
The Pennsylvania State University
The Graduate School
College of Engineering

SPARSE RECOVERY OF TIME-VARING STREAMING DATA

USING HOMOTOPY METHOD

A Thesis in
Industrial Engineering

by
Xue Wang

© 2015 Xue Wang

Submitted in Partial Fulfillment
of the Requirements

for the Degree of

Master of Science

August 2015

The thesis of Xue Wang was reviewed and approvedú by the following:

Tao Yao
Professor of Industrial Engineering
Thesis Advisor

Lingzhou Xue
Professor of Statistics
Reader

Harriet Black Nembhard
Head of the Harold and Inge Marcus Department of Industrial and Manu-
facturing Engineering
Department Head

úSignatures are on file in the Graduate School.

ii

Abstract

Many existing algorithms for regularized least square regression assumes that the
true parameters to be stable and not change with time. However, the algorithm
and framework for recovering time-varying signal with online updating is not well
researched. Some people proposed the kind of homotopy l1≠ minimization methods
for dealing with online updating data, which has been shown to work well, but
there are also some limitations: (1) the result of l1≠ minimization method is
biased; (2) the homotopy algorithm has been proved to be a kind of exponential
method. In some special cases, the homotopy l1≠ minimization method may work
bad. In this thesis, we constructs a novel homotopy algorithm for the situation of
time-varying signal with online updating. In the algorithm: (1) we fold concave
regularation instead of l1r-egularation, such as SCAD, which has been proved
to have better statistical properties; (2) the complexity bound of our method is
O(N2/

Ô
‘). Besides the complexity bound, our method also has a special property.

No matter how dramatically the significant parameters changes, our method will
converge in very few steps if the significant parameters remain significant and
insignificant parameters remain insignificant. In the numerical experiments, we
present our method’s performance compared to some other methods in several
di�erent situation, such as, urban tra�c travel time and image recovery.

iii

Table of Contents

List of Figures vi

List of Tables vii

Chapter 1
Introduction 1
1.1 Problem Statement . 1
1.2 Ordinary least squares regression and Kalman Filter 3
1.3 Regularization . 5
1.4 Algorithm for regularization regression 8

1.4.1 Interior Point Method for L1-minimization Problem 9
1.4.2 Iterative Shrinkage-Thresholding Algorithm for L1-minimization

Problem . 10
1.4.3 Coordinate decent method for L1-minimization Problem . . 10
1.4.4 Alternating Direction Method of Multipliers for L1-minimization

Problem . 11
1.4.5 Homotopy Method for L1-minimization Problem 11

1.5 Online Updating for L1-minimization Problem 13
1.5.1 Homotopy path along the new observation 13
1.5.2 Homotopy Path Along the Subgradient 14

Chapter 2
Approximate Homotopy Algorithm 17
2.1 Complexity Bound of Approximate Homotopy for Ordinary Lasso

Regression . 17
2.2 Complexity Bound of Approximate Homotopy for Lasso with Online

Updating . 22
2.3 Framework of Approximate Homotopy for Regularized Least Square

Regression with Online Updating 27

iv

Chapter 3
Numerical test 30
3.1 Urban travel time estimation . 31
3.2 Experiments with real images . 33

Chapter 4
Conclusion 35
4.1 Summary of model and test results 35
4.2 Discussion and Future Research . 35

Bibliography 36

v

List of Figures

1.1 Plot of penalty function value . 7
1.2 Plot of the derivative of penalty function 8

3.1 estimation of time varying signal for tra�c system 32
3.2 details of estimation of time varying signal for tra�c system 32
3.3 Results for the recovery of N ◊ N images (N = 256) from column-

wise random, compressive measurements with compression rate
R = 4. (Row 1) Original images. (Row 2) Recovery of each column
independent of its neighbors. (Row 3) Streaming recovery with one
adjacent column. (Row 4) Streaming recovery with three adjacent
columns. 34

vi

List of Tables

3.1 instances P = 20, N = 20 . 30
3.2 instances P = 2000, N = 200 . 30
3.3 instances P = 2000, N = 200 . 31
3.4 Computational e�ciency of simulated urban tra�c data 32

vii

Chapter 1 |
Introduction

1.1 Problem Statement
In this paper, we discuss a problem of recovering a time varying sparse system from
incomplete streaming data, which has been found its applications in many fields,
such as, signal processing[3, 11, 42], dynamic tra�c flow estimation[23], detecting
moving objects in dynamic scenes[47] and shallow-water acoustic communication[28].
Most of traditional sparse recovery methods assume the signal being stable. In our
analysis, we release this assumption to the signal follows a linear Gauss-Markov
model, which is:

—t+1

= At—t + vt t = 0, 1, 2, ... (1.1)

Where —t is the signal at time t, At is a prediction matrix at time t that couples —t

and —t+1

and vt is iid Gaussian random variable that follows N(0, ‡2

v). If we set
‡v = 0, At = I, the equation(1.1) will degenerate to —t+1

= —t, which is just the
situation of stable signal.
We also assume the unknown signal —t is a vector with finite elements and fits the
following linear system:

yt = Xt—t + ‘t t = 0, 1, 2, ... (1.2)

where yt is the vector of responses at time t, Xt = {xT
1,t, xT

2,t, ..., xT
n,t}T is the

measurement matrix at time t, where xi,t, i = 1, 2, ..., n is the ith measurement

1

corresponding to yi,t and ‘t N(0, ‡2

‘) is a vector of error which follows iid normal
distribution. We can used ordinary least squares regression(OLS) or Kalman
Filter(KF) to get an optimal estimation[39].
However, both OLS and KF have some defects: (1) XT

t Xt should be well conditioned;
(2) the length of —t can’t be larger than the rank(Xt)[7] and (3) the solution could
be instable when some predictors are highly correlated[21].
To overcome these three di�culties, people developed the regularized least square
regression [16, 22, 40, 49] . The formulation of regularized least square regression
is:

— = arg— min 1
2Îy ≠ X—Î2

2

+ P⁄(|—|) (1.3)

where P⁄(.) is the regularation function. However, these methods are not suitable
for dealing the situation of streaming updating and unknown signal changing with
time. Since can not collect all measurements or measuring the entire signal all at a
time, these tasks need to be finished sequentially. We build the model with time
varying observations as:

y(t) = X(t)—(t) + ‘(t) t = 1, 2, ... (1.4)

where y(t) is the vector of measurements measured at time interval t, X(t) contains
the basis at interval t, ‘(t) is the error vector and —(t) is the vector representing the
signal at interval t. And using regularized regression we can build a minimization
problem for estimating the —(t) sparsely.

—(t) = arg— min 1
2Îy(t) ≠ X(t)—Î2

2

+ P⁄(|—|) (1.5)

Noticing when t is fixed, the problem(1.5) reduces to (1.3). In[2, 13, 37, 38], people
suggest using weighted lasso penalty in (1.3), which is formulated as:

P⁄(|—|) = WÎ—Î
1

(1.6)

where W is a diagonal matrix with positive weights. In traditional lasso penalty,
all diagonal elements are the same. Some people suggest to solve a weighted lasso
to further enhance the sparsity[12]. Substitute (1.6) into (1.5) and we get the

2

following weighted l1-norm minimization problem:

—(t) = arg— min 1
2Îy(t) ≠ X(t)—Î2

2

+ WÎ—Î
1

(1.7)

In (1.7), the l2 term(least square part) keeps the solution close to the measurements
and the l1 term(weighted lasso part) enforces the solution to have a sparse structure
in the solution[48]. The optimization problem (1.7) is convex and can be solved by a
lot of gradient methods[4, 5, 9, 43, 44] and homotopy or path methods[15, 33, 35, 41].
However, there are several deficiencies in the literatures: (1) lasso will reach a
biased estimator[16]; (2) design e�cient gradient methods for streaming data is
very sophistic;(3) Homopoty or path methods don’t have a polynomial complexity
bound[29].
In this paper we propose a novel framework to recovery time varying signal: (1)
we use fold concave penalty, such as, SCAD penalty which has a better statistical
properties; (2) an approximated path method are designed, which is a polynomial
algorithm; (3) instead of updating one measurement at one time, our method can
also update a batch of measurements at once. The following sections in this chapter,
we first do a review on ordinary regression and regularized regression. Then we
show some popular methods to solve regularizized regression problem as well as
regularizized regression with online updating situation.

