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Abstract

Thousands of genes are encoded on the genome and their products play important
roles to cell survival, phenotypic characteristics of organisms and adaptive behav-
iors of organisms when environment changes. Detecting of particular sets of genes
whose expressions are adaptive in response to environmental signals and identifica-
tion of dynamic gene regulatory networks (GRN) can help us to understand the
mechanistic base of gene-environment interactions and gene-gene interactions in a
systematic way. However, it is a challenging work to analyze gene expression across
two-dimensional spaces, time and environmental state.

In this dissertation, we develop a functional clustering framework based on a
mixture model to analyze time-course gene expression. The mathematical aspects
of gene expression dynamics have been captured by Legendre polynomial and the
impact of environment on gene expression has been considered jointly. We outline
a number of quantitative testable hypotheses about the patterns of dynamic gene
expression in changing environments and gene-environment interactions causing
developmental differentiation. The method is illustrated with simulation studies
and application on a real data set from a rabbit hemodynamic study.

In addition, we propose two models for inference of GRN based on gene expres-
sion. We reform the Dynamic Bayesian Network (DBN) model for identification
of GRN to overcome its limitation that evenly spaced measurements is required.
The reformed model can accommodate to any possible irregularity and sparsity of
time-course expression data by adaptively fitting gene expression curves, followed
by a step of interpolating data at missing time points before conducting of DBN
analysis. We also develop an ordinary differential equation (ODE) model to recon-
struct GRNs based on functional clustering of genes. A set of ordinary differential
equations are constructed to quantify the dynamic of GRN and the regulatory ef-
fects including positive and negative regulation are identified in a regression setting
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by using Smoothly Clipped Absolute Deviation (SCAD)-based variable selection.
Both GRN models are equipped with unique power to integrate gene expression
data from multiple environments and, therefore, provides an unprecedented tool
to elucidate a comprehensive picture of GRN. By analyzing real data sets from a
surgical study and through extensive simulation studies, the new models have been
well demonstrated for their usefulness and utility.
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Chapter 1 |
Introduction

The genome is crucial to living processes such as cell survival, response of cells to the

environmental signals and cell differentiation toward the phenotypic formation of

organisms. Benefiting from the discovery of the molecular structure of deoxyribonu-

cleic acid (DNA) in 1953 by Watson and Crick (Watson et al., 1953), people have

made great progress in understanding the mechanism of storing genetic information

in the genome as well as how these information be utilized to produce proteins

which is the biological foundation of a organism. In addition, the relationships

between the genome information and certain phenotypic characteristics have been

explored more and more.

The development of high-throughput technologies, such as DNA microarrays and

proteomics platforms, has made it possible to ask and address many fundamental

but difficult questions in molecule biology (Schena et al., 1995; Shalon et al., 1996;

Lockhart and Winzeler, 2000). These technologies have increasingly played a

pivotal role in measuring gene expression and studying biological functions by

linking differential pattern of expression with environmental signal changes. It also

enable ones to study the interactions between genes through regulatory network

based on gene expression.
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1.1 Gene expression

A gene is a segment of DNA that encodes function and is contained in the nucleus

of every cell. The DNA molecules lie in linear order along microscopic bodies called

chromosomes which contain many genes. Watson and Crick have found the well

known double-helix, a double-stranded structure, in which each DNA molecule

organizes itself. One of the most important functions of DNA is to produce proteins.

The central dogma of molecular biology explains the flow of genetic information

within a biological system from DNA to proteins with two steps (Crick et al., 1970).

In the first step (Transcription), DNA is transcribed into Messenger ribonucleic

acid (mRNA) and in the second step (Translation), proteins are synthesized using

a template based on the information in mRNA (Figure 1.1).

Figure 1.1: Central dogma of molecular genetics (from wikipedia.org)

Gene expression level, which is a metric of gene activeness, can be measured

through the amount of mRNA produced during transcription. It determines to
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what degree the information from a particular gene is used in the synthesis of

its functional product protein. In the mid 1990s, the technology of Microarray is

developed to detect differences in mRNA levels of thousands of genes simultaneously

This technology is based on the principles of that every DNA strand is capable of

recognizing complementary sequences through base pairing (Lipshutz et al., 1999).

Brown and Botstein (1999) proposed a two-color microarray method to compare

gene expression levels in two biological samples. They use a robotic arrayer to

print arrays of thousands of discrete DNA sequences on glass microscope slides

and then use different fluorescent dyes to label the samples. After the samples

being mixed and hybridized with the arrayed DNA spots, microscope is used to

determine the fluorescence measurements and decide the ratio which reflect the

relative gene expression levels of the two samples. A two-color microarray image is

shown in Figure 1.2.

Another popular microarray technology is Affymetrixr which is a type of high

density synthetic oligonucleotide arrays (Lipshutz et al., 1999). With this approach,

high-density arrays of synthetic oligonucleotides is designed directly using sequence

information. On a small glass surface, hundreds of thousands of different oligonu-

cleotides could be contained with the GeneChipr probe arrays. Photolithography

is utilized in this technology to allow the construction of arrays with extremely

high information content. Probe is designed based on complementarity to the gene

whose expression is to be measured and is unique relative to other genes. Probe

redundancy is very important in this approach to detect real signals from those due

to non-specific or semi-specific hybridization. Mismatch (MM) control probes are

used in the measuring process as specificity controls and they are identical to their

perfect match (PM) partners with only a single base difference in a central position.

Gene expression levels is obtained by analyzing of scanned images of microarray

3



slides. An Affymetrix image is shown in Figure 1.3.

Figure 1.2: Image of microarray with enlarged inset to show detail. (from
wikipedia.org)

Figure 1.3: Image of Affymetrix microarray.

Gene expression levels measured using microarray need to be normalized, so

that they are comparable across chips and conditions. Through normalization,

expression levels could be centered and standardized and the unwanted noise and

systematic bias could be reduced(Figure 1.4).

1.2 Gene regulation

In biology, it is an important task to identify the genetic causes behind phenotypic

traits of organisms. Traditionally, people want to establish the connection between

4



Figure 1.4: Array artifacts are corrected by image process

phenotype and specific DNA regions and consider the middle parts between pheno-

type and genotype as a black-box. However, we need to uncover the black-box to

understand the mechanisms underlying the formation of phenotypic characteristics.

Fig 1.5 shows biological pathways from DNA to phenotypic traits and processes of

characteristics formation. It indicates that there are several procedures exist in the

pathways including transcription, translation and biosynthesis. Elements such as

DNA, mRNA, protein and even metabolic involve in the process of traits formation.

The final phenotypes of an organism depend not only on genotype but also on the

interaction between these elements. We consider the elements and their interactions

consist of a regulation system as shown in Fig 1.6. It can be observed that genes

interaction with others through their products such as protein and metabolic. For

example, gene 1 has interaction with gene 2 through protein 1 which is a product of

gene 1. There are different levels of regulation within this system. Though a couple

of biochemical networks for this system could be considered such as metabolic

network and protein network, gene network is an excellent abstraction of whole

system with interactions between genes only (Brazhnik et al., 2002). In a gene

network, the changes of expression level of genes are considered to be affected by

the expression level of the others (as shown in Fig 1.6 with dashed lines) and the

network could be reconstructed accordingly based on the gene expressions.
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Figure 1.5: Biological Pathways and Processes of Trait Formation

1.3 Gene environment interaction

In biology, there is a widespread phenomenon that organisms cope with biotic and

abiotic environments by controlling gene expression to harness the complement of ac-

tive proteins. When the environment alternates between discrete states, organisms

will stimulate their regulatory system through adjusting gene transcription rates to

best adapt to the environment. In a study of bacterial evolution, McAdams et al.

(2004) found that bacterials living in complex environments and have correspond-

ingly complex sensor-response-control subsystems which enable them to adaptive

gene expression as well as Regulatory complexity when environment changes. Se-

shasayee et al. (2006) further pointed out that the changes in the environment can

be sensed by bacterial in the way of detecting extracellular signals. The change of

signals of metabolite concentrations, pH levels, oxygen or water availability and

surface contact eventually affects the transcriptional regulatory systems and pattern
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       Protein 2         Complex 3-4 
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Figure 1.6: Biological Regulation System(redrawn form Brazhnik et al. (2002))

and abundance of transcription which leads to the physiological and morphological

changes that enable organisms to survival with effective adaption. Wittkopp (2007)

have addressed the questions of how and why cellular and organismal functions

differ among environments, among individuals, and among species. They confirmed

that environmental cues can create differences in gene expression without any

genetic differences. In a gene-environment interaction study (Smith and Kruglyak,

2008), the genetic and molecular basis of variation in gene expression was examined

between two yeast strains grown in two different conditions. It have been observed

7



that 2,037 transcripts showed significant strain-condition interaction effect. Li et al.

(2006) studied the differential expression due to change of temperatures and con-

cluded that heritable differences in plastic responses of gene expression are largely

regulated in trans. By detecting the difference in the pattern of gene expression

trajectories between discrete environments, we will be in a better position to study

interactions between genes and environments and dictate a comprehensive map of

gene-environment relationships.

1.4 Contributions of this dissertation

This dissertation developed statistical models for analyzing of gene expression in

response to environment signals. Aiming at the adaptive gene expression dynamics

under discrete environments, we successfully integrate environmental factor into

clustering framework working on time-course gene expression data. To elucidate a

comprehensive picture of gene regulatory network, we reform the dynamic Bayesian

network model to overcome its limitation that evenly spaced measurements is

required. The reformed model can accommodate to any possible irregularity and

sparsity of time series data. Also, we proposed an ordinary differential equation

model by dealing with the continuous gene expression measurements directly to

reconstruct gene regulatory network. Both GRN models are equipped with unique

power to integrate gene expression data from multiple environments and enable

researcher to compare the change of regulation due to environment signals. Gene

expression studies equipped with these sophisticated statistical models will play a

more important role in identifying the interaction of gene and environment.

This dissertation is organized as follows. In Chapter 2, we develop a functional

clustering framework based on a finite mixture model. We use Legendre polynomial

to quantify the mathematical aspects of gene expression dynamics and consider
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impact of environment on gene expression jointly. An EM algorithm has been

developed for parameter estimation. Simulation studies demonstrate its advantages

over traditional single environment analysis.

In Chapter 3, we employ dynamic Bayesian network to identify gene regulation

under different environments. However, this approach requires expression data

measured at even time intervals. In practice, time points at which gene expression

is recorded are usually uneven-spaced, determined on the basis of distinct phases

of biological processes. We reform DBN modeling to accommodate to any possible

irregularity and sparsity of time series data. Application of this model on real data

sets and extensive simulation studies have been conducted in this chapter.

In Chapter 4, we consider a model to work on the continuous gene expression

data directly to avoid the loss of information in the process of DBN inference when

doing data discretization. A ordinary differential equation model is presented in

this chapter with the detailed three steps: clustering gene into functional groups,

variable selection to detect significant regulation effects and analyzing gene functions.

Both simulations and real data analysis are performed.

Finally, we summary the finding of our work and discuss future research in

Chapter 5.
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Chapter 2 |
Functional clustering of gene ex-
pression dynamics in response
to environmental signals

2.1 Introduction

The development of high-throughput technologies, such as DNA microarrays and

proteomics platforms, has made it possible to ask and address many fundamental

but difficult questions in developmental biology and biomedicine. For example,

variation in the pattern of gene expression may point to unique physiological

or pathological properties of individual cells, organs, or organisms that cannot

be observed readily or directly (Arbeitman et al., 2002; Rustici et al., 2004a).

By screening approximately 1000 proteins in individual cancer cells, Cohen et

al. (Cohen et al., 2008) detected a subset of proteins whose expression displays

different dynamic patterns between seemingly identical cancer cells that actually

have different fates. To identify distinct patterns of gene expression dynamics from

a flood of microarray and chip data, powerful computational tools for clustering
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genes or proteins based on their dynamic profiles have become essential. In the

past decade, enormous efforts have been made to develop computational methods

for cataloguing gene expression dynamics and use these distinct patterns to assess

developmental functions and mechanisms of biological phenomena (Holter et al.,

2001; Zhao et al., 2001; Ramoni et al., 2002; Park et al., 2003; Bar-Joseph et al.,

2003; Luan and Li, 2003; Ernst et al., 2005; Ma et al., 2006; Inoue et al., 2007;

Müller et al., 2008; Kim et al., 2008, 2010). There is also a pressing need for

computational approaches to cluster analysis of dynamic gene expression that

interacts with the environment, because the activation and expression of many

genes is environment-contingent (Smith and Kruglyak, 2008). However, to our best

knowledge, no literature has reported such specific approaches.

In biology, there is a widespread phenomenon that organisms cope with biotic

and abiotic environments by controlling gene expression to harness the complement

of active proteins (McAdams et al., 2004; Seshasayee et al., 2006; Wittkopp, 2007).

When the environment alternates between discrete states, organisms will stimulate

their regulatory system through adjusting gene transcription rates to best adapt

to the environment. For this reason, by detecting the difference in the pattern

of gene expression trajectories between discrete environments, we will be in a

better position to study interactions between genes and environments and dictate

a comprehensive map of gene-environment relationships. Traditional approaches

for studying gene-environment interactions are based on quantitative trait locus

(QTLs) mapping usually with experimental crosses. Significant gene-environment

interactions are identified if specific QTLs are detected, through statistical tests, to

display different effects between environments (Zhao et al., 2004b,a). More recently,

gene transcript abundance has been used to study gene-environment interactions

in many organisms such as yeast (Smith and Kruglyak, 2008; Landry et al., 2006)
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and worms (Li et al., 2006), but all these studies are limited to gene expression

data measured at single time points of development.

The purpose of this chapter is to describe a general framework for identifying

environment-specific clusters of gene expression. The use of gene expression dy-

namics to understand gene-environment interactions is highly informative because

of its capacity to identify development-related genes. However, this is a challenging

work in terms of gene clustering across two-dimensional spaces, time and environ-

mental state. The framework described in this article integrates developmental and

environment-dependent programs of gene expression. Mathematical aspects of gene

expression dynamics are implemented into a mixture model setting by considering

the impact of environment on gene expression. The patterns of gene expression

related to specific physiological functions can be parsimoniously modeled using

a set of mathematical parameters (Kim et al., 2008; de Lichtenberg et al., 2005).

Thus, by estimating the parameters that determine mathematical functions, the

pattern of how genes change their level of expression over time and environment can

be estimated and tested. The results from these models, therefore, can better be

interpreted in a biologically sensible way. In addition, the framework considers the

intrinsic structure of time-dependent correlations based on an optimal statistical

process, which increases the power of detecting significantly differentiated patterns.

To demonstrate its usefulness and utilization in practice, we use this framework to

analyze a real data set from a rabbit hemodynamic study in which gene expression

is observed in two distinct blood flow environments (Jiang et al., 2004; Fernandez

et al., 2004). We evaluated the advantages of this tool by performing simulation

studies. The simulation results illustrated that the tool has favorable statistical

properties and can be used in any environment-dependent gene expression data.
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2.2 Gene-clustering framework

2.2.1 Statistical model

Suppose there are n genes each measured at T time points in L environments. Let

yli = (yi(tl1), ..., yi(tlT )) denote the gene expression data for gene i in environment l.

