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Abstract

Humans can infer meaning through the use of not only the definition of a word, but

also, where one word might have various conflicting definitions, based on their ex-

periences and the text’s context and domain. Word Sense Disambiguation (WSD)

is the problem of finding the most appropriate meaning of a word in a particular

context. The functional importance of WSD lies in processing the sequence of

words by pinpointing their meaning without the need for human intervention. It

is crucial for many applications such as translation, summarization, information

retrieval, and many other natural language applications.

We introduce an unsupervised knowledge-source approach for word sense dis-

ambiguation using a bee colony optimization algorithm. We also present several

variations to our bee colony approach that improve the overall performance of the

algorithm. Our results are compared with recent unsupervised approaches such as

ant colony optimization, genetic algorithms, most frequent sense, and simulated

annealing.
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Chapter 1

Introduction

Semantics, or the meaning of a given sentence is an important feature in com-

munication and knowledge acquisition. Humans are good at understanding the

meaning of given text, but how do we do that? Is it simply looking up the def-

inition of each word one at a time or is it more than that? Also, is it possible

for a program to automate the process of language understanding? A word has

one or more different senses attached to it. Each and every sense of a word is

represented by a definition, a list of synonym, and an example of sense usage. The

process of assigning the correct definition or the correct sense to the word that we

are disambiguating is called Word Sense Disambiguation (WSD).

Algorithms for WSD fall into two main groups, supervised and unsupervised.

Supervised approaches for WSD make use of machine learning algorithms such

as classification and feature recognition. The resultant classification models are

trained on an annotated corpus, which is a collection of data that has been tagged

correctly by a linguist. The process of manual sense annotation of words to create a

large corpus of examples is laborious and requires the presence of a linguist. On the

other hand unsupervised approaches use information from an external knowledge

source to determine the exact sense of these words. The knowledge source can

be a machine readable dictionary, or an organized network of words or semantics

[1]. In addition, the knowledge source should be periodically updated as there

are domain changes, new senses are introduced, and new words are added. These

changes impact the semantic networks and require them to be updated. WSD falls

in the class of AI-complete problems, which means it is at least as hard as most
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of the difficult problems in AI, and by parallel comparison, in complexity theory

it is NP-complete [2].

There are many distinct reasons why WSD is a difficult problem [2]:

• It is difficult to define the senses of words and the level of detail represented

by a particular sense with respect to sense usage.

• It is difficult to determine if the word should be disambiguated for a more

generic sense or for a finer sense in a given context.

• It is difficult to detemine how much context to use to achieve the most

accurate disambiguation.

Consider a system developed to solve the WSD problem. The performance of a

WSD system is contingent on the knowledge source. Furthermore, one can relate

to the importance of this problem because there are many real world applications

based on it. Solving the WSD problem in an efficient way will have a huge effect

on the efficiency of systems such as document warehousing, response generation,

machine translations, and document summarization.

Let us take an example that demonstrates the WSD problem. Consider the

following sentence: “His parties fall on every Saturday night.” It is easy to see

that the sense of the words “fall,” “parties,” and “Saturday” are clear from the

current context. The WSD system interprets a suitable sense of the word “fall” by

using a knowledge source. There are twelve distinct noun and thirty-two distinct

verb senses for the word “fall” [3]. A few of them include:

• fall1 - lose office or power

• fall2 - be due

• fall3 - slope downward

• fall4 - occur at a specified time or place

The WSD system is unable to decide which sense to pick for the word “fall”

without any additional information based on its context. It is to be noted here

that a machine or a human cannot determine the exact sense of a particular word

without knowing its context. We introduce the context by putting emphasis on the
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surrounding words, to give some contextual perspective and determine the correct

sense of “fall.” The WSD system tries to figure out the appropriate sense of the

word “fall” in relation to the surrounding word “parties.” The system will make

use of all the senses and definitions of “parties” to help with the disambiguation

process. There are five noun senses and one verb sense for the word “parties” [3].

A few of them include:

• party1 - an organization to gain political power

• party2 - a group of people gathered together for pleasure

• party3 - a band of people associated temporarily in some activity

• party4 - a person involved in legal proceedings

In this limited context, the WSD system has a stronger claim for fall1 being

the appropriate sense of the word “fall.” It can relate to fall1 where “losing office

or power of an organization” is being referred to here since the word “power”

occurs in the definition of fall1 and party1. The system can only claim that fall1

is the correct sense in the short context that was provided to it. It is evident that

context plays a significant role in deciding the correct sense of the word “fall.”

We increase the context by providing another surrounding word “Saturday” to

the WSD system. The newly added word gives a deeper insight to the system for

determining the correct sense of “fall.” There is only one noun sense of the word

“Saturday” [3]:

• Saturday1 - the seventh and last day of the week; observed as the Sabbath

by Jews and some Christians

The term “Saturday” is a specified time and therefore can be related to fall4. The

WSD system continues with this process by adding “night” to the context. Similar

to “Saturday,” “night” is also a specified time and can be related to sense fall4.

Now the WSD system’s claim that fall1, which was the previously selected sense,

is weaker. This process of assigning the appropriate sense fall4 to the word “fall”

in a given context of words is called the WSD problem.

In this thesis, we introduce an unsupervised knowledge-source approach for

WSD. The algorithm is based on Bee Colony Optimization (BCO) and is therefore
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called WSD-BCO. The approach exploits the relationship between the word and

the context in which it occurs. The algorithm uses a database of semantic networks

called Wordnet 2.1 [3] as a knowledge source. WSD-BCO endeavors to solve the

WSD as an optimization problem. We generate bees based on the word chosen

to represent the hive. Bees travel to other words in the document and, based on

their path, assign senses to other words. We present other variations of WSD-BCO

that differ in the context supplied to WSD-BCO. The strength of the relationship

between senses and surrounding words is determined by senses’ parts of speech,

definitions, entailments, synonyms, and attributes. The algorithm uses a dataset

from SemEval 2007 [4], an international workshop on semantic evaluations. The

test data is composed of five different documents ranging from general topics to

more specific topics. The results are compared against an ant colony optimization

(ACO) algorithm, a genetic algorithm (GA), a simulated annealing (SA), and

the Most Frequent Sense (MFS) algorithm. MFS acts as a baseline for all the

approaches.

The rest of the thesis is structured as follows. In Chapter 2, we discuss the

problem in more detail. We also describe the previous work done on WSD. In

Chapter 3, we discuss the general Bee Colony Optimization approach. In Chapter

4, we introduce basic Bee Colony Optimization with respect to WSD. The various

phases of WSD-BCO include initialization, a forward phase, and a backward phase.

In Chapter 5, we discuss the variations of our approach for improving the efficiency.

In Chapter 6, we discuss the Semeval 2007 dataset and experimental results of our

algorithm, and then we compare our results with other approaches such as ACO,

GA, SA and MFS. In Chapter 7, we show the results of our various approaches

using Wordnet 3.0. Appendix A contains the WSD−BCO algorithm.



Chapter 2

Preliminaries

2.1 Problem Definition

In the previous chapter, we saw an example of how the word “fall” was disam-

biguated and its proper sense was determined. We defined Word Sense Disam-

biguation (WSD) as a problem of figuring out the correct sense of a word in a

given context. A more precise definition of WSD that we are going to use in this

thesis is that, given text that is composed of a set of n target words, the task is to

determine the correct sense of all n words. We call the word that we are currently

disambiguating the target word, while the context is defined as the surrounding

words which occur around the target word.

For example suppose we have the sentence, “This code may be a modification of

existing source or something completely new” that we need to disambiguate. First

we remove all the stop words from the sentence. Stop words are words that occur

frequently in text irrespective of a particular domain. For example, “who” and

“or” are stop words. The words that need to be disambiguated are “code,” “be,”

“modification,” “existing,” “source,” “completely,” and “new.” Let us assume

that the WSD system is at the stage of disambiguating the fourth word “existing.”

This word is the target word. We are going to use the other surrounding words as

context to help us find the correct sense for “existing.” Figure 2.1 shows that the

target word “existing” is disambiguated with the help of the surrounding words

“code,” “be,” “modification,” “source,” “completely,” and “new.” The window

length represents the number of words on the right or left of the target word. The
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window length defines the surrounding words in the frame of refernce for the target

word. In the example of Figure 2.1, the window length that is used is three.

Figure 2.1: Word Sense Disambiguation Problem

There are two main approaches to solve WSD: supervised and unsupervised

[2]. In the supervised approach, the available data is divided, in an appropriate

ratio, into training data and test data, and the WSD task becomes a classification

problem. This approach requires a large corpus of data that is tagged with cor-

rect senses. Classifiers such as decision lists, decision trees, Naive Bayes, neural

networks, and support vector machines are popular for this approach. It has been

observed that supervised WSD methods provide better results than unsupervised

approaches for WSD [2]. The main disadvantage of the supervised approach is the

need for sense-annotated data.

An unsupervised approach has the advantage of not depending on hand-annotated

data [2]. The general idea of this approach is based on the fact that the correct

sense of a target word will have similar words when used in the same domain. For

example, the target word “code” in the domain of computer science may have the

words “computer” and “program” in the surrounding text. The WSD problem is

then reduced into measuring the similarity of the context words with the sense

in question. Instead of learning from a hand-annotated data, it makes use of a

knowledge source such as a dictionary or a semantic network. In this thesis, we

are going to focus on an unsupervised approach for determining the correct senses

of the target words.

