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Abstract

Survival analysis is a well-established field in statistics. It has many applications
to biology, economics, industrial engineering, and so on. Independent censoring is
one of the crucial assumptions in survival analysis. However, this is impractical in
many medical studies. For example, in many medical studies, disease occurrence
and dependent censoring exist simultaneously, where the presence of dependent
censoring leads to the difficulty in analyzing covariate effects on disease outcomes.
Such a data structure has been termed ‘semicompeting risks data’.

Much research have been performed on modeling semicompeting risks data. One
approach to handle the dependent censoring is to use semiparametric accelerated
failure time (AFT) model. This dissertation focuses on addressing restrictions on
previous methodology of the semiparametric AFT model and provide solutions.

In the first part of the dissertation, we propose a new weighted estimator for the
AFT model under dependent censoring. One of the advantages in our approach is
that these weights are optimal among all the linear combinations of the previously
mentioned two estimators. To calculate these weights, a novel resampling-based
scheme is employed. Attendant asymptotic statistical results for the estimator are
established. In addition, simulation studies, as well as an application to real data,
show the gains in efficiency for our estimator.

Goodness of fit procedures are essential tools for assessing model adequacy in
statistics. While many authors have proposed goodness of fit tests for U-statistics
of order 1, little has been developed for higher order U-statistics. In the second
part of the dissertation, we develop a general theory and approach to goodness of
fit techniques based on U-processes for the AFT model. Many of the examples will
focus on U-statistics of order 2. We propose goodness of fit tests for U-statistics
of order 2 by using theoretical results from U-process theory. For numerical
summary of hypothesis testing, a generalization of resampling approach adapted
from goodness of fit tests based on U-statistics of order 1 is developed. Simulation
studies are used to illustrate the proposed methods.

In many medical studies, estimation of treatment effects is often of primary
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scientific interest. As mentioned before, standard methods for evaluating the
treatment effect in survival analysis typically require the assumption of independent
censoring. In semicompeting risks framework, estimating treatment effect for
the disease occurrence is difficult due to the dependent censoring. The approach
to use semiparametric AFT model to adjust the dependent censoring requires
an artificial censoring technique. However, when covariates are continuous and
have large variability, this can lead to excessive artificial censoring resulting in
numerically unstable estimates. In the third part of the dissertation, we propose
a strategy for weighted estimation of treatment effect that adjusts for covariates.
Weights are based on propensity score modeling of the treatment conditional on
confounder variables. This novel application of propensity scores avoids excess
artificial censoring caused by continuous covariates. Simulation studies and an
application to data from the Radiation Therapy Oncology Group (RTOG) are used
to illustrate the methodology.

iv



Table of Contents

List of Figures viii

List of Tables x

Acknowledgments xii

Chapter 1
Introduction 1
1.1 The Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Outline of Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . 6

Chapter 2
Basic Models 9
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Accelerated Failure Time Model . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Single Event Case . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.2 Recurrent Events Case . . . . . . . . . . . . . . . . . . . . . 11

2.3 Linear Transformation Model . . . . . . . . . . . . . . . . . . . . . 13

Chapter 3
Review of Dependent Censoring 16
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 Semicompeting Risks Data . . . . . . . . . . . . . . . . . . . . . . . 16

3.2.1 Basic Concepts and Model Without Covariates . . . . . . . . 16
3.2.2 Model with Covariates . . . . . . . . . . . . . . . . . . . . . 19

3.3 Model for Recurrent Events in the Presence of Dependent Censoring 27

v



Chapter 4
Weighted Estimation of the Accelerated Failure Time Model in

the Presence of Dependent Censoring 33
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2 Weighted estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.3 Model checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.4 Simulation Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.5 Real data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Chapter 5
Goodness of Fit 57
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.2 Checking overall fit of model . . . . . . . . . . . . . . . . . . . . . . 59

5.2.1 Independent censoring . . . . . . . . . . . . . . . . . . . . . 59
5.2.2 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.2.3 Dependent Censoring . . . . . . . . . . . . . . . . . . . . . . 70

5.3 Simulation Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.4 Real Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Chapter 6
Covariate adjustment using propensity scores for dependent

censoring problems 79
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.2.1 Data and Model . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.3 Proposed Methodology . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.4 Theoretical Results and Inference . . . . . . . . . . . . . . . . . . . 84
6.5 Goodness of fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.6 Real Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.7 Simulation Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

Chapter 7
Future Work 107
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
7.2 Semicompeting Risks Data in the Linear Transformation Model . . 108
7.3 Variable selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

vi



Appendix
Appendix for Chapter 4 and Chapter 6 111
1 Mathematical Proofs (Chapter 6) . . . . . . . . . . . . . . . . . . . 111
2 Goodness of Fit (Chapter 4) . . . . . . . . . . . . . . . . . . . . . . 128

Bibliography 132

vii



List of Figures

1.1 Processes after a Bone Marrow Transplant (Source: Klein and
Moeschberger, 2003, p.4.) . . . . . . . . . . . . . . . . . . . . . . . 4

3.1 Artificial censoring when θ0 > η0, θ0 = 2 and η0 = 1 . . . . . . . . . 22
3.2 Artificial censoring when θ0 < η0, θ0 = 1 and η0 = 2 . . . . . . . . . 22

4.1 Plot of observed score process and bootstrapped processes of time
to withdrawal of study with respect to Z1. The thick line is the
observed process and the dashed lines are the bootstrapped processes. 54

4.2 Plot of observed score process and bootstrapped processes of time
to first virologic failure using α̂L with respect to Z1. The thick line
is the observed process and the dashed lines are the bootstrapped
processes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.3 Plot of observed score process and bootstrapped processes of time
to first virologic failure using α̂P with respect to Z1. The thick line
is the observed process and the dashed lines are the bootstrapped
processes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.1 Plot of proportion of rejection according to threshold p-values when
n = 50 (left) and n = 100 (right) for the independent censoring case 74

5.2 Plot of proportion of rejection according to threshold p-values when
n = 200 for the independent censoring case . . . . . . . . . . . . . . 75

5.3 Plot of proportion of rejection according to threshold p-values when
n = 50 (left) and n = 100 (right) for the model of the event of
interest in the presence of dependent censoring . . . . . . . . . . . . 76

5.4 Observed process (bold line) and bootstrapped processes (dashed
lines) for the first virologic failure . . . . . . . . . . . . . . . . . . . 78

6.1 Observed and bootstrapped processes of time to progression using
(α̂, η̂catr, θ̂Lcatr) for RT . . . . . . . . . . . . . . . . . . . . . . . . . 93

viii



6.2 Observed and bootstrapped processes of time to progression using
(α̂, η̂catr, θ̂Pcatr) (right) for RT . . . . . . . . . . . . . . . . . . . . . 94

6.3 Observed and bootstrapped processes of time to death for RT . . . 94

ix



List of Tables

4.1 Simulation result when N = 150 and N = 300, ρ = 0 with covariate
Bernoulli(0.5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2 Simulation result when N = 150 and N = 300, ρ = 0.25 with
covariate Bernoulli(0.5). . . . . . . . . . . . . . . . . . . . . . . . . 48

4.3 Simulation result when N = 150 and N = 300, σ2 = 0 with two
covariates (Z1 : U(0, 1), Z2 : Bernoulli(0.5)). . . . . . . . . . . . . . 50

4.4 Simulation result when N = 150 and N = 300, σ2 = 1 with two
covariates (Z1 : U(0, 1), Z2 : Bernoulli(0.5)). . . . . . . . . . . . . . 51

4.5 Point estimates with standard errors of covariates in AIDS study for
model without New3TC (Standard errors are shown in parenthesis). 53

4.6 Point estimates with standard errors of covariates in AIDS study
for model with New3TC (Standard errors are shown in parenthesis). 53

5.1 Power comparison between the new method and that of Lin et al.
(1996) for the independent censoring case . . . . . . . . . . . . . . . 74

5.2 Power comparison between the new method and Lin et al. (1996)’s
method for the model of the event of interest in the presence of the
dependent censoring . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.1 Point estimates and standard error (SE) in RTOG data analysis
using proposed method . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.2 Point estimates and standard error (SE) in RTOG data analysis
using proposed method . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.3 Bias, empirical standard deviation (EMPSD), mean of standard
error (SEE) and 95% coverage (CP) for estimators including all
covariates when N = 250 and N = 500 . . . . . . . . . . . . . . . . 97

6.4 Bias, empirical standard deviation (EMPSD), mean of standard
error (SEE) and 95% coverage (CP) for the proposed estimator
when N = 250 and N = 500 . . . . . . . . . . . . . . . . . . . . . . 99

6.5 Artificial censoring proportions assuming true propensity score model 100

x



6.6 Bias, empirical standard deviation (EMPSD), mean of standard
error (SEE) and 95% coverage (CP) for using all covariates when
N = 250 and N = 500 . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.7 Bias, empirical standard deviation (EMPSD), mean of standard
error (SEE) and 95% coverage (CP) for proposed estimator when
N = 250 and N = 500 . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.8 Artificial censoring proportions not assuming propensity score model 103
6.9 Bias, empirical standard deviation (EMPSD), mean of standard

error (SEE) and 95% coverage (CP) for simulation study by using
HIV dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.10 Artificial censoring proportions for simulation study using HIV dataset 105

xi



Acknowledgments

I would like to express gratitude to my advisor, Dr. Debashis Ghosh, who has led
me until this time by brilliant and keen ideas and a lot of support. Without his
support and patience, I could not do my research. From him, I learned not only
knowledge of statistics but also intuition and broad view of every research problem,
and socializing with people.
I also would like to give thanks to faculty, staffs and students at the Department
of Statistics of the Penn State University. They have provided invaluable support
which have made me acquire precious knowledge, attitude as a researcher and
experiences.
Finally, I would like to thank my family, friends, and people who have helped me
in various ways. Their love and encouragement provide strength to proceed step by
step. Without their love and help, I could not write this dissertation.

xii



Chapter 1 |
Introduction

1.1 The Problem
Survival analysis is a well-developed field in statistics. Not only does it have many
applications in statistics, but also its theory and techniques are widely used in
biology, industrial engineering, economics, and so on. For example, in medical
studies, researchers are interested in studying death, which is the event of interest.
Due to the cost and time restriction of the study, the outcomes are not observed on
all subjects and hence are censored. Censoring is a key feature in survival analysis.
Due to this censoring, information of subject’s lifetime and event is only known
to have occurred in certain time interval. Most of the data in survival analysis is
right-censored, which implies that the event can be observed only if it occurs before
some fixed time point or during the study (Klein and Moeschberger, 2003, Chapter
3, p.64).

One of the basic assumptions in survival analysis is an independent censoring
assumption. To explain this assumption, we will introduce some notations and
a definition. Let T be the failure time of an individual and Z be covariates
corresponding to the individual. Define the failure rate λ(t; Z) as

λ(t; Z) = lim
h→0

P (t ≤ T < t+ h|T ≥ t,Z)
h

. (1.1)

The independent censoring assumption states that the failure rates for individuals
under existence of censoring at each time is the same as the failure rates for
individuals without censoring. It implies that when we select an individual from
people who neither are censored nor have an event of interest, the failure rate is
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λ(t; Z). In other words,

lim
h→0

P (t ≤ T < t+ h|Z, T ≥ t)
h

= lim
h→0

P (t ≤ T < t+ h|Z, T ≥ t, Y (t) = 1)
h

. (1.2)

where Y (t) = 1 means that an individual is in the risk set, i.e, the individual neither
is censored nor has the event. Generally, a censoring is independent if for every
individual, the probability of censoring at time t only depends on covariates Z and
does not depend on failure times (Kalbfleisch and Prentice, 2002, pp.12-13). This
independent censoring assumption is a very crucial assumption in the modeling in
survival analysis. If this assumption does not hold, i.e, when failure and censoring
are statistically dependent, the joint distribution of failure and censoring is not
identifiable (Tsiatis, 1975) so that statistical inference is not possible. Many models
in survival analysis are based on this assumption.

However, in many cases, the assumption that people are independently censored
may not hold. Typically, this occurs when we model multiple failure times. Accord-
ing to Ghosh (2000, Chapter 1), multiple events can be divided into two categories:
The first is events that are distinguishable. For example, as we will see in the
second example, time to HIV RNA level more than baseline quantity and time to
withdrawal of study are two different events (Albrecht et al. 2001). The second one
is recurrent events, which indicate that one event can occur several times for one
individual. Tumor recurrence from oncology studies (Byar, 1980) belongs to this
category. More specifically, censoring of subjects in the study is not statistically
independent of failure in the modeling of two distinct events or recurrent events in
the presence of a terminal event, which can be death or withdrawal of the study.
The following two examples demonstrate this situation.

Example 1 (Bone Marrow Transplantation for Leukemia) : Bone marrow trans-
plants are a typical treatment for acute leukemia. However, after the transplantation,
patients may encounter various events. These events are:

1. Developing acute or chronic graft-versus-host disease (GVHD)

2. Returning the platelet count back to normal levels (platelet recovery)

3. Returning level of granulocytes back to normal levels
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4. Development of infections

Platelet recovery (recovery of platelet count recovers to greater than or equal to
40× 109/l) and acute GVHD typically occur within first 100 days. Patients may go
through some or all of these events after transplant, and they may die or relapse
after experiencing them. Moreover, relapse of leukemia and death from transplant
could happen directly. It is also possible that patients may not experience some
or all of stages. Figure 1.1 shows the process which the patients may experience
after bone marrow transplant. In this study, there were 137 patients. 99 of
them had acute myeloctic leukemia (AML) and the rest of patients had acute
lymphoblastic leukemia. They received treatment in four hospitals: 76 at The Ohio
State University Hospitals (OSU) in Columbus; 21 at Hahnemann University (HU)
in Philadelphia; 23 at St. Vincent’s Hospital (SVH) in Sydney, Australia; and 17 at
Alfred Hospital (AH) in Melbourne. Transplants considered in this study were ones
in these hospitals from March 1, 1984 to June 30, 1989. 42 patients experienced
relapse and 41 patients died during remission. This dataset also contains various
covariates which may be associated with death or relapse: risk groups according to
their health status at the time of transplantation, time to acute GVHD, time to
chronic GVHD, age of patient and donor, sex of patient and donor, waiting time
from diagnosis to transplantation, etc. Details about this dataset can be found in
Copelan et al. (1991) and Chapter 1 of Klein and Moeschberger (2003), pp. 3-6.

Example 2 (AIDS Study) : In AIDS Clinical Trial Group Study 364 (Albrecht et al.
2001), patients who have human immunodeficiency virus (HIV) RNA level greater
than or equal to 500 copies per milliliters are considered. The first virologic failure
is defined as the first time that HIV RNA level is greater than or equal to 2000
copies per milliliters. Treatments of interest are nelfinavir(NFV), efavirenz(EFV)
or combination of NFV and EFV in combination with two nucleoside therapies.
Total number of patients is 194, and they were randomly assigned to one of these
treatments. The main interest of the study is to analyze treatment effect to time
of the first virologic failure.

In the bone marrow transplant example, since researchers are interested in
occurring death or relapse as failure, the independent censoring mechanism works
in the modeling. However, if our interest is the relapse, then this mechanism is
not valid because the death of people might be due to deterioration of their health
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Figure 1.1: Processes after a Bone Marrow Transplant (Source: Klein and
Moeschberger, 2003, p.4.)
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status from relapse or side effect of acute or chronic GVHD. In this dataset, 40
people who died had experienced relapse. Thus, it is reasonable to consider that
relapse and death are closely related. In the AIDS study, researchers analyzed the
dataset by assuming that patients were independently censored by withdrawal, i.e,
they imposed independent censoring assumption on the withdrawal and the data is
analyzed by this framework (Albrecht et al. 2001; Peng and Fine, 2006). However,
the first virologic failure and withdrawal of study are closely related. Moreover,
the side effect from treatment may cause patient dropouts from the study. The
following analysis supports this hypothesis. In this study, 101 patients experienced
virologic failure and the other 93 were censored, and 83 patients among them were
censored in administrative time C and 10 patients dropped out from the study
before the administrative time. 9 of these 10 people received combination of NFV
and EFV, so it may be possible that treatment affects the dropout (Peng and Fine,
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2006). In these examples, the event which censored failure of interest is death or
withdrawal, but the event of interest and censoring (death or withdrawal of study)
are not statistically independent because the failure of interest affects the censoring.
The kind of censoring is called ’dependent censoring’. Modeling failure of interest
under existence of dependent censoring is very complicated because many typical
models in the survival analysis are based on the independent censoring assumption.

1.2 Background
As can be seen in the previous section, modeling time to failure of interest under
the existence of death or withdrawal of study is related to many difficult issues.
The naive way of modeling is to ignore this dependent censoring and use traditional
models by treating this possibly informative dropout as independent censoring.
However, clearly, this way of modeling is problematic. In Chapter 3, we will see
that this naive way of modeling causes the issue of bias when estimating parameters
of the model.

Now we will introduce some literatures for this dependent censoring problem.
Several researchers have proposed models of failure time in the presence of dependent
censoring. They concentrated their effort on making identifiable models of failure
time under the existence of dependent censoring. For example, Emoto and Matthews
(1990) proposed a bivariate Weibull model when failure and censoring are dependent.
In addition, Robins and Rotnitzky (1992) proposed a model by imposing weight
from characteristics of the surrogate marker data. However, these are too restrictive
in that they can be only applied under certain conditions.

Due to limitations of making identifiable models, researchers have started to
focus on joint models of the failure time and the dependent censoring. Day et al.
(1997) proposed using a biomarker for prediction of disease into frailty models. By
adapting the idea of Day et al. (1997), Fine et al. (2001) proposed semicompeting
risks data structure which contains both a single nonterminal event and terminal
event. One of the fundamental estimators in survival analysis is an estimator
for survival function. Fine et al. (2001) proposed an estimator for the bivariate
survival function for Clayton copula model on semicompeting risks data. Wang
(2003) extended an approach of Fine et al. (2001) to general copula models and
general parameterization of models used in Day et al. (1997).
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These models in the previous paragraph have provided a good solution by
constructing a model incorporating both a nonterminal event and a terminal
event, which are a generalization of disease occurrence and withdrawal of the
study. However, these models have limited applications because they did not
include covariates in the model. Lin et al. (1996) proposed a bivariate accelerated
failure time (AFT) model including covariates in the semicompeting risks data
structure (although they did not use term ’semicompeting risks data’ explicitly for
the data in which they were interested, the structure they considered is equivalent
to semicompeting risks data). They also used the artificial censoring technique to
adjust the dependent censoring. Peng and Fine (2006) proposed another procedure,
which also employed the artificial censoring but their artificial censoring is different
from Lin et al. (1996). Ding et al. (2009) proposed a regression model whose
response variable is an increasing function of time instead of using the log function
as Lin et al. (1996).

It is natural to extend models in the semicompeting risks data to one containing
recurrent events under the existence of the terminal event. In this case, a main
interest is to model time to each recurrent event. Ghosh and Lin (2003) proposed
the procedure using bivariate AFT model for both recurrent events and death,
which is a generalization of one in Lin et al. (1996). Ghosh (2010) and Hsieh et al.
(2011) extended the approach of Peng and Fine (2006) to a case of recurrent events
with the dependent censoring.

1.3 Outline of Dissertation
Estimators from Lin et al. (1996) and Peng and Fine (2006) have their own
characteristics. For example, as we will see in detail in Chapter 3, the estimator
from Peng and Fine (2006) is based on U-statistics of order 2 while the estimator of
Lin et al. (1996) is based on U-statistics of order 1. In the view of efficiency, neither
of them is better than the other with respect to standard error. If we extend the
scope of estimators based on these two procedures, it is desirable to obtain the
estimator which has better efficiency than ones by Lin et al. (1996) and Peng and
Fine (2006).

In the first part of this dissertation, we propose a weighted estimator of combining
Lin et al. (1996) and Peng and Fine (2006) for semicompeting risks data. In these
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estimations, our goal is to obtain the most efficient one by combining estimators
from Lin et al. (1996) and Peng and Fine (2006) by inputting weights on each
estimator with respect to standard error. The theory of the weighted estimator is
based on the argument of Wei et al. (1989).

Goodness of fit is an essential part in statistics. In survival analysis, most
estimation procedures are U-statistics of order 1 (Lin et al. 1993; Lin et al. 1996).
However, there are also U-statistics of order 2. A good example of U-statistic of
order 2 is the Wilcoxon test statistic for linear regression (Jin et al. 2001). Moreover,
the estimating function proposed by Peng and Fine (2006) is also U-statistics of
order 2. In Chapter 5, we propose the goodness of fit approach for U-statistic of
order 2.

In Lin et al. (1996) and Peng and Fine (2006), they used a technique called
an artificial censoring. The idea of artificial censoring to match uncensored times
between treatment group and control group by censoring uncensored quantities
(Lin et al. 1996). Details about the artificial censoring is explained in Chapter 3.
Artificial censoring is a key technique to adjust dependence between time to the
event of interest and time to the dependent censoring. Artificial censoring is an
increasing function of covariates. Hence when covariates have large variability, the
magnitude of the artificial censoring is large. However, a large artificial censoring
implies that a lot of uncensored observations will be censored so that in the extreme
case, there are few uncensored events after artificial censoring adjustment. This is
problematic in the observational studies. The bone marrow transplant study is a
good example for this case. Unlike the randomized studies, the existence of the
confounder variables requires to use all variables in model building.

In many medical studies, the key interest of researchers is to examine the
treatment effect for the time to disease progression or the time to death. If the
distribution of confounders is equal between the treatment group and the control
group, then it is possible to establish models using the treatment effect only. In
randomized studies, by randomization, the distribution of confounders is equal
between control group and treatment group. In the observational studies, the
usual way to make the distributions of the confounders be equal is to use the
propensity score. This covariate adjustment is useful for reducing the excessive
artificial censoring. In Chapter 6, we develop treatment effect estimation by using
covariate adjustment based on the propensity score.

7



The order of this dissertation is as follows. In Chapter 2, we are going to discuss
the underlying models: the AFT model for a single event and recurrent events, and
the linear transformation model under the independent censoring assumption. In
Chapter 3, previous research on dependent censoring will be discussed. In Chapter
4, we propose the weighted estimation for the bivariate AFT model in the presence
of the dependent censoring. In Chapter 5, a goodness of fit procedure for U-statistic
of order 2 for the AFT model is proposed. In Chapter 6, we show the method of
covariate adjustment based on the propensity score for reducing artificial censoring.
In Chapter 7, the future work for modeling semicompeting risks data and recurrent
events in the presence of dependent censoring will be discussed.
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Chapter 2 |
Basic Models

2.1 Introduction
In survival analysis, perhaps the most famous model is the Cox proportional hazard
model. However, this model has several problems. First, this model assumes the
proportionality of hazard, which may not be applicable to many real datasets.
Moreover, it is difficult to find a relationship between regression coefficients and
survival time. For these reasons, alternatives of the Cox proportional hazard model
have been developed. The most well-known alternatives of this Cox model are an
accelerated failure time model and a linear transformation model. In this section,
we will briefly discuss basic of these models. We assume independent censoring in
this chapter.

2.2 Accelerated Failure Time Model

2.2.1 Single Event Case

The accelerated Failure Time Model (AFT) is a linear model for the logarithm of
the failure time. Let T be time to an event of interest and C be time to independent
censoring. Define Z to be p×1 a vector of covariates. Note that due to the existence
of censoring, we can only observe T̃ = T ∧ C, where a ∧ b means minimum of a
and b. The censoring indicator is ∆ = I(T ≤ C) where I(·) denotes an indicator
function. The observed data consists of n independent and identically distributed
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copies {T̃i,∆i,Zi}, i = 1, ..., n. The model is

log(T ) = ZTη0 + ε, (2.1)

where η0 is p× 1 vector of regression coefficients and ε is an error term. The εs are
independent and identically distributed and do not depend on Z. Expression (2.1)
implies that AFT model is a linear model, so the relationship between failure time
and covariates is direct. Interpretation of coefficients is more natural than that of
the Cox proportional hazard model. Note that the equivalent formulation of the
expression (2.1) in terms of a survival function of T given Z is

S(t|Z) = S0(te−ZT η0),

where S0(·) is a survival function of T when Z = 0. Thus in this model, a person’s
survival time is accelerated or decelerated according to ZTη0. The key element
in statistical inference for η0 is whether we impose an assumption of parametric
or nonparametric distribution on the error term. In the parametric setting, dis-
tributions for εi usually include the Weibull distribution, the logistic distribution,
the normal distribution or the generalized gamma distribution. However, this
parametric assumption is sometimes too restrictive for particular datasets. For this
reason, a semiparametric model is a preferable alternative. For the semiparametric
AFT model, we usually consider rank estimation methods to estimate parameters
and perform statistical inference in the AFT model. A range of literature has
discussed this type of the rank-based estimation (Wei and Gail, 1983; Louis, 1981;
Tsiatis, 1990; Jin et al. 2003). This rank-based estimation is a generalization of
linear rank tests for right censored data (Prentice, 1978). Let us consider a single
covariate Z. By using the counting process notation, linear rank tests can be
expressed as

U(Wn) =
n∑
i=1

∫ ∞
0

Wn

[
Zi −

∑n
j=1 I(T̃j ≥ t)Zj∑n
j=1 I(T̃j ≥ t)

]
dNi(t)

where Ni(t) = I(T̃i ≤ t,∆i = 1) and Wn is a weight function. In this case, this
function can be interpreted as the sum of differences across the event time of
observed covariates for those who have the event and the average of covariate values
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for those who are at risk at the event time. If we replace T̃i to T̃i(η0) = T̃ie
−η0Zi ,

this function is a test statistic for the hypothesis H0 : η = η0. If η = η0, this
function takes value 0, which implies that we can use this rank statistic as an
estimating function (Tsiatis, 1990). If we extend this function to a case of multiple
covariates, we can obtain the estimating function for η0, which is given by

Sn(η) =
n∑
i=1

wi(η)∆i

[
Zi −

∑n
j=1 ZjI{T̃j(η) ≥ T̃i(η)}∑n
j=1 I{T̃j(η) ≥ T̃i(η)}

]
, (2.2)

where w(·) is nonnegative weight functions and T̃i(η) = T̃ie
−ZTi η. We obtain a

solution by solving Sn(η) = 0. Let us denote this solution as η̂. Under regularity
conditions stated in Ying (1993), η̂ is strongly consistent and asymptotically normal.
Since the function in (2.2) is zero-crossing function, i.e., the function crosses the
point zero, the solution always exists theoretically.

Since the estimating function is a nonsmooth function, it is not possible to apply
numerical algorithms for smooth functions. To obtain the solution for estimating
equations, if there is a single covariate, a one-dimensional case root finding method
such as the bisection method can be employed. If the dimension of covariate is
greater than 1, the exact solution may not exist. Then we can define the estimator of
η, say η̂, as a minimizer of ||Sn(η)|| (Peng and Fine, 2006). For multiple covariates,
we can use the linear programming method proposed by Jin et al. (2003) or the
Nelder-Mead algorithm (Nelder and Mead, 1965).

2.2.2 Recurrent Events Case

For modeling in the recurrent event cases, Lin et al. (1998) proposed an extension
of the AFT model from the single event case. For i = 1, . . . , n and k = 1, 2, . . .,
let Tik be kth event time for ith subject. In this case, we do not assume any
dependence structure between events for a subject. Let N∗i (t) be the number of
events which ith subject has experienced until time t without censoring, which can
be formulated as,

N∗i (t) =
∞∑
k=1

I(Tik ≤ t)
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Then the mean function of N∗i (t) given covariates Zi is

E{N∗i (t)|Zi} = µ0(eZTi η0t), (2.3)

where η0 is a p × 1 vector of unknown regression parameters. By transforming
times as in the single event case, we can transform the recurrent event times and
counting processes:

T̃ik(η) = Tike
ZTi η

Ñ∗i (t;η) =
∞∑
k=1

I{T̃ik(η) ≤ t}.

Then (2.3) can be expressed as

E{Ñ∗i (t;η0)} = µ0(t) (2.4)

where µ0(·) is an unknown continuous function. (2.4) indicates that the effect
of covariates affects the a number of recurrences across time by accelerating or
decelerating the time of the events multiplied by factor eZTi η0 with respect to those
of when Z = 0. (Lin et al. 1998). Due to the existence of censoring, we observe the
censored version of N∗(t). With the right-censored data, the observable counting
processes are defined as

Ñi(t;η) =
∞∑
k=1

I{T̃ik(η) ≤ t ∧ C̃i(η)},

where C̃i(η) = Cie
ZTi η. Let Yi(t;η) = I(C̃i(η) ≥ t) = I(Ci ≥ te−ZTi η). Then define

Mi(t;η) = Ñi(t;η)−
∫ t

0
Yi(v;η)dµ0(v),

which is equivalent to

Mi(t;η) =
∫ t

0
Yi(v;η)d{Ñ∗i (v;η)− µ0(v)}.
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From (2.4), we have E{Mi(t;η0)} = 0 for all i = 1, . . . , n. The estimating function
proposed by Lin et al. (1998) is

SRn (η) =
n∑
i=1

∫ ∞
0

W (t;η)
[
Zi −

∑n
i=1 ZiYi(η)∑n
j=1 Yi(η)

]
dÑi(t;η). (2.5)

where W (·;η) is a weight function. By solving SRn (η) = 0, we obtain a solution η̂.
In this case, proving asymptotic results is trickier than that in the single event case
because Mi(t;η0) is not a martingale unless N∗i (t) are non-homogeneous Poisson
processes (Anderson and Gill, 1982). By employing the modern empirical process
theory, Lin et al. (1998) showed that η̂ is strongly consistent and asymptotically
normal. As the single event case, the estimator is the one that minimizes ||SRn (η)||.

2.3 Linear Transformation Model
In this section, we use the same notation as in the AFT model for single event.

Let T be the time to failure, C be time to independent censoring and Z be p× 1
vector of covariates. The observable quantities are independent and identically
distributed replicates {T̃i,∆i,Zi}ni=1 where T̃i = Ti ∧ Ci and ∆i = I(Ti ≤ Ci),
(i = 1, ..., n). It is assumed that Ti is independent of Ci and the survival function
of Ci, say G, does not depend on covariates Zi. Cheng et al. (1995) proposed a
generalized form of Cox model, which is called a linear transformation model. The
form of the linear transformation model is

g{SZ(t)} = h(t) + ZTβ,

where SZ(·) is survival function of T given Z, β is a p × 1 vector of regression
coefficients, h(·) is a unknown increasing function and g(·) is a known decreasing
function.The form of this transformation model is equivalent to

h(T ) = −ZTβ + ε, (2.6)

where ε is error term whose distribution is completely specified as F = 1− g−1. If
F follows the extreme value distribution, then (2.6) is the Cox proportional hazard
model. If F has the standard logistic distribution, then (2.6) is a proportional odds
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model.
Since h(·) is an increasing function, there is no difference between rank of h(Ti)

and rank of Ti. Thus it is sensible to use the rank of h(Ti) for statistical inference
of regression coefficients. To perform statistical inference for β, they considered
the dichotomous variables {I(Ti ≥ Tj), i 6= j = 1, ..., n}. Then

E{I(Ti ≥ Tj)|Zi,Zj} = P{h(Ti) ≥ h(Tj)|Zi,Zj}

= P{εi − ZT
i β ≥ εj − ZT

j β} = P{εi − εj ≥ (Zi − Zj)Tβ}.

Let ξ(ZT
ijβ) = P{εi − εj ≥ (Zi − Zj)Tβ}, where Zij = Zi − Zj. It is desirable to

derive an unbiased estimating function for ξ(ZT
ijβ). Then

E

{
∆jI(T̃i ≥ T̃j)

G2(T̃j)

∣∣∣∣Zi,Zj

}
= E

(
E

[
I(Ti ≥ Tj)I{Ci ∧ Cj ≥ Tj}

G2(Tj)

∣∣∣∣Tj,Zi,Zj

])
= E

(
E{I(Ti ≥ Tj)|Tj,Zi,Zj}E

{
I(Ci ≥ Tj)
G(Tj)

∣∣∣∣Tj,Zi,Zj

}
× E

{
I(Cj ≥ Tj)
G(Tj)

∣∣∣∣Tj,Zi,Zj

})
= E{I(Ti ≥ Tj)|Zi,Zj} = P{h(Ti) ≥ h(Tj)|Zi,Zj}

= ξ(ZT
ijβ).

Then by substituting G2(T̃j) by Ĝ2(T̃j), which is the Kaplan-Meier estimator of
survival function for censoring variable C, an estimating function can be established
by

U(β) =
n∑
i=1

n∑
j=1

w(ZT
ijβ)Zij

{
∆jI(T̃i ≥ T̃j)

Ĝ2(T̃j)
− ξ(ZT

ijβ)
}
, (2.7)

where w(·) is a weight function. U(β) = 0 has a unique solution asymptotically
if w(·) is positive. Let denote this solution be β̂. Since ξ(·) is smooth function,
unlike AFT model, we can use a Newton-Raphson algorithm to obtain β̂. Let β0

be true value of β. By using a Taylor expansion of U(β̂) around β0, the authors
showed that estimator β̂ is asymptotically normal. If the survival function of C
depends on Z, and Z can be discretized into K distinct values, then the estimating
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function can be changed to

Ũ(β) =
n∑
i=1

n∑
j=1

w(ZT
ijβ)Zij

{
∆jI(T̃i ≥ T̃j)
ĜZi(T̃j)ĜZj(T̃j)

− ξ(ZT
ijβ)

}
, (2.8)

where ĜZ(·) is the Kaplan-Meier estimator for the survival function of the censoring
variable C from {T̃l,∆l}nl=1 where Zl = Z(l = 1, ..., n). Then the solution of
Ũ(β) = 0, say β̃, is also asymptotically normal.
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Chapter 3 |
Review of Dependent Censor-
ing

3.1 Introduction
The semicompeting risks data structure has been studied for a while. This data

structure provides a nice way to address the dependent censoring problem. The
key feature of this framework is to deal with two distinct events simultaneously.
Methodology from this framework can be easily extended to recurrent events under
the dependent censoring. In this chapter, some literature related to semicompeting
risks and recurrent events under the dependent censoring will be reviewed.