Combining all the environments, we have yi = (yi(t11), ..., yi(t1T ); ...; yi(tL1 ), ..., yi(tLT )).

If these genes are grouped into J clusters, this means that any one of genes (i) is

assumed to arise from one (and only one) of the J possible clusters. Thus, the

phenotypic value of gene i expressed at time tlτ in environment l is written as

yi(tlτ ) =
J∑
j=1

ξijµj(tlτ ) +
C∑
c=1

βcxic + ei(tlτ ) (2.1)

where ξij is an indicator for gene i, defined as 1 if this gene belongs to cluster

j and 0 otherwise, µj(tlτ ) is the mean of all genes belonging to cluster j at at

time tlτ in environment l, xic is the value of covariate c (c = 1, ..., C) for gene

i, βc is the effect of covariate c, and ei(tlτ ) is the residual assumed to follow a

Gaussian distribution with mean zero and variance σ2(tlτ ). For longitudinal data,

residual errors at different time points may be correlated with covariance σ(tl1τ1 , t
l2
τ2)

(l1, l2 = 1, ..., L, l1 6= l2; τ1, τ2 = 1, ..., T, τ1 6= τ2). The residual variances and

covariance comprise a (TL× TL) covariance matrix Σ.

The distribution of gene expression data is expressed as the J-component

mixture probability density function, i.e.,

yi ∼ f(yi;ω,µ,Σ) =
J∑
j=1

ωjfj(yi;µj,Σ), (2.2)

where ω = (ω1, · · · , ωJ) is a vector of mixture proportions which are non-negative
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and sum to unity; µ = (µ1, · · · ,µJ) contains the mean vector of cluster j; and

Σ contains residual variances and covariances among T time points over L envi-

ronments which are common for all clusters. The probability density function of

cluster j, fj(yi;µj,Σ), is assumed to be multivariate normally distributed with

TL-dimensional mean vector

µj =
(
µj(t11) +

C∑
c=1

βcxic, . . . , µj(t1T ) +
C∑
c=1

βcxic; . . . ;

µj(tL1 ) +
C∑
c=1

βcxic, . . . , µj(tLT ) +
C∑
c=1

βcxic

)
(2.3)

and covariance matrix Σ. Notice that µj contains gene-specific covariate effects.

The likelihood based on a mixture model containing J clusters can be written

as

L(Θ|y) =
n∏
i=1

J∑
j=1

[ωjfj(yi;µj,Σ)], (2.4)

where Θ is a vector of unknown parameters including the mixture proportions,

cluster-specific mean vectors, and covariance.

Different from traditional treatments, we will incorporate mathematical and

statistical models to fit the mean-covariance structures. Instead of estimating all

elements in the vectors and covariance, we estimate the mathematical and statistical

parameters that model the mean-covariance structures. Thus, the question of

clustering gene expression dynamics becomes how to find a set of parameters

(arrayed in Θµj) that models cluster-specific expression profiles in a biologically

and statistically meaningful way and to find a set of parameters (arrayed in Θv)

that models the covariance structure both parsimoniously and flexibly.
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2.2.2 Structural modeling of mean vectors

Since the transcript levels of DNA microarrays generally vary in a time course, we

may use mathematical and statistical models to approach their dynamic changes.

Below is a list of approaches for modeling time-dependent gene expression profiles:

2.2.2.1 Parametric modeling

For clock gene cases, the amount of mRNAs within the cell division cycle changes

periodically, coincident with the cell cycle, which helps to maintain proper order

during cell division or to conserve limited resources. The oscillation of cell cycle-

regulated genes can be mathematically described by periodic Fourier functions or

other functions (Spellman et al., 1998; Whitfield et al., 2002; Shedden and Cooper,

2002; Breeden, 2003; Rustici et al., 2004b; Ahdesmäki et al., 2005). The Fourier

function can be approximated by its first K term, expressed as

FK(t) = α0 +
K∑
k=1

(
αk cos

(
2πkt
τ

)
+ βk sin

(
2πkt
τ

))
. (2.5)

The coefficients αk and βk determine the times at which the expression level achieves

maximums and minimums, α0 is the average expression level of the gene, and τ

specifies the periodicity of the regulation. From equation (3), the mean expression

value of gene cluster j at time tlτ in environment l is expressed as

µj(tlτ ) = FK(tlτ ; Θµj)

where

Θµj = {α1
0j, α

1
1j, . . . , α

1
Kj, β

1
1j, . . . , β

1
Kj, τ

1
j ; ...;αL0j, αL1j, . . . , αLKj, βL1j, . . . , βLKj, τLj }
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denotes the vector of Fourier parameters of the first K orders. Thus, by estimating

the parameters that define the periodic curves for individual clusters, we can

determine the differences in the temporal pattern of gene expression (see ref. (Kim

et al., 2008)).

There are many other biologically well-justified curves that can be used to model

gene expression dynamics. These include sigmoid equations for gene expression

related to biological growth (von Bertalanffy, 1957; Richards, 1959; West et al.,

2001; Guiot et al., 2003, 2006), triple-logistic equations for gene expression related

to human body growth (Li et al., 2009), bi-exponential equations for gene expression

related to HIV dynamics (Perelson et al., 1996), sigmoid Emax models for gene

expression related to pharmacodynamic response (Ahn et al., 2010), biological

thermal dynamics (Kingsolver and Woods, 1997), aerodynamic power curves for

gene expression related to bird flight (Tobalske et al., 2003; Lin et al., 2006),

hyperbolic curves for gene expression related to photosynthetic reaction (Wu et al.,

2007) etc.

2.2.2.2 Nonparametric modeling

If time-varying expression of genes does not obey an explicit mathematical function,

nonparametric approaches, such as kernel estimators or B-splines, can be used

(Luan and Li, 2003; Daub et al., 2004; BORGWARDT et al., 2006). Kernel

estimators are based on local polynomial regression, whereas smoothing splines use

a piece-wise polynomial function. As shown in Silverman (Silverman et al., 1984),

kernel smoothing and smoothing-spline smoothing are asymptotically equivalent

for independent data and splines are higher-order kernels. More recently, Legendre

orthogonal polynomials (LOP) have been used to model dynamic changes of complex

traits that do not fit a specific mathematical curve (Lin and Wu, 2006; Cui et al.,
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2006, 2008; Yang et al., 2007). Since the LOP are orthogonal to each other and

integrate to 0 in the interval [-1,1], nonparametric estimates derived from this

approach display favorable asymptotic properties (Marie and Pranab, 1985; McKay,

1997). The LOP have been successfully used to model time-varying phenotypic or

genetic changes for many complex traits, such as milk production (Meyer, 2000)

and plant height growth (Lin and Wu, 2006; Cui et al., 2006). As will be seen from

an example below, It should be equally useful for modeling the dynamic pattern of

gene expression profiles in a time course.

2.2.2.3 Semiparametric modeling

If gene expression spans multiple distinct stages (see (Müller et al., 2008)), at

some of which the expression values follow a parametric form but at others of

which they do not, we can implement a semiparametric model that combines the

parsimony and biological relevance of parametric approaches and the flexibility of

nonparametric approaches. In Cui et al. (Cui et al., 2006), such a semiparametric

approach was used to model the growth process and death process of tiller number

in a lifetime of rice. A similar semiparametric approach can also be implemented in

the clustering framework of multi-stage gene expression dynamics. This will enable

us to study dynamic changes of gene expression by relating its temporal profiles

from different developmental stages.

2.2.3 Structural modeling of covariance

Unstructured estimate of a longitudinal covariance matrix may be highly unstable

for large matrices. This, in conjunction with the fact that the covariance among

repeated measures over time has an inherent structure (Diggle et al., 2002), implies

that structuring a covariance matrix with few parameters may be crucial for
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parsimonious and efficient parameter estimates in dynamic gene clustering. An

extreme of covariance structuring is compound symmetry and autoregression of

order one, but this may be far from the true covariance, leading to severe bias. The

best covariance estimator should be at the balance between its variance and bias.

Below, we list several commonly used approaches for covariance structure.

2.2.3.1 ARMA(p,q)

The autoregressive moving-average process, ARMA(p,q) (Box et al., 2013), is

flexible to provide a robust estimate of gene expression covariance structure (Li

et al., 2009). The zero-mean residual error ei(tlτ ) in environment l (1) is generated

according to the following process

ei(tlτ ) = ηlτ +
p∑
b=1

ϕlbei(tlτ − tlb) +
q∑
b=1

θlbη
l
τ−b (2.6)

where ϕl1, . . . , ϕlp and θl1, . . . , θ
l
q are unknown parameters and {ηlτ} is a sequence

of independent and identically distributed normal random variables with zero

mean and variance σ2
l . The ARMA(p,q) model parameters are arrayed in Θv =

{ϕ1
1, . . . , ϕ

1
p, θ

1
1, . . . , θ

1
q , σ

2
1; ...;ϕL1 , . . . , ϕLp , θL1 , . . . , θLq , σ2

L}. The merit of the ARMA

model includes the existence of closed forms for the estimates of the inverse and

determinant of the structured covariance matrix (Haddad, 2004; Brockwell and

Davis, 2009), which enhances computational efficiency.

By various constraints, the ARMA model can be reduced to a simple autore-

gressive (AR) model and structured antedependence (SAD) model (Zimmerman

et al., 2001). Although the first-order AR and first-order SAD models use only two

parameters, the latter is more flexible than the former since the latter allows the

variance and correlation to change over time. The SAD model has been successfully

incorporated in functional mapping of dynamic complex traits (Zhao et al., 2005).
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For the ARMA model, it is important to determine its optimal order to model

covariance structure. A model selection procedure based on penalized likelihood cri-

teria, such as AIC and BIC, can be established to determine the most parsimonious

approach.

2.2.3.2 Kernel smoothing

The kernel smoothing method has been used to estimate longitudinal covariances

(Fan and Yao, 2003). The advantage of this method lies in its flexibility to specify

any form of covariances and asymptotic properties. Under the homogeneous

assumption, the covariance of gene expression between any two time points tlτ1 and

tlτ2 in environment l is written as a function of time interval, i.e., Cov{tlτ1 , t
l
τ2} =

f(|tlτ1 − t
l
τ2|). Kernel smoothing describes this covariance by

f(|tlτ1 − t
l
τ2|) =

1
n

∑T
τ1=1

∑T
τ2=1 K

{
tlτ1−t

l
τ2−|t

l
τ1−t

l
τ2 |

h

}
(yi(tlτ1)− ȳli)(yi(tlτ2)− ȳli)∑T

τ1=1
∑T
τ2=1 K

{
tlτ1−t

l
τ2−|t

l
τ1−t

l
τ2 |

h

} (2.7)

where n is the total number of genes, T is the total number of time points, K()̇

is a kernel function, h is a bandwidth, and ȳli is the mean of gene i, given by

ȳli = 1
T

∑T
τ=1 yi(tlτ ). One of the mostly used kernel functions is Gaussian kernel, i.e.,

K(d) = exp(−d2). A variety of statistical methods have been developed to choose

an optimal kernel and appropriate bandwidth (see (Fan and Yao, 2003)).

2.2.3.3 Modeling covariance over time and environment

In this article, we consider gene expression dynamics for multiple environments.

The approaches described above are used to model time-dependent covariances of

gene expression separately for each environment. The covariance structure over

time and environment is then modeled by taking the product of purely temporal
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and environmental covariances. This so-called separable approach is simple but has

many undesirable properties since it does not allow environment-time interactions.

We can implement a nonseparable stationary model (see Cressie and Huang (1999);

Gneiting (2002); Gneiting et al. (2007)) to structure time-environment covariance

of gene expression. A nonseparable covariance is not expressed as a Kronecker

product of two matrices like separable structures can. The main significance of the

covariance in this context is in providing a better characterization of the random

process to obtain optimal kriging or prediction of unobserved portions of it. More

recently, Yap et al. (Yap et al., 2011) has successfully incorporated Cressie and

Huang’s (Cressie and Huang, 1999) nonseparable model to estimate the covariance

of photosynthetic rate over temperature and irradiance within the framework of

functional mapping aimed to identify genes for dynamic traits.

2.2.4 Estimation and Tests

A hybrid EM-simplex algorithm was implemented to estimate the parameters,

Θ, contained in the likelihood (2.4). The EM algorithm provides a platform for

estimating the proportions of different clusters, within which the simplex algorithm

is embedded to estimate base vectors for each cluster and the covariance-structuring

parameters. This can be described as follows:

In the E step, we define and estimate the posterior probabilities of gene i, with

which it belongs to a particular expression pattern j, by

Ωj|i =
ωj
∏L
l fj(yi;µlj,Σl)∑J

j′=1

[
ωj′

∏L
l fj′(yi;µlj′ ,Σl)

] . (2.8)
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In the M step, the proportion of expression pattern j is calculated by

ωj =
∑n
i=1 yiΩj|i∑n
i=1 Ωj|i

. (2.9)

Suppose we model gene expression dynamics with Lengendra polynomial and model

the covariance the ARMA process (Kim et al., 2008; Li et al., 2009), then the base

mean vector in Θµj and Θv can be estimated in the M step as follows.

ûj =
∑n
i=1 p̂ijM

′Σ̂−1yi∑n
i=1 p̂ijM

′Σ̂−1M
(2.10)

M =



P0(t∗1) P1(t∗1) · · · Pr(t∗1)

P0(t∗2) P1(t∗2) · · · Pr(t∗2)
... ... ... ...

P0(t∗m) Pm(t∗1) · · · Pr(t∗m)


(2.11)

where Pr(t∗m) is the Lengendra polynomial with order r at time point t∗m which is

the normalized version of tm.

Σ̂ = σ̂2R̂ = σ̂2



1 ρ̂t2−t1 ρ̂t3−t1 · · · ρ̂tm−t1

ρ̂t2−t1 1 ρ̂t3−t2 · · · ρ̂tm−t2

... ... . . . ... ...

... ... ... . . . ...

ρ̂tm−t1 ρ̂tm−t2 ρ̂tm−t3 · · · 1


(2.12)

σ̂2 =
∑n
i=1

∑J
j=1 p̂ij(yi − µ̂ij)′R̂−1(yi − µ̂ij)

mn
(2.13)
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ρ̂ =
∑n
i=1

∑J
j=1 p̂ij

[
(1/(1− σ̂2))µ̂′ijR̂µ̂ij + σ̂

∑m
τ=2 µ̂

2
ij(tiτ )−

∑m
τ=1 µ̂ij(tiτ )µj(tiτ+1)

]
(m− 1)nσ̂2 (2.14)

The framework for clustering gene expression dynamics over multiple environ-

ments allows the test of many biologically meaningful hypothesis tests. First, an

optimal number of gene clusters in terms of their different expression dynamics

over all environments can be determined using AIC or BIC approaches (see the

example shown below). Second, we need to determine the optimal number of gene

clusters in a specific environment. For two given patterns j and j′, they may be

identical in an environment, although different for all the L environments. This

can be tested by

.H0 : ulj = ulj′ vs. H1 : ulj 6= ulj′ , for j < j′ = 1, . . . , J (2.15)

If the H0 is accepted for two given patterns, this means that the optimal number

of patterns in environment l is J − 1. By performing this pairwise test for all gene

clusters, this approach allows the identification of the optimal number of expression

patterns for environment l.

