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ABSTRACT 

 The study of network theory and its application span across a multitude of seemingly disparate 

fields of science and technology: computer science, biology, social science, linguistics, etc. It is the intrinsic 

similarities embedded in the entities and the way they interact with one another in these systems that link 

them together. 

 In this dissertation, I present from both the aspect of theoretical analysis and the aspect of 

application three projects, which primarily focus on signal transduction networks in biology. In these 

projects, I assembled a network model through extensively perusing literature, performed model-based 

simulations and validation, analyzed network topology, and proposed a novel network measure. The 

application of network modeling to the system of stomatal opening in plants revealed a fundamental 

question about the process that has been left unanswered in decades. The novel measure of the redundancy 

of signal transduction networks with Boolean dynamics by calculating its maximum node-independent 

elementary signaling mode set accurately predicts the effect of single node knockout in such signaling 

processes. The three projects as an organic whole advance the understanding of a real system as well as the 

behavior of such network models, giving me an opportunity to take a glimpse at the dazzling facets of the 

immense world of network science. 
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Chapter 1 

Introduction 

Every entity in our universe is connected, related, or correlated with one another. From the constant 

ebbs and flows of energy and matter, the perpetual interaction between species and people, to the intricate 

way concepts and words are woven together forming our languages and the knowledge itself, such 

relationships form and are therefore best represented by networks. Network modeling is one of the most 

natural ways to approach systems the components of which interact with each other in a complex manner. 

It permeates numerous spheres of science and technology: cellular biology, ecology, social sciences, 

logistics, etc., making it one of the most popular and fruitful methodologies for researchers. In addition to 

the network structure, one often desires to describe the dynamics of mass or information transfer through 

the network. Dynamic models characterize the nodes by states (e.g. concentration or activity), and the states 

of the nodes change in time according to the interactions encapsulated in the network. My doctoral study 

focused on network-based discrete dynamic modeling of biological signaling transduction systems and 

theoretical analysis of such models. 

The reason I chose biological signaling processes as the subject of my study is manifold: first and 

foremost, such processes can be and are best represented as networks, due to the enormous amount of 

players involved in such processes and the complexity of their interrelations. Modeling such systems with 

networks is an intriguing and fascinating topic. Secondly, signaling processes underlie almost all biological 

behaviors on a microscopic scale, e.g. cell response to external stimuli such as pathogen or light. Signaling 

processes are vitally important to not only the survival of the single cell, but also the wholeness of 

individuals. Thirdly, what have been observed for such processes is that it is the relation of a concentration 

relative to a threshold value that matters rather than the absolute quantity itself. Such property of signaling 

processes provides the opportunity to apply Boolean dynamics, which facilitates the construction and 

analysis of such network models. 
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Chapter 2 offers a brief introduction to the process from the assembly of networks based on 

literature to the implementation of a specific form of dynamics—Boolean dynamics—based on the network 

structure. The necessary ingredients of Boolean dynamic modeling are introduced, and three examples of 

its successful application are given. 

Chapter 3, 4 and 5 present several facets of the work I was engaged in. In chapter 3, a network 

model was constructed with discrete dynamics for the biological process known as light-induced stomatal 

opening and its regulation by abscisic acid. The methodology of discrete dynamics is a natural extension of 

Boolean dynamics, in which both the values a node can assume and the means these values are regulated 

over time takes on a greater degree of freedom. The application of dynamic modeling offers a multitude of 

novel insights into and predictions about the behavior of the system. For instance, it revealed a basic 

question about the relationship between red light-induced stomatal opening and abscisic acid that had been 

overlooked for decades. 

Chapter 4 and 5 detail my original work on theoretical analysis conducted under the Boolean 

network framework and the concept of elementary signaling mode. Chapter 4 develops a measure of 

network redundancy and robustness based on node-independent elementary signaling modes. The novel 

measure is subsequently tested on a number of existing Boolean network models and is demonstrated to 

precisely predict the nodes of critical importance for a signaling cascade. Chapter 5 introduces a procedure 

of solving for the attractor of Boolean networks without carrying out dynamic simulations. The attractors 

of Boolean models correspond to the time-invariant behavior of real systems, e.g. cell apoptosis, cell type, 

phenotype, etc. It is therefore of high importance that these attractors can be identified without resorting to 

dynamic simulations, which, as the number of nodes in the system increases, becomes increasingly tedious 

and time-consuming, to the point where it is no longer tenable. The method formulated defines a succinct 

as well as precise process with which one can identify all attractors of a Boolean network, offering future 

researchers using Boolean network models a powerful tool.  
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Chapter 2 

Boolean Dynamic Modeling of Biological Systems 

2.1 Overview 

Network structures permeate every sphere of cellular biology. The vast number of intra- 

and extracellular processes and interactions that form a complex web of mass-, energy- and signal 

transfer can intrinsically be described in network language. The nodes of a biological network are 

cellular components such as genes, RNAs, proteins and small molecules and the edges are 

reactions, interactions, regulatory or synthetic relationships among components. The process of 

transcribing coding DNA into mRNAs is either promoted or suppressed by transcription factors; 

the totality of these transcriptional processes can be integrated into gene regulatory networks (1). 

Similarly, diverse interactions amongst proteins, or the biochemical reactions in cellular 

metabolism, can be readily depicted in network language (2-4). In a network representation, the 

elements of the system are represented by network nodes, and the interactions among elements as 

edges. The wealth of data and the affinity between network science and biology make network 

modeling of biological systems not only viable, but also powerful and uniquely useful.  

In addition to the network structure (that is, the nodes and edges), it is often desired to be 

able to describe the dynamics of mass or information transfer through the network. Dynamic 

models characterize the nodes by states (e.g. concentration or activity), and the states of the nodes 

change in time according to the interactions encapsulated in the network. Continuous dynamic 

models use sets of differential equations to capture the detailed variation of concentrations of key 

substances (5) in the system. Despite the recent phenomenal growth of computing power, such 

approaches become practically impossible to implement when the number of nodes in a system 
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reaches more than one hundred. Difficulties are also posed for parameter estimation in large-scale 

systems when there is insufficient temporal data. The aim to circumvent these difficulties makes 

discrete dynamic modeling such as Boolean networks (6-13) and Petri nets (14-16) particularly 

useful. Vast amounts of qualitative knowledge of regulatory relationships between cellular 

components have been either experimentally measured or inferred from biological evidence. The 

compilation of such knowledge forms the basis for network reconstruction, which then allows 

discrete modeling of a system, bypassing the obstacles posed by parameter estimation. The model 

can be tested against experimental evidence and refined iteratively. Discrete dynamic models 

generate insightful analysis about the interweaving of system components, the cascade of 

information flow, and enable in silico node knockout experiments that produce informative 

predictions about the system. Discrete dynamic models have been successfully implemented in 

numerous biological systems, facilitating the study and deepening understanding of biological 

processes such as flower development (17, 18), the yeast cell cycle (8, 9, 19), Drosophila 

embryonic development (20-24), hormone signaling in plants (10, 25), the immune response (11), 

and T cell signaling and differentiation (12, 13, 26-28). 

Boolean network modeling of biological systems is the simplest of the discrete dynamic 

models. Each node can have one of two discrete states, namely 0 and 1, instead of a continuously 

varying concentration. 0 or OFF means that the element represented by the node is inactive (e.g. 

an enzyme or transcription factor), or has a below-threshold concentration (e.g. a small molecule). 

1 or ON represents the opposite, which is active or an above-threshold concentration (6, 7). The 

state of a system that has N nodes is therefore represented by an N-dimensional vector with each 

value being 0 or 1. The state space of such system contains a total of 2N states. In order to carry 

out dynamic simulations, time is usually discretized into time steps. As time evolves, starting from 
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one initial state vector, either predetermined or randomly generated, the system state vector can 

traverse the state space, reaching different parts of the space. It is not necessary that a dynamic 

trajectory traverse all 2N states in the space; indeed the observed trajectories converge into a 

stationary state or set of states after a much smaller number of state transitions.  

In this chapter, we first explain the correspondence between Boolean networks and 

biological systems, then introduce the basic concepts of Boolean network modeling and elaborate 

in a step-by-step fashion the modeling procedure, starting from network reconstruction based on 

biological information compilation to model validation. We will present two successful 

applications of this methodology in cellular biology (11, 12). 

2.2 Boolean Networks and Biological Systems 

Here we introduce the basics of Boolean algebra and its connection with biological systems. 

In order to summarize all available information and graphically represent the system we are 

studying, the elements of the system, such as genes or proteins, become the nodes of the network. 

Nodes that represent a phenomenon or a certain biological result can also be included, for instance 

Stomatal Closure, or Apoptosis.  

Edges are drawn between biologically or chemically related nodes to represent the 

relationship between them. Since the flow of signals and reaction fluxes are directional, the edges 

in the network will each have a direction that is consistent with biology; edges may also be 

characterized by a sign (+/－) that denotes the property of that edge: positive sign for activation 

and negative for inhibition. For example a common representation of the synthesis reaction C + D 

E connects the two reactants with the product of the reaction as in Figure 2-1A. 
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Figure 2-1. Three different ways to represent the same synthesis reaction relationship between 

3 nodes. (A) Two separate edges directed from the reactants to the product. (B) Two edges from 

the reactants first merged together and then directed at the product. (C) An intermediate node 

denoting the synergy between the two reactants is added. The reactants are connected to this 

intermediary node, which is in turn connected to the product. 

This representation does not, however, directly reflect the fact that C and D are both 

required for the reaction to take place. Thus the network must be complemented with rules that 

specify the ways in which all upstream components are combined. A natural and economical 

method is to use the Boolean operators AND, OR, NOT. A combination of these operators can 

describe most possible relationships or reactions between substances and components in a 

biological system. The logic dependence underlying a synthesis reaction can be described by the 

Boolean operator AND, so the reaction C + D E becomes C AND D = E* in Boolean language, 

where for simplicity the node names stand for the state of the node. Similarly, if a certain result 

can stem from multiple causes, e.g. photosynthesis can be carried out under either blue or red light, 

then the Boolean equation denoting that will be Blue_light OR Red_light = Photosynthesis*. When 

a certain element or activity is negatively regulated by another, the NOT rule is used. The asterisks 

on the two example Boolean equations indicate that the specific processes to generate the product 

on the right hand side take a certain amount of time to complete. We return to this point in section 

2.3.3. 

A                                       B                                        C 
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The additional information contained in the Boolean rules (e.g. the conditionality or 

independence of two edges incident on the same node) can be integrated into the network for a 

more complete representation. Merging edges may be used to represent the Boolean AND relation 

(see Figure 1(b)), and separate edges for OR relations (see Figure 1(a))(29). There is also a third 

choice, which involves an intermediate node, if the Boolean rule is AND (see Figure 1(c)). Such a 

node would not exist if the rule were Boolean OR (21, 30, 31). So far there is no universal ‘standard’ 

for how to map a system of complex relations onto a graph. The most appropriate choice is the one 

that best facilitates the analysis of the particular system under study. 

2.3 Boolean Network Modeling 

As mentioned in the introduction, a dynamic model characterizes a system’s behavior over 

time. In Boolean dynamic modeling, specifically, both the system’s status, and time are discretized. 

The state of a node can be 0 or 1, making the state of a system of N nodes an N-dimensional vector 

of 0’s and 1’s. A continuous time stream over a certain period (e.g. an experiment) is represented 

by a series of steps, which are an abstract representation of important time points at which 

biochemical events are taking place. The state of the system at a time step is determined by its 

predecessor state (or sometimes several predecessor states at earlier time steps) through what are 

called Boolean transfer functions. The calculation of a node state at a time step based on system 

state(s) at earlier step(s) is called ‘updating’. Depending on the updating scheme that is used, a 

number of nodes, ranging from 1 to N, are updated, thus obtaining the system state at a new (future) 

time step. Given below is an example of a general expression of a Boolean transfer function of a 

certain node i. Suppose the state of node i at time step t is denoted as 𝑉𝑉𝑖𝑖,𝑡𝑡.The transfer function 

through which 𝑉𝑉𝑖𝑖,𝑡𝑡is calculated is given as follows: 
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𝑉𝑉𝑖𝑖,𝑡𝑡 = 𝐹𝐹𝑖𝑖 �𝑉𝑉𝑘𝑘1,𝜏𝜏𝑘𝑘1
,𝑉𝑉𝑘𝑘2,𝜏𝜏𝑘𝑘2

, … ,𝑉𝑉𝑘𝑘𝑛𝑛,𝜏𝜏𝑘𝑘𝑛𝑛� 

where 1 ≤ 𝑖𝑖,𝑘𝑘1, … ,𝑘𝑘𝑛𝑛 ≤ 𝑁𝑁 are the node indices,𝜏𝜏𝑘𝑘1 , … , 𝜏𝜏𝑘𝑘𝑛𝑛 ≤ 𝑡𝑡 denote the time step when 

the state of nodes 𝑘𝑘1, … ,𝑘𝑘𝑛𝑛 was last updated. We will revisit the details of time implementation in 

section 3.3. As time evolves, the system state (N-dimensional vector) traverses the state space and 

after a finite duration transient behavior settles into an attractor (stable dynamic behavior). Two 

types of attractors are possible: i) after hitting a certain state, any future updating results in the 

same state, thus the system reaches a ‘fixed point’ or steady state, or ii) there exists a certain small 

set of states of the system G which the system keeps revisiting; that is, any updating of the system 

state will carry it to one of the states that belongs G. Depending on how updating is implemented, 

the second type of attractor of the system (non-steady state) can take on two possible forms, either 

an oscillation (a series of system states that repeat regularly) or a loose attractor (a random 

sequence of system states that is generated from a finite pool of states). Please see section 2.3.5 

for further details. 

Boolean dynamic modeling of a biological system is comprised of the following steps: 

reconstruct the network based on biological knowledge; determine the Boolean transfer functions; 

choose an updating scheme; determine the initial state of the model; analyze the model including 

its attractors and state space; validate the model (reproduction of known results) and finally, study 

novel scenarios, e.g. robustness against disruptions, make useful predictions and inferences. We 

next look at each step in more detail and elaborate them through examples. 

2.3.1 Reconstruct the network based on biological knowledge 

The first step of Boolean dynamic modeling is to represent the system under study by a 

network, denoting the relevant elements of system by nodes and their pairwise relationships by 
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edges as discussed in section 2. This is accomplished through extensive literature search and 

compilation. Experimental databases available online, such as Transcription Factor Database 

(TRANSFAC, 32) and Kyoto Encyclopedia of Genes and Genomes (KEGG, 33), can be used for 

data mining to deduce causal relationships between components. Many, but not all, experiments 

indicate direct interactions or regulatory relationships of elements, such as transcription factor-

gene interactions, enzymatic activities and protein-protein interactions. Genetic knockout or 

pharmaceutical evidence such as exogenous application of a certain chemical indicates regulatory 

relationships indirectly. With such relationships further inference and interpretation of 

experimental results might be needed to obtain the most proper regulatory relations to represent in 

the network (10). For instance, experimental identification of the change in the activity level of a 

protein after a certain stimulus was applied implicates the protein as a potential downstream 

responder to that stimulus. Similarly, if the over-expression of a gene results in the downregulation 

of another gene or abnormally low activity of an enzyme, this implies that the gene negatively 

affects its target. A change in the concentration of a protein following a genetic knockout or over-

expression can indicate the protein of interest as a potential regulation target of the gene being 

manipulated. 

One can summarize the biological facts collected and list them in a table in order to 

synthesize and to present in a clear way all knowledge ready to be represented by a graph. We 

present an example consisting of five nodes in Table 2-1. 

 

Biological Evidences 

Input activates both A and C. 

A activates B, but is inhibited by B at the same time. 
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C is inhibited by A. 

Output is activated by C. 

 

Table 2-1. A listing of biological evidences describing the causal relationships between 

components of a system. 

The network constructed based on Table 2-1 is shown in Figure 2-2. 

 

Figure 2-2. The graph representation of the example system described in Table 1. Input is the 

signal to the whole system and the sole source node (node with no incoming edges), and Output 

is the only sink node (node with no outgoing edges). ‘’ represents activation; ‘—|’ represents 

inhibition. 

Apart from straightforward evidences that indicate the regulatory relationship between two 

components as in Table 1, often experimental results can lead to complex inferences such as “A 

promotes the process through which B activates C”, the simplest case of which is that A catalyzes 

the reaction from B to C, or “B induces the synthesis of C only in the absence of A”. Representation 

of such cases necessitates groups of three or more directed edges combining multiple nodes (as in 

Figure1C). 

More often than not, even after careful synthesis the knowledge about a biological system 

is not sufficiently complete. Let’s consider the hypothetical scenario of a signal that is known to 
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function as an inhibitor of a certain output. Previous experiments indicate that the signal is 

activating node A, and the output is negatively regulated by node B, but no assay of the interaction 

between A and B has been carried out. Under such circumstances, one essentially needs to make 

reasonable and parsimonious assumptions to bridge the gap between existing evidences. In this 

case, a positive mass flow or regulatory relation oriented from A to B completes a feasible signal 

transduction pathway which is consistent with prior knowledge. In case where contradicting 

evidences are presented, one needs to critically examine and compare the methods by which the 

results are obtained, the environments under which the experiments were performed, and accept 

the better supported relation. 

Manual assembly and interpretation can become daunting for systems containing hundreds 

of nodes and abundant causal relationships. The methodology (34) has been developed software 

packages (e.g. NET-SYNTHESIS, http://www.cs.uic.edu/~dasgupta/network-synthesis, 35) 

aimed specifically at tackling the problem of network assembly at large scale. Taking a text file 

describing all causal relationships between system components as input, the software synthesizes 

and generates a network representation of the system, and outputs a file containing information of 

all the edges. 

2.3.2 Determine the Boolean transfer functions 

After the network backbone is assembled, the second crucial step towards dynamic 

simulation is to determine the Boolean transfer functions that govern the state transition of nodes 

through time. A node i might have one or more upstream regulators in the network. The Boolean 

transfer function expresses the way the states of these regulators are combined through the Boolean 

operators AND, OR, and NOT. The transfer functions are also referred to as Boolean rules. For 

clarity in the following examples we will denote the state of nodes by the node name and simplify 
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the representation of time by only considering current and future time, the latter denoted by using 

an asterisk on the node name. When there is a single input, the state of the output at the next time 

step can take on one of the two possible states available, namely  

Output*=Input, 

if there is a positive relationship between the output and the input, or  

Output*=NOT Input, 

if the input suppresses the output. When there are two or more input nodes, their states 

need to be combined via Boolean functions in a way that is consistent with available knowledge. 

A biochemical synthesis reaction A+BC can naturally be represented by the Boolean rule: C* = 

A AND B. The statement “B induces the synthesis of C only in the absence of A” can be 

represented by the Boolean rule C* = NOT A AND B, since both conditions: stimulus B as well as 

the absence of inhibitory factor A need to be satisfied in order for C to be synthesized. On the 

contrary, if for instance two inputs function largely independently, do not exhibit synergy and can 

substitute one another, then the Boolean OR function should be used, e.g. C* = A OR B. The 

information of dependencies of input nodes can be obtained through literature search. 

If in the system shown on Figure 2-2 both the presence of Input and the absence of Bare 

required for the activation of A, then the Boolean function of A can hence be written as: 

A* = Input AND (NOT B) 

Similarly, if either the absence of A or the presence of Input is sufficient to activate C, this 

leads to: 

C* = (NOT A) OR Input 
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The Boolean transfer functions of the system on Figure 2-2 are summarized in Table 2-2: 

Node Boolean Rule (Transfer Function) 

Input — 

A A* = Input AND (NOT B) 

B B* = A 

C C* = (NOT A) OR Input 

Output Output* = C 

 

Table 2-2. Boolean rules (transfer functions) of the system shown in Figure 2-2, for specific 

assumptions on the combination of multiple inputs. These rules govern the state transitions of 

the nodes in the system. 

The more inputs a node has, the more possible ways there are to combine all the input states. 

One needs to be particularly careful in such cases in order to obtain the rule that is able to generate 

dynamic simulation results that best fit the existing experimental data. It is likely that multiple 

“trial and error” processes will have to take place before an optimal solution is found. 

Instead of describing the state transition relationship with compact Boolean rules, one can 

also list all possible combinations of input states of a certain node i and assign output states to each 

of such combinations. This is called the truth table of a certain Boolean rule, which is equivalent 

to the rule itself. If node i has m input nodes, then the truth table will have 2m rows. 

2.3.3 Updating schemes and incorporating time 

We have now explained the network structure and the Boolean transfer functions that 

govern the state transitions of nodes ready. These two pieces comprise the major steps of the model. 

The next step, discretization of the continuous time stream into steps, is also nontrivial. One has 

13 
 



different choices in terms of the number of nodes to be updated at each time step, and the order in 

which the updating of those nodes is to be carried out, and these choices may affect the results. 

Assume that the total number of nodes in the network is N. Starting from the general 

expression of Boolean rules established based on biological knowledge, we will look at each 

updating scheme in detail.  

Suppose a node i has n input nodes and the Boolean transfer function of node i can be 

written as follows: 

𝑉𝑉𝑖𝑖,𝑡𝑡 = 𝐹𝐹𝑖𝑖 �𝑉𝑉𝑘𝑘1,𝜏𝜏𝑘𝑘1
,𝑉𝑉𝑘𝑘2,𝜏𝜏𝑘𝑘2

, … ,𝑉𝑉𝑘𝑘𝑛𝑛,𝜏𝜏𝑘𝑘𝑛𝑛� 

where 𝑉𝑉𝑖𝑖,𝑡𝑡 is the state of node i at time step t, 1 ≤ 𝑖𝑖,𝑘𝑘1, … ,𝑘𝑘𝑛𝑛 ≤ 𝑁𝑁 are the node indices, 

𝜏𝜏𝑘𝑘1 , … , 𝜏𝜏𝑘𝑘𝑛𝑛 ≤ 𝑡𝑡 denote the time step of the last update of the state of nodes 𝑘𝑘1, … ,𝑘𝑘𝑛𝑛. Two major 

types of updating exist, namely synchronous update (36) and asynchronous update (7). 

