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ABSTRACT

In recent years the interest in control of distributed parameter systems (DPSs) has

significantly increased in the chemical and advanced material process industries.

This is due to the need to synthesize control structures for complex transport-

reaction processes which are characterized by the coupling of chemical reactions

with significant convection, diffusion, and dispersion phenomena. Such processes

as exemplified by packed and fluidized bed reactors in chemical plants, reactive

distillation in petrochemical industries processes, most lithographic and deposition

processes in microelectronics and advanced materials manufacturing, and finally

crystal and glass production, exhibit spatial variations that need to be explicitly

accounted for by the controller.

An important observation is that the long term behavior of the above chemical

processes can be captured by a finite number of degrees of freedom; thus the

partial differential equation (PDE) descriptions can be effectively approximated by

reduced order models (ROMs) in the form of finite dimensional ordinary differential

equations (ODEs). For processes with nonlinear spatial operators and/or complex
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process domains, the ODEs can only be obtained via data-driven order reduction

methods. Their major shortcoming is that they require a representative ensemble

of solutions pre-exists for the process to be properly described, while there isn’t

a systematic method to ensure this important prerequisite. Currently, there is

a lack of systematic and computationally-efficient data-driven methodologies for

optimization and control of nonlinear PDE systems with complex spatial domains.

The proposed research will extend the applicability of control-oriented data-

driven nonlinear order reduction methods for dissipative nonlinear PDE systems.

The intellectual objective is to relax the requirement of a representative ensemble

of solutions and develop a systematic data-driven order reduction methodology

specifically tailored for control of PDE systems. It will thus resolve a fundamental

limitation of data-driven techniques for control synthesis of spatially distributed

processes. The main contributions of the proposed research can be classified as

(a) deriving a computationally efficient adaptive model order reduction framework

to circumvent the limitations of the current model order reduction techniques for

control of nonlinear DPSs, and (b) synthesizing advanced output feedback control

structures that can guarantee closed-loop stability and performance while (c) iden-

tifying criteria to minimize the required information for the controller structure

revisions.
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CHAPTER

ONE

INTRODUCTION

1.1 Distributed parameter systems in chemical

process industries

In the last twenty years the need for production of high purity chemicals and ma-

terials with complex structures, and efficient energy use in chemical and advanced

material industries have motivated research on processes development. As fabri-

cation processes become elaborate they necessitate the introduction of advanced

mathematical techniques for their modeling, simulation, analysis, optimization and

control.

Nonlinear distributed parameter models provide a natural framework for de-
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scribing distributed product properties as a function of process conditions in typ-

ical complex transport-reaction processes which are characterized by the coupling

of chemical reactions with significant convection, diffusion, and dispersion phe-

nomena. Such processes as exemplified by the ones in Table 1.1, exhibit spatial

variations that need to be explicitly accounted by the controller. The governing

models obtained from balance equations (momentum, material and energy) are

usually in the form of partial differential equations (PDEs).

Table 1.1: Complex processes with spatial variation in corresponding industries

1) Packed and fluidized bed reactors in chemical plants
2) Reactive distillation in petrochemical industries
3) Lithographic processes
4) Chemical vapor deposition, etching processes and plasma

discharge reactors in microelectronics manufacturing and
complex materials production

5) Crystallization and polymerization processes
6) Tin float bath processes in glass production

1.2 Mathematical formulation

We consider highly dissipative distributed parameter systems (DPSs) which can

be described by the following general form of input-affine PDEs,

∂

∂t
x̄(z, t) = Fn(z, x̄) +H(z, x̄) +B(z)u(t),

Γ(x̄,
∂

∂z
x̄, . . . ,

∂n−1

∂zn−1
x̄)
∣∣∣
∂Ω

= 0,

x̄(z, 0) = x̄i(z),

(1.1)
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where x̄ = [x̄1 x̄2 · · · x̄k]T ∈ Rk denotes the vector of spatially distributed states

of the system, z ∈ Ω ⊂ R3 is the spatial coordinate, Ω is the process domain and

t indicates the time. The term Fn presents the nonlinear differential operator of

order n, H denotes an algebraic smooth nonlinear Lipschitz function and u ∈ Rl

is the vector of manipulated inputs where l denotes the number of inputs. The

vector function of BT (z) describes the spatial distribution of the manipulated

inputs. The vector of Γ(·) presents the homogeneous boundary conditions defined

over the process boundary of ∂Ω, and x̄i is a smooth function that describes the

initial spatial profile.

The general nonlinear PDE system of (1.1) presents a wide range of dissipative

DPSs [205]. The PDE system is

1. linear, if and only if H is a linear function and the spatial differential operator

of Fn(z, x̄) takes the following linear form,

Fn(z, x̄) = αn(z)
∂nx̄

∂zn
+ αn−1(z)

∂n−1x̄

∂zn−1
+ · · ·+ α1(z)

∂x̄

∂z
,

2. semilinear, if and only if it is not linear and the coefficient of derivative of

order n in the spatial differential operator of Fn is only a function of the

spatial coordinate as follows,

Fn(z, x̄) = α(z)
∂nx̄

∂zn
+ g
(∂n−1x̄

∂zn−1
,
∂n−2x̄

∂zn−2
, . . . ,

∂x̄

∂z
, x̄, z

)
,
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3. quasilinear, if and only if it isn’t linear nor semilinear, and the coefficient of

derivative of order n in the spatial differential operator of Fn depends on the

spatial coordinate and derivatives of order strictly less than n as described

below,

Fn(z, x̄) = α
(∂n−1x̄

∂zn−1
,
∂n−2x̄

∂zn−2
, . . . ,

∂x̄

∂z
, x̄, z

)∂nx̄
∂zn

+g
(∂n−1x̄

∂zn−1
,
∂n−2x̄

∂zn−2
, . . . ,

∂x̄

∂z
, x̄, z

)
,

4. nonlinear, when it can not be classified as linear, semilinear or quasilinear

PDEs in the most general form of (1.1),

Fn(z, x̄) = h
(∂nx̄
∂zn

,
∂n−1x̄

∂zn−1
,
∂n−2x̄

∂zn−2
, . . . ,

∂x̄

∂z
, x̄, z

)
,

where α and g are possibly nonlinear functions and h is a nonlinear function.

According to such classification we obtain that

Linear PDE $ Semilinear PDE $ Quasilinear PDE $ Nonlinear PDE.

There also exists another classification for two dimensional second order linear

PDEs in the general form of

A
∂2x̄

∂z2
1

+B
∂2x̄

∂z1∂z2

+ C
∂2x̄

∂z2
2

+D
∂x̄

∂z1

+ E
∂x̄

∂z2

+ Fx̄+G = 0, (1.2)
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where A, . . . , G are constant coefficients. The PDE of (1.2) is called elliptic for

B2 − 4AC < 0, parabolic for B2 − 4AC = 0 and hyperbolic for B2 − 4AC > 0.

Note that a wide range of governing PDEs in the momentum, heat and mass

transfer processes can be classified in such standard linear forms.

We assume that the highly dissipative PDE of (1.1) has a unique sufficiently

smooth solution for the linear, semilinear, quasilinear and nonlinear forms. The

reader may refer to [205] to find the required solutions and detailed existence and

uniqueness discussions for different classes of PDEs.

Mathematical models for a wide range of transport-reaction processes and fluid

dynamic systems derived by momentum, mass and energy conservation equations

take the form of highly dissipative (typically parabolic) PDEs. The notion of

dissipativity which arises in a variety of physico-chemical processes indicates the

dissipation of some energy associated with the system. Such processes are con-

trasted with energy conserving systems called Hamiltonian systems [69]. Highly

dissipative PDE systems are characterized by dominant dynamics which can be

approximated using low-dimensional ordinary differential equation (ODE) models.

The PDE system of (1.1) can be presented as an infinite-dimensional system

in a relevant Sobolev space W(n−1),2(Ω,R), ∀i, j ∈ N, i > 1 and 1 6 j <∞,

Wi,j =
{
x̄ ∈ Lj(Ω) : ∂αx̄ ∈ Lj(Ω),∀α ∈ N, |α| 6 i

}
,

where Sobolev spaces are functional subspaces that consider functions for which
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all the distributional derivatives can be applied. We can define the inner product

and norm in L2(Ω) as

(ϑ1, ϑ2) =

∫
Ω

r(z)ϑT1 (z)ϑ2(z)dz, ‖ϑ1‖2 = (ϑ1, ϑ1)1/2,

where ϑT denotes the transpose of ϑ and r(z) is the weight function that is assumed

to be 1 in this work. Note that to simplify the notation we will use W to denote

W(n−1),2(Ω,R) in the rest of the thesis.

By defining the infinite-dimensional system state,

x(t) = x̄(·, t),

the nonlinear differential, nonlinear algebraic and the manipulated input operators,

F(x) = Fn(z, x̄),

H(x) = H(z, x̄),

Bu = B(z)u,

in an appropriate functional Sobolev subspace of W, the PDE system of (1.1) can

be represented in the following infinite-dimensional functional form

ẋ = F(x) + H(x) + Bu, x(0) = x0, (1.3)
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where x ∈W and

W(Ω) =
{
G ∈ L2(Ω) : ∀α ∈ N, |α| 6 n− 1,

∂αG ∈ L2(Ω), Γ(G, ∂G
∂z
, . . . ,

∂n−1G
∂zn−1

)
∣∣∣
∂Ω

= 0
}
.

To present the infinite-dimensional functional form of (1.3) in a normal form and

present the idea that is the basis for the proposed work, we have to find the basis

functions needed to discretize the system. Such basis functions must be computed

from the eigenproblem of the nonlinear operator of F as

F(φi)− λiφi = 0,

Γ(φi,
∂φi
∂z

, . . . ,
∂n−1φi
∂zn−1

)
∣∣∣
∂Ω

= 0,

i = 1, . . . ,∞,

(1.4)

where φi denote the i th basis function which corresponds to the i th eigenvalue, λi.

Assumption 1.1. The dynamics of highly dissipative DPS described by the non-

linear PDE of (1.1) with infinite-dimensional representation of (1.3) can be decom-

posed to two subsystem dynamics; (1) the finite slow subsystem that includes the

slow and possibly unstable modes of the system, and (2) the infinite complement

fast subsystem that contains the remaining fast and stable modes of the system.

We also assume that there is a time scale separation between the slow and fast sub-

systems and that a modal representation can be derived to capture the local system

behavior in a ball of radius O(
1

σ
) around current state where σ is a small number
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[76].

Then the system representation can be in practice identified by the sets of slow and

fast basis functions computed based on analytical or statistical methods. Based on

the assumption which is satisfied by the majority of transport-reaction processes

[76], the Sobolev subspace of W can be decomposed to a slow subspace, Ws and

its complement fast subspace, Wf .

Assumption 1.2. We assume that the countable corresponding sets of eigenfunc-

tions are strong generators of the defined general, slow and fast Sobolev subspaces,

i.e.,

W , span{φi}∞i=1, Ws , span{φi}mi=1, Wf , span{φi}∞i=m+1.

The projection operator of P : W → Ws and its complement operator, Q : W →

Wf , can be defined as

P(·) = (·,Φs),

Q(·) = (·,Φf ),

(1.5)

to decompose the infinite-dimensional system of (1.3) to the following modal vec-

torized slow and fast forms,

ẋs = Fs(xs, xf ) +Hs(xs, xf ) +Bsu, xs(0) = Px0,

ẋf = Ff (xs, xf ) +Hf (xs, xf ) +Bfu, xf (0) = Qx0,

(1.6)



9

where x = xs ⊕ xf , xs = Px ∈ Ws, xf = Qx ∈ Wf , Fs = PF , Ff = QF ,

Hs = PH, Hf = QH, Bs = PB, Bf = QB, Φs = [φ1 φ2 · · · φm]T and

Φf = [φm+1 φm+2 · · · ]T . In the modal infinite-dimensional system of (1.6), Fs is

a nonlinear bounded and Ff is a nonlinear unbounded differential operator, and

Hs and Hf are nonlinear Lipschitz vector functions according to the properties

of the nonlinear operator and function in the PDE system of (1.1). In addition

according to the assumption, the unbounded operator of Ff is exponentially stable

and generates a strongly continuous exponentially stable semigroup [76]. We can

compute the set of empirical eigenvalues and corresponding empirical basis func-

tions required to discretize the infinite-dimensional system of (1.3) in the form of

a partitioned set of ODEs of (1.6).

Neglecting the fast dynamics of (1.6) we can approximate the infinite-dimensional

system by the slow subsystem of

ẋs = Fs(xs, 0) +Hs(xs, 0) +Bsu, xs(0) = Px0, (1.7)

which can be directly used to design a low-dimensional controller employing stan-

dard control methods for ODEs [76]. To employ such finite-dimensional approx-

imation as the basis for the controller synthesis we must show that if the finite-

dimensional slow subsystem of (1.7) is exponentially stable, then the infinite-

dimensional system of (1.6) is also exponentially stable.
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1.3 Background on model reduction and control

of nonlinear distributed parameter systems

Over the last thirty years, significant research within the area of process control has

focused on analysis and control of lumped chemical processes described by nonlin-

ear ODEs. Excellent reviews of results in the area of nonlinear process control can

be found in [2, 61, 130, 153–155, 180, 189, 211]. In the last decade research focus

has also encompassed analysis and control of nonlinear DPSs. The research activ-

ity in this area has been motivated by a wealth of industrially important processes

(e.g., metalorganic vapor phase epitaxy (MOVPE), plasma enhanced chemical va-

por deposition (PECVD), Czochralski crystal growth and various fluid dynamic

systems) which exhibit significant spatial variations due to the presence of strong

diffusive and convective mechanisms.

Focusing on control and optimization, current approaches for PDEs can be

broadly classified into direct ones where solutions are obtained based explicitly

on the PDEs and indirect ones where nonlinear order reduction methodologies

are initially used to discretize the PDEs into an appropriate finite dimensional

ordinary differential equation (ODE) representation. Specifically for the latter

approaches, well-established optimization and controller design techniques have

now been developed. For processes with nonlinear spatial differential operators

or complex process domains, these techniques commonly hinge on a data-driven
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order reduction methodology. Their main limitation lies on the ad-hoc nature of

the data-driven order reduction step, that requires a representative ensemble of

solutions exists for the PDE to be properly discretized. This problem is usually

addressed through extensive simulations, thus increasing the computational cost of

the existing methods. Without hoping to present a comprehensive overview of the

excellent results in the area of control for spatially distributed systems, we focus

on a brief discussion of results in the area of control of dissipative DPSs.

Distributed chemical processes with significant diffusive phenomena can be de-

scribed by systems of linear or nonlinear PDEs. Parabolic PDEs are characterized

by a finite-number of modes that describe their dominant long-term dynamic be-

havior [244]. As a result, the standard approach to control of parabolic PDEs

utilizes modal decomposition techniques to obtain ODEs, which are then used

for controller design [44, 46, 80, 89, 117, 212, 229, 266]. A drawback of this

approach is the possibly high dimensionality of the resulting ODEs in order to

capture the PDE dynamics accurately, thus leading to high dimensionality of the

resulting controllers. Motivated by this, in [116] singular functions were employed

for linear PDEs to derive ODE models used for controller synthesis. In another

approach, the concept of approximate inertial manifolds [107–109] was employed,

leading to low-order ODE models that accurately describe parabolic PDEs, that

were subsequently used for nonlinear controller design [13, 18, 75, 78] and dynamic

optimization [20].
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Feedback controllers were also developed based on a combination of geometric

and control Lyapunov function techniques [5, 19, 76, 272], that compensate for

the effect of model uncertainty and handle constraints on the control action [99].

The developed nonlinear control algorithms were successfully applied to a variety

of advanced materials processes [12, 14, 17, 76] and fluid dynamic systems [15, 16,

42, 77]. The reader may refer to [45, 76, 140, 167, 254] for reviews on control of

nonlinear DPSs.

1.4 Statistical techniques for mode order reduc-

tion

The analytical approaches for model reduction cannot be directly applied to sys-

tems which have nonlinear spatial differential operators and/or to problems defined

over irregular spatial domains, since the eigenvalue-eigenfunction problem of the

spatial operator for these systems cannot be analytically solved in general, and it

is thus difficult to derive the basis functions to expand the solution of the PDE

systems. To overcome this limitation researchers have focused on data-driven

methods, where in data obtained from the system is used to obtain the required

basis functions. One such data-driven method, known as the method of snapshots,

which uses Karhunen-Loève expansions (KLE) (also known as proper orthogonal

decomposition (POD)), was proposed by Sirovich [133, 228]. This method has
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been extensively utilized to “empirically” compute the eigenfunctions using an en-

semble of solution data obtained either through experimental observations or from

detailed numerical simulations. This method has been profusely used in model

reduction [24, 113, 122, 134, 210], optimization [20, 22, 49–51, 59, 248], sensor

placement [3, 4] and control [16, 27, 224–226] of distributed processes.

Another methodology for model reduction of infinite-dimensional systems is

balanced truncation [83, 149, 165, 232, 280]. Balanced POD, which combines ideas

from POD and balanced truncation is used to compute balanced truncations, or

their approximations with computational cost similar to POD [214]. Balanced

POD was originally introduced for high dimensional linear systems and it uses

similar ideas to the method of snapshots for standard POD computations, however

there are now two separate datasets.

Dynamic mode decomposition (DMD) is also a relatively recently developed

method for modal decomposition [72, 215, 220]. DMD approximates the modes

of the Koopman operator, which is a linear, infinite-dimensional operator that

represents nonlinear, finite-dimensional dynamics without linearization [181, 182].

The method can be used for computing the eigenvalues and eigenvectors of a linear

model that approximates the underlying dynamics from empirical data even if those

dynamics are nonlinear. Unlike POD and the balanced POD, this decomposition

yields growth rates and frequencies associated with each mode, which can be found

from the magnitude and phase of each corresponding eigenvalue. Applications of
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DMD to experimental and numerical data can be found in [215, 220–222].

Proper generalized decomposition (PGD) is a powerful model reduction tech-

nique that computes a priori by means of successive enrichment a separated repre-

sentation of the unknown field. The computational complexity of the PGD scales

linearly with the dimension of the space wherein the model is defined, which is

in marked contrast with the exponential scaling of standard grid-based methods.

First introduced in the context of computational rheology [8, 9], the PGD has

since been further developed and applied in a variety of applications ranging from

the solution of the Schrödinger equation of quantum mechanics to computational

rheology [74].

To handle the situations where in the snapshots or data sets used are incom-

plete (gappy) [104] proposed a modification for the basic POD based methodology.

In the modification, especially focusing on image reconstruction, the basic POD

based methodology was combined with the least-squares approach to estimate the

necessary modal coefficients from the available incomplete data. The application

of this methodology was however extended to aerodynamic [247, 265] & fluid me-

chanics [258] problems. An extension of the gappy POD methodology was also

proposed [258, 269] to eliminate its dependence on the initial guess, used in filling

the missing data in a given data vector, while finding the best possible reconstruc-

tion.

The POD-based data-driven methods assume an a priori availability of a large
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ensemble of snapshots to correctly capture the incidence of new trends during

the process evolution using the basis functions computed off-line from the a priori

available snapshot ensemble. However, generating such an ensemble is not straight-

forward (and experimentally infeasible) as it necessitates using suitably designed

inputs to excite all the modes [122, 255]. This is especially relevant when con-

sidering the control problem; there is a need to extend the basis function set on

command as new trends appear [123, 124].

1.5 Thesis objectives

We propose to extend the applicability of indirect feedback control approaches for

dissipative PDE systems. Specifically, the intellectual objective of the proposed

research is to develop a systematic data-driven order reduction methodology that

is specifically tailored for control of PDE systems. The proposed work will resolve

fundamental computational issues associated with data-driven techniques in con-

trol policies for spatially distributed process systems. To achieve this objective,

the individual aims of the proposed research include:

Aim 1 Develop a computationally efficient data-driven algorithm for the deriva-

tion of nonlinear low-order, approximate models. This algorithm will relax

central requirements of data-driven model reduction techniques.

Aim 2 Construct practically implementable feedback control systems that can
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deal with the issues of nonlinearity, model uncertainty and constraints. Ex-

tend the control system applicability to cases when the availability of dis-

tributed sensors and actuators is restricted.

Aim 3 Illustrate the applicability of the controller design methods on industrially

relevant transport-reaction processes such as chemical reactors with imper-

fect mixing and a typical physico-chemical process described by Kuramoto-

Sivashinsky equation (KSE) and Korteweg-de Vries-Burgers (KdVB) equa-

tion.

A wide range of industrial processes will benefit from the proposed control method-

ologies including: a) microelectronics manufacturing and advanced materials pro-

cessing, e.g. chemical vapor deposition (CVD), wet deposition processes and etch-

ing, b) transport-reaction chemical processes, e.g. advanced catalytic reactors and

c) battery production industry. e.g. control of temperature profile in Lithium-Ion

(Li-Ion) batteries using proper sensors and actuators placement to avoid thermal

runaway and to manage charging and degradation.

1.6 Thesis structure

Chapter 2 briefly explains how adaptive proper orthogonal decomposition (APOD)

is used to construct the required empirical basis functions and update them on

demand. Such empirical basis functions are essential to develop the reduced order
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models (ROMs).

Chapter 3 is a version of Pourkargar D.B., Armaou A., “Design of APOD-based

switching dynamic observers and output feedback control for a class of nonlinear

distributed parameter systems”, Chemical Engineering Science, Special Issue on

Smart Plants, 2015, in press, DOI : 10.1016/j.ces.2015.02.032, which focuses on

the output feedback control problem of DPSs with limited measurement sensors. A

combination of a robust state feedback controller with a Luenberger-type nonlinear

dynamic observer of the system states is applied to synthesize a computationally ef-

ficient control structure based on APOD. The stability of the closed-loop system is

proved based on Lyapunov stability theorem for hybrid systems. The effectiveness

of the proposed control method is successfully employed to stabilize a physico-

chemical system described by the KSE when the open-loop process exhibits highly

nonlinear behavior.

Chapter 4 is a version of Pourkargar D.B., Armaou A., “Modification to adap-

tive model reduction for regulation of distributed parameter systems with fast

transients”, AIChE Journal, 59(12), 4595 − 4611, 2013, which addresses the dy-

namic observer based control problem of DPSs with limited state measurements by

employing entropic APOD methodology. The stability of the closed-loop system is

proven by Lyapunov stability criteria for hybrid systems. The proposed approach

is successfully used to regulate the KSE at an spatially invariant steady state pro-

file in the absence and presence of uncertainty when the open loop process exhibits
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highly nonlinear and chaotic behavior with fast transients.

Chapter 5 is a version of Pourkargar D.B., Armaou A., “Geometric output

tracking of nonlinear distributed parameter systems via adaptive model reduction”,

Chemical Engineering Science, 116, 418− 427, 2014, which focuses on the output

tracking control issue for DPSs with limited state measurements. A computation-

ally efficient regulator and output tracking controller structure is synthesized, by

combining a globally linearizing controller (GLC) with a dynamic observer of the

system states based on APOD methodology. The proposed synthesis method is

successfully employed to address the output tracking problem for a catalytic reac-

tor; specifically, the thermal dynamics of the reactor are controlled to reduce the

hot spot temperature across the reactor length using a limited number of actuators

and sensors to force the process evolution.

Chapter 6 is a version of Pourkargar D.B., Armaou A., “APOD-based control of

general linear distributed parameter systems in the presence of network communi-

cation constraints”, AIChE Journal, 61(2), 434− 447, 2015, and Pourkargar D.B.,

Armaou A., “Lyapunov-based control of dissipative distributed parameter systems

via adaptive model order reduction with minimum feedback information”, IEEE

Transaction on Automatic Control, 2015, under review, which focuses on model-

based controllers designed for linear and nonlinear distributed processes based on

restricted communication between the control system elements. We address the

modeling component question via APOD algorithm to recursively compute the set
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of empirical basis functions. The problem is that due to sub-sampling the empiri-

cal basis functions and modes may not be properly ordered. We employ APOD to

properly express the system while circumventing extensive off-line computations.

The main objective is to minimize snapshots transfer rate from the distributed

sensors to the controller, for ROM revisions, considering closed-loop stability. The

proposed control structure is illustrated on the temperature regulation problem of

a tubular reactor and the spatiotemporal dynamic regulation of a physico-chemical

system modeled by the KSE.

Chapter 7 is a version of Pourkargar D.B., Armaou A., “Dynamic shaping of

transport-reaction processes with a combined sliding mode controller and Luenberger-

type dynamic observer design”, Chemical Engineering Science, 2015, under review,

and Pourkargar D.B., Armaou A., “Spatiotemporal dynamic shaping of nonlinear

dissipative distributed parameter systems using empirical eigenfunctions”, Jour-

nal of Process Control, 2015, in preparation, which focuses on the spatiotemporal

dynamic shaping of semilinear DPSs by regulating the error dynamics between the

ROMs of governing and target PDEs. The required ROMs are derived by applying

Galerkin projection to the describing PDEs. The spatiotemporal error dynamics

between the governing and target ROMs are stabilized using a sliding mode con-

troller design combined with a Luenberger-type dynamic observer to estimate the

required states. The effectiveness of the proposed control structure is illustrated

on thermal dynamic shaping of a tubular flow reactor.
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Chapter 8 is a version of Pourkargar D.B., Armaou A., “Control of spatially

distributed processes with unknown transport-reaction parameters via two layer

system adaptations”, AIChE Journal, 61(8), 2497− 2507, 2015, Pourkargar D.B.,

Armaou A., “Adaptive output feedback control of transport-reaction processes”,

Journal of Process Control, 2015, in preparation, and Pourkargar D.B., Armaou

A., “Adaptive wave motion suppression in physico-chemical processes using two

layer system adaptations”, Automatica, 2015, in preparation, which addresses the

control problem of dissipative DPSs with unknown parameters which are modeled

by semilinear parabolic PDEs via model order reduction. The unknown parametric

changes have a significant effect on model order reduction approaches and the

resulting ROMs. We use the combination of APOD and Galerkin’s method to

construct the ROM that is the basis for adaptive controller design. The proposed

control strategy is illustrated on thermal regulation in a catalytic chemical reactor

in the presence of constant and time-varying unknown parameters and wave motion

suppression problem of fluid flow processes described by the KdVB.



CHAPTER

TWO

ADAPTIVE PROPER

ORTHOGONAL DECOMPOSITION

2.1 Preliminaries

As described in previous chapter, spatially distributed processes with reaction and

significant diffusion terms can be mathematically modeled by a set of nonlinear

dissipative partial differential equations (PDEs) [76]. Consequently, the infinite-

dimensional representation of such systems in appropriate Sobolev subspaces, can

in principle be decomposed to a finite-dimensional slow and possibly unstable,

and an infinite-dimensional fast and stable subsystems. Taking advantage of this

decomposition, the governing PDEs can be approximated by a finite-number of
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ordinary differential equations (ODEs). In detail, the solution of the PDE system

can be presented as an infinite-sum of spatial basis functions times time-varying

coefficients called modes. Then the infinite-dimensional ODE system for modes

can be derived based on the variants of weighted residual methods. The finite-

dimensional reduced order model (ROM) can then be derived by considering a

proper number of ODEs corresponding to the basis functions which capture the

dominant dynamics of the original PDE system. This standard strategy, named

model order reduction (MOR), has been frequently applied to address control,

monitoring and optimization problem of dissipative PDEs [44, 89].

On the basis of the above, when the set of basis functions are computed, the

PDE systems can be discretized and the ROMs can be constructed. However the

applicability of analytical model reduction methods to industrial processes is lim-

ited, due to complex nonlinear spatial dynamics and irregular domains. Statistical

techniques like proper orthogonal decomposition (POD) are usually used to bypass

this limitation and construct empirical basis functions [13, 18, 29, 77, 203, 228].

POD has been applied extensively in model reduction, optimization and control

of DPSs [13, 18, 77, 139]. It assumes the a priori availability of a sufficiently

large ensemble of PDE solution data in which the most prevalent spatial modes

are excited. In practice, it is difficult to generate such an ensemble so that all

possible dominant spatial modes are appreciably contained within the correspond-

ing snapshots. Therefore, the resulting basis functions are representative of the
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corresponding ensemble only. During closed-loop operation, situations may arise

when the existing basis functions fail to accurately represent the dynamics of the

PDE system. To circumvent this requirement an efficient recursive computation

algorithm, known as adaptive proper orthogonal decomposition (APOD), can be

used as additional data from the process becomes available.

As in all data-driven model reduction and control methodologies, initially, snap-

shots of the state profile during process evolution are gathered to construct an

ensemble of snapshots. We note that the initial data can be obtained either ex-

perimentally (by allowing the process to evolve with no control action for a short

period of time) or from previously obtained historical data, or via off-line numeri-

cal simulations of the PDE system of (1.1) by using simulation packages for PDE

systems such as Fluent and Comsol. Note that in previous methods, the ensemble

of solutions must be constructed by gathering state profile snapshots for different

values of u(t), and different initial conditions [20, 59, 122]; APOD disposes of this

requirement.

We use the off-line constructed ensemble of snapshots to construct the empirical

basis functions necessary for the derivation of finite dimensional ODE models.

During this off-line step of the proposed method, POD is used to compute an

orthogonal set of empirical basis functions to represent this ensemble, which by

extension also are basis functions of (1.1). A measure of the relative contribution of

each basis function to the mean square fluctuation of the ensemble is also obtained.
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POD yields the most efficient way for computing the basis functions which capture

the dominant patterns of the ensemble in a least squares sense [133]. We will

briefly present the key features of POD. The reader may refer to [115, 133, 228]

for a detailed presentation of POD.

2.2 A brief review to POD algorithm

Let v(z) = [v1(z) v2(z) · · · vK(z)]T be the ensemble of K snapshots of the sys-

tem, where vi(z) = x̄(z, ti). The empirical basis functions which are the most

characteristic spatial profiles can be obtained by an optimization problem,

max
(Ψ, v)2

(Ψ,Ψ)
,

s.t. (Ψ,Ψ) = 1, Ψ ∈ L2(Ω),

(2.1)

where (·) denotes the ensemble average. Generally, the solution of this optimiza-

tion problem of (2.1) is computationally very expensive since the search space is

infinite dimensional. To circumvent this issue, Sirovich introduced the method of

snapshots [228]. The central idea of this technique is to assume that the requisite

empirical basis functions can be expressed as a linear combination of the snap-

shots themselves. Under this assumption, the optimization problem can actually
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be solved algebraically, through the solution of the following integral eigenproblem,

∫
Ω

(
v(z)v(ξ)

)
Ψ(ξ)dξ = ΛΨ(z). (2.2)

An efficient approach to solve the above integral eigenproblem is via method of

snapshots [228] wherein the optimal set of required empirical basis functions are

presented by a linear combination of the snapshots,

Ψ(z) = Λ−1/2ZTv(z), (2.3)

where Λ indicates the diagonal matrix of the eigenvalues and Z is the matrix

of eigenvectors obtained from the solution of the following eigenvalue-eigenvector

problem,

CKZ = ΛZ, (2.4)

the elements of the positive semidefinite covariance matrix can be constructed

by obtaining the inner product of each snapshot with the rest of the ensemble

snapshots,

CK :=
1

K

∫
Ω

v(ξ)vT (ξ)dξ. (2.5)

The solution of the eigenproblem of (2.4) (obtained utilizing standard methods

from linear algebra [217]) yields K eigenvectors to construct K empirical basis

functions ψκ(z) for κ = 1, . . . , K that form an orthonormal set. By construction,
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matrix CK is symmetric and positive semi-definite, and thus, its eigenvalues, λκ for

κ = 1, . . . , K, are real and non-negative. The relative magnitude of the eigenvalues

represents a measure of the fraction of the “energy” embedded in the ensemble

captured by the corresponding empirical basis functions. We order the calculated

empirical basis functions such that λ1 > λ2 > . . . > λK . To obtain the dominant

empirical basis functions, we only consider the first m basis functions such that

their corresponding eigenvalues satisfies the following criteria

λm+1∑m
i=1 λi

≥ ε (2.6)

where ε denotes the desired fraction of the energy of the ensemble. The key steps

of the POD algorithm are presented in Table 2.1.

Table 2.1: POD algorithm

1) Collect the available snapshots in an ensemble, v.
2) Compute the covariance matrix of CK using (2.5).
3) Solve the eigenvalue-eigenvector problem of (2.4).
4) Order the eigenvalues and eigenvectors.
5) Keep the dominant eigenvalues and their corresponding eigenvectors.
6) Compute the dominant empirical basis functions using (2.3).

2.3 APOD

In this section we briefly explain how APOD is used to construct the empirical

basis functions required for ROM development and update them on demand.
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2.3.1 Algorithm

2.3.1.1 Off-line steps

Let v(z) = [x̄(z, t1) x̄(z, t2) · · · x̄(z, tK)]T be the set of K snapshots called the

ensemble, where x̄(z, tk) is the available snapshot at time tk. The off-line APOD is

applied to initialize the set of empirical basis functions that capture the dominant

ensemble patterns and to initiate an indicator that shows the relative contribu-

tion of such empirical basis functions to the entire energy of patterns inside the

ensemble. The covariance matrix of the ensemble, CK := (vT , vT ), is computed.

The computationally expensive eigenfunction problem of the spatial differential

operator is thus replaced by the eigenvector problem for the covariance matrix.

Without loss of generality it is assumed that m eigenmodes capture ε of patterns

energy of the ensemble, i.e.
∑m

i=1 λi/
∑K

i=1 λi ≥ ε, where λ1 > λ2 > · · · > λK . An

orthonormal basis obtains as

Z = [ω1 ω2 · · · ωm], Z ∈ RK×m

Λ = [λi]ii, i = 1, . . . ,m

(2.7)

where ωi denotes the ith eigenvector of CK that corresponds to the ith eigenvalue,

λi. Then the vector of basis functions, Ψ = [ψ1 ψ2 · · · ψm]T , is computed by a

linear combination of the system snapshots,

Ψ = Λ−1/2ZTv. (2.8)
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The resulting eigenspace of CK used to partition W into a dominant subspace,

P, that contains the empirical basis functions which capture ε of pattern energy in

the ensemble to approximate Ws and the orthogonal complement subspace, Q, that

contains the rest of the empirical basis functions to approximate the dominant part

of Wf [244]. Such a partition is possible due to the fact that the dominant dynam-

ics of highly dissipative PDEs are finite dimensional. The orthogonal projection

operators P and Q onto subspaces P and Q are obtained as

P = ZZT , Q = IK − ZZT , (2.9)

onto subspaces P and Q, respectively, where IK is the identity matrix. A detailed

analysis of the off-line APOD has been presented in [203, 228, 256].

2.3.1.2 On-line steps

During system evolution, the recursive algorithm updates the set of empirical ba-

sis functions once new measurements become available from the process. Such

orthonormal basis of subspace P is recursively revised, while the orthonormal basis

of Q is computed from the fact that Q is the orthonormal complement of P. The

mentioned recursive process is computationally efficient as long as the dimension

of P is small (which partly depends on choosing an appropriate value for ε and the

system characteristics).

Our task is to continuously refine the basis Z as new snapshots of the process
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become available. The algorithm we propose to develop will compute an approxi-

mation to Z without requiring the solution of the eigenvalue-eigenvector problem

of CK . We assume that the process is observable, i.e. the appearance of new

patterns is captured by the snapshots. The algorithm requires the dimensionality

of the covariance matrix to remain constant, which we will achieve by discarding

the oldest snapshot from the ensemble.

Specifically, when a new snapshot is obtained from the closed-loop process, it

is added to the ensemble and the oldest snapshot is removed, i.e., k = 1+kmodK

where mod denotes the modulus operator. Thus, the ensemble only includes the

most recent snapshots in each time step. Then the covariance matrix of CK is

revised based on the updated ensemble. Due to the covariance matrix updates,

the set of eigenvalues is revised, the dominant eigenspace and the set of empirical

basis functions are changed when needed. The subspace P may change in one of

the following three ways:

• One mode from Q becomes necessary to capture the desired ε percent of

energy in the ensemble, the dimension of the dominant subspace P must

increase.

• Some of the eigenmodes of the subspace P are no longer be necessary to

capture the required ε percent of the energy. In this case, the basis Z is

updated and its dimension is simultaneously decreased.

• The dimensionality of P remains unchanged, however the basis Z needs to
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be updated in order to account for the newly added snapshot.

The individual steps are discussed below:

Increasing the size of the basis. We first consider the case when one eigenmode

of subspace Q becomes dominant as a new snapshot is added, in the sense that the

associated eigenfunction becomes necessary to accurately describe the ensemble

of solutions. The eigenmode thus becomes an element of subspace P and leaves

Q. To monitor this eventuality we will observe the dominant eigenmodes which

belong to subspace Q. To achieve this we will identify a projection of the ensemble

to Q, cq and monitor the percentage contribution of the dominant eigenvalue of cq,

namely λm+1 towards the total energy of the ensemble. We define the percentage

contribution of λm+1 as ξ = λm+1/
m+1∑
i=1

λi. If ξ increases to more than (1 − ε) we

will increase the dimensionality of subspace P. We note that the eigenvalues λi ∀

i=1,. . . ,m can be computed by solving a small eigenvalue problem, while λm+1 can

be efficiently computed from cq.

Decreasing the size of the basis. As new snapshots are added and old snap-

shots are eliminated from the ensemble, the dominant eigenspace of CK contin-

uously changes. It is likely that during the process some of the eigenmodes in

subspace P, may no longer be necessary to capture the desired percentage of en-

ergy. In such cases, it is required to decrease the dimensionality of P to include the

dominant eigenspace only. To test whether it is required to decrease the size of the

basis we will define a projection H from the P to P using CK . If the null space of
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H becomes non empty it directly implies that the dimensionality of P is too large.

This can easily be captured by the eigenvalues of H which can be computed with

little computational effort as long as m remains small. If only m̂, with m̂ < m,

eigenvalues of H are dominant (in a sense that only m̂ eigenmodes are required to

capture ε percent of energy of the ensemble), then the dominant eigenfunctions of

H will automatically provide us with the basis for the revised dominant space P

of dimensionality m̂.

Maintaining the accuracy of the basis. During the process evolution it may

become apparent that even though the basis dimensionality remains the same,

there is an increase in the error between the new snapshots and the projection

identified using the “old” basis functions. The evaluation of the error is based on

the fact that the orthogonal projections P and Q should satisfy QCKP = 0. Hence,

the accuracy of the basis can be evaluated by computing the matrix E = QCKP . In

this case, an appropriate orthonormalization of the basis is performed to maintain

the accuracy of the basis. When the covariance matrix stops providing the con-

troller with relevant information the re-evaluation of the empirical eigenfunctions

is suspended.

A flow chart illustrating the APOD approach and the associated algebraic

computations are presented in Figure 2.1, where ξ denotes the contribution of

the dominant eigenvalue of cq = QCKQ, namely λm+1, towards the total pattern

energy of the ensemble, i.e. ξ = λm+1/
∑m+1

i=1 λi, and H = ZTCKZ is an m ×m
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matrix.

Remark 2.1. Consider the local subspace of the slow and unstable modes, Ws =

span{φ1, φ2, . . . , φs} and subspace P defined as P = span{ψ1, ψ2, . . . , ψm}, where

φi for i = 1, 2, . . . , s are the real basis functions of the system and ψj for j =

1, 2, . . . ,m are the set of basis functions computed based on APOD. We assumed

that Ws ⊆ P, locally, due to the excitation of the higher modes during the closed-

loop process evolution providing richer behavior than the slow subsystem would.

Remark 2.2. APOD does not need a high value of ξ as the slow subspace, P, is

updated whenever a mode of subspace Q becomes dominant thus capturing the new

trends that appear during closed-loop process evolution. However, during the closed-

loop simulation in the next section, we use a higher value ξ = 0.01 to emphasize

the changes in dimensionality of the slow subspace, P.

Remark 2.3. Once a change to the basis of the dominant eigenspace P is declared,

we refine the ROM and reconfigure the controller structure using the updated ROM.

This step assures that the ROM captures the impact of the controller on the pro-

cess and the new trends that appear when the process traverses new regions in the

variable state space during closed-loop operation. A further advantage is that as

new state information becomes available and the model is refined the model error

remains bounded.
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Figure 2.1: Flow chart of APOD. Blue boxes denote algorithm I/Os and green
decision steps.
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2.3.2 Modifications

As described before, the performance of the controller structure hinges on the local

validity of the ROM. To have a valid ROM it is necessary to update the ensemble,

used for computation of the basis functions, based on the new snapshots arrived

from the system during the process evolution. So far the newest snapshots are

considered in the ensemble. In each time step during closed-loop process evolution

the oldest snapshot of the system, v1, will be replaced by the new snapshot obtained

by the periodic snapshot measurements. Thus, in each time step the ensemble only

includes the most recent snapshots. This data ensembling which previously used

is called the “original APOD”.

In the original APOD, the ensemble of the snapshots that is used to update

the basis functions only possesses the most recent snapshots. The procedure could

possibly lead to loss of previously important profiles as the process evolves away

from them and they are replaced by profiles that contain new information. If the

process revisits a previously accessed state space region, APOD has to recapture

the new trends as they reaffirm themselves leading to a lag in the ROM revision

that captures the new trends.

2.3.2.1 The most important snapshots approach

The modification analyzes the contribution of snapshots in P by normalized dom-

inant eigenvectors and search for the one which had the minimum 2-norm per row
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and eliminates the corresponding snapshot in the ensemble. To formulate the pro-

cedure, consider the contribution column vectors of D = {dj} and standardization

column vector of S = {sj}, respectively, as follows

dj = (PAP
T
A )jj (2.10)

where (·)jj indicates the diagonal element of (·) and

sj = ‖CK,j‖2, (2.11)

where ‖ · ‖2 indicates the 2-norm of vector (·) and CK,j means the jth row of the

covariance matrix and j = 1, . . . , K.

The normalized snapshot contribution column vector, N = {nj}, is defined

based on (2.12)

nj =
dj
sj
, j = 1, . . . , K. (2.12)

We eliminate the snapshot that corresponds to the element in the normalized

snapshot contribution vector that has the lowest value.

The ensemble condensation by most dependent snapshot elimination can be

performed before or after addition of the new snapshot in CK . If the elimination

takes place after augmenting the new snapshot to the ensemble, there is a possi-

bility to eliminate the new data at each revisions. To circumvent this problem, the

least important snapshots are eliminated before adding the new one, in order to
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have the most recent snapshot and also the most important ones. This is called

the “entropic APOD”.

A move to consider the most important snapshots instead of newest ones thus

leads to faster and more infrequent revision of the ROM when regions of the state

space are previously revisited. Control design based on this ROM leads to larger

region of accuracy which is important when dealing with model uncertainty and

fast evolving processes. Also the dynamic observer that is constructed based on the

basis functions from this entropic APOD is more insensitive to the available number

of point measurements and their locations; in most cases we can use only one sensor

without being concerned about sensor placement using robust nature of entropic

APOD. The other advantage of the refined approach is using smaller ensemble of

snapshots during the closed-loop process evolution that leads reduction in load of

covariance matrix computation and saving run-time. A flow chart illustrating the

revised APOD approach is presented in Figure 2.2.

Remark 2.4. The entropic data ensembling approach increases the computation

time of APOD by 10%. However it leads to more robust ROMs that require revi-

sions more infrequently, as will be illustrated in the application section.

Remark 2.5. In the proposed approach for model reduction the snapshots used

are obtained during closed-loop system evolution as opposed to most other proper

orthogonal decomposition-based reduction approaches that are based on open-loop

snapshots. Thus, these snapshots and the resulting ROM account for the impact
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Figure 2.2: Flow chart of entropic APOD. Blue boxes denote algorithm I/Os and
green decision steps.



38

of controller functional form on the process. It is important to note this intimate

relation between APOD and the controller.



CHAPTER

THREE

DESIGN OF LYAPUNOV-BASED

SWITCHING DYNAMIC

OBSERVERS AND OUTPUT

FEEDBACK CONTROL

In this chapter, we investigate the output feedback control problem of dissipa-

tive distributed parameter systems (DPSs) using limited number of continuous

measurements sensors. Specifically, our effort focuses on the efficient design of

switching dynamic observers based on adaptively updating reduced order models

(ROMs) and further on-line refinement from measurements during process evolu-
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tion. ROM updating is also based on the efficient construction of basis functions.

The important static observer requirements of available number of measurement

sensors being supernumerary to the ROM dimension and required designs for the

measurement sensors placement is circumvented using dynamic observer synthesis

that conceptually needs only one measurement output to compute the estimation

error and construct the dynamic observer structure.

The combination of adaptive proper orthogonal decomposition (APOD) with

a dynamic observer design method that is stable in the Lyapunov sense allows

us to synthesize nonlinear robust output feedback controllers that account for

model reduction error and uncertainty, and guarantee local regulation of the pro-

cess and output tracking. The assumption of separation principle is relaxed in

controller/observer synthesis.

During the controller/observer synthesis steps, first the design problem of out-

put feedback controller and dynamic observer is investigated between ROM re-

visions and Lyapunov stability is proved in the time period between two model

reconstructions. A supervisory scheme is subsequently designed to enforce closed-

loop stability to ROM revisions procedure. The proposed control structure is illus-

trated on the stabilization problem of the Kuramoto-Sivashinsky equation (KSE)

at an open-loop unstable steady state.
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3.1 Preliminaries

3.1.1 Class of nonlinear dissipative PDE

We consider processes with a nonlinear dissipative, input-affine, partial differential

equation (PDE) description in the following state space representation

∂

∂t
x̄(z, t) = A(z)x̄(z, t) + F(z, x̄) + b(z)u(t),

ym(t) =

∫
Ω

s(z)x̄(z, t) dz,

yr(z, tk) =

∫ t

0

δ(t− tk)x̄(z, t) dt,

(3.1)

subject to boundary conditions

q(x̄,
∂x̄

∂z
, ...,

∂n0−1x̄

∂zn0−1
) = 0 on ∂Ω, (3.2)

and initial condition

x̄(z, 0) = x̄0(z). (3.3)

In the PDE system of (3.1)-(3.3), t is the time, z ∈ Ω ⊂ R3 denotes the spatial

coordinate, Ω is the process domain with its boundary, ∂Ω. The vector of state

variables is denoted by x̄(z, t) ∈ Rn and u(t) ∈ Rl is the vector of manipulated

inputs. A(z) and F(z, x̄) present the dissipative linear and nonlinear parts of

the system spatial differential operator of order n0, respectively. Note that the

nonlinear operator is bounded Lipschitz. b(z) ∈ Rn×l is a smooth matrix function
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of z that describes spatial distribution of the control actions. q(·) is a smooth

vector function,
∂ix̄

∂zi
|∂Ω for i = 1, . . . , n0− 1, presents the spatial derivatives in the

direction perpendicular to the process boundary of ∂Ω and x̄0(z) is also a smooth

vector function of z.

Two types of measurement outputs are assumed to be available for the pro-

cess: (1) periodic distributed snapshot measurement output, yr(z, tk) ∈ Rn, and

(2) continuous measurement output, ym ∈ Rr, where r indicates the number of

continuous measurement sensors and tk shows the instance for snapshot measure-

ments. The spatial distribution of the continuous measurement sensors is denoted

by s(z). Note that the results of the current work are presented for x̄ ∈ R. We can

extend the results for x̄ = [x̄1 x̄2 · · · x̄n]T ∈ Rn, by considering each component

of x̄i for i = 1, . . . , n, individually [228]. The control objective is to stabilize the

dissipative DPSs described by the PDE system of (3.1)-(3.3) at a desired spatial

profile of x̄d(z, t). To implement the proposed method we consider the spatially

uniform steady state of x̄d(z, t) = 0 as the desired profile.

3.1.2 Infinite-dimensional representation

To present the results, we formulated the PDE system of (3.1) as an infinite-

dimensional system in an appropriate Sobolev subspace W(Ω,R) where the space

derivatives’ definitions are added to the subspace. We also consider the inner
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product and norm in L2[Ω] as

(ϑ1, ϑ2) =

∫
Ω

r(z)ϑT1 (z)ϑ2(z)dz and ‖ϑ1‖2 = (ϑ1, ϑ1)1/2

where ϑT is the transpose of ϑ and r(z) denotes the spatially distributed weight

function that is considered to be 1 in this work. By defining the state x on W(Ω,R)

as

x(t) = x̄(z, t), (3.4)

the differential operators

Ax = A(z)x̄,

F(x) = F(z, x̄),

(3.5)

and the input and measured output operators as Bu = b(z)u, Smx =

∫
Ω

s(z)x̄ dz,

the PDE system of (3.1) can be represented in the infinite-dimensional form

ẋ = Ax+ F(x) + Bu,

ym = Smx,

(3.6)

with initial condition

x(0) = x0. (3.7)

Based on bounded locally Lipschitz assumption for F , we can conclude that

F is a nonlinear smooth vector function that satisfies F(0) = 0 and is also locally
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Lipschitz ∥∥∥F(x1)− F(x2)
∥∥∥

2
≤ KL‖x1 − x2‖2 (3.8)

where KL is the Lipschitz gain in the above inequality.

Assumption 3.1. (state-space partitioning) The infinite-dimensional repre-

sentation of the system (3.1)-(3.3) in an appropriate Sobolev subspace, W, can be

partitioned into a finite number of slow (possibly unstable) and an infinite number

of fast and stable subsystems; also a time scale separation can be identified between

the two subsystems dynamics.

The analytical basis functions needed to discretize the infinite-dimensional rep-

resentation of the system in W, can be computed from the eigenfunction problem

of the operator A,

Aφi = λiφi, i = 1, . . . ,∞ (3.9)

subject to

q(φi,
dφi
dz

, ...,
dn0−1φi
dzn0−1

) = 0 on ∂Ω, (3.10)

where λi and φi denote the i th eigenvalue and the corresponding eigenfunction,

respectively.

Assumption 3.1. (restated) The ordered eigenspectrum of the operator A,

{λ1, λ2, . . . }, can be decomposed to a finite-dimensional set of p eigenvalues with

possibly positive real parts, {λ1, λ2, . . . , λp}, and an infinite-dimensional comple-

ment set of the remaining eigenvalues with negative real parts, {λp+1, λp+2, . . . }
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where the corresponding eigenfunctions to the two subsets of eigenvalues can be

presented as Φs = [φ1 φ2 · · ·φp]T , Φf = [φp+1 φp+2 · · · ]T . Also a time scale

separation can be identified between slow and fast subsets of the eigenvalues as

σ =
|Re(λ1)|
|Re(λp+1)|

where Re denotes the real part.