1.2 Ordinary least squares regression and Kalman Fil-
ter
The ordinary least squares regression(OLS) is a very popular regression or linear
inverse method. The goal of OLS is to find a minimizer of the residual sum of
squared error(RSS).

min
mÿ

i=1

(yi ≠
nÿ

j

xij—j)2 (1.8)

Where —j, j = 1, 2, ..., n are the parameters we want to estimate, yi, i = 1, 2, ..., m

are the responses, [xi1, xi2, ..., xin], i = 1, 2, ..., m are the measurements. In matrix
notation, we can get a simpler form:

min ÎX— ≠ yÎ2

2

(1.9)

3

The solution to (1.9) is:
— = (XT X)≠1XT y (1.10)

OLS requires the signal — being constant or stable enough, while the Kalman Filter
addresses a more general problem of estimating a vary signal —t of a discrete-time
or continue-time process. It assumes the signal — following a linear Gauss-Markov
model:

—k = Ak—k≠1

+ vk≠1

(1.11)

with some measurements at time t:

yk = Xk—k + ‘k (1.12)

Where vk, k = 1, 2, ... and ‘k, k = 0, 1, ... are iid Gaussian random variables, which
vk follows N(0, Q) and ‘k follows N(0, P).
The process of Kalman Filter is similar to feedback control: we first estimate the
signal —k at time k and then get feedback from minimizing measurements errors.
The first stage is called time update, which is responsible for getting a prediction of
current signal and the error covariance estimates for the next part. The second stage
is called the measurement update which is using the new measurements to improve
the estimates of current signal as well as the error covariance. The algorithm is
constructed as a type of "predictor-corrector" procedure as shown below:

Algorithm 1 The Discrete Kalman Filter Algorithm
k = 1
while k < K

max

do
%the time update
—̂≠

k = Ak—̂k≠1

P ≠
k = AkPk≠1

AT
k + Q

%the measurement update
K = P ≠

k XT
k (XkP ≠

k XT
k + P)≠1

—̂k = —̂≠
k + K(yk ≠ Xk—̂≠

k)
Pk = (I ≠ KXk)P ≠

k

k = k + 1
end while

Where —̂≠
k is the prior estimate at time k given knowledge of the process prior

to time k and —̂k is the posteriori state estimate at step k given measurements

4

Xk, yk. The priori and posterior estimate errors are e≠
k = x≠

k ≠ x̂≠
k and ek = xk ≠ x̂k.

P ≠
k = E[e≠

k eT ≠
k] is the prior estimate error covariance and Pk = E[ekeT

k] is the
posterior estimate error covariance. More details can be found in [10].

1.3 Regularization
The idea of regularization was first introduced by Tikhonov[6], which aimed at
solving ill-condition matrix inverse problem. Later, Hoerl and Kennard developed
ridge regularization[22]. The formulation of ridge regression is:

min 1
2ÎX— ≠ yÎ2

2

+ ⁄Î—Î2

2

(1.13)

The estimator of ridge least square regression is:

—̂ú = (XT X + ⁄I)≠1XT y (1.14)

Notice that when ⁄ > 0, XT X +⁄I is always invertible and if ⁄ is small enough, the
mean error of solution is very close to ordinary least square(OLS) regression but the
prediction mean error could be much smaller than OLS. The ridge regularization
won’t reach a sparse solution. To enhance shrinkage, Tibshirani proposed lasso
regularization[40], which use l1 norm to replace the l2 norm in the ridge regression:

min 1
2ÎX— ≠ yÎ2

2

+ ⁄Î—Î
1

(1.15)

The lasso regression can lead to a sparse and unique solution. It is also a convex
problem and there are many methods to solve lasso problem. But lasso has 2
defects: (1) the number of significant parameters can’t be more than the sample
size; (2) it is a biased estimator. To solve the first defect, people proposed the
Elastic Net regularation[49]. The formulation of Elastic Net regression is:

min 1
2ÎX— ≠ yÎ2

2

+ ⁄
1

Î—Î
1

+ ⁄
2

Î—Î2

2

(1.16)

The solution of Elastic Net is not sparse as lasso solution but it can yield the
solution that the total number of significant parameters is more than the sample
size.

5

To solve the second defect, Fan and Li invented SCAD penalty[16], Zhang proposed
MCP penalty[45], Candes, Wakin and Boyd suggested log penalty[12] and Mohimani
et al used exponential penalty[31], etc. The idea of these penalties is to connect
the lasso with best subset selection. The formulation of best subset selection is:

min 1
2ÎX— ≠ yÎ2

2

+ ⁄Î—Î
0

(1.17)

where

Î—iÎ0

=

Y
_]

_[

1 – ”= 0

0 otherwise
(1.18)

Where i = 1, 2, ..., n. Î—Î
0

just equals the number of its non-zero coe�cients. The
best subset is unbiased and sparse. Unfortunately, the known methods that can
exactly solve (1.17) are combinatorial, namely NP-hard problem[14]. SCAD is a
spline function that begins with lasso at around 0 and when parameter is large
enough, it turns to be the best subset selection. The SCAD penalty function is
defined as:

P
Õ

⁄(—) = ⁄I—Æ⁄ + (a⁄ ≠ —)
+

a ≠ 1 I—>⁄ (1.19)

where a > 2 and in[16], the author suggested a = 3.7.
Similarly, if the spline function begins with lasso only at — = 0 and then goes
towards to the best subset selection, it becomes MCP. The definition of the MCP is

P
Õ

⁄(—) =
3

⁄ ≠ t

a

4

+

(1.20)

Unlike the lasso, these two penalty functions do not require the irrepresentable
condition[30, 46, 48] to reach the variable selection and correct the system bias of
lasso method[16, 45].
Some other people suggest using log penalty function[12]:

P⁄(—) = ⁄ log(|—| + ‘) (1.21)

Where ‘ is a small positive number, which is used to keep the (1.21) well defined
when — is around zero. According to the approximation equation:

Î—iÎ0

¥ Î—iÎ1

|—i|
(1.22)

6

Via the first order approximation, we can connect the log penalty with the best
subset selection:

P⁄(—) = ⁄ log(|—| + ‘) ¥ ⁄
|—|

|—̂ + ‘|
¥ ⁄

Î—Î
1

|—̂|
¥ ⁄Î—Î

0

(1.23)

The motivation of exponential penalty is very similar to log penalty function. The
definition of exponential penalty function is:[31]

P⁄(—) = 1 ≠ exp(≠1
2⁄—2) (1.24)

Figure 1.1: Plot of penalty function value

From the figure 1.1, we can find when — is around zero, l1-norm, SCAD, MCP and
log penalty are closer to l0-norm penalty and when — is large enough, log penalty
becomes further away from l0-norm. Therefore, according to the function value,
SCAD and MCP may perform more like l0-norm. And from the figure 3.2, SCAD
and MCP are also two of best approximated l0-norm both when — is around zero
and large enough. In this paper, we prefer SCAD because when — is around zero,
SCAD works more like l1-norm penalty, which has more power to force parameters
becoming zero. It may make solution more stable numerically.

7

Figure 1.2: Plot of the derivative of penalty function

1.4 Algorithm for regularization regression
In general, regularation regression is nonconvex optimization problem. There are
multiple local optimal solutions. The computation methods is much more involved.
Several algorithms have been proposed for computing SCAD and MCP penalty
problems. Fan and Li[16] set up the local quadratic approximation algorithm, which
turns the nonconvex problem into solving weighted ridge regression iterately. Zou
and Li[50] proposed a local linear approximation(LLA) algorithm which focus on
using a sequence of weighted lasso problem to approximate the solution of nonconvex
problem. Both local quadratic approximation and local linear approximation fall
in the scheme of MM algorithm[25, 26]. Liu et al[24] used integer programming
technology built an algorithms to solve the global optimal solution. Zhang[45]
proposed a PLUS algorithm for MCP and proved the oracle property. The oracle
solution is:

—̂oracle = (—̂oracle

�

, 0) = arg— min
—�c=0

loss(—) (1.25)

Where � contains all the index of true significant parameters and loss(.) is the loss
function. For least square loss function, the oracle solution is unique and:

Ò
�

loss(—̂oracle) = 0. (1.26)

Recently, Fan, Xue and et al shows that the local solution can be solved from LLA

8

Algorithm 2 The Local Linear Approximation(LLA) Algorithm

Require: i = 0, —̂
(i) = —̂initial, —̂

(i+1)

= —̂
(i) + ‘

while Î—̂
(i+1)

≠ —̂
(i)Î Ø ‘ do

w
(i) = {w

1,(i), ..., wn,(i)} = {P
Õ
⁄(—

1,(i)), P
Õ
⁄(—

2,(i))..., P
Õ
⁄(—n,(i))}

—̂
(i+1)

= arg— min loss(—) + w
(i)Î—Î

1

i = i + 1
end while

algorithm and with a probability this solution would be the oracle solution. The
lower bound of this probability is 1 ≠ ”

0

≠ ”
1

≠ ”
2

[17]

”
0

= Pr(Î—̂initial ≠ —úÎ
max

> a
0

⁄) (1.27)
”

1

= Pr(ÎÒ
�

c loss(—̂oracle)Î
max

> a
1

⁄) (1.28)
”