For synchronous updating every node is updated once at each time step, using the states of 

the input nodes at earlier time steps as inputs to the transfer functions. In other words, 𝜏𝜏𝑘𝑘𝑗𝑗 ≤ 𝑡𝑡 − 1, 

where 1 ≤ 𝑗𝑗 ≤ 𝑛𝑛. The fact that the input states to each and every transfer function are from earlier 

time steps makes the order in which all nodes are updated at each time step irrelevant, since all 

inputs have already been fixed before the updating. 

Synchronous updating has a simple and straightforward formalism and leads to 

reproducible state changes. It, however, overlooks the differences of time scales on which 

biological processes are taking place, which can range wildly from milliseconds for protein 

phosphorylation and posttranslational activities to hundreds of seconds for transcription and 

transcriptional regulations (37). Asynchronous updating (7), which provides more detailed 
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tracking of time scales and temporal orders (10-12), is devised in order to account for the diversity 

in lengths of biological processes. 

We will cover three types of asynchronous updating: i) general asynchronous updating (38), 

ii) random order asynchronous updating (38, 39), and iii) deterministic asynchronous updating 

(40). 

In general asynchronous updating (38), only one node is randomly selected and updated at 

each time step. The states of the inputs to the node that is being updated are from earlier time steps, 

which means𝜏𝜏𝑘𝑘𝑗𝑗 ≤ 𝑡𝑡 − 1 for 1 ≤ 𝑗𝑗 ≤ 𝑛𝑛. 

In random order asynchronous updating (38, 39), at each time step, a random permutation 

of the node labels (from 1 to N) is first generated, and the updating is carried out in that sequence 

in that time step. The random permutation of 1 to N is regenerated at each time step. Consider 

node i with n inputs and its updating: 

𝑉𝑉𝑖𝑖,𝑡𝑡 = 𝐹𝐹𝑖𝑖 �𝑉𝑉𝑘𝑘1,𝜏𝜏𝑘𝑘1
,𝑉𝑉𝑘𝑘2,𝜏𝜏𝑘𝑘2

, … ,𝑉𝑉𝑘𝑘𝑛𝑛,𝜏𝜏𝑘𝑘𝑛𝑛� 

If node 𝑘𝑘𝑗𝑗 comes before node i in the random sequence, meaning that by the time node i is 

being updated, node kj has already been updated at the current time step to its latest state, 𝜏𝜏𝑘𝑘𝑗𝑗 = 𝑡𝑡 

should be used. Otherwise, if node 𝑘𝑘𝑗𝑗 comes after node i in the random sequence, meaning that at 

the time node i is being updated, the state of node 𝑘𝑘𝑗𝑗 has not been touched yet at the current time 

step, 𝜏𝜏𝑘𝑘𝑗𝑗 ≤ 𝑡𝑡 − 1 should be used. 
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In deterministic asynchronous updating (40), every node is associated with an intrinsic time 

scale 𝛾𝛾𝑖𝑖. The updating of node i only takes place if the current time t is a multiple of 𝛾𝛾𝑖𝑖. One can 

clearly see that 𝛾𝛾𝑖𝑖 is the effective ‘pace’ of each reaction. In other words, 

𝑉𝑉𝑖𝑖,𝑡𝑡 = 𝐹𝐹𝑖𝑖 �𝑉𝑉𝑘𝑘1,𝜏𝜏𝑘𝑘1
,𝑉𝑉𝑘𝑘2,𝜏𝜏𝑘𝑘2

, … ,𝑉𝑉𝑘𝑘𝑛𝑛,𝜏𝜏𝑘𝑘𝑛𝑛� ,   𝑡𝑡 = 𝑐𝑐𝛾𝛾𝑖𝑖, 𝑐𝑐 𝑖𝑖𝑖𝑖 𝑎𝑎 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑝𝑝𝑝𝑝 𝑖𝑖𝑛𝑛𝑡𝑡𝑝𝑝𝑖𝑖𝑝𝑝𝑖𝑖. 

When the updating of node i takes place, the states of its input nodes should be taken from 

the latest available time step, namely 𝜏𝜏𝑘𝑘1 , … , 𝜏𝜏𝑘𝑘𝑛𝑛 ≤ 𝑡𝑡 − 1. 

Several software packages can be used to carry out dynamic simulations based on Boolean 

network modeling on biological systems. An open-source Python package, BooleanNet (41), is 

available online at http://code.google.com/p/booleannet/. The input to the program is a text file 

containing all the Boolean transfer functions, and all of the updating schemes can be selected and 

readily implemented. Other software packages include Cell Net Analyzer (MatLab package, 42), 

GINsim (43), and BoolNet (R package, 44). 

2.3.4 Network initialization 

The system state is represented by an N-dimensional vector, for a system of N nodes 

(elements) (see the beginning of section 3). To perform dynamic simulations of the system under 

the Boolean network framework, one needs to specify the first state in the state sequence 

(trajectory), namely the initial state of the system. The initial state of each node is determined such 

that it is consistent with known biological facts or experimental evidence. If an intracellular 

substance is known to be present under all conditions, it can be initialized to be in the 1, or ON 

state. Initial states can also be assigned based on the question of interest. For example, one can 

implement a gene knockout by the initial and sustained OFF state of that particular gene. If there 

is insufficient experimental information concerning the concentration or activity level of an 
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element, one can also randomize the initial state of that node. Therefore, a large number of runs of 

dynamic simulations can be carried out with each run randomizing the initial states of the nodes 

that cannot be predetermined (10). The system will sample different potentially viable initial states 

and henceforth take varying routes in the state space. 

Starting from the initial state, the system will evolve as time progresses and should 

eventually settle down into an attractor, that is, a time-invariant steady state or an (ordered or 

unordered) repetition of a certain finite set of states. These attractor states have been proposed as 

representations of cell fates going back to the 1940’s work of C. Waddington (45, 46) and later by 

S. Kauffman (6). The complete set of states that can potentially reach a certain attractor through 

an updating scheme forms the basin of attraction of that attractor. Since synchronous updating is 

deterministic, the basins of attraction for different attractors will be distinct, whereas under 

asynchronous updating, the basins of attraction for different attractors could share states and be 

partly overlapping with each other as illustrated by the following example in Figure 2-3 (39). 

 

 

Node Boolean Rules 

A A* = NOT B 

B B* = NOT A 

 

1 2 

3 4 

Edge Node updating order 

1, 3      B, A 

2, 4      A, B 

 

C E 

B D 

A 
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Figure 2-3. Ilustration of the basins of attraction of a system under different updating schemes. 

The system is composed of two mutually inhibiting nodes A and B (A). The Boolean functions 

are given in table (D). (B) and (C) show the state transition graphs of the system under 

synchronous update (B), and random order asynchronous update (C). The 2-digit vectors inside 

the circles represent the states of node A and B from left to right. In the case of random order 

update (C) the correspondence between the order in which A and B are updated and the 

particular state transitions indicated by edge labels is given in table (E). E.g. starting from an 

initial state of 11, if A is updated first and B is updated second, state 11 will evolve into state 

01. The two unlabeled self-loops in (B) and (C) indicate that if the system is currently in one of 

the two states, the future state will be the same as the current state, regardless of the manner of 

update, thus these are fixed points of the system. Under synchronous update (B), the system has 

3 attractors: 2 fixed points: 01 and 10, and a cyclic attractor. Only the fixed points are preserved 

under asynchronous update (C). In (C), the states 11, 00, 10 form the basin of attraction of 

attractor 10, and states 11, 00, 01 form the basin of attraction of attractor 01. The states 11 and 

00 belong to both basins of attraction. 

 

2.3.5 Steady state analysis 

The system will have the same steady states (fixed points) under both synchronous and 

asynchronous updating, due to the fact that a steady state repeats itself infinitely, making the order 

in which the nodes are updated irrelevant. BooleanNet (41) provides functions to detect the steady 

states of the system. Cell Net Analyzer (42) is also able to probe the steady states of the system, 

which are called ‘logical steady states’ in the package. 

Before we illustrate in a step-by-step manner how to determine the steady states of a 

Boolean network, we note that there are two main focuses encountered in dynamic analysis of 

biological systems: 1) determining the attractors of the whole system (of all nodes), and 2) 
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determining the attractors of a small set of designated output nodes of the Boolean network. The 

second focus is necessarily a subset of the first. The output-oriented analysis is oftentimes not only 

simpler, but also more relevant to signal transduction pathway-related research, where no more 

than several inputs (signals) are considered and the system’s response is usually characterized by 

a single output node. In modeling gene regulatory networks, usually the attractors and the dynamic 

sequence of the whole system correspond to known biological events such as certain phases of the 

cell cycle (8, 47), apoptosis and cell differentiation (48), and thus the first focus, identifying 

attractors of the whole system, is most relevant. 

The fixed points of a Boolean network model can be determined in several ways. One can 

analytically solve the Boolean equations. Since the system being in the steady state means that the 

state vector remains time-invariant, the future state of any node will be the same as its current state. 

Thus, the time-dependent features (indices or asterisk marks) of the Boolean equations can be 

removed, and the set of resulting time-independent equations can readily be solved. One can also 

do repeated dynamic simulations of the system, updating the nodes’ states according to their 

Boolean rules. One can also draw useful conclusions from the existence of particular interaction 

patterns (called ‘network motifs’) (49), such as feed-forward or feed-back loops (as first suggested 

by R. Thomas, 50). Let’s look at the following examples: 

 

Node Boolean Rule 

Input — 

A A* = Input AND (NOT B) 

B B* = A 

Output Output* = A 

 

A                            B 
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Figure 2-4. A four-node signal transduction network in which A is activated by Input, and its 

activation also requires the absence of B. (A) Network representation; (B) the list of Boolean 

rules. 

In the example of Figure 2-4, the system (thus also the Output) has a single attractor for 

any update method. For synchronous update, the attractor is a cycle of period 4 (Figure 2-5A). 

Under general asynchronous updating the attractor spans the whole state space. Every state in the 

latter attractor has multiple edges, both incoming and outgoing (Figure 2-5B). This is because a 

state can have different successor states if a different node is updated. The maximum number of 

possible outcomes from a state under the general asynchronous scheme equals the total number of 

nodes in the system. The system state will traverse all states in the attractor shown in Figure 2-5B), 

following the outgoing edges with a certain calculable probability. For both types of update, the 

average state level of the node Output (the last digit) in the attractor is 0.5. This could be interpreted 

as a 50% up time of a certain system activity.  

 

 

 

 

 

 

A                                              B 
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Figure 2-5. The state transition graph of the system described in Figure 2-4. The 3-digit vectors 

inside the circles represent the state of node A, B, and Output from left to right. The state of the 

Input is fixed at 1, indicating a constant ON signal to the system (not shown in the graph). A 

self-loop on a certain state indicates that if one of the nodes is updated, the system state remains 

the same. For 3 nodes, a total of 8 states exist. (A) Synchronous update. All 8 states are located 

in the same basin of attraction, of which 4 form the attractor. (B) General asynchronous update. 

The attractor is formed by all 8 states. These figures were generated by BooleanNet. 

The critical network motif (49) of the original network is the negative feedback on node A. 

It is the negative feedback, coupled with the Boolean AND rule for node A, which generates the 

oscillatory behavior of the system.  

 

   

Figure 2-6. A four-node signal transduction network wherein A is activated by Input, and its 

activation also requires the absence of B. Either A or B is sufficient to activate the Output. (A) 

The network representation; (B) the list of Boolean rules. 

The next example network (Figure 2-6) differs from the previous one (Figure 2-4) in that 

it contains one more edge from B to the Output, and the state of the Output is determined by A and 

B independently, in a Boolean OR relation. We already know that the negative feedback on node 

A will generate an oscillatory behavior for itself as well as for node B, but does the new edge help 

A                            B 

Node Boolean Rule 

Input — 

A A* = Input AND (NOT B) 

B B* = A 

Output Output* = A OR B 
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improve the activation of the Output? The answer is yes. Under both updating schemes the average 

state level of the Output is ~0.75. If the Boolean relation between A and B in the Output function 

is changed to AND, then the Output level drops to ~0.25. It is indeed reasonable that a more 

stringent condition for activation will decrease the average Output level. Under synchronous 

update, the Output (and also the system) will have period-4 oscillations. In the state transition 

graphs of the system (Figure 2-7), (a) corresponds to Output* = A OR B, and (b) to Output* = A 

AND B.  

 

 

 

 

 

 

 

 

Figure 2-7. The state transition graphs corresponding to the network in Figure 4 with two 

variants of the Boolean transfer functions. The 3-digit vectors represent the state of node A, B, 

and Output from left to right. The state of the Input is fixed at 1. (A) Output* = A OR B. An 

average level of 0.75 of the node Output is observed in the attractor, which is a period-4 

oscillation. (B) Output* = A AND B. An average level of 0.25 of the node Output is observed 

in the attractor. 

A                                            B 
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Figure 2-8. A four-node signal transduction network in which A is activated by Input, B is 

inhibited by Input, the activation of the Output requires the presence of both A and B. (A) The 

network representation; (B) the list of Boolean rules. 

Finally, let’s look at yet another example (Figure 2-8). The characteristic feature of this 

network is two paths that both connect the Input and the Output, but functionally contradict each 

other. Given the AND rule for the Output, the steady state of Output is OFF, and more importantly, 

this outcome is independent from the state of the Input: the Output is decoupled from the Input in 

this case. If OR is used in the transfer function of the Output, its state will be at constant ON instead, 

but it will still be independent from the Input state. 

Now let’s apply the dynamic analysis to the network in Figure 2-2 and see whether a steady 

state of the Output is possible. Given that the Input node is ON, the negative feedback on node A 

will generate an oscillation of states for node A as well as node B. However, since the Boolean 

rule for node C is C* = (NOT A) OR Input, the oscillation coming from branch A will be combined 

by an OR rule with the ON state of the Input. The Output node will henceforth reach an ON steady 

state. The attractor for the state vector of the system, on the other hand, will be a limit cycle, since 

a subset of the nodes is oscillating. 

Node Boolean Rule 

Input — 

A A* = Input 

B B* = NOT Input 

Output Output* = A AND B 

 

A                            B 
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In general, multiple network motifs can be present in the graph representation of a system 

under study, and each has its own contribution to generate advantageous dynamic behaviors, 

stabilize the system function, prevent extreme behavior, or provide system redundancy and 

consequently robustness (51-53). Last but not least, the conditionality present in the Boolean 

transfer functions is often critical in determining the system behavior. 

2.3.6 Model validation: reproduction of known results 

An important step toward obtaining a successful model is to examine the dynamic sequence 

of system states in detail, and compare with biological evidence. If, for instance, under reasonable 

assumptions, starting from a viable initial state, an oscillation of the output is observed whereas it 

is biologically known that the output should exhibit a constant OFF state under such conditions, 

further modification of one or more Boolean transfer functions or even the underlying network 

structure is called for. Such discrepancies can also be a potential indication of components missing 

from the model. One needs to scrutinize all possibilities and make the most accurate, biologically 

truthful model revision by changing Boolean rules, rewiring edges between nodes, and/or 

adding/removing nodes to/from the network, so as to reproduce as many known results as possible. 

In a noteworthy example, Samaga et al. performed a comparison between simulation results 

generated by a Boolean logic model constructed based on the literature and data collected from 

cells on ErbB receptor phosphoprotein signaling (54). They came to a set of 11 hypotheses 

regarding ErbB signaling resulting from the discrepancies between simulation results and 

experimental observations, among which 5 were supported by literature, 5 led to further 

modifications of the model, and 1 implied the absence of specificity expected from a small 

molecular inhibitor. 

2.3.7 Robustness against disruptions and useful implications 
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An important additional assessment is whether the model is robust in terms of changes in 

interactions or Boolean transfer functions. Models that are extremely fragile to such changes may 

not be a good representation to biological systems, as the real systems exhibit substantial 

robustness to changes in concentrations, reaction rates or even mutations (55-59). As currently 

comprehensive models of signal transduction systems are rare, the model should show reasonable 

robustness to changes in the network structure to instill confidence that its results will still stand 

after new components or interactions are discovered. The ability of the model to maintain the wild-

type response under small topological perturbations can be tested by adding or deleting a randomly 

selected node or edge, rewiring edges in the network randomly (for example changing any pair of 

parallel edges to cross-edges) or make an inhibitory interaction into activation or vice versa. For 

example, if in Figure 2-1 node B is knocked out (constitutively OFF), the Output of the system 

will not be affected, due to the OR relation in the Boolean rule of node C. However, if the edge 

from Input to C becomes nonfunctional, a new oscillatory behavior of the system is exhibited. It 

is also possible that existing attractor basins get altered, or completely eliminated, and new ones 

arise from such perturbations of the system. 

Validated models can be used to predict the outcomes of “what if” scenarios, cases that 

were not yet studied experimentally, and they can generate testable predictions and significant 

insights. For example, Mendoza formulated a logic-based model of interactions among cytokines 

and transcription factors in helper T (Th) cells (28). Dynamic simulation under all combinations 

of initial node states revealed four steady states: one corresponding to naïve Th cells, one 

corresponding to Th2 cells, and two corresponding to Th1 cells. The two Th1 cell attractors 

indicated two Th1 cell subpopulations with different levels of IFNγ secretion, nevertheless the 

level of the IFNγ receptor was the same in both attractors, a result supported by the literature. 

25 
 



Mendoza studied in detail how node perturbations (knockout or overexpression) change the 

differentiation fate of Th cells. Several of the model results were supported by the experimental 

literature data while numerous others are novel predictions (28). 

We next take a closer look at Boolean models applied in two different contexts: survival 

signaling in T cells in T-LGL leukemia (12), and interactions among pathogens and a mammalian 

immune system (11). The second example also demonstrates that Boolean modeling is a general 

approach that can be applied at different levels of biological organization, from the molecular to 

the population level (60). 

2.4 Application Examples 

2.4.1 T-LGL leukemia network modeling 

Cytotoxic T lymphocytes (CTLs) are a type of T cells that are activated in order to clear 

virus-infected cells. The activated population undergoes a subsequent activation-induced cell death 

and eventually reaches a balance between proliferation, survival, and apoptosis. T cell large 

granular lymphocyte (T-LGL) leukemia is characterized by an abnormal clonal proliferation of 

cytotoxic T lymphocytes that escaped activation-induced cell death (12). The diseased T cells are 

insensitive to Fas-induced apoptosis and henceforth remain long-term competent. Zhang et al. 

constructed a T-LGL survival signaling network and a Boolean model of the network. Through a 

vast literature search and the use of NET-SYNTHESIS (35) to simplify the original network, a 

final network of 58 nodes and more than 100 edges was constructed. The input node to the system 

is ‘stimuli’, representing antigen stimulus and the output node of the system is ‘apoptosis’, 

representing activation-induced cell death, which is the outcome of the system under normal 

conditions. The model (12) identified two proteins—IL-15 and PDGF— which are critical in 
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inducing and maintaining the diseased cell behavior. The overexpression of the two is a sufficient 

condition to reproduce all known leukemic abnormalities. Furthermore, key survival mediators, 

such as NF𝜅𝜅B, SPHK-1 and GAP were also proposed. These nodes settle down into ON or OFF 

state in T-LGL leukemia, and if the state of at least one of them is flipped artificially (ONOFF 

or OFFON), apoptosis is induced. This offered potential therapeutic targets for curing T-LGL 

leukemia. Several of these predictions were validated experimentally. The study also demonstrated 

that it is possible to integrate qualitative information regarding normal and diseased cellular 

signaling pathways into the same network, and discrete dynamic modeling of this network can be 

used to generate deep insight and validated predictions. 

2.4.2 Pathogen-Immune response network 

Interactions between an invading pathogen and the responses of the immune system form 

a complex signaling network (61-63). Pathogens seek to evade or disrupt the host immune response 

to ensure access to nutrients and self-proliferation. For example, bacteria persist within hosts by 

interfering with antigen production or processing, subverting phagocytosis by immune cells, 

and/or by promoting the anti-inflammatory responses of the host that under normal conditions 

deactivate the protective effectors of the host. Pathogens therefore serve as the input to such a 

network and the pathogen-host immune system interaction can result in either the clearance of the 

pathogen or persistent disease.  

Thakar et al. (11) performed a comparative study between two species of the same genus 

Bordetella to better understand the different ways in which various virulence factors modulate 

immune responses and consequently the adaptability of the pathogen and survivability of the hosts 

(11, 63). Two separate network models for the interaction of these pathogens with their hosts were 
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synthesized. The nodes of the networks were comprised of immune cells, cytokines, antibodies as 

well as conceptual nodes such as phagocytosis, among which 18 were common to both networks. 

‘Bacteria’ is the input to the network, and phagocytosis can be considered the output, which in 

turn leads to the clearance of Bacteria, generating a negative feedback edge from the output to the 

input. The edges in the network represent cytokine production, cell recruitment and differentiation, 

and intercellular signaling processes.  

Each network was then translated into a predictive dynamic model, using Boolean transfer 

functions reconstructed from the literature, and was validated by experimental observations. The 

model led to an understanding of puzzling differences between the two pathogens, e.g. that 

antibody transfer at the time of infection (similar to immunization) aided clearance in B. 

bronchiseptica but not in B. pertussis. On the contrary, the model predicted that for both pathogens 

a secondary infection would be cleared earlier than a first-time infection. Follow-up experiments 

were performed where a B. pertussis or B. bronchiseptica second challenge was given to 

convalescent hosts. The secondary infection was indeed cleared in 15 days, which is significantly 

less than the duration of a first-time infection. The model also predicts that certain cytokines are 

an equally effective prophylactic measure against both pathogens. The study identified three 

phases in Bordetella infections and offered a methodology of in silico evaluation of putative 

medical treatments. This methodology generates novel insights into the interplay between 

pathogen virulence factors and host immune response system, and can be readily adapted to similar 

systems. 
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Chapter 3 

Multi-level Modeling of Light-Induced Stomatal Opening Offers New Insights into 

its Regulation by Drought 

This chapter follows closely my work that has been published in PLoS Computational Biology 10, 

e1003930. I performed all the model-related aspects of the project, including the model 

construction, validation and dynamic simulations. 