According to Assumption 3.1, we can decompose the Sobolev subspace, W, to

a slow subspace, Ws , span{φi}pi=1, and a complement fast and stable subspace,

Wf , span{φi}∞i=p+1, i.e., W = Ws ⊕ Wf . Then by defining the orthogonal

projection operators of P : W → Ws, P = (·,Φs) and Q : W → Wf , Q = (·,Φf ),

we obtain

x = xs + xf , (3.11)

where xs = Px ∈ Ws, xf = Qx ∈ Wf . Using such decomposition, the system of

(3.6) can be discretized in the form of a partitioned ODE set of vectorized modes,

ẋs = Asxs + Fs(xs, xf ) + Bsu,

ẋf = Afxf + Ff (xs, xf ) + Bfu,

ym = Smxs + Smxf ,

yr = Srxs + Srxf ,

(3.12)

subject to the following initial conditions

xs(0) = Px(0) = Px0,

xf (0) = Qx(0) = Qx0,

(3.13)



46

where As = PA(xs + xf ) = PAxs, Af = QA(xs + xf ) = QAxf , Fs = PF,

Ff = QF, Bs = PB, Bf = QB.

Assumption 3.2. (Observability and controllability) The PDE system of

(3.1)-(3.3) is assumed to be approximately observable and controllable [84].

Remark 3.1. The APOD algorithm requires the spatially distributed profile of the

system states (snapshots) at revisions to revise the set of empirical basis functions

during closed-loop process evolution. Consequently, we assume the existence of the

periodic distributed snapshot measurement output, yr(z, tk) ∈ Rn. Such required

snapshots can be accessible from periodic fixed or moving spatially distributed mea-

surement sensors, or be computed using in parallel high fidelity simulator. The

required snapshots at each revisions in the presence of partial sensor information

can be reconstructed by Gappy-APOD from previous spatially distributed profiles

[204]. Gappy-APOD reconstructs the required data via a two tier procedure for a

part of the spatial domain which was not measured. We can also address the snap-

shot construction problem by spatially distributed dynamic observers in the form of

PDEs which only use a limited number of fixed point measurement sensors. The

on-line snapshot construction problem to circumvent this basic assumption is the

subject of the authors’ current work.

Remark 3.2. The state-space partitioning assumption (Assumption 3.1) is satis-

fied by the majority of transport-reaction processes (see the catalytic rod example

at section 2, the catalytic packed-bed reactor example at section 4 in [75], chemical
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vapor deposition process [1, 178, 248] and plasma discharge reactor [172]). This

assumption validates the existence of only a few dominant modes that describe the

dynamics of the parabolic PDE system and enables us to approximate the PDE by

a finite-dimensional ODE system.

Remark 3.3. The controllability and observability of DPSs depend on the locations

of control actuators and measurement sensors, and specification of control objec-

tives, while the controllability and observability of the ROMs of DPSs additionally

depend on the discretization method used and the number and location of discretiza-

tion nodes [216]. In general chemical engineering processes are over-designed in

terms of observability where measurement sensors are placed in appropriate lo-

cations. One of the common approaches to actuator and sensor placement is to

select the locations based on open-loop considerations to ensure controllability and

observability. For further work on different aspects of actuator and sensor place-

ment based on controllability/observability and optimal measurement methods see

[21, 88, 251, 252] and the references therein.

3.2 APOD-based model reduction and controller-

observer synthesis

We investigate the design problem of output feedback control and dynamic observer

between ROM revisions; Lyapunov stability is proved in the time period between
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two consecutive snapshot arrivals and model reconstructions. Contrary to most

of the data-driven model reduction approaches which use only open-loop system

data, in the proposed APOD-based model reduction approach the required data are

obtained during closed-loop system evolution. Thus, the resulting ROM accounts

for the effects of controller actions on the process and the possible destabilizing

effect they may have even if they were initially neglected. The dynamic observer

and controller that are designed in this section will be refined based on stability of

hybrid systems adding a supervisory control scheme.

3.2.1 Finite-dimensional approximation using method of

weighted residuals

The finite-dimensional approximation of the infinite-dimensional PDE system of

(3.1)-(3.3) can be derived by the method of weighted residuals from the empirical

basis functions. x̄(z, t) can be generally described by an infinite weighted sum of

a complete vectorized set of empirical basis functions Ψ(z). The following approx-

imation can be obtained by truncating the series expansion of x̄(z, t) up to order

m:

x̄(z, t) '
m∑
k=1

ψk(z)ak(t)
m→∞−→ x̄(z, t) =

∞∑
k=1

ψk(z)ak(t) (3.14)

where ak(t) are known as system time-varying empirical modes. The following mth

order ODEs are derived by substituting (3.14) in the PDE system of (3.1)-(3.3),
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multiplying the PDE with the weighting functions, ϕ(z), and integrating over Ω:

m∑
k=1

(ϕv(z), ψk(z))ȧk(t) =
m∑
k=1

(ϕv(z),A(z)ψk(z))ak(t)

+
(
ϕv(z),F(z,

m∑
k=1

ψk(z)ak(t))
)

+ (ϕv(z), b(z))u,

v = 1, ...,m,

ym =
m∑
k=1

(s(z), ψk(z))ak(t).

(3.15)

The method of weighted residuals reduces to Galerkin’s projection when the weight-

ing functions, ϕ(z), are set to be the same as the empirical basis functions, ψ(z).

Then (3.15) can be presented in the compact form of

ȧ = Aa+ f(a) +Bu,

ym = Ca.

(3.16)

In the above equation, A, B and C denote constant matrices between revisions

and f is a Lipschitz nonlinear vector function, i.e.,

∥∥∥f(a1)− f(a2)
∥∥∥ ≤ Kl‖a1 − a2‖, (3.17)

where Kl indicates the upper bound gain in the Lipschitz inequality. In general,

we must employ an overestimator for the range of values that we are interested in,

in order to obtain a local bound. We also assume that the reduced order model

of (3.16) keeps the observability and controllability properties of the original PDE
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system of (3.1)-(3.3) due to the set of globally recursively updated empirical basis

functions.

Remark 3.4. Note that since the basis functions, Ψ, are periodically revised, the

approximate systems we obtain are switching systems, i.e., the form and dimen-

sionality of the system changes during process evolution. Furthermore, the designed

observer and controller will also be revised as well at each switching, resulting in

a switched closed-loop system, even though the process is continuous.

3.2.2 APOD-based dynamic observer design

For the APOD-based ROM revision and dynamic observer design, we assume the

periodic availability of the spatially distributed snapshots and continuous availabil-

ity of measurements of the process from a limited number of point sensors. A static

observer was designed to estimate the modes in the ROM of (3.15) required by the

output feedback control structure [203, 256], however in such design the number of

required point sensors must be supernumerary to the number of modes, otherwise

the observer gives erroneous estimates. In this chapter, we employ a exponentially

stable Luenberger-type nonlinear observer design to circumvent this essential issue.

Note that the Luenberger-type dynamic observers need only one point measure-

ment sensor to formulate the estimation error and predict the dynamic behavior

of the system modes.

We can define the spatially distributed estimation error by neglecting the fast
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and stable dynamics of the system as follows

E(z, t) = x̄e(z, t)− x̄s(z, t), (3.18)

where x̄s denotes the state of the slow subsystem and x̄e is its estimated value. The

slow part of the original system state can be obtained using time-space separation

as

x̄s(z, t) = Φs
T (z) xs(t), (3.19)

and the estimated state

x̄e(z, t) = ΨT (z) â(t), (3.20)

where Ψ = [ψ1 ψ2 . . . ψm]T , Φs = [φ1 φ2 . . . φp]
T ; m is the number of APOD-

based empirical basis functions and p denotes the number of analytical basis func-

tions of the slow subsystem operator and â is the vector of estimated modes of

(3.16). Note that the set of analytical basis functions of the system are unavailable

and are used only for the system analysis and to expose the stability conditions

needed. We can not define the observation error as the subtraction of â − xs,

because the vectors of xs and â in Eqs. (3.19) and (3.20) may have different di-

mensions due to the possible difference between the numbers of analytical basis

functions, Φs, and empirical basis functions, Ψ.

Assumption 3.3. We assume that Ws ⊆ P, locally, where Ws , span{φi}pi=1 de-

notes the local subspace of the slow and possibly unstable modes and P , span{ψi}mi=1



52

is empirical dominant subspace.

Note that Assumption 3.3 can be justified from the excitation of the higher

order dynamics during the system progression. Based on this assumption, subspace

P includes the slow Sobolev subspace Ws and may include a part of the fast

Sobolev subspace Wf . Then by defining a bounded map in the form of a linear

transformation, we can connect the slow Sobolev subspace and subspace P and find

the corresponding states. Such linear transformation changes at ROM revisions to

conserve the properties of the subspaces during closed-loop process evolution. The

bounded map is defined as follows

x̄s = ΦT
s xs = ΨTMxs = ΨT ã, (3.21)

where ã =Mxs, M : Ws 7→ P and

M = (ΨT ,ΦT
s ). (3.22)

Note that based on Assumption 3.3, M = (ΨT ,ΦT
s ), M : Ws 7→ P, is an injective

linear transformation, i.e., if ã1 = ã2,∀ã1, ã2 ∈ P then xs,1 = xs,2,∀xs,1, xs,2 ∈Ws.

The reverse transformation can also be defined asM⊥ = (ΦT
s ,Ψ

T ),M⊥ : P 7→Ws

such that I = M⊥M : Ws 7→ Ws is a bijective map. An interesting fact about

this transformation is that M⊥ =MT .

Using the transformation, the slow dynamics of (3.12) can be represented within
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subspace P as

˙̃a = Aã+ f(ã) +Bu,

ym = Cã,

(3.23)

where A =MAsM⊥, B =MBs and C = SmM⊥ are constant matrices between

ROM revisions and f = MFs is a Lipschitz nonlinear function. From the trans-

formation and its reverse it is straightforward to show that A, B and C matrices,

and f nonlinear function in (3.23) are the same as A, B and C matrices, and f

nonlinear function used in (3.16).

Based on (3.23), the Luenberger-type dynamic observer is formulated as

˙̂a = Aâ+ f(â) +Bu+ L(Câ− ym), (3.24)

where â is the vector of estimated modes and L denotes the observer gain. Then

based on Assumption 3.1, the observation error can be defined as

E = x̄e − x̄s ' ΨT e, (3.25)

where e = â − ã is the observer error with respect to empirical eigenmodes, and

the observer error dynamics can be derived from (3.24) and (3.23)

ė = (A+ LC)e+ [f(â)− f(â− e)]. (3.26)
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The following Lyapunov function is considered

V = Vo + Vc =
ζo
2
eTPoe+

ζc
2
âTPcâ, (3.27)

where Ṽo is the observer Lyapunov function (OLF) and Vc denotes the control

Lyapunov function (CLF), Po and Pc are positive definite matrices and Po has

bounded Frobenius norm, ‖Po‖ ≤ Kp; ζo and ζc are positive numbers. Then we

can obtain the time derivative of the mentioned Lyapunov function as V̇ = V̇o+ V̇c.

By setting the control objective at dynamic regulation of the observer, â→ 0,

and considering the following CLF Vc =
ζc
2
âTPcâ, we assume a controller can be

designed that forces the time derivative of the CLF, V̇c to be negative. Thus we

need only consider the OLF to be negative, V̇o < 0, at this point. We will revisit

this assumption during the controller design step.

The question thus becomes how to find the observer gain, L, that stabilizes the

system of (3.24) in the Lyapunov sense. Three different approaches are proposed

as follows to address observer gain computation.

3.2.2.1 Pole placement

As mentioned previously we need only establish that V̇o < 0. For Po = I we obtain

V̇o = ζoe
T ė= ζo

(
eT (A+ LC)e+ eT [f(â)− f(â− e)]

)
< 0. (3.28)
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From the Lipschitz condition (3.17) we conclude

eT [f(â)− f(â− e)] ≤ ‖eT‖
∥∥∥f(â)− f(â− e)

∥∥∥≤ ‖eT‖Kl‖e‖ = Kl‖e‖2 = Kle
T e.

(3.29)

then using (3.29), the inequality of (3.28) can be stated as follows

eT (A+ LC)e+ eT (KlI)e < 0⇒ eT (A+ LC +KlI)e < 0⇒ A+ LC +KlI < 0.

(3.30)

By considering Ao = A + KlI, we can solve the inequality problem to find the

observer gain, L, using any pole placement technique. The closed-loop poles of

the dynamic observer error (the eigenvalues of Ac = Ao + LC), can be placed at

arbitrarily locations by solving the following equation

∣∣∣sI − (Ao + LC)
∣∣∣ = pdes(s) (3.31)

for the observer gain matrix where I denotes the identity matrix and pdes is the

characteristic polynomial of the desired observation poles.
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3.2.2.2 Linear quadratic regulation (LQR)

Another approach to compute the observer gain is via linear quadratic regulation

(LQR). In this approach, Eq. (3.31) can be restated as

∣∣∣sI − (Ao + LC)
∣∣∣ =

∣∣∣(sI − (Ao + LC))T
∣∣∣ =

∣∣∣sI − (ATo + CTLT )
∣∣∣ (3.32)

where ATo and CT are the dual system matrices in (3.33) and LT denotes the gain

matrix for the state feedback control problem of the dual system

˙̃e = ATo ẽ+ CT ũ,

ũ = LT ẽ.

(3.33)

We design a linear quadratic feedback regulator [257] to solve the dual control

problem and compute the observer gain. A state feedback regulator law can be

synthesized via an optimization problem that minimizes the following quadratic

objective function

J(ũ) =

∫ ∞
0

(ãTQã+ ũTRũ+ 2ãTNũ)dt (3.34)

subject to the dual system dynamics of (3.33) and that Q, R and N are chosen to

be positive definite matrices. The optimal gain matrix of LT then is computed as

LT = −
(
R−1(BTS +NT )

)T
⇒ L = −(N + STB)R−T (3.35)
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where S is the solution of the associated algebraic Riccati equation

AoS + SATo − (SCT +N)R−1(CS +NT ) +Q = 0. (3.36)

3.2.2.3 Linear matrix inequality (LMI)

In this approach, the time derivative of the OLF of (3.27) is chosen to be

˙̃Vo =
ζo
2

(
ėTPoe+ eTPoė

)
. (3.37)

Using (3.26), the time derivative of Ṽo (which we derive to be negative) is

˙̃Vo =
ζo
2

[(
eT (AT + CTLT ) + [f(â)− f(â− e)]T

)
Poe

+eTPo

(
(A+ LC)e+ [f(â)− f(â− e)]

)]

=
ζo
2

[
eT
(

(A+ LC)TPo + Po(A+ LC)
)
e

+eTPo[f(â)− f(â− e)] +
(
eTPo[f(â)− f(â− e)]

)T]
< 0.

(3.38)

Based on the Lipschitz condition (3.17) and bounded norm of Po we obtain

eTPo[f(â)− f(â− e)] +
(
eTPo[f(â)− f(â− e)]

)T
≤ 2
∥∥∥eTPo[f(â)− f(â− e)]

∥∥∥ ≤ 2‖eT‖‖Po‖
∥∥∥[f(â)− f(â− e)]

∥∥∥
≤ 2KlKp‖eT‖‖e‖

≤ K0e
T e,

(3.39)
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where K0 = 2KlKp. Then inequality (3.38) can be expressed as follows using

(3.39)

eT
(

(A+ LC)TPo + Po(A+ LC)
)
e+K0e

T e < 0

⇒ eT
(

(A+ LC)TPo + Po(A+ LC) +K0I
)
e < 0.

(3.40)

Since PoAc + AT
c Po + K0I < 0 where Ac = A + LC, it follows that ˙̃V < 0 for all

e 6= 0 and stability is proved. So Po and L are chosen so that the following LMI is

satisfied

AT
c Po + PoAc +K0I < −PoWPo − PoLULTPo (3.41)

where W and U are the design weighting matrices and they must symmetric pos-

itive definite. From (3.41) we have

AT
c Po + PoAc + PoWPo + PoLUL

TPo +K0I < 0

⇒ (AT + CTLT )Po + Po(A + LC) + PoWPo + PoLUL
TPo +K0I < 0

⇒ ATPo + PoA + (PoLC)T + PoLC + PoWPo + PoLUL
TPo +K0I < 0.

(3.42)

Using Y = PoL, (3.42) can be expressed as

ATPo + PoA + (Y C)T + Y C + PoWPo + Y UY T +K0I < 0

⇒ PoA + ATPo + (Y T + U−1C)TU(Y T + U−1C)− CTU−1C + PoWPo +K0I < 0.

(3.43)
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By setting Y T = −U−1C we have

PoA + ATPo − CTU−1C + PoWPo +K0I < 0. (3.44)

The above matrix inequality is equivalent to

(
PoA + ATPo − CTU−1C +K0I

Po

Po
−W−1

)
< 0 (3.45)

using the Schur complement lemma [219].

The observer gain is computed by minimizing trace(P−1
o ) subject to (3.45).

The observer gain then can be directly computed as

L = −P−1
o CTU−1. (3.46)

Proposition 3.1. The observation error using dynamic observer of (3.24) is lo-

cally stable while f satisfies the Lipschitz condition (3.17) and (i) The characteris-

tic polynomial roots are negative and feedback gain L is computed from (3.31) for

the case when Po = I, (ii) The Riccati equation of (3.36) has a solution, S, for

positive definite matrices, Q, R, N and feedback gain L is obtained from (3.35),

(iii) W and U are symmetric positive definite matrices and L is obtained from

(3.46).

Proof See Appendix A.1.1 for proof of the proposition.



60

Theorem 3.1. Consider the nonlinear dissipative, input-affine, PDE system of

(3.1)-(3.3) with infinite-dimensional representation of (3.6) and finite-dimensional

approximation of (3.23) in subspace P with APOD-based empirical basis functions

when the time interval between ROM updates, δt, is finite and larger than a critical

value, tb. Under Assumptions of 3.1-3.3 and Lipschitz assumption of nonlinear

functions, the observation error dynamics is locally asymptotically stable between

ROM revisions using dynamic observer of (3.24), with observer gain computed by

either (i) Eq. (3.31) where Po = I and Hurwitz characteristic polynomial, (ii) Eq.

(3.35) for positive definite matrices of Q, R and N , (iii) Eq. (3.46) for symmetric

positive definite matrices of W and U .

Proof See Appendix A.1.2 for proof of the theorem.

The dynamic observer of (3.24) is redesigned when the ROM is updated by

APOD. Thus, stability theorems of hybrid systems are needed to prove that the

switching closed-loop system still remains stable during the periodic revisions of the

ROM. Then multiple OLFs in the form of (3.27) must be considered for such hybrid

system analysis [79]. Considering finite time intervals between ROM revisions, the

negative time derivative of the multiple Lyapunov functions of (3.27) guarantees

stability of the switching system (Theorem 3.2 in [86]) when the following condition

[79, 86] is also satisfied

Vo
(
e(tk)

)
< Vo

(
e(tk−1)

)
. (3.47)

In the above condition, k > 1 and Vo
(
e(tk)

)
corresponds to the value of Lyapunov
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function at the beginning of interval [tk, tk+1]. Note that the time interval between

ROM revisions, δt = tk+1−tk, is chosen to be large enough to relax the fast dynam-

ics of the system to zero. The OLF, Vo =
ζo
2
eTPoe, may possibly increase during

dimensionality changes of the ROM. Thus, value ζo must be chosen appropriately

from a supervisory logic in the closed-loop process.

We can directly compute the eigenmodes of the system at the revisions when

the new snapshot arrives by the periodic snapshot measurements,

x̄(z, tk) =
m∑
j=1

ψj(z)ãj(tk) ⇒ ãj(tk) =

∫
Ω

ψj(z)x̄(z, tk)dz, j = 1, . . . ,m,

where x(z, tk) = yr(z, tk) is the system snapshot at revision instant, tk, and m

denotes the number of eigenmodes. Thus, the following equation is applied to

update the value of ζo,

ζo = ξ
eT (tk−1) e(tk−1)

eT (tk) e(tk)
, (3.48)

where e = â − ã. Alternatively, we initialize ζo at value ζin and reevaluate it

using (3.48) only when the criteria of (3.47) is violated. This procedure leads

to a less aggressive dynamic observer design that has smaller observer gain while

guaranteeing stability of observation error dynamics.

Remark 3.5. The LMI approach is well defined but computationally expensive.

The pole placement technique is fast but it can be ill-conditioned if unrealistic lo-

cations have been chosen for closed-loop poles. Generally we should avoid placing
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multiple poles at the same location and typically require high gain, L, when the

open-loop poles are weakly observable which in turn sensitizes the entire closed-

loop structure to perturbations [142].

Remark 3.6. For the ROM states to be unobservable the most probable situation

is that all point sensors must be located at the zeros of a specific basis function

with a corresponding decoupled eigenmode; this can in principle happen but very

rarely, and as the number of sensors increases it becomes highly improbable. We can

identify such cases on-line by comparing the positions of zeros of the computed basis

functions and the placement of the sensors. Another reason for unstable estimates

of the process state is the ROM/PDE model mismatch; this is the underlying reason

we recursively update the ROM during process evolution.

3.2.3 APOD-based output feedback controller design

In this section, we now focus on synthesizing a controller structure that achieves

the objective of regulating the system of (3.1) to the origin based on an appropriate

finite-dimensional approximation of (3.23) using Lyapunov’s direct method when

the state values’ estimates originate from dynamic observer (3.24). As described

before, the ROM of (3.16) is an approximation of the main PDE system of (3.1).

Due to this fact the model reduction error between ROM and original PDE is

considered as system uncertainty that affects controller design. We should note

that the assumption of separation principle between the controller and the observer
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is relaxed. A simpler controller design under separation principle is presented in

[28].

In the proposed control structure, the ROM is used as the basis for output

feedback controller synthesis, however, the state values needed by the controller

to compute the control action are estimated from the dynamic observer. There

is a difference (in the form of the Luenberger term) between the ROM equations

used by the controller and the dynamic observer. If we assume principle of separa-

tion, there is no need to account for this term in the closed-loop stability analysis,

because the principle of separation of observation and control implies the stabil-

ity properties of the output feedback controller can be deduced from the stability

analysis of the dynamic observer and deterministic state feedback controller, sep-

arately.

For synthesizing a control structure (a) without assuming separation principle

between control and observation, and (b) to compensate for the uncertainty results

from model reduction error, first we design the controller to stabilize the dynamic

observer and then the stable dynamic observer to guarantee the observation error

regulation. We consider the Luenberger term in (3.24) as a general non-vanishing

perturbation. We also assume this perturbation can be considered as a summation

of possibly time varying but bounded uncertain variables. By considering the

internal uncertainty in the observer dynamics we can also circumvent the issues of

ignoring the observation of fast and stable dynamics in (3.12) in the time period
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of [0, tb] that is discussed in the proof of Theorem 3.1. In this case the system of

(3.24) can be considered in the following general form

˙̂a = F (â) +Bu+
s∑
i=1

wi(â)θi(t), (3.49)

where F (â) = Aâ+ f(â), L(Câ(t)− ym(t)) =
∑s

i=1wi(â)θi(t), θi(t) ∈ Θ, ‖θi(t)‖ ≤

θbi and Θ ⊂ R is a nonempty compact convex subset. The upper bounds of θbi can

be approximated based on monitoring the dynamic observer error and the norm

of observer gain.

The vector of uncertain variables in (3.49) can compensate for uncertainty in the

system due to basis functions computation or model mismatch and also can account

for exogenous disturbances. Assuming that the perturbation is non-vanishing, the

origin of the system is no longer an equilibrium point for the uncertain system.

Thus, the objective is to synthesize a robust nonlinear output feedback controller

that guarantees global boundedness in a neighborhood around the desired steady

state.

Theorem 3.2. Consider the nonlinear dissipative PDE system in (3.1), for which

Assumptions 3.1-3.3 hold. The following static output feedback control law [100,

235] asymptotically stabilizes the system of (3.1) when the time interval between

ROM updates, δt, is finite and larger than a critical value, tb.

u(t) = −k(â, co, ρ, χ, θb)(LBVc), (3.50)
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where co > 0, ρ > 0 and χ > 1 are adjustable parameters and

k(â, co, ρ, χ, θb) =


co +

L§FVc+

√(
L§FVc

)2

+

(
‖(LBVc)‖

)4

(
‖(LBVc)‖

)2 , LBVc 6= 0

co, LBVc = 0

L§FVc = LFVc + ρ‖Pcâ‖+ χ
s∑
i=1

‖LwiVc‖θbi.

Vc =
ζc
2
âTPcâ is the CLF, Pc is a positive definite matrix, LBVc = [LB1Vc . . . LBlVc]

T

is a column vector, LFVc =
∂Vc
∂â

F , LBVc =
∂Vc
∂â

B denote Lie derivatives and

θb = [θ1 θ2 · · · θs]T .

Proof See Appendix A.1.3 for proof of the theorem.

At the ROM revisions, the same strategy for dynamic observer designs is used

for ζc because CLF, Vc =
ζc
2
âTPcâ, also may increase during the ROM dimension-

ality changes. The value of ζc must be chosen appropriately to satisfy the hybrid

systems stability criteria [79]. A possible strategy is to automatically adjust ζc at

every instance of ROM changes as follows

ζc = ξ
âT (tk−1) â(tk−1)

âT (tk) â(tk)
(3.51)

in order to retain an aggressive controller throughout the process operation. The

strategy used in the current work is to initialize ζc at value ζin and reevaluate it

using (3.51) only when constraints of (3.47) are violated. This procedure leads to
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less aggressive control action while guaranteeing closed-loop stability.

Theorem 3.3. The DPS of (3.1) that is described by the switching ROM of (3.23),

can be asymptotically stabilized by the output feedback control structure of (3.50)

and (3.24) using supervisory strategies of (3.51) and (3.48) to evaluate ζc and ζo at

each time period when the time interval between the ROM revisions, δt, is chosen

to satisfy δt > tb, where tb can be obtained from singular perturbation analysis.

Proof See Appendix A.1.4 for proof of the theorem.

By combining the APOD-based dynamic observer and APOD-based controller

synthesis with ζo and ζc updating procedures, we thus obtain a hybrid output feed-

back control structure that guarantees that the system closed-loop stability at the

desired steady state. The block diagram of the closed-loop process is presented

in Figure 3.1, where the connections between the proposed control structure com-

ponents such as continuous point and periodic distributed measurement sensors,

model reduction, dynamic observer, controller and actuators are illustrated. The

proposed structure redesigns the observer/controller pair to enforce closed-loop

stability whenever the ROM is revised to retain accuracy.

Remark 3.7. The principle of separation of estimation and control, which is re-

laxed in the proposed output feedback control synthesis, only holds for linear time-

invariant (LTI) systems. The important consequence of the separation principle

is that the controller and dynamic observer can be designed separately, i.e., the

controller gain, k can be computed independently of the observer gain, L. Such
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Figure 3.1: Process operation block diagram under the proposed controller struc-
ture.

principle does not generally hold for linear time-variant (LTV) and nonlinear sys-

tems [68, 148]. Invoking the separation principle is a strong assumption in general

nonlinear systems which limits the applicability of the resulting output feedback

controller design for nonlinear systems [207]. It may lead to severe deterioration

of the nominal closed-loop performance or even to closed-loop instability.

Remark 3.8. The controller parameters ρ > 0 and χ > 1 are tuned to achieve the

trade-off between desired stability region and degree of uncertainty attenuation. Us-

ing small values for these parameters enlarges the guaranteed closed-loop stability

region and using large values achieves a significant degree of uncertainty attenu-

ation in dynamic observer structure. By introducing a sufficiently small positive

value of η in the denominator of k(·) we circumvent the control action possible
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chattering behavior near the origin. In the controller structure, co is also employed

to tune the speed of the system convergence to the steady state.

Remark 3.9. Based on Assumption 3.3, any basis functions of slow subsystem

belong in P ⊕ Q. This assumption is correct only for the time intervals longer

than the critical time period of tb needed for fast dynamics to be stabilized. This

condition may fail due to appearance of new trends as time evolves. In such case the

APOD updates the set of empirical basis functions then the ROM is revised using

updated basis functions. The revised ROM is then used as the basis to redesign the

controller/observer pair. These corrections will be repeated to enforce closed-loop

stability during process evolution.

Remark 3.10. The relative significance of the empirical eigenvalues is a strong

indicator that the slow subsystem is included in P ⊕ Q. In general the retained

snapshot ensemble size is the maximum size of the slow subsystem we can account

for. We assume that at any time there are a number of eigenvalues at zero which

is a requirement of all proper orthogonal decomposition (POD) based methods.

Remark 3.11. The presence of uncertain parameters and unmodeled dynamics,

if not taken into account in the controller design, may lead to severe deteriora-

tion of the nominal closed-loop performance or even to closed-loop instability [76].

As discussed in section 3.2.3 the non-vanishing perturbation term in the system

approximation of (3.49) accounts for the system parameter uncertainty beside re-

laxing the separation principle. The typical sources of model uncertainty which can
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be compensated in such non-vanishing form includes unknown or partially known

time-varying process parameters, exogenous disturbances, and unmodeled dynamics

[76].

3.3 Application to physico-chemical systems de-

scribed by KSE

The effectiveness of the proposed output feedback controller in regulating physico-

chemical systems described by the Kuramoto-Sivashinsky equation (KSE) is illus-

trated in this section. KSE has been independently derived in a wide range of

physico-chemical systems, where it can adequately describe incipient instabilities.

Such systems as exemplified by phase turbulence in diffusion-reaction systems,

long-wave motions of falling liquid thin films, interfacial instabilities between vis-

cous fluids and unstable flame fronts [71, 93]. KSE with periodic boundary condi-

tions shows a variety of dynamic behaviors, from converging to stable and unstable

steady states to periodic waves and chaotic behavior, for different parameters [146].

The control problem of physico-chemical processes modeled by KSE was studied

in the literature [15, 77, 93, 203].

We consider the integral controlled form of KSE as

∂x̄

∂t
= −v∂

4x̄

∂z4
− ∂2x̄

∂z2
− x̄∂x̄

∂z
+

l∑
i=1

biui(t) (3.52)
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with periodic boundary conditions

∂jx̄

∂zj
(−π, t) =

∂jx̄

∂zj
(π, t), j = 0, ..., 3 (3.53)

and initial condition

x̄(z, 0) = x̄0(z), (3.54)

where x̄(z, t) is the system variable, u(t) ∈ Rl denotes the vector of manipulated

inputs, t is the time, z is the spatial coordinate, b(z) describes the control actuators’

distribution and v is the diffusion parameter. Also the length of the spatial domain

is 2π and the domain of the process is defined on (−π, π). In the above form

A(z)x̄ = −v∂
4x̄

∂z4
− ∂2x̄

∂z2
and F(z, x̄) = −x̄∂x̄

∂z
.

Six control actuators were considered at La = [−π/2,−π/4,−π/6, π/5, π/4, π/2]

to regulate the system dynamics. The actuators distribution function are also set

as bi(z) = δ(z − La,i) for i = 1, ..., 6, where δ(·) is the Dirac delta function. The

periodic sensors distribution function is assumed as sr(z, t) = 1, i.e, the com-

plete state profiles of the system state at ROM revisions. The important static

observer requirements of available point measurements being supernumerary to

the ROM dimension is circumvented using the proposed dynamic observer design

(as discussed in “APOD-based dynamic observer” section). To illustrate such im-

provement, only one continuous point measurement sensor placed at Ls = π/2 is

assumed to be available. The sensor shape distribution function is chosen to be
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Figure 3.2: Open-loop spatiotemporal profile of (a) state of the system and (b)
2-norm of the state for v = 0.4.

sm(z) = δ(z − Ls) and x̄0 = 3 sin(z) − cos(2z) − sin(5z) + 2 cos(5z) is considered

as the spatially nonuniform initial condition. The open-loop spatiotemporal dy-

namic behavior of the system and its spatial 2-norm are presented in Figure 3.2 for

v = 0.4. The control objective is to regulate the KSE at a desired spatial profile.

Without loss of generality, we set the spatially uniform unstable steady state [146]

of x̄d(z, t) = 0 as the desired profile.

To initiate the set of empirical basis functions we consider the open-loop process

(u(t) = 0) and collect 31 snapshots during the initial time interval of t ∈ [0, 2]. By
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applying off-line APOD to such ensemble of snapshots we obtain 3 empirical basis

functions that capture 0.99 of the ensemble energy. We consider the availability

of process spatially distributed snapshots every ts = 0.5 while the point measure-

ment from only one sensor is assumed to be available continuously. To construct

the observer we applied three approaches presented in sections “pole placement”,

“linear optimal observer” and “linear matrix inequality”. The resulting closed-loop

system behavior was almost identical (when using proper sensor pole placement).

For brevity only the pole placement results are presented here.

To implement the proposed APOD-based output feedback control structure on

the KSE we set η = 0.001, co = 0.8, ρ = 0.5, χ = 2 and ζin = 1, where ζin indicates

the initial value for ζo and ζc. Figure 3.3 presents the closed-loop spatiotemporal

dynamic behavior of the process and its spatial 2-norm. We observe that the con-

troller successfully stabilizes the system of (3.52)-(3.54) at x̄(z, t) = 0 and converges

to zero. Figure 3.4(a) shows the monitored 2-norm of error between the process

modes and the estimated modes by the observer in the closed-loop time period,

t ∈ [2, 12] and Figure 3.4(b) presents the required control action. The monitored

error is estimated based on one point sensor and it converges to zero. It is also

observed that the control action converges to zero without any chattering. In Figs.

3.3(a), 3.3(b) and 3.4(b), t ∈ [0, 2] indicates the open-loop time period. At the end

of this period, off-line APOD is used to initially construct the basis functions by

collecting the snapshots. Time interval 1 in these figures shows no control action
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Figure 3.3: Closed-loop system temporal profile of (a) the state spatial profile, (b)
2-norm of the state.

while the system is open-loop. A relatively large control action can be identified at

the beginning of time interval 2 that shows the controller attempts to stabilize the

process by applying large initial control action. There is another fluctuation in con-

trol actions at the beginning of time interval 3 due to ζc update. In Figure 3.3(b),

the temporal profile of spatial 2-norm converges to zero. We observe a peaking at

the beginning of time interval 3 due to the peaking in control action. Generally,
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Figure 3.4: Closed-loop system temporal profile of (a) monitored norm of error
between the real system and the observer from point measurement sensor, and (b)
control action.

the non-smooth behavior of control action, spatial 2-norm and Lyapunov func-

tion at specific times can happen due to ROM revisions and ζc updating, where

ROM revisions could include dimensionality changes. Such non-smooth behavior

can be in principle compensated by incorporating input constraints considering

closed-loop stability [79, 183] at the same time ensuring that the conditions set by
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Figure 3.5: Closed-loop system temporal profile of (a) OLF, and (b) CLF.

hybrid system theory are satisfied. Figure 3.5(a) and (b) present the values of the

OLF and the CLF, respectively, in the closed-loop time period, t ∈ [2, 12]. Note

in Figure 3.5(b) the increase of the CLF is due to the significant change in the

behavior of the KSE. If no update was allowed the system would remain unstable.

Figure 3.6 shows the change in the number of basis functions during the process.

The number of required empirical basis functions to capture the initial open-loop

dynamic of the system was three. When new patterns appeared as the process
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Figure 3.6: Number of basis functions.

Figure 3.7: The 2-norm of the observer gains.

evolved the dominant empirical basis functions were revised to capture the process

behavior. The ROM dimensionality change depends on the closed-loop process

evolution and the chosen ROM design parameters, the energy fraction parameter,

ξ. Figure 3.7 shows the norm of dynamic observer gain during process evolution

that is computed based on the pole placement approach to predict the modes of

the system. Figure 3.8 shows the profile of the updated parameters ζc and ζo based

on the supervisory control such that the Lyapunov functions could satisfy the Lya-
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punov stability of switching systems conditions, (3.47). Figure 3.8 shows that the

CLF violated the criteria (3.47) at t = 3.5 and the supervisory control updated ζc

to satisfy it. Also, it indicates the OLF did not violate the hybrid system stability

criteria during the closed-loop process evolution.

Figure 3.8: Temporal profile of updated parameters ζc (blue line) and ζo (red line)
based on supervisory control.

The temporal profile of the empirical basis functions and corresponding modes

that have been estimated using the dynamic observer are presented in Figs. 3.9-

3.10. It is observed that the APOD-derived basis functions are adapting with the

system during the process evolution. Also, the modes of the system converge to

zero; this illustrates the effectiveness of the proposed controller structure to sta-

bilize the system at the desired steady state. The peaks in the first and second

eigenmodes profiles indicate the ROM switching. Figure 3.11 presents the tem-
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Figure 3.9: Temporal profile of (a) the first basis function and (b) First eigenmode.

poral plot of the inner product of dominant empirical basis functions and their

steady state spatial profile that quantifies the changes in the set of empirical basis

functions during process evolution. The third basis function is not presented due

to the short time-span that it was considered. The small difference for the inner

product temporal profile of the first basis function shows that there were minor

changes in it. The significant difference for the second temporal profile signifies
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Figure 3.10: Temporal profile of (a) the second basis function and (b) Second
eigenmode.

the rapid changes needed in the second dominant empirical basis function during

the process evolution, instigated by the nonlinear behavior of the system and the

small size of the ensemble of solutions.
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Figure 3.11: Temporal profile of the inner product of dominant empirical basis
functions with respect to their final time spatial profile.



CHAPTER

FOUR

ENTROPIC APOD FOR

LYAPUNOV-BASED OUTPUT

FEEDBACK CONTROL OF FAST

EVOLVING SYSTEMS

In this chapter, output feedback controllers are designed for fast evolving dis-

tributed parameter systems (DPSs) based on continuous point measurements avail-

able from limited number of sensors and infrequent distributed snapshots. The de-

veloped methodology for robust output feedback control is based on the successful

integration of dynamic observers with static controllers. A refined ensembling ap-
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proach is used in adaptive proper orthogonal decomposition (APOD) to recursively

update the eigenfunctions as the closed-loop process evolves through different re-

gions of the state space based on maximizing retained information that is received

from the infrequent distributed sensor measurements. The proposed controller is

illustrated on the Kuramoto-Sivashinsky equation (KSE) with and without uncer-

tainty in the presence of highly nonlinear dynamics and chaotic behavior, where

they are called to stabilize the system at an open-loop unstable system steady

state. The original and the modified ensemble construction approaches for APOD

are compared in different conditions and the robustness of entropic APOD with re-

spect to uncertainty, number of snapshots and number of continuous point sensors

and their locations is illustrated.

4.1 Mathematical Preliminaries

We focus on the output feedback regulation problem of spatially distributed pro-

cesses described by the following state space description of highly dissipative partial

differential equations (PDEs)

∂x̄

∂t
= A(z)x̄+ F(z, x̄,

∂x̄

∂z
, ...,

∂n0x̄

∂zn0
) + b(z)u,

ym =

∫
Ω

sm(z)x̄ dz,

yr = sr(z, t)x̄,

(4.1)
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subject to the following boundary conditions

q(x̄,
dx̄

dη
, ...,

dn0−1x̄

dηn0−1
) = 0 on ∂Ω (4.2)

and initial condition

x̄(z, 0) = x̄0(z). (4.3)

In the above PDE system, t is the time, z ∈ Ω ⊂ R3 is the spatial coordinate, Ω

is the domain of the process and ∂Ω is its boundary. x̄(z, t) ∈ Rn×1 denotes the

vector of state variables. u ∈ Rl denotes the vector of manipulated inputs. A(z)

is a linear spatial differential operator of order n0 (where n0 is an even number).

F is a bounded purely nonlinear and possibly differential function of order up to

n0. b(z) ∈ Rn×l is a smooth matrix function of z of the form [b1(z) b2(z) ... bl(z)],

where bi(z) describes how the ith control action ui(t) is distributed in the spatial

domain Ω, e.g. point actuation could be defined using Dirac delta. In (4.2), q(·)

is a sufficiently smooth nonlinear vector function,
dx̄

dη
|∂Ω denotes the derivative in

the direction perpendicular to the boundary and x̄0(z) is a smooth vector function

of z. The availability of two types of measurement sensors is assumed: periodic

snapshot measurements, yr(z) ∈ Rn, to measure spatial profiles and continuous

measurements, ym ∈ Rr, where r is the number of continuous sensors. sr(z, t) and

sm(z) are the sensor shape functions corresponding to yr and ym, respectively. In

the remainder of the chapter we present our results for x̄ ∈ R. It is conceptually
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straightforward to extend the results to x̄ ∈ Rn, usually by treating each state

individually [243].

The control objective is to stabilize the process of (4.1)-(4.3) at a desired spatial

profile, x̄d(z). Without loss of generality, we assume the spatially uniform steady

state x̄d(z) = 0 as the desired profile. We also assume that long term and dominant

dynamic behavior of the system of (4.1)-(4.3) can be captured by a finite number

of degrees of freedom. This implies that, in principle, the long term dynamics of

state x̄ of the mentioned system can be accurately described by a finite number of

appropriately chosen basis functions.

4.2 Problem Formulation

The reduced vector representation of the PDE system of (4.1) can be obtained by

applying weighted residual methods and keeping the first m ODEs and neglecting

the fast and stable subsystem [76]. The type of weighted residual method could

be determined by the weighting functions in the above equation. The method of

weighted residuals reduces to Galerkin’s method when the weighting functions and

the basis functions are the same. Obtained from the basis functions, the reduced

order model (ROM) can be summarized as

ȧ = Aa+ F(a) + Bu,

ym = Ca,

(4.4)
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where A, B and C are constant matrices and F is a nonlinear smooth vector function

of the modes. We assume that F satisfies the Lipschitz condition as follows

∥∥∥F(a1)− F(a2)
∥∥∥

2
≤ Kl‖a1 − a2‖2,

where Kl indicates the upper bound gain in the Lipschitz inequality.

4.2.1 Dynamic observer design

We assume that the snapshots of the process become available only periodically

and the point measurements from a restricted number of sensors are continuously

available which is quite common in industrial processes. In [203, 256], static output

observers based on the continuous point measurements were designed to estimate

the system modes that are required for controller design. The number of sen-

sors had to be supernumerary to the number of modes to successfully estimate

the system modes using the linear static observers. This implies that numerous

measurement sensors are required, otherwise the static observer gives erroneous

estimates. Also the static observer existence depends on the location and shape

of the measurement sensors. To overcome these issues, we employed a dynamic

observer that conceptually needs only one point measurement to predict the dy-

namic behavior of the modes as long as the process is observable at that position

[84].

We can define the observation error based on the Sobolev subspace representa-
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tion of the system of (4.1) as follows

ε(z, t) = ˆ̄x(z, t)− x̄(z, t), (4.5)

where ˆ̄x and x̄ are the observer and system states of (4.1)-(4.3), respectively.

By neglecting the fast and stable part of the process system dynamic behavior

and using separation of variables, we can define the observer state

ˆ̄x(z, t) = ΨT (z)â(t), (4.6)

and the original state

x̄(z, t) = ΦT (z)a(t), (4.7)

where Ψ = [ψ1 ψ2 . . . ψm]T , Φ = [φ1 φ2 . . . φs]
T ; m is the number of empirical

eigenfunctions of the slow subsystems that are computed using APOD and s is the

number of real eigenfunctions of the slow subsystem.

The dimension of the system slow modes, a and â in equations (4.6) and (4.7),

respectively is not necessarily the same because the number of identified slow

subsystem basis functions Φ and Ψ may be different; so the observation error can

not be defined directly by the simple subtraction, â− a.

From (4.7) we could define a mapping between two subspaces, Ws and P as

follows

x̄ = ΦTa = ΨTMa = ΨT ã, (4.8)
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where ã =Ma, M : Ws 7→ P and

M =

∫
Ω

ΨΦT dz. (4.9)

Using the above transformation, the system eigenmode dynamics in (4.4) can

be expressed using the basis functions of subspace P in the following form

˙̃a = Aã+ f(ã) +Bu,

ym = Cã,

(4.10)

while the dynamic observer based on (4.10) will have the following structure

˙̂a = Aâ+ f(â) +Bu+ L(Câ− ym), (4.11)

where â is the vector of estimated modes, L is the observer gain, C is the output

matrix and f is locally Lipschitz continuous. Also the observation error could be

defined within subspace P as follows

ε = ˆ̄x− x̄ ' Ψe, (4.12)

where e = â− ã.

Assuming observability and controllability of the system (4.10), we used pole

placement approaches to compute the observer gain, L, that stabilizes the system
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of (4.11) in the Lyapunov sense. The observer error dynamics can be defined using

(4.10) and (4.11) as follows

ė = (A+ LC)e+ [f(â)− f(â− e)]. (4.13)

If the following Lyapunov function is considered

V =
ζo
2
eT e+

ζc
2
ãT ã, (4.14)

where Vo and Vc are the observer Lyapunov function (OLF) and the control Lya-

punov function (CLF), respectively and ζo and ζc are appropriately chosen positive

numbers, the time derivative of Lyapunov function will be V̇ = ζoe
T ė+ ζcã

T ˙̃a.

Considering the control objective, ã→ 0 and the CLF, Vc =
ζ

2
ãT ã, we assume

a controller can be designed that forces the time derivative of the CLF, ãT ˙̃a to be

negative. Then we need only establish that

V̇ = ζoe
T ė = ζo

(
eT (A+ LC)e+ eT [f(â)− f(â− e)]

)
< 0. (4.15)

If f satisfies the Lipschitz condition as follows

‖f(â)− f(â− e)‖2 6 Kl‖e‖2, (4.16)
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where Kl indicates the upper bound gain in the Lipschitz inequality, then

eT [f(â)− f(â− e)]6 ‖eT‖2‖f(â)− f(â− e)‖2

6 ‖eT‖2Kl‖e‖2 = Kl‖e‖2
2 = Kle

T e.

(4.17)

Inequality (4.15) can be stated as follows using (4.17)

eT (A+ LC)e+ eT (KlI)e < 0⇒ eT (A+ LC +KlI)e < 0⇒ A+ LC +KlI < 0.

(4.18)

The above inequality problem can be solved using pole placement for A +

KlI + LC = Ao + LC. The closed-loop observer error poles are the eigenvalues

of Ac = Ao + LC, which can be arbitrarily assigned by proper selection of the

observer gain matrix, L. The observer gain matrix, L, is chosen such that

∣∣∣sI − (Ao + LC)
∣∣∣ = pdes(s) (4.19)

where I is the identity matrix and pdes is the characteristic polynomial of desired

poles.

Proposition 4.1. For the system of (4.10), the observation error under the ob-

server of (4.11) is locally stable in the Lyapunov sense.

Proof See Appendix A.2.1 for proof of the proposition.

Remark 4.1. Note that M : Ws 7→ P is an injective map because subspace P
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contains Ws and a part of subspace Wf . By construction, when ã1 = ã2, ∀ã1, ã2 ∈ P

implies a1 = a2, ∀a1, a2 ∈ Ws, which is necessary for observer and controller

design purposes. Due to this construction, a reverse map, M⊥ : P 7→ Ws, can be

in principle defined such that M⊥M : Ws 7→Ws is a bijective map [37].

4.2.2 Output feedback controller design

In this section, we focus on the controller structure design using Lyapunov’s direct

method to achieve the stabilization objective the system of (4.10) in the origin

between ROM revisions.

Proposition 4.2. Assuming separation principle for the system of (4.10), the

following static output feedback control law [76, 235] can asymptotically stabilize

the system of (4.10).

u(t) = −k(ã, co)(LBVc), (4.20)

where

k(ã, co) =


co +

LFVc+

√(
LFVc

)2

+

(
‖(LBVc)‖

)4

(
‖(LBVc)‖

)2 , LBVc 6= 0

co, LBVc = 0

 ,

Vc =
ζc
2
ãT ã is the CLF, LBVc = [LB1Vc . . . LBlVc]

T is a column vector, LFVc =

∂Vc
∂ã

F and LBVc =
∂Vc
∂ã

B denote Lie derivatives.

Proof See Appendix A.2.2 for proof of the proposition.
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Remark 4.2. The positive parameter co allows a certain degree of flexibility in

shaping the dynamic behavior of the closed-loop system. For example, a large value

of co will force V̇c to be more negative and therefore generate a faster transient

response. Note that a positive value of co is not necessary for stabilization.

Remark 4.3. When implementing the controller of (4.20) in closed-loop process

simulations, the numerical integrations could result in chattering-like behavior for

the control input near origin. This problem is circumvented by adding a sufficiently

small positive number ηc to (LGiVc)
2 in the denominator of (4.20). The addition of

this parameter obviously leads to some offset in the closed-loop response. However,

this offset can be made arbitrarily small by choosing a sufficiently small value for

ηc. A tradeoff thus exists between the smoothness of the control action (corresponds

to large ηc) and the smaller offset in the closed-loop response (corresponds to using

small value for ηc).

4.3 Supervisory control

During system evolution, the ROM may need to be updated to remain accurate.

The OLF, the CLF and finally the controller in (4.20) are redesigned based on

the updated ROM using APOD when new snapshots arrive during the process

evolution. Consequently, we need the stability tools of hybrid systems theory to

prove that the closed-loop system remains stable during the periodic updates of the

ROM. For this analysis multiple Lyapunov functions (CLFs and OLFs) of the form
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(4.14) are considered. Under the assumption of finite time interval between ROM

updates, the multiple Lyapunov functions of (4.14) for each ROM guarantee the

Lyapunov stability of switching system (Theorem 3.2 in [86]) when the following

additional constrain is satisfied

Vc
(
â(tk)

)
< Vc

(
â(tk−1)

)
, Vo

(
e(tk)

)
< Vo

(
e(tk−1)

)
, (4.21)

where k > 1, Vc
(
a(tk)

)
and Vo

(
e(tk)

)
correspond to the value of Lyapunov function

at the beginning of the interval k.