2

= Pr(Î—̂oracle

�

≠ —ú
�

Î) Æ a⁄ (1.29)

where a
0

, a
1

, a
2

are some constants related to the regularation function P⁄(.):

P
Õ

⁄(0) = P
Õ

⁄(0
+

) Ø a
1

⁄ (1.30)
P

Õ

⁄(—) Ø a
1

⁄, for — œ (0, a
2

⁄] (1.31)
P

Õ

⁄(—) = 0, for— œ [a⁄, Œ); a > a
2

(1.32)

The subproblem in algorithm 2 falls in l1-minimization problem. It can be solved
using various of methods listed as flows:

1.4.1 Interior Point Method for L1-minimization Problem
The first method is interior point method. To implement it, we need to replace the
l1-norm with inequality constraints[27]:

min 1
2ÎX— ≠ yÎ2

2

+ ⁄
nÿ

1

ui

s.t. ≠ ui Æ xi Æ ui, i = 1, 2, ...n

9

building a log-barrier:

�(x, u) = ≠
nÿ

i=1

log(xi + ui) ≠
nÿ

i=1

log(ui ≠ xi) (1.33)

Then the central path contains a unique minimizer (xú(t), uú(t)) for the convex
function

„(t, x, u) = ÎX— ≠ yÎ2

2

+ ⁄
nÿ

i=1

ui + 1
t
�(x, u) (1.34)

as t from 0 to +Œ. Using Newton’s method or first order methods to solve the
subproblem, we will reach the final solution in polynomial steps.

1.4.2 Iterative Shrinkage-Thresholding Algorithm for L1-minimization
Problem
Iterative Shrinkage-Thresholding Algorithm(ISTA) is a kind of proximal gradient
methods. Given a starting point —k, we first prox —k on the l2 term:

“k = —k ≠ 2tXT (X—k ≠ b) (1.35)

Where t is a appropriate step size. Then prox yk on the l1 term:

—k+1

= (|“k| ≠ ⁄)
+

sign(“k) (1.36)

ISTA converges at a rate O(1

‘). Using Nestrov’s technique, we can enhance the
convergence rate to O(1Ô

‘)[5].

1.4.3 Coordinate decent method for L1-minimization Problem
Coordinate decent(CD) is another very popular method for solving l1-minimiztion,
in which we prox on each coordinate of — at a time instead of all at once.

“k = XT
i (y ≠ Aic—ic)

AT
i Ai

—k = (|“k| ≠ ⁄/ÎAiÎ2

2

)
+

sign(“k)

10

Repeating this for k = 1, 2, ...n, 1, 2, ... until the result converges. Although the
convergence rate is O(1

‘)[36], in the test it has a much better performance than
FISFA and interior point method[18].

1.4.4 Alternating Direction Method of Multipliers for L1-minimization
Problem
To use Alternating Direction Method of Multipliers(ADMM) procedure, we need
to write the l1-minimization problem as:

min 1
2ÎÎX— ≠ yÎ2

2

+ ⁄Î“Î
1

s.t. — ≠ “ = 0

The ADMM becomes:

—k+1

= (XT X + flI)≠1(AT b + fl(“k ≠ uk)) (1.37)
“k+1

= (—k+1

+ uk ≠ ⁄/fl)
+

sign(—k+1

+ uk) (1.38)
uk+1

= uk + —k+1

≠ “k+1

(1.39)

Note that XT X + flI is always invertible, since fl > 0. The —-update is just a
ridge regression (l2-norm regularized least squares regression) computation, so
ADMM can be interpreted as a method for solving the l1-minimization problem by
iteratively solving the ridge regression[9].

1.4.5 Homotopy Method for L1-minimization Problem
The homotopy method is a kind of active set methods. We start with the subgradient
optimal condition:

0 œ XT (X— ≠ y) ≠ ⁄ˆÎ—Î
1

(1.40)

where

ˆÎ—Î
1

Y
_]

_[

= sign(—) — ”= 0

≠1 Æ ˆ— Æ 1 — = 0
(1.41)

11

Supposing we now have a solution pair (⁄t, —t) of (1.40), the active set � is defined
as:

� = {i|—i ”= 0, i = 1, 2, ..., n} (1.42)

Separating (1.40) according to �:

XT
�

(X
�

—
�

≠ y) ≠ ⁄ˆÎ—
�

Î
1

= 0 (1.43)
XT

�

c(X
�

—
�

≠ y) ≠ ⁄ˆÎ—
�

cÎ
1

= 0 (1.44)

After some transformation:

—
�

= (XT
�

X
�

)≠1(⁄ˆÎ—
�

Î
1

+ XT
�

y) (1.45)

ˆÎ—
�

cÎ
1

= 1
⁄

XT
�

c(X
�

(XT
�

X
�

)≠1(⁄ˆÎ—
�

Î
1

+ XT
�

y) ≠ y) (1.46)

We can calculate out three sets:

�
0

= {⁄i|—i = 0, i œ �} (1.47)
�

+

= {⁄i|—i = 1, i œ �c} (1.48)
�≠ = {⁄i|—i = ≠1, i œ �c} (1.49)

(1.50)

Setting ⁄t+1

= min{�
0

, �
+

, �≠}, by checking at ⁄t+1

and �, (1.40) will still hold.
And at ⁄ = ⁄t+1

, we will either have —i = 0, i œ � or ˆÎ—iÎ1

= ±1, i œ �c.
Then we can update the active set � as well as ˆÎ—

�

Î
1

with (1.40) holding and
|⁄t+1

≠ ⁄| < |⁄t ≠ ⁄|. So along the path of {⁄
1

, ⁄
2

, ..., ⁄i, ...}, we will finally reach
the optimal solution.
We may start with ⁄tX

T y and � = „ or ⁄t = 0 and � = 1, 2, ..., p when sample size
n is large than the parameter numbers p.
This method doesn’t have a polynomial complexity bound[29] but when the amount
of significant parameters is small, they can still be very e�cient.

12

1.5 Online Updating for L1-minimization Problem
For the methods mentioned in 1.4.1-1.4.4, the online updating situation has no
special designs compared to traditional methods. We just use the old solution from
the previous time as a warm start, update the formulation of the old problem and
run the algorithm for the updated problem with the warm start until it converges.
We decide not to further discuss and only focus on homotopy type of design.

1.5.1 Homotopy path along the new observation
Many people have discussed using homotopy method to handle the situation with
adding one observation at a time, [2, 19] for example. The model they based on is:

min 1
2ÎX— ≠ yÎ2

2

+ ⁄Î—Î
1

+ t

2Îxnew— ≠ ynewÎ2

2

(1.51)

When t = 0, (1.51) is just the old problem and if we increase t to 1, it means we
add a new observation to the old problem. So the goal is to find a path for t from
0 to 1. The optimal condition for (1.51) is:

0 œ XT (X— ≠ y) + txT
new(xnew— ≠ ynew) + ⁄ˆÎ—Î

1

(1.52)

where ˆÎ—Î
1

follows (1.41). Assuming at t = ti, we have � = {i|—i ”= 0, i =
1, 2, ..., p}. We can separate (1.52) into two parts:

XT
�

(X
�

—
�

≠ y) + txT
new,�(xnew,�—

�

≠ ynew) + ⁄ˆÎ—
�

Î
1

= 0 (1.53)
XT

�

c(X
�

—
�

≠ y) + txT
new,�c(xnew,�—

�

≠ ynew) + ⁄ˆÎ—
�

cÎ
1

= 0 (1.54)

And we will have:

—
�

= (XT
�

X
�

+ txT
new,�xnew,�)≠1(XT

�

y + txT
new,�ynew ≠ ⁄ˆÎ—

�

Î
1

) (1.55)

ˆÎ—
�

cÎ
1

= 1
⁄

1
XT

�

c(y ≠ X
�

—
�

) + txT
new,�c(ynew ≠ xnew,�—

�

)
2

(1.56)

Using Sherman-Morrison formula, we can rewrite (XT
�

X
�

+ txT
new,�xnew,�)≠1 as

(XT
�

X
�

)≠1 ≠
t(XT

�

X
�

)≠1xnew,�xT
new,�(XT

�

X
�

)≠1

1 + txT
new,�(XT

�

X
�

)≠1xnew,�
(1.57)

13

Denote

—̃
�

= (XT
�

X
�

)≠1((XT
�

y ≠ ⁄ˆÎ—
�

)Î
1

(1.58)
ẽ = xT

new,�—̃
�

≠ ynew (1.59)
a = xT

new,�(XT
�

X
�

)≠1xnew,� (1.60)
u = (XT

�

X
�

)≠1xnew,� (1.61)

Then we will have:

—
�

= —̃
�

≠ (t ≠ 1)ẽ
1 + a(t ≠ 1)u (1.62)

ˆÎ—
�

cÎ
1

= ≠ 1
⁄

A

X
�

c ẽ + ẽ(t ≠ 1)
1 + a(t ≠ 1)(xnew,�c ≠ XT

�

cX
�

u)
B

(1.63)

We can calculate the folloing three sets:

t
0

= {ti|—i = 0, i œ �} (1.64)
t
+

= {ti|—i = 1, i œ �c} (1.65)
t≠ = {ti|—i = ≠1, i œ �c} (1.66)

Setting ti+1

= min{t
0

, t
+

, t≠}, (1.52) will still hold at ti+1

and �. And at t = ti+1

,
we either have —i = 0, i œ � or ˆ|—i| = ±1, i œ �c. Then we can update the
active set � and ˆÎ—

�

Î
1

, at which (1.52) holds and ti+1

> t
1

. So along the path of
{0, t

1

, t
2

, ..., ti, ...1}, we will final reach the solution. Since we have already known
the solution without new observation denoted as —

0

, it is easy to check — = —
0

, t = 0
satisfying (1.52). We can just set it as a starting point.
This method is also very easy to expand to deal with the situation of deleting an
observation via varying t from 1 to 0 on an old observation.

