedings of the National Conference on Artificial Intelligence,
John Wiley & Sons Ltd, pp. 335–342.

[29] McCallum, A., D. Freitag, and F. C. Pereira (2000) “Maximum
Entropy Markov Models for Information Extraction and Segmentation.” in
ICML, pp. 591–598.

[30] Lafferty, J., A. McCallum, and F. C. Pereira (2001) “Conditional
random fields: Probabilistic models for segmenting and labeling sequence
data,” .

[31] Sutton, C. and A. McCallum (2006) An introduction to conditional ran-
dom fields for relational learning, vol. 2, Introduction to statistical relational
learning. MIT Press.

[32] Corbett, P. and P. Murray-Rust (2006) “High-throughput identification
of chemistry in life science texts,” in Computational Life Sciences II, Springer,
pp. 107–118.

[33] Sun, B., Q. Tan, P. Mitra, and C. L. Giles (2007) “Extraction and
search of chemical formulae in text documents on the web,” in Proceedings of
the 16th international conference on World Wide Web, ACM, pp. 251–260.

[34] Sun, B., P. Mitra, and C. L. Giles (2008) “Mining, indexing, and search-
ing for textual chemical molecule information on the web,” in Proceedings of
the 17th international conference on World Wide Web, ACM, pp. 735–744.

[35] Sun, B., P. Mitra, C. Lee Giles, and K. T. Mueller (2011) “Identifying,
Indexing, and Ranking Chemical Formulae and Chemical Names in Digital
Documents,” ACM Transactions on Information Systems (TOIS), 29(2),
p. 12.

[36] Jessop, D. M., S. E. Adams, E. L. Willighagen, L. Hawizy, and
P. Murray-Rust (2011) “OSCAR4: a flexible architecture for chemical
text-mining,” Journal of cheminformatics, 3(1), pp. 1–12.

88

[37] Rocktäschel, T., M. Weidlich, and U. Leser (2012) “ChemSpot: a
hybrid system for chemical named entity recognition,” Bioinformatics, 28(12),
pp. 1633–1640.

[38] Krallinger, M., F. Leitner, O. Rabal, M. Vazquez, J. Oyarzabal,
and A. Valencia (2013) “Overview of the chemical compound and drug
name recognition (CHEMDNER) task,” in BioCreative Challenge Evaluation
Workshop vol. 2, p. 2.

[39] Khabsa, M. and C. L. Giles (2013) “An Ensemble Information Extraction
Approach to the BioCreative CHEMDNER Task,” in BioCreative Challenge
Evaluation Workshop vol. 2, p. 105.

[40] “OSCAR 4,” Last accessed 9/19/13.
URL https://bitbucket.org/wwmm/oscar4/wiki/Home

[41] “ChemSpot,” Last accessed 9/17/13.
URL https://www.informatik.hu-berlin.de/forschung/gebiete/wbi/
resources/chemspot/chemspot

[42] Sohn, S., D. C. Comeau, W. Kim, and W. J. Wilbur (2008) “Abbrevia-
tion definition identification based on automatic precision estimates,” BMC
bioinformatics, 9(1), p. 402.

[43] “Reflect,” Last accessed 9/19/13.
URL http://reflect.ws/

[44] “Whatizit,” Last accessed 9/19/13.
URL http://www.ebi.ac.uk/webservices/whatizit/info.jsf

[45] “MiniChem,” Last accessed 9/18/13.
URL http://vega.soi.city.ac.uk/~abdy181/software/GATE/
MiniChem_Tagger/creole.zip

[46] “Lucene,” Last accessed 3/25/14.
URL http://lucene.apache.org/

[47] Wolpert, D. H. (1992) “Stacked generalization,” Neural networks, 5(2),
pp. 241–259.

[48] Florian, R. (2002) “Named entity recognition as a house of cards: Classifier
stacking,” in proceedings of the 6th conference on Natural language learning-
Volume 20, Association for Computational Linguistics, pp. 1–4.

