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Abstract

Testing the population mean is fundamental in statistical inference. When the
dimensionality of a population is high, traditional Hotelling’s T 2 test becomes
practically infeasible due to the singularity of sample covariance matrix. In this dis-
sertation, we propose a projection-based testing method for the high-dimensional
one-sample and two-sample mean problems. Our method projects the original
sample to a lower-dimensional space and conducts tests on the projected sample.
Different from existing projection-based tests, our approach is based on data-driven
estimation of the optimal direction. Meanwhile, our test keeps the equivalence of
null hypotheses between the original sample and the projected sample, which is
often ignored by previous researches. We show that the test based on projected
sample is an exact t-test under the normality assumption and an asymptotic χ2-test
with one degree of freedom without the normality assumption.

In the one-sample problem, we are interested in testing H0 : µ = µ0 against
H1 : µ 6= µ0 for a random sample of sizeN from a p-dimensional populationX with
finite mean vector µ and finite positive definite covariance matrix Σ. We derive the
theoretical optimal direction with which the test possesses the most power under
the alternative. We show that projection to a one-dimensional space with direction
Σ−1(µ−µ0) leads to the optimal power, regardless of the distribution assumption.
The null hypothesis with the projected sample is (µ − µ0)TΣ−1(µ − µ0) = 0,
which holds if and only if µ = µ0 for a full rank Σ. A computationally efficient
algorithm is developed to implement the new test. Local asymptotic property is
studied and we show that under mild conditions the proposed test outperforms
the major existing methods. Our numerical comparison shows that the new test
retains Type I error rate well and can be more powerful than the existing tests for
the high-dimensional data.

In the two-sample problem, we are interested in testing H0 : µ1 = µ2 against
H0 : µ1 6= µ2 for two independent random samples of size Ni from populations
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with finite mean vector µi and finite positive definite covariance matrix Σi, i = 1, 2
respectively. When Σ1 = Σ2 = Σ, we prove that the optimal direction is Σ−1(µ1−
µ2), regardless of the distribution assumption. When the covariance matrices are

unequal, we show that the optimal projection direction is
(

Σ1 + N1

N2
Σ2

)−1

(µ1−µ2)

for normal population by first taking Bennett’s transformation to obtain an one-
sample sequence of sizeN1 that is distributed fromN(µ1−µ2,Σ1+N1

N2
Σ2), assuming

N1 < N2. Both theoretically and empirically, we demonstrate that the proposed
test can be much more powerful than the existing ones.
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Chapter 1
Introduction

High-dimensional data are generated by modern technologies at an unprecedented

speed and they frequently arise in many research areas including various imaging

data applications; different “-omics” disciplines such genomics and proteomics;

finance; and sociological study such as political science. In these cases, the number

of collected features can be close to, great than or much greater than the sample

size. High-dimensionality challenges the classical theory fundamentally and has

attracted tremendous research interests in developing new methodologies beyond

the classic techniques.

Being one of the most active research areas in statistics (e.g., Donoho, 2000; Fan

and Li, 2006; Fan et al., 2014a), much progress has been made so far on the variable

selection and sparsity recovery, which select the variables that are truly relevant

to the phenomena of interest. However, there are still many challenging unsolved

problems that call for the development of new methods and theory, especially on

the statistical inference which is less explored. Recently, much attention has been

received in literature for hypothesis testing of mean vectors, which is a fundamental

question in statistics and the focus of this dissertation as well.

In this introduction, we first provide a very brief review on variable selection,

feature screening and statistical inference on high-dimensional regression models.

Then we focus on the current development on testing the mean vectors. The last

part summarizes our method and its contribution.



2

1.1 High-dimensional variable selection, feature

screening and inference on regressions

The sparsity principle, which assumes that only a small number of predictors

contribute to the response, is frequently adopted and deemed useful in regression

analysis with high-dimensional predictors. Following this general principle, a large

number of variable selection approaches have been developed to estimate a sparse

model and select significant variables simultaneously during the last two decades.

Fan and Lv (2010) provided a review of variable selection for high-dimensional

data. The nonnegative garrote (Breiman, 1996; Yuan and Lin, 2006), the LASSO

(Tibshirani, 1996), the smoothly clipped absolute deviation (SCAD) method (Fan

and Li, 2001) and the minimax concave penalty (MCP) method (Zhang, 2010)

are the most popular approaches for selecting significant variables and estimating

regression coefficients simultaneously.

The LASSO method makes use of a penalized least squares with the L1-penalty,

and its solution path can be found by using the LARS algorithm (Efron et al.,

2004). Yuan and Lin (2006) proposed the group LASSO for grouped variable se-

lection, and Zou (2006) proposed the adaptive LASSO to reduce estimation bias

due to the L1-penalty. Due to its computation efficiency, the LASSO method has

been further extended for various statistical settings by many authors (See, for ex-

ample, Tibshirani, 1997; Tibshirani et al., 2005; Zou and Hastie, 2005; Meinshausen

and Bühlmann, 2006; Park and Hastie, 2007; Rosset and Zhu, 2007; Zhang and

Huang, 2008, and among others).

Fan and Li (2001) provided insights into how to choose a penalty function. In

particular, Fan and Li (2001) advocated the use of nonconvex penalties such as

the SCAD penalty and established the oracle property for nonconvex penalized

least squares and nonconcave penalized likelihood methods. In the same spirit of

the SCAD, Zhang (2010) proposed the MCP, and Fan and Lv (2011) studied a

family of concave penalties that bridge the L0 and L1 penalties for model selection

and sparse recovery. Regularization parameter controls the model complexity, and

therefore plays a critical role in the application of the penalization, in addition

to the penalty function. The issue of tuning parameter selection was studied in
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Wang et al. (2007), Zhang et al. (2010) and Wang et al. (2013). In employing the

nonconcave penalized likelihood, lots of efforts haven been devoted on develop-

ing efficient algorithms to compute the nonconcave penalized likelihood estimate.

Fan and Li (2001) proposed the local quadratic approximation (LQA) algorithm

for nonconcave penalized likelihood. The LQA algorithm was further analyzed by

Hunter and Li (2005) by using the MM algorithm techniques (Lange et al., 2000;

Hunter and Lange, 2000). Zou and Li (2008) further proposed local linear ap-

proximation (LLA) algorithm for the nonconcave penalized likelihood. The LLA

algorithm enables us to use LARS algorithm to search the solution of nonconcave

penalized likelihood. The nonconcave penalized likelihood approach was applied

for survival data analysis (Fan and Li, 2002; Cai et al., 2005), longitudinal data

analysis (Fan and Li, 2004), modeling computer experiments (Li and Sudjianto,

2005), and semiparametric regression modeling (Li and Liang, 2008; Liang and Li,

2009; Kai et al., 2011; Liang et al., 2010).

While the aforementioned variable selection methods have been successfully

applied in many high-dimensional analysis, modern applications in areas such

as genomics and proteomics push the dimensionality of data to an even larger

scale, where the dimension of data may grow exponentially with the sample size.

This has been called ultrahigh-dimensional data in the literature. Such ultrahigh-

dimensional data present simultaneous challenges of computational expediency,

statistical accuracy and algorithm stability, which render difficulties in direct ap-

plications of the aforementioned variable selection methods (Fan et al., 2009). To

address those challenges, Donoho and Elad (2003) derived a characterization of

the identifiability of the minimum L0-norm for undetermined linear equations.

Donoho (2004, 2006) showed the individual equivalence of the minimal L1-norm

solution and the minimal L0-norm solution. Candes and Tao (2007) further ex-

tended Donoho (2004, 2006)’s idea and proposed the Dantzig selector for a linear

regression model when the number of predictors is much greater than the sample

size. Independence learning has been proposed to select significant genes between

treatment and control groups for macroarray data by using a two-sample test in

Dudoit et al. (2003), Storey and Tibshirani (2003), Fan and Ren (2006), Efron

(2007). Fan and Lv (2008) emphasized the importance of feature screening in

ultrahigh-dimensional data analysis, and proposed sure independence screening
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(SIS) and iterated sure independence screening (ISIS) in the context of a linear

regression model. Huang et al. (2008) used the marginal bridge estimators for

selecting variables in high-dimensional sparse regression models. Hall and Miller

(2009) proposed feature ranking using a generalized correlation. Fan et al. (2009)

and Fan and Song (2010) extended SIS and ISIS from a linear model to a gen-

eralized linear model. Ravikumar et al. (2009) proposed nonparametric learning

under sparse additive models. Fan et al. (2011) proposed a nonparametric marginal

screening procedure for additive models based on B-spline expansion. Fan et al.

(2014b) further extended the nonparametric B-spline method for varying coeffi-

cient models and proposed a marginal sure screening procedure. Liu et al. (2014)

proposed a local kernel-based marginal sure screening procedure for varying co-

efficient models. Aforementioned model-based screening procedures perform well

when the underlying models are correctly specified, but their performance may be

poor in the presence of model mis-specification. Specifying a correct model for

ultrahigh dimensional data may be challenging. Several authors have developed

several model-free sure screening procedures, which are particularly appealing for

ultrahigh dimensional data (Zhu et al., 2011; Li et al., 2012; He et al., 2013; Cui

et al., 2014).

Although variable selection and feature screening have been extensively stud-

ied in the literature, there are relative less work on high-dimensional inference

including test of hypotheses and confidence interval in linear regression. Dezeure

et al. (2014) provided a selective review on this topic. Single sample-splitting and

subsequent statistical inference is implicitly contained in Wasserman and Roeder

(2009), and further developed to multi-sample-splitting method for multiple test-

ing in Meinshausen et al. (2009). Chatterjee and Lahiri (2013, 2011) developed

residual-type bootstrap approaches for adaptive LASSO. Regularized projection

was proposed to construct confidence interval for penalized least squares estimates

such as the LASSO and the MCP in Zhang and Zhang (2013), van de Geer et al.

(2014) and Javanmard and Montanari (2013a,b). Lockhart et al. (2014) proposed

using the covariance test to obtain p-values for conditional tests that all relevant

variables enter the Lasso solution path first. Efron (2014) considered bootstrap

smoothing to tame the erratic discontinuities of selection-based estimators for com-

puting standard errors and confidence intervals that take into account uncertainty
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due to variable selection using LASSO. Wang et al. (2014b) demonstrated Efron’s

method works well for other variable selection methods such as SCAD. The dis-

sertation aims to develop new tests for high-dimensional mean vectors.

1.2 Tests on high-dimensional mean vectors

Hypothesis testing for high-dimensional mean vectors has received considerable

attention in recent literature. Suppose that x1, · · · ,xN is a random sample from a

p-dimensional population X with finite mean vector µ and finite positive definite

covariance matrix Σ. Of interest is to test the following hypothesis:

H0 : µ = µ0 versus H1 : µ 6= µ0, (1.1)

for a known vector µ0. This hypothesis testing has been referred to as one-sample

problem in multivariate analysis and extensively studied for univariate or multi-

variate population (i.e. p is fixed). Here we are interested in the large p, small

n setting. Let x̄ and S be the sample mean and sample covariance matrix, re-

spectively. When N > p, S−1 is invertible with probability one, and the following

Hotelling T 2 test for the one-sample problem is well defined:

T 2 = N(x̄− µ0)TS−1(x̄− µ0). (1.2)

It is well known that if x ∼ Np(µ,Σ), (N−p)T 2/((N − 1)p) follows Fp,N−p(Nδ), the

noncentral F -distribution with p and N − p degrees of freedom with noncentrality

parameter Nδ, where δ = µTΣ−1µ. Without normality assumption, T 2 has an

asymptotical χ2
p(Nδ), the noncentral χ2-distribution with p degrees of freedom

with noncentrality parameter Nδ, under mild regularity conditions as N → ∞.

The one-sample problem is closely related to the two-sample problem introduced

below. In particular, most existing tests for the two-sample problem can be directly

applied for the one-sample problem.

Suppose that for i = 1 and 2, {xij, j = 1, · · · , Ni} is a random sample from a

population with finite mean vector µi and finite positive definite covariance matrix
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Σ. The two-sample problem is referred to as testing the following hypothesis

H0 : µ1 = µ2 versus H1 : µ1 6= µ2. (1.3)

Let x̄i and Si be the sample mean and the sample covariance matrix of xij, re-

spectively, and S0 = {(N1− 1)S1 + (N2− 1)S2}/(N1 +N2− 2), the pooled sample

covariance matrix. The Hotelling’s T 2 test for the two-sample problem (1.3) is

T 2
2 =

N1N2

N1 +N2

(x̄1 − x̄2)TS−1
0 (x̄1 − x̄2). (1.4)

Testing the hypotheses in (1.1) and (1.3) becomes challenging for high dimen-

sional data. The traditional Hotelling’s T 2 test given by (1.2) and (1.4) are not

well-defined due to the singularity of S and S0 when p > N or p > N1 + N2. It

has been observed in Bai and Saranadasa (1996) that the power of the Hotelling’s

T 2 test can be adversely affected even when p < N or p < N1 + N2, if the sam-

ple covariance matrix is nearly singular, see also Pan and Zhou (2011). Recently,

there has been great interests in the one-sample and two-sample problems in large-

dimensional setting with p/N → c ∈ (0, 1) (Bai and Saranadasa, 1996; Srivastava

and Du, 2008; Srivastava, 2009), and in high-dimensional setting without imposing

condition c ∈ (0, 1) (Lee et al., 2012; Srivastava et al., 2013; Chen and Qin, 2010;

Thulin, 2014). Chen et al. (2011) introduced regularized Hotelling’s T 2 test by re-

placing S0 in (1.4) by S0 +λIp, a ridge-type covariance matrix estimator. Based on

left-spherical distribution theory, Lauter (1996) and Lauter et al. (1998) proposed

exact t and F -test for (1.1) and (1.3) under normality assumption. Power study in-

dicates that the exact t and F -test may have no power under certain alternatives

(Frick, 1996). Lopes et al. (2011a,b) suggested applying the Hotelling’s T 2 test

for random projection samples. Wang et al. (2014a) proposed a high-dimensional

spatial sign test for the one-sample problem with heavy-tailed distribution.

1.3 Our method and its contribution

The major goal of this dissertation research is to develop new projection tests for

high-dimensional one-sample and two-sample problems. Our work is motivated by
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searching for a projection direction that maximizes the power of projection test,

which distinguishes our work from the existing ones (Lauter, 1996; Lauter et al.,

1998; Lopes et al., 2011a,b).

In Chapter 3, we propose a new projection test for the one-sample problem

(1.1). Let A be a p × k matrix with full column-rank k < N , and yi obtained

by projection that yi = ATxi. The Hotelling’s T 2 test is readily applied to the

projection sample and the corresponding statistics is T 2
A = N x̄TAT (ASAT )−1Ax̄.

Under normality assumption, we show an inspiring and interesting result that the

optimal choice for k is 1 and the optimal direction is Σ−1µ in order to maximize

the power of T 2
A. Moreover, the null hypothesis under this particular projection is

the same as the original. The resulting test is an exact t-test under the normal-

ity assumption and an asymptotic χ2-test with 1 degree of freedom without the

normality assumption.

In practice, however, direction Σ−1µµµ is unknown and an estimator is required.

To ensure the independence of the projected samples, we adopt a random partition

strategy such that the original data are randomly partitioned into two separate sets:

one set is used to estimate the direction and the other set is used to construct the

test based on the estimated direction. We provide a thorough discussion regarding

the impact of sample splitting and splitting percentage selection. We conclude that

there is still considerable power gain after accounting for the sample loss due to

splitting. We also include the asymptotic power comparison with the Hotelling’s

T 2 test and the other main competitors, and give the conditions under which the

proposed method has favorite power.

To estimate the direction, we apply the ridge-like estimator (S + λDS)−1 for

S−1, where λ is a turning parameter controlling the amount of penalty and DS

is a diagonal matrix with diagnoal elements equal to the diagonal of S. The

proposed ridge-like estimator keeps the test invariant to linear transformation.

For implementation, we suggest that λ = N−0.5
1 , where N1 is the sample size

used for estimating the direction. We study the effect of λ and conclude that the

performance of the test is fairly robust to the choice of λ. We have conducted

several simulation experiments, which empirically show that the proposed exact t-

test retains Type I error rate very well and has better power than existing methods

under most of the simulation settings.
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In Chapter 4, we generalize the one-sample test to its two-sample counter-

part (1.3). When the two covariance matrices are equal, we conclude that the

Σ−1(µ1 −µ2) is the optimal projection. The null hypothesis under this particular

projection is equivalent to the original null. After the projection, the samples are

only 1-dimensional such that the classical two-sample t-test can be applied. When

the population is normally distributed, the resulting test is exact. The implemen-

tation is adapted from the one-sample version with the sample slitting strategy.

Asymptotic power comparison is included and we give the conditions when the

proposed test would outperform. For the two-sample test, we also discuss the

case in which the two covariance matrices are unequal. We approach the optimal

projection direction by first apply Bennett transformation to obtain a sample se-

quence distributed as N(µ1−µ2,Σ1 + N1

N2
Σ2), assuming N1 < N2. In this case, we

conclude the optimal direction as
(

Σ1 + N1

N2
Σ2

)−1

(µ1 − µ2).

The major contributions of this work can be summarized as follows.

(a) We derive the theoretical optimal directions for projection tests for high-

dimensional normal mean problems including both one-sample normal mean

problem and two-sample normal mean problem. With the normality assump-

tion, we construct an exact t-test for problem (1.1). The new test retains

Type I error rate very well. Both theoretically and empirically, we demon-

strate the proposed projection test can be much more powerful than existing

ones.

(b) Without the normality assumption, we develop projection-based χ2-tests

for high-dimensional mean problems and derive its optimal direction in an

asymptotical sense. The χ2-tests have an asymptotic χ2-distribution with 1

degree of freedom. Our numerical comparison shows that the new test retain

Type I error rate well and may be more powerful than the existing tests for

high-dimensional data.

1.4 Organization of this dissertation

The remainder of this dissertation consists of four parts. In Chapter 2, we pro-

vide a review on the hypothesis testing of multivariate one-sample and two-sample
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mean vectors. In Chapter 3, we introduce the new test procedure for testing the

one-sample mean vector. With normality assumption, wee derive the theoreti-

cal optimal direction for the projection Hotelling’s T 2 test, propose an effective

estimation procedure to estimate the optimal direction, and further conduct the

asymptotic power analysis of the proposed test statistics. Later we address the

issues related to practical implementation of the proposed test and compare its

empirical power with existing ones by Monte Carlo simulation study. In the end,

a real data example is provided to demonstrate the application of the new test.

Without normality assumption, we show that the optimal direction holds for the

asymptotic χ2-tests. In Chapter 4, we generalize the work to test the two-sample

mean vectors. We first consider the normal population with equal covariance ma-

trix. Then we generalize the test in two ways. The first is two normal populations

with different covariance matrices and the other is the non-normal distribution

with equal covariance matrix. We conclude the dissertation and discuss future

work in Chapter 5.



Chapter 2
Literature Review

2.1 One-sample test on normal mean vector

Let x1, . . . ,xN be identically and independently distributed p-dimensional vector

from Np(µµµ,Σ). Denote X = (x1, . . . ,xN)′ such that the i-th row of X is x′i. The

problem of interest is to test the null hypothesis

H0 : µµµ = µµµ0 (2.1)

versus the alternative hypothesis

H1 : µµµ 6= µµµ0, (2.2)

where µµµ0 is a known vector. The null hypothesis requires equality of the every

corresponding element of µµµ and µµµ0, while the alternative indicates that at least

one of the elements is different.

2.1.1 Hotelling’s T 2 test and Likelihood ratio test

The Hotelling’s T 2 test is the multivariate generalization of the student’s t-test for

one-dimensional case. The T 2 test statistic, as defined in (2.3), takes a quadratic

form that evaluates a scaled distance between µµµ0 and µµµ.

T 2 = N(x̄− µµµ0)TS−1(x̄− µµµ0), (2.3)
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where x̄ is the sample mean defined by

x̄ =
1

N

N∑
i=1

xi (2.4)

and S is the sample covariance matrix defined by

S =
1

n

N∑
i=1

(xi − x̄)(xi − x̄)T . (2.5)

Under H0, (N − 1)S is distributed as the Wishart distribution W ((N − 1),Σ)

and independent from x̄. These lead to the null distribution that

N − p
(N − 1)p

T 2 ∼ Fp,N−p. (2.6)

The Hotelling’s T 2 test is uniformly the most powerful among tests with power

that depends only on µµµTΣ−1µµµ.

The likelihood ratio test (LRT) is equivalent to the Hotelling’s T 2 test. With

normality assumption, the likelihood function of observed data is

L(µµµ,Σ) ∝ |Σ|−N/2 exp

{
−1

2
tr

(
Σ−1

N∑
i=1

(xi − µµµ)(xi − µµµ)T

)}
. (2.7)

Denote A =
∑N

i=1(xi − x̄)(xi − x̄)′ = (N − 1)S and f =
√
NA−1/2(x̄−µµµ0), we

show that the LRT is a monotone function of Hotelling’s T 2.

λLRT =
maxΣ L(µµµ0,Σ)

maxµµµ,Σ L(µµµ,Σ)
(2.8)

=

(
|A|

|A+N(x̄− µµµ0)(x̄− µµµ0)T |

)N/2
=

{
|A|

|A|1/2 (|IN +NA−1/2(x̄− µµµ0)(x̄− µµµ0)TA−1/2) |A|1/2

}N/2
=

∣∣IN + ffT
∣∣−N/2

=
(
1 + fT f

)−N/2
=

(
1 +N(x̄− µµµ0)TA−1(x̄− µµµ0)

)−N/2
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=
(
1 + T 2/(N − 1)

)−N/2
.

Therefore, the Hotelling’s T 2 test is equivalent to the LRT. These two tests

have the same power.

2.1.2 High-dimensional setting

When p > N , the Hotelling’s T 2 test becomes invalid due to the rank deficiency of

the sample covariance matrix (2.5). Similarly, LRT= 0 due to the fact that |A| = 0

when p > N . Various methods have been proposed in literature for obtaining a

valid test under the high-dimensional settings.

The original Dempster test (Dempster, 1958, 1960) was proposed for two-

sample mean problem. We present its one-sample version given in Srivastava

(2007). The general idea of the test is to evaluate the relative variation of the

following two sources: (a)variation of sample mean from the null value and (b)

variation of the sample points around the sample mean. To separate these two

variations, consider a transformation matrix B of the form

BT = (N−1/2111N ,b2, . . . ,bN), (2.9)

where 111N is a vector of N of 1s, and b2, . . . ,bN are determined such that B is an

orthogonal matrix. Denote Y = BX and y′i as the i-row of Y . By construction,

Y defines a new set of orthogonal axes with y1 corresponding to the overall mean

and following N(0,Σ) distribution under H0. The rest of axes, y2, . . . ,yN , are

distributed as N(0,Σ) and independent from y1. The variation of the overall

mean from the null value is measured by yT1 y1 and
∑N

i=2 yTi yi defines the variation

scattering around the mean. Dempster test approximates yT1 y1, . . . ,y
T
NyN by χ2

r,

and defines the test statistic as

TD =
yT1 y1∑N

i=2 yTi yi/(N − 1)
. (2.10)

It is clear that under H0,

TD ∼ Fr,(N−1)r. (2.11)

Srivastava (2007) provided the power function of Dempster test, which had
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been previously discussed by Bai and Saranadasa (1996) in its two-sample form.

Given the parameter r is known,

βTD(µµµ)→ Φ

(
−zα +

N‖µµµ‖2

√
2trΣ2

)
, (2.12)

under conditions that p/N → c > 0, µµµTΣµµµ = o(trΣ2/N), and λmax = o(
√

trΣ2),

where λmax stands for the maximum eigenvalue of Σ, and zα is upper α quantile of

N(0, 1) distribution. Practically, the parameter r is unknown. We refer to Section

2.3.2 for the detailed discussion of different estimators. Due to the estimation of r,

Dempster test is not exact. Dempster (1958) observed from simulations that the

estimated significant level is well balanced around the true and the test is shown

to be conservative as r gets larger.

An equivalent form of Dempster test (Srivastava, 2007) is

TD =
N x̄T x̄

trS
. (2.13)

This equivalent formulation shows that the Dempster test utilizes the trace of

the sample covariance matrix to standardize the sample mean distance. The test

statistic, therefore, is affected by the units of variables.

Srivastava and Du (2008) considered a test based on x̄TD−1
S x̄, the standardized

distance by DS to get rid of the unit effect, where DS is a diagonal matrix with

diagonal elements from sample covariance S. The test statistic is defined as

TSD1 =
N x̄TD−1

S x̄− (N − 1)p/(N − 3)√
2 (trR2 − p2/(N − 1)) cN,p

, (2.14)

where cN,p is an adjustment coefficient for improving the convergence of TSD1,

which approaches 1 in probability as both N and p tend to ∞. The authors

suggested

cN,p = 1 +
tr(R2)

p3/2
, (2.15)

where R = D
−1/2
S SD

−1/2
S is the sample correlation matrix.

Given conditions N = O(pζ), 1
2
< ζ ≤ 1, 0 < limp→∞ trR/p < ∞, i = 1, 2, 3, 4

and limp→∞max1≤i≤p λi/
√
p = 0, where R = D

−1/2
Σ ΣD

−1/2
Σ with eigenvalues λ1 ≤
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. . . ≤ λp and DΣ is a diagonal matrix with diagonal elements from the covariance

matrix Σ, it holds that under H0,

TSD1 → N(0, 1). (2.16)

Under local alternatives that µµµ = (N(N − 1))−1/2δδδ, where δδδ is a constant vector,

if for any p, δδδTD−1
Σ δδδ/p is bounded by a constant that does not depend on p, then

the asymptotic power is given by

βTSD1
(µµµ)→ Φ

(
−zα +

NµµµTD−1
Σ µµµ√

2trR2

)
, (2.17)

where zα is upper α quantile of N(0, 1) distribution.

Chen et al. (2011) introduced the regularized Hotelling’s T 2 test (RHT) that

RHT (λ) = N x̄T (S + λI)−1x̄. (2.18)

The following assumptions have been imposed to derive the asymptotic null dis-

tribution of RHT: (1)p/N → c > 0, (2) The eigenvalues of Σ, λ1 ≥ . . . ≥ λp > 0,

satisfy that lim supp→∞ λ1 <∞ and lim infp→∞ λp > 0; (3) The empirical spectral

distribution of Σ, which is defined by Hp(τ) = 1
p

∑p
j=1 1[τj ,∞)(τ), converges to a

probability distribution function H(τ) at every point of continuity of H as p→∞.

The support of H ⊂ [h1, h2] is compact with 0 < h1 ≤ h2 <∞. For a fixed λ > 0,

the null distribution is derived with the aforementioned assumptions that

√
p (RHT (λ)/p−Θ1(λ, c))

(2Θ2(λ, c))1/2
→ N(0, 1), (2.19)

where

Θ1(λ, c) =
1− λmF (−λ)

1− c(1− λmF (−λ))
(2.20)

Θ2(λ, c) =
1− λmF (−λ)

(1− c(1− λmF (−λ)))3
− λ mF (−λ)− λm′F (−λ)

(1− c(1− λmF (−λ)))4
(2.21)
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and mF (z) is the solution to the equation that

mF (z) =

∫
dH(τ)

τ (1− c− γzmF (z)− z)
. (2.22)

Under local alternative µµµTΣ−1µµµ = O(N−θ), where θ ∈ (0, 1/2), the power

converges to 1 as N →∞. There is no a simple form for the power function (Chen

et al., 2011).

RHT is implemented via a bootstrap procedure which helps improve the per-

formance in scenarios of complicated correlation structure and substantial miss-

ingness, but in the cost of increasing computation complexity.

Lauter (1996) and Lauter et al. (1998) proposed a family of score methods for

left-spherical distributions. A n × p matrix X is left-spherically distributed if X

and CX follow the same distribution for every fixed n × n orthogonal matrix C.

Recall that the i-th row of X is x′i, and observation xi and xj (i 6= j) are inde-

pendent. If xi ∼ N(0, I), then X follows a left-spherical distribution by definition.

Particularly, the only left-spherical distribution who satisfies the assumption of in-

dependent xi and xj (i 6= j), is multivariate normal distribution. Under normality

assumption, Lauter (1996) proposed the following procedure to construct the test

for the one-sample problem. Consider linear score zzz = Xd(XTX) such that the

score weight d(XTX) depends only on XTX and d(XTX) 6= 0 with probability 1.

In this case,

ΓXd(XTX) = ΓXd((ΓX)′ΓX)
d
= Xd(XTX), (2.23)

for an orthogonal matrix Γ, where A
d
= B stands for that A and B follow the same

distribution. By definition, zzz is also left-spherically distributed and

√
Nz̄/sz ∼ tN−1. (2.24)

Specifically, Lauter (1996) proposed two ways for obtaining d(XTX). The

corresponding tests are SS test and PC test. SS test takes

dSS = (diag(XTX))−1/2. (2.25)

PC test takes dPC = eee for one sided test and |eee| for two sided test, where eee
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is the eigenvector corresponding to the largest eigenvalue λmax for the following

eigenvalue problem that

(XTX)eee = diag(XTX)eeeλmax. (2.26)

Power studies (see Logan and Tamhane (2004); Frick (1996); Kropf et al.

(1997)) show that SS test attains the highest power in the situation where all

variables present nearly the same relative deviation and the same correlation to

each other. An especially appropriate application of PC test is with one-factor

structure that Σ = K+θθθθθθ′ and µµµ = θθθδ, where K is a diagonal matrix, θθθ is a vector

and δ is nonnegative scalar. Study of Frick (1996) shows that SS test and PC test

are power insufficient when the alternative mean vector µµµ contains at least one

zero element.