The Lyapunov functions may increase possibly during dimensionality changes

of the ROM even when the offset is small. Thus, values of ζc and ζo need to

be chosen appropriately using a supervisory control loop. We can then ascertain

that for the chosen controller parameters the Lyapunov functions during controller

redesign satisfy the conditions of switching systems stability theorem [79, 86]. In

general, higher values of ζc lead to more aggressive control action. A possible

strategy is to automatically adjust ζc as follows

ζc,tk = (
ε

100
)(
â(tk−1)T â(tk−1)

â(tk)T â(tk)
), (4.22)

in order to retain an aggressive controller throughout the process operation. The

strategy used in the current work is to initialize ζc at value ζin and reevaluate

it only when Vc constraint in (4.21) is violated based on the formula of (4.22)
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[204]. The specific strategy leads to less aggressive behavior while guaranteeing

closed-loop stability of the system. A non-aggressive representation of (4.22) can

be obtained as follows

ζc,tk = min

{
ζc,tk−1

, (
ε

100
)(
â(tk−1)T â(tk−1)

â(tk)T â(tk)
)

}
. (4.23)

The same strategy is also used for ζo because OLF, Vo =
ζo
2
eTPoe, may also

increase when the ROM dimensionality changes. The value of ζo needs be chosen

appropriately to satisfy the conditions of switching systems stability theorem in

[79]. At the time, ti, when the periodic snapshot measurements become available,

the basis functions computed using APOD locally capture the subspace Ws and

as a result we can directly compute the system state ã and the observer error,

e = â− ã, at that instant from

x̄(z, ti) =
m∑
k=1

ãk(ti)ψk(z) ⇒ ãk(ti) =

∫
Ω

x̄(z, ti)ψk(z)dz, k = 1, . . . ,m,

where x̄(z, ti) is the snapshot of the system at switching time ti. Thus, similar to

the updating formula for ζc the following equation is used for updating ζo

ζo,tk = (
ε

100
)(
e(tk−1)T e(tk−1)

e(tk)T e(tk)
). (4.24)

For a less aggressive policy, similarly to ζc,tk , i.e., we may initialize ζo at value ζin



94

and reevaluate it based on the formula of (4.23) only when Vo constraint in (4.21)

is violated. The non-aggressive representation of (4.24) can be obtained as follows

ζo,tk = min

{
ζo,tk−1

, (
ε

100
)(
e(tk−1)T e(tk−1)

e(tk)T e(tk)
)

}
. (4.25)

Theorem 4.1. Consider the nonlinear dissipative PDE system in (4.1) with Sobolev

representation and its finite dimensional approximation of (4.4) with APOD ob-

tained basis functions. We assume that

• the state modes of (4.1) can be partitioned into a finite number of slow and

possibly unstable modes and an infinite number of stable and fast modes and

there is a time scale separation between the dynamic behavior of the two

subsystems,

• nonlinear function, F, in (4.4) is locally Lipschitz,

• locally, Ws ⊆ P,

• the time interval between ROM updates, δt, is finite and larger than a critical

value, tb.

Under these assumptions, the system is locally asymptotically stable under the dy-

namic observer design of (4.11) and the output feedback controller of (4.20) using

supervisory control strategies of (4.22) and (4.24) for appropriately chosen control

structure values, co, η, ξ, ε and δt.
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Figure 4.1: Process operation block diagram under proposed controller structure.

Proof See Appendix A.2.3 for proof of the theorem.

Combining the model reduction procedure with the dynamic observer and con-

troller synthesis methods, we have obtained an output feedback controller structure

that guarantees that the closed-loop system evolves to the desired steady state. In

Figure 4.1 the closed-loop process is presented under the proposed control structure

in a block diagram form. The specific controller structure recursively redesigns the

observer/controller components whenever the ROM is revised to retain relevancy

and enforce closed-loop stability.

Remark 4.4. Note that ã(tk) is the initial condition for the dynamic observer at

the beginning of the time interval k after updating procedure of ζc and ζo. This is
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possible because we obtain process snapshots, and thus state values of the dynamic

observer are initiated to be the same as the state of the system.

Remark 4.5. In principle, the relaxation time periods for convergence of the fast

dynamics can become arbitrarily small with the appropriate choice of slow sub-

system dimensionality due to the properties of dissipative systems. This directly

translates into appropriately choosing parameter, ξ, in APOD.

4.4 Application

4.4.1 Problem description

In this section, the ability of entropic APOD in stabilizing the KSE is illustrated

and compared to the original data ensembling approach in the absence and presence

of uncertainty. The dynamic behavior of KSE with periodic boundary conditions

has revealed the existence of steady and periodic wave solutions, as well as chaotic

behavior [146]. The integral form of the controlled KSE that is considered is

∂x̄

∂t
= −v∂

4x̄

∂z4
− ∂2x̄

∂z2
− x̄∂x̄

∂z
+

l∑
i=1

biui(t), (4.26)

with periodic boundary conditions

∂jx̄

∂zj
(−π, t) =

∂jx̄

∂zj
(π, t), j = 0, ..., 3, (4.27)
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and initial condition

x̄(z, 0) = x̄0(z), (4.28)

where x̄(z, t) is the system variable, u(t) ∈ Rl is the vector of control variables, t

is the time, z is the spatial coordinate, b(z) is a row vector describing the control

actuators and v is the diffusion parameter. Also in the above formA(z) = −v ∂
4

∂z4
−

∂2

∂z2
and F(x̄) = −x̄∂x̄

∂z
. The Lipschitz condition for the nonlinear term in KSE,

F(x̄), is discussed in Appendix A.2.4.

Six control actuators were assumed to be available at locations

L = [−π/2,−π/4,−π/6, π/5, π/4, π/2],

and the corresponding spatial distribution functions at these locations are bi(z) =

δ(z−Li) for i = 1, ..., 6. The length of the spatial domain is 2π and continuous point

measurement sensors placed uniformly across the domain of the process (−π, π)

are used. The continuous sensors shape distribution function, sm(z), for all time

t, at these respective positions is sm,i(z) = δ(z − zi) for i = 1, ..., 5, where zi is the

location of ith sensor unless otherwise stated. Also the periodic measurement sensor

distribution function is assumed to be sr(z, t) = 1, i.e., the complete profiles of the

state as snapshots are available in specific time instants. Note that the specific

actuators affect all the modes of the system. The following spatially nonuniform

initial condition was considered x̄0 = 3 sin(z)− cos(2z)− sin(5z) + 2 cos(5z). For
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both ensembling approaches, 31 snapshots of the process evolution we employed.

During the initial stage of populating the ensembles the snapshot interval was

δt = 0.067 s. After that we assume the availability of snapshots of the process

every δt = 2 units of time during closed loop operation.

4.4.2 Comparison tools

In this section we quantify the qualitative discussion in Chapter 2.3.2.1 and com-

pare the original and entropic APOD. Data sets often store redundant information.

In other words, new entries may not convey independent information from other

data in a set. In information theory and data mining communities, entropy is a

measure of the information contained in a dataset; it quantifies the relative rich-

ness of data in the set. By extension there is a direct relationship between entropy

and information contained in two similar sets with equal number of data.

A way to compare the efficiency of the original and entropic APOD is through

comparing their data ensembles. The ensemble entropy can provide an estimate of

complexity of the spatial and temporal variations that illustrates which ensemble

contains more independent profiles in their set. Shanon entropy can be defined as

[62]

S(z) = −
m∑
i=1

pi(z) ln(pi(z)), (4.29)

where m is the number of dominant eigenvalues and pi is defined using the following
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equation

pi(z) =
µi|ψi(z)|∑m
j=1 µj|ψj(z)|

. (4.30)

Note that the entropy is maximal and equal to 1 if the ensemble energy captured

by the dominant eigenfunctions is distributed equally through all eigenfunctions

and it is minimal and equal to 0 if only a single mode is captured. Larger entropy

during system evolution indicates that the corresponding ensemble contains more

information; thus the corresponding ensembling approach is more efficient in re-

taining important information and can be used to construct ROMs with a wider

range of accuracy.

Additionally, to provide a complete picture when comparing the performance

of the two approaches, we define two performance indices: INC, the integral of

norm of the control actions and INE, the integral of norm of the error between

the real system and the model. The smaller values of INC and INE, the less

control effort and more accurate model, respectively.

4.4.3 Simulation results

Figure 4.2 presents the open-loop profile and the spatial norm of the state of the

KSE for v = 0.4, 0.23 and 0.15, respectively. We observe that KSE exhibits

complex behavior for v < 1 and the profile x̄ = 0 is open-loop unstable. Thus, the

control objective is to stabilize the system of (4.26)-(4.28) at the spatially uniform

steady state x̄d(z, t) = 0.



100

Figure 4.2: Open-loop spatiotemporal state profile (left) and norm of the state
(right) for (a) v = 0.4, (b) v = 0.23 and (c) v = 0.15.

Figure 4.3 shows the temporal profile of norm of Shanon entropy when using the

two APOD approaches to construct the ensembles. The blue and red lines present

the norm of Shanon entropy using original and entropic APOD, respectively. In

Figs. 4.3a and 4.3c the Shanon entropy based on original APOD decreases during

open-loop system evolution and converges to zero when the system reaches steady

state while the entropy based on entropic APOD increases or remains constant as

old information is retained. In Figure 4.3b the Shanon entropy based on both ap-
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proaches increases due to oscillatory behavior of the open-loop system that causes

continuous system excitation during process evolution. These results indicates

that the ensemble based on entropic APOD retains more information about the

complex dynamics of KSE compared to the original one. As we will see later, this

will result in a faster converging ROM to the true KSE dynamic behavior once we

excite the system.

Focusing on the closed-loop system, during the initial time period t = [0, 2] of

populating the ensembles, the process evolved with u(t) = 0 (inactive controller).

Application of off-line APOD to this ensemble resulted in 3 eigenfunctions for x̄

which captured 99% of the energy embedded in the ensemble. As the availability of

snapshots of the process is usually limited, we assume the availability of snapshots

of the process every δt = 2 units of time during closed loop operation. The

following design parameter values were used to implement the control structure on

the KSE: η = 0.001, co = 0.8, ζin = 2, where ζin indicates the initial value for ζo

and ζc.

Figure 4.4 presents the closed-loop process profile, number of dominant eigen-

functions and the norm of the state, respectively, for the original and the entropic

APOD when the diffusivity parameter, v, changes will be from 0.4 to 0.23 at t = 40

and the observer and controller know about the parameter change; this is called

“the case without any uncertainty”. We observe that for both approaches the con-

trollers successfully stabilize the system of (4.26)-(4.28) at x̄(z, t) = 0 while the
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Figure 4.3: Open-loop temporal profile of norm of Shanon entropy using original
APOD (blue lines) and entropic APOD (red lines) for (a) v = 0.4, (b) v = 0.23
and (c) v = 0.15 (note the scale differences).
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Figure 4.4: Closed-loop temporal profiles of (a) the state spatial profile (note the
scale difference), (b) number of dominant eigenfunctions and (c) norm of the state
when v changes from 0.4 to 0.23 at t = 40. The left figures present results when
using original APOD and the right figures present results using entropic APOD.

state 2-norms converge smoothly to zero without any peaking. In both cases the

success of the designed controller in stabilizing the process at the desired profile is

due to the dominant eigenspace (hence the ROM and the control law) being up-

dated as the process traverses through different regions of the state space during

closed-loop operation. The number of eigenfunctions required to capture the initial

trends was three. During the closed-loop process operation, when new trends ap-
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peared the dominant eigenspace dimension was updated to accurately capture the

process behavior, appropriately changing the number of empirical eigenfunctions.

In general, the non-smooth behavior of state 2-norm at specific times is due to fast

modes’ excitation and dimensionality changes. We observe that even though the

change in v takes place at 40, it takes 10 seconds for the new trends to become

appreciable and another 5 seconds for them to necessitate a ROM dimensionality

change in order to capture all the unstable eigenmodes.

Figs. 4.5a and 4.5b show the control actions and error norms between the real

system and the ROMs, respectively. Using both approaches, the control actions

and the model errors converge to zero and we do not observe any chattering when

the parameter of the system changes and the controller/observer pairs is cognizant

of this change. We observe a relatively large control action at the beginning of

closed-loop region. It indicates that the controller tries to regulate the process

using initially large control action. The error 2-norm converges to zero and there

is a peaking at the beginning due to a peak in control action. Note that the non-

smooth behavior of control action and state 2-norm at specific times is also due to

fast modes excitations caused by ROM revisions.

When v changes from 0.4 to 0.23 without any uncertainty the following indices

show the improved performance of entropic approach to the original approach

in APOD; INCor = 93.02, INCmod = 34.01, INEor = 98.63, INEmod = 62.01,

where “or” and “mod” indicate the original and the entropic ensembling approach
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Figure 4.5: Closed-loop temporal profiles of (a) control action and (b) norm of
error between the real system and the model when v changes from 0.4 to 0.23 at
t = 40. The left figures present results when using original APOD and the right
figures present results using entropic APOD (note the scale differences).

in APOD. Based on the indices we conclude entropic APOD derived more accurate

ROMs and constructed a“ better” controller in this case, that required less control

action to stabilize the system and responded better to the perturbation.

In the presence of uncertainty the effectiveness of the entropic approach be-

comes more apparent. Figure 4.6 shows the closed-loop process profile, number of

dominant eigenfunctions and the norm of the state, respectively, for the original

and the entropic APOD when the diffusivity parameter, v, changes from 0.4 to

0.23 at t = 40 and the controller and the dynamic observer are not informed about

the parameter change. We observe that the controllers still successfully stabilize

the system of (4.26)-(4.28) at x̄(z, t) = 0 while the 2-norms converge smoothly to
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Figure 4.6: Closed-loop temporal profiles of (a) the state spatial profile, (b) number
of dominant eigenfunctions and (c) norm of the state in the presence of uncertainty
when v changes from 0.4 to 0.23 at t = 40. The left figures present results when
using original APOD and the right figures present results using entropic APOD
(note the scale differences).

zero without any peaking.

Figure 4.7 shows the control actions and the norms of error between the real

system and the ROMs. Using both approaches, the control actions and the model

errors converge to zero and we do not observer any chattering before the parameter

of the system changes. The following indexes indicate that the entropic APOD has

better performance compared to the original approach; INCor = 95.77, INCmod =

32.66, INEor = 90.73, INEmod = 62.30.
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Figure 4.7: Closed-loop temporal profiles of (a) control action and (b) norm of
error between the real system and the model in the presence of uncertainty when
v changes from 0.4 to 0.23 at t = 40. The left figures present results when using
original APOD and the right figures present results using entropic APOD (note
the scale differences).

Note that the control action using entropic APOD is smoother than the control

action using original APOD when the system changes in the absence and presence

of uncertainty due to the faster ROM revisions in response to the changed sys-

tem dynamics. Having less discontinuities in control action leads to less system

excitation and reduces the observer/controller computation load. Large peaking

or discontinuities in control action causes fast modes excitation. In response the

basis functions change and the observer and controller need more revisions which

increases the observer/controller computation load.

Figure 4.8 shows the temporal profile of the norm of Shanon entropy in the

presence of uncertainty. It presents the information content measurement of the
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Figure 4.8: Closed-loop temporal profiles of Shanon entropy norm using original
APOD (blue line) and entropic APOD (red dashed line) in the presence of uncer-
tainty, when v changes from 0.4 to 0.23 at t = 40.

ensembles. During the time period before the change in the system parameter,

the system entropy using entropic APOD is more than the system entropy using

original APOD that leads to construct more accurate ROM due to retaining the

complex trends in the ensemble. When the system changes, the controller based on

entropic APOD adapted to the change rejection without any sharp control action

due to more accurate ROM. However, the controller based on original APOD

further excites the system with its sharp action and causes complex trends to

resurface, which in turn increase the system entropy at time t = 50.

Figure 4.9 presents the case when the diffusivity parameter, v, changes from 0.4

to 0.15 at t = 25 unbeknownst to the control structure. The process dynamics then

become very fast making the time interval between snapshots too large for standard
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Figure 4.9: Closed-loop temporal profiles of (a) the state spatial profile and (b)
control actions in the presence of uncertainty when v changes from 0.4 to 0.15 at
t = 25. The left figures present results when using original APOD and the right
figures present results using entropic APOD.

APOD. The original APOD not only could not regulate the process but it further

destabilized the system while the refined approach could still stabilize the closed-

loop process at the desired steady state profile using reasonable control action.

There is because the controllers based on entropic APOD successfully stabilized

the process since the ROM revisions were able to account for the changed dynamics

faster.

In the APOD-based control of DPSs using static observers that addressed in

[203, 204, 256], the number of available point measurements should be equal to

or greater than the dimension of ROM. One of the important advantages of using

dynamic observers in this case is using less continuous point measurement sensors.
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Obviously, we want to use the minimum number of sensors to reduce costs even

only one sensor when able to. The dynamic observer based on original APOD

then becomes sensitive to the location and shape of the measurement sensor re-

quiring sensor placement strategies. This limitation can be circumvented using

entropic APOD to construct observers that in general are more robust to the sen-

sors locations and near unobservability, as it keeps information from previously

traversed regions. Figure 4.10 presents the case when v = 0.4 and only one point

measurement sensor is used at −π
2

. The original APOD could not regulate the

process due to the unobservability while the refined approach still could stabilize

the closed-loop process at the desired steady state profile using reasonable control

action.

Figure 4.11 presents the closed-loop temporal profiles of norm of the state for

different availability of snapshots time periods, δt when using one point measure-

ment sensor at −π
2

. It shows the relation between system dynamics and sampling

time; when δt increases the fluctuations in 2-norm of the state will increase due to

the states unobservability. In the first four cases when δt = 0.25, δt = 0.5, δt = 1

and δt = 2 the observer/controller can stabilize the system but in the final case,

δt = 4, the state 2-norm remains bounded but it does not converge to zero since

the model uncertainty is larger than the threshold set during the initial controller

design step.

Another important advantage of entropic APOD is its robustness with respect
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Figure 4.10: Closed-loop temporal profiles of (a) the state spatial profile and (b)

control action using one point measurement sensor at −π
2

. The left figures present

results when using original APOD and the right figures present results using en-
tropic APOD.

to ensemble size to construct accurate ROMs. When using entropic APOD a lower

number of snapshots may be kept; this implies low dimensional covariance matrices

will be derived that significantly improves the computational needs and memory

requirements of the proposed controller/observer. This is illustrated in Figure 4.12

which presents the temporal profiles of the state and control action when v = 0.4;

only 11 snapshots are retained during the system evolution and only one sensor is

used at −π
2

, greatly reducing the computational load.
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Figure 4.11: Closed-loop temporal profiles of norm of the state using one point

measurement sensor at −π
2

for different availability of snapshots time periods,

δt = 0.25 (blue), δt = 0.5 (red), δt = 1 (green), δt = 2 (pink), δt = 4 (black),
under entropic APOD.
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Figure 4.12: Closed-loop temporal profiles of (a) the state spatial profile and (b)
control actions using an ensemble of 11 snapshots in entropic APOD and a sensor

at −π
2

.



CHAPTER

FIVE

GEOMETRIC OUTPUT

FEEDBACK CONTROLLER FOR

OUTPUT TRACKING

In this chapter, an adaptive proper orthogonal decomposition (APOD) based ge-

ometric output feedback control structure is synthesized for output tracking of

nonlinear distributed parameter systems (DPSs) based on continuous point mea-

surements available from limited number of sensors. The control structure is a

combination of a nonlinear Luenberger-like geometric dynamic observer and a glob-

ally linearizing controller (GLC). The specific structure is employed to compensate

model uncertainty due to model reduction procedure. The proposed control struc-
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ture is successfully illustrated on a catalytic reactor. The controller considers the

thermal dynamics of the reactor, reduces the hot spot temperature and manages

the thermal energy distribution across the reactor length during process operation.

5.1 Preliminaries

5.1.1 Class of nonlinear dissipative PDE system

In this work, a class of nonlinear dissipative, input-affine partial differential equa-

tion (PDE) systems is considered with a state space representation of the following

form
∂

∂t
x̄(z, t) = A(z)x̄(z, t) + F(z, x̄) + b(z)u(t),

yc(t) =

∫
Ω

c(z)x̄(z, t) dz,

ym(t) =

∫
Ω

s(z)x̄(z, t) dz,

yr(z, k) =

∫ t

0

δ(t− tk)x̄(z, t) dt,

(5.1)

subject to boundary conditions

q(x̄,
∂x̄

∂z
, ...,

∂n0−1x̄

∂zn0−1
) = 0 on ∂Ω, (5.2)

and initial condition

x̄(z, 0) = x̄0(z), (5.3)
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where x̄(z, t) ∈ R denotes the vector of state variables and u(t) ∈ Rl is the vector of

manipulated inputs. t is the time, z ∈ Ω ⊂ R3 denotes the spatial coordinate and Ω

is the process domain with boundary, ∂Ω. A(z) and F(z, x̄) are linear and bounded

Lipschitz nonlinear parts of spatial differential operator of order n0, respectively.

bT (z) ∈ Rl is a smooth vector function of z that describes how the control action

is distributed in the spatial domain, e.g. point actuation is defined using standard

Dirac delta. q(·) is a sufficiently smooth nonlinear vector function,
∂ix̄

∂zi
|∂Ω for

i = 1, . . . , n0 − 1, denotes the spatial derivatives in the direction perpendicular to

the boundary and x̄0(z) is a smooth vector function of z. yc ∈ Rυ is the vector

of controlled outputs where υ is the number of desired outputs. c(z) is a known

vector function of z which is determined by the desired performance specifications

in the process domain, Ω. We assume that two types of measurement sensors are

available during process evolution: periodic distributed snapshot measurements,

yr(z, k) ∈ R, and continuous measurements, ym ∈ Rw, where w is the number

of continuous sensors and k is a discrete variable that indicates the sample time

counter to taking the snapshots. Note that yr indicates measured spatial profiles

while ym is a vector variable. s(z) is the sensor shape functions corresponding to

ym and tk is the time instance for snapshot measurement. In this chapter, the

results are presented for x̄ ∈ R, however, it is straightforward to extend them for

x̄ ∈ Rn, by treating each state independently [228]. Once each state has been

reduced, the interactions between distributed system states can be easily captured
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through the inner products of the modal expansions.

5.1.2 Infinite-dimensional representation in Sobolev sub-

space

To address the control and observation problem we represent the PDE system of

(5.1)-(5.3) as an infinite-dimensional system in a relevant Sobolev space

W(n0−1),2(Ω,R)

where for every 1 6 j <∞, i ∈ N and i > 1,

Wi,j = {x̄ ∈ Lj(Ω) : ∂αx̄ ∈ Lj(Ω),∀α ∈ N, |α| 6 i}.

Sobolev spaces are functional spaces that consider functions for which all the

distributional derivatives and most of the differential rules can be applied. When

distributional derivatives in such spaces belong to the space of square integrable

functions, L2(Ω), then we also define the inner product and norm in L2(Ω) as

(ϑ1, ϑ2) =

∫
Ω

r(z)ϑT1 (z)ϑ2(z)dz, ‖ϑ1‖2 = (ϑ1, ϑ1)1/2

where ϑT denotes the transpose and r(z) is the weight function that is assumed to
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be equal to 1 in this work. We define the state x on W(n0−1),2(Ω,R) as

x(t) = x̄(z, t), (5.4)

the differential operators

Ax = A(z)x̄, F(x) = F(z, x̄), (5.5)

and the manipulating input, measured and controlled output operators as

Bu = b(z)u, Ccx =

∫
Ω

c(z)x̄ dz, Smx =

∫
Ω

s(z)x̄ dz, Rx =

∫ t

0

δ(t− tk)x̄ dt,

where W(n0−1),2(Ω,R) is a Sobolev subspace that satisfies the homogeneous bound-

ary conditions of (5.2), i.e.,

W(n0−1),2(Ω,R) =
{

f ∈W(n0−1),2(Ω,R) : q(f,
∂f

∂z
, ...,

∂n0−1f

∂zn0−1
) = 0 on ∂Ω

}
.

Then the PDE system of (5.1) can be expressed in the following form in the Sobolev

subspace

ẋ = Ax+ F(x) + Bu,

yc = Ccx,

ym = Smx,

yr = Rx,

(5.6)
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with the initial condition

x(0) = x0, (5.7)

where yc, ym and yr are representations of the vector of control outputs, the vector

of continuous measurements and periodic distributed snapshot measurements in

the defined Sobolev subspace, respectively. Considering locally Lipschitz assump-

tion of F , we obtain that F is a nonlinear smooth vector function that is locally

Lipschitz and satisfies F(0) = 0. Note that to simplify the notation we use W

instead of W(n0−1),2(Ω,R) for the rest of the chapter.

Dissipative systems naturally enjoy a property that the model dynamics can

be separated in appropriate Sobolev subspaces. This property is formally stated

by following assumption.

Assumption 5.1. The infinite-dimensional modal representation of the system of

(5.1)-(5.3) with respect to an appropriate basis of the functional subspace, W, can

be decomposed to a finite-dimensional slow and possibly unstable modal subsystem

and an infinite-dimensional stable and fast modal subsystem and there is a time

scale separation between the dynamic behavior of the two subsystems.

The set of basis functions for the functional subspace of W can be identified

through the solution of the eigenvalue problem for the operator A, defined as

follows

Aφi = λiφi, i = 1, . . . ,∞ (5.8)
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subject to

q(φi,
dφi
dz

, ...,
dn0−1φi
dzn0−1

) = 0 on ∂Ω, (5.9)

where λi and φi denote the i th eigenvalue and the corresponding basis function,

respectively.

Based on Assumption 5.1, the ordered eigenspectrum of A, {λ1, λ2, . . . } can

be partitioned into a finite-dimensional set of p slow eigenvalues, {λ1, λ2, . . . , λp},

and a stable infinite-dimensional complement set of the remaining fast eigenvalues

{λp+1, λp+2, . . . }. There is a large separation between the slow and fast eigenvalues

of A. The associated eigenfunctions are defined as Φs = [φ1 φ2 · · ·φp]T , Φf =

[φp+1 φp+2 · · · ]T .

Subsequently, the Sobolev subspace, W, can be partitioned into two subspaces,

one that includes a finite number of slow and possibly unstable modes, Ws ,

span{φi}pi=1, and a complement subspace that includes an infinite number of fast

and stable modes, Wf , span{φi}∞i=p+1. By defining the following orthogonal

integral projection operators, the state of system (5.6) can be described as

x = xs + xf = Px+Qx, (5.10)

where xs = Px ∈Ws, xf = Qx ∈Wf and W = Ws⊕Wf . The orthogonal integral

projection operators are defined as P : W → Ws, P = (·,Φs) and Q : W → Wf ,

Q = (·,Φf ).
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Using (5.10), the set of basis functions of (5.8) and the method of weighted

residuals, the system and the controlled and measurement outputs of (5.6) can be

expressed as a partitioned ODE set of vectorized modes in the following form

ẋs = Asxs + Fs(xs, xf ) +Bsu,

ẋf = Afxf + Ff (xs, xf ) +Bfu,

yc = Ccxs + Ccxf ,

ym = Smxs + Smxf ,

(5.11)

where As = PA, Af = QA, Fs = PF, Ff = QF, Bs = PB and Bf = QB.

Note that in above modal expansions, As = diag{λi}pi=1 and Af = diag{λi}∞i=p+1

are diagonal matrices in principle. There is a time scale separation between the

dynamic behavior of the two subsystems. Also there is an order of magnitude

difference between Re(λ1) and Re(λp+1). The initial condition (5.7) becomes

xs(0) = Px(0) = Px0,

xf (0) = Qx(0) = Qx0.

(5.12)

Remark 5.1. The eigenvalue problem of (5.8)-(5.9) can be solved analytically for

neither general nonlinear PDEs nor systems with irregular domains. Then, most of

the standard analytical model reduction techniques can not be used for these general

nonlinear DPSs. Statistical techniques can be used to circumvent this limitation.
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5.2 Model reduction using method of weighted

residuals

The finite-dimensional approximation of the infinite-dimensional representation of

(5.1)-(5.3) can be computed using the method of weighted residuals when the set

of empirical basis functions are available. Generally, the original state of the PDE

system, x̄(z, t), can be described as an infinite weighted summation of a complete

vectorized set of basis functions Ψ(z) as follows

x̄(z, t) '
rm∑
k=1

ψk(z)ak(t)
rm→∞−→ x̄(z, t) =

∞∑
k=1

ψk(z)ak(t) (5.13)

where ak(t) for k = 1, · · · , rm are time varying coefficients known as system modes.

The following rm
th order system of ODEs is obtained by substituting (5.13) in (5.1)-

(5.3), multiplying the PDE with the weighting functions, ϕ(z), and integrating over

the entire spatial domain:

rm∑
k=1

(ϕv(z), ψk(z))ȧk(t) =
rm∑
k=1

(ϕv(z),A(z)ψk(z))ak(t)

+
(
ϕv(z),F(z,

rm∑
k=1

ψk(z)ak(t))
)

+ (ϕv(z), b(z))u,

v = 1, ..., rm,

yc =
rm∑
k=1

(c(z), ψk(z))ak(t),

ym =
rm∑
k=1

(s(z), ψk(z))ak(t).

(5.14)
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The type of weighted residual method can be determined by the weighting functions

in the above equation. The method reduces to Galerkin projection when the

weighting functions, ϕ(z), and the basis functions, Ψ(z), are the same. Then

(5.14) can be summarized as

ȧ = Aa+ f(a) +Bu,

yc = Ca,

ym = Sa,

(5.15)

where Arm×rm , Brm×l, Cυ×rm and Sw×rm are constant matrices and f is a nonlinear

smooth vector function of the modes that can be described based on the comparison

between (5.14) and (5.15). From Lipschitz condition of F , we obtain that f satisfies

local Lipschitz condition. Note that this assumption can be concluded from the

local Lipschitz property of the nonlinear part of the original system of (5.6) in the

Sobolev subspace for special cases.

Assumption 5.2. The PDE system of (5.1)-(5.3) and as a result, the slow and fast

subsystems of (5.11) are assumed to be approximately observable and controllable

based on the approximate observability and controllability of infinite-dimensional

systems in [84].

Remark 5.2. The control performance of the system of (5.1)-(5.3) directly depends

on the accuracy of its reduced order model (ROM). Using APOD methodology, the

ROM will need to be adaptively revised at certain time instants to remain accurate.
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Then the ROM structure and dimensionality will change during process evolution.

As a result, when the ROM switches the observers and controllers will be redesigned

as well.

5.3 APOD-based geometric dynamic observer de-

sign

The switching ROM needs the periodic availability of the process snapshots. In

addition to that the dynamic observer also requires continuous availability of point

measurements from a restricted number of sensors. These requirements are quite

common in industrial processes. We can define the observation error based on the

state of the system of (5.1) as follows

E(z, t) = x̄e(z, t)− x̄s(z, t), (5.16)

where x̄e and x̄s are the estimated and original states of the slow subsystem of

PDE system in Eqs. (5.1)-(5.3), respectively.

By neglecting the fast and stable part of the process system dynamic behavior

and using separation of variables, we obtain the slow part of the original state as

x̄s(z, t) = Φs
T (z) xs(t), (5.17)
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and the estimated state

x̄e(z, t) = ΨT (z) â(t), (5.18)

where Ψ = [ψ1 ψ2 . . . ψrm ]T , Φs = [φ1 φ2 . . . φp]
T ; rm is the number of empirical

basis functions of the system that are computed using APOD and p is the number

of unavailable basis functions of the slow subsystem and â is the vector of estimated

modes of (5.15). The dimension of the vectors of modes, xs and â in Eqs. (5.17) and

(5.18), respectively is not necessarily the same because the number of identified

slow subsystems basis functions, Φs, and APOD-based basis functions, Ψ, may

be different; so the observation error can not be defined directly by the simple

subtraction, â− xs, where â is the observer state.

Assumption 5.3. Consider the local subspace of the slow and unstable modes,

Ws , span{φi(z0)}pi=1 and subspace P defined as P , span{ψi(z0)}rmi=1, where

{φi}pi=1 is the set of unavailable basis functions of the slow subsystem, {ψi}rmi=1 is

the set of basis functions computed based on APOD and z0 indicates the equilibrium

point. We assume that Ws ⊆ P, locally in some neighborhood of z0.

Note that Assumption 5.3 is justified based on the excitation of the higher

modes during the closed-loop process evolution. Based on Assumption 5.3, sub-

space P includes subspace Ws and it may include a part of subspace Wf . One

solution to bridge slow Sobolev subspace Ws and subspace P is by defining a

bounded mapping between these two subspaces to find the corresponding states.

The map should be defined as a linear transformation that changes at ROM revi-
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sions to conserve all of the subspaces’ properties during system evolution. Then,

from (5.17) we can define a bounded map between two subspaces, Ws and P as

follows

x̄s = ΦT
s xs = ΨTMxs = ΨT ã, (5.19)

where ã =Mxs, M : Ws 7→ P and

M = (ΨT ,ΦT
s ). (5.20)

Note that M = (ΨT ,ΦT
s ), M : Ws 7→ P, is injective due to the fact that sub-

space P contains subspace Ws. Then ã1 = ã2,∀ã1, ã2 ∈ P implies that xs,1 =

xs,2,∀xs,1, xs,2 ∈ Ws. To complete the analysis, the bounded reverse map can be

defined as M⊥ = (ΦT
s ,Ψ

T ), M⊥ : P 7→Ws such that I =M⊥M : Ws 7→Ws is a

bijective map. Interestingly, M⊥ =MT .

Using Assumption 5.3 and the above transformation, the modal slow dynamics

in Eq. (5.11) can be expressed within subspace P in the following form

˙̃a = Aã+ f(ã) +Bu,

yc = Cã,

ym = Sã,

(5.21)

where A = MAsM⊥, B = MBs, C = CcM⊥ and S = SmM⊥ are constant

matrices between ROM revisions and f =MFs is a nonlinear function. Using the
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definition of the map and its inverse, it can be easily shown that these matrices

and function are the same as used in (5.15). Note that we do not require Φs for

the proposed method, we need it just for our analysis.

In addition to previous assumptions, the robust exponential observability of

(5.21) is assumed. The following nonlinear geometric dynamic observer [6, 249] is

used to reconstruct the dynamics of (5.21),

˙̂a = Aâ+ f(â) +Bu+ Π−1
â L(ym − ŷm),

ŷm = Câ.

(5.22)

In (5.22), â is the dynamic observer state which is the vector of estimated modes

and L is the observer gain. There are w integers, ζ1, ζ2, · · · , ζw, as observability

indexes where ζi > 0 for i = 1, · · · , w and ζ1 + ζ2 + · · · + ζw = rm. Note that w

is the number of measurement outputs. Πrm×rm
â is the Jacobian of the map Πrm×1

with respect to the state of the system. The map Πrm×1(â, u) defined as follows

Π(â, u) = [ŷm,1 LF ŷm,1 . . . Lζ1−1
F ŷm,1 . . . ŷm,w LF ŷm,w . . . Lζw−1

F ŷm,w]T

(5.23)

is assumed to be continuously differentiable and robustly invertible with respect

to â where LF (·) =
∂(·)
∂â

F denotes Lie derivatives and F (â) = Aâ + f(â). The

jth order Lie derivative with respect to the same vector argument is defined as

LjF (·) = LFL
j−1
F (·). That means there is an inverse map in the form of Π−1(â, u)
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where Π and Π−1 are both Lipschitz continuous and

Π−1(Π(â, u), u) = â, t ≥ 0.

The observer gain, L, is then a block diagonal matrix in the following form

L =



L1 0 · · · 0

0 L2 · · · 0

...
...

. . .
...

0 0 · · · Lw


,

L1 =



ζ11

ζ21

...

ζζ11


, L2 =



ζ12

ζ22

...

ζζ22


, · · · , Lw =



ζ1w

ζ2w

...

ζζww



(5.24)

where ζij for i = 1, · · · , ζw and j = 1, · · · , w are the dynamic observer gain pa-

rameters. The observer error dynamics become linear and the above parameters

are set such that the pole-assignable observer error dynamics are stable [7]. The

detailed analysis and stability proof of the observation error can be found in [6, 7].

Thus, based on Assumption 5.1, the observation error with respect to original

states can be defined within subspace P as follows

E = x̄e − x̄s ' ΨT e, (5.25)
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where e = â− ã is the observer error with respect to modes.

Remark 5.3. The invertibility assumption of Πrm×rm
â is not a restrictive assump-

tion for DPSs. It requires a preliminary sensor placement step in the controller

synthesis that is properly addressed in [87]. It is a unique characteristic of DPSs

that sensor placement confers observability.

5.4 APOD-based geometric controller design

In this section, we focus on the geometric controller structure design to achieve

the output tracking objective of the system. We used globally linearizing con-

trol (GLC) structure that includes a static geometric state feedback controller

combined with a stable dynamic observer in an inner loop and an external linear

controller [138, 155]. Assuming the separation principle for the system of (5.21)

holds, the following GLC structure can asymptotically stabilize the minimum phase

system of (5.21) at the desired output,

u =
v − LrcF ŷc − β1L

rc−1
F ŷc − · · · − βrc−1LF ŷc − βrc ŷc
LBL

rc−1
F ŷc

(5.26)

where ŷc = Câ is the vector of controlled outputs, F (â) = Aâ + f(â), rc is the

relative order of the system. The input-output dynamics of the globally linearized
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system can be expressed as follows

drc ŷc
dtrc

+ β1
drc−1ŷc
dtrc−1

+ · · ·+ βrc−1
dŷc
dt

+ βrc ŷc = v. (5.27)

The inner loop is stable when all of the roots of the characteristic polynomial of

src + β1s
rc−1 + · · ·+ βrc−1s+ βrc are in the open left-half plane. Then an external

linear controller is designed for the globally linearized system as

v =

∫ t

0

χ(t− τ)
(
ysp(τ)− ŷc(τ)

)
dτ , (5.28)

where χ(t) indicates the desired input-output dynamic behavior of the overall

system. Considering a critically damped behavior as the desired input-output

dynamics in the following form,

χ(t) = L−1
{src + β1s

rc−1 + · · ·+ βrc−1s+ βrc
(εs+ 1)rc − 1

}
, (5.29)

where L−1 indicates the inverse Laplace transform, the overall closed-loop dynam-

ics will be (
ε
d

dt
+ 1
)rc

ŷc = ysp. (5.30)

When rc = 1 the external controller becomes proportional-integral (PI),

v(t) = Kc

(
[ysp(t)− ŷc(t)] +

1

τI

∫ t

0

[ysp(t)− ŷc(t)]dt
)
, (5.31)



131

where KC =
1

ε
and τI =

1

β1

are the proportional and integral coefficients of the

external PI controller, respectively. A detailed analysis and stability proof of the

closed-loop system can be found in [138, 154, 155].

Theorem 5.1. Consider the nonlinear dissipative PDE system in (5.1), for which

Assumptions 5.1-5.2 always hold, Assumption 5.3 holds for finite periods between

revisions and the system of (5.21) is robustly exponentially observable. The geo-

metric control structure of (5.26) and dynamic observer of (5.22) asymptotically

stabilizes the system of (5.1) when the time interval between ROM updates, δt, is

finite and larger than a critical value, tb.

Proof See Appendix A.3.1 for proof of the theorem.

In Figure 5.1 the closed-loop process is presented under the proposed control

structure in a block diagram form.

Remark 5.4. When APOD revises the set of empirical basis functions as time

evolves the structure and size of the ROM may change. These changes directly

affect the dynamic observer and controller components. In this case, the ob-

server/controller pair must be redesigned. For the dynamic observer we employ

a Butterworth polynomial and the order of the desired stable poles of the observa-

tion error dynamics before closed-loop operation starts [112]. This predetermined

supervisory logic chooses the appropriate number of observer poles when the size of

ROM changes during process evolution. For the controller component we also use

Butterworth procedure to predetermine a set of Hurwitz characteristic polynomials
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Figure 5.1: Process operation block diagram under proposed controller structure.

before closed-loop operation [112]. When the dimension of the ROM changes as

time evolves, the controller component uses the appropriate stable characteristic

polynomial to tune the GLC parameters.

Remark 5.5. The geometric controller of (5.26) is synthesized for single-output

systems in this chapter, however it is straightforward to extend the proposed con-

troller structure for multi-output systems; this will be the subject of future work.

Remark 5.6. The Butterworth polynomials of the observer and the controller must

be designed such that the characteristic times of the polynomials is less than tb.

Based on such design, the controller/observer pair does not violate the time scale

separation between the slow and fast subsystems.
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5.5 Application to reduce hot spot temperature

Special attention is paid to the thermal dynamics and their effect on product

quality and safety criteria in chemical and petrochemical industries. Due to their

importance, thermal dynamic analysis is considered in conceptual and detailed pro-

cess design and dynamic operation of many processes where thermal distribution

plays a key role such as distillation towers, chemical reactors and heat exchanger

networks. As an illustrative example we present a hot spot formation issue in tubu-

lar chemical reactors due to exothermic reactions that can lead to safety problems,

severe catalyst deactivation and its effects on the process selectivity and product

quality achieved [55, 145].

The hot spot temperature in many cases is very sensitive to relatively small

changes in the process variables such as inlet temperature or concentration and

wall temperature. Then even small changes in such conditions can easily result

in thermal instabilities. Due to safety considerations the hot spot temperature

has to be maintained within given limits, otherwise the temperature may rise

uncontrollably and it may lead to thermal runaway [55, 63]. The effectiveness of the

proposed APOD-based geometric dynamic observer and controller is illustrated on

the output tracking problem of thermal dynamics in a catalytic reactor to reduce

the hot spot temperature and manage the thermal energy distribution through

reactor length during process evolution.

We consider an elementary exothermic reaction of A→ B taking place on a
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thin catalytic rod where the reactant A is present in excess. The dimensionless

temperature of the rod is described by the following dissipative PDE system,

∂x̄

∂t
=
∂2x̄

∂z2
+ βT (e−γ/(1+x̄) − e−γ) + βU(b(z)u(t)− x̄) (5.32)

subject to the boundary conditions

x̄(0, t) = 0, x̄(π, t) = 0, (5.33)

and initial conditions of

x̄(z, 0) = x̄0(z). (5.34)

In the PDE system of (5.32)-(5.34), x̄ denotes the dimensionless temperature of

the catalytic rod , z ∈ [0, π] is the spatial coordinate, βT denotes the dimensionless

heat of reaction and γ is the dimensionless activation energy. The parameter βU

denotes the dimensionless heat transfer coefficient, u(t) is the vector of control

variables and b(z) accounts for the spatial profile of the actuator. In the above

equation we observe that A(z) =
∂2

∂z2
and F(z, x̄) = βT (e−γ/(1+x̄) − e−γ)− βU x̄.

The nominal values of βT = 16, γ = 2, and βU = 2 are set for the system

parameters. Due to safety considerations we attempt to avoid severe catalyst

deactivation and thermal runaway. Thus, the hot spot temperature reduction is

considered as the control objective. This is captured mainly from the first (most

important) mode (as shown below). We thus consider the following APOD-based
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controlled output of the process

yc =

∫ π

0

ψ1x̄dz, (5.35)

to monitor the thermal energy distribution and the dominant dynamics across the

reactor length during process evolution. A sinusoidal state profile with average of

0.5 is set as the initial condition of the system in (5.34). Figure 5.2 presents the

open-loop profile of the systems state and its 2-norm when u = 0. The hot spot

in the middle of the catalytic rod can be observed easily. The initial dominant

empirical basis function of the system is illustrated in Figure 5.3. In addition,

Figure 5.4 shows the open-loop system output. Only one point actuator is assumed

to be available at La = π/2 and the corresponding spatial distribution functions

at this location for point actuation is considered as b(z) = δ(z −La), where δ(·) is

the Dirac delta function. The snapshot of the rod temperature is also assumed to

be accessible every δt = 0.5s. Only one continuous point measurement sensor is

available placed at Ls = 0.7π. The continuous sensor shape distribution function,

s(z), for all time t, at this respective position is s(z) = δ(z − Ls).

It is a usual occurrence in chemical process industries that the process objec-

tives dynamically change during operation due to changing product quality re-

quirements and safety reasons. The desired value for controlled output is set to

change dynamically from ysp,1 = 1.5 to ysp,2 = 2 and ysp,3 = 1.7 at t = 10s and

t = 20s, respectively. The objective is to change the hot spot temperature (to
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Figure 5.2: Open-loop system temporal profile of (a) the state spatial profile and
(b) 2-norm of the state.

reduce the risk of hot spot phenomenon) and manage the thermal energy distribu-

tion during process evolution. The proposed control structure can accommodate

dynamic set point tracking, however we only present step-changes for simplicity.

Since the relative order of the system is equal to 1, we desire the linearized output

dynamics to be stable with β1 = 5 and the overall output closed-loop characteristic
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Figure 5.3: The initial dominant empirical basis function.

Figure 5.4: The open-loop system output.

time to be ε = 0.5 resulting in the following form for χ(t) = L−1
{s+ 5

0.5s

}
. As a

result, we implement an external PI controller with parameter values KC =
1

ε
= 2,

τI =
1

β1

= 0.2, where KC and τI are the proportional gain and integral time of the

external PI controller, respectively.
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In order to obtain the initial basis functions we “collected” 20 snapshots dur-

ing the initial time period t ∈ [0, 2]; during this period the process evolves with

u(t) = 0 (inactive controller). Application of off-line APOD to this ensemble re-

sulted in one empirical basis function for x̄ which captured 0.99 of the energy

embedded in the ensemble. During closed-loop progression, on-line APOD also

obtained only one empirical basis function that shows the effectiveness of the en-

semble updating approach. We employed only one measurement output; then

according to single empirical basis function we only had to tune ζ11 to identify

the dynamic observer. We set ζ11 = 0.032 to enforce a stable dynamic behavior

to the observation error. Figure 5.5 shows the steady state dimensionless temper-

ature profile of the system and temporal profile of the 2-norm of the state. We

observe that the controller successfully reduced the hot spot temperature level.

Figure 5.6 presents the temporal profile of required control action; it converges to

a steady state value without any chattering. We observe also that action peaks

due to the step change of the desired set-points. This sharp change in the control

action is due to the external controller; these peaks can be reduced by employing

a PI controller with a low-pass filter (introduced by an appropriate choice of χ(t)).

The temporal profile of the estimated dominant mode of the system is illustrated

in Figure 5.7. We observe that it is a linear dynamic behavior and it converges

to a constant values, which is expected, since the internal nonlinear controller is

designed to enforce this behavior to the first mode.
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Figure 5.5: (a) Steady state profiles of system state during process evolutions under
the proposed controller and (b) temporal profile of 2-norm of the state.

Figure 5.6: Temporal profile of the required control action.
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Figure 5.7: Temporal profile of the dominant mode of the system.

Figure 5.8: Temporal profile of the controlled output of the system.

Figure 5.8 presents the controlled output of the system; it exhibits a linear

dynamic behavior in time and converges to the desired setpoint values. The success

of the designed output tracking controller is due to the dominant subspace (hence

the ROM and the control law) being updated as the process traverses through

different regions of the state space during closed-loop operation. During the closed-

loop process operation, when new trends appeared the dominant subspace basis

was updated to accurately capture the process behavior, appropriately changing

the empirical basis function.



CHAPTER

SIX

APOD-BASED CONTROLLER

DESIGNS UNDER

SENSOR/CONTROLLER

COMMUNICATION BANDWIDTH

LIMITATIONS

One of the remaining unanswered questions in adaptive proper orthogonal decom-

position (APOD) based control problem of distributed parameter systems (DPSs)
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is how one can identify the required frequency for reduced order model (ROM)

revisions. The required time interval between the ROM revisions and as a result

the frequency of snapshots in the APOD-based control should satisfy closed-loop

stability criteria. For DPSs we observe that increasing the time interval between

revisions reduces the communication load and the spatially distributed measure-

ment costs but it may inadvertently affect closed-loop system stability as it will

be shown in this chapter.

Considering such trade-off between stability and measurement costs, obtain-

ing snapshots at a proper frequency is one of the most important prerequisites of

APOD-based controller designs. In the current work, we consider the set of sensors

(that acquire information), controller structure (that analyzes process information,

revises the ROM and computes the required action) and actuators (that enforce

that command) as a small communication network with a limited bandwidth for

closed-loop process data transfer. Using such conceptual duality between finding

the required revision time intervals for APOD-based control and desired feedback

frequency for control of networked systems in the presence of communication con-

straints can be extremely helpful since communication networks are well studied

theoretically and are extensively used in the distributed and networked control of

advanced chemical processes for fast dissemination of information between oper-

ators. When control system elements communication bandwidth is limited, im-

proved methods are needed for state estimation and controller design to overcome
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the communication constraints (see [131] and references therein). Recently, net-

worked model-based control of lumped systems has been studied in detail (see [188]

and references therein), while networked controllers that circumvent the sensor-

controller communication constrains in DPSs has been investigated [238, 270, 271].

In Section 6.1, we use the concepts behind networked control method to identify

criteria that guarantee system closed-loop stability and in this way we address the

spatially distributed measurements frequency problem of APOD for linear DPSs.

We also address the minimization problem of required ROM revisions for nonlinear

DPSs in Section 6.2.

6.1 Linear systems

To achieve our goals in minimizing the frequency of snapshots (minimizing ROM

revisions), we apply a similar approach to the networked feedback controller de-

signs for distributed parameter systems [238]. The controller was synthesized for

dissipative distributed parameter systems which can be discretized to finite dimen-

sional slow (and possibly unstable) and infinite-dimensional fast subsystems when

represented in appropriate Sobolev spaces. The slow subsystem model is included

in the control structure to reduce the frequency of sensor measurements over the

network when communication is suspended. To compute the smallest frequency at

which communication must be reestablished and the ROM must be updated, the

concepts of networked control for linear systems has been used. A criterion is then
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identified for minimizing communication bandwidth (snapshots transfer rate) from

the periodic measurement sensors to the controller considering closed-loop stabil-

ity. The proposed control structure is successfully illustrated on thermal dynamic

regulation in a tubular chemical reactor.

6.1.1 Mathematical Preliminaries

Consider the linear distributed parameter systems modeled by the state space

description of dissipative linear PDEs of

∂

∂t
x̄(z, t) = A(z)x̄(z, t) + b(z)u(t),

s.t. q(x̄,
∂x̄

∂z
, ...,

∂n−1x̄

∂zn−1
) = 0 on ∂Ω, x̄(z, 0) = x̄0(z).