[49] Leaman, R., C.-H. Wei, and Z. Lu (2013) “NCBI at the BioCreative IV
CHEMDNER Task: Recognizing chemical names in PubMed articles with
tmChem,” in BioCreative Challenge Evaluation Workshop vol. 2, p. 34.

89

[50] YOSHIOKA, M. and T. M. DIEB (2013) “Ensemble Approach to Extract
Chemical Named Entity by Using Results of Multiple CNER Systems with
Different Characteristic,” in BioCreative Challenge Evaluation Workshop vol.
2, p. 162.

[51] Huber, T., T. Rocktäschel, M. Weidlich, P. Thomas, and U. Leser
(2013) “Extended Feature Set for Chemical Named Entity Recognition and
Indexing,” in BioCreative Challenge Evaluation Workshop vol. 2, p. 88.

[52] Florian, R., A. Ittycheriah, H. Jing, and T. Zhang (2003) “Named
entity recognition through classifier combination,” in Proceedings of the
seventh conference on Natural language learning at HLT-NAACL 2003-Volume
4, Association for Computational Linguistics, pp. 168–171.

[53] McCallum, A. K. (2002) “MALLET: A Machine Learning for Language
Toolkit,” Http://mallet.cs.umass.edu.

[54] “Apache OpenNLP,” Last accessed 3/25/14.
URL http://opennlp.apache.org/

[55] Brown, P. F., P. V. Desouza, R. L. Mercer, V. J. D. Pietra,
and J. C. Lai (1992) “Class-based n-gram models of natural language,”
Computational linguistics, 18(4), pp. 467–479.

[56] Mikolov, T., K. Chen, G. Corrado, and J. Dean (2013) “Effi-
cient estimation of word representations in vector space,” arXiv preprint
arXiv:1301.3781.

[57] “Soundex,” Last accessed 3/25/14.
URL http://www.archives.gov/research/census/soundex.html

[58] Leaman, R., G. Gonzalez, et al. (2008) “BANNER: an executable survey
of advances in biomedical named entity recognition.” in Pacific Symposium
on Biocomputing, vol. 13, pp. 652–663.

[59] Hettne, K. M., R. H. Stierum, M. J. Schuemie, P. J. Hendriksen,
B. J. Schijvenaars, E. M. Van Mulligen, J. Kleinjans, and J. A.
Kors (2009) “A dictionary to identify small molecules and drugs in free text,”
Bioinformatics, 25(22), pp. 2983–2991.

[60] Morse, D. H. and W. A. Clintworth (2000) “Comparing patterns of
print and electronic journal use in an academic health science library,” Issues
in Science and Technology Librarianship, 28(26.04), p. 2008.

[61] De Groote, S. L. and J. L. Dorsch (2001) “Online journals: impact on
print journal usage,” Bulletin of the Medical Library Association, 89(4), p.
372.

90

[62] ——— (2003) “Measuring use patterns of online journals and databases,”
Journal of the Medical Library Association, 91(2), p. 231.

[63] Joachims, T. (2002) “Optimizing search engines using clickthrough data,”
in Proceedings of the eighth ACM SIGKDD international conference on
Knowledge discovery and data mining, ACM, pp. 133–142.

[64] Xiang, R., J. Neville, and M. Rogati (2010) “Modeling relationship
strength in online social networks,” in Proceedings of the 19th international
conference on World wide web, ACM, pp. 981–990.

[65] Olston, C., B. Reed, U. Srivastava, R. Kumar, and A. Tomkins (2008)
“Pig latin: a not-so-foreign language for data processing,” in Proceedings of
the 2008 ACM SIGMOD international conference on Management of data,
ACM, pp. 1099–1110.

[66] “Apache Pig,” http://pig.apache.org/.

[67] Thusoo, A., J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony,
H. Liu, P. Wyckoff, and R. Murthy (2009) “Hive: a warehousing solution
over a map-reduce framework,” Proceedings of the VLDB Endowment, 2(2),
pp. 1626–1629.