Third, we can test the significance of gene-environment interactions. This can

be done by testing

H0 : ulj = ul′j vs. H1 : ulj 6= ul′j , for l < l′ = 1, . . . , L (2.16)

If theH0 is rejected for two given environments, this means that expression pattern j

displays significant gene-environment interactions. This test provides a quantitative

way to study the relationship between genes and environments.
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2.3 Worked example

2.3.1 Data analysis

The new tool is demonstrated by analyzing a data set of microarray genes associated

with response to vein bypass grafting designed to treat arterial occlusive disease.

The data were obtained using a rabbit bilateral vein graft construct, as previously

described in Jiang et al. (2004). New Zealand White rabbits (3.0–3.5 kg) were

treated by bilateral jugular vein interposition grafting and unilateral distal carotid

artery branch ligation to create two distinct flows, i.e., two different environments.

Through ligation of the internal carotid and three of the four primary branches of

the external carotid artery, an immediate 6-fold difference in blood flow between

the right and left vein grafts was obtained. A segment of the vein was retained

at the time of implantation for baseline morphometric measurements. Vein grafts

were harvested at 1, 3, 7, 14, 28, 90 and 180 days after implantation. Expression

of 14,958 microarray genes was recorded for each of these time points under both

treatments, high flow and low flow. Other parameters related to hemodynamic

behavior, such as graft flow rate, intraluminal pressure, mean circumferential wall

stress, and shear stress, were also measured or estimated.

An initial step is the selection of an appropriate model that fits the dynamic

change of gene expression over. Figure 2.1 shows the plotting of 10 randomly

selected genes expressed over time in the two treatments, from which we found, we

found that there is a great variability in gene expression trajectories, of which some

are curvaceous while others are quite flat. Thus, we used a flexible nonparametric

approach based on Legendre orthogonal polynomials (LOP) to model gene expres-

sion dynamics. Let Pr(t∗) = [P0(t∗), P1(t∗), ..., Pr(t∗)] denote a family of LOP with

a particular order r derived from a special differential equation, where t∗ is a scaled
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time with a range [−1, 1]. Let uljr = [ulj0, ulj1, ..., uljr] denote a vector of base values

for cluster j in environment l. Then, time-varying mean values for cluster j in

environment l in equation (2.2). can be expressed as a linear combination of uljr

weighted by the family of LOP, i.e.,

µlj(t∗) = Pr(t∗)uljr. (2.17)

0 50 100 150

−
8

−
6

−
4

−
2

0
2

4

Days

G
en

e 
E

xp
re

ss
io

n

High

0 50 100 150

Days

Low

Figure 2.1: Trajectories of expression for ten genes randomly chosen from those
associated with response to vein bypass grafting in rabbits in two treatments, high
flow and low flow.

Our task now is to estimate the base vector uljr from the given data. The

variance of expression among genes seems to be broadly consistent over time points,

suggesting that the first-order AR model may fit the data. To combine the expression

data from the two flows, we used a separable model to structure the covariance over

time and environment. In Figure 2.2, a plot of BIC values is illustrated against

varying numbers of gene clusters under different LOP orders, from which we chose
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Figure 2.2: Plot of BIC values calculated for expression trajectories of different
gene clusters over cluster number and LOP order.

eight clusters and three orders that provide a best combination for curve fitting.

Implementing this combination, we estimated the expression trajectories of each of

the eight gene clusters for both high and low flows. We need to detect if any of

these eight clusters, labeled from A to H (see Supplementary Figure S1), overlap

in a flow. Pairwise tests using hypothesis test (2.15). indicate that no pair of

clusters is identical for expression trajectories in each flow (P < 0.0001). This

result suggests that the optimal number of clusters should be eight for both flows.

Table 2.1 gives the estimated proportions and their standard errors of each cluster

from these genes.

By calculating the posterior probabilities of each gene that belongs to different

clusters using Equation (2.8), we can determine the most likely cluster of this

gene. Thus, we can draw gene expression trajectories for all genes that belong

to a particular cluster A-H, separately for the two flows and the mean trajectory

of the cluster for each flow using the estimates of curve parameters (Figure 2.3
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Table 2.1: Estimated proportions of gene clusters and standard errors (in paren-
theses) estimated by resampling for 14958 genes associated with response to vein
bypass grafting in rabbits under two different treatments, high flow and low flow.
The significance of gene-environment interactions for each cluster is also given

Cluster A B C D E F G H
Propor- 0.0116 0.1023 0.3354 0.3831 0.1134 0.0359 0.0100 0.0083
tion (0.0019) (0.0068) (0.0056) (0.0075) (0.0062) (0.0033) (0.0012) (0.0010)
P-value < 0.0001 > 0.100 > 0.250 < 0.0001 > 0.400 < 0.0001 < 0.001 < 0.0001
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Figure 2.3: Expression trajectories of individual gene clusters A-D under high (H)
and low flows (L)

and 2.4). The 95% confidence intervals of each estimated trajectory are generally

within the variation of temporal gene expression profiles among individual genes,

suggesting that our estimates are reasonably accurate. In general, most individual

gene expression trajectories display similar time-varying trends between the two

flows, but marked discrepancies in expression trajectories were detected for some

particular clusters.
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Figure 2.4: Expression trajectories of individual gene clusters E-H under high (H)
and low flows (L)

Hypothesis test (2.16) allows the detection of gene-environment interactions in

expression profiles over high and low flows. Table 2.1 gives the results of significance

tests for gene-environment interactions. Except for clusters B, C and E, all other

clusters are expressed differently between high and low flows. To better show

treatment-dependent expression differences, we draw the mean trajectories of each

cluster from high and low flows in the same plot (see Supplementary Figure S2).

The expression of cluster A has the highest level right after implantation, decreases

drastically within 25–35 days and then increases gradually. This cluster displays

a more pronounced change of expression over time in high flow than low flow.

Cluster B has a similar trend of gene expression profiles although its time-varying

change is milder compared to cluster A. It appears that clusters C and D have a

minimum level of expression throughout experimental time. Clusters E, F and H
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are expressed at a low level in the beginning of treatment, reach a peak at Day 50

after implantation. Cluster H changes its expression level over time most abruptly,

followed by clusters F and E. The expression of cluster G increases over time

monotonously until Days 100–120, after which its expression decreases although it

is more striking in low flow than high flow.

2.3.2 Simulation

We performed simulation studies to examine the statistical properties of the clus-

tering model. The expression data were simulated by mimicking the structure of

the real data analyzed above. A total of 4800 genes were assumed to include eight

different clusters in two environments specified by mean trajectories as shown in

Figure 2.3 and 2.4. These genes each have an expression trajectory over 4 time

points as the sum of the mean trajectory of the underlying cluster and residual

errors whose covariance structure follows the first-order AR model, but assuming

the value of variance that triples the estimated variance. The proportions of eight

clusters in Table 2.1 were used to simulate gene expression profiles.

Simulated data were analyzed by the model. Based on BIC values, the model

can detect the correct number of clusters and the correct order of LOP. The model

estimates the proportions of clusters A-H precisely Also, expression trajectories of

each gene cluster can be reasonably well estimated (Figure 2.5 and 2.6), despite a

tripled variance used. This shows that the results from the real data set analyzed

by the model are convincing from a statistical point of view.

An additional simulation was conducted to test the power of the model to detect

gene-environment interactions and its false positive rates (FPR). Consider Patterns

A, D, F, G and H obtained from rabbit gene expression data which display a certain

level of gene-environment interactions. By repeating the simulation and estimation
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Figure 2.5: Comparison of estimated (dashed) and true (solid) expression trajecto-
ries for clusters A-D under two hypothesized conditions 1 and 2. The simulated
data mimicked the structure of the rabbit data, but assuming an error variance
that triples the estimated variance.

procedure 100 times, we detected the numbers of cases in which hypothesis tests

for gene-environment interactions using test (2.16). are significant are 85–97 for

clusters A, D, F, G and H, respectively. To test the FPR, we used the same

parameters for clusters B, C, and E to simulate gene expression data for high and

low flows. Of 100 simulation replicates, less than 5 times were detected to be

significant. This suggests that the FPR of our tool is acceptably low.

2.4 Discussion

There is a pressing need for computational tools that can unravel the developmental

machinery of time-dependent gene expression profiles, despite a vast body of
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Figure 2.6: Comparison of estimated (dashed) and true (solid) expression trajecto-
ries for clusters E-H under two hypothesized conditions 1 and 2.

literature presenting these tools (Holter et al., 2001; Zhao et al., 2001; Ramoni

et al., 2002; Bar-Joseph et al., 2003; Ernst et al., 2005; Ma et al., 2006; Inoue

et al., 2007). One significant lack is the unavailability of models for analyzing gene-

environment interactions for gene expression dynamics. A few pioneering studies

have demonstrated the capacity of gene transcript abundance to comprehend the

genetic architecture of gene-environment interactions (Smith and Kruglyak, 2008;

Landry et al., 2006; Li et al., 2006).

In this article, we describe a computational tool that can test gene-environment

interactions on a genomic level using dynamic gene expression data. The develop-

mental dynamics of cells, organs, or organisms are related with many fundamental

phenomena in biology, such as growth and phenotypic plasticity. Our understand-

ing of how developmental dynamics is regulated through a balance of gene and
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environment helps to reveal the mechanistic origins of these phenomena. The

new tool may provide an important means for analyzing temporal expression data

and construct a map of gene-environment interactions. As an example, we used

Legendre-based nonparametric fitting to model dynamic changes of gene expression

within a mixture-model framework. One advantage of the Legrendre approach lies

in its flexibility for curve fitting (Marie and Pranab, 1985), computational efficiency,

and avoidance of knot choice essential for B-splines. For gene expression data

with explicit curves, such as periodic transcriptional profiles, robust mathematical

equations with better biological relevance and better parsimony can be used.

Gene-environment interactions important to understand biology can now be

tested in a quantitative way by the tool presented. By applying it to a real data set

of microarray genes associated with response to vein bypass grafting between high

and low flows in rabbits, this tool identified eight distinct patterns of expression

trajectories in a time course. Each of these patterns may be related with a particular

biological function operational in hemodynamic processes. Although many patterns

display a similar trend of time-varying expression between high and low blood flows,

many of them are essentially different based on hypothesis tests by our tool. A

further molecular study may help identify specific biochemical pathways related

to each of these different gene expression patterns. In a recent study, Cohen et

al. (Cohen et al., 2008) detected the discrepancy of dynamic trajectories for a few

proteins, which corresponds to cell death or survival, between seemingly identical

cells. The tool presented should gain more quantitative insights into the distinction

of seemingly trivial differences in genomic and proteomic dynamic studies.

While modeling gene expression dynamics jointly over time and environment

in the real example, we assumes no interactions between time and environment.

Although it facilitates our modeling and computing, this assumption may not
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be realistic in some cases. A general model should consider the dependence of

gene expression profiles in different times and environments by non-separable

covariance structuring approaches (see Cressie and Huang (1999); Gneiting (2002);

Gneiting et al. (2007); Yap et al. (2011) for examples). Different approaches for

covariance structure based on nonparametric or semiparametric models should be

incorporated and compared using penalized likelihood criteria. In our software

package for environment-dependent functional clustering, we implement many

of these approaches for users to choose the most parsimonious one given their

particular data sets. The computer code for the tool developed is available at Penn

State Center for Statistical Genetics web site, http://statgen.psu.edu.
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Chapter 3 |
Inference of gene regulatory net-
work through advanced Dynamic
Bayesian Network

3.1 Introduction

Thousands of genes on the genome encode the products essential for cell division and

differentiation toward the phenotypic formation of organisms. How the properties

of these products, including abundance, mutual interactions, and temporal pattern,

determine the process of life is governed by regulatory networks of genes. A gene

regulatory network (GRN) is formed by a set of genes in a cell which interact

with each other through their RNA and protein products and regulated by the

transcription factors that activate the expression of particular genes (Brazhnik et al.,

2002). Knowledge about the structure and organization of GRN can help us identify

the causal regulations involved in metabolic and physiological processes within

cells. With the availability of high-throughput data, increasing efforts have been

made to reconstruct GRN by developing either model based or machine learning
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based approaches (Barabási et al., 2011; Zhu et al., 2012; Zhang et al., 2013; Wang

et al., 2013). These approaches have played an important role in referring the

complex regulatory mechanisms that underlie biological functions and phenotypic

characteristics (Gerstein et al., 2012; Hurley et al., 2012). To better separate direct

regulations from indirect ones among genes within a GRN, Zhang et al. (2014)

proposed a concept of conditional mutual inclusive information and implemented it

into a computing algorithm for quantifying the mutual information between two

genes given a third one.

Given that life is a dynamic process (de Lichtenberg et al., 2005), a considerable

body of modeling studies have begun to reconstruct dynamic GRN from expression

data measured across a time and space scale (Li et al., 2011). The formation

of any biological characteristics activated by developmental signals is contingent

on dynamic changes of gene expression. For example, in flowering plants, em-

bryogenesis undergoes three distinct phases, asymmetric cell divisions to establish

apical-basal polarity (early phase), the initiation of major organs and primordia

(intermediate phase) and the mature embryo (late phase) (De Smet et al., 2010).

By genome-wide profiling of gene expression during a complete developmental

process from the zygote to the mature embryo in Arabidopsis thaliana, Xiang et al.

(2011) constructed stage-specific regulatory networks, which provide an important

foundation for understanding the dynamic pattern of pathway interactions during

embryogenesis. The application of stage-specific regulatory networks to study the

genetic underpinnings of trait development has now become a routine approach in

a wide range of biological areas from plant biology to cancer biology (Zhang et al.,

2014; Yosef et al., 2013).

Approaches for reconstructing dynamic GRN from time series gene expression

data have been well developed, including dynamic Boolean networks and proba-
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bilistic Boolean networks (Akutsu et al., 2000; Martin et al., 2007) and dynamic

Bayesian networks (Murphy et al., 1999; Friedman et al., 2000; Zou and Conzen,

2005; Ogami et al., 2012; Godsey, 2013) among others. By integrating expression

data measured at multiple time points, these approaches have been used to infer the

temporal change of the structure and topological features of multiple interactions

within genomic networks during a period of biological process. However, they

may suffer the limitation of being unable to manipulate sparse, unevenly-spaced

expression data which are quite popular in practice. On the other hand, there has

been increasing recognition of using multiple different experiments to reconstruct

a comprehensive GRN, in which data were rarely measured at the same sched-

ule (Hecker et al., 2009; Greenfield et al., 2010). As a consequence, the statistical

issue of simultaneous use and modeling of irregular data from different experiments

should be addressed.