3.2 Semicompeting Risks Data

3.2.1 Basic Concepts and Model Without Covariates

Semicompeting risks data is first proposed by Fine et al. (2001). According to
them, in the semicompeting risks data structure, there are two types of events:
a nonterminal event and a terminal event. In the medical study, a nonterminal
event can be any failure of the researcher’s interest except death while a terminal
event can be death. In this structure, a terminal event may censor the nonterminal
event, but the nonterminal event does not stop the occurrence of the terminal
event. In fact, semicomepting risks data have a different characteristic compared to
competing risks data. In competing risks data, several distinct and terminal events
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exist, and we only observe minimum of several terminal events. In semicompeting
risks data, a nonterminal event and a terminal event exist. It is possible to observe
a nonterminal event without the terminal event, the terminal event without the
nonterminal event or we can observe the both events (Ghosh, 2006). Datasets of
examples in the Chapter 1 clearly fall into this semicompeting risks structure. In
Example 1 from Chapter 1, death clearly censors relapse, but the relapse does not
stop the observance of death. In Example 2 from Chapter 1, the withdrawal stops
virologic failure, but the virologic failure does not prevent the observance of the
withdrawal.

Now we will explain the structure of semicompeting risks data. Let X be time
to a nonterminal event and and D be time to a terminal event. Let C be an
independent censoring time, which is censoring time because of random loss to
follow up and the end of study (Lin et al. 1996). It is assumed that C is independent
of (X,D). In this setup, define Ṽ = X ∧D, κ = I(X ≤ D), ∆ = I(D ≤ C), D̃ =
D ∧ C, X̃ = Ṽ ∧ C = X ∧D ∧ C, ζ = I(V ≤ C) = I(X ∧D ≤ C). The observed
data, which is called semi-competing risks data, consist of n independent and
identically distributed collections {X̃i, D̃i, ζi,∆i, κiζi}ni=1.

This data structure contains many advantages. First, if failure is not statistically
independent with censoring, the joint distribution of failure time and censoring is
nonidentifiable nonparametrically (Tsiatis, 1975). However, in this semicompeting
risks setting, the joint distribution of the nonterminal event and the terminal event,
say X and D, is nonparametrically identifiable in the upper wedge when X < D.
Note that there is no assumption of specific dependence structure between the
nonterminal event and the terminal event. It is also noticeable that semicompeting
data structure can be applied not only to the medical study, but also any studies
containing a nonterminal event and a terminal event.

In the medical study, a biological marker takes an important role when making
prognosis for a patient. Day et al. (1997) considered the recurrence of a disease and
biomarker positivity, where the biomarker positivity means that a patient is flagged
as high risk. The goal of Day et al. (1997) was to find whether the appearance of
marker can change the patient’s subsequent risk which is sufficient to trigger to use
treatment for a disease. The useful quantity to evaluate predictive power of marker
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is the predictive hazard ratio, which is defined by

R(s, t) = λ(t|{s})
λ(t|(s,∞]) ,

where for A ⊆ (0,∞), the definition of λ(t|A) is

λ(t|A) = lim
ε→0

d

dε
P (TR < t+ ε|TR ≥ t, TF ∈ A),

and TR is the recurrence time of the disease and TF is the first time marked as
high risk. This predictive hazard ratio is the ratio of the recurrence hazard rate at
time t of a subject marked as high risk at s to that of a subject marked as high
risk after time s. It borrows from the gamma frailty model from Clayton (1978) in
that TR and TF are conditionally independent given an unobserved frailty when
this predictive hazard ratio is constant that is greater than 1. Due to the definition
of the predictive hazard ratio and the purpose of prediction, it is reasonable to
assume a constant value of the predictive hazard ratio in the area 0 ≤ s ≤ t <∞.
In the lower wedge, it is most likely that the conditional independence of TR and TF
does not hold so that it is not sensible to assume a constant value of the predictive
ratio. They shows that this assumption is sufficient to guarantee the conditional
independence of TR and TF in the gamma frailty model in the upper wedge.

For modeling semicompeting risks data, they extended the idea of Day et al.
(1997) of using bivariate frailty models for predicting the future risk of a patient
when biological marker exists. They defined a model in the area X < D without
covariates. For θ ≥ 1 and 0 ≤ s ≤ t ≤ ∞,

F (s, t) = (F 1−θ
x (s) + F 1−θ

d (t)− 1)1/(1−θ), (3.1)

where Fx and Fd satisfy the definition of survival functions. Note that by the
identifiability issue, this model is identifiable in the area X < D only. Based on
the model, they proposed a new estimator by extending arguments of Oakes’ (1982,
1986). Define δij = I{(Xi−Xj)(Di−Dj) > 0}, X̃ij = Xi∧Xj, D̃ij = Di∧Dj, C̃ij =
Ci ∧ Cj, ∆ij = I(X̃ij ≤ D̃ij ≤ C̃ij), X̃∗ij = X̃ij ∧ D̃ij ∧ C̃ij, and D̃∗ij = D̃ij ∧ C̃ij.
Due to the assumption of semicompeting risks data, δij is only calculable when
∆ij = 1. Under model (3.1), E{E(δij|X̃∗ij, D̃∗ij)|∆ij = 1} = θ0/(1 + θ0), where θ0 is
the true value of θ because the predictive hazard ratio takes constant value θ0 in
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the upper wedge. The estimating function for θ0 is

U(θ) =
∑
i<j

W (X̃∗ij, D̃∗ij)∆ij

{
δij −

θ

1 + θ

}
. (3.2)

The proposed estimator is

θ̂ =
∑

i<jW (X̃∗ij, D̃∗ij)∆ijδij∑
i<jW (X̃∗ij, D̃∗ij)(1− δij)∆ij

, (3.3)

where W (a, b) is a weighted random function satisfying supa,b |W (a, b)− W̃ (a, b)|
converges to 0, W̃ (a, b) is a nonrandom function and bounded for (a, b) in the
support of (X̃∗ij, D̃∗ij). They also showed that this estimator is asymptotical normal.

It is also of interest to investigate an estimator of Fx. In semicomepting risks
data, the usual Kaplan-Meier estimator of Fx computed from {X̃i, κiζi}ni=1 does
not converge to Fx. Fine et al. (2001) proposed the plug-in estimator of Fx and the
inference procedure of Fx. They also provided asymptotic results of this estimator.

3.2.2 Model with Covariates

Although the idea of Fine et al. (2001) is pioneering and has theoretical advantage,
the model does not include effects of covariates. Moreover, their model assumes
the dependence structure between the nonterminal event and the terminal event.
Thus its application is quite limited. Lin et al. (1996) and Peng and Fine (2006)
suggested a nice solution to this issue by establishing a model incorporating effects
of covariates. They proposed bivariate AFT models for the data structure which is
the same as that of Fine et al. (2001).

We will discuss the data structure and notations used in Lin et al. (1996) and
Peng and Fine (2006). For simplicity of notations, let X be logarithm of time to
the event of interest, D be logarithm of time to the dependent censoring, C be
logarithm of time to the independent censoring and Z be p×1 a vector of covariates.
Define X̃ = X ∧ D ∧ C, D̃ = D ∧ C, ∆ = I(D ≤ C) and δ = I(X ≤ D̃). The
observed data are independent and identical copies (X̃i, D̃i,∆i, δi,Zi), i = 1...., n.
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The regression model is(
Di = ZT

i η0 + εDi

Xi = ZT
i θ0 + εXi

)
, i = 1, ..., n, (3.4)

where θ0 and η0 are p× 1 vectors of regression coefficients, and εi ≡ (εXi , εDi ) are
independent and identically distributed error terms that are independent of Zi. In
this case, we assume that the model is identifiable only in upper wedge X < D

(Fine et al. 2001; Peng and Fine, 2006). We assume that ε has unknown bivariate
distribution F . The goal is to obtain an estimator of α0 = (ηT0 ,θT0 )T without
estimating the distribution of εis. We further assume that given Z, C and (X,D)
are independent, but X and D can be dependent given Z.

Now we review the models of Lin et al. (1996) and Peng and Fine (2006).
The procedure of estimating of η0 is straightforward because it is only related to
independent censoring. The estimating function for η0 is

Sn(η) = n−1/2
n∑
i=1

∆i

[
Zi −

∑n
j=1 ZjI{D̃∗j (η) ≥ D̃∗i (η)}∑n
j=1 I{D̃∗j (η) ≥ D̃∗i (η)}

]
, (3.5)

where D̃∗i (η) = D̃i − ZT
i η and the estimator for η is the solution of Sn(η) = 0.

For estimation of θ0, one may want to replace D̃i(η) by X̃i − ZT
i θ. However,

it does not guarantee to obtain unbiased estimator of θ. We examine why this
bias can occur. Let Z be a treatment indicator, i.e, Z = 1 if a person receives
treatment and Z = 0 if a person does not receive treatment. Suppose that bZ(t) is
a cause-specific hazard function for treatment group and control group. Then bZ(t)
is

bZ(t) = lim
∆t→0

P{t ≤ X − θ0Z < t+ ∆t|X − θ0Z ≥ t,D − θ0Z ≥ t)
∆t . (3.6)

Note that the distribution of D − θ0Z depends on Z unless θ0 = η0, which is a
violation of the assumption. This results in b0(t) 6= b1(t), and it implies that this
naive estimating function for θ0 causes a bias.

To solve this problem, Lin et al. (1996) and Peng and Fine (2006) employed
artificial censoring to remove the bias of the estimator of the model in the presence
of the dependent censoring. The motivation of artificial censoring is to make
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observations have the common distribution which is independent of covariates so
that observations can be comparable (Ding et al. 2009). In the causal inference
context, Joffe (2001) showed that the estimator of the model implemented artificial
censoring technique is unbiased in the simulation study. Lin et al. (1996) and Peng
and Fine (2006) applied this idea on rank-based AFT model. We will see how this
technique is utilized numerically when we review models of Lin et al. (1996) and
Peng and Fine (2006) in detail.

Figure 3.1 and 3.2 show the mechanism of artificial censoring when the censoring
variable C is absent. Suppose that we have only a treatment indicator Z and consider
θ0 > η0. Suppose that θ0 = 2 and η0 = 1. In Figure 3.1 and 3.2, the horizontal
axis and vertical axis are transformed times X − θ0Z and D− η0Z, respectively. In
these figures, the solid line and dashed line are lines of censoring when Z = 1 and
Z = 0, respectively. In Figure 3.1, when Z = 0, observable data points are located
in the area above the dashed line. However, observable data points belong to the
area above the solid line when Z = 1. Thus if randomly selected observations from
the treatment group and the control group belong to the shaded area in Figure 3.1,
they are not be comparable. The shaded area between the dashed line and the
solid line should be adjusted for the comparison. In this case, for control group,
originally uncensored observations may be censored because observations located
above the solid line are only compatible and independent of Z. Now, let us consider
the opposite situation, i.e, when η0 > θ0. Suppose that η0 = 2 and θ0 = 1. As
opposite to the previous case, the area of observable data when Z = 1 is wider than
that when Z = 0. Thus it is necessary to adjust the treatment group to make these
observations compatible. In this case, uncensored observations in the treatment
group may be censored. Figure 3.2 explains this phenomenon.

Lin et al. (1996) considered this simple case when Z is a treatment indicator
and provided a solution for this dependent censoring problem. Let g(β) = θ − η if
θ ≥ η and g(β) = 0 otherwise. Then they defined Di − ηZi − d and Ci − ηZi − d.
These two quantities provide new quantities, say X̃∗i (α) and δ̃∗i (α), where

X̃∗i (α) = (Xi − θZi) ∧ {Di − ηZi − g(β)} ∧ {Ci − ηZi − g(β)}

δ̃∗i (α) = I[{(Xi − θZi) ≤ {Di − ηZi − g(β)} ∧ {Ci − ηZi − g(β)}].
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Figure 3.1: Artificial censoring when θ0 > η0, θ0 = 2 and η0 = 1

Z = 1 Z = 0

1

−1 X − θ0Z = X − 2Z

D − η0Z = D − Z

Figure 3.2: Artificial censoring when θ0 < η0, θ0 = 1 and η0 = 2

Z = 1

Z = 0

1

−1

X − θ0Z = X − Z

D − η0Z = D − 2Z
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In fact, using d leads to the transformation from uncensored observations to censored
ones, as can be seen in the mechanism. Moreover, this formulation of d exactly
coincides the mechanism, which may censor observations in the treatment group
when η > θ and in the control group when η < θ (Ghosh and Lin, 2003). As a
result, X̃∗i (α) and δ̃∗i (α) correct the bias caused by the dependent censoring. Then
the estimating function for θ0 according to Lin et al. (1996) is

UL
n (α) = n−1/2

n∑
i=1

δ̃∗i (α)
[
Zi −

∑n
j=1 ZjI{X̃∗j (α) ≥ X̃∗i (α)}∑n
j=1 I{X̃∗j (α) ≥ X̃∗i (α)}

]
. (3.7)

The proposed estimator of θ0 according to Lin et al. (1996) is the solution of
UL
n {(η̂, θ)T} = 0, where η̂ is an estimator of η0. Let us denote this solution as

α̂L = (η̂, θ̂)T .
For statistical inference, the key issue is calculating covariance matrix of α̂. To

calculate covariance matrix of α̂L, first it is necessary to derive covariance matrix
of UL

n (α̂L). In this case, the covariance matrix of UL
n (α̂L) can be derived using the

martingale structure of UL
n (α). However, the asymptotic covariance matrix of α̂L is

very difficult. Its asymptotic matrix has the form A−1BA−1, where A is a constant
matrix and B is covariance matrix of UL

n (α0), where α0 = (η0, α0)T . Computing
A requires the estimation of density of error terms, which is not desirable in our
estimation framework (Peng and Fine, 2006).

To solve this issue, Lin et al. (1996) adapted methodology developed by Parzen
et al. (1994). Parzen et al. (1994) proposed a resampling method by solving the
estimating function iteratively. Let β be p × 1 vector of parameters. The goal
is to perform statistical inference of β by using V (β), where V (β) is an exactly
or asymptotically pivotal estimating function, which means that we can derive
the exact distribution or asymptotic distribution of V (β) from some vector r,
where r has a known distribution or it is possible to estimate the distribution of r
consistently. Then it is possible to construct a stochastic equation V (β) = r. Let
β̃ be a solution of this equation. Under some regularity conditions, the conditional
distribution of (β̃−β̂) given observed data is equal to the unconditional distribution
of (β̂ − β0), where β0 is the true value of β, β̂ is a consistent estimator of β0. To
obtain the distribution of β̃, we can generate large realizations of β̃ by solving
V (β) = r sufficiently many times.

Adapting this approach of Parzen et al. (1994), Lin et al. (1996) suggested a
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resampling approach to estimate the covariance matrix of α̂L rather than computing
A directly. Let Sn(η) be an estimating function for η0. This is same as the estimating
function of (3.5) except considering a single covariate in this case. The proposed
resampling approach is to solve V L

n (α) = −u, where

V L
n (α) =

(
Sn(η)
UL
n (α)

)
, (3.8)

and u follows normal distribution with mean 0 and covariance matrix B̂, where B̂
is covariance matrix of UL

n (α̂L). Let solutions of the equation V L
n (α) = −u be α̃L.

By Parzen et al. (1994), the conditional distribution of n1/2(α̃L − α̂L) given the
data is the same as the unconditional distribution of n1/2(α̂L − α0) asymptotically,
where α̂L is an estimator proposed by Lin et al. (1996). Then statistical inference
can be performed by these realizations, say α̃L1 , ..., α̃LB. Clearly, the arguments of
Lin et al. (1996) can be easily extended to the multiple covariates case. Then an
estimating function of Lin et al. (1996) for multiple covariates is

UL
n(α) = n−1/2

n∑
i=1

δ̃∗i (α)
[
Zi −

∑n
j=1 ZjI{X̃∗j (α) ≥ X̃∗i (α)}∑n
j=1 I{X̃∗j (α) ≥ X̃∗i (α)}

]
. (3.9)

where

g(α) = max
1≤i≤n

{0,ZT
i (θ − η)}

X̃∗i (α) = (Xi − ZT
i θ) ∧ {Di − ZT

i η − g(β)} ∧ {Ci − ZT
i η − g(β)}

δ̃∗i (α) = I[(Xi − ZT
i θ) ≤ {Di − ZT

i η − g(β)} ∧ {Ci − ZT
i η − g(β)}].

The other important contribution of Lin et al. (1996) is goodness of fit statistics.
They first established score processes based on martingale residuals. To check
behavior of the model, they constructed bootstrapped processes by generating
standard normal random variables and using realizations from resampling. From
these two processes, visual model checking can be conducted by plotting 20-30
bootstrapped processes with score processes. Empirical p-values can be calculated
from Kolmogorov-Smirnov type statistics.

Peng and Fine (2006) also considered the semicompeting risks data structure
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from Fine et al. (2001). They considered multiple covariates in their analysis. They
also applied the artificial censoring idea to the model, but used pairwise comparing
methods to reduce the degree of the artificial censoring. They argued that these
pairwise comparisons may lead to a more efficient estimator of α0 than that in Lin
et al. (1996) because the amount of artificial censoring is less than that in Lin et
al. (1996) by pairwise comparisons. Estimating η0 is identical to that of Lin et al.
(1996). For estimating θ0, define

gij(α) = max {0,ZT
i (θ − η),ZT

j (θ − η)}

X̃∗i(j)(α) = (Xi − ZT
i θ) ∧ {Di − ZT

i η − gij(β)} ∧ {Ci − ZT
i η − gij(β)}

δ̃∗i(j)(α) = I[(Xi − ZT
i θ) ≤ {Di − ZT

i η − gij(β)} ∧ {Ci − ZT
i η − gij(β)}],

φij(α) = δ̃∗i(j)(α)I{X̃∗i(j)(α) ≤ X̃∗j(i)(α)} − δ̃∗j(i)(α)I{X̃∗j(i)(α) ≤ X̃∗i(j)(α)}.

Then the estimating function for θ0 according to Peng and Fine (2006) is

UP
n (α) = 2n1/2

n(n− 1)
∑

1≤i<j≤n

(Zi − Zj)φij(α). (3.10)

The proposed estimator of θ0 according to Peng and Fine (2006) is a solution of
UP
n {(η̂T ,θT )T} = 0. They also estimated the covariance matrix for the estimator of

α by using Parzen et al. (1994) and proved that the estimator is strongly consistent
and asymptotically normal. For estimating the covariance matrix of their estimator
α̂P , as Lin et al. (1996), they implemented the resampling technique by Parzen et
al. (1994).

As the estimating equation of AFT model for a single event under the in-
dependent censoring assumption, solutions of UL

n(α) and UP
n (α) are defined as

θ̂L = arg minθ ||UL
n{(η̂T ,θT )T}|| and θ̂P = arg minθ ||UP

n {(η̂T ,θT )T}||, respec-
tively (Peng and Fine, 2006). In computation, algorithms used to obtain estimators
in the AFT model in Chapter 2 can be still applied.

The estimators proposed by Lin et al. (1996) and Peng and Fine (2006) are
useful in two respects. First, their methods include effects of covariates and the
resampling method is quite easy to implement. Second, these are theoretically
well-justified. They proved that their estimators are strongly consistent and asymp-
totically normal by using martingale theory of Fleming and Harrington (2005,
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Chapter 5, pp. 201-228) and arguments in Ying (1993), and U-statistics theory in
Honoré and Powell (1994).

It is sensible to extend this result to general function of X and D. Ding et al.
(2009) proposed a generalization of the previous models. Note that the observed
data are {X̃i, D̃i,∆i, δi,Zi}ni=1. The model is(

h1(Xi) = ZT
i θ0 + εXi

h2(Di) = ZT
i η0 + εDi

)
, i = 1, ..., n, (3.11)

where θ0 and η0 are p × 1 vectors of regression coefficients, and h1 and h2 are
monotone functions of Xi and Di, respectively. h1 is a known function but h2

may be known or unknown. If h2 is specified, then εDi is unspecified. If h2 is
unspecified, to avoid the nonidentifiability issue, εDi is specified. Let XH(θ) =
h1(X)−ZTθ, DH(η) = h2(D)−ZTη and CH(η) = h2(C)−ZTη. Define D̃H(η) =
DH(η) ∧ CH(η). The estimator for η0 is obtained by solving SHn (η) = 0, where

SHn (η) = n−1/2
n∑
i=1

∆i

[
Zi −

∑n
j=1 ZjI{D̃H

j (η) ≥ D̃H
i (η)}∑n

j=1 I{D̃H
j (η) ≥ D̃H

i (η)}

]
. (3.12)

where D̃H
i (η) are realizations of D̃H(η). Denote α = (ηT ,θT )T . In this case, since

general functions h1(t) and h2(t) are considered, in order to employ the artificial
censoring mechanism of Lin et al. (1996), a new censoring time should be defined.
They established the artificial censoring mechanism for general functions h1(t) and
h2(t), say Rα(t), which is defined by

Rα(t) = inf
z∈Ω

h1 ◦ h−1
2 (t+ zTθ)− zTη.

Note that when h1(t) = h2(t) = log(t), Rα(t) reduces the artificial censoring scheme
by Lin et al. (1996). By using this general scheme, they defined several new
quantities to adjust the dependent censoring, where

D̃H∗
i (α) = Rα{DH

i (η) ∧ CH
i (η)} = Rα{D̃H

i (η)}

X̃H∗
i (α) = {h1(Xi)−ZT

i θ} ∧ D̃H∗
i (α)

δ̃H∗i (α) = I[{h1(Xi)−ZT
i θ} ≤ D̃H∗

i (α)]
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Then, similar to Lin et al (1996), the estimating function for unbiased estimator of
θ0 is given by

UH
n (α) = n−1/2

n∑
i=1

δ̃H∗i (α)
[
Zi −

∑n
j=1 ZjI{X̃H∗

j (α) ≥ X̃H∗
i (α)}∑n

j=1 I{X̃H∗
j (α) ≥ X̃H∗

i (α)}

]
. (3.13)

Then they implemented the resampling technique which is similar to Lin et al.
(1996) for inference of their estimators and proposed a new computational method
for multiple covariates by modifying linear programming technique from Jin et al.
(2003).

Moreover, Ding et al. (2009) proposed an inference procedure if D has the linear
transformation model. The step for this inference is as follows. Let survival function
of D be S̃D(t) = P (εD > t) and baseline survival function SD(t) = P (D > t|Z = 0).
The procedure is as follows:

1. Estimate a uniformly consistent estimator of survival function SD(t), say ŜD(t).
Calculate ĥ2(t) = S̃−1

D ◦ ŜD(t) and R̂α(t) = infz∈Ω h1[Ŝ−1
D {S̃D(t+zTη)}]−zTθ.

2. Replace h2(t) with ĥ2(t) and Rα(t) with R̂α(t) in SHn (η) and UH
n (α), respec-

tively. Then we will get new estimating functions for η and θ from these
quantities. Denote these new functions to be S̃Hn (η) and ŨL

n(α). Then by
solving S̃Hn (η) = 0 and ŨH

n (α) = 0, estimators for η and α under the new
model can be obtained.

Considering general functions h1 and h2, many combinations of two models can be
considered. The issue is to choose the best combination of the models. To choose
best models, they used p-values from goodness of fit test statistics.

3.3 Model for Recurrent Events in the Presence of
Dependent Censoring
In this section, we will discuss models of recurrent events under the existence of
dependent censoring. These models have been proposed by extending results in the
Lin et al. (1996) and Peng and Fine (2006).

Ghosh and Lin (2003) extended the approach of Lin et al. (1998) which
established AFT model in recurrent events under independent censoring. Moreover,
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this paper is a generalization of Lin et al. (1996) to the case of recurrent events.
Let N∗(t) be the number of recurrent events that occur over the time interval [0, t]
without censoring, D be time to the terminal event, C be time to independent
censoring and Z be p×1 a vector of covariates. It is assumed that C is independent
with both N∗(·) and D given Z, but N∗(·) and D can be dependent even given
Z. Let {N∗i (·), Di, Ci,Zi}ni=1 be independent and identically distributed copies of
{N∗(·), D, C,Z}. Given Zi, {Die

−ZTi η0 , N∗i (teZTi θ0)} are independent and identically
distributed, but their joint distribution is unknown, where η0 and θ0 are p × 1
vectors of regression coefficients. This joint distribution is expressed as follows:(

Die
−ZTi η0

N∗i (teZTi θ0)

)
d=
(

D0

N∗0 (t)

)
, i = 1, ..., n, (3.14)

where {D0, N
∗
0 (t)}T is a bivariate distribution and d= means equal in distribution.

The observable data are {Ni(·), D̃i,∆i,Zi}ni=1, where Ni(t) = N∗i (t∧Di ∧Ci), D̃i =
Di∧Ci and ∆i = I(Di ≤ Ci). As discussed before, η can be estimated by employing
the same method as the rank-based estimation approach of AFT model in Chapter
2.

Now we will discuss the estimation procedure for θ in Ghosh and Lin (2003)
As defined in Lin et al. (1998), let Tik be the time to the kth recurrent event
(k = 1, 2, . . .) for the ith subject (i = 1, . . . , n). Then similar to Section 2.2.2 from
Chapter 2, a counting process for the number of events without censoring until
time t is defined by N∗i (t) =

∑∞
i=1 I(Tik ≤ t) and a counting process for observed

number of events is Ni(t) =
∑∞

k=1 I(Tik ≤ t ∧ D̃i). Define T̃ik(θ) = Tike
−ZTi θ

and D̃i(η) = D̃ie
−ZTi η. Let α = (ηT ,θT )T and α0 = (ηT0 ,θT0 )T . By adapting

Lin et al. (1998)’s approach and the artificial censoring approach from Lin et
al. (1996), quantities for the artificial censoring and new censoring time are,
d = max1≤i≤n {0,ZT

i (θ − η)} and D̃∗i (α) = D̃i(η)e−ZTi η−d. The estimating function
for θ0 is

UGL
n (α) = n−1/2

n∑
i=1

∫ ∞
0

[
Zi −

∑n
j=1 ZjI{D̃∗j (η) ≥ t}∑n
j=1 I{D̃∗j (η) ≥ t}

]
dN2i(t;α), (3.15)
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where
N2i(t;α) =

∞∑
k=1

I{T̃ik(θ) ≤ t ∧ D̃∗i (α)}.

Let the solution of equation UGL
n (α) = 0 be α̂GL. By using multivariate central

limit theorem and empirical process theory, Ghosh and Lin (2003) showed that
n1/2(α̂GL −α0) is asymptotically mean zero and covariance matrix.

There are also several approaches that have made for extension of methodology
of Peng and Fine (2006) to recurrent events with the terminal event. Ghosh (2010)
and Hsieh et al. (2011) are these approaches.

Ghosh (2010) followed the same model and data structure as Ghosh and Lin
(2003) and only considered a treatment indicator for Zi as covariate. He demon-
strated the connection between dependent censoring and truncation. From this
connection, he also showed that the data structure {Ni(·), D̃i,∆i, Zi}ni=1 is equiva-
lent to {Ki, (Tij, j = 1, ..., Ki), D̃i,∆i, Zi}ni=1 where Tij is observable only Tij ≤ D̃i.
Note that in this case, Ki is an observed number of recurrent events which depends
on index of each individual. Let Sn(η) be the estimating function for η0. Note that
Sn(η) is a one-dimensional version of function (3.5). By using the artificial censoring
technique that is identical to Peng and Fine (2006), Ghosh (2010) proposed the
following quantities:

gij(α) = max{0, (θ − η)Zi, (θ − η)Zj}

T̃i(j)k(α) = Tike
−θZi ∧ (Di ∧ Ci)e−ηZi−gij(α)

δ̃i(j)k(α) = I{Tike−θZi ≤ (Di ∧ Ci)e−ηZi−gij(α)}

φGij(α) =
Ki∑
k=1

Kj∑
l=1

[δ̃i(j)k(α)I{T̃i(j)k(α) ≤ T̃j(i)l(α)} − δ̃j(i)l(α)I{T̃j(i)l(α) ≤ T̃i(j)k(α)}].

The estimating function is

UG
n (α) = 2n1/2

n(n− 1)
∑

1≤i<j≤n

(Zi − Zj)φGij(α). (3.16)

Let α̂G = (η̂, θ̂G)T be an estimator from solving UG
n (α) = 0. The next step is

calculating covariance matrix for α̂G. To calculate the covariance matrix, instead
of implementing resampling approach by Parzen et al. (1994), Ghosh (2010) used a
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resampling approach by Zeng and Lin (2008). This algorithm is faster than that in
Parzen et al. (1994) because it does not require to solve the estimating equations
iteratively. The algorithm is as follows:

1. Generate two standard normal random variables G = (Gη, Gθ).

2. Calculate {Sn(η̂ + n−1/2Gη), UG
n (α̂G + n−1/2G)}.

3. Repeat step 1 and step 2 M times.

4. Regress Sn(η̂ + n−1/2Gη) on Gη.

5. Regress UG
n (α̂G + n−1/2G) on Gη and Gθ.

6. Let â1 be a regression coefficient from the regression in step 4 and â2 be a
regression coefficient from regression in step 5. Then it is possible to construct
Â−1B̂Â−1, where B̂ is covariance matrix of [{Sn(η̂)}T , {UG

n (α̂G)}T ]T and Â
is a matrix such that the first row of Â is â1 and the second row of Â is â2.

α̂G is strongly consistent and asymptotically normal (Ghosh, 2010). Clearly, it
is possible to extend this model to a case of multivariate covariates. Another
variation of approach of Peng and Fine (2006) for recurrent events with the terminal
event is proposed by Hsieh et al. (2011). They extended model in Ding et al.
(2009) by applying the pairwise comparisons approach of Peng and Fine (2006).
The data structure is {N∗(·), Tk, C,D,Z}, where Tk is time to the kth recurrent
event (k = 1, 2, . . .). The assumptions are the same as those of other models for
recurrent events mentioned in this section. The proposed model is(

h1(Tk) = ZTθ0 + εk

h2(D) = ZTη0 + ξD

)
, (3.17)

where η0 and θ0 are p × 1 vectors of regression coefficients, h1(·) is a known
monotone function and h2(·) is another monotone function which may be specified
or unspecified. If h2(·) is unknown, then ξD is known and vice versa. If h1(t) =
h2(t) = log(t), the model is AFT model. If h2(·) is unknown and ξ follows the
extreme value distribution, as discussed in Chapter 2, it is the Cox proportional
hazard model. Thus model (3.17) has high flexibility. In terms of the counting
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process, the model (3.17) is equivalent to(
N∗{h−1

1 (t+ ZTθ0)}
h2(D)− ZTη0

)
d=
(
N∗ε (t)
ξD

)
(3.18)

where N∗ε (t) =
∑∞

k=1 I(εk ≤ t). Let {N∗i (·), Tik, Ci, Di,Zi}ni=1 be independent
and identical copies of {N∗(·), Tk, C,D,Z} for k = 1, 2, . . . and i = 1, ..., n. The
observed process is Ni(t) = N∗i (t ∧Di ∧ Ci). Define εik(θ) = h1(Tik) − ZT

i θ and
ξDi (η) = h2(Di) − ZT

i η. Then clearly, {εik(θ), ξDi (η)} are also independent and
identically distributed. We assume that they do not depend on Zi.

Estimating η0 is identical as what was done in Ding et al. (2009). To estimate
θ0, the censoring mechanism is more complex than that in Peng and Fine (2006)
due to considering general functions h1 and h2. In this case, εik is censored by
εCi (α) = h1[h−1

2 {(ξDi (η) ∧ ξCi (η)) + ZT
i η}] − ZT

i θ where ξCi (η) = h2(Ci) − ZT
i η.

As in Ding et al. (2009), the need for artificial censoring arises to deal with
this censoring mechanism. Define ε̃Ci (α) = Rα{ξDi (η) ∧ ξCi (η)}, where Rα(t) =
infz h1{h−1

2 (t + zTη)} − zTθ and α = (ηT ,θT )T . This time is the new censoring
time to adjust dependent censoring in the model. Then the first proposed estimating
function is

UHL
n (α) =

∫ ∞
0

[
Zi −

∑n
j=1 I{ε̃Cj (α) ≥ t}Zj∑n
j=1 I{ε̃Cj (α) ≥ t}

]
dÑεi(t;α), (3.19)

where Ñεi(t;α) =
∑∞

k=1 I{εik(θ) ≤ t ∧ ε̃Cj (α)}. If h1(t) = h2(t) = log(t), then this
function is exactly the same as the function (3.15). For the pairwise comparisons
approach, define ε̃Ci(j)(α) = Rij

α{ξDi (η)∧ ξCi (η)} where Rij
α(t) = infz=zi,zj h1{h−1

2 (t+
zTη)} − zTθ. Rij

α(t) is an artificial censoring mechanism for pairwise comparisons
and ε̃Ci(j)(α) is a new censoring variable to adjust dependent censoring in pairwise
comparisons. Let ε̃ki(j)(α) = εik(θ) ∧ ε̃Ci(j)(α) and δ̃ki(j)(α) = I{εik(θ) ≤ ε̃Ci(j)(α)}.
Then second proposed estimating function is

UH
n (α) = 2n1/2

n(n− 1)
∑

1≤i<j≤n

(Zi − Zj)φHij (α), (3.20)
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where

φHij (α) =
∑
k

[δ̃ki(j)(α)I{ε̃ki(j)(α) ≤ ε̃kj(i)(α)} − δ̃kj(i)(α)I{ε̃kj(i)(α) ≤ ε̃ki(j)(α)}].

Note that in this case, the same index for recurrent events when comparing
transformed times of an individual i and j while Ghosh (2010) considered different
indexes for recurrent events when comparing these transformed times. If k = 1 and
h1(t) = h2(t) = log(t), this is equal to the function (3.10). The other estimating
function proposed by Hsieh et al. (2011) is

ULH
n (α) = 2n1/2

n(n− 1)
∑

1≤i<j≤n

(Zi − Zj)φLHij (α), (3.21)

where

φLHij (α) =
∑
k

[δ̃ki(j)(α)I{ε̃ki(j)(α) ≤ ε̃Cj(i)(α)} − δ̃kj(i)(α)I{ε̃Cj(i)(α) ≤ ε̃ki(j)(α)}].