1.5.2 Homotopy Path Along the Subgradient
Asif proposed another type homotopy algorithm for online updating situation[1].
Supposing the updated problem is:

min fnew(—) = 1
2ÎXnew— ≠ ynewÎ2

2

+ ⁄newÎ—Î
1

(1.67)

14

And we can get the subgradient of fnew(—):

ˆfnew(—) = XT
new(Xnew— ≠ ynew) + ⁄ˆÎ—Î

1

(1.68)

For a given initial solution —ini, define u as:

u œ ≠ˆfnew(—ini) = ≠XT
new(Xnew—ini ≠ ynew) ≠ ⁄ˆÎ—iniÎ1

(1.69)

The homotopy problem is formulated as:

min gt(—) = fnew(—) + (1 ≠ t)uT — (1.70)

The subgradient of gt(—) is:

ˆg(—) = ˆfnew(—) + (1 ≠ t)u (1.71)

As u œ ≠ˆfnew(—ini), when t = 0, we will have

0 œ u + ˆfnew(—ini) = ˆg
0

(—)

So at t = 0 we have the optimal solution —ini.
Assuming at t = ti, we have � = {i|—i ”= 0, i = 1, 2, ...p, 0 œ gti(—)}. We can
separate optimal condition into two parts:

XT
�

(X
�

—
�

≠ y) + (1 ≠ t)u
�

+ ⁄ˆÎ—
�

Î
1

= 0
XT

�

c(X
�

—
�

≠ y) + (1 ≠ t)u
�

c + ⁄ˆÎ—
�

cÎ
1

= 0

If we increase t by a small value ”, the solution moves along the direction ˆ—.
Where

ˆ— =

Y
_]

_[

(XT
�

X
�

)≠1u
�

on �

0 otherwise
(1.72)

If we want to maintain the optimality, we will have:

XT
�

(X
�

—
�

≠ y) + (1 ≠ t)u
�

+ ”(XT
�

Xˆ—
�

≠ u
�

) + ⁄ˆÎ—
�

Î
1

= 0
XT

�

c(X
�

—
�

≠ y) + (1 ≠ t)u
�

c + ”(XT
�

cX
�

ˆ—
�

≠ u
�

c) + ⁄ˆÎ—
�

cÎ
1

= 0

15

Denoting —ú as the solution at ti and

p = XT
�

c(X
�

—ú ≠ y) + (1 ≠ ti)u�

c (1.73)

d = XT
�

cX
�

ˆ— ≠ u
�

c (1.74)

We will have:

”+ = min
A

ˆÎ—iÎ1

≠ pi

di
,
≠ˆÎ—iÎ1

≠ pi

di
,

B

+

i œ �c (1.75)

”≠ = min
A

≠—ú
i

ˆ—i

B

+

i œ � (1.76)

The min(.)
+

means the minimum positive element. ”+ is the smallest ” that leads
to a zero coe�cients becoming nonzero and ”≠ is the smallest ” that leads to a
non-zero coe�cients becoming zero.
Setting ” = min{”+, ”≠}, the optimal condition will hold at ti+1

= ti + ” and �.
And at t = ti+1

, we either have —i = 0, i œ � or ˆ|—i| = ±1, i œ �c. Then we can
update the active set � and ˆÎ—

�

Î
1

. As ” > 0, along the path of {0, t
1

, t
2

, ..., ti, ...},
we will finally reach the optimal solution. Since it is easy to check — = —ini, t = 0
satisfying optimal condition. We can just set it as a starting point.
This method has a more flexible formulation. In the updating process, we may
not only add new observations but also can change any other parts, such as, the
weights of penalty function.

16

Chapter 2 |
Approximate Homotopy Algo-
rithm

The solution path of l1-minimization probelm is piecewise linear, which makes it
easy to follow and compute explicitly via homotopy method. However the worst
case complexity of traditional homotopy method for lasso problem is exponential[20].
To overcome it, Mairal[29] invented an approximate homotopy for ordinary lasso
regression, which has a polynomial complexity bound of O(1Ô

‘). Based on [29], we
prove the approximate homotopy method for lasso with online updating also has a
complexity bound of O(1Ô

‘). The following parts in this chapter arranged as: (1)
show the proof of complexity bound of approximate homotopy for ordinary lasso
regression, which is used to find a good initial solution for the next stage; (2) prove
the complexity bound of approximate homotopy for lasso with online updating; (3)
present model and framework of approximate homotopy for least square regression
with SCAD regularization.

2.1 Complexity Bound of Approximate Homotopy for
Ordinary Lasso Regression
The lasso is formulated as:

min f⁄(—) = 1
2ÎX— ≠ yÎ2

2

+ ⁄Î—Î
1

(2.1)

Lemma 2.1.1 (Optimality Conditions of lasso). For (2.1), the optimal condition

17

is
XT (X— ≠ y) + ⁄ˆ|—| = 0 (2.2)

The solution of (2.2) is the unique global optimal.

where

ˆ|—|

Y
_]

_[

= sign(—) — ”= 0

œ [≠1, 1] — = 0
(2.3)

Proof. the subgradient optimality condition for (2.1) is

0 œ {XT (X— ≠ y) + ⁄p, p œ ˆ|—|} (2.4)

The subgradient of l1 norm is

ˆÎxÎ
1

Y
____]

____[

1 x > 0

œ [≠1, 1] x = 0

≠1 x < 0

(2.5)

Which is equivalent to (2.3). It indicates the the optimal solution satisfies Lemma
2.1.1.
Note that (2.1) is also a convex combination of l1-norm and l2-norm, so (2.1) is
strongly convex. If we come to a solution of (2.2), it must be the unique and global
optimal solution.

With the help of Lemma 2.1.1, we can show a well-known property of lasso:

Lemma 2.1.2 (piecewise linearity of the path). For any ⁄ > 0 and solution of
(2.1), the solution path along ⁄ is well defined, unique and continuous piecewise
linear.

Proof. The existed and uniqueness can be get from lemma 2.1.1.
Consider ⁄

1

< ⁄
2

, which have the same support set �. It is easy to show that for
⁄

1

< ⁄
Õ
< ⁄

2

, the solution on ⁄
Õ is

—⁄Õ ,� = ◊—⁄1,� + (1 ≠ ◊)—⁄2,� (2.6)

So the solution path between ⁄
1

and ⁄
2

is a linear segment.

18

The Lemma 2.1.2 makes the homotopy method very useful as we could directly move
from one end of a line to another end with very few computation cost. However, in
[29] the Mairal showed that there would be (3p ≠ 1)/2 line segments between the
initial solution and final optimal solution in the worst case. Meiral also proposed an
approximate homotopy which do not require the exact solution of (2.2). However
the author only allows ⁄ to decrease in the proof. In the following part, we will use
a similar way to show a more general result that also allow ⁄ to both increase and
decrease towards the target ⁄ .

A natural tool to guarantee the quality of approximate solution is the duality gap.
The dual problem of (2.1) is:

max
Ÿ

g⁄(Ÿ) = ≠1
2ŸT Ÿ ≠ ŸT y

s.t. ÎXT ŸÎŒ Æ ⁄

Given a pair of feasible primal and dual variables (—, Ÿ), the di�erence ”⁄(—, Ÿ) =
f⁄(—) ≠ g⁄(Ÿ) is called the duality gap and provides a bound for the optimal gap[8]:

0 Æ f⁄(—) ≠ f⁄(—ú) Æ ”⁄(—, Ÿ)

Where the —ú is the optimal solution of f⁄(—). It shows the gap of function value
between current solution and optimal solution is always smaller than the duality
gap of current solution. If the duality gap is small enough, we could say the current
solution is already close enough to the optimal solution. In [29], the author uses the
relative duality gap criterion to guarantee the quality of solution. Here we follow
the same rule:

Definition 1. (‘≠approximate solution)
Let ‘ œ [0, 1], a solution — is said to be an ‘-approximate solution of (2.1) if there
exists Ÿ such that ÎXT ŸÎŒ < ⁄ and the duality gap ”⁄(—, Ÿ) Æ ‘f⁄(x)

Our goal is to build a path of ‘≠approximate solutions and show the complexity.
To reach it, we need to introduce an approximate optimality condition based on
small perturbations of those given in Lemma 2.1.1.