3.1 Introduction 

Stomata are small pores located in the epidermes of plants that allow carbon dioxide (CO2) 

uptake for photosynthesis as well as diffusion of O2, produced by photosynthetic reactions, from 

the plant to the atmosphere. They are also the sites of water vapor loss through transpiration. 

Stomata are bordered by pairs of guard cells, the swelling of which leads to stomatal opening 

(enlargement of the pore), while their shrinking leads to stomatal closure. The size and shape 

change of the guard cells is due to their uptake or loss of water, which is driven by changes in 

cellular osmotic potential as a result of the accumulation or depletion of solutes. Guard cells are 

sensitive to multiple external and internal stimuli, e.g. light, intercellular CO2 concentration (Ci), 

the stress hormone abscisic acid (ABA), and vapor pressure difference (VPD) between the leaf 

interior and the surrounding atmosphere [1-9]. Guard cells have photoreceptors for red and blue 

light, and guard cell responses to light of these wavelengths are the main focus of this work. As 

stomatal aperture regulation has a major impact on both the hydration status and the photosynthetic 

status of the plant, guard cells’ sensitivity to stimuli is vital to the survival of vascular terrestrial 

plants. Plants’ successful adaptation to the environment influences all life-forms on Earth. In 

particular, better understanding of the signaling and regulatory networks involved in stomatal 

responses is a necessary step toward improving the drought tolerance of crops.  
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Guard cells have long been a popular system for dissecting the functions of individual 

genes and proteins within signaling cascades. The most studied signals are blue light and ABA 

[10]. There has been extensive experimentation carried out to elucidate the roles of key signaling 

proteins, enzymes, and small molecules in these signal transduction pathways, and to identify the 

relationships between diverse components in the system. Numerous experiments have addressed 

the roles of light quality [3,5,6], Ci [11], and VPD [5,12]. A synergistic action between blue and 

red light in the formation of malate, a major intracellular osmoticum, was discovered [13]. 

Phototropins were identified as blue light-specific photoreceptors of guard cells [14-16], mediating 

blue light-specific stomatal opening. New evidence constantly adds to our knowledge on guard 

cell functioning, e.g. the recently discovered inhibition by phosphatidic acid (PA) of blue light-

induced stomatal opening via type 1 protein phosphatase (PP1) [17] and the relationship between 

the activation of the H+-ATPase and light quality [18]. Much less has been done, however, on a 

systems level to synthesize all existing evidence into a network model of light-regulated stomatal 

opening, or to elucidate the crosstalk between different signal transduction cascades, such as those 

triggered by light and ABA. One such pioneering work was done by Li et al. on modeling the 

ABA signal transduction network leading to stomatal closure [19]. That work synthesized the 

published evidence for direct interactions and indirect causal effects between cellular components 

into a consistent network of ABA-induced closure and formulated a Boolean dynamic model that 

recapitulated or predicted a large number of knockout phenotypes. Another recent systems level 

advance is the development of the OnGuard software that incorporates ion transporters at the guard 

cell plasma and vacuolar membrane, the salient features of osmolyte metabolism, and the major 

controls of cytosolic Ca2+ concentration and pH [20]. In this software, and models that use it 

[21,22], the light signal transduction pathways are approximated by a pre-defined, light-dependent 
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increase in the activities of all ion-translocating ATPases at the plasma and vacuolar membrane, 

and in sucrose and malate synthesis. That work does not consider light of different wavelengths 

nor the specific mechanisms through which the different types of light signals are perceived and 

transduced.  

Given the abundance of experimental results regarding stomatal opening and its regulation, 

dynamic modeling of the full light-stimulated stomatal opening process and its inhibition by ABA 

is now tenable, and is the focus of this work. I synthesized more than 85 articles describing 

experimental observations into a comprehensive network of 70 components, of which 4 are signals 

(blue light, red light, CO2, and ABA), and stomatal opening is the sole output. The network 

incorporates in a parsimonious manner more than 150 interactions or causal relationships between 

components. I developed a dynamic model based on the network by characterizing each 

component with discrete activity levels and by describing its regulation with a combination of 

logic and algebraic functions. The multiple activity levels of the components and the detailed 

updating functions offer a biologically more accurate representation of the system than Boolean 

models; for example, the output node, stomatal opening, has more than 20 levels in the model, 

ranging from 0 to 14. The model has a repertoire of more than 1031 distinct states, which gives it 

substantial dynamic richness and makes it one of the most complex dynamic models of biological 

systems (see also [23-26]). At the same time the discreteness of the states maintains the 

computational simplicity of the model. The model recapitulates a comprehensive array of known 

behaviors and phenotypes. Since the model is made up of node-level information (i.e. the 

regulatory function of each component), this agreement serves as validation. The model enables 

an unprecedented understanding of the regulation of stomatal opening and predicts new 

phenotypes caused by the disruption of components. Moreover, the model reveals aspects of the 
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system, particularly in the interplay between red light and ABA, where critical experimental 

evidence is lacking. 

3.2 Results 

3.2.1 Assembly of the Light-Induced Stomatal Opening Signal Transduction Network 

The first step in building the model is to construct the regulatory network that represents 

the system. A network is an abstraction of a system in which each element is represented as a node, 

and each pairwise interaction or regulatory relationship is represented by an edge. Edges in signal 

transduction networks are generally directed (meaning that the interaction has a source and a target) 

and signed (positive or negative). The majority of the known components involved in stomatal 

opening are proteins, including receptors, enzymes, channels, protein kinases and phosphatases, 

thus most of the nodes of the network represent proteins. To be able to incorporate the metabolic 

processes and ion fluxes also involved in stomatal opening, we also include important inorganic 

compounds, ions, certain biological processes (i.e. photophosphorylation, carbon fixation, 

stomatal opening) and entities (e.g. mitochondria) as nodes. In some cases, the subcellular 

localization of a molecule or enzyme can change, making a key difference in the modulation of 

stomatal opening. In these cases we use multiple nodes, one for each location. Positive edges in 

the  network correspond to activation, up-regulation, or biochemical synthesis, and are represented 

with a terminating arrowhead, while negative edges indicate deactivation, inhibition, or 

consumption, and are shown as terminating in a solid circle. The translocation of a protein or the 

transport of solutes through channels or carriers is also represented by an edge. A relationship 

stimulated by another component of the network is represented by an edge starting from the 

stimulus node and incident on the stimulated edge. For instance, malate exits the cytosol and enters 

the apoplast through active anion efflux channels (AnionCh); this is represented by an edge from 
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AnionCh incident on the edge starting from cytosolic malate and ending in apoplastic malate. 

Certain causal regulatory relationships may be mediated by other nodes; a path (a sequence of 

nodes and edges) is a better representation of such indirect relationships between nodes. I used 

logical inference to incorporate the components suggested by the totality of relevant experiments 

to mediate such indirect causal relationships; this process has been formalized previously [19,27]. 

I distilled more than 85 articles from the literature into 153 edges among 70 nodes, summarized in 

supporting Table S1 of reference [106]. Supporting Text S2 of [106] provides an illustration of the 

process of network construction based on the literature, in which the pathway that starts from blue 

light and ends at the H+-ATPase is used as an example. 

The plant hormone ABA, produced in response to environmental stresses such as drought, 

opposes the effect of light on guard cells and reduces stomatal apertures [7,10,28,29]. To maintain 

the focus on stomatal response to light, yet to be able to investigate the cross-talk between different 

signals, the ABA-response section of the model is a condensed representation of the relevant 

pathways. I followed two contraction principles to achieve a simpler yet dynamically equivalent 

representation of the system [30]. Functionally redundant pathways in this section are merged; for 

instance, the two mechanisms by which NO can elicit calcium release from intracellular stores 

(CaR) (by cyclic ADP-ribose or by 8-nitro-cyclic guanosine monophosphate [31,32]) are 

compressed into a single edge from NO to CaR. Further, if the sole known function of an element 

is to pass on the signal it received, i.e. it has a single incoming activation edge and a single outgoing 

activation edge, the element is not shown in the model and its upstream regulator is directly 

connected to its downstream target. 
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Figure 3-1. Current knowledge of light-induced stomatal opening and its regulation by CO2 and 

ABA. The color of the nodes represents their functional connectivity relative to the four signal nodes: 

CO2, red light, blue light, and ABA. CO2 and Ci are colored grey. Nodes that can be activated by 

blue light alone are colored blue. Nodes that can be activated by either red or blue light are colored 

purple. Nodes are colored yellow if they respond to the plant hormone ABA, and green if they are 

affected by both ABA and blue light. Nodes with no upstream effectors (called source nodes) are 

colored white, stomatal opening is colored teal. I use a red shadow to indicate nodes that are 

characterized by three or more states in the dynamic model. 

To improve the visualization, multiple edges that originate from a single node may start together 

and bifurcate later toward their individual targets. Similarly, multiple positive edges that end at the 

same node may merge before reaching the target. Edge bifurcation or merging forms T-shaped 

junctions, while the crossing of two edges forms plus-shaped junctions. 

The full names of the network components denoted by abbreviated node names are: 14-3-

3 proteinH-ATPase, 14-3-3 protein that binds to H+-ATPase; 14-3-3 proteinphot1, 14-3-3 protein that 
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binds to phototropin 1; ABA, abscisic acid; ABI1, 2C-type protein phosphatase; acid. of apoplast, 

the acidification of the apoplast; AnionCh, anion efflux channels at the plasma membrane; 

AtABCB14, ABC transporter gene AtABCB14; Atnoa1, protein nitric oxide-associated 1; 

AtrbohD/F, NADPH oxidase D/F; AtSTP1, H-monosaccharide symporter gene AtSTP1; Ca-

ATPase, Ca-ATPases and Ca2+/H+ antiporters responsible for Ca2+ efflux from the cytosol; CaIC, 

inward Ca2+ permeable channels; CaR, Ca2+ release from intracellular stores; carbon fixation, light-

independent reactions of photosynthesis; CDPK, Ca2+-dependent protein kinases; CHL1, dual-

affinity nitrate transporter gene AtNRT1.1; Ci, intercellular CO2 concentration; FFA, free fatty acids; 

H-ATPase, the phosphorylated H-ATPase at the plasma membrane prior to the binding of the H-

ATPase 14-3-3 protein; H-ATPasecomplex, 14-3-3 protein bound H-ATPase; KEV, K+ efflux from 

vacuole to the cytosol; Kin, K+ inward channels at the plasma membrane; Kout, K+ outward channels 

at plasma membrane; LPL, lysophospholipids; NADPH, reduced form of nicotinamide adenine 

dinucleotide phosphate; NIA1, nitrate reductase; NO, nitric oxide; OST1, protein kinase open 

stomata 1; PA, phosphatidic acid; PEPC, phosphoenolpyruvate carboxylase; phot1, phototropin 1; 

phot1complex, 14-3-3 protein bound phototropin 1; phot2, phototropin 2; photophosphorylation, light-

dependent reactions of photosynthesis; PIP2C, phosphatidylinositol 4,5-bisphosphate located in the 

cytosol; PIP2PM, phosphatidylinositol 4,5-bisphosphate located at the plasma membrane; PLA2β, 

phospholipase A2β; PLC, phospholipase C; PLD, phospholipase D; PMV, electric potential 

difference across the plasma membrane; PP1cn, the catalytic subunit of type 1 phosphatase located 

in the nucleus; PP1cc, the catalytic subunit of type 1 phosphatase located in the cytosol; protein 

kinase, a serine/threonine protein kinase that directly phosphorylates the plasma membrane H-

ATPase; PRSL1, type 1 protein phosphatase regulatory subunit 2-like protein1; RIC7, ROP-

interactive CRIB motif-containing protein 7; ROP2, small GTPase ROP2; ROS, reactive oxygen 

species; [Ca2+]c, cytosolic Ca2+ concentration; [Cl-]c/v, cytosolic/vacuolar Cl- concentration; [K+]c/v, 

cytosolic/vacuolar K+ concentration; [malate2-]a/c/v, apoplastic/cytosolic/vacuolar malate2- 

concentration; [NO3
-]a/c/v, apoplastic/cytosolic/vacuolar nitrate concentration. 
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Figure 3-1 represents the resulting network of 70 nodes and 153 edges. The color coding 

of the nodes signifies the functional connectivity of each node to the four signals, which is based 

on the existence of paths between a signal and the respective node but is also informed by the 

specific combinatorial regulation of the node (described in detail in the section "Elements of the 

dynamic model"). A brief description of the biology represented by the network is as follows; 

Supporting Text S3 of [106] provides a detailed description of the network. Both red and blue light 

activate guard cell photophosphorylation, providing adenosine triphosphate (ATP), the primary 

chemical energy transporter within the cell, for metabolic processes [33]. Subsequent carbon 

fixation provides sugars, primarily sucrose, as osmotica for guard cell swelling and stomatal 

opening [34,35]. This pathway is formed by purple colored nodes in the left side of the network. 

A blue light-specific pathway (blue colored symbols) leads to the activation of the plasma 

membrane H+-ATPase [4,36]. H+-ATPase activity hyperpolarizes the plasma membrane [4], with 

subsequent uptake of K+ [37,38] and accumulation of its counterions, Cl-, NO3
-, and malate2- 

[13,33]. These ions also function as osmotica during light-induced stomatal opening [6,39,40]. The 

stress hormone ABA initiates a signal transduction network (yellow nodes) which ultimately 

inhibits the plasma membrane H+-ATPase, inhibits malate synthesis, and induces malate 

breakdown [2,41-45]. Thus the majority of the nodes in the network (the green-colored nodes) are 

regulated by blue light and ABA. The twenty-three nodes that have more than two levels in the 

model are highlighted with a red shadow. 

3.2.2 Structural Analysis of the Network 

Representing a system with a network reveals important characteristics and 

interrelationships that have been hidden previously, and enables researchers to test prevailing 

theories and to identify new hypotheses [46]. I started by looking at the node degree, defined as 
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the number of edges to which the node is connected, of the 70 nodes. The degree can be broken 

into the in-degree, i.e. the number of incoming edges (and therefore, of direct upstream regulators), 

and the out-degree, i.e. the number of outgoing edges (and therefore, of direct downstream targets). 

The four signal nodes, blue light, red light, CO2, and ABA, have an in-degree of zero. The node 

stomatal opening is the only node in the system with an out-degree of zero. Table 1 lists the 10% 

of nodes with the highest in-degree, out-degree, and total degree, respectively. Most nodes in this 

list are known key mediators or regulators of light-induced opening. For instance, the node that 

represents the cytosolic malate2- concentration has the highest in-degree and also the highest total 

degree in the network. Malate, the major counterion for K+ in guard cells and a common organic 

metabolite, is indeed involved in multiple metabolic pathways. The node that represents the 14-3-

3 protein-bound H+ ATPase, H+-ATPasecomplex, is also among the nodes with highest in-degree and 

total degree, indicating its multi-tiered regulation and its important role in determining the 

membrane potential and hence the flow of multiple ions. The ion channels Kin, Kout, and anion 

efflux channels are also among the highly regulated nodes in the system. The stress hormone ABA 

has the highest out-degree, due to its targeting of multiple nodes in the pathway of blue light-

induced stomatal opening and in the ABA signaling network. Cytosolic Ca2+ concentration ([Ca2+]c) 

is an important secondary messenger for both blue light and ABA signaling, as reflected by its 

high out-degree and total degree. The node PMV, which denotes the potential across the plasma 

membrane, also has high out-degree and total degree, reflecting its control of channel activities.  
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Figure 3-2. Structural analysis of the signaling network. (A) Compressed representation of the 

network that shows the four signals to the network, two composite nodes that represent SCC1 (which 

contains 31 nodes) and SCC2 (which contains 3 nodes), as well as photophosphorylation, sucrose, 

and the output of the network, stomatal opening. The nodes not shown do not affect the network’s 

connectivity and are contracted into the edges shown in black. Five paths do not cross SCC1; they 

start from blue light, red light, or CO2, pass through photophosphorylation, merge at SCC2, reach 

sucrose, and lead to stomatal opening. Signal-specific edges are colored blue (for blue light), red 

(for red light), grey (for CO2), the edges shared by both blue and red light are purple. (B) The 4 

edges whose removal results in the highest node loss from SCC1. The unperturbed SCC1 contains 

31 nodes, which is the basis for the percentage calculation. (C) Sub-structure of SCC1. Group 1 

contains 17 nodes, and group 2 contains 12 nodes. 
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Next, I identified the strongly connected components of the system. A strongly connected 

component is a group of nodes wherein any node is reachable from any other node through a path 

(a series of consecutive nodes and edges). Intuitively, a strongly connected component is a closely-

knit group of nodes with interwoven feedback that usually forms an important functional module 

of a network. The stomatal opening network contains three strongly connected components (SCCs), 

comprising 31 nodes (SCC1), 3 nodes (SCC2) and 2 nodes (SCC3), respectively (Figure 3-2). The 

3-node SCC2 represents the interplay amongst Ci and carbon fixation processes in guard cells and 

mesophyll cells: Ci is required by photosynthesis and photosynthesis lowers Ci in turn. The 2-node 

SCC3 represents the two directions of transport between apoplastic and cytosolic NO3
-. The largest 

SCC signifies the crosstalk between the different signals of the system, since all four signals of the  

model connect to it. Eight of the thirteen high-degree nodes listed in Table 3-1 are in the largest 

SCC. Most of the remaining high degree nodes have only outgoing or incoming edges and thus 

cannot be strongly connected. Twenty-seven nodes, including the nodes of SCC2, can reach the 

nodes of SCC1 through directed paths. Eleven nodes, including SCC3, can be reached from SCC1 

through directed paths. Only a single node, CHL1, is not connected to SCC1 by a directed path. 

Degree Types and 
Values List of Nodes 

In-degree 

10 [malate2-]c 

6 H+-ATPasecomplex, Kout, 
AnionCh, stomatal opening 

5 Kin, [K+]c, [NO3
-]c 

Out-degree 

9 ABA 
8 [Ca2+]c, PMV 

6 AnionCh, Ci 
5 phot2 

Degree 

13 [malate2-]c 
12 PMV, AnionCh 
11 [Ca2+]c 

10 H+-ATPasecomplex 
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9 [K+]c, ABA 
Table 3-1. The top 10% of nodes in terms of in-degree, out-degree, and total degree in the network. 

For example, the node AnionCh has an in-degree of 6, an out degree of 6, and a total degree of 12. 

There are 19,436 simple paths (i.e., paths with no repeated nodes) between the four signal 

nodes and stomatal opening. The vast majority of these paths pass through SCC1. Remarkably, 

five important paths bypass SCC1 (see Figure 3-2A). The five paths start from blue light, red light 

and CO2, respectively, pass through photophosphorylation and SCC2, and then through sucrose, 

and finish at stomatal opening. Photophosphorylation and SCC2 together represent the 

photosynthetic carbon fixation processes in guard cells and mesophyll cells. Two conclusions can 

be drawn based on the existence of these SCC1-bypassing paths: i) The five paths represent 

photosynthetic carbon reduction pathways. ABA does not inhibit photosynthesis in mesophyll 

cells [47], and there is no indication that ABA would inhibit guard cell photosynthesis. Thus there 

is no current wet bench evidence that ABA would be able to affect the accumulation of sucrose 

via guard cell photosynthesis (see Figure 3-2A). ii) Based on current knowledge, sucrose 

accumulation does not introduce any feedback into the system. 

I next ranked the 60 edges of SCC1 according to their importance to SCC1 integrity. If a 

strongly connected component is densely connected, the loss of a single edge should not affect the 

reachability of node pairs in it. However, if after the loss of an edge certain nodes can no longer 

reach other nodes, or cannot be reached from other nodes, they are no longer part of the strongly 

connected component and thus the number of nodes in the strongly connected component 

decreases. Supporting Table S2 of [106] provides information on the effects of removal of each 

edge. Removal of any one of 26 edges led to no change in the composition of SCC1. Loss of any 

one of 19 edges led to minimal changes, i.e. the loss of a single node from SCC1. Among the edge 
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removals that do induce significant breakdown, the four listed in Figure 3-2B lead to loss of more 

than 40% of the nodes in SCC1. All four edges are closely related to [Ca2+]c, indicating the critical 

role of [Ca2+]c in the formation of SCC1. A closer examination revealed that SCC1 contains two 

smaller groups of strongly connected nodes (Figure 3-2C). Group 1 contains 12 nodes from the 

ABA signaling pathways. Group 2 contains 17 nodes, including the H+-ATPase, its four regulators, 

nodes denoting major ions, and PMV, which are major mediators of blue light signaling. Seven 

edges connect group 1 to group 2, which is the reason why the nodes in group 2 are colored green 

in Figure 3-1. However, there is a single path from group 2 back to group 1, mediated by CaIC 

and [Ca2+]c. The loss of any of the nodes or edges involved in this path results in a major breakdown 

of SCC1 (Figure 3-2B). The fact that both groups are strongly connected with [Ca2+]c indicates 

that [Ca2+]c bridges the signaling between blue light and ABA. This conclusion is corroborated 

experimentally [48-53]. Indeed, it is known that [Ca2+]c is an important secondary messenger in 

both blue light [53,54] and ABA signaling [55,56]. The  strongly connected component analysis 

offers additional insight into the role of [Ca2+]c and reveals that it is a key participant in a feedback 

loop formed by these pathways.  

3.2.3 Elements of the dynamic model 

The signal transduction network described in Figure 3-1 forms the basis of the  dynamic 

model of light-induced stomatal opening. The dynamic model characterizes each node with a state 

variable (which we will also refer to as “level”) and with a regulatory function (also called transfer 

function) that indicates the future state of the node as a function of the current state of its regulators. 

Iterative determination of each node’s state from a suitable initial condition yields the dynamic 

behavior of the whole system. Importantly, the global dynamics of the whole system is an emergent 
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property that cannot be directly controlled by the modeler but arises from the local dynamics (the 

regulation of each component). 