[68] “Apache Hive,” http://hive.apache.org/.

[69] Radlinski, F. and T. Joachims (2005) “Query chains: learning to rank from
implicit feedback,” in Proceedings of the eleventh ACM SIGKDD international
conference on Knowledge discovery in data mining, ACM, pp. 239–248.

[70] Eickhoff, C., J. Teevan, R. White, and S. Dumais (2014) “Lessons
from the Journey: A Query Log Analysis of Within-Session Learning,” in To
appear in WSDM 2014.

[71] Tanasa, D. and B. Trousse (2004) “Advanced data preprocessing for
intersites web usage mining,” Intelligent Systems, IEEE, 19(2), pp. 59–65.

[72] Clauset, A., C. R. Shalizi, and M. E. Newman (2009) “Power-law
distributions in empirical data,” SIAM review, 51(4), pp. 661–703.

[73] Kunegis, J. and J. Preusse (2012) “Fairness on the web: Alternatives
to the power law,” in Proceedings of the 3rd Annual ACM Web Science
Conference, ACM, pp. 175–184.

[74] Dogan, R. I., G. C. Murray, A. Névéol, and Z. Lu (2009) “Under-
standing PubMed® user search behavior through log analysis,” Database,
2009, p. bap018.

91

[75] Silverstein, C., M. Henzinger, H. Marais, and M. Moricz (1998)
Analysis of a very large altavista query log, Tech. rep., Technical Report
1998-014, Systems Research Center, Compaq Computer Corporation.

[76] Jansen, B. J., A. Spink, J. Bateman, and T. Saracevic (1998) “Real
life information retrieval: A study of user queries on the web,” in ACM SIGIR
Forum, vol. 32, ACM, pp. 5–17.

[77] Zhang, Y., B. J. Jansen, and A. Spink (2009) “Time series analysis of a
Web search engine transaction log,” Information Processing & Management,
45(2), pp. 230–245.

[78] Taghavi, M., A. Patel, N. Schmidt, C. Wills, and Y. Tew (2012)
“An analysis of web proxy logs with query distribution pattern approach for
search engines,” Computer Standards & Interfaces, 34(1), pp. 162–170.

[79] Ke, H.-R., R. Kwakkelaar, Y.-M. Tai, and L.-C. Chen (2002) “Ex-
ploring behavior of e-journal users in science and technology: transaction log
analysis of Elsevier’s ScienceDirect OnSite in Taiwan,” Library & Information
Science Research, 24(3), pp. 265–291.

[80] Craswell, N., O. Zoeter, M. Taylor, and B. Ramsey (2008) “An
experimental comparison of click position-bias models,” in Proceedings of the
2008 International Conference on Web Search and Data Mining, ACM, pp.
87–94.

[81] Dupret, G. E. and B. Piwowarski (2008) “A user browsing model
to predict search engine click data from past observations.” in Proceedings
of the 31st annual international ACM SIGIR conference on Research and
development in information retrieval, ACM, pp. 331–338.

[82] Gilbert, J. C. and C. Lemaréchal (2006) Numerical optimization: theo-
retical and practical aspects, Springer.

[83] Borghuis, M. et al. (1996) TULIP: final report, vol. 18, Elsevier Science
New York.

[84] Jamali, H. R., D. Nicholas, and P. Huntington (2005) “The use
and users of scholarly e-journals: a review of log analysis studies,” in Aslib
Proceedings, vol. 57, Emerald Group Publishing Limited, pp. 554–571.

[85] Jones, S., S. J. Cunningham, R. McNab, and S. Boddie (2000) “A
transaction log analysis of a digital library,” International Journal on Digital
Libraries, 3(2), pp. 152–169.

92

[86] Li, H., W.-C. Lee, A. Sivasubramaniam, and C. L. Giles (2007) “A
hybrid cache and prefetch mechanism for scientific literature search engines,”
in Web Engineering, Springer, pp. 121–136.