Definition 2. (Opt(⁄, ‘) condition)

19

Let ‘ Ø 0. A solution — satisfies the Opt(⁄, ‘) condition if and only if:

⁄(1 ≠ ‘) Æ XT
�

(y ≠ X
�

—)sign(—
�

) Æ ⁄(1 + ‘)
⁄(1 ≠ ‘) Æ XT

�

c(y ≠ X
�

c—) Æ ⁄(1 + ‘)

Where � is the active set of —, which contains all the indexes of nonzero elements
in —

Note that when ‘ = 0, this condition reduces to the exact optimality condition of
Lemma 2.1.1. We want to connect the Definitions 1 and 2. Let us consider a solution
— that satisfies the Opt(⁄, ‘

1

). Then it is easy to check that Ÿ = 1

1+‘1
(X— ≠ y) is

feasible for the dual problem and we can compute the duality gap:

”⁄(—, Ÿ) = 1
2(1 + ‘

1

)2ŸT Ÿ + ⁄Î—Î
1

+ 1
2ŸT Ÿ + ŸT y

= ‘2

1

2 ŸT Ÿ + ⁄Î—Î
1

+ ŸT (y + (1 + ‘
1

)Ÿ)

= ‘2

1

(1 + ‘
1

)2

1
2ÎX— ≠ yÎ2

2

+ ⁄Î—Î
1

+ ŸT X— (2.7)

Supposing the — holds Opt(⁄, ‘
1

), we will get ⁄Î—Î
1

+ ŸT X— Æ 0, then following
bound would be held:

”⁄(—, Ÿ) Æ ‘2

1

(1 + ‘
1

)2

f⁄(—) (2.8)

Theorem 2.1.3 (Complexity bound of approximated homotopy lasso). Let ⁄ini > 0,
and ⁄ Ø 0.For all ‘ œ (0, 1), there is an ‘-approximate path with at most

Ë
log(⁄ini/⁄)Ô

‘

È

steps.

Proof. An exact solution pair (—, Ÿ)⁄ would satisfies Opt(⁄(1±‘), ‘
1≠‘). Substituting

it into (2.8), we will get:
”⁄(1±‘)

)(—, Ÿ) Æ ‘2 (2.9)

So for any ⁄
Õ in [⁄(1 ≠

Ô
‘), ⁄(1 +

Ô
‘)], the solution —⁄ will still be ‘-approximate

solution. It means only when we vary ⁄
Õ outside [⁄(1 ≠

Ô
‘), ⁄(1 +

Ô
‘)], we will

need to go on our algorithm. Otherwise, the duality gap stop criterion satisfies. So
if ⁄ini > ⁄ before we reach ⁄ from ⁄ini, at most the transition points we will pass
are: {⁄ini, ⁄ini(1 ≠

Ô
‘), ⁄ini(1 ≠

Ô
‘)2, ..., , ⁄ini(1 ≠

Ô
‘)k, ⁄}, where

⁄ini(1 ≠
Ô

‘)k+1 Æ ⁄ (2.10)

20

So the number of steps is at most
C

≠ log(⁄ini/⁄)
log(1 ≠

Ô
‘)

D

+ 1 Ø
C

log(⁄ini/⁄)Ô
‘

D

(2.11)

Similarly, if ⁄ini < ⁄, the number of steps is at most:
C

≠ log(⁄/⁄ini)
log(1 +

Ô
‘)

D

+ 1 Ø
C

log(⁄/⁄ini)
≠

Ô
‘

D

=
C

log(⁄ini/⁄)Ô
‘

D

(2.12)

Notice that even if ⁄ini/⁄ becomes a large number, the log(⁄ini/⁄) could still be
a small number and we can treat it a constant. So the complexity bound of
approximate homotopy for lasso is O(1Ô

‘). The procedure of approximate homotopy
for lasso is shown in Algorithm.3

Algorithm 3 Approximate Homotopy Algorithm for Ordinary Lasso
Require: i = 0, an exact solution —i = —ini, its corresponding ⁄i = ⁄ini and ⁄target

set up the active index set � = {j|—i
j ”= 0, j = 1, 2, ..., n}

while ⁄i Ø ⁄target do
use homotopy method mentioned in 1.4.5 to find the next ⁄i+1 towards ⁄target,
the index k and operator ¶
if ⁄i+1 /œ [⁄i(1 ≠

Ô
‘), ⁄i(1 +

Ô
‘)] then

� = � ¶ k
else

use one of the methods mentioned in 1.4.1-1.4.4 to find the solution —i+1 at
⁄i+1 = ⁄(1 +

Ô
‘) if ⁄ini < ⁄target or at ⁄i+1 = ⁄(1 ≠

Ô
‘) if ⁄ini > ⁄target

update � according to —i+1

end if
i = i + 1

end while

In Algorithm 3, the operator ¶ is used to indicate whether parameter k should
enter to � or remove from �. This algorithm can be treated as a combination of
traditional homotopy method and other methods. In each step, we try a homotopy
iteration firstly, if it can reach a solution outside [⁄i(1 ≠

Ô
‘), ⁄i(1 +

Ô
‘)], we

could directly go on to the next step. And if the result of homotopy iteration
remains in[⁄i(1 ≠

Ô
‘), ⁄i(1 +

Ô
‘)], we will try other methods to push ⁄i+1 out of

21

[⁄i(1 ≠
Ô

‘), ⁄i(1 +
Ô

‘)]. Algorithm 3 is used as startup method, which is used to
find an initial solution for the following parts.

The iteration complexity of approximate homotopy is around O(N2). For homotopy
part, the main computation is inversing XT

�

X
�

and we could use Sherman-Morrison
formula to reduce its complexity from O(N3) to O(N2). And for the other methods,
the complexity may di�erent from each other. However for the methods mentioned
in 1.4.2 to 1.4.4, the iteration complexity of these methods is also on the order of
O(N2). And the solution in [⁄i(1 ≠

Ô
‘), ⁄i(1 +

Ô
‘)] satisfies the dual gap criterion,

which indicates the current solution is very close to the optimal solution and the
methods in 1.4.2-1.4.4 would converge in few steps and can be treated as a constant.
So in Algorithm 3. the complexity of methods in 1.4.2-1.4.4 is still on the order of
O(N2). So the total complexity for Algorithm 3 is O(N2/

Ô
‘).

2.2 Complexity Bound of Approximate Homotopy for
Lasso with Online Updating
In the previous chapter, we introduce two types of homotopy algorithm for lasso
with online update. Here, we will focus on the homotopy method in 1.5.2 and show
this method also has O(1/

Ô
‘) complexity bound. with some modifications with

some modifications.
The model that we will use is:

min ft(—) = 1
2ÎX— ≠ yÎ2

2

+ 1
2Îxnew— ≠ ynewÎ2

2

+ ⁄newÎ—Î
1

≠ (1 ≠ t)u— (2.13)

Where
u = XT (X—ini ≠ y) + xT

new(xnew—ini ≠ yini) + ⁄new· (2.14)

and

·i =

Y
_]

_[

sign(—ini,i) —ini,i ”= 0

0 otherwise
i = 1, 2, ...p

Noting that the form of (2.13) is still a quadratic term plus a l1-norm. We could
reformulate it to (2.1) plus a constant term.