2.2 WordNet

WordNet [3] is the most popular and widely used knowledge source for unsuper-

vised WSD approaches. WordNet is a lexical database whose structure allows it to

be accessed using a variety of tools and programming languages. It is segregated
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into four databases based upon the parts of speech: noun, verb, adverb, and adjec-

tive. Each database consists of a set of lemmas, where a lemma is the dictionary

form of a word. For example, the words “sing,” “sang,” “sung,” and “singing” all

have the same lemma, which is “sing.” Each lemma in the database has a set of

senses. Each sense has a definition and a list of synonym words. In addition to the

definition, a sense is accompanied by one or more sentences that demonstrate the

sense usage. For example, Figure 2.2 shows an example of one sense for “shut,”

where “close” is a synonym.

Figure 2.2: WordNet Example for Word “shut”

Concepts in WordNet are represented using synonym sets (synsets). A synset

is a set of near synonyms for one particular sense. There are 117,000 synsets

and 155,000 words in WordNet. Synsets are interlinked together based on their

conceptual relation. The advantage of using WordNet is that all of the entries

are independent of the domain; that is the entries are not domain specific. The

structural layout is mostly based on the synonymy of the words. Synonymy is

defined when different words have similar meaning. For example, the words “big”

and “large.” Noun synsets can be arranged in the form of a tree according to their

noun relations. Noun relations are determined based on the concept of hyperonymy

and hyponymy. Hyperonymy gives the more general concept of a particular word,

whereas hyponymy gives the more specific concept of the word. For example, the

word “car” is a hyponymy of “vehicle,” and “vehicle” is a hyperonymy of “car.”

Verb relations are arranged on the concept of troponyms. Troponyms give the

more succinct concept of a particular verb at the bottom of the tree. For example,

the word “stroll” is a troponym of “walk.” Adjective relations are arranged based

on the concept of antonymy and pertainyms. Antonymy arranges two opposite
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concepts together, which in turn are linked to a synonym concepts to provide an

indirect antonym. For example, the word “increase” is an antonym of “decrease.”

Pertainyms give the classifying adjectives synset that refer to the noun synset from

which it has been obtained. For example, the word “interaction” is a pertainym

of “mutual” [5].

There are multiple versions of WordNet. Most of the research on WSD has been

done using WordNet 2.1, although a new version WordNet 3.0 is also available. The

difference between WordNet 3.0 and WordNet 2.1 is described in detail in Chapter

7. We have included the results of our approach on both WordNet 2.1 and WordNet

3.0.

2.3 Previous Work

We discuss in detail some of the supervised and unsupervised techniques used to

solve WSD.

2.3.1 Supervised Approach

NUS- ML [16] is a supervised approach that uses a hierarchical three-level Bayesian

model in combination with lexical, syntactic, and topic features of the words for the

disambiguation process. The lexical features used are: parts of speech, positions

with respect to other words, word forms, and lemmas of the target word. Syntactic

features such as dependencies are also used by the model. Finally, topic features

used include the general or fine context and a window length. This approach

extracts the information from the global context with the help of latent Dirichlet

allocation. Latent Dirichlet allocation is a probabilistic model for the collection of

discrete data. It is used in the field of text classification and document modeling

[2]. SemCor, which is a tagged corpus, is used as the training data. Apart from

the probabilistic models (Naive Bayes algorithm), there are other models, such as

k−nearest neighbor, that use previously tagged examples to help disambiguate the

targeted text [2].

Structural semantic interconnections (SSI) [17] represent the word senses us-

ing graphs and determine the semantic similarity based on context-free grammars.
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The basis of classification of a sense is the number and distinctness of the inter-

connections in the network. The graph representation is built using the relations

in WordNet, the domain labels, the annotated corpus and the dictionary of col-

locations. The layout of the word senses as a graph demonstrates a strong claim

during manual sense tagging. This algorithm performs well on domain specific

concepts [17].

A corpus-based supervised approach is heavily dependent upon hand-annotated

data. It requires a linguist to tag the text, which is costly and difficult to maintain

over a period of time. Distributional and translational equivalence methods are

used to reduce the dependency on hand annotation. The distributional method

takes advantage of the fact that words have identical sense in similar context.

The translational equivalence method uses parallel corpora that help map the

sense from the initial language to the final language [18]. Multilingual word sense

disambiguation uses Wikipedia to form a mono-sense classification. It exploits the

interlingual links between the five languages: English, French, German, Spanish,

and Italian. BabelNet, on the other hand, combines WordNet and Wikipedia sense

inventories with the support of six languages [19].

2.3.2 Unsupervised Knowledge-Source Approach

An unsupervised knowledge source approach has the ability to disambiguate all

the words in the text irrespective of the domain. This approach has two important

methods: dictionary-based and thesauras-based methods. Local context can be

used in both approaches, which refers to the syntactic relation between the words

in the context. It is a knowledge-intensive method that does automatic sense

tagging using a relatedness measure. The notion behind the relatedness measure

is to find how close two words are in the same context and to reveal the correct

meaning of the words. There are two distinct approaches in which relatedness can

be measured [6]:

• Machine readable dictionaries such as WordNet, to exploit the definition of

the words and examples

• Concept hierarchies, which exploit the layout of words in the dictionary

These approaches have been extensively used and are discussed below.
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2.3.2.1 Dictionary-based Algorithms

Michael Lesk introduced a dictionary-based algorithm [9] that counts the number

of overlapping words between the definition of the target word sense and all the

senses of the surrounding words in context. An overlapping word is defined as the

common word that occurs in two sets of words. This process is repeated for all the

senses of the target word. Stop words are not considered as overlapping words.

In the original Lesk algorithm, when a target word is disambiguated with its

surrounding words, the definition and examples of each sense of the target word are

compared to the definition and examples of each sense of the surrounding words.

The sense for the target word with the maximum overlapping of words is considered

to be the correct sense [9]. For example, suppose the words “computer,” “code,”

and “instruction” occur together in a sentence. Suppose further that the word

“instruction” is the target word for which the sense needs to be labelled; the words

“code” and “computer” are the surrounding words. For simplicity, we are going

to consider the definitions without the example sentences. There are five distinct

noun senses for the word “instruction” [3]:

• instruction1 - a message describing how something is to be done

• instruction2 - the activities of educating or instructing; activities that impart

knowledge or skill

• instruction3 - the profession of a teacher

• instruction4 - (computer science) a line of code written as part of a computer

program

• instruction5 - a manual usually accompanying a technical device and ex-

plaining how to install or operate it

There are three distinct noun and two distinct verb senses for the word “code” [3]:

• code1 - a set of rules or principles or laws (especially written ones)

• code2 - a coding system used for transmitting messages requiring brevity or

secrecy

• code3 - (computer science) the symbolic arrangement of data or instructions

in a computer program or the set of such instructions
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• code4 - attach a code to

• code5 - convert ordinary language into code

There are two distinct noun senses for the word “computer” [3]:

• computer1 - a machine for performing calculations automatically

• computer2 - an expert at calculation (or at operating calculating machines)

The original Lesk algorithm compares the definition of instruction1 with the defi-

nition of the senses code1, code2, code3, code4, code5, computer1, and computer2 to

find the overlapping words. Score here refers to the number of overlapping words.

The algorithm adds up the score for each comparison to its previous score. A

similar step is done for instruction2, instruction3, instruction4, and instruction5.

Instruction1, instruction2, instruction3, and instruction5 have score of zero. In-

struction4 has a score of six. Instruction4 and code1 have one overlapping word,

which is “written”; Instruction4 and code3 have three overlapping words, which

are “computer,” “science,” and “program”; Instruction4 and code4 have one over-

lapping word, which is “code”; Instruction4 and code5 have one overlapping word,

which is “code.” All the other comparisons of instruction4 have a score of zero.

The sense instruction4 has the largest number of overlapping words and is there-

fore chosen as the correct sense for the target word “instruction.” A drawback

of this method is not considering the distance between the target word and the

surrounding word in the given context while choosing the sense of the target word

[6].

The simplified Lesk algorithm is a variation of the original Lesk algorithm [10].

The simplified Lesk algorithm disambiguates the target word by using its context.

Context words are checked for their presence in the definition and examples of each

sense of the target word. The simplified Lesk algorithm does not use the definitions

and examples of context words. From the example above, the simplified Lesk al-

gorithm checks for the existence of the surrounding words “code” and “computer”

in the definition of instruction1. A similar step is done for instruction2, instruc-

tion3, instruction4, and instruction5. Instruction1, instruction2, instruction3, and

instruction5 have score of zero. Instruction4 has a score of two since both the sur-

rounding words “code” and “computer” appear in its defintion. Similar to the

original Lesk, simplified Lesk chooses instruction4 as the correct sense.
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Wilks etal. [11] indicated that the glosses of words, the definition and examples

of a sense, are not sufficient enough to have a more specific distinction between

word senses. They proposed the concept of expanding the gloss vectors. The

vectors were built using the co-occurrence of words with each other. They used

Longman’s Dictionary of Contemporary English (LDOCE), which consists of 2,200

words of controlled vocabulary prepared by linguists. The expanding of gloss

vectors increases the probability of finding overlapping words between word senses.

2.3.2.2 Concept Hierarchy-based Algorithms

Algorithms described in this section make use of the machine-readable dictionaries

by laying out the content of the dictionary in the form of semantic networks for

calculating relatedness measure.