PC test is an exact test by following the weights construction rules from Lauter

et al. (1998), however, the projection direction associated with the largest eigen-

value may not give the highest power. To improve the performance of PC test,

Liang and Tang (2009) proposed the generalized F -statistic (GF ) to combine the

information from all the projection directions. For each of the eigen-direction

dPC,i, i = 1, . . . , r, where r is the number of the non-zero eigenvalues, the tPC,i

are computed. GF is proposed to be max1≤i≤r{t2PC,i}. It has been shown that

tPC,is are asymptotically independent and GF is asymptotically distributed as

[F (x; 1, n − 1)]r. Simulations show that GF test performs at least as well as PC

test and does better when the direction is not well chosen.

2.2 One-sample test on high-dimensional mean

vector

In this section, we review methods that apply to p ≥ N framework by imposing

a factor-like model structure instead of assuming normality. This structure was

first introduced in Bai and Saranadasa (1996) for the two-sample problem. Its

corresponding one-sample setup can be formulated as:

xi = Γzzzi+µµµ for i = 1, . . . , N , where Γ is a p×m matrix for some m ≥ p such
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that ΓΓT = Σ, and {zzzi = (zi1, . . . , zim)′}Ni=1 are m-variate independent and

identically distributed random vectors satisfying E(zzzi) = 000, V ar(zzzi) = Im,

and E(z4
ik) <∞ for k = 1, . . . ,m.

Following this factor-like model structure, Srivastava (2009) showed the one-

sample version of Bai and Saranadasa (1996)’s test as given in (2.27), which is

unscaled distance x̄T x̄ with offset trS/N .

TBS = x̄T x̄− trS/N. (2.27)

Given p→ c > 0 and λmax = o(
√

trΣ2), where λmax is the maximum eigenvalue

of Σ, if {zzzi}Ni=1 satisfies that E(
∏m

k=1 z
vk
ik ) equals 0 when there is at least one vk = 1

and equals 1 when there are two vk’s equal to 2, whenever
∑m

i=1 vi = 4, then under

local alternative that µµµTΣµµµ = o(trΣ2/N),

V ar(TBS)→ 2tr(Σ2)/(N(N − 1)). (2.28)

Under H0, TBS has mean 0. Therefore, the asymptotic null distribution is

TBS√
2tr(Σ2)/(N(N − 1))

→ N(0, 1). (2.29)

The power function under local alternative µµµTΣµµµ = o(tr(Σ2)/N) is

βTBS(µµµ) = Φ

(
−zα +

N‖µµµ‖2√
2tr(Σ2)

)
, (2.30)

where zα is upper α quantile of N(0, 1).

By Bai and Saranadasa (1996), a consistent estimator of tr(Σ2) is

t̂r(Σ2) =
(N − 1)2

(N − 2)(N + 1)

[
trS2 − (trS)2/N

]
. (2.31)

The asymptotic power function of TBS is the same as T 2
D with known r. How-

ever, the estimation of r will cause some second order error which will can be seen

from the simulation that TBS slightly outperformed T 2
D. Another advantage of TBS

over T 2
D is that TBS does not assume the normality.
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Chen and Qin (2010) refined Bai and Saranadasa (1996)’s two-sample test. We

present its one-sample version here. The work is inspired by the observation that

both the term
∑N

i=1 xTi xi in calculating x̄T x̄ and the term trS that is used to offset

x̄T x̄ impose a restricted condition that p and N should be of the same order. The

refined statistic takes the simple form that

TCQ =
1

N(N − 1)

N∑
i 6=j

xTi xj. (2.32)

Given tr(Σ4) = o{tr2(Σ2)}, if {zzzi}Ni=1 satisfies that E(
∏q

k=1 z
αk
ilk

) =
∏q

k=1E(zαkilk )

for a positive integer q such that
∑q

l=1 αl ≤ 8 and l1 6= . . . 6= lq, then under local

alternative that µµµTΣµµµ = o(tr(Σ2)/N),

V ar(TCQ)→ 2tr(Σ2)/(N(N − 1)). (2.33)

Under H0, TCQ has mean 0. The asymptotic null distribution is

TCQ√
2tr(Σ2)/(N(N − 1))

→ N(0, 1). (2.34)

The power function under local alternative µµµTΣµµµ = o(tr(Σ2)/N) is

βTCQ(µµµ) = Φ

(
−zα +

N‖µµµ‖2√
2tr(Σ2)

)
, (2.35)

where zα is upper α quantile of N(0, 1).

The order of p and N is not explicated controlled. Instead, tr(Σ4) = o{tr2(Σ2)}
is used to regularize the growth of p. A sufficient conditions is λp = o{(p −
b)1/2λ1b

−1/4} or λp = o{(p− b)1/4λ
1/2
1 λ

1/2
p−b+1}, where λ1 ≤ . . . ,≤ λp are eigenvalues

of Σ; b is the number of unbounded eigenvalues such that (p − b) → ∞ and

(p− b)λ2
1 →∞. In this special case, the number of divergent eigenvalues of Σ are

not too many and the divergence is not too fast.
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The estimator for tr(Σ2) given in (2.36) is adapted from Bai and Saranadasa

(1996) by the same motivation of excluding the term
∑N

i=1 xTi xi.

t̂r(Σ2) =
tr
(∑N

j 6=k(xj − x̄(j,k))x
T
j (xk − x̄(j,k))x

T
k

)
N(N − 1)

, (2.36)

where x̄(j,k) is the sample mean after excluding xj and xk and x̄(l) is the sample

mean excluding xl.

TBS and TCQ are not invariant tests for the units of variables. Srivastava (2009)

proposed a test TSD2, which is free of scale by standardizing variables with their

corresponding variances that

TSD2 = x̄T (DS/N)−1x̄− (N − 1)p

N − 3
. (2.37)

Under conditions that 0 < ζ ≤ 1, limp→∞ trRi/p < ∞ for i = 1, 2, 3, 4, where

R = D
−1/2
Σ ΣD

−1/2
Σ and DΣ is a diagonal matrix with diagonal elements from the

covariance matrix Σ,

V ar(TCQ)→ 2trR2. (2.38)

Moreover, under H0,
TSD2√
2trR2

→ N(0, 1). (2.39)

A consistent estimator of R2 is

trR2 − p2(N − 1)−1, (2.40)

where R = D
−1/2
S SD

−1/2
S is the sample correlation matrix.

The test statistic looks the same as the one proposed by Srivastava and Du

(2008) under normality assumption, up to an adjustment coefficient cp,N . The

condition 1
2
< ζ ≤ 1 is used to guarantee that the adjustment coefficient converge

to 1. Srivastava (2009) removed the adjustment coefficient and therefore sets the

condition 0 < ζ ≤ 1.
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2.3 Two-sample test on normal mean vectors

Suppose that xij ∼ Np(µµµi,Σi), j = 1, . . . , Ni, i = 1, 2 are two independent random

samples. Denote X1 = (x11,x12, . . . ,x1N1)
T and X2 = (x21,x22, . . . ,x2N2)

T such

that X1 and X2 are independent. For convenience, also denote N = N1 +N2 and

n = N1 +N2 − 2.

Of interest for the two-sample mean problem is to test the null hypothesis

H0 : µµµ1 = µµµ2 (2.41)

versus the alternative hypothesis

H1 : µµµ1 6= µµµ2. (2.42)

2.3.1 Hotelling’s T 2 test

Under classical framework n > p, the Hotelling’s T 2 test is readily applicable for

the case that Σ1 = Σ2. The test statistic is defined as

T 2 = (x̄1 − x̄2)T
(

S

(
1

N1

+
1

N2

))−1

(x̄1 − x̄2), (2.43)

where S is the pooled sample variance that

S =
1

n

2∑
i=1

Ni∑
j=1

(xij − x̄i)(xij − x̄i)
T . (2.44)

Under H0, it has been shown that,

n− p+ 1

np
T 2 ∼ Fp,n−p+1. (2.45)

If Σ1 6= Σ2, but N1 = N2, a new sequence of zzzj = x1j −x2j can be constructed,

on which the one-sample Hotelling’s T 2 test could be applied. If Σ1 6= Σ2 and

N1 6= N2, it is known as the Behrens-Fisher problem for univariate case. In

this case, the Hotelling’s T 2 test is not applicable. Assume N1 < N2, we apply

the method proposed by Scheffe (1943) and generalized to multivariate case by
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Bennett (1950) to obtain an one sample sequence of size N1 that is distributed as

N
(
µµµ1 − µµµ2,Σ1 + N1

N2
Σ2

)
. Define

zzzi = x1i −
√
N1

N2

x2i +
1√
N1N2

N1∑
j=1

x2j −
1

N2

N2∑
k=1

x2k, i = 1, . . . , N1. (2.46)

By construction, {zzzi}N1
i=1 follows the desired N

(
µµµ1 − µµµ2,Σ1 + N1

N2
Σ2

)
distribu-

tion. The one-sample Hotelling’s T 2 test could be applied on {zzzi}N1
i=1.

In Section 2.3.2 reviewing the high-dimensional case, we assume Σ1 = Σ2 unless

otherwise specified.

2.3.2 High-dimensional setting

When p > n, the Hotelling’s T 2 is not well-defined due to the singular sample

covariance matrix (2.44). Even for p < n, the Hotelling T 2 could have poor

performance if p grows the same order as n. Consider the case that p/N → c ∈
(0, 1), N1/N → κ ∈ (0, 1). The asymptotic power of Hotelling’s T 2 with local

alternative (µµµ1 − µµµ2)′Σ−1(µµµ1 − µµµ2) = o(1) is,

βT 2(µµµ1 − µµµ2)→ Φ

(
−zα +

√
(1− c)

2c
κ(1− κ)

{√
n‖Σ−

1
2 (µµµ1 − µµµ2)‖2

})
, (2.47)

where zα is upper α quantile of N(0, 1) distribution (Bai and Saranadasa, 1996).

With usual consideration that
√
n‖Σ− 1

2 (µµµ1−µµµ2)‖2 converges to a positive constant,

(2.47) reveals that power of the Hotelling’s T 2 test increases slowly with increase

of the noncentral parameter when the c is close to 1.

Dempster(1958, 1960) proposed TD test, based on the comparison of variation

between two sample mean vectors, and the variation scattering around the mean

vectors. Recall that X1 = (x11,x12, . . . ,x1N1)
T , X2 = (x21,x22, . . . ,x2N2)

T and X1

is independent from X2. Denote that

X =

X1

X2

 ∼ N
(
µµµ, IN

⊗
Σ
)
, µµµ =

111N1µµµ
′
1

111N2µµµ
′
2

 . (2.48)
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The sample defines a set of orthogonal axes in a Euclidean space of N1 + N2

dimensions. Consider an orthogonal transformation for X such that the new set of

orthogonal dimensions includes one representing the overall mean, one depicting

the mean difference, and the rests as between-sample variation. To achieve this,

the transformation matrix B can be constructed in the following way that

B = (b1,b2, . . . ,bN)′ (2.49)

b1 = N−1/2111N ,

b2 =

(
1

N1

+
1

N2

)−1/2(
1

N1

111N1 ,−
1

N2

111N2

)
,

and the rest of bj, j = 3, . . . , N are chosen such that B is an orthonormal matrix.

Let Y = BX and y′i be the ith row of Y . By construction, y1 represents

the grand mean with E(y1) = (N1µµµ1 +N2µµµ2)/N , and y2 represents the difference

between the two sample means with E(y2) =
(

1
N1

+ 1
N2

)−1/2

(µµµ1 − µµµ2). It follows

that y3, . . . ,yN are distributed as N(0,Σ) and independent of y1 and y2, where

y2 is distributed as N(0,Σ) under H0. Following this thread, TD test is defined as

TD =
yT2 y2∑N

i=3 yTi yi/n
. (2.50)

As quadratic form of normal distribution, yTi yi can be approximated by χ2
r, which

gives TD ∼ Fr,nr under H0.

Dempster (1958) proposes two estimators of r that both apply the method

of moment to an approximated distribution obtained by matching moments of

asymptotic expansions. The first method approximates

n log

(
1

n

N∑
i=3

yTi yi

)
−

N∑
i=3

log(yTi yi) (2.51)

with (
1

r
+

1 + n−1

3r2

)
χ2
n−1, (2.52)
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which gives r̂ as the solution of equation

n log

(
1

n

N∑
i=3

yTi yi

)
−

N∑
i=3

log(yTi yi) =

(
1

r
+

1 + n−1

3r2

)
(n− 1). (2.53)

The second method combines further the information of angles between yi for

yj, denoted by θij with 3 ≤ i < j ≤ N . It approximates

− log(sin2(θij)) (2.54)

by (
1

r
+

3

2r2

)
χ2

1. (2.55)

The second estimator can be obtained from

n log

(
1

n

N∑
i=3

yTi yi

)
−

N∑
i=3

log(yTi yi)−
∑

3≤i<j≤N

log(sin2(θij)) (2.56)

=

(
1

r
+

1 + n−1

3r2

)
(n− 1) +

(
1

r
+

3

2r2

)(
n

2

)
.

Bai and Saranadasa (1996) suggested a new estimator of r by showing that

r =
(trΣ)2

trΣ2
=
p(trΣ/p)2

trΣ2/p
,

and obtaining a consistent estimator of trΣ2 given in (2.57). See also Srivastava

(2007) under conditions that 0 < limp→∞ trΣ/p <∞, i = 1, 2, 3, 4,

t̂r(Σ2) =
n2

(n− 1)(n+ 2)

[
trS2 − (trS)2/n

]
. (2.57)

The resulting estimator of r is

r̂ =
(trS)2

n2

(n−1)(n+2)
(trS2 − (trS)2/n)

. (2.58)

Under local alternative (µµµ1 − µµµ2)TΣ(µµµ1 − µµµ2) = o(( 1
N1

+ 1
N2

)trΣ2), Bai and

Saranadasa (1996) showed that if p/n → c > 0, N1/N → κ ∈ (0, 1), and λmax =
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o(
√

trΣ2), where λmax is the maximum eigenvalue of Σ, then the asymptotic power

function of TD for a known parameter r is

βTD(µµµ1 − µµµ2) = Φ

(
−ξα +

nκ(1− κ)‖µµµ1 − µµµ2‖2

√
2trΣ2

)
, (2.59)

where zα is upper α quantile of N(0, 1) distribution.

Srivastava and Du (2008) presented an equivalent form for the two-sample TD

test that

TD =

(
1

N1

+
1

N2

)−1
(x̄1 − x̄2)T (x̄1 − x̄2)

trS
. (2.60)

The equivalent formulation shows that the Dempster test utilizes the trace of

the sample covariance matrix to standardize the distance between sample means.

Srivastava and Du (2008) proposed a test that standardizes the distance with

DS, a diagonal matrix with diagonal elements from the sample covariance S. The

test statistic is

TSD1 =
( 1
N1

+ 1
N2

)−1(x̄1 − x̄2)TD−1
S (x̄1 − x̄2)− np(n− 2)−1√

2 (trR2 − p2n−1) cp,n
, (2.61)

where cn,p is an adjustment coefficient for improving the convergence of TSD1. It

is suggested that

cn,p = 1 +
tr(R2)

p3/2
, (2.62)

where R = D
−1/2
S SD

−1/2
S is the sample correlation matrix.

Given that n = O(pζ) with 1
2
< ζ ≤ 1 and N1/N → κ ∈ (0, 1), if 0 <

limp→∞ trRi/p < ∞, i = 1, 2, 3, 4 and limp→∞max1≤i≤p λi/
√
p = 0, where R =

D
−1/2
Σ ΣD

−1/2
Σ and λis are the eigenvalues of R, then under H0,

TSD1 → N(0, 1). (2.63)

Furthermore, under local alternative that n(µµµ2−µµµ1)TD−1
Σ (µµµ2−µµµ1)/(p( 1

N1
+ 1
N2

))

is bounded by a constant that does not depend on p for all the p, the asymptotic

power can be obtained by

βTSD1
(µµµ2 − µµµ1)→ Φ

(
−zα +

N1N2

N1 +N2

(µµµ2 − µµµ1)TD−1
Σ (µµµ2 − µµµ1)√

2trR2

)
, (2.64)
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where zα is upper α quantile of N(0, 1) distribution.

Chen et al. (2011) introduced regularized Hotelling’s T 2 test (RHT) by replac-

ing S−1 with the ridge-like estimator that

RHT (λ) = N(x̄1 − x̄2)T (S + λI)−1(x̄1 − x̄2). (2.65)

The asymptotic properties are derived at the same conditions as one-sample test

with one more constraint that N1/N → κ ∈ (0, 1). For local alternative (µµµ1 −
µµµ2)TΣ−1(µµµ1−µµµ2) = O(n−θ) with θ ∈ (0, 1/2), the power converges to 1 as n→∞.

To better cope with the complicated correlation structure, substantial miss-

ingness, and small sample size problem of proteomics data, Chen et al. (2011)

proposed the bootstrap procedures to implement RHT. See paper for the detailed

procedure. We note that the bootstrap procedure requires very heavy computa-

tion.

Lopes et al. (2011a) discussed the idea of reducing the dimension by randomly

projecting the sample to a low-dimensional space such that the Hotelling’s T 2

test is applicable. Following this idea, Lopes et al. (2011a) proposed a random

projection matrix whose entries are randomly drawn from N(0, 1) distribution.

The original null hypothesis is rejected if the null hypothesis on the projection

space is rejected. The procedure results in an exact test for multivariate normal

distribution. However, the direction obtained by a single projection generated from

a random process may not give desired power. Lopes et al. (2011b) proposed a

test which utilizes multiple projections that could potentially increase the chance

of getting higher power by combining information from multiple draws. The idea is

to project the data to different k-dimensional spaces (k < n), perform the classical

Hotelling’s T 2 test for each projection and build the test statistic based on the

average over the ensemble of projection matrices. Let Pk ∈ Rp×k be a projection

matrix that projects data from Rp to Rk. The RP test is defined by

TRP =
N1N2

N1 +N2

(x̄1 − x̄2)TEPk [Pk(P
T
k Σ̂Pk)

−1P T
k ](x̄1 − x̄2), (2.66)

where EPk [Pk(P
T
k Σ̂Pk)

−1P T
k ] is a surrogate for S−1 and is estimated by the average

of Pk(P
T
k Σ̂Pk)

−1P T
k over the ensemble of Pk.
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If N1/N → κ ∈ (0, 1) and k/n = a+ o(1/
√
n) for a ∈ (0, 1), then under H0,

TRP − µ̄n
σ̄n

→ N(0, 1), (2.67)

where

µ̄n =
k

1− k/n
, σ̄n =

√
2k

(1− k/n)3
. (2.68)

With local alternative assumption that (µµµ2 − µµµ1)TΣ−1(µµµ2 − µµµ1) = o(1), the

power function satisfies that

βTRP (µµµ2 − µµµ1)→ Φ

(
−zα + κ(1− κ)

√
1− a

2a
∆̄k

√
n

)
, (2.69)

where zα is upper α quantile of N(0, 1) distribution and

∆̄k = EPk [(µµµ2 − µµµ1)T [Pk(P
T
k Σ̂Pk)

−1P T
k ](µµµ2 − µµµ1)]. (2.70)

Two practical issues are discussed for implementation: the choice of k and

the number of projections. Lopes et al. (2011b) suggests an optimal choice of

k as k = bn/2c under certain conditions. The number of projections can be

determined by increasing the copies of projection until the fluctuation of p-value

becomes negligible. Simulation studies show that 30 is sufficient to obtain the

stable results.

Lauter (1996) and Lauter et al. (1998) proposed a family of score-based tests

with weight function designed in the manner such that the resulting score follows a

left-spherical distribution. Recall the distribution of X as shown in (2.48) and the

transformation matrix B as defined in (2.49). The null hypothesis that µµµ1 = µµµ2

is equivalent to µµµ = µb1 where µ is a constant and the deviation from the null

hypothesis can be measured by the contrast b′2µµµ. For the weight function d, Lauter

(1996) proposed that d should be determined by (X− X̄)′(X− X̄) only and d 6= 0

with probability 1. Define linear score zzz by zzz = Xd, then the test can be carried
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out by the fact that bT2 zzz/szzz follows exact tn distribution, where

s2
zzz = zzz′(IN − b1b

′
1 − b2b

′
2)zzz/n. (2.71)

2.4 Two-sample test on high-dimensional mean

vectors

In this section, we review several methods that are applicable to high-dimensional

data with normality assumption substituted by a factor-like model structure. The

structure is set up in the way that

xij = Γizzzij + µµµi for i = 1, 2, j = 1, . . . , Ni, where each Γi is a p ×m matrix

for some m ≥ p such that ΓiΓ
′
i = Σi, and {zzzij = (zij1, . . . , zijm)}Nij=1 are

m-variate independent and identically distributed random vectors satisfying

E(zzzij) = 000, V ar(zzzij) = Im, and E(z4
ijk) <∞, k = 1, . . . ,m.

Bai and Saranadasa (1996) proposed a test based on the measure of unscaled

distance that

TBS = (x̄1 − x̄2)T (x̄1 − x̄2)−
(

1

N1

+
1

N2

)
trS, (2.72)

where TBS has mean 0 under H0.

Under conditions p/n → c > 0, N1/N → κ ∈ (0, 1), (µµµ1 − µµµ2)TΣ(µµµ1 − µµµ2) =

o(( 1
N1

+ 1
N2

)trΣ2) and λmax = o(
√

trΣ2), if {zzzij}Nij=1, i = 1, 2 satisfy that, whenever∑m
i=1 vi = 4, E(

∏m
k=1 z

vk
ijk) equals 0 when there is at least one vk equals 1 and

equals 1 when there are two vk’s equal to 2, then

V ar(TBS)→ 2

(
1

N1

+
1

N2

)2(
1 +

1

n

)
tr(Σ2). (2.73)

Therefore, under H0,

TBS√
V ar(TBS)

→ N(0, 1). (2.74)
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Under local alternative (µµµ1 − µµµ2)TΣ(µµµ1 − µµµ2) = o(( 1
N1

+ 1
N2

)trΣ2), the asymptotic

power function of TBS test is

β(TBS)→ Φ

(
−zα +

nκ(1− κ)‖µµµ1 − µµµ2‖2

√
2trΣ2

)
, (2.75)

where zα is the upper α quantile of N(0, 1).

Bai and Saranadasa (1996) provided a consistent estimator of tr(Σ2) as

t̂r(Σ2) =
n2

(n− 1)(n+ 2)

[
trS2 − (trS)2/n

]
. (2.76)

TBS requires Σ1 = Σ2 and the p and n should of the same order. Chen and

Qin (2010) examined TBS and pointed out that the term
∑Ni

j=1 xTijxij, i = 1, 2 in

(x̄1 − x̄2)T (x̄1 − x̄2) is not helpful for the testing and has to offset with trS. Both∑Ni
j=1 xTijxij and trS have to be controlled by imposing the condition that p and

n should be of the same order and λmax = o(
√

trΣ2). Accordingly, Chen and Qin

(2010) proposed to use

TCQ =

∑N1

i 6=j xT1ix1j

N1(N1 − 1)
+

∑N2

i 6=j xT2ix2j

N2(N2 − 1)
−

2
∑N1

i=1

∑N2

j=1 xT1ix2j

N1N2

− ‖µµµ1 − µµµ2‖2, (2.77)

which satisfies that E(TCQ) = 0 under H0.

Under conditions N1/N → k ∈ (0, 1), tr(ΣiΣjΣlΣh) = o[tr2{(Σ1 + Σ2)2}] for

i, j, l, h = 1, 2 and local alternative (µµµ1−µµµ2)TΣi(µµµ1−µµµ2) = o(tr((Σ1 +Σ2)2)/N) for

i = 1, 2, if {zzzij}Nij=1, i = 1, 2 satisfy that E(
∏q

l=1 z
αl
ijkl

) =
∏q

l=1E(zαlijkl) for a positive

integer q such that
∑q

l=1 αl ≤ 8 and k1 6= . . . 6= kq,

V ar(TCQ)→ 2

N1(N1 − 1)
tr(Σ2

1) +
2

N2(N2 − 1)
tr(Σ2

2) +
4

N1N2

tr(Σ1Σ2). (2.78)

Therefore, under H0,

TCQ√
V ar(TCQ)

→ N(0, 1). (2.79)
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Under local alternative (µµµ1 − µµµ2)TΣi(µµµ1 − µµµ2) = o(tr((Σ1 + Σ2)2)/N) for i = 1, 2,

the asymptotic power function of TCQ is

βTCQ(µµµ1 − µµµ2) = Φ

−zα +
nk(1− k)‖µµµ1 − µµµ2‖2√

2trΣ̃(k)2

 , (2.80)

where Σ̃(k) = (1− k)Σ1 + kΣ2 and zα is upper α quantile of N(0, 1) distribution.

The estimator for the terms tr(Σ2
1), tr(Σ2

2) and tr(Σ1Σ2) are adapted from

Bai and Saranadasa (1996) under the same motivation of excluding the term∑Ni
j=1 xTijxij, i = 1, 2. The refined estimators are defined as

t̂r(Σ2
i ) =

tr
(∑Ni

j 6=k(xij − x̄i(j,k))x
T
ij(xik − x̄i(j,k))x

T
ik

)
Ni(Ni − 1)

, i = 1, 2 (2.81)

̂tr(Σ1Σ2) =
tr
(∑N1

l=1

∑N2

k=1(x1l − x̄1(l))x
T
1l(x2k − x̄2(k))x

T
2k

)
N1N2

, (2.82)

where x̄i(j,k) is the ith sample mean after excluding xij and xik and x̄i(l) is the ith

sample mean without xil. All these three estimators are consistent that

t̂r(Σ2
1)

tr(Σ2
1)
→ 1,

t̂r(Σ2
2)

tr(Σ2
2)
→ 1, and

̂tr(Σ1Σ2)

tr(Σ1Σ2)
→ 1. (2.83)



Chapter 3
Projection Test for High-dimensional

One-sample Mean Problem

3.1 Background and related work

Let x1, · · · ,xN be a random sample from a p-variate normal distribution Np(µµµ,Σ).

In the one-sample problem, it is of interest to test

H0 : µµµ = µµµ0 versus H1 : µµµ 6= µµµ0. (3.1)

Without loss of generality, we assume µµµ0 = 0 throughout the rest of this disserta-

tion. The classical solution for the one-sample problem is the Hotelling’s T 2 test

which is defined as

T 2 = N x̄TS−1x̄, (3.2)

where x̄ and S−1 are defined in (2.4) and (2.5), respectively. When the dimension is

fixed and small compared to the sample size, the Hotelling’s T 2 test is theoretically

grounded. Denote ζ = µTΣ−1µ. It is well known that (N −p)T 2/(N − 1)p follows

an Fp,N−p(Nζ) distribution, the noncentral F -distribution with (p, N − p) degrees

of freedom and noncentrality parameter Nζ.

However, the scaled distance utilized in (3.2) requires taking inverse of the

sample covariance matrix, which is rank-deficient when the dimension exceeds the

sample size and renders the Hotelling’s T 2 test undefined.
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Various approaches have been developed to take “inverse” of the sample covari-

ance matrix and provide substitutes for the Hotelling’s T 2 test in scenarios with

high-dimensional data. Dempster (1958, 1960) used the trace of sample covariance

matrix; Bai and Saranadasa (1996) and Chen and Qin (2010) proposed identity

matrix; Srivastava and Du (2008) and Srivastava (2009) suggested the diagnoal

matrix of sample covariance matrix; and Chen et al. (2011) adopted the ridge-like

estimator for the inverse of S.

From a different point of view, Lopes et al. (2011a,b); Lauter (1996); Lauter

et al. (1998) approached the problem by considering projecting the sample to a low-

dimensional space which makes construction of exact tests possible. Lopes et al.

(2011a) proposed a single projection matrix with entries randomly generated from

N(0,1) distribution. To achieve higher power, Lopes et al. (2011b) suggested aver-

aging over the multiple random projections. Lauter (1996) designed the projection

weight matrix in a delicate way such that the resulting score reaches left-spherical

distributions. Exact tests follow by utilizing the properties of left-spherical distri-

butions. Despite intuitive and exact, Lauter’s tests are power insufficient (Frick,

1996) and provide few clues for achieving higher power. Besides, the equivalence

of null hypothesis between the original and projected data is often ignored, which

tends to weaken the usefulness of this projection method.

The new method is motivated by the aforementioned projection-based tests,

in recognition of its capability to obtain an exact test by reducing the dimension

to a manageable level. Our new projection tests are distinguished from the ex-

isting ones (Lauter, 1996, Lauter, et al. , 1998, Lopes, et al. , 2011, 2012) in that

the proposed tests are based on data-driven estimation of the optimal projection

direction. During our search for the optimal projection direction, we take the fol-

lowing aspects into consideration: (a) The test is exact with normality assumption

such that the Type I error can be well-controlled. (b) The test should be given

an explicit mechanism to achieve optimal power; this ensures the reliability of the

projection test so that there is no longer concern about “luck” when conducting

the test. (c) The test should do the correct job, meaning that the projection test

is working on the same pair of hypotheses as the original data.
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3.2 New test based on normal population

In this section, we focus on the high-dimensional one-sample problem (3.1) under

the normality assumption, to get insights into the projection test. In Section 3.4,

we will discuss extension of the proposed test to the situation without the normality

assumption.

3.2.1 Optimal projection direction

To develop the projection test, we consider a matrix Ap×k of rank k such that

k � p and k < N . For each sample, we project the original data xi to A to obtain

the yi with a reduced dimension that yi = ATxi, for i ∈ 1, . . . , N .

The projected sample y1, · · · ,yN are independent and identically distributed

according to Nk(A
Tµ, ATΣA). To test the H0: E(yi) = 0, define the projection

Hotelling’s T 2 test to be

T 2
A = N x̄TA(ATSA)−1AT x̄, (3.3)

which is the Hotelling’s T 2 test based on the yi’s. We note that the test statistic

in (3.3) is essentially testing

H0A : µA = 0 vs H0A : µA 6= 0, (3.4)

where µA = ATµ. Obviously, H0A does not imply H0 in (3.1) in general. Our

search of the optimal direction under a power-maximization framework basically

solves two critical issues that how to determine k and how to choose A for a given

k so that T 2
A maximizes the power under H1 in (3.1). Theorem 3.2.1 provides an

elegant solution to these issues.