22

Lemma 2.2.1 (equivalence of ordinary lasso). Denoting

X̃ =
Q

a X

Xnew

R

b , ỹ =
Q

a y

ynew

R

b

If there is a b such that X̃T b = (1 ≠ t)u, the optimal solution of (2.13) is equivalent
to the optimal solution of:

min feq,t(—) = 1
2ÎX̃— ≠ (ỹ + b)Î2

2

+ ⁄newÎ—Î
1

(2.15)

Proof. expanse (2.15):

feq,t(—) =1
2ÎX̃— ≠ (ỹ + b)Î2

2

+ ⁄newÎ—Î
1

=1
2ÎX— ≠ yÎ2

2

+ 1
2ÎXnew— ≠ ynewÎ2

2

+ (X̃— ≠ ỹ)T b + 1
2ÎbÎ2

2

+ ⁄newÎ—Î

=1
2ÎX— ≠ yÎ2

2

+ 1
2ÎXnew— ≠ ynewÎ + ⁄newÎ—Î + —T X̃T b ≠ ỹT b + 1

2ÎbÎ2

2

=ft(—) ≠ ỹT b + 1
2ÎbÎ2

2

So arg— min feq,t(—) = arg— min ft(—) ≠ ỹT b + 1

2

ÎbÎ2

2

= arg— min ft(—)

Now we will verify the existence of b:

Lemma 2.2.2 (Existence of b). If —ini is an exact lasso solution and we choose u

follow (2.14), there must be a b satisfies X̃b = (1 ≠ t)u

Proof. Denoting the active set of —ini as �. Then we can separate X̃b = (1 ≠ t)u
into two parts:

X̃
�

b
�

= (1 ≠ t)u
�

(2.16)
X̃

�

cb
�

c = (1 ≠ t)u
�

c (2.17)

For an exact lasso solution, the number of significant elements must be no more than
the number of sample[34]. It means X̃

�

is either under-determinant or full rank. So
(2.16) must have a solution bú

�

. For (2.17), as we choose u according to (2.14), we
will have u

�

c = XT
�

c(X
�

—ini,� ≠ y). (2.17) must have a solution b
�

c = X
�

—ini,� ≠ y.

23

Now we construct a

b =
Q

a bú
�

X
�

—ini,� ≠ y

R

b

Which satisfies X̃b = (1 ≠ t)u

After confirming the existence of equivalent problem feq,t(—), we could begin to
build the definition of Optimal condition Opteq(t, ‘) for feq,t(—).

Definition 3. (Opteq(t, ‘) condition)
Let ‘ Ø 0. A solution — satisfies the Opteq(t, ‘) condition if and only if:

⁄(1 ≠ ‘) Æ X̃T
�

(ỹ + b ≠ X̃
�

—)sign(—
�

) Æ ⁄(1 + ‘)
⁄(1 ≠ ‘) Æ X̃T

�

c(ỹ ≠ X̃
�

c—) Æ ⁄(1 + ‘)

Where � is the active set of —, which contains all the indexes of nonzero elements
in — and b is a solution of X̃T b = (1 ≠ t)u

With the definition of Opteq(t, ‘), we could prove a useful lemma:

Lemma 2.2.3 (Range of approximated solution). If — is an exact solution for a
given t, — satisfies Opteq(t ± ⁄

C ‘, ‘) where C = ÎuÎŒ

Proof. As — is an exact solution, we will have:

X̃T
�

(ỹ + b ≠ X̃
�

—) + ⁄sign(—
�

) = 0
≠⁄

�

c Æ X̃T
�

c(ỹ + b ≠ X̃
�

—) Æ ⁄

So the Opteq(t, ‘) condition could be reduced to:

≠⁄‘ Æ X̃T
�

”b
�

Æ ⁄‘ (2.18)
≠⁄‘ Æ X̃T

�

c”b
�

c Æ ⁄(1 + ‘) (2.19)

Substituting X̃T b = (1 ≠ t)u and combine (2.18) and (2.19) up, we can get:

≠⁄‘ Æ ”tu Æ ⁄‘ (2.20)

Supposing the maximum in u is U
1

and minimum in u is L
1

. To hold (2.20), we

24

need to have:

≠⁄‘ Æ ”tL
1

(2.21)
”tU

1

Æ ⁄‘ (2.22)

It means
”t = min{

A

≠ ⁄

L
1

‘

B

+

,

A
⁄

U
1

‘

B

+

} = ⁄

C
‘

This lemma shows that within some range of an exact solution, the Opteq(t, ‘)
condition will holds without changing —. The job now we need to do is to relate
Opteq(t, ‘) condition with ‘-approximate solution. To reach this goal, we need to
first build an upper bound of duality gap for feq,t(—). The dual problem of feq,t(—)
is:

max geq,t(Ÿ) = ≠1
2ŸT Ÿ ≠ ŸT (ỹ + b)

s.t. ÎX̃T ŸÎŒ Æ ⁄ (2.23)

Supposing now we have a solution — that satisfies Opteq(t, ‘
1

), it is easy to check
Ÿ = 1

1+‘1
(X̃Ÿ ≠ (y + b)) is feasible for the dual problem. The duality gap is:

”eq,t(—, Ÿ) = feq,t(—) ≠ geq,t(Ÿ)

= 1
2(1 + ‘

1

)2ŸT Ÿ + ⁄newÎ—Î
1

+ 1
2ŸT Ÿ + ŸT (ỹ + b)

= ‘2

1

(1 + ‘
1

)2

1
2ÎX— ≠ (ỹ ≠ b)Î2

2

+ ⁄newÎ—Î
1

+ ŸT X̃—

And as — holds Opteq(t, ‘
1

), ⁄newÎ—Î
1

+ ŸtX̃— Æ 0. We will still have an upper
bound:

”t(—, Ÿ) Æ
3

‘
1

1 + ‘
1

4
2

feq,t(—) (2.24)

Theorem 2.2.4 (Complexity bound of approximated homotopy lasso with online
updating). Let tini > 0.For all ‘ œ (0, 1), there is an ‘-approximate path with at
most

Ë
C(1≠

Ô
‘)

⁄
Ô

‘

È
steps.

Proof. From Lemma 2.2.3, we know an exact solution pair (—, Ÿ)t would satisfies

25

Opteq(t + ⁄new
C

‘
1≠‘ ,

‘
1≠‘). Substituting it into (2.24), we will get:

”eq,tt+ ⁄new
C

‘
1≠‘

)(—, Ÿ) Æ ‘2 (2.25)

For any t
Õ in [t, t + ⁄new

C

Ô
‘

1≠
Ô

‘], the solution — will still be ‘-approximate solution.
It means only when varying t

Õ outside [t, t + ⁄new
C

Ô
‘

1≠
Ô

‘] and we will need go on
our algorithm. Otherwise, the duality gap stop criterion would be satisfied. So
before we reach t = 1 from t = tini, at most the transition points we will pass are:
{tini, tini + ⁄new

C

Ô
‘

1≠
Ô

‘ , tini + 2⁄new
C

Ô
‘

1≠
Ô

‘ , ..., 1}, where

tini + k
⁄new

C

Ô
‘

1 ≠
Ô

‘
Ø 1 (2.26)

So the number of steps is at most
C

(1 ≠ tini)
C

⁄new

1 ≠
Ô

‘Ô
‘

D

Æ
C

C(1 ≠
Ô

‘)
⁄new

Ô
‘

D

(2.27)

Noticing that 1 ≠
Ô

‘ ¥ 1. So the complexity bound of approximate homotopy
for lasso is O(1Ô

‘). The procedure of approximate homotopy for lasso is show in
Algorithm.4

In Algorithm 4 we also combine the traditional homotopy method with other
methods. First, we use Algorithm 3 to to find a startup solution, which is used to
find an initial solution for the following parts. After initialization, we will receive
new observations. In each of the following step, we first try a homotopy iteration, if
it can reach a solution outside [t, t + ⁄new

C

Ô
‘

1≠
Ô

‘], we could directly go on to the next
step. And if the result of homotopy iteration remains in[t, t + ⁄new

C

Ô
‘

1≠
Ô

‘], we will
try other methods to push ti+1 out of [t, t + ⁄new

C

Ô
‘

1≠
Ô

‘]. The iteration complexity of
approximate homotopy is around O(N2). For homotopy part, the main computation
is cost by inverse XT

�

X
�

and we could use Sherman-Morrison formula to reduce
its complexity from O(N3) to O(N2). And for the other methods, the complexity
may be di�erent from each other. However for the methods mentioned in 1.4.2
to 1.4.4, the iteration complexity of these methods is also on the order of O(N2).
And the solution in [⁄i(1 ≠

Ô
‘), ⁄i(1 +

Ô
‘)] satisfies the dual gap criterion, which

26

Algorithm 4 Approximate Homotopy Algorithm for lasso with online update
Require: use Algorithm 3 to find an initial solution —

while receiving new observations do
i = 0 a solution —i = —ini from previous stage, t = 0
set up the active index set � = {j|—i

j ”= 0, j = 1, 2, ..., n}, calculate u
while ti Æ 1 do

use the method mentioned in 1.5.2 to find the next ti+1 towards 1, the index
k and operator ¶
if ti+1 /œ [t, t + ⁄new

C

Ô
‘

1≠
Ô

‘] then
� = � ¶ k

else
use one of the methods mentioned in 1.4.1-1.4.4 to find the solution —i+1

at ti+1 = t + ⁄new
C

Ô
‘

1≠
Ô

‘

update � according to —i+1

end if
i = i + 1

end while
end while

indicate the current solution is very close to the optimal solution and the methods
in 1.4.2-1.4.4 would converge in few steps and can be treated as a constant. So
in Algorithm 3. the complexity of methods in 1.4.2-1.4.4 are still on the order of
O(N2). So the total complexity for Algorithm 3 is O(N2/

Ô
‘).