(6.1)

We define the snapshot measurements as discrete-time full state measurements,

mathematically expressed by

y(z, tk) =

∫ t

0

δ(τ − tk)x̄(z, τ)dτ (6.2)

In the above system, z ∈ Ω is the spatial coordinate, t ∈ [0,∞) is time and

x̄(z, t) ∈ R denotes the state vector of the system. Ω ⊂ R3 is the domain of the

process and ∂Ω is the process boundary, u ∈ Rl denotes the manipulated input

vector. A(z) is a linear spatial differential operator of order n, q(.) is a smooth

nonlinear vector function and x̄0(z) is a smooth vector function of z, bT (z) ∈ Rl is
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a known smooth vector function of z that describes how manipulated input vector

is distributed in the spatial domain Ω, e.g. point actuation can be defined using

standard Dirac delta and continuous actuation can be described by step functions.

We assume the availability of a periodic distributed snapshot measurement sensor,

y(z, tk) ∈ R, where y indicates measured spatial profiles and tk is the occurrence

time instant for snapshot measurement. The control objective is to regulate the

PDE system of (6.1) at a desired spatial profile, x̄d(z). Without loss of generality,

the spatially uniform steady state x̄d(z) = 0 is considered as the desired profile.

The PDE system of (6.1) can be presented as an infinite-dimensional system

in a relevant Sobolev space W(n−1),2(Ω,R), ∀i, j ∈ N, i > 1 and 1 6 j <∞,

Wi,j = {x ∈ Lj(Ω) : ∂αx ∈ Lj(Ω),∀α ∈ N, |α| 6 i}.

where Sobolev spaces are functional subspaces that consider functions for which

all the distributional derivatives can be applied. We can define the inner product

and norm in L2(Ω) as

(ϑ1, ϑ2) =

∫
Ω

r(z)ϑT1 (z)ϑ2(z)dz, ‖ϑ1‖2 = (ϑ1, ϑ1)1/2,

where ϑT denotes the transpose of ϑ and r(z) is the weight function that is assumed

to be 1 in this work.
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We define the state x ∈W(n−1),2 as

x(t) = x̄(z, t), (6.3)

the linear differential operator

Ax = A(z)x̄, (6.4)

and the manipulated input as Bu = b(z)u, where W(n−1),2(Ω,R) is a Sobolev

subspace that satisfies the homogeneous boundary conditions of (6.1), i.e.,

W(n−1),2(Ω,R) =
{

f ∈W(n−1),2(Ω,R) : q(f,
∂f

∂z
, ...,

∂n−1f

∂zn−1
) = 0 on ∂Ω

}
.

Then the PDE system of (6.1) can be presented in the Sobolev subspace as follows

ẋ = Ax+ Bu,

x(0) = x0.

(6.5)

Note that to simplify the notation we will use W to denote W(n−1),2(Ω,R) in the

rest of the chapter.

In the analytical model reduction approaches, the set of basis functions of the

system, needed to build ROMs, can be obtained from the solution of the eigenvalue
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problem for the linear spatial operator of A, as follows

Aφi = λiφi, φi ∈W, i = 1, . . . ,∞. (6.6)

where λi and φi denote the i th eigenvalue and the corresponding basis function,

respectively. Note that φi is a complete basis of W for self adjoint operators.

Assumption 6.1. Consider the ordered eigenspectrum of A as σA = {λ1, λ2, . . . }

where

Re(λ1) ≥ Re(λ2) ≥ · · ·

and Re(λ) denotes real part of λ. We assume that σA can be partitioned into a

finite dimensional set of α slow eigenvalues, σ
(s)
A = {λ1, λ2, . . . , λα}, and a sta-

ble infinite dimensional complement set of the remaining fast eigenvalues σ
(f)
A =

{λα+1, λα+2, . . . }. The associated basis functions sets are defined as

Φs = [φ1 φ2 · · · φα]T , Φf = [φα+1 φα+2 · · · ]T .

There is a large separation between the slow and fast eigenvalues of A, i.e.,

|Re(λ1)|
|Re(λα)|

= O(1) and
|Re(λ1)|
|Re(λα+1)|

= O(γ)

where Re(λα+1) < 0, γ =
|λ1|
|λα+1|

is a small number and O(γ) indicates the order

of γ.
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According to Assumption 6.1, the system Sobolev subspace, W , span{φi}∞i=1,

can be partitioned into two Sobolev subspaces, named slow and fast subspaces,

Ws and Wf , respectively, where W = Ws ⊕Wf . The slow subspace includes a

finite number of basis functions that correspond to the slow and possibly unstable

modes of x, Ws , span{φi}αi=1, and the fast complement subspace contains an

infinite number of basis functions that correspond to the fast and stable modes

of x, Wf , span{φi}∞i=α+1. Then the state of the infinite dimensional system of

(6.1) can be partitioned into a finite number of slow and possibly unstable modes

and an infinite number of stable and fast modes with respect to the basis of the

Sobolev subspace, W,

x = xs + xf , (6.7)

where xs = Px ∈ Ws and xf = Qx ∈ Wf . The orthogonal integral projection

operators are defined as P : W→Ws, P = (·,Φs) and Q : W→Wf , Q = (·,Φf ).

From (6.7) and using the method of weighted residuals based on the set of

basis functions, the system of (6.5) can be presented as a partitioned ODE set of

vectorized modes in the following form

ẋs = Asxs +Bsu, xs(0) = Px0,

ẋf = Afxf +Bfu, xf (0) = Qx0,

(6.8)

where As = PA, Af = QA, Bs = PB, Bf = QB, Px(0) = Px0, Qx(0) = Qx0,

x̄ = x̄s + x̄f , x̄s = ΦT
s xs and x̄f = ΦT

f xf . Note that in above modal expansions,
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As = diag{λi}αi=1 and Af = diag{λi}∞i=α+1 are diagonal matrices. Also since there

is an order of magnitude difference between Re(λ1) and Re(λα+1), then there is a

time scale separation between the dynamic behavior of the two subsystems.

On the basis of the above discussion, to implement the analytical model re-

duction we need to solve the eigenvalue problem of (6.6) and find the set of basis

functions. However, generally it is not possible to solve it when we have complex

boundary conditions. The interesting fact is that we can not find the analytical so-

lution even for a general class of linear systems over miscellaneous domains. Thus,

most of the standard analytical model reduction techniques can not be directly

used even for distributed parameter systems described by general linear PDEs.

One solution to circumvent this issue is to apply APOD as explained briefly in

previous chapters.

Remark 6.1. The results in this work are presented for x̄ ∈ R, however, it is

straightforward to extend the results for x̄ ∈ Rm by treating each state individually

and combining the resulting ODE descriptions. Once each PDE has been reduced,

the interactions between distributed system states can be easily captured from their

modal expansions [228].

Remark 6.2. The assumption of large separation between slow and fast dynamics

of the system (Assumption 6.1) is satisfied by wide range of transport-reaction pro-

cesses (see [75] for heating rod and catalytic packed-bed reactor examples, [1, 178,

248] for chemical vapor deposition process and [172] for plasma discharge reactor).
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Assumption 6.1 is fundamental to the existence of only a few dominant modes that

can describe the dominant dynamic behavior of the parabolic PDE system. Based

on this assumption we can approximate the distributed parameter system by a finite

dimensional ODEs.

6.1.2 Adaptive model reduction

6.1.2.1 Finite dimensional approximation using the method of weighted

residuals

The finite-dimensional approximation of the infinite-dimensional PDE system of

(6.1) can be presented in the form of an ODE set of slow and possibly unstable

modes using the method of weighted residuals if and only if we have a proper set

of analytical or empirical basis functions. The state of the original PDE system of

(6.1), x̄(z, t), can be recast as an infinite weighted sum of a complete set of basis

functions, ψk(z), as

x̄(z, t) =
∞∑
k=1

xm,k(t)ψk(z). (6.9)

Then the following approximation can be obtained by truncating the series expan-

sion of x̄(z, t) up to order r:

ˆ̄x(z, t) =
r∑

k=1

xm,k(t)ψk(z), (6.10)



151

where r is the number of slow modes and xm(t) denotes time varying coefficients

known as system modes. The following ODE set of order r is obtained by sub-

stituting (6.10) in (6.1), multiplying the PDE with the weighting functions, ϕ(z),

and integrating over the entire spatial domain:

r∑
k=1

(ϕj(z), ψk(z))ẋm,k(t)

=
r∑

k=1

(ϕj(z),A(z)ψk(z))xm,k(t) + (ϕj(z), b(z))u(t), j = 1, ..., r

(6.11)

Note that the type of weighted residual method depends on the type of weighting

functions used in the above procedure. It is Galerkin’s method when the weighting

functions, ϕ(z), and the basis functions, ψ(z), are the same. Galerkin’s method

leads to accurate finite dimensional ODE models for processes that exhibit strong

diffusive phenomena and can thus be described by highly dissipative PDE systems;

this is due to the fact that their dominant dynamic behavior can be captured by

a finite number of dominant spatial profiles. The reduced order system of (6.11)

can be summarized as

ẋm = Amxm +Bmu. (6.12)

This system is considered for control design purposes in the next section.
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6.1.3 Control system

In this section we consider the control problem of general linear distributed pa-

rameter systems the spatiotemporal dynamics of which can be described in the

form of (6.1). We use the idea of networked control approach to regulate the sys-

tem and seek appropriate criteria for frequency of periodic spatially distributed

measurements considering closed-loop stability. Note that the open-loop spatially

distributed process may be stable or unstable; that does not affect the analysis. We

assume there is no delay in snapshot communication from the periodic distributed

measurement sensors to ROM and controller. The main objective is to find the

smallest frequency at which the ROM must be updated based on the availability

of the snapshots from the periodic distributed measurement sensors.

Assumption 6.2. The process slow dynamics and as a result the slow subsystem

of (6.8) is assumed to be controllable, and spillover to the fast subsystem is of finite

magnitude.

The partitioned dynamics of the real process, the APOD-based switching model

and the state feedback controller equation can be summarized as

Process : ẋs = Asxs +Bsu,

ẋf = Afxf +Bfu,

Model : ẋm = Amxm +Bmu,

Controller : u = K̃xm,

(6.13)
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where the controller design goal is computing the matrix of K̃ in the state feedback

controller equation of u = K̃xm, such that the eigenvalues of the closed loop system

are placed in predetermined positions.

According to Assumption 6.2 the slow dynamics of the system of (6.13) is con-

trollable. Then it is possible to place the closed-loop system poles anywhere in the

complex domain, where the poles’ locations correspond directly to the eigenvalues

of the system [112]. We use the ROM and a pole placement technique, for ex-

ample Ackermann’s formula, to compute a state feedback controller gain matrix,

K̃, that places the closed-loop poles of the system in predetermined locations.

As the process evolves, when APOD revises the set of empirical basis functions

the structure and size of the ROM may change. These changes directly affect

the controller structure. In such cases, the controller should be redesigned. We

use Butterworth formula to predetermine a set of Hurwitz characteristic polyno-

mials and an ordered set of desired stable poles of closed-loop dynamics before

closed-loop operation [112]. When the dimension of ROM changes during process

evolution, the controller structure chooses the appropriate number of poles and

their predetermined locations.

Remark 6.3. Assumption 6.2 is not as restrictive as may look, since the controlla-

bility of DPSs depends on the actuators’ locations. In addition, the controllability

of the ROM also depends on the discretization method and discretization points

[216]. Using singular perturbation arguments for Galerkin’s method we can link
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the controllability of ROM with the controllability of DPS. Most of the spatially

distributed processes in the chemical industries are over-designed to be controllable

by placing the actuators in appropriate locations with respect to open-loop crite-

ria [21]. The reader may refer to [21, 88] for actuators’ placement methods that

satisfy controllability of the ROM and DPS and suppress spillover to higher order

dynamics.

Remark 6.4. Alternatively we may assume that the infinite dimensional system of

(6.5) is approximately controllable [84]. There is a direct relationship between ap-

proximate controllability and exact controllability of the slow subsystem. Assump-

tion 6.2 is less restrictive than this requirement because approximate controllability

even though is not enforcing exact controllability to the system, it assumes that the

fast subsystem is also controllable which is not the case of the assumption.

6.1.3.1 Closed-loop system analysis

The slow and dominant part of the state in the original PDE system of (6.1) can

be defined as follows

x̄s(z, t) = ΦT
s (z) xs(t). (6.14)

Also the model state of the PDE system is obtained by

ˆ̄x(z, t) = ΨT (z) xm(t), (6.15)
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where Ψ = [ψ1 ψ2 . . . ψr]
T , Φs = [φ1 φ2 . . . φα]T ; r is the number of empirical

basis functions of the slow subsystem that is computed using APOD and α is the

number of analytical basis functions of the slow subsystem. Note that we do not

require Φs for the implementation of the proposed method, we need it just for the

stability and performance analysis.

After the fast dynamics have relaxed, i.e. xf → 0, the model error can not be

defined directly by the simple subtraction, xs − xm because the dimension of the

system slow modes, xs and APOD-based modes, xm, in (6.13) is not necessarily

the same since the number of identified slow subsystem basis functions Φs and Ψ

can be different. Thus, we need a transformation to project one subspace to other

and define the projected error.

Assumption 6.3. Consider the local subspace of the slow and unstable modes,

Ws , span{φi}αi=1 and subspace P defined as P , span{ψi}ri=1, where {φi}αi=1 is

the set of analytical basis functions of the slow subsystem (which are unavailable)

and {ψi}ri=1 is the set of empirical basis functions (computed based on APOD). The

complement subspace of P can also be defined as Q , span{ψi}∞i=r+1. We assume

that Ws ⊆ P, locally.

Note that Assumption 6.3 is justified based on the excitation of the higher

modes and reordering of the modes during the closed-loop process evolution. The

problem with linear systems is that due to sub-sampling the empirical basis func-

tions and modes may not be properly ordered. One solution to bridge slow Sobolev
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subspace Ws and subspace P is by defining a bounded mapping between these two

subspaces to find the corresponding states. The map should be defined as a linear

transformation that changes at ROM revisions to conserve all of the subspaces’

properties during system evolution. Then, from (6.15) we can define a bounded

map between two subspaces, Ws and P as follows

x̄s = ΦT
s xs = ΨTMxs = ΨTxp, (6.16)

where xp =Mxs, M : Ws 7→ P and

M = (ΨT ,ΦT
s ). (6.17)

Note that M : Ws 7→ P, is injective due to the fact that subspace P contains

subspace Ws. Then xp,1 = xp,2,∀xp,1, xp,2 ∈ P implies that xs,1 = xs,2,∀xs,1, xs,2 ∈

Ws. To complete the analysis, the bounded reverse map can be defined as M⊥ =

(ΦT
s ,Ψ

T ),M⊥ : P 7→Ws such that I =M⊥M : Ws 7→Ws is a bijective map. An

interesting fact about this transformation is that M⊥ =MT .

Using the above transformation, the system modes of the process slow dynamics

in (6.13) can be expressed using the basis functions of subspace P in the following

form

ẋp = Apxp +Bpu, (6.18)

where Ap =MAsM⊥ and Bp =MBs.
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Now we can define the error based on the difference between states of the

process of (6.18) and the model of (6.13) as follows

e = xp − xm. (6.19)

Then the reduced system dynamics can be obtained for t ∈ [ti, ti+1] in terms of

process and error state


ẋp = (Ap +BpK̃)xp − (BpK̃)e

ė = (Ae +BeK̃)xp + (Am −BeK̃)e

(6.20)

where the model is revised every δt seconds based on the state profile information

from spatially distributed sensors at ti , i.e. e(ti) = 0 and we have δt = ti+1 − ti.

Ae = Ap−Am and Be = Bp−Bm are the modeling error matrices that represent the

difference between plant and model structures. In linear systems, the only reason

for system deviation can be the modeling error due to sampling which causes an

erroneous ordering of the empirical basis functions; basically the empirical eigen-

values have significant deviation from the operator eigenvalues. Once the model

starts diverging from the system, APOD revises it.

Defining x =

xp
e

, the system of (6.20) can be summarized as the following

networked system

ẋ = Gx, (6.21)
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where G =

Ap +BpK̃ −BpK̃

Ae +BeK̃ Am −BeK̃

 and x(ti) =

xp(ti)
0

 for t ∈ [ti, ti+1]. Now

we can derive the criteria for stability of the networked system.

Proposition 6.1. The system of (6.21) with the initial condition of x0 = x(t0) =xp(t0)

0

 has the following solution

x(t) = eG(t−ti)S ix0, (6.22)

where S =

I 0

0 0

 eGδt
I 0

0 0

 and t ∈ [ti, ti+1] (Proposition 1 in [188]).

Proof See Appendix A.4.1 for proof of the proposition.

To proceed we need to analyze the global exponential stability of the system

around the origin. The necessary and sufficient conditions for the system to be

stable are identified in the following theorem.

Theorem 6.1. The solution of the system of (6.21) is globally exponentially stable

in the neighborhood of x =

0

0

 if and only if the eigenvalues of

S =

I 0

0 0

 eGδt
I 0

0 0


are inside the unit circle (Theorem 1 in [188]).
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Proof See Appendix A.4.2 for proof of the theorem.

By defining the transformation matrix, Mtr =

I 0

I −I

, we obtain

G∗ = MtrGMtr
−1 =

Ap BpK̃

0 Am +BmK̃

. (6.23)

Then from (6.23) and the definition of matrix S we conclude

S =

I 0

0 0

 eGδt
I 0

0 0

 =

I 0

0 0

Mtr
−1eG

∗δtMtr

I 0

0 0



=

I 0

0 0

 eG∗δt
I 0

I 0

 .
(6.24)

If we consider the Laplace transformation of matrix S we obtain

L{S} =

I 0

0 0

L{eG∗δt}
I 0

I 0



=

(sI − Ap)−1 + (sI − Ap)−1BpK̃(sI − Am −BmK̃)−1 0

0 0

,
(6.25)

and only the element of (sI − Ap)−1 + (sI − Ap)−1BpK̃(sI − Am − BmK̃)−1 has
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non-zero eigenvalues. By inverse Laplace transformation we obtain

L−1
{

(sI − Ap)−1 + (sI − Ap)−1BpK̃(sI − Am −BmK̃)−1
}

= L−1
{

(sI − Ap)−1(sI − Am −BmK̃ +BpK̃)(sI − Am −BmK̃)−1
}

= L−1
{

(sI − Ap)−1(sI − Ap + Ae +BeK̃)(sI − Am −BmK̃)−1
}

= L−1
{(
I + (sI − Ap)−1(Ae +BeK̃)

)
(sI − Am −BmK̃)−1

}
= L−1

{
(sI − Am −BmK̃)−1 + (sI − Ap)−1(Ae +BeK̃)(sI − Am −BmK̃)−1

}
= e(Am+BmK̃)δt + eApδt

∫ δt

0

e−Apt(Ae +BeK̃)e(Am+BmK̃)tdt.

Then the nonzero eigenvalues of matrix S are the eigenvalues of matrix [188]

N = e(Am+BmK̃)δt + eApδt
∫ δt

0

e−Apt(Ae +BeK̃)e(Am+BmK̃)tdt, (6.26)

where N consists of two parts; the major term, Nm = e(Am+BmK̃)δt , and the per-

turbation term, Ne = eApδt
∫ δt

0

e−Apt(Ae + BeK̃)e(Am+BmK̃)tdt. The eigenvalues of

N should be placed in a unit circle to satisfy the closed-loop stability requirement.

The perturbation term depends on the updating period for snapshots (time inter-

val between ROM revisions), δt, and the model mismatch. Also based on (6.26)

we conclude that δt for a process depends on the controller gain, locations of the

actuators and the model mismatch. Then we can ensure Ne � Nm by choosing

small values for δt or using more accurate models.
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One way to find a criteria for δt based on closed-loop stability is by assuming

an upper bound for the uncertain term as follows

∥∥∥λmax{Ne}∥∥∥
2
≤ σ, (6.27)

where λmax(·) denotes the maximum eigenvalue of matrix (·) and σ is a small

positive number. From Theorem 6.1, Eqs. (6.24)-(6.26) and triangular inequality

we obtain

∥∥∥λmax{Nm +Ne}
∥∥∥

2
≤
∥∥∥λmax{Nm}∥∥∥

2
+
∥∥∥λmax{Ne}∥∥∥

2
< 1. (6.28)

Using (6.27), we have

∥∥∥λmax{Nm}∥∥∥
2

=
∥∥∥λmax{e(Am+BmK̃)δt}

∥∥∥
2
< 1− σ. (6.29)

Finally, the above inequality can be presented as follows,

log10

(∥∥∥λmax{e(Am+BmK̃)δt}
∥∥∥

2

)
< log10(1− σ) < 0. (6.30)

Then by tracking λmax for different values of δt, the δt values can be found that sat-

isfy the system closed-loop stability. Note that considering log10

(∥∥∥λmax{Nm}∥∥∥
2

)
<

0 gives us an idea of δt values for the error-free case.

Another approach to identify an upper bound for δt considering closed-loop
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stability can be presented by setting upper bounds for open-loop and closed-loop

model uncertainty. We know that for matrix N ,

∥∥∥λmax{N}∥∥∥
2
≤ σmax{N} =

∥∥∥N∥∥∥
2
, (6.31)

where σmax(·) denotes the maximum singular value of matrix (·). Then using (6.26)

we obtain

∥∥∥N∥∥∥
2

=
∥∥∥e(Am+BmK̃)δt + eApδt

∫ δt

0

e−Apt(Ae +BeK̃)e(Am+BmK̃)tdt
∥∥∥

2

≤
∥∥∥e(Am+BmK̃)δt

∥∥∥
2

+
∥∥∥eApδt ∫ δt

0

e−Apt(Ae +BeK̃)e(Am+BmK̃)tdt
∥∥∥

2
.

(6.32)

From this point we consider two cases based on the stability or instability of the

open-loop process:

Case I. open-loop process is unstable.

∥∥∥e(Am+BmK̃)δt
∥∥∥

2
+
∥∥∥eApδt ∫ δt

0

e−Apt(Ae +BeK̃)e(Am+BmK̃)tdt
∥∥∥

2

≤
(∥∥∥eAclm∥∥∥

2

)δt
+ eσ̃1δt

∥∥∥∫ δt

0

e−Apt‖Ae +BeK̃‖2e
(Am+BmK̃)tdt

∥∥∥
2

≤
(∥∥∥eAclm∥∥∥

2

)δt
+ eσ̃1δt

(
σ̃1 + ‖Am‖2 + (σ̃2 + ‖Bm‖2)‖K̃‖2

)∥∥∥∫ δt

0

e(Aclm−Ap)tdt
∥∥∥

2

=
(∥∥∥eAclm∥∥∥

2

)δt
+ Σ

eσ̃1δt

‖Am +BmK̃ − Ap‖2

∥∥∥e(Aclm−Ap)δt − 1
∥∥∥

2

≤
(∥∥∥eAclm∥∥∥

2

)δt
+ Σ

eσ̃1δt∣∣∣‖Aclm‖2 − σ̃1

∣∣∣
∥∥∥e(Aclm−Ap)δt − 1

∥∥∥
2
< 1

(6.33)
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where Aclm = Am + BmK̃, ‖Ap‖2 ≤ σ̃1, ‖Bp‖2 ≤ σ̃2 and Σ = σ̃1 + ‖Am‖2 + (σ̃2 +

‖Bm‖2)‖K̃‖2. If we assume that e(Aclm−Ap)δt ≈ 0 (from the fact that the open-loop

process is unstable and by designing the controller gain), we obtain

(∥∥∥eAclm∥∥∥
2

)δt
+ Σ

eσ̃1δt∣∣∣‖Aclm‖2 − σ̃1

∣∣∣ < 1

⇒ δt

[
ln
(∥∥∥eAclm∥∥∥

2

)
+ σ̃1

]
+ ln(Σ)− ln

(∣∣∣‖Aclm‖2 − σ̃1

∣∣∣) < 0

⇒ δt <
ln
(∣∣∣‖Aclm‖2 − σ̃1

∣∣∣/Σ)
ln
(∥∥∥eAclm∥∥∥

2

)
+ σ̃1

= δ∗t

(6.34)

Case II. open-loop process is stable.

∥∥∥e(Aclm)δt
∥∥∥

2
+
∥∥∥eApδt ∫ δt

0

e−Apt(Ae +BeK̃)e(Am+BmK̃)tdt
∥∥∥

2

≤
(∥∥∥eAclm∥∥∥

2

)δt
+ σ̃3

∥∥∥∫ δt

0

e−Apt‖Ae +BeK̃‖2e
(Aclm)tdt

∥∥∥
2

≤
(∥∥∥eAclm∥∥∥

2

)δt
+ Σ

σ̃3∣∣∣‖Aclm‖2 − σ̃1

∣∣∣
∥∥∥e(Aclm−Ap)δt − 1

∥∥∥
2
< 1

(6.35)

where
∥∥∥eApδt∥∥∥

2
≤ σ̃3. If we assume that e(Aclm−Ap)δt ≈ 0 (by designing the controller
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gain), we obtain

(∥∥∥eAclm∥∥∥
2

)δt
+

Σσ̃3∣∣∣‖Aclm‖2 − σ̃1

∣∣∣ < 1

⇒ δt ln
(∥∥∥eAclm∥∥∥

2

)
+ ln(Σσ̃3)− ln

(∣∣∣‖Aclm‖2 − σ̃1

∣∣∣) < 0

⇒ δt <
ln
(∣∣∣‖Aclm‖2 − σ̃1

∣∣∣/(Σσ̃3)
)

ln
(∥∥∥eAclm∥∥∥

2

) = δ∗∗t

(6.36)

Theorem 6.2. Consider the dissipative, input-affine, linear PDE system of (6.1)

for which Assumptions 6.1-6.2 always hold and Assumption 6.3 holds for finite

periods between revisions. Also consider the infinite dimensional representation of

(6.5) and finite dimensional approximation of (6.12) in subspace P with APOD-

based empirical basis functions. Under Assumptions of 6.1-6.3, the networked con-

trol strategy asymptotically stabilizes the system of (6.1) when the time interval

between ROM updates, δt, is finite and larger than a critical value, tb.

Proof See Appendix A.4.3 for proof of the theorem.

In Figure 6.1 the closed-loop process is presented under the proposed control

structure in a block diagram form.

Remark 6.5. Using the concept of settling time for linear systems we can relax

the assumption of absence of O(
1

γ
) in the controller term and obtain a conservative

estimate of tb without considering singular perturbations arguments. The solution
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Figure 6.1: Process operation block diagram under proposed controller structure.
Red signifies the controller system.

of fast mode dynamics of the system can be presented as,

˙̄xf = Afxf +BfK̃xm ⇒ xf (t) = eAf txf (0) +

∫ t

0

eAf (t−s)BfK̃xmds.

We can find the final value of the fast modes as follows,

lim
t→∞

xf = xf,ss = −A−1
f BfK̃xm.

Considering the settling time when the fast modes of the system reach within a 1%

region of their final value, we obtain

∣∣∣∣‖xf (tb)‖2 − ‖xf,ss‖2

‖xf,ss‖2

∣∣∣∣ ≤ 0.01.
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Using triangular inequality we can simplify the inequality as follows,

∣∣∣‖xf (tb)‖2 − ‖xf,ss‖2

‖xf,ss‖2

∣∣∣ ≤ ‖xf (tb)− xf,ss‖2

‖xf,ss‖2

≤ 0.01.

From the above inequality we obtain,

∥∥∥eAf tbxf (0) +
∫ tb

0
eAf (tb−T )BfK̃xmdT + A−1

f BfK̃xm

∥∥∥
2

‖A−1
f BfK̃xm‖2

≤ 0.01.

If we assume that xm does not change sharply during the time period of [0, tb] then

by using Cauchy-Schwarz and triangular inequalities we can simplify the problem

as follows,

∥∥∥eAf tbxf (0) +
∫ tb

0
eAf (tb−T )BfK̃xmdT + A−1

f BfK̃xm

∥∥∥
2

‖A−1
f BfK̃xm‖2

=

∥∥∥eAf tbxf (0) +
( ∫ tb

0
eAf (tb−T )dT

)
BfK̃xm + A−1

f BfK̃xm

∥∥∥
2

‖A−1
f BfK̃xm‖2

=

∥∥∥eAf tb(xf (0) + A−1
f BfK̃xm

)∥∥∥
2

‖A−1
f BfK̃xm‖2

≤
‖eAf tb‖2

(
‖xf (0)‖2 + ‖A−1

f BfK̃xm‖2

)
‖A−1

f BfK̃xm‖2

≤ 0.01.
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Now we can solve the above inequality for tb,

‖eAf tb‖2

( ‖xf (0)‖2

‖A−1
f BfK̃xm‖2

+ 1
)
≤ 0.01⇒ ‖eAf tb‖2 ≤

0.01
‖xf (0)‖2

‖A−1
f Bf K̃xm‖2

+ 1

⇒ e−‖λα+1‖2tb ≤ 0.01
‖xf (0)‖2

‖A−1
f Bf K̃xm‖2

+ 1

⇒ tb ≥
1

‖λα+1‖2

[
4.605 + ln

( ‖xf (0)‖2

‖A−1
f BfK̃xm‖2

+ 1
)]
.

Remark 6.6. The maximum allowable time interval between snapshots being com-

municated from the periodic spatially distributed measurement sensors to the model

reduction and control structure is less than

(a) the minimum time interval from (6.30) and δ∗t for unstable open-loop process,

(b) the minimum time interval from (6.30) and δ∗∗t for stable open-loop process.

Remark 6.7. To identify the criterion presented in (6.30), (6.34) and (6.36), we

have to find an upper bound for process operators, Ap and Bp, otherwise we can

not determine criteria for δt. Considering Ap = Ae + Am and Bp = Be + Bm

we obtain that ‖Ap‖2 ≤ ‖Ae‖2 + ‖Am‖2 and ‖Bp‖2 ≤ ‖Be‖2 + ‖Bm‖2. Note that

the upper bounds of modeling error operators, ‖Ae‖2 and ‖Be‖2, always converge

to small neighborhood around zero by using recursive POD methods (like APOD)

during process evolution as more dynamical modes of the system are excited. Thus,

an approximate upper bound of ‖Ae‖2 and ‖Be‖2 can be obtained via subspace Q.

Then we may implement the summation of upper bounds of the empirical and
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modeling error operators in (6.30), (6.34) and (6.36), specifically for diffusion-

reaction processes when the fast modes of the system converges to zero after a

short period of time.

Remark 6.8. Based on the presented analysis one may encounter cases when

tb > δ∗t which implies that the proposed procedure can not be used to regulate the

system. This hurdle is surpassed by increasing ξ in APOD [203] which increases

the dimensionality of the slow system and thus considers faster settling times, tb.

Remark 6.9. For finite periods longer than the critical period of tb, basis functions

of the slow subsystem belong in P ⊕ Q. The relative significance of the empirical

eigenvalues is a strong indicator that the slow subsystem is included in P ⊕ Q.

Assumption 6.3 has two restrictions; the snapshot frequency is considered to be of

the same order as magnitude of the dominant dynamics frequency and the slow dy-

namics are sufficiently excited [256]. The appearance of new trends in the system

dynamics during process evolution is the main reason that Assumption 6.3 condi-

tions are violated because they make the empirical basis functions and ROM inac-

curate. When the conditions of this assumption are violated the APOD algorithm

revises the set of empirical basis functions and modifies the ROM. Furthermore,

the controller is redesigned to retain relevancy. Such “corrections” will always be

repeated at revision times to enforce closed-loop stability.
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Figure 6.2: Tubular chemical reactor with cooling spiral at z = 0.75L.

6.1.4 Simulation results

In this section, the proposed method is illustrated on temperature regulation of a

tubular reactor. We considered a tubular chemical reactor shown in Figure 6.2,

where an irreversible exothermic reaction of zeroth order with reaction rate, R,

took place and a cooling jacket was used to remove heat from the reactor. We

assumed constant physical properties and considered only the temperature. We

studied two cases; (1) constant reaction rate and (2) Arrhenius dependence of the

reaction rate to temperature.

6.1.4.1 Constant reaction rate

We considered an energy balance along the reactor length where the reaction rate

was constant, R = R0, as follows

∂T

∂t
=

k

ρcp

∂2T

∂z2
− ν ∂T

∂z
+

(−∆H)

ρcp
R0 −

hAs
ρcp

(
T − b(z)Tc

)
, (6.37)
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with boundary conditions

z = 0 :
∂T

∂z
=
ρcpν

k
(T − Tf ),

z = L :
∂T

∂z
= 0,

(6.38)

and initial condition

t = 0 : T = Tf . (6.39)

In Eqs. (6.37)-(6.39), T is the reactor temperature, t is time and z ∈ [0, L] is

the spatial domain. k, ρ and cp denote the thermal conductivity, density and heat

capacity of the fluid inside the reactor, respectively. ν is the axial fluid velocity, h

is heat transfer coefficient between the reactor and the cooling jacket and As is the

surface area of the reactor walls. Also b(z) describes the location of the cooling

jacket and (−∆H) denotes the heat of the reaction.

By considering the steady state temperature

k

ρcp

∂2Tss
∂z2

− ν ∂Tss
∂z

+
(−∆H)

ρcp
R0 −

hAs
ρcp

(
Tss − b(z)Tc,ss

)
= 0, (6.40)

subject to the following boundary conditions

z = 0 :
dTss
dz

=
ρcpν

k
(Tss − Tf ),

z = L :
dTss
dz

= 0,

(6.41)
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the following equations can be obtained from the system of (6.37)-(6.39)

∂T̄

∂t̄
=

1

Pe

∂2T̄

∂z̄2
− ∂T̄

∂z̄
− βT̄ + βb(z̄)u (6.42)

z̄ = 0 :
∂T̄

∂z̄
= PeT̄ ,

z̄ = 1 :
∂T̄

∂z̄
= 0,

(6.43)

t̄ = 0 : T̄ = T̄f , (6.44)

where the dimensionless variables and parameters are defined as follows

T̄ =
T − Tss
Tss

, T̄f =
Tf − Tss
Tss

, u =
Tc − Tc,ss

Tss
, z̄ =

z

L
,

Pe =
ρcpνL

k
, β =

hAsL

ρcpν
, t̄ =

tν

L
.

(6.45)

We considered Pe = 7, T̄f = −0.3 and β = 2 for the parameters in process

system of (6.42)-(6.44). One control actuator was assumed to be available at La =

0.75 in the spatial domain z̄ = [0, 1] and the corresponding spatial distribution

function at the actuator location was b(z̄) = δ(z̄−La) that indicates point actuation

(δ(·) denotes the standard Dirac delta function). Figure 6.3 presents the steady

state temperature where Tf = 17oC, Tc,ss = 27oC and γ =
(−∆H)

ρcpν
R0L = 15.

This temperature profile is the desired basis for the regulation problem.

As the availability of snapshots of the process is usually limited, in order to ob-

tain δt, we initially simulated the open-loop process for the time period of t̄ = [0, 2].
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Figure 6.3: The desired spatial profile of steady state temperature.

We obtained 20 snapshots during this open-loop period, then we computed the ini-

tial basis functions by applying the off-line APOD to the ensemble of snapshots.

This off-line procedure resulted in 2 empirical basis functions for T̄ which captured

0.99 of the energy embedded in the ensemble. The APOD model was derived us-

ing the empirical basis functions and Galerkin’s projection, i.e. Am and Bm were

obtained. Then we computed tb = 0.2 from (A.57) and the open-loop simulation

results. Note that tb must be considered as a lower bound for δt. Considering

σ = 0.05, the initial upper bound of δt was computed based on (6.30) where K̃ = 0

(δt ≤ 0.67). We chose the initial value of δt using such lower and upper bounds.

During the closed-loop process evolution assuming ‖Ap‖2 ≈ ‖Am‖2 and ‖Bp‖2 ≈

‖Bm‖2, we set σ̃1 = ‖Am‖2 and σ̃2 = ‖Bm‖2. Then we computed Σ = σ̃1 +‖Am‖2 +

(σ̃2 +‖Bm‖2)‖K̃‖2. The parameter σ̃3 was also adjusted at the value of 1 consider-

ing δt > 0 and λ(Ap) < 0. The value of δ∗∗t was computed from (6.36) (where the
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smallest value of δ∗∗t was equal to 0.63 as time evolved). The final value of δt at

each revision was identified based on Remark 6 considering tb as the lower bound.

Considering the above discussion we adjusted the sampling frequency of snap-

shots of the process at every δt = 0.5 units of time during closed loop operation.

This value satisfied all criteria. We can change δt during process evolution, however

we only considered a constant value in this example for simplicity reasons. Figure

6.4 presents the temporal profile of closed-loop process and its 2-norm, respectively.

We observe that the controller successfully stabilized the system of (6.42)-(6.44)

at T̄ (z̄, t̄) = 0, since the process profile and its norm converged to zero without

any peaking.

Figure 6.5 shows the temporal profile of required control action, the dominant

mode estimated using APOD and the norm of error between the process and

the ROM. To compute the controller gain we placed the first closed-loop pole

at −5 (for r = 1, 2) and the second closed-loop pole at −7 (for r = 2). The

control action converged to zero and we did not observe any chattering. The

mode of the system converged to zero which illustrates the effectiveness of the

proposed controller structure to stabilize the system. The success of the designed

controller in regulating the process was due to the dominant subspace (hence the

ROM and the control law) being updated as the process traverses through different

regions of the state space during closed-loop operation. Figure 6.6 presents the

change of number of basis functions. During the closed-loop process operation,
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Figure 6.4: Closed-loop system temporal profile of (a) the deviation state spatial
profile and (b) norm of the deviation state.

when new trends appeared the dominant subspace basis was updated to accurately

capture the process behavior, appropriately changing the number of empirical basis

functions. Note that the system is linear and there are no basic dynamic behavior

changes; the only reason for changes in the ROM dynamics as time evolved was

the erroneous ordering of the empirical basis functions since the specific modes can

be locally close to zero during initial sampling. Figure 6.7 presents the temporal

profile of the dominant empirical basis functions. Note that the second empirical
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Figure 6.5: Temporal profile of (a) control action, (b) dominant estimated mode
and (c) norm of error between the process and the ROM.
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Figure 6.6: Number of basis functions.

basis function only existed during the time period of [0, 1]. It was observed that

the basis function was adapting itself with the system during the process evolution.

There is always a trade-off between stability satisfaction and ROM revision

load based on the value of δt. Larger values of δt reduce the computation load for

ROM updates but lead to loss of closed-loop stability. Figure 6.8 compares the log-

arithmic temporal profiles of ‖λmax{Nm}‖2 for different values of δt. Based on the

criteria of (6.29) for σ = 0.05 the value of δt that satisfies log10

(
‖λmax{Nm}‖2

)
≤

−0.02 at steady state had to been chosen; this means the previously chosen value

of δt satisfied the system closed-loop stability requirements.
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Figure 6.7: Temporal profile of the (a) first and (b) second empirical basis func-
tions.

Figure 6.8: Temporal profile of absolute value of maximum characteristic eigen-
value for different ROM updating period times.
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6.1.4.2 Temperature dependent reaction rate

To illustrate the importance of choosing the correct time interval for ROM revi-

sions of open-loop unstable linearized DPSs we now focus on regulating the thermal

dynamics in the same tubular reactor of the previous section when an irreversible

exothermic reaction of zeroth order with Arrhenius temperature dependent reac-

tion rate of R̃0e
− E
RT takes place. The energy balance can then be presented in the

following form,

∂T

∂t
=

k

ρcp

∂2T

∂z2
− ν ∂T

∂z
+

(−∆H)

ρcp
R̃0e

− E
RT − hAs

ρcp

(
T − b(z)Tc

)
, (6.46)

with the same boundary and initial conditions of (6.38)-(6.39), where E denotes

the reaction activation energy and R is the universal gas constant. Considering the

Taylor expansion of the nonlinear term, e−
E
RT , around an unstable steady state,

Tss, as

e−
E
RT ≈ e−

E
RTss

(
1 +

E

RT 2
ss

(T − Tss)
)
,

we obtained the linearized PDE system of

∂T

∂t
=

k

ρcp

∂2T

∂z2
− ν ∂T

∂z
+

(−∆H)

ρcp
R̃0e

− E
RTss

(
1 +

E

RT 2
ss

(T − Tss)
)

−hAs
ρcp

(
T − b(z)Tc

) (6.47)
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Accordingly, the spatial profile of the unstable steady state temperature took the

following form

k

ρcp

∂2Tss
∂z2

− ν ∂Tss
∂z

+
(−∆H)

ρcp
R̃0e

− E
RTss − hAs

ρcp

(
Tss − b(z)Tc,ss

)
= 0, (6.48)

with respect to the same boundary conditions of (6.41). Then we derived the

following dimensionless PDE from (6.47)-(6.48),

∂T̄

∂t̄
=

1

Pe

∂2T̄

∂z̄2
− ∂T̄

∂z̄
+ β̂T̄ + βb(z̄)u

z̄ = 0 :
∂T̄

∂z̄
= PeT̄ ,

z̄ = 1 :
∂T̄

∂z̄
= 0,

t̄ = 0 : T̄ = T̄f ,

(6.49)

where

β̂ =
(−∆H)

ρcpν
R̃0L

E

RT 2
ss

e−
E

RTss − β

subject to the dimensionless variables and parameters of (6.45).

We considered the same set of operation parameters as in the previous section

(Pe = 7, T̄f = −0.3 and β = 2). The reaction thermal source parameter was

also considered as β̂ = 1.5 in the simulation. An analysis of the open-loop process

behavior showed that the spatially uniform steady state was now unstable. As a

result the control objective became to regulate the process at the spatially uniform



180

steady state of T̄ = 0.

A single actuator was assumed to be available at La = 0.75 and the control and

model order reduction (MOR) strategy was the same as previous section. In order

to obtain δt, we initially simulated the open-loop process and computed the initial

basis functions by applying the off-line APOD to the ensemble of snapshots. Then

we obtained Am and Bm from the APOD model. We thus computed the value of

tb = 0.1 from the open-loop simulation results. The initial upper bound of δt was

computed based on (6.30) (δt ≤ 0.52). We chose the initial value of δt using such

lower and upper bounds. During the closed-loop process evolution by assuming

‖Ap‖2 ≈ ‖Am‖2 and ‖Bp‖2 ≈ ‖Bm‖2, we set σ̃1 = ‖Am‖2 and σ̃2 = ‖Bm‖2. Then

we computed Σ = σ̃1 +‖Am‖2 +(σ̃2 +‖Bm‖2)‖K̃‖2. The value of δ∗t was computed

from (6.34) (where the smallest value of δ∗t was equal to 0.5 as time evolved). The

final value of δt at each revision was identified based on Remark 6 considering

tb as the lower bound. We applied δt = 1 as the initial time interval between

sampling snapshots and we compared it to δt = 0.4, that had been identified based

on the criterion of (6.30) and (6.34). The controller structure performance for two

different values of δt are presented in the figures 6.9-6.11. Figure 6.9 compares

the closed-loop spatiotemporal behavior of the dimensionless temperature for the

two applied time intervals. The temporal profiles of the closed-loop system 2-

norm are presented in Figure 6.10, and Figure 6.11 shows the required control

actions. We observe that the controller successfully stabilized the system of (6.49)
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Figure 6.9: Closed-loop spatiotemporal profile of the system for (a) δt = 1 and (b)
δt = 0.4.

at T̄ (z̄, t̄) = 0 when δt = 0.4. We also observe that the sampling frequency of

δt = 1 was insufficient to stabilize the plan, and the process exhibited an oscillatory

behavior far away from the desired steady state (shown in Figs. 6.9a and 6.10a).

This was due to the control action (shown in Figure 6.11a) which was insufficient

to drive the closed-loop system due to ROM inaccuracy.

The effectiveness of the proposed APOD-based control structure in stabilizing
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Figure 6.10: Closed-loop temporal profile of the system 2-norm for (a) δt = 1 and
(b) δt = 0.4.

the linear process lies on the ROM revisions as the process passes through different

regions of the state space domain. As we discussed in this chapter, such revisions

had to be quite frequent to accurately capture the process behavior when new

trends appeared during closed-loop operation.
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Figure 6.11: Temporal profile of required control action for (a) δt = 1 and (b)
δt = 0.4.

6.2 Nonlinear systems

In this section we focus on algorithmic aspects of APOD-based output feedback

control of highly dissipative DPS using Lyapunov direct method. To identify the

minimum ROM revisions we monitor the value of a control Lyapunov function

(CLF) as the process evolves. CLF is a quadratic function of system modes esti-
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mated by a static observer. The static observer is applied due to unavailability of

system modes direct measurements during the closed-loop process evolution. The

Lyapunov stability theorem states that for the closed-loop system to be asymp-

totically stable, the CLF has to decrease during process evolution. We synthesize

the controller based on the ROM to force the CLF to decrease; the positive time

derivative of the CLF at any time then indicates that the ROM is inaccurate.

Accordingly, by tracking the time derivative of CLF we can identify the time in-

stances when the ROM must be revised using APOD. The revision procedure

continues until the value of Lyapunov function satisfies the stability criteria and

performance. The effectiveness of the proposed output feedback control approach

is illustrated on the regulation problem of a physico-chemical system described by

the Kuramoto-Sivashinsky equation (KSE).

6.2.1 System description

We consider one-dimensional highly dissipative DPSs which can be described by

the following general form of input-affine PDE,

∂

∂t
x̄(z, t) = Fn(z, x̄) +H(z, x̄) +B(z)u(t),

Γ(x̄,
∂

∂z
x̄, . . . ,

∂n−1

∂zn−1
x̄)
∣∣∣
∂Ω

= 0,

x̄(z, 0) = x̄0(z),

(6.50)
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where x̄ denotes the spatially distributed state of the system, z ∈ Ω ⊂ R is the

spatial coordinate, Ω is the process domain and t indicates the time. The term

Fn presents the nonlinear differential operator of orders n, H denotes an algebraic

smooth nonlinear Lipschitz function and u ∈ Rl is the vector of manipulated inputs

where l denotes the number of inputs. The vector function of BT (z) describes the

spatial distribution of the manipulated inputs. The vector of Γ(·) presents the n

homogeneous boundary conditions defined over the process boundary of ∂Ω, and

x̄0 is a smooth function that describes the initial spatial profile.

In the general PDE system of (6.50), limited continuous point measurement

sensors are considered to be available at predefined locations in the process domain.

The vector of measurement outputs of such sensors can then be presented in the

following form during the process evolution,

y(t) =

∫
Ω

δ(z − Ls)x̄(z, t) dz, (6.51)

where δ(·) is the standard Dirac function and Ls denotes the vector of point mea-

surement sensors’ locations. We also consider a periodic spatially distributed sensor

to take the system snapshots as needed,

Y (z, tk) =

∫ t

0

δ(t− tk)x̄(z, t) dt, (6.52)

where tk for k = 1, 2, . . . , indicates the time instances when the snapshot of the
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system state must be available. Such system profiles can be obtained by periodic

fixed or moving spatially distributed sensors [88] or computed by a parallel high

fidelity simulator. The required snapshots at each revisions in the presence of par-

tial sensor information can be reconstructed from previous spatially distributed

profiles [204]. The snapshot construction problem can also be addressed by spa-

tially distributed dynamic observers in the form of PDEs which only use a limited

number of fixed point measurement sensors. Our intention is to reduce the num-

ber of such revisions in the presence of bounded manipulated inputs and measured

outputs.

Assumption 6.4. We assume the approximate observability and controllability

[81, 84] of the DPS described by the PDE system of (6.50)-(6.51).

By defining the infinite-dimensional system state,

x(t) = x̄(·, t),

the nonlinear differential, nonlinear algebraic and the manipulated input operators,

F(x) = Fn(z, x̄),

H(x) = H(z, x̄),

Bu = B(z)u,
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and the measurement output operators,

Sx =

∫
Ω

δ(z − Ls)x̄(·, t) dz,

Rx =

∫ t

0

δ(t− tk)x̄(·, t) dt,

in an appropriate functional Sobolev subspace of W, the PDE system of (6.50)

and its measurement outputs, (6.51)-(6.52), can be represented in the following

infinite-dimensional functional form

ẋ = F(x) + H(x) + Bu, x(0) = x0,

y = Sx,

Y = Rx,

(6.53)

where x ∈W and

W(Ω) =
{
G ∈ L2(Ω) : ∀α ∈ N, |α| 6 n− 1, ∂αG ∈ L2(Ω),

Γ(G, ∂G
∂z
, . . . ,

∂n−1G
∂zn−1

)
∣∣∣
∂Ω

= 0
}
.

To present the infinite-dimensional functional form of (6.53) in a normal form and

present the idea that is the basis for the proposed work, we have to find the basis

functions needed to discretize the system. Such basis functions must be computed



188

from the eigenproblem of the nonlinear operator of F as

F(ψi)− λiψi = 0,

Γ(ψi,
∂ψi
∂z

, . . . ,
∂n−1ψi
∂zn−1

)
∣∣∣
∂Ω

= 0,

i = 1, . . . ,∞,

(6.54)

where ψi denote the i th basis function corresponds to the eigenvalue of λi.

6.2.2 Finite-dimensional approximation using Galerkin pro-

jection

In this section, we employ Galerkin projection to accurately reproduce the domi-

nant dynamics of the nonlinear highly dissipative PDE system of (6.50) by a low-

dimensional nonlinear ODEs. A complete set of global orthonormal basis functions

are assumed to be available which span the entire spatial domain of the process

operation and satisfy the process boundary conditions. In practice, such basis

function may be computed using POD-type approaches. For such approximation

we need a time scale separation between the slow and fast dynamics of the system

which is officially stated in the following assumption.

Assumption 6.5. The dynamics of highly dissipative DPS described by the non-

linear PDE of (6.50) with infinite-dimensional representation of (6.53) can be de-

composed to two subsystem dynamics; (1) the finite slow subsystem that includes
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the slow and possibly unstable modes of the system, and (2) the infinite complement

fast subsystem that contains the remaining fast and stable modes of the system. We

also assume that there is a time scale separation between the slow and fast subsys-

tems which can be in practice identified by the sets of slow and fast basis functions

computed based on analytical or statistical methods.

Based on Assumption 6.5, which is satisfied by the majority of transport-

reaction processes [76], the Sobolev subspace of

W , span{ψi}∞i=1,

can be decomposed to a slow subspace,

Ws , span{ψi}mi=1,

and its complement fast subspace,

Wf , span{ψi}∞i=m+1.