In this last estimating function, ε̃Cj(i)(α) is used instead of ε̃kj(i)(α) in φLHij (α). It
implies that information in new censoring time of ε̃ki(j)(α) is included in statistical
inference for regression coefficients. In fact, this approach is adapting the method
of creating the new indicator function to adjust the dependent censoring in Lin
et al. (1996) in context of the pairwise comparisons. They used the resampling
approach from Parzen et al. (1994) to perform statistical inference. As in Ding et
al. (2009), they also proposed an estimating function for θ when D has a linear
transformation model.
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Chapter 4 |
Weighted Estimation of the Ac-
celerated Failure Time Model
in the Presence of Dependent
Censoring

4.1 Introduction
As can be seen in the previous chapters, semicompeting risks data have been widely
studied in the past decade. The semiparametric regression approach by Lin et
al. (1996) and Peng and Fine (2006) has a lot of advantages. The model in their
approaches is linear model. Second, for estimation of treatment effect, bias of
survival function does not occur (Varadhan et al. 2014).

However, none of these papers fully discussed optimality of the estimator. In
this case, choosing an estimator that is optimal from an efficiency viewpoint is a
major issue for consideration. Here, we adapt the idea of Wei et al. (1989), which
proposed an optimal estimator whose form is a linear combination of estimators for
multivariate failure time data. They used idea of Wei and Johnson (1985), which
proposed using combinations of dependent tests in the presence of missing values.
Idea of Wei and Johnson (1985) is to create a test which can maximize power based
on linear combination of test statistics. Approach of Wei and Johnson (1985) is
simple and flexible, so it is sensible to apply their method in our case.

In this chapter, we propose a weighted estimator by using methodology from
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Wei et al. (1989). The weighted estimator combines those of Lin et al. (1996) and
Peng and Fine (2006). The structure of this chapter is as follows. In Section 4.2,
we describe details on our new weighted estimator. In Section 4.3, model checking
procedure is briefly discussed. In Section 4.4, results of simulation studies will be
given. Application of our method to a real data example is presented in Section
4.5. Some discussion concludes Section 4.6. In this chapter, for Lin et al. (1996)
and Peng and Fine (2006) procedures, we use the same notations as Section 3.2.2
in Chapter 3.

4.2 Weighted estimator
Given two estimation procedures as described in Section 3.2.2 in Chapter 3, it
is natural to consider their efficiencies with respect to standard error. However,
in this point of view, neither estimator is superior to the other. Moreover, these
estimators may not be optimal estimators with respect to the standard error. There
is an argument that the estimator of Peng and Fine (2006) gains more efficiency
than that of Lin et al. (1996) because pairwise comparisons lead to less artificial
censoring than that in Lin et al. (1996). However, this logic only holds when
we look at performance of estimators in the view of bias and variance across the
estimators in simulation study. Concentrating on standard error of an estimator in
a single dataset, the estimator by Peng and Fine (2006) may not provide better
estimator than that of Lin et al. (1996). This will be seen in the real data analysis
section.

The reason for this is due to estimation procedure of Peng and Fine (2006). As
discussed Ghosh (2010), for n samples, the number of comparisons of Lin et al.
(1996) for artificial censoring is of order n, while that of Peng and Fine (2006) is of
order n2. By definition of gij(α), different degrees of artificial censoring is applied
to observations. It may lead more variation in estimation of the standard error for
the estimator of the regression parameters. Hence, standard error of the estimator
by Peng and Fine (2006) may be larger than that of Lin et al. (1996).

Having discussed our data structure and estimators from Lin et al. (1996) and
Peng and Fine (2006), we now describe the proposed estimation in this paper. Let
η̂ = (η̂1, . . . , η̂k)T be estimator of η0, θ̂L = (θ̂L1 , . . . , θ̂Lk )T be estimator of θ0 by Lin
et al. (1996) and θ̂P = (θ̂P1 , . . . , θ̂Pk )T be estimator of θ0 by Peng and Fine (2006).
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θ̂L and θ̂P are asymptotically unbiased estimators of θ0.
We extend the scope of estimators which provide consistent estimation of θ0.

The natural extension of estimators of Lin et al. (1996) and Peng and Fine (2006)
is to consider collections of estimators that are linear combination of these two
estimators with sum of weights being 1. By choosing proper weights, we can expect
that the variance of the new combined estimator is smaller than that of each
individual estimator in θ̂L and θ̂P .

The goal is to find weights such that the variance of the new estimator is smaller
than the minimum of variance of the estimators by Lin et al. (1996) and Peng and
Fine (2006), which have good theoretical properties. To obtain the estimator that
yields smallest variance with these properties, we can use the idea of Wei et al.
(1989), which was applied to the problem of modeling multivariate failure times.

In Wei et al. (1989), the joint distribution of estimators γ̂ = {γ̂mr} is considered,
where m = 1, . . . , k and r = 1 . . . R. In this case, m indicates index of regression
parameters and r stands for index of the rth event. For obtaining an optimal esti-
mator, they applied arguments from Wei and Johnson (1985) which derived a linear
combination of test statistic to maximize power against every alternative hypothesis.
Let Ĥ be the covariance matrix for the estimators γ̂. Then we fix m and define
Ĥm be covariance matrix of γ̂m = (γ̂m1, . . . , γ̂mR). It can be obtained from the
entire covariance matrix by selecting the part corresponding to γ̂ for r = 1, . . . , R
under fixed m. Now we can define

∑R
r=1 drγ̂mr, where d = (d1, d2, . . . , dR) satisfies∑R

r=1 dr = 1 (Wei et al 1989). Then d ≡ (eT Ĥ−1
m e)−1Ĥ−1

m e is a vector of weights
which leads the best estimator among linear combinations of estimators of γ̂m
where e is a vector consisting of R ones (Wei and Johnson, 1985; Wei et al. 1989).

We now apply the argument in the previous paragraph to our model by con-
sidering the joint distribution of β̂ = {η̂T , (θ̂L)T , (θ̂P )T}T . Let β0 = (ηT0 ,θT0 ,θT0 )T

and Gn(β) = [STn (η), {UL
n(α)}T , {UP

n (α)}T ]T where Sn(η),UL
n(α) and UP

n (α) are
estimating functions for β0 which are introduced in Section 3.2.2 in Chapter 3. The
strong consistency and asymptotic joint distribution of three estimators, described
in following theorems, play a crucial role in our methodology.

To prove asymptotic results, several regularity conditions are required. As
stated in Ghosh (2010) and Peng and Fine (2006), define

F (a, b, c, d, e) = P (εX1 −εD1 ≤ a, εX1 −C1 ≤ b, εX1 −εX2 ≤ c, εX1 −εD2 ≤ d, εX1 −C2 ≤ e|Z1,Z2)
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Let α0 = (ηT0 ,θT0 )T . Define

T1(Z1,Z2) = ∂F

∂a
{g12(α0),−ZT

1 η0 − g12(α0), 0, g12(α0),−ZT
2 η0 − g12(α0)}

+ ∂F

∂b
{g12(α0),−ZT

1 η0 − g12(α0), 0, g12(α0),−ZT
2 η0 − g12(α0)}

+ ∂F

∂d
{g12(α0),−ZT

1 η0 − g12(α0), 0, g12(α0),−ZT
2 η0 − g12(α0)}

+ ∂F

∂e
{g12(α0),−ZT

1 η0 − g12(α0), 0, g12(α0),−ZT
2 η0 − g12(α0)}

+ 2∂F
∂c
{g12(α0),−ZT

1 η0 − g12(α0), 0, g12(α0),−ZT
2 η0 − g12(α0)}

and

T2(Z1,Z2) = T1(Z1,Z2)−2∂F
∂c
{g12(α0),−ZT

1 η0−g12(α0), 0, g12(α0),−ZT
2 η0−g12(α0)}

From the Appendix in Peng and Fine (2006), the additional conditions are as
follows:

1. The parameter space W is compact, and the true parameter α0 is an interior
point of W .

2. θ0 is the only solution of the estimating equation E{n−1/2UP
n (η0,θ)} = 0.

3. E(||Z||2) < ∞, where || · || is Euclidean norm and there exists a positive
constant K such that partial derivatives of F are bounded by K and there
exists positive constant K∗ such that marginal probability density of F is
bounded by K∗ almost surely.

4. cov[(Z1 − Z2){T1(Z1,Z2)}1/2] and cov[(Z1 − Z2){T2(Z1,Z2)}1/2] are positive
definite.

In many parts of proofs, we adapt arguments from Lin et al. (1996) and Peng and
Fine (2006).

Theorem 4.1. By conditions of C1 − C3 in Appendix of Peng and Fine (2006)
and conditions in Ying (1993), β̂ is (strongly) consistent.

Proof. Let β̂ = {η̂T , (θ̂L)T , (θ̂P )T}T . It suffices to show that η̂, θ̂L and θ̂P are
strongly consistent, respectively. Let α = (ηT ,θT )T . Note that we have compact
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region, say W and we assume regularity conditions in Ying (1993). By Ying (1993),
there exists nonrandom function m1 such that supη∈N0 ||n

−1/2Sn(η) − m1(η)||
converges to 0 with probability 1 where N0 is a neighborhood of η0. Thus η̂ is
strongly consistent. Similarly, we have another nonrandom function m2 such that
supα∈N1 ||n

−1/2UL
n(α)−m2(α)|| converges to 0 with probability 1 where N1 is a

neighborhood of α0. Hence by Ying (1993), α̂L is strongly consistent.
For θ̂P , by argument in Appendix of Peng and Fine (2006), note that by the U-

statistics version of the law of large numbers, for all α ∈ W , ||n−1/2UP
n (α)−γ(α)||

converges to 0 in probability where γ(α) = E{n−1/2UP
n (α)}. We can partition

our compact space as W1, ...,Wk so that W ∈ ∪kj=1Wj. Clearly, then for {αj ∈
Wj, j = 1, ..., k}, max1≤j≤k ||n−1/2UP

n (αj)− γ(αj)|| converges to 0 in probability.
Then by Appendix of Peng and Fine (2006),

sup
||α−α∗∗||≤ξ

n−1/2||UP
n (α)−UP

n (α∗∗)||

≤ 2
n(n− 1)

∑
1≤i<j≤n

||Zi − Zj|| sup
||α−α∗∗||≤ξ

|φij(α)− φij(α∗∗)|

and for all ε > 0, there exists ξ > 0 such that

lim
n→∞

P

(
2

n(n− 1)
∑

1≤i<j≤n

||Zi − Zj|| sup
||α−α∗∗||≤ξ

|φij(α)− φij(α∗∗)| ≥ ε

)
= 0

Hence
lim
n→∞

P ( sup
||α−α∗∗||≤ξ

n−1/2||UP
n (α)−UP

n (α∗∗)|| ≥ ε) = 0

Thus θ̂P is strongly consistent and clearly, β̂ is strongly consistent.

Theorem 4.2. Assuming certain technical conditions from Ying (1993) and Peng
and Fine (2006), n1/2(β̂ − β0) is asymptotically normal with mean zero vector and
covariance matrix Σ0 where Σ0 = Γ−1

0 Ω0Γ−1
0 , where Γ0 is a nonsingular matrix

and Ω0 is the asymptotic covariance matrix of Gn(β0).

Proof. As consistency, we assume the same regularity conditions as in Ying (1993).
Let β0 = (ηT0 ,θT0 ,θT0 )T and Gn(β) = [STn (η), {UL

n(α)}T , {UP
n (α)}T ]T . Similar to

Lin et al. (1996), let λ(1)
0 (t) be the cause-specific hazard function for the D̃∗i (η)

and let λ(2)
0 (t) be the cause-specific hazard function for X̃∗i (α) under dependent
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censoring. Define

M1i(t) = N1i(t;η0)−
∫ t

−∞
I{D̃∗i (η0) ≥ u}λ(1)

0 (u)du (4.1)

M2i(t) = N2i(t;α0)−
∫ t

−∞
I{X̃∗i (α0) ≥ u}λ(2)

0 (u)du (4.2)

Then M1i and M2i are martingales (Fleming and Harrington, 2005, p.26; Lin et
al. 1996). By adapting a proof in the Appendix in Lin et al. (1996), Rebdolledo’s
martingale central limit theorem (Fleming and Harrington, 2005, pp.227-228) gives

Sn(η0) = n−1/2
n∑
i=1

∫ ∞
−∞
{Zi − Z̄(1)(u)}dM1i(u) + op(1)

UL
n(α0) = n−1/2

n∑
i=1

∫ ∞
−∞
{Zi − Z̄(2)(u)}dM2i(u) + op(1)

where Z̄(1)(u) = limn→∞[
∑n

j=1 I{D̃∗j (η0) ≥ u}Zj]/[
∑n

j=1 I{D̃∗j (η0) ≥ u}] and
Z̄(2)(u) = limn→∞[

∑n
j=1 I{X̃∗j (α0) ≥ u}Zj]/[

∑n
j=1{I(X̃∗j (α0) ≥ u)}]. From the

Appendix of Peng and Fine (2006),

UP
n (α0) = n−1/2

n∑
i=1

2h1(Vi,α0) + op(1)

where 2h1(v,α0) = 2E[h(v,V2,α0)]. For j = 1, ..., n, M1j(t) is the martin-
gale associated with εDj , while M2j(t) is the martingale associated with εXj and
h(Vi,Vj,α) = (Zi − Zj)φij(α) (Lin et al. 1996; Peng and Fine, 2006). For
j = 1, . . . , n, define

a0j =
∫ ∞
−∞
{Zj − Z̄(1)(u)}dM1j(u) a1j =

∫ ∞
−∞
{Zj − Z̄(2)(u)}dM2j(u)

a2j = 2h1(Vj,α0).

By the Cramér-Wold theorem, Gn(β0) has an asymptotically normal distribution
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with mean zero and covariance matrix Ω0, where

Ω0 = E

 a01aT01 a01aT11 a01aT21

a11aT01 a11aT11 a11aT21

a21aT01 a21aT11 a21aT21


Note that E{n−1/2UP

n (α)} = γ(α). As stated in the Appendix of Peng and Fine
(2006), under conditions of N1−N3 from Honoré and Powell (1994), there exists
an open neighborhood of α0, say K0, such that

sup
α∈K0

||UP
n (α)−UP

n (α0)− n1/2γ(α)||
1 + n1/2||γ(α)|| = op(1) (4.3)

Using a Taylor series expansion of γ(α) around α0,

γ(α) = γ(α0) + ∂γ(α)
∂η

∣∣∣∣
α=α0

(η−η0) + ∂γ(α)
∂θ

∣∣∣∣
α=α0

(θ−θ0) + o(||α−α0||) (4.4)

With these two results (4.3) and (4.4), by Appendix of Peng and Fine (2006),

UP
n (α) = UP

n (α0)+n1/2∂γ(α)
∂η

∣∣∣∣
α=α0

(η−η0)+n1/2∂γ(α)
∂θ

∣∣∣∣
α=α0

(θ−θ0)+op(1+n1/2||α−α0||)

(4.5)
From Ying (1993), we have that

Sn(η) = Sn(η0) + n1/2P0(η − η0) + op(1) (4.6)

for any η in the small neighborhood of η0, where P0 is k × k nonsingular matrix.
From the Appendix in Lin et al. (1996), for J1n(α) = [STn (η), {UL

n(α)}T ]T ,

J1n(α) = J1n(α0) + n1/2L10(α−α0) + op(1) (4.7)

for any α in the small neighborhood of α0, where L10 is defined as

L10 =
(

P0 0
M0 H0

)
,

a 2k × 2k nonsingular matrix, and M0 and H0 are k × k constant matrices. Define
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J2n(α) = [STn (η), {UP
n (α)}T ]T . Using the expansion from Peng and Fine (2006),

for any α in the small neighborhood of α0,

J2n(α) = J2n(α0) + n1/2L20(α−α0) + op(1) (4.8)

L20 =
(

P0 0
R0 V0

)

where R0 = ∂γ(α)
∂η
|α=α0 and V0 = ∂γ(α)

∂θ
|α=α0 . Combining expansions of (4.6), (4.7)

and (4.8), we have

Gn(β) = Gn(β0) + n1/2Γ0(β − β0) + op(1)

for any β in the small neighborhood of β0, where Γ0 is defined as

Γ0 =

 P0 0 0
M0 H0 0
R0 0 V0


. The results from Honoré and Powell (1994) and Ying (1993), along with the
consistency of β̂, imply that

n1/2(β̂ − β0) = −Γ−1
0 Gn(β0) + op(1).

By combining the above results with Slutsky’s theorem, n1/2(β̂−β0) has an asymp-
totically normal distribution with mean zero and covariance matrix Γ−1

0 Ω0Γ−1
0 .

Theorem 4.2 implies the asymptotic normality of β̂ with the form of Σ0 being

Σ0 =

 Σ11 Σ12 Σ13

Σ21 Σ22 Σ23

Σ31 Σ32 Σ33

 .

Let Σ̂ be the estimated covariance matrix of Σ0. In this covariance matrix, Σ̂11 is a
k× k covariance matrix for η̂, Σ̂22 is a k× k covariance matrix for θ̂L and Σ̂33 is a
k × k covariance matrix for θ̂P . Moreover, Σ̂12 and Σ̂13 represent covariance terms
between η̂ and θ̂L and between η̂ and θ̂P , respectively. Define Σ̂23 as the covariance
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matrix between θ̂L and θ̂P . Clearly, Σ̂21 = Σ̂T
12, Σ̂31 = Σ̂T

13 and Σ̂32 = Σ̂T
23.

The issue remains of how to obtain the matrix corresponding to Ĥ−1
m in our

context. Note that η̂, θ̂L and θ̂P are correlated with each other. The estimating
function structure implies that θ̂L and θ̂P cannot be estimated separately from η̂.
Thus our matrix corresponding to Ĥ−1

m should include the effect of η̂. To obtain the
matrix, we need to invert whole matrix and extract the submatrix corresponding
to θ̂L and θ̂P . There are two approaches to obtain the submatrix.

The first approach is to invert Σ̂ and obtain the submatrix of Σ̂−1 corresponding
to θ̂Lm and θ̂Pm. Let us denote this matrix as Σ̂∗m. Clearly, this matrix is 2× 2 and
also positive definite. Then we can calculate ĉm = (ĉm1, ĉm2)T = (hT Σ̂∗mh)−1Σ̂∗mh,
where h = (1, 1)T . By using the form of the optimal estimator in Wei et al. (1989),
we obtain new weighted estimator for mth covariate, say θ̂MWE

m , where

θ̂MWE
m = ĉm1θ̂

L
m + ĉm2θ̂

P
m.

We can repeat this step for the other regression coefficients. Then we obtain
θ̂MWE = (θ̂MWE

1 , . . . , θ̂MWE
k )T . In this first approach, weights are generated through

using k number of 2 × 2 matrices. We can refer this first approach as ‘marginal
approach’.

Sometimes it is desirable to consider entire covariates all at once when obtaining
weights. The second approach is to obtain the corresponding submatrix of Σ̂−1

for {(θ̂L)T , (θ̂P )T}T . We denote this matrix as Σ̂∗∗. This approach is different
from first one in that Γ̂m consists of elements of the covariance matrix from θ̂Lm

and θ̂Pm but now Σ̂∗∗ has elements of covariance matrix from corresponding entire
{(θ̂L)T , (θ̂P )T}T . This approach reflects the effect of {(θ̂L)T , (θ̂P )T}T jointly on
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our new estimator. Let E be a 2k × k matrix such that

E =



1, 0, . . . , 0
0, 1, . . . , 0

...
0, 0, . . . , 1
1, 0, . . . , 0
0, 1, . . . , 0

...
0, 0, . . . , 1


.

E is a multivariate extension of h. Note that E is concatenation of two k × k

identity matrices by row. Entries that are 1 in these two k × k identity matrices
are source of weights for θ̂L and θ̂P . The next step is to construct B̂, which is

B̂ = {(ET Σ̂∗∗E)−1ET Σ̂∗∗}T .

Then B̂ has the form 

ĉ∗1,1 . . . ĉ∗1,k
ĉ∗2,1 . . . ĉ∗2,k
... ... ...

ĉ∗(k+1),1 . . . ĉ∗(k+1),k
... ... ...

ĉ∗2k,1 . . . ĉ∗2k,k


.

This matrix is a multivariate extension of ĉm from the first approach. This matrix
is a contrast matrix in the sense that ĉ∗m,m + ĉ∗(k+m),m = 1 for the mth regression
coefficient of θ̂L and θ̂P . Moreover, ĉ∗p,p + ĉ∗(k+p),p = 0 for p 6= m = 1, . . . , k. Using
a vector form, from this approach our new estimator, say θ̂JWE,

θ̂JWE = (θ̂JWE
1 , . . . , θ̂JWE

k )T = (ĉ∗1,1θ̂L1 + ĉ∗(k+1),1θ̂
P
1 , . . . , ĉ

∗
k,kθ̂

L
k + ĉ∗(2k),kθ̂

P
k )T .

We can also refer this approach as the ‘joint approach’.
Now the key step is to obtain Σ̂. We use the resampling approach of Parzen et

al. (1994), which was also used in Lin et al. (1996) and Peng and Fine (2006). Let
α̂L = {η̂T , (θ̂L)T}T and α̂P = {η̂T , (θ̂P )T}T . From Lin et al. (1996) and Peng and
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Fine (2006), we have

W(1)
i = ∆i

[
Zi −

∑n
j=1 I{D̃∗j (η̂) ≥ D̃∗i (η̂)}Zj∑n
j=1 I{D̃∗j (η̂) ≥ D̃∗i (η̂)}

]
−

n∑
l=1

∆lI{D̃∗i (η̂) ≥ D̃∗l (η̂)}∑n
j=1 I{D̃∗j (η̂) ≥ D̃∗l (η̂)}

×

[
Zi −

∑n
j=1 I{D̃∗j (η̂) ≥ D̃∗l (η̂)}Zj∑n
j=1 I{D̃∗j (η̂) ≥ D̃∗l (η̂)}

]
,

W(2)
i = δ̃∗i (α̂L)

[
Zi −

∑n
j=1 I{X̃∗j (α̂L) ≥ X̃∗i (α̂L)}Zj∑n
j=1 I{X̃∗j (α̂L) ≥ X̃∗i (α̂L)}

]
−

n∑
l=1

δ̃∗l (α̂L)I{X̃∗i (α̂L) ≥ X̃∗l (α̂L)}∑n
j=1 I{X̃∗j (α̂L) ≥ X̃∗l (α̂L)}

×

[
Zi −

∑n
j=1 I{X̃∗j (α̂L) ≥ X̃∗l (α̂L)}Zj∑n
j=1 I{X̃∗j (α̂L) ≥ X̃∗l (α̂L)}

]
,

and
W(3)

i = 2
n− 1

n∑
j=1

(Zi − Zj)φij(α̂P ).

Define

Wi =

 W(1)
i

W(2)
i

W(3)
i

 .

A consistent estimator of Ω0 is

Ω̂ = 1
n

n∑
i=1

WiWT
i .

We then solve the estimating equation

Gn(β) = −n−1/2
n∑
i=1

WiQi, (4.9)

where Qi (i = 1, . . . , n) represent standard normal random variables. Note
that Gn(β) = [STn (η), {UL

n(α)}T ,{UP
n (α)}T ]T is the joint estimating function

for (ηT0 ,θT0 ,θT0 )T . By solving equation (4.9), we obtain many realizations of β̂s, say
β̂R = {(η̂∗)T , (θ̂L∗)T , (θ̂P∗)T}T where {(η̂∗)T , (θ̂L∗)T , (θ̂P∗)T}T are solutions from
(4.9). The next theorem, combined with Theorem 4.2, justifies the resampling
approach for calculating Σ̂.

Theorem 4.3. Based on the technical conditions in Parzen et al. (1994), the
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unconditional distribution of n1/2(β̂−β0) is same asymptotically as the conditional
distribution of n1/2(β̂R − β̂) where β̂R are realizations of β̂ from resampling.

Proof. Recall that for any β in the small neighborhood of β0, we have

Gn(β) = Gn(β0) + n1/2Γ0(β − β0) + op(1) (4.10)

Note that β̂R are solutions of equation (4.9). By conditioning on observed data
and using expansion (4.10) as well as by adapting arguments in Lin et al. (1996)
and Parzen et al. (1994),

Gn(β̂R) = Gn(β̂) + n1/2Γ0(β̂R − β̂) + op(1)

and hence,

n1/2(β̂R − β̂) = −Γ−1
0 n−1/2

n∑
i=1

WiQi + op(1)

Note that n−1/2∑n
i=1 WiQi is asymptotically normal with covariance matrix Σ0.

Then given observed data, the distribution of n1/2(β̂R− β̂) is asymptotically normal
with covariance matrix Γ−1

0 Σ0Γ−1
0 . Hence conditional distribution of n1/2(β̂R − β̂)

on observed data is asymptotically same as unconditional distribution of n1/2(β̂ −
β0).

Form = 1, . . . k and j = 1, . . . ,M , let (η̂∗m)(j), (θ̂L∗m )(j) and (θ̂P∗m )(j) be jth realizations
of an element η̂m, θ̂Lm and θ̂Pm corresponding to mth covariate, respectively. The
algorithm for the first approach is as follows.

1. By resampling, calculate the covariance matrix Σ̂ using realizations (η̂∗m)(j), (θ̂L∗m )(j)

and (θ̂P∗m )(j), (m = 1, . . . , k and j = 1, . . . ,M).

2. From Σ̂−1, obtain the covariance matrix corresponding to θ̂Lm and θ̂Pm, say
Σ̂∗m.

3. Calculate ĉm = (ĉm1, ĉm2)T = (hT Σ̂∗mh)−1Σ̂∗mh where h = (1, 1)T and obtain
the new estimate θ̂MWE

m = ĉm1θ̂
L
m + ĉm2θ̂

P
m.

4. Repeat step 3 for all covariates.

The algorithm for the second approach is as follows.
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1. By resampling, calculate the covariance matrix Σ̂ using realizations (η̂∗m)(j), (θ̂L∗m )(j)

and (θ̂P∗m )(j) (m = 1, . . . , k and j = 1, . . . ,M).

2. Obtain Σ̂∗∗ from Σ̂.

3. From Σ̂∗∗ and E, obtain B̂.

4. Calculate the new estimate θ̂JWE
m = ĉ∗m,mθ̂

L
m + ĉ∗k+m,mθ̂

P
m, where ĉ∗j,l be the

element of jth row and lth column of B̂.

By Theorem 4.1 and Theorem 4.2, our new estimators are consistent and asymp-
totically normal.

4.3 Model checking
For assessing the adequacy of the model, since our weight estimator is based on
estimators from Lin et al. (1996) and Peng and Fine (2006), it is reasonable to
consider entire processes from Lin et al. (1996) and Peng and Fine (2006). In this
case, we extend model checking technique from Lin et al. (1996). As defined in Lin
et al. (1996), Let N1i(t;η) = ∆iI{D̃∗i (η) ≤ t} and N2i(t;α) = δ̃∗i (α)I{X̃∗i (α) ≤ t},
where i = 1, ..., n. Then Nelson-Aalen estimators for the event of interest and
dependent censoring are

Λ̂(1)
0 (u;η) =

∫ t

−∞

∑n
i=1 dN1i(u;η)∑n

j=1 I{D̃∗j (η) ≥ u}
Λ̂(2)

0 (u;α) =
∫ t

−∞

∑n
i=1 dN2i(u;α)∑n

j=1 I{X̃∗j (α) ≥ u}
.

Note that by (4.1) and (4.2), martingale residuals are defined as

M̂1i(t; η̂) = N1i(t; η̂)−
∫ t

−∞
I{D̃∗i (η̂) ≥ u}dΛ̂(1)

0 (u, η̂)

M̂2i(t; α̂) = N2i(t; α̂)−
∫ t

−∞
I{X̃∗i (α̂) ≥ u}dΛ̂(2)

0 (u, α̂),

where α̂ can be either α̂L = {η̂T , (θ̂L)T}T or α̂P = {η̂T , (θ̂P )T}T . Then as defined
in Lin et al. (1996),

Sn(s;η) = n−1/2
n∑
i=1

ZiM̂1i(s;η) Un(t;α) = n−1/2
n∑
i=1

ZiM̂2i(t;α).
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Then similar to Lin et al. (1996) and Peng and Fine (2006), we can substitute η̂
on Sn(s;η), α̂L and α̂P on Un(t;α). [STn (s; η̂), {Un(t; α̂L)}T , {Un(t; α̂P )}T ]T are
called observed score processes with respect to dependent censoring and the event
of interest, respectively (Ghosh, 2010; Lin et al. 1996; Peng and Fine, 2006). We
can construct [ŜTn (s; η̂∗), {ÛL

n(t; α̂L∗)}T , {ÛP
n (v; α̂P∗)}T ]T (Lin et al. 1996; Peng

and Fine, 2006), where

Ŝn(s; η̂∗) = n−1/2
n∑
i=1

∫ s

−∞

[
Zi −

∑n
j=1 I{D̃∗j (η̂) ≥ w}Zj∑n
j=1 I{D̃∗j (η̂) ≥ w}

]
dM̂1i(w; η̂)Qi

+ Sn(s; η̂∗)− Sn(s; η̂)

ÛL
n(t; α̂L∗) = n−1/2

n∑
i=1

∫ t

−∞

[
Zi −

∑n
j=1 I{X̃∗j (α̂L) ≥ w}Zj∑n
j=1 I{X̃∗j (α̂L) ≥ w}

]
dM̂2i(w; α̂L)Qi

+ Un(t; α̂L∗)−Un(t; α̂L)

ÛP
n (v; α̂P∗) = n−1/2

n∑
i=1

∫ v

−∞

[
Zi −

∑n
j=1 I{X̃∗j (α̂P ) ≥ w}Zj∑n
j=1 I{X̃∗j (α̂P ) ≥ w}

]
dM̂2i(w; α̂P )Qi

+ Un(v; α̂P∗)−Un(v; α̂P ),

where α̂L∗ = {(η̂∗)T , (θ̂L∗)T}T and α̂P∗ = {(η̂∗)T , (θ̂P∗)T}T . These three pro-
cesses are called bootstrapped processes (Ghosh, 2010; Lin et al. 1996; Peng
and Fine, 2006). We can plot the observed process with bootstrapped pro-
cesses by randomly selecting 20 or 30 observations. Standard tests for good-
ness of fit can be performed by calculating Kolmogorov-Smirnov type test statis-
tics. Test statistics are then defined by sups ||Sn(s; η̂)||, supt ||Un(t; α̂L)||, and
supv ||Un(v; α̂P )||. To calculate the null distribution of the test statistics, first we
obtain jth realizations of bootstrap samples (η̂∗)(j), (θ̂L∗)(j) and (θ̂P∗)(j). Then we
compute BSj = sups ||Ŝn(s; (η̂∗)(j))||, BSLj = supt ||ÛL

n(t; (α̂L∗)(j))|| and BSPj =
supv ||ÛP

n (v; (α̂P∗)(j))||, respectively for j = 1, . . . ,M , where (α̂L∗)(j) and (α̂P∗)(j)

are jth realizations of bootstrap samples of α̂L∗ and α̂P∗. The p-values can be
defined by

p1 = 1
M

M∑
j=1

I{BSj ≥ sup
s
||Sn(s; η̂)||}
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p2 = 1
M

M∑
j=1

I{BSLj ≥ sup
t
||Un(t; α̂L)||}

p3 = 1
M

M∑
j=1

I{BSPj ≥ sup
v
||Un(v; α̂P )||}.

(Hsieh et al. 2011). If a p-value is smaller than predetermined level, we reject
the null hypothesis, which means that data does not have appropriate fit on our
bivariate model. Note that a multiple testing problem arises for testing the models
for θ. We address this by adjusting p-values based on a Bonferroni correction with
two tests.

4.4 Simulation Studies
We consider two simulation settings. In first simulation setting, the errors follow
a bivariate normal distribution with mean (0,1.2) with variance 1 and correlation
ρ=0,0.25. The independent censoring time C is generated from log(U∗), where U∗

has uniform distribution with minimum value 0 and maximum value 20. Covariate
is Z ∼ Bernoulli(0.5), where Bernoulli(0.5) is Bernoulli distribution with success
probability 0.5. We run 500 simulation runs. Within each simulation run, 500
resampling runs are tried for covariance matrix calculation. Sample sizes are
N = 150 and N = 300. If there is only one covariate in the model, the first and
the second method of the weighted estimation are equivalent. Let this common
weighed estimator be θ̂WE. We calculate bias (Bias), mean squared error (MSE),
mean of standard error (SEE), 95% coverage rate (Coverage). The coverage is
based on the normal approximation. Moreover, to evaluate robustness of estimators,
we also compute median of difference of the estimator from true value (Dmedian),
median of squared error of estimates (Mediansq), and median of standard errors
(Sdmedian). Results are summarized on Table 4.1 and Table 4.2.

In second simulation setting, we generate Gamma random variable ν with
mean µ=1 and variance σ2=0 or 1, then create W = exp (εX), which is an
exponential random variable with rate 4ν−1 and exp (εD) with an exponential
random variable with rate ν−1. Then we generate time to the event of inter-
est by exp (X) = exp (θT0 Z) exp (εX) and time to the dependent censoring by
exp (D) = exp (ηT0 Z) exp (εD) (By notation in our paper, X,D and C are already
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Table 4.1: Simulation result when N = 150 and N = 300, ρ = 0 with covariate
Bernoulli(0.5).

N = 150
Bias (Dmedian1) MSE (Mediansq2) SEE (Sdmedian3) Coverage

θ̂L 0.018 (0.018) 0.04 (0.017) 0.204 (0.2) 0.95
θ̂P 0.021 (0.014) 0.036 (0.017) 0.193 (0.19) 0.96
θ̂WE 0.016 (0.006) 0.036 (0.015) 0.188 (0.185) 0.95

N = 300
Bias (Dmedian1) MSE (Mediansq2) SEE (Sdmedian3) Coverage

θ̂L -0.002 (-0.003) 0.017 (0.006) 0.140 (0.140) 0.95
θ̂P -0.001 (0.002) 0.016 (0.007) 0.133 (0.132) 0.95
θ̂WE -0.004 (-0.002) 0.016 (0.007) 0.130 (0.129) 0.94
Estimators : θ̂L : the estimator by Lin et al. (1996); θ̂P : the estimator
by Peng and Fine (2006); θ̂WE : the weighted estimator by the proposed
approach (Note that the marginal approach and the joint approach are
equal in one variable case)

1 median of difference of the estimator from true value
2 median of squared error
3 median of standard error

Table 4.2: Simulation result when N = 150 and N = 300, ρ = 0.25 with
covariate Bernoulli(0.5).