2.3 Framework of Approximate Homotopy for Regu-
larized Least Square Regression with Online Updating
The regression model is :

min 1
2ÎK

Q

a

Q

a X

Xnew

R

b — ≠
Q

a y

ynew

R

b

R

b Î2

2

+ 1
2Î— ≠ A—̂i≠1

Î2

2

+ P⁄(|—|) (2.28)

Where K is a Kalman matrix which is used to balance the observation errorQ

a X

Xnew

R

b — ≠
Q

a y

ynew

R

b and the history prediction error — ≠ A—̂i≠1

. The details of the

algorithm is shown in Algorithm 5.

27

Algorithm 5 Approximate homotopy algorithm for the regression with fold concave
penalty and online updating obversations
Require: use Algorithm 3 to find the initial solution —

while receiving observations do
%use Algorithm 2(LLA) to solve (2.28)
while Algorithm 2 not converge do

build local linear approximation of penalty function
use Algorithm 4 to solve the subproblem of Algorithm 2.

end while
update K according to Algorithm 1

end while

Compared to other literatures[23][19], The Algorithm 5 have several several
advantages:
(1) It is a framework that solves not only lasso problem but also general penalty
linear regression.
(2) It is easier to implement, in Algorithm 5, we update all the information at once,
not like [23] that request to update information part by part.
(3) When active set � changes slowly with respect to the time, the approximate
homotopy method will reach the final solution very fast. As we can prove the
following Theorem:

Theorem 2.3.1. If total number of di�erences between the active set of initial
solution and final solution is less than 1, the total number of step of Algorithm 4 is
less than 2

From chapter 1.5.2, we know in each step, the homotopy algorithm just checks
the next transition point in the path. If there is no di�erence between the active
set of initial solution and final solution, we will meet no transition point between
the initial solution and final solution. If there is only one di�erence element i, it is
easy to show that in the next step i will be added to or excluded from the active
set. Now the active set of current solution is the same as it of the final solution.
We will reach the final solution in the next step.
For online updating situation, we could assume that the density of observations is
very large such that the set of significant parameters could only change 1 at a time
if there is indeed a change. Under this assumption, the Algorithm 4 will converge
very fast.

28

(4), We use method from Kalman Filter to balance error of observations and error
of history predictions. It is more robust and adaptive.

29

Chapter 3 |
Numerical test

In [29], the author shows a worst case for traditional lasso, which will have (3p ≠1)/2
steps if we use homotopy method. In Lemma 2.2.1, we show that online lasso
problem is equivalent to the traditional lasso. Therefore we use the case in [29]
to build a worst case for lasso with online updating. The numerical result for the
worst case is listed as follows::

Result/Method Approx Homopoty Homopoty Nesterov’s method
Total Time(s) 32 132 35
Mean Error(◊104) 1.79 2.12 2.35

Table 3.1: instances P = 20, N = 20

We can find that for the worst case, our algorithm has a much better performance
both on computation time and result accuracy.
The numerical result for a random generated case:

Use lasso
Result/Method Approx Homopoty Homopoty Nesterov’s method
Total Time(s) 3.21 3.32 5.23
Mean Error(◊104) 1.99 2.35 2.25

Table 3.2: instances P = 2000, N = 200

30

Use SCAD
Result/Method Approx Homopoty Homopoty Nesterov’s method
Total Time(s)4.62 5.38 5.58 6.37
Mean Error(◊104) 1.23 1.53 1.63

Table 3.3: instances P = 2000, N = 200

Although time consuming doesn’t improve a lot, our method still reaches a smaller
mean error compared to other methods for both lasso and SCAD penalty.

3.1 Urban travel time estimation
We can also apply the algorithm to arterial tra�c estimation on a simulated urban
tra�c network with 1000 links. We generate 200 vehicles that are traveling on the
links. They will report their travel trajectories within some time duration. Each
trajectory is converted in a vector xi œ [0, 1]m, where m is the number of total links
in the network. The jth coordinate of xi, denoted asai,j, is the fraction of the link
traveled by the target vehicle. We compute it as the distance traveled on the link
divided by the length of the link. In particular, xi,j = 0 means the vehicle did not
travel on link j and ai,j = 1 means that the vehicle had already passed this link.

The solution —n represents the average travel time on each link of the network at
time tn. We use Algorithm 5 to estimate the average travel time. In this situa-
tion, we could have historical mean travel time x̂ to calculate the Kalman matrix K.

We compare our method with several other methods[19, 23, 32]. The result shows
our method Approximate homotopy(SCAD) has better in accuracy(closer to the
real and oracle solution).

31

Result/Method Approx Homopoty Bayen’s Nesterov’s Oracle
Homopoty Method method solution

Total Time(s) 3.63 3.32 3.35 4.72 -
Mean Error(◊104) 2.03 2.23 2.29 2.25 1.87

Table 3.4: Computational e�ciency of simulated urban tra�c data

Figure 3.1: estimation of time varying signal for tra�c system

In Figure 3.1, we show the how the results on a single link. We can find that
the result from our method(Approximated homotopy(SCAD)) is almost closely
tracking the oracle and real solution all the time. However in this picture, Bayen’s
method also has good solution quality. To show the di�erence between our methods
and Bayen’s method, we zoom in the picture and plot the details of a short period.
We can find that our method also tracks the oracle and real solution better than
Bayen’s method.

Figure 3.2: details of estimation of time varying signal for tra�c system

32

3.2 Experiments with real images
In the aforementioned test on simulated Urban travel time, we observed that by
including a linear dynamic model of a sparse, time-varying signal with the fold
concave regularization provides a significantly better signal reconstruction compared
to the traditional l1-regularization alone.

To evaluate the e�ectiveness of our method in a more realistic and streaming
system, we conduct some similar of experiments on streaming signals which are
generated from real-world images (shown in the top rows of Figures 3.3). In every
test, all the columns of an N ◊ N image are used to create a time-varying signal
{xn}. We assumed that adjacent columns in these images are very similar, which
means xt ¥ xt+1

t = 1, 2, ..., N ≠ 1. We construct the streaming, compressive
measurements of {xn} as follows: for a given compression rate R, we generate
M = N/R measurements of non-overlapping xt as yt = �txt. We used (block-based)
Daubechies 9/7 biorthogonal wavelets for sparse representation of each xt.

We estimated {xn} from streaming, compressive measurements in the presence
and absence of the linear dynamic model (i.e., with and without the regularization
term of the form q

t Îxt+1

≠ xtÎ2

2

). Results of these test are shown in the form of
images in Figures 8â��11, where the color channels were compressively measured
and reconstructed separately and then merged together for the purposes of display
and peak signal-to-noise ratio (PSNR) computations. First rows in the figure
3.1 show the test images that were resized to N ◊ N pixels. Second rows in
Figures 3.1 show the results when each column, xt, are independently reconstructed
from its respective measurements, yt. In other words, the recovery does not use
similarities between adjacent columns. Third and fourth rows in Figures 3.1 show
the results when assuming similarities between 1 and 3 adjacent columns. As we
can see from the reconstructed images and their PSNR (shown in sub-captions)
while independent reconstruction of each column performed poorly, a streaming
framework that incorporates with linear dynamics, fold-concave and historical data
(similarities in adjacent columns) provided a significantly superior recovery result.

33

Figure 3.3: Results for the recovery of N ◊ N images (N = 256) from column-wise
random, compressive measurements with compression rate R = 4. (Row 1) Original
images. (Row 2) Recovery of each column independent of its neighbors. (Row 3)
Streaming recovery with one adjacent column. (Row 4) Streaming recovery with
three adjacent columns.

34

Chapter 4 |
Conclusion

4.1 Summary of model and test results
We constructs a novel homotopy algorithm for the situation of time-varying signal
with online updating. In the algorithm: (1) we use SCAD, a kind of fold concave
regularation instead of l1 regularation, which has been proved to have better
statistical properties; (2) the complexity bound of our method is O(N2/

Ô
‘). In

addition, our method also shows a special property. No matter how dramatically
the significant parameters changes, our method will converge in very few steps if
the significant parameters remain significant and insignificant parameters remain
insignificant. In the numerical experiments, we present our method’s performance
compared to some other methods in several di�erent situations such as urban tra�c
travel time estimation and image recovery.

4.2 Discussion and Future Research
In the thesis, we only consider the least square loss function and there may be a
chance that our method could be extended to solve problems with more general loss
function. And in the Theorem 2.3.1, we only shows that when significant parameter
set remains the same or with only one change at a time, our method will converge
in very few steps. It is also of interest to investigate how many steps are needed
when there are more than one change at a time.

35

Bibliography

[1] Asif, M. and Romberg, J. (2013a). Sparse recovery of streaming signals using l1
homotopy.