Theorem 3.2.1. Suppose that x1, · · · ,xN is a random sample from Np(µ,Σ). Let

A be a p× k full column-rank matrix. For a fixed projection rank k, the projection

test T 2
A reaches its best power for H1 with

A = Σ−
1
2W, (3.5)
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where W = (w1, . . . ,wk) such that

w1 = Σ−
1
2µµµ/
√
µµµTΣ−1µµµ, (3.6)

and w2, . . . ,wd are taken to be orthogonal to w1. Moreover, the k = 1 gives the

optimal projection rank under which the optimal projection direction is a = Σ−1µ.

Proof. We show proof with unknown covariance Σ. By the property of Hotelling’s

T 2 test, it holds for the statistic defined in (3.3) that (N − k)T 2
A/{k(N − 1)}

follows the Fk,N−k(NδA) distribution, the noncentral F -distribution with degrees

of freedom k and N − k, and noncentrality parameter NδA, where

δA = µTA(ATΣA)−1ATµ. (3.7)

For a given k, the power of T 2
A is increasing with δA by Lemma 3.6.7. As a

result, we need to maximize δA with respect to A in order to maximize the power of

T 2
A. Denote W = Σ1/2A and PW = W (W TW )−1W T . Note that PW is a projection

matrix and its eigenvalue is either 0 or 1. Rewrite δA in terms of projection matrix

PW as

δA = µµµTA(ATΣA)−1ATµµµ

= µµµTΣ−
1
2

(
W (W TW )−1W T

)
Σ−

1
2µµµ

= µµµTΣ−
1
2PWΣ−

1
2µµµ

≤ µµµTΣ−1µµµ.

Next we construct a matrix A0 such that δA0 reaches the upper bound µTΣ−1µ.

Specifically, let v = Σ−1/2µ and w1 = v/‖v‖. We choose w2, · · · ,wp so that the

matrix (w1, · · · ,wp) is a p× p orthogonal matrix. Next we set

W0 = (w1, · · · ,wk) (3.8)

A0 = Σ−1/2W0.

Then δA0 = µTΣ−1µ, which does not depend on the value of k.
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By the property of F -distribution (Ghosh, 1973), the power function of T 2
A with

a fixed noncentrality parameter δA0 is a decreasing function of k. That is, for a

given level α, denote by Fk,N−k;α the critical value of the F -distribution with k

and N − k degrees of freedom, P{Fk,N−k(NµTΣ−1µ) > Fk,N−k;α} is a decreasing

function of k when N and µTΣ−1µ are fixed. This implies that k = 1 with

a = Σ−1µ is the best choice to achieve the optimal power.

The conclusion from Theorem 3.2.1 is very inspiring in that it not only gives

the optimal projection under a very general construction, but also points out that

only one dimensional projection space is sufficient to achieve the optimal power.

As the result, it provides guideline for how many dimension to select and which

space to project to. Based on Theorem 3.2.1, the optimal projection matrix is

given by a p× 1 vector a that

a = Σ−1µµµ. (3.9)

Accordingly, denote by T 2
a the projection test T 2

A with A = a. Clearly, when A = a,

H0A becomes H0A : µTΣ−1µ = 0, which is equivalent to H0 : µ = 0 under the

assumption of Σ being full rank. Consequently, T 2
a serves as a feasible tool for

testing (3.1). The optimal direction a is consistent with the results as we directly

derive from projection into a one-dimensional space. The proof can be found in

Section 3.6.1.

3.2.2 Implementation and practical issues

3.2.2.1 Algorithm

Theorem 3.2.1 lays the groundwork for our method and sheds the light on the

theoretical validity. We have shown in Theorem 3.2.1 that the optimal projection

a is Σ−1µµµ, under which the t test of projected sample Xa achieves the optimal

power. However, both µµµ and Σ are unknown in practice. There arise the natural

questions: how to obtain the estimate of the optimal direction, and how to maintain

the validity challenged by introducing the estimated weight vector. In this section,

we first describe the implementation algorithm, followed by the discussion of how

our solutions of the above questions would impact the power of the test.

We propose an intuitive and easy-to-compute algorithm following the single
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sample-splitting strategy proposed in Wasserman and Roeder (2009). To imple-

ment the algorithm, the random sample is first partitioned into two separate

sets with a splitting percentage κ such that S1 = {x11, · · · ,x1N1} and S2 =

{x21, · · · ,x2N2}, where N1 = bNκc, N1 + N2 = N . We propose using S1 to

estimate a and S2 to construct T 2
a . Specifically, let x̄1 and S1 be the sample

mean vector and the sample covariance matrix computed from S1, respectively.

Note that S1 may not be invertible when p is greater than N . A simple way

to estimate a based on S1 is the ridge-like estimator â = (S1 + λD)−1x̄1, where

D = diag(S1), the diagonal matrix of S1; and λ is a ridge parameter. We will

study how the performance of T 2
a depends on λ in Section 3.3.2. Since â is

independent of S2, T 2
a based on âTx21, · · · , âTx2N2 follows exactly a noncentral

F -distribution F1,N2−1(N2(âTµ)2/(âTΣâ)). Particularly, under H0 : µ = 0, T 2
a

follows a central F1,N2−1 distribution, which is equivalent to an exact t-test based

on âTx21, · · · , âTx2N2 . We summarize this algorithm into the following diagram.

Algorithm 1: Proposed algorithm for the one-sample test

Input: Data {x1, . . . ,xN}, splitting percentage κ, and ridge penalty λ

(a) Randomly partition the sample {x1, . . . ,xN} into{
estimating set S1: {x11, . . . ,x1N1}

testing set S2: {x21, . . . ,x2N2}
,

where N1 = bNκc and N2 = N −N1.

(b) Obtain weight vector â that

â = (S1 + λD)−1x̄1,

where x̄1 =
∑N1

j x1j and S1 = (N1 − 1)−1
∑N1

j=1(x1j − x̄1)(x1j − x̄1)T .

(c) Construct yi = âTxi for i = 1, . . . , N2.

(d) Calculate the t statistic and the p-value.

p-value = P

(√
N2ȳ

sy
> tN2−1,α

)
,
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where ȳ = N−1
2

∑N2

j=1 yj and s2
y = (N2 − 1)−1

∑N2

j=1(yj − ȳ)2.

The calculation of weight vector â in step (b) involves inverse operation of p×p
matrix S1 + λD, which is time consuming. We present a fast calculation method

which only requires the inverse operation on a N1 ×N1 matrix. Note that

(S1 + λD)−1 =
(
D

1
2 (D−

1
2 S1D

− 1
2 + λIp)D

1
2

)−1

(3.10)

= λ−1D−
1
2 (Ip +MMT )−1D−

1
2 ,

where X1 is the corresponding matrix in X from S1 and

M = (λ(N1 − 1)D)−
1
2XT

1 (IN1 −
1

N1

1N11
T
N1

). (3.11)

For matrix A of p×N1 and B of N1 × p, the following identity holds that

(Ip + AB)−1 = Ip − A(IN1 +BA)−1B,

where Ip is p×p identity matrix with dimension and IN1 is N1×N1 identity matrix.

Finally, we obtain the efficient calculation formula by plugging in (3.11) A = M .

3.2.2.2 Discussion of sample splitting

Sample splitting strategy plays an important role in the algorithm by avoiding

the dependence introduced by estimated weights and therefore maintaining the

exactness. Without sample splitting, the numerator and denominator of t test

statistic from the projected sample with the estimated weight are correlated, which

fails the t-test. We will discuss the selection of splitting parameter in more details

in Section 3.3.1.

On the other hand, sample splitting causes loss of power. It is necessary to

investigate power gain with the impact of sample splitting taken into account.

Here we present a quick (asymptotic) power comparison between the proposed

projection T 2
a test and the classical Hotelling’s T 2 test with a hypothetical example

that N =30, 50, 100, and 200; p = 10 and 20; and N2 = 0.6N . In this case with p <

N , the classical Hotelling’s T 2 is applicable with power function P (Fp,N−p(Nζ) >

Fp,N−p,α), where ζ = µµµTΣ−1µµµ. When N1 → ∞ and λ → 0, (âTµ)2/(âTΣâ) → ζ.



37

Thus, the noncentrality parameter in F1,N2−1(N2(âTµ)2/(âTΣâ)) approximately

equals N2ζ. In the oracle case, the optimal direction is known and the entire sample

is used for testing. The corresponding power function is P (F1,N−1(Nζ) > F1,N−1,α).

We include the oracle case in the comparison as a benchmark.

  
  
  
  
  
  
  
  
  
  
   
   
    
     
       
                

                                                                                                                                                                     

   
   
   
   
   
   
   
   
   
   
   
    
    
    
     
      
       
         

              
                                       

                                                                                                  

   
   
   
   
   
   
   
   
   
   
    
    
    
     
      
       
          

                
                                                                                                                                         

  
  
  
  
  
  
  
  
  
  
   
   
   
    
     
        

                    
                                                                                                                                                             

   
   
   
  
  
  
  
  
   
   
   
   
   
    
    
     
      
         

                 
                                                                                                                                                

    
    
   
   
   
   
   
   
   
   
   
    
    
    
     
      
       
          

                 
                                                                                                                                   

       
     
     
     
    
    
    
    
    
    
     
     
     
     
      
       
        

          
             

                     
                                                                                            

                
            

           
          

          
          

         
         

          
          

          
           

           
            

             
              

                
                   

          

(a) N=30,  N2=18
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(b) N=50,  N2=30
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(c) N=100,  N2=60
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(d) N=200,  N2=120
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Figure 3.1: Power function of Hotelling’s T 2 test and projection Hotelling’s T 2

test at level 0.05. Solid line stands for the benchmark (i.e. the power function of
the projection test based on the entire sample with known optimal direction), the
bold solid, dashed and dotted lines stand for the power function of the proposed
projection test, Hotelling’s T 2 test with p = 10 and Hotelling’s T 2 test when
p = 20, respectively.
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The following observations are obtained from Figure 3.1, which depicts the

power curves under α = 0.05: (a) the Hotelling’s T 2 test suffers from low power

when p is close to N (e.g, the case N = 30 and p = 20); (b) with a high quality esti-

mate of ζ, the proposed projection test may have higher power than the Hotelling’s

T 2 when p is close to N , even with the power loss due to sample splitting; and

(c) the power function of projection test is close to the benchmark, especially for

a large noncentrality parameter.

3.2.2.3 Discussion of ridge-like estimator

In estimating the optimal direction Σ−1µ, the calculation of Σ−1 confronts the same

problem as the classical Hotelling’s T 2 when p is greater than N . Estimation of

Σ−1 is universally challenging in the high-dimensional situations. The discussion

is beyond the scope of this study. A simple solution is the ridge-like estimator

(S1 + λD)−1, where λ is a turning parameter that controls the degree of penalty

and D is a diagonal matrix of S1. A large λ drives the (S1 + λD)−1 towards an

identity matrix while a small λ may not produce stable results. Here the ridge-like

estimator is constructed as (S1 + λD)−1 rather than (S1 + λI)−1 to keep the test

invariant of units. We suggest λ = N−0.5
1 . The intuition is to down-weight the

effect of λD when sample size increases. As will be shown with simulations in

Section 3.3.2, the performance of the test is not sensitive to the choice of λ.

3.2.3 Asymptotic power comparison

In Section 3.2.2, we have shown a toy example of power comparison under N > p

such that the classical Hotelling’s T 2 test is applicable and used as a benchmark

in the comparison. In this section, we assume the local alternative hypothesis H1 :

µ = δδδ/
√
N . The asymptotic power of the proposed projection test is compared

with the Hotelling’s T 2 when N > p and compared with some major existing

methods in high-dimensional situations.

Recall that the sample is partitioned to estimating set S1 with sample size

N1 and testing set S2 with sample size N2. Assume that
√
N2/N → b > 0 as

N → ∞, where N2 is the sample size of S2. Further assume that â → a = Σ−1µ

in probability as the sample size of S1 tends to ∞. Let Φ(·) and zα denote the



39

cumulative distribution function and upper α quantile of N(0, 1), respectively.

Then the asymptotic power function of the proposed projection test at a given

level α is

β1p(η) = Φ(−zα/2 + b
√
η), (3.12)

where η = δδδTΣ−1δδδ.

We first derive the asymptotic power function of T 2 = N x̄TS−1x̄. Note that

T 2 → χ2(p) in distribution under H0 : µ = 0, and T 2 → χ2
p(η) in distribution

under H1 : µ = δδδ/
√
N . Since Eχ2

p(η) = p + η and var{χ2
p(η)} = 2(p + 2η), its

asymptotic power function at level α is

β2p(η|τp) = Φ

{
−zα/

√
1 + 2τp +

1

2

√
τp/(0.5 + τp) ·

√
η

}
, (3.13)

where τp = η/p. The derivation for β2p(η|τp) can be found in Section 3.6.3.

Next we give Proposition 3.2.2, which compares β1p(η) and β2p(η|τp).

Proposition 3.2.2. Assume that
√
N2/N → b. The following statements are

valid.

(a) If b > 0.5 and η →∞ as p→∞, then β1p(η)−β2p(η|τp) > 0 for large enough

p.

(b) If
√
ηb ≥ zα/2 − zα and τp → 0 as p → ∞, then β1p(η) − β2p(η|τp) > 0 for

large enough p.

Proof. As to (a), it suffices to show that

−zα/2 + b
√
η > −zα/

√
1 + 2τp +

1

2

√
τp/(0.5 + τp)

√
η,

which after rearrangement is

√
η

(
b− 1

2

√
τp/(0.5 + τp)

)
> zα/2 − zα/

√
1 + 2τp.

Since
√
τp/(0.5 + τp) < 1/2, it holds that

√
η

(
b− 1

2

√
τp/(0.5 + τp)

)
>
√
η

(
b− 1

2

)
.
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By the assumption that b > 0.5 and η → ∞, it follows that
√
η(b − 1

2
) > zα/2 for

large enough p. Since also zα/
√

1 + 2τp > 0 regardless of the value of τp, we have
√
η(b− 1

2
) > zα/2 − zα/

√
1 + 2τp for large enough p.

As to (b), if τp → 0, then
√

1 + 2τp → 1 and
√
τp/(0.5 + τp)→ 0. Thus (b) is

valid by the assumption in (b).

Statement (a) implies that, if η →∞ as p→∞ and we always set S2 to include

more than 25% of the samples so that b > 0.5, then the proposed projection test

may be asymptotically more powerful than the traditional T 2. It is also worth

noting that N x̄TΣ−1x̄ and T 2 share the same asymptotic power function β2p(η|τp).
In (b), the condition τp → 0 implies that the signal in µ is weak or sparse. In such

situations, (b) implies that the proposed projection test may be asymptotically

more powerful than the traditional T 2 test.

We next derive the asymptotic power of T 2
3 = N‖x̄‖2, which shares the asymp-

totic power function of the tests proposed in Bai and Saranadasa (1996), Srivastava

and Du (2008), and Chen and Qin (2010) under some mild conditions. When p is

close to n, these authors suggested replacing S−1 by Ip, the p× p identity matrix.

Let β3p(δδδ,Σ) be the asymptotic power function of T 2
3 and

β3p(η|τ ∗p ) = Φ

{
−zα/

√
1 + 2τ ∗p +

1

2

√
τ ∗p /(0.5 + τ ∗p ) · √η

}
,

where τ ∗p = δδδTΣδδδ/tr(Σ2). We have the following proposition.

Proposition 3.2.3. Assume that
√
N2/N → b. The following statements are

valid.

(I) Under H1 : µ = δδδ/
√
N , β3p(δδδ,Σ) ≤ β3p(η|τ ∗p )

(II) If b > 0.5 and η →∞, then β1p(η)− β3p(η|τ ∗p ) > 0 for large enough p.

(III) If
√
ηb ≥ zα/2 − zα and τ ∗p → 0 as p → ∞, then β1p(η) − β3p(η|τ ∗p ) > 0 for

large enough p.

Proof. Since x̄ ∼ Np(µ, N
−1Σ), by the properties of normal distribution, it holds

that E(T 2
3 ) = tr(Σ) +N‖µ‖2 and var(T 2

3 ) = 2tr(Σ2) + 4NµTΣµ. Furthermore,
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T 2
3 − E(T 2

3 )√
var(T 2

3 )
→ N(0, 1)

in distribution as N → ∞. Thus under H1 : µ = δδδ/
√
N , the asymptotic power

function of T 2
3 is

β3p(µ,Σ) = Φ

−zα
√

tr(Σ2)

tr(Σ2) + 2δδδTΣδδδ
+

‖δδδ‖2√
2tr(Σ2) + 4δδδTΣδδδ

 .

The derivation of β3p(µ,Σ) can be found in Section 3.6.3. Furthermore,

β3p(µ,Σ) = Φ

{
−zα/

√
1 + 2τ ∗p +

1

2

√
τ ∗p /(0.5 + τ ∗p ) · ‖δδδ‖2/

√
δδδTΣδδδ

}
.

By the Cauchy-Schwartz inequality, it holds that ‖δδδ‖2 ≤
√
δδδTΣδδδ

√
δδδTΣ−1δδδ. There-

fore, ‖δδδ‖2/
√
δδδTΣδδδ ≤ √η. Thus, it follows that

β3p(µ,Σ) ≤ Φ

{
−zα/

√
1 + 2τ ∗p +

1

2

√
τ ∗p /(0.5 + τ ∗p ) · √η

}
= β3p(η|τ ∗p ). (3.14)

This completes the proof of Part (I). As a result, β2p(η|τp) and β3p(η|τ ∗p ) have the

same form. Following the Proposition 3.2.2, Part (II) and (III) hold.

In (III), the condition τ ∗p → 0 means that δδδTΣδδδ = o{tr(Σ2)}, which corresponds

to the assumption µTΣµ = o{N−1tr(Σ2)} for the corresponding one-sample test in

Bai and Saranadasa (1996). Under this assumption, β3p ≈ Φ

{
−zα +

N‖µ‖2√
2tr(Σ2)

}
,

which is exactly the asymptotic power function of the corresponding one-sample

test proposed by Bai and Saranadasa (1996) and Chen and Qin (2010), and the

test by Srivastava and Du (2008) when all the diagonal elements of Σ equal to 1

(i.e., Σ indeed is a correlation matrix).

In order to better understand the conditions in (II) and (III), we examine two

examples with commonly-used correlation structures.

Example 3.1. In this example, we consider the compound symmetry structure,

which is defined as Σ = (1− r)Ip + r1p1
T
p for r ∈ [0, 1).
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First we check the conditions in (II). Under the compound symmetry assump-

tion,

Σ−1 = (1− r)−1{I − {r/(1 + (p− 1)r)}1p1Tp }.

Therefore,

δδδTΣ−1δδδ = (1− r)−1[δδδTδδδ − {r/(1 + (p− 1)r)}(δδδT1p)
2].

Since r/{1 + (p− 1)r} < 1/p, we have

δδδTΣ−1δδδ > (1− r)−1p{p−1δδδTδδδ − (p−1δδδT1p)
2}.

As a result, if lim infp→∞ p
−1δδδTδδδ − (p−1δδδT1p)

2 → b0 > 0, then η → ∞ as p →
∞. Therefore the conditions in (II) hold under some conditions on δδδ if b > 0.5.

Also note that by the Cauchy-Schwartz inequality, it holds that (δδδT1p)
2 ≤ pδδδTδδδ.

Therefore, it is a mild condition to assume that lim infp→∞ p
−1δδδTδδδ− (p−1δδδT1p)

2 →
b0 > 0 as p→∞.

We next examine the conditions in (III). Under the compound symmetry as-

sumption,

tr(Σ2) = (1− r2)p+ r2p2, (3.15)

δδδTΣδδδ = (1− r)δδδTδδδ + r(δδδT1p)
2.

Consider r ∈ (0, 1), if p−2δδδTδδδ → 0 and p−1δδδT1p → 0, then τ ∗p → 0. By Cauchy-

Schwartz inequality, δδδTδδδ ≤
√

(δδδTΣδδδ)(δδδTΣ−1δδδ). Consequently,
√
η > δδδTδδδ/

√
δδδTΣδδδ.

Note that
δδδTδδδ√
δδδTΣδδδ

=
p−1δδδTδδδ√

(1− r)p−2δδδTδδδ + r(p−1δδδT1p)2

.

Hence, under conditions p−2δδδTδδδ → 0, p−1δδδT1p → 0, and lim infp→∞ p
−1‖δδδ‖2 > 0,

we have η → ∞ and therefore
√
ηb ≥ zα/2 − zα for large p. Then, the conditions

in (III) hold.
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Example 3.2 In this example, we consider the auto-correlation structure that the

(i, j)-element of Σ is r|i−j| for r ∈ (0, 1). Further assume that δδδ = c(1Ts ,0
T
p−s)

T for

c 6= 0, where 1d and 0d stand for the d-dimensional vector with all elements being

one and zero, respectively.

First we check the conditions in (II). Since

δδδTΣδδδ = c2[s+ 2{sr(1− r)− r(1− rs)}/(1− r)2,

if s → ∞ as p → ∞, then δδδTΣ−1δδδ → ∞. Hence if we also have b > 0.5, then the

condition in (II) holds.

Next we examine the conditions in (III). Under the specifications,

tr(Σ2) = p+ 2{p(1− r2)r2 − r2(1− r2p)}/(1− r2)2, (3.16)

δδδTΣ−1δδδ = c2{(1 + r2)s− 2r(s− 1)− r2}/(1− r2).

If s/p → 0 as p → ∞, then τ ∗p → 0. Furthermore, if s → ∞ as p → ∞, we

have
√
η →∞. Therefore

√
ηb > zα/2− zα for large p. Thus, the condition in (III)

holds for large p if s/p→ 0 and s→∞ as p→∞.

3.3 Simulation studies

In this section, we conduct simulations to evaluate the finite sample performance

of the proposed test (Algorithm 1) and the competing ones. In what follows,

we conduct three numerical experiments. All three experiments generate samples

from multivariate normal populations. In these cases, we study the performance

of the exact t-test. Experiments 1 and 2 study the tuning parameter introduced

in Algorithm 1. Special attention is given to observing how the tuning parameter

would impact power of the proposed test and make suggestions to the selection for

latter experiments. Experiment 1 is designed to investigate the effect of splitting

percentage. In experiment 2, we study the tuning parameter λ with splitting per-

centage fixed at 40%. Experiment 3 is designed to compare the proposed method

and the alternative tests under multivariate normal distributions.
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We consider the sample size N ∈ (40, 160) and the dimension p ∈ (400, 1600),

which together give four pairs of (N, p). The mean vector µµµ takes the form of

(c1′10,0
′
p−10)T , where 1d and 0d stand for d-dimensional vector with all elements

being one and zero, respectively. The constant c takes values in (0, 0.5, 1). When

c = 0, we obtain the observed Type I error and c = 0.5 or 1 lead to power under

different strength of the means. For the covariance matrix, we set all the marginal

variances to 1, and consider the following three types of off-diagonal setups:

• Compound symmetry structure Σ1 of which Σ1(i, j) = ρ,

• Autocorrelation structure Σ2 of which Σ2(i, j) = ρ|i−j|,

• Combined structure Σ3 as a weighted matrix of Σ1 and Σ2 that Σ3 = 0.5Σ1 +

0.5Σ2.

We set ρ ∈ (0.25, 0.5, 0.75, 0.95) to examine the influence of correlation on the

power. Table 3.1 summarizes the aforementioned settings. Not all the settings will

be used in each experiment. We refer to the introduction before each experiment

for the detailed settings. We set α = 0.05 and our results are obtained based on

10000 replicates.

Table 3.1: Simulation setting specifications

Parameter Choices More details

Σ
Σ1(i, j) = ρ

ρ = 0.25, 0.5, 0.75, 0.95Σ2(i, j) = ρ|i−j|

Σ3 = 0.5Σ1 + 0.5Σ2

µµµ (c1′10,0
′
p−10)T c = 0, 0.5, 1

N 40, 160
p 400, 1600

3.3.1 Experiment 1

With splitting percentage κ, the sample size used for estimation and the test

construction are N1 = bNκc and N2 = N − bNκc, respectively. As a pedagogical

argument, large κ allocates more sample for estimation and therefore produces a

more accurate estimation of the optimal direction. Meanwhile, large κ also reduces
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the sample size used for constructing the t statistic and inevitably leads to a certain

level of power loss. In this section, we explore this trade-off in the simulations by

taking a grid of κ over (0, 1) as 10%, 20%,. . . , 90% and compare the power of each

gird value. During the implementation, λ is set to N−0.5
1 and its effect will be

studied in experiment 2.

Figure 3.2 presents the power curves with setting (N, p, c) = (40, 400, 0.5) and

different covariance matrices as Σ1, Σ2 and Σ3 respectively. All power curves dis-

play an approximate quadratic pattern. As the percentage increases, the power

first improves as the estimation of the projection direction is more accurate. How-

ever, exceedingly increase of the percentage adversely affects the power, as the

power is also an increasing function of sample size used in the testing procedure.

The optimal splitting percentage varies by situations, with most peaks occurring

at grid value 40%, 50% and 60% under our setting that (N, p) = (40, 400). It is

difficult in practice to determine a splitting percentage that works universally best,

due to unknown covariance structure, relative size of N and p, and the concern of

data quality. However, we argue that 40% − 60% is a reasonable range. In the

following simulation studies, we set the splitting percentage to 40%.
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Figure 3.2: Effect of splitting percentage for (N, p, c) = (40, 400, 0.5)

3.3.2 Experiment 2

Tuning parameter λ is used in the construction of ridge-like estimator S−1(λ) =

(S + λDS)−1 for Σ−1. In Section 3.2.2, we suggest λ = N−0.5
1 , which down-weights

λ when the sample size increases. In this experiment, we study the effect of tuning

parameter λ by comparing power under various λ values. The splitting percentage

is fixed with 40% and N1 = 0.4N . We take λ = N−τ1 and τ ∈ (0.1, 0.2, . . . , 1).

Under this specification, λ takes value between (0.063, 0.758) for N = 40 and takes

value between (0.016, 0.660) for N = 160. The data is generated from multivariate

normal distribution with sample size, dimension and the mean vector as specified

in Table 3.1. For covariance matrix, we only include the compound symmetry

correlation structure R1. The pattern under autocorrelation and the combined

correlation structures are similar and therefore omitted from here. Power plots

presented by Figure 3.3 - Figure 3.5 show that the proposed test is fairly robust

for a wide range of λ.
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Figure 3.3: Type I error under various values of λ with λ = N−τ1 and N1 = 0.4N .
The mean vector is set to 0.
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Figure 3.4: Power under various values of λ with λ = N−τ1 and N1 = 0.4N . The
mean vector is set to (0.51′10,0

′
p−10)T .
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Figure 3.5: Power under various values of λ with λ = N−τ1 and N1 = 0.4N . The
mean vector is set to (11′10,0

′
p−10)T .



50

3.3.3 Experiment 3

In Experiment 3, we compare the proposed test and several alternative tests on

random samples from multivariate normal distributions with configurations spec-

ified in Table 3.1. The competing algorithms include Dempster test (Dempster,

1958), BS test (Bai and Saranadasa, 1996), CQ test (Chen and Qin, 2010), SD test

with adjusting factor (Srivastava and Du, 2008), SD test without adjusting factor

(Srivastava, 2009), Lauter’s PC test (Lauter, 1996) and the two versions of the RP

test (Lopes et al., 2011a,b). The parameter r for Dempster test is estimated by

(2.58)’s one-sample form. For the RP test with average of multiple projections,

we set the number of projection to 30 as Lopes et al. (2011b) suggested that the

number of projections over 30 does not make considerable difference. Tables 3.2-

3.4 show the percentage of rejection based on 10000 replicates for three correlation

structures with various configurations of (N, p, c).

First we examine the empirical Type I errors, which correspond to the columns

with c = 0. For significance level α = 0.05, the Monte Carlo error equals to

1.96
√

0.05× 0.95/10000 = 0.43%. Therefore, well-controlled Type I errors are

expected to vary roughly between 4.57% and 5.43%. Across all configurations

considered, we observe that the proposed test, Lauter’s PC test and RP test with

single projection have good control of Type I error, with the false positive rate

close to the pre-assigned significance level α = 0.05. The version of RP test with

average over multiple projections is conservative and tends to produce very low

Type I error. In contrast, the alternatives BS test, CQ test and SD test, tend to

overestimate the Type I error. These observations line well with the theoretical

results as the proposed test, Lauter’s PC test and RP test with single projection

are all exact tests, while the other tests are developed based on the asymptotic

approximations. We note that Dempster’s test also performs well in terms of

controlling Type I errors. Dempster’s test is exact up to estimation of a parameter

for use in the testing.

Inspection over Tables 3.2-3.4 reveals that power depends strongly on signal

strength, as well as the correlation structures. It is clear that the increase of signal
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strength c helps improve the power as a larger signal is easier to detect. Specifica-

tion of correlation structure can also affect the power. For example, Dempster test,

BS test, CQ test and SD test are built up on ‖x̄‖2. In other words, they substitute

the S−1 with identity matrix and ignore the off-diagonal information. Therefore,

they are expected to have favorable performance when the true covariance matrix

is closer to identity matrix, such as autocorrelation structure with small ρ. Next

we discuss each of the Tables 3.2-3.4 in details.

Table 3.2 shows the results with compound symmetry correlation Σ1, of which

all entries equal to ρ. With Σ1, our test outperforms all the other alternatives.