N = 150
Bias (Dmedian1) MSE (Mediansq2) SEE (Sdmedian3) Coverage

θ̂L 0.005 (0.01) 0.036 (0.017) 0.198 (0.197) 0.95
θ̂P 0.006 (0.007) 0.032 (0.015) 0.189 (0.188) 0.95
θ̂WE -0.001 (-0.006) 0.033 (0.016) 0.184 (0.183) 0.94

N = 300
Bias (Dmedian1) MSE (Mediansq2) SEE (Sdmedian3) Coverage

θ̂L -0.003 (0.005) 0.018 (0.008) 0.138 (0.137) 0.95
θ̂P 0.001 (0.007) 0.017 (0.007) 0.131 (0.131) 0.95
θ̂WE -0.003 (0.002) 0.017 (0.007) 0.129 (0.128) 0.95
Estimators: θ̂L : the estimator by Lin et al. (1996); θ̂P : the estimator
by Peng and Fine (2006); θ̂WE : the weighted estimator by the proposed
approach (Note that the marginal approach and the joint approach are
equal in one variable case)

1 median of difference of the estimator from true value
2 median of squared error
3 median of standard error
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log-transformed times. Thus in this context, exp (X), exp (D) and exp (C) are
times in the original scale). The independent censoring time exp (C) has uniform
distribution with minimum value 0 and maximum value 20. True parameter val-
ues are θ0 = (0.5, 1)T and η0 = (1, 0.5)T and covariates are Z1 ∼ U(0, 1), where
U(0, 1) is uniform distribution with minimum value 0 and maximum value 1 and
Z2 ∼ Bernoulli(0.5). We run 500 simulation runs. Within each simulation run,
500 resampling runs are tried for covariance matrix calculation. Let θ̂MWE be
weighted estimators from calculating weights marginally (the first proposed method)
and let θ̂JWE be weighted estimators from calculating weights jointly (the second
proposed method). We compute the same quantities as we did in the first stage of
the simulation study. Results are summarized on Table 4.3 and Table 4.4.

In these simulation results, we can see that our weighted estimators have good
results. In both cases, bias and mean squared error of our new estimator has
similar performance compared to the estimators by Lin et al. (1996) and Peng and
Fine (2006). Mean of standard errors and median of standard errors are smaller
than the estimators by Lin et al. (1996) and Peng and Fine (2006). Moreover,
computation results for the median of difference of the estimators from true value
and the median of squared error imply that our proposed estimator is comparable
with the estimators from the original methods.

In the first simulation setting, the difference of standard error between our
proposed estimator and θ̂L is bigger than the one between θ̂P and the proposed
estimator. In the second simulation setting, the phenomenon is the opposite.
Furthermore, in the first simulation setting, θ̂P has lower standard error on average
than one of θ̂L while θ̂L have better efficiency (with respect to standard error) than
ones by θ̂P in the second simulation setting. This simulation result verifies our
claim, which means that neither estimator is better than another. Our proposed
estimator takes advantage of smaller standard error with achieving small bias and
correct coverage except N = 150 with σ2 = 1 in the second simulation setting.
In this scenario, empirical coverage of proposed estimators is lower than nominal
95% coverage. This is due to low coverage of θ̂L. Since we combine θ̂L and θ̂P , if
one of them has low coverage, it is highly likely that the coverage of the weighted
estimator may also be below the nominal coverage.
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4.5 Real data analysis
We applied our method to data from the AIDS Clinical Trial Group (ACTG)
Study 364 (Albrecht et al. 2001), which was used in Peng and Fine (2006). This
multicenter randomized study investigated patients whose plasma RNA level is
at least 500 copies per ml. Subjects were assigned to three treatments, nelfinavir
(NFV), efavirenz (EFV), and combination of nelfinavir and efavirenz (NFV + EFV).
Details about this study can be found in Albrecht et al. (2001).

The two failure times are time to HIV RNA level greater than 2000 copies
per ml and time to withdrawal of study. Let X be the first time when HIV RNA
level is greater than 2000 copies per ml and D be time to withdrawal of study.
We considered four covariates and 194 observations. Z1 takes value 1 if a patient
receives EFV and 0 otherwise. Z2 takes value 1 if a patient receives NFV + EFV
and 0 otherwise. Z3 is New3TC, which takes value 1 if lamivudine is given as a
new nucleoside analogue therapy to a patient and 0 otherwise. Z4 is logarithm of
RNA level at the start of the study.

Table 4.5 and Table 4.6 show the point estimates and standard errors of η̂, θ̂L,
θ̂P , θ̂MWE and θ̂JWE. Our method works well for the models with and without
New3TC on all covariates. Some variables are seen to be statistically significant
based on the weighted estimator while they are not by Lin et al. (1996) or Peng
and Fine (2006). For example, let us consider the effect of EFV on the time to first
virologic failure. By Table 4.6, the estimated effect by using approach of Lin et
al. (1996) is 0.475 and its standard error is 0.250. From the approach of Peng and
Fine (2006), an estimate is 0.464 and its standard error is 0.281. Based on the fact
that estimators are asymptotically normal, from Wald test using Lin et al. (1996)
and Peng and Fine (2006), EFV is not a statistically significant variable at the 5%
significance level. On the other hand, a weighted estimate using first approach is
0.471 and its standard error is 0.222. In this case, EFV is a statistically significant
variable at the 5% significance level.

Observed score process with bootstrapped processes for withdrawal of study
with respect to Z1 is shown in Figure 4.1. Figure 4.2 and Figure 4.3 show observed
score processes and bootstrapped processes of the first virologic failure using α̂L, α̂P

with respect to Z1. These three plots are based on the model without New3TC.
They are fluctuating around zero, so it seems that there is no graphical evidence for
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Table 4.5: Point estimates with standard errors of covariates in AIDS study for model without
New3TC (Standard errors are shown in parenthesis).

Covariates η̂ θ̂L θ̂P θ̂MWE θ̂JWE

EFV1 0.753 (0.339) 0.115 (0.219) 0.375 (0.269) 0.168 (0.206) 0.2 (0.205)
NFV2+ EFV 0.674 (0.255) 1.128 (0.239) 1.091 (0.309) 1.120 (0.222) 1.114 (0.222)
log(RNA)3 -0.544 (0.154) -0.464 (0.215) -0.531 (0.169) -0.507 (0.163) -0.511 (0.162)

1 efavirenz
2 nelfinavir
3 logarithm of RNA at the start of the study

Table 4.6: Point estimates with standard errors of covariates in AIDS study for model with
New3TC (Standard errors are shown in parenthesis).

Covariates η̂ θ̂L θ̂P θ̂MWE θ̂JWE

EFV1 0.770 (0.278) 0.475 (0.250) 0.464 (0.281) 0.471 (0.222) 0.471 (0.222)
NFV2+ EFV 0.650 (0.260) 1.353 (0.277) 1.246 (0.338) 1.333 (0.263) 1.317 (0.261)
New3TC3 0.927 (0.355) 1.449 (0.296) 1.374 (0.328) 1.431 (0.267) 1.420 (0.261)
log(RNA)4 -0.631 (0.183) -0.654 (0.289) -0.661 (0.218) -0.659 (0.216) -0.660 (0.215)

1 efavirenz
2 nelfinavir
3 lamivudine as new nucleoside analogue therapy
4 logarithm of RNA at the start of the study

lack of fit. The p-value for the lack of fit tests of withdrawal is 0.952 and the first
virologic failure using α̂L and α̂P are 0.918 and 0.959 respectively. With graphical
checking, the p-value indicates that there is no evidence for violation of the model
assumption.

For purposes of interpretation, since D represents a standard survival time, the
interpretation of η̂ is in terms of covariate effect for survival time. However, since
the observed time for X depends on D, interpretation of θ̂ is difficult. One way to
interpret θ̂ is to assume that D does not exist and interpret the effect of θ̂ on X
only. This approach is possible if there exists a reasonable extrapolation mechanism
for X (Prentice et al. 1978). However, considering the estimation structure for θ,
it is difficult to separate the effect of θ̂ on X from effect of η̂ on D.
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Figure 4.1: Plot of observed score process and bootstrapped processes of time to
withdrawal of study with respect to Z1. The thick line is the observed process and
the dashed lines are the bootstrapped processes.
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Figure 4.2: Plot of observed score process and bootstrapped processes of time to
first virologic failure using α̂L with respect to Z1. The thick line is the observed
process and the dashed lines are the bootstrapped processes.
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4.6 Discussion
In this paper, we have proposed optimal estimators using combinations of the two
estimators from Lin et al. (1996) and Peng and Fine (2006). Our methodology
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Figure 4.3: Plot of observed score process and bootstrapped processes of time to
first virologic failure using α̂P with respect to Z1. The thick line is the observed
process and the dashed lines are the bootstrapped processes.
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can be extended to a case of recurrent event with dependent censoring, which is
extensively studied (Ghosh and Lin, 2003; Ghosh, 2010; Hsieh et al. 2011). We are
currently working on this extension.

Optimality of the estimator has been discussed in other contexts. Recently,
Lindsay et al. (2011) proposed optimal additive functions based on score functions.
The main point of their method is to combine unbiased estimating functions. In
our case, this would be combining estimating functions and new solution can be
obtained by this estimating function. Comparing performance of this solution and
our proposed estimator is of interest. This will be left open to future research.

Another way of achieving optimality is to use generalized method of moment
estimator (Hansen, 1982). This estimator is a linear combination of estimating
functions (Qu et al. 2000). In this case, the estimating functions have a greater
dimension than the dimension of the parameter vector. The optimality is achieved by
the linear combination. It is shown that the estimator from this linear combination
of estimating functions is consistent and asymptotically normal (Hansen, 1982). In
the literature of statistics, this idea is applied to generalized estimating equations
(Qu et al. 2000). The estimating functions proposed by Qu et al. (2000) are called
quadratic inference function. Recently, Xue et al. (2010) applied the quadratic
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inference function to Cox model.
Hansen (1982) and Qu et al. (2000) derived new estimating functions, while we

combined two estimators directly. This idea of the generalized method of moments
is very appealing, but the estimating functions of Lin et al. (1996) and Peng and
Fine (2006) are nonsmooth. Finding derivative for the linear combination of the
estimating functions, which is a key in the generalized method of moments, is
challenging for our work because we cannot find the derivatives in the estimating
functions proposed by Lin et al. (1996) and Peng and Fine (2006). Applying the
idea of Hansen (1982) to AFT model will be interesting future research.

Our estimating functions to obtain estimators involve nonsmooth functions of
η and α. Many literatures used a linear programming approach for estimating
θ (Ding et al. 2009; Jin et al. 2003). However, this linear programming method
is very slow for computing estimators of θ. Thus this approach is very inefficient
when implementing to solve (4.9) for estimation of Σ. Recently, an approach
called a derivative free-spectral algorithm for nonlinear equations (DF-SANE) was
proposed (La Cruz et al. 2006), and there is a publication that showed that this
algorithm is better than the linear programming method using an example of
estimating parameters of AFT models under independent censoring (Varadhan and
Gilbert, 2009). However, under dependent censoring, the artificial censoring term
leads to numerical instability in estimating parameters and calculating resampled
estimators. Moreover, this algorithm does not converge well under default tolerance
settings using DF-SANE (Varadhan and Gilbert, 2009). Thus using this algorithm
requires changing the tolerance level. Developing efficient numerical algorithms for
estimating parameters is an important topic for future research.
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Chapter 5 |
Goodness of Fit

5.1 Introduction
Goodness of fit is fundamental for assessing the appropriateness of a model. Method-
ology for model checking for parametric regression has been well developed (Lin
et al. 2002; Klein and Moeschberger, 2003, Chapter 12, pp. 409-423). Assessing
adequacy in parametric models is based on studying residuals, which capture the
difference between observed and predicted part from a model (Lin et al. 2002).
Residuals are an important element in model checking. They enable statisticians
to perform graphical and numerical summaries for assessing model fit.

The model considered in this paper is the accelerated failure time (AFT) model,
which is given by

T = ZTη0 + ε.

where T is time to event of interest, Z is p×1 vector of covariates, η0 is p×1 vector
of regression coefficients and ε is an error term. Note that for simplicity of notations,
all times are log-transformed. Moreover, the distribution of ε is unspecified, so to
estimate η0, nonparametric methods are used.

U-statistics, initially proposed by Hoeffding (1948), occupy an important role in
the theory of statistics. For parameter vector θ and sample X1, . . . Xn, a U-statistic
of order K is defined as

Un(θ) =
(
n

K

)−1 ∑
1≤i1...iK≤n

h(Xi1 , . . . XiK ),
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where h(·) is called the kernel. h(·) is usually symmetric on (Xi1 , . . . XiK ). U-
statistics are a critical element in semiparametric models. Denote Y = T ∧ C and
∆ = I(T ≤ C). The observed data are n i.i.d copies of (Y,∆,Z), i = 1, . . . , n.
One estimating equation for η0 is (Tsiatis, 1990) given by

Uindep
n (η) = 1

n

n∑
i=1

∆i

[
Zi −

∑n
j=1 I{ej(η) ≥ ei(η)}Zj∑n
j=1 I{ej(η) ≥ ei(η)}

]
= 0, (5.1)

where ei(η) = Yi−ZT
i η. Another rank estimator, proposed by Fygenson and Ritov

(1994), for the AFT model is given by the solution for the following estimating
equation:

UFR
n (η) = 1

n(n− 1)

n∑
i=1

n∑
j=1

(Zi − Zj)∆iI{ej(η) > ei(η)} = 0,

which can be expressed as

UFR
n (η) = 1

2n(n− 1)
∑
i 6=j

(Zi−Zj)[∆iI{ej(η) > ei(η)}−∆jI{ei(η) > ej(η)}] = 0.

(5.2)
Note that (5.1) is a U-statistic of order 1, i.e., U-statistic with K = 1 and (5.2) is U-
statistic order of 2, i.e., U-statistic with K = 2. Let Vi = (εi, Ci,ZT

i )T , i =

1, . . . , n. For (5.1), h(Vi,η) = Zi −
∑n

j=1 I{ej(η) ≥ ei(η)}Zj∑n
j=1 I{ej(η) ≥ ei(η)} and for (5.2),

h(Vi,Vj,η) = 1
2(Zi − Zj)[∆iI{ej(η) > ei(η)} −∆jI{ei(η) > ej(η)}].

Model checking techniques for censored data have been studied in many settings.
Therneau et al. (1990) developed a graphical approach of checking the Cox model
by using martingale residuals. Lin et al. (1993) proposed model checking based on
cumulative sums of martingale residuals for the Cox proportional hazard model.
Lin et al. (1996) proposed model checking procedures for the accelerated failure
time (AFT) model in overall fit. Recently, León and Cai (2012) proposed checking
form of covariates using ‘robust residuals’ based on model from León et al. (2009).
They argued that when a random variable of interest and other covariates have
high correlation, in the uncensored case, the approach of Lin et al. (2002) clearly
fails to detect misspecification because of the high correlation.

However, the above-mentioned methodology for goodness of fit is based on
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U-statistics of order 1. Many rank-based estimators arise from U-statistics of
order 2. Clearly, UFR

n (η) is U-statistic of order 2. In this case, performing model
checking based on U-statistic of order 1 may lead to bias. In this paper, we propose
methodology for goodness of fit for U-statistic order 2 principles using the AFT
model. Theoretical justification is based on U-process theory from Nolan and Pol-
lard (1987) and Nolan and Pollard (1988). In Section 5.2, method of goodness of fit
for U-statistic of order 2. Proofs of theoretical results are provided in Section 5.2.2.
Section 5.3 outlines the results of some simulation studies, while an application to
data from an HIV clinical trial is given in Section 5.4. Some discussion concludes
Section 5.5.

5.2 Checking overall fit of model

5.2.1 Independent censoring

As mentioned in the introduction, the AFT model is

T = ZTη0 + ε. (5.3)

In this subsection, it is assumed that failure times are independently censored. As
can be seen in (5.2), estimating equation proposed by Fygenson and Ritov (1994) is
a U-statistic of order 2. Let Vi = (εi, Ci,ZT

i )T , i = 1, . . . , n and η be parameter of
interest and η0 be true value. General U-statistics of order 2 with standardization
to estimate η0 in (5.3) have the form

Un(η) = n1/2

n(n− 1)
∑
i 6=j

h(Vi,Vj,η),

where h(·, ·,η) is a kernel function such that E{n−1/2Un(η0)} = 0. Note that the
kernel of the estimating equation in (5.2) is h(Vi,Vj,η) = 1

2(Zi−Zj)[∆iI{ej(η) >
ei(η)} −∆jI{ei(η) > ej(η)}].

Under mild conditions, the estimator η̂, the solution of Un(η) = 0, is strongly
consistent and asymptotically normal (Jin et al. 2001; Honoré and Powell, 1994).
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Using the assumptions from Honoré and Powell (1994),

Un(η) = Un(η0) + n1/2Ψ0(η − η0) + op(1 + n1/2||η − η0||), (5.4)

where Ψ0 is the derivative of E{n−1/2Un(η)} evaluated at η = η0. To assess the
overall fit of the model, let

Un(t;η) = n1/2

n(n− 1)
∑
i 6=j

h(Vi,Vj,η)I{g(Vi,Vj,η) ≤ t},

where g is a function that belongs to the Euclidian class (Nolan and Pollard, 1988).
One natural choice of g is maximum function. For example, in the AFT model,
g(Vi,Vj,η) = ei(η) ∨ ej(η), where a ∨ b denotes maximum of a and b. Then (5.2)
leads to the following expansion (Lin et al. 1996) :

Un(t;η) = Un(t;η0) + n1/2Ψ0(t)(η − η0) + op(1 + n1/2||η − η0||), (5.5)

where Ψ0(t) is the slope matrix of Un(t;η0) at time t. Note that when t = ∞,
(5.5) is equal to (5.4). Since the solution of the estimating equation Un(η) = 0 is
strongly consistent, it is established that

Un(t; η̂) = Un(t;η0) + n1/2Ψ0(t)(η̂ − η0) + op(1).

If the model is correct, then Un(t; η̂) fluctuates around 0. Un(t; η̂) contains
information on the model behavior, analogous to the martingale residuals in Lin et
al. (1996) and Lin et al. (1993).

In this case, the key issue is to show that the process Un(t; η̂) converges to a
Gaussian process. In this case, it is not possible to use the empirical process results
from Lin et al. (1993) and Lin et al. (1996), because a sum of independent and
identically distributed random variables in the estimating function does not exist
(Nolan and Pollard, 1987). However, by using the U-process theory of Nolan and
Pollard (1987) and Nolan and Pollard (1988), the following result can be obtained.

Theorem 5.1. Assuming that the model (5.3) is true, Un(t; η̂) converges to a
zero-mean Gaussian process.

The next issue is to find the null distribution of Un(t;η). Since the structure of
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process h(Vi,Vj,η)I{g(Vi,Vj,η) ≤ t} is unknown, it is very difficult to tackle the
process directly. One way to solve this problem is to approximate the process by a
known distribution (Lin et al. 1993). Since Un(t;η) is nonsmooth, approximation
through Taylor expansion does not work. To find an expression for the approximate
distribution of n1/2(η̂ − η0), a resampling approach (Parzen et al. 1994) is used.
Resampling has been used in a variety of covariance matrix estimation settings for
rank regression estimators (e.g. Parzen et al. 1994; Lin et al. 1996; Peng and Fine
2006; Jin et al. 2001). In this approach,

Un(η) = −ur, (5.6)

with ur simulated from a normal distribution whose mean is 0 and covariance
matrix is Σ̂, where Σ̂ is estimated covariance matrix of Un(η). Let the solution of
(5.6) be η∗. Under mild conditions, given observed data, n1/2(η∗− η̂) has the same
asymptotic distribution as n1/2(η̂ − η0) (Parzen et al. 1994). Define Q1, . . . , Qn to
be standard normal random variables.

Theorem 5.2. Assuming that the model (5.3) is true,

Ûn(t;η∗) = n1/2

n(n− 1)
∑
i 6=j

h(Vi,Vj, η̂)I{g(Vi,Vj; η̂) ≤ t}Qi + Un(t;η∗)−Un(t; η̂)

converges weakly to the same Gaussian Process limit as Un(t; η̂).

These processes, which are called bootstrapped processes, are fundamental for
checking the overall fit of the model. It is possible to adopt the approach of Lin et
al. (1996) for graphical and numerical summaries. For a graphical summary, 20
or 30 observations from Ûn(·) are randomly chosen and plotted with the observed
process. Lack of fit can be checked by examining the behavior of the observed
process and observations from the resampling processes graphically. In addition to
the graphical approach, we can perform a formal test as in the case of U-statistics
of order one. Similar to assessing proportional hazards (Wei, 1984; Lin et al. 1993),
the test statistic for evaluating overall fit is

D = sup
t
||Un(t; η̂)||.

Larger values of D indicate stronger evidence for lack of fit. Let ηi∗ be ith value

61



from resampling and suppose that there are M resampling values. It is possible to
compute a p-value by (Hsieh et al. 2011)

p = 1
M

M∑
i=1

I{sup
t
||Ûn(t;ηi∗)|| ≥ D}.

According to the approach above, for the estimating equation (5.2), the test statistic
is supt ||UFR

n (t; η̂)||, where

UFR
n (t;η) = n1/2

2n(n− 1)
∑
i 6=j

(Zi − Zj)[∆iI{ej(η) > ei(η)} −∆jI{ei(η) > ej(η)}]

×I(ei(η) ∨ ej(η) ≤ t).

Now it is necessary to find the null distribution of UFR
n (t;η). By arguments in

Ferguson and Ritov (1994), n1/2(η̂− η0) has an asymptotically normal distribution
with mean 0 and covariance matrix Γ−1

0 Ω0Γ−1
0 , where Γ0 is nonsingular and Ω0

is an asymptotic covariance matrix of UFR
n (η0). They proposed to use numerical

derivatives for estimating Γ0, but these numerical derivatives involved unknown
hazard functions of the event of the interest and can be numerically unstable.

We instead use the approach from Parzen et al. (1994). The empirical influence
function for the asymptotic distribution of UFR

n (η0) is given by

v̂i = 1
n− 1

n∑
j=1

(Zi − Zj)[∆iI{ej(η) > ei(η)} −∆jI{ei(η) > ej(η)}].

Then we can construct

UFR
n (η) = −n−1/2

n∑
i=1

v̂iQi. (5.7)

Let the solution of the equation (5.7) be η∗. By Parzen et al. (1994), the
unconditional distribution of n1/2(η̂ − η0) has the same limiting distribution as
the conditional distribution of n1/2(η∗ − η̂). Then the bootstrapped processes are
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given by

ÛFR
n (t;η∗) = n1/2

2n(n− 1)
∑
i 6=j

(Zi − Zj)[∆iI{ej(η) > ei(η)} −∆jI{ei(η) > ej(η)}]

×I(ei(η) ∨ ej(η) ≤ t)Qi + UFR
n (t;η∗)−UFR

n (t; η̂).

These bootstrapped processes are random processes whose asymptotic distribution
is identical to UFR

n (t; η̂). As described before, the graphical test can be performed
by plotting 20 or 30 realized values of ÛFR

n (·; ·) with the observed process UFR
n (t; η̂).

A p-value can be computed by replications of η∗.
Now it is important to show that the proposed test procedure is consistent. A

consistent test is one whose power approaches 1 when sample size goes to infinity.
Since the power is closely related to rejecting the misspecified model, the estimator
under a misspecified model should converge to some constant value (Struthers and
Kalbfleisch, 1986; Lin and Wei, 1989). Before proving consistency of the proposed
test, it is necessary to prove the consistency of estimator under a misspecified model.
Let T be the time to failure and C be independent censoring. Let Y = T ∧ C,
∆ = I(T ≤ C) and covariates be W = (ZT ,Z∗T )T . The observed data are n i.i.d
replicates of (Y,∆,W). As before, all times are log-transformed. Assume that the
true model is

T = WTη0 + ε.

where ε is an i.i.d error term. Suppose that model is fitted using Z only, i.e., there
is misspecification on model fitting. We need next theorem before proving the
consistency of the test.

Theorem 5.3. Let η̂mis be the estimator from the misspecified model. Then η̂mis

is a consistent estimator of ηmis, which is a solution of

λ∗(η) = 1
2E
[
(Z1 − Z2)

∫ ∞
0

Ḡ(t+ WT
1 η0 − ZT

1 η|Z1)Ḡ(t+ WT
2 η0 − ZT

2 η|Z2)

× {F̄ (t+ WT
2 η0 − ZT

2 η|Z2)f(t+ WT
1 η0 − ZT

1 η|Z1)

− F̄ (t+ βT0 W1 − ZT
1 η|Z1)f(t+ WT

2 η0 − ZT
2 η|Z2)}dt

]
.

where f is an error density, F̄ is survival function of error and Ḡ is survival function
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of C −W Tη0.

Now the following theorem shows that the proposed test is consistent.

Theorem 5.4. The test D = supt ||Un(t; η̂)|| is consistent against the alternative
hypothesis that η depends on time.

5.2.2 Proofs

Before proving main results, the following assumptions are made.

1. The parameter space Θ is compact and the true parameter η0 is the interior
point of Θ.

2. Let || · || be Euclidean norm. The functions h(·, ·,η) and

u(·, ·,η, w) = sup
||τ−η||≤w

||h(·, ·, τ )− h(·, ·,η)||

are measurable functions of Vi1 and Vi2 for 1 ≤ i1 6= i2 ≤ n in some open
neighborhood of Θ.

3. Let λ(η) = E{n−1/2UFR
n (η)}. Then λ(η0) = 0 and λ(η) is differentiable at

η0 with nonsingular derivative at η0.

4. For 1 ≤ i1 6= i2 ≤ n, there exist positive constant a0, b0 and c0 such that
E{u(Vi1 ,Vi2 ,η, r)} ≤ a0r and E{u(Vi1 ,Vi2 ,η, r)2} ≤ b0r for all r ≤ c0 and
all η in an open neighborhood of η0.

5. There exists K > 0 such that ||Z|| ≤ K, i.e., Z is uniformly bounded by
constant K.

6. The error distribution has finite Fisher information and the distribution of Z
given ∆ = 1 is not concentrated on a proper hyperplane on Rp.

7. The information bound (Bickel et al. 1993, Chapter 2, p23) for estimating η0

is finite and invertible.

In the proofs, results for the estimating function in Fygenson and Ritov (1994) are
proved only. We first prove tightness of UFR

n (t; η̂).
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Lemma 5.1. UFR
n (t; η̂) is tight.

Proof. Let N0 be an open neighborhood of η0. By Lemma 2 of Honoré and Powell
(1994),

sup
η∈N0

||UFR
n (η)−UFR

n (η0)− n1/2λ(η)||
1 + n1/2||λ(η)|| = op(1).

Then by Taylor expansion and consistency of η̂,

UFR
n (t; η̂) = UFR

n (t;η0) + n1/2Γ0(t)(η̂ − η0) + op(1),

where Γ0(t) is slope matrix of UFR
n (t; η̂). We will start by showing UFR

n (t; η̂)
is tight. Clearly, n1/2(η̂ − η0) converges in distribution, so it is tight. Note
that g(Vi,Vj,η0) = ei(η0) ∨ ej(η0) for the AFT model assuming independent
censoring. For each t, a class of functions gt{ei(η0), ej(η0)} = ei(η0) ∨ ej(η0)− t is
a polynomial class by Lemma 18 of Nolan and Pollard (1987) (Note that for each t,
ei(η0)∨ej(η0)−t is an element of a finite dimensional vector space of real functions).
Then by argument of Nolan and Pollard (1987), a class of functions gt{ei(η0), ej(η0)}
is Euclidean with envelope 1. Let h(Vi,Vj,η0, t) = 1

2(Zi − Zj)[∆iI{ej(η0) >
ei(η0)} −∆jI{ei(η0) > ej(η0)}]I{ei(η0) ∨ ej(η0) ≤ t}. By assumption, ||Zi|| ≤ K

for all i. Since Zis and [∆iI{ej(η0) > ei(η0)}−∆jI{ei(η0) > ej(η0)}] are bounded,
by Lemma 22 in Nolan and Pollard (1987), h(Vi,Vj,η0, t) is also Euclidean with
some positive constant envelope M .

Let G be Euclidean class for envelope G and the metric dQ,p,G which is defined
on G is

dQ,p,G(f, g) =
[
Tn|f − g|p

Q(Mp)

]1/p

f, g ∈ G

where Q is a measure on space X ⊗ X which satisfies 0 < Q(Gp) <∞. Define

Jn(s,Q,G, G) =
∫ s

0
logN2(x,Q,G, G)dx,

where N2(x,Q,G, G) is the covering number N(x, dQ,2,G) (Nolan and Pollard, 1987).
Then

sup
n
E{Jn(s,Q,G, G)} = sup

n
E

{∫ s

0
logN2(x,Q,G, G)dx

}
.

Let y1, . . . y2n be a sample from measure P . Define Tn to be the measure which
assigns mass one at each of the 4n(n− 1) pairs of yv, yw in function gij for u ∈ G,
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where

gij = u(y2i, y2j)− u(y2i, y2j−1)− u(y2i−1, y2j) + u(y2i−1, y2j−1),

Now we will apply argument in previous paragraph to complete the proof. Let
F be function space for h(Vi,Vj,η0, t) and F be the envelope of F . Then F is
a class of function in L2(C × [0, a]), where a is a positive constant. By previous
argument, the envelope F is constant M . The metric for F is

dTn,2,M(f ∗, g∗) =
[
Tn|f ∗ − g∗|2

Tn(M2)

]1/2

f ∗, g∗ ∈ F

Let PF be the class of functions of E{h(v,V,η0, t)}. Clearly, PF = M . Moreover,
E{h(v,V,η0, t)} is also bounded for all v. By Corollary 21 in Nolan and Pollard
(1987), PF is also Euclidean with envelope M . By Nolan and Pollard (1987),
N2(ε, Tn,F ,M) is the smallest cardinality for a subclass F∗ of F such that

min
F∗

Tn|f − f ∗|2 ≤ ε2Tn(M2),

for each function in F . Clearly, Tn(M2) = M2n(n− 1). Hence,

min
F∗

Tn|f − f ∗|2 ≤ ε2M2n(n− 1).

Note that 0 < Tn(F ) = Tn(M2) = n(n− 1)M2 <∞. By argument in Nolan and
Pollard (1987) about Euclidean class, there exists positive constant A1 and B1,∫ 1

0
logN2(x, Tn,F ,M)dx ≤

∫ 1

0
(logA1 +B1 log 4− 2B1 log y)dy

= logA1 +B1 log 4− 2B1(y log y − y)|10 = logA1 +B1 log 4 + 2B1 <∞

Clearly, supnE{Jn(1, Tn,F ,M)}2 <∞. Let Pn be an empirical measure on sample
V1, . . . ,Vn. Thus 0 < Pn(M2) <∞. Since PF is also Euclidean, by using similar
arguments as the previous paragraph,

sup
n
E{J(1, Pn, PF ,M)}2 <∞.
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Similarly,
J(1, P ⊗ P,F ,M) <∞.

Thus it is enough to show that for every ζ > 0 and δ > 0, we can find ν > 0 such
that

lim sup
n→∞

E{J(ν, Pn, PF ,M) > ζ} < δ. (5.8)

Since PF is also Euclidean, clearly 0 < PnM <∞,

J(γ, Pn, PF ,M) =
∫ ν

0
logN2(x, Pn, PF ,M)dx ≤ 1.

For ζ > 0, by taking ν to be the solution of∫ ν

0
logN2(x, Pn, PF ,M)dx = ζ.

Thus (5.8) holds. Hence by Theorem 5 of Nolan and Pollard (1988), UFR
n (t;η0) is

tight. Hence UFR
n (t; η̂) is also tight.

Now we will prove Theorem 5.1.

Proof of Theorem 5.1. Let h(Vi,Vj,η0) = 1
2(Zi − Zj)[∆iI{ej(η0) > ei(η0)} −

∆jI{ei(η0) > ej(η0)}]. Define

2h1(v,η0, t) = 2E{h(v,V2,η0, t)}

where h(v,V2,η0, t) = h(v,V2,η0)I{g(v,V2,η0) ≤ t} and 2h1(v,η0) = 2E{h(v,V2,η0)}.
By arguments in the Appendix of Lin et al. (1996) and the Appendix of Peng and
Fine (2006),

UFR
n (t; η̂) = UFR

n (t;η0)− Γ(t)Γ−1
0 UFR

n (η0) + op(1)

= n−1/2
n∑
i=1

Hi(t)− Γ(t)Γ−1
0 n−1/2

n∑
i=1

Hi + op(1),
(5.9)

where
Hi(t) = 2h1(Vi,η0, t) Hi = 2h1(Vi,η0).

Let UFR∗
n (t;η0) = n−1/2∑n

i=1{Hi(t)− Γ(t)Γ−1
0 Hi}. By the tightness of UFR

n (t; η̂),
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UFR∗
n (t;η0) converges to a Gaussian process with mean zero and covariance matrix

E[{H1(t)− Γ(t)Γ−1
0 H1}{H1(t)− Γ(t)Γ−1

0 H1}T ]. (5.10)

Thus Theorem 5.1 is proved.

Proof of Theorem 5.2. We only prove the Fygenson and Ritov (1994) case. Note
that

ÛFR
n (t;η∗) = n1/2

n(n− 1)
∑
i 6=j

h(Vi,Vj, η̂)I{g(Vi,Vj, η̂) ≤ t}Qi

− Γ(t)n1/2(η∗ − η̂) + op(1)

= n1/2

n(n− 1)
∑
i 6=j

h(Vi,Vj, η̂)I{g(Vi,Vj, η̂) ≤ t}Qi

− Γ(t)Γ−1
0

n1/2

n(n− 1)
∑
i 6=j

h(Vi,Vj, η̂)Qi + op(1).