[2] Asif, M. S. and Romberg, J. (2013b). Fast and accurate algorithms for
re-weighted-norm minimization. Signal Processing, IEEE Transactions on,
61(23):5905–5916.

[3] Baraniuk, R. G., Cevher, V., Duarte, M. F., and Hegde, C. (2010). Model-based
compressive sensing. Information Theory, IEEE Transactions on, 56(4):1982–
2001.

[4] Beck, A. and Teboulle, M. (2009). A fast iterative shrinkage-thresholding
algorithm for linear inverse problems. SIAM Journal on Imaging Sciences,
2(1):183–202.

[5] Becker, S., Bobin, J., and Candès, E. J. (2011). Nesta: a fast and accurate
first-order method for sparse recovery. SIAM Journal on Imaging Sciences,
4(1):1–39.

[6] Bickel, P. J., Li, B., Tsybakov, A. B., van de Geer, S. A., Yu, B., Valdés, T.,
Rivero, C., Fan, J., and van der Vaart, A. (2006). Regularization in statistics.
Test, 15(2):271–344.

[7] Bishop, C. M. et al. (2006). Pattern recognition and machine learning, volume 4.
springer New York.

[8] Borwein, J. M. and Lewis, A. S. (2010). Convex analysis and nonlinear opti-
mization: theory and examples, volume 3. Springer Science & Business Media.

[9] Boyd, S., Parikh, N., Chu, E., Peleato, B., and Eckstein, J. (2011). Distributed
optimization and statistical learning via the alternating direction method of
multipliers. Foundations and Trends® in Machine Learning, 3(1):1–122.

[10] Brown, R. G., Hwang, P. Y., et al. (1992). Introduction to random signals and
applied Kalman filtering, volume 3. Wiley New York.

36

[11] Candès, E. J., Romberg, J., and Tao, T. (2006). Robust uncertainty princi-
ples: Exact signal reconstruction from highly incomplete frequency information.
Information Theory, IEEE Transactions on, 52(2):489–509.

[12] Candes, E. J., Wakin, M. B., and Boyd, S. P. (2008). Enhancing sparsity by
reweighted â�� 1 minimization. Journal of Fourier analysis and applications,
14(5-6):877–905.

[13] Charles, A., Asif, M. S., Romberg, J., and Rozell, C. (2011). Sparsity penalties
in dynamical system estimation. In Information Sciences and Systems (CISS),
2011 45th Annual Conference on, pages 1–6. IEEE.

[14] Donoho, D. L. (2006). For most large underdetermined systems of linear
equations the minimal ��•1-norm solution is also the sparsest solution. Com-
munications on pure and applied mathematics, 59(6):797–829.

[15] Efron, B., Hastie, T., Johnstone, I., Tibshirani, R., et al. (2004). Least angle
regression. The Annals of statistics, 32(2):407–499.

[16] Fan, J. and Li, R. (2001). Variable selection via nonconcave penalized likeli-
hood and its oracle properties. Journal of the American statistical Association,
96(456):1348–1360.

[17] Fan, J., Xue, L., and Zou, H. (2014). Strong oracle optimality of folded concave
penalized estimation. Annals of statistics, 42(3):819.

[18] Friedman, J., Hastie, T., and Tibshirani, R. (2010). Regularization paths for
generalized linear models via coordinate descent. Journal of statistical software,
33(1):1.

[19] Garrigues, P. and Ghaoui, L. E. (2009). An homotopy algorithm for the lasso
with online observations. In Advances in neural information processing systems,
pages 489–496.

[20] Gärtner, B., Jaggi, M., and Maria, C. (2009). An exponential lower bound on
the complexity of regularization paths. arXiv preprint arXiv:0903.4817.

[21] Hastie, T., Tibshirani, R., Friedman, J., Hastie, T., Friedman, J., and Tibshi-
rani, R. (2009). The elements of statistical learning, volume 2. Springer.

[22] Hoerl, A. E. and Kennard, R. W. (1970). Ridge regression: Biased estimation
for nonorthogonal problems. Technometrics, 12(1):55–67.

[23] Hofleitner, A., El Ghaoui, L., and Bayen, A. (2011). Online least-squares
estimation of time varying systems with sparse temporal evolution and application
to tra�c estimation. In Decision and Control and European Control Conference
(CDC-ECC), 2011 50th IEEE Conference on, pages 2595–2601. IEEE.

37

[24] Hongcheng liu, Tao Yao, R. L. (2014). Global solutions to folded concave
penalized nonconvex learning (under review).

[25] Hunter, D. R. and Lange, K. (2004). A tutorial on mm algorithms. The
American Statistician, 58(1):30–37.

[26] Hunter, D. R. and Li, R. (2005). Variable selection using mm algorithms.
Annals of statistics, 33(4):1617.

[27] Kim, S.-J., Koh, K., Lustig, M., Boyd, S., and Gorinevsky, D. (2007). An
interior-point method for large-scale l 1-regularized least squares. Selected Topics
in Signal Processing, IEEE Journal of, 1(4):606–617.

[28] Li, W. and Preisig, J. C. (2007). Estimation of rapidly time-varying sparse
channels. Oceanic Engineering, IEEE Journal of, 32(4):927–939.

[29] Mairal, J. and Yu, B. (2012). Complexity analysis of the lasso regularization
path. arXiv preprint arXiv:1205.0079.

[30] Meinshausen, N. and Bühlmann, P. (2006). High-dimensional graphs and
variable selection with the lasso. The Annals of Statistics, pages 1436–1462.

[31] Mohimani, G. H., Babaie-Zadeh, M., and Jutten, C. (2007). Fast sparse
representation based on smoothed â��0 norm. In Independent Component
Analysis and Signal Separation, pages 389–396. Springer.

[32] Nesterov, Y. et al. (2015). Complexity bounds for primal-dual methods mini-
mizing the model of objective function. Technical report, Université catholique
de Louvain, Center for Operations Research and Econometrics (CORE).

[33] Osborne, M. R., Presnell, B., and Turlach, B. A. (2000a). A new approach to
variable selection in least squares problems. IMA journal of numerical analysis,
20(3):389–403.

[34] Osborne, M. R., Presnell, B., and Turlach, B. A. (2000b). On the lasso and
its dual. Journal of Computational and Graphical statistics, 9(2):319–337.

[35] Park, M. Y. and Hastie, T. (2007). L1-regularization path algorithm for
generalized linear models. Journal of the Royal Statistical Society: Series B
(Statistical Methodology), 69(4):659–677.

[36] Saha, A. and Tewari, A. (2010). On the finite time convergence of cyclic
coordinate descent methods. arXiv preprint arXiv:1005.2146.

[37] Salman Asif, M. and Romberg, J. (2009). Dynamic updating for sparse time
varying signals. In Information Sciences and Systems, 2009. CISS 2009. 43rd
Annual Conference on, pages 3–8. IEEE.

38

[38] Salman Asif, M. and Romberg, J. (2010). Dynamic updating for minimization.
Selected Topics in Signal Processing, IEEE Journal of, 4(2):421–434.

[39] Sorenson, H. W. (1970). Least-squares estimation: from gauss to kalman.
Spectrum, IEEE, 7(7):63–68.

[40] Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal
of the Royal Statistical Society. Series B (Methodological), pages 267–288.

[41] Tibshirani, R. J. (2011). The solution path of the generalized lasso. Stanford
University.

[42] Tsaig, Y. and Donoho, D. L. (2006). Extensions of compressed sensing. Signal
processing, 86(3):549–571.

[43] Wright, S. J., Nowak, R. D., and Figueiredo, M. A. (2009). Sparse recon-
struction by separable approximation. Signal Processing, IEEE Transactions on,
57(7):2479–2493.

[44] Wu, T. T. and Lange, K. (2008). Coordinate descent algorithms for lasso
penalized regression. The Annals of Applied Statistics, pages 224–244.

[45] Zhang, C.-H. (2010). Nearly unbiased variable selection under minimax concave
penalty. The Annals of Statistics, pages 894–942.

[46] Zhao, P. and Yu, B. (2006). On model selection consistency of lasso. The
Journal of Machine Learning Research, 7:2541–2563.

[47] Zhu, Q., Avidan, S., and Cheng, K.-T. (2005). Learning a sparse, corner-based
representation for time-varying background modelling. In Computer Vision, 2005.
ICCV 2005. Tenth IEEE International Conference on, volume 1, pages 678–685.
IEEE.

[48] Zou, H. (2006). The adaptive lasso and its oracle properties. Journal of the
American statistical association, 101(476):1418–1429.

[49] Zou, H. and Hastie, T. (2005). Regularization and variable selection via
the elastic net. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 67(2):301–320.

[50] Zou, H. and Li, R. (2008). One-step sparse estimates in nonconcave penalized
likelihood models. Annals of statistics, 36(4):1509.

39