[87] ——— (2008) “Workload analysis for scientific literature digital libraries,”
International Journal on Digital Libraries, 9(2), pp. 139–149.

[88] Brank, J. and J. Leskovec (2003) “The download estimation task on
KDD Cup 2003,” ACM SIGKDD Explorations Newsletter, 5(2), pp. 160–162.

[89] Gehrke, J., P. Ginsparg, and J. Kleinberg (2003) “Overview of the
2003 KDD Cup,” ACM SIGKDD Explorations Newsletter, 5(2), pp. 149–151.

[90] Herskovic, J. R., L. Y. Tanaka, W. Hersh, and E. V. Bernstam
(2007) “A day in the life of PubMed: analysis of a typical dayâĂŹs query
log,” Journal of the American Medical Informatics Association, 14(2), pp.
212–220.

[91] Kim, J. Y., H. Feild, and M. Cartright (2012) “Understanding book
search behavior on the web,” in Proceedings of the 21st ACM international
conference on Information and knowledge management, ACM, pp. 744–753.

[92] Yang, Q., H. H. Zhang, and T. Li (2001) “Mining web logs for prediction
models in WWW caching and prefetching,” in Proceedings of the seventh
ACM SIGKDD international conference on Knowledge discovery and data
mining, ACM, pp. 473–478.

[93] Recker, M. M. and J. E. Pitkow (1996) “Predicting document access
in large multimedia repositories,” ACM Transactions on Computer-Human
Interaction (TOCHI), 3(4), pp. 352–375.

[94] Smith, L. and W. Wilbur (2011) “The Popularity of Articles in PubMed,”
Open Information Systems Journal, 5, pp. 1–7.

[95] “Research of tomorrow survey,” http://www.webarchive.org.uk/wayback/
archive/20140614040703/http://www.jisc.ac.uk/publications/
reports/2012/researchers-of-tomorrow.aspx.

[96] Hightower, C. and C. Caldwell (2010) “Shifting sands: science re-
searchers on Google Scholar, Web of Science, and PubMed, with implications
for library collections budgets,” Issues in Science and Technology Librarian-
ship, (63), p. 4.

[97] Page, L., S. Brin, R. Motwani, and T. Winograd (1999) “The PageR-
ank citation ranking: Bringing order to the web.” .

93

[98] Sanderson, M. and W. B. Croft (2012) “The history of information
retrieval research,” Proceedings of the IEEE, 100(Special Centennial Issue),
pp. 1444–1451.

[99] Taube, M., C. Gull, and I. S. Wachtel (1952) “Unit terms in coordinate
indexing,” American documentation, 3(4), pp. 213–218.

[100] Hersh, W., C. Buckley, T. Leone, and D. Hickam (1994) “OHSUMED:
An interactive retrieval evaluation and new large test collection for research,”
in SIGIRâĂŹ94, Springer, pp. 192–201.

[101] Broder, A. (2002) “A taxonomy of web search,” in ACM Sigir forum,
vol. 36, ACM, pp. 3–10.

[102] Rose, D. E. and D. Levinson (2004) “Understanding user goals in web
search,” in Proceedings of the 13th international conference on World Wide
Web, ACM, pp. 13–19.

[103] Li, H., I. Councill, W.-C. Lee, and C. L. Giles (2006) “CiteSeerx:
an architecture and web service design for an academic document search
engine,” in Proceedings of the 15th international conference on World Wide
Web, ACM, pp. 883–884.

[104] Tang, J., J. Zhang, L. Yao, J. Li, L. Zhang, and Z. Su (2008) “Arnet-
miner: extraction and mining of academic social networks,” in Proceedings
of the 14th ACM SIGKDD international conference on Knowledge discovery
and data mining, ACM, pp. 990–998.