I developed a discrete dynamic model in which the nodes are assigned two or more 

qualitative levels. I aimed to employ the minimal number of levels that was sufficient to describe 

the experimentally observed relative outcomes for various conditions (e.g. combinations of signals 

and manipulations of node states). The two possible levels of binary nodes (0 and 1) can be 

interpreted as “OFF”, “low” or “inactive”, versus “ON”, “high”, or “active”. Three levels can be 

interpreted as “low”, “medium” and “high”. The benefit of having three-level nodes is most evident 

when three qualitatively different categories of values are observed under three or more different 

experimental conditions, e.g. stomatal opening under red light alone, blue light alone or under dual 

beam. For such scenarios, having nodes with only two levels would force the grouping of 

qualitatively different values, and therefore lead to information loss. Among the observations that 

necessitated the use of more than two levels are the synergistic (stronger than additive) effect 

between red light and blue light in malate formation [13] and stomatal opening [3,5,9,39,57-59], 

and the complex behavior of [Ca2+]c as a secondary messenger during blue light-induced stomatal 

opening [50,51,60] and ABA-induced stomatal closure [43,48,49,61]. In addition, the osmotic 

potential difference across the plasma membrane that leads to stomatal movement results from the 

totality of all solutes, whose effect is biophysically additive. In the  model, 47 nodes have two 

levels, nine nodes have three levels (including photophosphorylation, carbon fixation, [Ca2+]c, 

CO2), two nodes have four levels (ATP, Ci), three nodes have five levels (Protein Kinase, H+-

ATPasecomplex, PMV) and nine nodes have more than five levels (including protein kinase, H+-

ATPasecomplex, [K+]c, [malate2-]c, stomatal opening). Stomatal opening, in particular, has more than 

20 reachable levels, ranging from 0 to 14.01. The numerical values of these levels are not 
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meaningful in isolation; rather, their relationships are reflective of the experimentally observed 

relative outcomes. Supporting Text S1 of [106] provides a listing of all node levels. 

The four signals of the model were assigned a set of levels that represent a particular 

experimental condition (light condition, CO2 concentration and ABA presence or absence). The 

possible levels of blue light, red light and ABA are ON (1) or OFF (0), indicating their presence 

or absence. CO2 has three levels, 0 (reduced CO2), 1 (ambient atmospheric CO2), and 2 (high CO2). 

The signal levels can be externally changed, e.g. to simulate a light pulse experiment. The 64 

internal nodes were chosen to have an initial state of 1 (7 nodes) or 0 (57 nodes) based on 

experimental information. Supporting Text S1 of [106] describes these initial states and their 

justification. 

Time is discretized into steps in the model. In one time step, the state of each node is 

updated according to the transfer function assigned to it [19]. I followed random order 

asynchronous update [62]. A random permutation of the nodes (except the node stomatal opening) 

is first established at the beginning of each time step, and then all nodes are updated according to 

this sequence. Stomatal opening, as the sole output of the model, is always updated last within 

each time step. This algorithm effectively implements a random sampling of process durations. 

We have chosen this random sampling due to the scarcity of experimental data on relative reaction 

speeds of signaling pathways and on the timing of specific intracellular events. The degree of 

randomness can be reduced as timing information becomes available. A delay of 10 time steps is 

implemented for the node sucrose (see the transfer function for the node sucrose in Supporting 

Text S1 of [106]). I determined empirically that for the network a total of 18 time steps in each 

simulation is sufficient for all components to reach a time-invariant state (steady state or, for a 

minority of nodes such as [Ca2+]c, sustained oscillation). 
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The transfer function of a target node indicates the future state of the target node as a 

function of the current states of the nodes that have a directed edge impinging on the target. The 

transfer functions were developed with information from the literature, such as the state of the 

target node when one of its regulators is knocked out, and basic biochemical or physical principles 

when applicable. I aimed to construct the simplest transfer functions to minimize the number of 

unknown parameters in the model. The transfer functions combine logic clauses (using the 

Boolean operators NOT, AND, OR) with addition, subtraction, and multiplication. This approach 

enables a more detailed and accurate representation than traditional Boolean models, while 

maintaining simplicity and using few parameters. Two examples of transfer functions are given in 

the Materials and Methods section, and Supporting Text S1 of [106] provides a full list of the 

transfer functions and their justifications. 

I tested different numbers of replicate simulations, and found that 2,000 replicate 

simulations were sufficient for a high reproducibility of the results (see Supporting Text S4 of 

[106]). I also demonstrated that the model is robust against uncertainty in the update rules without 

losing its sensitivity to new information on critical nodes (see Supporting Text S4 of [106]). For 

each experimental condition studied, a total of 2,000 simulations was performed, and for each node, 

the activity level averaged over all simulations is reported. Experimental condition refers to the 

level of the four signals and/or any other elements of the system that might be silenced to represent 

knockout (KO) experiments or made constitutively active; these factors are then invariant across 

all 2,000 runs. 

Importantly, since the input to the model is local (the relationships among pairs of nodes, 

see Supporting Table S1 of [106]), an agreement between the global dynamic results of simulations 

from the model and wet bench results is not an inherent property of the model. As shown below, 
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however, the model does in fact successfully reproduce known dynamic features exhibited by 

stomatal opening under various conditions, providing strong support for the validity of the model. 

3.2.4 The model recapitulates and elucidates wild type responses to light 

 

Figure 3-3. Simulation of stomatal opening level in response to a sequence of light conditions. The 

arrows with corresponding colors and directions signify the imposition (upward) or removal 

(downward) of a specific light signal. The system is in darkness at time step 0; a red light signal is 

added at step 4; a blue light signal is turned on at step 15 and off at step 24. The blue light signal 

induces a sharp increase in the stomatal opening level. The stomatal opening level gradually returns 

to the red light-induced steady state level after the blue light pulse.  

I started by comparing the model’s results to experiments under different qualities of light 

in ambient air. In signature experiments that investigated the roles of red and blue light in 

stimulating stomatal opening, leaves were illuminated with constant background red light upon 

which a short blue light pulse was superimposed. The stomatal conductance increased slightly in 

response to the red light, then displayed dramatic transient increase in response to the blue light 
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pulse [5,9,57,58]. As depicted in Figure 3-3, the model successfully reproduces this temporal 

pattern of stomatal opening. 

 

Figure 3-4. Simulation of stomatal opening under different conditions of light quality in ambient air. 

(A) Mean stomatal opening levels as a function of time step from 2,000 simulations. Purple: dual 

beam (blue light = red light = 1, CO2 = 1); blue: blue light (blue light = 1, red light = 0, CO2 = 1); 

red: red light (blue light = 0, red light = 1, CO2 = 1). The standard error of the mean for the stomatal 

opening level is smaller than the symbols, and is consequently not shown. (B) Summary table of 

results for several simulated variables. The first three columns summarize the results shown in (A) 

indicating the maximum (steady-state) opening level, the number of time steps at which 50% of 

simulations reach 50% of the maximum level (t50%) and the number of time steps at which 95% of 

simulations reach 95% of the maximum level (t95%). The next two columns indicate the maximum 

malate levels and the maximum activation levels of the H+-ATPasecomplex. The two right-most 

columns present the contribution of different osmotica (ions vs. sucrose) to stomatal opening in 

response to different light qualities. 
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I simulated wild type stomatal responses to sustained light in ambient air, as illustrated in 

Figure 3-4A. The specific combination of signals for each curve (blue light, red light, or dual beam) 

is initiated at time step 0 and maintained throughout the simulation. All three time courses of 

average stomatal opening levels (over the 2000 simulations) have similar sigmoidal shapes. I 

consistently observed sigmoidal timecourses for stomatal opening and other variables and in the 

following summarize them by three parameters (Figure 3-4B): the maximal (steady state) value of 

the mean level, the number of time steps at which 50% of simulations reach 50% of the maximal 

(steady state) level (t50%), and the number of time steps at which 95% of all simulations reach 95% 

of the maximal level (t95%). In the presence of both blue and red light, the average stomatal opening 

level reaches a maximum of ~11.28 in ~10 steps, whereas red light alone only generates an opening 

level of 1.00. Notably, blue light, with an opening level of 4.15, is more effective than red light in 

inducing opening, which is consistent with experimental observations of stomatal apertures [3,5]. 

A synergistic action of red and blue light on stomatal opening, which has been observed 

experimentally [5,9,39,57], is reproduced in Figure 3-4A: the stomatal opening level under both 

blue and red light (dual beam) is larger than the sum of opening levels under each type of light 

alone.  

Malate, a common organic compound found in plants, is one of the major counterions for 

K+, causing guard cell swelling and stomatal opening. The action spectrum of malate formation 

shows a synergistic action between red and blue light, i.e. the malate synthesis level under blue 

light with a red light background (dual beam) is higher than the sum of levels under each type of 

light (red or blue) alone [13]. This provides a valuable criterion to evaluate the model. Simulation 

results presented in Figure 3-4B clearly indicate that the maximal malate level under dual beam 

illumination is higher than the sum of maximal levels accumulated under individual light qualities. 
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The result that malate has no observable accumulation under red light alone is also in accordance 

with experiments [35]. 

Also listed in Figure 3-4B is the maximum activation level of the H+-ATPasecomplex 

obtained in the model under each light condition with ambient air. The proton pump, H+-ATPase, 

is responsible for the plasma membrane polarization status and for concurrent ion flows. The 

model indicates that the H+-ATPasecomplex is activated to the highest degree under a dual beam, to 

a significant degree under blue light alone, and is inactive under red light alone. Experimental 

evidence on the activation of the H+-ATPase under red light alone is mixed (see section 2.3 

Discussion). The model supports the conclusion that in ambient air the H+-ATPase is not 

significantly activated under red light. The result that blue light alone can activate the proton pump 

is consistent with multiple experiments [4,36,63-65]. The model predicts synergy between red and 

blue light in the activation of the proton pump, and it suggests that this synergy is one of the 

mechanisms that underlies the synergy between red and blue light in stomatal opening and malate 

accumulation. 

Figure 3-4B also presents the model’s prediction of the relative contribution of the two 

major types of osmotica, ions (K+ and its counterions) and sucrose, to the osmotic potential under 

different light qualities in ambient air. These relative contributions are normalized such that their 

sum is 100%; see Supporting Text S1 of [106] for the detailed definition of the contribution of 

each osmoticum to osmotic potential in the model. The model indicates that ions are the 

predominant osmoticum being accumulated in response to dual beam or blue light (82.5% and 

75.9%, respectively), whereas sucrose is the sole osmoticum responsible for red light-induced 

stomatal opening. These results agree with experimental findings: ion accumulation was observed 

to take place predominantly under white light or blue light, and is nearly non-observable under red 

53 
 



light under ambient CO2 conditions [6,35,39]; sucrose accumulation takes place under either blue 

or red light [35]. 

3.2.5 The model explains the effect of external CO2 levels 

 

Figure 3-5. The effect of CO2-free air on light-induced stomatal opening and H+-ATPase activity. 

Simulations of (A) maximum stomatal opening level, and (B) maximum H+-ATPase activity level 

in air with moderate CO2 concentration (+CO2) compared to CO2-free air (-CO2) under different 

light conditions. Red color indicates red light, blue color indicates blue light, purple color indicates 

dual beam. Darker colors represent air with moderate CO2, and lighter colors represent CO2-free air. 

(A) Stomatal opening is significantly enhanced by CO2-free air under all light conditions. (B) The 

H+-ATPase activity pattern parallels that of stomatal opening levels in having higher levels in the 

absence of CO2. 
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I investigated the effect that different levels of CO2, another input signal to the model, has 

on stomatal opening induced by different qualities of light. The CO2 content in the ambient 

atmosphere affects light-induced stomatal opening. Air with lower CO2 concentration or CO2-free 

air was shown to promote white light-induced stomatal opening [1], blue light-induced stomatal 

opening [5,58], and red light-induced stomatal opening [40]. The model captures the enhancement 

of stomatal opening levels by low CO2 under all light conditions (Figure 3-5A). The simulations 

also indicate that the pattern of the maximal H+-ATPase activity in response to different light and 

CO2 conditions parallels that of stomatal opening (Figure 3-5B). The model thus predicts that the 

H+-ATPase activity level is promoted by CO2-free air compared to ambient air under all light 

conditions, and suggests that the promotion of H+-ATPase activity level may contribute to the 

enhancement of stomatal opening levels by CO2-free air. 

3.2.6 The model recapitulates perturbation scenarios 

In order to further test the validity of the model, I next investigated a number of 

perturbation scenarios. 

Treatment 
Maximum 
Stomatal 
Opening 

t50% t95% 

Dual Beam 11.28 6 10 
Dual Beam+DCMU 3.15 6 9 

Blue Light 4.15 7 10 
Blue Light+DCMU 1.58 7 10 

Red Light 1 7 9 
Red Light+DCMU 0 0 0 

 

Treatment Maximum Levels t50% t95% 
Dark Stomatal Opening 0 0 0 

A 

B 
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 K+ Uptake 0 0 0 
Fusicoccin+Dark Stomatal Opening 9 3 4 
 K+ Uptake 9 3 4 

 

Table 3-2. Simulated effects of DCMU and fusicoccin. (A) The effect of DCMU on stomatal 

opening under different light conditions. (B) Stomatal opening and K+ uptake induced by fusicoccin 

in darkness. 

DCMU, a photosynthetic inhibitor, completely inhibits red light-induced stomatal opening, 

but only partially inhibits blue light-induced stomatal opening [3]. The simulation of the DCMU 

effect (via maintaining the node photophosphorylation at level 0) is consistent with these 

experimental observations: the stomatal opening level drops from 1 to 0 under red light, indicating 

a total inhibition, while the same disruption has a partial effect on stomatal opening induced by a 

dual beam or by blue light (see Table 3-2). 

Fusicoccin is a fungal toxin that stimulates K+ uptake in guard cells and causes stomatal 

opening in darkness [66,67]. Fusicoccin has been widely used as a physiological tool to investigate 

guard cell signaling [68]. Fusicoccin activates the plasma membrane H+-ATPase via a mechanism 

that involves inactivation of an autoinhibitory domain [69,70]. I simulated the effect of fusicoccin 

on the H+-ATPase by fixing the state of the H+-ATPase at its maximum activation level. The 

simulation indicated that without fusicoccin, stomatal opening and K+ levels remain 0 in darkness 

(see Table 3-2). This is due to the absence of H+-ATPase activation in the dark. When fusicoccin 

is present, stomata open despite the absence of light, and K+ increases in the darkness as well. The 

simulation suggests that the H+-ATPase, when activated by fusicoccin in the dark, leads to the 

hyperpolarization of the plasma membrane and the subsequent activation of K+ uptake channels. 

The accumulation of K+ and its counterions in the guard cell is the cause for stomatal opening in 
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the dark in the presence of fusicoccin. Both behaviors are consistent with experimental findings 

[66,67]. 

3.2.7 The model reveals the relative contributions of different osmotica 

K+ and its counterions, and sugars, mostly sucrose, are the two types of primary osmotica 

contributing to stomatal opening. As presented earlier, light quality is one of the determining 

factors of osmotic composition (Figure 3-4B). In addition, varying the environmental CO2 

concentration was shown to have an effect on osmotic composition as well: CO2-free air or air 

with low CO2 concentration was observed to induce stomatal opening accompanied by K+ uptake 

in response to red light [40]. I systematically investigated the effect of different combinations of 

light qualities and CO2 concentrations on the contribution of each type of osmoticum during 

stomatal opening (Table 3-3). The results indicated that in ambient air, ion accumulation is the 

predominant mechanism leading to stomatal opening under dual beam or blue light, while sucrose 

is the major osmoticum during red light-induced stomatal opening. In the case of CO2-free air or 

air with reduced CO2 concentration, the model corroborates Olsen et al. (2002) on the importance 

of K+ uptake during red light-induced stomatal opening [40], and predicts the absence of sucrose 

and the predominance of ion accumulation as an osmoticum under all light qualities. The model 

predicts that ion accumulation is severely suppressed in air with elevated CO2 concentration, and 

that under high CO2 concentration, sucrose is the primary osmoticum responsible for stomatal 

opening under all light conditions. 

CO2 
Content Light Phenotype 

Maximum  
Stomatal 
Opening 

t50% t95% Composition of 
Osmotica 

      
Ions (K+, 
Cl-, NO3

-, 
malate2-) 

Sucrose 
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Ambient 
CO2 

Dual 
Beam Wild Type 11.28 6 10 82.5% 17.5% 

  H+-ATPase KO 2 7 10 0.0% 100.0% 

  Sucrose 
Depletion 9.28 6 9 100.0% 0.0% 

 Blue 
Light Wild Type 4.15 7 10 75.9% 24.1% 

  H+-ATPase KO 1 7 10 0.0% 100.0% 

  Sucrose 
Depletion 3.15 7 10 100.0% 0.0% 

 Red 
Light Wild Type 1 7 9 0.0% 100.0% 

  H+-ATPase KO 1 7 9 0.0% 100.0% 

  Sucrose 
Depletion 0 0 0 — — 

CO2-
Free Air 

Dual 
Beam Wild Type 14.01 6 8 100.0% 0.0% 

  H+-ATPase KO 0 0 0 — — 

  Sucrose 
Depletion 14.01 6 8 100.0% 0.0% 

 Blue 
Light Wild Type 9.28 6 8 100.0% 0.0% 

  H+-ATPase KO 0 0 0 — — 

  Sucrose 
Depletion 9.28 6 8 100.0% 0.0% 

 Red 
Light Wild Type 2 6 7 100.0% 0.0% 

  H+-ATPase KO 0 0 0 — — 

  Sucrose 
Depletion 2 6 7 100.0% 0.0% 

Elevated 
CO2 

Dual 
Beam Wild Type 2 7 9 0.0% 100.0% 

  H+-ATPase KO 2 7 9 0.0% 100.0% 

  Sucrose 
Depletion 0 0 0 — — 

 Blue 
Light Wild Type 1 7 9 0.0% 100.0% 

  H+-ATPase KO 1 7 9 0.0% 100.0% 

  Sucrose 
Depletion 0 0 0 — — 

 Red 
Light Wild Type 1 7 9 0.0% 100.0% 

  H+-ATPase KO 1 7 9 0.0% 100.0% 

  Sucrose 
Depletion 0 0 0 — — 

 

Table 3-3. Simulated stomatal opening levels and osmotic compositions under various conditions 

of light, CO2, and node disruptions. The CO2 conditions studied are: ambient CO2 concentration 

(CO2 = 1, top of the table), CO2-free air (CO2 = 0, middle), and elevated CO2 concentration (CO2 = 

2, bottom). Simulated H+-ATPase knockout (H+-ATPasecomplex = 0) severely impairs stomatal 
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opening in the cases where ions are the predominant osmotica, e.g. under CO2-free air. 

Computationally imposed sucrose depletion (sucrose = 0), on the other hand, inhibits stomatal 

opening in cases where sucrose is the major osmoticum, e.g. under elevated CO2 concentration. 

I further probed the importance of different types of osmotica by computationally imposing 

an inhibition of sucrose accumulation (sucrose = 0) or by virtually knocking out the H+-ATPase 

(H+-ATPasecomplex = 0). The model indicated that in ambient air (Table 3-3, top), the H+-ATPase 

plays a more important role in dual beam- or blue light-induced stomatal opening than in red light-

induced stomatal opening. Conversely, I found that sucrose is more important for red light-induced 

stomatal opening than for stomatal opening under dual beam or blue light, since its knockout 

completely inhibits red light-induced stomatal opening while the inhibition is partial for dual beam 

and blue light. Under CO2-free air (Table 3-3, middle), H+-ATPase activity is more critical than 

sucrose accumulation for stomatal opening under all light conditions. In fact, keeping sucrose at 

value 0 computationally has no effect on stomatal opening in CO2-free air. In air with elevated 

CO2 (Table 3-3, bottom), the proton pump and henceforth ion accumulation are suppressed, 

making sucrose the predominant osmoticum for stomatal opening under all light conditions. These 

results also confirm that the activity of the proton pump is the primary driving force for ion 

accumulation during stomatal opening [2,71,72].  

Light Phenotype 
Maximum 
Stomatal 
Opening 

t50% t95% 

Dual 
Beam Wild Type 11.28 6 10 

 Kin KO 2 7 9 
Blue 
Light Wild Type 4.15 7 10 

 Kin KO 1 7 9 
Red 

Light Wild Type 1 7 9 

 Kin KO 1 7 9 
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Table 3-4. The effect of inward K+ channel knockout on stomatal opening under different light 

conditions predicted by the model. Kin knockout has a larger effect in dual beam- and blue light-

induced stomatal opening, while it has no observable effect on red light-induced stomatal opening. 

Consistent with the difference in the types of osmotica mediating blue light or red light-

induced stomatal opening [6,35], a Kin knockout displayed a more severe reduction of opening 

level in white light and blue light than in red light [73]. This phenomenon is also captured by the 

model (Table 3-4): the simulated white or blue light-induced stomatal opening level decreases 

dramatically when Kin is forced to be 0, but this disruption does not affect the red light-induced 

stomatal opening level. 

3.2.8 The model predicts the effects of single knockouts 

I performed a systematic compilation and comparison of available experimental 

observations with results generated by the model in a simulation of the experimental conditions. 

These conditions included different light and/or CO2 and/or ABA stimuli and the manipulation of 

node states by genetic modifications or pharmacological interventions. Sixty-six comparisons 

were made in total (see Supporting Table S4 of [106]), out of which 64 instances exhibited 

qualitative consistence between experimental observations and simulation results—a successful 

validation rate of 97%. 