We observe a dramatic increase of the power as c increases from 0.5 to 1. When

c = 0.5, the power of the proposed test increases significantly with the increase

of ρ. As dimension increases, there is a downward trend. However, even in the

extreme case with (N, p) = (40, 1600), the proposed test can manage to produce a

high power when c = 1, and when c = 0.5 with a large value of ρ. The two versions

of RP tests present similar pattern as the proposed test and outperform the rest

alternatives. It is very interesting to compare the performance of the proposed test,

and the two versions of the RP tests more closely. Our proposed test is an exact

test constructed with a designed projection direction for optimal power. The RP

test with single projection is also an exact test, but with the projection direction

randomly generated. As expected, the proposed test outperforms RP test with

single projection. The RP test with average over multiple projections is developed

to improve performance, by increasing the chance of catching a better projection,

in the cost of losing the exactness property. However, our numerical results show

that the RP test with multiple projections cannot guarantee the improvement over

the single projection version, at least under our simulation settings. For example,

under configuration (N, p, c) = (40, 1600, 0.5), the power of RP test with multiple

projections is lower than that of the RP test with single projection for most of

the ρ values. Lauter’s PC test is known to be power deficient when the true mean

vector contains 0 elements. This is well observed from our simulation studies that

increase of sample size or the value of c cannot help improve the power for PC test.

The other alternative tests, Dempster test, BS test, CQ test and SD test, tend to
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be adversely affected by the value of ρ and have power decreasing dramatically

with even a slight increase of ρ. Their overall performance is unsatisfactory for

the compound symmetry case. When c = 0.5, these tests almost have no power.

Except for the cases with ρ as small as 0.25, the other alternative tests tend to have

fairly small amount of improvement in both c = 0.5 and 1 when N increases from

40 to 160. As discussed, this could be due to the fact that they do not consider

the off-diagonal information of the covariance matrix.

Table 3.3 shows the results with autocorrelation structure Σ2, of which the

(i, j) entry is ρ|i−j|. With Σ2 and especially under small ρ, the Dempster test, BS

test, CQ test and SD test have satisfactory performance and produce higher power

over the proposed test and the two versions of RP tests. We observe a large gap in

power when (N, c) = (40, 0.5). However, the power of the proposed test increases

significantly to a comparable level as the competing test with either increase of

c from 0.5 to 1, or the sample size N from 40 to 160. Similar increasing pattern

is observed for the two versions of RP tests, except that the level of increase is

considerably slower than our proposed test. Again, there is no guarantee that the

RP test with multiple projections would outperform the one with single projection.

We observe that there are a few cases where the RP test with multiple projections

outperforms the proposed test. This is due to the sample splitting procedure of

the proposed algorithm, which reduces the sample used in testing and causes a

certain amount of loss in power.

Apart from the compound symmetry Σ1 and the autocorrelation structure Σ2,

we also consider a more complex correlation structure Σ3 as a combination of Σ1

and Σ2 under equal weights. The corresponding simulation results are shown in

Table 3.4. Under this combined correlation structure, the proposed test outper-

forms all the competing tests. The power is generally lower than the case of Σ1,

but higher than the case of Σ2. Another difference from the case of R1 is that the

power of the proposed test is decreasing with ρ. For c = 0.5, Dempster test, BS

test, CQ test and the SD test have very low power except for (N, p) = (160, 400).

In general, the power of these test decreases with ρ.
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Table 3.2: Comparison for one-sample tests: multivariate normal with Σ1

c = 0 c = 0.5 c = 1

Methods 0.25 0.5 0.75 0.95 0.25 0.5 0.75 0.95 0.25 0.5 0.75 0.95

N = 40,p = 400
New 5.16 5.04 4.86 5.05 48.60 70.34 94.10 99.98 98.81 99.54 99.96 100.00

Dempster 6.77 6.22 5.71 5.49 12.63 8.13 6.98 6.46 80.44 22.71 13.06 10.23
BS 7.73 7.80 7.79 7.80 14.64 10.55 9.39 9.11 88.21 30.28 18.51 15.33
CQ 7.72 7.82 7.79 7.77 14.64 10.50 9.41 9.11 88.18 30.22 18.50 15.32

SD withAdjust 4.20 1.71 0.52 0.15 7.97 2.29 0.63 0.22 54.21 6.41 1.29 0.36
SD noAdjust 8.48 8.21 7.87 7.71 16.34 11.15 9.53 8.96 90.25 32.69 18.93 15.06
Lauter’s PC 5.18 5.18 5.17 5.15 5.66 5.21 5.17 5.11 6.25 5.59 5.31 5.22

RP single 5.01 4.99 4.86 5.03 13.80 20.65 40.58 98.34 54.05 74.46 95.94 100.00
RP average 0.06 0.06 0.12 0.09 4.58 20.42 94.41 100.00 99.87 100.00 100.00 100.00

N = 40,p = 1600
New 4.91 4.82 4.85 4.69 13.92 23.54 53.93 98.13 70.54 80.97 95.99 99.99

Dempster 6.93 6.19 5.73 5.48 7.81 6.71 5.96 5.73 12.45 8.12 6.96 6.45
BS 7.74 7.79 7.78 7.79 8.85 8.30 8.12 8.06 14.47 10.42 9.35 8.92
CQ 7.76 7.80 7.77 7.77 8.88 8.32 8.14 8.05 14.49 10.41 9.34 8.92

SD withAdjust 2.76 0.69 0.14 0.00 3.22 0.73 0.17 0.00 5.26 0.97 0.20 0.01
SD noAdjust 8.37 8.12 7.86 7.71 9.67 8.70 8.24 7.94 15.79 11.14 9.52 8.78
Lauter’s PC 5.15 5.15 5.15 5.15 5.30 5.22 5.19 5.18 5.50 5.29 5.23 5.18

RP single 4.65 5.08 4.99 4.95 6.77 7.68 11.52 52.16 14.49 20.55 42.17 98.29
RP average 0.04 0.04 0.06 0.05 0.13 0.24 1.21 99.90 3.10 19.18 97.23 100.00

N = 160,p = 400
New 4.93 4.98 4.99 4.88 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Dempster 5.74 5.26 4.89 4.77 87.20 19.91 12.09 9.73 100.00 100.00 99.95 89.50
BS 6.66 6.71 6.69 6.71 94.00 26.42 16.69 13.78 100.00 100.00 100.00 99.41
CQ 6.66 6.71 6.69 6.71 94.02 26.45 16.69 13.76 100.00 100.00 100.00 99.39

SD withAdjust 3.11 0.99 0.34 0.07 50.59 3.63 0.72 0.17 100.00 92.93 7.69 1.27
SD noAdjust 6.87 6.83 6.71 6.65 94.39 26.76 16.83 13.72 100.00 100.00 100.00 99.36
Lauter’s PC 4.76 4.74 4.74 4.73 5.98 5.23 4.95 4.87 7.08 5.88 5.32 5.11

RP single 4.81 5.15 4.99 4.84 98.07 99.92 100.00 100.00 100.00 100.00 100.00 100.00
RP average 0.01 0.02 0.01 0.02 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

N = 160,p = 1600
New 4.54 4.48 4.44 4.50 98.94 99.96 100.00 100.00 100.00 100.00 100.00 100.00

Dempster 5.76 5.22 4.87 4.77 11.15 7.32 6.11 5.68 93.07 19.49 11.60 9.41
BS 6.71 6.69 6.69 6.69 13.09 9.46 8.37 8.11 97.90 26.09 16.49 13.60
CQ 6.71 6.69 6.70 6.70 13.10 9.47 8.37 8.11 97.91 26.11 16.48 13.61

SD withAdjust 2.10 0.40 0.05 0.02 3.82 0.53 0.05 0.02 29.18 1.19 0.15 0.03
SD noAdjust 6.90 6.82 6.71 6.66 13.48 9.46 8.43 8.09 98.05 26.51 16.39 13.53
Lauter’s PC 4.72 4.73 4.73 4.74 4.76 4.71 4.69 4.71 4.93 4.73 4.73 4.71

RP single 5.23 4.83 4.80 4.70 34.28 55.48 91.85 100.00 98.27 99.95 100.00 100.00
RP average 0.00 0.00 0.00 0.00 41.05 97.30 100.00 100.00 100.00 100.00 100.00 100.00
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Table 3.3: Comparison for one-sample tests: multivariate normal with Σ2

c = 0 c = 0.5 c = 1

Methods 0.25 0.5 0.75 0.95 0.25 0.5 0.75 0.95 0.25 0.5 0.75 0.95

N = 40,p = 400
New 5.01 5.04 5.02 5.02 46.81 34.83 20.93 13.46 99.99 99.52 91.13 68.01

Dempster 5.06 4.97 4.75 5.30 89.47 77.24 51.45 17.29 100.00 100.00 99.96 84.57
BS 5.57 5.57 5.46 6.86 90.19 78.40 53.88 20.81 100.00 100.00 99.99 88.16
CQ 5.59 5.57 5.44 6.85 90.16 78.39 53.83 20.81 100.00 100.00 99.99 88.15

SD withAdjust 3.75 3.68 3.30 2.72 84.86 70.93 44.71 9.94 100.00 100.00 99.85 68.93
SD noAdjust 7.25 7.28 7.61 8.52 90.57 80.54 57.97 23.86 100.00 100.00 99.96 87.61
Lauter’s PC 4.69 4.67 4.93 4.96 36.78 28.64 16.49 6.63 92.38 77.29 40.81 9.26

RP single 5.52 5.11 5.00 4.97 12.71 12.15 11.51 15.28 44.17 43.04 42.40 60.42
RP average 0.02 0.02 0.13 1.80 1.36 2.35 4.14 18.45 96.36 93.38 86.98 97.08

N = 40,p = 1600
New 4.93 5.07 4.83 5.16 17.36 13.68 9.80 6.53 94.73 84.77 58.18 22.55

Dempster 4.91 5.14 4.88 4.74 48.45 37.63 23.47 9.96 99.99 99.91 94.58 42.28
BS 5.05 5.46 5.36 5.49 49.13 38.40 24.63 11.40 99.99 99.91 94.96 45.81
CQ 5.08 5.48 5.29 5.50 49.26 38.35 24.60 11.44 99.99 99.91 94.94 45.74

SD withAdjust 1.77 1.91 2.04 1.81 30.97 22.82 12.73 3.66 99.92 99.03 86.28 23.53
SD noAdjust 7.04 7.13 7.19 7.55 53.38 43.79 29.11 14.45 99.98 99.79 95.07 50.80
Lauter’s PC 4.92 5.11 5.08 4.99 15.69 13.57 9.77 6.17 45.99 34.47 19.55 7.99

RP single 4.61 4.99 4.87 4.89 6.04 6.47 6.17 6.68 11.71 12.12 11.46 13.14
RP average 0.00 0.00 0.00 0.23 0.00 0.00 0.00 0.55 0.59 0.46 0.99 6.55

N = 160,p = 400
New 4.77 4.95 4.76 4.91 100.00 99.50 90.60 96.54 100.00 100.00 100.00 100.00

Dempster 4.61 4.97 5.12 5.34 100.00 100.00 100.00 85.83 100.00 100.00 100.00 100.00
BS 5.03 5.50 5.83 6.61 100.00 100.00 100.00 89.10 100.00 100.00 100.00 100.00
CQ 5.03 5.49 5.83 6.62 100.00 100.00 100.00 89.10 100.00 100.00 100.00 100.00

SD withAdjust 4.20 4.42 4.17 2.73 100.00 100.00 100.00 72.60 100.00 100.00 100.00 100.00
SD noAdjust 5.41 5.78 6.19 6.93 100.00 100.00 100.00 88.85 100.00 100.00 100.00 100.00
Lauter’s PC 4.87 4.71 4.70 5.00 89.99 71.70 34.04 7.34 100.00 100.00 71.60 10.28

RP single 4.65 4.95 4.75 5.27 89.44 85.36 80.43 98.54 100.00 100.00 100.00 100.00
RP average 0.00 0.08 0.66 1.66 100.00 99.84 97.95 100.00 100.00 100.00 100.00 100.00

N = 160,p = 1600
New 4.50 4.82 4.60 4.84 97.50 89.89 61.44 36.12 100.00 100.00 100.00 99.54

Dempster 4.73 4.72 4.99 5.11 99.99 99.89 95.03 42.55 100.00 100.00 100.00 100.00
BS 4.86 5.00 5.30 5.98 100.00 99.90 95.35 45.67 100.00 100.00 100.00 100.00
CQ 4.86 4.98 5.29 5.99 100.00 99.90 95.35 45.66 100.00 100.00 100.00 100.00

SD withAdjust 3.47 3.46 3.57 2.70 100.00 99.83 93.02 29.91 100.00 100.00 100.00 99.99
SD noAdjust 5.40 5.48 5.65 6.33 100.00 99.87 95.47 46.65 100.00 100.00 100.00 100.00
Lauter’s PC 5.27 5.08 4.84 4.78 42.34 31.61 16.88 6.42 97.49 83.24 39.61 9.04

RP single 4.86 4.67 4.56 5.45 25.35 24.48 23.41 37.24 92.06 90.94 90.47 98.77
RP average 0.00 0.00 0.00 0.58 8.88 9.63 12.68 49.05 100.00 100.00 99.99 100.00
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Table 3.4: Comparison for one-sample tests: multivariate normal with Σ3

c = 0 c = 0.5 c = 1

Methods 0.25 0.5 0.75 0.95 0.25 0.5 0.75 0.95 0.25 0.5 0.75 0.95

N = 40,p = 400
New 5.04 4.97 5.24 5.19 42.03 41.23 34.91 29.71 99.04 98.27 97.16 93.76

Dempster 6.82 6.68 6.38 6.02 26.75 12.64 9.38 8.05 99.93 78.81 38.79 21.82
BS 7.37 7.73 7.75 7.86 29.27 14.57 11.73 10.39 99.95 86.13 48.62 29.47
CQ 7.40 7.71 7.71 7.89 29.30 14.54 11.68 10.35 99.96 86.09 48.67 29.42

SD withAdjust 5.39 4.27 2.71 1.32 20.68 8.06 4.18 1.88 99.61 52.80 15.70 5.47
SD noAdjust 8.15 8.36 8.34 8.27 33.33 15.93 12.72 10.85 99.96 88.48 52.41 32.24
Lauter’s PC 5.07 5.17 5.13 5.19 6.12 5.57 5.33 5.22 8.10 6.30 5.80 5.57

RP single 4.86 5.20 4.95 5.06 12.83 14.60 15.63 26.31 48.15 53.40 60.76 86.04
RP average 0.00 0.03 0.17 1.45 2.52 5.21 12.10 45.20 98.58 99.56 99.78 99.99

N = 40,p = 1600
New 4.76 4.89 5.20 5.42 13.05 12.51 11.88 8.75 70.52 67.60 65.63 45.33

Dempster 7.17 6.90 6.48 6.19 9.58 7.78 7.18 6.81 27.30 12.45 9.31 8.28
BS 7.74 7.80 7.80 7.78 10.34 9.01 8.46 8.30 30.00 14.44 11.59 10.42
CQ 7.76 7.81 7.78 7.72 10.28 8.95 8.46 8.29 30.05 14.45 11.54 10.40

SD withAdjust 4.19 2.70 1.44 0.73 5.79 3.18 1.61 0.77 15.53 5.26 2.19 1.04
SD noAdjust 8.48 8.43 8.32 8.19 11.70 9.76 9.05 8.82 34.82 15.94 12.59 11.17
Lauter’s PC 5.10 5.14 5.19 5.20 5.39 5.27 5.21 5.21 5.71 5.44 5.30 5.31

RP single 5.00 4.84 4.79 5.23 6.68 6.81 7.05 8.80 13.07 14.15 16.65 23.86
RP average 0.00 0.01 0.04 0.42 0.04 0.10 0.19 1.35 1.45 3.11 8.49 32.33

N = 160,p = 400
New 4.93 4.68 4.60 4.99 100.00 100.00 99.93 99.99 100.00 100.00 100.00 100.00

Dempster 5.98 5.73 5.44 5.04 100.00 83.26 33.73 18.91 100.00 100.00 100.00 100.00
BS 6.45 6.67 6.73 6.72 100.00 90.99 43.97 25.76 100.00 100.00 100.00 100.00
CQ 6.47 6.67 6.72 6.72 100.00 91.00 43.98 25.74 100.00 100.00 100.00 100.00

SD withAdjust 4.92 3.04 1.81 0.82 99.99 48.74 10.03 2.98 100.00 100.00 99.99 78.09
SD noAdjust 6.70 6.80 6.89 6.85 100.00 91.47 45.28 26.38 100.00 100.00 100.00 100.00
Lauter’s PC 4.70 4.75 4.75 4.74 7.09 6.01 5.56 5.20 10.27 7.09 6.21 5.83

RP single 5.36 5.28 4.97 4.91 94.31 96.07 97.07 100.00 100.00 100.00 100.00 100.00
RP average 0.00 0.01 0.25 0.96 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

N = 160,p = 1600
New 4.54 4.44 4.41 4.72 97.44 97.59 94.35 79.76 100.00 100.00 100.00 100.00

Dempster 6.12 5.77 5.45 5.25 23.85 11.17 8.51 7.42 100.00 91.94 33.55 20.31
BS 6.66 6.68 6.70 6.77 26.24 13.24 10.44 9.46 100.00 97.40 44.83 27.33
CQ 6.67 6.68 6.70 6.77 26.26 13.22 10.41 9.44 100.00 97.42 44.81 27.32

SD withAdjust 4.13 2.06 0.84 0.39 15.66 3.70 1.26 0.58 100.00 29.28 4.52 1.28
SD noAdjust 6.83 6.80 6.85 6.86 27.30 13.49 10.70 9.61 100.00 97.42 46.28 28.33
Lauter’s PC 4.69 4.71 4.75 4.74 4.93 4.78 4.71 4.70 5.44 4.91 4.79 4.74

RP single 4.97 5.30 5.41 5.20 28.38 33.95 40.01 68.67 94.88 97.86 99.36 99.99
RP average 0.00 0.00 0.00 0.47 18.49 35.78 58.69 95.91 100.00 100.00 100.00 100.00
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3.4 Extension to non-normal distributions

3.4.1 Optimal projection direction

In this section, we further investigate the proposed projection test with extension

to non-normal distributions. It is known that under mild conditions, T 2
A has an

asymptotic noncentral χ2-distribution with k degrees of freedom and noncentrality

parameterNδA. The optimal direction can be obtained using the similar techniques

as the normal case. Thus, we have the following theorem.

Theorem 3.4.1. Suppose that x1, · · · ,xN is a random sample from a population

with mean µ and covariance matrix Σ. Further assume that for any nonzero con-

stant p × k matrix A with a fixed k, AT x̄ → N(ATµ, ATΣA) in distribution and

ATSA − ATΣA → 0 in probability as N → ∞. The projection test T 2
A defined in

(3.3) for the one-sample problem (3.1) reaches its asymptotic best power for H1 in

(3.1) at k = 1 and A = Σ−1µ.

Proof. Under some mild regularity conditions T 2
A follows the χ2

k(NδA) distribution,

the noncentral χ2-distribution with k degrees of freedom and noncentrality param-

eter NδA, where δA = µTA(ATΣA)−1ATµ. Using the property of χ2-distribution

as Lemma 3.6.6 (shown in Kallenberg, 1990) , the power of T 2
A increases with δA

for given k and N . As a result, we want to maximize δA with respect to A in

order to maximize the power of T 2
A. Denote by χ2

k;α the critical value of the χ2-

distribution with k degrees of freedom. By Lemma 3.6.5 (Theorem 2 in Ghosh,

1973), for a given level α, P{χ2
k(NµTΣ−1µ) > χ2

k;α} is a decreasing function of k

when NµTΣ−1µ is fixed. Using this property of χ2-distribution and exact the same

argument as those used in the proof of Theorem 3.2.1, it can be shown that k = 1

with A = Σ−1µ is the best choice to achieve the optimal power. This completes

the proof of Theorem 3.4.1.

Theorem 3.4.1 implies that we may construct a projection χ2-test by projecting

the original sample along the direction Σ̂−1µ̂ for the one-sample problem. Thus,
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the single sample-splitting strategy used for the projection Hotelling’s T 2 test can

be used to construct a projection χ2-test.

3.4.2 Simulation results

In this section, we conduct simulations to investigate the performance of the algo-

rithm for non-normal populations. To this end, we generate random samples from

the multivariate t-distribution. Denote by tν(µµµ,Σ) the multivariate-t distribution

with mean vector µµµ, covariance matrix Σ, and the degrees of freedom ν. The con-

struction of tν(µµµ,Σ) is based on the fact that given zzz ∼ N(0,Σ), u ∼ χ2
ν , and u is

independent from zzz, then x = µµµ + zzz/
√
u/ν is distributed as tν(µµµ,Σ). The other

simulation settings are the same as used in experiment 3 in Section 3.3.3. Per-

centage of rejection based on 10000 replicates for three correlation structures with

various configurations of (N, p, c) are shown in Tables 3.5-3.7. Since the sample

sizes in some of the settings are small, we use the small sample correction which

applies the t-test. In this case, we can also examine the robustness of the tests on

the normality assumption.

We first take a look at the Type I error at the columns with c = 0. We note that

the proposed test still keeps the Type I error well. The other projection tests seem

to be problematic in different ways. The RP test with single projection tends to be

a little conservative in general. The Lauter test is well behaved in the compound

symmetry case and the combined case, but turns extremely conservative for the

autocorrelation case. Similar extreme situation for autocorrelation structure is also

observed for BS test and SD test. On the other hand, CQ test tends to have an

improved Type I error with autocorrelation structure.

Generally, the power performance is less satisfied compared with cases of mul-

tivariate normal as expected. The patterns of power under compound symmetry

structure and the combined structure are very similar to their multivariate normal

counterpart. For autocorrelation, we recall that Dempster test, BS test, CQ test

and SD test are powerful in the multivariate normal cases. In Table 3.6, however,

we observe that Dempster test, BS test and SD test break down in cases where

(N, p, c) = (40, 1600) or (N, p, c) = (40, 400, 0.5). The CQ test keeps momentum

and generally outperforms the proposed test. However, the power of the proposed
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test increases dramatically with the signal strength c and the sample size N .

Table 3.5: Comparison for one-sample tests: multivariate t with Σ1

c = 0 c = 0.5 c = 1

Methods 0.25 0.5 0.75 0.95 0.25 0.5 0.75 0.95 0.25 0.5 0.75 0.95

N = 40,p = 400
New 5.09 4.94 4.88 4.71 37.02 57.48 89.13 99.94 96.51 98.59 99.86 100.00

Dempster 5.07 5.44 5.16 5.05 8.52 7.12 6.27 5.84 38.09 14.37 9.86 8.29
BS 6.25 7.41 7.66 7.76 10.01 9.24 8.91 8.71 45.99 19.11 13.95 12.35
CQ 7.85 7.96 7.93 7.94 12.19 9.75 9.17 8.92 55.22 20.18 14.47 12.58

SD withAdjust 2.97 1.45 0.45 0.15 4.80 1.83 0.50 0.18 22.74 4.06 0.84 0.27
SD noAdjust 7.14 7.86 7.74 7.57 11.36 9.75 9.06 8.52 54.58 21.00 14.34 12.11

Lauter 4.66 4.80 4.81 4.82 5.17 4.95 4.85 4.79 5.89 5.34 5.00 4.90
RP single 4.33 4.15 4.36 4.23 11.65 16.81 34.72 96.43 45.75 65.28 91.90 100.00

RP average 0.01 0.04 0.03 0.06 1.81 9.90 79.92 100.00 98.10 99.99 100.00 100.00

N = 40,p = 1600
New 4.72 4.62 4.69 4.71 11.88 18.94 44.98 96.04 61.34 74.40 92.50 99.97

Dempster 5.44 5.81 5.57 5.37 6.04 6.09 5.76 5.54 8.52 7.16 6.36 5.99
BS 6.53 7.45 7.74 7.82 7.25 7.89 8.03 8.03 10.05 9.41 9.08 8.93
CQ 7.86 7.96 7.95 7.96 8.92 8.35 8.25 8.24 12.24 9.87 9.30 9.10

SD withAdjust 1.69 0.63 0.12 0.00 1.92 0.69 0.12 0.00 2.76 0.79 0.15 0.00
SD noAdjust 7.31 7.97 7.85 7.64 8.16 8.42 8.12 7.88 11.55 9.90 9.14 8.68

Lauter 5.12 5.18 5.20 5.21 5.18 5.14 5.16 5.19 5.28 5.17 5.14 5.15
RP single 4.35 4.36 4.39 4.29 5.93 7.02 9.91 45.00 12.36 17.23 36.15 96.25

RP average 0.01 0.02 0.02 0.02 0.03 0.11 0.52 97.53 1.16 8.83 84.39 100.00

N = 160,p = 400
New 4.86 4.77 4.90 4.76 99.99 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Dempster 5.46 5.18 4.97 4.89 36.38 12.65 8.92 7.70 99.99 98.68 63.94 34.77
BS 6.43 6.73 6.80 6.84 44.60 16.77 12.38 11.03 99.99 99.73 85.32 54.53
CQ 6.82 6.86 6.87 6.89 48.30 17.04 12.51 11.13 99.99 99.78 86.04 55.09

SD withAdjust 2.99 0.98 0.28 0.14 19.04 2.45 0.43 0.21 99.91 37.91 2.91 0.50
SD noAdjust 6.57 6.83 6.84 6.83 47.67 17.29 12.49 10.95 99.99 99.76 85.83 54.02

Lauter 4.80 4.84 4.84 4.83 5.65 5.18 5.05 4.95 6.73 5.74 5.38 5.15
RP single 4.31 4.21 4.17 4.36 94.90 99.49 100.00 100.00 100.00 100.00 100.00 100.00

RP average 0.01 0.00 0.00 0.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

N = 160,p = 1600
New 4.27 4.64 4.69 4.69 96.30 99.74 100.00 100.00 100.00 100.00 100.00 100.00

Dempster 5.28 4.90 4.66 4.60 8.34 6.32 5.51 5.29 36.94 12.33 8.68 7.47
BS 6.29 6.59 6.66 6.69 9.75 8.20 7.76 7.56 45.75 16.45 12.13 10.80
CQ 6.74 6.71 6.69 6.71 10.46 8.36 7.87 7.61 49.87 16.73 12.27 10.90

SD withAdjust 1.89 0.35 0.09 0.01 2.71 0.38 0.10 0.02 10.66 0.81 0.10 0.04
SD noAdjust 6.54 6.68 6.70 6.67 10.18 8.42 7.83 7.51 49.57 16.80 12.13 10.68

Lauter 4.54 4.54 4.57 4.56 4.86 4.71 4.64 4.61 5.04 4.83 4.78 4.71
RP single 4.41 4.35 4.23 4.35 28.75 46.19 85.36 100.00 95.08 99.65 100.00 100.00

RP average 0.00 0.00 0.00 0.00 16.62 82.52 100.00 100.00 100.00 100.00 100.00 100.00
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Table 3.6: Comparison for one-sample tests: multivariate t with Σ2

c = 0 c = 0.5 c = 1

Methods 0.25 0.5 0.75 0.95 0.25 0.5 0.75 0.95 0.25 0.5 0.75 0.95

N = 40,p = 400
New 4.92 4.72 5.15 4.55 34.49 26.51 16.07 10.81 99.32 96.11 79.58 55.31

Dempster 0.05 0.17 0.80 3.27 10.04 11.00 11.39 8.56 92.77 91.15 83.76 48.47
BS 0.08 0.25 1.02 4.65 12.42 13.43 14.05 11.29 94.45 92.97 86.68 55.35
CQ 5.49 5.71 5.83 6.77 68.47 55.52 36.29 15.44 100.00 99.97 97.97 64.15

SD withAdjust 0.04 0.05 0.37 1.34 7.13 8.03 8.00 3.84 91.59 89.34 79.00 33.06
SD noAdjust 0.16 0.48 1.57 5.99 20.35 20.70 19.99 14.67 97.78 96.67 91.34 61.40

Lauter 0.46 0.76 1.66 4.00 1.53 2.31 3.49 4.98 5.90 6.81 7.87 6.73
RP single 3.85 4.40 4.34 4.12 10.16 10.22 10.12 13.08 37.12 36.14 35.35 51.57

RP average 0.00 0.00 0.03 1.26 0.39 0.73 2.20 12.52 84.30 79.70 73.11 91.40

N = 40,p = 1600
New 4.54 4.64 4.91 4.78 13.20 11.24 8.16 6.00 82.95 70.16 44.58 17.93

Dempster 0.00 0.00 0.02 1.13 0.00 0.00 0.22 2.09 7.62 7.79 9.38 9.44
BS 0.00 0.00 0.06 1.58 0.00 0.00 0.30 2.72 9.59 9.90 11.96 11.86
CQ 5.07 5.16 5.23 5.93 30.83 24.57 16.62 9.58 98.44 94.23 75.89 29.10

SD withAdjust 0.00 0.00 0.00 0.11 0.00 0.00 0.02 0.30 1.74 2.05 2.91 2.41
SD noAdjust 0.00 0.00 0.13 2.51 0.00 0.05 0.57 4.55 18.33 18.81 19.84 17.45

Lauter 0.05 0.12 0.40 2.08 0.10 0.18 0.52 2.30 0.21 0.40 0.80 2.87
RP single 4.26 4.24 4.22 4.18 5.60 5.31 5.49 6.01 10.32 9.83 9.97 11.53

RP average 0.00 0.00 0.00 0.11 0.00 0.00 0.01 0.29 0.13 0.19 0.26 3.61

N = 160,p = 400
New 4.66 4.86 4.90 4.95 99.69 96.53 78.24 88.90 100.00 100.00 100.00 100.00

Dempster 0.41 1.03 2.41 4.33 99.52 99.02 95.86 53.53 99.99 99.99 99.99 99.96
BS 0.52 1.30 2.97 5.57 99.61 99.27 96.64 59.70 99.99 100.00 99.99 99.98
CQ 5.32 5.68 5.75 6.38 99.99 99.92 98.91 62.70 100.00 100.00 100.00 100.00

SD withAdjust 0.31 0.81 1.70 2.14 99.59 99.00 94.47 37.44 99.99 100.00 99.99 99.93
SD noAdjust 0.77 1.48 3.28 6.09 99.80 99.46 96.90 61.76 100.00 100.00 100.00 99.99