In this chapter, we present and validate a computational procedure for dynamic

GRN reconstruction from sparse, irregular gene expression data by interpolating

those missing points in time series measurements. The idea of interpolation

used to model GRN is not new. Wessels et al. (2001) and Bansal et al. (2006)

proposed cubic interpolation for GRN modeling. Yu et al. (2004) devised a linear

interpolation method for dynamic Bayesian network construction. By implementing

a parametric (such as Fouries series approximation) or nonparametric (such as

Legendre orthogonal polynomials) function whose optimal order is determined

by information criteria, our interpolation approach is adaptive, assuring the best

function to fit a given expression dataset and, thus, capturing dynamic features of

genes precisely. Different from the previous work, we integrate functional clustering

into the DBN modeling framework by which to infer GRN based on functional

clusters of genes. Functional clustering classifies gene profiles into distinct categories
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according to their similarity, and estimates a functional nonlinear curve for the

mean dynamic expression of genes within the same cluster. By interpolating missing

data based on the functional curve, an evenly-spaced, regular time series data can

be obtained from which DBN is used to infer GRN among gene clusters. Our

approach can handle any dynamic gene expression data, regardless of its sparsity

and irregularity, thereby providing a broader application in computational biology.

This chapter is organized as following. In section 2, we describe the detailed of

this model which contains four steps. Then in section 3 we applied the proposed

procedure on Rabbit microarray data to construct the regulatory network. In

section 4 we conduct simulation studies for model validation. At last, we have a

discussion section to close the chapter.

3.2 Methods

3.2.1 Dynamic Bayesian network modeling

Consider a hypothetical gene network (Fig. 1.6), in which three different levels of

regulation exist: gene, protein and metabolic. Here we assume that genes do not

directly affect each other but interact through the action of their specific products,

proteins, metabolites, or protein-metabolite complexes. Gene 2 is regulated by the

protein product of the gene 1 and by the complex 3-4 formed by the products of

gene 3 and gene 4. The regulation of gene 4 is made by the metabolite 2 which in

turn is produced by protein 2. Based on these webs of regulation, we can construct

a gene network which describes how one gene interact with others (denoted by

dashed lines in Fig. 1.6).

A Bayesian network (BN) approach derived from the combination of graph

theory and probability theory can be used to yield topologies or qualitative networks
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of interactions between the genes. A BN is considered as a directed acyclic graph

G(X,E), where X is a set of nodes, xis, which are random variables representing

genes’ expression and E is a set of edges which indicate the dependencies between

nodes (Aluru, 2005). The nodes follow conditional probability mass function

P (xi|Pa(xi)), where Pa(xi) is the set of parents of node xi. The Markov assumption

is encoded implicitly in a Bayesian network; i.e. each nodes is independent of its

non-descendants given its parents. Therefore, the joint distribution of all nodes

can be decomposed down to the conditional distributions of the nodes as (3.1).

P (x1, x2, · · · , xn) =
n∏
i=1

P (xi|Pa(xi)) (3.1)

 A B 

C D 

E 

Figure 3.1: A Bayesian network

A sample of Bayesian network is shown in Figure 3.1, under the Markov
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assumption, we have

P (A,B,C,D,E) = P (A)P (B)P (C|A,B)P (D|B)P (E|C) (3.2)

To handle dynamic gene expression, dynamic Bayesian network (DBN) is

developed by taking into account the time components, i.e. two copies of the same

BN are used to model a state transition of gene network from time t to time t+ 1.

In a DBN as shown in Figure 3.2, the state of A is affected by B and itself but the

state at a previous time.

 
A1 

B1 

C1 

A2 

B2 

C2 

Figure 3.2: A Dynamic Bayesian network

The DBN approach for reconstruction of GRN based on gene expression data

includes the following steps (Zou and Conzen, 2005):

1. Discretizing the expression levels.

The expression levels for all genes are discretized as 1 (down-regulation) or 2

(up-regulation) by comparing with baseline gene expression level.
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2. Realigning expression levels for potential regulator and target genes.

Expression levels for potential regulator and target genes will be realigned

according to the transcriptional time lag which is defined as the time that it

take for the regulator gene to express its protein product and the transcription

of the target gene to be affected by this regulator protein (Zou and Conzen,

2005). Suppose we have two hypothetical genes, gene A and its potential

target gene B, their expression levels are measured at six evenly spaced time

points t1− t6. We use At1 , At2 , ... and Bt1 , Bt2 , ... to denote them respectively.

If we decide the time lag is one time unit, then At1 will be aligned with Bt2 ,

At2 will be aligned with Bt3 and so on.

3. Determining regulators by calculating conditional probabilities and marginal

likelihood scores.

In this step, conditional probabilities (target gene give potential regulators)

and marginal likelihood scores will be calculated using the realigned expression

levels. The potential regulators which have highest marginal likelihood score

will be selected as regulators.

Assume two genes whose expression levels are shown in figure 3.3. We followed the

three steps of DBN as described above to discretize the expression levels (using

fold change 1.2 as the cutoff point), realign them (using one time unit as the

time lag) and calculate the conditional probabilities of gene B with respect to its

potential regulator gene A (Table 3.1). Intuitively, since P (B = 1|A = 1) = 1 and

P (B = 2|A = 2) = 0.67, we would consider gene A as a regulator of gene B. The

basic condition of using DBN is that it requires the expression levels measured at

evenly spaced time points because the time points are realigned one by one in step

2. If this condition was not satisfied, two issues would arise.

Suppose we do not measure the expression levels of gene A and B at t4 and t5
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Figure 3.3: Original expression levels for gene A and B

Table 3.1: Conditional probabilities of gene B given gene A

A = 1 A = 2
B = 1 1 0.33
B = 1 0 0.67

(as shown in figure 3.4). This will lead to the two problems as follows:

1. Mismatching.

In this situation, we could still align At1 with Bt2 as well as At2 with Bt3 .

However, we cannot align At3 with Bt4 because it is missing. We cannot align

At3 with Bt6 either since the time period between them is much different from

that between At1 and Bt2 .

2. Losing information.

Since expression levels at t4 and t5 are missing, we lose those information

completely. For gene B, the information we have is misleading since it seems

that gene B has no up-regulation at all.
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Figure 3.4: Expression levels for gene A and B without t4 and t5

Due to these two issues, DBN cannot be employed in this situation. If we applied it

anyway, we would only have information from two pairs: At1 with Bt2 and At2 with

Bt3 . Conditional probabilities would be P (B = 1|A = 1) = 1, P (B = 1|A = 2) = 1

and P (B = 2|A = 2) = 0 then it is difficult to decide whether or not gene A is a

regulator of gene B.

3.2.2 Interpolation by a parametric or nonparametric function

A natural way to solve this problem is to restore the information missed at t4 and

t5. Indeed, this can be done if sufficient data is observed. For example, for gene

B, we would expect up-regulations should happen between t3 and t6, as shown

in figure 3.5 by a dashed line, if the expression level would develop following the

trend of t1 to t3. If this dashed line could be estimated as a function of time, it
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is straightforward to interpolate the values of expression levels at t4 and t5 (as

marked in red in figure 3.5) based on such a function. However, if this function is

estimated from time-dependent observations of a single gene, we may not eliminate

the effect of measurement noises. On the other hand, since many genes have a

similar biological function, they should be classified into the same group with an

indistinguishable time course expression pattern. These genes can be put together

to provide a more precise estimation of functional curve.

Functional clustering, aimed to group those genes of similar function, can serve

as a tool to estimate functional curves. Kim et al. (2008, 2010) implemented a

Fourier series approximation to model periodic patterns of gene expression, whereas

a nonparametric approach based on Legendre orthogonal polynomials (LOP) was

developed in Chapter 2 to characterize time-varying expression levels when no

explicit parametric function can be used. These approaches consider the mean of

a cluster as a representative gene, thereby providing a more stable and accurate

interpolation of missing points.

3.2.3 Four-step procedure to reconstruct GRN

In this section, we present a procedure for identifying gene regulatory network

based on time course gene expression data in the four following steps:

1. Clustering genes into different groups by parametric or nonparametric func-

tional clustering and estimating the mean function for each cluster;

2. Interpolating missing values in uneven intervals to obtain evenly spaced

measurements;

3. Constructing the GRN using the DBN model (Zou and Conzen, 2005) to

identify the effects of regulation due to interactions between clusters;
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Figure 3.5: Estimated expression levels for gene B at t4 and t5

4. Analyzing gene functions by Gene Ontology to explore the biological relevance

of gene clusters in the reconstructed regulatory network.

3.2.3.1 Clustering gene into different groups

Consider a high-dimensional set of genes (say n) measured at multiple time points

from different experiments. Thus, it is possible that different genes are measured

with different time schedules. For a particular process, such as embrogenesis, gene

expression levels may be measured more densely in an early stage than late stage,

making the time intervals of measurement unevenly-spaced. Overall, we have a

sparse, irregular time series gene expression data for GRN reconstruction.

Let yi = (yi(t1), · · · , yi(tTi)) denote a vector of expression levels for gene

i(i = 1, · · · , n) measured at time points (t1, · · · , tTi). Note that time points are

gene-specific. We assume that these n genes can be classified intom clusters because

of their similarity and differences. This can be expressed by a mixture model in
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which there are m components. Each gene arises from one and only one of the m

possible components. We further assume that yi is a realization of a mixture of m

multivariate normal distributions with the density function specified as

yi ∼ fi(yi;ω,µi,Σi) = ω1f1|i(yi;µ1|i,Σi) + · · ·+ ωmfm|i(yi;µm|i,Σi) (3.3)

where ω = (ω1, · · · , ωm) is a vector of non-negative proportions for the m possible

clusters that sum to unity and fj|i(yi;µj|i,Σi) denotes the density function for

gene cluster j(j = 1, · · · ,m), a multivariate normal with mean vector µj|i =

(µj|i(t1), · · · , µj|i(tTi)) and the common Ti × Ti covariance matrix Σi. Let µi =

(µ1|i, · · · ,µj|i) contain the cluster-specific mean vectors for gene i.

Parametric functional clustering implements an explicit mathematical equation

to approximate time-dependent expression. If the genes are periodically regu-

lated (Rustici et al., 2004b), Kim et al. (2008, 2010) used the Fourier series function,

showing adequate power to capture the temporal expression pattern of oscillating

genes. In the case where no explicit mathematical equation is available, in Chapter

2, we deployed a flexible approach based on the Legendre orthogonal polynomials

(LOP) to model gene-specific function curves for each cluster. Both parametric

and nonparametric approaches allow to handle the sparsity of time points in gene

expression data. Also, by determining the best order of Fourier series or LOP by

information criteria, both approaches can provide an optimal function for modeling

time series expression levels for each cluster from a given dataset.

Increasing power of functional clustering also results from the parsimonious

modeling of the covariance structure by a few number of parameters. Paramet-

ric, nonparametric or semi-parametric approaches have been used to model the

covariance matrix Σi, each with specific strengths and weakness. Li et al. (2010)

proposed a general parametric approach for covariance modeling through a general
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autoregressive moving-average process of order (p, q), the so-called ARMA(p, q).

These authors derived the EM algorithm to estimate the ARMA parameters that

model the covariance structure within a mixture model framework. The orders

p and q of the ARMA process that provide the best fit are identified by model

selection criteria.

3.2.3.2 Interpolating missing values in uneven intervals

For DBN modeling, we interpolate missing data adaptively to satisfy the requirement

of evenly spaced intervals. The mean vectors for each cluster which can be expressed

as a function of time have been obtained from step 1. Here, as an example, we

describe step 2 by using LOP-based nonparametric functional clustering.
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Figure 3.6: Expression levels for clusters A-D

Suppose we have four hypothetical gene clusters A, ..., D whose expressions

measured at unevenly spaced time points t1, t2, t3 and t6 (Fig. 3.6), rather than six

evenly spaced time points t1 − t6 in Zou and Conzen (2005). Let uA, uB, uC and
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uD denote the base means of these clusters, respectively. According to Chapter 3,

their mean vectors µA, µB, µC and µD are determined by MuA, MuB, MuC and

MuD where M is a 4 by r matrix constructed by LOP (withr being the optimal

order of LOP). For example, the mean vector of cluster A is expressed as

µA =



µA1

µA2

µA3

µA6


= MuA =



P0(t∗1) P1(t∗1) · · · Pr(t∗1)

P0(t∗2) P1(t∗2) · · · Pr(t∗2)

P0(t∗3) P1(t∗3) · · · Pr(t∗3)

P0(t∗6) P1(t∗6) · · · Pr(t∗6)





uA1

uA2

...

uAr


(3.4)

Where µA1 , µA2 , µA3 and µA6 are expression values of cluster A at time points

t1, t2, t3 and t6 respectively. t∗1, t∗2, t∗3 and t∗6 are the normalized time points using

the formula (3.5).

t∗ = −1 + 2 (t− t1)
t6 − t1

(3.5)

To interpolate expression values at t4 and t5, we first calculate the rescaled time

values t∗4 and t∗5 and then insert two rows corresponding to t4 and t5 into matrix

M, obtaining the interpolated µA, denoted as µ̂A, by the following equation.
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µ̂A =



µA1

µA2

µA3

µ̂A4

µ̂A5

µA6



=



P0(t∗1) P1(t∗1) · · · Pr(t∗1)

P0(t∗2) P1(t∗2) · · · Pr(t∗2)

P0(t∗3) P1(t∗3) · · · Pr(t∗3)

P0(t∗4) P1(t∗4) · · · Pr(t∗4)

P0(t∗5) P1(t∗5) · · · Pr(t∗5)

P0(t∗6) P1(t∗6) · · · Pr(t∗6)





uA1

uA2

...

uAr


(3.6)

Similarly, we can have µ̂B, µ̂C and µ̂D. As shown in Figure 3.7, all of these

gene clusters have evenly spaced time series measurement of gene expression.
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Figure 3.7: Expression levels for clusters A-D after interpolation

3.2.3.3 Constructing the GRN using the DBN model

We follow the improved DBN approach by Zou and Conzen (2005) to take advantage

of its high efficiency and accuracy. According to these authors, only those genes
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are considered as potential regulators when they have either earlier or simultaneous

expression changes (up- or down-regulation) compared to targets. The up-regulation

and down-regulation are defined as ≥ 1.2-fold and ≤ 0.7-fold compared to baseline

gene expression. These relatively modest cutoffs are used to avoid missing any genes

with potentially important changes in gene expression although these changes could

be small. Per these cutoffs, we determine the initial regulation time points of gene

clusters A-D, after which the regulators of genes that change later in expression

are viewed as those genes that change earlier or simultaneous. As shown in Figure

3.6 , it is obvious that cluster A has initial down-regulation at t2 while cluster B is

also initial regulated at t2 but down-regulation, Cluster C and D initially change

expression at time t3 andt4, respectively. Since cluster A, B and C each have an

earlier change in expression than cluster D, the former is selected as potential

regulators of the latter. Similarly, we can decide potential regulators, cluster A for

cluster B and cluster A and B for cluster C.