In 1967, M. Ross Quillian introduced the use of the contents of machine read-

able dictionaries to determine the relation between the senses [7, 8]. His approach

depicts the contents of a dictionary in the form of semantic networks. Content

words are the words that define a sense in the dictionary. Their network is com-

posed of two different types of nodes: a type node and a token node. A sense

is represented by a unique node (type node). A content word is represented by

a token node. Type nodes are linked to token nodes, based on their dictionary

definition. The token nodes are then linked to their type nodes (senses) and those

type nodes are again linked to the token nodes (content word) that occur in their

definitions and so on. There is no direct link between two nodes of same type.

This process is carried out for all the senses in consideration. This process forms a

network of words, which can be used to determine the similarity between the defi-

nitions of two words . The number of common words found defines the relatedness

between the senses [8]. Veronis and Ide [12] proposed a neural network approach

that represents the senses of words in the form of semantic networks. Their net-

work structure is similar to the Quillian’s approach. Spreading activation is used

to perform disambiguation. The words in the network, which are present in the

context of the target word, are assigned senses of those type nodes that are located

in the heavily activated part of the network.

The availability of the structural layout of the words in WordNet has encour-

aged various work that exploited the dictionary layout for WSD. Michael Sussna
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[13] introduced a measure that assigns a sense to the noun with the help of the

surrounding words by using the semantic relatedness. An edge can represent one

of the following relationships: is-a, has-part, is-a-part-of, and antonyms between

nouns. The edges are given weight based upon the relation. Since more general

concepts in WordNet are at the top of the hierarchy and most specific concepts

are at the bottom, the relatedness assigns different weights to edges that appear

at various locations in the hierarchy.

Agirre and Rigan [14] introduced the notion of conceptual density in the re-

latedness measure. This measure is only applicable to nouns. This measure uses

the is-a relationship of nouns of WordNet. The conceptual density is defined as

the amount of space taken by an ambiguous noun in a particular context. The

space here refers to the area (number of occurences of a word) occupied by each of

the context words inside the hierarchy of the target word sense over the total area

occupied by the hierarchy of that sense. The sense with the maximum conceptual

density is assigned to the target noun.

Banerjee and Pederson [15] introduced an adapted version of the original Lesk

algorithm where they enriched the glosses by using relations from the semantic net-

work. Instead of comparing just the glosses of the target word and the surrounding

word, they also use the synset tree structure. In addition, they also introduced a

new scoring scheme where consecutive words in two glosses have more weight than

a single word match.

2.3.2.3 Heuristic-based Algorithms

Cowie [21] proposed a simulated annealing (SA) approach that uses Longman’s

Dictionary of Contemporary English (LDOCE) as the external knowledge source.

This approach works on each sentence individually in a text. The relatedness

measure in this approach depends upon the existence of the surrounding words

in a particular gloss of a sense. Initially, a configuration of senses is prepared for

a particular sequence of words. Then the configuration is changed by selecting a

random word and its random sense. The probability of keeping the configuration

of senses fixed depends upon the total score of all the senses relative to the previous

configuration score.

Gelbukh [22] proposed a genetic algorithm (GA) approach that uses an original
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Lesk algorithm as the similarity measure. It enriches the glosses by using the

synonym relation between the words. It also takes into account the linear distance

between two words in the context window period when disambiguating each other.

This approach stresses the fact that a sense of a particular word is determined by

the surrounding words in its context and aims to maximize the notion of coherence.

Schwab [23] proposed the use of Ant Colony Optimization to solve WSD, which

we reference in this thesis as ACA-2011. This approach uses a variant of the orig-

inal Lesk algorithm where glosses are expanded using the relations in WordNet.

Each word is represented as a component in a vector. The algorithm starts with

a graph. The graph is built based on the text structure where each word is linked

to its predecessor sentence, and each sentence is linked to its predecessor para-

graph. ACA-2011 performed better than the original Lesk algorithm (brute force

approach) using a limited amount of time [18].

Schwab [24] proposed another use of Ant Colony Optimization, which we refer

to in this thesis as ACA-2012. ACA-2012 was an adaptation of ACA-2011 with

the inclusion of majority voting approach that performed better than ACA-2011

in terms of efficiency and correctness.

Nguyen [1] proposed another use of Ant Colony Optimization algorithm, which

we refer to as TSP-ACO. This approach endeavors to solve the WSD problem by

relating it to the Travelling Salesman Problem (TSP). It uses the original Lesk

algorithm in a vector model space where each gloss is extended by the relations

in WordNet and the glosses from the extended WordNet and Wikipedia. This

approach also differs from other unsupervised approach by using a combination of

knowledge sources instead of a single knowledge source.

All the other heuristic methods mostly use original Lesk algorithm which gives

less importance to the context words while determining sense of the target word. In

this thesis, we put more emphasis on the context and the part of speech of the words

while determining their correct senses. We make use of simplified Lesk algorithm

as this relatedness measure gives more importance to context of the target words

than any other relatedness measure. We also extend the gloss, while using the

simplified Lesk algorithm, by adding additional relation words from WordNet.

The extension of glosses gives higher probability of context words when used in

simplified Lesk algorithm. Finally, the main difference between our approach and
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other heuristic approaches for WSD is that ours is constructive in nature. Previous

heuristic approaches initially start with randomly generated solution and improve

on it, while our algorithm disambiguates one word at a time.



Chapter 3

Bee Colony Optimization

Fish, birds, and packs of animals stick together in swarms due to their living

needs. Discrete individuals have higher chances of surviving by living in a group

than living alone, as they can protect and support each other more effectively.

They respond to the path and speed of their counterparts. They communicate

among themselves which allows them to flourish [25]. Bees exhibit similar kind

of behaviour. There are a few vital components of a bee colony such as the hive,

bees, and food sources [27]. At first, we explain the behavior of bees in nature.

Then, we explain the computational Bee Colony Optimization (BCO) aproach.

3.1 Bees in nature

Initially bees pick a hive that is close to most of the food sources. A hive is the

home of the bees. It has a storage where bees deposit their nectar. The vertical

dance floor, where all the bees communicate about the food sources and their

quality, is an integral part of the hive. Generally the quality of the hive depends

upon its location with respect to the food sources in the vicinity. A hive generates a

certain number of bees to search for food sources. The number of bees depends on

its quality. These bees are called scout bees. Scout bees go in different directions

in the surroundings for food. When they find a food source, they check the quality

and quantity and bring a sample back to the hive. The quality of the food source

depends on how much nectar (information) can be extracted from it, the distance

from the hive, and the bees’ ability to harvest it. They can inspect one or more
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food sources at a time.

Figure 3.1: A recuruiter bee performing the wagggle dance

The scout bees that bring the information about the best food sources in the region

are called recruiter bees [27, 28]. They get the privilege to advertise their food

sources and the paths they have taken to reach that food sources. The scout bees

that were not chosen as the recruiter bees check for their loyalty to their own path

based upon the requirements and characteristics of the hive. If they are loyal, they

follow their own path in hopes of getting a better food source in their path or else

they follow one of the recruiter bees’ paths and abandon their paths [29]. The

bees who abandon their paths are called uncommitted bees. The communication

between recruiter bees and uncommitted bees is done by performing a waggle

dance. Figure 3.1 shows the waggle dance [35]. This waggle dance takes place

on the dance floor of the hive. The duration and direction of the waggle dance

demonstrate the distance and quality of the food source advertised by the recruiter

[27]. Waggle dances happens inside the hive where there is no access of light and

on the vertical dance floor. On the vertical dance floor, gravity act as a refrence.

Since there is no light inside the hive, the direction aginst the gravity depict the

direction of the sun. The angle between the food source and recruiter bee as

observed from the hive is replicated on the vertical dance floor [36]. It is to be

noted that vertical dance floor is the inside surface of the hive. If the recruiter bee

is dancing in the direction of the sun, that depicts availability of the good food

source in that direction. A similar depiction is done by dancing on the left or right

of the sun. The uncommitted bees have a chance to see the number of dances and

pick one of the recruiter bees to follow. Figure 3.2 shows the connection between

the waggle dance and the food source location. The entrance of the hive is always

facing the sun. In the next section we are going to describe BCO algorithm.
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Figure 3.2: Waggle Dance Overview

3.2 BCO Algorithm

The subfield of artificial intelligence that is based on the research of the behavior

of common individuals in different decentralized systems is known as swarm intelli-

gence [25]. Insects in nature have a very subtle way of adjusting to the environment.

They make use of their large population to build a decentralized system. They

fetch, share, and make collective decisions for developing their colonies. There are

two vital properties of swarm intelligence: self organization and division of work.

These properties help in solving complex distributed problems. Self organization

can be characterized in terms of positive information, negative information, fluctu-

ation, and multiple interactions. Delegation and the division of work are based on

the skills of the insect at the local level. This adaptation to the search space, based

on low-level communications helps in building a global solution [26]. Bee Colony

Optimization (BCO) is a meta-heuristic method introduced by Teodorovic [25].

BCO is derived from the notion of joint intelligence between the bees in nature. It

is a bottom-up approach in which multiple bees are created based on the problem,

and the swarm intelligence of the bees is used to constructively solve the problem.

The bees collect and share information to segregate a good food source from a bad

one so their colonies can flourish.