Lauter 0.92 1.60 2.87 4.35 6.34 8.40 9.53 5.81 24.25 25.56 22.83 8.63
RP single 4.55 4.42 4.36 4.38 82.42 76.72 70.40 95.73 100.00 100.00 100.00 100.00

RP average 0.00 0.02 0.23 0.88 99.94 98.87 93.69 99.97 100.00 100.00 100.00 100.00

N = 160,p = 1600
New 4.50 4.78 4.74 4.83 89.31 74.86 46.17 27.09 100.00 100.00 99.98 97.38

Dempster 0.00 0.03 0.40 3.04 43.74 40.56 33.32 17.30 99.72 99.67 99.64 95.47
BS 0.00 0.07 0.47 3.80 47.26 43.91 36.50 19.82 99.78 99.74 99.75 96.40
CQ 4.98 4.93 5.16 6.08 98.83 95.34 75.76 27.93 100.00 100.00 100.00 98.82

SD withAdjust 0.00 0.00 0.16 1.22 33.20 30.69 24.45 9.06 99.59 99.57 99.37 88.00
SD noAdjust 0.00 0.05 0.57 4.16 53.10 49.61 40.86 21.79 99.92 99.86 99.90 96.36

Lauter 0.15 0.26 0.65 3.31 0.29 0.66 1.22 4.07 0.95 1.56 2.51 5.19
RP single 4.48 3.98 4.32 4.05 19.83 19.19 18.86 30.07 84.29 84.13 82.51 96.48

RP average 0.00 0.00 0.00 0.44 2.43 3.08 5.69 33.96 100.00 100.00 100.00 100.00
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Table 3.7: Comparison for one-sample tests: multivariate t with Σ3

c = 0 c = 0.5 c = 1

Methods 0.25 0.5 0.75 0.95 0.25 0.5 0.75 0.95 0.25 0.5 0.75 0.95

N = 40,p = 400
New 5.01 5.19 5.24 4.88 31.76 31.21 27.25 22.56 96.29 95.28 92.42 85.93

Dempster 3.39 5.02 5.51 5.40 8.88 8.38 7.51 6.95 78.22 37.80 20.45 13.58
BS 3.95 6.21 7.09 7.31 10.61 9.87 9.48 9.14 82.84 45.72 26.91 18.78
CQ 7.39 7.79 7.86 7.73 19.60 12.02 10.35 9.67 95.36 54.45 29.48 20.02

SD withAdjust 2.32 2.99 2.12 1.11 6.30 4.75 3.04 1.46 68.31 22.40 8.13 3.36
SD noAdjust 4.89 7.07 7.71 7.74 13.44 11.53 10.47 9.61 90.14 54.13 30.77 20.85

Lauter 4.07 4.66 4.86 4.83 4.88 5.13 5.05 4.92 6.48 5.94 5.58 5.30
RP single 4.11 4.41 3.92 4.70 10.21 11.67 12.90 22.49 40.10 45.59 52.01 78.51

RP average 0.01 0.01 0.10 1.05 0.99 2.53 6.07 33.46 91.26 95.85 97.57 99.89

N = 40,p = 1600
New 4.97 4.68 5.08 5.06 10.21 10.33 9.94 7.48 59.66 57.14 54.29 36.00

Dempster 3.55 5.45 5.70 5.73 4.40 6.01 6.18 6.11 8.72 8.47 7.65 7.19
BS 4.09 6.49 7.17 7.42 5.15 7.21 7.76 7.86 10.40 10.02 9.63 9.46
CQ 7.78 7.89 7.92 7.82 9.68 8.82 8.59 8.28 20.33 12.28 10.64 9.88

SD withAdjust 1.59 1.63 1.03 0.65 1.89 1.88 1.11 0.68 4.16 2.74 1.48 0.84
SD noAdjust 5.04 7.22 7.82 7.85 6.30 8.12 8.46 8.37 13.12 11.46 10.54 9.99

Lauter 4.45 5.11 5.15 5.18 4.57 5.11 5.18 5.14 4.76 5.25 5.24 5.20
RP single 4.27 4.09 4.21 4.36 5.68 5.62 6.36 7.28 11.38 11.96 14.38 19.23

RP average 0.00 0.00 0.00 0.17 0.00 0.03 0.07 0.75 0.64 1.28 3.62 19.59

N = 160,p = 400
New 4.69 4.83 4.66 5.02 99.96 99.82 98.91 99.73 100.00 100.00 100.00 100.00

Dempster 4.85 5.47 5.34 4.99 93.01 36.48 17.99 12.35 99.98 99.96 99.84 95.43
BS 5.55 6.51 6.72 6.82 95.22 44.56 22.75 16.47 99.99 99.99 99.92 98.69
CQ 6.78 6.93 6.93 6.91 97.98 47.73 23.55 16.82 100.00 99.99 99.96 98.93

SD withAdjust 3.72 2.94 1.68 0.78 87.30 19.33 6.15 2.02 99.99 99.89 88.11 28.52
SD noAdjust 5.89 6.76 6.88 6.90 96.54 46.91 23.64 16.91 100.00 99.99 99.93 98.25

Lauter 4.68 4.86 4.83 4.83 6.51 5.72 5.33 5.20 9.13 6.63 6.08 5.66
RP single 4.46 4.39 4.29 4.38 87.88 90.63 92.57 99.90 100.00 100.00 100.00 100.00

RP average 0.01 0.01 0.10 0.51 99.99 100.00 99.99 100.00 100.00 100.00 100.00 100.00

N = 160,p = 1600
New 4.51 4.64 4.72 4.81 91.20 91.58 83.69 64.67 100.00 100.00 100.00 100.00

Dempster 4.67 5.30 5.09 4.90 11.60 8.30 6.98 6.23 97.17 36.84 17.48 12.69
BS 5.28 6.38 6.49 6.60 13.14 9.78 8.83 8.37 98.13 46.23 22.37 16.87
CQ 6.70 6.71 6.68 6.70 16.74 10.56 9.17 8.48 99.67 50.00 23.19 17.27

SD withAdjust 2.94 1.87 0.79 0.35 6.89 2.67 1.12 0.39 85.63 10.63 2.55 0.85
SD noAdjust 5.57 6.52 6.64 6.73 14.08 10.26 9.10 8.60 98.82 49.48 23.29 17.56

Lauter 4.46 4.54 4.57 4.52 4.91 4.81 4.74 4.69 5.20 5.01 4.88 4.80
RP single 4.34 4.45 3.97 4.47 23.40 27.21 31.95 58.09 90.09 94.17 97.28 99.94

RP average 0.00 0.00 0.00 0.27 6.12 15.53 34.56 87.79 100.00 100.00 100.00 100.00
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3.5 Real data example

In this section, we demonstrate the proposed projection test with an empirical

analysis of a high resolution micro-computed tomography dataset which contains

the bone volume measured at many different bone density levels in a genetic mu-

tation study. Data were collected at Center for Quantitative X-Ray Imaging at

Pennsylvania State University. See Percival et al. (2014) for detailed description of

protocols. In this empirical analysis, we compare the performance of the proposed

projection test with several competing ones, on the comparative study for the bone

density pattern of two adjacent bones in mice’s skull.

We first normalize bone volume by dividing the bone volume at each bone

density level by the total bone volume across all the density levels to get rid of the

total bone size effect such that the two bones are comparable. Then we prepare the

data for one-sample test by taking difference of the two normalized bone volume

at the corresponding density level for each subject. The volume difference at bone

intensity levels from 10 to 100 are used in this analysis. There are total 22 samples

available for this analysis. Thus, the dimension and the sample size of this data

set are p = 91 and N = 22, respectively.

Table 3.8: Bone volume dataset: p-values of one-sample tests

δ New D1958 BS1996 CQ2010 SD2008w SD2008wo L1996 LJW2011 LJW2012
1 0 0 0 0 0 0 0 0 0

0.8 0 0 0 0 0 0 0 0.0005 0
0.6 0 0 0 0 0 0 0 0.0007 0
0.4 0.001 .0001 0 0 0 0 0.0008 0.0713 0.0002
0.2 0.003 0.098 0.0771 0.0782 0.2482 0.0583 0.1003 0.5337 0.6499

We first apply the testing procedures that are included in experiments 3 and

4 to this set. To implement the proposed method, we set the value of λ to (22 ×
0.4)−0.5 = 0.34 and the splitting percentage as 40%. The p-values are reported

in Table 3.8. All the p-values are very small, implying that the growth pattern is

significantly different. To compare the powers of different tests under this specific

setting, we demonstrate the how p-values of the tests change as the signal becomes

weaker. To this end, we set x̄ to be the same mean, and rrri = xi − x̄, the residual

vector of the i-th subject, and then construct new data zzzi = δx̄+rrri for i = 1, · · · , N .

By the construction, smaller δ results in weaker signals, and would make the
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test more challenging. Table 3.8 depicts p-values of all tests on new data with

δ = 1, 0.8, · · · , 0.2. As expected, the p-value of each test increases as δ decreases.

The single random projection test fails to reject H0 at significant level 0.05

when δ = 0.4. All tests but the newly proposed projection test fail to reject the

null hypothesis at significant level 0.05 when δ = 0.2. We plot the absolute values

of the upper triangular elements of the sample correlation matrix in Figure 3.6,

which indicates that there exist high correlations among variables. This may be

the reason why the proposed projection test is more powerful than Dempster test,

BS test and SD test as these tests ignore the correlation among variables.
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Figure 3.6: Histogram of absolute values of paired sample correlations among bone
volumes at all different bone density levels.
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3.6 Proofs

3.6.1 Projection to one dimensional space

In this section, we consider the projection to a one-dimensional space and show

that the corresponding optimal direction is consistent with the findings in Theorem

3.2.1. In this special case, we search for a vector a of length d such that the test

based on linear score of Xa gives highest power and is equivalent to the original

test.

Denote y = Xa such that y is a vector of length N . Denote the i-th element

as yi and they are identically and independently distributed as N(µY , σ
2
Y ), where

µY = a′µµµ, σ2
Y = a′Σa. For testing the univariate mean Ha

0 : µY = 0, we use

z-test with known Σ and t-test unknown Σ. In each case, we show that the power

function is increasing with noncentrality parameter and the maximum power can

be attained by taking the projection direction to be Σ−1µµµ.

Lemma 3.6.1. Let y1, . . . , yN be random sample from N(µY , σ
2
Y ), where σ2

Y is

known. The power of the z-test to H0 : µY = 0 increases with |µY |/σY .

Proof. z-test is applied to test H0 : µY = 0 with the test statistic Z =
√
Nȳ/σY .

Denote δ =
√
NµY /σY . Consider

P (|Z| < zα/2) = P (|Z| < zα/2)

= P

(
−zα/2 <

√
Nȳ

σ
< zα/2

)

= P

(
−zα/2 −

√
NµY
σY

<

√
N(ȳ − µY )

σY
< zα/2 −

√
NµY
σY

)
= Φ

(
zα/2 − δ

)
− Φ

(
−zα/2 − δ

)
=

1√
2π

∫ zα/2−δ

−zα/2−δ
e−x

2/2dx.

Denote the power function as

β(δ) = 1− 1√
2π

∫ zα/2−δ

−zα/2−δ
e−x

2/2dx.
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By Leibniz’s rule,

∂β(δ)

∂δ
=

1√
2π

{
exp

(
−1

2
(zα/2 − δ)2

)
− exp

(
−1

2
(zα/2 + δ)2

)}
.

It follows that

∂β(δ)

∂δ

{
< 0 for δ < 0

> 0 for δ > 0

Hence, β(δ) is a monotone increasing function of |δ|.

Lemma 3.6.2. Let y1, . . . , yN be random sample from N(µY , σ
2
Y ), where σ2

Y is

unknown. The power of the t-test to H0 : µY = 0 increases with |µY |/σY .

Proof. t-test is applied to test H0 : µY = 0 with the test statistic t =
√
Nȳ/sY ,

s2
Y =

∑
(yi − ȳ)2/(N − 1). Denote δ =

√
NµY /σY . Consider

P (|t| < tα/2,N−1) = P
(
|t| < tα/2,N−1

)
= P

(
−tα/2,N−1 <

√
Nȳ

sY
< tα/2,N−1

)

= P

−tα/2,N−1 <
ȳ − µY + µY√
σ2
Y /N

√
s2Y /N

σ2
Y /N

< tα/2,N−1


= P

−tα/2,N−1 <

ȳ−µY√
σ2
Y /N

+ δ√
s2Y /N

σ2
Y /N

< tα/2,N−1

 .

Denote

Z =
ȳ − µY√
σ2
Y /N

, Q =
s2
Y /N

σ2
Y /N

.

It follows that

Z ∼ N(0, 1), Q ∼ χ2
N−1/(N − 1),

and Z is independent with Q. Hence the power function can be written as

P (|t| > tα/2,N−1) = 1− P
(
−tα/2,N−1

√
Q− δ < Z < tα/2,N−1

√
Q− δ

)
= 1− E

(
P
(
−tα/2,N−1

√
Q− δ < Z < tα/2,N−1

√
Q− δ

) ∣∣∣Q)
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= 1−
∫ ∞

0

(∫ tα/2,N−1
√
q−δ

−tα/2,N−1
√
q−δ

1√
2π
e−x

2/2dx

)
f(q)dq.

For ∀q, denote

g(δ) =

∫ tα/2,N−1
√
q−δ

−tα/2,N−1
√
q−δ

e−x
2/2dx.

By Leibniz’s rule,

∂g(δ)

∂δ
= exp

(
−1

2

(
tα/2,N−1

√
q + δ

)2
)
− exp

(
−1

2

(
tα/2,N−1

√
q − δ

)2
)
.

It follows that
∂β(δ)

∂δ

{
< 0 for δ < 0,

> 0 for δ > 0.

Hence, g(δ) is a decreasing function of |δ| and β(δ) is a monotone increasing func-

tion of |δ|.

As Lemma 3.6.1 and 3.6.2 show, the power function is an increasing function of

noncentrality parameter |µY |/σY , i.e., |a′µµµ|/
√

a′Σa, for both cases with known and

unknown Σ. Next we will show that the maximum can be attained with a = Σ−1µµµ.

Lemma 3.6.3.

arg max
a,a6=0

∣∣∣∣ a′µµµ√
a′Σa

∣∣∣∣ = Σ−1µµµ.

Proof. Let www = Σ
1
2 a such that a = Σ−

1
2www,

arg max
a,a6=0

∣∣∣∣ a′µµµ√
a′Σa

∣∣∣∣ = arg max
a,a6=0

(a′µµµ)2

a′Σa

= arg max
a,a6=0

a′µµµµµµ′a

a′Σa

= arg max
a,a6=0

www′Σ−
1
2µµµµµµ′Σ−

1
2www

www′www
.

Let f(www) = www′Σ−
1
2µµµµµµ′Σ−

1
2www/www′www. By matrix algebra, max f(www) = λ1, where

λ1 is the maximum eigenvalue of Σ−
1
2µµµµµµ′Σ−

1
2 and it is attained when www equals to

the eigenvector corresponding to λ1. Denote this eigenvector as www1.
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By the definition of eigenvector, Σ−
1
2µµµµµµ′Σ−

1
2www1 = λ1www1. By using µµµ′Σ−

1
2www1 is

a scalar, it gives that www1 ∝ Σ−
1
2µµµ and λ1 = µµµ′Σ−1µµµ.

Therefore, if we project the data into a one-dimensional space, the optimal

direction is Σ−1µµµ, which is consistent with the results in Theorem 3.2.1.

3.6.2 Projection to multi-dimensional space

Here we introduce lemmas that facilitate the proof of Theorem 3.2.1 with the

unknown Σ. Proof of these lemmas can be found in the reference paper if not

presented here.

Lemma 3.6.4. For any fixed 0 < α < 1, P (Fk,n−k(δ) > Fk,n−k,α) is a decreasing

function of k with fixed noncentrality parameter δ.(Theorem 7 of Ghosh (1973))

Lemma 3.6.5. For any fixed 0 < α < 1, P (χ2
k(δ) > χ2

k,α) is a decreasing function

of k with fixed noncentrality parameter δ.(Theorem 2 of Ghosh (1973))

Lemma 3.6.6. Let Q ∼ χ2
k(δ)(k ≥ 1), for all c ∈ R, P (Q ≥ c) is an increasing

function of δ.(Part of Theorem 1.1 of Kallenberg (1990))

Proof. The proof is given in Kallenberg (1990). We outline it here for completeness.

Q can be decomposed to the sum of two independent random variables V and

X2, where

V ∼ χ2
k−1(0), and X ∼ N(

√
δ, 1).

Let g denote the density for V and let Φ and φ be the probability distribution

function and density function for Z ∼ N(0, 1).

Let Q1 ∼ χ2
k(δ1) and Q2 ∼ χ2

k(δ2), where δ1 ≤ δ2.

P (Q2 ≥ c)− P (Q1 ≥ c)

= P (Q1 ≤ c)− P (Q2 ≤ c)

=

∫ c

0

[{
Φ(δ

1/2
1 + (c− v)1/2)− Φ(δ

1/2
1 − (c− v)1/2)

}
−
{

Φ(δ
1/2
2 + (c− v)1/2)− Φ(δ

1/2
2 − (c− v)1/2)

}]
g(v)dv
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=

∫ c

0

[∫ δ
1/2
2 −(c−v)1/2

δ
1/2
1 −(c−v)1/2

φ(z)dz −
∫ δ

1/2
2 +(c−v)1/2

δ
1/2
1 +(c−v)1/2

φ(z)dz

]
g(v)dv

=

∫ c

0

{∫ δ
1/2
2 −(c−v)1/2

δ
1/2
1 −(c−v)1/2

φ(z)
[
1− exp

(
−2(c− v)1/2(z + (c− v)1/2)

)]}
g(v)dv.

It holds that for all u, h ∈ R,

0 ≤ φ(z) [1− exp (−2h(z + h))] ≤ (2π)−1/2.

Hence the conclusion follows.

Lemma 3.6.7. Let x1, . . . ,xN be a random sample of size N from Np(µµµ,Σ), p < N

and Σ is unknown. The power of the Hotelling’s T 2 test to H0 : µµµ = 0 increases

with µµµ′Σ−1µµµ.

Proof. In this case of unknown Σ and p < N , the Hotelling’s T 2 can be applied

with the test statistic

T 2 = N x̄′S−1x̄,

where S = 1
N−1

∑
i(xi − x̄)(xi − x̄)′. The power function is

P
(
(N − p)T 2/(p(N − 1)) > Fp,N−p,α

)
,

where (N − p)T 2/(p(N − 1)) is a noncentral F with the noncentrality parameter

δ = Nµµµ′Σ−1µµµ.

By construction, denote F = V/p
W/(n−p) , where V ∼ χ2

p(δ), W ∼ χ2
n−p, and V is

independent with W . The power function is

P (F > Fp,n−p,α) = P

(
V/p

W/(n− p)
> Fp,n−p,α

)
= P

(
V >

p

n− p
WFp,n−p,α

)
= E

[
P

(
V >

p

n− p
WFp,n−p,α

) ∣∣∣W]
=

∫ ∞
0

P

(
V >

p

n− p
wFp,n−p,α

)
f(w)dw.
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For each each w, denote

g(δ) = P

(
V >

p

n− p
wFp,n−p,α

)
.

By lemma 3.6.6, g(δ) is an increasing function of δ for each w. Hence the power

of Hotelling’s T 2 test is also an increasing function of µµµ′Σ−1µµµ.

3.6.3 Derivation for the β2p(η|τp) and β3p(µ,Σ)

3.6.3.1 Derivation for the β2p(η|τp)

The statistic T 2 = N x̄TS−1x̄ is distributed as χ2(p) with mean p and variance 2p

under the null hypothesis, and distributed as χ2
p(η) with mean p+ η and variance

2(p+ 2η) under the alternative. Therefore, the power function is

β2p(η|τp) = P

(
T 2 − p√

2p
> zα

)
(3.17)

= P

(
T 2 − (p+ η)√

2(p+ 2η)
>

√
2pzα + p− (p+ η)√

2(p+ 2η)

)

= Φ

(
−
√

2pzα + p− (p+ η)√
2(p+ 2η)

)

= Φ

(
− zα√

1 + 2η/p
+

1

2

√
η

0.5p+ η

√
η

)
.

Plugging τp = η/p will give (3.13).

3.6.3.2 Derivation for the β3p(µ,Σ)

Because x̄ ∼ Np(µ, N
−1Σ), the statistic T 2

3 = N‖x̄‖2 has mean tr(Σ) and variance

2tr(Σ2) under null hypothesis, and mean tr(Σ) + N‖µ‖2 and variance 2tr(Σ2) +

4NµTΣµ under alternative hypothesis. Also by the asymptotic normality that

T 2
3 − E(T 2

3 )√
var(T 2

3 )
→ N(0, 1),
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it holds that

β3p(µ,Σ) = P

(
T 2

3 − tr(Σ)√
2tr(Σ2)

> zα

)
(3.18)

= P

(
T 2

3 − (tr(Σ) +N‖µ‖2)√
2tr(Σ2) + 4NµTΣµ

>

√
2tr(Σ2)zα −N‖µ‖2√
2tr(Σ2) + 4NµTΣµ

)

= Φ

(
−
√

2tr(Σ2)zα −N‖µ‖2√
2tr(Σ2) + 4NµTΣµ

)

= Φ

(
−zα

√
tr(Σ2)

tr(Σ2) + 2NµTΣµ
+

N‖µ‖2√
2tr(Σ2) + 4NµTΣµ

)
.

β3p(µ,Σ) = Φ

−zα
√

tr(Σ2)

tr(Σ2) + 2δδδTΣδδδ
+

‖δδδ‖2√
2tr(Σ2) + 4δδδTΣδδδ

 .

Plug in µ = δδδ/
√
N will complete the derivation.



Chapter 4
Projection Test for High-dimensional

Two-sample Mean Problem

4.1 Introduction

In Chapter 3, we have developed a projection test for the one-sample mean problem

under high-dimensional scenarios in which the dimension of data can be greater

than the sample size. For a random sample x1, . . . ,xN from a p-dimensional pop-

ulation x with finite mean E(x) = µ and finite positive definite covariance matrix

cov(x) = Σ, we show that the optimal direction for this projection test is Σ−1µ

and the test under this projection has equivalent hypotheses as the original data.

In this chapter, we extend this idea of optimal projection from the one-sample

mean problem to the two-sample case, in which two independent random sam-

ples x11, . . . ,x1N1 and x21, . . . ,x2N2 are available. Classical settings often assume

normal population and the equal covariance matrix. Let x11, . . . ,x1N1 be a ran-

dom sample from the population Np(µ1,Σ) and x21, . . . ,x2N2 be another random

sample from the population Np(µ2,Σ). Denote n = N1 + N2 − 2. Under the

high-dimensional specification, n� p. We are interested in testing

H0 : µ1 = µ2 versus H1 : µ1 6= µ2. (4.1)

Let x̄i and Si be the sample mean vector and sample covariance matrix with

respect to the ith sample, respectively. In this case, the two-sample Hotelling’s T 2
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test can be applied with the test statistic

T̃ 2 = (x̄1 − x̄2)T
(

S0

(
1

N1

+
1

N2

))−1

(x̄1 − x̄2), (4.2)

where S0 is the pooled sample covariance S0 = {(N1 − 1)S1 + (N2 − 1)S2}/n.

For high-dimensional data in which n < p, S0 is singular and as a result the

Hotelling’s T 2 test is undefined. In literature, there are two families of approaches

developed to deal with this high-dimensionality: one is to obtain an appropriate

substitute for the inverse of the S and the other is to project the original data to a

smaller space for dimension reduction such that the classical methods can still be

applied. Our work follows the projection scheme that we first obtain a projection

direction and then conduct the test on the projected sample. The major difference

with the previous methods is that the proposed direction is derived explicitly by

maximizing the power of the projection test. When Σ1 = Σ2 = Σ, the projection

test can be naturally extended from the one-sample test. A piece of complexity

arises when the two covariance matrices differ. This unequal covariance matrices

situation needs special attention and we will discuss it separately.

The remains of this chapter is organized into three main sections. Firstly, we

discuss the classic case with the normal population and equal covariance assump-

tion. Secondly, we discuss the extension of equal covariance case without normality

assumption. Thirdly, we further study the situation of normal population but with

unequal covariances.

4.2 New test based on normal populations with

equal covariance

In this section, we assume normal populations and equal covariance matrix. Let

x11, . . . ,x1N1 be a random sample from the population Np(µ1,Σ) and x21, . . . ,x2N2

be another from the population Np(µ2,Σ). The two samples are independent with

each other. The problem of interest is to test the null hypothesis H0 : µ1 = µ2

versus the alternative H1 : µ1 6= µ2. Denote µd = µ1 − µ2, we can rewrite the

hypotheses as H0 : µd = 0 versus H0 : µd 6= 0.
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4.2.1 Optimal projection direction

To develop the projection test, we consider a matrix Ap×k of rank k such that

k � p and k < N . For each sample, we project the original data to A to obtain a

sequence of new sample with reduced dimension. That is yij = ATxij, for i = 1, 2

and j = 1, . . . , Ni. Here we use the common projection matrix A in order to

maintain the equality of the covariance matrices of two projected samples. The

distribution of the projected sample can be easily obtained that

y1j
i.i.d.∼ N(ATµ1, A

TΣA), j = 1, . . . , N1, (4.3)

y2j
i.i.d.∼ N(ATµ2, A

TΣA), j = 1, . . . , N2. (4.4)

Denote µ1A = ATµ1 and µ2A = ATµ2. On these projected samples, the

Hotelling’s T 2 test can be applied to test

H0A : µ1A = µ2A versus H1A : µ1A 6= µ2A. (4.5)

The corresponding test statistic is

T̃ 2
A = (x̄1 − x̄2)TA

(
ATS0

(
1

N1

+
1

N2

)
A

)−1

AT (x̄1 − x̄2), (4.6)

where x̄i and S0 are as defined in (4.2) .

As we have discussed in Chapter 3, the search for the optimal projection in-

volves two steps. The first step is to determine the optimal projection with a given

projection dimension k. The second step is to search the dimension k and the cor-

responding projection direction that results in the best power among the all. As

a direct result of Theorem 3.2.1, we have the following corollary which addresses

both issues. In the end, it is also very important to be able to conclude that the

projected test is testing the same hypothesis as the original. We will confirm the

equivalence after the corollary.

Corollary 4.2.1. Suppose that for i = 1 and 2, xij, j = 1, · · · , Ni, is a random

sample from N(µi,Σ). Let A be a p × k full column-rank matrix. For a fixed
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projection rank k, the projection test T̃ 2
A reaches its best power for H1 with

A = Σ−
1
2 W̃ , (4.7)

where W̃ = (w̃1, . . . , w̃k) with

w̃1 = Σ−
1
2µd/

√
µT
d Σ−1µd, (4.8)

and w̃2, . . . , w̃d are taken to be orthogonal to w̃1. Moreover, the k = 1 gives the

optimal projection rank under which the optimal projection direction is a = Σ−1µd.

Proof. By the property of the Hotelling’s T 2 test, it holds for the statistic defined

in (4.6) that ((n−k+ 1)/kn)T̃ 2
A follows the Fk,n−k+1(N1N2/(N1 +N2)δ̃A) distribu-

tion, the noncentral F -distribution with degrees of freedom k and n− k + 1, and

noncentrality parameter N1N2/(N1 +N2)δ̃A, where

δ̃A = µT
dA(ATΣA)−1ATµd. (4.9)

By Lemma 3.6.7, the power function of the Hotelling’s T 2 test depends only on

(4.9) and is an increasing function of (4.9). Therefore, the goal of maximizing the

power is equivalent to optimizing (4.9), and the conclusion follows by the similar

argument as used in Theorem 3.2.1. Here we include the rest of the steps for

completeness of presentation.

To proceed, we first introduce some notations. Denote

ṽ = Σ−
1
2µd,

W̃ = Σ
1
2A, (4.10)

PW̃ = W̃ (W̃ ′W̃ )−1W̃ ′.

The projection matrix PW̃ connects the dots and plays an important role in

finding the optimal direction. With a little algebra, we can rewrite δ̃A as follows.

δ̃A = µT
dA(ATΣA)−1ATµd (4.11)

= µT
d Σ−

1
2 (W̃ (W̃ T W̃ )−1W̃ T )Σ−

1
2µd

= ṽTPW̃ ṽ.
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Recall that our goal is to maximize δ̃A, we next show that δ̃A has an attainable

maximum ‖ṽ‖2
2. By the property of projection matrix, there is a p× p orthogonal

matrix H̃ such that

PW̃ = H̃M̃H̃T , (4.12)

where

M̃ =

(
Ik 0k×(p−k)

0(p−k)×k 0(p−k)×(p−k)

)
. (4.13)

Therefore, it follows that

δ̃A ≤ ṽT H̃T Ip×pH̃ṽ = ‖ṽ‖2. (4.14)

To show that ‖ṽ‖2 is attainable, we give a constructed case that reaches ‖ṽ‖2.

Denote the i-th column of H̃ as h̃i. Specifically, take the first column of H̃ as

h̃1 = ṽ/‖ṽ‖,

and the rest columns h̃2, . . . , h̃d are taken so that H̃ is orthonormal. With this

constructed example, it is clear that δ̃A attains the maximum. To see this,

ṽT H̃ = (‖ṽ‖, 0, . . . , 0︸ ︷︷ ︸
p−1

),

δ̃A = ṽT H̃M̃H̃T ṽ = ‖ṽ‖2. (4.15)

The matrix A is still unknown so far. To obtain the expression for A, we trace

back from H̃ to W̃ , and finally land to A by the relationship of A and W defined

by (4.10).