Based on the determined initial regulation time points, we could also decide

the transcriptional time lag between regulator and target genes. We calculate the

time difference between the initial regulation time points for potential regulator

and its target gene , which is confided as a more accurate estimation of the

corresponding transcriptional time lag (Zou and Conzen, 2005). In this way the

time lag between cluster D and its potential regulators cluster C is estimated as

one units. Similarly, the time lags between cluster D and B, D and A are estimated

as two time units. According to the time lags between potential regulators and

its target clusters, potential regulators are grouped into different categories with

regulators in a category of the same time lag in terms of the target clusters. The

reason for this grouping is that different regulators may have different time frames

when interacting with targets. By grouping we analyze regulators separately, with
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a possibility to identify co-regulators. As an example, cluster D has two groups of

potential regulators; one group, including cluster A and B, has the time lag of two

time units, and the other group, including cluster C, has the time lag of one time

unit. It is here possible that cluster A and B are the co-regulators of cluster D.

After determining potential regulators for each clusters and calculating the

corresponding time lags, the DBN framework developed by Murphy et al. (1999), is

applied for network inference. Though continuous data can by directly analyzed by

DBN, the assumptions of continuous DBN may not be satisfied in certain domain.

In particular, continuous models assume additive influence of multiple regulators on

a target, it may not be a case in gene regulation. Discrete network is chosen for our

data set by discritizing continuous gene expression data. Two categories are used

for discretization with 1-fold as cutoff instead of ≥ 1.2-fold and ≤ 0.7-fold since

the relative increase or decrease in expression levels is more important than the

absolute expression value during the inference of relationships between potential

regulators and targets. Specifically, ’2’ is assigned if the expression level is equal to

or higher then 1-fold; otherwise ’1’ is assigned. The discretized expression levels for

cluster A-D are shown in Table 3.2.

Table 3.2: Discretized expression levels for Cluster A - D

t1 t2 t3 t4 t5 t6
cluster A 1 2 2 2 2 2
cluster B 2 1 1 2 2 2
cluster C 1 2 2 2 2 1
cluster D 1 1 2 2 2 2

Another import step for DBN algorithm is to align the expression levels for

potential regulators and targets according to the relevant transcriptional time lags

between them. Suppose the time lag regulators and their target is ∆t, then the

expression levels of regulators at t1 will be aligned with the expression level of the
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target at t1 +∆t. In this way, a R×K matrix will be constructed for regulators and

the target, where R is the number of potential regulators with same time lag plus

one which represents the target, and K is the number of time points between t1 +∆t

and t6. As an example, for cluster D, we have calculated the time lag between it

and its potential regulator, cluster A, which is two time units in. Therefore, we

align the expression level of cluster A at t1 with the expression level of cluster D at

t3 and have a 2× 4 matrix expressed as

 1 2 2 2

2 2 2 2

 (3.7)

where the first row is for cluster A and second row for cluster D.

As seen from above, the potential regulators of cluster D have been classified

into two groups according to their time lags: one group of cluster A and B with two

time units as the time lag and another group of cluster C with one time unit as the

time lag. To identify all possible co-regulators of cluster D, we generate all subsets

of each group and examine the relationships between every subsets of co-regulators.

For the first group, the possible subsets are {cluster A}, {cluster B} and {cluster

A, cluster B} and the subset of second group is {cluster C}. For each subset, a

matrix like (3.7) is constructed based on the corresponding time lags and number

of regulators. We then calculate the conditional probabilities of target cluster with

respect to its regulators based on the matrix containing aligned expression levels.

For each target cluster, we calculated marginal likelihood scores for every subsets

of potential regulators using their conditional probabilities and the one has highest

score is selected as the final regulator for this target.

We use the algorithm proposed by Murphy et al. (1999) for DBN inference. The

idea of this algorithm is to select the optimal model that maximizes the following
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conditional probability,

P (G|D) = P (D|G)P (G)
P (D) , (3.8)

where G denotes the network structure and D denotes the observed data.

3.2.3.4 Analyzing gene functions

Genes with a similar profile pattern in each cluster usually share the common

biological functions. Gene ontology (GO) analysis enable us to figure out what

function is shared by genes in a cluster. Therefore, based on the clustering results

in step 1 and regulation network established in step 2, we perform function analysis

in this step. Different from traditional clustering approaches, functional clustering

model developed in Chapter 2 allows environment-dependent expression plasticity

to be clustered, producing results directly related to the mechanistic machineries of

gene expression induced by environmental signals. Through GO analysis, we can

shed more light on the regulation mechanisms underlying cellar and physiological

processes.

3.3 Real data analysis

We demonstrated the application of the proposed procedure for GRN reconstruction

by analyzing a real data set of time series gene expression from the surgery study

of a rabbit bilateral vein graft construct (Jiang et al., 2004; Fernandez et al., 2004).

The study involved two different environments, created by two distinct blood flows

(differing by 6-fold) in vein grafts for New Zealand White rabbits (weighing 3.0-3.5

kg) resulting from the treatment of bilateral jugular vein interposition grafting and

unilateral distal carotid artery branch ligation, respectively. With a segment of the
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vein retained at the time of implantation for baseline morphometric measurements,

vein grafts were harvested at 2 hours, 28, 90 and 180 days after implantation.

Expression of 14,958 genes was recorded for each of these time points under both of

treatments, high flow and low flow. By combining the dynamic expression data from

the two treatments, we used the LOP-based functional clustering model in Chapter

2 to identify eight gene clusters, denoted as A (0.0116), B (0.0123), C (0.3354), D

(0.3831), E (0.1134), F (0.0359), G (0.0100) and H (0.0083), where the numbers in

parentheses are the proportions of genes belonging to a particular cluster. These

clusters each display different patterns of environment-induced changes in gene

expression trajectories. If we treat the mean expression curve for each cluster as

a representative profile, the DBN model can be applied to inferring interactions

between clusters. Since expression values were not measured at evenly spaced time

intervals, we used our adaptive DBN model to reconstruct GRN, respectively, for

high and low flows.

Figure 3.8 illustrates three different networks of gene expression under high

and low flows and the difference of gene expression between the two flows. It is

interesting to see that the structure of GRN is different dramatically between the

two flows, although with some extent of similarity. Under high flow, cluster A is

regulated jointly by cluster F and G. Meanwhile, cluster F and G are regulated

by cluster H and B respectively (Fig. 3.8a). Under low flow, cluster A is regulated

only by cluster F, whereas the latter is regulated by two clusters, H and G (Fig.

3.8b). Thus, cluster A is regulated directly by cluster G under high flow, but such

a regulation operates through an indirect way under low flow. Under high flow,

cluster B plays a role in regulating cluster G, but this regulation role disappears

under low flow. For cluster C, D and E, since their expression patterns are relatively

flat over time in both environments, with no up- or down-regulation (See Chapter
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Figure 3.8: Networks inference for rabbit data set

2), they are not regulated by any clusters and also do not regulate other clusters.

We further made an inference of GRN based on the gene expression plasticity

between high and low flows. Gene expression plasticity is defined as the environ-

mentally induced alteration of gene expression, which is a capacity of the organism

to respond to its environment. Let µHj (t∗) and µLj (t∗) denote the mean expression

of cluster j at time t∗ under high flow and low flow, respectively. The expression
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plasticity of this cluster is defined as

∆µj(t∗) = µHj (t∗)− µLj (t∗) = Pr(t∗)
(
uHjr − uLjr

)
. (3.9)

The regulatory network based on expression plasticity data emphasizes the simi-

larities of gene groups in terms of their pattern of differential expression over two

different flows (Figure 3.8c). It was observed that cluster B, C and E which are

not expressed differentially between two flows have no regulation effects. This is

consistent with Chapter 2’s finding that their expression difference is close to zero.

On the other hand, the other clusters are heavily involved in the regulation (Fig.

5c) since they have significant differential expression according to hypothesis tests

performed in Chapter 2. It appears that cluster H plays a multiple role in affecting

the structure of GRN by regulating cluster A and F and by being regulated by

cluster D and G. Given this, cluster H links the mutual relationships between

discrete clusters D, A, F and G.

3.4 Computer Simulation

Yu et al. (2004) used simulation studies to investigate the influence of interpolation

on DBN modeling. Their results showed that DBN can benefit from moderate data

interpolation by reducing false positives. Here, we performed computer simulation

to evaluate the performance of our adaptive model by answering the following

questions: Is LOP-based interpolation better than non-interpolation in the case of

missing data? Is LOP interpolation is better than linear-interpolation? What is

the difference between even interpolation and uneven interpolation?

For each simulation, we follow the process shown in Figure 3.9.
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Figure 3.9: The process of each simulation

3.4.1 Simulation process

We generated simulation data of mean vectors for every cluster at every time point

with the process as follows:

Yt+1 = Yt +R (Yt −C) + ε (3.10)

Where Yt is a vector which denotes the expression levels of means for all clusters in

a regulatory network at time t. R is a design matrix used to define the regulatory

relationships between clusters. Let rij denote the entry of R at row i and column j,
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then the regulatory relationship between cluster i and cluster j could be interpreted

completely by rij. If rij = 0, then cluster j has no regulation upon cluster i. If

rij > 0, cluster j has activation upon cluster i. Otherwise, cluster j has repression

upon cluster i. Moreover, the strength of regulation is defined by the magnitude of

rij.

The constitutive expression value for each cluster is denoted by the vector C in 3.10.

Similar to Yu et al. (2004), 0 and 100 are set as the minimum and maximum

expression values and 50 set as constitutive value for all simulated cluster. There-

fore, a cluster with expression value larger than 50 plays the effect in the direction

specified in R while a cluster with expression value less than 50 plays the effect in

the opposite direction specified in R. The ε term drawn from a normal distribution

plays the role of biological noise.

The above procedure was used to generate mean expression values for each

cluster. The expression values for clusters with no regulators (entries of the corre-

sponding row inR are all zero) could be generated in a different way by moving these

clusters in a random walk according noise term ε. However, we let the trajectory of

expression level for a cluster move along a curve specified by an LOP. It is assumed

that expression values of genes within each cluster follow a multivariate normal dis-

tribution with cluster-specific mean vectors and covariance matrix. We assume that

the covariance follows an autoregressive structure described by a correlation and

variance (see Chapter 2). Therefore, we generate data for clusters without regulator

with a LOPs model then generate data for clusters with regulators by process (3.10).

Let’s define µi = (µi1, µi2, · · · , µiT )T as the mean vector of cluster i, where

1, 2, · · · , T denote time points when expression levels are measured. Then, we have
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the relationship between Y and µ as shown in (3.11).

Yt =



Yt1

Yt2
...

Ytn


=



µ1t

µ2t
...

µnt


(3.11)

After deciding the regulation relationships in matrix R, we first simulate mean

vectors for all clusters which have no regulator. For such a cluster, say cluster

i, a base mean ui is specified first, after which the mean vector µi is obtained

through LOPs with calculations similar to (3.4). Mean vectors for clusters which

have regulators are also generated. At a time point t, the expression values for

all clusters are generated by (3.10) based on previously simulated data. We note

that the expression values of cluster i is also updated and maybe different from

the values gotten from LOPs. Therefore, those values need to be replaced with the

ones from LOPs. This procedure is illustrated in (3.12).

Yt =



Yt1

Yt2
...

Yti
...

Ytn



=



Yt1

Yt2
...

µti
...

Ytn



(3.12)
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3.4.1.1 Generation of expression levels of genes

We assume that expression values of genes within each cluster follow multivariate

normal distribution with mean µ and covariance matrix Σ. From Chapter 2, we

know that Σ can be determined by σ and ρ in the form of (3.13).

Σ = σ2



1 ρt2−t1 ρt3−t1 · · · ρtm−t1

ρt2−t1 1 ρt3−t2 · · · ρtm−t2

... ... . . . ... ...

... ... ... . . . ...

ρtm−t1 ρtm−t2 ρtm−t3 · · · 1


(3.13)

By specifying the values of σ and ρ, we can have Σ for each cluster. Expression

values of genes can be drawn from multivariate normal distribution with parameters

Σ and mean vector generated in previous section in a straightforward way.

3.4.1.2 Estimating base means for each clusters

After generating gene expression values for every clusters, they are pooled together

and the clustering model we proposed in Chapter 2 is applied for grouping. As shown

in Chapter 2, LOP-based functional clustering performs very well in classifying

genes into distinct clusters. Here, we focus on the inference of GRN from our

procedure. Therefore, we work on the clusters data separately instead of pooled

data. i.e. we analysis the data of each cluster with applying a one-component

clustering to use EM algorithm for estimating the base mean for LOPs. These

means will be used in next step for interpolation.

58



3.4.1.3 DBN inference

The approach presented in Section 3.2 is used to analysis the structure of regulator

network over clusters. Using the base means estimated in previous step, we can

interpolate expression values if needed. The reconstructed networks are then

compared with true relationships specified by matrix R and the performance of

our method will be evaluated based on the comparison results.

3.4.1.4 Performance evaluation

To evaluate the performance of our interpolation method, we define two metrics,

positive predictive value (PPV) and false negative rate (FNR) as follows:

PPV = TP

TP + FP
(3.14)

FNR = FN

TP + FN
(3.15)

Where TP denotes true positive (regulatory relationships exist in both re-

constructed network and true network), FN denotes false negative (regulatory

relationships exist only in true network), TN denotes true negative (regulatory

relationships do not exist in either network) and FP denotes false positive (regu-

latory relationships exist only in reconstructed network). Essentially, PPV is the

proportion of TPs in the reconstructed network and FNR is the proportion of TPs

which are not identified successfully Therefore, we prefer a higher PPV and a lower

FNR.

In each of the six randomly simulated networks, we have 20 genes and about 10
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Figure 3.10: A true nework and the corresponding reconstructed nework

regulatory relationships in each network. For each relationship, we randomly assign

a possible regulation strength, 0.05, 0.1, 0.15 or 0.2. A simulated true network

is shown in Figure 3.10. For each of the regulatory network, we generate 100

sets of expressions so we have totally 600 simulated networks. By comparing the

reconstructed networks with true ones, PPV and FNR were obtained.

3.4.2 Results

Whether or not LOPs interpolation is helpful for DBN inference? We

first pick up the simulation expression values at time point 10, 50, 90, · · · in the

simulation run as analogous to a time course microarray expression data. We

then interpolate one or three points in each interval with LOP to have two more

data set. Therefore, we have 3 data set: {Y10,Y50,Y90, · · · }, {Y10, Ŷ30,Y50, · · · }

and {Y10, Ŷ20, Ŷ30, Ŷ40,Y50, · · · }, where we use Ŷ to denote interpolated value.

From the comparison of a reconstructed network (Figure 3.10b) with true one
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Figure 3.11: Results of simulations

(Figure 3.10a), it was observed that most edges in true network have been identified

but many false edges have also produced.