19

Figure 3.3: Forward/backward phase

In computational BCO, the location of a food sources depicts a feasible partial

soultion to the optimization problem. The number of scout bees depicts the number

of solutions in the search space that we are constructing simultaneously. The

quantity of the nectar represents the quality (fitness value) of the corresponding

scout bee’s path (sequence of partial solution traversed by the bee). At the first

step, the BCO starts with scout bees. In the forward phase, each scout bee visits

an unvisited food source, determines the quality (fitness value) of the food source,

and adds the food source to its path (scout bee’s path). The number of sources

to be searched by a particular scout bee is fixed. The next step is to sort the

scout bees based on their quality. The backward phase consists of picking the

recruiter bees using a selection function. Selection of the recruiter bees can be one

of the many approaches, including use of a roulette wheel, tournament selection,

or elitism. Now for every scout bee initially in the hive, the probability of the

bee being loyal to its path is calculated, based on the fitness value. If the scout

bee is loyal it continues with its own path. On the other hand, if it is not loyal
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it picks up the path of one of the recruiter bees. The process described above is

iterated by the bees in two steps: a forward and a backward phase alternating

one after another. The process is repeated until there is no improvement in the

solution or a predefined maximum value of bees’ path is attained. Figure 3.3

shows the alternating forward and backward phase. The BCO algorithm is shown

in Algorithm 1.

In this chapter we have explained the general behavior of the bees and the BCO

algorithm. In the next chapter, we explain the BCO algorithm with respect to the

Word Sense Disambiguation problem.

Input: Food sources

initialization()

while stopping condition do
forwardPhase()

sortBees()

backwardPhase()

Algorithm 1: BCO



Chapter 4

Word Sense Disambiguation - Bee

Colony Optimization

In this chapter, we describe Word Sense Disambiguation (WSD) as an optimization

problem. We also define our Bee Colony Optimization (BCO) algorithm for WSD,

which we call WSD-BCO.

The process of maximizing the relatedness between context words and the

senses of the target word is defined as an optimization problem as shown in equation

4.1. Given a context C that is composed of a sequence of words {w1, w2, w3, . . . , wn}
of context length n, we assume a target word to be wt, where 1 ≤ t ≤ n. Let sti

be m possible senses of wt, where 1 ≤ i ≤ m. The goal is to establish a sense sti

that has the maximum relatedness measure between the sense sti and all the other

words (i.e., context words of the text). We extend the sense sti to an extended

sense esti by adding to it other relevant information that we describe below. We

use the simplified Lesk algorithm [10] as the relatedness measure (rel) between a

context word and an extended sense esti.

WSDOPT = argmaxm
i=1

{
n∑

j=1,j 6=t

rel (wj, esti)

}
(4.1)

The equation shows that the optimization function (WSDOPT) computes a

score for each extended sense esti of the target word wt. The output of the opti-

mization function is the score of the extended sense index of the target word wt

that is best related to the context words.
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The simplified Lesk algorithm, as described in the Chapter 2, determines the

sense of a target word with respect to its context. The words in the definition

and examples of a sense are called a gloss. The sense with the most appropriate

meaning tends to have the maximum number of context words in its gloss. Here,

the glosses of the senses are further extended with additional information based

on the part of speech (POS) of the target word:

• When the POS of the target word is a noun - We include the glosses and

examples for: 1) the adjectives that are pertainyms of that particular noun

sense, and 2) all the directly related hypernyms of the noun sense; these

terms represent the more general meaning of the noun sense.

• When the POS of the target word is a verb - We include the glosses and

examples for: 1) the verb entailments that are implied by a particular verb

sense, and 2) all the directly related hypernyms of the verb sense which

represent the more general meaning of the verb sense.

• When the POS of the target word is an adjective - We include the glosses and

examples for the nouns for which the pertainym is that particular adjective

sense.

We refer to the above extension of a sense swi to eswi as an extended sense.

Input: Sequence of words {w1, w2, w3, . . . , wn} and target word wt

Output: Highest extended sense score index

for each extended sense esti of target word wt do

for each context word wj do

/* Continue to next context word if t == j */

set senseScores [i] ←− senseScores[i] + rel (wj, esti)

return max{senseScores [k]} 1 ≤ k ≤ n

Algorithm 2: WSDOPT

Our optimization algorithm (WSDOPT) is shown in Algorithm 2. For every

extended sense esti of the target word wt, the algorithm computes the relatedness

measure between a context word and an extended sense esti and adds to its pre-

vious score for every context word. Then it returns the highest score of all the
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extended senses. The extended sense index for which the highest score is returned

is considered as the most appropriate extended sense of the target word wt.

In the WSD-BCO algorithm, one word among all the words to be disambiguated

is randomly selected as the hive. The number of senses of this selected word, which

is now the hive, determines the number of scout bees. The path of a bee represents

the words that were disambiguated. Initially this path contains the hive word as

its first word. When a bee visits a new target word to disambiguate, it determines

the extended sense of the new target word with the help of the words in the path

it traversed. The bee uses the WSDOPT defined earlier to determine the extended

sense of that target word. This target word, with its disambiguated sense, is added

to the bee’s path. The bee returns back to the hive and the forward/backward

phase repeats again. While each bee moves to and fro between the hive and the

target words, its builds an appropriate sequence of context words as path. This

helps in disambiguating the next target word visited by the bee with a wider

context (bee’s path).

The WSD-BCO algorithm has three main phases: initialization, forward, and

backward. During initialization, we determine the frequency of the target words in

the gloss, example, hypernyms, entailments, and attributes of all the target words

that is suplied as input to WSD-BCO. In the forward phase, the bee travels to

different target words picking the most appropriate extended sense of the target

word based upon the path it traversed. In the backward phase, the path quality

of all the bees is calculated and then used to decide the effective path to be ex-

plored. The forward and backward phases are alternated until all target words are

assigned an extended sense. The main activities of WSD-BCO and their interac-

tions are shown in Figure 4.1. A one-to-one correspondence between the general

BCO algorithm and our WSD-BCO is shown in Table 4.1.

BCO WSD-BCO
Food sources All the target words except hive
Hive One target word that is randomly selected
Bee Senses of target word selected as hive
Bee’s quality WSDOPT

Bee’s path Sequence of target words

Table 4.1: BCO vs WSD-BCO
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Figure 4.1: WSD-BCO Overview

In order to demonstrate how the algorithm behaves and to explain the different

phases in Figure 4.1 we use the following sentence: “Every model of computer

would be likely to need different instructions to do the same task.” as a running

example.

4.1 Initialization

The first step in the initialization phase is the document splitting process; we split

the document based on a single sentence. As the context plays an important role

in deciding the meaning, we disambiguate the target words by working on one

sentence at a time in order to have a stronger claim when picking the sense of

the target word. The second step in the initialization process is to remove the
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stop words from the input sentence. The sentence now contains only words that

needs to be disambiguated. These target words can have multiple senses for the

same parts of speech and can vary for different parts of speech. If the sense of

a particular target word for the tagged parts of speech does not exist, then we

retrieve the cluster sense of that particular target word.

We are provided with each target word’s lemma and POS. We prepare a global

bag of words using all of the senses of the target words. This process is repeated

for each and every target word. The next step is to count the frequency of all

the target word lemmas in the global bag. Figure 4.2 shows an example where the

senses for the target word “computer” are fetched from WordNet. First, we prepare

a global bag of words using all the sense of the word “computer.” The global bag

is filled with words from the gloss, hypernyms, entailments, and attributes of the

particular senses. We then calculate how many times “computer” appears in the

global bag and save this value in its frequency feature. This frequency value will

be helpful when a bee in the forward phase picks a word. We can imagine that

the frequency denotes the closeness of the target word to the hive. The higher the

frequency, the closer the target word is to the hive.

Figure 4.2: Prepare Word Frequency
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The next step is to prepare the extended information for all senses of the target

words. All the stop words are removed from glosses, hypernyms, entailments, and

attributes of the particular sense while preparing the extended sense. The exten-

sion of a sense is prepared initially because fetching information from the WordNet

database is a costly process and we can avoid repeated transactions for the same

sense. Figure 4.3 shows an example where the extended information is prepared for

the word “computer.” The extended senses of “computer” are computerExtended-

Sense1 and computerExtendedSense2, with hypernyms and attributes in addition

to their definitions and examples.

Figure 4.3: Prepare Extended Sense

The last step in the initialization phase is to randomly select a target word

from the input set of target words to act as the hive. We retrieve the senses of

the hive based on its POS. Scout bees corresponding to each sense of the hive are

generated. Each bee has its own properties such as the bee’s path and its path

quality. Figure 4.4 shows the initial status of the hive. Let us assume that “model”

was picked up as the hive. There are three senses for “model.” BEE1 contains

modelSense1, path, and path quality. The path quality is initialized to zero. The

starting point of each bee’s path is the hive. Similar settings are done for BEE2

and BEE3.
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Figure 4.4: Initiate Bees

4.2 Forward Phase

The first step for a bee in the forward phase is to choose a new word to add to

its path. Each bee prepares a roulette wheel based on the frequency of the target

words calculated in the initialization phase for all the unvisited target words. If the

target word has a frequency of 0, then we add one to its frequency so that this word

has a chance, even if it is a slight one, to be picked. Each bee picks a target word

from the roulette wheel to visit randomly, as shown in Figure 4.5. BEE1 picks the

word “computer” to visit. After picking the word, the bee uses the optimization

function in Equation 4.1 to assign an appropriate extended sense to the picked

target word, in this case “computer.” The bee adds the new disambiguated word

“computer” to its path. Using a roulette wheel gives a greater probability to the

target words with high-frequency value.