It is clear that given the observed data, ÛFR
n (t;η∗) is also a Gaussian process. It is

only necessary to show that the limiting covariance matrix of ÛFR
n (t;η∗) is same as

that of UFR∗
n (t;η0). By the U-statistic strong law of large numbers (Serfling, 1980,

Chapter 5, p190),

n1/2

n(n− 1)
∑
i 6=j

h(Vi,Vj, η̂) = n−1/2
∑

1≤i<j≤n

2
n− 1h(Vi,Vj, η̂) a.s.→ 2E{h1(V1,η0)}

n1/2

n(n− 1)
∑
i 6=j

h(Vi,Vj, η̂)I{g(Vi,Vj, η̂) ≤ t}

= n−1/2
∑

1≤i<j≤n

2
n− 1h(Vi,Vj, η̂)I{g(Vi,Vj, η̂) ≤ t} a.s.→ 2E{h1(V1,η0, t)},

where a.s.→ denotes almost sure convergence. Hence the asymptotic covariance
function of ÛFR

n (t;η∗) is E(LLT ), where

L = 2h1(V1,η0, t)− Γ(t)Γ−1
0 2h1(V1,η0).

The limiting covariance matrix of ÛFR
n (t;η∗) conditional on the observed data is
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the same as that of UFR∗
n (t;η0). This concludes the proof.

Proof of Theorem 5.3. Let e∗i (η) = Yi − ZT
i η. Then the estimating equation is

UFRmis
n (η) = n1/2

2n(n− 1)
∑
i 6=j

(Zi−Zj)[∆iI{e∗j(η) > e∗i (η)}−∆jI{e∗i (η) > e∗j(η)}] = 0.

(5.11)
By Theorem 2.1(i) in Fygenson and Ritov (1994), the solution of equation (5.11)
exists. Denote this solution by η̂mis. By the strong law of large numbers,

n−1/2UFRmis
n (η) = λ∗(η) + o(1).

Assume that λ∗(η) has a unique solution ηmis. Without loss of generality, it is
assumed that η0 = 0. If η → ηmis, by Fygenson and Ritov (1994),

λ∗(η) = 1
2E
[
(Z1 − Z2)(Z1 − Z2)T ×

∫ ∞
−∞
−Ḡ(t− ZT

1 η
mis|Z1)Ḡ(t− ZT

2 η
mis|Z2)

×f(t− ZT
1 η

mis)f(t− ZT
2 η

mis)dt+ (Z1 − Z2)
∫ ∞
−∞

Ḡ(t− ZT
1 η

mis|Z1)Ḡ(t− ZT
2 η

mis|Z2)

×{ZT
2 F̄ (t− ZT

1 η
mis)f ′(t− ZT

2 η
mis)− ZT

1 F̄ (t− ZT
2 η

mis)×

f ′(t− ZT
1 η

mis)}
]
(η − ηmis) + o(η − ηmis).

By Fygenson and Ritov (1994)’s argument, it is linear in a neighborhood of ηmis.
Moreover, since UFRmis

n (η) and λ∗(η) are monotone with respect to η, η̂mis is a
consistent estimator of ηmis.

Now we will prove consistency of the test.

Proof of Theorem 5.4. Let T be time to the event of interest, C be time to the
independent censoring and Z be a vector of covariates. As before, these times are
log-transformed. Suppose that the observed data are n i.i.d replicates of (Y,∆,Z),
where Y = T ∧ C and ∆ = I(T ≤ C) and the alternative hypothesis is that η in
the AFT model depends on time, i.e.,

T = ZTη(s) + ε. (5.12)
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Let η̂mt be estimator of η assuming AFT model that has time independent pa-
rameters while in the true model parameters actually depend on time. Then by
applying similar arguments for the misspecified AFT model, η̂mt converges almost
surely to constant vector, say ηmt. To show consistency of test, it suffices to show
that n−1/2UFR

n (t; η̂mt) converges to nonzero limit (Lin et al. 1993; Arbogast and
Lin, 2004) against the alternative hypothesis. Under the alternative hypothesis,
by strong law of large number of U-statistics, n−1/2UFR

n (t; η̂mt) converges almost
surely to

1
2E[(Z1 − Z2)×
E[I{e1(ηmt) ∨ e2(ηmt) ≤ t}(∆1I{e2(ηmt) > e1(ηmt)} −∆2I{e1(ηmt) > e2(ηmt)})|Z1,Z2].

(5.13)
Then given e1(ηmt)∨e2(ηmt) ≤ t, the inner expectation of (5.12) is P [∆1I{e2(ηmt) >
e1(ηmt)} −∆2I{e1(ηmt) > e2(ηmt)}]. Then,

P [∆1I{e2(ηmt) > e1(ηmt)} −∆2I{e1(ηmt) > e2(ηmt)}]
= P{(T1 − ZT

1 η
mt) ≤ (T2 − ZT

2 η
mt) ∧ (C1 − ZT

1 η
mt) ∧ (C2 − ZT

2 η
mt)}

−P{(T2 − ZT
2 η

mt) ≤ (T1 − ZT
1 η

mt) ∧ (C1 − ZT
1 η

mt) ∧ (C2 − ZT
2 η

mt)}
= P [{ε1 + ZT

1 (η(s)− ηmt)} ≤ [ε2 + ZT
2 (η(s)− ηmt)] ∧ (C1 − ZT

1 η
mt) ∧ (C2 − ZT

2 η
mt)]

−P [{ε2 + ZT
2 (η(s)− ηmt)} ≤ {ε1 + ZT

1 (η(s)− ηmt)} ∧ (C1 − ZT
1 η

mt) ∧ (C2 − ZT
2 η

mt)].
(5.14)

Since η(·) depends on time and covariates, ε1+ZT
1 (η(s)−ηmt) and ε2+ZT

2 (η(s)−ηmt)
do not have same distribution, thus the probability in expression (5.13) is not 0.
For the expression in (5.13) to be 0, the distribution of ε1 + ZT

1 (η(s)− ηmt) and
ε2 + ZT

2 (η(s) − ηmt) should be same. Thus for the function in (5.13) to be 0,
η(s) = ηmt.

5.2.3 Dependent Censoring

In the previous section, independent censoring was assumed. However, in semicom-
peting risks data structure, this independent censoring assumption is violated. We
will briefly review the model and the procedure of Peng and Fine (2006) in Chapter 3.
Let X be the time to event of interest, D be time to dependent censoring, C be time
to independent censoring and Z be p×1 vector of covariates. As the previous section
all times are logarithm scale. Define X̃ = X ∧D ∧ C, D̃ = D ∧ C, ξ = I(D ≤ C),
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δ = I(X ≤ D ∧ C). The observed data is (X̃i, D̃i, ξ, δ,Zi), i = 1, . . . , n. Now the
model is a bivariate AFT model (Lin et al. 1996; Peng and Fine, 2006):(

Xi = ZT
i θ0 + εXi

Di = ZT
i η0 + εDi

)
i = 1 . . . n,

where γ0 = (ηT0 ,θT0 )T is 2p×1 vector of true value γ = (ηT ,θT )T and εi = (εXi , εDi )T

are independent and identically distributed with unspecified survival function F .
Let Sn(η) = n1/2Uindep

n (η) in (5.1). Since D only depends on independent censoring,
from approach by Tsiatis (1990), estimator for η0 is obtained by solving Sn(η) = 0.
For the event of the interest, it is necessary to adjust for the effect of dependent
censoring to remove bias. To adjust for it, Peng and Fine (2006) used an artificial
censoring technique. Define

dij(γ) = max{0,ZT
i (θ − η),ZT

j (θ − η)},

X̃∗i(j)(γ) = (Xi − ZT
i θ) ∧ (Di − ZT

i η − dij(γ)) ∧ (Ci − ZT
i η − dij(γ)),

δ̃∗i(j)(γ) = I{(Xi − ZT
i θ) ≤ (Di − ZT

i η − dij(γ)) ∧ (Ci − ZT
i η − dij(γ))},

ψij(γ) = δ̃∗i(j)(γ)I{X̃∗i(j)(γ) ≤ X̃∗j(i)(γ)} − δ̃∗j(i)(γ)I{X̃∗j(i)(γ) ≤ X̃∗i(j)(γ)}.

The estimating function proposed by Peng and Fine (2006) is

UP
n (γ) = 2n1/2

n(n− 1)
∑

1≤i<j≤n

(Zi − Zj)ψij(γ).

According to the discussion in previous chapters, Peng and Fine (2006) also used a
martingale approach to check model fit although their estimating function is also
U-statistic of order 2. However, the estimating function of Peng and Fine (2006)
does not have a martingale structure. Moreover, the artificial censoring applied in
the assessment of model fit is one by Lin et al. (1996), which differs from that in
Peng and Fine (2006). Thus applying a model assessment method using the Lin
et al. (1996) approach for UP

n (γ) is problematic. By using a similar approach to
Fygenson and Ritov (1994), the score process is

UP
n (t; γ̂) = n1/2

n(n− 1)
∑
i 6=j

(Zi − Zj)ψij(γ̂)I{X̃∗i(j)(γ̂) ∨ X̃∗j(i)(γ̂) ≤ t}.
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To derive a p-value, as in the previous section, a resampling approach is used
to derive the null distribution. Let Uall

n (γ) = [{Sn(η)}T , {UP
n (γ)}T ]T . Let γ̂ be

estimator of γ0. Then by Theorem 2 in Peng and Fine (2006), n1/2(γ̂ − γ0) has an
asymptotically normal distribution with mean 0 and covariance matrix Υ−1

0 Ξ0Υ−1
0 ,

where Υ0 is nonsingular matrix and Ξ0 is covariance matrix of limn→∞Uall
n (γ).

By Peng and Fine (2006), the empirical influence function for the asymptotic
distribution of Uall

n (γ0) is

J(1)
i = ξi

[
Zi −

∑n
j=1 I{D̃∗j (η̂) ≥ D̃∗i (η̂)}Zj∑n
j=1 I{D̃∗j (η̂) ≥ D̃∗i (η̂)}

]
−

n∑
l=1

ξlI{D̃∗i (η̂) ≥ D̃∗l (η̂)}∑n
j=1 I{D̃∗j (η̂) ≥ D̃∗l (η̂)}

×

[
Zi −

∑n
j=1 I{D̃∗j (η̂) ≥ D̃∗l (η̂)}Zj∑n
j=1 I{D̃∗j (η̂) ≥ D̃∗l (η̂)}

]
,

J(2)
i = 2

n− 1

n∑
j=1

(Zi − Zj)φij(γ̂).

Let Ji = [{J(1)
i }T , {J

(2)
i }T ]T . To apply the resampling approach of Parzen et al.

(1994), perturbed terms need to be generated. The perturbed term is generated
by constructing linear combinations of Jis and Qis. γ∗ can be obtained by solving
equations (

Sn(η) = −n−1/2∑n
i=1 J(1)

i Qi

UP
n (γ) = −n−1/2∑n

i=1 J(2)
i Qi

)
.

Then n1/2(γ̂ − γ0) has the same asymptotic distribution as n1/2(γ∗ − γ̂) (Parzen
et al. 1994). By using a similar approach as in Section 5.2.1 on this chapter,
we can show that joint process [{Sn(t; η̂)}T , {UP

n (s; γ̂)}T ]T is approximated by
[{Ŝn(u;η∗)}T , {ÛP

n (s;γ∗)}T ]T , where

Ŝn(t;η∗) = n−1/2
n∑
i=1

∫ u

−∞

[
Zi −

∑n
j=1 I{D̃∗j (η̂) ≥ v}Zj∑n
j=1 I{D̃∗j (η̂) ≥ v}

]
dM̂i(v; η̂)Qi + Sn(t;η∗)− Sn(t; η̂)

ÛP
n (s;β∗) = n1/2

n(n− 1)
∑
i 6=j

(Zi − Zj)ψij(γ̂)I{X̃∗i(j)(γ̂) ∨ X̃∗j(i)(γ̂) ≤ s}Qi + UP
n (s;γ∗)−UP

n (s; γ̂)

Both [Sn(t; η̂)T , {UP
n (s; γ̂)}T ]T and [Ŝn(u;η∗)T , {ÛP

n (s;γ∗)}T ]T converge weakly to
the same bivariate Gaussian process. The testing procedure based on this bivariate
process is the same as for the case of independent censoring.
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Remark. As can be seen in this section, unlike modeling in the independent
censoring, joint modeling of failure of interest and dependent censoring is required
when there exists dependence between failure of interest and censoring. This
leads derivation of joint processes of failure of interest and dependent censoring
for evaluation of the model fit. However, numerical summaries (test statistic
and p-value) can be computed for failure of interest and dependent censoring,
respectively.

5.3 Simulation Studies
We first considered simulation studies using the estimating function from Fygenson
and Ritov (1994). The error term is distributed as ε ∼ N(0, 1). For covariates, We
first generated (A1, A2)T from a bivariate normal distribution with mean (0, 0)T

and covariance matrix
(

1 0.25
0.25 1

)
.

Next, we define Z1 = A1 and Z2 =
∑

j jA
2
2I(b[j − 1] < A2 ≤ b[j]), j = 1, . . . 21,

where b[j] is 5(j−1)% quantile of W2. b[1] is minimum of b[·] and b[21] is maximum
of b[·]. Let b[0] = −∞. Censoring variable is uniformly distributed with minimum
value 0 and maximum value 150. True regression coefficient values are β0 = (0.2, 1)T .
We run 400 simulations with sample size n = 50, 100 and 200. In each simulation
run, 200 resampling runs are performed. We fit the model by using only Z1. For
comparison, the new testing procedure is compared to that of Lin et al. (1996).

The proportion of rejections from the proposed method is higher than that from
the Lin et al. (1996) method. Figures 5.1 and 5.2 show the power corresponding to
threshold values of p-value. The plot shows that the proposed method performs
better than the Lin et al. (1996)’s method. Table 5.1 shows power comparison
between the new method and the Lin et al. (1996) method. Numerical results
indicate that the proposed approach has higher power than that of Lin et al. (1996).
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Table 5.1: Power comparison between the new method and that of Lin et al. (1996)
for the independent censoring case

n = 50
p-values Cutoff values

0.05 0.10 0.15 0.2
Lin et al. (1996) 0.0475 0.11 0.18 0.2425
Proposed method 0.1375 0.28 0.37 0.48

n = 100
p-values Cutoff values

0.05 0.10 0.15 0.2
Lin et al. (1996) 0.2925 0.37 0.445 0.4925
Proposed method 0.34 0.485 0.6125 0.68

n = 200
p-values Cutoff values

0.05 0.10 0.15 0.2
Lin et al. (1996) 0.5425 0.6475 0.71 0.7525
Proposed method 0.595 0.71 0.8025 0.845

Figure 5.1: Plot of proportion of rejection according to threshold p-values when
n = 50 (left) and n = 100 (right) for the independent censoring case
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Next, we applied the proposed method to the dependent censoring case. Steps
for data generation are shown below:

1. Generate W = (W1,W2)T ∼ N

{(
0
0

)
,

(
1 0.25

0.25 1

)}
.
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Figure 5.2: Plot of proportion of rejection according to threshold p-values when
n = 200 for the independent censoring case
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2. Set R1 = I(W1 > 0) and R2 =
∑

j jW
2
2 I(b[j − 1] < W2 ≤ b[j]), j = 1, . . . 21,

where b[j] is 5(j − 1)% quantile of W2. b[1] is minimum of b[·] and b[21] is
maximum of b[·]. Let b[0] = −∞.

3. Generate ε = (εX , εD) ∼ N

{(
0

1.2

)
,

(
1 0.25

0.25 1

)}
.

4. Set θ0 = (1, 0.5) and η0 = (0.5, 1) and generate X = RTθ0 + εX and
D = RTη0 + εD, where R = (R1, R2)T .

Independent censoring time C is uniformly distributed with minimum value 0
and maximum value 100. We fit the misspecified model from Section 5.2.2 of
this chapter, which only employs R1, and compute the statistical power using the
method of Lin et al. (1996) and the proposed method for the model of the event
of interest X. In each simulation run, 200 resampling runs are tried. Table 5.2
shows the results when n = 50 based on 400 simulation runs and for n = 100 based
on 200 simulation runs. Figure 5.3 shows a plot of proportion of rejection when
n = 50 and n = 100. The plots in Figure 5.3 and numerical summaries from Table
5.2 lead to the same conclusion as the independent censoring case. The proposed
method performs better than that of the Lin et al. (1996).
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Figure 5.3: Plot of proportion of rejection according to threshold p-values when
n = 50 (left) and n = 100 (right) for the model of the event of interest in the
presence of dependent censoring
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Table 5.2: Power comparison between the new method and Lin et al. (1996)’s
method for the model of the event of interest in the presence of the dependent
censoring

n = 50
p-values Cutoff values

0.05 0.10 0.15 0.2
Lin et al. (1996) 0.0225 0.095 0.17 0.2325
Proposed method 0.125 0.245 0.315 0.375

n = 100
p-values Cutoff values

0.05 0.10 0.15 0.2
Lin et al. (1996) 0.095 0.205 0.31 0.385
Proposed method 0.25 0.385 0.455 0.53

5.4 Real Data Analysis
We applied the proposed method to data from AIDS Clinical Trial Study 364
(Albrecht et al. 2001), which was previously analyzed by Peng and Fine (2006) and
Chapter 4. As can be seen in Chapter 1 and Chapter 4, in this study, the plasma
RNA level of every patient is at least 500 copies per ml. The event of interest is
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time to first viologic failure, which is defined as the first time to HIV level≥ 2000.
Patients will leave the study due to deterioration of heath status as time progresses
(Peng and Fine, 2006). Hence dependence between failure of interest and censoring
(withdrawal) exists.

In this dataset, 3 levels of treatment are considered : nelfinavir (NFV), efavirenz
(EFV), and combination of nelfinavir and efavirenz (NFV + EFV). We consider
three covariates. Z1 takes value 1 if treatment assignment of a patient is EFV and
0 otherwise. Z2 takes value 1 if treatment assignment of a patient is NFV + EFV
and 0 otherwise and Z3 is log(RNA) level. In Chapter 4, the dependent censoring
and the event of interest were analyzed using the Lin et al. (1996) and Peng and
Fine (2006) approaches jointly. The approach based on Lin et al. (1996) for both
the Lin et al. (1996) estimator and the Peng and Fine (2006) estimator is used for
the model checking.

Figure 5.4 shows a goodness of fit plot of 20 bootstrapped processes along with
the observed process. The observed process is moving around zero and bootstrapped
processes suggest that there is no substantial deviation of model fit.

The p-value from the analysis in the Chapter 4 is 0.959. The p-value using the
new approach is 0.51. Although both p-values show that there is no evidence of
lack of fit for the model, substantial decrease is made on the proposed method,
suggestive of higher power.

5.5 Discussion
In this chapter, we have developed a new goodness of fit approach. Using U-process
theory by Nolan and Pollard (1987) and Nolan and Pollard (1988), we adapt the
resampling approach from Parzen et al. (1994) and Lin et al. (1996) to derive
numerical summaries and graphical tests. The new approach can be applied to
estimating functions based on U-statistics of order two.

In this chapter, our attention has been on checking the overall fit of the model.
Other goodness of fit techniques which can be considered are checking functional
form of covariates and linearity of the model. Lin et al. (1993) proposed method
for these scenarios based on the Cox model. However, direct application of Lin
et al. (1993)’s approach to the semiparametric AFT model is impossible because
the estimating function is nonsmooth. By mimicking the approach in this paper
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Figure 5.4: Observed process (bold line) and bootstrapped processes (dashed lines)
for the first virologic failure
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and Lin et al. (1993), for the procedure of Fygenson and Ritov (1994), one may
consider the observed process

U2k(x;η) = n1/2

n(n− 1)
∑
i 6=j

I(Zki ∨ Zkj ≤ x)(Zi − Zj)[∆iI{ej(η) > ei(η)} −∆jI{ei(η) > ej(η)}]

to check the form of covariates. Developing details about checking the functional
form of covariates and the linearity of the model will be communicated in separate
reports.

It is also worthwhile to apply the idea of León and Cai (2012) on checking overall
fit in the U-statistics of order 2 case under observational studies. For U-statistics
of order 2, however, there is no concept of residuals. Thus developing a tool similar
to ‘robust residuals’ can be important. This will be also communicated in separate
reports.
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Chapter 6 |
Covariate adjustment using propen-
sity scores for dependent cen-
soring problems

6.1 Introduction
As can be seen in Chapter 3, an artificial censoring is an important element in the
marginal regression method by Lin et al. (1996) and Peng and Fine (2006). The
advantage to the use of the artificial censoring is that one can estimate regression
parameters based on modified estimating equations without assuming a parametric
structure between the event of interest and the dependent censoring. However,
excessive artificial censoring may censor many observations and thus may lead
to unstable estimation when continuous covariates are included in the model.
Estimators have very small variability due to excessive artificial censoring. It seems
that small variability of the estimators from model using all covariates may be
desirable, but it implies that the variabilities of the estimators are not properly
estimated because of the excessive artificial censoring. As can be seen in the
simulation studies in this chapter, excessive artificial censoring leads to incorrect
coverage.

For some situations, estimation of the treatment effect might be of interest in
observational studies. With semicompeting risks data, estimation of the treatment
effect in observational studies is especially problematic because one must adjust
for confounders. Even in randomized studies, when researchers are interested in
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subgroups, then it is highly likely that secondary factors that define subgroups
are not randomized. Thus these secondary factors, which are covariates, can be
confounders. Although it is not necessary to adjust confounders if we are interested
in evaluating treatment effects on different subgroups, it may be still worthwhile to
adjust the imbalances between treatment and control groups (VanderWeele and
Knol, 2011). The similar logic can be applied to evaluate the treatment effect within
the subgroups. The subgroup analysis of RTOG 9413 (Radiation Therapy Oncology
Group) study is a good example. RTOG 9413 was a multicenter randomized phase
III trial for clinically localized intermediate-risk and/or high-risk prostate cancer
patients. One of the primary hypotheses was to compare combined androgen
suppression (CAS) and whole pelvic radiotherapy (WPRT) followed by a boost
to the prostate with CAS and prostate only radiotherapy (PORT). The protocol
primary endpoint was progression-free survival, defined as time from randomization
to the first occurrence of local progression, regional/nodal failure, distant failure,
biochemical failure or death from any cause. While the initial reporting did not
find that WPRT improves PFS, a subgroup analysis suggested WPRT may prolong
PFS among intermediate risk patients (determined by the prostate specific antigen
(PSA) and Gleason score (GS) at randomization)(Roach et al. 2003). Given the
nature of subgroup analysis and the fact that progression was dependently censored
by death, it is of great interest to obtain an unbiased treatment effect estimate
for the time to the first occurrence of any disease failure (local, regional, distant,
biochemical) within the semi-competing risks framework. In addition to initial
PSA (ng/ml) and Gleason score, other potential prognostic variables include tumor
size, T stage and age. The data being analyzed are based on the updated reporting
(Roach et al. 2013).

Our approach to the problem involves propensity scores, proposed by Rosenbaum
and Rubin (1983). While their use has been of interest in causal inference, they
also satisfy a balancing property that corresponds to the distribution of covariates
being equal for both treatment group and control group given the propensity score
(Williamson et al. 2014). Thus, the propensity score can provide enough information
to balance the covariates between treatment group and control group. This can
be an important tool for reducing the artificial censoring needed for estimating a
treatment effect.

In this chapter, we propose methodology for estimation of treatment effects
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adjusting for covariates using the propensity score. The chapter is organized as
follows. In Section 6.2, we introduce the data structure and modeling assumption.
Section 6.3 shows the methodology for estimation of treatment effect. Theoretical
results and details about inference using the proposed method are demonstrated in
Section 6.4 and Section 6.5. In Section 6.6, we apply the proposed methodology to
the ACTG 364 study and the RTOG 9413 study. Simulation studies are shown in
Section 6.7. Concluding remarks and discussion are in Section 6.8.

6.2 Preliminaries

6.2.1 Data and Model

Let X be time to the event of interest, D be time to the dependent censoring, and
C be time to the independent censoring. Denote by I(A) the indicator function for
the event A, and let a ∧ b be the minimum of a and b. Define W = (V T , ZT )T to
be a vector of k variables, where V is a collection of confounder variables and Z is
a binary treatment variable. Define

X̃ = X ∧D ∧ C, D̃ = D ∧ C δ = I(X ≤ D̃), ξ = I(D ≤ C).

All these times are log-transformed. The data consist of n independent observations
(X̃i, D̃i,Wi, δi, ξi), i = 1, . . . , n.The model is(

Xi = θT0Wi + εXi

Di = ηT0Wi + εDi

)
, i = 1, . . . , n,

where β0 = (θT0 ,ηT0 )T is a 2k × 1 vector and ε ≡ (εX , εD) is error with unknown
bivariate distribution F . Let θ0 = {θtr0 , (θ

cfd
0 )T}T and η0 = {ηtr0 , (η

cfd
0 )T}T , where

θtr0 and ηtr0 are the subcomponents of θ0 and η0 corresponding to Z. Similarly, θcfd0

and ηcfd0 are the components of θ0 and η0 corresponding to V . We can rewrite the
model as (

Xi = θtr0 Zi + (θcfd0 )TVi + εXi

Di = ηtr0 Zi + (ηcfd0 )TVi + εDi

)
, i = 1, . . . , n.

We assume that the model is identifiable only in the upper wedge where X < D

and C is independent with (X,D) given W , but X and D can be dependent given
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W (Fine et al. 2001; Peng and Fine, 2006).

6.3 Proposed Methodology
Using artificial censoring techniques, Lin et al. (1996) and Peng and Fine (2006)
proposed two different estimating functions. Lin et al. (1996) used a single
comparison of each residual time and Peng and Fine (2006) compared different
pairs of residual times for the artificial censoring. In Lin et al. (1996) approach, the
same degree of the artificial censoring is applied to every residual time so that the
estimator from this approach may be inefficient when many covariates are included
in the model. The method of Peng and Fine (2006) is clearly better than that in
Lin et al. (1996) in the sense that their artificial censoring is smaller than that in
Lin et al. (1996), but including continuous covariates with large variabilities may
still cause the excessive artificial censoring in their method.

We now propose an estimation procedure to avoid excessive artificial censoring
by using the propensity scores. In this case, our goal is to estimate the treatment
effect. Although the effect of confounders is not estimated, the propensity score
provides rich information for estimation of treatment effect, so obtaining unbiased
treatment effect is still possible.

Assume that the model constructed by logistic regression with parameter α =
(α1, . . . , αk) for binary treatment is the true model. LetHi = (1,V T

i )T , i = 1, . . . , n.
Define the propensity score to be

ei(α) = P (Zi = 1|Hi) = exp (αTHi)
1 + exp (αTHi)

.

The weight is defined by

wi(α) = Zi
ei(α) + 1− Zi

1− ei(α) . (6.1)

This weight takes value 1/ei(α) if Zi = 1 and 1/(1−ei(α)) otherwise. In the causal
inference literature, the typical technique is to apply weight wi(α) to estimate the
average treatment effect (Lunceford and Davidian, 2004; Williamson et al. 2014;
Zhu, 2013 ; Zhu et al., 2014). In our case, this weight is incorporated into estimating
functions. Let ηtr and θtr be the treatment effect parameters with respect to D and
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X, respectively. By using the weight, the proposed estimating function for ηtr is

Sn(ηtr,α) = n−1/2
n∑
i=1

ξiwi(α)
[
Zi −

∑n
j=1 I{D̃∗j (ηtr) ≥ D̃∗i (ηtr)}wj(α)Zj∑n
j=1 I{D̃∗j (ηtr) ≥ D̃∗i (ηtr)}wj(α)

]
, (6.2)

where D̃∗i (ηtr) = D̃i−ηtrZi. Let βtr = (ηtr, θtr)T . The proposed estimating function
for βtr using Lin et al. (1996) is

UL
n (βtr,α) = n−1/2

n∑
i=1

δ̃∗i (βtr)wi(α)
[
Zi −

∑n
j=1 I{X̃∗j (βtr) ≥ X̃∗i (βtr)}wj(α)Zj∑n
j=1 I{X̃∗j (βtr) ≥ X̃∗i (βtr)}wj(α)

]
,

(6.3)
where

d(βtr) = max1≤i≤n {0, (θtr − ηtr)Zi}
X̃∗i (βtr) = (Xi − θtrZi) ∧ {(Di ∧ Ci)− ηtrZi − d(βtr)}
δ̃∗i (βtr) = I[(Xi − θtrZi) ≤ {(Di ∧ Ci)− ηtrZi − d(βtr)].

Similarly, the proposed estimating function based on Peng and Fine (2006) is

UP
n (βtr,α) = 2n1/2

n(n− 1)
∑

1≤i<j≤n

(Zi − Zj)wi(α)wj(α)φij(βtr), (6.4)

where

dij(βtr) = max {0, (θtr − ηtr)Zi, (θtr − ηtr)Zj}
X̃∗i(j)(βtr) = (Xi − θtrZi) ∧ {(Di ∧ Ci)− ηtrZi − dij(βtr)}
δ̃∗i(j)(βtr) = I[(Xi − θtrZi) ≤ {(Di ∧ Ci)− ηtrZi − dij(βtr)]

φij(βtr) = δ̃∗i(j)(βtr)I{X̃∗i(j)(βtr) ≤ X̃∗j(i)(βtr)} − δ̃∗j(i)(βtr)I{X̃∗j(i)(βtr) ≤ X̃∗i(j)(βtr)}.

Let Gn(α) be the score function for α, where

Gn(α) = n−1/2
n∑
i=1

Hi

{
Zi −

exp (αTHi)
1 + exp (αTHi)

}

Let γ = (αT , ηtr, θtr, θtr)T . We solve

Qn(γ) = [GT
n (α), STn (ηtr,α), {UL

n (βtr,α)}T , {UP
n (βtr,α)}T ]T = 0, (6.5)
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to obtain estimators of the true value γ0 = (αT0 , ηtr0 , θtr0 , θtr0 )T . Solutions for γ can
be obtained by solving the estimating equations sequentially. First we estimate
the propensity score for all samples, denoted as {ei(α̂)}ni=1, where α̂ is the root of
Gn(α) = 0. Next step is to solve Sn(ηtr, α̂) = 0 by including the estimated weights.
Denote the estimator of ηtr0 be as η̂catr. Incorporating η̂catr and the estimated
weights, the two estimators of θtr0 are obtained through solving UL

n (θtr, η̂catr, α̂) = 0
and UP

n (θtr, η̂catr, α̂) = 0. These solutions are denoted by θ̂Lcatr and θ̂Pcatr for the
Lin et al. (1996) and Peng and Fine (2006) approaches, respectively.

This methodology works because the propensity score adjusts the distribution
of confounders between treatment group and control group. Although only the
treatment variable is utilized in construction of the estimating functions, the
proposed weights contain information on confounders so that they correct bias
of not using them. By using the balancing property of the propensity score, it
is expected to obtain unbiased estimators of the treatment effect on the times
to the event of interest and to the dependent censoring. The joint distribution
of (Xi − θtr0 Zi, Di − ηtr0 Zi), i = 1, . . . , n have a common distribution not depend
on Zi given the propensity score since the distribution of confounder is same for
both treatment group and control group given the same propensity score value.
Moreover, since only the treatment variable is utilized in the estimation procedure,
it is expected to have very small artificial censoring compared to original estimation
procedures which employ all variables. This point is seen in the numerical study in
Section 6.7.

Another advantage of the proposed method is ease of computation. Numerically,
this involves solving a one-dimensional equation, which is much faster and easier to
do than the multidimensional case.

6.4 Theoretical Results and Inference
It is of interest whether the estimated treatment has good theoretical justification.
In this case, since the propensity score provides enough information to balance
distribution of covariates between treatment group and control group, given the true
propensity score, we have martingale structure for Lin et al. (1996) type estimating
function. For Peng and Fine (2006) type estimating function, given the propensity
score, we have the same setup as the proof of Appendix of Peng and Fine (2006).

84



In Appendix, we show that E{Qn(γ0)} = 0. In this proof, the assumption that
propensity model is true enables us to construct martingale structure of estimating
equations for ηtr and βtr in Lin et al. (1996). For estimating equation based on
Peng and Fine (2006), the similar technique is used in Appendix of Peng and Fine
(2006).

Without the propensity score, using arguments similar to partial likelihood case,
one may argue that the estimated treatment effect converges to constant value
in probability (Boyd et al. 2012; Struthers and Kalbfleisch, 1986; Lin and Wei,
1989). However, in our case, due to the balancing property of the propensity score
and strong consistency of α̂, the proposed estimator converges to the true value of
parameters almost surely.

Let γ̂ = (α̂T , η̂catr, θ̂Lcatr, θ̂Pcatr)T be a solution of Qn(γ) = 0. Then it is
important to investigate asymptotic properties of γ̂. Proofs of the following
theorems are in the Appendix.

Theorem 6.1. Assuming the regularity conditions in Ying (1993), Peng and Fine
(2006) and Theorem 17 of Ferguson (1996), γ̂ is strongly consistent.

Theorem 6.2. Under the regularity conditions by Ying (1993) and Peng and Fine
(2006) and by Theorem 1, n1/2(γ̂ − γ0) has an asymptotic normal distribution with
mean 0 and covariance matrix Λ−1

0 Ω0Λ−1
0 . where Λ0 is a nonsingular matrix, and

Ω0 is the limiting covariance matrix of Qn(γ0).

Note that convergence in joint distribution of (α̂T , η̂catr, θ̂Lcatr, θ̂Pcatr)T is proved.
It is also possible to consider γ̂L = (α̂T , η̂catr, θ̂Lcatr)T and γ̂P = (α̂T , η̂catr, θ̂Pcatr)T

separately, but this separation causes problems in statistical inference for α̂ and
η̂catr. This unified convergence result also implies that γ̂L and γ̂P are strongly
consistent and asymptotically normal. The price for proving the joint convergence
is additional assumptions. These assumptions are specified in the Appendix.

For inference, estimation of the asymptotic covariance matrix is crucial. In
practice, it may be more convenient to use the data bootstrap to avoid the possibly
over-complicated numerical issues.