The projection operator of P : W → Ws and its complement operator, Q : W →

Wf , can be defined as

P(·) = (·,Ψs),

Q(·) = (·,Ψf ),

(6.55)
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to decompose the infinite-dimensional system of (6.53) to the following modal

vectorized slow and fast forms,

ẋs = Fs(xs, xf ) +Hs(xs, xf ) +Bsu, xs(0) = Px0,

ẋf = Ff (xs, xf ) +Hf (xs, xf ) +Bfu, xf (0) = Qx0,

y = Ssxs + Sfxf ,

Y = Rsxs +Rfxf ,

(6.56)

where x = xs ⊕ xf , xs = Px ∈ Ws, xf = Qx ∈ Wf , Fs = PF, Ff = QF,

Hs = PH, Hf = QH, Bs = PB, Bf = QB, Ss = PS, Sf = QS, Rs = PR,

Rf = QR, Ψs = [ψ1 ψ2 · · · ψm]T and Ψf = [ψm+1 ψm+2 · · · ]T . In the

modal infinite-dimensional system of (6.56), Fs is a nonlinear bounded and Ff is a

nonlinear unbounded differential operator, and Hs and Hf are nonlinear Lipschitz

vector functions according to the properties of the nonlinear operator and func-

tion in the PDE system of (6.50). In addition according to Assumption 6.5, the

unbounded operator of Ff is exponentially stable and generates a strongly continu-

ous exponentially stable semigroup. The terms Ssxs, Rsxs and Sfxf , Rfxf denote

system outputs associated with the slow and fast subsystems, respectively. We

can compute locally accurate empirical eigenvalues and corresponding empirical

basis functions required to discretize the infinite-dimensional system of (6.53) in

the form of partitioned set of ODEs of (6.56).

Neglecting the fast dynamics of (6.56) we can approximate the infinite-dimensional
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system by the slow subsystem of

ẋs = Fs(xs, 0) +Hs(xs, 0) +Bsu, xs(0) = Px0, (6.57)

which can be directly used to design a low-dimensional controller employing stan-

dard control methods for ODEs [76]. To employ such finite-dimensional approx-

imation as the basis for the controller synthesis we must show that if the finite-

dimensional slow subsystem of (6.57) is exponentially stable, then the infinite-

dimensional system of (6.56) is also exponentially stable. The following theorem

is officially addresses the required conditions which guarantee the accuracy of the

finite-dimensional approximations in presenting the full infinite-dimensional sys-

tem dynamics.

Theorem 6.3. Consider the infinite-dimensional representation of the dissipative

PDE system of (6.50) in the form of (6.53) for which Assumptions 6.4-6.5 hold. If

the finite-dimensional system approximation of (6.57) is exponentially stable, then

the infinite-dimensional system of (6.56) is also exponentially stable.

Proof See Appendix A.4.4 for proof of the theorem.

6.2.3 Output feedback control

We focus on output feedback control structure synthesis that is a combination of

a Lyapunov-based controller and a static observer to estimate the modes of the



192

system that are not available directly from the process measurements. The control

objective is defined as the spatiotemporal dynamic regulation of the system state

at the desired uniform profile of x̄d(z) = 0. The block diagram of the closed-loop

process operation under proposed output feedback control structure is presented

in Figure 6.12. The sensors and actuators physically attached to the process are

shown by red blocks. The MOR structure is denoted by black blocks while green

blocks are used to present the output feedback control architecture. In the closed-

loop system, the supervisory controller checks the ROM consistency and orders

ROM revisions as required during the closed-loop process evolution. Note that

even through the process is continuous the control structure is a switching one,

since at certain time-instants the ROM will be switched (by the supervisor) and

as a result the controller will be switched as well.

6.2.3.1 Implementation of MOR methodology for controller synthesis

The spatiotemporal state of the system can be mathematically presented by the

following infinite series

x̄(z, t) =
∞∑
k=1

ψk(z)ak(t),

where ψk(z) and ak(t) denote the spatially distributed basis functions and time-

varying system modes for k = 1, . . . ,∞. Practically, a finite number of states in

the above series are required to capture the dominant spatiotemporal dynamic of
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Figure 6.12: Closed-loop process operation under proposed output feedback control
structure.

the system states as follows,

x̄(z, t) ≈
m∑
k=1

ψk(z)ak(t), (6.58)

where m, the optimal number of required empirical orthonormal basis functions,

can be obtained using APOD algorithm during closed-loop process evolution.

Then by substituting (6.58) in the PDE system of (6.50) and applying Galerkin

projection we obtain m ODEs that describe the dominant dynamics of the system,

ȧv(t) =
(
ψv(z),Fn(z,

m∑
k=1

ψk(z)ak(t))
)

+
(
ψv(z),B(z)

)
u, (6.59)
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for v = 1, ...,m. The inner product appearing in the above ODEs is defined by

(ϕ1, ϕ2) =

∫
Ω

ϕT1 (z)ϕ2(z)dz,

where ϕT presents the transpose of ϕ.

The ODE system of (6.59) can be summarized in the following compact form

ȧ = f(a) + gu, (6.60)

which can be used as the basis for controller design. In (6.60), fm×1 is a nonlinear

vector and gm×l is a matrix where their components are defined by

fv =
(
ψv(z),F(z,

m∑
k=1

ψk(z)ak(t))
)
,

gv,i =
(
ψv(z), bi(z)

)
.

Note that the form and dimension of the above ODE system may change as needed

during the process evolution due to the required APOD-based modifications of the

number and shape of empirical orthonormal basis functions.
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6.2.3.2 Lyapunov-based controller design

In this section, we synthesize a Lyapunov-based controller to regulate the ROM of

(6.60). The CLF is considered as the following quadratic form of system modes

Vc =
1

2
aTa, (6.61)

where Vc(0) = 0 and Vc(a) > 0 ∈ Rm − {0}. To asymptotically stabilize the ROM

we employ the Sontag formula [235],

u(t) = −k(a, co)(LgVc), (6.62)

where

k(a, co) =


co +

LfVc+

√(
LfVc

)2

+

(∥∥LgVc∥∥
2

)4

(∥∥LgVc∥∥
2

)2 , LgVc 6= 0

co, LgVc = 0

In the above controller design, co > 0 denotes the adjustable control parameter

and LhVc =
∂Vc
∂a

h presents the Lie derivative. From (6.60)-(6.62) we obtain

V̇c = LfVc + LgVcu = −co
(∥∥LBVc∥∥2

)2

−
√(

LfVc

)2

+
(∥∥LgVc∥∥2

)4

< 0.

Thus, according to the Lyapunov’s stability theorem [148] the closed-loop system

of (6.60) is locally asymptotically stable under the proposed controller of (6.62).
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6.2.3.3 Static observer design

The system modes needed by the output feedback control structure in (6.61)-(6.62)

to compute the control actions can not be directly accessible from the process

measurements. To bypass the unavailability issues of such full state direct mea-

surements we employ a static observer design to estimate the states of (6.60) using

a limited number of continuous point measurement sensors as follows,

â =
(

Ψ(Ls)Ψ
T (Ls)

)−1

Ψ(Ls)y, (6.63)

where Ψ = [ψ1 ψ2 · · · ψm]T .

Remark 6.10. To circumvent the possible control action chattering near the man-

ifold of LgVc = 0, we may add a sufficiently small positive value, η in the denom-

inator of k(·) in (6.62). We can also adjust the closed-loop system stabilization

speed by changing the value of co.

Remark 6.11. For the system modes to be accurately estimated by the static ob-

server design of (6.63), the number of required continuous point measurement sen-

sors in the output measurement vector of (6.51) have to be supernumerary to the

number of modes at all times and for all ROM revisions.
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6.2.3.4 ROM revisions minimization

To update the set of empirical orthonormal basis functions the APOD algorithm

requires the spatially distributed profile of the system state at the time of revisions.

Such profiles must be obtained by spatially distributed measurement sensors or

must be computed using a high fidelity numerical simulator which works in parallel

with the process operation. In addition, the output feedback control structure must

be revised based on the updated ROM which obtained by reapplying Galerkin’s

method to PDE model using the new set of empirical basis functions. To minimize

the required measuring, communication and computation costs we need to reduce

the frequency of ROM revisions as much as possible.

According to the Lyapunov-based controller design in Section 6.2.3.2 the CLF,

Vc =
1

2
âT â, (6.64)

which is computed based on the estimated modes, has to decrease as time evolves

for the closed-loop process to be stable. A possible increase in the CLF at a specific

time instant indicates that the ROM has become inaccurate. To implement such

idea we design the supervisory control.
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6.2.3.5 Supervisory control

We monitor the time derivative of the CLF as

V̇c = LfVc + LgVcu = âT [f(â) + gu], (6.65)

during the process evolution. When the time derivative of the CLF becomes pos-

itive we activate the adaptive MOR super block. It employs APOD to revise the

set of empirical basis functions based on new snapshots and update the ROM.

These revisions continue until the sign of the time derivative of CLF changes to

negative which enforces the closed-loop stability. Following the ROM revisions,

the controller is redesigned to retain relevancy. At that time the supervisory con-

troller deactivates the adaptive MOR super block. Such supervisory strategy also

forces the resulting closed-loop system to satisfy the stability criteria of switching

systems [79, 86] at revisions.

6.2.4 Simulation Results

In this section we focus on illustrating the capability of the proposed Lyapunov-

based feedback control strategy in stabilizing a class of physico-chemical DPSs that

can be described in the form of the Kuramoto-Sivashinsky equation (KSE). Such

systems can be exemplified by wave motions of falling liquid thin films, instabilities

in the interface of two viscous fluids and phase turbulence in transport-reaction
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processes [71, 93, 146].

The KSE can be described by

∂

∂t
x̄(z, t) = −v ∂

4

∂z4
x̄(z, t)− ∂2

∂z2
x̄(z, t)− x̄(z, t)

∂

∂z
x̄(z, t) + b(z)u(t),

∂j

∂zj
x̄(−π, t) =

∂j

∂zj
x̄(π, t), j = 0, ..., 3,

x̄(z, 0) = x̄0(z),

(6.66)

where x̄(z, t) denotes the spatially distributed system state, z ∈ [−π, π], u(t) ∈

Rl presents the manipulated inputs and b(z) describes their distributions in the

process domain. In the PDE of (6.66), v is the system diffusion parameter which

is a function of the physico-chemical properties of the system. Figure 6.13 shows

the spatiotemporal profile of the system state and its spatial norm in the absence

of controller. We see that the system stabilizes at a spatially nonuniform shape,

where the system parameter was assumed to be constant, v = 0.32, and the process

started at the nonuniform spatial profile of

x̄0(z) = − sin(z) + 0.5 cos(2z)− 0.5 sin(5z) + cos(5z).

We employed four point actuators placed at

La = [−2π/3, −π/4, π/2, 3π/4],
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Figure 6.13: (a) Spatiotemporal profile and (b) its spatial norm of the system state
in the absence of controller.

to stabilize the spatiotemporal dynamics of the system at the desired spatially

uniform desired profile of x̄d(z) = 0 by setting the actuator distribution function

as bi(z) = δ(z − La,i) for i = 1, ..., 4. We also considered five point measurement

sensors placed at

Ls = [−3π/4, −π/3, −π/5, π/4, 2π/3],
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Figure 6.14: The initial empirical basis functions.

with s(z) = δ(z − Ls). The process operation included two parts; (1) open-loop

operation in to = [0, 2] when the controller was inactivate (u = 0), and (2) closed-

loop operation in tc = [2, 12]. We collected 20 snapshots of the system state

profile during the open-loop time period of to and applied off-line APOD to obtain

an initial set of empirical basis functions and procure the ROM via Galerkin’s

method. We obtained 3 dominant empirical basis functions which captured 0.99 of

the energy of the snapshots ensemble. These initial empirical basis functions are

presented in Figure 6.14.

We employed η = 0.005 and co = 1 to implement the Lyapunov-based feedback

controller structure of (6.62). In Figure 6.15, the spatiotemporal profile and its

spatial norm are presented during process operation under the proposed feedback

control, where the controller successfully stabilized the spatiotemporal dynamics

of the system at the desired uniform profile of x̄d(z) = 0. The temporal profiles
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Figure 6.15: Closed-loop (a) spatiotemporal profile and (b) its spatial norm of the
system state during process operation.

of the control actions and the CLF are presented in Figure 6.16. The controller

was inactive in the open-loop process operation period of to. We observe that the

control actions converged to zero as time evolved with some relatively large values

at specific time instances. The first large control actions corresponds to the initial

controller response to the system dynamics when the controller became active at

the beginning of the closed-loop process operation period of tc and the remainder
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Figure 6.16: Temporal profiles of (a) the control actions and (b) the CLF.

of the peaking in the control actions corresponds to the ROM revisions due to

the shape and dimension changes in the empirical basis functions. The overall

decrease in the CLF also indicates the stability of the proposed model reduction

and control approach. Figure 6.17 shows the number of basis functions obtained

by APOD that shows the ROM dimension during closed-loop time period of tc.

The time instances when the ROM had to be revised based on the CLF time
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Figure 6.17: Number of empirical basis functions.

derivative monitoring are presented in Figure 6.18. In this figure, index 0 indicates

that there was no need to revise the ROM and index 1 shows the times when the

APOD algorithm revised the set of empirical basis functions and reconstructed out-

put feedback control structure based on the updated ROMs. The strategy allowed

us to minimize the number of required ROM revisions and reduced the spatially

distributed sensing costs and computational loads. It shows that in the specific

simulation only four ROM revisions were required during the closed-loop process

evolution to guarantee the accuracy of the ROM used as a basis for Lyapunov-based

output feedback controller design.

The first, second, third and fourth revised sets of empirical basis functions are

also presented in Figure 6.19. We observe that the number and spatial distribution

of the basis functions reordered and changed as needed to capture the dominant

spatiotemporal behavior of the system. The second empirical basis function in
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Figure 6.18: ROM revision times.

Figure 6.19(c) became the third in Figure 6.19(d), while the second empirical

basis function in Figure 6.19(a) disappeared in Figure 6.19(c) which shows how

that trend was briefly suppressed by the controller during process evolution.
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Figure 6.19: (a) First, (b) second, (c) third and (d) fourth set of revised empirical
orthonormal basis functions.



CHAPTER

SEVEN

SLIDING MODE

SPATIOTEMPORAL DYNAMIC

SHAPING OF DISTRIBUTED

PARAMETER SYSTEMS VIA

MODEL ORDER REDUCTION

Sliding mode control is a variable structure nonlinear control method which changes

the nonlinear system dynamics by applying a discontinuous control signal [148,
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230]. The sliding mode controller forces the system dynamics to slide along the

boundaries of the system normal behavior called “sliding surface” [96, 253]. The

discontinuous nature of the controller structure causes insensitivity to parameter

variations and complete disturbance rejection [53]. Sliding mode optimization and

controller designs have been applied in a wide range of chemical, mechanical and

electrical systems [56, 57, 111, 186].

In this chapter we consider the spatiotemporal dynamic shaping of transport-

reaction processes via model order reduction (MOR). The dynamic shaping prob-

lem is addressed by regulating the error dynamics between the governing partial

differential equation (PDE) and a desired spatiotemporal dynamics which are de-

scribed by a target PDE with the same spatial differential operator. The governing

target PDEs are discretized by applying Galerkin’s method to obtain reduced or-

der models (ROMs) in the form of low-dimensional modal ordinary differential

equations (ODEs) when the required dominant basis functions are computed an-

alytically by solving the eigenproblem of the linear part of the spatial differential

operator. The error dynamics between the governing and target systems is derived

by subtracting the ROMs in the form of low-dimensional ODEs which describe

the spatiotemporal error dynamics. Then an output feedback control structure is

synthesized to stabilize the error dynamics. The control structure is considered

as a combination of a Lyapunov-based sliding mode controller [148, 230] and a

Luenberger-type dynamic observer to estimate the system modes. The proposed
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dynamic shaping method is successfully illustrated on thermal dynamic shaping

inside a tubular chemical reactor described by a semi-linear PDE.

7.1 Preliminaries

7.1.1 Problem formulation

To formulate the spatiotemporal dynamic shaping problem we consider a 1D

transport-reaction process which can be described by a semi-linear PDE,

∂

∂t
x̄(z, t) = An(z)x̄(z, t) + F

(
z, x̄(z, t)

)
+B(z)u(t),

y(t) =

∫
Ω

s(z) x̄(z, t) dz,

q
(
x̄,
∂x̄

∂z
, . . . ,

∂n−1x̄

∂zn−1

)
= 0 on ∂Ω,

x̄(z, 0) = x̄0(z),

(7.1)

where

x̄(z, t) ∈ R : spatiotemporal state of the system,

z ∈ Ω : 1D spatial coordinate,

t : time,

Ω : process domain,

∂Ω : process boundaries,

An(z) : linear spatial differential operator of order n,

F
(
z, x̄(z, t)

)
: smooth Lipschitz nonlinear function,
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u(t) ∈ Rl : vector of manipulated inputs,

B(z) : spatial distribution of manipulated inputs,

y(t) ∈ Rp : vector of contentious measurements,

s(z) : vector of measurements’ spatial distribution,

q
(
x̄,
∂x̄

∂z
, . . . ,

∂n−1x̄

∂zn−1

)
: vector of linear homogeneous boundary conditions,

x̄0(z) : initial spatial profile of the system state.

The dissipative PDE of (7.1) is linearly dominant, i.e., the spatial differential op-

erator is purely linear and the nonlinearity only appears as a Lipschitz function in

the system dynamics. Such equation arises in the majority of transport-reaction

processes in the chemical process industries [76, 212], where the linear term of

An(z)x̄(z, t) indicates the transport (diffusion, dispersion and convection) compo-

nent and the nonlinear term of F
(
z, x̄(z, t)

)
expresses the reaction dynamics.

Remark 7.1. According to the Lipschitz property of the nonlinear function of

F
(
z, x̄(z, t)

)
which makes it to be sufficiently smooth, the Picard-Lindelöf theorem

can be applied to guarantee the existence and uniqueness of the solution [245].

7.1.2 System representation

The studied DPS which is described by PDE of (7.1), can be represented in the

abstract infinite-dimensional form of
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ẋ(t) = Ax(t) + f
(
x(t)

)
+ bu(t), x(0) = x0,

y(t) = Sx(t),

(7.2)

by defining the functional state of x(t) ∈W,

x(t) = x̄(·, t),

the linear differential operator,

Ax(t) = A(z)x̄(·, t),

the nonlinear function,

f
(
x(t)

)
= F

(
z, x̄(·, t)

)
,

and the manipulated input operator,

bu(t) = B(z)u(t),

in an appropriate Sobolev subspace of W,

W(Ω) =
{
H, ∂H

∂z
, . . . ,

∂n−1H
∂zn−1

∈ L2(Ω) : q
(
H, ∂H

∂z
, . . . ,

∂n−1H
∂zn−1

)
= 0
}
,
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equipped with following inner product and norm,

(
H,G

)
=

∫
Ω

r(z)HTG dz,∥∥H∥∥
2

=
(
H,H

)1/2
,

where H and G are the elements of W, and HT denotes the transpose. Note that

the inner product weighting function, r(z), is considered to be 1 to simplify the

analysis.

Assumption 7.1. We assume that the DPS described by the PDE of (7.1) and

its infinite-dimensional representation, (7.2), is approximately observable and con-

trollable [84].

Remark 7.2. We may replace the approximate observability and controllability

assumption of the infinite-dimensional system of (7.2) formally addressed in As-

sumption 7.1, by observability and controllability of the system approximation (slow

subsystem) of (7.7) [84].

7.2 Model order reduction via Galerkin’s method

The infinite-dimensional functional representation of (7.2) can be projected into an

infinite set of ODEs of the system vectorized eigenmodes using standard Galerkin’s

method. The required eigenfunctions to discretize the states of the Sobolev sub-
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space are the solution of the following eigenproblem,

Aφi = λiφi,

q
(
φi,

dφi
dz

, . . . ,
dn−1φi
dzn−1

)
∂Ω

= 0,

(7.3)

for i = 1, . . . ,∞, where λi and φi denote the i th eigenvalue and its corresponding

orthogonal eigenfunction, respectively. Note that the resulting countable set of

eigenfunctions is a strong generator of the defined Sobolev subspace, i.e., W ,

span{φi}∞i=1. To apply Galerkin’s method we also require defining the adjoint

eigenfunctions which satisfy the orthonormal property,

(
φi, φ

∗
j

)
= δij, (7.4)

where φ∗i ∈W indicates the i th adjoint eigenfunction and δij the Kronecker delta.

For the majority of transport-reaction processes where diffusion and dispersion

play an important role we can assume a time-scale separation in the eigenspectrum

of the linear operator of A. This assumption is formally stated as:

Assumption 7.2. Assume the eigenspectrum of linear operator of A denoted by

Λ(A) , {λ1, λ2, . . . }, where Re(λ1) ≥ Re(λ2) ≥ · · · ≥ Re(λm) ≥ Re(λm+1) ≥ · · · ,

satisfies Re(λm+1) < 0, σ =
|Re(λ1)|
|Re(λm+1)|

, where Re(·) denotes the real part and σ

is a small positive number. According to such separation the eigenspectrum and

corresponding Sobolev subspace, W , span{φi}∞i=1, can be partitioned into the
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following subsets and subspaces;

1. finite subset of first m eigenvalues,

Λs(A) , {λ1, λ2, . . . , λm},

which are slow and possibly unstable, and its corresponding slow Sobolev sub-

space, Ws , span{φi}mi=1,

2. complement infinite subset of the remainder eigenvalues,

Λf (A) , {λm+1, λm+2, . . . },

which are fast and stable, and its corresponding fast Sobolev subspace, Wf ,

span{φi}∞i=m+1,

where W = Ws ∪Wf .

Taking advantage of Assumption 7.1, the Galerkin integral projectors can be

defined,

P : W→Ws, P(·) = (·,Φs), Φs = [φ1 φ2 · · · φm]T ,

Q : W→Wf , Q(·) = (·,Φf ), Φf = [φm+1 φm+2 · · · ]T ,
(7.5)

to project the infinite-dimensional system representation of (7.2) to partitioned
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sets of ODEs of the vectorized slow and fast eigenmodes,

ẋs(t) = Asxs(t) + fs
(
xs(t), xf (t)

)
+ bsu(t), xs(0) = Px0,

ẋf (t) = Afxf (t) + ff
(
xs(t), xf (t)

)
+ bfu(t), xf (0) = Qx0,

(7.6)

where x(t) = xs(t) ⊕ xf (t), As = PA = diag{λi}mi=1, Af = QA = diag{λi}∞i=m+1,

fs = Pf , ff = Qf , bs = Pb, bf = Qb and diag{·} denotes the diagonal matrix

with diagonal elements. Then the partitioned infinite dimensional ODEs of (7.6)

can be approximated by

ẋs(t) = Asxs(t) + fs
(
xs(t), 0

)
+ bsu(t), xs(0) = Px0, (7.7)

after a short period of time, tb, when xf → 0, by applying singular perturbation

analysis [29, 31, 76] and considering Tykhonov’s theorem for solution convergence

of systems that consist of slow and fast subsystems [175].

Remark 7.3. The time-scale separation between slow and fast dynamics of the

DPS modeled by PDEs ensures that a controller which exponentially stabilizes

the closed-loop finite dimensional approximation also exponentially stabilizes the

closed-loop infinite-dimensional system [76].

Remark 7.4. A lower bound for the relaxation time, tb, required by the fast dy-

namics of the system to relax, can be identified by singular perturbation analysis

[29, 35, 76].
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7.3 Spatiotemporal dynamic shaping using slid-

ing mode controller designs

7.3.1 Dynamic shaping error formulation

To address the spatiotemporal dynamic shaping problem of the DPSs described

by PDE system of (7.1), we consider a desired spatiotemporal dynamics described

by a target PDE with the same spatial differential operator,

∂

∂t
x̄d(z, t) = An(z)x̄d(z, t) + F ′

(
z, x̄d(z, t)

)
,

q
(
x̄d,

∂x̄d
∂z

, . . . ,
∂n−1x̄d
∂zn−1

)
= 0 on ∂Ω,

x̄d(z, 0) = x̄d0(z).

(7.8)

According to same spatial differential operator and boundary conditions, both the

system and target PDEs have the same set of dominant eigenfunctions which can

be applied to approximate the spatiotemporal states as follows,

x̄(z, t) ≈ xTs (t)Φs(z),

x̄d(z, t) ≈ xTds(t)Φs(z).

(7.9)

Note that such approximations are quite accurate after a short relaxation time

when the fast dynamics stabilize. Then the spatiotemporal dynamic shaping error
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with respect to slow system dynamics can be formulated by

E(z, t) = x̄(z, t)− x̄d(z, t) ≈
(
xTs (t)− xTds(t)

)
Φs(z) = eT (t) Φs(z). (7.10)

where e(t) = xs(t)− xds(t) indicates the vector of modal errors.

By applying MOR via Galerkin projection as it was discussed in Section 7.2,

we can discretize the target PDE to the following set of ODEs,

ẋds(t) = Asxds(t) + f ′s
(
xds(t)

)
, xds(0) = Pxd0, (7.11)

which describes the slow modal dynamics of the desired spatiotemporal behavior.

The modal tracking error dynamics can then be derived by subtracting the ODEs

of (7.7) and (7.11),

ė(t) = Ase(t) + fs
(
e(t), xds(t)

)
− f ′s

(
xds(t)

)
+ bsu(t), e(0) = Pe0, (7.12)

where e0 = x0 − xd0. Thus the spatiotemporal dynamic shaping problem of the

transport-reaction processes described by (7.1) can be addressed via error dynamics

regulation of the low-dimensional ODEs of (7.12).

Remark 7.5. Note that the fast dynamics must be exponentially stable for the

specific method to be applicable even for the unstable target PDEs.
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Remark 7.6. We may directly apply the proposed MOR to the PDE of the spa-

tiotemporal dynamic shaping error which formulated by subtracting the governing

PDE of (7.1) from the target of (7.8). Such alternative approach results to the

same modal tracking error dynamics as (7.12).

7.3.2 Sliding mode controller design

Consider the nonlinear dynamical modal error system of (7.12),

ė = Ase+ fs(e, xds)− f ′s(xds) + bsu,

where e = [e1, e2, . . . , em]T ∈ Rm and u = [u1, u2, . . . , ul]
T ∈ Rl. The objective is

designing an output-feedback control law, u(t), which regulates the error dynamics

at the origin. By stabilizing the error, such regulator enforces the system dominant

eigenmodes to follow the target eigenmodes. According to the dynamical modal

error system dimension, we require at least m manipulated inputs (i.e. l ≥ m)

to stabilize the tracking error and force the system spatiotemporal dynamics to

follow target dynamics with a general nonlinear part [112, 126].

To reach such objective a sliding mode control approach is applied. The con-

troller synthesis includes two steps: (1) Choosing a manifold (reduced-order sub-

space), also known as sliding surface, which describes the desired dynamic behavior.

(2) Designing the feedback control law which forces the tracking error trajectory

to confine to the sliding surface and slides along it [96, 253]. Thus the problem
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of dynamic modal response shaping a → ã is equivalent to “approaching to the

sliding surface and remaining on it”. The time-varying sliding surface, S(t), is de-

fined by the scalar equation of s(e) = 0 which must guarantee the system control

objective in regulating the tracking error dynamics,

S = {e ∈ Rm : s(e) = 0}. (7.13)

The switching function of s(e) is a distance measurement which indicates how far

the system eigenmodes are from the target eigenmodes. It can be simply defined

as the following proportional-integral form,

s(e) = e+ Π

∫
e dt, (7.14)

where Π = diag{πi}mi=1. To assure the stability of sliding mode dynamic, the diago-

nal components of Π must have negative real parts, i.e, Re(λi) < 0 for i = 1, . . . ,m.

The places of such components in the left half-plane determine the performance of

the sliding mode controller in stabilizing the tracking error dynamics.

Due to the discontinuous nature of the resulting sliding mode control action,

the existence and uniqueness of the closed-loop system solution can not be verified

by the Picard-Lindelöf theorem [245]. Such switching discontinuous closed-loop

dynamics must be analyzed using Filippov theorem [106, 281] which states the

resulting closed-loop system that slides along s(e) = 0, can be approximated by a



220

smooth dynamics which is described using

ṡ(e) = 0

under a continuous control design [148, 230]. To formulate the sliding mode con-

troller design we consider the Lyapunov function in the quadratic form of

V (s) =
1

2
sT s. (7.15)

By considering the above Lyapunov function, the asymptotic stability can be ob-

tained by

V̇ (s) = sT ṡ ≤ 0. (7.16)

Then using Filippov’s construction of the equivalent dynamics, the control action

can be computed by considering the smooth dynamics of ṡ = 0, which

ṡ = ė+ Πe = Ase+ fs(e, xds)− f ′s(xds) + bsueq + Πe = 0. (7.17)

As a result the equivalent control law takes the following form

ueq = −b⊥s
(

(As + Π)e+ fs(e, xds)− f ′s(xds)
)
, (7.18)

where b⊥s = bTs (bsb
T
s )−1 identifies the Moore-Penrose pseudo-inverse [202]. Note
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that b⊥s = b−1
s for m = l. In order to satisfy the sliding condition we consider the

control law as

u = ueq − b⊥s η sign(s), (7.19)

where η > 0 and sign(·) denotes the sign function. Then we obtain

V̇ (s) = sT ṡ = −η sT sign(s), (7.20)

where V̇ (s) < 0 and V̇ (0) = 0, thus the closed-loop system is locally asymptotically

stable in the Lyapunov sense [148, 230].

7.3.3 Dynamic observer design

For the desired spatiotemporal dynamics which is described by (7.8) and approxi-

mated by the slow dynamics of (7.11) we have access to the dominant eigenmodes,

xds. However, to compute the tracking error vectors, e, and implement the control

law of (7.19), we need to estimate the values of the system dominant eigenmodes

of xs. For such estimation purpose, a Luenberger-type dynamic observer is syn-

thesized based on the system ROM,

˙̂xs = Asx̂s + fs(x̂s) + bsu+ Θ(y − Cx̂s),

y = Cxs,

(7.21)
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where

C =



φ1(ω1) φ2(ω1) · · · φm(ω1)

φ1(ω2) φ2(ω2) · · · φm(ω2)

...
...

. . .
...

φ1(ωp) φ2(ωp) · · · φm(ωp)


,

and x̂s denotes the estimated dominant eigenmodes of the system, Θ presents the

dynamic observer gain matrix and ω = [ω1 ω2 · · · ωp]T is the vector of locations

of continuous measurements, y. The modal observation error dynamics can then

be formulated as follows

ėo = (As −ΘC)eo + fs(eo + x̂s)− fs(x̂s), (7.22)

where the vector of observation error is defined by eo = xs − x̂s. Assuming the

principle of separation between control and observation holds [26, 68], we consider

the observation Lyapunov function (OLF) in the standard quadratic form

Vo =
1

2
eTo P eo, (7.23)

where P is a symmetric positive definite matrix with a bounded norm,
∥∥P∥∥ ≤ K1.

The time derivative of the OLF is obtained as follows
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V̇o =
1

2

(
ėTo P eo + eTo P ėo

)
=

1

2

([
(As −ΘC)eo + fs(eo + x̂s)− fs(x̂s)

]T
P eo

+eTo P
[
(As −ΘC)eo + fs(eo + x̂s)− fs(x̂s)

])
=

1

2

([
eTo (As −ΘC)T +

(
fs(eo + x̂s)− fs(x̂s)

)T ]
P eo

+eTo P
[
(As −ΘC)eo + fs(eo + x̂s)− fs(x̂s)

])
=

1

2

(
eTo
[
(As −ΘC)TP + P (As −ΘC)

]
eo

+eTo P
[
fs(eo + x̂s)− fs(x̂s)

]
+
(
eTo P

[
fs(eo + x̂s)− fs(x̂s)

])T)

(7.24)

Then the dynamic observer gain matrix, Θ, must be identified subject to V̇o < 0

which indicates the observation stability. Due to the Lipschitz property of the

nonlinear function of F in the DPS of (7.1) and bounded nature of the eigenfunc-

tions and their adjoints, the nonlinear function of fs in the system approximation

of (7.7) is also Lipschitz continuous,

∥∥∥fs(eo + x̂s)− fs(x̂s)
∥∥∥ ≤ K2

∥∥eo∥∥, (7.25)

where K2 denotes the Lipschitz upper bound gain. From (7.24) and (7.25) and

using Cauchy-Schwarz inequality we obtain that
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eTo P
[
fs(eo + x̂s)− fs(x̂s)

]
+
(
eTo P

[
fs(eo + x̂s)− fs(x̂s)

])T
≤ 2
∥∥∥eTo P [fs(eo + x̂s)− fs(x̂s)

]∥∥∥ ≤ 2
∥∥eTo ∥∥∥∥P∥∥∥∥∥fs(eo + x̂s)− fs(x̂s)

∥∥∥
≤ 2K1K2

∥∥eTo ∥∥ ∥∥eo∥∥
= K

∥∥eo∥∥2
= KeTo eo,

(7.26)

where K = K1K2.

By applying the inequality of (7.26), we conclude that if

eTo
[
(As −ΘC)TP + P (As −ΘC)

]
eo +KeTo eo < 0. (7.27)

then V̇o < 0 and V̇ (0) = 0. Thus

eTo
[
(As −ΘC)TP + P (As −ΘC) +KI

]
eo < 0, (7.28)

where (As −ΘC)TP + P (As −ΘC) +KI < 0 guarantees the asymptotic stability

of the observation error dynamics. We can then address the dynamic observer

synthesis problem via a standard linear matrix inequality (LMI) problem

(As −ΘC)TP + P (As −ΘC) +KI < −PY P − PΘZΘTP , (7.29)
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where Y and Z are the symmetric positive definite weighting matrices. From the

inequality of (7.29) we obtain

(ATs − CTΘT )P + P (As −ΘC) +KI + PY P + PΘZΘTP < 0

⇒ ATs P + PAs − (PΘC)T − PΘC + PY P + PΘZΘTP +KI < 0

⇒ ATs P + PAs − (UC)T − UC + PY P + UZUT +KI < 0

⇒ ATs P + PAs + (UT − Z−1C)TZ(UT − Z−1C)− CTZ−1C + PY P +KI < 0,

(7.30)

where U = PΘ. Then we reduce the degrees of freedom in the inequality by setting

U = CTZ−T ,

ATs P + PAs − CTZ−1C + PY P +KI < 0. (7.31)

Using the Schur Complement Lemma we represent the inequality of (7.31) in the

following standard form [64],

PAs + ATs P − CTZ−1C +KI P

P −Y −1

 < 0. (7.32)

The observer gain matrix can be computed by minimizing the trace of P−1 subject

to the LMI constraint of (7.32),

Θ = P−1CTZ−1. (7.33)
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A detailed discussion on the LMI-constrained optimization problem can be found

in [219].

7.4 Application to thermal dynamic shaping in

a tubular reactor

In this section, we illustrate the effectiveness of the proposed output feedback

sliding mode control on spatiotemporal dynamic shaping of a typical transport-

reaction process example. In the first part we present the mathematical model of

the thermal dynamics in a tubular chemical reactor. The desired spatiotemporal

behavior is described in the second part. Then the tailored MOR and control

structure are presented for the specific dynamic shaping problem in the third part

of this section. Finally, the closed-loop simulation results are provided to assess

the system performance under the proposed output feedback sliding mode control

structure.

7.4.1 System description

We consider a tubular chemical flow reactor [76] where an irreversible exothermic

reaction of the zero-th order takes place. As presented in Figure 7.1, a limited set

of l cooling jackets are employed as the manipulated inputs to remove the heat

from the reactor and manage the thermal energy along the reactor length as time
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Figure 7.1: Tubular flow reactor with l independent cooling jackets.

evolves. The spatiotemporal thermal dynamics in the presence of temperature-

dependent reaction rate is derived from the energy balance which takes the form

of the following dissipative PDE,

∂T

∂t
=

k

ρCp

∂2T

∂z2
− v∂T

∂z
+

(−∆H)

ρCp
ro exp

(−E
RT

)
−

l∑
j=1

Bj(z)
hAc
ρCp

(T − Tc,j),

z = 0 :
∂T

∂z
=
ρCpv

k
(T − Tf ),

z = L :
∂T

∂z
= 0,

t = 0 : T = T0, (7.34)

where

T : temperature of the fluid inside the reactor,

t : time,

z ∈ [0, L] : spatial coordinate,

L : reactor length,

k : thermal conductivity,

ρ : density,
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Cp : heat capacity,

v : axial velocity,

(−∆H) : heat of reaction,

r0 : pre-exponential reaction constant,

E : activation energy,

h : heat transfer coefficient between reactor and cooling jacket,

Ac : cooling surface area,

Tc,j : cooling jackets temperatures,

Tf : feed temperature,

l : number of cooling jackets,

Bj(z) : spatial distribution of the j th cooling jacket,

T0 : initial temperature profile.

We reformulate the PDE set of (7.34) in the dimensionless form and homogenize

the left boundary condition to employ the proposed MOR. To homogenize the

boundary condition we induce the non-homogeneous part in the PDE by standard

Dirac function. The resulting dimensionless PDE takes the following form,

∂T̄

∂t̄
=

1

Pe

∂2T̄

∂z̄2
− ∂T̄

∂z̄
+Bt exp

( γT̄

1 + T̄

)
+Bc

l∑
j=1

Bj(z̄)(ūi − T̄ ) + δ(z̄ − 0)T̄f

z̄ = 0 :
∂T̄

∂z̄
= PeT̄ ,

z̄ = 1 :
∂T̄

∂z̄
= 0,

t̄ = 0 : T̄ = 0,

(7.35)
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where

t̄ =
tv

L
, z̄ =

z

L
, T̄ =

T − T0

T0

, P e =
ρCpvL

k
,

γ =
E

RT0

, ūj =
Tc,j − T0

T0

, T̄f =
Tf − T0

T0

,

Bt =
(−∆H)ro exp(− E

RT0
)L

ρCpT0v
, Bc =

hAcL

ρCpv
.

A typical diffusion-convection-reaction process with the same spatial differential

operator is considered as the target PDE which describes the desired spatiotem-

poral dynamics,

∂T̄d
∂t̄

=
1

Pe

∂2T̄d
∂z̄2

− ∂T̄d
∂z̄

+ α3T̄
3
d + α2T̄

2
d + α1T̄d + α0

+β2 cos(0.5π t̄) + β1 sin(0.5π t̄),

z̄ = 0 :
∂T̄d
∂z̄

= PeT̄d,

z̄ = 1 :
∂T̄d
∂z̄

= 0,

t̄ = 0 : T̄d = 0.

(7.36)

7.4.2 Model order reduction and output feedback control

structure

For MOR of the system and target PDEs we require the eigenfunctions which

must be computed by solving the following eigenproblem of the system and target

spatial differential operator,
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1

Pe

d2φi
dz̄2
− dφi

dz̄
= λiφi,

z̄ = 0 :
dφi
dz̄

= Peφi,

z̄ = 1 :
dφi
dz̄

= 0.

(7.37)

where i = 1, 2, . . . ,∞. The solution of above eigenvalue-eigenfunction problem

takes the following form [76, 166, 174],

λi = −
( α2

i

Pe
+
Pe

4

)
, tan(αi) =

Peαi

α2
i −

(Pe
2

)2
,

φi(z̄) = ξi exp
(Pez̄

2

)[
cos(αiz̄) +

Pe

2αi
sin(αiz̄)

]
,

ξi =
(∫ 1

0

[
cos(αiz̄) +

Pe

2αiz̄
sin(αiz̄)

]2
dz̄
)− 1

2
.

(7.38)

The resulting eigenfunctions are not self-adjoint because the spatial differential

operator of
1

Pe

∂2

∂z̄2
− ∂

∂z̄
is non-self-adjoint; then to apply the Galerkin projection

we must define the adjoint eigenfunctions

φ∗i (z̄) = exp(−Pez̄)φi(z̄), (7.39)

which satisfy the orthonormal property of (7.4). By considering the set of m

dominant eigenfunctions of Φs = [φ1 φ2 · · · φm]T , we approximate the system and
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desired dimensionless temperatures

T̄ (z̄, t̄) ≈
m∑
i=1

ai(t̄)φi(z̄), T̄d(z̄, t̄) ≈
m∑
i=1

ãi(t̄)φi(z̄), (7.40)

where σ =
|λ1|
|λm+1|

has a small positive value. Then by employing Galerkin’s

method, the ROMs of the system and target PDEs take the following modal forms,

ȧk = λkak +Bt

∫ 1

0

φ∗k exp
( γ

∑m
i=1 aiφi

1 +
∑m

i=1 aiφi

)
dz̄ + φ∗k(0)T̄f

−Bc

l∑
j=1

( ∫ 1

0

Bjφ∗k
m∑
i=1

aiφi dz̄
)

+Bc

l∑
j=1

( ∫ 1

0

Bjφ∗k dz̄
)
ūj,

˙̃ak = λkãk +

∫ 1

0

(
α3

( m∑
i=1

ãiφi

)3

+ α2

( m∑
i=1

ãiφi

)2

+ α0

+β2 cos(0.5π t̄) + β1 sin(0.5π t̄)

)
φ∗kdz̄ + α1ãk,

(7.41)

for k = 1, 2, . . . ,m. Then the above ROMs can be summarized in the following

abstract forms

ȧ = Aa+ f(a) +Bu,

˙̃a = Aã+ f ′(ã),

(7.42)

where

a =



a1

a2

...

am


, ã =



ã1

ã2

...

ãm


, A =



λ1 0 · · · 0

0 λ2 · · · 0

...
...

. . .
...

0 0 · · · λm


, u =



ū1

ū2

...

ūl


,
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f(a) =



Bt

∫ 1

0

φ∗1 exp
( γ

∑m
i=1 aiφi

1 +
∑m

i=1 aiφi

)
dz̄ + φ∗1(0)T̄f −Bc

l∑
j=1

( ∫ 1

0

Bjφ∗1
m∑
i=1

aiφi dz̄
)

Bt

∫ 1

0

φ∗2 exp
( γ

∑m
i=1 aiφi

1 +
∑m

i=1 aiφi

)
dz̄ + φ∗2(0)T̄f −Bc

l∑
j=1

( ∫ 1

0

Bjφ∗2
m∑
i=1

aiφi dz̄
)

...

Bt

∫ 1

0

φ∗m exp
( γ

∑m
i=1 aiφi

1 +
∑m

i=1 aiφi

)
dz̄ + φ∗m(0)T̄f −Bc

l∑
j=1

( ∫ 1

0

Bjφ∗m
m∑
i=1

aiφi dz̄
)


,

B =



Bc

∫ 1

0

B1φ
∗
1 dz̄ Bc

∫ 1

0

B2φ
∗
1 dz̄ · · · Bc

∫ 1

0

Blφ∗1 dz̄

Bc

∫ 1

0

B1φ
∗
2 dz̄ Bc

∫ 1

0

B2φ
∗
2 dz̄ · · · Bc

∫ 1

0

Blφ∗2 dz̄

...
...

. . .
...

Bc

∫ 1

0

B1φ
∗
m dz̄ Bc

∫ 1

0

B2φ
∗
m dz̄ · · · Bc

∫ 1

0

Blφ∗m dz̄


,

f ′(ã) =



∫ 1

0

(
α3

( m∑
i=1

ãiφi

)3

+ α2

( m∑
i=1

ãiφi

)2

+ α0

+β2 cos(0.5π t̄) + β1 sin(0.5π t̄)

)
φ∗1dz̄ + α1ã1

∫ 1

0

(
α3

( m∑
i=1

ãiφi

)3

+ α2

( m∑
i=1

ãiφi

)2

+ α0

+β2 cos(0.5π t̄) + β1 sin(0.5π t̄)

)
φ∗2dz̄ + α1ã2

...∫ 1

0

(
α3

( m∑
i=1

ãiφi

)3

+ α2

( m∑
i=1

ãiφi

)2

+ α0

+β2 cos(0.5π t̄) + β1 sin(0.5π t̄)

)
φ∗mdz̄ + α1ãm



.
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By considering the modal error as e = a− ã, the error dynamics can be formulated

by

ė = Ae+ f(e, ã)− f ′(ã) +Bu. (7.43)

Then the sliding mode controller and dynamics observer structures take the fol-

lowing form

u = −B⊥
(

(A+ Π)ê+ f(ê, ã)− f ′(ã) + η sign
(
ê+ Π

∫ t

0

ê dt
))
,

˙̂a = Aâ+ f(â) +Bu+ Θ(y − Câ),

ê = â− ã,

(7.44)

where the dynamic observer gain matrix, Θ, can be computed using the LMI-

constrained optimization problem described in Section 7.3.3.

7.4.3 Simulation results

To simulate the system we set the following typical values for the process pa-

rameters: Pe = 5, γ = 3, Bt = 0.4, Bc = 0.5 and T̄f = 0. The dominant

eigenvalues of the system are presented in Table 7.1. We can easily recognize an

Table 7.1: Dominant eigenvalues

Eigenvalues i = 1 i = 2 i = 3 i = 4 i = 5 i = 6

λi -1.94 -4.80 -10.97 -20.93 -34.78 -52.56
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Figure 7.2: (a) Temperature dominant eigenfunctions and (b) their adjoints.

order of magnitude separation between the 3 dominant eigenvalues and the re-

mainder, σ =
Re(|λ1|)
Re(|λ4|)

= O(0.1), where O(·) denotes the order of magnitude. The

corresponding dominant eigenfunctions and their adjoints are presented in Figure

7.2.
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When considering the first three dominant eigenfunctions to discretize the sys-

tem and desired PDEs, the resulting system and target approximations are of di-

mension 3 (m = 3). We set l = 3 cooling jackets along the reactor length to shape

the spatiotemporal temperature dynamics of the system. The spatial distributions

of the control actuators are also described by B1(z̄) = H(z̄ − 0.1) − H(z̄ − 0.2),

B2(z̄) = H(z̄− 0.4)−H(z̄− 0.5) and B3(z̄) = H(z̄− 0.7)−H(z̄− 0.9), where H(·)

indicates the standard Heaviside step function. We also consider two point sensors

to measure the reactor temperature at ω = [0.3 0.6]T which can be employed by

the dynamic observer to estimate the dominant eigenmodes of the system.

The entire system operation was partitioned into two time periods: (1) open-

loop process operation, t̄o = [0, 8] when the controller was inactive, and (2) closed-

loop process operation, t̄c = (8, 12] under the proposed controller design. The open-

loop spatiotemporal profile of the dimensionless temperature and the temporal

profile of its spatial L2-norm while the controller was inactive (ūi = 0 for i = 1, 2, 3)

are presented in Figure 7.3.

It is observed that the dimensionless temperature converges to a nonuniform

steady state profile. Figure 7.4 also shows the desired spatiotemporal profile and

its L2-norm where α0 = 0.15, α1 = 0.05, α2 = −0.1, α3 = 0.15, β1 = 0.2 and β2 =

−0.05. We observe a permanent oscillatory behavior in the desired temperature

spatiotemporal dynamics.

The open-loop spatiotemporal profile of the shaping error and its spatial L2-
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norm are presented in Figure 7.5.

The dynamic observer gain matrix was computed as follows,

Θ =


0.20 0.64

0.31 −0.48

−0.27 −2.12

 ,

by solving the LMI-constrained optimization problem. Figure 7.6 presents the

open-loop temporal profiles of the estimated dominant eigenmodes of the system,

the desired dominant eigenmodes and the open-loop modal errors where the non-

dominant system and desired eigenmodes were negligible.

To implement the proposed sliding mode controller we set η = 0.5 for the

controller parameter. The spatiotemporal profile of the dimensionless reactor tem-

perature and the temporal profile of its spatial L2-norm is illustrated in Figure 7.7

for the entire process operation.

The spatiotemporal profile of the shaping error and its L2-norm are also pre-

sented in Figure 7.8. Note that the controller was only active during the closed-loop

process operation of t̄c = (8, 12]. We observe that the shaping error converges to

zero and the system follows the desired spatiotemporal behavior under the pro-

posed control approach.

The required control actions to stabilize the shaping error are shown in Figure

7.9. The zero control actions in the period of t̄o = (0, 8) illustrate the open-loop
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process operation. An oscillatory behavior is observed in the controller signals due

to the permanent oscillatory behavior of the target spatiotemporal dynamics.

Finally, the temporal profile of the estimated dominant eigenmodes and the

modal errors are presented in Figure 7.10 which illustrates the effectiveness of the

sliding mode controller in regulating the shaping error and tracking the desired

spatiotemporal dynamics.
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Figure 7.3: Open-loop (a) spatiotemporal profile of the dimensionless temperature
and (b) temporal profile of temperature L2-norm.
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Figure 7.4: (a) Spatiotemporal profile of the desired dimensionless temperature
and (b) temporal profile of its L2-norm.
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Figure 7.5: Open-loop (a) spatiotemporal profile of the shaping error and (b)
temporal profile of its L2-norm.
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Figure 7.6: Temporal profiles of (a) dominant eigenmodes of the system, (b) desired
dominant eigenmodes and (c) modal errors during the open-loop period.
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Figure 7.7: (a) Spatiotemporal profile of the dimensionless temperature and (b)
temporal profile of its L2-norm for the entire process operation.
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Figure 7.8: (a) Spatiotemporal profile of the shaping error and (b) temporal profile
of its L2-norm for the entire process operation.
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Figure 7.9: Required control actions for the entire process operation. The zero in
[0, 8] denotes the open-loop period.
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Figure 7.10: Temporal profiles of (a) dominant eigenmodes of the system and (b)
modal errors for the entire process operation.



CHAPTER

EIGHT

ADAPTIVE CONTROL OF

DISTRIBUTED PARAMETER

SYSTEMS VIA MODEL ORDER

REDUCTION

8.1 introduction

The early pioneering research which introduced the importance of adaptation in

control theory and applications may be traced back to sixty years ago [23, 58,

143, 250, 264]. The first model reference Lyapunov-based adaptive law design was
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presented in [201]. Study of globally stable continuous adaptive control systems

[98, 105, 121, 187, 190, 194, 195], discrete deterministic and stochastic adaptive sys-

tems [119–121], robust adaptive control [136] and other practical issues of adaptive

control brought to light new problems and solutions.

While the adaptive control is a very broad subject in the control engineering

field presented in the wide range of topics from stochastic adaptive control and

adaptive variable structure control to adaptive model predictive control, the unified

theme of adaptive control is the use of a certainty equivalence principle. This

essential principle indicates that the adaptive parameter estimates can be used

in the feedback controller design as if they are the true parameters for a plant

with uncertainty. The immediate problem is the convergence of the identified

parameters to their true values. In adaptive estimation, the parameter estimates

converge to their true values under the following conditions:

• the plant model does not have zero-pole cancellation,

• the plant estimate model has the same plant order,

• the adaptive system is persistently exciting, ensured by previous conditions

and by a sufficiently rich input.