[105] Tang, J., J. Sun, C. Wang, and Z. Yang (2009) “Social influence analysis
in large-scale networks,” in Proceedings of the 15th ACM SIGKDD inter-
national conference on Knowledge discovery and data mining, ACM, pp.
807–816.

[106] Sun, Y. and C. L. Giles (2007) “Popularity weighted ranking for academic
digital libraries,” in ECIR, pp. 605–612.

[107] Zhou, D., S. A. Orshanskiy, H. Zha, and C. L. Giles (2007) “Co-
ranking Authors and Documents in a Heterogeneous Network,” in Proceedings
of the 2007 Seventh IEEE International Conference on Data Mining, ICDM
’07, pp. 739–744.

[108] Amolochitis, E., I. T. Christou, Z.-H. Tan, and R. Prasad (2013) “A
heuristic hierarchical scheme for academic search and retrieval,” Information
Processing & Management, 49(6), pp. 1326–1343.

94

[109] Soulier, L., L. Ben Jabeur, L. Tamine, and W. Bahsoun (2012)
“BibRank: a language-based model for co-ranking entities in bibliographic
networks,” in Proceedings of the 12th ACM/IEEE-CS joint conference on
Digital Libraries, ACM, pp. 61–70.

[110] Kang, I.-H. and G. Kim (2003) “Query type classification for web docu-
ment retrieval,” in Proceedings of the 26th annual international ACM SIGIR
conference on Research and development in informaion retrieval, ACM, pp.
64–71.

[111] Jansen, B. J., D. L. Booth, and A. Spink (2007) “Determining the user
intent of web search engine queries,” in Proceedings of the 16th international
conference on World Wide Web, ACM, pp. 1149–1150.

[112] Lee, U., Z. Liu, and J. Cho (2005) “Automatic identification of user goals
in web search,” in Proceedings of the 14th international conference on World
Wide Web, ACM, pp. 391–400.

[113] Balog, K., Y. Fang, M. de Rijke, P. Serdyukov, and L. Si (2012)
“Expertise retrieval,” Foundations and Trends in Information Retrieval, 6(2–
3), pp. 127–256.

[114] Gollapalli, S. D., P. Mitra, and C. L. Giles (2011) “Ranking authors in
digital libraries,” in Proceedings of the 11th annual international ACM/IEEE
joint conference on Digital libraries, ACM, pp. 251–254.

[115] Tang, J., J. Zhang, R. Jin, Z. Yang, K. Cai, L. Zhang, and Z. Su
(2011) “Topic level expertise search over heterogeneous networks,” Machine
Learning, 82(2), pp. 211–237.

[116] Sun, Y., H. Li, I. G. Councill, J. Huang, W.-C. Lee, and C. L. Giles
(2008) “Personalized Ranking for Digital Libraries Based on Log Analysis,”
in Proceedings of the 10th ACM Workshop on Web Information and Data
Management, WIDM ’08, pp. 133–140.

[117] Harpale, A., Y. Yang, S. Gopal, D. He, and Z. Yue (2010) “CiteData:
A new multi-faceted dataset for evaluating personalized search performance,”
in Proceedings of the 19th ACM international conference on Information and
knowledge management, ACM, pp. 549–558.

[118] Rosen-Zvi, M., T. Griffiths, M. Steyvers, and P. Smyth (2004) “The
author-topic model for authors and documents,” in Proceedings of the 20th
conference on Uncertainty in artificial intelligence, AUAI Press, pp. 487–494.

95

[119] Steyvers, M., P. Smyth, M. Rosen-Zvi, and T. Griffiths (2004)
“Probabilistic author-topic models for information discovery,” in Proceedings
of the tenth ACM SIGKDD international conference on Knowledge discovery
and data mining, ACM, pp. 306–315.

[120] Tang, J., R. Jin, and J. Zhang (2008) “A Topic Modeling Approach
and Its Integration into the Random Walk Framework for Academic Search,”
in Proceedings of the 2008 Eighth IEEE International Conference on Data
Mining, ICDM ’08, pp. 1055–1060.