In this data bootstrap approach, first step is to bootstrap the data, then solve
estimating equations in (6.5) using the bootstrapped data. In this case, the weight
based on propensity score should be also updated from the bootstrap. From large
number of solutions by the bootstrap, the covariance matrix can be estimated.
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Another way to estimate covariance matrix is to extend Parzen et al.’s (1994)
approach. In this case, the first step is to estimate Ω0. Let β̂Lcatr = (η̂catr, θ̂Lcatr)
and β̂Pcatr = (η̂catr, θ̂Pcatr). Adapting the work of Lin et al. (1996) and Peng and
Fine (2006), we now propose weighted empirical influence functions of Qn(γ0).

v̂1i = Hi

{
Zi −

exp (α̂THi)
1 + exp (α̂THi)

}
v̂

(1)
2i = wi(α̂)

(
ξi

[
Zi −

∑n
j=1 I{D̃∗j (η̂catr) ≥ D̃∗i (η̂catr)}wj(α̂)Zj∑n
j=1 I{D̃∗j (η̂catr) ≥ D̃∗i (η̂catr)}wj(α̂)

]
−

n∑
l=1

wl(α̂)ξlI{D̃∗i (η̂catr) ≥ D̃∗l (η̂catr)}∑n
j=1wj(α̂)I{D̃∗j (η̂catr) ≥ D̃∗l (η̂catr)}

×
[
Zi −

∑n
j=1 I{D̃∗j (η̂catr) ≥ D̃∗l (η̂catr)}wj(α̂)Zj∑n
j=1 I{D̃∗j (η̂catr) ≥ D̃∗l (η̂catr)}wj(α̂)

])

v̂
(2)
2i = wi(α̂)

(
δ̃∗i (β̂Lcatr)

[
Zi −

∑n
j=1 I{X̃∗j (β̂Lcatr) ≥ X̃∗i (β̂Lcatr)}wj(α̂)Zj∑n
j=1 I{X̃∗j (β̂Lcatr) ≥ X̃∗i (β̂Lcatr)}wj(α̂)

]
−

n∑
l=1

wl(α̂)δ̃∗l (β̂Lcatr)I{X̃∗i (β̂Lcatr) ≥ X̃∗l (β̂Lcatr)}∑n
j=1wj(α̂)I{X̃∗j (β̂Lcatr) ≥ X̃∗l (β̂Lcatr)}

×
[
Zi −

∑n
j=1 I{X̃∗j (β̂Lcatr) ≥ X̃∗l (β̂Lcatr)}wj(α̂)Zj∑n
j=1 I{X̃∗j (β̂Lcatr) ≥ X̃∗l (β̂Lcatr)}wj(α̂)

])
v̂

(3)
2i = 2

n− 1

n∑
j=1

wi(α̂)wj(α̂)(Zi − Zj)φij(β̂Pcatr).

Let v̂2i = {v̂(1)
2i , v̂

(2)
2i , v̂

(3)
2i }T . and v̂i = (v̂T1i, v̂T2i)T . The estimator of Ω0 is

Ω̂ = 1
n

n∑
i=1

v̂iv̂
T
i . (6.6)

It is important to consider the variability arising from the propensity score modeling.
In nonrandomized studies, the true propensity score adjusts for imbalance between
confounders. However, the estimated propensity score is indeed a random variable,
so the variability from propensity score modeling always exists. Since the empirical
influence functions contain weights based on the estimated propensity score, the
weights impact the variance of (η̂catr, θ̂Lcatr, θ̂Pcatr)T . Ignoring these weights results
in inflation of variance of the estimators of interest (η̂catr, θ̂Lcatr, θ̂Pcatr)T because
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if the propensity score is treated as known, it leads to a decrease in precision for
(η̂catr, θ̂Lcatr, θ̂Pcatr)T .

Now let us consider estimation of covariance matrix of γ̂. In this case, the
main issue is estimation of Λ0. As discussed in Lin et al. (1996) and Peng
and Fine (2006), direct estimation of Λ0 involves estimation of unknown hazard
function of error terms, which is numerically unstable. Although the estimating
functions are continuous with respect to α, the derivatives of estimating func-
tions with respect to α have a very complicated form. The resampling approach
from Parzen et al. (1994) is an appealing approach to estimate the covariance
matrix. Their approach is to solve a stochastic equation in a large number of
times and to use the solutions to estimate the covariance matrix. This approach
does not require estimation of asymptotic slope matrix Λ0, so it is a suitable
approach for nonsmooth estimating equations. We extended Parzen et al. (1994)’s
approach to estimate the covariance of γ̂. As discussed before, it is important to
include the effect of α̂ in the variability of (η̂catr, θ̂Lcatr, θ̂Pcatr)T in this approach.
Let Un(γ) = [STn (ηtr,α), {UL

n (βtr,α)}T , {UP
n (βtr,α)}T ]T . Given the data, the

following stochastic equations are solved.
Gn(α) = −n1/2

n∑
i=1

v̂1iAi

Un(γ) = −n1/2
n∑
i=1

v̂2iAi

 , (6.7)

where Ai, i = 1, . . . , n are standard normal random variables. Then the covariance
matrix is estimated from solutions of equations in (6.7). The first step is to
obtain α∗, the solution of the first equation in (6.7), then obtain solutions of
the second equation in (6.7), say τ ∗ = {ηcatr∗, θLcatr∗, θPcatr∗}T by computing new
weight wi(α∗), i = 1, . . . , n, where ηcatr∗, θLcatr∗, θPcatr∗ are individual solutions
from the second equation in (6.7) corresponding to Un(γ), respectively. Let
γ∗ = {(α∗)T , (τ ∗)T}T . By repeating these two steps sufficiently large number of
times, the covariance matrix can be estimated. Note that in this procedure, the
only random part is Ai while the observed data is treated as fixed (Lin et al. 1996).
Moreover, the variability of α̂ is included to the estimators of interest through new
weights.

The question is whether given data, the solution from the stochastic equation
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has the same asymptotic distribution as the one we want, which is n1/2(γ̂ − γ0).
The following theorem demonstrates theoretical justification of proposed procedure
for covariance matrix estimation. The proof of the following theorem is also in
Appendix.

Theorem 6.3. By the regularity conditions from Ying (1993) and Peng and Fine
(2006), conditional on observed data, the asymptotic distribution of n1/2(γ∗ − γ̂) is
same as the unconditional distribution of n1/2(γ̂ − γ0).

6.5 Goodness of fit
Checking the overall fit of a model is one crucial part in model diagnostics. In
this section, we suggest a goodness of fit procedure for the estimator from the
proposed procedure. Let λ10 and λ20 be the true baseline hazard function for the
transformed time of dependent censoring and transformed time of the event of
interest by the artificial censoring. As denoted in Appendix, martingales for the
dependent censoring and the event of interest are defined by (Lin et al. 1996)

M1i(t; ηtr0 ,α0) = wi(α0)[ξiI{D̃∗i (ηtr0 ) ≤ t} −
∫ t
−∞ I{D̃

∗
i (ηtr0 ) ≥ u}λ10(u)du].

M2i(t; βtr0 ,α0) = wi(α0)[δ̃∗i (βtr0 )I{X̃∗i (βtr0 ) ≤ t} −
∫ t
−∞ I{X̃

∗
i (βtr0 ) ≥ u}λ20(u)du],

Let N1i(t; ηtr) = ξiI{D̃∗i (ηtr) ≤ t} and N2i(t; βtr) = δ̃∗i (βtr)I{X̃∗i (βtr) ≤ t}. More-
over, letN1i(t; ηtr,α) = wi(α)ξiI{D̃∗i (ηtr) ≤ t} andN2i(t; βtr,α) = wi(α)δ̃∗i (βtr)I{X̃∗i (βtr) ≤
t}. Then estimated martingales are defined by

M̂1i(t; η̂catr, α̂) = wi(α̂)[N1i(t; η̂catr)−
∫ t

−∞
I{D̃∗i (η̂catr) ≥ u}dΛ̂10(u; η̂catr, α̂)du]

= N1i(t; η̂catr, α̂)−
∫ t

−∞
wi(α̂)I{D̃∗i (η̂catr) ≥ u}dΛ̂10(u; η̂catr, α̂)du

M̂2i(t; β̂catr, α̂) = wi(α̂)[N2i(t; β̂catr)−
∫ t

−∞
I{X̃∗i (β̂catr) ≥ u}dΛ̂20(u; β̂catr, α̂)du]

= N2i(t; β̂catr, α̂)−
∫ t

−∞
wi(α̂)I{X̃∗i (β̂catr) ≥ u}dΛ̂20(u; β̂catr, α̂)du
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where β̂catr is either β̂Lcatr or β̂Pcatr and

Λ̂10(t; ηtr,α) =
∫ t

−∞

∑n
l=1wl(α)dN1l(t; ηtr)∑n

j=1wj(α)I{D̃∗j (ηtr) ≥ u}
=
∫ t

−∞

∑n
l=1 dN1l(t; ηtr,α)∑n

j=1wj(α)I{D̃∗j (ηtr) ≥ u}

Λ̂20(t; ηtr,α) =
∫ t

−∞

∑n
l=1wl(α)dN2l(t; βtr)∑n

j=1wj(α)I{X̃∗j (βtr) ≥ u}
=
∫ t

−∞

∑n
l=1 dN2l(t; βtr,α)∑n

j=1wj(α)I{X̃∗j (βtr) ≥ u}
,

Here, Λ̂10(t; η̂catr, α̂) and Λ̂20(t; β̂Lcatr, α̂) are weighted Nelson-Aalen estimators for
the dependent censoring and the event of interest. Our interest is to evaluate the
overall fit of the model across time. Define

Ψi(α) = Hi

[
Zi −

exp (αTHi)
1 + exp (αTHi)

]
.

We define

Gn(α) = n−1/2∑n
i=1 Ψi(α);

Sn(t; ηtr,α) = n−1/2∑n
i=1 ZiM̂1i(t; ηtr,α) Un(u; βtr,α) = n−1/2∑n

i=1 ZiM̂2i(u; βtr,α).

In this case, Sn(t; η̂catr, α̂) is the observed process for the dependent censoring
and Un(u; β̂Lcatr, α̂) and Un(v; β̂Pcatr, α̂) are the observed processes for the event
of interest (Lin et al. 1996). Note that Gn(α̂)=0 is included in the observed
processes. As discussed in Lin et al. (1996), the null distribution of Qn(s, t, u; γ̂) =
{GT

n (α̂), Sn(s; η̂catr, α̂), Un(t; β̂Lcatr, α̂), Un(u; β̂Pcatr, α̂)}T can be approximated by

Ĝn = n−1/2∑n
i=1 Ψi(α̂)Ai + n−1/2∑n

i=1 Ψi(α∗)

Ŝn(s) = n−1/2
n∑
i=1

∫ s

−∞

[
Zi −

∑n
j=1 I{D̃∗j (η̂catr) ≥ w}Zjwj(α̂)∑n
j=1 I{D̃∗j (η̂catr) ≥ w}wj(α̂)

]
dM̂1i(w; η̂catr, α̂)Ai

+Sn(s; ηcatr∗,α∗)− Sn(s; η̂catr, α̂)

ÛL
n (t) = n−1/2

n∑
i=1

∫ t

−∞

[
Zi −

∑n
j=1 I{X̃∗j (β̂Latr) ≥ w}Zjwj(α̂)∑n
j=1 I{X̃∗j (β̂Lcatr) ≥ w}wj(α̂)

]
dM̂2i(w; β̂Lcatr, α̂)Ai

+Un(t; βLcatr∗,α∗)− Un(t; β̂Lcatr, α̂)

ÛP
n (u) = n−1/2

n∑
i=1

∫ u

−∞

[
Zi −

∑n
j=1 I{X̃∗j (β̂Patr) ≥ w}Zjwj(α̂)∑n
j=1 I{X̃∗j (β̂Pcatr) ≥ w}wj(α̂)

]
dM̂2i(w; β̂Pcatr, α̂)Ai

+Un(u; βPcatr∗,α∗)− Un(u; β̂Pcatr, α̂).
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These processes {ĜT
n , Ŝn(t), ÛL

n (u), ÛP
n (v)}T are called bootstrapped processes

(Peng and Fine, 2006). Since our interest is to examine model behavior using the
testing procedure, Ŝn(t), ÛL

n (u) and ÛP
n (v) are crucial elements. However, as the ob-

served processes, Ĝn should be included in the bootstrapped processes because esti-
mators of the treatment effect depends on propensity score (In fact, Ĝn = 0). As Lin
et al. (1996) and Peng and Fine (2006), we can simulate A1, . . . An and compute the
test statistic sups |Sn(s; η̂atr, α̂)|, supt |Un(t; β̂Lcatr, α̂)| and supu |Un(u; β̂Pcatr, α̂)|.
Then by using realizations from resampling, say (αT∗, ηcatr∗, θLcatr∗, θPcatr∗)T , we
can compute p-value as Hsieh et al. (2011). For a graphical description, it is
suggested to plot 20 or 30 bootstrapped processes with the observed processes.

6.6 Real Data Analysis
We analyzed two datasets alluded to in the Introduction: the RTOG (Radiation
Therapy Oncology Group) 9413 dataset and the HIV dataset (Albrecht et al.
2001; Peng and Fine, 2006). In the RTOG study, the key interest is to compare
Whole Pelvic Radiotherapy (WPRT) and Prostate Only Radiotherapy (PORT) in
the intermediate risk patients. In addition to treatment assignment (RT), there
are several variables which potentially affected survival and progression : age,
Karnofsky performance status (KPS), pretreatment prostate specific antigen (ipsa),
pretreatment Gleason Score (igs), pretreatment tumor size (itsize) and T stage
status (Stage). For data analysis, categorical variables are coded numerically.
Treatment was coded 1 for PORT and 0 otherwise. Stage was coded as two dummy
variables. After cleaning the dataset, 677 observations are used in the analysis. 200
times of resampling and bootstrap runs are tried.

We first consider two conventional methods: fitting the model employing all
covariates and fitting the model using treatment variable only using original Lin
et al. (1996) and Peng and Fine (2006) approach. In the model employing all
covariates, for time to death, a treatment estimate is 0.076 with standard error
0.019. For time to first occurrence of disease progression (time to first occurrence
of local failure, distant failure or biochemical failure), the Lin et al. (1996) and
Peng and Fine (2006) methods give estimates of -0.059 and -0.062 with standard
errors 0.004 and 0.011, respectively. In 200 resampling runs, 69 resampling runs
give nonconvergence, which implies that the original Lin et al. (1996) and Peng
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and Fine (2006) approaches are not stable.
We also only consider the treatment variable only without propensity score in

the estimation procedure. Without the propensity score adjustment, the treatment
effect for death is 0.076 with standard error 0.065. For progression, Lin et al. (1996)
and Peng and Fine (2006) method give estimates of -0.05 (0.119) and -0.091 (0.101),
respectively where numbers in parenthesis are standard errors for the corresponding
estimates.

Table 6.1 shows the proposed method. For our proposed method, all 200
resampling runs are employed. We computed the standard error of estimators in
three methods : the resampling method which ignores variability of the propensity
score (Naive), the bootstrap method (Bootstrap) and the resampling method
incorporating variability of the propensity score (Resamp). The proposed method is
more stable than the original Lin et al. (1996) and Peng and Fine (2006) approach.
For the coefficients in the logistic regression model, we compare standard errors by
data bootstrap method and the proposed resampling method (including variability
of the propensity score) with standard errors by using R command glm. The
standard errors by R command glm are shown in SE (glm) of Table 6.1. Results in
Table 6.1 indicate that the standard errors by our proposed method are similar to
ones by R command glm.

To examine how many observations are artificially censored, We computed
artificial censoring rate. Let CRD be the censoring rate subject to independent
censoring, which is defined as 1−

∑n
i=1 ξi/n and CRX be the censoring rate subject

to the dependent censoring, which is defined as 1 −
∑n

i=1 δi/n. Let ACRFL be
the artificial censoring rate from Lin et al. (1996) approach and ACRFP be the
one from Peng and Fine (2006) approach considering all covariates. Let β̂FL and
β̂FP are estimators by Lin et al. (1996) and Peng and Fine (2006) approach from
including all covariates in the model. Using arguments in Hsieh et al. (2011),
mathematical definitions of these quantities are

ACRFL = 1−
∑n

i=1 δ̃
full∗
i (β̂LF )∑n
i=1 δi

ACRFP = 1−
∑n

i=1
∑

j 6=i δ̃
full∗
i(j) (β̂PF )

(n− 1)
∑n

i=1 δi
,

91



Table 6.1: Point estimates and standard error (SE) in RTOG data analysis
using proposed method

Point estimates SE (Naive) SE (Bootstrap) SE (Resamp)
η̂catr 0.064 0.062 0.055 0.059
θ̂Lcatr -0.077 0.119 0.11 0.115
θ̂Pcatr -0.112 0.101 0.096 0.097

Propensity score model
Point estimates SE (glm) SE (Bootstrap) SE (Resamp)

Intercept 0.812 1.677 1.754 1.644
age -0.003 0.012 0.012 0.012
KPS1 0.0008 0.012 0.014 0.013
ipsa2 -0.008 0.006 0.006 0.006
igs3 -0.071 0.094 0.099 0.093

itsize4 -0.002 0.008 0.008 0.008
Stagec1

5 -0.079 0.289 0.302 0.304
Stagec2

6 -0.112 0.258 0.275 0.258
Estimators - η̂catr : the proposed estimator of the dependent censoring ;
θ̂Lcatr : the proposed estimator by Lin et al. (1996); θ̂Pcatr : the proposed
estimator by Peng and Fine (2006)

1 Karnofsky performance status
2 pretreatment prostate specific antigen
3 pretreatment Gleason Score
4 pretreatment tumor size
5 If T stage of a patient is (T1c,T2a), then Stagec1=1 otherwise 0
6 If T stage of a patient is (T2c-T4), Stagec2=1 otherwise 0

where δ̃full∗i and δ̃full∗i(j) are artificial censoring indicators using all covariates from
Lin et al. (1996) and Peng and Fine (2006) approach, respectively. Let ACRAL be
the artificial censoring rate from proposed method from Lin et al. (1996) approach
and ACRAP be the one from the proposed method of Peng and Fine (2006). Then

ACRAL = 1−
∑n

i=1 δ̃
∗
i (β̂Lcatr)∑n
i=1 δi

ACRAP = 1−
∑n

i=1
∑

j 6=i δ̃
∗
i(j)(β̂Pcatr)

(n− 1)
∑n

i=1 δi
.

Based on quantities mentioned in previous paragraphs, artificial censoring rates
of full model by Lin et al. (1996) and Peng and Fine (2006) are 0.806 and 0.196,
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respectively. Artificial censoring rates from the proposed approaches in the Section
6.3 are 0.034 and 0.048, which uses more uncensored observations than the full
model approach.

Next, we apply the goodness of fit procedure described in Section 6.4. Figure 6.1,
Figure 6.2 and Figure 6.3 show the observed process with 20 simulated bootstrap
processes. P-values for model fit of (α̂, η̂catr), model fit of (α̂, η̂catr, θ̂Lcatr) and
model fit of (α̂, η̂catr, θ̂Pcatr) is 0.7, 0.61 and 0.97, respectively. Both the graphical
and numerical results show that proposed model is adequate for the data.

Although the HIV dataset is from a randomized study, including covariates

Figure 6.1: Observed and bootstrapped processes of time to progression using
(α̂, η̂catr, θ̂Lcatr) for RT
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increases precision of treatment effect. Thus including covariates may result in
better efficiency than model with the treatment only. In the HIV study, there are
two continuous covariates, log(RNA) and CD4 count. Variation of CD4 count is
very large. Thus if one analyzes the dataset including the CD4 count, excessive
artificial censoring occurs. For estimating treatment effect including this covariate,
our proposed method is useful.

The treatment group in the dataset has three levels: NFV only, EFV only, and
NFV+EFV. Baseline treatment is NFV. In this case, we merged EFV only and
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Figure 6.2: Observed and bootstrapped processes of time to progression using
(α̂, η̂catr, θ̂Pcatr) (right) for RT
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Figure 6.3: Observed and bootstrapped processes of time to death for RT
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NFV+EFV into one group to apply the proposed methodology. One observed value
is removed because it has CD4 count 0.

Table 6.2 shows the analysis by using proposed approach. Ignoring variability

Table 6.2: Point estimates and standard error (SE) in RTOG data analysis
using proposed method

Point estimate SE (Naive) SE (Bootstrap) SE (Resamp)
η̂catr 0.745 0.15 0.149 0.148
θ̂Lcatr 0.936 0.241 0.221 0.228
θ̂Pcatr 0.766 0.239 0.217 0.225

Propensity score
Point estimate SE(glm) SE(Bootstrap) SE (Resamp)

Intercept 1.145 0.97 1.066 0.975
log(RNA) -0.133 0.208 0.227 0.207
CD4 count 0.00008 0.0008 0.0009 0.0008
Estimators : η̂catr : the proposed estimator of the dependent censoring ;
θ̂Lcatr : the proposed estimator by Lin et al. (1996); θ̂Pcatr : the proposed
estimator by Peng and Fine (2006)

of the propensity score results greater standard error than that in data bootstrap
method. Moreover, incorporating variability of the propensity score provides lower
standard error than that in ignoring it. As with the RTOG data analysis, the
standard errors for the logistic regression coefficients are similar to ones by the
proposed method.

Next, we compared the standard errors when employing treatment variable only.
When we analyze data using treatment variable only, the treatment effect of time
to withdrawal is 0.749 with the standard error 0.151. The treatment effect of time
to the first virologic failure by the original Lin et al. (1996) is 1.021 with standard
error 0.24. The treatment effect by the original Peng and Fine (2006) method
provides 0.818 with standard error 0.237. We can see that the standard errors by
ignoring variability of the propensity score are almost same as ones when employing
the treatment variable only. Moreover, when comparing standard errors from the
proposed method in Table 6.2 and fitting model using the treatment variable only,
it can be seen that the use of the propensity score model increases the precision of
treatment effect.

By considering all covariates, the estimator of η0 corresponding to Z is 0.782
with standard error 0.016. In this case, estimators of θ0 corresponding to Z by
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Lin et al. (1996) and Peng and Fine (2006) are 1.101 and 1.174. However, the
standard errors of these estimators are 0 due to excessive artificial censoring. The
artificial censoring rates by using all covariates are 1 for both the original Lin et
al. (1996) and Peng and Fine (2006) method. On the other hand, the artificial
censoring rates by using the proposed method is 0.069 for the approach based on
Lin et al. (1996) and 0.013 for Peng and Fine (2006) based approach.

6.7 Simulation Studies
Next, we performed some simulations to explore the finite-sample properties
of the proposed methodology. We generated a confounder V ∼ N(0, 4) and
simulated treatment variable Z as Bernoulli random variable with probability
exp (αT0H)[1 + exp (αT0H)]−1, where H = (1,V T )T and α0 = (α1, α2) = (0, 0.5)T .
Then error variable ε is bivariate normal with mean (0, 1.2)T and covariance matrix(

1 ρ

ρ 1

)
, where ρ = 0, 0.25, 0.5. Independent censoring times are simulated as

C ∼ log(U), where U has uniform distribution on (0, 200). True values of param-
eters are θ0 = (1, 0.5)T and η0 = (0.5, 1)T . 500 datasets are simulated and with
each simulated dataset, 500 bootstrap runs and 500 resampling runs mentioned in
the previous section are tried.

We calculated bias, empirical standard deviation (EMPSD), mean of standard
error (SEE) and 95% coverage probability (CP) of estimators from considering all
covariates and proposed estimator. In this case, the coverage probability is based
on the empirical distribution based on resampling runs or bootstrap runs. As the
real data analysis case, in the proposed method, we calculated the standard error of
the estimators in three ways : the resampling method which ignores variability of
the propensity score (Naive), the bootstrap method (Bootstrap) and the resampling
method incorporating variability of the propensity score (Resamp).

Tables 6.3 and 6.4 show the numerical results considering entire covariates and
the proposed methodology. Henceforth the procedure considering entire covariates
is denoted as “the full covariates procedure". The estimators from utilizing all
covariates for the dependent censoring and the event of interest by Lin et al. (1996)
and Peng and Fine (2006) are denoted as η̂F , θ̂LF and θ̂PF , respectively. Since the
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Table 6.3: Bias, empirical standard deviation (EMPSD), mean of standard error
(SEE) and 95% coverage (CP) for estimators including all covariates when N = 250
and N = 500

N = 250
Bias EMPSD SEE CP

V Z V Z V Z V Z
ρ = 0 η̂F 0.0001 0.001 0.042 0.152 0.039 0.154 0.938 0.946

θ̂LF 0.019 0.007 0.078 0.187 0.089 0.132 0.899 0.833
θ̂PF 0.0004 -0.01 0.04 0.149 0.042 0.154 0.944 0.957

ρ = 0.25 η̂F 0.002 0.004 0.041 0.159 0.04 0.155 0.95 0.961
θ̂LF 0.044 -0.01 0.113 0.199 0.094 0.122 0.817 0.753
θ̂PF -0.001 0.001 0.04 0.153 0.041 0.151 0.943 0.938

ρ = 0.5 η̂F 0.002 -0.001 0.043 0.167 0.04 0.156 0.93 0.962
θ̂LF 0.055 -0.021 0.105 0.192 0.097 0.109 0.727 0.702
θ̂PF -0.003 0.004 0.04 0.149 0.041 0.15 0.944 0.952

N = 500
Bias EMPSD SEE CP

V Z V Z V Z V Z
ρ = 0 η̂F 0.002 -0.008 0.028 0.131 0.028 0.109 0.941 0.952

θ̂LF 0.013 0.012 0.057 0.135 0.079 0.125 0.924 0.891
θ̂PF 0.0003 0.002 0.028 0.104 0.029 0.109 0.963 0.961

ρ = 0.25 η̂F 0.003 -0.006 0.029 0.126 0.028 0.11 0.943 0.967
θ̂LF 0.037 -0.008 0.093 0.145 0.087 0.118 0.872 0.875
θ̂PF 0.00009 0.002 0.027 0.101 0.029 0.107 0.955 0.965

ρ = 0.5 η̂F 0.002 -0.011 0.028 0.123 0.028 0.11 0.928 0.958
θ̂LF 0.063 -0.035 0.121 0.153 0.091 0.108 0.744 0.834
θ̂PF -0.0001 0.0008 0.028 0.105 0.028 0.105 0.952 0.952

Estimators - η̂F : the estimator of dependent censoring in the full model ; θ̂LF
: the estimator by Lin et al. (1996) in the full model; θ̂PF : the estimator by
Peng and Fine (2006) in the full model

simulation results are based on the joint distributions of estimators for dependent
censoring, and the event of interest by Lin et al. (1996) and Peng and Fine (2006)
approach, simulation runs are removed if the standard errors of any one of these
estimators in the simulation runs are 0. When N = 250, for ρ = 0, 0.25 and 0.5, 34,
62 and 127 results from simulation runs are removed because the standard errors
of the estimators by Lin et al. (1996) for either confounder or treatment are 0.
Similarly, when N = 500, 40, 77 and 168 results are omitted. This noncovergence
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problem is serious especially ρ = 0.5 and N = 500, 33.6% of entire simulation runs
are abandoned, which is relatively large. However, for the proposed method, all
500 runs for the estimation of the treatment effect converge.

If simulation runs corresponding to only η̂F and θ̂PF are considered, there are
no noncovergence runs. it can be seen that the method of Lin et al. (1996) is
problematic in this case. This is due to the excessive artificial censoring, as we
illustrate in computing artificial censoring part.

The numerical results show that the proposed method works well. The mean of
the standard errors when considering estimated propensity score as true is high so
that coverage probability is conservative. However, the bootstrap and resampling
approaches provide desired coverage. The proposed approach has better coverage
relative to the full covariates procedure. Moreover, we compare the estimated
standard error using the bootstrap and resampling approaches with the standard
errors from R command glm. When N = 250, the mean of standard errors for
α̂1 and α̂2 from glm are 0.14 and 0.084, respectively. For N = 500, the mean of
standard errors for α̂1 and α̂2 from glm are 0.099 and 0.059, respectively. Results
of α̂1 and α̂2 show that the bootstrap and resampling approaches for α̂1 and α̂2

provide the correct estimate of the standard error.
Table 6.5 shows the artificial censoring proportion. To examine the effect of the

artificial censoring, entire simulation runs are included in this calculation. When
considering all covariates, the artificial censoring rate by the original Lin et al.
(1996) approach is high. However, the artificial censoring rate of the proposed
method based on Lin et al. (1996) is small, which implies that loss of observations
for the proposed methodology is much smaller than that in the full covariates
procedure.

In practice, it is difficult to check for the adequacy of the propensity score
model. Thus another simulation study is performed to explore the robustness
of the proposed procedure. In this simulation study, it is not assumed that the
propensity model relating confounder and treatment variable is true. We generate
J = (J1, J2)T from a bivariate normal distribution with mean (0, 0)T and covariance

matrix
(

4 a

a 1

)
, where a = 0, 1. In other words, J1 has normal distribution with

mean 0 and variance 4 marginally and J2 has normal distribution with mean 0 and
variance 1 marginally. When a = 1, J1 and J2 have correlation 0.5. Then we set
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Table 6.4: Bias, empirical standard deviation (EMPSD), mean of standard error (SEE) and 95%
coverage (CP) for the proposed estimator when N = 250 and N = 500

N = 250

Bias EMPSD SEE CP
Naive Bootstrap Resamp Naive Bootstrap Resamp

ρ = 0 η̂catr 0.006 0.196 0.249 0.191 0.192 0.98 0.924 0.934
θ̂Lcatr -0.011 0.242 0.406 0.241 0.25 1 0.946 0.94
θ̂Pcatr -0.015 0.192 0.382 0.197 0.219 1 0.954 0.94
α̂1 0.01 0.144 0.142 0.142 0.936 0.934
α̂2 0.004 0.079 0.086 0.087 0.954 0.954

ρ = 0.25 η̂catr 0.014 0.187 0.25 0.191 0.192 0.98 0.944 0.946
θ̂Lcatr 0.009 0.241 0.405 0.238 0.247 1 0.936 0.938
θ̂Pcatr -0.0004 0.19 0.381 0.194 0.216 0.998 0.956 0.956
α̂1 0.01 0.144 0.142 0.142 0.94 0.932
α̂2 0.004 0.079 0.086 0.087 0.954 0.958

ρ = 0.5 η̂catr 0.015 0.187 0.25 0.191 0.193 0.98 0.944 0.948
θ̂Lcatr 0.014 0.237 0.402 0.235 0.245 1 0.94 0.944
θ̂Pcatr 0.003 0.182 0.377 0.188 0.211 0.998 0.95 0.952
α̂1 0.01 0.144 0.142 0.142 0.938 0.936
α̂2 0.004 0.079 0.086 0.087 0.956 0.948

N = 500

Bias EMPSD SSE CP
Naive Bootstrap Resamp Naive Bootstrap Resamp

ρ = 0 η̂catr 0.013 0.137 0.176 0.134 0.134 0.986 0.95 0.952
θ̂Lcatr 0.008 0.17 0.284 0.166 0.168 0.998 0.934 0.942
θ̂Pcatr -0.002 0.126 0.27 0.134 0.14 1 0.966 0.956
α̂1 -0.001 0.096 0.099 0.099 0.958 0.968
α̂2 0.001 0.058 0.06 0.06 0.938 0.928

ρ = 0.25 η̂catr 0.02 0.135 0.175 0.133 0.133 0.988 0.934 0.934
θ̂Lcatr 0.017 0.166 0.282 0.163 0.164 0.996 0.94 0.928
θ̂Pcatr 0.001 0.131 0.268 0.131 0.136 1 0.956 0.948
α̂1 -0.001 0.096 0.099 0.1 0.964 0.962
α̂2 0.001 0.058 0.06 0.06 0.938 0.938

ρ = 0.5 η̂catr 0.018 0.134 0.175 0.133 0.133 0.988 0.944 0.946
θ̂Lcatr 0.016 0.165 0.281 0.161 0.163 0.994 0.936 0.95
θ̂Pcatr 0.002 0.127 0.266 0.127 0.133 1 0.942 0.94
α̂1 -0.001 0.096 0.1 0.099 0.96 0.954
α̂2 0.001 0.058 0.06 0.06 0.932 0.928

Estimators : η̂catr : the proposed estimator of the dependent censoring ; θ̂Lcatr : the proposed
estimator using Lin et al. (1996) approach; θ̂Pcatr : the proposed estimator using Peng and Fine
(2006) approach; α̂1 : the estimator of α1; α̂2 : the estimator of α299



Table 6.5: Artificial censoring proportions assuming true propensity
score model

N = 250
CRD

1 CRX
2 ACRFL

3 ACRFP
4 ACRAL

5 ACRAP
6

ρ = 0 0.09 0.214 0.779 0.148 0.066 0.065
ρ = 0.25 0.09 0.195 0.843 0.144 0.064 0.064
ρ = 0.5 0.09 0.167 0.906 0.133 0.065 0.066

N = 500
CRD

1 CRX
2 ACRFL

3 ACRFP
4 ACRAL

5 ACRAP
6

ρ = 0 0.088 0.215 0.823 0.148 0.064 0.065
ρ = 0.25 0.089 0.193 0.883 0.142 0.066 0.068
ρ = 0.5 0.088 0.166 0.941 0.133 0.066 0.068
1 the censoring rate subject to the independent censoring
2 the censoring rate subject to the dependent censoring
3 the artificial censoring rate from Lin et al. (1996) approach
considering all covariates

4 the artificial censoring rate from Peng and Fine (2006) approach
considering all covariates

5 the artificial censoring rate from proposed method of Lin et al.
(1996) approach

6 the artificial censoring rate from the proposed method of Peng
and Fine (2006) approach

V = J1 and Z = I(J2 > 0). Other parameter settings are same as before except
ρ = 0, 0.25.
Three scenarios are considered :

(1) Dependent censoring with confounder (a = 1 and ρ = 0.25)

(2) Independent censoring with confounder (a = 1 and ρ = 0)

(3) Dependent censoring with randomized study (a = 0 and ρ = 0.25)

Table 6.6 and Table 6.7 show results from using the entire covariates in the model
and from the proposed model. 54 runs, 43 runs, and 96 runs are removed for case
1, case 2 and case 3, respectively when N = 250. For N = 500, 83 runs, 32 runs
and 107 runs are removed for case 1, case 2 and case 3, respectively.