The words in the bee’s path act as the context words and are used in the dis-

ambiguated process. The scout bee checks the words in its path for their existence

in the extended senses of the target word. The extended sense with the maximum

overlap of words with the path words is assigned as the correct sense to the target

word. The process can be seen in Figure 4.6, where we check for the existence
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Figure 4.5: Pickup Roulette Wheel

of the lemma of the path words “model” and “instructions” in the two extended

senses of the target word “computer.” The extended sense with the maximum

score is assigned to “computer.” If the scores of both extended senses are equal

or both are zero, then we pick the most frequent extended sense in that case. The

most frequent sense of a target word is maintained by WordNet. After the ex-

tended sense for the target word is determined, the next step is to add this target

word to the bee’s path. The quality of the path is also updated with the chosen

extended sense score to reflect the quality of the bee’s path.

Figure 4.6: WSD-BCO Relatedness
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Each bee that is initiated from the hive goes in a different direction by picking

up different words in the vicinity, where the words with higher frequencies are

closer to the hive. Each bee, upon reaching a target word, finds the correct sense

of that target word based on the path it has pursued. The overview of the forward

phase can be seen in Figure 4.7. In this example the word “model” represents the

hive, while each bee represents one of the three senses of “model.” There are eight

words to disambiguate (excluding the hive word). Each of the three bees selects

the next word to disambiguate using the roulette wheel. In this case, BEE1, BEE2,

and BEE3 select “computer,” “task,” and “need,” respectively, and disambiguate

them. The circular ring denotes the single-forward phase. The words on the ring

denote the target words to be disambiguated in that particular phase. Each bee

eventually visits all the target words in the search space.

Figure 4.7: Forwrad Phase Overview

4.3 Backward Phase

In this phase we sort the bees based on their path qualities, where the best bee is

placed at the beginning. Then we determine whether the bees will:

• become recruiters
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• abandon their path and follow one of the recruiter’s path

• be loyal to their path.

We define the Recruitment Size (Rec) based on the number of bees in the hive.

For example, for a hive of seven bees, we define Rec as three as we want to explore

combination of target words which gives maximum WSDOPT. We pick the bees

with the highest path quality as recruiters. Each bee then decides whether to stay

loyal to its path or not. Equation 4.2 is used to calculate the loyalty probability

of the bth bee.

ployaltyu+1
b = e−(

omax−ob
x

) (4.2)

ob = qualb−qualmin

qualmax−qualmin
, x = 4

√
u

In this equation u denotes the number of iterations of the forward phase, x defines

the fourth root of u, qualmax defines the maximum overall value of the partial

solution among all bees, a partial solution here refers to the target words dis-

ambiguated in previous phases, qualmin defines the minimum overall value of the

partial solution, qualb defines the path quality of the bth bee with the partial so-

lution, ob is the normalized value of the partial solution generated by the bth bee,

and omax is the maximum overall normalized value of the partial solution generated

among all bees [31]. As the number of forward phases increases, the probability

for a bee to change its path decreases. We have modified the equation for the loy-

alty probability that was proposed by the authors of the BCO algorithm to fit the

problem of word sense disambiguation [30]. We introduce x, which is the fourth

root of u, while calculating the loyalty probability since we are disambiguating a

single target word in one forward phase and the number of target words can grow

as much as five hundred. Higher values of u result in very few bees changing their

path; therefore, we make the value of u smaller.

precruitmentb =
ob∑Rec
k=1 ok

(4.3)
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The next step is for uncommitted bees to pick which of the recruiters bees

to follow. Equation 4.3 is used for calculating the recruitment probability of the

bth uncommitted bee [25], where ob is the normalized value of the partial solution

generated by the bth scout bee, and ok denotes the normalized value of the kth

recruiter bee partial solution. Using a roulette wheel, the uncommitted bees can

pick any one of the recruiter bees to follow as shown in the Figure 4.8. Recruitment

probability can be related to the waggle dance of the bees as described in the

previous chapter.

Figure 4.8: Recruitment Roulette Wheel

The overview of the forward/backward phase can be seen in Figure 4.9. BEE1

decided to stay loyal to its path and moved to the next target word “likely.” BEE2

decided to stay loyal to its path and moved to the next target word “be.” BEE3

decided to abandon its path (Bee3PreviousPath) and changes its path to that of

BEE1. It then moved to the next target word “different.”

In this chapter, we have decribed our basic WSD problem in relation to BCO.

We presented the extension of the simplified Lesk algorithm and the way it fits

into BCO. We decribed WSD-BCO using a sentence as an example. In Chapter 5,

we increase the context in consideration, describe the document splitting section

in detail, and explain variations made to our algorithm.
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Figure 4.9: Backward Phase Overview



Chapter 5

Modifications

In this chapter we describe the modification done on WSD-BCO. We introduce

four modifications where the main difference lies in the initilization phase (Figure

4.1), mainly in how we split a document. In the document splitting section of

Figure 4.1 we segregate the input data between the Document level (D) and the

sentence level (S). The Document level represents all the words that are related

to one single document whereas the sentence level represents the words at each

sentence in a particular document. As we go along we provide short notations to

the approaches where they differ on the basis of how input and parameters were

supplied to WSD-BCO.

5.1 Document Level

In this algorithm we disambiguate the words by working on one document at a

time. For each document, we split the target words into three groups:

• all the target words that are nouns or adjectives

• all the target words that are verbs

• all the target words that are adverbs.

The document splitting process is shown in Figure 5.1. The next step is to run the

WSD-BCO algorithm on all the groups separately. Extended senses with scores

less than a certain threshold are not considered, and the most frequent sense is used

instead. We call this algorithm BCO−D−NA/VB/J−TS. The D represents all the
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target words at the document level, NA represents the noun-adjectives group, VB

represents the verb group, J represents the adverb group, and TS indicates that a

threshold score is being used.

Figure 5.1: The modified document splitting step from the initialization phase of
Figure 4.1 for BCO−D−NA/VB/J−TS

5.2 Sentence Level

In this algorithm the test data is processed by breaking each document into groups

of sentences (GS). Initially when we try to disambiguate one sentence at a time

very few senses yield a score other than zero due to the limited context that is

provided by a single sentence. Therefore, we increase the number of sentences in

consideration. Next, we split the target words into two subgroups:

• all the words that are nouns or adjectives

• all the words that are verbs and adverbs.

We run the WSD-BCO algorithm on both subgroups separately. Extended

senses with scores less than a certain threshold are not considered. We choose

to iterate over a single instance more than once as on each iteration WSD-BCO
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algorithm starts with a new hive, and the more random combination of the bee’s

path will result in more senses yielding an acceptable score. The next iteration

runs on the result of the previous iteration.The correct sense of a target word is

replaced in the next iteration only if the score of the next iteration is higher than

the previous iteration. We call this algorithm BCO−GS−NA/VJ−TS−I, where

GS represents a group of sentences, NA represents the noun-adjectives subgroup,

VB represents the verb subgroup, J represents the adverb subgroup, I represents

the use of multiple iterations, and TS indicates the threshold score being used.

This version of the document splitting is shown in the Figure 5.2.

Figure 5.2: The modified document splitting step from the initialization phase of
Figure 4.1 for BCO−GS−NA/VJ−TS−I
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5.3 Voting

The previous approach, BCO−D−NA/VB/J−TS, does not always provide the

same results when run multiple times. The reason for this inconsistency in the

results is because we use a roulette wheel when bees pick up words and when

scout bees choose recruiter bees to follow. This randomness in the algorithm

assigns different senses on every run. Therefore, we apply the voting concept to

the previous approach in order to improve the disambiguation process. Voting

approach reduces the inconsistency in the results to a small range. Voting results

have a stronger claim as the extended sense were chosen after multiple runs. We

run the algorithm on separate instances of the input for a fixed number of times.

Then we perform voting on the results to determine the extended senses with the

highest agreement. We call this algorithm VBCO−D−NA/VB/J−TS. V at the

beginning of an approach name represents that voting is applied to that approach.

Figure 5.3 depicts the entire VBCO−D−NA/VB/J−TS algorithm with voting.

Figure 5.3: Voting algorithm for BCO−D−NA/VB/J−TS

5.4 Hybrid

In this algorithm we disambiguate the words by working on one document at a

time. For each document, we split the target words into two groups:

• all the target words that are nouns or adjectives
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• all the target words that are verbs or adverb

We run our algorithm only on the first group, which consists of all the nouns

and adjectives. Extended senses with scores less than a certain threshold are

not considered. When the relatedness measure is less than the threshold score

then we use the most frequent sense of the target word. The verbs and adverbs

are automatically set to their most frequent sense. We perform voting on the

results to determine the extended senses with the highest agreement. We call this

algorithm VBCO-D-NA-TS-HY. The D here stands for all the target words in

different documents that are disambiguated separately, NA represents the noun-

adjectives group, HY represents usage of the Most Frequent Sense heuristic and TS

indicates the threshold score being used. This process is explained in the Figure

5.4.

Figure 5.4: The modified document splitting step from the initialization phase of
Figure 4.1 for VBCO−D−NA−TS−HY

In this chapter we have explained the modification done on the WSD-BCO

algorithm based on the context. In the next chapter, we explain the test data set

and results on WordNet 2.1.



Chapter 6

Experimental Results

In this chapter we report the results of our WSD-BCO algorithm and its variations

on WordNet 2.1.