[121] Khabsa, M. and C. L. Giles (2014) “The number of scholarly documents
on the public web,” PLOS one, 9(5), p. e93949.

[122] Chawla, N. V., K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer
(2002) “SMOTE: synthetic minority over-sampling technique,” Journal of
artificial intelligence research, 16(1), pp. 321–357.

[123] Baeza-Yates, R., L. Calderón-Benavides, and C. González-Caro
(2006) “The intention behind web queries,” in String processing and informa-
tion retrieval, Springer, pp. 98–109.

[124] Lu, Y., F. Peng, X. Li, and N. Ahmed (2006) “Coupling feature selection
and machine learning methods for navigational query identification,” in
Proceedings of the 15th ACM international conference on Information and
knowledge management, ACM, pp. 682–689.

[125] Li, X., Y.-Y. Wang, and A. Acero (2008) “Learning query intent from
regularized click graphs,” in Proceedings of the 31st annual international
ACM SIGIR conference on Research and development in information retrieval,
ACM, pp. 339–346.

[126] Dou, Z., R. Song, X. Yuan, and J.-R. Wen (2008) “Are click-through
data adequate for learning web search rankings?” in Proceedings of the
17th ACM conference on Information and knowledge management, ACM, pp.
73–82.

[127] Manning, C. D., P. Raghavan, and H. Schütze (2008) Introduction to
information retrieval, vol. 1, Cambridge university press Cambridge.

[128] Zhai, C. and J. Lafferty (2004) “A study of smoothing methods for
language models applied to information retrieval,” ACM Transactions on
Information Systems (TOIS), 22(2), pp. 179–214.

[129] Wu, Q., C. J. Burges, K. M. Svore, and J. Gao (2010) “Adapting
boosting for information retrieval measures,” Information Retrieval, 13(3),
pp. 254–270.

96

[130] Burges, C. J. (2010) “From RankNet to LambdaRank to LambdaMART:
An Overview,” MSR-TR-2010-82.

[131] Burges, C. J. C., R. Ragno, and Q. V. Le (2006) “Learning to Rank
with Nonsmooth Cost Functions,” in NIPS ’06, pp. 193–200.

[132] Friedman, J. H. (2000) “Greedy Function Approximation: A Gradient
Boosting Machine,” Annals of Statistics, 29, pp. 1189–1232.

97

Vita
Madian Khabsa

Education
The Pennsylvania State University, University Park, PA, USA

Ph.D., Computer Science and Engineering (Graduate minor in Statistics), 2015
M.S., Computer Science and Engineering, 2012

Damascus University, Damascus, Syria

B.S., Information Technology Engineering, 2008

Selected Publications
Madian Khabsa and C. Lee Giles. “Chemical entity extraction using CRF and
an ensemble of extractors”. J Cheminform 7.Suppl 1 (2015): S12.
Madian Khabsa and C. Lee Giles. “The Number of Scholarly Documents on the
Public Web.” PloS one 9, no. 5 (2014): e93949
Madian Khabsa, Pucktada Treeratpituck, C. Lee Giles. “Large Scale Author
Name Disambiguation in Digital Libraries.” In Big Data (Big Data), 2014 IEEE
International Conference on (pp. 41-42). IEEE.
Madian Khabsa, Pucktada Treeratpituck, C. Lee Giles.“AckSeer: A Repository
and Search Engine for Automatically Extracted Acknowledgments from Digital
Libraries.” In ACM/IEEE Joint Conference on Digital Libraries (JCDL) 2012.
Madian Khabsa, Pucktada Treeratpituck, C. Lee Giles. “Entity Resolution using
Search Engine Results.” In ACM International Conference on Information and
Knowledge Management (CIKM) 2012.

Experience
University of Chicago. Data Science Fellow, Summer 2014
Qatar Computing Research Institute. Research Associate, Summer 2013
Microsoft Corporation. Software Engineer Intern, Summers of 2011 and 2012