The model’s consistency with known experimental evidence enables confident prediction 

of new phenotypes. It takes a significant amount of time and effort for experimentalists to 

investigate the effect of the genetic knockout of even a single element in vivo. In contrast, a 

compilation of the phenotypes of all the single-node knockout phenotypes can be readily obtained 

in silico, and can then be used to inform and prioritize experiments. 
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Opening Level As a 
Percentage of WT 

Opening 
0-5% 5%-

15% 
15%-
25% 

25%-
35% 

35%-
45% 

45%-
55% 

55%-
65% 

65%-
75% 

75%-
85% 

85%-
95% 

95%-
100% 

100%-
105% 

Light 
Quality 

Air 
Condition Percentage of Single Knockouts in Each Bin 

Dual 
Beam 

Moderate 
CO2 

  17.2% 1.6% 1.6%   1.6% 9.4% 1.6% 64.1% 3.1% 

CO2-free 17.2%   3.1%    7.8% 1.6% 1.6% 65.6% 3.1% 

High CO2 4.7%          95.3%  

Blue 
Light 

Moderate 
CO2 

  18.8%  1.6%  1.6%  6.3% 3.1% 68.8%  

CO2-free 17.2%   1.6%  3.1%  6.3% 1.6% 1.6% 65.6% 3.1% 

High CO2 4.7%          95.3%  

Red 
Light 

Moderate 
CO2 

4.7%          95.3%  

CO2-free 17.2%     3.1%  6.3% 1.6% 1.6% 70.3%  

High CO2 4.7%          95.3%  

 

Table 3-5. The distribution of predicted light-induced stomatal opening levels for single node 

knockouts. Each simulated knockout mutant’s opening level is expressed as a percentage of the wild 

type opening level for the corresponding light quality and CO2 condition. ABA is absent in all 

simulations. The opening levels are binned into 12 ranges, indicated in the header of the table. Each 

entry indicates the percentage of the 64 knockouts in each opening category. The entry is left blank 

if no knockout mutant opening level falls in the corresponding range. In the moderate CO2 cases, an 

average of 77.1% of all single knockouts maintains an opening level that is less than 5% different 

from wild type opening, with less than 2% displaying major inhibition (≥ 95%) of opening, 

demonstrating the robustness of the system against single node losses. Single node-knockouts have 

a larger impact on stomatal opening under CO2-free air: an average of 69.3% of all single node-

knockouts maintains an opening level less than 5% different from wild type opening, while 17.2% 

of all knockouts result in major inhibition of stomatal opening in all light conditions. Under high 

CO2 condition, interestingly, all light conditions exhibit identical knockout opening pattern: 95.3% 

of all single node knockouts display close to wild type opening, and 4.7% display major inhibition. 

 

In vivo, a null phenotype is realized by creating knockout mutants, or by introducing a 

pharmacological suppressor of a certain element. In silico, this is achieved by keeping the level of 
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the ‘knocked-out’ node at 0. I systematically investigated the effect of the knockout of a single 

node from the system in the following three light conditions: dual beam (blue light = red light = 

1), blue light alone (blue light = 1, red light = 0), and red light alone (blue light = 0, red light = 1), 

and three atmospheric conditions: normal air with moderate CO2 concentration (CO2 = 1), CO2-

free air (CO2 = 0), and high CO2 air (CO2 = 2). ABA was set as absent (ABA = 0) in these simulated 

knockouts, in which each of the 64 internal nodes was individually eliminated in silico. Table 3-5 

lists the distribution of stomatal opening levels of the knockout phenotypes as a percentage of the 

wild type opening, which was equated to 100%. In all three ambient air cases, the majority of the 

knockouts (67.2% for dual beam, 68.8% for blue light, and 95.3% for red light) maintained an 

opening level within 5% deviation from wild type opening, demonstrating the robustness of the 

system against single node loss.  

The knockout of single nodes has a larger impact on stomatal opening under CO2-free air, 

predominantly due to the inactivity of photosynthetic carbon fixation pathways in this condition, 

making H+-ATPase activation and the accumulation of ions crucial to stomatal opening. A smaller 

fraction of cases maintained an opening within 5% of wild type opening (68.7% for dual beam, 

68.7% for blue light, and 70.3% for red light), and 17.2% of all phenotypes resulted in an inhibition 

of 95% or more of wild type stomatal opening level in all light conditions under CO2-free air. 

Under the high CO2 condition, since the proton pump H+-ATPase activity is greatly suppressed, 

stomatal opening under all three light conditions is solely dependent on photosynthesis and sucrose 

accumulation. Therefore, stomatal opening of knockout phenotypes under the three light 

conditions have an identical pattern: 95.3% stay close to wild type opening level, and 4.7% display 

total inhibition of opening. 
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Interestingly, knocking out the small G protein ROP2 or RIC7 induced a stomatal opening 

level higher than wild type opening under three different light and CO2 conditions (see Table 3-5, 

100%-105%). This model result recapitulates the experimental observation that ROP2 and 

recruited RIC7 inhibit stomatal opening in wild-type plants, thus providing a protection 

mechanism against excessive opening [74]. Supporting Table S3 of [106] provides a full list of 

stomatal opening levels for each simulated node knockout in each of the nine conditions. 

3.2.9 The model captures the known effects of ABA on stomatal opening and identifies a 

knowledge gap 

 ABA Absent ABA Present 

Light 
Treatment 

Maximum 
Stomatal 
Opening 

t50% t95% 
Maximum 
Stomatal 
Opening 

t50% t95% 

Dual Beam 11.28 6 10 2 7 9 
Blue Light 4.15 7 10 1 7 9 
Red Light 1 7 9 1 7 9 

 

Table 3-6. Predicted stomatal opening level under different qualities of light in the absence or 

presence of ABA. The presence of ABA leads to a dramatic decrease in the maximal stomatal 

opening level under dual beam or blue light but ABA has no effect on stomatal opening under red 

light. 

It is known that under simultaneous presence of white light and ABA, the latter functions 

through several secondary messengers, e.g. [Ca2+]c [75,76] and pHc [77], to inhibit light-induced 

stomatal opening. The model reproduced this effect as shown in Table 3-6. ABA decreased 

stomatal opening under combined blue and red light from 11.28 to 2, and stomatal opening under 

blue light decreased from 4.15 to 1. Unexpectedly, however, the model predicted that ABA had 

no inhibitory effect on red light-induced opening, which remained at level 1 regardless of ABA. 
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In the course of the construction of the network of guard cell secondary messengers of light 

and ABA signaling, I found 30 components (nodes) wherein regulation of the node by both blue 

light and ABA had been reported or could be inferred, consistent with experimental evidence that 

ABA inhibits blue light-stimulated stomatal opening [17], and the model clearly indicated ABA-

inhibition of blue light stimulated stomatal opening (Table 3-6, blue light). By contrast, we found 

no nodes for which regulation of the node by both red light and ABA had been reported. 

Accordingly, in the model, ABA is predicted to have no effect on red light-induced stomatal 

opening (Table 3-6, red light). This prediction led me to extensively peruse the literature for 

experiments in which ABA inhibition of red light-induced stomatal opening in isolated epidermes 

had been explicitly assessed, but no such reports were found. This absence of studies perhaps 

reflects the general (but untested) belief that ABA is able to inhibit light-induced stomatal opening 

regardless of the wavelength of light. The identification of this unaddressed question exemplifies 

how codification of extant knowledge into network models can suggest key new experiments.  

3.2.10 Experimental test of the effect of ABA on red light-induced stomatal opening 
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Figure 3-6. The effect of ABA and DCMU on red light-induced stomatal opening. (A) Experimental 

measurement of stomatal apertures in isolated epidermal peels of Vicia faba under different 

conditions. Qualitatively, the apertures can be categorized into two opening levels: red light yields 

a high opening level, and opening levels under all other conditions can be considered as low. (B) 

Simulated stomatal opening levels. In the original model, stomatal opening levels under red light 

and red light + ABA treatments are high (level 1); all other treatments yield low (level 0) opening 

levels. If the model is modified with an inhibition by ABA of sucrose accumulation, red light is the 

only condition that yields a high opening level; all other conditions have low opening levels. This 

is in qualitative agreement with the experimental results shown in (A). 

Accordingly, our experimental collaborator Xiaofen Jin in Prof. Assmann's laboratory 

assessed the effect of ABA on red light-induced stomatal opening in Vicia faba epidermal peels 

(see Materials and Methods). Significant inhibition by ABA of red light-induced stomatal opening 

was found (Figure 3-6A). The inhibition of stomatal opening by the photosynthetic inhibitor, 

DCMU, was also observed, consistent with a previous report [3]. 
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Qualitatively, the average stomatal aperture values from the wet bench experiments can be 

divided into two groups: those that have a high value, of which red light treatment is the only 

instance, and those that have a low value, which contains all the other experimental conditions. 

Figure 3-6B shows the stomatal opening levels obtained from the model for the same conditions 

as those studied experimentally. As the model, constructed based on available knowledge, lacks a 

mechanism through which ABA can inhibit red light-induced opening, combined action of red 

light and ABA results in a high opening level equal to that of red light alone, while all other cases 

have low opening levels. The model predictions are qualitatively consistent with the experimental 

findings with the exception of the case of combined red light and ABA input. The discrepancy 

between the model and experimental results in the latter case points out a missing piece of the 

current knowledge base of the model: a mechanism through which ABA can inhibit red light-

induced stomatal opening.  

3.2.11 A hypothesis on ABA inhibition of red light-induced stomatal opening 

The question 'how does ABA inhibit red light-induced stomatal opening?' remains open. 

Since sucrose is the major osmoticum accumulated under red light in ambient CO2, a natural first 

hypothesis is that ABA inhibits sucrose accumulation. This hypothesis is supported by the result 

that there are only three nodes whose individual knockout abolishes red light-induced stomatal 

opening: light reaction, carbon fixation and sucrose (see Supporting Table S3 of [106]). These 

nodes form a linear path from ABA to sucrose (see Figure 3-2). ABA could disrupt the reaction 

cascade through which sucrose is generated, or cause the conversion of sucrose into starch, or 

promote sucrose catabolism within the guard cell or its efflux from the cell.  
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To explore the explanatory power of a putative ABA inhibition of sucrose accumulation, I 

modified the model by adding an inhibitory edge from ABA to sucrose and adding the Boolean 

clause “And Not ABA” to the existing rule for sucrose. The simulation result of this modified 

model is shown in Figure 3-6B. Notably, after this modification, ABA is able to inhibit red light-

induced stomatal opening. The qualitative response pattern across all treatments matches the 

experimental results. Further, I assessed the impact of the putative inhibitory edge from ABA to 

sucrose on the overall performance of the model by comparing all the simulation results obtained 

from the modified model with those obtained from the original model. I was able to confirm that 

all results stay either identical (e.g., for conditions where the ABA signal is absent) or qualitatively 

consistent (for conditions where the ABA signal is present, see Supporting Table S5 of [106]). 

Importantly, this exemplifies how discrete models, even in the absence of complete knowledge of 

all interactions and of temporal signaling dynamics, can be readily employed to test new 

hypotheses and putative pairwise relationships between components of the system.  

3.3 Discussion 

The model offers a comprehensive and systematic description of the process of light signal 

transduction in guard cells and its crosstalk with CO2 and ABA. The network representation we 

employ reveals the regulatory connections between seemingly remote components. For example, 

a recent publication, which was not included during the construction of the model, studied the 

indirect relationship between the SLAC1 anion channel and the regulation of K+ uptake [22]. It 

reported that anion accumulation in the slac1 anion channel knockout mutant induced the 

hyperpolarization of the plasma membrane which in turn promoted Ca2+ influx. Ca2+ influx led to 

an increase in the free cytosolic Ca2+ concentration, which then downregulated the inward K+ 

channels. This relationship is supported by a path in the network, namely 
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AnionChPMV─●CaIC[Ca2+]c─●Kin. Structural analysis of the network provided significant 

biological insight. The node degree offers a measure of node importance (Table 3-1) and path 

analysis reveals the robustness of the crosstalk between ABA and blue light in regulating stomatal 

opening. The strongly connected component analysis identified key components that mediate the 

cross-talk between blue light and ABA, such as [Ca2+]c (Figure 3-2C), and highlighted the absence 

of cross-talk between red light and ABA (Figure 3-2A). The latter observation, recapitulated by 

the dynamic model, revealed the absence of experimental investigations of regulatory effects of 

ABA on red light-induced stomatal opening. Experiments performed in this study fill this 

knowledge gap and reveal that ABA does in fact inhibit red light-induced stomatal opening. We 

formulate the novel hypothesis that ABA inhibits sucrose accumulation, and demonstrate that 

integration of this hypothesis into the model restores the agreement between model and 

experiments. 

The model reveals additional questions where further experimental investigation would be 

especially fruitful. I discuss a few such examples below. The model can offer a prediction for 

outcomes based on integration of the current knowledge, but it is up to future experiments to 

answer these questions definitively. 

There has been a long debate on whether the plasma membrane H+-ATPase is active under 

red light alone. The evidence regarding the status of the H+-ATPase during red light-induced 

stomatal opening is mixed: activation of the proton pump by red light has been observed [78] or 

inferred [40], but the results in [78] were not reproduced [64,79] and the experiment in [40] was 

done under reduced CO2 concentration. Little or no activation of the proton pump by red light has 

been observed in other experiments [18,80]. The model predicts the inactivity of the H+-ATPase 

under red light in ambient air and predicts a moderate H+-ATPase activity under red light in a 
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reduced CO2 condition (see Figure 3-5B). Experiments dedicated to measuring the H+-ATPase 

activity under red light with varying CO2 concentrations will greatly improve the understanding 

of this matter. 

A remaining question about sucrose as an osmoticum is the relative contribution of 

different sources of guard cell sucrose accumulation under different light and CO2 conditions. 

Sugar accumulation, predominantly sucrose [35,81], can in theory result from photosynthetic 

carbon fixation, degradation of stored starch [6,81,82], or import from the apoplast [34,83,84]. 

These three processes exhibit different responsiveness to light and ABA. Photosynthesis is 

activated by either blue or red light, requires CO2, and was not observed to be inhibited by ABA 

[47] (see Figure 3-2). Starch content was shown to be constant under red light but decreasing in 

time under blue light [6]. The H+/sucrose symporter function requires apoplast acidification by the 

H+-ATPase [34,83], which is not effective under red light in ambient air. Since ABA inhibits the 

plasma membrane H+-ATPase [51,63,85] and apoplast acidification by the H+-ATPase is required 

by the H+/sucrose symporter, it can be inferred that the symporter activity can be inhibited by ABA. 

In the model I assumed that carbon fixation is the primary source of sucrose accumulation (see 

Supporting Text S1 of [106] for a detailed justification). Experiments that dissect the contribution 

of each source of guard cell sucrose accumulation will not only help improve the model, but also 

provide insight into the interaction between blue and red light and between light and ABA in the 

regulation of stomatal movement. 

The simulations showed that the inactivation of photophosphorylation, e.g. by DCMU, 

induces a significant reduction in stomatal opening under all three light quality conditions (Table 

3-2A). The model predicts that the inactivation of photophosphorylation i) reduces carbon fixation 

and hence the amount of sucrose accumulated via photosynthesis, and ii) reduces the amount of 

69 
 



ATP available for H+-ATPase activity. Since the H+-ATPase is not activated by red light in 

ambient air in the model, the simulations suggest that DCMU inhibits red light-induced stomatal 

opening through mechanism i) only. Since the H+-ATPase is activated by blue light in ambient air, 

the simulations suggest that DCMU inhibits blue light-induced stomatal opening through both 

mechanism i) and ii). Experiments showed that DCMU partially inhibited blue light-induced 

stomatal opening and it completely inhibited red light-induced stomatal opening [3,80]; it would 

be informative to investigate the effect of DCMU on dual beam- or white light-induced stomatal 

opening as well. Further, it would also be interesting to explore the effect of DCMU and the 

respiratory inhibitor potassium cyanide (KCN) on light-induced stomatal opening in CO2-free air, 

a condition under which photosynthetic carbon fixation is absent, as CO2, the substrate for carbon 

fixation, is unavailable. 

The model implements a brake-like effect of high Ci on H+-ATPase activity based on the 

observation that an enhanced level of CO2 depolarizes the plasma membrane [86] and the 

consequent hypothesis that elevated CO2 inhibits the proton pump at the plasma membrane. This 

inhibitory effect of Ci on the H+-ATPase activity helps to explain the activation of the H+-ATPase 

under low CO2 conditions [40]. Understanding the mechanism underlying this effect of Ci on the 

H+-ATPase and in particular, whether it is a direct or an indirect effect, would provide valuable 

information. Such data would not only clarify the relationship between light (especially red light) 

and the H+-ATPase activity level, but also offer insight into the synergy between blue and red light. 

According to the model, red light as a background to blue light can not only provide additional 

ATP through photophosphorylation for the H+-ATPase activity, but also lower Ci via stimulation 

of mesophyll photosynthesis and thus raise the activity of the H+-ATPase (Figure 3-5B). These 

two mechanisms could be critical in explaining the synergy between blue and red light in the intact 
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leaf. The model also predicts that ion uptake/accumulation, which hinges upon H+-ATPase activity, 

is the primary mechanism for stomatal opening in response to red light under CO2-free air (Table 

3-3). Therefore, stomatal opening of a Kin knockout phenotype in response to red light with CO2-

free air should be severely impaired, in contrast to the minimal effect of Kin knockout on red light-

induced stomatal opening under normal air (Table 3-4 and [73]). Experimental verification of this 

prediction would also support the model’s predictions regarding the osmotic composition during 

stomatal opening in CO2-free air (Table 3-3), and provide further evidence for the activation of the 

H+-ATPase by red light in CO2-free air as proposed in [40]. 

The current model offers a qualitatively accurate and quantitatively close depiction of short 

term stomatal movement in response to a light signal. There have been investigations, however, 

which demonstrate that under natural conditions (white light) sucrose accumulates in guard cells 

in the afternoon and replaces K+ as the dominant osmoticum to maintain stomatal apertures [6]. 

An interesting potential future direction for the model is the incorporation of emerging knowledge 

concerning the cross-talk of guard cell circadian rhythms, light and ABA responses (e.g. [87]). 

The recent successful Boolean model of circadian clocks [88] makes the construction of such an 

integrated gene regulatory and signal transduction network model feasible. 

The modeling framework characterizes each component with two or more levels and 

expresses the relationships between components as a mixture of logical rules and algebraic 

operations. Thus the model offers a parsimonious, computationally efficient yet quantitative 

description of the system’s dynamics, making it a step forward from traditional Boolean models 

and an enhanced modeling tool for systems biology. The choices of the transfer functions of the 

nodes are a simplified and abstracted representation of the best available knowledge. Assuming 

discrete node levels is an approximation of reality (e.g. the concentration of a substance or the 
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potential across the plasma membrane is continuous in reality); there is, however, ample evidence 

of nonlinear regulation wherein not the concentration but rather its relationship with certain 

thresholds matters. Network-based discrete dynamic modeling has been successfully applied in a 

great variety of biological systems (reviewed in [89-92]). These models enabled the understanding 

of the systems and generated insightful predictions that were subsequently validated 

experimentally; recent examples include [24,93-97].  

In the absence of detailed knowledge on relative reaction speeds I deliberately sampled 

different timescales by implementing random order asynchronous update. While this is not a fully 

accurate representation of reality, the averaged results of a large number of replicate simulations 

are representative of behaviors that are not sensitive to small changes in kinetic rates. Future 

observations of relative temporal patterns of multiple components or measurements of time delays 

among components can be incorporated by imposing restrictions on the update sequence (e.g. 

updating one group of nodes before another group [91]). 

Having established the biological validity of the model, follow-up work in several 

directions is now possible, linking to recent advances in discrete and continuous dynamic modeling. 

Translating the model into a polynomial discrete dynamic system [98] or logical discrete model 

[99] would allow the use of software tools such as ADAM [100] or GINsim [99], and may yield 

further insights into the dynamic repertoire of the system. The model could also be translated into 

a Boolean model of an expanded network, where multi-level components are represented by 

multiple nodes in such a way that the group of binary nodes representing the same component 

allows the recapitulation of the same number of relative outcomes as the original multi-level node 

(see e.g. [97]). This transformation would allow the application of Boolean network analyses such 

as elementary signaling mode analysis and attractor analysis [91]. Through network simplification 
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methods [30,101], a core network with fewer nodes and edges could be distilled, which may be 

amenable for continuous modeling wherein differential equations replace the transfer functions. 

For instance, a model that integrates a simplified version of the model with OnGuard [20] would 

include the various signal transduction pathways, their cross-talk, and the quantitative description 

of ion flows in guard cells.  

The model is generically adaptable, allowing one to incorporate emerging new pieces of 

information with ease. This modeling methodology can be readily applied to other systems where 

interaction and relative state information is available. The number of multi-level nodes can be 

minimized by identifying the node(s) for which more than three relative outcomes have been 

observed (indicative of a need for more than two levels), tracing upstream in the network, and 

inferring a minimal set of nodes whose multi-level nature could cause all the other nodes’ multiple 

levels. The states of this set of nodes can then be defined as fundamental states (see Supporting 

Text S1 of [106]), and the states of other nodes subsequently derived through their updating rules. 

As demonstrated here, network-based dynamic models of biological systems can serve as a virtual 

control to test the coherence between experimental results generated in separate experiments, to 

generate predictions that inform and help prioritize future experiments, and to reveal new questions 

that deserve attention. 

3.4 Materials and Methods 

3.4.1 Constructing transfer functions for binary nodes 

When there is only one upstream regulator of the target, the “Equal” rule is used for 

positive regulation and the “Not” rule is used for negative regulation. The “AND” operator is used 

when multiple regulators are required to activate the target. If each regulator is able to 
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independently activate the target, they are connected with the “OR” operator. For inhibition, the 

“AND NOT” operator is used, thereby requiring a low level or inactivity of the inhibitor in order 

for the target node to activate. One example of a Boolean transfer function is shown below: 

phot1complex* = phot1 And 14-3-3 proteinphot1 

Phototropin 1 binds reversibly to a 14-3-3 protein (14-3-3 proteinphot1) upon the auto-

phosphorylation of phototropin 1 in guard cells [102,103]. The 14-3-3 protein-phototropin 

complex (phot1complex) is thought to confer an active state to phototropin 1, which then transmits 

the light signal to downstream elements. The And function connects phot1 and the 14-3-3 protein, 

indicating that the formation of the complex requires both of them. 