6.1 Data Set

We use SemEval-2007 Task 07: Coarse-Grained English All-Words Task as our

test data. This data set is comprised of five documents related to fields such as

journalism, book review, travel, computer science, and biography. The first three

documents were obtained from the Wall Street Journal corpus [32]. The computer

science document is obtained from Wikipedia, and the biography document is an

extract from Amy Steedman’s Knights of the Art, a biography of Italian painters.

Documents three and four consist of 51.87 percent of the total target words [4].

In this Semantic Evaluation (SemEval) task, linguists annotated the sense of

each of the target words by picking the most appropriate sense from the coarse

grained sense inventory of WordNet. Each of the five documents is an annotated

set of target words. The target word is tagged with its respective part of speech

(noun, verb, adverb or adjective). The lemma of the target word is also tagged

along with original content. Table 6.1 gives an idea of the number of target words

in each document.

WordNet is initially a fine-grained dictionary. Since word sense disambiguation

is very difficult even for humans, there was a need to cluster the WordNet senses

into coarse-grained ones. The coarse-grained sense inventory was created by auto-
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Article Domain TargetWords
d001 Journalism 368
d002 Book Review 379
d003 Travel 500
d004 Computer Science 677
d005 Biography 345
Total 2269

Table 6.1: Target Words in Each Document

matically mapping the senses from WordNet to that of the Oxford Dictionary of

English (ODE), which contains more general senses of the words. The difference

between coarse-grained and fine-grained inventories can be seen below. Let us

consider the following example for the word “pen” under fine and coarse grained

senses [34]:

Fine-grained senses for “pen”

• pen1: pen (a writing implement with a point from which ink flows)

• pen2: pen (an enclosure for confining livestock)

• pen3: playpen, pen (a portable enclosure in which babies be left to play)

• pen4: penitentiary, pen (a correctional institution for those convicted of

major crimes)

• pen5: pen (female swan)

Coarse-grained senses for “pen”

• pen1: pen (a writing implement with a point from which ink flows)

• pen2: pen (an enclosure: this contains the fine senses for livestock and babies)

• pen3: penitentiary, pen (a correctional institution for those convicted of

major crimes)

• pen4: pen (female swan)

It can be clearly seen that in the coarse grained representation the pen2 sense

does not distinguish between “an enclosure for confining livestock” and “a portable

enclosure in which babies be left to play.” Therefore, the task of WSD is simpler

at a coarse-grained sense inventory as compared to a fine-grained sense inventory.
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6.2 Evaluating The System

In order to evaluate the effectiveness of our approach to compare it with other

unsupervised WSD methods we use different evaluation measures such as precision,

recall, and an F-measure of the results.

The number of target words we attempt to disambiguate can be different from

the number of total target words to disambiguate as some words might not be

present in WordNet. Therefore, the words which are not present in WordNet

are not disambiguated. Precision, as shown in Equation 6.1, is defined as the

percentage of the number of target words that are correctly disambiguated in the

number of target words we attempt to disambiguate. The better the Precision, the

better the system. Recall, as shown in Equation 6.2, is defined as the percentage of

the number of target words that the WSD system correctly disambiguates to the

number of total target words to disambiguate. The better the Recall, the better

the system. F-Measure, as shown in Equation 6.3, is the harmonic mean of the

precision and recall. An F-measure is used to calculate the effectiveness of the

system [5]. The better the F-measure, the better the system. We used the sense

inventory and scorer provided by the SemEval-2007 Task 07 organinzers [4].

Precision =
NumberOfTargetWordsCorrectlyDisambiguated

NumberOfTargetWordsAttemptedToDisambiguate
∗ 100 (6.1)

Recall =
NumberOfTargetWordsCorrectlyDisambiguated

TotalNumberOfTargetWordsToDisambiguate
∗ 100 (6.2)

F -measure =
2 ∗ precision ∗ recall
precision+ recall

(6.3)

6.2.1 Baseline

Our baseline for the WSD problem is the Most Frequent Sense (MFS) algorithm.

The MFS is calculated using Equation 6.4 [4].

BLMFS =
1

|N |

|N |∑
t=1

ψ(t, sti) (6.4)
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where N denotes the total number of target words. ψ(t, sti) equals to 1 when

there is a match between the chosen sense and the cluster senses decided by our

WSD system for the word t; otherwise 0 is assigned. The calculation of the MFS

is based on the SemCor corpus [33]. Table 6.2 shows the MFS for WordNet 2.1

calculated by us.

Document Attempted Precision Recall F-Measure
d001 100 85.598 85.598 85.598
d002 100 84.169 84.169 84.169
d003 100 77.800 77.800 77.800
d004 100 74.298 74.298 74.298
d005 100 75.652 75.652 75.652
Total 100 78.757 78.757 78.757

Table 6.2: Most Frequent Sense (WordNet 2.1)

It can be seen that MFS works very well for documents d001 and d002 as they

are related to more general topics. Document d003 contains words that are used in

both general and specific topics, so the results are not as good as the general topic

documents. Documents d004 and d005 focus on domain specific topics, which is

why the MFS achieved low results. The MFS baseline used by SemEval-2007 Task

07 [4] is 78.89 while ours is 78.76. The difference between the organizers F-Measure

and our F-Measure lies in the fact that over a period of time many changes have

been made on WordNet 2.1. Therefore, the F-Measures differs slightly. Hence,

we use an F-Measure of 78.89 as the baseline to compare our results with other

approaches.

As a whole, the MFS baseline gives good results and most unsupervised ap-

proaches give either lower results or similar to that of MFS; Although MFS has

very good results, it cannot be a successful WSD system because the most frequent

sense of a word depends highly on the domain in which the word is used. Let us

see the limitations of MFS using the example below.

Consider the target word “brush” used as a noun. There are nine distinct noun

senses in WordNet 2.1; some of them are as follows:

• Brush1 - a dense growth of bushes

• Brush2 - an implement that has hairs or bristles firmly set into a handle
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• Brush3 - momentary contact

• Brush4 - a bushy tail or part of a bushy tail (especially of the fox)

Brush1 is the most frequent sense of the target word “Brush,” but if “Brush”

were used in a specific domain of topics related to painting, then Brush2 should

have been the correct sense of the target word “Brush.” Therefore, the most

frequent sense does not always achieve good results in different domains. Hence,

the difference between the performances of MFS can be observed in documents

d004 and d005 as they belong to a more specialized domain [4].

6.3 Results

In this section we use WordNet 2.1 as the dictionary for our basic approach and

all the other proposed modifications.

6.3.1 WSD−BCO

The context of the words played an important role in deciding the sense. Therefore,

we refer to our basic approach BCO-S where S represents a single sentence context.

This is done so that we will have a clear picture of context while comparing with

the other approaches. The results of this algorithm are shown in Table 6.3. The

final result was an F-measure of 74.614. It can be noted that the results are good

for general concepts (d001, d002) but not that good for domain specific concepts

(d004, d005).

Document Attempted F-Measure
d001 100 80.435
d002 100 79.683
d003 100 75.000
d004 100 72.969
d005 100 65.507
Total 100 74.614

Table 6.3: BCO−S (Rec=3, WordNet 2.1)



43

6.3.2 BCO−D−NA/VB/J−TS

The results obtained from this algorithm are shown in Table 6.4. When we ex-

tended the senses, we weren’t able to determine the relation between verbs and

adverbs in the WordNet, so it is better to disambiguate them separately. There-

fore we disambiguate the noun-adjective group, verb group, and the adverb group

separately. Since we are considering all the words, in the path of a bee, we ex-

pect the selected extended sense selected to have a higher score than the threshold

score (TS) of five. The final result was an F-measure of 74.482. Document d001

performs well; None of the other documents perform well.

Document Attempted F-Measure
d001 100 83.152
d002 100 77.045
d003 100 72.800
d004 100 72.083
d005 100 69.565
Total 100 74.482

Table 6.4: BCO−D−NA/VB/J−TS (Rec=3, TS=5, WordNet 2.1)

6.3.3 BCO−GS−NA/VJ−TS−I

The results of this algorithm are shown in Table 6.5. We use a threshold score

(TS) of five and iterate (I) five times over the initial data set to improve the

performance. We consider five sentences as the context. The final result is an

F-measure of 78.669. One important observation to conclude is the importance

of disambiguation of target words based on their parts of speech separately. This

approach shows very good results that are comparable to the baseline, but suffers

from a problem of the low number of extended senses yielding score other than

zero.

6.3.4 VBCO−D−NA/VB/J−TS

The results of this algorithm are shown in Table 6.6. BCO−D−NA/VB/J−TS

does not always provide the same result when it is run multiple times. We ran this
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Document Attempted F-Measure
d001 100 85.598
d002 100 84.169
d003 100 77.800
d004 100 74.446
d005 100 74.783
Total 100 78.669

Table 6.5: BCO−GS−NA/VJ−TS−I (GS=5, I=5, TS=5, Rec=3, WordNet 2.1)

algorithm 200 times on separate instances of the input. Then we performed voting

on the results to determine the extended senses with the highest agreement. The

final result is an F-measure of 79.066 while our previous result without voting for

this approach was 74.262. We can see a two to eight percent improvement on all

the documents. We also have a huge number of extended senses yielding scores.

Document d004 (78.139 ) performed better than the most frequent sense (74.298).

However document d005 performed poorly compared to the most frequent sense.

Therefore we can strongly claim the results of this approach where we got good

results for both general and specific topic documents.