Numerical results indicate that the proposed method works well. In this case,
as for the true propensity model case, 3 ways of standard error calculation are used.
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Table 6.6: Bias, empirical standard deviation (EMPSD), mean of standard error
(SEE) and 95% coverage (CP) for using all covariates when N = 250 and N = 500

N = 250
Bias EMPSD SEE CP

V Z V Z V Z V Z
Case 1 η̂F 0.001 -0.001 0.041 0.166 0.039 0.153 0.944 0.951

θ̂LF 0.04 0.003 0.108 0.203 0.095 0.123 0.827 0.78
θ̂PF -0.005 0.011 0.041 0.151 0.041 0.151 0.944 0.953

Case 2 η̂F 0.0002 -0.002 0.043 0.187 0.039 0.153 0.941 0.95
θ̂LF 0.018 0.025 0.083 0.189 0.093 0.137 0.897 0.84
θ̂PF -0.003 0.011 0.041 0.155 0.042 0.154 0.939 0.937

Case 3 η̂F 0.001 -0.037 0.036 0.269 0.036 0.143 0.946 0.941
θ̂LF 0.041 -0.005 0.095 0.204 0.1 0.125 0.837 0.787
θ̂PF -0.005 -0.002 0.038 0.144 0.038 0.14 0.953 0.931

N = 500
Bias EMPSD SEE CP

V Z V Z V Z V Z
Case 1 η̂F 0.002 -0.009 0.029 0.124 0.028 0.109 0.933 0.945

θ̂LF 0.031 0.002 0.087 0.148 0.087 0.118 0.851 0.894
θ̂PF -0.001 -0.003 0.028 0.098 0.029 0.106 0.952 0.966

Case 2 η̂F 0.001 -0.012 0.031 0.162 0.028 0.11 0.947 0.949
θ̂LF 0.015 0.013 0.065 0.145 0.079 0.123 0.908 0.885
θ̂PF -0.0004 0.003 0.029 0.102 0.029 0.108 0.955 0.968

Case 3 η̂F 0.001 -0.026 0.026 0.194 0.026 0.101 0.926 0.959
θ̂LF 0.037 0.001 0.088 0.145 0.089 0.116 0.804 0.883
θ̂PF -0.001 -0.007 0.026 0.096 0.027 0.098 0.947 0.952

Estimators - η̂F : the estimator of the dependent censoring in the full model;
θ̂LF : the estimator by Lin et al. (1996) in the full model; θ̂PF : the estimator
by Peng and Fine (2006) in the full model

The coverage probability is based on empirical distribution based on resampling
runs or bootstrap runs. η̂F , θ̂LF and θ̂PF are estimators from full model. As in
the simulation scenario in the main paper, treating estimated propensity score
as true results in large standard error of estimators (η̂catr, θ̂Lcatr, θ̂Pcatr)T . The
data bootstrap and new resampling approach reflected variation of estimated
propensity score into (η̂catr, θ̂Lcatr, θ̂Pcatr)T . Our methodology even works well for
the randomized study. One interesting is that more simulation runs are lost in
randomized study than those in observational study. Even though our primary
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Table 6.7: Bias, empirical standard deviation (EMPSD), mean of standard error (SEE) and 95%
coverage (CP) for proposed estimator when N = 250 and N = 500

N = 250

Bias EMPSD SSE CP
naive Bootstrap Resamp Naive Bootstrap Resamp

Case 1 η̂catr 0.027 0.183 0.242 0.186 0.186 0.986 0.958 0.958
θ̂Lcatr 0.033 0.232 0.388 0.227 0.234 0.992 0.94 0.948
θ̂Pcatr 0.025 0.19 0.373 0.191 0.21 1 0.968 0.974

Case 2 η̂catr 0.025 0.191 0.242 0.186 0.187 0.98 0.936 0.94
θ̂Lcatr 0.027 0.243 0.391 0.229 0.238 0.998 0.93 0.94
θ̂Pcatr 0.017 0.204 0.374 0.194 0.213 1 0.944 0.95

Case 3 η̂catr 0.009 0.152 0.201 0.154 0.154 0.984 0.952 0.958
θ̂Lcatr 0.004 0.189 0.313 0.18 0.181 0.998 0.94 0.934
θ̂Pcatr 0.012 0.161 0.302 0.157 0.157 1 0.946 0.94

N = 500

Bias EMPSD SSE CP
Naive Bootstrap Resamp Naive Bootstrap Resamp

Case 1 η̂catr 0.007 0.133 0.173 0.132 0.131 0.978 0.934 0.93
θ̂Lcatr 0.02 0.159 0.277 0.16 0.161 1 0.948 0.948
θ̂Pcatr 0.008 0.118 0.261 0.126 0.131 1 0.952 0.97

Case 2 η̂catr 0.012 0.134 0.173 0.132 0.132 0.988 0.936 0.94
θ̂Lcatr 0.022 0.158 0.277 0.162 0.162 1 0.956 0.962
θ̂Pcatr 0.009 0.122 0.262 0.13 0.134 1 0.966 0.966

Case 3 η̂catr -0.0001 0.1 0.141 0.109 0.109 0.994 0.972 0.97
θ̂Lcatr -0.002 0.121 0.221 0.128 0.127 0.998 0.96 0.958
θ̂Pcatr -0.002 0.108 0.211 0.11 0.11 1 0.958 0.956

Estimators - η̂catr : the proposed estimator of the dependent censoring ; θ̂Lcatr : the proposed
estimator using Lin et al. (1996) approach; θ̂Pcatr : the proposed estimator using Peng and Fine
(2006) approach

goal is to estimate treatment effect in observational study including continuous
covariates which have large variations, it also works well for randomized study
including continuous covariates with large variance.

As for the simulation study assuming true logistic regression model, we compute
the artificial censoring rate using entire 500 simulation runs. As can be seen
the Table 6.8, the artificial censoring proportion from the proposed method is
significantly lower than that of the full model case.
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Table 6.8: Artificial censoring proportions not assuming propensity
score model

N = 250
CRD

1 CRX
2 ACRFL

3 ACRFP
4 ACRAL

5 ACRAP
6

Case 1 0.088 0.194 0.839 0.143 0.062 0.064
Case 2 0.088 0.215 0.783 0.149 0.062 0.064
Case 3 0.078 0.2 0.887 0.158 0.054 0.053

N = 500
CRD

1 CRX
2 ACRFL

3 ACRFP
4 ACRAL

5 ACRAP
6

Case 1 0.088 0.193 0.877 0.143 0.062 0.064
Case 2 0.087 0.215 0.818 0.147 0.062 0.063
Case 3 0.077 0.2 0.917 0.157 0.053 0.053
1 the censoring rate subject to the independent censoring
2 the censoring rate subject to the dependent censoring
3 the artificial censoring rate from Lin et al. (1996) approach
considering all covariates

4 the artificial censoring rate from Peng and Fine (2006) approach
considering all covariates

5 the artificial censoring rate from proposed method of Lin et al.
(1996) approach

6 the artificial censoring rate from the proposed method of Peng
and Fine (2006) approach

The proposed method works well although the propensity score model is mis-
specified. Note that even for the randomized study, the proposed method has the
advantage compared to the full covariates approach in terms of numerical stability.
The artificial censoring rates not assuming the true propensity model are also
shown in Table 6.8. As in the previous case, the artificial censoring in the proposed
approach is smaller than that in the full covariates procedure.

In these simulation studies, the original Peng and Fine (2006) method is better
than the original Lin et al. (1996) method. However, if the variability of covariates
is large, even the original Peng and Fine (2006) method does not provide correct
coverage. We perform a simulation study using the HIV dataset. First, by using es-
timates from real data analysis, the time to event of interest and time to dependent
censoring are generated(

X = 1.10083Z − 0.739872V1 − 0.000008V2 + εX

D = 0.781576Z − 0.537557V1 − 0.000849V2 + εD

)
,
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where Z indicates the bivariate treatment defined in the real data analysis, V1 is
logarithm of RNA value, and V2 is CD4 count. Let L∗ = (1, V T

1 , V
T

2 )T . In this
case, Z is generated by Bernoulli(p), where p = exp (αT0 L∗)

1+exp (αT0 L∗) and α0 are logistic
regression coefficients (1.145059,−0.13313, 0.000083)T from real data study. Based
on residual values, we generate error values from bivariate normal distribution with

mean (7.88, 8.2)T and covariance matrix
(

1.02 0.42
0.42 0.42

)
. Independent censoring

time C has uniform distribution with minimum value 3 and maximum value 10.
In each simulation run, 150 observations (without replacement) are selected in
observations. 500 times of resampling and bootstrap runs are tried.

As in the real data study, including all covariates results in excessive artificial
censoring. Only 22 runs of Lin et al. (1996) estimators give nonzero standard errors
and any simulation run of Peng and Fine (2006) estimators does not provide nonzero
standard errors for all covariates. Table 6.9 shows the result of the simulation
study using proposed method. Standard errors are computed in three ways as
other simulation studies. The proposed methodology works well except in terms
of coverage for α3, the logistic regression coefficient corresponding to V2. As can
be seen in Table 6.10, the artificial censoring rate of the full model for Lin et al.
(1996) and Peng and Fine (2006) approach is 0.988 and 1, respectively. Compared
to the artificial censoring rates in the full model, the artificial censoring rates by the
proposed method based on Lin et al. (1996) and Peng and Fine (2006) are 0.071
and 0.048, respectively. In this study, the original Peng and Fine (2006) method
does not provide the correct coverage for the estimate. The result of the simulation
study shows the effectiveness of our approach when the variability of confounders
is extremely large.

6.8 Discussion
In this chapter, we have proposed methodology for estimating treatment effects
under a semicompeting risks data structure in the context of an observational study.
In semicompeting risks data, only one nonterminal event is the event of interest.
In medical study, it is common that the event of interest occurs several times.
This type of events is called recurrent events. Recurrent events in the presence
of dependent censoring have been extensively studied by Ghosh and Lin (2003),
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Table 6.9: Bias, empirical standard deviation (EMPSD), mean of standard error (SEE) and 95% coverage
(CP) for simulation study by using HIV dataset

Bias EMPSD SEE SEE SEE CP CP CP
(Naive) (Bootstrap) (Resamp) (Naive) (Bootstrap) (Resamp)

η̂atr -0.001 0.166 0.182 0.169 0.174 0.964 0.954 0.946
θ̂Latr -0.006 0.23 0.261 0.236 0.239 0.96 0.948 0.946
θ̂Patr -0.007 0.216 0.251 0.224 0.224 0.976 0.944 0.934

Intercept 0.065 1.232 1.235 1.208 0.942 0.934
V1 -0.015 0.254 0.259 0.255 0.938 0.936
V2 0.00003 0.001 0.001 0.001 0.918 0.892

Estimators - η̂catr : the proposed estimator of the dependent censoring ; θ̂Lcatr : the proposed estimator
using Lin et al. (1996) approach; θ̂Pcatr : the proposed estimator using Peng and Fine (2006) approach

Table 6.10: Artificial censoring proportions for simulation
study using HIV dataset

CRD
1 CRX

2 ACRFL
3 ACRFP

4 ACRAL
5 ACRAP

6

0.466 0.497 0.988 1 0.071 0.048
1 the censoring rate subject to the independent censoring
2 the censoring rate subject to the dependent censoring
3 the artificial censoring rate from Lin et al. (1996)
approach considering all covariates

4 the artificial censoring rate from Peng and Fine (2006)
approach considering all covariates

5 the artificial censoring rate from proposed method of
Lin et al. (1996) approach

6 the artificial censoring rate from the proposed method
of Peng and Fine (2006) approach

Ghosh (2010), and Hsieh et al. (2011). Our methodology could be applied to this
situation. Currently, this extension is under investigation.

In this chapter, the propensity score is modeled by using logistic regression model.
However, there are other ways to construct propensity score by nonparametric
method, such as boosting (Breiman et al. 1984). Recently, Zhu (2013) and Zhu
et al. (2014) proposed combining propensity scores from logistic regression and
nonparametric learning method for causal inference. It can be also interesting topic
to compare performance between parametric modeling and nonparametric method,
and methodology of Zhu (2013) and Zhu et al. (2014).
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In this paper, ideas from causal inference framework were used to motivate
the estimation procedure. One may wish to give a causal interpretation as usual
sense from casual inference literature. However, it is important to note that it is
impossible to make any causal interpretation. This is nicely explained in Ghosh
(2012).
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Chapter 7 |
Future Work

7.1 Introduction
In this thesis, we addressed restrictions of the marginal regression by Lin et al.
(1996) and Peng and Fine (2006) and provide solutions for the restrictions. Lin et
al. (1996) and Peng and Fine (2006) proposed the estimation procedure for the
time to event of interest in the presence of the dependent censoring. However, they
did not study the efficiency with standard errors in detail and the key technique
which Lin et al. (1996) and Peng and Fine (2006) employed, the artificial censoring
technique, may cause an unstable estimation of covariate effects for the time to
the event of the interest when the covariates have a large variability. Moreover,
the goodness of fit method which Peng and Fine (2006) used does not match their
U-statistic of order 2 estimating function. In Chapter 4, we proposed the weighted
estimator based on resampling. In Chapter 5, the goodness of fit for U-statistics of
order 2 is proposed. This new goodness of fit method provides higher power than
the case of incorrect use of U-statistic of order 1 method for U-statistics of order
2 estimating functions. In Chapter 6, the covariate adjustment by the propensity
score is developed. This adjustment provides for stable estimation of the treatment
effect and significantly reduces the degree of artificial censoring.

With semicompeting risks data, a linear transformation model has high flexibility
in terms of modeling, thus this model in the semicompeting risks data setting also
can generate a rich set of models. In this chapter, we will briefly present ideas of
the linear transformation model and variable selection in the semicompeting risks
data as future work.
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7.2 Semicompeting Risks Data in the Linear Trans-
formation Model
The linear transformation models are a very interesting class of models in survival
analysis. It includes broad a range of models, including the proportional hazard
model and the proportional odds model. Its high flexibility enables statisticians
to construct an appropriate model. Fine et al. (1998) modified this model to
guarantee the consistency of estimators when censoring proportion of subjects is
high. Cai et al. (2000) suggested this model for clustered failure time data and
Cai et al. (2002) proposed a semiparametric mixture effect transformation model.
The aforementioned models assume that the censoring variable is independent of
covariates. Chen et al. (2002) suggested the linear transformation model which
relaxes this assumption.

However, all these models assume that subjects are censored by the independent
censoring mechanism. It is reasonable to consider the linear transformation model
in the context of semicompeting risks data. Let X be time to the event of interest,
D be the time to dependent censoring, C be the time to independent censoring and
Z be a p× 1 vector of covariates. Note that the semicompeting risks data structure
is independent and identical replicates {X̃i, D̃i, δi, ξi,Zi}ni=1 of (X̃, D̃, δ, ξ,Z), where
X̃ = X ∧D∧C, D̃ = D∧C, δ = I(X ≤ D̃) and ξ = I(D ≤ C). It is assumed that
C is independent with (X,D,Z). It is also assumed that the censoring proportion
subject to C is not extreme. Then it is sensible to build the transformation model
for semicompeting risks data as(

h1(Di) = −ZT
i η0 + εDi

h2(Xi) = −ZT
i θ0 + εXi

)
i = 1, . . . , n,

where h1(·) and h2(·) are unknown but nondecreasing functions and η0 and θ0

are p× 1 vectors of regression coefficients. Moreover, εi ≡ (εDi , εXi ), i = 1, ..., n are
independent and identically distributed and unlike the assumption of the AFT
model in the previous chapters, they are completely specified. Recall that the

108



estimating function under independent censoring in the transformation model is

Sn(η) =
n∑
i=1

n∑
j=1

w(ZT
ijη)Zij

{
ξjI(D̃i ≥ D̃j)

Ĝ2(D̃j)
− ζ(ZT

ijη)
}
, (7.1)

where Ĝ is the Kaplan-Meier estimate for variable C, Zij = Zi −Zj and ζ(ZT
ijη) =

P{εDi − εDj ≥ (Zi − Zj)Tη}. As the AFT model case, the simple replacement of D̃
to X̃ does not provide an unbiased estimation of θ0 because X is censored by D̃.

As can be seen on the proof of obtaining the unbiased estimator of ζ(ZT
ijη)

in Cheng et al. (1995), the most important fact that is used in the proof is
independence of D and C. To apply the logic similar to Cheng et al. (1995) in
semicompeting risks data, independence of X and D is required. However, imposing
this assumption can be a very strong assumption. More details should be studied
to derive the unbiased estimating equation for θ0.

7.3 Variable selection
Variable selection has been well studied in past decades. The basic idea is to select
variables which contribute substantially to the response. Stepwise regression and
subset selection are the conventions to use to select variables for applied statistics,
but they are not systematic and contains errors by the selection procedure (Johnson
et al. 2008). To cure this problem, several methods have been developed : the least
absolute shrinkage operator (LASSO)(Tibshirani 1996), ridge regression, smoothly
clipped absolute deviation (SCAD)(Fan and Li, 2001) and so on.

Originally, these methods were developed based on linear regression. Many
researchers have extended these methods to various models, such as the generalized
linear model and estimating functions. Johnson et al. (2008) proposed variable
selection using general estimating functions. They applied the variable selection
method on censored data and missing data. For censored data, their model is a
semiparametric linear regression model by the Buckley-James estimator, which is
the extension of least square estimator to censored regression model (Lai and Ying,
1991).

For semicompeting risks data, the variable selection in the marginal regression
method can be useful because of the artificial censoring. As can be seen in Chapter
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6, the excessive artificial censoring causes unstable estimation of covariate effects.
To reduce the excessive artificial censoring, selecting variables which can truly affect
to the time to the event of interest is important.

The methods by Johnson (2008) and Johnson et al. (2008) are sensible to apply
the bivariate AFT model. However, one may be careful on applying Johnson et al.
(2008) because of the existence of the dependent censoring. Moreover, Theorem
1 in Johnson et al. (2008) shows root-n consistency which is the convergence in
the probability. However, based on Ying (1993)’s argument, the solution of the
penalized estimating equations would converge in almost surely to the nonzero
coefficients. This is left as the future work.
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Appendix |
Appendix for Chapter 4 and Chap-
ter 6

1 Mathematical Proofs (Chapter 6)

(a) Proof of E{Sn(ηtr0 ,α0)} = 0, E{UL
n (βtr0 ,α0)} = 0 and E{UP

n (βtr0 ,α0)} = 0
In this part, we will prove E{Sn(ηtr0 ,α0)} = 0, E{UL

n (βtr0 ,α0)} = 0 and
E{UP

n (βtr0 ,α0)} = 0. Let Hi = (1,Vi), i = 1, . . . , n. Denote

ei(α) = exp (αTHi)
1 + exp (αTHi)

wi(α) = Zi
ei(α) + 1− Zi

1− ei(α)

Sn(ηtr,α) = n−1/2
n∑
i=1

ξiwi(α)
[
Zi −

∑n
j=1 I{D̃∗j (ηtr) ≥ D̃∗i (ηtr)}wj(α)Zj∑n
j=1 I{D̃∗j (ηtr) ≥ D̃∗i (ηtr)}wj(α)

]
where D̃∗i (ηtr) = D ∧ C − ηtrZi. The new estimating function based on Lin
et al. (1996) is

UL
n (βtr,α) = n−1/2

n∑
i=1

δ̃∗i (βtr)wi(α)
[
Zi−

∑n
j=1 I{X̃∗j (βtr) ≥ X̃∗i (βtr)}wj(α)Zj∑n
j=1 I{X̃∗j (βtr) ≥ X̃∗i (βtr)}wj(α)

]
,

where

βtr = (ηtr, θtr)
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d(βtr) = max
i
{0, (θtr − ηtr)Zi}

X̃∗i (βtr) = (Xi − θtrZi) ∧ {(Di ∧ Ci)− ηtrZi − d(βtr)}

δ̃∗i (βtr) = I[(Xi − θtrZi) ≤ {(Di ∧ Ci)− ηtrZi − d(βtr)].

The new estimating function based on Peng and Fine (2006) is

UP
n (βtr,α) = 2n1/2

n(n− 1)
∑

1≤i<j≤n

(Zi − Zj)wi(α)wj(α)φij(βtr),

where

dij(βtr) = max {0, (θtr − ηtr)Zi, (θtr − ηtr)Zj}

X̃∗i(j)(βtr) = (Xi − θtrZi) ∧ {(Di ∧ Ci)− ηtrZi − dij(βtr)}

δ̃∗i(j)(βtr) = I[(Xi − θtrZi) ≤ {(Di ∧ Ci)− ηtrZi − dij(βtr)]

φij(βtr) = δ̃∗i(j)(βtr)I{X̃∗i(j)(βtr) ≤ X̃∗j(i)(βtr)} − δ̃∗j(i)(βtr)I{X̃∗i(j)(βtr) ≥ X̃∗j(i)(βtr)}.

Let α0 be true regression coefficient of logistic regression. We assume the
following:

1. Given covariates, common density of εis is uniformly bounded. Moreover,
let f(·) be common density of Dis. Assume that (Ghosh, 2000, Chapter
6) ∫ ∞

−∞

(
ḟ(t)
f(t)

)2

f(t)dt <∞

where ḟ(t) = df

dt
.

2. The solutions of Gn(α) = 0, Sn(ηtr,α0) = 0, UL
n (θtr, ηtr0 ,α0) and UP

n (θtr, ηtr0 ,α0) =
0 are unique.

3. For i = 1, . . . , n, there exists s > 0 and r > 0 such that 0 < s ≤ wi(α) ≤
r <∞ for all α.

4. Denote filtration as Ft = {N1i(u; ηtr,α0), N2i(u; ηtr,α0), Y1i(u; ηtr,α0), Y2i(u; βtr,α0),
Zi; i = 1, . . . , n; 0 ≤ u < t}, where

N1i(t; ηtr,α) = wi(α)I{D̃∗i (ηtr) ≤ t, ξi = 1} = wi(α)ξiI{D̃∗i (ηtr) ≤ t}
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N2i(t; βtr,α) = wi(α)I{X̃∗i (βtr) ≤ t, δ̃∗i (βtr) = 1} = wi(α)δ̃∗i (βtr)I{X̃∗i (βtr) ≤ t}

Y1i(t; ηtr,α) = wi(α)I{D̃∗i (ηtr) ≥ t}

Y2i(u; βtr,α) = wi(α)I{X̃∗i (βtr) ≥ t}.

For i = 1, . . . , n, define

L
(1)
i (u) = Zi −

∑n
j=1 I{D̃∗j (ηtr0 ) ≥ u}wj(α0)Zj∑n
j=1 I(D̃∗j (ηtr0 ) ≥ u)wj(α0)

L
(2)
i (u) = Zi −

∑n
j=1 I{X̃∗j (βtr0 ) ≥ u}wj(α0)Zj∑n
j=1 I{X̃∗j (βtr0 ) ≥ u}wj(α0)

.

Then L(1)
i (·) and L(2)

i (·) are F− predictable.

5. Existence of limiting quantities : For every u > 0, there exist z̄(1)(·) > 0
and z̄(2)(·) > 0 such that

z̄(1)(u) = lim
n→∞

∑n
j=1 I{D̃∗j (ηtr0 ) ≥ u}wj(α0)Zj∑n
j=1 I{D̃∗j (ηtr0 ) ≥ u}wj(α0)

z̄(2)(u) = lim
n→∞

∑n
j=1 I{X̃∗j (βtr0 ) ≥ u}wj(α0)Zj∑n
j=1 I{X̃∗j (βtr0 ) ≥ u}wj(α0)

.

6. Let λ̃(βtr,α) = E{n−1/2UP
n (βtr,α)}. Assume that λ̃(βtr,α) is differen-

tiable at βtr0 , and both ∂λ̃(βtr,α)
∂ηtr

∣∣∣∣
βtr=βtr0 ,α=α0

and ∂λ̃(βtr,α)
∂θtr

∣∣∣∣
βtr=βtr0 ,α=α0

are nonsingular.

Moreover, we need assumptions dealing with the logistic regression model for
propensity scores. These assumptions are from Ferguson (1996, Chapter 17,
p114), Zhu (2013) and Zhu et al. (2014). Let

H = (1,VT )T , e(α) = exp (αTH)
1 + exp (αTH)

(a) The parameter α belongs to a compact subset of Γ. The likelihood

f(z,α) = e(α)z(1− e(α))1−z,

is measurable in z for every α in Γ. Moreover, f is continuous in α for
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every z.

(b) For all z and α,

log
(
f(z,α|H)
f(z,α0|H)

)
≤ h(z),

where h(z) is a function satisfying Eα0 |h(z)| <∞.

Under the logistic regression model assumption for treatment,

Sn(ηtr,α0) = n−1/2
n∑
i=1

ξiwi(α0)
[
Zi −

∑n
j=1 I{D̃∗j (ηtr) ≥ D̃∗i (ηtr)}wj(α0)Zj∑n
j=1 I(D̃∗j (ηtr) ≥ D̃∗i (ηtr))wj(α0)

]

UL
n (βtr,α0) = n−1/2

n∑
i=1

δ̃∗i (βtr)wi(α0)
[
Zi −

∑n
j=1 I{X̃∗j (βtr) ≥ X̃∗i (βtr)}wj(α0)Zj∑n
j=1 I{X̃∗j (βtr) ≥ X̃∗i (βtr)}wj(α0)

]
.

(A.1)

Note that (A.1) is equivalent to

Sn(ηtr,α0) = n−1/2
n∑
i=1

∫ ∞
−∞

[
Zi −

∑n
j=1 I{D̃∗j (ηtr) ≥ u}wj(α0)Zj∑n
j=1 I{D̃∗j (ηtr) ≥ u}wj(α0)

]
dN1i(u; ηtr,α0)

UL
n (βtr,α0) = n−1/2

n∑
i=1

∫ ∞
−∞

[
Zi −

∑n
j=1 I{X̃∗j (βtr) ≥ u}wj(α0)Zj∑n
j=1 I{X̃∗j (βtr) ≥ u}wj(α0)

]
dN2i(u; βtr,α0).

Then by algebra,

n∑
i=1

∫ ∞
−∞

[
Zi −

∑n
j=1 I{D̃∗j (ηtr0 ) ≥ u}wj(α0)Zj∑n
j=1 I{D̃∗j (ηtr0 ) ≥ u}wj(α0)

]
dN1i(u; ηtr0 ,α0)

=
n∑
i=1

∫ ∞
−∞

[
Zi −

∑n
j=1 I{D̃∗j (ηtr0 ) ≥ u}wj(α0)Zj∑n
j=1 I{D̃∗j (ηtr0 ) ≥ u}wj(α0)

]
dM1i(u; ηtr0 ,α0)

+
n∑
i=1

∫ ∞
−∞

wi(α0)
[
Zi −

∑n
j=1 I{D̃∗j (ηtr0 ) ≥ u}wj(α0)Zj∑n
j=1 I{D̃∗j (ηtr0 ) ≥ u}wj(α0)

]
I{D̃∗i (ηtr0 ) ≥ u}λ10(u)du,

where

M1i(u; ηtr,α0) = wi(α0)[ξiI{D̃∗i (ηtr) ≤ u} −
∫ u

−∞
I{D̃∗i (ηtr) ≥ t}λ10(t)dt].
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and λ10(·) is the baseline hazard function for time to death. Then

n∑
i=1

∫ ∞
−∞

wi(α0)ZiI{D̃∗i (ηtr0 ) ≥ u}λ10(u)du−
∫ ∞
−∞

n∑
i=1

wi(α0)I{D̃∗i (ηtr0 ) ≥ u}λ10(u)

×
∑n

j=1 I{D̃∗j (ηtr0 ) ≥ u}wj(α0)Zj∑n
j=1 I{D̃∗j (ηtr0 ) ≥ u}wj(α0)

du

=
n∑
i=1

∫ ∞
−∞

wi(α0)ZiI{D̃∗i (ηtr0 ) ≥ u}λ10(u)du−
n∑
i=1

∫ ∞
−∞

wi(α0)ZiI{D̃∗i (ηtr0 ) ≥ u}λ10(u)du

= 0,

Hence

Sn(ηtr0 ,α0) = n−1/2
n∑
i=1

∫ ∞
−∞

wi(α0)
[
Zi−

∑n
j=1 I{D̃∗j (ηtr0 ) ≥ u}wj(α0)Zj∑n
j=1 I{D̃∗j (ηtr0 ) ≥ u}wj(α0)

]
dM1i(u; ηtr0 ,α0).

Similarly,

UL
n (βtr0 ,α0) = n−1/2

n∑
i=1

∫ ∞
−∞

[
Zi −

∑n
j=1 I{X̃∗j (βtr0 ) ≥ u}wj(α0)Zj∑n
j=1 I{X̃∗j (βtr0 ) ≥ u}wj(α0)

]
dM2i(u; βtr0 ,α0)

M2i(u; βtr,α0) = wi(α0)[δ̃∗i (βtr)I{X̃∗i (βtr) ≤ u} −
∫ u

−∞
I{X̃∗i (βtr) ≥ t}λ20(t)dt]

where λ20(·) is the baseline hazard function for time to the event of interest.
By taking expectations,

E{Sn(ηtr0 ,α0)}

= n−1/2E

{ n∑
i=1

∫ ∞
−∞

E

{[
Zi −

∑n
j=1 I{D̃∗j (ηtr0 ) ≥ u}wj(α0)Zj∑n
j=1 I{D̃∗j (ηtr0 ) ≥ u}wj(α0)

]
dM1i(u; ηtr0 ,α0)

∣∣∣∣ei(α0)
}}

.

Given ei(α0), L(1)
i = Zi −

∑n
j=1 I{D̃∗j (ηtr0 ) ≥ u}wj(α0)Zj∑n
j=1 I{D̃∗j (ηtr0 ) ≥ u}wi(α0)

is bounded and

Ft-predictable. Hence given ei(α0),

n∑
i=1

∫ ∞
−∞

[
Zi −

∑n
j=1 I{D̃∗j (ηtr0 ) ≥ u}wj(α0)Zj∑n
j=1 I{D̃∗j (ηtr0 ) ≥ u}wi(α0)

]
dM1i(u; ηtr0 ,α0),
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is a martingale and E{Sn(ηtr0 ,α0)} = 0 (Boyd et al. 2012; Theorem 2.5.4
in Fleming and Harrington, 2005, p.77). Similarly, UL

n (βtr0 ,α0) is also a
martingale and E{UL

n (βtr0 ,α0)} = 0.
Let θ0 = (θtr0 , (θ

cfd
0 )T )T and η0 = (ηtr0 , (η

cfd
0 )T )T . Note that θcfd0 is the true

value of θ0 corresponding to V and ηcfd0 is the true value of η0 corresponding
V. Under the true value of βtr0 and α0,

E{UP
n (βtr0 ,α0)} = E[(Z1 − Z2)w1(α0)w2(α0)× {P (εX1 + (θcfd0 )TV1

≤ {εD1 + (ηcfd0 )TV1 − d12(βtr0 )} ∧ {εX2 + (θcfd0 )TV2} ∧ {εD2 + (ηcfd0 )TV2 − d12(βtr0 )}

∧ {C1 − ηtr0 Z1 − d12(βtr0 )} ∧ {C2 − ηtr0 Z2 − d12(βtr0 )}|e1(α0), e2(α0), Z1, Z2)

− P (εX2 + (θcfd0 )TV2 ≤ {εD2 + (ηcfd0 )TV2 − d12(βtr0 )} ∧ {εX1 + (θcfd0 )TV1}

∧ {εD1 + (ηcfd0 )TV1 − d12(βtr0 )} ∧ {C1 − ηtr0 Z1 − d12(βtr0 )}

∧ {C2 − ηtr0 Z2 − d12(βtr0 )}|e1(α0), e2(α0), Z1, Z2)}].

Since C ⊥ (X,D)|W, it is clear that C ⊥ (εX , εD)|W. By using the fact that
{X̃i, D̃i, δi, ξi,Wi}(i = 1, . . . , n) are i.i.d copies and the propensity score is a
balancing score,

P (εX1 + (θcfd0 )TV1 ≤ {εD1 + (ηcfd0 )TV1 − d12(βtr0 )} ∧ {εX2 + (θcfd0 )TV2}

∧ {εD2 + (ηcfd0 )TV2 − d12(βtr0 )} ∧ {C1 − ηtr0 Z1 − d12(βtr0 )}

∧ {C2 − ηtr0 Z2 − d12(βtr0 )}|e1(α0), e2(α0), Z1, Z2)

= P (εX2 + (θcfd0 )TV2 ≤ {εD2 + (ηcfd0 )TV2 − d12(βtr0 )} ∧ {εX1 + (θcfd0 )TV1}

∧ {εD1 + (ηcfd0 )TV1 − d12(βtr0 )} ∧ {C1 − ηtr0 Z1 − d12(βtr0 )}

∧ {C2 − ηtr0 Z2 − d12(βtr0 )}|e1(α0), e2(α0), Z1, Z2).

Thus E{UP
n (βtr0 ,α0)} = 0.

(b) Proof of Theorem 6.1
The next step is to prove consistency of the estimator. Since the propensity
model is true, by Ferguson (1996, Chapter 17, p114), α̂ converges to α0

almost surely. Assume the regularity conditions in Ying (1993) and the

116



Appendix of Peng and Fine (2006). Define

N1(t; ηtr,α) =
n∑
i=1

N1i(t; ηtr,α) N z
1 (t; ηtr,α) =

n∑
i=1

ZiN1i(t; ηtr,α)

Qz
1n(t; ηtr,α) =

n∑
j=1

I{D̃∗j (ηtr) ≥ t}wj(α)Zj Q1n(t; ηtr,α) =
n∑
j=1

I{D̃∗j (ηtr) ≥ t}wj(α)

Qz
1(t; ηtr,α) = E[w1(α)Z1I{D̃∗1(ηtr) ≥ t}] Q1(t; ηtr,α) = E[w1(α)I{D̃∗1(ηtr) ≥ t}]

Ñ1i(t; ηtr,α) = wi(α)I{D̃∗i (ηtr) ≥ t, ξi = 1} Ñ1(t; ηtr,α) =
n∑
i=1

Ñ1i(t; ηtr,α)

Ñ z
1 (t; ηtr,α) =

n∑
i=1

Ñ1i(t; ηtr,α)Zi.