The certainty equivalence principle relies on the basis of two technical foun-

dations; maximal plant uncertainty parametrization and stable controller param-

eter adaptation. The concept of persistence excitation and its effects on param-
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eter convergence in lumped and distributed parameter system was addressed in

[90, 159, 170]. The early study of adaptive control in the absence of persistence

excitation was also introduced in [10, 176].

The important research results in the field of adaptive control in recent years

can be summarized as follows; the concept of parameter convergence in adaptive

control of continuous and discrete systems [41, 65, 66, 239, 268], robust performance

of adaptive systems in the presence of uncertainty [85, 137, 199, 276], stability of

adaptive control systems [102, 114, 129], adaptive control of distributed parameter

systems [63], stochastic adaptive control [95, 128, 277], model reference adaptive

control [105, 141, 223, 237], nonlinear adaptive output feedback control [147, 246],

adaptive control via feedback linearization [144], adaptive control of non-minimum

phase systems [132, 173], adaptive backstepping control [160], adaptive control of

nonlinearly parameterized systems [150, 171], hybrid adaptive control [191, 193],

improving adaptive control systems performance [152, 184, 185, 200, 240, 267],

adaptive dynamics programming optimal control [259], robust adaptive control

[206, 236, 260, 262, 263, 277] and adaptive control considering input bounds [275].

A brief description of recent results in adaptive control theory and application can

be found in [241].

Compare to the control problem of Lumped parameter systems (LPSs) de-

scribed by ordinary differential equations (ODEs) which has been well studied in

the chemical process industries for more than 50 years, the control of chemical
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distributed parameter systems (DPSs) modeled by partial differential equations

(PDEs) is a much more difficult task that needs more powerful mathematical tools

[76]. Such types of systems frequently arise in many industrial chemical processes

which can be exemplified by packed and fluidized bed reactors, crystallization and

polymerization processes, chemical vapor deposition systems, microelectronic fab-

rication and plasma etching processes, where spatial distribution and nonlinearity

take the essential roles due to the importance of transport phenomena and reaction

mechanisms [1, 76, 172, 198, 212].

While direct approaches for control of PDE systems are limited to simple pro-

cesses operate over regular domains [84, 233], one of the practically effective meth-

ods to address the control problem of DPSs is via model order reduction (MOR)

[47, 76]. In MOR-based approaches, an approximation of the system in the form of

low-dimensional ODEs is applied as the basis for controller design. Then most of

the control techniques tailored for LPSs can be indirectly applied to DPSs through

such approximations [28, 31, 37, 47, 99, 166]. Weighted residual techniques like

Galerkin projection is one of the methods that has been widely employed to dis-

cretize the governing PDEs to finite number of ODEs. The shape and efficient

number of basis functions required by such spatial discretization methods to ap-

proximate the distributed systems can be computed analytically or using statistical

techniques [29, 30, 32, 35, 76, 94, 166].

In governing PDEs described the chemical DPSs, the chemical reaction term
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is the source of nonlinearity that usually contains unknown parameters due to the

temperature dependency and possible lack of knowledge about the reaction passes.

Thus, applying system identification and adaptation strategies are unavoidable

to address the control problem of such systems. Direct adaptive controller and

observer designs for describing PDEs has been widely used for DPSs [54, 60, 91,

135, 161, 233], however it is limited to linear PDEs subject to simple boundary

conditions. The adaptive control synthesis for more general class of DPSs can be

motivated by applying adaptive control designed which tailored for LPSs [25, 147,

218] taking advantageous of MOR, when we employ the ODE approximations to

model the dominant behavior of DPSs.

In this chapter we focus on modal adaptive output feedback control structure

designs for transport-reaction processes in the presence of unknown parameters.

Galerkin projection is employed to approximate the infinite-dimensional represen-

tation of the governing PDEs by low-dimensional ODEs. The studied systems are

divided to three categories: (1) when the required basis functions can be analyti-

cally computed, (2) when the required empirical basis functions can be computed

using POD and (3) when the required empirical basis functions must be computed

and updated using APOD during process evolution. Then a Lyapunov-based adap-

tive controller is designed to stabilize the system at the desired point. An observer

is applied to estimate the system modes based on limited number of continuous

point measurement sensors. The effectiveness of the proposed adaptive control ap-
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proach is illustrated on temperature regulation in a tubular chemical reactor which

can be described by semi-linear parabolic PDEs and wave motion suppression in

a thin film described by Korteweg-de Vries-Burgers (KdVB) equation.

8.2 Adaptive control of DPSs via analytical model

order reduction

8.2.1 Preliminaries

8.2.1.1 A class of semi-linear distributed parameter systems

We focus on transport-reaction processes in the presence of unknown reaction

parameters which can be modeled by the following PDEs,

∂x̄(z, t)

∂t
= A(z)x̄(z, t) + F

(
z, x̄(z, t)

)
+ G

(
z, x̄(z, t)

)
θ + B(z)u(t),

y(t) =

∫
Ω

δ(z − Ls)x̄(z, t) dz,

Γ
(
t, x̄(z, t),

∂x̄(z, t)

∂z

)
∂Ω

= 0, x̄(z, 0) = x̄0(z),

(8.1)

where x̄ ∈ Rn is the vector of spatiotemporal states, z ∈ Ω denotes the spatial

coordinate and t is time. The process domain is denoted by Ω ⊂ R with the

boundary of ∂Ω. The terms An×n, Fn×1 and Gn×q present the second order linear

spatial differential operator, nonlinear vector and matrix functions, respectively.

The vector of unknown parameters is denoted by θ ∈ Rq and the vector of u ∈ Rl
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presents manipulated inputs where their spatial distributions is described by Bn×l.

The vector of y ∈ Rr presents the continuous point measurement outputs of the

process where Ls is the vector of locations of the measurement sensors and δ denotes

the standard Dirac function. The general homogeneous boundary conditions are

presented by the smooth nonlinear vector of equations of Γ2n×1(·) = 0 and x̄0 is

the initial spatial profile of the system state.

In above PDEs, A(z)x̄ describes diffusion, dispersion and convection phenom-

ena, F(z, x̄) presents the known reaction dynamics of the system and the possible

non-homogeneous part of the boundary conditions that can be induced in the gov-

erning PDEs. The term G(z, x̄)θ, also shows the unknown reaction dynamics of

the process. Note that even multiple reactions take place in a system, the mathe-

matical model can still be described in the above form where F(z, x̄) and G(z, x̄)θ

indicate the known and unknown dynamics of the multiple reactions, respectively.

8.2.1.2 Infinite-dimensional representation

By defining an appropriate Sobolev subspace of W as

W(Ω) =
{
H, ∂H

∂z
∈ L2(Ω) : Γ

(
H, ∂H

∂z

)
∂Ω

= 0
}
,

the functional state of x(t) ∈W, x(t) = x̄(z, t), the linear operator of

Ax(t) = A(z)x̄(z, t),
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the nonlinear functions of

F
(
x(t)

)
= F

(
z, x̄(z, t)

)
, G

(
x(t)

)
θ = G

(
z, x̄(z, t)

)
θ

and the input operator of Bu(t) = B(z)u(t), we can represent the PDEs of (8.1)

in the following semi-linear infinite-dimensional form,

ẋ(t) = Ax(t) + F
(
x(t)

)
+ G

(
x(t)

)
θ + Bu(t), x(0) = x0, (8.2)

The set of basis functions required to discretize the dynamics of (8.2) can be

found by solving the eigenproblem of the linear operator which takes the following

form

Aφi = λiφi, i = 1, . . . ,∞ (8.3)

subject to the boundary conditions

Γ
(
φi,

dφi
dz

)
∂Ω

= 0,

where φi denotes the basis function corresponds to the eigenvalue of λi. The adjoint

basis function of φ∗i can also be defined subject to the orthonormal property of the

basis functions as (
φi(z), φi(z)

)
=

∫
Ω

φi(z)φ∗i (z) dz = 1.
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Note that the linear operator is a strong generator of the defined Sobolev subspace,

i.e., W , span{φi}∞i=1.

For the majority of transport-reaction processes we can assume that the eigen-

spectrum of the linear operator, {λ1, λ2, . . . }, can be partitioned into the following

subsets;

1. finite subset of first m eigenvalues, {λ1, λ2, . . . , λm}, which are slow and pos-

sibly unstable,

2. complement infinite subset of the remainder eigenvalues, {λm+1, λm+2, . . . },

which are fast and stable,

where Re(λ1) ≥ Re(λ2) ≥ · · · ≥ Re(λm) ≥ Re(λm+1) ≥ · · · , Re(λm+1) < 0

and Re(·) denotes the real part. In addition to such partitioning, a time scale

separation can also be identified between the subsets by σ =
|Re(λ1)|
|Re(λm+1)|

, where σ

is a small positive number.

Then the corresponding Sobolev subspaces for such subsets can be defined as

follows;

1. slow subspace, Ws , span{φi}mi=1,

2. complement fast subspace, Wf , span{φi}∞i=m+1,

where W = Ws ∪Wf .
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8.2.2 Model order reduction

By defining the appropriate slow and fast integral projections

P : W→Ws, P(·) = (·,Φs),

Q : W→Wf , Q(·) = (·,Φf ),

(8.4)

where Φs = [φ1 φ2 · · · φm]T , Φf = [φm+1 φm+2 · · · ]T , and ϕT denotes the trans-

pose of ϕ, and using Galerkin’s method we can derive two sets of modal ODEs as

follows

ẋs = Asxs(t) + Fs
(
xs(t), xf (t)

)
+Gs

(
xs(t), xf (t)

)
θ +Bsu(t),

xs(0) = Px0,

ẋf = Afxf (t) + Ff
(
xs(t), xf (t)

)
+Gf

(
xs(t), xf (t)

)
θ +Bfu(t),

xf (0) = Qx0,

(8.5)

where x = xs⊕xf , As = PA = diag{λi}mi=1, Af = QA = diag{λi}∞i=m+1, Fs = PF,

Ff = QF, Gs = PG, Gf = QG, Bs = PB, Bf = QB and diag denotes the

diagonal matrix.

By applying singular perturbation analysis [76] and considering Tykhonov’s

theorem for solution convergence of systems include slow and fast subsystems [175],

after a short period of time, the infinite-dimensional system of (8.5) can be reduced
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to

ẋs = Asxs(t) + Fs
(
xs(t), 0

)
+Gs

(
xs(t), 0

)
θ +Bsu(t),

xs(0) = Px0,

(8.6)

when xf → 0. Note that the required relaxation time can be identified using

singular perturbation arguments [37, 76].

8.2.3 Adaptive output feedback control

Taking advantageous of MOR explained in the previous sections, we synthesize a

low-dimensional adaptive output feedback controller based on the following ROM,

ẋs = Asxs + Fs(xs) +Gs(xs)θ +Bsu, (8.7)

obtained by applying Galerkin method to the PDEs of (8.1) using the first m

dominant basis functions where xs ∈ Rm, θ ∈ Rq, As ∈ Rm×m, Fs : Rm → Rm,

Gs : Rm → Rm×q, Bs ∈ Rm×l and u ∈ Rl. We assume that the identification error,

eθ = θ − θ̂, remains bounded under the proposed stable adaptive output feedback

controller synthesis, ‖eθ‖ < Θ, where θ̂ denotes the vector of estimated values for

unknown parameters and Θ is the identification error upper bound. We also assume

that the vector of unknown parameters does not change rapidly during closed-loop

process operation however it may change step-wise, thus ėθ = θ̇ − ˙̂
θ = − ˙̂

θ.

For the controller synthesis we consider a control Lyapunov function (CLF) in
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the following standard quadratic form,

Vc(xs) =
1

2
xTs xs, (8.8)

where Vc is a positive definite function (i.e., Vc(xs) > 0 and Vc = 0 only for xs = 0).

The time derivative of the CLF can then be derived as

V̇c = xTs ẋs = xTs
(
Asxs + Fs(xs) +Gs(xs)θ +Bsu

)
. (8.9)

By considering

Asxs + Fs(xs) +Gs(xs)θ +Bsu = −Coxs − ‖Gs(xs)‖Θ sign(xs), (8.10)

where Co > 0 and sign(·) shows the sign function, we obtain

V̇c = −CoxTs xs − ‖Gs(xs)‖ΘxTs sign(xs) ≤ 0.

Therefore Vc is a decreasing positive definite function that shows the closed-

loop stability of the controller in the Lyapunov sense [148]. The controller formula

can be derived from (8.10) as

u = −B⊥s
(
Coxs + Asxs + Fs(xs) +Gs(xs)θ + ‖Gs(xs)‖Θ sign(xs)

)
, (8.11)



258

in the presence of unknown parameters, where B⊥s = BT
s (BsB

T
s )−1 is the Moore-

Penrose pseudo-inverse [202]. Note that B⊥s = B−1
s for m = l.

Then using certainty equivalence principle [25] we obtain the controller formula

by replacing the unknown variable with the estimated one,

u = −B⊥s
(
Coxs + Asxs + Fs(xs) +Gs(xs)θ̂ + ‖Gs(xs)‖Θ sign(xs)

)
,

(8.12)

By defining a refined closed-loop Lyapunov function that contains the CLF and

the identification Lyapunov function (ILF),

V = Vc(xs) + Vi(eθ) =
1

2
xTs xs +

1

2
eTθ Z

−1eθ, (8.13)

where Zq×q is a symmetric positive definite matrix, we conclude V̇ = V̇c + V̇i =

xTs ẋs + ėTθ Z
−1eθ, then from ėθ = − ˙̂

θ and considering the following adaptation law

to estimate the vector of unknown parameters,

˙̂
θ = Z GT

s (xs)xs, (8.14)

we obtain

V̇ = xTs
(
Asxs + Fs(xs) +Gs(xs)θ − Coxs

−Asxs − Fs(xs)−Gs(xs)θ̂ − ‖Gs(xs)‖Θ sign(xs)
)

−
(
Z GT

s (xs)xs
)T
Z−1eθ

= xTs
(
Gs(xs)θ − Coxs −Gs(xs)θ̂ − ‖Gs(xs)‖Θ sign(xs)

)
− xTsGs(xs)eθ

= −CoxTs xs − ‖Gs(xs)‖ΘxTs sign(xs) ≤ 0.
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Figure 8.1: Closed-loop process block diagram.

Therefore V = Vc + Vi is a decreasing positive definite function that shows the

system closed-loop stability [148].

To estimate the vector of unknown parameters and compute the control action

from (8.14) and (8.12), respectively, we must access to the full measurements of

the system slow modes, xs. We employ the following static observer structure to

estimate the slow modes,

x̂s(t) =
(

Φs(Ls)Φ
T
s (Ls)

)−1

Φs(Ls)y(t), (8.15)

where the number of required sensors has to be supernumerary to the number of

slow modes, i.e., r ≥ m.

The block diagram of the closed-loop process under the proposed adaptive

output feedback controller design is presented in Figure 8.1.
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8.2.4 Application to transport-reaction processes

In this section we focus on application of the proposed low-dimensional adaptive

output feedback controller design to a tubular whose temperature and concentra-

tion spatiotemporal dynamics can be modeled by two semi-linear parabolic PDEs.

8.2.4.1 Process description

We consider a tubular reactor with a cooling jacket (Figure 8.2), where an irre-

versible exothermic second order chemical reaction in the form of A → B takes

place. The cooling jacket and feed temperature are selected as the system manip-

ulated inputs for control purposes. The spatiotemporal dynamics of the stream

temperature and concentration of component A can be derived from heat and com-

ponent mass balance considering constant physico-chemical properties as follows

[166, 212],

∂T

∂t
=

k

ρCp

∂2T

∂z2
− v∂T

∂z
+
−∆H

ρCp
ro exp

(−E
RT

)
C 2
A −

hAc
ρCp

(T − Tc),

∂CA
∂t

= DA
∂2CA
∂z2

− v∂CA
∂z
− ro exp

(−E
RT

)
C 2
A ,

z = 0 :
∂T

∂z
=
ρCpv

k
(T − Tf ),

∂CA
∂z

=
v

DA

(CA − CAf ),

z = L :
∂T

∂z
= 0,

∂CA
∂z

= 0,

t = 0 : T = T0, CA = CA0,

(8.16)
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Figure 8.2: Tubular reactor with a cooling jacket.

where T is the reactor temperature, CA denotes the concentration of component

A, t is time z ∈ [0, L] presents the spatial coordinate and L is the reactor length.

The terms k, ρ, Cp, v, −∆H, r0, E and h present thermal conductivity, density,

heat capacity, axial velocity, heat of reaction, pre-exponential reaction constant

(reaction amplitude), activation energy and heat transfer coefficient between re-

actor and cooling jackets, respectively. The cooling surface area is denoted by Ac

and Tc is cooling jacket temperature. The term DA is the diffusivity coefficient, Tf

presents the feed temperature and CAf is the component A concentration in feed

stream. The temperature and concentration initial profiles are denoted by T0 and

CA0, respectively. We consider −∆H and r0 as unknown reaction parameters of

the system.

To simplify the equation forms and basis functions’ computation, we refor-

mulated (8.16) using dimensionless parameters and variables, and homogenized

the boundary conditions by inducing the non-homogeneous parts in the governing

PDEs using Dirac function. The resulting dimensionless equations with respect to
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initial temperature, T0 and concentration, CA0, take the following form,

∂T̂

∂t̄
=

1

Pe1

∂2T̂

∂z̄2
− ∂T̂

∂z̄
+BTBC exp

( γT̂

1 + T̂

)
(1 + ĈA)2

+βT (û1 − T̂ ) + δ(z̄ − 0)û2,

∂ĈA
∂t̄

=
1

Pe2

∂2ĈA
∂z̄2

− ∂ĈA
∂z̄
−BC exp

( γT̂

1 + T̂

)
(1 + ĈA)2

+δ(z̄ − 0)ĈAf ,

z̄ = 0 :
∂T̂

∂z̄
= Pe1T̂ ,

∂ĈA
∂z̄

= Pe2ĈA,

z̄ = 1 :
∂T̂

∂z̄
= 0,

∂ĈA
∂z̄

= 0,

t̄ = 0 : T̂ = 0, ĈA = 0,

(8.17)

where

t̄ =
tv

L
, z̄ =

z

L
, Pe1 =

ρCpvL

k
, Pe2 =

vL

DA

,

T̂ =
T − T0

T0

, ĈA =
CA − CA0

CA0

, γ =
E

RT0

,

û1 =
Tc − T0

T0

, û2 =
Tf − T0

T0

, ĈAf =
CAf − CA0

CA0

,

βT =
hAcL

ρCpv
, BT =

(−∆H)CA0

ρCpT0

,

BC =
roCA0 exp(− E

RT0
)L

v
.

By defining the new state variables of T̄ = T̂ − T̂ss and C̄A = ĈA − ĈA,ss, and

manipulated variables of ū1 = û1 − û1,ss and ū2 = û2 − û2,ss where T̂ss, ĈA,ss, û1,ss

and û2,ss denote the variables at the steady state values, we can reformulated the
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PDEs in the following deviation form,

∂T̄

∂t̄
=

1

Pe1

∂2T̄

∂z̄2
− ∂T̄

∂z̄
+ θ1

[
exp

( γT̄

1 + T̄

)
(1 + C̄A)2

− exp
( γT̂ss

1 + T̂ss

)
(1 + ĈA,ss)

2
]

+ βT (ū1 − T̄ ) + δ(z̄ − 0)ū2,

∂C̄A
∂t̄

=
1

Pe2

∂2C̄A
∂z̄2

− ∂C̄A
∂z̄
− θ2

[
exp

( γT̄

1 + T̄

)
(1 + C̄A)2

− exp
( γT̂ss

1 + T̂ss

)
(1 + ĈA,ss)

2
]
,

z̄ = 0 :
∂T̄

∂z̄
= Pe1T̄ ,

∂C̄A
∂z̄

= Pe2C̄A,

z̄ = 1 :
∂T̄

∂z̄
= 0,

∂C̄A
∂z̄

= 0,

t̄ = 0 : T̄ = 0, C̄A = 0,

(8.18)

where θ1 = BTBC and θ2 = BC are the unknown parameters of the system due to

unavailability of heat of reaction and reaction amplitude.

8.2.4.2 Open-loop simulation results

To simulate the system we set parameters of the process at the following practical

values, Pe1 = 5, Pe2 = 7, ĈAf = 0.1, γ = 10, û1,ss = 0.15, û2,ss = 0.2, βT = 2,

we also considered the following the nominal values of θ1 = 0.25, θ2 = 0.1, for

unknown parameters of the system while the controller structure does not access

to these values. The open-loop spatiotemporal profiles of the system dimension-

less deviation states and the temporal profile of their second norm are presented

in Figure 8.3-8.4. The steady state profiles are unstable, the deviation states’ dy-
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Figure 8.3: Open-loop dimensionless temperature deviation (a) spatiotemporal
profile and (b) its second norm temporal profile.

Figure 8.4: Open-loop dimensionless concentration deviation (a) spatiotemporal
profile and (b) its second norm temporal profile.

namics start at zero uniform profiles and they converge to different nonuniform

profiles. The adaptive controller design objective is the dimensionless temperature

regulation at the uniform unstable steady state of zero in the presence of unknown

heat of reaction and reaction amplitude.

8.2.4.3 Model order reduction using Galerkin’s method

To compute the set of basis functions required by the Galerkin’s method to con-

struct the ROM, the following eigenproblem must be considered,
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1

Pei

d2φij
dz̄2

− dφij
dz̄

= λijφij,

dφij
dz̄

(0) = Peiφij(0),
dφij
dz̄

(1) = 0,

(8.19)

for i = 1, 2 and j = 1, 2, . . . ,∞. By solving (8.19), we obtain

λij = −
( α2

ij

Pei
+
Pei
4

)
, tan(αij) =

Peiαij

α2
ij −

(Pei
2

)2
,

φij(z̄) = ξij exp
(Peiz̄

2

)[
cos(αij z̄) +

Pei
2αij

sin(αij z̄)
]
.

(8.20)

The basis functions are non-self-adjoint because the linear operator of

A =


1

Pe1

∂2

∂z̄2
− ∂

∂z̄
0

0
1

Pe2

∂2

∂z̄2
− ∂

∂z̄

,

is non-self-adjoint, then by considering the orthonormal property of basis functions

we obtain

φ∗ij(z̄) = exp(−Peiz̄)φij(z̄),

ξij =
(∫ 1

0

[
cos(αij z̄) +

Pei
2αij z̄

sin(αij z̄)
]2
dz̄
)− 1

2
.

(8.21)

The dominant eigenvalues of the systems is presented in Table 8.1, where we

Table 8.1: Dominant eigenvalues

Eigenvalues Values for j = 1, . . . , 6

λ1j -1.9 -4.8 -11.0 -20.9 -34.8 -52.6
λ2j -2.4 -4.6 -9.1 -16.3 -26.2 -38.9

observe a separation in the magnitudes of the first 3 eigenvalues from the re-
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mainder eigenvalues for temperature dynamics, σ1 =
Re|λ11|
Re|λ14|

= O(0.1), and the

first 4 eigenvalues from the remainder eigenvalues for concentration dynamics,

σ2 =
Re|λ21|
Re|λ25|

= O(0.1), where O(·) denotes the order of magnitude. Then by

considering m1 = 3 and m2 = 4,

T̄ (z̄, t̄) =

m1∑
k=1

ak(t̄)φ1k(z̄), C̄A(z̄, t̄) =

m2∑
p=1

bp(t̄)φ2p(z̄), (8.22)

and applying the Galerkin’s projection, the ROM of the DPSs of (8.18) takes the

following modal form,

ȧk = (λ1k − βT )ak + θ1

(∫ 1

0

φ∗1k

[
exp

( γT̄

1 + T̄

)
(1 + C̄A)2

− exp
( γT̂ss

1 + T̂ss

)
(1 + ĈA,ss)

2
]
dz̄

)
+βT

(∫ 1

0

φ∗1kdz̄
)
ū1 + φ∗1k(0) ū2,

ḃp = λ1pbp − θ2

(∫ 1

0

φ∗2p

[
exp

( γT̄

1 + T̄

)
(1 + C̄A)2

− exp
( γT̂ss

1 + T̂ss

)
(1 + ĈA,ss)

2
]
dz̄

)
,

(8.23)

for k = 1, . . . , 3 and p = 1, . . . , 4. The dominant basis functions and their adjoints

for temperature and concentration are presented in Figures 8.5-8.6, respectively.
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Figure 8.5: Temperature dominant (a) basis functions and (b) their adjoints.

Figure 8.6: Concentration dominant (a) basis functions and (b) their adjoints.

8.2.4.4 Controller parameters and Closed-loop simulation results

To estimate the system modes, a = [a1 a2 a3]T , b = [b1 b2 b3 b4]T , we consider

r1 = 5 temperature continuous point measurements at

Ls1 = [0.05 0.25 0.45 0.65 0.85]T

, and r2 = 5 concentration continuous point measurements at

Ls2 = [0.15 0.35 0.55 0.75 0.95]T .
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We consider the thermal dynamics regulation as the control objective. In such case

we still require to find the basis functions and ROMs for both temperature and

concentration because their dynamics are interconnected in reaction terms. Even

due to the strong relationship between concentration of the reactant component

and temperature, the concentration also regulates at a certain level. To design the

adaptive output feedback controller that regulates the temperature dynamics and

identifies both of unknown parameters we consider the controller and identification

parameters as Co = 2, Θ = 0.5, z = I2 and the Lyapunov function as

V =
1

2
aTa+

1

2
θT1 θ1, (8.24)

where I2 denotes the identity matrix of size 2.

To show the effective performance of the proposed control approach even far

from steady state, we allowed the system to operate open-loop while the controller

was inactive (ū1 = ū2 = 0) for topen ∈ [0 1.5]. After such period we activated

the controller to stabilize the thermal dynamics, tclosed ∈ [1.5 6]. The closed-

loop spatiotemporal profile of dimensionless temperature deviation and its second

norm temporal profile is illustrated in Figure 8.7. The controller successfully stabi-

lized the dimensionless temperature deviation dynamics at the steady state profile.

Due to the strong nonlinear interconnections between temperature and concentra-

tion, the dimensionless concentration deviation was also converges to an acceptable

neighborhood of the desired unstable steady state even it was not the objective of



269

Figure 8.7: Closed-loop dimensionless temperature deviation (a) spatiotemporal
profile and (b) its second norm temporal profile.

Figure 8.8: Temporal profiles of (a) required control actions and (b) estimated
parameter.

the controller design.

Figure 8.8 shows the temporal profiles of required control actions’ deviations

to regulate the thermal dynamics and the estimated unknown parameter. We

observe that the controller action converge to the steady state values without any

chattering. The estimated parameter converge to the final value of θ̂1,final = 0.36

which indicates the adaptation law did not correctly identify the parameters due

to the lack of required condition of persistent excitation.
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8.3 POD-based model order reduction

8.3.1 Semi-linear distributed parameter systems and their

properties

We consider chemical distributed parameter systems with unknown transport-

reaction parameters which can be described by the following set of semi-linear

PDEs,

∂x̄(z, t)

∂t
= A(z, ϑ) x̄(z, t) + F

(
z, x̄(z, t)

)
+ G

(
z, x̄(z, t)

)
Θ + B(z)u(t),

y(t) =

∫
Ω

δ(z − Ls) x̄(z, t) dz,

Γ
(
t, x̄(z, t),

∂x̄(z, t)

∂z

)
∂Ω

= 0, x̄(z, 0) = x̄0(z),

(8.25)

where x̄ ∈ Rn denotes the vector of spatiotemporal states, t is time and z ∈ Ω

is the vector of spatial coordinates. The process domain is presented by Ω ⊂ R3

with the process boundary of ∂Ω and A denotes the second order linear spatial

differential operator. The terms Fn×1 and Gn×q present the smooth nonlinear

vector and matrix functions, respectively. We also consider ϑ ∈ Rp and Θ ∈ Rq

as the vectors of unknown transport and reaction parameters, respectively. The

vector of manipulated inputs is denoted by u ∈ Rl where B ∈ Rn×l describes

their spatial distributions, y ∈ Rr is the vector of point measurements where the

vector of Ls presents location of the sensors and δ is standard Dirac function. The

initial spatial profile of the system state is denoted by x̄0 and Γ is the vector of
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homogeneous boundary conditions.

In the PDE system of (8.25), the term A(z, ϑ) x̄(z, t) presents transport phe-

nomena where the diffusion, dispersion and convection parameters may be un-

known. F
(
z, x̄(z, t)

)
describes the known part of nonlinear reaction dynamics and

G
(
z, x̄(z, t)

)
Θ presents the unknown-affine (linear in terms of unknown parame-

ters) dynamics of the reaction. Note that the boundary conditions don’t have to

be homogeneous necessarily. To homogenize the non-homogeneous boundary con-

ditions, we can include the non-homogeneous parts in the PDEs using standard

Dirac functions.

We can represent the above PDE system as the following infinite-dimensional

system [84]

ẋ(t) = A(ϑ)x(t) + F
(
x(t)

)
+ G

(
x(t)

)
Θ + Bu(t),

x(0) = x0,

(8.26)

in the Sobolev subspace of W,

W(Ω) =
{
H, ∂H

∂z
∈ L2(Ω) : Γ

(
H, ∂H

∂z

)
∂Ω

= 0
}
,

endowed with inner product

(H1,H2) =

∫
Ω

H1(z)∗H2(z) dz
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by defining the infinite-dimensional state of x(t) ∈W,

x(t) = x̄(z, t),

the linear operator with unknown parameters,

A(ϑ)x(t) = A(z, ϑ) x̄(z, t),

the nonlinear vector and matrix functions,

F
(
x(t)

)
= F

(
z, x̄(z, t)

)
, G

(
x(t)

)
Θ = G

(
z, x̄(z, t)

)
Θ,

and the manipulated input operator,

Bu(t) = B(z)u(t).

We can discretize the infinite-dimensional system of (8.26) to infinite and count-

able modal set of ODEs by applying Galerkin projection to individual PDEs of

the components of the spatiotemporal state vector while we also capture the in-

teractions between the PDEs of such components. To employ such discretization

we need the system basis functions which are the solution of the eigenproblem of
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the linear differential operator,

A(ϑ)φi = λiφi, ∀i = 1, . . . ,∞ (8.27)

subject to

Γ
(
φi,

dφi
dz

)
∂Ω

= 0,

where φi and λi denote the i th basis function and eigenvalue, respectively, and

W , span{φi}∞i=1, i.e., the linear operator is a strong generator of the defined

Sobolev subspace.

For the majority of chemical DPSs, specifically the transport-reaction processes,

we can assume that the eigenspectrum of the linear operator, {λ1, λ2, . . . }, can be

decomposed to the following subsets;

1. finite subset of first m eigenvalues, {λ1, λ2, . . . , λm}, which indicate the slow

and possibly unstable dynamics of the infinite-dimensional system,

2. complement countable subset of the remainder eigenvalues, {λm+1, λm+2, . . . },

which indicate the fast and stable dynamics of the infinite-dimensional sys-

tem,

when we order Re(λ1) ≥ Re(λ2) ≥ · · · ≥ Re(λm) ≥ Re(λm+1) ≥ · · · , and require

Re(λm+1) < 0; here Re(·) denotes the real part. In addition, a time scale separation

can also be recognized between the subsets by σ =
|Re(λ1)|
|Re(λm+1)|

, where σ is a small

positive number.
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Note that the eigenproblem of (8.27) can not be solved due to the unavailability

of the unknown parameters vector of ϑ, that clearly shows the limitation of the

analytical approach even for the system with linear dominant operator defined over

simple domains. To bypass the solution of such problem we can apply POD that

will be briefly discussed in the next section. However, to continue the analysis and

illustrate the system properties let’s assume the basis functions are available for

the remainder of this section. This assumption will be lifted when the proposed

method will be presented.

By considering the set of basis functions, {φi}∞i=1, and eigenspectrum decom-

position, the Sobolev subspaces for the subsets can be defined as follows;

1. slow subspace, Ws , span{φi}mi=1,

2. complement fast subspace, Wf , span{φi}∞i=m+1,

where W = Ws ∪ Wf . Then by considering the vector of slow and fast basis

functions as

Φs = [φ1 φ2 · · · φm]T , Φf = [φm+1 φm+2 · · · ]T ,

and the corresponding integral Galerkin projectors of

P : W→Ws, P(·) =

∫
Ω

(·) Φ∗s dz,

Q : W→Wf , Q(·) =

∫
Ω

(·) Φ∗f dz,

(8.28)
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where ϕT and ϕ∗ denote the transpose and adjoint of ϕ, we can derive the modal

representation of the system as partitioned sets of ODEs,

ẋs = Asxs(t) + Fs
(
xs(t), xf (t)

)
+Gs

(
xs(t), xf (t)

)
Θ +Bsu(t),

xs(0) = Px0,

ẋf = Afxf (t) + Ff
(
xs(t), xf (t)

)
+Gf

(
xs(t), xf (t)

)
Θ +Bfu(t),

xf (0) = Qx0,

(8.29)

where x = xs ⊕ xf , As = PA, Af = QA, Fs = PF, Ff = QF, Gs = PG,

Gf = QG, Bs = PB, Bf = QB.

According to singular perturbation analysis [76] and considering Tykhonov’s

theorem for solution convergence of systems include slow and fast subsystems [175],

the partitioned infinite-dimensional system of (8.29) can be reduced to

ẋs = Asxs(t) + Fs
(
xs(t), 0

)
+Gs

(
xs(t), 0

)
Θ +Bsu(t),

xs(0) = Px0,

(8.30)

when xf → 0 after a short period of time, tb. Such required relaxation time, tb,

can be identified form singular perturbation arguments [29, 35, 76].

8.3.2 Model order reduction

In this section, we derive the finite-dimensional approximation of the PDE system

of (8.25) by applying Galerkin’s projection while the optimal required empirical
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basis functions are computed by employing POD to the ensemble of snapshots

captured from spatially distributed measurement sensors during the open-loop

process evolution. We consider a general form of a one-dimensional (z ∈ Ω ⊂ R)

transport-reaction process with a single state (n = 1) described by the following

semi-linear PDE that is abstractly represented by (8.25),

∂x̄(z, t)

∂t
= ϑ2

∂2x̄(z, t)

∂z2
+ ϑ1

∂x̄(z, t)

∂z
+ F

(
z, x̄(z, t)

)
+ θG

(
z, x̄(z, t)

)
+ B(z)u(t),

(8.31)

in the presence of unknown convection, diffusion and reaction parameters which

are denoted by ϑ1, ϑ2 and θ, respectively (i.e., p = 2 and q = 1).

By employing the set of empirical basis functions from POD algorithm de-

scribed in previous section, we can approximate the spatiotemporal state as

x̄(z, t) ≈
m∑
i=1

xs,i(t)φi(z). (8.32)

Then by substituting such state approximation in the PDE system of (8.31), we

obtain

m∑
i=1

ẋs,iφi = ϑ2

m∑
i=1

xs,i
d2φi
dz2

+ ϑ1

m∑
i=1

xs,i
dφi
dz

+ F
(
z,

m∑
i=1

xs,iφi
)

+θG
(
z,

m∑
i=1

xs,iφi
)

+ B(z)u(t),

(8.33)

Then we can obtain the ROM by employing Galerkin projection to equation (8.33)
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as

ẋs =
(
ϑ1As,1 + ϑ2As,2

)
xs + Fs(xs) + θGs(xs) +Bsu, (8.34)

where

[As,1]j,i =

∫
Ω

φj(z)
dφi(z)

dz
dz, [As,2]j,i =

∫
Ω

φj(z)
d2φi(z)

dz2
dz,

[Fs]j =
∫

Ω
φj(z)F

(
z,
∑m

i=1 xs,iφi
)
dz,

[Gs]j =

∫
Ω

φj(z)G
(
z,

m∑
i=1

xs,iφi
)
dz, [Bs]j,k =

∫
Ω

φj(z)Bk(z)dz

Note that xs ∈ Rm, As,1, As,2 ∈ Rm×m, Fs, Gs : Rm → Rm, Bs ∈ Rm×l, u ∈ Rl

and ϑ1, ϑ2, θ ∈ R. Such ROM can be used as the basis for the adaptive output

feedback controller design.

8.3.3 Adaptive output feedback control

In this section we address the synthesis of the low-dimensional adaptive output

feedback controller structure which is a combination of a Lyapunov-based adaptive

controller and a static observer.

8.3.3.1 Controller design

We assume that the identification errors remain bounded under the proposed adap-

tive controller design,

eϑ1 = ϑ1 − ϑ̂1, |eϑ1| < α1

eϑ2 = ϑ2 − ϑ̂2, |eϑ2| < α2

eθ = θ − θ̂, |eθ| < β

(8.35)
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where ϑ̂1, ϑ̂2 and θ̂ denote the estimated values for unknown transport and reac-

tion parameters. To synthesize the controller we consider the following standard

quadratic control Lyapunov function (CLF),

Vc(xs) =
1

2
xTs xs, (8.36)

where Vc(xs) > 0 and Vc = 0 only for xs = 0. Then we can obtain the time

derivative of the CLF as

V̇c = xTs ẋs = xTs
(
ϑ1As,1xs + ϑ2As,2xs + Fs(xs) + θGs(xs) +Bsu

)
.

Then by considering

ϑ1As,1xs + ϑ2As,2xs + Fs(xs) + θGs(xs) +Bsu

= −Coxs −
(
α1‖As,1‖2 + α2‖As,2‖2

)
xs − β‖Gs(xs)‖2 sign(xs),

(8.37)

where Co > 0 and sign denotes the sign function, we conclude

u = −B⊥s
[(
Co + ϑ1As,1 + ϑ2As,2 + α1‖As,1‖2 + α2‖As,2‖2

)
xs

+Fs(xs) + θGs(xs) + β‖Gs(xs)‖2 sign(xs)
]
,

(8.38)

where B⊥s = BT
s (BsB

T
s )−1 is the Moore-Penrose pseudo-inverse [202]. Note that

B⊥s = B−1
s for m = l and the controller of (8.38) is implementable when the
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parameters are known. Then the time derivative of the CLF can be derived by

V̇c = −
(
Co + α1‖As,1‖2 + α2‖As,2‖2

)
xTs xs − β‖Gs(xs)‖2 x

T
s sign(xs) ≤ 0,

(8.39)

which shows the closed-loop stability of the controller in the Lyapunov sense [148].

We obtain the controller formula in the presence of unknown parameters by

the applying certainty equivalence principle [25],

u = −B⊥s
[(
Co + ϑ̂1As,1 + ϑ̂2As,2 + α1‖As,1‖2 + α2‖As,2‖2

)
xs

+Fs(xs) + θ̂Gs(xs) + β‖Gs(xs)‖2 sign(xs)
]
.

(8.40)

By considering the closed-loop Lyapunov function as a combination of the CLF

and the identification Lyapunov function (ILF),

V = Vc(xs) + Vi(eϑ1 , eϑ2 , eθ) =
1

2
xTs xs +

1

2P1

e2
ϑ1

+
1

2P2

e2
ϑ2

+
1

2Z
e2
θ, (8.41)

where P1, P2, Z > 0, we conclude

V̇ = V̇c + V̇i = xTs ẋs +
1

P1

eϑ1 ėϑ1 +
1

P2

eϑ2 ėϑ2 +
1

Z
eθėθ. (8.42)

We assume that the unknown parameters of ϑ1, ϑ2 and θ do not change sharply

as process evolves however it may change step-wise. According to such assumption,

ėϑ1 = ϑ̇1 − ˙̂
ϑ1 = − ˙̂

ϑ1, ėϑ2 = ϑ̇2 − ˙̂
ϑ2 = − ˙̂

ϑ2, ėθ = θ̇ − ˙̂
θ = − ˙̂

θ.
(8.43)



280

If we employ the following identification laws to estimate the unknown param-

eters,

˙̂
ϑ1 = P1 x

T
s As,1xs,

˙̂
ϑ2 = P2 x

T
s As,2xs,

˙̂
θ = Z xTsGs(xs), (8.44)

we obtain

V̇ = −
(
C0 + α1‖As,1‖2 + α2‖As,2‖2

)
xTs xs − β‖GS(xs)‖2x

T
s sign(xs) ≤ 0.

(8.45)

Therefore V = Vc + Vi is a decreasing positive definite Lyapunov function which

indicates the closed-loop system stability in the Lyapunov sense [148].

8.3.3.2 State estimation

To implement the proposed adaptive control structure we must have access to full

measurements of the system slow modes, xs, to compute the control action of (8.40)

and estimate the parameters from (8.44). We employ the following static observer

design to estimate the slow modes based on continuous point measurements from

limited number of sensors,

x̂s(t) =
(

Φs(Ls)Φ
T
s (Ls)

)−1

Φs(Ls) y(t), (8.46)

where Φs = [φ1 φ2 · · · φm]T , y ∈ Rr. Note that the number of required continuous

measurement sensors has to be supernumerary to the number of slow modes, i.e.

r ≥ m. Such requirement can be circumvented using dynamic observer design
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Figure 8.9: Closed-loop process.

which conceptually needs only one measurement output [28, 31, 37].

Figure 8.9 presents the block diagram of the closed-loop process operation under

the proposed adaptive output feedback controller structure.

8.3.4 Application to thermal dynamics regulation

8.3.4.1 Process description

We consider a tubular flow reactor with a cooling jacket where an irreversible

exothermic zero-th order reaction takes place (Figure 8.10). The reaction rate is

considered to be temperature dependent, then it varies with time and location of

the reactor. The cooling jacket and feed temperatures are chosen as the manip-

ulated variables for control purposes. The thermal spatiotemporal dynamics can
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be derived from the energy balance inside the reactor and can be presented as the

following PDE with initial and boundary conditions,

∂T

∂t
=

k

ρCp

∂2T

∂z2
− v∂T

∂z
+

(−∆H)

ρCp
ro exp

(−E
RT

)
− hAc
ρCp

(T − Tc),

∂T

∂z
(0, t) =

ρCpv

k
(T (0, t)− Tf ),

∂T

∂z
(L, t) = 0,

T (z, 0) = T0(z),

(8.47)

where T is the stream temperature inside the reactor, t is time and z ∈ [0, L]

denotes spatial coordinate where L is the reactor length. The terms k, ρ, Cp, v,

(−∆H), r0, E and h are used for thermal conductivity, density, heat capacity, axial

velocity, heat of reaction, pre-exponential reaction constant, activation energy,

and heat transfer coefficient between reactor and cooling jacket, respectively. The

cooling surface area is denoted by Ac and Tc, Tf and T0 present the cooling jacket

temperature, feed temperature and initial temperature profile, respectively. In

above PDE system, k, (−∆H) and r0 are considered as unknown transport-reaction

parameters of the system.

To generalize the governing equation we reformulate (8.47) using dimensionless

variables and parameters, and homogenize the first boundary condition by inducing

the non-homogeneous part in the governing PDE using standard Dirac function.

The dimensionless form of the PDE with respect to initial temperature, T0, takes
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Figure 8.10: Tubular flow reactor with a cooling jacket.

the following form,

∂T̄

∂t̄
= ϑ

∂2T̄

∂z̄2
− ∂T̄

∂z̄
+ θ exp

( γT̄

1 + T̄

)
+BC(ū1 − T̄ ) + δ(z̄ − 0)ū2,

∂T̄

∂z̄
(0, t̄) =

1

ϑ
T̄ (0, t̄),

∂T̄

∂z̄
(1, t̄) = 0, T̄ (z̄, 0) = 0,

(8.48)

where

t̄ =
tv

L
, z̄ =

z

L
, T̄ =

T − T0

T0

, ϑ =
k

ρCpvL
,

γ =
E

RT0

, ū1 =
Tc − T0

T0

, ū2 =
Tf − T0

T0

,

BC =
hAcL

ρCpv
, θ =

(−∆H)ro exp(− E
RT0

)L

ρCpT0v
,

where ϑ and θ are the unknown parameters of the system due to unavailability of

thermal conductivity, heat of reaction and pre-exponential reaction constant. We

consider the jacket and feed stream temperatures as the manipulated inputs for

control purposes.
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Figure 8.11: Open-loop dimensionless temperature (a) spatiotemporal profile and
(b) spatial second norm temporal profile.

8.3.4.2 Simulation results

The known parameters of the system are set at the following practical values,

γ = 7 and BC = 2, we also consider the following nominal values for unknown

transport-reaction parameters of the system, ϑ = 0.18 and θ = 0.25. Note that

the controller structure does not have access to such nominal values. Figure 8.11

presents the open-loop spatiotemporal profile of the stream dimensionless temper-

ature and the temporal profile of its spatial second norm. We can observe that the

dimensionless temperature converges to a nonuniform steady state profile. The

controller objective is to regulate the dimensionless temperature profile at the ori-

gin, i.e., keeping the stream temperature at the uniform reference profile of T0.

To construct the ROM required by the adaptive control structure we collect the

snapshots of the system state profile from spatially distributed measurement sen-

sors during the open-loop process operation, tol = [0 3], while the controllers are

inactivated (ū1 = ū2 = 0). By applying the POD to the ensemble of open-loop
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Figure 8.12: Closed-loop dimensionless temperature (a) spatiotemporal profile and
(b) spatial second norm temporal profile.

Figure 8.13: Required control actions.

snapshots, we obtain only 1 basis function. The controller actions (ū1 and ū2 = 0)

and identification laws (
˙̂
ϑ and

˙̂
θ) were derived based on adaptive output feedback

control approach which presented in details in Section 8.3.3. Note that in this

case study we have one unknown reaction parameter and only one unknown trans-

port parameter. To design the control structure we considered the system tuning

parameters as follows, Co = 2, α = 0.5, β = 0.2 and P = Z = 1. To estimate

the system dominant mode using the static observer of (8.46), we consider r = 2

temperature continuous point measurements at Ls = [0.3 0.7]T . After the open-
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loop process operation time period, tol = [0 3], we activated the controller and

identifiers to regulate the system for tcl > 3. Figure 8.12 illustrates the closed-loop

spatiotemporal profile of dimensionless temperature and its spatial second norm

temporal profile. We observe that the controller successfully stabilizes the dimen-

sionless temperature at the uniform zero profile. The temporal profiles of required

control actions are shown in Figure 8.13. The controller actions converge to the

steady state values corresponded to the desired zero dimensionless temperature

profile without any chattering. Figure 8.14 presents the temporal profiles of the

estimated unknown transport-reaction parameters. It can be observed that the

estimated parameters converge to the final values of ϑ̂ = 0.485 and θ̂ = 0.09 which

indicate the adaptation strategy did not correctly identify the parameters since

for that the required condition of persistent excitation [25] was not satisfied and

also because the initial guesses were poor. Note that the objective of the proposed

output feedback adaptive control strategy was only regulation not system identi-

fication. The open-loop process operation, tol = [0 3], can be easily identified in

Figures 8.13-8.14 while during such time period the controllers and identifiers were

inactivated.
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Figure 8.14: Estimated (a) transport and (b) reaction parameters.

8.4 APOD-based model order reduction

8.4.1 Adaptive control through system linearization

8.4.1.1 Preliminaries

8.4.1.1.1 A class of semi-linear parabolic PDE system We consider pro-

cesses modeled by semi-linear parabolic PDE systems in the following state space

form

∂

∂t
x̄(z, t) = A

∂2

∂z2
x̄(z, t) + f

(
x̄(z, t), θ(t)

)
+ b(z)u(t), (8.49)

subject to boundary and initial conditions

q(x̄,
∂x̄

∂z
) = 0 on ∂Ω, x̄(z, 0) = x̄0(z). (8.50)

In the PDE system of (8.49)-(8.50), z ∈ Ω ⊂ R3 denotes the spatial coordinate,

t is the time, Ω is the process domain with boundary ∂Ω. x̄(z, t) ∈ R stands for
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the state variable and u(t) ∈ Rl is the manipulated inputs vector. A is a positive

constant and f(·) is a sufficiently smooth nonlinear vector function. θ(t) is the

vector of unknown parameters and bT (z) ∈ Rl is a smooth matrix function which

describes the control action distribution in the spatial domain, e.g. point actuation

is described by a standard Dirac delta. q(·) is a nonlinear vector function and x̄0(z)

is a smooth vector function.

The availability of two types of measurement sensors is assumed; periodic dis-

tributed snapshot measurements, yr(z, tk) ∈ R that indicates measured spatial

profiles, and continuous measurements, ym ∈ Rr that is a vector variable,

ym(t) =

∫
Ω

s(z)x̄(z, t) dz,

yr(z, tk) =

∫ t

0

δ(τ − tk)x̄(z, τ) dτ,

(8.51)

where r is the number of continuous sensors, tk is the time instance for snapshot

measurement and k = 1, 2, . . . . The function s(z) denotes the continuous point

sensors distribution in the process domain, Ω, and δ(·) indicate standard Dirac

delta function.