PW̃ = H̃M̃H̃T

= (H̃M̃)(M̃H̃T )

= (h̃1, . . . , h̃k, 0, . . . , 0︸ ︷︷ ︸
p−k

)(h̃1, . . . , h̃k, 0, . . . , 0︸ ︷︷ ︸
p−k

)T

=
k∑
1

h̃ih̃
T
i . (4.16)
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For W̃ = (w̃1, . . . , w̃k), it can be easily verified that w̃i = h̃i, i ∈ 1, . . . , k

satisfies (4.16). Accordingly, the projection direction can be obtained by A =

Σ−
1
2 W̃ .

We note that the definition of ‖ṽ‖2 does not involve the projection dimension k.

Therefore, we can conclude that with the selection of the projection direction, the

projection schemes under different projection dimension k reach the same noncen-

trality parameter value. By Theorem 7 of Ghosh (1973), P (Fk,n−k(δ) > Fk,n−k,α)

is a decreasing function of k with a fixed noncentrality parameter δ (see Lemma

3.6.4). Hence the test with k = 1 achieves the optimal power with the projection

direction Σ−1µd.

Based on Corollary 4.2.1, the optimal projection direction for the two-sample

projection test with equal covariance matrix is given by a p× 1 vector a that

a = Σ−1µd. (4.17)

The hypothesis based on this a, Ha
0 , is equivalent to the original test by recognizing

that Σ is positive definite. The projected mean µT
d Σ−1µd = 0 if and only if µd = 0.

If the projection direction is a known quantity, then we can easily obtain two

projected samples on which the traditional two-sample t-test can be applied due

to the 1-dimensional nature. However, the projection direction is rarely known in

practice. In what follows, we propose an implementation for the algorithm.

4.2.2 Implementation

In this section, we discuss the implementation of the test, especially the esti-

mation of the optimal projection direction proposed in Corollary 4.2.1. There

are two underlying difficulties: first, the estimation of Σ−
1
2 is challenging under

high-dimensional situation; second, the estimation of the direction may introduce

dependency to the projected sample, which will break down the exactness of the

test.

Similar to Algorithm 1, we consider partitioning each of the two samples into

two separate data sets. One set of the data is used to estimate the direction, and
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the other set of the data is used to construct the projected sample and execute the

test. The purpose of partition is to get the direction vector a independent of the

test data, so that the exact level can be maintained. The discussion of estimating

Σ−1 is beyond the scope of this dissertation. We use the ridge-like estimator to

estimate Σ−1.

Algorithm 2: Proposed algorithm for the two-sample test with equal covariance.

Input: Two independent random samples S1 = {x1i}N1
i=1 and S2 = {x2i}N2

i=1, split-

ting percentage κ, and ridge penalty λ.

(a) Conduct the random partition to both samples. Sample S1 is partitioned

to estimating set S11 of size N11 = bN1κc and testing set S12 of size N12 =

N1 − N11. Likewise, sample S2 is partitioned to estimating set S21 of size

N21 = bN2κc and testing set S22 of size N22 = N2 −N21.

(b) Obtain weight vector â based on estimating sets S11 and S21.

â = (S01 + λDS01)
−1(x̄11 − x̄21),

S01 = ((N11 − 1)S11 + (N21 − 1)S21)/(N11 +N21 − 2)

where x̄i1 and Si1 are the sample mean vector and sample covariance matrix

of the corresponding estimating sets of the i-th sample, respectively.

(c) Construct the projected sample that

y1j = âTx1j, x1j ∈ S12, (4.18)

y2j = âTx2j, x2j ∈ S22.

(d) Denote the ȳi and s2
i as the sample mean and variance with respect to the

{yij}Ni2j=1, respectively. Calculate the t statistic,

t =
ȳ1 − ȳ2

sy
√

1
N12

+ 1
N22

,

where s2
y is the pooled sample mean s2

y = ((N12− 1)s2
1 + (N22− 1)s2

2)/(N12 +

N22 − 2).
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Reject the null hypothesis if |t| > tdf,α/2, df = N12 +N22 − 2.

In the numerical study, we use λ = min{N11, N21}−0.5. Meanwhile, the splitting

percentage is set to be 0.4. The calculation of (S01 +λDS01)
−1 uses the same trick

as (3.10).

4.2.3 Asymptotic power comparison

In this section, we study the asymptotic power of the proposed two-sample test.

We consider the local alternative that

H1 : µd = δδδ

√
1

N1

+
1

N2

. (4.19)

Without loss of generality, we assume that
√
N12/N1 → b > 0 as N1 → ∞

and
√
N22/N2 → b > 0 as N2 → ∞, where N12 and N22 are the sample sizes of

the testing sets S12 and S22 for the first and second sample, respectively. Further

assume that â→ a = Σ−1µd in probability as the sample size of estimating sets S11

and S21 tend to ∞. Let Φ(·) and zα denote the cumulative distribution function

and 1 − α quantile of N(0, 1), respectively. Then the asymptotic power function

of the proposed projection test at a given level α is

β̃1p(η) = Φ(−zα/2 + b
√
η), (4.20)

where η = δδδTΣ−1δδδ. Note that the power function(4.20) takes the same form as its

one-sample counterpart.

We would like to compare the asymptotic power function β̃1p(η) with that of

the test statistic T̃ 2
3 = (1/N1 + 1/N2)−1‖x̄1 − x̄2‖2, which is enlightened by the

ideas to replace S−1 by Ip, the p × p identity matrix. The tests proposed in Bai

and Saranadasa (1996), Srivastava and Du (2008), and Chen and Qin (2010) share

the asymptotic power as T̃ 2
3 . Let β̃3p(δδδ,Σ) be the asymptotic power function of

T̃ 2
3 . Define that

β̃3p(η|τ̃p) = Φ

{
−zα/

√
1 + 2τ̃p +

1

2

√
τ̃p/(0.5 + τ̃p) ·

√
η

}
,

where τ̃p = δδδTΣδδδ/tr(Σ2). We have the following proposition.
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Proposition 4.2.2. Assume that
√
N12/N1 → b as N1 → ∞ and

√
N22/N2 → b

as N2 →∞. The following statements are valid.

(I) Under H1 : µd = δδδ
√

1
N1

+ 1
N2

, β̃3p(δδδ,Σ) ≤ β̃3p(η|τ̃p)

(II) If b > 0.5 and η →∞, then β̃1p(η)− β̃3p(η|τ̃p) > 0 for large enough p.

(III) If
√
ηb ≥ zα/2 − zα and τ̃p → 0 as p → ∞, then β̃1p(η) − β̃3p(η|τ̃p) > 0 for

large enough p.

Proof. Since x̄1−x̄2 ∼ N(µd, (
1
N1

+ 1
N2

)Σ), by the properties of normal distribution,

it holds that E(T̃ 2
3 ) = tr(Σ) + ‖δδδ‖2 and var(T̃ 2

3 ) = 2tr(Σ2) + 4δδδTΣδδδ. Furthermore,

T̃ 2
3 − E(T̃ 2

3 )√
var(T̃ 2

3 )
→ N(0, 1)

in distribution as N → ∞. Thus under H1 : µd = δδδ
√

1
N1

+ 1
N2

, the asymptotic

power function of T̃ 2
3 can be obtained by the standard process as below.

β̃3p(δδδ,Σ) = P

(
T̃ 2

3 − tr(Σ)√
2tr(Σ2)

> zα

)
(4.21)

= P

 T̃ 2
3 − (tr(Σ) + ‖δδδ‖2)√

2tr(Σ2) + 4δδδTΣδδδ
>

√
2tr(Σ2)zα − ‖δδδ‖2√
2tr(Σ2) + 4δδδTΣδδδ


= Φ

−√2tr(Σ2)zα − ‖δδδ‖2√
2tr(Σ2) + 4δδδTΣδδδ


= Φ

−zα
√

tr(Σ2)

tr(Σ2) + 2δδδTΣδδδ
+

‖δδδ‖2√
2tr(Σ2) + 4δδδTΣδδδ


Furthermore, by plugging in the τ̃p,

β̃3p(δδδ,Σ) = Φ

{
−zα/

√
1 + 2τ̃p +

1

2

√
τ̃p/(0.5 + τ̃p) · ‖δδδ‖2/

√
δδδTΣδδδ

}
.

By the Cauchy-Schwartz inequality, it holds that ‖δδδ‖2 ≤
√
δδδTΣδδδ

√
δδδTΣ−1δδδ. There-
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fore, ‖δδδ‖2/
√
δδδTΣδδδ ≤ √η. Thus, it follows that

β̃3p(δδδ,Σ) ≤ Φ

{
−zα/

√
1 + 2τ̃p +

1

2

√
τ̃p/(0.5 + τ̃p) ·

√
η

}
= β̃3p(η|τ̃p). (4.22)

This completes the proof of Part (I). Following the similar proof of Proposi-

tion 3.2.3, Part (II) and (III) hold.

4.2.4 Simulation study

In this section, we perform a simulation study to evaluate the finite sample per-

formance of the two-sample tests with equal covariance matrix. In this case, we

set the sample sizes of both samples to be equal. We note that for the equal co-

variance case, unequal sample size should not have much effect in general. Hence

N1 = N2 = Ñ and both are selected from the set {40, 160}. For each of of the

sample size, the dimension p can take values of 400 or 1600, which sets different

levels of high dimensionality. In the first sample, the mean of the first 10 random

variables are selected from c ∈ {0, 0.5, 1}, and the rest random variables have mean

0. For the second sample, all the random variables have mean 0. We configure the

covariance matrices in three ways: compound symmetry Σ1(i, j) = ρ, autocorre-

lation Σ2 = ρ|i−j|, and the combined structure Σ3 = 0.5Σ1 + 0.5Σ2. The ρ takes

value from {0.25, 0.5, 0.75, 0.95}, indicating different levels of correlation.

The empirical powers (i.e., rejection rate in percentage at level 0.05) of these

tests are reported in Tables 4.1-4.3 for three different covariance structures and

various levels of (Ñ , p, c). Examination reveals the similar patterns as those being

discovered in the one-sample situations. As expected, the proposed test, Lauter’s

test and the RP test with single projection keep the Type I error rate very well. The

other tests fail on this because their critical values are based on their asymptotic

distributions. Also seen from Tables 4.1-4.3, the power of the tests strongly relies

on the covariance structures as well as the value of p and c. We note that the overall

patterns are very similar to the one-sample test situation, as shown in Section 3.3.

The proposed test is a clear winner for the compound symmetry structure case

in Table 4.1. When the sample sizes are small at 40, the power of the proposed test
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grows dramatically as the increase of ρ, or the c. For example, it goes from 8.72%

to 55.79% when c goes from 0.5 to 1 under the case (Ñ , p, ρ) = (40, 1600, 0.25).

Instead, the performance of the other alternatives is not that satisfactory. Under

the same (Ñ , p, ρ) = (40, 1600, 0.25) case, the powers are barely changed. In

general, the two RP methods reveal similar patterns as the proposed method when

c, N or ρ increases, and outperform the rest tests.

Table 4.2 summarizes the simulation results for the autocorrelation covariance

structure. In this scenario, the Dempster test, BS test, CQ test, and SD test have

more satisfactory performance than the proposed test when (Ñ , c) = (40, 0.5).

It is also observed that these tests quickly lose their powers as the correlation

increases. This is expected, because all these four tests ignore the correlations

among variables. Therefore, their performance is better when the true correlations

between variables are weak. Nevertheless, the power of our test is at a comparable

level as the competing tests with the increase of c or the sample size. Similar

increasing pattern is also observed for the two versions of random projection tests,

but their increasing rates are considerably slower than our test.

To make a fair comparison, we consider the composite covariance matrix Σ3.

The corresponding simulation results are presented in Table 4.3, which clearly

shows that the proposed test outperforms all the alternative tests in general. Oc-

casionally there are cases that one version of the random projection test reaches

higher power than ours. In this case, the power of our test shows a slight decrease

as the increase of ρ, while the other two versions of the random projection tests

preserve the increasing trend. This observation is interesting so we know that the

pattern could be different for our test and the random projection tests, even though

they share some similarity in the design. The reason could be that the random

projection is designed from the general idea to utilize the correlation information

by randomly projected to a smaller space so that the projected sample covariance

is invertible. In our case, the power is tightly correlated with the quantity of

η = δδδTΣ−1δδδ, so it may not always increase with ρ.
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Table 4.1: Comparison for two-sample tests (equal covariance): multivariate nor-
mal with Σ1

c = 0 c = 0.5 c = 1

Methods 0.25 0.5 0.75 0.95 0.25 0.5 0.75 0.95 0.25 0.5 0.75 0.95

Ñ = 40,p = 400
New 4.90 4.89 5.00 4.95 24.53 44.27 88.86 100.00 97.23 99.48 100.00 100.00

Dempster 5.80 5.25 4.84 4.64 8.11 6.33 5.55 5.27 23.44 10.52 7.78 6.90
BS 6.97 7.09 7.05 7.03 9.76 8.33 7.89 7.70 27.85 14.04 11.18 10.01
CQ 6.96 7.08 7.03 7.05 9.74 8.33 7.90 7.69 27.86 14.04 11.21 10.00

SD with adjust 3.39 1.32 0.25 0.08 4.81 1.50 0.31 0.08 13.59 2.38 0.49 0.09
SD no adjust 7.33 7.30 7.11 6.97 10.27 8.62 7.92 7.60 29.59 14.42 11.26 9.88

Lauter 4.57 4.50 4.49 4.49 5.03 4.80 4.73 4.64 5.54 5.01 4.93 4.87
RP single 5.18 4.90 5.16 4.96 11.51 16.21 32.55 98.24 45.28 67.39 95.39 100.00

RP average 0.01 0.01 0.00 0.02 0.44 2.53 44.83 100.00 83.83 99.79 100.00 100.00

Ñ = 40,p = 1600
New 4.88 5.06 4.95 4.86 8.72 13.71 37.53 98.54 55.79 78.54 96.77 100.00

Dempster 6.37 5.69 5.18 5.05 6.81 5.97 5.40 5.18 8.64 6.58 5.89 5.57
BS 7.37 7.41 7.39 7.39 7.92 7.65 7.53 7.50 10.06 8.64 8.22 8.04
CQ 7.36 7.44 7.43 7.39 7.92 7.69 7.55 7.50 10.08 8.67 8.23 8.03

SD with adjust 2.30 0.48 0.10 0.02 2.44 0.49 0.11 0.03 3.20 0.55 0.12 0.03
SD no adjust 7.78 7.56 7.45 7.28 8.41 7.90 7.61 7.43 10.51 8.85 8.29 7.93

Lauter 4.95 4.94 4.94 4.94 5.02 4.96 4.94 4.93 5.18 5.04 5.01 4.96
RP single 4.96 5.25 5.36 5.31 6.08 7.43 9.89 42.82 11.91 16.77 34.41 98.60

RP average 0.00 0.00 0.00 0.00 0.00 0.03 0.09 85.18 0.10 0.92 47.12 100.00

Ñ = 160,p = 400
New 4.90 4.96 4.90 5.00 99.13 99.99 100.00 100.00 100.00 100.00 100.00 100.00

Dempster 5.92 5.49 5.24 5.19 21.07 9.74 7.63 6.96 100.00 87.81 28.09 18.84
BS 6.76 6.87 6.89 6.87 25.36 13.05 10.15 9.31 100.00 98.82 41.68 27.19
CQ 6.76 6.87 6.89 6.88 25.36 13.04 10.15 9.33 100.00 98.83 41.66 27.17

SD with adjust 3.53 1.00 0.24 0.08 11.74 2.04 0.37 0.09 100.00 11.66 1.46 0.32
SD no adjust 6.81 6.91 6.89 6.87 25.84 13.13 10.14 9.26 100.00 98.70 41.83 27.09

Lauter 5.19 5.18 5.18 5.18 5.55 5.19 5.13 5.10 6.43 5.67 5.40 5.24
RP single 4.72 5.05 5.11 4.79 93.42 99.66 100.00 100.00 100.00 100.00 100.00 100.00

RP average 0.25 0.24 0.25 0.21 99.97 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Ñ = 160,p = 1600
New 5.00 5.05 4.75 5.09 81.12 98.32 99.99 100.00 100.00 100.00 100.00 100.00

Dempster 5.87 5.28 5.00 4.95 8.07 6.43 5.59 5.40 21.32 9.86 7.64 7.07
BS 6.95 6.94 6.87 6.86 9.45 8.04 7.71 7.51 25.49 12.64 10.46 9.64
CQ 6.95 6.94 6.88 6.85 9.46 8.05 7.71 7.51 25.51 12.65 10.45 9.64

SD with adjust 2.17 0.36 0.03 0.00 2.87 0.42 0.03 0.00 7.33 0.64 0.04 0.00
SD no adjust 7.04 6.98 6.88 6.85 9.54 8.13 7.71 7.50 25.94 12.70 10.48 9.64

Lauter 4.91 4.93 4.94 4.93 4.98 4.89 4.89 4.92 5.17 5.00 4.93 4.90
RP single 5.20 5.09 4.86 4.96 25.28 40.57 81.37 100.00 94.24 99.57 100.00 100.00

RP average 0.00 0.00 0.00 0.00 5.82 44.86 99.99 100.00 100.00 100.00 100.00 100.00
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Table 4.2: Comparison for two-sample tests (equal covariance): multivariate nor-
mal with Σ2

c = 0 c = 0.5 c = 1

Methods 0.25 0.5 0.75 0.95 0.25 0.5 0.75 0.95 0.25 0.5 0.75 0.95

Ñ = 40,p = 400
New 5.28 5.04 5.08 5.18 18.06 13.33 9.49 9.42 93.08 79.98 53.04 44.97

Dempster 5.07 5.21 5.20 5.36 46.73 36.37 24.12 9.97 99.96 99.35 91.83 39.01
BS 5.47 5.82 5.83 6.41 48.33 37.97 25.88 12.16 99.96 99.44 92.61 44.27
CQ 5.48 5.83 5.82 6.45 48.33 37.98 25.91 12.10 99.96 99.44 92.60 44.24

SD with adjust 4.23 4.20 4.03 2.70 42.93 32.64 19.93 5.30 99.94 99.10 88.95 26.01
SD no adjust 6.32 6.47 6.60 7.23 50.60 40.45 27.79 13.49 99.95 99.52 92.62 46.27

Lauter 4.94 4.95 5.05 5.22 16.79 13.93 9.34 5.81 63.46 47.61 24.40 7.26
RP single 5.05 4.52 4.87 5.16 9.67 9.00 9.12 12.60 33.55 30.23 30.09 51.58

RP average 0.00 0.01 0.04 1.36 0.15 0.39 1.28 8.63 45.41 39.57 37.47 75.17

Ñ = 40,p = 1600
New 4.94 4.89 4.71 4.72 8.72 7.57 6.07 4.93 54.84 40.84 22.98 10.99

Dempster 4.84 4.88 5.06 4.93 21.01 16.99 12.02 7.26 92.49 82.12 54.97 18.05
BS 5.02 5.13 5.43 5.75 21.68 17.71 12.75 8.31 92.75 82.73 56.59 20.21
CQ 5.02 5.15 5.44 5.73 21.70 17.75 12.75 8.28 92.79 82.75 56.41 20.20

SD with adjust 2.74 2.72 2.64 2.32 14.25 11.01 7.43 3.39 87.32 73.48 44.52 9.84
SD no adjust 6.06 6.12 6.25 6.57 24.06 19.41 14.66 9.41 93.19 83.46 58.60 21.92

Lauter 5.14 5.08 4.76 5.25 9.53 8.47 6.89 5.57 25.81 20.69 12.77 6.67
RP single 5.06 4.93 5.18 5.11 6.22 6.02 6.35 6.34 10.40 9.96 9.88 11.38

RP average 0.00 0.00 0.00 0.27 0.00 0.00 0.00 0.57 0.01 0.00 0.06 3.15

Ñ = 160,p = 400
New 5.11 4.79 4.94 5.05 84.85 65.17 41.14 77.79 100.00 100.00 99.82 100.00

Dempster 4.95 4.98 5.17 5.20 99.99 99.45 91.48 39.72 100.00 100.00 100.00 99.99
BS 5.34 5.54 5.78 6.55 99.99 99.49 92.12 44.81 100.00 100.00 100.00 100.00
CQ 5.34 5.55 5.78 6.55 99.99 99.49 92.12 44.79 100.00 100.00 100.00 100.00

SD with adjust 4.50 4.67 4.49 2.53 99.97 99.40 90.12 25.68 100.00 100.00 100.00 99.93
SD no adjust 5.51 5.57 6.10 6.68 99.99 99.47 92.44 45.25 100.00 100.00 100.00 99.99

Lauter 5.65 5.13 4.75 5.21 46.98 36.55 15.96 5.84 99.76 92.57 44.28 7.78
RP single 4.93 4.94 4.99 5.09 71.71 58.51 46.96 88.94 100.00 99.99 99.94 100.00

RP average 0.31 0.56 1.11 1.31 91.64 75.31 55.32 98.57 100.00 100.00 100.00 100.00

Ñ = 160,p = 1600
New 4.84 4.73 4.59 5.26 54.85 38.91 21.90 19.69 100.00 100.00 97.36 94.23

Dempster 5.28 5.12 5.38 5.69 92.57 81.36 55.32 18.54 100.00 100.00 100.00 89.77
BS 5.44 5.34 5.82 6.37 92.85 82.00 56.76 20.60 100.00 100.00 100.00 91.16
CQ 5.43 5.34 5.82 6.37 92.84 81.99 56.77 20.61 100.00 100.00 100.00 91.15

SD with adjust 4.50 4.37 4.41 3.18 91.45 79.11 51.43 12.30 100.00 100.00 100.00 82.78
SD no adjust 5.61 5.46 5.95 6.53 92.82 82.22 57.37 21.10 100.00 100.00 100.00 91.09

Lauter 5.43 5.08 5.00 5.07 18.07 15.23 9.62 5.46 69.95 50.90 23.63 6.89
RP single 5.33 5.17 5.17 5.02 18.17 16.89 16.75 26.88 79.29 76.30 74.97 96.62

RP average 0.00 0.00 0.04 0.72 0.92 1.58 3.60 23.16 99.96 99.72 97.24 99.98
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Table 4.3: Comparison for two-sample tests (equal covariance): multivariate nor-
mal with Σ3

c = 0 c = 0.5 c = 1

Methods 0.25 0.5 0.75 0.95 0.25 0.5 0.75 0.95 0.25 0.5 0.75 0.95

Ñ = 40,p = 400
New 4.86 4.74 5.07 5.00 18.92 19.48 16.43 17.11 93.76 92.73 85.87 83.38

Dempster 6.03 5.90 5.47 5.09 12.17 8.19 7.04 6.23 77.93 23.57 13.87 9.93
BS 6.64 6.97 6.99 6.94 13.32 9.68 8.75 8.09 82.45 28.04 17.34 13.52
CQ 6.62 6.97 6.99 6.93 13.33 9.71 8.74 8.09 82.42 28.08 17.32 13.51

SD with adjust 4.87 3.33 2.06 1.06 9.75 4.77 2.53 1.22 66.61 13.53 4.98 1.92
SD no adjust 7.20 7.25 7.25 7.13 14.39 10.21 9.10 8.38 84.68 29.94 18.11 14.07

Lauter 4.65 4.51 4.45 4.50 5.18 4.98 4.85 4.80 6.48 5.48 5.22 5.03
RP single 4.86 4.52 4.88 5.17 9.92 10.74 11.82 20.15 37.07 42.24 48.03 79.80

RP average 0.00 0.04 0.01 1.00 0.29 0.63 2.41 18.33 60.50 72.30 79.87 99.00

Ñ = 40,p = 1600
New 5.05 4.91 5.11 4.73 8.11 7.91 8.05 6.12 47.15 49.04 42.75 23.79

Dempster 6.64 6.29 5.96 5.58 7.76 6.79 6.23 5.78 12.62 8.76 7.33 6.61
BS 7.26 7.38 7.38 7.35 8.39 8.02 7.70 7.65 13.57 10.01 9.07 8.58
CQ 7.26 7.38 7.38 7.35 8.41 8.07 7.72 7.68 13.59 10.03 9.09 8.59

SD with adjust 4.21 2.31 0.99 0.49 4.95 2.45 1.06 0.51 7.92 3.21 1.30 0.58
SD no adjust 7.61 7.77 7.65 7.57 8.98 8.38 8.09 7.86 14.54 10.54 9.40 8.81

Lauter 4.94 4.92 4.90 4.95 5.08 5.05 4.98 4.97 5.34 5.19 5.11 5.06
RP single 4.95 4.86 4.92 4.61 6.18 6.24 6.56 7.06 10.35 11.66 12.82 18.11

RP average 0.00 0.00 0.00 0.25 0.00 0.02 0.01 0.69 0.07 0.20 0.53 11.21

Ñ = 160,p = 400
New 4.93 4.98 4.88 5.09 93.92 91.14 81.09 98.81 100.00 100.00 100.00 100.00

Dempster 6.17 6.02 5.72 5.47 79.91 21.32 12.60 9.52 100.00 100.00 99.42 73.33
BS 6.63 6.75 6.77 6.76 84.04 25.44 15.91 12.53 100.00 100.00 99.97 88.38
CQ 6.63 6.77 6.77 6.77 84.05 25.42 15.91 12.53 100.00 100.00 99.96 88.37

SD with adjust 5.29 3.46 1.80 0.78 70.33 11.49 4.15 1.53 100.00 99.99 54.66 9.33
SD no adjust 6.70 6.87 6.87 6.82 84.51 25.85 16.02 12.59 100.00 100.00 99.92 87.85

Lauter 5.11 5.17 5.19 5.15 6.06 5.53 5.29 5.16 8.59 6.36 5.87 5.68
RP single 4.91 4.80 4.93 5.23 82.78 80.63 75.25 98.83 100.00 100.00 100.00 100.00

RP average 0.23 0.42 0.72 0.91 97.96 96.21 91.46 99.98 100.00 100.00 100.00 100.00

Ñ = 160,p = 1600
New 4.96 4.87 4.72 5.26 65.75 67.20 53.07 49.92 100.00 100.00 100.00 99.99

Dempster 6.30 5.84 5.52 5.27 11.71 7.98 7.06 6.37 93.51 21.38 12.62 10.14
BS 6.87 6.92 6.95 6.85 12.76 9.40 8.42 8.17 96.54 25.66 15.94 12.94
CQ 6.87 6.92 6.94 6.85 12.76 9.40 8.42 8.17 96.52 25.64 15.92 12.94

SD with adjust 4.36 2.14 0.80 0.42 8.28 2.85 1.07 0.48 70.67 7.17 1.93 0.67
SD no adjust 7.03 7.01 7.00 6.92 13.04 9.50 8.53 8.24 96.62 25.96 16.11 13.06

Lauter 4.85 4.94 4.93 4.92 5.07 4.97 4.90 4.88 5.62 5.17 5.01 5.03
RP single 5.39 5.08 4.78 4.92 20.14 22.14 24.87 51.11 86.78 91.47 95.65 99.98

RP average 0.00 0.00 0.01 0.40 2.00 5.08 12.65 66.27 100.00 100.00 100.00 100.00
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4.2.5 Real data example

In this section, we present a real data application of the proposed method. Tran-

scription factor p53 is a well-known tumor-suppressor, which encodes proteins that

bind to DNA and regulates gene expression to prevent mutations of the genome.

Subramanian et al. (2005) examined gene expression patterns in response of mu-

tation of p53 in NCI-60 collection of cancer cell lines to identify targets of the

transcription factor p53. In this session, we apply the proposed method to test

the difference of the expression level of gene sets grouped in KEGG pathways in

cancer for normal p53 and mutated p53 samples. The KEGG pathway data can

be downloaded from URL http://www.broadinstitute.org/gsea/msigdb/cards/

KEGG PATHWAYS IN CANCER. The cancer cell line data can be downloaded

from http://www.broadinstitute.org/gsea/datasets.jsp.

KEGG pathway of cancer contains 328 genes, among which 263 are available

in the cancer cell line data. Hence we test the gene expression level between p53

mutant group which has sample size 33 and p53 normal group which has sample

size 17, on a gene set of length 263. We apply the log2 transformation to the

expression data before the analysis.

With such sample size, it is difficult to justify whether the covariance matri-

ces are equal. In this section, we show the results with the assumption of equal

covariance matrix. The results without this assumption is presented in Section

4.4.4.

Table 4.4: Gene pathway dataset: p-values of the two-sample tests

New Dempster BS CQ SD with SD no Lauter RP s RP m
0.03 0.38 0.42 0.43 0.10 0.05 0.55 0.73 0.16

From Table 4.4, we observe that both our test and the SD test without adjust-

ment identify the significance under the assumption of equal covariance matrix.

This implies an interesting result that the pathway in cancer is a possible target

of the p53, which may explain expression level difference between the p53 normal

and mutant group. Experiments are needed for the confirmatory conclusion.

To further explore the data and obtain the significant genes that contribute to

the pathway, we conduct a follow-up analysis with the two-sample t-test to each
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individual gene. Figure 4.1 shows the histogram of the p-values.
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Figure 4.1: Histogram of the marginal p-values from the two-sample t-tests.

As shown in Table 4.1, marginal p-values are well-scattered in the (0,1) interval.

Therefore, majority of the genes have no significant signals. Among the 263 genes,

20 of them have p-value less than 0.05. With Bonferroni correction, the number of

significant genes drops down to 2. The two left genes are BAX and MDM2, with

p-values 4.92 × 10−6 and 1.55 × 10−4, respectively. We search the NCBI website

for further information of those two genes, especially their relationship with p53.