Then let

Sn(t; ηtr,α) = n−1/2
n∑
i=1

∫ t

−∞

[
Zi −

Qz
1n(u; ηtr,α)

Q1n(u; ηtr,α)

]
dN1i(u; ηtr,α)

m1(t; ηtr,α) = E

{∫ t

−∞

[
Z1 −

E{Qz
1(u; ηtr,α)}

E{Q1(u; ηtr,α)}

]
dN11(u; ηtr,α)

}
.

Note that the proposed estimating function for ηtr is Sn(∞; ηtr,α). Ying
(1993) argues that the expansion holds if W is treated as random. In
his case, the full covariates are used for residual terms. In our case, only
treatment variable is subtracted from original time to death or original time
to the event of interest. Since treatment and confounder are independent
given propensity score (Rosenbaum and Rubin, 1983) and the expectation of
estimating equations of Lin et al. (1996) under the true value of parameters
is equal to 0, arguments from Ying (1993) can still be applied to our case.
Let L(t; ηtr,α) be any one of the empirical processes Ñ , Ñ z, nQz

1n, nQ1n, N1

and N z
1 . Take 0 ≤ ζ < 1, C∗1 > 0, K > 0, ω > 0. Since we assume that the

propensity model is true, by Ferguson (1996, Chapter 17, p114),

n−1
n∑
j=1

[I{D̃∗j (ηtr) ≥ t}wj(α̂)Zj]
a.s.→ E[I{D̃∗1(ηtr) ≥ t}w1(α0)Z1]

n−1
n∑
j=1

[I{D̃∗j (ηtr) ≥ t}wj(α̂)] a.s.→ E[I{D̃∗1(ηtr) ≥ t}w1(α0)].
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Moreover, by the strong law of large numbers,

n−1
n∑
j=1

[I{D̃∗j (ηtr) ≥ t}wj(α)Zj]
a.s.→ E[I{D̃∗1(ηtr) ≥ t}w1(α)Z1] (A.2)

n−1
n∑
j=1

[I{D̃∗j (ηtr) ≥ t}wj(α)] a.s.→ E[I{D̃∗1(ηtr) ≥ t}w1(α)]. (A.3)

Then using Theorem 3 from Ying (1993),

sup
|ηtr|≤C∗

1 ,EL(t;ηtr,α0)≤Kn1−ζ
|L(t; ηtr, α̂)− E{L(t; ηtr,α0)}| = o(n(1−ζ)/2+ω).

By Ying (1993), under certain regularity conditions, for ζ∗ > 0

sup
|ηtr|≤C∗

1

|n−1/2Sn(ηtr, α̂)−m1(ηtr,α0)| = o(n−1/2+ζ∗),

where m1(ηtr,α0) = m1(∞; ηtr,α0). Similarly, we define

Qz
2(t; βtr,α) = E[I{X̃∗1 (βtr) ≥ t}w1(α)Z1]

Q2(t; βtr,α) = E[I{X̃∗1 (βtr) ≥ t}w1(α)].

Similarly to the independent censoring case, there exist nonrandom functions
m2(·; βtr,α), where

m2(t; βtr,α) = E

{∫ t

−∞

[
Z1 −

E{Qz
2(u; βtr,α)}

E{Q2(u; βtr,α)}

]
dN21(u; βtr,α)

}
.

Let m2(βtr,α) = m2(∞; βtr,α). By Ferguson (1996, Chapter 17, p114),

n−1
n∑
j=1

[I{X̃∗j (βtr) ≥ t}wj(α̂)Zj]
a.s.→ E[I{X̃∗1 (βtr) ≥ t}w1(α0)Z1]

n−1
n∑
j=1

[I{X̃∗j (βtr) ≥ t}wj(α̂)] a.s.→ E[I{X̃∗1 (βtr) ≥ t}w1(α0)].
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Moreover, by the strong law of large numbers,

n−1
n∑
j=1

[I{X̃∗j (βtr) ≥ t}wj(α)Zj]
a.s.→ E[I{X̃∗1 (βtr) ≥ t}w1(α)Z1] (A.4)

n−1
n∑
j=1

[I{X̃∗j (βtr) ≥ t}wj(α)] a.s.→ E[I{X̃∗1 (βtr) ≥ t}w1(α)]. (A.5)

For some positive constant C∗2 and for ζ∗∗ > 0,

sup
||βtr||≤C∗

2

|n−1/2UL
n (βtr, α̂)−m2(βtr,α0)| = o(n−1/2+ζ∗∗).

Note that due to the strong consistency of α̂ and uniqueness of α0, for any
neighborhood of ηtr and βtr, say N0 and N1, respectively, by Ying (1993),

sup
ηtr∈N0

|n−1/2Sn(ηtr, α̂)−m1(ηtr,α0)| p→ 0

sup
βtr∈N1

|n−1/2UL
n (βtr, α̂)−m2(βtr,α0)| p→ 0.

Moreover, by (A.2) - (A.5), it is also true that if α belongs on any neigh-
borhood of α0, say B, then any fixed ηtr ∈ N0, n−1/2Sn(ηtr,α) can be
approximated by m1(ηtr,α). Hence,

sup
α∈B,ηtr∈N0

|n−1/2Sn(ηtr,α)−m1(ηtr,α)| p→ 0

Similarly, for any βtr ∈ N1 and α ∈ B,

sup
α∈B,βtr∈N1

|n−1/2UL
n (βtr,α)−m2(βtr,α)| p→ 0.

Thus η̂catr and θ̂Lcatr are strongly consistent. Now we want to show strong con-
sistency of θ̂Pcatr. LetW be a compact set of parameter βtr and h(Zi, Zj,Vi,Vj, β

tr,α0) =
wi(α0)wj(α0)(Zi − Zj)φij(βtr). From the U-statistics law of large numbers,

|n−1/2UP
n (βtr,α0)− λ(β,α0)| p→ 0.

for all βtr ∈ W . By decomposing the compact setW into several finite subsets
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W1, . . . ,Wm such that W ∈ ∪mi=1Wi, for (βtr)i ∈ Wi,

max
1≤i≤m

|n−1/2UP
n ((βtr)i,α0)− λ((βtr)i,α0)| p→ 0.

Since wi(α0), i = 1 . . . n are bounded, by Appendix of Peng and Fine (2006),

sup
||βtr−β̃tr||≤ν

n−1/2|UP
n (βtr,α0)− UP

n (β̃tr,α0)| ≤ 2
n(n− 1)[

∑
1≤i<j≤n

|Zi − Zj|Kij(β̃tr, ν)],

where

L
(1)
ij (β̃tr, ν) = wi(α0)wj(α0)I[{βtr : |βtr − β̃tr| ≤ ν, X̃∗i(j)(βtr) = X̃∗j(i)(βtr)} 6= ∅]

L
(2)
ij (β̃tr, ν) = wi(α0)wj(α0)I[{β : |β − β̃tr| ≤ ν, δ̃∗i(j)(β) 6= δ̃∗i(j)(β̃tr)} 6= ∅]

Kij(β̃tr, ν) = {L(1)
ij (β̃tr, ν) + L

(2)
ij (β̃tr, ν) + L

(2)
ji (β̃tr, ν)}.

LetHij(β̃tr, ν) = |Zi−Zj|Kij(β̃tr, ν) andH(β̃tr, ν) =
∑

1≤i<j≤n |Zi−Zj|Kij(β̃tr, ν).
By Hoeffding decomposition,

H(β̃tr, ν)− E{H(β̃tr, ν)} =
n∑
i=1

Bi(β̃tr, ν) +
∑
i<j

Bij(β̃tr, ν),

where

Bi(β̃tr, ν) =
∑
j 6=i

[E{Hij(β̃tr, ν)|Zi, ei(α0)} − E{Hij(β̃tr, ν)}]

Bij(β̃tr, ν) = Hij(β̃tr, ν)− E{Hij(β̃tr, ν)|Zi, ei(α0)} − E{Hij(β̃tr, ν)|Zj, ej(α0)}

+ E{Hij(β̃tr, ν)}.

To complete the proof of consistency, we need the following lemma.

Lemma A1. There exists constants b0 and c0 such that E{Hij(β̃tr, ν)} ≤ b0ν

and E{H(β̃tr, ν)} ≤ c0νn
2

Proof. We can use arguments as in Peng and Fine (2006) and the Appendix
of Hsieh et al. (2011). Note that the set

{||βtr − β̃tr|| ≤ ν, δ̃∗i(j)(βtr) 6= δ̃∗i(j)(β̃tr)} ∈ D1(β̃tr, ν) ∪D2(β̃tr, ν),
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where

D1(β̃tr, ν) = {||βtr − β̃tr|| < ν,Xi − θtrZi = [Di + ηtr(Zj − Zi)]− θtrZj}

D2(β̃tr, ν) = {||βtr − β̃tr|| < ν,Xi − θtrZi = [Ci + ηtr(Zj − Zi)]− θtrZj}.

Then

D1(β̃tr, ν)

= {||βtr − β̃tr|| < ν,Xi + θtr(Zj − Zi) = Di + ηtr(Zj − Zi)}

= {||βtr − β̃tr|| < ν, εXi + θT0 Wi + θtr(Zj − Zi) = εDi + ηT0 Wi + ηtr(Zj − Zi)}

= {||βtr − β̃tr|| < ν, εXi + θT0 Wi + [θ̃tr − (θ̃tr − θtr)](Zj − Zi)

= εDi + ηT0 Wi + [η̃tr − (η̃tr − ηtr)](Zj − Zi)}

⊆ {||εXi − εDi + (θ0 − η0)TWi + (θ̃tr − η̃tr)(Zj − Zi)|| < 2ν|Zj − Zi|}.

Thus there exists d0 > 0 such that wi(α0)wj(α0)P{D1(β̃tr, ν)|ei(α0), ej(α0), Zi, Zj} ≤
2wi(α0)wj(α0)d0|Zj − Zi|ν by assumption. Similarly,

wi(α0)wj(α0)P{D2(β̃tr, ν)|ei(α0), ej(α0), Zi, Zj} ≤ 2wi(α0)wj(α0)|Zj−Zi|ν.

Hence, E{L(2)
ij (β̃tr, ν)} ≤ 2d0E{wi(α0)wj(α0)|Zj − Zi|}ν. Similarly, there

exists d∗0 > 0 such that E{L(2)
ji (β̃tr, ν)} ≤ 2d∗0E{wi(α0)wj(α0)|Zj−Zi|}ν and

there exists f ∗0 > 0 and P{L(1)
ij (β̃tr, ν)} ≤ 2f ∗0E{wi(α0)wj(α0)|Zj − Zi|}ν.

Since wi(α0) are bounded, there exists K0 > 0 and K1 > 0 such that
E{Kij(β̃tr, ν)} ≤ K0ν and E{K2

ij(β̃tr, ν)} ≤ K1ν. By the Cauchy-Schwarz
inequality,

E{Hij(β̃tr, ν)} ≤
√
E{K2

ij(β̃tr, ν)}E|Zi − Zj|2 ≤ K1ν
√
E|Zi − Zj|2.

Hence there exists b0 > 0 such that E{Hij(β̃tr, ν)} ≤ b0ν. Finally, E{H(β̃tr, ν)} ≤
K1b0n

2. Thus there exists c0 > 0 such that E{H(β̃tr, ν)} ≤ c0νn
2.

Then by Lemma A1 above, E{Hij(β̃tr, ν)} ≤ b0ν and E{H(β̃tr, ν)} ≤ c0νn
2.

Note that Bi and Bij are uncorrelated. Hence there exist v10 > 0 and v20 > 0
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such that

V ar{H(β̃tr, ν)} =
n∑
i=1

V ar{Bi(β̃tr, ν)}+
∑
i<j

V ar{Bij(β̃tr, ν)} ≤ v10n
3+v20n

2 = O(n3).

Take ε > 0 and let 0 < ν < ε/(3b0). Then by Markov inequality,

P{[n(n− 1)]−1H(β̃tr, ν) ≥ ε} ≤ P{[n(n− 1)]−1[H(β̃tr, ν)− E{H(β̃tr, ν)]} ≥ ε/3}

≤ 9V ar{H(β̃tr, ν)}
[n(n− 1)]2ε2 → 0.

Hence
sup

||βtr−β̃tr||≤ν
n−1/2|UP

n (βtr,α0)− UP
n (β̃tr,α0)| p→ 0. (A.6)

Note that for any ν∗ > 0,

sup
||α−α0||≤ν∗,||βtr−β̃tr||≤ν

n−1/2|UP
n (βtr,α)− UP

n (β̃tr,α0)|

≤ sup
||βtr−β̃tr||≤ν,||α−α0||≤ν∗

n−1/2|UP
n (βtr,α)− UP

n (βtr, α̂)|

+ sup
||βtr−β̃tr||≤ν,||α−α0||≤ν∗

n−1/2|UP
n (βtr, α̂)− UP

n (βtr,α0)|

+ sup
||βtr−β̃tr||≤ν,||α−α0||≤ν∗

n−1/2|UP
n (βtr,α0)− UP

n (β̃tr,α0)|.

For fixed βtr, by Taylor expansion,

n−1/2|UP
n (βtr, α̂)−UP

n (βtr,α0)| = n−1/2
∣∣∣∣(α̂−α0) ∂

∂α
UP
n (βtr,α)

∣∣∣∣
α=α0

∣∣∣∣+op(1).

Then for fixed βtr, n−1/2 ∂
∂α
UP
n (βtr,α)

∣∣∣∣
α=α0

= O(1) and α̂ a.s.→ α0, we have

sup
||βtr−β̃tr||≤ν,||α−α0||≤ν∗

n−1/2|UP
n (βtr, α̂)− UP

n (βtr,α0)| p→ 0. (A.7)

Then for α ∈ B, due to uniqueness of α0,

sup
α∈B,βtr∈W

|n−1/2UP
n (βtr,α)− λ(βtr,α0)| p→ 0.
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By strong consistency of α̂, we have

sup
βtr∈W

|n−1/2UP
n (βtr, α̂)− λ(βtr,α0)| p→ 0.

Hence

sup
||βtr−β̃tr||≤ν,||α−α0||≤ν∗

|n−1/2UP
n (βtr,α)− n−1/2UP

n (βtr, α̂)| p→ 0. (A.8)

Combining (A.6), (A.7) and (A.8) yields,

sup
|α−α0||≤ν∗,||βtr−β̃tr||≤ν

n−1/2|UP
n (βtr,α)− UP

n (β̃tr,α0)| p→ 0.

Moreover,

sup
||α−α̃||≤ν∗,||βtr−β̃tr||≤ν

n−1/2|UP
n (βtr,α)− UP

n (β̃tr, α̃)| p→ 0.

Thus the consistency of θ̂Pcatr is proved.
Remark. In this case, the key important element is strong consistency of
α̂. Given strong consistency of α̂, the random function n−1/2Sn(ηtr, α̂) and
n−1/2UL

n (ηtr, α̂) converge to deterministic function. Moreover, to prove strong
consistency of θ̂Pcatr, we apply arguments from Peng and Fine (2006) given α0

and use strong consistency of α̂. Then we can approximate n−1/2Sn(ηtr,α)
and n−1/2UL

n (ηtr,α) to nonrandom function with respect to α.

(c) Proof of Theorem 6.2
Let Gn(α) be given by

Gn(α) = n−1/2
n∑
i=1

Hi[Zi −
exp (αTHi)

1 + exp (αTHi)
].

Let Ψi(α) = Hi[Zi−
exp (αTHi)

1 + exp (αTHi)
]. Then Gn(α) = n−1/2∑n

i=1 Ψi(α). By

martingale central limit theorem (Theorem 5.3.5 in Fleming and Harrington,
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2005, pp.227-228) and U-statistic theory,

Sn(ηtr0 ,α0) = n−1/2
n∑
i=1

∫ ∞
−∞
{Zi − z̄(1)(t)}dM1i(u; ηtr0 ,α0) + op(1)

UL
n (βtr0 ,α0) = n−1/2

n∑
i=1

∫ ∞
−∞
{Zi − z̄(2)(t)}dM2i(u; βtr0 ,α0) + op(1)

UP
n (βtr0 ,α0) = n−1/2

n∑
i=1

2h1(Zi, βtr0 ,α0) + op(1)

Gn(α0) = n−1/2
n∑
i=1

Ψi(α0),

where h1(z, β,α0) = E{h(z, Z2,V1,V2, β,α0)}. Let τ = (ηtr, θtr, θtr)T and
Un(τ ,α0) = [STn (ηtr,α0), {UL

n (βtr,α0)}T , {UP
n (βtr,α0)}T ]T . By standard

asymptotic theory of maximum likelihood estimator and by Cramér-Wold
theorem, (

Gn(α0)
Un(τ0,α0)

)
d→ N

([
0
0

]
, E

[
v1vT1 v1vT2
v2vT1 v2vT2

])
,

where

v1 = Ψ1(α0) v2 = (v21, v22, v23)T

v21 =
∫ ∞
−∞
{Zi − z̄(1)(u)}dM1i(u; ηtr0 ,α0) v22 =

∫ ∞
−∞
{Zi − z̄(2)(u)}dM2i(u; βtr0 ,α0)

v23 = 2h1(Z1, β
tr
0 ,α0).

Then we have following lemma.

Lemma A2. If kn converges to 0 in probability,

sup
||γ−γ0||≤kn

||Qn(γ)−Qn(γ0)−Λ0n
1/2(γ − γ0)||

1 + n1/2||γ − γ0||
= op(1)

where

Λ0 =


L1 0 0 0
L2 E1 0 0
L3 E2 E3 0
L4 E4 0 E5
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L1 = E

[
∂Ψ1(α)
∂α

∣∣∣∣
α=α0

]
L2 =

∫ ∞
−∞

E

[
∂

∂α
{Z1 − z̄(1∗)(t; ηtr,α)}dN11(t; ηtr,α)

]
ηtr=ηtr0 ,α=α0

L3 =
∫ ∞
−∞

E

[
∂

∂α
{Z1 − z̄(2∗)(t; βtr,α)}dN21(t; βtr,α)

]
βtr=βtr0 ,α=α0

L4 = ∂λ(βtr,α)
∂α

∣∣∣∣
βtr=βtr0 ,α=α0

E1 =
∫ ∞
−∞

E

[
w1(α0)I{D̃∗1(η0) ≥ t}{Z1 − z̄(1)(t)}λ

′
10(t)
λ10(t)f(t)dt

]
E2 =

∫ ∞
−∞

E

[
∂

∂ηtr
{Z1 − z̄(2∗)(t; βtr,α)}dN21(t; βtr,α)

]
βtr=βtr0 ,α=α0

E3 =
∫ ∞
−∞

E

[
∂

∂θtr
{Z1 − z̄(2∗)(t; βtr,α)}dN21(t; βtr,α)

]
βtr=βtr0 ,α=α0

E4 = ∂λ(βtr,α)
∂ηtr

∣∣∣∣
βtr=βtr0 ,α=α0

E5 = ∂λ(βtr,α)
∂θtr

∣∣∣∣
βtr=βtr0 ,α=α0

and

z̄(1∗)(t; βtr,α) = lim
n→∞

∑n
j=1 I{D̃∗j (ηtr) ≥ t}wj(α)Zj∑n
j=1 I{D̃∗j (ηtr) ≥ t}wj(α)

z̄(2∗)(t; βtr,α) = lim
n→∞

∑n
j=1 I{X̃∗j (βtr) ≥ t}wj(α)Zj∑n
j=1 I{X̃∗j (βtr) ≥ t}wj(α)

If kn converges to 0 almost surely,

sup
||γ−γ0||≤kn

||Qn(γ)−Qn(γ0)−Λ0n
1/2(γ − γ0)||

1 + n1/2||γ − γ0||
= o(1)

Proof. We will follow the approach of Ghosh (2000, Chapter 6). Let Gn(α)
Sn(ηtr,α)
UL
n (βtr,α)

 =

 Gn(α0)
Sn(ηtr0 ,α0)
UL
n (βtr0 ,α0)

+

 Gn(α)−Gn(α0)
Sn(ηtr,α)− Sn(ηtr0 ,α0)
UL
n (βtr,α)− UL

n (βtr0 ,α0)
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Clearly,

Gn(α)−Gn(α0) = Ġn(α0)(α−α0) + op(n1/2||α−α0||)

where Ġn(α0) = [∂Gn/∂α]α=α0 . Let

γsub1 = (αT , ηtr)T γsub2 = (αT , ηtr, θtr)T

γsub1
0 = (αT0 , ηtr0 )T γsub2

0 = (αT0 , ηtr0 , θtr0 )T .

By Ying (1993),

Sn(ηtr,α)− Sn(ηtr0 ,α0) = n1/2{L2(α−α0) + E1(ηtr − ηtr0 )}+ op(1 + n1/2||γsub1 − γsub1
0 ||)

UL
n (βtr,α)− UL

n (βtr0 ,α0) = n1/2{L3(α−α0) + E2(ηtr − ηtr0 ) + E3(θtr − θtr0 )}

+op(1 + n1/2||γsub2 − γsub2
0 ||).

By Lemma 2 of Honoré and Powell (1994),

sup
βtr∈N1,α∈B

|UP
n (βtr,α)− UP

n (βtr0 ,α0)− n1/2λ(βtr,α)|
1 + n1/2|λ(βtr,α)| = op(1),

where N1 is a neighborhood of βtr0 . By Taylor series expansion of λ(βtr,α)
at βtr0 and α0,

λ(βtr,α) = λ(βtr0 ,α0) +



∂λ(βtr0 ,α)
∂α

∣∣∣∣
α=α0

∂λ(βtr,α0)
∂ηtr

∣∣∣∣
βtr=βtr0

∂λ(βtr,α0)
∂θtr

∣∣∣∣
βtr=βtr0


(
α−α0 ηtr − ηtr0 θtr − θtr0

)

+ o(||γsub2 − γsub2
0 ||).

Extending arguments in the Appendix of Peng and Fine (2006),

UP
n (βtr,αtr) = UP

n (βtr0 ,αtr0 ) + n1/2{L4(α−α0) + E4(ηtr − ηtr0 ) + E5(θtr − θtr0 )}

+op(1 + n1/2||γsub2 − γsub2
0 ||).
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Hence,

sup
||γ−γ0||≤kn

||Qn(γ)−Qn(γ0)−Λ0n
1/2(γ − γ0)||

1 + n1/2||γ − γ0||
= op(1),

when kn converges in probability to zero. The second result of Lemma 2
easily follows from the result that the sequence of random variable converges
in probability if and only if each subsequence of the sequence of random
variables contains further subsequence which converges almost surely.

By using Lemma A2 above,

Qn(γ) = Qn(γ0) + n1/2Λ0(γ − γ0) + op(1 + n1/2||γ − γ0||),

for γ ∈ V , where V is any neighborhood of γ0. Then

Qn(γ̂) = Qn(γ0) + n1/2Λ0(γ̂ − γ0) + op(1),

and by consistency of γ̂ and Lemma A2, we get

n1/2(γ̂ − γ0) = −Λ−1
0 Qn(γ0) + op(1)

Then by Slusky’s theorem,

n1/2(γ̂ − γ0) d→ N(0,Λ−1
0 Σ0Λ−1

0 ),

where Σ0 is

Σ0 = E

[
v1vT1 v1vT2
v2vT1 v2vT2

]
.

(d) Proof of Theorem 6.3
To justify resampling approach in Parzen et al. (1994), two conditions A(1·1)
and A(1·2) in Parzen et al. (1994) should be verified. The condition A(1·1)
follows from Lemma 2 directly. The condition A(1·2) implies that the root of
estimating equation should be unique. This condition is also easily satisfied
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by the assumption. Let γ∗ be solution of

Qn(γ) = −n−1/2
n∑
i=1

JiAi,

where Ji are natural sample estimates of v = (vT1 ,vT2 )T and Ai are standard
normal samples. From the previous section, we showed that

Qn(γ) = Qn(γ0) + n1/2Λ0(γ − γ0) + op(1 + n1/2||γ − γ0||).

Then

Qn(γ∗) = Qn(γ̂) + n1/2Λ0(γ∗ − γ̂) + op(1)

n1/2(γ∗ − γ̂) = −Λ−1
0 n−1/2

n∑
i=1

JiAi + op(1).

Since the observed data are independent and identically distributed, given
observed data, the asymptotic distribution of n1/2(γ∗ − γ̂) is normal dis-
tribution with zero mean vector and covariance matrix Λ−1

0 Σ0Λ−1
0 . Hence

the conditional distribution of n1/2(γ∗ − γ̂) is asymptotically equal to the
unconditional distribution of n1/2(γ̂ − γ0).

2 Goodness of Fit (Chapter 4)
The goodness of fit structure proposed by Lin et al. (1996) is follows. We use
notations in the Chapter 4. Let η̂ be the estimator for the time to the dependent
censoring, α̂L be Lin et al. (1996) estimator and α̂P be Peng and Fine (2006)
estimator. Define N1i(t;η) = ∆iI{D̃∗i (η) ≤ t} and N2i(t;α) = δ̃∗i (α)I{X̃∗i (α) ≤ t}.
Let

D̃∗i (η) = D̃i − ZT
i η

g(β) = max
1≤i≤n

{0,ZT
i (θ − η)}

X̃∗i (α) = (Xi − ZT
i θ) ∧ {Di − ZT

i η − g(β)} ∧ {Ci − ZT
i η − g(β)}

δ̃∗i (α) = I[(Xi − ZT
i θ) ≤ {Di − ZT

i η − g(β)} ∧ {Ci − ZT
i η − g(β)}].
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Then

M1i(t;η0) = N1i(t;η0)−
∫ t

−∞
I{D̃∗i (η0) ≥ u}λ0(u)du

M2i(t;α0) = N2i(t;α0)−
∫ t

−∞
I{X̃∗i (α0) ≥ u}h0(u)du

are martingales where λ0(u) and h0(u) are baseline hazard functions for the depen-
dent censoring and the event of interest, respectively. We can define M̂1i(t; η̂) and
M̂2i(t; α̂),where

M̂1i(t; η̂) = N1i(t; η̂)−
∫ t

−∞
I{D̃∗i (η̂) ≥ u}dΛ̂0(u)

M̂2i(t; η̂) = N2i(t; α̂)−
∫ t

−∞
I{X̃∗i (α̂) ≥ u}dĤ0(u)

Λ̂0(t) =
∫ t

−∞

∑n
l=1 dN1l(η̂;u)∑n

j=1 I{D̃∗j (η̂) ≥ u}
Ĥ0(t) =

∫ t

−∞

∑n
l=1 dN2l(α̂;u)∑n

j=1 I{X̃∗j (α̂) ≥ u}

Then observed processes are defined as

Sn(s;η) = n−1/2
n∑
i=1

ZiM̂1i(s;η) Un(t;α) = n−1/2
n∑
i=1

ZiM̂2i(t;α)

Note that by stochastic integral,∫ t

−∞
I{D̃∗i (η̂) ≥ u}dΛ̂0(u) =

∑
D̃∗
l (η̂)≤t

I{D̃∗i (η̂) ≥ D̃∗l (η̂)}∆l∑n
j=1 I{D̃∗j (η̂) ≥ D̃∗l (η̂)}

=
n∑
l=1

∆lI{D̃∗l (η̂) ≤ t}I{D̃∗i (η̂) ≥ D̃∗l (η̂)}∑n
j=1 I{D̃∗j (η̂) ≥ D̃∗l (η̂)}

Hence

M̂1i(t; η̂) = ∆iI{D̃∗i (η̂) ≤ t} −
n∑
l=1

∆lI{D̃∗l (η̂) ≤ t}I{D̃∗i (η̂) ≥ D̃∗l (η̂)}∑n
j=1 I{D̃∗j (η̂) ≥ D̃∗l (η̂)}
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Similarly, ∫ t

−∞
I{X̃∗i (α̂) ≥ u}dĤ0(u) =

∑
D̃∗
l (η̂)≤t

I{X̃∗i (η̂) ≥ X̃∗l (η̂)}δ̃∗l (α̂)∑n
j=1 I{X̃∗j (η̂) ≥ X̃∗l (η̂)}

=
n∑
l=1

δ̃∗l (α̂)I{X̃∗l (α̂) ≤ t}I{X̃∗i (α̂) ≥ X̃∗l (α̂)}∑n
j=1 I{X̃∗j (α̂) ≥ X̃∗l (α̂)}

Hence

M̂2i(t; η̂) = δ̃∗i (α̂)I{X̃∗i (α̂) ≤ t} −
n∑
l=1

δ̃∗l (α̂)I{X̃∗l (α̂) ≤ t}I{X̃∗i (α̂) ≥ X̃∗l (α̂)}∑n
j=1 I{X̃∗j (α̂) ≥ X̃∗l (α̂)}

Then similar to Lin et al. (1996) and Peng and Fine (2006), we can substitute η̂
on Sn(s;η), α̂L and α̂P on Un(t;α). By arguing as Lin et al. (1996) and Peng and
Fine (2006), we can construct [ŜTn (s), {ÛL

n (t)}T , {ÛP
n (v)}T ]T , where

Ŝn(s) = n−1/2
n∑
i=1

∫ s

−∞

[
Zi −

∑n
j=1 I{D̃∗j (η̂) ≥ w}Zj∑n
j=1 I{D̃∗j (η̂) ≥ w}

]
dM̂1i(w; η̂)Qi+Sn(s; η̂∗)−Sn(s; η̂)

ÛL
n(t) = n−1/2

n∑
i=1

∫ t

−∞

[
Zi −

∑n
j=1 I{X̃∗j (α̂L) ≥ w}Zj∑n
j=1 I{X̃∗j (α̂L) ≥ w}

]
dM̂2i(w; α̂L)Qi+Un(t; α̂L∗)−Un(t; α̂L)

ÛP
n (v) = n−1/2

n∑
i=1

∫ v

−∞

[
Zi −

∑n
j=1 I{X̃∗j (α̂P ) ≥ w}Zj∑n
j=1 I{X̃∗j (α̂P ) ≥ w}

]
dM̂2i(w; α̂P )Qi+Un(v; α̂P∗)−Un(v; α̂P )
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For view of calculation,

n−1/2
n∑
i=1

ZiM̂1i(s;η) = n−1/2
n∑
i=1

Zi

[
N1i(t;η)−

n∑
l=1

∆lI{D̃∗l (η) ≤ t}I{D̃∗i (η) ≥ D̃∗l (η)}∑n
j=1 I{D̃∗j (η) ≥ D̃∗l (η)}

]
n−1/2

n∑
i=1

ZiM̂2i(s;α) = n−1/2
n∑
i=1

Zi

[
N2i(t;α)−

n∑
l=1

δ̃∗l (α)I{X̃∗l (α) ≤ t}I{X̃∗i (α) ≥ X̃∗l (α)}∑n
j=1 I{X̃∗j (α) ≥ X̃∗l (α)}

]

Ŝn(s) = n−1/2
n∑
i=1

∫ s

−∞

[
Zi −

∑n
j=1 I{D̃∗j (η̂) ≥ w}Zj∑n
j=1 I{D̃∗j (η̂) ≥ w}

]
dM̂1i(w; η̂)Qi + Sn(s; η̂∗)− Sn(s; η̂)

= n−1/2
n∑
i=1

(
∆iI{D̃∗i (η̂) ≤ s}

[
Zi −

∑n
j=1 I{D̃∗j (η̂) ≥ D̃∗i (η̂)}Zj∑n
j=1 I{D̃∗j (η̂) ≥ D̃∗i (η̂)}

]

−
n∑
l=1

∆lI{D̃∗l (η̂) ≤ s}I{D̃∗i (η̂) ≥ D̃∗l (η̂)}∑n
j=1 I{D̃∗j (η̂) ≥ D̃∗l (η̂)}

[
Zi −

∑n
j=1 I{D̃∗j (η̂) ≥ D̃∗l (η̂)}Zj∑n
j=1 I{D̃∗j (η̂) ≥ D̃∗l (η̂)}

])
Qi

+ Sn(s; η̂∗)− Sn(s; η̂)

ÛL
n(t) = n−1/2

n∑
i=1

∫ t

−∞

[
Zi −

∑n
j=1 I{X̃∗i (α̂L) ≥ w}Zj∑n
j=1 I{X̃∗i (α̂L) ≥ w}

]
dM̂2i(w; α̂)Qi + Un(t; α̂L∗)−Un(t; α̂L)

= n−1/2
n∑
i=1

(
δ̃∗i (α̂L)I{X̃∗i (α̂L) ≤ t}

[
Zi −

∑n
j=1 I{X̃∗i (α̂L) ≥ X̃∗i (α̂L)}Zj∑n
j=1 I{X̃∗i (α̂L) ≥ X̃∗i (α̂L)}

]

−
n∑
l=1

δ̃∗l (α̂L)I{X̃∗l (α̂L) ≤ t}I{X̃∗i (α̂L) ≥ X̃∗l (α̂L)}∑n
j=1 I{X̃∗j (α̂L) ≥ X̃∗l (α̂L)}

[
Zi −

∑n
j=1 I{X̃∗i (α̂L) ≥ X̃∗l (α̂L)}Zj∑n
j=1 I{X̃∗i (α̂L) ≥ X̃∗l (α̂L)}

])
Qi

+ Un(t; α̂L∗)−Un(t; α̂L)

ÛP
n (t) = n−1/2

n∑
i=1

∫ t

−∞

[
Zi −

∑n
j=1 I{X̃∗i (α̂P ) ≥ w}Zj∑n
j=1 I{X̃∗i (α̂P ) ≥ w}

]
dM̂2i(w; α̂P )Qi + Un(t; α̂P∗)−Un(t; α̂P )

= n−1/2
n∑
i=1

(
δ̃∗i (α̂P )I{X̃∗i (α̂P ) ≤ t}

[
Zi −

∑n
j=1 I{X̃∗i (α̂P ) ≥ X̃∗i (α̂P )}Zj∑n
j=1 I{X̃∗i (α̂L) ≥ X̃∗i (α̂L)}

]

−
n∑
l=1

δ̃∗l (α̂P )I{X̃∗l (α̂P ) ≤ t}I{X̃∗i (α̂P ) ≥ X̃∗l (α̂P )}∑n
j=1 I{X̃∗j (α̂P ) ≥ X̃∗l (α̂P )}

[
Zi −

∑n
j=1 I{X̃∗i (α̂P ) ≥ X̃∗l (α̂P )}Zj∑n
j=1 I{X̃∗i (α̂P ) ≥ X̃∗l (α̂P )}

])
Qi

+ Un(t; α̂P∗)−Un(t; α̂P )
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