Remark 8.1. The results of this manuscript are presented for x̄ ∈ R, however,

we may extend the results for x̄(z, t) = [x̄1(z, t) · · · x̄n(z, t)]T ∈ Rn by treating

each state individually. The interactions between distributed system states is then

captured through the spatial integration of the respective basis functions with f(x̄, θ)

to give appropriate nonlinear functions [228].
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8.4.1.1.2 System representation in Sobolev subspace The semi-linear

parabolic PDE system of (8.49)-(8.51) can be presented as an infinite-dimensional

system in a relevant Sobolev subspace of W1,2(Ω,R), that satisfies the homogeneous

boundary conditions of (8.50), i.e.,

W1,2(Ω,R) =
{

F ∈W1,2(Ω,R) : q(F,
∂F

∂z
) = 0 on ∂Ω

}
,

where ∀i, j ∈ N, i > 1 and 1 6 j <∞, Sobolev space of

Wi,j(Ω,R) =
{
x̄ ∈ Lj(Ω) : ∂αx̄ ∈ Lj(Ω),∀α ∈ N, |α| 6 i

}
,

is a functional space that includes all of the α-order differentiable functions with

respect to all of spatial coordinates of the process domain. We can define the

inner product and norm in subspaces that belong to the space of square integrable

functions, L2(Ω), in the following form

(ϑ1, ϑ2) =

∫
Ω

r(z)ϑT1 (z)ϑ2(z)dz, ‖ϑ1‖2 = (ϑ1, ϑ1)1/2,

where ϑT denotes the transpose of ϑ and r(z) is the weight function that is assumed

to be 1 in this work. To simplify the notation we will use W to denote W1,2(Ω,R)

for the remainder of the paper.
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On the basis of the above, we define within W the state

x(t) = x̄(·, t), x ∈W1,2 (8.52)

the linear and nonlinear differential operators

Ax(t) = A
∂2

∂z2
x̄(·, t), F

(
x(t), θ(t)

)
= f
(
x̄(·, t), θ(t)

)
, (8.53)

the manipulated input operator

Bu(t) = b(z)u(t), (8.54)

and measured outputs’ operators

Sx(t) = (sT (z), x̄(·, t)), Rx(t) =

∫ t

0

δ(τ − tk)x̄(·, τ) dτ. (8.55)

Then the PDE system of (8.49)-(8.51) can be presented in the Sobolev subspace

as follows

ẋ(t) = Ax(t) + F
(
x(t), θ(t)

)
+ Bu(t), x(0) = x0,

ym(t) = Sx(t),

yr(tk) = Rx(tk),

(8.56)

where k = 1, 2, . . . , for equations (8.55) and (8.56). The set of analytical basis

functions of the system, needed to build the ROM, can in principle be obtained
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from the solution of the eigenvalue problem for the linear spatial operator of the

system as follows

Aφi = λiφi, i = 1, . . . ,∞ (8.57)

subject to the boundary conditions

q(φi,
dφi
dz

) = 0 on ∂Ω, (8.58)

where λi and φi denote the i th eigenvalue and the corresponding basis function,

respectively.

Assumption 8.1. We assume that the ordered eigenspectrum of A,

σA = {λ1, λ2, . . . },

can be partitioned into a finite set of rs slow eigenvalues,

σ
(s)
A = {λ1, λ2, . . . , λrs},

and a countable complement set of the remaining fast eigenvalues

σ
(f)
A = {λrs+1, λrs+2, . . . }.

The associated basis functions sets are defined as Φs = [φ1 φ2 · · · φrs ]T , Φf =

[φrs+1 φrs+2 · · · ]T . There is a large separation between the slow and fast eigen-

values of A, i.e., |Re(λ1)|/|Re(λrs)| = O(1) and |Re(λ1)|/|Re(λrs+1)| = O(ε)

where Re(λrs+1) < 0, ε = |λ1|/|λrs+1| is a small number. We also assume that

W , span{φi}∞i=1, i.e., operator A is a strong generator of the Sobolev subspace of

W.

Note that Re(ε) denotes the real part and O(ε) the order of magnitude of ε.
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From Assumption 8.1, we obtain that the Sobolev subspace defined for the infinite

dimensional representation of the system, W , span{φi}∞i=1, can be partitioned

into two other Sobolev subspaces; a slow and a fast one. The slow subspace

contains a finite number of basis functions that correspond to slow and possibly

unstable modes of x, Ws , span{φi}rsi=1. The fast complement subspace contains

an infinite number of basis functions that correspond to fast and stable modes of

x, Wf , span{φi}∞i=rs+1. Note that there is a time scale separation between the

dynamics of the two subsystems; the state of the infinite dimensional system of

(8.56) can be partitioned into a finite dimensional subspace of slow and possibly

unstable modes and an infinite dimensional subsystem of stable and fast modes,

x = xs + xf , (8.59)

where xs = Px ∈Ws, xf = Qx ∈Wf and W = Ws⊕Wf . The orthogonal integral

projection operators are defined as P : W → Ws, P = (·,Φs) and Q : W → Wf ,

Q = (·,Φf ).

Then using the method of weighted residuals based on the set of basis functions,

the system of (8.56) can be presented as an ODE set of vectorized modes in the

following form

ẋs = Asxs + fs(xs, xf , θ) +Bsu, xs(0) = Px0,

ẋf = Afxf + ff (xs, xf , θ) +Bfu, xf (0) = Qx0,

(8.60)
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where As = PA = diag{λi}rsi=1, Af = QA = diag{λi}∞i=rs+1, fs = PF , ff = QF ,

Bs = PB, Bf = QB, Px(0) = Px0, Qx(0) = Qx0.

The fast dynamics of (8.60) can be represented in the following singular per-

turbation form,

εẋf = εAfxf + ε
(
ff (xs, xf , θ) +Bfu

)
, (8.61)

where due to Assumption 8.1, ε = |λ1|/|λrs+1| is a small number that indicates the

time scale separation between the slow and fast dynamics [76].

Assumption 8.2. The control action is assumed to be bounded and the nonlinear

dynamics of the fast and stable subsystem satisfies the Lipschitz condition [76].

By assuming bounded control action and Lipschitz condition for ff (xs, xf , θ),

we obtain that ff (xs, xf , θ) + Bfu does not include a term of O(
1

ε
). Considering

that Af has negative eigenvalues of O(1) and by setting ε = 0, the fast dynamics

can be presented as the following locally exponentially stable form

∂xf
∂τ

= Afεxf , (8.62)

where τ =
t

ε
and Afε = εAf . Note that Afε is of order O(1) in the fast time

scale. After a period of time, xf converges to a ball of radius O(ε) around zero.

Thus, the fast dynamics of xf can be ignored compared to the slow dynamics of
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xs. Accordingly, the process dynamics can be approximated as follows

ẋs = Asxs + fs(xs, 0, θ) +Bsu, xs(0) = Px0. (8.63)

Assumption 8.3. The PDE system of (8.49)-(8.51) and as a result, the slow and

fast subsystems of (8.60) are assumed to be approximately observable and control-

lable [84].

On the basis of the above expositions, we need to solve the eigenvalue prob-

lem of (8.57) and find the set of basis functions to reduce the infinite dimensional

system. However, generally it is not possible to solve it when we have complex

boundary conditions. The interesting fact is that we can not find the analytical

solution even for a general class of linear systems over miscellaneous domains. On

the other hand, even if we can compute them analytically, we are not able to di-

rectly identify how many of them are enough to capture the dominant dynamic

behavior of the system. Note that using large number of basis functions increases

the dimensionality of ROM and the controller computational demand. Thus, most

of the standard analytical MOR techniques can not be directly used even for dis-

tributed parameter systems described by general linear PDEs. One solution to

circumvent this issue is to apply APOD as explained briefly in the next section.

Remark 8.2. Assumption 8.1 is always satisfied when the system is linear. It is

also automatically satisfied for semi-linear systems when we have bounded Lipschitz
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nonlinearity. The reader may refer to [103] for semi-linear PDE definition.

Remark 8.3. The proposed method is not only applicable to parabolic systems

but also to higher order semi-linear systems that satisfy Assumption 8.1, such

as physico-chemical systems described by Kuramoto-Sivashinsky equation (KSE)

[77, 93, 118] and Korteweg de Vries-Burgers (KdVB) equation [48].

8.4.1.2 Adaptive model order reduction

The finite-dimensional approximation of the infinite-dimensional representation of

(8.49)-(8.51) can be computed using the method of weighted residuals when the set

of empirical basis functions are available. Generally, the original state of the PDE

system, x̄(z, t), can be described as an infinite weighted summation of a complete

vectorized set of basis functions Ψ(z) as follows

x̄(z, t) ≈
rm∑
k=1

ψk(z)ak(t)
rm→∞−→ x̄(z, t) =

∞∑
k=1

ψk(z)ak(t)
(8.64)

where ak(t) for k = 1, . . . , rm are time varying coefficients known as system modes.

The following rm
th order system of ODEs is obtained by substituting (8.64) in

(8.49)-(8.51), multiplying the PDE with the weighting functions, ϕ(z), and inte-

grating over the entire spatial domain:

rm∑
k=1

(ϕv(z), ψk(z))ȧk(t) =
rm∑
k=1

(ϕv(z),Aψk(z))ak(t)

+
(
ϕv(z),F(z,

rm∑
k=1

ψk(z)ak(t)), θ
)

+ (ϕv(z), b(z))u,

ym =
rm∑
k=1

(s(z), ψk(z))ak(t), v = 1, . . . , rm. (8.65)
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The type of weighted residual method can be determined by the weighting functions

in the above equation. The method reduces to Galerkin projection when the

weighting functions, ϕ(z), and the basis functions, Ψ(z), are the same. Then

(8.65) can be summarized as

ȧ = Aa+ f(a, θ) +Bu,

ym = Sa,

(8.66)

where Arm×rm , Brm×l and Sw×rm are constant matrices and f is a nonlinear smooth

vector function of the modes that can be described based on the comparison be-

tween (8.65) and (8.66). From Lipschitz condition of f, we obtain that f satisfies

a local Lipschitz condition. Note that this assumption can be concluded from the

local Lipschitz property of the nonlinear part of the original system of (8.56) in

the Sobolev subspace for special cases.

Remark 8.4. The main reason for applying APOD to recursively revise the set of

empirical basis functions is the appearance of new trends in the process dynamics

during process evolution. Such new trends make the empirical basis functions and

ROM inaccurate. In that case APOD algorithm revises the basis functions and

modifies the ROM. Then following the ROM revisions, the output feedback con-

trol structure is redesigned to retain relevancy. Such “corrections” will always be

repeated at revision times to construct an accurate basis for controller design and

enforce closed-loop stability [29, 256].
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Remark 8.5. Since the empirical basis functions of the system are periodically

revised, the ROM of (8.66) we obtain is a switching system, i.e., the structure and

dimensionality of the system approximation changes as process evolves. Further-

more, the designed adaptation and controller laws will also be revised as well at

each switching [29, 35].

8.4.1.3 Application to thermal regulation in a catalytic chemical reac-

tor

In this section, the adaptive model order reduction (AMOR) and control design is

applied to a 1D diffusion-reaction process. First, we describe the model of thermal

dynamics in a catalytic chemical reactor. Then we apply APOD and Galerkin’s

method to construct the ROM that is the basis for controller synthesis. Finally, we

design an adaptive controller to regulate the temperature dynamics of the catalytic

reactor and present the results.

Note that the main contribution of this paper is towards the adaptive model

order reduction component which facilitates the implementation of adaptive control

approaches to distributed systems with unknown parameters. Adaptive control is

a well-known control approach as we discussed in the “introduction” section. We

are using a Lyapunov-based adaptive method to design the controller. For brevity

reasons we do not present the basics and theory of adaptive control approach which

can be found in [25, 63, 147, 218].
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Figure 8.15: Catalytic chemical reactor.

8.4.1.3.1 Reactor description Consider an elementary exothermic reaction

A → B taking place on a long, thin rod in a catalytic chemical reactor that

is presented in Figure 8.15. Since the reaction is exothermic, a coolant is used

to remove heat from the reactor. To model temperature dynamics inside the

catalytic rod we assume constant density, heat capacity and constant conductivity

of the rod, and constant temperature at both ends of the rod. We also assume

that the reactant A is present in excess and thus can assume constant reactant

concentration. The mathematical model that describes the spatiotemporal thermal

dynamics inside the catalytic rod is presented by the following semi-linear parabolic

PDE,

∂x̄

∂t
= D

∂2x̄

∂z2
+ βT

(
e−ε/(1+x̄) − e−ε

)
+ βU

(
b(z)u(t)− x̄

)
(8.67)

subject to boundary and initial conditions

x̄(0, t) = 0, x̄(π, t) = 0, x̄(z, 0) = x̄0(z), (8.68)
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where x̄ denotes the dimensionless temperature of the catalytic rod that is defined

over the spatial domain of [0, π] and z ∈ [0, π] is the spatial coordinate, D is

the dimensionless diffusion coefficient and βT denotes the dimensionless heat of

reaction; γ stands for the dimensionless activation energy and the parameter βU

denotes the dimensionless heat transfer coefficient. The vector of control variables

is denoted by u(t) and b(z) describes the spatial distribution of the actuator, e.g.,

point actuation could be defined using standard Dirac delta. Figure 8.16 presents

the open-loop spatiotemporal profile of the system state and temporal profile of

its 2-norm when the nominal values of the system unknown parameters are D = 1,

βT = 16 and γ = 2 and the dimensionless heat transfer coefficient of the system is

βU = 2. The initial dimensionless temperature of the catalytic rod is considered

as a periodic profile with the average value of x̄0,avg = 0.5. The hot spot can be

observed easily at the middle point of the catalytic rod. The control problem thus

becomes regulating the catalyst temperature at a uniform temperature of x̄ = 0.

To address the control problem we consider the linearization of the PDE system

of (8.67) around the spatially uniform unstable steady state of x̄(z, t) = 0. It has

the following form,

∂x̄

∂t
= D

∂2x̄

∂z2
+
(
βT e−γγ − βU

)
x+ βUb(z)u(t). (8.69)

We assume that we do not know the reaction and diffusion parameters inside the

reactor, i.e., the parameters βT , γ and D that indicate heat of reaction, activation
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Figure 8.16: Open-loop (a) spatiotemporal profile of the system state and (b)
temporal profile of its 2-norm.

energy and diffusion coefficient, respectively, are unknown. The only parameter

of the system that is known is the dimensionless heat transfer coefficient, βU = 2.

The linearized PDE system of (8.69) can be represent in the form of reaction and

diffusion uncertainty as follows,

∂x̄

∂t
= θ1

∂2x̄

∂z2
+ θ2x+ βUb(z)u(t), (8.70)
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where [θ1 θ2]T = [D βT e−γγ − βU ]T .

Four continuous point measurement sensors are assumed to be placed uniformly

across the domain of the process, Ls = [π/5, 2π/5, 3π/5, 4π/5], where ym(Ls) =

ΨT (Ls)a and Ψ = [ψ1 ψ2 · · · ψrm ]T , and we consider the availability of only

one point actuator at La = 3π/4, where the corresponding spatial distribution

functions at the location for point measurements and actuation is considered as

the Dirac delta function, δ(z − L). The profiles of the rod temperature is also

assumed to be accessible every δt = 1s. The control objective is the regulation

of the temperature dynamics in the presence of unknown reaction and diffusion

parameters at the unstable steady state of x̄(z, t) = 0 based on AMOR.

Remark 8.6. Considering the local linearization as the basis to design the adaptive

control structure for governing nonlinear systems is a promising approach that has

been widely applied in the literature [25, 147, 218]. We consider this approach to

simplify the adaptation law and adaptive controller derivations.

Remark 8.7. Note that the linearization error between model and nonlinear pro-

cess is also circumvented using a linear model-based controller design whose pa-

rameters adaptively change during process evolution.

8.4.1.3.2 Adaptive model order reduction Even for the specific process

we can not compute the dominant basis functions analytically due to the unknown

diffusivity coefficient. We used 20 snapshots and the off-line step of APOD to find
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Figure 8.17: The initial dominant empirical basis function (obtained from off-line
APOD part).

an initial set of empirical basis functions. These snapshots are generated during

the time period of t ∈ [0, 2] for open-loop process, u(t) = 0. Using off-line APOD

to compute the basis of the initial ensemble of snapshots we obtain two empirical

basis function for x̄ which captures 0.999 of the total energy of the ensemble. The

initial dominant empirical basis function is presented in Figure 8.17. The first

dominant basis function identify the dominant dynamics of the open-loop system

and the second one is an artifact of the specific initial single trajectory in the

absence of control action.

The on-line APOD adaptively revises the empirical basis functions every δt =

1s to keep them accurate. Note that the snapshots needed in Galerkin’s method to

construct the linear ROMs are obtained from the original nonlinear process. If we

consider {ψi}rmi=1 is the set of empirical basis functions between the revisions, we

can approximate the state of the PDE system of (8.70) as x̄(z, t) ≈
∑rm

i=1 ai(t)ψi(z).
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By substituting this approximation in the PDE of (8.70) we obtain,

rm∑
i=1

ȧiψi = θ1

rm∑
i=1

ai
d2ψi
dz2

+ θ2

rm∑
i=1

aiψi + βUb(z)u. (8.71)

Then the ROM can be constructed using Galerkin’s method as follows,

ȧj = θ1

rm∑
i=1

ai

∫ π

0

d2ψi
dz2

ψjdz + θ2aj + βU

(∫ π

0

b(z)ψjdz
)
u,

j = 1, . . . , rm.

(8.72)

The above equation can be summarized as the following vectorized form,

ȧ = (θ1A+ θ2I)a+Bu, (8.73)

where [A]j,i =
(
ψj(z),

d2ψi(z)

dz2

)
, [Bu]j =

(
ψj(z), b(z)

)
u. The ODE system of

(8.73) is the basis to synthesize the controller. Note that the resulting system

approximation of (8.73) is a switching system due to the form and dimensionality

changes during process evolution. Thus, the stability of the switching system

under the control actions must be proven via Lyapunov and hybrid system stability

arguments [79, 86].

8.4.1.3.3 Derivation of APOD-based adaptive control structure In this

section, we utilize the ROM of (8.73) in designing adaptive output feedback con-

trollers for the semi-linear parabolic PDE system of (8.67). The controller is syn-
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thesized based on continuous point measurements available from restricted number

of sensors (4 sensors). We use a static observer of the following form,

ã =
(

Ψ(Ls)Ψ
T (Ls)

)−1

Ψ(Ls)ym(Ls), (8.74)

to estimate the state of the ODE system of (8.73) due to the unavailability of full

state measurements assuming that the number of point measurement sensors is

equal to or greater than rm.

We consider the following control Lyapunov function (CLF),

Vc =
ζ

2
aTa, (8.75)

where ζ > 0 is a adjusting parameter which modifies the CLF at the revisions. By

substituting (8.73) in the time derivative of the CLF we obtain

V̇c = ζaT ȧ = ζaT
(

(θ1A+ θ2I)a+Bu
)
. (8.76)

Then by considering

V̇c = −ρaTa < 0, (8.77)

the control structure is derived as a function of unknown system parameters as

follows

u = −B−1
(ρ
ζ
a+ (θ1A+ θ2I)a

)
, (8.78)
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where ρ is a positive number that indicates the regulation rate.

We define the closed-loop Lyapunov function as a combination of the CLF and

the identification Lyapunov function,

V =
ζ

2
aTa+

1

2
θ̃2

1 +
1

2
θ̃2

2, (8.79)

where θ̃1 = θ̂1 − θ1, θ̃2 = θ̂2 − θ2, and θ̂1, θ̂2 are the estimations of the unknown

parameters of θ1 and θ2, respectively.

By substituting (8.73) in the time derivative of the close-loop Lyapunov func-

tion and assuming that θ1 and θ2 do not vary continuously, we conclude

V̇ = ζaT ȧ+ θ̃1
˙̂
θ1 + θ̃2

˙̂
θ2 = ζaT

(
(θ1A+ θ2I)a+Bu

)
+ θ̃1

˙̂
θ1 + θ̃2

˙̂
θ2. (8.80)

The controller formula in the presence of unknown parameters is obtained by the

applying certainty equivalence principle [25] to the control structure of (8.78),

u = −B−1
(ρ
ζ
a+ (θ̂1A+ θ̂2I)a

)
. (8.81)

Then by considering (8.80) and (8.81) we can obtain the adaptation laws

˙̂
θ1 = aTAa,

˙̂
θ2 = aTa,

(8.82)
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where

V̇ = −ρaTa < 0, (8.83)

thus the closed-loop system is locally asymptotically stable in the Lyapunov sense.

The control and adaptation laws of (8.81) and (8.82) are redesigned when the

ROM is revised by APOD. Stability theorems of hybrid systems are then required

to prove that the resulting switching controlled system remains stable at revisions.

For switching system stability analysis the multiple CLFs in the form of (8.75)

must be considered. The negative time derivative of the multiple CLFs, described

in (8.84), guarantees stability of the switching system (Theorem 3.2 in [86]) when

the following condition is also satisfied [79, 86]

Vc
(
ã(tk)

)
< Vc

(
ã(tk−1)

)
, (8.84)

where k > 1 and Vc
(
ã(tk)

)
corresponds to the value of CLF at the beginning

of time interval [tk, tk+1]. The CLF may possibly increase during dimensionality

changes of the ROM, furthermore, the value of ζ must be chosen appropriately in

the closed-loop process. The following equation is applied to update the value of

ζ as needed

ζ = η
ãT (tk−1) ã(tk−1)

ãT (tk) ã(tk)
, (8.85)

where η < 1. Alternatively, we initialize ζ at value ζ0 = 1, and reevaluate it using

(8.85) only when the criteria of (8.84) is violated.
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Figure 8.18: Process operation block diagram under proposed control structure.

Figure 8.18 shows the block diagram of closed-loop process under the proposed

control structure. The control performance of the system of (8.49)-(8.51) directly

depends on the accuracy of its ROM. Using APOD methodology, the ROM will

be adaptively revised at certain time instants to remain accurate. Then the ROM

structure and dimensionality change during process evolution. As a result, when

the ROM switches the controller will be redesigned as well.

Remark 8.8. The static observer requirements of available number of continuous

point measurement sensors being supernumerary to the dimension of the ROM can

be circumvented using dynamic observer synthesis which conceptually requires only

one measurement output [28, 31, 82].

Remark 8.9. To design the controller in the form of (8.81) we assume that the

number of control actuators is equal to rm and the inverse of B exists. To sat-
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isfy such conditions the number of actuators may be decreased or increased during

the process evolution if the dimensionality of the ROM changes. We may avoid

activating and deactivating actuators during such changes by using more than rm

actuators and employing the right pseudo-inverse of B, B⊥ = BT (BBT )−1 in

(8.81), instead of B−1.

Remark 8.10. The adaptive control of nonlinear distributed parameter systems

in the presence of time-varying unknown parameters using dynamic observer de-

signs is the current subject of authors’ research and will be presented in future

publications.

8.4.1.3.4 Closed-loop analysis We present the closed-loop simulation results

for the catalytic chemical reactor in the presence of unknown diffusion and reac-

tion parameters. We studied two cases with the same controller structure and

parameters; (1) constant diffusion-reaction parameters and (2) time-varying the

diffusion-reaction parameters as process evolves. In both cases, we use ρ = 2 to

adjust the rate of asymptotic decrease in the Lyapunov function.

8.4.1.3.4.1 Constant diffusion-reaction parameters In this section,

the closed-loop simulation results are presented for thermal dynamic regulation

of the catalytic reactor when the unknown diffusion-reaction parameters are con-

stant and do not change during the process evolution. Figure 8.19 illustrates the

closed-loop process profile and its 2-norm. We can easily observe that the adaptive
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Figure 8.19: Closed-loop (a) spatiotemporal profile of the system state and (b)
temporal profile of its 2-norm.

controller successfully regulates the system of (8.67)-(8.68) at the unstable steady

state of x̄(z, t) = 0.

Figure 8.20 shows the change in the number of empirical basis functions re-

quired to capture the dominant dynamics of the system during the process evolu-

tion. The number of initial empirical basis functions was two and it increased to

three as the process evolved. Figure 8.21 shows the temporal profiles of the first,
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Figure 8.20: Number of empirical basis functions.

second and third empirical basis functions. The dominant empirical basis func-

tions were updated to accurately capture the process behavior when new trends

appeared. The temporal profiles of the estimated dominant mode of the system

and the required control action is presented in Figure 8.22. The system dominant

mode and the control action converged to the steady state value of zero without

chattering and any sharp changes. The effects of changes in the unknown parame-

ters of the system can be observed in the temporal profiles of the 2-norm, dominant

estimated mode and control action at t = 5s. When the actuator is activated, the

process behavior significantly changes and the effect of the actuator on the DPS

are now captured by the second basis function which has a maximum at z = 3π/4

where the actuator is located. We see that APOD adapts to this change and a

new basis is captured where the closed-loop dynamics.
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Figure 8.21: Temporal profile of the (a) first, (b) second and (c) third empirical
basis functions.
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Figure 8.22: Temporal profile of (a) the estimated dominant mode of the system
and (b) the required control action.

Figure 8.23 presents the temporal profile of the CLF for ζ = ζ0 = 1. The

black circles indicates the CLF values at the revisions. We observe that the CLF

values at the revisions decreased as time evolves which guarantees the switching

system stability. In such case, we did not need to reevaluate the ζ because the

criteria of (8.84) was always valid during process evolution. Figure 8.24 presents

the dynamics of the estimated unknown parameters from the adaptation law. We

observe that the estimated parameters converged the steady state values of θ̂1 = 2.8

and θ̂2 = 3 when the nominal values of the system unknown parameters are θ1 = 1
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Figure 8.23: Temporal profile of the CLF. The black circles show the CLF values
at the ROM revisions.

and θ2 = 2.33. We may observe that the adaptation law can not estimate the

unknown parameters due to the lack of persistent excitation needed for complete

system identification. Note that the system identification is not the objective of

the proposed control method.

8.4.1.3.4.2 Time-varying diffusion-reaction parameters In this sec-

tion we present the simulation results in the presence of unknown diffusion and

reaction parameters that change from D = 1, βT = 16 and γ = 2 to D = 3, βT = 30

and γ = 3 at t = 4s. Figure 8.25 shows the open-loop process spatiotemporal pro-

file and the temporal profile of its 2-norm, when the controller was inactive. We

observe a significant change in the system dynamics due to the parametric change.

The closed-loop system profile and its 2-norm under the impact of the proposed



314

Figure 8.24: Temporal profile of (a) θ̂1 and (b) θ̂2.

control structure is presented in Figure 8.26, where the adaptive controller stabi-

lized the process at the unstable steady state of x̄(z, t) = 0. Finally, we illustrate

the temporal profiles of the estimated dominant mode and the control action in

Figure 8.27. The convergence of the dominant mode and control action to zero

without any chartering indicates the effectiveness of the proposed adaptive control

method.

The effects of the changes in the unknown parameters of the system can be

observed in the temporal profiles of the closed-loop 2-norm, dominant estimated

mode and control action at t = 4s. Due to the effective performance of the two
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Figure 8.25: Open-loop (a) spatiotemporal profile of the system state and (b)
temporal profile of its 2-norm in the presence of unknown parameters changes.

layer adaptation we do not observe significant variations in the closed-loop system

when the process unknown parameters change.

The success of the designed controller in regulating the process is due to the

dominant eigenspace (hence the ROM, the adaptation and the control laws) be-

ing updated as the process traverses through different regions of the state space

during closed-loop operation. During the closed-loop process operation, when new
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Figure 8.26: Closed-loop (a) spatiotemporal profile of the system state and (b)
temporal profile of its 2-norm in the presence of unknown parameters changes.

trends appeared the dominant empirical basis functions were updated to accurately

capture the process behavior.
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Figure 8.27: Temporal profile of (a) the estimated dominant mode of the system
and (b) the required control action in the presence of unknown parameters changes.

8.4.2 Direct adaptive control

8.4.2.1 Preliminaries

We study the control problem of wave motion spatiotemporal dynamics of flow

processes in the presence of unknown parameters which can be mathematically
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modeled by the following nonlinear dissipative PDE,

∂x̄(z, t)

∂t
= Fn

(
x̄(z, t)

)
+ Gn

(
x̄(z, t)

)
θ + B(z)u(t),

Γ
(
x̄(z, t),

∂x̄(z, t)

∂z
, . . . ,

∂n−1x̄(z, t)

∂zn−1

)
∂Ω

= 0,

x̄(z, 0) = x̄0(z).

(8.86)

In the PDE system of (8.86),

x̄(z, t) ∈ R : system spatiotemporal state,

z ∈ Ω : spatial coordinate,

t : time,

Ω : process domain,

∂Ω : process boundaries,

Fn,G1×q
n : nonlinear differential-algebraic operators of order n,

θ ∈ Rq : vector of unknown parameters,

u ∈ Rl : vector of manipulated inputs,

B(z) : spatial distribution of manipulated inputs,

Γ : vector of homogeneous boundary conditions,

x̄0(z) : initial spatial profile of the system state.

We can reformulate the PDE of (8.86) in the infinite dimensional form,

ẋ = F(x) + G(x)θ + Bu, x(0) = x0, (8.87)
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in an appropriate Sobolev subspace of W,

W(Ω) =
{
H ∈ L2(Ω) : ∀α ∈ N, |α| 6 n− 1, ∂αH ∈ L2(Ω),

Γ
(
H, ∂H

∂z
, . . . ,

∂n−1H
∂zn−1

)
∂Ω

= 0
}
,

where

x(t) = x̄(z, t),

F(x) = Fn
(
x̄(z, t)

)
,

G(x)θ = Gn
(
x̄(z, t)

)
θ,

Bu = B(z)u(t).

To discretize the resulting infinite dimensional system of (8.87) in the form of

ODEs of vectorized modes needed for MOR, we must calculate the set of basis func-

tions. Such basis functions are the solution of the following nonlinear dissipative

eigenproblem,

F(φj) + G(φj)θ = λjφj,

Γ(φj,
∂φj
∂z

, . . . ,
∂n−1φj
∂zn−1

)
∣∣∣
∂Ω

= 0,

j = 1, . . . ,∞,

(8.88)

where λ and φ denote the eigenvalue and corresponding analytical basis function,

and W , span{φi}∞i=1, i.e., the nonlinear dissipative operator is a strong generator

of the defined Sobolev subspace of W.

Assumption 8.4. Considering the eigenspectrum of above nonlinear dissipative

eigenproblem in the form of {λ1, λ2, . . . } where the eigenvalues are sorted by size,
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we assume it can be decomposed to the following subsets;

1. finite subset of p slow and possibly unstable eigenvalues,

{λ1, λ2, . . . , λp},

2. complement infinite subset of the rest fast and stable eigenvalues,

{λp+1, λp+2, . . . }.

A time scale separation can be identified between such subsets as σ =
|Re(λ1)|
|Re(λp+1)|

where σ is a small number and Re(·) shows the real part. In addition we can

define two Sobolev subspaces for such subsets that includes the corresponding basis

functions;

1. slow subspace, Ws , span{φi}pi=1,

2. complement fast, Wf , span{φi}∞i=p+1.

According to Assumption 8.4 and by defining slow and fast projection opera-

tors,

P : W→Ws, P(·) = (·,Φs),

Q : W→Wf , Q(·) = (·,Φf ),

(8.89)

the infinite dimensional system of (8.87) can be represented by a partitioned ODE

set of vectorized slow and fast modes as follows,

ẋs = Fs(xs, xf ) +Gs(xs, xf )θ +Bsu, xs(0) = Px0,

ẋf = Ff (xs, xf ) +Gf (xs, xf )θ +Bfu, xf (0) = Qx0,

(8.90)
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where x = xs ⊕ xf , Fs = PF, Ff = QF, Gs = PG, Gf = QG, Bs = PB,

Bf = QB.

Based on Tykhonov’s theorem [175] and using singular perturbation analysis

[76], the partitioned infinite dimensional system of (8.90) can be approximated in

the form of

ẋs = Fs(xs, 0) +Gs(xs, 0)θ +Bsu, xs(0) = Px0, (8.91)

when the residual fast and stable dynamics stabilize, xf → 0, after a finite period

of time which can be identified by applying singular perturbation analysis.

Remark 8.11. The partitioning assumption between the slow and fast dynamics

of the system (Assumption 8.4) is satisfied by a majority of dissipative transport-

reaction processes [76], which indicates that only a few dominant modes are ade-

quate to approximate the long-term dynamic behavior of the system.

8.4.2.2 Model order reduction using recursively updated empirical ba-

sis functions

The low dimensional approximation of the PDE system can be obtained by trun-

cating the discretized system up to an appropriate number of equations when the

basis functions are accessible. In general, if we can compute an appropriate set of

orthonormal basis functions that capture the dominant dynamics of the system,
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the spatiotemporal state of the PDE system can be approximated by

x̄(z, t) ≈
m∑
k=1

ψk(z)ak(t), (8.92)

where {ψi(z)}mi=1 is the set of m required basis functions and ak(t) denotes the

corresponding system modes.

Then, by applying a discretization method such as Galerkin projection we

obtain the m th order ODEs by substituting the approximation of (8.92) in the

PDE system of (8.86) and then integrating over spatial domain by considering the

orthonormal basis functions as the weighting functions,

ȧv(t) =

∫
Ω

ψv(z)F(z,
m∑
k=1

ψk(z)ak(t))dz +
(∫

Ω

ψv(z)G(z,
m∑
k=1

ψk(z)ak(t))dz
)
θ

+
(∫

Ω

ψv(z)b(z)dz
)
u,

(8.93)

for v = 1, ...,m.

The above discretization is only applicable when the orthonormal basis func-

tions are available. However, we can not find an analytical solution for the nonlin-

ear eigenproblem of (8.88) subject to unknown parameters and general boundary

conditions. We also can not use numerical techniques to directly solve such eigen-

problems due to the existence of unknown vector of θ in the nonlinear operator

structure. To circumvent such essential issues we employ APOD algorithm to

compute the set of empirical orthonormal basis functions. The off-line part of the
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algorithm (POD) is applied to compute the initial empirical orthonormal basis

functions based on limited available off-line spatially distributed state profiles of

the system before the closed-loop process starts. Then, during the process evo-

lution when new trends appear in the system dynamics the on-line part of the

algorithm recursively update the empirical basis functions.

To revise the empirical basis functions during closed-loop process evolution,

APOD needs the spatially distributed profile of the system state at each revision

times which is called snapshot. Such required snapshots can be accessible from

periodic fixed or moving spatially distributed measurement sensors, or be computed

using in parallel high fidelity simulator. The corresponding measurement output

can be presented by

yr(z, tk) =

∫ t

0

δ(τ − tk)x̄(z, τ) dτ , (8.94)

where δ(·) is the standard Dirac function and tk denotes the time instance for

snapshot measurement and k = 1, 2, . . . ,∞.

Remark 8.12. The structure and dimension of the ODEs of (8.93) changes during

the process evolution because the APOD algorithm recursively revises the set of em-

pirical basis functions to capture possible new dynamics. Following such revisions

that change the number and spatial distribution of the empirical basis functions,

the output feedback control structure (state feedback controller and observer) also
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updates.

8.4.2.3 Adaptive output feedback control

In this section we use the resulting ROM (obtained by APOD and Galerkin pro-

jection in Section 8.4.2.2) as the basis for adaptive output feedback control design

assuming the approximate controllability of the dissipative DPS described by the

PDE of (8.86). To simplify the controller structure notation we summarized the

ROM of (8.93) as follows,

ȧ = f(a) + g(a)θ +Bu, (8.95)

where fm×1 and gm×q are nonlinear vector functions, and Bm×l is a matrix whose

components are presented as follows,

fv =

∫
Ω

ψv(z)F(z,
m∑
k=1

ψk(z)ak(t))dz,

gv,i =

∫
Ω

ψv(z)Gi(z,
m∑
k=1

ψk(z)ak(t))dz,

bv,j =

∫
Ω

ψv(z)bj(z)dz.

To design the adaptive controller we consider the ROM of (8.95) where a ∈ Rm,

θ ∈ Rq, f : Rm → Rm, g : Rm → Rm×q, B ∈ Rm×l and u ∈ Rl. We use the vector

variable θ̂ as the estimation of the unknown variable of θ, where the identification

error vector can be presented by eθ = θ−θ̂. We assume that the identification error
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remains bounded under the stable adaptive control design as ‖eθ‖ < Θ, where Θ

denotes the error upper bound.

By considering the control Lyapunov function (CLF) as Vc(a) =
1

2
aTa where

Vc is a positive definite function (i.e., Vc(a) ≥ 0 and Vc = 0 only when a = 0), we

can obtain its time derivative as

V̇c = aT ȧ = aT
(
f(a) + g(a)θ +Bu

)
. (8.96)

Then by setting

f(a) + g(a)θ +Bu = −C0a− ‖g(a)‖Θ sign(a), (8.97)

where C0 > 0 and sign(·) denotes the sign function, we conclude

V̇c = −C0a
Ta− ‖g(a)‖ΘaT sign(a) ≤ 0,

which presents the controller stability [148]. Thus, we obtain the controller struc-

ture from (8.97) as follows,

u = −B⊥
(
C0a+ f(a) + g(a)θ + ‖g(a)‖Θ sign(a)

)
, (8.98)

where B⊥ = BT (BBT )−1 is the Moore-Penrose pseudo-inverse. Note that such

pseudo-inverse definition reduces to B−1 when m = l.
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Based on certainty equivalence principle we obtain the controller formula from

(8.98) by replacing θ with its estimation, θ̂,

u = −B⊥
(
C0a+ f(a) + g(a)θ̂ + ‖g(a)‖Θ sign(a)

)
. (8.99)

Now if we consider the closed-loop positive definite Lyapunov function as combi-

nation of the identification Lyapunov function (ILF) and CLF as follows,

V = Vi(eθ) + Vc(a) =
1

2
eTθ P

−1eθ +
1

2
aTa, (8.100)

where P q×q is a symmetric positive definite matrix (i.e., P = P T and dTPd > 0

for every non-zero column vector of d), we obtain

V̇ = ėTθ P
−1eθ + aT ȧ. (8.101)

Assuming that the unknown variable of θ does not change continuously, θ̇ = 0,

ėθ = θ̇ − ˙̂
θ, (8.102)

and by considering the adaptation law as

˙̂
θ = PgT (a)a, (8.103)
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we conclude

V̇ = −
(
PgT (a)a

)T
P−1eθ + aT

(
f(a) + g(a)θ − C0a

−f(a)− g(a)θ̂ − ‖g(a)‖Θ sign(a)
)

= −C0a
Ta− ‖g(a)‖ΘaT sign(a) ≤ 0.

(8.104)

Then by integrating the resulting inequality of (8.104) over time we obtain

∫ ∞
0

(
C0a

Ta+ ‖g(a)‖ΘaT sign(a)
)
dt < V (0)− V (∞) <∞. (8.105)

The stability of the closed-loop system [148] can be obtained from (8.104) and

(8.105).

To compute the required control action using the controller formula (8.99) and

adaptation law (8.103) we have to access the full measurements of the states of

(8.95) which are the system modes. However such states can not be measured

directly from the process sensors while only a limited number of continuous point

measurement sensors are considered to be available. The vector of measurement

output for such fixed point sensors in the process domain can be presented as

follows,

yw(t) =

∫
Ω

δ(z − Ls)x̄(z, t) dz, (8.106)

where Ls is a vector that presents the location of fixed continuous measurement

sensors.
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Figure 8.28: Closed-loop process operation.

By setting the number of such sensors to be supernumerary to the number of

modes between ROM revisions, we apply the following static observer to estimate

the required modes,

â =
(

Ψ(Ls)Ψ
T (Ls)

)−1

Ψ(Ls)ym, (8.107)

where Ψ = [ψ1 ψ2 · · · ψm]T . The closed-loop process block diagram is presented

in Figure 8.28.

8.4.2.4 Application to wave motion suppression of a typical fluid flow

process

In this section we employ the proposed output feedback adaptive control structure

to suppress the wave motion dynamics in a thin film described by Korteweg-de
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Vries-Burgers (KdVB) equation. The KdVB is one of the simplest nonlinear models

that shows dispersion and dissipation effects in flow patterns [16, 48]. We consider

the standard form of controlled KdVB equation as follows,

∂x̄

∂t
= −∂

3x̄

∂z3
+ θ

∂2x̄

∂z2
− x̄∂x̄

∂z
+ b(z)u(t), (8.108)

subject to the periodic boundary conditions,

x̄(0, t) = x̄(π, t),

∂x̄

∂z
(0, t) =

∂x̄

∂z
(π, t),

∂2x̄

∂z2
(0, t) =

∂2x̄

∂z2
(π, t),

(8.109)

and initial condition,

x̄(z, 0) = x̄0(z), (8.110)

where

x̄(z, t) ∈ R : system spatiotemporal state,

z ∈ [0, π] : spatial coordinate,

t : time,

θ : unknown parameter,

u ∈ Rl : vector of manipulated inputs,

b(z) : spatial distribution of manipulated inputs,

x̄0(z) : initial spatial profile of the system state.
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Figure 8.29: (a) Spatiotemporal profile of the system state and (b) temporal profile
of its spatial 2-norm when the controller is inactivated.

8.4.2.4.1 Open-loop simulation results The open-loop spatiotemporal pro-

file of the system state and the temporal profile of its 2-norm for the nominal value

of the unknown parameter, θ = 0.01, is presented in Figure 8.29, where we observe

the periodic dynamic behavior.

We considered a nonuniform initial spatial profile of the system state x̄0(z) =

−0.5 sin(z)+0.3 sin(2z)+0.1 sin(5z) which satisfies the boundary conditions. It can
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Figure 8.30: The initial orthonormal empirical basis functions.

be easily observe that the open-loop behavior of the system is under the influence of

such nonuniform initial profile in the first two time steps of the process operation.

We employed 10 snapshots during the time period of t ∈ [0, 1] to compute the

set of empirical basis functions using off-line APOD. Figure 8.30 shows the spatial

profile of the initial set of dominant orthonormal empirical basis functions which

capture 0.99 of the ensemble energy.

8.4.2.4.2 Closed-loop simulation results To implement the proposed MOR-

based adaptive output feedback controller five continuous fixed point measurement

sensors were considered across the process domain, Ls = [π/6, π/3, π/2, 2π/3, 5π/6],

we set four point actuators at La = [π/5, 2π/5, 3π/5, 4π/5] where bi(z) = δ(z−La,i)

for i = 1, ..., 4. The system snapshots were also assumed to be available every

δt = 1s.

We apply C0 = 3 to adjust the rate of asymptotic stabilization and P = 1 for



332

Figure 8.31: (a) Spatiotemporal profile of the system state and (b) temporal profile
of its spatial 2-norm under the proposed control structure.

the identification law. Figure 8.31 shows the spatiotemporal profile of the system

state and its 2-norm during the closed-loop process operation. We observe that the

adaptive output feedback controller suppressed the periodic trends of the system

and regulate the system state at the uniform spatial profile of x̄d(z) = 0. Figure

8.32 shows the required control actions applied by the four point actuators, where

the components of actuation vector converged to zero.
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Figure 8.32: Temporal profile of the required control actions.

Figure 8.33: Temporal profile of θ̂.

The dominant empirical basis functions were recursively revised by APOD to

capture the appearance of new dynamical trends during process evolution. Finally,

Figure 8.33 shows the temporal profile of the estimated unknown parameter from

the adaptation law. The estimated parameter converged the steady state values of

θ̂ = 0.005 which shows the adaptation law did not identify the parameter correctly

due to the lack of required condition of persistent excitation for complete system

identification.



CHAPTER

NINE

CONCLUSIONS AND FUTURE

RESEARCH DIRECTIONS

This dissertation focused on output feedback control of nonlinear distributed pa-

rameter systems (DPSs) via model order reduction (MOR). A wide range of analyt-

ical and proper orthogonal decomposition (POD) based statistical approaches were

employed to compute the set of empirical orthonormal basis functions required by

Galerkin’s method to discretize the governing partial differential equations (PDEs)

[28–40]. The effectiveness of the proposed output feedback control structures were

successfully illustrated on a general class of chemical reactors and physico-chemical

systems.
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9.1 Conclusions

Chapter 1 presented the general form of PDEs which describe the DPSs in the

chemical process industries and summarized the recent research work in monitor-

ing, control and optimization of such processes.

In Chapter 2, we presented adaptive proper orthogonal decomposition (APOD)

algorithm and its modification for on-line computation of the empirical basis func-

tions required for system discretization.

In Chapter 3, we addressed the output feedback control problem of DPSs with

limited measurement sensors. A combination of a robust state feedback controller

with a Luenberger-type nonlinear dynamic observer of the system states was ap-

plied to synthesize a computationally efficient control structure based on adaptive

proper orthogonal decomposition. The stability of the closed-loop system was

proved based on Lyapunov stability theorem for hybrid systems. The effectiveness

of the proposed control method was successfully employed to stabilize a physico-

chemical system described by the Kuramoto-Sivashinsky equation (KSE) when the

open-loop process exhibited highly nonlinear behavior.

In Chapter 4, the dynamic observer based control problem of DPSs with limited

state measurements was addressed by employing a modified approach in APOD

methodology. The stability of the closed-loop system was proven by Lyapunov

stability criteria for hybrid systems. The proposed approach was successfully used

to regulate the KSE at an spatially invariant steady state profile in the absence
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and presence of uncertainty when the open loop process exhibits highly nonlinear

and chaotic behavior with fast transients.

Chapter 5 focused on output tracking control issue for DPSs with limited state

measurements. A computationally efficient regulator and output tracking con-

troller structure was synthesized, by combining a globally linearizing controller

(GLC) with a dynamic observer of the system states based on APOD method-

ology. The proposed synthesis method was successfully employed to address the

output tracking problem for a catalytic reactor; specifically, the thermal dynamics

of the reactor were controlled to reduce the hot spot temperature across the re-

actor length using a limited number of actuators and sensors to force the process

evolution.

In Chapter 6, model-based controllers were designed for linear and nonlin-

ear distributed processes based on restricted communication between the control

system elements. We addressed the modeling component question via APOD al-

gorithm to recursively compute the set of empirical basis functions. We employed

APOD to properly express the system while circumventing extensive off-line com-

putations. The main objective was to minimize snapshots transfer rate from the

distributed sensors to the controller, for ROM revisions, considering closed-loop

stability. The proposed control structure was illustrated on the temperature reg-

ulation problem of a tubular reactor and physico-chemical systems which can be

modeled by the KSE.
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In Chapter 7, the spatiotemporal dynamic shaping of semi-linear DPSs was

investigated by regulating the error dynamics between the reduced order mod-

els (ROMs) of governing and target PDEs. The required ROMs were derived by

applying Galerkin projection to the describing PDEs. The spatiotemporal error

dynamics between the governing and target ROMs were stabilized using a sliding

mode controller design combined with a Luenberger-type dynamic observer to es-

timate the required states. The effectiveness of the proposed control structure was

illustrated on thermal dynamic shaping of a tubular flow reactor.

Chapter 8 addressed the adaptive output feedback control of chemical DPSs in

the presence of unknown parameters via MOR. The reduced order model which

used as the basis for the Lyapunov-based adaptive controller design is obtained by

applying Galerkin’s method to the governing PDEs. The basis functions required

by the Galerkin projection was computed via employing analytical and statistical

approaches. When the statistical methods were required, POD and APOD were

applied to the set of spatiotemporal profiles of the system states obtained from

open-loop process operation. The effectiveness of the proposed control structure

was successfully illustrated on thermal dynamics regulation in a flow reactor and

wave motion suppression in fluid flow processes.
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9.2 Future research directions

According to the previous chapters, the research work in this dissertation can be

extended in a broad areas of monitoring, control, optimization of DPSs in chemical

and advanced material production industries. We briefly explain some direction

for future research in the remainder of this chapter.

9.2.1 Controller/observer redesign based on the post pro-

cessing of basis functions

In APOD and other variations of POD, the empirical basis functions computation

is based on the covariance matrix of ensemble of snapshots. Then they might be

different from the eigenfunctions of the spatial operator of the governing PDE.

Thus, the ROM based on this strategy and the controller and dynamic observer

designed based on ROM might not be accurate enough to depict the system dy-

namics at different regions of the state space. Therefore, a procedure is needed to

find the eigenvalues and eigenfunctions of the PDE spatial operator and modify

the controller/observer pair based on the new eigenfunctions as different regions

of the state space are traversed. The linear part of the PDE spatial operator can

be considered to find a bijective map from the space spanned by APOD empirical

basis functions, P, to the space spanned by the operator eigenfunctions, Ws. The

new basis functions will be computed using the empirical basis functions and the

bijective map to improve the controller/observer pair.
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9.2.2 Sensor/actuator placement & fault tolerance

An important issue when considering the controller design problem for distributed

processes is where to place the sensors/actuators such that the system exhibits

desired system theoretic properties such as enhanced controllability [3, 4, 21]. The

complexity in this endeavor lies in the spatial dependence of the concepts of con-

trollability and observability. At the same time, sensor/actuator and component

failures have too often plagued industrial processes, often leading to deteriorat-

ing product quality and potentially dangerous process operation, such as runaway

conditions [87, 118].

To address the issue of fault tolerance within the prism of an integrated sen-

sor/controller selection and observer/controller design, a completely new direction

can be embarked, whereby the objective of an sensor/actuator network is not only

defined in terms of enhanced observability/controllability, improved performance

or enhanced robustness with respect to disturbances or unmodeled dynamics, but

with respect to fault tolerability. By taking advantage of the spatial variability

that spatially distributed processes naturally enjoy, we can endeavor on an en-

tirely new concept of optimal sensor/actuator network, in which sensor/actuator

groups are physically distinct, and yet can be interchangeably used by the same

observer/controller! This property is only applicable to DPSs wherein the same

sensor/actuator placed at two or more different locations within the spatial domain

of definition can have the same level of observability/controllability. We can cap-
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italize on this property of spatially DPSs to find locations for different groups of

sensor/actuator, each of which resulting in a similar observability/controllability

level. When a given sensor/actuator group fails, then simply deactivating the faulty

group and activating another healthy group constitutes the fault accommodation

policy. Such a simple accommodation significantly reduces the costs associated

with process supervision with the obvious economic and performance savings.

9.2.3 Simulation on demand and time delay compensation

in sensor/controller network

The designed feedback controller requires continuous availability of measurements

of the process state. Measurements of complete state profiles is usually difficult

due to limited availability of sensors [256]. One of the possible solution for this

issue is using a high accurate simulator that could send the snapshot to the con-

troller structure as needed. However, there will be a time delay between snapshot

demand and receiving it due to the time that is needed for highly accurate simula-

tion. The control objective is to enforce closed-loop stability while simultaneously

accounting for the delayed arrival of the state profiles from the parallel simulator.

To compensate for the effect of the delay, the controller includes a finite dimen-

sional propagation model that uses the delayed measurement, together with the

past values of the control input, to provide an estimate of the current slow state

which is then used to update the state of the model [270].
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9.2.4 APOD error expressions, error bounds, and asymp-

totic results for reduced order models

As it discussed in previous sections, APOD takes simulation data or experimental

data during process evolution and produces modes that can be used to reduce

the model via a Galerkin projection. These reduced order APOD models are not

well understood when initial conditions or parameters are changed in the reduced

model, the solution of the reduced model can either be surprisingly accurate or

completely unrelated to the solution of the full model. Understanding and pre-

dicting the accuracy of the reduced model is an extremely important problem.