Document Attempted F-Measure
d001 100 84.511
d002 100 84.169
d003 100 77.200
d004 100 78.139
d005 100 72.174
Total 100 79.066

Table 6.6: VBCO−D−NA/VB/J−TS (V=200, Rec=3, WordNet 2.1)

6.3.5 VBCO−D−NA−TS−HY

The results of this algorithm are shown in Table 6.7. It is interesting to note

that we got the best results among all the other BCO modifications using this

approach. Sixty five percent of the total words in all the documents were nouns

and adjective;, the rest were verbs and adverbs. Setting the verbs and adverbs

to their most frequent senses helped the VBCO−D−NA/VB/J−TS algorithm to
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increase its efficiency significantly. We ran this algorithm 200 times on separate

instances of the input. Then we performed voting on all the results to determine

the extended senses with the highest agreement. The final result was an F-measure

of 81.446. Looking at documents d004 and d005, we can see a four to six percent

improvement to the MFS results. On the other hand, document d003 does not

show improvement while there is a decrease in performance of document d002.

Document Attempted F-Measure
d001 100 87.500
d002 100 84.169
d003 100 77.800
d004 100 80.502
d005 100 79.130
Total 100 81.446

Table 6.7: VBCO−D−NA−TS−HY (V=200, Rec=3, WordNet 2.1)

6.4 Analysis

In this section we compare all the results with some of the WSD systems such

as: Ant Colony Optimization (ACA) [1, 23, 24], Genetic Algorithm (GA) [22],

Most Frequent Sense (MFS), and the Simulated Annealing (SA) [21]. The re-

sults of our algorithms and the related work are shown in Table 6.8, and are all

based on WordNet 2.1. The WSD systems are arranged in order of high to low

result. BCO−D−NA/VB/J−TS showed disambiguating the target words in noun-

adjective group, verb group, and adverb group separately with a certain degree of

threshold performed better than GA, SA and ACA-2011. BCO−S, our basic ap-

proach, performed better than GA, SA and ACA-2011. BCO−GS−NA/VJ−TS−I

performed better than TSP-ACO, ACA-2012, ACA-2011, SA, and GA.

The VBCO−D−NA/VB/J−TS and VBCO−D−NA−TS−HY approaches out

performed other WSD systems. VBCO−D−NA/VB/J−TS showed the impor-

tance of voting on multiple runs to improve the efficiency. It also showed us the

benefits of exploiting WSD problem using segregation of parts of speech and a

certain degree of threshold in a global context. None of the previous approaches

have segregated words on parts of speech. Finally, the VBCO−D−NA−TS−HY
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System Attempted Precision Recall F-Measure
VBCO−D−NA−TS−HY 100 81.446 81.446 81.446

VBCO−D−NA/VB/J−TS 100 79.066 79.066 79.066
MFS 100 78.89 78.89 78.89

ACA-2012 voting 100 78.76 78.76 78.76
BCO−GS−NA/VJ−TS−I 100 78.669 78.669 78.669

TSP-ACO 99.80 78.50 78.10 78.30
ACA-2012 100 77.64 77.64 77.64
BCO−S 100 74.614 74.614 74.614

BCO−D−NA/VB/J−TS 100 74.482 74.482 74.482
ACA-2011 100 74.35 74.35 74.35

SA 100 74.23 74.23 74.23
GA 100 73.98 73.98 73.98

Table 6.8: Comparison of WSD Systems

approach produced excellent results when disambiguating noun-adjectives groups

of target words with the most frequent sense assigned to verbs and adverbs.

VBCO−D−NA−TS−HY performs better than all unsupervised approaches.

In this chapter we have explained the test data set. We discussed the results of

our approaches and compared it against other WSD systems. In the next chapter,

we discuss the results on WordNet 3.0.



Chapter 7

Wordnet 3.0

In this chapter, we use WordNet 3.0 instead of WordNet 2.1 as the dictionary for

all our proposed approach. We also show a sharp contrast between the results of

WordNet 2.1 and WordNet 3.0. We are unable to compare our results of Word-

Net 3.0 with other approaches because the WSD problem is contingent upon the

knowledge source, as over a period of time some new senses have been introduced

and some senses have been removed in WordNet 3.0. We also have similar argu-

ments for all the approaches, which we report in the results of WordNet 2.1. There

are four target words that are found in WordNet 2.1 but missing from WordNet

2.1; they are in addition, known as, familiar with, and else. Table 7.1 shows the

results of the most frequent sense for WordNet 3.0.

Document Attempted Precision Recall F-Measure
d001 99.7 85.559 85.326 85.442
d002 100 85.752 85.752 85.752
d003 100 79.200 79.200 79.200
d004 99.7 74.332 74.003 74.167
d005 99.7 76.163 75.942 76.052
Total 99.8 79.757 79.242 79.329

Table 7.1: Most Frequent Sense Result (WordNet3.0)
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7.1 BCO−S

The results of this algorithm are shown in Table 7.2. Documents d001 and d004

show decrease in performance compared to that of WordNet 2.1. Documents d002

and d005 show improvement in performance compared to that of WordNet 2.1.

Document d003 stayed the same. The F−Measure of 74.592 on WordNet 3.0 is

worse than 74.614 of WordNet 2.1.

Attempted Precision Recall F-Measure
Document 2.1 3.0 2.1 3.0 2.1 3.0 2.1 3.0
d001 100 99.7 80.435 79.837 80.435 79.620 80.435 79.728
d002 100 100 79.683 81.003 79.683 81.003 79.683 81.003
d003 100 100 75.000 75.000 75.000 75.000 75.000 75.000
d004 100 99.7 72.969 71.407 72.969 71.196 72.969 71.302
d005 100 99.7 65.507 68.023 65.507 67.826 65.507 67.925
Total 100 99.8 74.614 74.658 74.614 74.526 74.614 74.592

Table 7.2: BCO−S (Rec=3, WordNet 3.0)

7.2 BCO−D−NA/VB/J−TS

The results of this algorithm are shown in Table 7.3. Documents d001, d004, and

d005 show worse in performance compared to that of WordNet 2.1. Documents

d002 and d003 show improvement in performance compared to that of WordNet

2.1. The F−Measure of 73.974 on WordNet 3.0 is worse than 74.482 of WordNet

2.1.

Attempted Precision Recall F-Measure
Document 2.1 3.0 2.1 3.0 2.1 3.0 2.1 3.0
d001 100 99.7 83.152 82.289 83.152 82.065 83.152 82.177
d002 100 100 77.045 77.836 77.045 77.836 77.045 77.836
d003 100 100 72.800 74.000 72.800 74.000 72.800 74.000
d004 100 99.7 72.083 71.259 72.083 71.049 72.083 71.154
d005 100 99.7 69.565 66.570 69.565 66.377 69.565 66.473
Total 100 99.8 74.482 74.040 74.482 73.909 74.482 73.974

Table 7.3: BCO−D−NA/VB/J−TS (Rec=3, TS=5, WordNet 3.0)
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7.3 BCO−GS−NA/VJ−TS−I

The results of this algorithm are shown in Table 7.4. Documents d001 and d004

show lower performance compared to that of WordNet 2.1. Documents d002,

d003 and d005 show better performance compared to that of WordNet 2.1. The

F−Measure of 79.180 on WordNet 3.0 is better than 78.669 of WordNet 2.1.

Attempted Precision Recall F-Measure
Document 2.1 3.0 2.1 3.0 2.1 3.0 2.1 3.0
d001 100 99.7 85.598 85.559 85.598 85.326 85.598 85.442
d002 100 100 84.169 85.752 84.169 85.752 84.169 85.752
d003 100 100 77.800 79.200 77.800 79.200 77.800 79.200
d004 100 99.7 74.446 74.370 74.446 74.151 74.446 74.260
d005 100 99.7 74.783 75.000 74.783 74.783 74.783 74.891
Total 100 99.8 78.669 79.249 78.669 79.110 78.669 79.180

Table 7.4: BCO−GS−NA/VJ−TS−I (GS=5, I=5, TS=5, Rec=3, WordNet 3.0)

7.4 VBCO−D−NA/VB/J−TS

The results of this algorithm are shown in Table 7.5. Document d004 shows a

decrease in performance compared to that of WordNet 2.1. Documents d001, d002,

d003, and d005 show improvement in performance compared to that of WordNet

2.1. The F−Measure of 79.532 on WordNet 3.0 is better than 79.066 of WordNet

2.1.

Attempted Precision Recall F-Measure
Document 2.1 3.0 2.1 3.0 2.1 3.0 2.1 3.0
d001 100 99.7 84.511 84.741 84.511 84.511 84.511 84.626
d002 100 100 84.169 85.448 84.169 85.488 84.169 85.488
d003 100 100 77.200 78.400 77.200 78.400 77.200 78.400
d004 100 99.7 78.139 77.778 78.139 77.548 78.139 77.663
d005 100 99.7 72.174 72.965 72.174 72.754 72.174 72.859
Total 100 99.8 79.066 79.603 79.066 79.462 79.066 79.532

Table 7.5: VBCO−D−NA/VB/J−TS (V=200, Rec=3, WordNet 3.0)
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7.5 VBCO−D−NA−TS

The results of this algorithm are shown in Table 7.6. Documents d001, and d004

show a decrease in performance compared to that of WordNet 2.1. Documents

d002, d003, and d005 show improvement in performance compared to that of

WordNet 2.1. The F−Measure of 81.870 on WordNet 3.0 is better than 81.446 of

WordNet 2.1.