3.4.2 Constructing transfer functions for nodes with more than two states 

The transfer functions combine Boolean clauses with addition, subtraction, and 

multiplication. One example of a complex transfer function is given below: 

PMV* = PMV – H+-ATPasecomplex + (AnionCh And (PMV = –2)) + (([Ca2+]c = 2) Or 

KEV)  

PMV is the difference of electric potential across the plasma membrane, i.e. the “membrane 

potential”. Computationally, I use the value 0 to represent the resting potential of the plasma 

membrane. Negative values denote the further hyperpolarization of the plasma membrane, and 

positive values denote depolarization. I assume that five levels (-2, -1, 0, 1, 2) are sufficient for a 

qualitative description, and require that the PMV value stays bounded, i.e. the value will not further 

decrease (or increase) when it reaches -2 (or 2). The future PMV value (PMV*) can be shifted 

away from or stay the same as its current value (PMV), depending on the hyperpolarizing and 
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depolarizing forces. Factors that cause hyperpolarization will decrease the PMV value (e.g. to -1 

from 0), and factors that cause depolarization will increase the PMV value (e.g. from 0 to 1). An 

active 14-3-3 protein-bound H+-ATPase causes the extrusion of H+ from guard cell cytosol to the 

apoplast, hyperpolarizing the plasma membrane. Anion efflux at the plasma membrane causes the 

plasma membrane to depolarize. A steady anion efflux requires AnionCh to be active and it also 

requires plasma membrane depolarization. To avoid an oscillation in anion efflux and PMV 

induced by the discrete nature of the model, I require that PMV be -2 (most hyperpolarized) for 

effective anion efflux. A high [Ca2+]c concentration (value 2) or K+ release into the cytosol from 

vacuole (KEV) are modeled as independent factors causing the plasma membrane to depolarize. 

Supporting Text S5 of [106]indicates the pseudo-code for the implementation of two 

representative transfer functions. 

3.4.3 Computational implementation and tools 

The network in Figure 3-1 was drawn with the software yED 

(http://www.yworks.com/en/products_yed_about.html). The network analyses (strongly 

connected component identification, calculation of the number of simple paths between two nodes) 

were implemented by custom MATLAB code. Similar analyses can also be done with one of the 

following tools: NetworkX, a Python graph software library [104], Cytoscape, a network 

integration, visualization and analysis tool [105], or MATLAB’s graph theory toolbox, grTheory. 

The dynamic model was implemented by custom MATLAB code. The pseudo-code of the 

simulations is indicated in Supporting Text S5 of [106]. 
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Chapter 4 

Node-independent elementary signaling modes: a measure of redundancy in 

Boolean signaling transduction networks 

4.1 Introduction 

The explanatory and predictive power of integrating the components of a biological system 

and their interactions into a network model has been demonstrated over the past few decades [1-

5]. Network models that give insight into the functional outcomes of the relevant biological 

network (for example, by connecting molecular interactions with cellular behaviors like motion or 

cell death) are especially useful. A promising method toward this functional integration is the 

construction of so-called expanded networks or hyper-graphs that incorporate not only the edges 

incident on each node but also the coordination among these edges [6-9]. Specifically, a Boolean 

function (using the logic operators NOT, AND, OR) is constructed for each node (see Figure 4-

1A), and then represented by, for example, the addition of complementary nodes (which reflect 

NOT relationships) and composite nodes (which reflect AND relationships, see Figure 4-1B). 

Indeed, in the spectrum of different dynamic models, Boolean models, successfully used in a wide 

range of biological domains, are the most parsimonious [10]. This parsimony is combined with the 

power of providing mechanistic insights, predicting system behaviors and offering guidance for 

future experiments.  

In this study, we focus on signal transduction networks, which we define generally as 

directed networks that have one or a few input (source) nodes and one or a few output (sink) nodes. 

The expanded network has been used to determine the number of pathways that can independently 

carry out signal transduction from an input node to an output node, to quantify the importance of 
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each node to this signal transduction process [6], and to predict the network’s long-term behaviors 

[7]. Here we introduce the concept of node-independent elementary signaling modes, which relate 

to a signal transduction network’s functional redundancy. We present a rigorous definition and the 

procedure to identify the maximal set of node-independent elementary signaling modes of a 

Boolean network. We analyze both theoretical and empirical network examples and discuss the 

results’ interpretation and implications for real networks.  

4.2 Results 

4.2.1 Independent elementary signaling modes and functional path redundancy 

The concept of an elementary signaling mode (ESM) between an input (source node) and 

an output (sink node) of a biological signal transduction network, or any directed network, was 

introduced in [6]. An ESM describes a minimal set of nodes that can carry out the signal 

transduction from the input to the output. It can be considered as a 'unit' for the successful 

performance of signal transduction: all nodes of an ESM being functional is a necessary and 

sufficient condition for the signal to propagate from the input to the output regardless of the status 

of any node outside of that ESM. The shortest path between the input and output, another 

commonly used network concept, is contained within at least one ESM. Indeed an ESM may be a 

path from the input to the output (see Figure 4-1C). In many cases, however, the activation of one 

or more nodes on an input-output path requires their regulation by nodes outside of the path; in 

these cases the relevant ESM will contain the required regulators as well.  

Separate ESMs of a network might share nodes and/or edges. In other words, a node or an 

edge may be contained in one or more ESMs of the network. To eliminate this ambiguity, we 

introduce the concept of node-independent ESMs: two ESMs that correspond to the same input 

and output node are node-independent if they do not share nodes other than the input and output 
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node. Intuitively, the number of node-independent ESMs characterizes the functional path 

redundancy of the input-output pair. Here we use 'redundant' to indicate that the node-independent 

ESMs are independent and functionally equivalent and thus they are interchangeable in case of 

errors, rendering the propagation of the signal robust.  

The accumulation of experimental evidence makes increasingly possible the construction 

of network models with multiple input nodes and/or output nodes. The functional path redundancy 

of a signal transduction network is a composite of the functional path redundancy of its input-

output pairs. Although the concept of node-independent ESMs and the methodology introduced 

here can be straightforwardly extended to include different input-output combinations, the 

functional redundancy of the signaling cascade triggered by a given input node and a given output 

node is the main focus of this work. 

 To quantify the path redundancy of an input-output pair, we define a full set of node-

independent ESMs connecting the input to the output such that: (i) all ESMs within the set are 

pairwise node-independent, and (ii) any ESM that is not in the set shares at least one node with at 

least one ESM that is in the set. Different full sets of node-independent ESMs might exist for the 

same input-output pair. Among them, we call the set that has the highest number of ESMs the 

maximum set of node-independent ESMs of a signal transduction network. The number of ESMs 

within the maximum set then quantifies the functional path redundancy of the input-output pair. 

4.2.2 Procedure to identify node-independent ESMs  

  

 

 

A 
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Figure 4-1. An illustration of a simple signal transduction network and a Boolean model of signal 

propagation. (A) The original network and the table of Boolean transfer functions describing the 

regulation of each node. Each node is characterized by a binary state. The Boolean transfer function 

indicates the future state of the node (marked by the asterisk) as a function of the current state of its 

regulators. For simplicity the node states are denoted by the node names. (B) The expanded network. 

A composite node (small unlabeled circle) is introduced to denote that node B and node C are 

connected with the Boolean function And. This way multiple edges targeting the same composite 

node are always connected by And, while multiple edges targeting the same real (non-composite) 

node are connected by Or. One no longer needs both the network structure and the table of Boolean 

transfer functions since the regulation is now incorporated into and explicitly represented by the 

expanded network. (C) The ESMs of the network. The network has two ESMs, and they are node-

independent from each other. 

To facilitate the identification of the nodes that are functionally related, the network needs 

to be first 'expanded' with the introduction of composite nodes to represent regulatory synergy 

between nodes (represented by the Boolean And operator) [6]. The expansion procedure used in 

this study follows [6], with the exception that inhibitory/negative edges are preserved in the 

expanded network. Upon the expansion of the original network, the complete list of all ESMs 

{ESM1, ESM2, …, ESMi, …, ESMj, …, ESMN} can be obtained using a bottom-up subgraph 

B 

C 
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growing algorithm first described in [11]. Specifically, starting with a seed that contains only the 

output node, one makes as many copies of the output node as the number of edges that target the 

output, with each edge and upstream node separated into a different copy. The next step is to 

examine the upstream node in each copy: if the node is real (not composite), then as many copies 

are made as the number of incoming edges to that upstream node, and each incoming edge and the 

corresponding upstream regulators will be again separated into different copies; if the node is 

composite (i.e. representing a Boolean And relation), all incoming edges and their upstream 

effectors are included in the same copy. The process iterates until the upstream regulator found is 

either already in the copy, indicating a cycle, or it is the input node, where that branch of the search 

will end and the next node or subgraph copy in line will be examined. 

It is straightforward to determine which ESMs share nodes by intersecting the list of nodes 

of each ESM. We propose a concise representation focusing on independence: we construct an 

ESM contingency graph whose nodes are ESMs. In this contingency graph an edge exists between 

ESMi and ESMj if ESMi and ESMj do not share any node (except of the input and output which 

are shared by all ESMs). All pairwise dependencies are checked to determine the presence or 

absence of edges between pairs of ESMs in the ESM contingency graph. The full sets of node-

independent ESMs correspond to the maximum cliques (complete subgraphs) in the contingency 

graph, and the maximum set is defined by the maximal clique in the contingency graph. This is 

analogous to the related concept of a set of independent nodes in a graph, which is solved by 

determining the maximal cliques of the complementary graph, wherein nodes are connected by an 

edge if they are not connected by an edge in the original graph. Clique finding is a known NP-

complete problem. Fortunately, we have found that the ESM contingency graph of many networks 

is sparse. 
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4.2.3 Theoretical examples of expanded networks, their ESMs and ESM contingency graphs 

We exemplify node-independent ESMs through prototypical networks rich in network 

motifs [12].  

              
                                            ESM1       ESM2 

Figure 4-2. A bi-parallel signal transduction motif from the input to the output node contains two 

node-independent ESMs. (A) The expanded network. Both real (non-composite) nodes A and B 

have an edge directly incident upon the output node, implying that the Boolean transfer function for 

the output node is Output*=A Or B. (B) The two ESMs of the expanded network. (C) The ESM 

contingency graph. Each ESM is represented as a node. Since ESM1 and ESM2 are node-

independent, their corresponding nodes are connected. 

Figure 4-2 shows a bi-parallel signal transduction network in its simplest form. This 

network has two ESMs which are node-independent (Figure 4-2B). The corresponding ESM 

contingency graph has two nodes (for the two ESMs) connected by an edge (Figure 4-2C).   

         
                                             ESM1      ESM2    ···    ESMN 

Figure 4-3. N parallel paths from the input to the output. The Boolean transfer function for the output 

node is Output*=A1 Or A2 Or … Or AN. (A) The expanded network does not have any composite 

nodes. (B) There are N ESMs, all pair-wise node-independent. (C) The ESM contingency graph is 

a complete graph, as any pair of ESMs is connected by an edge.  

A B C 

C B A 
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Figure 4-3 illustrates the general case of N parallel paths from the input to the output. Every 

pair of node-independent ESMs is connected by an edge in the ESM contingency graph. A group 

of node-independent ESMs therefore forms a complete graph, or clique, in the ESM contingency 

graph (Figure 4-3C). If N=3, the ESM contingency graph forms a three-clique (triangle). Any 

maximal subgraph (i.e. a subset of the nodes and all the edges among them) of the clique is a clique, 

too. Therefore, any subset of the ESMs represented by the clique forms a set of node-independent 

ESMs as well, but the solution is not a full set since more ESMs can be added to the subset and 

the set would still be node-independent. To identify all full sets of node-independent ESMs of a 

network, one needs to find all maximal cliques in the ESM contingency graph, since each maximal 

clique corresponds to one solution. 

  

  
                             ESM1    ESM2  ···  ESMM   ESMM+1 ESMM+2 ··· ESMM+N 

A 

B 
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Figure 4-4. The formation of a bipartite structure in the ESM contingency graph and the network 

from which it arises. The Boolean transfer function for the output node is Output*=A1 Or A2 Or … 

Or AM Or B1 Or B2 Or … Or BN. (A) The expanded network does not have any composite nodes. 

(B) The list of M+N ESMs. (C) The ESM contingency graph has a bipartite structure. 

If the signal propagates from the input to the output through two distinct mechanisms, each 

of which is characterized by several ESMs that all share a node (e.g., node A, B, Figure 4-4), a 

bipartite structure in the ESM contingency graph arises. None of the ESMs that share node A are 

node-independent. The same argument holds for the mechanism signified by the common usage 

of node B. Any ESM in the first group, however, is node-independent from any ESM in the second 

group. The resulting ESM contingency graph henceforth has a bipartite structure. If M=1 or N=1, 

the bipartite contingency graph collapses into a tree structure. If M=N=2, the bipartite contingency 

graph becomes a cycle of 4 nodes. Regardless of the value of M and N, the bipartite structure 

implies that the largest clique has two nodes, thus the full set of node-independent ESMs has two 

members. If there are n independent mechanisms, the ESM contingency graph becomes n-partite, 

whose biggest clique has n nodes, leading to n ESMs in the full node-independent ESM set. 

C 
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                                  ESM1         ESM2                ESM3          ESM4 

Figure 4-5. The bifan motif, its ESM list and its ESM contingency graph. The Boolean transfer 

function for the output node is Output*=C Or D. (A) The expanded network. (B) The list of ESMs. 

(C) The ESM contingency graph. 

Lastly, we use what is called a bifan motif [13] to illustrate that the ESM contingency graph 

can be disconnected, and multiple sets of node-independent ESMs may exist. In this network 

(Figure 4-5A), C and D can be activated by either A or B, and the output can be activated by either 

C or D. ESM1 and ESM4 are node-independent, and ESM2 and ESM3 are node-independent. This 

is reflected by two two-cliques in the ESM contingency graph. There is no edge, however, between 

the two cliques. Both cliques are maximum sets of node-independent ESMs. 

4.2.4 Identification of node-independent ESMs in real signaling networks 

A rich repertoire of signaling network models for a variety of biological systems is now 

available. We applied our methodology to five discrete dynamic models of biological systems [14-

18]. We found that despite the existence of numerous ESMs in each network, the number of ESMs 

in the maximum node-independent ESM sets for these systems is one [14-18]. This indicates the 

absence of more than one node-independent signal transduction mechanism between the input and 

the output, as one or more nodes are shared by some or all signal transduction mechanisms in these 

systems. In order to be able to analyze these cases further we introduce the concept of reusable 

nodes: nodes that can appear repeatedly across the list of ESMs. Node-independence of two ESMs 
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can then be relaxed to mean that no node other than the reusable nodes is shared by the two ESMs. 

In cases where there exist nodes that appear in all ESMs, they need to be included in the reusable 

set in order to have a full set of node-independent ESMs with more than one member. We call the 

set of nodes shared by all ESMs the mandatory reusable set. Table 4-1 indicates the analysis results 

of the five networks, including the mandatory reusable node set, whose sharing is a condition for 

having more than one node-independent ESM in each network. 

 

Network Input 
Node(s) Output Node Number of 

Nodes 
Number of 

Edges 
Number of 

ESMs 

Maximum 
Number of 

Node-
Independent 

ESMs 

Mandatory Reusable Node Set 

ABA 
Signaling [14] ABA Stomatal 

Closure 55 90 104 2 Depolar, AnionEM, Actin, malate, PEPC 

Host Immune 
Response [15] Bacteria Phagocytosis 18 42 120 2 

Epithelial cells, Complement, Ag-Ab complex, 
Pro-inflammatory cytokines, Recruited PMNs, 
Activated Phagocytic Cells, Macrophages, Th1 
cells, T0 cells, Th2 cells, B cells, Th1 related 
cytokines, Th2 related cytokines, Dendritic 

cells 

T-cell receptor 
signaling [16] 

CD28, 
TCRlig CRE 41 72 62 2 

TCRb, ZAP70, DAG, SLP76, cCblp2, Vav1, 
Gab2, Abl, Fyn, ERK, PIP3, Itk, PLCga, 

TCRp, LAT, Rsk, CREB 

 T-cell 
receptor 

signaling [16] 

CD28, 
CD4, 

TCRlig 
NFKβ 46 83 62 3 

TCRb, ZAP70, DAG, SHP1, SLP76, Lckp1, 
PAG, Csk, CaM, cCblp2, Vav1, Gab2, Abl, 

Fyn, ERK, PIP3, PDK1, PLCga, TCRp, LAT, 
Ikkab, IkB 

TGFβ 
signaling in 

cell fate 
change [18] 

TGFβ EMT 19 71 >216 3 GSK3β, GLI, AKT 

T lymphocyte 
differentiation 

[17] 
IL27, IL23 IL17 50 112 >216 4 IL27R, IL23R, STAT1, Tbet, GATA3, RORgt, 

Foxp3, STAT3 

 T lymphocyte 
differentiation 

[17] 
IL27 IL10 47 109 >216 2 IL27R, STAT1, Tbet, GATA3, RORgt, Foxp3, 

STAT3 
 

Table 4-1. The maximum number of node-independent ESMs obtained for five network models of 

different biological systems. The name of the network is given in the first column. The second and 

the third columns specify the input(s) and output for which the functional redundancy of the 

signaling is calculated. If a combination of multiple inputs is used, all inputs appear in all ESMs 

identified. The fourth and fifth columns indicate the number of nodes and edges in the sub-network 

specific to the input(s)/output pair. That is, the columns indicate the union of all nodes and edges in 

the ESMs identified for the input(s)/output pair. The last column gives the mandatory reusable node 
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set for each case of node-independent ESM identification. The nodes in this set are located in the 

signaling cascade between the specific input(s)/output pair, and they appear in all ESMs found. In 

order for the network to potentially have more than one node-independent ESM, these nodes have 

to be made reusable for all ESMs. 

From Table 4-1 one can observe that some degree of redundancy exists for all networks, 

as the number of nodes shared by all ESMs is less (in some cases much less) than the number of 

nodes between the input and the output node. A  large mandatory reusable node set in a network  

reflects the fact that the nodes in that network are strongly functionally dependent on each other. 

The more Boolean And functions there are, the more components are required for successful signal 

transduction. This is the case for the host-immune response network and the T cell receptor 

signaling network, whose mandatory reusable node sets include 87.5% and 40.5%, respectively, 

of the number of nodes between the input and output. It is observable that the maximum number 

of node-independent ESMs does not grow linearly with the number of ESMs in the system. For 

network models that have multiple inputs and/or outputs, such as the T cell receptor signaling 

network and the T lymphocyte differentiation regulation network, the signaling between different 

input/output pairs may have different degrees of redundancy.  

To better illustrate one of these five networks, the Boolean model of T-lymphocyte 

differentiation [17], on Figure 4-6 we present the connected component of its ESM contingency 

graph. The figure illustrates the possibility of multiple full sets of node-independent ESMs of 

different sizes. An ESM (e.g. ESM1) can be placed with another ESM (e.g. ESM8) and form a full 

set of node-independent ESMs, or it can be placed with a different combination of ESMs (e.g. 

ESM2 and ESM7) and form another full set. Being a full set of node-independent ESMs does not 

guarantee that it is of maximum size. In Figure 4-6, the set {ESM1, ESM2, ESM3, ESM4} is the 

maximum full set. 
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Figure 4-6. The connected component of the ESM contingency graph of the ESMs found for the 

input combination IL27, IL23 and output IL17 in the T lymphocyte differentiation network model 

[17]. The reusable node set is [IL27R, IL23R, STAT1, Tbet, GATA3, RORgt, Foxp3, STAT3]. Full 

sets that contain a single ESM, meaning that the ESM is not node-independent from any other ESMs, 

are not shown. These would appear as disconnected single nodes on the ESM contingency graph. 

ESM1 and ESM8 make up a full set of size 2. There are three full sets of size 3: {ESM1, ESM2, 

ESM7}, {ESM1, ESM3, ESM6} and {ESM1, ESM4, ESM5}. The maximum full set is given by 

{ESM1, ESM2, ESM3, ESM4}. Any subset of a full set is node-independent as well. 

We selected two signal transduction networks, one describing the signaling process of 

light-induced stomatal opening [19] and the signaling process of TBFβ in hepatocellular carcinoma 

epithelial-to-mesenchymal transition [18], for a comprehensive analysis. 

4.2.4.1 The light-induced stomatal opening network 

Our starting point is a multi-level discrete dynamic model constructed for the signaling 

process of light-induced stomatal opening based on an extensive curation of the experimental 

literature [19]. Light induces stomatal opening via two main pathways: the activation of the proton 

pump H+-ATPase which in turn elicits the accumulation of ionic osmotica (e.g., K+), and the 

activation of photosynthesis which in turn promotes the accumulation of sugar, a non-ionic 

osmoticum. In order for charge balance potassium ion requires the presence of one or more anions. 

Each of the three representative anions is therefore connected with potassium ion with a Boolean 

And function, indicated by the composite nodes (small circles) in Figure 4-7A, B. The 
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accumulation of osmotica will cause stomatal opening due to the increase in osmotic potential and 

the uptake of water that ensues. We simplify the original network by focusing on the osmotica 

directly contributing to stomatal opening and the primary driving force for their respective 

accumulation, leading to the simplified network shown in Figure 4-7A. In this network the rule for 

all nodes with a single upstream activator is to follow the value of its activator, i.e. Y*=X, and the 

Boolean rule for the output node is: 

stomatal opening*=[K+]c And [malate2-]c Or [K+]c And [Cl-]c Or [K+]c And [NO3
-]c Or sugars. 

This simplification process greatly reduces the state space of the model yet the biological fact that 

stomatal opening can be elicited by the accumulation of either sugars or ionic osmotica is captured, 

making the model suitable for the application of the node-independent ESM analysis. 

Simplification such as this may be used in future work aimed to extend the methodology to beyond 

Boolean dynamic models (see Discussion). 
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Figure 4-7. A simplified representation of the light-induced stomatal opening network model. (A) 

The expanded network. Composite nodes (small circles) represent Boolean And relations. (B) The 

four ESMs of the network. (C) The ESM contingency graph. The full node-independent ESM sets 

are {ESM1, ESM4}, {ESM2, ESM4}, and {ESM3, ESM4}. 