NCBI stands for National Center for Biotechnology Information. It serves an in-

tegrated, one-stop, genomic information infrastructure, and can be accessed with

URL: http://www.ncbi.nlm.nih.gov/. By the time of May 2015, the information

of BAX can be found in http://www.ncbi.nlm.nih.gov/gene/581. BAX is a known

apoptosis regulator. Its relationship with p53 is well-documented in literature that

it has been shown to be involved in p53-mediated apoptosis and its expression is
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regulated by p53. For example, Chipuk et al. (2004) claims a direct activation of

Bax by p53 in a well cited science paper. Therefore, it is reasonable that the expres-

sion level of BAX differs for normal and mutated p53. The search of MDM2 reveals

interesting two-way interaction relationship between MDM2 and p53. The infor-

mation of MDM2 can be found in http://www.ncbi.nlm.nih.gov/gene/4193. On

one side, MDM2 is transcriptionally-regulated by p53; on the other side, a protein

encoded by MDM2 can promote tumor formation by targeting tumor suppressor

proteins, such as p53. Therefore, is is not surprising to observe the significant

difference between p53 normal and mutated groups.

4.3 Extension to non-normal distributions

4.3.1 Optimal projection direction

In this section, we further investigate the proposed projection test without the

normality assumption. Here we still assume the equal covariance matrix. In this

case, the optimal direction can be derived as a direct generalization of the one-

sample case as shown in Theorem 3.4.1. We show that the optimal direction for

non-normal populations and equal covariance matrix is still Σ−1µd. We include

the proof here for completeness.

Corollary 4.3.1. Suppose that for i = 1 and 2, xij, j = 1, · · · , Ni, is a random

sample from a population Xi with finite mean µi and covariance matrix Σ. Further

assume that for any nonzero constant p × k matrix A with a fixed k, AT x̄i →
N(ATµi, A

TΣA) in distribution and ATS0A−ATΣA→ 0 in probability as n→∞.

The projection test T̃ 2
A for the two-sample problem (4.1) reaches its asymptotic best

power for H1 in (4.1) at k = 1 and a = Σ−1µd.

Proof. Under some mild regularity conditions, T̃ 2
A follows the χ2

k(N1N2/(N1 +

N2)δ̃A) distribution, the noncentral χ2-distribution with k degrees of freedom and

noncentrality parameter N1N2/(N1+N2)δ̃A, where δ̃A = µT
dA(ATΣA)−1ATµd. Us-

ing the property of χ2-distribution (Kallenberg, 1990) , the power of T̃ 2
A increases

with δ̃A for given k. As a result, we only need to maximize δ̃2
A with respect to A
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in order to maximize the power of T̃ 2
A. Denote by χ2

k;α the critical value of the χ2-

distribution with k degrees of freedom. By Lemma 3.6.5 (shown in Ghosh, 1973),

for a given level α, P{χ2
k(c) > χ2

k;α} is a decreasing function of k when c are fixed.

Using this property of χ2-distribution and exact the same argument as those in

the proof of Theorem 3.2.1, it can be shown that k = 1 with a = Σ−1µd is the best

choice to achieve the optimal power.

4.3.2 Simulation study

Corollary 4.3.1 shows that when the two populations have equal covariance matrix,

the optimal direction a = Σ−1µd still applies even without normality assumption.

In this section, we conduct simulations to investigate the performance of the algo-

rithm for non-normal populations. To this end, we generate random samples from

the multivariate t-distribution. Denote by tν(µµµ,Σ) the multivariate t-distribution

with mean vector µµµ, covariance matrix Σ, and the degrees of freedom ν. The two

samples are simulated from t6(µµµ1,Σ) and t6(µµµ2,Σ). The other settings are the same

as used in Section 4.2.4. Since the sample sizes in some of the settings are small,

we use the small sample correction which applies the t-test instead of χ2-test. Per-

centage of rejection based on 10000 replicates for three correlation structures with

various configurations of (Ñ , p, c) are shown in Tables 4.5-4.7.

In general, we observe similar patterns as from non-normal distributions in the

one-sample test. For Type I errors, the proposed test still maintains it well around

0.05. RP test, however, becomes slightly conservative. Lauter’s test is well-behaved

except for the autocorrelation case. For the rest of the tests, CQ test has an

improved Type I error with autocorrelation structure compared with the compound

symmetry and the combined cases. The power of the tests is generally inferior

than that of their multivariate normal counterparts, even though the comparative

patterns are similar. In compound symmetry case, the proposed test significantly

outperforms the rest alternatives and the power increases dramatically with ρ, c

and Ñ . For autocorrelation structure, CQ test shows robust performance and

outperforms the proposed method in general. Dempster test, BS test and SD test

have deteriorated power for certain scenarios.
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Table 4.5: Comparison for two-sample tests (equal covariance): multivariate t with
Σ1

c = 0 c = 0.5 c = 1

Methods 0.25 0.5 0.75 0.95 0.25 0.5 0.75 0.95 0.25 0.5 0.75 0.95

Ñ = 40,p = 400
New 4.91 4.88 4.75 4.72 17.90 32.01 76.26 99.99 91.18 98.23 99.97 100.00

Dempster 5.49 5.44 5.23 5.14 7.00 6.12 5.62 5.43 13.67 8.85 7.05 6.47
BS 6.57 7.15 7.21 7.19 8.22 8.15 7.88 7.67 16.22 11.36 10.08 9.38
CQ 7.30 7.38 7.32 7.31 9.42 8.34 8.04 7.81 18.00 11.66 10.25 9.55

SD with adjust 3.05 1.23 0.33 0.13 3.91 1.35 0.34 0.14 7.91 1.99 0.42 0.17
SD no adjust 7.00 7.32 7.27 7.17 8.83 8.37 7.94 7.57 17.41 11.72 10.15 9.28

Lauter 5.00 5.04 5.01 5.01 5.15 5.12 5.11 5.12 5.50 5.19 5.09 5.02
RP single 4.15 4.40 4.17 4.23 9.76 13.24 27.52 95.76 37.57 57.23 90.44 100.00

RP average 0.00 0.00 0.01 0.01 0.14 0.74 24.04 100.00 61.60 97.73 100.00 100.00

Ñ = 40,p = 400
New 5.12 5.27 4.94 5.16 7.67 10.70 28.07 96.48 42.25 66.05 93.55 100.00

Dempster 5.51 5.35 5.13 5.04 5.79 5.55 5.22 5.15 6.62 6.04 5.50 5.31
BS 6.45 6.99 7.09 7.14 6.80 7.10 7.16 7.19 7.87 7.80 7.69 7.54
CQ 7.11 7.14 7.17 7.18 7.50 7.36 7.32 7.32 8.96 8.04 7.73 7.63

SD with adjust 1.75 0.41 0.09 0.02 1.84 0.41 0.10 0.02 2.22 0.42 0.10 0.02
SD no adjust 6.86 7.15 7.14 7.06 7.12 7.31 7.21 7.05 8.50 8.00 7.70 7.46

Lauter 4.90 4.97 4.95 4.96 4.92 4.99 4.98 4.98 5.01 5.02 4.99 4.99
RP single 4.59 4.73 4.18 4.44 5.64 6.45 7.86 36.43 9.99 14.16 27.18 95.95

RP average 0.00 0.00 0.00 0.01 0.00 0.00 0.01 54.92 0.05 0.26 19.84 100.00

Ñ = 160,p = 400
New 5.02 4.95 4.97 4.86 95.78 99.90 100.00 100.00 100.00 100.00 100.00 100.00

Dempster 5.61 5.20 4.90 4.86 13.36 8.01 6.52 5.98 99.34 31.08 15.97 12.23
BS 6.51 6.71 6.77 6.80 16.07 10.53 9.16 8.54 99.74 44.42 22.03 17.26
CQ 6.80 6.80 6.78 6.80 16.74 10.63 9.21 8.60 99.87 45.07 22.21 17.36

SD with adjust 3.14 1.17 0.22 0.04 7.51 1.71 0.37 0.06 88.62 5.45 0.99 0.20
SD no adjust 6.65 6.79 6.78 6.79 16.42 10.55 9.16 8.55 99.86 45.88 22.12 17.28

Lauter 4.82 4.82 4.84 4.83 5.16 4.98 4.90 4.87 6.19 5.46 5.15 5.06
RP single 4.07 4.30 4.35 4.42 87.25 98.59 100.00 100.00 100.00 100.00 100.00 100.00

RP average 0.12 0.13 0.07 0.12 99.64 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Ñ = 160,p = 1600
New 4.84 4.90 4.93 4.79 64.03 91.40 99.98 100.00 100.00 100.00 100.00 100.00

Dempster 5.79 5.51 5.20 5.09 7.07 5.99 5.53 5.40 13.68 8.04 6.61 6.27
BS 6.67 6.80 6.81 6.86 8.23 7.58 7.33 7.22 15.92 10.62 9.19 8.67
CQ 6.87 6.87 6.88 6.90 8.51 7.68 7.41 7.25 16.48 10.76 9.23 8.70

SD with adjust 1.98 0.37 0.05 0.01 2.46 0.39 0.04 0.01 4.50 0.46 0.07 0.01
SD no adjust 6.75 6.88 6.84 6.82 8.36 7.68 7.37 7.18 16.23 10.74 9.20 8.65

Lauter 5.13 5.09 5.08 5.07 5.08 5.12 5.15 5.13 5.14 5.09 5.05 5.08
RP single 4.18 4.23 4.50 4.46 19.18 32.89 70.48 100.00 88.06 98.55 100.00 100.00

RP average 0.00 0.00 0.00 0.00 1.45 19.73 99.65 100.00 100.00 100.00 100.00 100.00
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Table 4.6: Comparison for two-sample tests (equal covariance): multivariate t with
Σ2

c = 0 c = 0.5 c = 1

Methods 0.25 0.5 0.75 0.95 0.25 0.5 0.75 0.95 0.25 0.5 0.75 0.95

Ñ = 40,p = 400
New 5.04 5.10 5.08 4.68 13.38 10.90 7.75 7.46 80.51 64.01 39.52 34.36

Dempster 0.09 0.29 1.42 3.92 3.37 4.67 6.08 6.66 70.00 62.35 48.70 20.05
BS 0.15 0.50 1.84 5.16 4.24 6.01 7.27 8.62 73.79 66.36 53.13 24.32
CQ 5.44 5.40 5.78 6.57 31.40 25.32 17.16 10.48 97.77 92.09 73.19 28.26

SD with adjust 0.07 0.17 0.77 1.64 2.46 3.48 4.36 2.83 66.85 58.39 42.85 10.98
SD no adjust 0.32 0.80 2.25 6.13 6.02 7.73 9.01 9.77 79.91 72.58 58.98 27.25

Lauter 0.89 1.18 2.11 4.71 1.25 1.95 3.16 4.86 3.21 4.37 5.76 5.76
RP single 4.13 4.23 4.01 4.43 8.17 7.85 7.29 10.25 27.11 25.63 24.47 42.71

RP average 0.00 0.00 0.06 0.95 0.02 0.15 0.62 5.85 24.79 22.91 24.10 61.47

Ñ = 40,p = 1600
New 5.13 4.92 4.89 5.06 7.81 6.66 6.02 4.95 38.90 29.74 16.68 8.55

Dempster 0.00 0.00 0.08 1.98 0.00 0.04 0.24 2.74 0.51 1.20 3.01 5.89
BS 0.00 0.00 0.13 2.68 0.00 0.06 0.35 3.57 0.81 1.63 3.66 7.33
CQ 4.91 5.24 5.43 6.30 14.31 12.57 10.22 7.85 68.72 56.03 35.45 14.09

SD with adjust 0.00 0.00 0.00 0.46 0.00 0.00 0.06 0.75 0.07 0.28 0.90 1.82
SD no adjust 0.00 0.01 0.23 3.22 0.02 0.09 0.56 4.36 1.55 2.67 5.41 8.80

Lauter 0.06 0.15 0.46 2.92 0.09 0.18 0.62 3.01 0.15 0.27 0.86 3.31
RP single 4.13 4.26 4.42 4.12 5.00 4.96 5.43 5.21 8.26 8.08 8.17 9.49

RP average 0.00 0.00 0.00 0.10 0.00 0.00 0.00 0.20 0.00 0.01 0.01 1.55

Ñ = 160,p = 400
New 4.99 5.03 5.28 5.06 71.00 50.11 30.79 60.74 100.00 99.98 98.92 100.00

Dempster 1.29 2.09 3.29 5.01 92.02 83.80 62.53 22.30 99.99 99.98 99.97 96.86
BS 1.61 2.43 3.93 6.43 92.90 85.13 65.17 26.29 100.00 99.99 99.98 97.86
CQ 5.48 5.86 6.07 6.86 98.18 92.34 71.95 27.74 100.00 100.00 100.00 98.21

SD with adjust 1.15 1.77 2.66 2.23 91.46 83.11 59.66 12.83 100.00 99.99 99.99 91.12
SD no adjust 1.67 2.72 4.15 6.57 93.79 86.45 66.57 27.01 100.00 100.00 99.99 97.79

Lauter 1.60 2.36 3.52 4.72 3.85 5.82 7.20 5.12 13.70 17.66 17.39 6.39
RP single 4.42 4.19 4.80 4.32 61.58 48.45 37.46 80.79 100.00 99.98 99.68 100.00

RP average 0.13 0.33 0.67 0.93 80.63 60.66 42.38 95.20 100.00 100.00 100.00 100.00

Ñ = 160,p = 1600
New 4.41 4.40 4.63 4.93 39.23 27.39 15.91 14.29 99.99 99.41 90.02 83.68

Dempster 0.03 0.10 1.19 3.75 12.97 13.83 13.79 9.77 99.06 98.44 95.22 55.31
BS 0.03 0.17 1.36 4.39 14.52 15.45 15.22 11.14 99.21 98.71 96.02 59.15
CQ 5.18 5.41 5.55 5.92 70.50 55.80 35.26 14.12 100.00 100.00 99.58 65.32

SD with adjust 0.01 0.08 0.72 1.68 10.05 11.05 10.58 5.21 98.94 98.21 93.73 41.70
SD no adjust 0.05 0.19 1.43 4.79 16.30 17.05 16.65 11.51 99.47 99.15 96.45 60.32

Lauter 0.25 0.37 0.95 3.98 0.27 0.62 1.40 4.38 0.61 1.12 2.59 5.00
RP single 4.30 4.24 4.25 3.97 14.12 13.28 12.58 21.07 69.82 66.38 62.81 91.42

RP average 0.00 0.00 0.00 0.45 0.21 0.47 1.41 14.51 99.01 96.42 89.90 99.70
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Table 4.7: Comparison for two-sample tests (equal covariance): multivariate t with
Σ3

c = 0 c = 0.5 c = 1

Methods 0.25 0.5 0.75 0.95 0.25 0.5 0.75 0.95 0.25 0.5 0.75 0.95

Ñ = 40,p = 400
New 4.93 5.01 4.90 4.83 13.99 14.83 12.72 13.03 82.71 81.46 71.78 69.60

Dempster 4.39 5.47 5.57 5.31 6.81 6.90 6.50 5.97 27.86 13.57 10.26 8.35
BS 4.99 6.53 6.94 7.04 7.63 8.18 8.14 7.86 32.10 16.03 12.60 10.98
CQ 7.17 7.33 7.26 7.18 11.25 9.32 8.50 8.05 47.11 18.06 13.23 11.28

SD with adjust 3.23 2.96 2.07 0.95 5.01 3.85 2.42 1.15 21.16 7.76 3.75 1.60
SD no adjust 5.34 6.92 7.23 7.23 8.59 8.72 8.42 7.97 37.46 17.57 13.40 11.39

Lauter 4.65 4.89 5.03 5.01 5.10 5.21 5.14 5.07 5.90 5.56 5.25 5.18
RP single 4.10 4.30 4.60 4.36 8.56 8.84 10.34 16.59 30.99 34.13 39.78 71.04

RP average 0.00 0.00 0.00 0.65 0.06 0.16 1.12 12.45 36.62 50.00 62.66 96.40

Ñ = 40,p = 1600
New 5.14 5.09 5.36 4.90 7.08 7.06 7.26 5.74 35.19 36.14 31.04 17.83

Dempster 4.37 5.46 5.50 5.30 4.88 5.74 5.71 5.48 6.51 6.62 6.35 6.08
BS 5.01 6.50 6.87 6.97 5.43 6.85 7.06 7.17 7.32 7.89 7.85 7.73
CQ 7.05 7.18 7.18 7.23 7.82 7.52 7.43 7.32 11.19 8.92 8.30 8.01

SD with adjust 2.18 1.72 0.90 0.40 2.49 1.83 0.95 0.41 3.59 2.23 1.10 0.44
SD no adjust 5.42 6.80 7.09 7.18 5.97 7.09 7.32 7.32 8.21 8.49 8.17 7.96

Lauter 4.66 4.94 4.98 4.96 4.75 4.96 5.02 5.02 4.88 5.00 5.04 5.03
RP single 4.45 4.25 4.15 4.17 5.43 5.34 5.39 6.25 9.21 9.44 11.00 15.23

RP average 0.00 0.00 0.01 0.07 0.00 0.01 0.01 0.31 0.01 0.02 0.23 6.03

Ñ = 160,p = 400
New 5.11 4.94 5.10 4.92 83.61 79.63 66.40 93.42 100.00 100.00 100.00 100.00

Dempster 5.27 5.57 5.30 4.99 33.35 13.43 9.67 7.86 99.97 98.65 64.09 30.21
BS 5.86 6.66 6.83 6.69 38.18 15.74 12.16 10.40 99.99 99.50 78.48 42.45
CQ 6.64 6.82 6.94 6.73 43.47 16.26 12.32 10.52 100.00 99.63 79.42 42.93

SD with adjust 4.24 3.15 2.00 0.95 26.34 7.34 3.18 1.43 99.97 85.02 17.74 4.41
SD no adjust 5.98 6.70 6.83 6.71 39.84 16.07 12.19 10.38 100.00 99.61 79.48 43.56

Lauter 4.86 4.84 4.82 4.86 5.59 5.16 5.07 4.93 7.67 6.19 5.64 5.34
RP single 4.57 4.57 4.50 4.43 72.28 70.50 64.16 95.87 100.00 100.00 100.00 100.00

RP average 0.13 0.17 0.30 0.54 93.39 90.03 81.47 99.89 100.00 100.00 100.00 100.00

Ñ = 160,p = 1600
New 4.77 4.47 4.69 5.01 48.37 49.24 37.79 36.38 99.99 99.99 99.96 99.78

Dempster 5.60 5.77 5.62 5.39 8.47 7.04 6.42 6.03 34.66 13.47 9.74 8.25
BS 6.16 6.61 6.74 6.84 9.53 8.21 7.81 7.67 39.56 15.78 12.07 10.57
CQ 6.89 6.87 6.89 6.90 10.64 8.56 7.97 7.81 46.56 16.52 12.30 10.67

SD with adjust 3.80 1.94 0.69 0.38 5.60 2.41 0.80 0.38 21.05 4.50 1.34 0.50
SD no adjust 6.28 6.73 6.81 6.86 9.66 8.29 7.96 7.74 41.54 16.25 12.26 10.67

Lauter 5.07 5.15 5.10 5.11 5.06 5.07 5.10 5.14 5.29 5.17 5.09 5.10
RP single 4.65 4.12 4.42 4.38 16.65 17.85 21.38 42.50 78.06 84.39 89.74 99.91

RP average 0.00 0.00 0.00 0.23 0.37 1.37 5.67 49.92 99.92 99.98 99.95 100.00
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4.4 Extension to normal populations with un-

equal covariances

In this section, we discuss the situation in which the two random samples have

unequal covariance matrices. Under this setup, we consider two independent nor-

mal random samples, {x1i}N1
i=1 from Np(µ1,Σ1) and {x2i}N2

i=1 from Np(µ2,Σ2). The

problem of interest is to test the null hypothesis H0 : µ1 = µ2 versus the alternative

H1 : µ1 6= µ2.

4.4.1 Optimal projection direction

Recall that the search for the optimal direction requires expressing the power

function of the projected data analytically at the first place, which provides an

access to identify factors that contribute to the increase of the power. In the case

of unequal covariance matrices, the Hotelling’s T 2 test can not be directly applied,

which means that the power function can hardly be established. To see this,

consider a projection matrix Ap×k of rank k. The previously-adopted projection

scheme gives

y1j = ATx1j, j = 1, . . . , N1, (4.23)

y2j = ATx2j, j = 1, . . . , N2. (4.24)

By the property of normal distribution,

y1j
i.i.d.∼ N(ATµ1, A

′Σ1A), j = 1, . . . , N1, (4.25)

y2j
i.i.d.∼ N(ATµ2, A

′Σ2A), j = 1, . . . , N2. (4.26)

It follows that

ȳ1 − ȳ2 ∼ N

(
ATµd, A

T

(
1

N1

Σ1 +
1

N2

Σ2

)
A

)
. (4.27)

The Hotelling’s T 2 test can not be applied to (4.27). In fact, this case is well-

known as the Behrens-Fisher problem for the univariate case. Assume N1 < N2, we
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apply the method proposed by Scheffe (1943) and generalized to multivariate case

by Bennett (1950) to obtain an one-sample sequence of size N1 that is distributed

as N(µd,Σ1 + N1

N2
Σ2). Define

zi = x1i −
√
N1

N2

x2i +
1√
N1N2

N1∑
j=1

x2j −
1

N2

N2∑
k=1

x2k, i = 1, . . . , N1 (4.28)

It follows that

zi
i.i.d.∼N

(
µd,Σ1 +

N1

N2

Σ2

)
, i = 1, . . . , N1. (4.29)

Then the one-sample test technique could be applied to {zi}N1
i=1. Following the

results of the one-sample test in Theorem 3.2.1, the optimal projection direction

is (
Σ1 +

N1

N2

Σ2

)−1

µd. (4.30)

4.4.2 Asymptotic power comparison

Following previous discussion, in the situation where Σ1 6= Σ2, a one-sample se-

quence of size N1 is constructed with distribution N(µd,Σ1 + N1

N2
Σ2), assuming

N1 < N2. With the constructed one-sample sequence, the tests are just one-

sample tests whose power have already been compared in Section 3.2.3. We note

that among the alternatives, CQ test can be applied to the unequal covariance

case without modification of the data. Therefore, we need to compare the power

of our test on the constructed sample with the power of the CQ test on the original

sample, before we can complete the picture.

For our projection test, the implementation is taken on the constructed data

and the procedures are the same as the one-sample test. That is, the data is

partitioned into an estimating set of size N11, and a testing set of size N12. Assume

that
√
N12/N1 → b > 0 as N1 → ∞, Further assume that â → a = (Σ1 +

(N1/N2)Σ2)−1µd in probability as N1 tends to ∞. Let Φ(·) and zα denote the

cumulative distribution function and upper α quantile of N(0, 1), respectively.

Then the asymptotic power function of the proposed projection test at a given
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level α is

β∗1p(η
∗) = Φ(−zα/2 + b

√
η∗), (4.31)

where

η∗ = µT
d

(
1

N1

Σ1 +
1

N2

Σ2

)−1

µd. (4.32)

Denote β∗(T 2
CQ2) as the power function of CQ test under this setting and

β∗3p(η
∗|τ ∗p ) = Φ

{
−zα/

√
1 + 2τ ∗p +

1

2

√
τ ∗p /(0.5 + τ ∗p ) ·

√
η∗
}
, (4.33)

where τ ∗p is defined in (4.38).

Proposition 4.4.1. Assume
√
N12/N1 → b. The following statements are valid.

(I) Under H1, β∗(T 2
CQ2) ≤ β∗3p(η

∗|τ ∗p )

(II) If b > 0.5 and η∗ →∞, then β∗1p(η
∗)− β∗3p(η∗|τ ∗p ) > 0 for large enough p.

(III) If
√
η∗b ≥ zα/2 − zα and τ ∗p → 0 as p → ∞, then β∗1p(η

∗) − β∗3p(η∗|τ ∗p ) > 0

for large enough p.

Proof. First derive the power function for CQ test. Let T 2
CQ2 denote the test

statistic of the CQ test. Then

E(T 2
CQ2) = ‖µd‖2, (4.34)

var(T 2
CQ2:H1) =

2

N1(N1 − 1)
tr(Σ2

1) +
2

N2(N2 − 1)
tr(Σ2

2) (4.35)

+
4

N1N2

tr(Σ1Σ2) + 4µT
d

(
1

N1

Σ1 +
1

N2

Σ2

)
µd.

Under null hypothesis, the mean of T 2
CQ2 is 0 and the variance is

var(T 2
CQ2:H0) =

2

N1(N1 − 1)
tr(Σ2

1) +
2

N2(N2 − 1)
tr(Σ2

2) +
4

N1N2

tr(Σ1Σ2). (4.36)

The power function of CQ test can be derived as follows.

β∗(T 2
CQ2) = P

 T 2
CQ2√

var(T 2
CQ2:H0)

> zα

 (4.37)
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= P

 Tcq − ‖µd‖2√
var(T 2

CQ2:H1)
> zα

√
var(T 2

CQ2:H0)√
var(T 2

CQ2:H1)
− ‖µd‖2√

var(T 2
CQ2:H1)


= Φ

−zα
√

var(T 2
CQ2:H0)√

var(T 2
CQ2:H1)

+
‖µd‖2√

var(T 2
CQ2:H1)


Define

τ ∗p =
µT
d

(
1
N1

Σ1 + 1
N2

Σ2

)
µd

1
N1(N1−1)

tr(Σ2
1) + 1

N2(N2−1)
tr(Σ2

2) + 2
N1N2

tr(Σ1Σ2)
(4.38)

Then β∗(T 2
CQ2) can be formulated as

β∗(T 2
CQ2) = Φ

{
−zα/

√
1 + 2τ ∗p +

1

2

√
τ ∗p /(0.5 + τ ∗p )w

}
, (4.39)

where

w =
‖µd‖2

µT
d

(
1
N1

Σ1 + 1
N2

Σ2

)
µd

(4.40)

By Cauchy-Schwartz inequality,

‖µd‖2 ≤
(
µT
d

(
1

N1

Σ1 +
1

N2

Σ2

)
µd

)1/2√
η∗

Therefore we have β∗(T 2
CQ2) ≤ β∗3p(η

∗|τ ∗p ). This completes the proof for part (I).

The proof of part (II) and (III) follows the similar arguments in Proposition 3.2.3.

4.4.3 Simulation study

In this section, we conduct simulations to compare the finite sample performance

under the unequal covariance. In this case, we set the two sample sizes to be dif-

ferent that N1 is selected from (40, 160) and N2 is 1.25 times of N1. The dimension

p is still set to be 400 or 1600. The settings of the mean vectors are the same as

the equal covariance cases. The first 10 random variables in the first sample have

mean c, which takes value in {0, 0.5, 1}, and the rest random variables have mean
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0. All the random variables in the second sample have mean 0. We consider the

following scenarios for the different covariance matrices.

1. Both Σ1 and Σ2 have autocorrelation structure but with different levels of

correlation. That is, Σ1(i, j) = ρ1, Σ2(i, j) = ρ2, and ρ1 and ρ2 take different

values. We consider three pairs of (ρ1, ρ2) in the simulation study as (ρ1, ρ2) =

(0.25, 0.5), (0.5, 0.75) and (0.25, 0.75).

2. Both Σ1 and Σ2 have compound symmetry structure but with different levels

of correlation. That is, Σ1(i, j) = ρ
|i−j|
1 , Σ2(i, j) = ρ

|i−j|
2 , and ρ1 and ρ2 take

different values. We consider three pairs of (ρ1, ρ2) in the simulation study

as (ρ1, ρ2) = (0.25, 0.5), (0.5, 0.75) and (0.25, 0.75).

3. Σ1 and Σ2 take different correlation structures. Σ1 is autocorrelation and the

Σ2 is compound symmetry. We consider Σ1(i, j) = ρ1 and Σ2(i, j) = ρ
|i−j|
2

with ρ1 = ρ2 = ρ ∈ {0.25, 0.5, 0.75}.