Attempted Precision Recall F-Measure
Document 2.1 3.0 2.1 3.0 2.1 3.0 2.1 3.0
d001 100 99.7 87.500 87.193 87.500 86.957 87.500 87.075
d002 100 100 84.169 85.752 84.169 85.752 84.169 85.752
d003 100 100 77.800 79.200 77.800 79.200 77.800 79.200
d004 100 99.7 80.502 80.148 80.502 79.911 80.502 80.030
d005 100 99.7 79.130 79.651 79.130 79.420 79.130 79.536
Total 100 99.8 81.446 81.943 81.446 81.798 81.446 81.870

Table 7.6: VBCO−D−NA−TS (V=200, Rec=3, WordNet 3.0)

In this chapter we have discussed the results on WordNet 3.0 and we can clearly

see some of our approaches perform better on WordNet 3.0 than on WordNet 2.1.

In the next chapter, we explain the conclusion and future works.



Chapter 8

Conclusion

In this thesis we studied the problem of disambiguating words in a given text.

We proposed bee colony optimization to solve this problem. Virtual bees helped

in disambiguating the words based on the paths the bees traveled. Using words

in the bees’ path helps in relating the words to their context. We compared our

ensemble of algorithms to six other approaches and one baseline. We also reported

the result of WSD-BCO on the upgraded version of WordNet and compared its

results with the previous version. Voting variations of our algorithm depicted the

competitiveness of our algorithm with other approaches.

WSD-BCO uses a modification of the relatedness measure used by other ap-

proaches in order to give more importance to the context to the disambiguation

process. It also achieved on par results using a single knowledge source compared

to that of ACA-2012, which used a combination of knowledge sources. Disam-

biguating the words based on noun-adjective group, verb group, and adverb group

on their own showed greater efficiency. It is interesting to see that the approach

of splitting the data into domains and sentences has an important role in WSD.

A hybrid version of our algorithm showed a steep rise in efficiency that was better

than the most frequent sense algorithm and all the other unsupervised approaches.

For future work, we intend to use a combination of knowledge sources. This

will allow us to exploit the relationship between verbs and adverbs based on their

occurrence with each other and will help us improve the relatedness measure. In

addition, we plan to investigate the use of different relatedness measures and their

combinations in the optimization function. We also plan to exploit the hierarchy
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relation of the senses in WordNet, which where not used by us in the current

extension of the senses.



Appendix

WSD-BCO Algorithm

Input: Sequence of target words with extended senses and pick up

frequency defined

Output: Sequence of senses of the target words

numberAlternatingPhases ←− 0

initialization()

while each targetWords is visited by each bee do
forwardPhase()

numberAlternatingPhases ++

sortBees()

backwardPhase()

Algorithm 3: WSD-BCO

Input: Sequence of target words

Output: Sequence of target words with pick up frequency and their

extended senses

targetWordsPickup ←− prepareGlobalBag(targetWords)

targetWordsPickupExtendedSense ←−
prepareExtendedSense(targetWordsPickup)

hive ←− pick up any random word from targetWordsPickupExtendedSense

initiateBees(hive)
Algorithm 4: Initialization
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Input: Sequence of target words

Output: Pickup frequency for each target words

globalBag ←− null

for each targetWord in targetWordsSeq do
targetWordSenses ←− fetchSenses(targetWord,

targetWordPartsOfSpeech)

if targetWordSenses is null then
targetWordSenses ←− fetchSenses(targetWord, Adjective satellite

reference)

for each sense in targetWordSenses do
globalBag.add(senseDefinition)

globalBag.add(senseExample)

if targetWordSense pos is NOUN then
senseHypernym ←− fetchSenseHypernym(targetWordSense) for

each sense in senseHypernym do
globalBag.add(senseDefinition)

globalBag.add(senseExample)

senseAttributes ←− fetchSenseAttributes(targetWordSense)

for each sense in senseAttributes do
globalBag.add(senseDefinition)

globalBag.add(senseExample)

if targetWordSense pos is VERB then
senseHypernym ←− fetchSenseHypernym(targetWordSense) for

each sense in senseHypernym do
globalBag.add(senseDefinition)

globalBag.add(senseExample)

senseEntailments ←− fetchSenseEntailments(targetWordSense)

for each sense in synsetEntailments do
globalBag.add(senseDefinition)

globalBag.add(senseExample)

if targetWordSense pos is ADJECTIVE then
senseAttributes ←− fetchSenseAttributes(targetWordSense)

for each sense in senseAttributes do
globalBag.add(senseDefinition)

globalBag.add(senseExample)

populatePickUpFrequency( globalBag)
Algorithm 5: PrepareGlobalBag
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Input: Global Bag of words

Output: Pickup frequency for each target words

for each targetWord in targetWordsSeq do
pickUpFrequency ←− 0

if targetWord lemma in globalBag then
pickUpFrequency ++

targetWordsPickUpFrequency ←− pickUpFrequency

Algorithm 6: PopulatePickupFrequency
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Input: Sequence of target words

Output: Extended sense for each sense of the target words

for each targetWord in targetWordsSeq do
targetWordSenses ←− fetchSenses(targetWord,

targetWordPartsOfSpeech)

if targetWordSenses is null then
targetWordSenses ←− fetchSenses(targetWord, Adjective satellite

reference)

for each sense in targetWordSenses do
extendedSense ←− null

extendedSense.add(senseDefinition)

extendedSense.add(senseExample)

if targetWordSense pos is NOUN then
senseHypernym ←− fetchSenseHypernym(targetWordSense)

for each sense in senseHypernym do
extendedSense.add(senseDefinition)

extendedSense.add(senseExample)

senseAttributes ←− fetchSenseAttributes(targetWordSense)

for each sense in senseAttributes do
extendedSense.add(senseDefinition)

extendedSense.add(senseExample)

if targetWordSense pos is VERB then
senseHypernym ←− fetchSenseHypernym(targetWordSense)

for each sense in senseHypernym do
extendedSense.add(senseDefinition)

extendedSense.add(senseExample)

senseEntailments ←− fetchSenseEntailments(targetWordSense)

for each sense in synsetEntailments do
extendedSense.add(senseDefinition)

extendedSense.add(senseExample)

if targetWordSense pos is ADJECTIVE then
senseAttributes ←− fetchSenseAttributes(targetWordSense)

for each sense in senseAttributes do
extendedSense.add(senseDefinition)

extendedSense.add(senseExample)

targetExtendedSense ←− extendedSense

Algorithm 7: PrepareExtendedSense
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Input: Hive

Output: Bees

bees ←− null

hiveSenses ←− fetchSenses(hive, hivePartsOfSpeech)

if hiveSenses is null then
hiveSenses ←− fetchSenses(hive, Adjective satellite reference)

for each senses in hiveSenses do
bee ←− new bee is created

bees. add(bee)
Algorithm 8: InitiateBees

Input: Sequence of target words with extended senses and pick up

frequency defined and Bees

Output: partial Sequence of synset of some of the target words

PickedUpWord ←− null

for each bee in bees do
pickedUpWord ←− pickUpNextWord(targetWords, bee)

/* Randomly select a word from the roulette wheel prepared

based on the pickup frequency of the unvisted targetWords

of that bee */

senseScore ←− pickUpSense(pickedUpWord)

beeQuality ←− beeQuality + senseScore

beePath. add(pickedUpWord)

Algorithm 9: ForwardPhase
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Input: Picked up Word and Bee

Output: Score of sense with maximum score

pickedUpWordSenses ←− fetchSenses(pickUpNextWord,

PickUpNextWordPartsOfSpeech)

if pickedUpWordSenses is null then
pickedUpWordSenses ←− fetchSenses(pickUpNextWord, Adjective

satellite reference)

pickedUpWordSensesScores ←− 0

for each extendedSense in pickedUpWordSenses do
pickedUpWordSensesScores [extendedSense ] ←− WSDOPT(extendedSense,

bee)
return max(pickedUpWordSensesScores)

Algorithm 10: PickUpSense

Input: Extended sense and Bee

Output: Extended sense score

pathLemmas ←− null

score ←− 0

while each pathWordLemma in beePath do
pathLemmas. add(pathWordLemma)

while each lemma in pathLemmas do

if lemma exist in extendedSense then
score ++

return score
Algorithm 11: WSD-BCO Optimization function
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Input: Bees

Output: Updated Bees

sortBees(bees)

/* Sort the Bees based on their path quality */

recruiterBees ←− Top bees obtained after sorting

/* The number of recruitment bees depend on the original Size

of the Bees in the Hive */

maxBeeQuality ←− max(beesQuality)

minBeeQuality ←− min(beesQuality)

while each bee in bees do
beeNormalizedQuality ←− (beeQuality − minBeeQuality )/(maxBeeQuality

− minBeeQuality )

/* prepare recruitment roulette wheel based on the

beeNormalizedQuality for the recruiterBees */

while each bee in bees do
beesPathLoyalty ←−
e−(max(beesNormalizedQuality)− beeNormalizedQuality/ 4

√
numberAlternatingPhases)

if not checkLoyalty(beesPathLoyalty) then

/* Pick any one of the recruiter bees based on the

roulette wheel and update the path and quality of the

bee to that of the recruitment bee */

Algorithm 12: BackwardPhase
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chon, Hervé.Ant Colony Algorithm for the Unsupervised Word Sense Disam-

biguation of Texts: Comparison and Evaluation. COLING, pp. 2389-2404.

2012.
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