We evaluate the overall quality of all reconstructed networks from those simu-

lated data sets. The results in Figure 3.11a show that interpolation does help to

reduce the FNR; the FNR for the non-interpolated data is 58.85% while it is 40.66%

for the data with 3 interpolation points for each interval. Moreover, interpolation

also improved the PPV from 20.38% to 23.99% . Therefore, GRN reconstruction

can benefit from interpolation with the LOP.

Whether is LOP interpolation better than linear interpolation? Follow-

ing the same scenario above, we first pick up the simulated expression values at

time point 10, 50, 90, · · · in the simulation run first, after which we interpolate one

or three points in each interval with LOPs and linear method separately to have
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four more data set.

The results in Figure 3.11b show that LOP interpolation has better performance

than linear method; the FNR is also reduced by linear interpolation but only from

58.85% to 50.47% when there are three points interpolated . Liner interpolation

also has less improvement of PPV, from 20.38% to 22.63%.

What is the difference between even interpolation and uneven interpo-

lation? In this case, the simulated expression values at time point 10, 20, 30, · · ·

are picked up in the simulation run. We randomly drop 1 to 3 consecutive points

as analogous to unevenly measured expression data.

Suppose we have {Y10,Y20,Y40,Y80,Y110, · · · } after dropping, we interpolate

the missing points by LOP to have {Y10,Y20, Ŷ30,Y40, Ŷ50, Ŷ60, · · · }. The quality

of recoveried network from this dataset will be compared with the one from the

original data set of {Y10,Y20,Y30,Y40,Y50, · · · }.

The comparison results are shown in Figure 3.11c. Obviously, the quality of

reconstructed network form LOP-interpolated data is worse than that from true

data. We can see that the FNR raised from 35.27% to 43.53%, while the PPV

dropped from 28.20% to 23.63%. Therefore, it is not too worse and the most

important thing is that LOP-interpolation make DBN model doable even when

the measurements are not evenly spaced which is the case commonly happened in

practice.

3.5 Conclusion

Many biological processes, including plant and animal development, disease patho-

genesis and surgical recovery, are coordinated by cell-to-cell communications under

the regulation of genes. High-throughput measurement techniques have now made it

feasible to identify tens of thousands of genes at a time involved in sensing external
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cues. The understanding of the relationships between genes and biological functions

has become one of the hottest and most promising aspects in contemporary biology

(Barabási et al., 2011; Gerstein et al., 2012). However, the dynamic interplay of

genes is highly complex and cannot be understood by a simple approach (Brazhnik

et al., 2002). The reconstruction of gene regulatory networks has proven to be a

valuable tool for identifying the key mechanisms that shape the dynamics of cellular

and transcriptional processes (Zhu et al., 2012; Yosef et al., 2013; Hecker et al.,

2009).

Modeling of biological regulatory networks regulated by gene expression using

dynamic Bayesian networks has been popular since Murphy et al. (1999)’s pioneering

work. However, the requirement of evenly spaced measurements limits its widespread

application. Time series records of gene expression are usually based on the distinct

phases of biological processes (Quint et al., 2012), some of which receives more dense

measurements than the others. Furthermore, increasing computational studies tend

to integrate gene expression data from different experiments, in order to gain a

comprehensive regulatory network underlying a biological phenomenon (Hecker

et al., 2009). Because of these, the time series data of gene expression for GRN

reconstruction are generally sparse and irregular. Despite tremendous efforts to

model sparsely measured gene networks (Yu et al., 2004), a systematical procedure

for DBN modeling using such imperfect data has still not been available in the

literature.

In this chapter, we reformed DBN modeling by interpolating missing data

points based on functional clustering (Kim et al., 2008, 2010). The new model can

handle any dynamic gene expression data, no matter they are evenly spaced or not,

thereby providing a broader tool in computational biology. The model was used

to analyze two time series data sets of gene expression measured for vein bypass
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grafts in rabbits that receive two distinct treatments, high and low blood flow. The

similarity and difference in the structure and organization of genetic networks can

be identified under high and low flow, providing new insights into the mechanisms

of how genes regulate each other to determine final phenotypic formation. We have

performed extensive simulation studies to demonstrate the practical usefulness and

utility of the new model. It should be noted that the functional clustering model we

used is under the assumption of independence among different clusters. A general

model that does not rely on this assumption has been developed by Zhang (2013).

The implementation of Zhang (2013)’s epistatic clustering may glean additional

insight into the results of clustering dynamically differentiated genes and GRN

reconstruction.

The past decade has witnessed tremendous milestones in high-throughput

sequencing and large-scale data generation because of improvement in the accuracy

of these techniques and their cost reduction for the required sample size. These

developments enable researchers to not only dissect genomes but also unravel the

regulatory interactions that allow genomes to regulate cellular structure, function,

and behavior. The new model modified from a commonly used network modeling

approach will find its widespread application given the popularity of collecting and

using high-throughput expression data in human and other model or non-model

systems. The model emphasizes on transcriptional data, but can be refined and

extended to integrate multiple data types, such as mRNA and microRNA (miRNA)

expression data, TF DNA-binding data, and protein interaction data (Bolouri,

2014). Also, the model should be linked to complex phenotypes or diseases within

a causal-effect network framework toward identifying phenotype- or disease-causing

perturbations. The model can be further perfected to readily determine the time

of onset and duration of transcriptional activity and the magnitude of expression
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of particular genes. Finally, the nature and topological features of regulatory

networks may vary among different individuals, thus the identification and mapping

of network-controlling quantitative trait loci (nQTLs) would be important for the

prediction of network behavior.
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Chapter 4 |
Inference of gene regulatory net-
work through ordinary differen-
tial equation

4.1 Introduction

Cell survival and phenotypic characteristics of organisms are crucially affected

by genes encoded on the genome as well as their products. Properties of these

products including abundance and temporal pattern, which are governed by gene

regulatory networks, play important roles in the process of life. Genes, regulators

and regulatory connections between them, together with an interpretation scheme,

form a biological regulatory system. Though proteins are usually the regulators,

small molecular, like RNAs and metabolites, sometimes also participate in the

overall regulation (Aluru, 2005). To abstract all interactions of proteins and

metabolites in a living system, we use a gene regulatory network to describe genes

acting on other genes (indicated in Figure 1.6 by dashed lines). One can gain

not only new insights into the causality of transcriptional and cellular processes
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but also the complex regulatory mechanisms that underlie biological function and

phenotypic characteristics by reconstruction of gene regulatory network using gene

expression data.

In the past decade, increasing efforts have been made to reconstruct GRN

by developing either model based or machine learning based approaches based

on the availability of high-throughput data (Barabási et al., 2011; Zhu et al.,

2012; Zhang et al., 2013; Wang et al., 2013). These approaches have enabled

ones to refer the complex regulatory mechanisms that underlie biological functions

and phenotypic characteristics (Gerstein et al., 2012; Hurley et al., 2012). Given

that life is a dynamic process (de Lichtenberg et al., 2005), a considerable body

of models have been proposed successfully to reconstruct dynamic GRN from

expression data measured across a time and space scale. Typical models include

vector autoregressive and state space model (Shimamura et al., 2009; Kojima et al.,

2009), differential equation model (De Jong, 2002; Lu et al., 2011; Wu et al., 2014),

dynamic baysian network (Murphy et al., 1999; Zou and Conzen, 2005; Yu et al.,

2004) and dynamic boolean network model (Thomas, 1973; Bornholdt, 2008).

Most of these approaches such as the vector autoregressive and state space models

require intensive time-series data to estimate the model parameters. Also, high

computational cost is needed for these model, which limit us to inference only

small-scale network.

Dynamic Bayesian network (DBN) modeling has been increasingly used to

reconstruct GRN for the temporal pattern of transcriptional interactions in a time

course (Murphy et al., 1999; Zou and Conzen, 2005; Yu et al., 2004). But, there

is a major problem with DBN that, it requires the expression levels measured at

evenly spaced time points. In practice, time points at which gene expression is

recorded are usually uneven-spaced, determined on the basis of distinct phases of
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biological processes. We proposed a method in Chapter 3 to overcome this limit with

interpolation of data points based on functional clustering thereby the new model

should be able to find its broader application in computational biology. However,

we notice that certain information could be lost in the process of DBN inference

after data discretization. Therefore, in this chapter we focus on inference gene

regulatory network through approaches which works on continuous data directly

based on Ordinary Differential Equation (ODE) (Voit, 2000; Holter et al., 2001;

Aluru, 2005; Yeung et al., 2002; Lu et al., 2011).

Ordinary differential equations have been successfully used in the models for

reconstruction of gene regulatory network (De Jong, 2002). By constructing

differential equations for each individual gene with expression measurements at

multiple time points, these approaches have been used to identify gene regulations

within genomic networks during a period of biological process. Although the

mathematic functions used in differential equations can take any forms to quantify

the regulation effects, nonlinear specification of regulation functions requires very

high computational cost which limits its application only suitable for small-scale

network (Weaver et al., 1999; Sakamoto and Iba, 2001; Spieth et al., 2006; Wu

et al., 2014). Wu et al. (2014) proposed a nonlinear ODE model by approximating

the nonlinear regulation using spline functions and established its asymptotic

properties. However, that model still suffered from the cost of computation, so that

the simulation studies were conducted based on a system with only eight coupled

ODEs and the model was applied on a real data set with only 58 genes.

Most of ODE models construct differential equations for individual genes.

Consequently, they have a common requirement that, a large number of replicates

for each gene are needed to reduce measurement noise and estimate the true profile

curves. Therefore, they have difficulty to manipulate expression data with few
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replicates which are quite popular in practice due to the high cost of experiments. In

this chapter, we address this issue by integrating functional clustering approach into

the ODE model. The information of multiple genes can be combined together in

the procedure of clustering and provide us more power to estimate gene expression

trajectories accurately. Lu et al. (2011) developed a five-step ODE model based on

nonparametric cluster modeling. Though the five steps formed a comprehensive

procedure for analysis of gene expression, more steps may lead to larger accumulative

errors and reduce the accuracy of network inference. In our model, gene clustering

and mean function estimating are completed simultaneously in one step, so that

the model efficiency is improved and potential accumulative errors is reduced.

Furthermore, we have explicit forms of mean functions as well as its derivative that

help us in identifying the gene regulation effects. Consequently, parameter polish

in Lu et al. (2011) is no longer needed.

In addition, we integrate the information of transcriptional time lags into the

ODE modeling for the first time. Transcriptional time lag is defined as the difference

between the time when the regulator gene to encode its protein product and the time

when the transcription of the target gene to be affected by this regulator protein. By

realigning the expression of potential regulators and target genes according to the

transcriptional time lag, our model have more capability than previous ODE models

to detect true regulation relationships because the regulation effects of regulators do

not influence the expression of targets immediately. There are little biology support

for most of previous models that consider instant regulation effects which are rare

in reality. It is also not reasonable to consider effects over fixed time difference

such as one time unit because the time lags are variable over pairs of regulators

and targets. Moreover, while most of previous works including Lu et al. (2011)

and Wu et al. (2014) focus on gene regulatory network in a single environment,
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our model is equipped with unique power to integrate gene expression data from

multiple environments and enable us to explore the difference of gene regulation

effects under distinct environments. Therefore, it provides an unprecedented tool

to elucidate a comprehensive picture of gene regulation system.

This chapter is organized as following. In section 2, we describe the detailed of

our model which contains three stages. Then in section 3 we applied the proposed

procedure on a time-course gene expression data for a surgical study. In section 4

simulation studies are conducted for model validation. At last, we have a discussion

section to close the chapter.

4.2 Method

4.2.1 Ordinary Differential Equation Modeling

In a ODE method, the change rate of a gene expression (the derivative of expression)

is models as a function of expression values of all involved genes. It describe the

dynamic features of gene regulatory network by a directed network graph. A general

ODE model (Lu et al., 2011) for gene regulatory network can be written as

dX(t)
dt

= F(t,X(t),θ), (4.1)

where X(t) = (x1(t), x2(t), · · · , xq(t))T denotes the vector of gene expression

values at time point t for all gene 1, 2, · · · , q. F is a function with parameter θ which

is used to describe the regulatory effects, including positive, negative and feedback

effects, of other genes on a certain gene i. Though any function, no matter linear

or nonlinear, can serve as function F, prior knowledge about biological mechanisms
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is needed if F is nonlinear function. Also, high computational cost is expected

so nonlinear ODE is usually applied on small-scale network (Weaver et al., 1999;

Sakamoto and Iba, 2001; Spieth et al., 2006; Wu et al., 2014). Therefore, linear

ODE models for network inference is more popular in practice. Lu et al. (2011)

applied a simple liner ODE model as shown in (4.2).

dxi(t)
dt

=
q∑
j=1

θijxj(t), i = 1, 2, · · · , q. (4.2)

Where θij denote the regulation effects between genes. A five-step procedure

was proposed to identify GRN. They first used a nonparametric smoothing-based

mixture model to cluster genes into distinct groups. Then, a mixed-effect model

was applied to estimate the mean curve and its derivative of each group. The simple

linear ODE model based on gene groups had been be considered as a standard

regression model in statistics, then the significant regulatory effects had been

detected by variable selection method, smoothly clipped absolute deviation (SCAD)

(Fan and Li, 2001). Due to the fact that the estimates of mean curves and their

derivative may inherit large error, a nonlinear mixed-effects model was performed

to refine the estimates of parameters obtained from SCAD.

In practice the number of measurements for each gene is usually much smaller

than the number of genes, dimension reduction approaches are needed in this

situation due to the curse of dimensionality. In Chapter 2, we proposed a functional

clustering framework for identifying environment-specific gene groups. Similar to

Lu et al. (2011), we consider that cluster method works as a powerful tool for

dimension reduction which is crucial for linear ODE model. Since many genes have

similar profile patterns during certain period, they are not distinguishable based

on time course expression levels. Our functional clustering method enable us group
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those genes with similar profile pattern into different clusters. We can make the

network inference based on these clusters instead of individual genes. Since the

number of clusters is much smaller than the number of genes, we are able to reduce

the dimension of the ODE model dramatically. The ODE model for gene clusters

can be written as

G′k(t) =
J∑
j=1

βkjGj(t), k = 1, 2, · · · , J ; t = t1, t2, · · · , tT , (4.3)

where J is the number of clusters obtained in the clustering procedure, Gk(t) is

the mean profile for cluster k which is used as representative profile and G′k(t) is the

corresponding derivative. βkj is used to quantify the regulation effects. Additionally,

variable selection approaches could be applied to reduce dimension further. After

that, nonzero βkj is considered as significant regulation effect for reconstruction of

regulatory network.

4.2.2 Three-stage ODE procedure

In this section, we present a procedure for identifying gene regulatory network

based on time course gene expression data with three stages

1. Clustering gene into different groups and estimating the mean functions for

each clusters.