Four ESMs have been identified for the simplified light-induced stomatal opening network 

(Figure 4-7B). Since ESM 1 through 3 share the H+-ATPase, the primary driving force for ionic 

uptake, as well as [K+]c, the predominant positive ion being accumulated in guard cells, they are 

not node-independent. All three of them, however, are node-independent from the sugar 

accumulation pathway, characterized by ESM4. The ESM contingency graph henceforth shows up 

as a tri-star. This is a special case of the example shown in Figure 4-4 with M=3, N=1 (or vice 

versa). The three full node-independent ESM sets, {ESM1, ESM4}, {ESM2, ESM4}, and {ESM3, 

ESM4}, are encircled with dashed lines on Figure 4-7C. The fact that the maximum number of 

node-independent ESMs among the solutions is two captures a critical aspect of the biology: the 

accumulation of sugar has a distinctively different mechanism from the accumulation of ions while 

all ion accumulation shares a common primary driving force. It also implies that in order to 

B 
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completely shut down stomatal opening, one would have to interfere with not only the H+-ATPase, 

which only affects the ionic pathways, but the sugar accumulation pathway as well. Since the two 

mechanisms are node-independent, the network has a functional redundancy of two, which makes 

it failure proof to any single node knockout in the network. 

4.2.4.2 The TGFβ signaling in hepatocellular carcinoma epithelial-to-mesenchymal transition 

network 

Steinway et al. [18] constructed a Boolean model of TGFβ signaling during hepatocellular 

carcinoma epithelial-to-mesenchymal transition (EMT). This transition is a cell fate change from 

a cuboidal, less mobile and therefore localized cell type into an irregularly-shaped, more mobile 

and therefore non-localized cell type. This cell fate change mainly happens in embryonic 

development and wound healing, but it can happen aberrantly in cancer, allowing cancer cells to 

leave the primary tumor site and establish distant metastases. This process can be triggered by a 

number of known signals, among which TGFβ is a main signal of interest. The model recapitulates 

known signaling events and dysregulations during the induction of EMT. It also predicts the 

activation of the Wnt and Sonic Hedgehog signaling pathways during this process. The starting 

point of our analysis is a simplified and TGFβ-focused version of the network, constructed by 

Steinway et al., which was shown to capture the TGFβ-induced dynamics of the full network [18]. 

The expanded network of the TGFβ signaling specific network has 19 real nodes, 19 composite 

nodes and 105 edges (Figure 4-8). More than 65 thousand ESMs have been identified for the 

expanded network.  
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Figure 4-8. A full set of node-independent ESMs in the network model of TGFβ signaling in EMT. 

Edges that terminate in arrows represent activation; edges with terminating segments represent 

inhibition. The composite nodes are represented with small circles. There are four types of node 

symbols: plain rectangles with light background represent the input and the output nodes of the 

network (TGFβ and EMT) and the mandatory reusable node set (GSK3β, GLI and AKT). Oval 

shaped nodes with grey background are specific to ESM1, and hexagonal nodes with dark grey 

background are specific to ESM2. Rectangles with white background and italic font (AXIN2, SMAD) 

are not included in either ESM in this solution set of node-independent ESMs. 

Apart from the input, TGFβ, and the output, EMT, of the network, three nodes appear in 

all ESMs, and they are put into the reusable node set accordingly: GSK3β, GLI and AKT. The fact 

that these three nodes appear in all ESMs signifies their importance for TGFβ signal transduction. 

Using only these three nodes in the reusable set, we find that the maximum number of node-

independent ESMs is two. Figure 4-8 illustrates one of the possible full sets. Oval shaped nodes 

are specific to ESM1, and hexagonal nodes are specific to ESM2. Nodes with white background 
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and italic text are not included in either ESM1 or ESM2 (they are, however, included in other 

ESMs).  

An interesting observation in the TGFβ network is that the node SMAD is not part of the 

mandatory reusable set. Indeed, it is not included in either ESM shown in Figure 4-8.  

The SMAD complex is a canonical mediator of TGFβ signaling [18] and many would expect that 

its disruption eliminates TGFβ signaling. However, our analysis indicates, without doing any 

dynamic simulations, that disrupting the node SMAD will not eliminate all ESMs (e.g. the two 

ESMs shown on Figure 4-8 will be preserved) and thus will not drastically disrupt TGFβ signal 

transduction. This result is corroborated by the dynamic simulations of Steinway et al. [18], 

predicting that SMAD knockout only leads to a minor reduction of the probability of the cell fate 

change. Moreover, recent experiments indicate that downregulation of smad transcription by 

siRNA indeed leads to a minor reduction in the cell fate change in a liver cancer cell line, validating 

the theoretical prediction.  

4.2.5 Node-independent ESMs quantify node importance 

The ESM is a powerful concept that is able to characterize the functional connectivity of 

an input-output pair. Due to the overlaps between ESMs, disruption of a node may disconnect 

multiple signal carrying ESMs of the system. Indeed, the relative reduction in the number of ESMs 

due to the disruption of a node was shown to be a successful measure of the node’s functional 

importance [6]. The identification of the maximum set(s) of node-independent ESM of a system 

allows a strong insight into the expected effect of a node disruption. If a node that is exclusive to 

one of the ESMs in this set is disrupted, it is expected to have no or little effect on the signal 

transduction since other independent ESMs exist. If, on the other hand, a node in the (non-empty) 

mandatory reusable set is disrupted, signal transduction is completely disrupted. For a validation 
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of this statement, we compare our results to the previous results of ESM-based node importance 

in [6]. For the three network examples examined in [6] (the host immune response network [15], 

the guard cell ABA signaling network [14] and the T-cell receptor signaling network [20]), the 

mandatory reusable node set identified for each of the network is identical with the set of nodes 

assigned the highest importance, 1, in [6]. 

Therefore, if a network has an empty mandatory reusable node set, the signaling process 

represented by it is robust against any single node disruptions. By applying our method to 

established network models of biological signaling processes, we found that the mandatory 

reusable set is usually non-empty.  

4.3 Discussion 

In this study, we propose a measure of the redundancy of signal transduction networks. 

This measure builds on a network representation that reflects not just who interacts with whom but 

also the combinatorial effects of multiple regulators. It also uses a measure of input-output 

connectivity, the elementary signaling mode, better suited to signal transduction networks than 

simple paths. We find that most biological signal transduction networks are not functionally 

redundant, as they don’t have more than one node-independent elementary signaling mode. We 

deepen the analysis of these networks by introducing the new concept of mandatory reusable node 

set. This allows the identification of nodes that are of the highest importance to the signaling 

process without carrying out any dynamic simulations. The size of the mandatory reusable node 

set is closely related to the functional dependencies between pathways. If all nodes in a network 

are functionally dependent on each other, i.e. all nodes are connected with Boolean And or And 

Not functions, the maximum number of node-independent ESMs is one and the network has no 

functional redundancy. In order for a network to have two or more node-independent ESMs, the 
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network is required to contain at least one Boolean Or function, and the largest possible size of the 

mandatory reusable node set equals the number of nodes between the input and the output minus 

one. 

The agreement of our analysis with much more effort-intensive methods, both on the 

criticality of certain nodes and on the non-criticality of others, demonstrates the predictive power 

of the concepts and measures introduced here. 

We note that using the mandatory reusable node set does not ensure that a network has a 

maximum full set of more than one node-independent ESM. In other words, allowing nodes that 

appear across all ESMs to be reused does not guarantee that the system will have more than one 

node-independent ESM. A related example is given in Figure 4-9, which illustrates a network with 

an empty mandatory reusable set. Since the mandatory reusable node set is empty, one can predict 

that the signal transduction is robust against any single node knockouts (see Figure 4-9B). 

However, none of the three ESMs of Figure 4-9 are node-independent of the other two.  

We also note that as more nodes are being added to the reusable node set, the number of 

ESMs in the maximum node-independent ESM set is not guaranteed to increase. For example in 

Figure 4-9 adding node A, then B, then C to the reusable node set does not lead to an increase in 

the number of node-independent ESMs. It can be concluded from this example that entire paths 

rather than individual nodes have to be added to the reusable node set before the maximum number 

of node-independent ESMs increases. The structure formed by the reusable nodes plays a more 

important role than their number. 
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Figure 4-9. An example illustrating the relation between the size of the reusable node set and the 

maximum number of node-independent ESMs of a network. The example network shown in (A) 

consists of 3 nodes: A, B, C, with their respective response elements, AR, BR, CR. The composite 

nodes signify the Boolean And relations. The Boolean transfer function for the output node is: 

Output*=(AR And BR) Or (AR And CR) Or (BR And CR). The ESMs of the network are shown in 

(B). The mandatory reusable node set is empty. The maximum number of node-independent ESMs 

is one. If we successively add node A, B, and C to the reusable node set, the three ESMs of the 

network continue to be node-dependent from each other, since they still share node AR, BR, or CR.  

An interesting question related to the structure of the ESM contingency graphs remains 

open: is an arbitrary graph a viable structure as an ESM contingency graph? For instance, we have 

seen a cycle of 3 nodes (N=3, Figure 4-4) and a cycle of 4 nodes (M=N=2, Figure 4-5) as an ESM 

contingency graph. The original networks behind these two ESM contingency graphs, however, 

bear little resemblance to each other. Is a cycle of 5 nodes, or generally, a cycle of N nodes 

achievable as an ESM contingency graph?  

The measure we proposed in this work is applicable to network models with Boolean 

dynamics in its current form, as the definition of the expanded network and of the ESMs requires 

Boolean operators. Discrete dynamic models can be transformed into Boolean models by 

representing multi-state nodes with a group of binary nodes [21]. Continuous variables can be 

binarized by using threshold values based on domain knowledge, and thus continuous network 

models can be transformed into Boolean models. The functional redundancy of the derived 
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Boolean network reflected by its node-independent ESMs can subsequently be interpreted in the 

context of the original model. Alternatively, a generalization of the OR relationship (independent 

regulators, each sufficient) and the AND relationship (all regulators need to act together) to other 

frameworks can lead to a generalization of the ESM concept and to a straightforward application 

of our methods. Another area of future development is therefore to extend the measure to models 

with multi-state or even continuous dynamics. 
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Chapter 5 

Determining the Attractors of a Boolean Network Using an Elementary Signaling 

Mode Approach 

5.1 Introduction 

It is increasingly accepted that the analysis of complex systems encountered in many fields 

of science and engineering is greatly simplified by representing the system as a network. The 

elements of the system become network nodes and the relationships among the elements become 

the edges of the network. Examples of such systems fruitfully analyzed as networks include 

biological systems at several levels of organization (1, 2), various social systems (3), the World-

Wide Web (30), as well as massive engineered systems (31). Network analysis and modeling has 

played an important role in many fields. In biology, for instance, network theory offers tools to 

describe the mass flow or regulatory relationships of diverse molecules and cellular components 

and to reveal complex cellular functionalities that emerge from these molecular interactions (4-7, 

35). 

A network is a set of nodes (or vertices) that represent the elements in a system and a set 

of edges (or links) that stand for the relationships among nodes. The edges can be undirected, 

indicating the adjacency relationship between nodes, or directed, representing causality, ordering 

or regulation in a system. Further, certain directed edges may also be distinguished by signs, if a 

node can act as either an activator or an inhibitor of another. Our focus here is on directed and 

signed networks, which are encountered in biological systems (e.g. signal transduction networks, 

the immune response to pathogens, ecological systems that involve both predator-prey and 

mutualistic interactions) and in social systems (e.g. inter-personal networks that include both 
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friendship and enmity). Most directed networks encountered in applications contain a number of 

source nodes (nodes with no incoming edges), which can be considered as entry points (inputs) to 

the system, and a number of sink nodes (nodes with no outgoing edges), which can serve as outputs 

of the network.  

Many complex systems serve as substrates for spreading or flow processes. Examples 

include disease or rumor spreading, cascading failures, or information spreading on biological 

signal transduction networks. In these cases in addition to the network structure, which captures 

the topological layout of a system, the capability to elucidate the temporal behavior of the system 

is often desirable, leading to the construction of a layer of dynamic models on top of the static 

network structures. Dynamic models characterize the nodes by a state variable (for example, 

categorizing individuals into susceptible, infected or recovered in disease spreading models, or 

describing molecules by their concentrations in chemical reaction networks). The regulatory 

effects of edges incident on a given target node are synthesized into a so-called transfer function 

that indicates the relationship between the target node’s state and its regulators’ states. 

Discrete dynamic models are increasingly emerging as practical and successful simplified 

representations for the dynamics of various systems (1, 2, 9-14). Boolean dynamic modeling is the 

simplest type of discrete dynamic model, in which the node states are represented as binary values, 

namely 1 (indicating an above threshold level or activity) and 0 (below-threshold level or 

inactivity). A Boolean transfer function (or Boolean rule) is expressed using the logical operators 

“not”, “and”, “or” or as a threshold rule (11, 36, 37). Dynamic simulations performed based upon 

Boolean models yield the long-term behaviors of the system, also known as attractors. For a system 

of N nodes, the total size of its state space is 2N. If the simulation is initiated from a state (called 

initial state), the system will likely visit a series of other states, leaving a trajectory in the state 
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space. An attractor will be reached eventually. Such a single run is unlikely to cover the entire 

state space especially when N is large. In many systems there isn’t enough information on the most 

relevant initial state, thus a systematic exploration of the state space is needed, which is time-

consuming or even improbable for large N’s. 

It is now widely recognized that the structure of a network is closely related to its function 

(15-18). For example, particular interaction patterns, called network motifs (19), are over-

represented in various systems, and they have been proposed to achieve certain functions and 

generate characteristic attractors (20). Here we aim to determine the attractors of a Boolean 

network based purely on its network topology and the Boolean transfer functions of the nodes. For 

the majority of biological networks the most relevant attractors are steady states that correspond 

to robust responses to sustained signals. Therefore, we are focusing on the case wherein at least 

one the input node is in the state 1 (there is a sustained signal), and we are most interested in the 

steady states obtained in this case. We pursue other types of attractors of the system only in cases 

where steady states do not exist. The method in general, however, is able to retrieve all attractors 

of a system independent of its signals. Our method has three principle underpinnings: the concept 

of elementary signaling modes (ESM) proposed in (21), the close relationship between the degree 

of sign-consistency of a network and its attractors, and the critical role of the positioning of the 

strongly connected components (SCC) in a network. 

Our method fills a blank in Boolean dynamic modeling, not only producing an alternative 

approach to solve for the attractors, but also offering new insights into the relationship between 

network topology and its dynamics, generating a rich repertoire of results concerning sign-

consistencies of an ESM, potentially feasible steady states of a sign-consistent ESM and network 

simplification. 
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5.2 Background and methods 

5.2.1 The benefits of Boolean dynamic modeling 

Many traditional dynamic models are continuous and deterministic; they describe node 

states as continuous variables (e.g. abundances or concentrations) and take the form of a set of 

coupled differential equations. Each differential equation describes the rate of change of a 

regulated node’s state as a function of the states of its regulators (8). Approaches of such fine 

granularity of time and node state, however, grow exponentially taxing on computing power and 

become practically not feasible to carry out when the number of nodes in a system reaches over a 

hundred. Even for smaller systems, the estimation of kinetic parameters is often difficult due to 

insufficient temporal data or unknown mechanistic details. Alternative dynamic approaches that 

overcome these difficulties are based on the qualitative states observed in many different contexts. 

For example, transcription factors may be post-translationally activated or suppressed, or an ion 

channel is either open or closed. In other situations, though the node states are continuous (e.g. 

concentrations), their exact value is of less interest than whether they are above a certain threshold. 

These observations give rise to one type of discrete dynamic modeling—Boolean modeling (9, 10), 

which has been successfully implemented on a wide range of biological systems, capturing known 

characteristics and features, offering insights as well as yielding novel predictions (1, 2, 11-14). 

5.2.2 State trajectories and attractors in Boolean models 

Assuming that the total number of nodes in a system is N, a state of the system is an N-

dimensional vector, with each component equal to the state of a node, which in turn is equal to 1 

or 0. During dynamic simulations of the system, its state will evolve following the set of Boolean 

transfer functions that govern the state transitions of each node. An attractor is a steady 
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(unchanged) state or a set of repeating states of the system. For the latter case, called a complex 

attractor, every state in the set will eventually reappear in the state trajectory as the system evolves 

dynamically through time. Both types of attractor represent stabilized system behavior, and can be 

mapped onto and thus confirmed by experimental results. The steady states of a molecular network 

could correspond to cell phenotypes (13, 32). Complex attractors can represent circadian rhythms 

(33, 34), cell cycles (11, 12), or seasonal variations in ecological communities. The fact that the 

attractors of a Boolean dynamic model can be interpreted experimentally underscores the 

importance of determining all possible attractors of a Boolean model. 

5.2.3 Strongly connected components and sign-consistency 

In a directed graph, a strongly connected component (SCC) is a group of nodes within 

which a path starting from any node i and ending at any node j exists. i and j can be identical, 

meaning the path can start and end at the same node. In other words, any node within an SCC can 

be reached via a directed path from itself or any other node in the same SCC. The in-component 

of an SCC is defined as the set of nodes that can reach the SCC (that is, for which at least one path 

exists that starts at the node and ends at a node of the SCC). The out-component of an SCC is the 

set of nodes that can be reached from the SCC. 

A directed and signed graph G is sign consistent if (and only if) for all pairs of nodes i and 

j in G, all paths that exist from i to j have the same sign, and all cycles in G are positive (22). The 

sign of a path can be obtained by counting the number of negative edges on that path: if the number 

of negative edges on the path is odd, the path is negative; if the number of negative edges on the 

path is even, the path is positive. The same definition applies for cycles, except that for a cycle the 

counting has to start and end on the same node in the cycle. Sign-consistency means an 
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unambiguous positive or negative relationship between any pair of nodes.Biological networks are 

close to being sign-consistent; for example, the percentage of the sign-consistent sub-networks of 

transcriptional regulatory networks mapped to date ranges between 80-90% (28). 

The concept of sign-consistency has been fruitfully used in many fields (22, 23). The theory 

of both continuous and discrete dynamical systems indicates that a necessary condition for 

complex dynamic attractors is the existence of sign-inconsistent feed-forward or feed-back loops 

in the network (20, 27). Sign-consistent networks behave in many ways like one-dimensional 

systems, for example do not exhibit stable oscillatory behaviors (23). Correspondingly, a sign-

consistent Boolean network can only have steady states as its attractors, whereas a sign-

inconsistent Boolean network can also have complex attractors. 

The essence of sign-inconsistent networks can be condensed into two simple network 

motifs (Figure 5-1). 

                                                             

Figure 5-1. Two network motifs encountered in sign-inconsistent networks. (A) A negative 

feedback loop, which leads to complex attractors (B) A sign-inconsistent feedforward loop 

which leads to an ‘isolation’ type steady state. 

In the shortest possible negative feedback loop, illustrated in Figure 5-1A, the state 

transition of node A is governed by A* = not B, where the asterisk refers to the next state of A, 

and the next state of B is B* = A. This set of transfer functions does not have a steady state, since 

the set of equations that results when taking time away yields B = not B, which does not have a 

B A 
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solution. Therefore, the system can only have a complex attractor. The sign-inconsistent 

feedforward loop, in which there are two independent paths of opposite sign between a source 

node and a target node, will also generate undesired network behavior (29). In the shortest possible 

sign-inconsistent feed-forward loop, illustrated on Figure 5-1B, for instance, the Boolean transfer 

function for node B is B* = A and not A, which can be in turn simplified into B* = 0. The converse 

case of B* = A or not A yields B*=1. In both cases the steady state of the target node is independent 

from the state of the source node. For this reason we denote the steady state resulting from a sign-

inconsistent feed-forward loop an isolation type steady state. 

A sign-inconsistent graph can be modified into a sign-consistent one by removing a set of 

edges, or changing the signs of a set of edges. We use the implemented algorithm of DasGupta, 

B., et al (22) to test the sign-consistency of networks and the minimum set of edges whose removal 

will make the network sign-consistent Note that when a sign-inconsistent edge is removed, only 

the relevant ‘relation’ between the corresponding nodes is disregarded. The starting and ending 

nodes of the edge are kept in the network, maintaining their remaining edges. 

5.2.4 Elementary signaling modes 

The most frequently used graph measures, such as degree distributions, path lengths, 

centrality measures, do not distinguish between edge signs and implicitly assume that each edge 

is independent of the others. To account for the special properties of signal transduction networks, 

in (21) an expanded network representation was proposed. In this representation complementary 

nodes were introduced for components that play a role in negative regulation and composite nodes 

were introduced to express synergy in a graphical form. Specifically, given a Boolean transfer 

function for a target node written in a disjunctive normal form (DNF) (Table 5-1), a new composite 
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node will be created for each clause in the rule. This composite node will have as incoming edges 

the set of edges corresponding to the respective clause, and will have a positive outgoing edge 

directed to the original target node. Here we follow (21) in augmenting the network with composite 

nodes, but do not introduce complementary nodes and keep the edge signs. Original nodes that 

were present in the original network together with composite nodes form the expanded network. 

A Boolean transfer function, not in DNF D = (A or not B) and C 

The same Boolean transfer function, in DNF D = (A and C) or (not B and C) 

The two clauses in the Boolean transfer function (A and C), 
(not B and C) 

 

Table 5-1. In Boolean logic, a disjunctive normal form (DNF) is the writing of a Boolean transfer 

function (Boolean equation) as a set of Boolean clauses, each clause containing only the not 

and/or and operators, connected with the or operator. 

An elementary signaling mode (ESM) was defined in (21) as the minimal set of 

components in a signal transduction network that allow information propagation from the source 

node (signal) to the output node. The ESM is minimal in a similar sense as an elementary flux 

mode in metabolic networks (17): it is not decomposable and knockout of any of the nodes in the 

ESM will make it unable to transduce the signal. The ESM concept generalizes the concept of 

shortest path; the difference between the two concepts is that an ESM that contains a composite 

node needs to also contain all nodes directly upstream of it. Multiple edges that converge on the 

same target node and that are inside the same ESM are in a logical AND relation (because they are 

converging on a composite node), and separate ESMs affect the output node in an OR relation.  