As a first step toward this goal, Kunisch and Volkwein in [162, 163] proved

error bounds for the POD reduced order model of various linear and nonlinear

parabolic PDEs under the assumption that the initial conditions and parameters

in the reduced model were not varied from the original PDE model. Since these

works, other researchers have considered various scenarios (different PDEs, numer-

ical methods, etc.) and modified POD model reduction schemes and have proved

related error bounds (see [227] and the references therein). The derivations of

existing error bounds for reduced order models of time varying partial differential

equations (PDEs) constructed using proper orthogonal decomposition (POD) have

relied on bounding the error between the POD data and various POD projections

of that data. Furthermore, the asymptotic behavior of the model reduction error

bounds depends on the asymptotic behavior of the POD data approximation error
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bounds. [227].

Such work will give error indicators for the APOD reduced order model when

model parameters or initial conditions are varied from those used to construct the

APOD basis. It gives further insight into the behavior of APOD reduced order

models for partial differential equations in the case where the model is varied.

Hopefully, an increased understanding of this case will lead to additional progress

in analyzing the effects of problem variations on reduced order models.

9.2.5 Moving sensors network & control

An unavoidable assumption of previously developed methodologies for controller

synthesis that employ data driven model reduction techniques is the necessity for

complete snapshots (in the sense the profiles must span the whole process domain).

As expected, even though APOD relaxes the requirement for representative snap-

shot ensemble, it is also data driven methodology so it requires spatially complete

snapshots. However, obtaining such information might not be feasible owing to

high sensor costs and limited availability of sensors [4]. In recent years there has

been considerable effort to relax this assumption in the field of model reduction

as presented in the background section, substituting it with the assumption that

periodically all the regions of the process domain are sampled.

The basic premise of the research work is that a set of mobile sensors achieve

better estimation performance than a set of immobile sensors. To enhance the
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performance of the state estimator, a network of sensors that are capable of moving

within the spatial domain is utilized. Specifically, such an estimation process is

achieved by using a set of spatially distributed mobile sensors. The objective is

to provide mobile sensor control policies that aim to improve the state estimate.

The metric for such an estimate improvement is taken to be the expected state

estimation error.

A combination of scanning sensor networks and the proposed APOD method-

ology can be employed as a demarcation point to develop control methodologies

that relax both the complete snapshot assumption and the representative ensem-

ble requirement. To extend the applicability of APOD to situations when the

availability of distributed sensing is limited, the proposed work cab be based on

Gappy APOD (GAPOD) [104, 204, 265]. Briefly, GAPOD methodology scheme is

outlined below.

1. Use initially available process snapshots to obtain empirical eigenfunctions

using method of snapshots. If the snapshots in the ensemble are themselves

damaged or incomplete, an iterative gappy method based on [104, 265] will

be used to derive the empirical basis functions:

2. As a new incomplete snapshot from the process becomes available, recon-

struct the snapshot via Gappy POD; solve a restricted linear optimization

problem to refine the snapshot.

3. Augment the data ensemble using the reconstructed snapshot, while simul-
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taneously discarding the least important snapshot available in the data en-

semble.

4. Employ APOD to the modified data ensemble; update the empirical basis

functions.

The primary application of GAPOD is the synthesis of feedback controllers for

transport-reaction processes when only a limited set of measurements is available,

e.g. due to design constraints and sensor cost. Furthermore, GAPOD is also an

effective online data reconstruction tool for damaged or incomplete data sequences.

This tool does not require an initial data ensemble that captures all the trends

expected from a process (a requirement of gappy POD [104]) and hence is relatively

easy to implement.

Based on the constructed method, issues arising from lack of distributed sensing

can now be addressed. In general, there are two classes of sensor coverage control

problems. The first class involves spatially fixed sensors. The goal, which has been

extensively studied in the past, is to optimize sensor locations and sensor domains

in fixed-sensor networks, and the problems in this class are considered to be in

locational optimization [197]. In such problems, the solution is a Voronoi partition

[92], where the optimal sensor domain is a Voronoi cell in the partition and the

optimal sensor location is a centroid of a Voronoi cell in the partition. The second

class of problems involves a set of mobile sensors. In [70], the authors present a

survey of recent activities in the control and design of both static and dynamic
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sensor networks. In their design criteria, they consider issues such as maximum

coverage, detection of events, and minimum communication energy expenditure.

Small number of moving sensors that provide continuous local measurements

will be employed to construct recursively the approximate reduced-order models.

This cannot be achieved using standard techniques such as POD and Gappy POD.

Such measurements are the only ones available for certain complex microelectronics

processes, such as MOVPE. Beyond the obvious savings on communication costs

and sensor network size, the study of this problem will provide an assessment of the

robustness of the synthesized controllers and will allow us to identify the fundamen-

tal limits on the control structure tolerance to communication suspension. This is a

major consideration in deciding a priori whether the desired control objectives can

be met with a certain device network. The key idea is to embed a GAPOD-based

model in the synthesized controller to provide an estimate of the system behavior

when measurements are not transmitted, and to update the model state using the

actual sensor measurements at discrete time instants [79, 100, 101, 273, 278, 279].

9.2.6 New applications

9.2.6.1 Application to microelectronics fabrication processes

To be competitive in the global market, semiconductor manufacturing increasingly

relies on advanced process modeling, monitoring, and control due to shrinking fea-

ture size (less than 0.20µm line width) and increasing wafer diameter (up to 12 in).
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Given these critical dimension constraints and the trend toward further miniatur-

ization, extremely tight manufacturing tolerances are required. Achieving these

specifications represents a major engineering challenge. Comprehensive modeling

and control technologies are thus required to achieve satisfactory yields, maximize

throughput, and reduce cost [179].

In semiconductor manufacturing processes, Metal-organic vapor phase epitaxy

(MOVPE) is widely used to produce a variety of high-performance optoelectronic

devices including light-emitting diodes, quantum-well lasers, heterojunction bipo-

lar transistors and Si photovoltaic systems. Multilayered structures of group-III

Nitrides form the basis of these devices. MOVPE utilizes the thermal decom-

position and reaction of gaseous precursors to epitaxially grow multiple layers of

group-III nitride thin films with precise thickness, composition, dopant level and

surface roughness.

Photovoltaics (i.e., solar cells) play an important role in the development of

sustainable energy resources. Thin-film silicon solar cells (TSSC) are the predomi-

nant choice currently. Their limitation lies in their low efficiency of 15%. In TSSC

the light comes in to the hydrogenated amorphous silicon (Si) semiconductor layers

(p-i-n layers) through a front transparent conducting oxide (TCO) layer and the

part of the light not absorbed by these semiconductor layers is reflected back to

the p-i-n layers through a back TCO layer (see figure 9.2).

The effectiveness of TSSC is directly related to the light trapping process, which
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is characterized by scattering properties of thin-film interfaces especially at the

front & back TCO layers, as well as at interfaces of TCO and p-i-n-layers [156, 192].

Recent studies have shown that thin-film surface and interface morphology play a

significant role in increasing the absorption of incident light by the semiconductor

layers of thereby enhancing TSSC’s performance [157, 158, 168, 213, 274]. It is thus

important during the manufacturing of TSSC to regulate the surface morphology

of the thin-film. TSSC is predominantly produced [164] using MOVPE.

Recent developments on in-situ measurement technology, such as laser inter-

ferometry (LI), make real-time feedback control of MOVPE feasible. The surface

morphology of the thin-film surface is characterized using root-mean-square (RMS)

roughness and RMS surface slope. Thus, we can propose to regulate the surface

morphology of the TSSC, by measuring RMS slope and roughness and manipulat-

ing the substrate temperature and precursor flow rates. The available Edwards-

Wilkinson type models [97] that describe the evolution profiles of the surface height

and surface slopes of the thin-film will be used to design the controller. A total of

7 PDEs and 10 ODEs are needed to model the process; further constraints arise

from sensing and actuation limitations. The resulting process model is too com-

putationally demanding to be used to design model based controllers for TSSC.

The proposed methodology can be employed to synthesize controllers for the

production of TSSC using MOVPE. The objective will be to regulate the thin film
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Figure 9.1: Vertical MOVPE reactor with a three concentric ring showerhead inlet
configuration.

Figure 9.2: Schematic sketch of the cross section of a silicon thin film p-i-n solar
cell [192].

morphology of TSSC, using LI measurements and manipulating the precursor inlet

concentration and substrate temperature profiles, such that the efficiency of TSSC

is maximized. However, the proposed research will not be limited to silicon based

photovoltaics. Organic photovoltaics (OPVs) offer an attractive alternative to

TSSC, due to their low materials and production cost. Using benzene as a building

block, polyphenylene based OPVs show great promise to complement TSSC for

solar energy harvesting [67, 125, 169]. Important limitations that preclude their

wide use is their limited stability and efficiency. These limitations can be partially
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negated by optimizing and tightly controlling the manufacturing process which is

based either on spin coating or vapor deposition [67].

Upon completion of the initial objectives, the attention can be focus on organic

vapor phase deposition. The process involves evaporation of the organic material

over a substrate in the presence of an inert carrier gas [67, 110]. The controllers can

be designed that manipulate the chamber pressure, carrier gas flow rate and heater

power to force the deposited thin film morphology within strict limits. The dis-

tributed nature of the process, due to the intimate interplay between evaporation,

transport and deposition phenomena necessitates the use of advanced controller

design methods such as the proposed one.

9.2.6.2 Application to temperature control in batteries

Safe electric energy storage is the key objective of a wide range of battery appli-

cations from transportation systems to portable electronics. Lithium-ion batteries

attracts a lots of attentions for energy storage due to their high energy density, lack

of hysteresis, and low self-discharge currents [208]. These beneficial properties, as

well as decreasing costs, have established Li-ion batteries as a leading candidate

for the next generation of automotive and aerospace applications [11, 231, 242].

Li-ion batteries are also a promising candidate for green technology.

Electric automobiles and submarines demand large amounts of energy and

power, and therefore need packs of thousands of Li-ion cells. One of the chal-
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Figure 9.3: A battery pack with coolant lines [234].

lenges when dealing with battery packs (Fig. 9.3) is that after a period of usage,

the state of health of individual cells will be highly non-uniform due to electrical

and thermal interactions of the individual cells [234].

At high-discharge rates, Li-ion batteries generate a significant amount of heat

which can detrimentally affect the overall performance of the devices. Prolonged

excessive heat and uneven temperature distributions over time can damage the

battery resulting in decrease in capacity, charge retention, battery lifespan, and

physical deformations of the battery itself. Under more extreme conditions, the

battery can undergo thermal runaway, which may result in the rupture of the

battery casing, explosion, and ignition of the flammable electrolytes [43, 196, 261].

There is a large body of literature focused on the thermal analysis of Li-ion

batteries which employ experimental and computation techniques to model the

complex electrochemical reactions responsible for heat generation under a variety

of operating conditions [52, 73, 127]. In conjunction with these studies, there are
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Figure 9.4: Thermal runaway in a battery pack [234]. It starts in (1) with the cell
in the lower left corner drawing high current and overheating, progressing through
(2), (3) and (4), where the entire pack is ignited.

complementary results discussing various approaches in the thermal management

of Li-ion batteries [177, 209]. The primary means of temperature regulation are

typically through exclusive and combinations of passive and active control strate-

gies each involving air for heating/cooling, liquid for heating/cooling, and also the

use of phase change materials (PCMs). The implementation of any of the afore-

mentioned control methods are dependent on a number of factors including the

battery system setup (e.g. single cell, battery pack, shape, etc.) which affects

the feasibility of heating/cooling system design. In all cases, model based control

design has the potential of enhancing these existing methodologies by improving

controller performance.

Charging all the cells to their full capacity becomes unachievable because it

would lead to some of the cells exceeding the maximum voltage, above which they

become thermally unstable.
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Even when a battery pack is not in use, namely, neither being charged nor

discharged, a reasonable probability exists that, in an aging, or inexpensively pro-

duced battery pack, one of the many cells in a pack undergoes short circuit. This

results in the cell overheating and igniting. The high temperature produced by

such a cell leads to electrical and thermal transients in the neighboring cells which

results in a chain reaction where an entire pack explodes. This phenomenon is

called thermal runaway that is presented in Figure 9.4. While thermal runaways

in battery cells in portable computers have been widely publicized, the danger from

them is limited. Thermal runaway in large battery packs can result in damage on

a large scale [234]. Safety is typically ensured by over-design, which amounts to

packaging and passive cooling techniques designed for worst-case scenarios. Better

understanding of the thermal dynamics in battery packs, state estimation to spa-

tially locate the hot spots in the pack using temperature sensors at only a limited

number of locations in the pack, and more intelligent control systems that employ

parameter estimators of the uncertain thermal conductivity within and in-between

cells, are crucial for developing cheaper batteries that will enable commercialization

of the environmentally-friendly electric and plug-in hybrid vehicles.

Useful models emphasize the inhomogeneity of the battery pack medium, where,

the cells and the materials they are enclosed in have very different thermal con-

ductivity properties, where the thermal dynamics are coupled with the electrical

dynamics which act as heat sources, and where cooling systems passive or con-
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trolled may be introduced to manage the temperature distribution in a battery

pack. These models are in the form of partial differential equations and capture

the spatially distributed character of the thermal dynamics in a pack [234].The

important issue when considering the thermal control problem for this systems is

where to place the actuators (sensors) such that the system exhibits desired system

theoretic properties such as enhanced controllability.
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A

APPENDIX

A.1 Proofs of Chapter 3

A.1.1 Proof of Proposition 3.1

Let Vo(e) =
ζo
2
eTPoe be the observer Lyapunov function (OLF) for observer error

dynamics of (3.26) with the equilibrium point of e = 0, where the dynamic observer

of system described by (3.24). Vo(0) = 0 and Vo(e) > 0 in Rm−{0} wherem denotes

the number of the modes between ROM revisions. Considering the observer gain

matrix, L, computed by either

(i) Eq. (3.31), where the characteristic polynomial roots are negative and Po = I,

(ii) Eq. (3.35), where the Riccati equation of (3.36) has a solution, S, for positive
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definite matrices, Q, R, N ,

(iii) Eq. (3.46), where W and U are symmetric positive definite matrices,

and assuming that f satisfies the Lipschitz condition (3.17), we conclude that

V̇o(e) < 0 and V̇o(0) = 0. Based on Lyapunov’s stability theorem (Theorem 4.1 in

[148]), ∃δo > 0 : ‖e(0)‖ < δo, then the observer error dynamics of (3.26) are locally

asymptotically stable.

A.1.2 Proof of Theorem 3.1

The slow system observer error with respect to modes in subspace Ws can be

defined as follows

ê = x̂s − xs, (A.1)

where ê =M⊥e and x̂s =M⊥â. From (3.26) and (A.1) we obtain

˙̂e = (As +M⊥LSm)ê+
(
Fs(x̂s, xf )− Fs(x̂s − ê, xf )

)
. (A.2)

Under Assumption 3.1 (time scale separation part), the system of (3.12) can be

presented in the following singular perturbation form (sections 4.4 and 4.5 in [76])

augmented with the observation error dynamics of (A.2),

ẋs = Asxs + Fs(xs, xf ) +Bsu,

σẋf = σAfxf + σ
(
Ff (xs, xf )−Bfu

)
,

˙̂e = (As +M⊥LSm)ê+
(
Fs(x̂s, xf )− Fs(x̂s − ê, xf )

)
,

(A.3)
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where σ =
|λ1|
|λp+1|

is a small value that indicates the separation between the dom-

inant and non-dominant dynamic behavior. From the definition of Af and σ,

Afσ = σAf has eigenvalues with negative real parts of O(1). We assume that

Ff (xs, xf ) +Bfu does not locally include terms of O(
1

σ
) [76], where O(·) indicates

the order of (·). By defining τ =
t

σ
and setting σ = 0, we can express the fast

dynamics of (A.3) in the fast time scale form

∂xf
∂τ

= Afσxf . (A.4)

Thus, the solution can be obtained as

xf (τ) = xf (0)eAfστ . (A.5)

Then from (A.5) and Schwartz inequality we conclude

‖xf (τ)‖2 = ‖xf (0)eAfστ‖2 ≤ ‖xf (0)‖2‖eAfστ‖2. (A.6)

Considering the eigenspectrum bound to the fast dynamics implies that

‖xf (0)‖2‖eAfστ‖2 ≤ ‖xf (0)‖2e
(σλp+1)τ , (A.7)
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where λp+1 denotes the dominant, least negative eigenvalue of Af which is of O(
1

σ
).

From (A.6), (A.7) and σ =
|λ1|
|λp+1|

we can obtain

‖xf (0)‖2e
(σλp+1)τ = ‖xf (0)‖2e

−|λ1|τ ≤ O(σ); (A.8)

this bound is satisfied when

τb =
tb
σ
≥ − 1

|λ1|
ln

[
O(

σ

‖xf (0)‖2

)

]
. (A.9)

Thus,

tb ≥
1

|λp+1|
ln

[
O(
‖xf (0)‖2

|λ1|
|λp+1|)

]
. (A.10)

We choose δt such that δt > tb where tb denotes the time needed for the fast

dynamics of (A.3) to be stabilized and δt = tk − tk−1 is the time interval between

ROM revisions. Then the observation error can be expressed as follows

Eo = x̂s − x = x̂s − (xs + xf ) = x̂s − (xs + 0) = x̂s − xs = ê, (A.11)

when the infinite-dimensional system of (A.3) is approximated by the finite-dimensional

slow system for t ≥ tb,

ẋs = Asxs + Fs(xs, 0) +Bsu,

˙̂e = (As +M⊥LSm)ê+
(
Fs(x̂s, 0)− Fs(x̂s − ê, 0)

)
.

(A.12)
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Based on Proposition 3.1 we obtain that the OLF, Vo, is negative definite, thus ob-

server error dynamics in (3.26) is locally asymptotically stable based on Lyapunov’s

stability theorem, i.e., for ‖e(0)‖ < δo there is a δ′o = ‖M⊥‖2δo the dynamics of

observer error of Eo = ê is locally asymptotically stable in the Lyapunov sense

such that ‖Eo‖2 = ‖ê‖2 < δ′o.

A.1.3 Proof of Theorem 3.2

Consider the nonlinear uncertain system of (3.49) whose control Lyapunov function

(CLF) is defined as follows

Vc =
ζc
2
âTPcâ, (A.13)

where Pc is a positive definite matrix. It is obvious that Vc(0) = 0 and Vc(â) > 0

in Rm − {0}.

By substituting Eqs. (3.49) and (3.50) in the CLF time derivative, we obtain

V̇c = LFVc + LBVcu+
s∑
i=1

LwiVcθi = −co
(
‖LBVc‖

)2

− ρ‖Pcâ‖ − χ
s∑
i=1

‖LwiVc‖θbi

−

√√√√(LFVc + ρ‖Pcâ‖+ χ

s∑
i=1

‖LwiVc‖θbi
)2

+
(
‖(LBVc)‖

)4

+
s∑
i=1

LwiVcθi.

(A.14)

Using
∑s

i=1 LwiVcθi ≤
∑s

i=1 ‖LwiVc‖θbi and by adjusting the parameters as ρ > 0

and χ > 1, the time derivative of the CLF is negative, V̇c < 0. Thus ∃δc > 0 :

‖â(0)‖ < δc, that the closed-loop system in (3.49) is locally asymptotically stable
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in the Lyapunov sense (Theorem 4.1 in [148]).

In Chapter 3.2.2, we assumed that if a controller can be synthesized such that

V̇c < 0, based on the stability of the dynamic observer the closed-loop process will

be asymptotically stable, i.e., e and â will be bounded. From the definition e =

â−Ma and the fact that we did not use the separation principle we conclude that a

will be bounded. Substituting the controller (3.50) into the Sobolev representation

of the infinite-dimensional system (3.12) and dynamic observer of (3.24), we obtain

ẋs = Asxs + Fs(xs, xf )− Bsk(â, co, ρ, χ, θb)(LBVc),

ẋf = Afxf + Ff (xs, xf )− Bfk(â, co, ρ, χ, θb)(LBVc),

˙̂a = Aâ+ f(â)− Bk(â, co, ρ, χ, θb)(LBVc) + L(Câ− Smxs − Smxf ).

(A.15)

Based on Assumption 3.1, (A.15) can be stated in the following singular pertur-

bation form (sections 4.4 and 4.5 in [76])

ẋs = Asxs + Fs(xs, xf )− Bsk(â, co, ρ, χ, θb)(LBVc),

σẋf = σAfxf + σ
(

Ff (xs, xf )− Bfk(â, co, ρ, χ, θb)(LBVc)
)
,

˙̂a = Aâ+ f(â)− Bk(â, co, ρ, χ, θb)(LBVc) + L(Câ− Smxs − Smxf ),

(A.16)

where σ =
|Re(λ1)|
|Re(λp+1)|

is a small value that presents the separation between the

dominant and non-dominant eigenmodes. λ1 and λp+1 are the dominant eigenval-

ues of slow and stable fast subsets of eigenvalues of A, respectively. Based on the

control law (3.50) and assuming bounded control action and Lipschitz condition for
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F, (3.8), then Ff (xs, xf )−Bfk(â, co, ρ, χ, θb)(LBVc) does not have a term of O(
1

σ
)

[76]. By defining τ =
t

σ
, it directly results from the definitions that Afσ = σAf

is of order O(1). Then by setting σ = 0, the fast subsystem of (A.16) can be

presented in the following locally exponentially stable subsystem

∂xf
∂τ

= Afσxf , (A.17)

Based on singular perturbation theory [76] after a period of time, tb, where

tb ≥
1

|λp+1|
ln

[
O(
‖xf (0)‖2

|λ1|
|λp+1|)

]
, (A.18)

the fast dynamics of the system stabilize to zero, xf ' 0 and the closed-loop PDE

system of (A.16) is approximated by the finite-dimensional slow system below

ẋs = Asxs + Fs(xs, 0)− Bsk(â, co, ρ, χ, θb)(LBVc).

˙̂a = Aâ+ f(â)− Bk(â, co, ρ, χ, θb)(LBVc) + L(Câ− Smxs).
(A.19)

The system of (A.19) is stabilized by the controller/observer design.

A.1.4 Proof of Theorem 3.3

Based on Proposition 3.1 and Theorems 3.1, 3.2 we obtained

V̇o < 0, V̇c < 0, (A.20)
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between ROM revisions and the observer/controller structure redesigns. As a result

the closed-loop system will destabilize only when A, B, C and f in (3.23) and (3.16)

deviate due to appearance of new trends. In such case the structure of the ROM

is revised using adaptive proper orthogonal decomposition (APOD) methodology.

According to such system structure changes the extra Lyapunov stability condition

of switching systems must be satisfied to guarantee the stability of the closed-loop

system (Theorem 3.2 in [86]).

The supervisory strategies of (3.51) and (3.48) directly enforce the Lyapunov

stability criterion for of the switching systems, (3.47), in the controller and observer

designs thus the OLF and CLF satisfy the conditions of (3.47). It means that

during the ROM revisions the ζc and ζo values are periodically chosen subject to

Vc
(
â(tk)

)
and Vo

(
e(tk)

)
. Then V̇ < 0 between ROM revisions as follows

V̇ = V̇o + V̇c < 0. (A.21)

Thus ∃δ > 0 : ‖a(0)‖ < δ, that the closed-loop system is locally asymptotically sta-

ble in the Lyapunov sense (Theorem 4.1 in [148]). Also the closed-loop Lyapunov

function satisfies the criteria (3.47),

V (tk) = Vc
(
â(tk)

)
+ Vo

(
â(tk)

)
< Vc

(
â(tk−1)

)
+ Vo

(
â(tk−1)

)
⇒ V (tk) < V (tk−1).

(A.22)

where the time interval between the ROM revisions, δt = tk − tk−1, is chosen to
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satisfy δt > tb. Thus, it can be concluded that the APOD-based dynamic observer

designs of (3.31), (3.35) and (3.46) and the APOD-based output feedback controller

of (3.50) asymptotically stabilizes the switching closed-loop system.

A.2 Proofs and supplementary materials of Chap-

ter 4

A.2.1 Proof of Proposition 4.1

Let Vo =
ζo
2
eT e be the OLF for the dynamic observer system of (4.11); it can

be shown that e = 0 is an equilibrium point for (4.13), Vo(0) = 0 and Vo(e) >

0 ∈ Rm − {0} where m is the number of the modes between ROM revisions. By

substituting the observer gain which satisfies (4.18) in the system of (4.11) and

assuming that the nonlinear function of f satisfies the Lipschitz condition, (4.16),

it can be concluded that the OLF time derivative, V̇o, is negative definite and it

only equals to zero at the equilibrium point. Thus based on Lyapunov’s stability

theorem (Theorem 4.1 in [148]), there is δo such that when ‖e(0)‖ < δo the observer

error dynamics in (4.13) are locally asymptotically stable in the Lyapunov sense.
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A.2.2 Proof of Proposition 4.2

Consider the system of (4.10) with candidate CLF defined as

Vc =
ζc
2
ãT ã. (A.23)

It is obvious that Vc(0) = 0 and Vc(ã) > 0 ∈ Rs − {0} where s is the number of

the modes of (4.10) between ROM revisions. By substituting equations (4.10) and

(4.20) in the time derivative of the CLF, we obtain

V̇c = LFVc + LBVcu = −co
(
‖LBVc‖

)2

−
√(

LFVc

)2

+
(
‖(LBVc)‖

)4

. (A.24)

Using appropriate values for the parameter co, it can be clearly observed that the

time derivative of the CLF will be negative, V̇c < 0. Thus, based on Lyapunov’s

stability theorem (Theorem 4.1 in [148]), there is a δc such that for ‖ã(0)‖ < δc the

closed-loop system in (4.10) is locally asymptotically stable in the Lyapunov sense.

Based on the designed fast stable observers and using the separation principle, the

closed-loop process of (4.10) with the controller/observer pair will be asymptoti-

cally stable. Note that we use the observer state values, â, for system states, ã, in

equation (4.20) based on the assumption of separation principle between dynamic

observer and controller design.
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A.2.3 Proof of Theorem 4.1

Part I. Closed-loop stability between ROM revisions:

Substituting the controller (4.20) based on the states of (4.4) into the Sobolev

representation of the PDE system, we obtain

ȧs = As(as, af ) + Fs(as, af )− Bsk(â, co)(LBVc),

ȧf = Af (as, af ) + Ff (as, af )− Bfk(â, co)(LBVc),

(A.25)

where the initial conditions of the switching system in current time interval are

the final states of the system in the previous time interval, and state estimate â is

obtained from the dynamic observer of (4.11)

˙̂a = Aâ+ f(â) +Bu+ L(Câ− ym), (A.26)

where

ym = Smas + Smaf . (A.27)

Under the assumption of time scale separation of the PDE dynamics, the system

of (A.25) can be expressed in the following singular perturbation form (sections
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4.4 and 4.5 in [76]) with dynamic observer of (A.26)

ȧs = As(as, af ) + Fs(as, af )− Bsk(â, co)(LBVc),

εsȧf = εsAf (as, af ) + εs

(
Ff (as, af )− Bfk(â, co)(LBVc)

)
,

˙̂a = Aâ+ f(â)−Bk(â, co)(LBVc) + L(Câ− Smas − Smaf ),

(A.28)

where εs =
|λ1|
|λs+1|

is a small number that indicates the separation between the dom-

inant and non-dominant eigenmodes. In (A.28), Afεs = εsAf has negative eigenval-

ues of O(1) (due to the definition of Af and εs) and Ff (as, af )−Bfk(â, co)(LBVc)

does not contain terms of O(
1

εs
) locally for the specific controller design [76, 78].

By defining τ =
t

εs
and setting εs = 0, the fast subsystem dynamics of (A.28) can

be expressed in the following fast time scale form

∂af
∂τ

= Afεsaf . (A.29)

The solution of the locally exponentially stable system of (A.29) then is

af (τ) = af (0)eAfεsτ . (A.30)

Focusing on the norm of af , from (A.30) and Schwartz inequality we obtain

‖af (τ)‖2 = ‖af (0)eAfεsτ‖2 ≤ ‖af (0)‖2‖eAfεsτ‖2. (A.31)
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The definition of Afεs and the eigenspectrum bound to the fast subsystem imply

that

‖af (0)‖2‖eAfεsτ‖2 ≤ ‖af (0)‖2e
(εsλs+1)τ , (A.32)

where λs+1 represents the dominant eigenvalue of Af which is the least negative and

of O(
1

εs
). Using singular perturbation arguments for infinite dimensional systems

it is shown that within a finite time the fast system dynamics will relax to a ball

of radius O(εs) around zero. Using the spectral bound of (A.31) and (A.32) for

the dynamic behavior and that εs =
|λ1|
|λs+1|

we can obtain

‖af (0)‖2e
(εsλs+1)τ = ‖af (0)‖2e

−|λ1|τ ≤ O(εs); (A.33)

it implies that

τb =
tb
εs
≥ − 1

|λ1|
ln

[
O(

εs
‖af (0)‖2

)

]
. (A.34)

Thus,

tb ≥
1

|λs+1|
ln

[
O(
‖af (0)‖2

|λ1|
|λs+1|)

]
. (A.35)

Considering the time needed for relaxation of (A.28), tb, and the time interval

between ROM revisions, δt = tk − tk−1, we choose δt such that δt > tb. For

time, t ≥ tb the closed-loop PDE system in (A.28) approximately reduces to the



367

finite-dimensional slow system (Proposition 1 in [78]),

ȧs = As(as, 0) + Fs(as, 0)− Bsk(â, co)(LBVc),

˙̂a = Aâ+ f(â)−Bk(â, co)(LBVc) + L(Câ− Smas).

(A.36)

Based on Propositions 4.1 and 4.2 we obtain that the OLF, Vo, and the CLF,

Vc, are negative individually. Thus, the combined observer/controller structure

can stabilize the states of (A.36) based on the assumption of separation principle

between dynamic observer and controller design and considering (4.8) and (4.9).

The time derivative of the Lyapunov function of the system, V̇ , is thus negative

between ROM revisions

V̇ = V̇o + V̇c < 0. (A.37)

Therefore, based on Lyapunov’s stability theorem (Theorem 4.1 in [148]), there is

δ such that when ‖a(0)‖ < δ, the closed-loop system of (A.36) is locally asymptot-

ically stable in the Lyapunov sense between ROM revisions. Thus, the nonlinear

dissipative PDE system in (4.1) can be asymptotically stabilized by the dynamic

observer design of (4.11) and the output feedback controller in (4.20) between

ROM revisions.

Part II. Closed-loop stability of the hybrid system:

Considering ROM revisions, the closed-loop system behavior can be described by

switched systems theory and the stability aspects of the closed-loop switched sys-

tem need to be guaranteed using hybrid systems stability theorems. Based on the
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discussion in Chapter 4.3 the obtained multiple observer and controller Lyapunov

functions defined after each ROM revision need to satisfy the hybrid systems stabil-

ity criteria. The supervisory control strategies in (4.22) and (4.24) directly enforce

the Lyapunov stability of the switching systems criteria at the beginning of each

time period, in the controller and observer designs (Theorem 3.2 in [86]) and the

CLF and OLF satisfy the conditions of (4.21) in the time intervals between switch-

ing. Thus, the closed-loop Lyapunov function satisfies the Lyapunov stability of

the switching systems [79, 86],

V (tk) = Vc
(
â(tk)

)
+ Vo

(
â(tk)

)
< Vc

(
â(tk−1)

)
+ Vo

(
â(tk−1)

)
⇒ V (tk) < V (tk−1).

It can be concluded that the designed observer of (4.19) and the output feed-

back controller in (4.20) pair using supervisory control strategies (4.22) and (4.24)

asymptotically stabilize the switching closed-loop system.

A.2.4 Lipschitz condition for nonlinear term in KSE

The nonlinear term in KSE has a quadratic form of F(x) = −x∂x
∂z

. The impor-

tant step in nonlinear analysis is finding a procedure to compute the Lipschitz

parameter. We assumed that
∥∥x(z, t)

∥∥
2
≤ L1(t), i.e. the system state remained

within a ball of radius L1(t) around the desired steady state and the spatial dy-

namics are bounded, i.e.,
∥∥∂x
∂z

(z, t)
∥∥

2
≤ L2(t) and

∥∥∂x2

∂z
(z, t) − ∂x1

∂z
(z, t)

∥∥
2
≤

M(t)
∥∥x2(z, t) − x1(z, t)

∥∥
2
. From the left-hand side of Lipschitz condition we ob-
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tain

∥∥∥∥x1
∂x1

∂z
− x2

∂x2

∂z

∥∥∥∥
2

=

∥∥∥∥x1
∂x1

∂z
− x2

∂x1

∂z
+ x2

∂x1

∂z
− x2

∂x2

∂z

∥∥∥∥
2

≤
∥∥∥∥x2

∂x1

∂z
− x2

∂x2

∂z

∥∥∥∥
2

+

∥∥∥∥x1
∂x1

∂z
− x2

∂x1

∂z

∥∥∥∥
2

= ‖x2‖2

∥∥∥∥∂x1

∂z
− ∂x2

∂z

∥∥∥∥
2

+

∥∥∥∥∂x1

∂z

∥∥∥∥
2

‖x1 − x2‖2

thus ∥∥∥∥x1
∂x1

∂z
− x2

∂x2

∂z

∥∥∥∥
2

≤
(
L1(t)M(t) + L2(t)

)
‖x1 − x2‖2

and the Lipschitz constant in the previous equation is Kl(t) = L1(t)M(t) + L2(t).

A.3 Proofs of Chapter 5

A.3.1 Proof of Theorem 5.1

Considering the Sobolev representation of the PDE system (5.11) and dynamic

observer of (5.22), we obtain

ẋs = Asxs + Fs(xs, xf ) +Bsu,

ẋf = Afxf + Ff (xs, xf ) +Bfu,

˙̂a = Aâ+ f(â) +Bu+ Π−1
â L(ym − Câ),

(A.38)
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and based on Assumption 5.1, (A.38) can be stated in the following singular per-

turbation form (sections 4.4 and 4.5 in [76])

ẋs = Asxs + Fs(xs, xf ) +Bsu,

σẋf = σAfxf + σ
(
Ff (xs, xf ) +Bfu

)
,

˙̂a = Aâ+ f(â) +Bu+ Π−1
â L(ym − Câ),

(A.39)

where σs = |λ1|/|λp+1| is a small number that indicates the separation between the

dominant and non-dominant modes. Due to the definition of Af and σ, Afσ = σAf

has negative eigenvalues of O(1), where O(·) indicates the order of (·) [76]. At this

point we assume that Ff (xs, xf ) and Bfu (by the globally linearizing controller

(GLC) design) do not contain terms of O(
1

σ
) locally. By defining τ = t/σ and

setting σ = 0, the fast subsystem dynamics of (A.38) can be expressed in the

following fast time scale form

∂xf
∂τ

= Afσaf . (A.40)

Then the solution of the locally exponentially stable system of (A.40) is obtained

as

xf (τ) = xf (0)eAfστ . (A.41)
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Focusing on the norm of xf , from (A.41) and Schwartz inequality we obtain

‖xf (τ)‖2 = ‖xf (0)eAfστ‖2 ≤ ‖xf (0)‖2‖eAfστ‖2. (A.42)

The definition of Afσ and the eigenspectrum bound to the fast subsystem imply

that

‖xf (0)‖2‖eAfστ‖2 ≤ ‖xf (0)‖2e
(σλp+1)τ , (A.43)

where λp+1 represents the dominant eigenvalue of Af which is the least negative and

of O(
1

σ
). Using singular perturbation arguments for infinite-dimensional systems

it is shown that within a finite time the fast system dynamics will relax to a ball

of radius O(σ) around zero. Using the spectral bound of (A.42) and (A.43) for the

dynamic behavior and that σ = |λ1|/|λp+1| we can obtain

‖xf (0)‖2e
(σλp+1)τ = ‖xf (0)‖2e

−|λ1|τ ≤ O(σ); (A.44)

this bound is satisfied when

τb =
tb
σ
≥ − 1

|λ1|
ln

[
O(

σ

‖xf (0)‖2

)

]
. (A.45)

Thus,

tb ≥
1

|λp+1|
ln

[
O(
‖xf (0)‖2

|λ1|
|λp+1|)

]
. (A.46)
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Considering the time needed for relaxation of (A.38), tb, and the time interval

between ROM revisions, δt = tk − tk−1, we choose δt such that δt > tb. In this

case the complete system (slow and fast) observation error can be simplified as

Eo = x̂s − x = x̂s − (xs + xf ) = x̂s − (xs + 0) = x̂s − xs = ê, (A.47)

and for t ≥ tb the infinite-dimensional system in (A.38) approximately reduces to

the following augmented finite-dimensional slow system,

ẋs = Asxs + Fs(xs, 0) +Bsu,

˙̂a = Aâ+ f(â) +Bu+ Π−1
â L(ym − Câ),

˙̂e = (As +M⊥Π−1
â LSm)ê+

(
Fs(x̂s, 0)− Fs(x̂s − ê, 0)

)
.

(A.48)

Then by considering Assumption 5.3 and based on the stability arguments of ge-

ometric dynamic observer and GLC in [6, 7] and [155], respectively, we conclude

that the geometric observer and controller can stabilize the observation error and

states of the reduced order dynamics of (A.48).

At this point, we know that the previous statement is true if and only if the

Assumption 5.3 holds. However, Assumption 5.3 is correct for finite periods longer

than the critical period of tb. It may fail when new trends show during the process

evolution that makes the set of basis functions and ROM inaccurate. When it

happens, the APOD algorithm revises the basis functions and corrects the ROM.

Following that, the controller structure redesigns the observer/controller compo-
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nents to retain relevancy. This procedure is repeated during system progression to

enforce closed-loop stability.

A.4 Proofs of Chapter 6

A.4.1 Proof of Proposition 6.1

The solution of the system for t ∈ [ti, ti+1] is

x(t) = eG(t−ti)x(ti).

When resetting the error to zero at ti, we can restate x(ti) as

x(ti) =

I 0

0 0

x(t−i ),

then we obtain that

x(ti) =

I 0

0 0

 eGδtx(ti−1).

Finally using initial condition, x0 = x(t0), the response of the system can be

presented as

x(t) = eG(t−ti)
(I 0

0 0

 eGδt)ix0 = eG(t−ti)
(I 0

0 0

 eGδt
I 0

0 0

)ix0.
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A.4.2 Proof of Theorem 6.1

Taking the 2-norm of (6.21) and using Cauchy-Schwarz inequality we obtain

‖x(t)‖2 = ‖eG(t−ti)S ix0‖2 ≤ ‖eG(t−ti)‖2 ‖S i‖2 ‖x0‖2

≤ ‖eσmaxG (t−ti)‖2 ‖S i‖2 ‖x0‖2 ≤ ‖eσ
max
G δt‖2 ‖S‖i2 ‖x0‖2.

(A.49)

where σmaxG is the largest singular value of G. Then it is obvious that the bound-

edness of the solution only depends on ‖S‖2 and this term will be bounded if and

only if the eigenvalues of S are inside the unit circle (sufficient condition). To

prove the necessity part assume that the system is stable and S has at least one

eigenvalue outside the unit circle. We consider the exponential term that has the

general form of

eGT =

V1(T ) V2(T )

V3(T ) V4(T )

 .
Then the solution value just before the update will be

x(t−i+1) =

V1(δt)
(
V1(δt)

)i
0

V3(δt)
(
V1(δt)

)i
0

x0 =


(
V1(δt)

)i+1

0

V3(δt)
(
V1(δt)

)i
0

x0.

Since S has at least one eigenvalue outside the unit circle (in V1), the solution will

grow with i and the system will be unstable.
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A.4.3 Proof of Theorem 6.2

Under Assumption 6.1 (time scale separation part), the system of (6.8) can be

expressed in the following singular perturbation form

ẋs = Asxs +BsK̃xm,

γẋf = γAfxf + γBfK̃xm,

(A.50)

where γ = |λ1|/|λα+1| is a small number that indicates the separation between

the dominant and non-dominant modes [76]. Due to the definition of Af and γ,

Afγ = γAf has negative eigenvalues of O(1) and based on controller design, the

manipulating term in the fast subsystem, BfK̃xm, does not contain terms of O( 1
γ
)

locally, where O(·) indicates the order of (·). By defining τ = t/γ and setting

γ = 0, the fast subsystem dynamics of (A.50) can be expressed in the following

fast time scale form

∂xf
∂τ

= Afγxf . (A.51)

Then the solution of the locally exponentially stable system of (A.51) is obtained

as

xf (τ) = xf (0)eAfγτ . (A.52)

Focusing on the norm of xf , from (A.52) and Schwartz inequality we obtain

‖xf (τ)‖2 = ‖xf (0)eAfγτ‖2 ≤ ‖xf (0)‖2‖eAfγτ‖2. (A.53)
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The definition of Afγ and the eigenspectrum bound to the fast subsystem imply

that

‖xf (0)‖2‖eAfγτ‖2 ≤ ‖xf (0)‖2e
(γλα+1)τ , (A.54)

where λα+1 represents the dominant eigenvalue ofAf which is the least negative and

of O( 1
γ
). Using singular perturbation arguments for infinite dimensional systems

it is shown that within a finite time the fast system dynamics will relax to a ball

of radius O(γ) around zero [175]. Using the spectral bound of (A.53) and (A.54)

for the dynamic behavior and that γ = |λ1|/|λα+1| we can obtain

‖xf (0)‖2e
(γλα+1)τ = ‖xf (0)‖2e

−|λ1|τ ≤ O(γ); (A.55)

this bound is satisfied when

τb =
tb
γ
≥ − 1

|λ1|
ln

[
O(

γ

‖xf (0)‖2

)

]
. (A.56)

We denote tb with the time period needed by the fast dynamics of the process to

stabilize and converge to a small neighborhood of zero,

tb ≥
1

|λα+1|
ln

[
O(
‖xf (0)‖2

|λ1|
|λα+1|)

]
. (A.57)

Considering tb and the time interval between snapshots, δt = tk − tk−1, we choose

δt such that δt > tb. Then the infinite dimensional system in (A.50) approximately
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reduces to the finite-dimensional slow system,

ẋs = Asxs +BsK̃xm, (A.58)

and the complete system of (6.13) reduces to

Process : ẋs = Asxs +Bsu,

Model : ẋm = Amxm +Bmu,

Controller : u = K̃xm.

(A.59)

Then by considering Assumption 6.3 and based on the stable static state feedback

control law, we conclude that the controller can stabilize the reduced order dy-

namics of (A.59).

At this point, we know that the previous statement is true if and only if Assump-

tions 6.1, 6.2 and 6.3 hold. Focusing on the system dynamics Assumption 6.1

holds. Assumption 6.3 is satisfied for finite periods longer than the critical period

of tb. From this assumption we can assume that any basis functions of the slow

subsystem are expressed in P ⊕ Q. This assumption is not satisfied when new

trends appear during the process evolution for the first time that makes the set

of basis functions incomplete and the ROM inaccurate. Within a finite amount

of time from when it happens, the APOD algorithm revises the basis functions

and corrects the ROM. Following that, the controller is redesigned to retain rele-
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vancy. This procedure is recursively repeated during system progression to enforce

closed-loop stability.

A.4.4 Proof of Theorem 6.3

The general highly dissipative PDE of (6.50) can be categorized to two forms with

different properties; (1) linear PDE, and (2) semilinear, quasilinear and nonlinear

PDEs. According to such classification, the proof is presented for two class of

governing PDEs;

Case I. Linear PDE

For the linear class, the PDE of (6.50) takes the following form,

∂

∂t
x̄(z, t) = An(z)x̄+M(z, x̄) +B(z)u(t),

Γ(x̄,
∂

∂z
x̄, . . . ,

∂n−1

∂zn−1
x̄)
∣∣∣
∂Ω

= 0,

x̄(z, 0) = x̄0(z),

(A.60)

where An(z) denotes the linear differential operator of order n and M(z, x̄) is a

linear function of x̄. Then the infinite-dimensional representation of (A.60) in the

Sobolev subspace can be presented as follows

ẋ = Ax+ M(x) + Bu, x(0) = x0, (A.61)
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where Ax = An(z, x̄) and M(x) = M(z, x̄). According to Assumption 6.5, the

ordered by size eigenspectrum of the linear operator of A, {λ1, λ2, . . . }, which is

the solution of the eigenproblem of

Aψi − λiψi = 0,

Γ(ψi,
∂ψi
∂z

, . . . ,
∂n−1ψi
∂zn−1

)
∣∣∣
∂Ω

= 0,

i = 1, . . . ,∞,

(A.62)

and in practice computed by APOD, can be decomposed to two subsets; (1)

the finite slow subset that includes the slow and possibly unstable eigenvalues,

{λ1, λ2, . . . , λm}, where
|Re(λ1)|
|Re(λm)|

= O(1), and O(·) and Re(·) present the or-

der of magnitude and the real part, respectively, and (2) the infinite complement

fast subset that includes the remaining eigenvalues which are fast and stable,

{λm+1, λm+2, . . . }. The two sets of basis functions correspond to functional sub-

sets can be presented by {ψi}mi=1 and {ψi}∞i=m+1, respectively. Also there is at

least an order of magnitude separation between slow and fast subsets, defined by

σ =
|Re(λ1)|
|Re(λm+1)|

where σ is a small number. This separation corresponds to a time

scale separation of the system dynamics.

Then considering the Galerkin projectors in the forms of (6.55), the modal vector-

ized representation of the infinite-dimensional system of (A.61) takes the following
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form,

ẋs = Asxs +Ms(xs) +Bsu, xs(0) = Px0,

ẋf = Afxf +Mf (xf ) +Bfu, xf (0) = Qx0,

(A.63)

where As = PA, Af = QA, Ms = PM, Mf = QM. Then the partitioned system

of (A.63) can be described in the standard singular perturbation form [76, 148] of

ẋs = Asxs +Ms(xs) +Bsu,

σẋf = Afσxf + σ
(
Mf (xf ) +Bfu

)
,

(A.64)

where Afσ = σAf is the exponentially stable unbounded linear operator. The fast

subsystem dynamics can be represented in the fast time scale of τ = t/σ,

∂xf
∂τ

= Afσxf + σ
(
Mf (xf ) +Bfu

)
, (A.65)

by considering that the expression of Mf (xf ) +Bfu does not locally contain terms

of O( 1
σ
) under a stable and non-aggressive controller design and by setting σ = 0

we obtain

∂xf
∂τ

= Afσxf . (A.66)

By solving the locally exponentially stable system of (A.66) we conclude

xf (τ) = xf (0)eAfστ . (A.67)
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Then by taking the L2 norm of xf and applying Schwartz inequality

‖xf (τ)‖2 = ‖xf (0)eAfστ‖2 ≤ ‖xf (0)‖2‖eAfστ‖2, (A.68)

and the eigenspectrum bound to the exponential term of the fast dynamics we

obtain

‖xf (0)‖2‖eAfστ‖2 ≤ ‖xf (0)‖2e

(
σ Re(λm+1)

)
τ , (A.69)

whereRe(λm+1) = O( 1
σ
) denotes real part of the least negative dominant eigenvalue

of Af . By applying singular perturbation theory [76, 148, 151] and Tykhonov’s

theorem [175] we conclude that after a finite period of time the fast dynamics of

the infinite-dimensional system converges to a ball of radius O(σ) around zero.

Therefore,

‖xf (0)‖2e

(
σ Re(λm+1)

)
τ = ‖xf (0)‖2e

−|Re(λ1)|τ ≤ O(σ), (A.70)

implies that

τb =
tb
σ
≥ − 1

|Re(λ1)|
ln

[
O(

σ

‖xf (0)‖2

)

]
. (A.71)

Consequently we can obtain a lower bound for required relaxation time as follows

tb ≥
1

|Re(λm+1)|
ln

[
O(
‖xf (0)‖2

|Re(λ1)|
|Re(λm+1)|)

]
. (A.72)

The closed-loop infinite-dimensional system of (A.61) which is the functional rep-

resentation of the PDE of (A.60) exponentially reduces to the finite-dimensional
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slow subsystem (Proposition 1 in [78]) and when t ≥ tb we can approximate the

infinite-dimensional system by

ẋs = Asxs +Ms(xs) +Bsu. (A.73)

Then due to the exponential stability of fast subsystem, if the finite-dimensional

system approximation of (A.73) is exponentially stable, the infinite-dimensional

system of (A.61) is also exponentially stable.

Case II. Semilinear, Quasilinear and Nonlinear PDEs

Under the assumption of time scale separation between the slow and fast dynamics

of the infinite-dimensional system (Assumption 6.5), the vectorized modal system

of (6.56) can be described in the standard singular perturbation form in different

time scales [76]

ẋs = Fs(xs, xf ) +Hs(xs, xf ) +Bsu,

σẋf = σFf (xs, xf ) + σ
(
Hf (xs, xf ) +Bfu

)
,

(A.74)

for sufficiently small values of σ which indicates the time-scale separation between

the slow (and possibly unstable) and fast (and stable) dynamics where Ff is an

exponentially stable unbounded operator. Note that such separation can be rec-

ognized by statistical approached like APOD. Due to the highly dissipative nature

of the spatial differential operator of Fn, the resulting nonlinear vector function of
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the fast subsystem satisfies the following local property [18, 76]

Ff (xs, xf ) = ffsxs +
1

σ
ffxf + f̃f (xs, xf ), (A.75)

where ff is a stable matrix with negative eigenvalues, f̃f is a purely nonlinear

vector function which does not include any linear terms and the components ffs,

ff and f̃f does not contain any term of O(σ). Then the fast subsystem dynamics

can be represented in the fast time scale of τ = t/σ,

∂xf
∂τ

= ffxf + σ
(
ffsxs + f̃f (xs, xf )

)
+ σ
(
Hf (xs, xf ) +Bfu

)
. (A.76)

According to the Lipschitz property of Hf , the expression of Hf (xs, xf )+Bfu does

not also locally contain terms of O( 1
σ
) under a stable and non-aggressive controller

design. Then by setting σ = 0 we obtain

∂xf
∂τ

= ffxf . (A.77)

The solution of the locally exponentially stable system of (A.77) takes the following

form

xf (τ) = xf (0)eff τ . (A.78)

Therefore, the infinite-dimensional dynamics of (6.53) which is the functional rep-

resentation of the PDE of (6.50) exponentially converges to the finite-dimensional
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slow dynamics of

ẋs = Fs(xs, 0) +Hs(xs, 0) +Bsu, (A.79)

after a finite period of time. Then the infinite-dimensional system of (6.53) is

exponentially stable if the finite-dimensional system approximation of (A.79) is

exponentially stable due to the exponential stability of fast subsystem.
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