In implementation of CQ test, we use the two-sample version which can handle

the unequal covariances. The other tests are applied to the constructed one-sample

sequence with the corresponding one-sample tests. The simulation results are pre-

sented in Tables 4.8-4.10. Generally, the results line well with the equal variance

scenarios. The proposed projection test, Lauter test and Random single projection

test keep the Type I error well around α. When both covariance matrices are com-

pound symmetry, Table 4.8 shows that our proposed test significantly outperforms

all the other alternatives, and preserves strong power even under small value of

c. Even though CQ test can handle the unequal covariance, the power of CQ test

is no higher than BS test. Table 4.9 shows that Dempster test, BS test, CQ test

and SD test have advantages in the autocorrelation setting. The proposed test can

reach to a comparable level with the increase of c or the sample size. Under this

case, we observe a slight increase in power of CQ test over BS test. In Table 4.10,

the projection test is the most powerful in the great majority of settings. With ρ

small as 0.25, the Dempster test, BS test, CQ test and SD test may show compa-

rable performance. However, their power drops significantly with the increase of

ρ.
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Table 4.8: Comparison for two-sample tests (unequal covariances): multivariate
normal with Σ1(i, j) = ρ1 and Σ2(i, j) = ρ2

c = 0 c = 0.5 c = 1

ρ1 0.25 0.25 0.50 0.25 0.25 0.50 0.25 0.25 0.50
ρ2 0.50 0.75 0.75 0.50 0.75 0.75 0.50 0.75 0.75

N1 = 40,N2 = 50,p = 400

New 4.94 5.15 4.81 26.91 34.24 51.75 92.42 95.06 97.97
Dempster 6.12 5.87 5.59 7.94 7.11 6.55 17.48 12.91 10.29
BS 7.50 7.56 7.56 9.78 9.28 8.87 21.93 16.99 14.00
CQ 7.19 7.07 7.13 9.01 8.46 8.11 20.11 15.75 12.80
SD with adjust 2.62 1.76 1.02 3.47 2.10 1.17 7.80 3.92 1.79
SD no adjust 8.14 8.05 7.79 10.59 9.85 9.23 23.77 18.32 14.48
Lauter 4.83 4.70 4.90 4.97 4.79 5.00 5.35 5.12 5.15
RP single 4.94 4.62 4.91 10.63 11.55 15.94 36.28 44.43 58.04
RP average 0.08 0.13 0.17 1.13 2.00 6.31 84.43 96.77 99.98

N1 = 40,N2 = 50,p = 1600

New 4.71 4.62 4.76 8.67 10.14 14.16 48.43 56.35 69.13
Dempster 6.22 5.93 5.57 6.51 6.22 5.73 8.09 7.18 6.44
BS 7.66 7.68 7.71 8.22 8.02 7.99 9.76 9.18 8.91
CQ 7.34 7.25 7.31 7.70 7.61 7.52 9.20 8.81 8.26
SD with adjust 1.79 0.90 0.40 1.90 0.98 0.42 2.22 1.15 0.45
SD no adjust 8.34 8.15 8.05 8.93 8.48 8.38 10.65 9.72 9.26
Lauter 4.83 4.95 4.97 4.85 4.97 4.94 4.90 4.99 4.94
RP single 5.08 5.09 5.06 6.18 6.62 7.19 10.97 11.88 15.05
RP average 0.05 0.05 0.08 0.12 0.12 0.23 0.73 1.48 4.74

N1 = 160,N2 = 200,p = 400

New 4.81 5.30 5.05 99.97 99.99 100.00 100.00 100.00 100.00
Dempster 5.80 5.43 5.42 15.32 11.45 9.14 100.00 98.29 66.73
BS 6.95 6.93 6.98 18.83 14.86 12.47 100.00 99.88 89.75
CQ 6.88 6.88 6.97 18.53 14.63 12.00 100.00 100.00 93.35
SD with adjust 2.28 1.28 0.66 5.64 2.68 1.14 87.04 25.35 5.99
SD no adjust 7.04 7.08 7.02 19.25 15.04 12.67 100.00 99.89 89.95
Lauter 5.09 5.09 5.18 5.17 5.10 5.15 5.96 5.63 5.46
RP single 5.09 5.07 5.05 86.60 93.52 98.56 100.00 100.00 100.00
RP average 0.04 0.01 0.01 100.00 100.00 100.00 100.00 100.00 100.00

N1 = 160,N2 = 200,p = 1600

New 4.53 4.89 4.34 89.59 96.09 99.41 100.00 100.00 100.00
Dempster 5.77 5.48 5.35 7.21 6.56 6.18 15.07 11.39 9.12
BS 6.93 7.00 6.97 8.94 8.45 7.96 19.03 14.83 12.45
CQ 6.76 6.90 6.96 8.86 8.27 7.90 18.58 14.64 12.20
SD with adjust 1.03 0.47 0.10 1.31 0.63 0.13 2.77 0.97 0.25
SD no adjust 7.12 7.18 7.07 9.09 8.52 8.07 19.55 15.14 12.55
Lauter 5.08 4.99 5.04 5.10 5.04 5.01 5.08 5.09 5.01
RP single 5.20 4.91 4.71 22.62 27.08 37.10 87.32 93.92 98.69
RP average 0.00 0.00 0.00 3.30 12.09 53.26 100.00 100.00 100.00
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Table 4.9: Comparison for two-sample tests (unequal covariances): multivariate

normal with Σ1(i, j) = ρ
|i−j|
1 and Σ2(i, j) = ρ

|i−j|
2

c = 0 c = 0.5 c = 1

ρ1 0.25 0.25 0.50 0.25 0.25 0.50 0.25 0.25 0.50
ρ2 0.50 0.75 0.75 0.50 0.75 0.75 0.50 0.75 0.75

N1 = 40,N2 = 50,p = 400

New 4.90 5.06 5.11 17.28 14.67 13.07 91.25 81.54 73.40
Dempster 4.88 5.15 5.03 48.00 40.26 34.12 99.97 99.67 98.70
BS 5.18 5.80 5.71 49.46 41.87 35.74 99.97 99.71 98.93
CQ 5.33 5.63 5.56 50.03 42.06 36.13 99.98 99.74 98.99
SD with adjust 3.52 3.78 3.59 41.11 34.27 28.35 99.93 99.33 97.52
SD no adjust 6.99 7.21 7.57 54.01 45.82 40.10 100.00 99.74 98.91
Lauter 4.62 4.71 4.87 19.29 16.07 14.54 65.13 50.35 41.71
RP single 5.11 4.80 4.72 8.32 8.07 8.27 23.20 23.22 22.83
RP average 0.00 0.01 0.03 0.19 0.38 0.54 33.08 32.46 32.70

N1 = 40,N2 = 50,p = 1600

Ours 4.78 4.96 4.57 8.49 7.54 7.04 52.54 42.42 35.29
Dempster 4.69 4.95 5.03 21.60 18.18 16.49 92.68 84.31 76.47
BS 4.96 5.27 5.36 22.43 19.09 17.33 92.92 84.85 77.32
CQ 5.11 5.29 5.35 22.29 19.13 17.23 93.29 85.17 77.92
SD with adjust 1.77 1.87 2.02 11.22 9.16 8.22 83.34 71.17 61.06
SD no adjust 7.01 7.14 7.44 26.68 22.75 20.84 93.85 86.61 80.17
Lauter 4.81 5.11 5.07 10.46 9.19 8.98 28.41 21.94 19.11
RP single 4.38 5.31 5.08 5.21 6.05 5.90 8.38 8.62 8.59
RP average 0.00 0.00 0.00 0.00 0.01 0.00 0.05 0.04 0.03

N1 = 160,N2 = 200,p = 400

Ours 4.99 5.15 4.93 90.55 79.53 69.84 100.00 100.00 100.00
Dempster 5.02 5.10 5.39 99.96 99.70 98.84 100.00 100.00 100.00
BS 5.40 5.57 6.00 99.96 99.75 99.00 100.00 100.00 100.00
CQ 5.29 5.65 5.93 99.96 99.79 98.98 100.00 100.00 100.00
SD with adjust 4.32 4.39 4.71 99.93 99.60 98.52 100.00 100.00 100.00
SD no adjust 5.85 6.20 6.58 99.96 99.71 98.97 100.00 100.00 100.00
Lauter 5.20 4.92 5.21 55.41 39.42 32.05 99.86 92.39 81.74
RP single 5.02 4.74 5.20 53.43 47.32 47.14 99.94 99.91 99.88
RP average 0.02 0.11 0.16 83.23 72.46 69.07 100.00 100.00 100.00

N1 = 160,N2 = 200,p = 1600

Ours 4.62 4.67 4.99 57.29 45.20 36.66 100.00 100.00 99.96
Dempster 5.35 4.93 4.99 93.56 85.85 77.42 100.00 100.00 100.00
BS 5.68 5.23 5.25 93.71 86.36 78.21 100.00 100.00 100.00
CQ 5.60 5.12 5.19 93.75 86.33 78.48 100.00 100.00 100.00
SD with adjust 3.86 3.78 3.85 91.12 82.22 72.45 100.00 100.00 100.00
SD no adjust 5.98 5.72 5.66 93.93 86.69 78.96 100.00 100.00 100.00
Lauter 5.13 4.95 5.09 22.27 17.76 15.66 73.04 53.18 43.04
RP single 5.06 5.50 4.83 13.85 14.05 13.73 59.87 59.91 59.25
RP average 0.00 0.00 0.00 0.20 0.27 0.62 98.71 97.21 96.49
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Table 4.10: Comparison for two-sample tests (unequal covariances): multivariate

normal with Σ1(i, j) = ρ
|i−j|
1 and Σ2(i, j) = ρ2

c = 0 c = 0.5 c = 1

ρ1 0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75
ρ2 0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75

N1 = 40,N2 = 50,p = 400

New 5.07 5.20 5.11 17.59 17.25 15.15 88.68 84.44 77.70
Dempster 6.70 6.29 6.01 15.84 10.00 8.03 91.59 37.68 19.56
BS 7.35 7.39 7.47 17.32 11.56 10.06 93.67 43.58 24.03
CQ 7.29 7.12 7.15 16.95 11.17 9.71 94.62 42.60 22.96
SD with adjust 5.10 4.11 2.88 12.78 6.48 3.79 83.56 24.04 8.89
SD no adjust 8.53 8.20 8.15 19.82 12.88 10.97 95.01 48.82 26.84
Lauter 4.72 4.69 4.63 5.60 5.17 4.93 7.48 5.91 5.28
RP single 4.98 4.79 5.06 8.66 8.88 10.20 26.14 28.17 32.18
RP average 0.05 0.07 0.21 0.29 0.80 2.27 42.82 54.86 67.10

N1 = 40,N2 = 50,p = 1600

New 5.04 4.70 4.68 7.46 7.23 6.69 38.91 36.40 30.60
Dempster 7.08 6.78 6.33 8.62 7.57 6.79 16.81 10.37 8.38
BS 7.71 7.63 7.72 9.28 8.44 8.28 17.98 11.64 10.26
CQ 7.56 7.61 7.70 8.99 8.44 8.22 17.56 11.05 9.76
SD with adjust 4.25 2.89 1.66 5.28 3.28 1.75 9.88 4.44 2.46
SD no adjust 8.54 8.48 8.43 10.40 9.51 9.05 20.51 12.82 11.12
Lauter 4.84 4.91 4.99 5.01 5.04 5.07 5.43 5.19 5.15
RP single 4.87 4.94 4.72 5.77 5.69 5.91 8.94 9.13 10.04
RP average 0.02 0.05 0.07 0.03 0.07 0.07 0.20 0.39 0.75

N1 = 160,N2 = 200,p = 400

New 4.92 5.30 4.59 97.79 96.27 86.13 100.00 100.00 100.00
Dempster 6.30 6.09 5.79 94.78 33.49 16.86 100.00 100.00 99.98
BS 6.83 7.05 7.14 96.11 40.32 20.92 100.00 100.00 99.99
CQ 6.83 7.07 7.17 96.45 39.72 20.82 100.00 100.00 99.99
SD with adjust 5.21 3.89 2.32 90.31 19.12 6.46 100.00 100.00 90.79
SD no adjust 7.01 7.26 7.32 96.33 42.05 21.41 100.00 100.00 100.00
Lauter 5.04 5.04 5.01 6.30 5.63 5.50 8.99 6.55 6.20
RP single 4.93 4.91 5.04 64.17 66.05 67.09 99.99 100.00 100.00
RP average 0.05 0.06 0.33 96.16 95.90 92.95 100.00 100.00 100.00

N1 = 160,N2 = 200,p = 1600

New 4.73 4.68 4.79 67.08 65.46 52.38 100.00 100.00 100.00
Dempster 6.11 5.77 5.60 14.31 8.81 7.24 99.66 31.98 16.75
BS 6.60 6.75 6.56 15.54 10.15 8.79 99.91 38.65 20.60
CQ 6.59 6.71 6.65 15.31 10.00 8.69 99.94 38.14 20.51
SD with adjust 4.48 2.47 1.31 9.93 3.75 1.59 94.85 12.04 3.27
SD no adjust 6.79 6.99 6.70 16.03 10.43 9.06 99.81 40.20 21.09
Lauter 4.76 4.77 4.84 4.93 4.87 4.84 5.26 5.12 4.93
RP single 4.90 5.31 5.09 15.32 17.30 19.86 68.64 74.51 81.02
RP average 0.00 0.00 0.01 0.38 1.26 4.69 99.90 99.96 99.98
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4.4.4 Real data example

In this section, we revisit the example that have been analyzed in the Section 4.2.5.

Recall that two groups of data, a mutant group of size 33 and a normal group of

size 17, are available with dimension p = 263. We have applied the two-sample

test methods to this dataset and found that the proposed method and the SD

test without adjustment can identify the difference. A follow up analysis with

two-sample t-test and Bonferroni correction identifies two genes BAX and MDM2,

both of which have well-established relation with the p53 factor. As mentioned, it

is difficult to justify whether the covariance matrix are equal with a small sample

size. Therefore, it is good to construct a transformed one-sample sequence and

apply the one-sample test which does not require the equal covariance matrix

assumption. By doing so, we could obtain a better understanding of the data with

test results from both versions.

In this section, we apply the one-sample t-test to the constructed one-sample

sequence which has 17 samples and the dimension is 263. Table 4.11 shows the

p-values of different tests. In Table 4.11, the p-value of the CQ test is also obtained

from the constructed sequence. Its p-value for the direct two-sample test is 0.43

as shown in Table 4.4.

Table 4.11: Gene pathway dataset: p-values of the one-sample tests on the con-
structed sequence

New Dempster BS CQ SD with SD no Lauter RP s RP m
0.02 0.46 0.50 0.50 0.18 0.08 0.94 0.25 0.22

As shown in Table 4.11, our test has p-value less than 0.05 and is able to

conclude the different expression levels for the pathway in cancer between the p53

normal and mutant groups. The other alternatives, including the SD test without

adjustment, however, do not show the significant evidence. Our test indicates

that the pathway in cancer is a possible target of the p53. Again experiments are

needed for the confirmatory conclusion.

We conduct a follow-up analysis with marginal one-sample t-tests. The his-

togram of the corresponding p-values is shown in Figure 4.2. Similar to Figure 4.1

of the two-sample marginal test, the p-values are well-scattered in the (0,1) inter-

val, indicating weak signals for the majority of the individual genes. There are still
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20 genes that have the marginal significance under α = 0.05, of which 17 genes are

overlapped with the marginally significant genes in the two-sample t-test. Here

only gene BAX survives after Bonferroni correction, with p-value 9.23× 10−6.

marginal p−values
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Figure 4.2: Histogram of the marginal p-values from the one-sample t-tests.



Chapter 5
Conclusions and Future Work

In the analysis of high-dimensional data, considerable attention has been devoted

to sparse recovery and feature selection in the past decades. However, much less is

known about the hypothesis testing. In classical settings for the one-sample and

two-sample mean problems, the Hotelling’s T 2 test can be applied and is theoreti-

cally grounded. Hotelling’s T 2 evaluates the weighted distance between mean vec-

tors by scaling with inverse of sample covariance matrix. In the high-dimensional

scenarios, the sample covariance matrix is singular which renders the Hotelling’s

test invalid. Recently in literature, hypothesis testing for high-dimensional mean

vectors has received considerable attention. Existing methods can be classified

in two categories. One main focus is to substitute the inverse sample covariance

matrix and obtain an asymptotic normal distribution to determine the rejection

region. The other projects the data into a lower dimensional space such that the

classical methods could be applied which leads to an exact test.

Our work is motived by the idea of projection test by noting that the current

projection based methods lack an explicit mechanism to promote the power. Under

this unique power-maximizing framework, we determine the optimal projection

direction and develop an algorithm to obtain the estimate. In this section, we

conclude this dissertation by first summarizing our work in the one-sample and

two-sample tests; and then discussing the potential ways to extend the study.
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5.1 Conclusions

This dissertation has been focused on testing mean vectors in the one-sample and

two-sample problems. These problems are fundamental in statistics and well estab-

lished in the classical settings where the sample size is larger than the dimension.

However, as dimension grows, new methods are in demand to handle the high-

dimensionality. We propose a novel projection test that is readily applicable to

the high-dimensional settings with a computationally efficient algorithm for imple-

mentation. Moreover, we derive the asymptotic power and give conditions in which

the proposed methods have higher power. Finite sample performance is studied

with extensive simulations.

Chapter 3 focuses on the high-dimensional one-sample mean problem, which

tests H0 : µ = µ0 against H1 : µ 6= µ0 for a random sample of size N from a

p-dimensional (p > N) population x with finite mean E(x) = µ and finite positive

definite covariance matrix cov(x) = Σ. We show the optimal direction for the

projection test is Σ−1(µ − µ0). The implementation follows a random partition

scheme such that the sample is separated into an estimating set from which the

direction is estimated and a testing set in which the test is conducted. Ridge-like

estimator (S + λD)−1 is used to estimate Σ−1 where S is the sample covariance

matrix and D is the diagonal matrix of S. Here the λ is the ridge penalty that

tunes the estimator. With normality assumption, the proposed test is an exact

test and we study the asymptotic power function of the proposed test under local

alternative H1 : µ = δδδ/
√
N . We show that under mild conditions, our algorithm

can achieve higher power and discuss in details the two commonly-used covariance

matrix structures. For the implementation, we carefully study the two tuning

parameters, the splitting percentage and the ridge penalty, in extensive simulation

experiments. We conclude that the splitting percentage is flexible in a range from

40% - 60% and suggest the λ take value of the N−0.5
1 , where N1 is the sample size

in the estimating set. Without normality assumption, we show that the optimal

projection direction still applies.

Chapter 4 focuses on the two-sample mean problem, which tests H0 : µ1 = µ2

against H1 : µ1 6= µ2 for two independent random samples, a size N1 sample from
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a population with finite mean µ1 and finite positive definite covariance matrix Σ1,

and a size N2 sample from a population with finite mean µ2 and finite positive def-

inite covariance matrix Σ2. The equal covariance case Σ1 = Σ2 = Σ follows a natu-

ral extension from the one-sample test and takes Σ−1(µ1−µ2) as the optimal pro-

jection direction, regardless of assumptions for distributions. The correspondingly

test is exact under multivariate normal assumption while asymptotic otherwise. In

both cases, we study the finite sample performance from simulation experiments

to have an over-all assessment of the proposed algorithm. In multivariate normal

case, we also provide the asymptotic power comparison with the major alterna-

tives. We further extend the discussion to the multivariate normal populations

with unequal covariance matrices. we show that the optimal projection direction

is
(

Σ1 + N1

N2
Σ2

)−1

(µ1 −µ2) by first taking Bennett’s transformation to obtain an

one-sample sequence of size N1 that is distributed as N(µ1 − µ2,Σ1 + N1

N2
Σ2), as-

suming N1 < N2. We provide comparison of the asymptotic power for the proposed

test and the completing alternative which does not require the equivalence of the

covariance matrices. Finite sample performance is also evaluated in the simulation

study.

5.2 Future work

5.2.1 Improve efficiency of implementation

Current implementation scheme generates two exclusive random subsets of the

original data, S1 and S2, with a splitting percentage. If S1 is used to estimate the

direction, then S2 will be used to obtain the projected data and conduct the test.

In our simulation studies and the real data applications, we have used 40% as the

splitting percentage to partition the dataset, and the smaller set is used for esti-

mating the direction. Despite being able to keep the projected data independent

by separating the estimation of direction and the projection, the random splitting

step reduces the degree of freedom of the t-test, and therefore affects the power of

the test. For this reason, an algorithm that would more effectively utilize the two

subsets could potentially increase the power of the test.
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One possible solution is to evenly partition the data and conduct the test twice,

with S1 and S2 switching the role. This procedure generates two p-values, p1 and

p2. A rejection region should be carefully designed to control the Type I error

when combining p1 and p2. We have experimented the following two reject regions

(RRs).

(RR1) Reject if (p1 < (α/2)) or (p2 < (α/2))

(RR2) Reject if (p1 < (α/2)) or (p2 < (α/2)) or (p1 < α and p2 < α)

p2

p1

0 α 1

α

1

α 2

α 2

(a) Rejection region (RR1)

p2

p1

0 α 1

α

1

α 2

α 2

(b) Rejection region (RR2)

p2

p1

0 α 1

α

1

α 2

α 2

(c) Original projection

Figure 5.1: Illustration for the rejection regions.

We note that (RR1) is based on the Bonferroni correction, which is known to

be conservative. Compared with (RR1), the reject region (RR2) adds one more

rejection criterion. It is clear that if p1 and p2 are independent, the test based

on (RR2) is exact. In our case, however, p1 and p2 are correlated due to the very

nature that they come from the same original dataset. More specifically, p1 and

p2 are positively correlated as they test the same pair of hypotheses. In this case,

we expect (RR2) can still control the Type I error, but not give an exact test.

We present a preliminary simulation results with the same settings as used

in Section 3.3.3. The results are based on 10000 replicates and presented in

percentage. Tables 5.1-5.3 show results of rejection region (RR1), (RR2), and

the original projection test under 50% split, respectively. Recall that for a test

with significant level 0.05 and 10000 replicates, the Monte Carlo error equals to
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1.96
√

0.05× 0.95/10000 = 0.43%. Therefore, well-controlled Type I errors are

expected to vary roughly between 4.57% and 5.43%.

The simulation results are expected for both Type I error and power. In terms

of Type I error, the proposed method can manage to get it well-maintained. Both

new rejection regions tend to be conservative. Rejection region (RR2) is slightly

better by including one more rejection criterion. In terms of power, rejection region

(RR2) gives higher power than (RR1) in all cases as comparing Table 5.1 and 5.2.

We believe rejection region (RR2) is a better choice to apply. If we compare that

the original method and rejection region (RR2), it is observed that (RR2) is a clear

winner except the autocorrelation case with (N, p) = (40, 1600). More generally,

the power gain from (RR2) is larger for the compound symmetry case than the

auto correlation case.

Table 5.1: Performance of new rejection region RR1 with 50% split

c = 0 c = 0.5 c = 1

0.25 0.5 0.75 0.95 0.25 0.5 0.75 0.95 0.25 0.5 0.75 0.95

N=40,p=400
auto 4.08 3.99 4.26 4.31 46.19 33.15 18.86 14.79 100.00 99.76 92.61 80.77

combine 3.95 4.38 4.38 4.29 47.60 48.02 38.38 35.38 99.95 99.82 99.59 98.88
compound 4.45 4.32 4.26 4.42 60.31 85.34 99.29 100.00 99.96 100.00 100.00 100.00

N=40,p=1600
auto 3.85 4.00 4.18 3.97 16.53 12.80 8.45 5.39 96.09 87.20 59.15 23.99

combine 4.62 4.40 4.64 4.23 15.36 16.55 14.71 9.09 86.36 86.29 82.55 55.30
compound 4.34 4.54 4.30 4.23 19.08 34.58 77.91 99.96 88.74 95.53 99.80 100.00

N=160,p=400
auto 3.97 4.05 4.07 4.27 100.00 99.65 92.19 99.20 100.00 100.00 100.00 100.00

combine 3.79 3.98 3.82 4.16 100.00 100.00 99.98 100.00 100.00 100.00 100.00 100.00
compound 3.98 3.86 3.95 3.58 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

N=160,p=1600
auto 3.35 3.70 3.70 4.64 97.13 88.32 60.10 44.46 100.00 100.00 100.00 99.96

combine 3.60 3.66 3.76 4.64 98.61 98.77 95.80 89.56 100.00 100.00 100.00 100.00
compound 3.86 3.85 3.78 3.79 99.66 100.00 100.00 100.00 100.00 100.00 100.00 100.00
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Table 5.2: Performance of new rejection region RR2 with 50% split

c = 0 c = 0.5 c = 1

0.25 0.5 0.75 0.95 0.25 0.5 0.75 0.95 0.25 0.5 0.75 0.95

N=40,p=400
auto 4.42 4.31 4.63 4.46 48.27 34.83 19.85 15.40 100.00 99.82 93.32 81.68

combine 4.30 4.66 4.63 4.53 49.48 49.87 39.92 36.32 99.96 99.83 99.64 99.01
compound 4.62 4.65 4.55 4.74 61.94 86.01 99.33 100.00 99.97 100.00 100.00 100.00

N=40,p=1600
auto 4.13 4.41 4.58 4.39 17.95 13.84 9.10 5.79 96.56 88.29 61.27 24.97

combine 4.70 4.51 4.87 4.57 16.07 17.05 15.26 9.65 86.75 86.65 83.26 56.59
compound 4.52 4.66 4.45 4.36 19.67 35.44 78.60 99.96 89.03 95.64 99.80 100.00

N=160,p=400
auto 4.32 4.32 4.28 4.45 100.00 99.70 92.78 99.33 100.00 100.00 100.00 100.00

combine 4.23 4.29 4.10 4.45 100.00 100.00 99.98 100.00 100.00 100.00 100.00 100.00
compound 4.20 4.17 4.26 4.01 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

N=160,p=1600
auto 3.93 4.24 4.04 4.79 97.60 89.64 62.09 45.80 100.00 100.00 100.00 99.97

combine 4.12 4.23 4.12 4.80 98.76 99.01 96.35 90.34 100.00 100.00 100.00 100.00
compound 4.42 4.52 4.34 4.36 99.69 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Table 5.3: Performance of the original projection test with 50% split

c = 0 c = 0.5 c = 1

0.25 0.5 0.75 0.95 0.25 0.5 0.75 0.95 0.25 0.5 0.75 0.95

N=40,p=400
auto 4.63 4.73 5.08 5.15 47.37 34.43 19.82 14.19 100.00 99.64 90.68 73.03

combine 4.78 4.91 4.75 4.90 45.90 45.79 37.33 32.71 99.59 99.17 98.66 96.41
compound 4.92 4.76 4.81 4.87 55.73 78.18 97.41 99.99 99.49 99.89 99.99 100.00

N=40,p=1600
auto 4.69 4.80 5.12 4.73 18.05 14.13 9.58 6.30 95.32 86.31 59.04 23.44

combine 4.56 4.65 4.67 4.77 13.96 14.74 13.44 9.06 76.85 75.11 73.68 51.13
compound 4.43 4.50 4.59 4.57 16.46 28.05 62.95 99.37 78.49 88.61 98.38 100.00

N=160,p=400
auto 5.12 5.01 4.72 4.75 99.99 99.22 88.30 97.98 100.00 100.00 100.00 100.00

combine 4.85 5.07 4.51 4.95 100.00 100.00 99.84 100.00 100.00 100.00 100.00 100.00
compound 4.72 4.75 4.68 4.62 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

N=160,p=1600
auto 4.96 4.91 4.72 4.85 97.50 89.11 60.95 40.33 100.00 100.00 100.00 99.83

combine 4.95 4.89 4.56 4.84 98.26 98.59 95.34 85.05 100.00 100.00 100.00 100.00
compound 5.14 5.37 5.38 5.24 99.50 100.00 100.00 100.00 100.00 100.00 100.00 100.00
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5.2.2 Extension to other setups

Our current method applies to one-sample and two-sample mean problems, which

allow testing for one treatment effect. A test capable of accommodating multiple

groups is appreciated due to the massive amount of experiments which collect data

naturally in multiple groups. An search in the Gene Expression Omnibus dataset

(http://www.ncbi.nlm.nih.gov/sites/GDSbrowser/) can easily pinpoint a study

with multiple treatments or being collected from subjects in different disease stages.

For example, the dataset GDS4094 contains MMTV-Myc tumors data collected

from subjects in an E2F wild-type, E2F1 null, E2F2 null or E2F3 heterozygous

background ( http://www.ncbi.nlm.nih.gov/sites/GDSbrowser?acc=GDS4094).

In the setup of the one-sample and two-sample test, it is required that the sam-

ples within each group are independent and identically distributed. It is likely that

the samples are heterogeneous. One way to resolve the problem is by taking into ac-

count the characteristics of the group members provided in the dataset. For exam-

ple, the dataset GDS5074 (http://www.ncbi.nlm.nih.gov/sites/GDSbrowser?acc=

GDS5037) describes bronchial epithelial cells data collected from subjects of differ-

ent stages of asthma. For each stage group, it also provides the gender information.

Gender may have effects over the performance of cells data and the test could be

more powerful with gender being considered in the analysis. The independence as-

sumption would fail in the longitudinal study, in which each treatment group may

contain observations collected at different length of time after taking the treatment.

We are interested to extend our methods to accommodate the inter-correlation too.
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Meinshausen, N., Meier, L., and Bühlmann, P. (2009). P-values for high-
dimensional regression. Journal of the American Statistical Association,
104(488):1671–1681.

Pan, G. M. and Zhou, W. (2011). Central limit theorem for Hotelling’s T2 statistic
under large dimension. The Annals of Applied Probability, 21(5):1860–1910.

Park, M. Y. and Hastie, T. (2007). L1 regularization path algorithm for generalized
linear models. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 69(4):659–677.

Percival, C. J., Huang, Y., Jabs, E. W., Li, R., and Richtsmeier, J. T. (2014).
Embryonic craniofacial bone volume and bone mineral density in Fgfr2+/P253R

and nonmutant mice. Developmental Dynamics, 243(4):541–551.

Ravikumar, P., Lafferty, J., Liu, H., and Wasserman, L. (2009). Sparse additive
models. Journal of the Royal Statistical Society: Series B (Statistical Methodol-
ogy), 71(5):1009–1030.

Rosset, S. and Zhu, J. (2007). Piecewise linear regularized solution paths. The
Annals of Statistics,, 35:1012–1030.

Scheffe, H. (1943). On solutions of the Behrans-Fisher problem based on the t-
distribution. The Annals of Mathematics Statistics, 14(1):35–44.

Srivastava, M. (2007). Multivariate theory for analyzing high dimensional data.
Journal of the Japan Statistical Society, 37(1):53–86.

Srivastava, M. (2009). A test of the mean vector with fewer observations than the
dimension under non-normality. Journal of Multivariate Analysis, 100(3):518–
532.

Srivastava, M. and Du, M. (2008). A test for the mean vector with fewer observa-
tions than the dimension. Journal of Multivariate Analysis, 99(3):386–402.

Srivastava, M. S., Katayama, S., and Kano, Y. (2013). A two sample test in high
dimensional data. Journal of Multivariate Analysis, 114:349–358.

Storey, J. D. and Tibshirani, R. (2003). Statistical significance for genomewide
studies. Proceedings of the National Academy of Sciences, 100(16):9440–9445.

Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette,
M. A., Paulovich, A., Pomeroy, S. L., Golub, T. R., Lander, E. S., et al.
(2005). Gene set enrichment analysis: a knowledge-based approach for inter-
preting genome-wide expression profiles. Proceedings of the National Academy
of Sciences of the United States of America, 102(43):15545–15550.



114

Thulin, M. (2014). A high-dimensional two-sample test for the mean using random
subspaces. Computational Statistics & Data Analysis, 74:26–38.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of
the Royal Statistical Society: Series B (Statistical Methodology), 58(1):267–288.

Tibshirani, R. (1997). The lasso method for variable selection in the Cox model.
Statistics in medicine, 16(4):385–395.

Tibshirani, R., Saunders, M., Rosset, S., Zhu, J., and Knight, K. (2005). Sparsity
and smoothness via the fused lasso. Journal of the Royal Statistical Society:
Series B (Statistical Methodology), 67(1):91–108.
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