5.3 Results 
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Our procedure for determining the attractors of a signal transduction network has the 

following main steps: 

Network preprocessing  

Listing all ESMs 

Determining the attractor(s) of Network 

5.3.1 Network preprocessing 

For a Boolean signal transduction network of N nodes, the dimension of a single state 

vector of the system is N. Since every node of the network will be involved in any attractor 

identification procedure, it is very beneficial to decrease the complexity of the problem by 

simplifying the network without reducing its attractor repertoire. This will also greatly expedite 

the calculation, save space in terms of memory and henceforth enhance the performance of any 

algorithm implemented. A previously introduced network reduction strategy is to merge a node 

with a single, positive, incoming edge with its sole upstream regulator (24, 25). As this merging 

only involves simple substitution, it preserves the number of attractors of the system(26, 38, 39). 

Adapting this strategy, we simplify the network by repeatedly: i) remove a node that has a single 

upstream activation edge, and connect all its downstream targets to its sole upstream node; ii) 

remove duplicate edges of identical sign between a pair of nodes (Figure 5-2). 

                                                     

B 

A 
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Figure 5-2. Network simplification while the total number of attractors of the system is 

preserved. In a directed and signed graph, a node can act either positively (activation, 

corresponding edge usually denoted with “→”) or negatively (inhibition, corresponding edge 

usually denoted with “—|”) on another node. (A) Node B has a sole, positive, regulator, node 

A, thus it can be eliminated, or equivalently, merged with node A. The elimination of B rewires 

all its original downstream edges, to nodes C and D, to its upstream node A. (B) If duplicate 

edges emerge after node elimination, they are merged into a single edge. 

After the network is simplified, it is expanded to represent the synergistic relationships 

(AND rules) between nodes by the addition of composite nodes (21, see Background and Methods).  

5.3.2 Identifying  all ESM’s 

Given the expanded Boolean network, we use the bottom-up (that is, backwards from the 

output node) ESM growing algorithm proposed in (40) to identify all existing ESMs of the network. 

The method is succinctly described as follows: the algorithm examines the nature of the node most 

recently added to the ESM (current node). If the node is an original node, indicating that its n 

upstream nodes are joined by a Boolean or function and can henceforth transduce information 

independently from each other, n partial ESMs will be generated with a different upstream node 

attached to the current node in each partial ESM. If the node is a composite node, indicating that 

its upstream nodes are joined by Boolean and functions, all upstream nodes are required to 

transduce information, thus a single partial ESM will be generated with all upstream nodes 
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attached to the current node. The method is iteratively carried out to nodes that are newly attached 

in a partial ESM until the partial ESM stops growing in size and becomes completed. 

5.3.3 Solving for the attractors of a Network 

In order to solve for the attractors of a network, several sub-steps are taken: 

Calculate the sign-consistency of the expanded network and determine the minimum 

set of sign-inconsistent edges whose removal renders the rest of the graph sign-consistent; 

Depending on the number of sign-inconsistent edges removed, the following measures 

are taken: 

i) 0 sign-inconsistent edges. The expanded network is sign-consistent. 

The attractors are obtained by an algorithm based on the network’s SCC layout. 

ii) 1 sign-inconsistent edge. The expanded network is sign-inconsistent. 

The sign-inconsistent edge is temporarily removed from the network, leaving the 

rest sign-consistent. The attractors of the sign-consistent part of the network are 

obtained using the same method as used in case i). The sign-inconsistent edge is 

then put back into the network, and the attractors for the whole network are 

calculated. 

iii) 2 or more sign-inconsistent edges. The network is sign-inconsistent. 

The attractors of the network are solved using a state backtracking—consistency 

check algorithm we developed. 

We will look at the implementation and the argument behind each step in detail. 

5.3.3.1 Determining the attractors of a sign-consistent Boolean network 
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In sign-consistent networks, all paths between a pair of nodes have the same sign and all 

cycles are positive, these networks are composed of ‘islands’ that consist of maximal sets of 

connected positive edges, bridged by negative edges if there are any (Figure 5-3). An island can 

be a single node, a single SCC, multiple connected SCCs with in-components and/or out-

components, or a tree-like structure without any SCC present. If there are two or more islands, 

there is no requirement on the number or direction of the negative bridges: there doesn’t have to 

be a bridge between every pair of islands (although they have to be connected through other 

islands), there can be a single bridge directed from one island to another, or multiple bridges in 

either or both directions. The only requirement is that there cannot be a cycle formed by an odd 

number of islands connected by negative edges, since this cycle would be negative. 

 

Figure 5-3. Illustration of a sign-consistent network. Three islands that contain only positive 

edges exist, marked with blue, pink and green, respectively. The blue island is composed of a 

single node; the pink island is a simple tree-like structure while the green island contains two 

SCCs, EFG and IJL, marked with a lighter green, with two connection nodes marked with darker 

green. Negative edges (red-colored) form the ‘bridges’ between the islands. Bridges exist 

between the blue and pink, pink and green islands. The blue and green islands are not directly 
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connected by bridges. All paths between any given pair of nodes in the network are sign-

consistent with each other and all existing cycles in the network are positive, thus the whole 

network is sign-consistent. 

From the structural analysis above it can be seen that the elements most crucial to 

determining the attractors of a sign-consistent ESM is the existence of SCCs in a network, the 

relative positioning among all SCCs, and the alignment of negative edges with SCCs. We hereby 

introduce two lemmas concerning the attractor properties of SCCs.. Recall that inside an ESM, 

multiple incoming edges to the same node are connected by the Boolean AND function. 

Lemma 1: An SCC of all positive edges inside an ESM can have two steady states, namely 

all node states = 1 and all node states = 0, and has no other attractors. 

Lemma 2: The all node states = 1 steady state of the SCC of all positive edges within an ESM 

is conditioned on the states of the nodes in the in-component of the SCC. All external inputs 

to the SCC have to be activations in the all states = 1 steady state. Conversely, the all node 

states = 0 steady state of the SCC is independent of the states of the nodes in the in-component 

of the SCC (Figure 5-4). 

 

Figure 5-4. An illustration of the steady states of an SCC with positive edges and two external 

inputs, A and B, all within an ESM. (A) The all nodes states = 0 steady state. Based on the 

Boolean equality 0 and ANY STATE = 0, any state of node A and B is compatible with the 

A B 
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steady state, because every node has at least one 0 input from within the SCC. (B) The all nodes 

states = 1 steady state. Since 1 and 1 = 1, 1 and 0 = 0, only A = 1 and B = 0 are compatible with 

the steady state. 

Based on the two lemmas, the steady states of a sign-consistent ESM can be solved 

following a simple procedure: first, all negative edges in the ESM are temporarily disregarded, 

henceforth all the islands and SCCs composed of positive edges remain. Assume the number of 

islands is m and the number of SCCs is n. The number of SCCs located inside a single island 

ranges from 0 to n. According to lemma 1 each SCC can have two states, all zero or all one. Since 

the steady states of tree-like structures of nodes are determined by the totality of all their upstream 

SCCs, a set of 2n candidate states consisting of a set of all possible combinations of 0s and 1s on 

n slots is generated, each for one of the SCCs. Now reconsider the negative edges. The relation 

between two connected SCCs, mediated by either a single edge or a tree structure of nodes, can be 

activation or inhibition, either directed or bidirectional. Given the nature of the interactions 

between the SCCs, all steady state candidates are then tested against lemma 2: a candidate is 

considered a solution if it is consistent with lemma 2 and discarded otherwise. If two SCCs are not 

connected, no steady state requirement is imposed. Once all the consistent states for all SCCs are 

obtained, the steady states of the rest of the nodes are deduced accordingly. 

Once the attractors of the individual ESMs are identified, the steady states of the original 

network are obtained in a top-down sweep manner. If a node has two different steady states from 

two ESMs, the result depends on where the node is located: if the node is within an SCC, both 

steady states are valid, and the number of the steady states of the system doubles; otherwise, the 

steady state of the node is 1, downstream nodes states are deducted accordingly, and steady state 

0 along with all its downstream components are discarded. 
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Figure 5-5. Determining the steady states of an example ESM. SCCs consisting of positive edges 

are marked with different colors, respectively (green, blue and yellow). Nodes that are outside 

of positive SCCs are marked with a lighter color. (A) The sign-consistent ESM. The composite 

nodes are where multiple edges join together and the states of their upstream nodes are 

connected with Boolean And function are represented with smaller circles. (B) The relationship 

among the positive SCCs, the input and output node are. (C) The viable steady states of the 

ESM based on the two lemmas. The states of the input, output and nodes within the same SCC 

of positive edges are marked on the corresponding node. Multiple input states indicate that the 

steady state of the ESM is viable under both input states. The steady states of all nodes in the 

ESM can be easily retrieved, with node C following the steady state of SCC 1 (green) and node 

H following the steady state of SCC 3 (yellow). 

5.3.3.2 Determining the attractors of an ESM with a single sign-inconsistent edge 

If the ESM being solved has a single sign-inconsistent edge, after the steady states for the 

sign-consistent part of the ESM are determined, it is time to inspect the positioning of the sign-

inconsistent edge relative to the existing ESM structure and determine the change it will bring to 

the steady states. The possible steady states of the source node and target node of the sign-

A B C 
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inconsistent edge have been obtained during the last step. As summarized in Table 5-2, six of the 

eight steady state combinations of the node pair are compatible with the sign-inconsistent edge.  

  Possible combinations of the 
steady states of the node pair Compatibility 

  0→0 √ 

Activation 
Edge 

0→1 × 

1→0 √ 

  1→1 √ 

 0－|0 √ 

Inhibitory 
Edge 

0－|1 √ 

1－|0 √ 

  1－|1 × 

 

Table 5-2. Viable steady states of the source and target node of the sign-inconsistent 

edge. 

For instance, if the source node is in state 0 and the target node is in state 1, then putting 

back a sign-inconsistent negative edge will not make the existing steady state change, or 

equivalently the steady state found by the last step is still a valid solution for the sign-inconsistent 

ESM. The viability of two special cases (1→0 and 0－|0) are straightforward based on lemma 2. 

The target node is in state 0, indicating they are turned off through other sources prior to the 

addition of the sign-inconsistent edge. Inside an ESM, adding an additional effective activation 

will not change the 0 steady state of the target node, which also leads to the interesting observation 

that if the sign-inconsistent edge is ending at a node in state 0, the current state vector is a steady 

state of the network regardless of the sign of the sign-inconsistent edge. 
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As has been theoretically and experimentally demonstrated to be true under numerous 

situations, the presence of a negative feedback loop in a directed and signed network is a necessary 

condition for oscillatory attractors (20). In particular, if a negative feedback loop is formed by 

putting a sign-inconsistent edge back into a network and the states of its source and target nodes 

match one of the two cross-marked cases indicated in Table 5-2, a complex attractor will result. In 

order to determine the system behavior following the addition of the incompatible sign-

inconsistent edge, the original ESM without the sign-inconsistent edge is subject to a new round 

of SCC determination. This is different from the SCC finding used in step 1 in that all negative 

edges were disregarded then but included in the finding and grouping this time. After all SCCs are 

found, all nodes within the same SCC are grouped together and represented by a single ‘SCC node’ 

with labeling, thus making the whole ESM a directed acyclic graph (DAG). Based on the DAG, 

the relative positioning of the source and target nodes will fall into one of the following four 

categories: i) they are located within the same SCC; ii) they are not within the same SCC, and a 

path from the source node to the target node exists; iii) they are not within the same SCC, and a 

path from the target node to the source node exists; iv) they are not within the same SCC and a 

path in neither direction exists. In case i) and ii), since there is already a path from the source node 

to the target node, the addition of a sign-inconsistent edge will result in an inconsistent feedforward 

loop, generating an isolation type of steady state for the target node (see Background and Methods). 

In case iv), the addition of a sign-inconsistent edge will complete an inconsistent feedforward loop 

that starts from the input of the network and ends in the target node, which will also give rise to an 

isolation type of steady state. In case iii), the addition of the sign-inconsistent edge will introduce 

a negative feedback loop into the network, leading to a complex attractor. In case i), ii) and iv), 

the steady states of the nodes that are downstream of the isolated node will be updated, and can be 
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solved accordingly using the new steady state of the isolated node. In case iii), all nodes included 

in the negative feedback loop will oscillate (switch between states regularly or irregularly). The 

states of the nodes that are downstream of the oscillating nodes can also be updated following the 

corresponding Boolean rules, generating a new attractor for the ESM with a single sign-

inconsistent edge. Oscillation (Osc) can be deemed as a special ‘state’ of nodes that is intermediate 

between 1 and 0, with all Boolean rules involved listed below in Table 5-3. Once the attractors of 

the individual ESMs are identified, the attractors of the original network can be obtained by a 

method similar to the one stated for sign-consistent networks, with the exception that the attractor 

of a node outside any SCC will now follow the rules listed in Table 5-3. 

 

Boolean Rules AND OR Not 

All combinations 

Osc AND 0 = 0 Osc OR 0 = Osc 

Not Osc = Osc Osc AND Osc = Osc Osc OR Osc = Osc 

Osc AND 1 = Osc Osc OR 1 = 1 

 

Table 5-3. A list of Boolean rules with 'oscillation' treated as a 'state'. 

5.3.3.3 Determining the attractors of an ESM with more than one sign-inconsistent edge 

If two or more sign-inconsistent edges are identified in the ESM, the structural methods 

described so far encounter several difficulties. After the steady states of the sign-consistent part of 

the network have been obtained, the order in which the multiple sign-inconsistent edges are put 

back into the network may possibly affect the obtained attractor. After one sign-inconsistent edge 

is restored, newly formed sign-inconsistent SCCs might result. As the solving process progresses, 
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repetitive SCC searching and grouping is required, which is computationally inefficient. Further, 

the method to determine the attractor based on the positioning of the sign-inconsistent edge relative 

to the backbone SCC structure is no longer applicable. Within the same SCC, for instance, two 

sign-inconsistent edges can be positioned such that they are in accordance with each other, both 

giving rise to a complex attractor (Figure 5-6A), or they can be positioned in discordance forming 

both motifs in Figure 5-1 (Figure 5-6B). In such cases an algorithm determining the total 

functionalities of multiple sign-inconsistent edges needs to be constructed in order to obtain the 

eventual attractor of the network. This method requires intensive computation. 

                         

Figure 5-6. Multiple sign-inconsistent edges present in a single SCC. (A) Two negative feedback 

edges F—|A and E—|B are in accordance with each other. Both cause complex attractors for 

the SCC, and oscillation will indeed result from (A). Note that the two negative feedback edges 

do not represent the minimal set of sign-inconsistent edges set in this particular case, but they 

would be in expanded versions that have, e.g., more positive feedforward paths from C to D. 

(B) Relative to the activation edge C→D, inhibition F—|A forms a negative feedback while 

inhibition B—|E on the other hand forms an inconsistent feed-forward loop. The final attractor 

of (B) is an isolation type of steady state. 

Therefore, we designed a bottom-up attractor identification algorithm based on state 

backtracking. Starting from the output node of the network, the algorithm examines the state of 

the current node (1, 0, or Osc), and generates all viable solutions for the states of its regulator 

nodes based upon the number of such regulator nodes and the sign of the edges between the 

regulators and the current node. The states, and henceforth the solution, is tentative until the states 

A B 
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of all nodes in the ESM have been examined and the corresponding solution proved to be self-

consistent in terms of nodes’ states and consistent with any known external inputs. Otherwise, if 

any inconsistent nodes states are detected during the process, the tentative solution is discarded. 

The algorithm resembles the bottom-up algorithm designed for ESM identification but has its own 

solving mechanism and stopping criterion, which are detailed below. 

Assume a node K is currently under examination and has m regulators {Hi | i = 1,…,m}. 

They are joined together by the and operator in the Boolean transfer function of K, as we are inside 

a single ESM. As a consequence, depending on K’s state, a different deduction method applies 

and different numbers of solutions will be induced: 

i) K = 1. Based on the Boolean equalities 1 and 1 = 1 and 1 and not 0 = 1, all effective 

inputs of K have to be activations—if the incoming edge to K is positive, the upstream node must 

be in state 1, and if the edge is negative, the upstream node must be in state 0. A single solution is 

generated. 

ii) K = 0. Based on Boolean equality 0 and ANY STATE = 0, the absence of one activator 

or the presence of one repressor of K is sufficient to put K in the 0 state. m solutions will be 

generated, with Hi = 0 (Hi = 1) in the ith solution (i = 1,…,m), if the edge from Hi to K is positive 

(negative). Meanwhile, Hj can be any state and is henceforth still unsolved for any j ≠ i. 

iii) K is oscillating. As illustrated in Table 5-3, oscillation can also be considered as a 

special ‘state’ of a node, and has its own set of Boolean equalities. Therefore, Hi can either be 

oscillating or activating K (i = 1,…,m), or equivalently Hi = Osc, or Hi = 1 (Hi = 0) if the edge 

from Hi to K is positive (negative), which gives us a total number of 2m solutions, since two choices 

of states are available for each Hi (i = 1,…,m) regardless of the sign of the edge. The solution in 
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which none of the Hi is oscillating is not acceptable, for it would result in K = 1 instead of an 

oscillating K, making the total number of viable solutions under this category (2m – 1). 

To initiate the calculation, three separate, tentative solutions are generated with the output 

node of the ESM in state 1, 0 and Osc, respectively. Subsequently, the bottom up state 

determination is carried out iteratively until one of the following scenarios occurs: i) The states of 

all nodes are assigned with no inconsistency encountered. Consequently, the calculation for that 

particular solution is completed and one attractor of the network is obtained. One can move onto 

the next tentative solution. ii) A self-consistent partial solution is obtained, indicating that nodes 

whose states have been solved form a closed loop, with no implication on the states of the rest of 

the ESM. In such case, a node whose state is not solved yet needs to be initialized with all three 

possible states again (1, 0, and Osc), generating 3 tentative solutions and the solving process will 

proceed. iii) One node is required to be in two different states simultaneously via two separate 

state deductions in the same tentative solution, or in other words, inconsistency is encountered. In 

this case, the tentative solution in which contradictory states are found is discarded, and one can 

move on to the next tentative solution. 
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Chapter 6 

Conclusions and Outlook 

 When given a complex system, delineating its components, perusing their regulatory 

relationship and dynamic interplay and representing the whole with a network is a unique way to 

study its details without losing the overall picture of the system. In fact, it is often times the only 

way to generate any information about the system as a whole. With the capacity of modern data 

acquisition, emergent properties and behaviors on the system level rather than parameterized 

dynamic details between its elements become the answer to many important questions, giving the 

approach an increasing popularity among researchers. 

 In this dissertation, I presented studies focused on network modeling of complex systems 

with dynamics from both the application of such approach to a signaling process in plants and the 

theoretical analysis of the dynamics of such models. The studies were conducted with deepening 

our understanding of the process of stomatal opening, widening the horizon of the applicability of 

such modeling approach, and exploring the unchartered territory of its dynamic properties in mind. 

All three goals have been successfully achieved. 

By applying the powerful tool of network modeling, extending the methodology of 

Boolean dynamics to multi-level discrete dynamics, and by organically integrating the two, 

Chapter 3 presented a successful modeling of the crucial biological process of stomatal opening. 

The model captured in a qualitative manner a multitude of vital aspects of biological observation, 

offering sufficient confidence in bringing the model into predicting the behavior of stomata, thus 

revealing the lack of experimental studies on the regulatory relationship between red light-induced 

stomatal opening and its inhibition by abscisic acid. 
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Chapter 4 and 5 delve into analyzing the redundancy and steady state behavior of Boolean 

networks from a theoretical perspective. By incorporating the functional relations among nodes 

into the network structure itself, the approach offers a novel measure of network redundancy that 

can precisely predict the system behavior of single node knockouts. The approach also offers 

unprecedented opportunity of solving for the steady states of networks with Boolean dynamics. 

 The study outlined in Chapter 3 has the potential for a variety of expansions and extensions. 

The model can be expanded to include the photosynthetic and metabolic network cascade on a 

finer granularity, which can then offer a spectrum of candidate targets of its regulation by ABA. 

The methodology can be readily applied to systems with similar dynamics. The authors have 

received multiple requests for its dynamic implementation. Chapter 4 and 5 offer a novel measure 

of network redundancy/robustness and a standardized, computationally efficient procedure to 

solve for the attractors of Boolean networks. The redundancy measure precisely predicts for the 

first time the correlation between the importance of the nodes and the effect of their knockouts 

without carrying out real time simulations of the network dynamics. Both works have the potential 

of being extended to beyond Boolean network models. 
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APPENDIX 

 

Table of system biology terms: 

 

 

 

 

Terms Definitions 

Node a graphical representation of a component of a biological system, such as a protein, 
secondary messenger or small molecule.  

Edge any type of interaction that exist between nodes, e.g. chemical reaction, regulation or 
causal relationship. 

Node state the value of the variable assigned to the node. It can mean concentration, activity, 
status. In Boolean modeling, there are two node states: ON, meaning above threshold 
concentration or activity, and OFF, meaning below threshold concentration or 
activity. 

State of the system anN-dimensional vector, where N is the total number of nodes in the system. The ith 
dimension is the state of the ith node. 

Fixed point or steady 
state 

a state vector of the system that is time-invariant. If the system reaches a steady state, 
it will stay in that state. 

State transition graph a graph showing the evolution of the state of the system. The system will undergo 
state changes along the direction of the arrows. 

Attractor a set of connected states of the system. Each state in the set has to be reachable by the 
system after a sufficiently long period of time. Fixed points (steady states) are a 
subtype of attractors. 

Basin of Attraction a set of connected states of the system. Given sufficiently long time, every state in the 
set can reach a specific attractor of the system. All such states that are able to reach 
the same attractor form the basin of attraction of that particular attractor. 
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