2. Detecting significant regulation effects between clusters by establishing an

ODE system in a linear regression setting and applying variable selection

method to identify regulatory relationships.

3. Analyzing gene functions through Gene Ontology with respect to gene groups

in the reconstructed regulatory network.
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4.2.2.1 Clustering gene into different groups

In the first stage, we use the clustering framework proposed in Chapter 2 for

detecting differential expression over environment to group genes. In this way, we

can reduce the dimension of the ODE model significantly and be prepared for the

inference in the next stage. The clustering process is reasonable because many genes

behave similarly during the experiment period thereby they are not distinguishable

based on time course microarray data. In addition, gene within a cluster usually

have same biological function. Therefore, they tend to have common regulation

effects on other genes.

The clustering framework we proposed in Chapter 2 integrates developmental

and environment-dependent programs of gene expression. Mathematical aspects

of gene expression dynamics are implemented into a mixture model setting by

considering the impact of environment on gene expression. Suppose there are n

genes each measured at T time points in L environments. Let yli = (yi(tl1), ..., yi(tlT ))

denote the gene expression data for gene i in environment l. Combining all the

environments, we have yi = (yi(t11), ..., yi(t1T ); ...; yi(tL1 ), ..., yi(tLT )). If these genes

are grouped into J clusters, this means that any one of genes (i) is assumed to arise

from one (and only one) of the J possible clusters. Thus, the phenotypic value of

gene i expressed at time tlτ in environment l is written as

yi(tlτ ) =
J∑
j=1

ξijµj(tlτ ) +
C∑
c=1

βcxic + ei(tlτ ) (4.4)

where ξij is an indicator for gene i, defined as 1 if this gene belongs to cluster

j and 0 otherwise, µj(tlτ ) is the mean of all genes belonging to cluster j at at

time tlτ in environment l, xic is the value of covariate c (c = 1, ..., C) for gene

i, βc is the effect of covariate c, and ei(tlτ ) is the residual assumed to follow a
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Gaussian distribution with mean zero and variance σ2(tlτ ). For longitudinal data,

residual errors at different time points may be correlated with covariance σ(tl1τ1 , t
l2
τ2)

(l1, l2 = 1, ..., L, l1 6= l2; τ1, τ2 = 1, ..., T, τ1 6= τ2). The residual variances and

covariance comprise a (TL× TL) covariance matrix Σ.

The distribution of gene expression data is expressed as the J-component

mixture probability density function, i.e.,

yi ∼ f(yi;ω,µ,Σ) =
J∑
j=1

ωjfj(yi;µj,Σ), (4.5)

where ω = (ω1, · · · , ωJ) is a vector of mixture proportions which are non-negative

and sum to unity; µ = (µ1, · · · ,µJ) contains the mean vector of cluster j; and

Σ contains residual variances and covariances among T time points over L envi-

ronments which are common for all clusters. The probability density function of

cluster j, fj(yi;µj,Σ), is assumed to be multivariate normally distributed with

TL-dimensional mean vector

µj =
(
µj(t11) +

C∑
c=1

βcxic, . . . , µj(t1T ) +
C∑
c=1

βcxic; . . . ;

µj(tL1 ) +
C∑
c=1

βcxic, . . . , µj(tLT ) +
C∑
c=1

βcxic

)
(4.6)

and covariance matrix Σ. Notice that µj contains gene-specific covariate effects.

The likelihood based on a mixture model containing J clusters can be written

as

L(Θ|y) =
n∏
i=1

J∑
j=1

[ωjfj(yi;µj,Σ)], (4.7)

where Θ is a vector of unknown parameters including the mixture proportions,

cluster-specific mean vectors, and covariance.
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Different from traditional treatments, we will incorporate mathematical and

statistical models to fit the mean-covariance structures. Specifically, we used AR

model for the covariance structures and a flexible nonparametric approach based

on LOP to model gene expression dynamics. Then, time-varying mean values

for cluster j in environment l in equation (4.5). can be expressed as a linear

combination of uljr weighted by the family of LOP, i.e.,

µlj(t∗) = Pr(t∗)uljr. (4.8)

We implement an EM algorithm to estimate model parameter and decide the

optimal number of clusters and optimal order of LOP by BIC criterion.

4.2.2.2 Detecting significant regulation effects between gene clusters

In this stage, we are detecting the significant regulation effects by using variable

selection methods. Similar to Chen and Wu (2008a,b) and Liang and Wu (2008),

we construct differential equations as a regression model,

yk(t∗) =
J∑
j=1

βkjxj(t∗) + εk(t∗), k = 1, 2, . . . , J ; t∗ = t∗1, t
∗
2, . . . , t

∗
T . (4.9)

where xk(t∗) = Ĝl
k(t∗), is the representative (mean) profile curve for cluster k in

environment l and yk(t∗) = Ĝ
′l
k (t∗) is its derivative. When we cluster genes into

function groups in the first stage, the estimate of the mean functions of time for

each cluster have been also obtained in the form of a linear combination of LOPs,

Ĝl
j(t∗) = Pr(t∗)ûljr. (4.10)
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Additionally, its derivative has the form of a linear combination of LOPs’ derivative

correspondingly,

Ĝ
′l
j (t∗) = P′r(t∗)ûljr. (4.11)

The error term εk(t∗) is introduced due to the fact that we plug the estimation

of differential equation variables into model (4.3). t∗ = t∗1, t
∗
2, . . . , t

∗
T are normalize

time points using formula (4.12) since LOP are defined in the interval [−1, 1]. The

time points t are not restricted to the original experimental time schedule since LOP

are continuous in the interval [−1, 1]. Therefore, we may interpolate measurements

between the original time points. D’haeseleer et al. (1999) and Bansal et al. (2006)

have justified that data interpolation can help us to have better estimation of

coefficients βkj.

t∗ = −1 + 2 (t− t1)
tT − t1

(4.12)

To detecting true regulatory relationships based on biological knowledge, we

incorporate the information of transcriptional time lags into the ODE modeling.

Transcriptional time lag is defined as the difference between the time when the

regulator gene to encode its protein product and the time when the transcription

of the target gene to be affected by this regulator protein. There are little biology

support for most of previous models that consider instant regulation effects; i.e.

transcriptional time lag is 0, because the regulation effects of regulators can not

influence the expression of targets immediately. It is also not reasonable to consider

effects over fixed time lags such as one time unit since the time lags are usually

variable over pairs of regulators and targets. The transcriptional time lag between

a regulator and a target gene is decided based on the determined initial regulation
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time points (See Chapter 3). We calculate the time difference between the initial

regulation time points for potential regulator and its target gene, which is considered

as a more accurate estimation of the corresponding transcriptional time lag (Zou

and Conzen, 2005). To integrate the time lag information, the time points for

potential regulators and targets are realigned. Suppose the time lag between a

regulator and its target is ∆t, then time point t for the target is aligned with the

time point t1 −∆t for the regulator. Consequently, our ODE regression model is

expressed as

yk(t∗) =
J∑
j=1

βkjxj(t∗j) + εk(t∗), (4.13)

where t∗j is rescaled version of tj = t−∆tkj and ∆tkj is the transcriptional time lag

between cluster k and cluster j. By realigning the expression of potential regulators

and target genes according to the transcriptional time lag, our model have more

capability than previous ODE models to detect true regulation relationships.

To identify significant regulation effects in the model (4.13), we apply variable

selection method for linear regression. Traditionally, a subset of predictors in

a regression model is obtained by forward selection, backward elimination, and

stepwise selection, but these approaches are computationally expensive and unstable

even when the number of predictors is not large. To overcome the computational

disadvantages and theoretical difficulties classical variable selection procedures,

alternative approaches have been developed, including ridge regression, bridge

regression (Frank and Friedman, 1993), least absolute shrinkage and selection

operator (LASSO) (Tibshirani, 1996), elastic net (Zou and Hastie, 2005) and the

smoothly clipped absolute deviation (SCAD) penalty (Fan and Li, 2001). All these

models can be unified in a penalized least squares framework. Suppose we have a
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linear regression setting

y = Xβ + ε, ε ∼ Nn(0, σ2In), (4.14)

where y is the vector of response variable, X = (x1, · · · ,xn)T is a n × d design

matrix and β = (β1, · · · , βd)T is the vector of regression coefficients. The penalized

least squares can be written as

Q(β) = 1
2 ‖ y−Xβ ‖2 +

d∑
j=1

pλ(|βj|) (4.15)

where pλ(.) is a penalty function indexed by the regularization parameter λ > 0,

and λ balances the accuracy of in-sample fit and the parsimony of final model. Fan

and Li (2001) argued that three statistical properties should be taken into account

for a good penalty function: sparsity, unbiasedness and continuity. Sparsity means

the small estimated coefficients can be set to zero automatically to reduce model

complexity. Unbiasedness refers that the estimates for the true large coefficients

should be unbiased. Moreover, we prefer the resulting estimator to be continuous

in the sense that the variable selections should be stable when the observed sample

changes slightly. Based on these principles, they suggested the SCAD penalty

function in the form of

p′λ(|β|) = λI(|β| ≤ λ) + (sλ− |β|)+

s− 1 I(|β| > λ) (4.16)

for some s > 2 and usually s = 3.7 is used. It has been shown that this SCAD

penalty function enjoys all the three properties. However, it is challenging to develop

numerical algorithms for SCAD estimator due to the singularity and nonconvexity
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of the penalty function. Fan and Li (2001) proposed a algorithm based on the

local quadratic approximation (LQA) of penalty functions and Newton-Raphson

algorithm can be used to optimize the penalized object function but suffered from

that a variable could not be added into the final model if it had been excluded

at any step in the LQA algorithm. Hunter and Li (2005) developed a perturbed

version of LQA to solve this problem but another tuning parameter needs to be

introduced into the model and its value cannot be determined easily. To address

these issues, Zou and Li (2008) proposed a new unified algorithm based on the

local linear approximation (LLA) of SCAD penalty functions as shown below.

pλ(|β|) ≈ pλ(|β(0)|) + p′λ(|β|(0))((|β| − (|β(0)|) (4.17)

They further proposed using one-step LLA estimator from the LLA algorithm as

the final estimates. It has been shown that the one-step LLA estimator can reduce

the computation cost dramatically and keep the statistical efficiency meanwhile. It

turns out that the least angle regression (LARS) (Efron et al., 2004) can be used

to optimize the object function yielded from LLA.

Recently, coordinate descent algorithm have been utilized as an alternative to

LARS algorithm when fitting penalized regression models like SCAD (Breheny and

Huang, 2011). Breheny and Huang (2011) have established theoretical convergence

properties of this algorithm when applying it on SCAD and also shown that it is

much faster than competing methods. Here, we employ SCAD model using the

coordinate descent algorithm to select significant regulation effects for a certain

target and reconstruct regulatory network over clusters according to the identified

effects including positive, negative and feedback ones.
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4.2.2.3 Analyzing gene functions

Beyond the topology of a gene regulatory network, we are also interested in

particular biological functions shared by genes with similar profile pattern within

each distinct clusters. These functions can be identified through gene ontology

analysis. Therefore, based on the clustering results in stage 1 and regulation network

established in stage 2, we perform function analysis in this stage by accessing public

database of gene functions such as Gene Ontology Consortium. Further more, since

we integrate environmental signals into our model, it is possible to identify the

change of regulation relationships between clusters from one environment to another.

This help us at a better position for understanding the regulation mechanism in an

organism in response to environment signals.

4.3 Real data analysis

In this section, we analyze a real data set of time course gene expression from the

surgery study of a rabbit bilateral vein graft construct (Fernandez et al., 2004;

Jiang et al., 2004) to demonstrated the application of the proposed procedure for

GRN reconstruction.There are two different environments in this study, low and

high blood flows (differing by 6-fold) conditions created in vein grafts for New

Zealand White rabbits (weighing 3.0-3.5 kg). They are from the treatment of

bilateral jugular vein interposition grafting and unilateral distal carotid artery

branch ligation, respectively. With a segment of the vein retained at the time

of implantation for baseline morphometric measurements, vein grafts, exposed to

either high or low flow, were harvested at six time points ranging from 2 hours to 28

days. We have a 35,000 feature microarray chip that covers the entire rabbit genome.

There are a number of genes that have been assigned hundreds to thousands of
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probe sets on the array. Using a more focused microarray dataset by collapsing

all corresponding probe sets into a single gene expression profile makes the most

sense. Therefore, we applied our clustering model proposed in Chapter 2 on the

condensed data set containing 9272 unique genes by collapsing the 35,000+ probe

sets. 29 distinct clusters have been identified according BIC criterion. The profile

plot of these clusters is shown in Fig. 4.1 and Fig. 4.2
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Figure 4.1: Expression trajectories of gene clusters 1 - 16 under high (H) and low
flow (L).

It can be seen that these clusters each display different patterns of environment-

induced changes in gene expression trajectories. SCAD method with coordinate
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Figure 4.2: Expression trajectories of gene clusters 17 - 29 under high (H) and low
flow (L)

descent algorithm is then applied to inference significant regulation effects between

clusters for both high and low flows conditions.

Fig. 4.3 illustrates two different networks of gene expression under high and

low flows. The nature of sparsity of GRN i.e. a target cluster could only have a

few regulator clusters, can be observed in both GRNs. In most case, the number

of regulator clusters for a specific target is between two and six. In addition, we

can observe that there are some main driving clusters in a GRN to serving as

regulators for many other clusters. For example, cluster 4 and cluster 12 are main
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Figure 4.3: GRN for high flow (a) and low flow (b).

driving clusters under both high and low flow. It is interesting to see that the

structure of GRN is similar between the two flows, although with some extent of

difference if we observe carefully. Detailed regulatory effects between 29 clusters

are summarized in Table 4.1. We can see that, under low flow condition, there is

one more driving cluster 28 (Fig. 4.3b), while it only works as target cluster under

high flow. It suggests that cluster 28 is more active under low flow condition which

can also be observed in Fig. 4.1. Meanwhile, cluster 29 is more active under high

flow condition.

It has been shown that intimal hyperplasia is a main factor leading to the failure

of vein bypass graft (Jiang et al., 2004). There are several processes involving

in the development of intermal hyperplasia after the vein implantation surgical

including endothelial cells (EC) apoptosis, smooth muscle cells (SMC) apoptosis,

EC proliferation, SMC proliferation, Proteoglycan synthesis, Collagen synthesis,

SMC migration, Matrix degradation and Monocyte influx, among others. We notice

that some processes such as EC apoptosis and SMC apoptosis happen within hours

after the implantation while some processes like Proteoglycan synthesis starts a
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Table 4.1: Regulatory effects between 29 clusters under high and low flow conditions.
The regulators of a gene specified in column 1 are listed in colum 2 and 4 for high
and low flow conditions, respectively. The regulation targets of a gene specified in
column 1 are listed in colum 3 and 5 for high and low flow conditions, respectively.

High Flow Low Flow
Cluster Regulator Target Regulator Target
1 4,12,19,29 17,23,25 6,12,23,28

2 4,19,29 3,5,6,7,8,11,12,14,17,
18,19,20,25,27,28,29 4,10,12,28

3 2,4,12,29 6,12,23,28

4 4,12,19,29

1,2,3,4,5,6,7,8,9,10,
11,12,13,14,15,16,17,
18,19,20,21,22,23,24,
25,26,27,28

4,12,19 2,4,6,7,9,12,13,15,16,
21,22,26,28

5 2,4,12,29 6,12,23,28

6 2,4,12,29 4,12,19,29 1,3,5,8,10,11,14,
17,18,20,24,27

7 2,4,12,29 4,10,12,28
8 2,4,12,29 6,12,23,28
9 4,15,19,29 4,10,12,28
10 4,12,19,29 29 6,12,23,28 2,7,9,12,13,15,16,22
11 2,4,12,29 6,12,23,28

12 2,4,12,29
1,3,4,5,6,7,8,10,11,
12,14,15,16,18,20,
21,26,27

4,10,12,28

1,2,3,4,5,6,7,8,9,10,
11,12,13,14,15,16,
17,18,19,20,21,22,23,
24,25,26,27,28,29

13 4,15,19,29 4,10,12,28
14 2,4,12,29 6,12,23,28
15 4,12,19,29 9,13,22,24 4,10,12,28
16 4,12,19,29 4,10,12,28
17 1,2,4,29 6,12,23,28
18 2,4,12,29 6,12,23,28

19 2,4,19,29 1,2,4,9,10,13,15,16,19,
21,22,23,24,26,28,29 12,19,25,28 4,6,19,21,26,28,29

20 2,4,12,29 6,12,23,28
21 4,12,19,29 4,12,19,28
22 4,15,19,29 4,10,12,28

23 1,4,19,29 12,23,28 1,3,5,8,10,11,14,17,18,
20,23,24,25,27,29

24 4,15,19,29 6,12,23,28
25 1,2,4,29 12,23,28 19
26 4,12,19,29 4,12,19,28
27 2,4,12,29 6,12,23,28

28 2,4,19,29 4,12,19,28

1,2,3,5,7,8,9,10,11,
12,13,14,15,16,17,18,
19,20,21,22,23,24,25,
26,27,28,29

29 2,10,19,29

1,2,3,4,5,6,7,8,9,10,
11,12,13,14,15,16,17,
18,19,20,21,22,23,24,
25,26,27,28,29

12,19,23,28 6

few days after implantation. In addition, it takes several weeks for the process of

Matrix degradation to be getting active from the implantation. From Fig. 4.1 we

can see that gene clusters 01, 12 and 16 have high expression in the early stage after
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Figure 4.4: Processes related to intermal hyperplasia after bypass implantation
surgical

implantation. Therefore, it is reasonable to conclude that they may play important

roles to the process of apoptosis. Similarly, gene clusters 04 and 08 could be related

to the process of Proteoglycan systhesis which happens a few days later than the

implantation. Under low flow condition, cluster 12 is the regulator of cluster 4

(Fig. 4.3) but this relationship does not exist under high flow condition. This

may indicate that the relationship between process of apoptosis and the process

of proteoglycan systhesis is weaker when the blood flow is low. Gene Ontolgoy

Consortium is a good resource for us to study the biological functions of genes in

clusters. Also, should the experimental biologist be suggested to explore the genes

in the aforementioned clusters and the corresponding functions could be confirmed.

4.4 Simulation study

In this section, we performed computer simulation to evaluate the properties our

model. The design of simulation study is based on a randomly generated ODE

network (Fig. 4.5). For each of the regulatory relationships, we randomly assigned

a possible regulation strength picked from 1, 1.6, 1.8, -1.5 or -1.8. The coupled
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ODEs are set up for each of the target clusters.

1

2

3

4

5

6

7

8

Figure 4.5: A simulated ODE network.

Based on the network shown in Fig. 4.5, the ODEs are set up as following.

dG1(t)
dt

= −1.5G8(t), (4.18)

dG2(t)
dt

= 1.8G5(t), (4.19)

dG3(t)
dt

= −1.5G8(t), (4.20)

dG4(t)
dt

= 1.8G6(t), (4.21)

dG5(t)
dt

= −1.8G2(t), (4.22)

dG6(t)
dt

= −1G7(t) (4.23)

dG7(t)
dt

= 1.8G6(t), (4.24)

dG8(t)
dt

= 1.6G1(t). (4.25)

After setting the initial values of each state variables G1-G8 by sampling from
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a normal distribution with mean 3 and variance 5, we solve the ODE system

(4.18)-(4.25) and generate the mean curves Ḡk(t) for all 8 clusters. For each

observation in a cluster, we combine its random departure from the mean trajectory

and measurement error with a random variable εk(tij) which follows a normal

distribution with mean zero and variance σ2 and σ2 = 0.10 or 1.00. Therefore, a

observation is simulated from

yk(tij) = Ḡk(tij) + εk(tij), i = 1, 2, · · · , T, j = 1, 2, · · · , qk, (4.26)

where T is the number of time points and we set T = 15, 25 or 100, qk is the number

of gene in each cluster.

As shown in Chapter 2, LOP-based functional clustering performs very well in

classifying genes into distinct clusters. Here, we focus on the inference of GRN

from our procedure. To evaluate the performance of our method, we use the two

metrics defined in Chapter 3, positive predictive value (PPV) and false negative

rate (FNR).

PPV = TP

TP + FP
(4.27)

FNR = FN

TP + FN
(4.28)

Essentially, PPV is the proportion of TPs in the reconstructed network and FNR

is the proportion of TPs which are not identified successfully Therefore, we prefer

a higher PPV and a lower FNR.

We generated 100 sets of expressions for the randomly simulated network and
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compared the reconstructed networks with true ones to obtain PPV and FNR.

Table 4.2: Simulation results for GRN reconstruction based on functional clustering
by using SCAD with coordinate descent algorithm. The values of average of PPV
and FNR are obtained from 100 simulated networks for each of different settings
of sample sizes and noise levels. The numbers in parenthesis are corresponding
standard deviations.

T = 15 T = 25 T = 100
Noise level PPV FNR PPV FNR PPV FNR
σ2 = 0.10 0.52(0.137) 0.17(0.114) 0.80(0.020) 0.28(0.014) 0.80(0.029) 0.01(0.029)
σ2 = 1.00 0.38(0.138) 0.34(0.144) 0.31(0.073) 0.17(0.108) 0.73(0.090) 0.01(0.017)

The simulation results are summarized in Table 4.2. We can see that, when the

number of time points is large (T = 100) and the noise level is very low (σ2 = 0.10),

the PPV is high (0.80) and the FNR is low (0.01). When the number of time points

is decreased to 25, the PPV is still 0.80 but the FNR is increased to 0.28. When we

have the smallest sample size (T = 15) and largest noise level σ2 = 1.00, the PPV

is reduced to 0.38 and the FNR is increased to 0.34. The aforementioned results

indicated that our model works great when the sample size is large and noise level

is low. It still perform well even when the sample size is reduced and the noise

level is getting larger.

4.5 Discussion

Many biological processes including plant and animal development are coordi-

nated by cell-to-cell communication regulated by genes (Chen et al., 2003). High-

throughput measurement techniques have now led to the identification of tens

of thousands of genes involved in sensing external cues. However, the dynamic

interplay between genes is highly complex and cannot be understood by a simple

approach (Sivriver et al., 2011). The reconstruction of gene regulatory networks

can be a valuable tool for identifying the key mechanisms that shape the dynamics
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of cellular and transcriptional processes (Zhu et al., 2012; Hecker et al., 2009).

It is getting popular to model biological regulatory networks regulated by gene

expression using Ordinary Differential Equation approach (Lu et al., 2011). However,

the reality of lacking of replicates for gene measurements limits its widespread

application.

In this chapter, we proposed an ODE model for inference of gene regulatory

network based on functional clustering method. This model has several advantage.

We cluster genes and estimate the mean functions simultaneously then make

network inference on gene clusters instead of individual gene to deal with the

problem of small number of replicates. Furthermore, we have explicit forms of

mean functions as well as its derivative thereby we can have precise estimation of

regression coefficients. Consequently, parameter polish in Lu et al. (2011) model is

not needed. Therefore, our model is more efficient with only three steps to establish

gene regulatory network: clustering gene into functional groups, model selection

to detect significant regulation effects and analyzing gene functions. In addition,

we take into account the environmental signals in our clustering framework. This

enable us to explore the difference of regulation effects among clusters under distinct

environments. Also, the information of transcriptional time lag is incorporated into

the model to help detecting true regulation effects.

In the past years, the accuracy of high-throughput sequencing have been im-

proved greatly by the advance of technology and the cost of large-scale data

generation have been reduced for the required sample size as well. These develop-

ments have enabled ones to unravel the regulatory interactions that allow genomes

to regulate cellular structure, function, and behavior based on dissection of genomes.

Given the popularity of collecting and using high-throughput expression data in

human and other systems, the new model proposed in this chapter will find its
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widespread application. Thought the model emphasizes on transcriptional data, it

can be refined and extended to integrate multiple data types, such as mRNA and

microRNA (miRNA) expression data, TF DNA-binding data, and protein interac-

tion data (Bolouri, 2014). To identify phenotype- or disease-causing perturbations,

the model should be linked to complex phenotypes or diseases within a causal-effect

network framework.
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Chapter 5 |
Summary and future work

5.1 Summary

In this dissertation, we introduce a clustering framework to integrates developmental

and environment-dependent programs of gene expression. We successfully integrate

environmental factor into clustering framework that enable us to perform statistical

comparison of gene expression in distinct environments. In addition, we reformed

DBN modeling for GRN reconstruction by interpolating missing data points based

on functional clustering. The new model can handle any dynamic gene expression

data, no matter they are evenly spaced or not, thereby providing a broader tool in

computational biology. Furthermore, we proposed an ODE model for inference of

gene regulatory network dealing with the continuous gene expression measurements

directly. This model enjoys several good properties; clustering genes and estimating

the mean curves for each cluster are conducted simultaneously, we have explicit forms

of mean functions as well as its derivative thereby we can have precise estimation of

regression coefficients. Benefiting from our functional clustering framework which

integrate environmental conditions into the model, we are able to analyze the

change of regulation effects between genes in response to environmental signals.
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Extensive simulation studies have been conducted to validate the performance of

proposed models and all model have been applied on real data set to demonstrate

their usefulness and utility.

The models emphasize on transcriptional data, but can be refined and extended

to integrate multiple data types, such as mRNA and microRNA (miRNA) expression

data, TF DNA-binding data, and protein interaction data. Also, the model

should be linked to complex phenotypes or diseases within a causal-effect network

framework toward identifying phenotype- or disease-causing perturbations.

5.2 Future work

5.2.1 Integrating prior knowledge into ODE model

Prior knowledge on biological mechanisms can help to construct differential equa-

tions even for nonlinear Weaver et al. (1999); Sakamoto and Iba (2001); Spieth et al.

(2006). However, we usually have little such prior information. This is one reason of

why linear ODE model is popular. Fortunately, we do obtain some information from

clustering. We consider only genes have either earlier or simultaneous expression

changes (up- or down-regulation) compared to targets could be potential regulators.

In other word, the genes which have a flat expression profile and do not have

up-regulation or down-regulation expression could not be a regulator nor a target.

Our DBN model has already take this advantage. For the rabbit data in Chapter

2, cluster C, D and E have flat profile patterns. They are not regulator nor target

in the gene network constructed by DBN model.

In the ODE model, every cluster has its own regression model so it is likely

to identify significant regulation effects for every cluster. We observe this in the

results of Chapter 4 (Figure 4.3). We can see every cluster has its regulator but

92



actually several clusters, such as cluster 11, 13 and 18, have flat profile and do

not express during the experiment period. Therefore, we may work on integrate

clustering information into ODE model to construct more reasonable differential

equations.

Also, we may improve our clustering model to have adaptive orders for each

cluster to avoid over-fitting flat clusters with high order of polynomials. Then these

flat clusters could be excluded from the regression models automatically.

5.2.2 Working on individual genes instead of gene clusters

There are several advantage to work on gene clusters for GRN study. First, it

enable us to make inference about gene expression when there is no or little

measurement replicate. Due to the cost of biological experiments, we usually have

2 or 3 measurement replicates for real data sets in the past time. The aim of

replicates is to reduce measurement errors. It is hard to make statistical inference

based on such a small sample size. With the method of clustering, we group gene

into clusters and consider the expression of genes with a cluster are iid samples.

Therefore, we can have a larger sample size to estimate more accurate mean curves

and then to reconstruct GRN. Second, the dimensionality of problem could be

reduced dramatically because the number of cluster is usually much smaller than

the number of genes. Consequently, more sparse networks are expected.

However, it is hard to give interpretation for a GRN based on cluster. In a gene

regulatory network, a node could be a cluster of genes, because several genes could

be regulated by the same set of regulators. However, there are 14,945 genes in the

real data set, and the average number of in one cluster is about 515. It is hard to

explain that 515 genes can be regulated by a same set of regulators.

With the fast development of high-throughput technology, the cost of experiment
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of gene expression is getting cheaper and cheaper. It is possible for us to have data

set with more replicates for each gene. Therefore, we are able to work on individual

genes rather than gene cluster to make inference of GRN. However, it is common

that the number of genes be more than a million. If we apply ODE model with a

regression setting, then we would encounter a ultra-high dimensional issues which

is very challenging for variable selection models.

Fan and Lv (2008) developed sure independence screening (SIS) for ultra-high

dimensional. The dimensionality of the problem could be reduced from a extreme

large scale p̃ to a relatively large scale p by using this variable screening technical.

Consequently, an existing variable selection method could be applied on the screened

data. Under some technical conditions including iid sample, it can be shown that

sure independence screening enjoys the sure screening property which ensure that

all the important variables will be retained in the the reduced p-dimensional model

with asymptotic probability one. In the ODE regression setting, the condition of

iid sample does not hold. We believe that SIS still could be applied though some

theoretical properties of it need to be verified.

In summary, when we have gene expression data with reasonable number of

replicates for each gene, our ODE model still can be used with the help of SIS

technology. In this case, we could have better interpretation of the reconstructed

network.

5.2.3 Models for next-generation sequence

All of our three models introduced in this proposal works on micro array data.

However, next generation technology like RNA sequencing is getting more and more

popular in modern gene expression studies. RNA-seq directly counts the number

of reads that map to the transcript while microarray measures a transcript by a
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continuous variable. Comparing to microarray, RNA-seq has several advantages,

including low background noise, large dynamic range of expression levels, and the

ability to measure the expression levels of unannotated genomic sequence.

We have been working on discrete RNA-seq data with models based on Poisson,

Skellam or Beta distribution. It may be straightforward to adopt the idea of DBN

on discrete data due to the fact that even continuous data need to be discretized in

DBN model. However, ODE model is originally working on continuous data thereby

reasonable transformation is needed to apply it on RNA-seq data. Efforts should be

made on normalization, clustering and network models for next-generation sequence

data.
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