
The Pennsylvania State University

The Graduate School

College of Engineering

OPTIMIZATION AND HARDWARE ACCELERATION

OF CONSENSUS-BASED MATCHING AND TRACKING

A Thesis in

Computer Science and Engineering

by

Joshua S. Snyder

© 2015 Joshua S. Snyder

Submitted in Partial Fulfillment

of the Requirements

for the Degree of

Master of Science

May 2015

ii

The thesis of Joshua S. Snyder was reviewed and approved* by the following:

Vijaykrishnan Narayanan

Distinguished Professor of Computer Science and Engineering

Thesis Adviser

John Sampson

Professor of Computer Science and Engineering

Lee Coraor

Associate Professor of Computer Science and Engineering

Graduate Program Head for Computer Science and Engineering

Kevin Irick

External Research Adviser

*Signatures are on file in the Graduate School

iii

ABSTRACT

 Image and video understanding has become an increasingly valuable capability

for many emerging applications such as smart retail, intelligent surveillance, and

autonomous robotic systems. The critical barrier to enabling these applications is the

high execution latencies of complex vision tasks that make real-time system constraints

difficult, or impossible, to achieve. One specific instance of a complex vision task is

object tracking, which is the focus of this thesis. Object tracking is a necessary

component of grocery shopping assistance applications that track a grocery item and a

personôs hand and guides the hand to the item to pick it up. Although there are many

object tracking algorithms to choose from, this work investigates the performance

bottlenecks and optimizations of the Consensus-based Matching and Tracking, CMT,

algorithm. To circumvent the limitations of standard optical-flow based trackers, CMT

uses a descriptor matching step to redetect an objectôs key features that would be

permanently lost in the standard approach. This allows for an object to be hidden or

occluded from view and redetected once it reappears in the view of the camera.

 For fully autonomous systems, in which re-initialization of a failed object track

may not be possible or prohibitively costly, robustness of the tracker is of critical

importance. As such, this work introduces, an enhanced version of the CMT algorithm

that exhibits improvements in accuracy and robustness as evaluated against a

standardized benchmark. The improvement in accuracy and robustness of the enhanced

CMT comes at the cost of a significant increase in computational latency. Accordingly,

iv

this work also proposes a hybrid system that integrates high-performance custom

hardware accelerators with a traditional processor to alleviate these new performance

bottlenecks and to support real-time throughput.

v

TABLE OF CONTENTS

LIST OF FIGURES .. vii

LIST OF TABLES ... ix

ACKNOWLEDGEMENTS .. x

Chapter 1. INTRODUCTION .. 1

1.1 Image Processing and Object Tracking .. 1

1.2 FPGA Acceleration ... 2

1.3 Organization of Thesis .. 3

Chapter 2. OBJECT TRACKING.. 4

2.1 Overview of CMT ... 5

2.1.1 BRISK Keypoints and Descriptors .. 6

2.1.2 Initialization of CMT ... 6

2.1.3 Keypoint Tracking ... 8

2.1.4 Scale, Rotation, and Center Voting .. 9

2.1.5 Keypoint Matching .. 10

2.2 Improvements to CMT .. 11

2.2.1 SURF Keypoints and Descriptors .. 11

2.2.2 Adaptive Background Subtraction ... 13

2.2.3 Weighted Distance Confidences .. 15

2.3 Comparison of Tracking Algorithms .. 16

2.3.1 Evaluation Toolkit ... 16

2.3.2 Results of Evaluation Toolkit .. 17

2.4 Reasons for Choosing Enhanced CMT ... 20

2.5 Motivation to Accelerate Enhanced CMT .. 21

vi

Chapter 3. HARDWARE ARCHITECTURE ... 25

3.1 SURF... 26

3.1.1 Keypoint Detection .. 27

3.1.2 Orientation Assignment ... 28

3.1.3 Descriptor Extraction ... 29

3.1.4 Performance Metrics .. 29

3.1.5 Software Integration... 30

3.2 Descriptor Matching ... 31

3.2.1 Overview .. 31

3.2.2 Datapath Controller .. 33

3.2.3 Input Data Logic .. 35

3.2.4 Computational Logic ... 38

3.2.5 Performance Metrics .. 44

3.2.6 Integration with Software .. 46

Chapter 4. RESULTS... 48

4.1 Average Software Times for Enhanced CMT .. 48

4.2 SURF Algorithm Accelerator ... 51

4.3 Descriptor Matching Accelerator .. 53

4.4 Overall Enhanced CMT .. 57

4.5 Target Hardware Configurations .. 58

Chapter 5. CONCLUSIONS .. 61

REFERENCES ... 64

vii

LIST OF FIGURES

Figure 1. Initialization of CMT using the first frame of the sequence. Blue keypoints

(inside the ROI) are object keypoints while red keypoints (outside the ROI) are

background keypoints. .. 7

Figure 2. Calculation of anchors and springs. The anchors are red and the springs are

white. ... 8

Figure 3. Forward backward tracking example where the yellow lines are the keypoint

tracking and the red line is the error distance. .. 9

Figure 4. Example of center voting. Green springs are accurate votes for the center

while the red springs are votes considered as outliers. ... 10

Figure 5. Precision-recall graphs from eight different examples [8]. 12

Figure 6. Example of Background Subtraction. The white lines are matches from the

previous background (left) to the current background (right). All matched keypoints are

removed from consideration for object matching. .. 14

Figure 7. VOT toolkit analysis of OpenTLD, CMT (Original Algorithm), and

CMT_Adapted (Updated Algorithm) on baseline test. ... 18

Figure 8. VOT toolkit analysis output of OpenTLD, CMT_Python (Original Algorithm),

and CMT_Adapted (Updated Algorithm) on region noise test. 19

Figure 9. Pie chart of average timing percentages per frame for adapted CMT algorithm

using a frame of size 1920x1080. ... 22

Figure 10. Pie chart of average timing percentages per frame of the background

matching step for a frame size of 1920x1080. .. 23

Figure 11. High-level overview of the whole object tracking system. 25

Figure 12. High-level block diagram of the SURF accelerator. 26

viii

Figure 13. Example of integral image calculation. ... 27

Figure 14. Overview of the descriptor matcher datapath module. 32

Figure 15. Block-level design of the datapath controller. ... 33

Figure 16. Description of the 128-bit Model (Observed) Group Descriptor stored in the

Model (Observed) Group Queue. ... 34

Figure 17. Description of the Model (Observed) Descriptor stored in the Model

(Observed) Descriptor Queue. .. 35

Figure 18. Block diagram of the input logic for the matching accelerator. 36

Figure 19. High-level architecture of the overall computational logic section in the

descriptor matching datapath. ... 38

Figure 20. Architecture of the distance compute block for computing match scores. 40

Figure 21. Match Score Output Logic/Buffer for the entire matcher datapath. 43

Figure 22. Performance timing percentages for an 800x600 size frame. 49

Figure 23. Total latencies of SURF accelerator for varying frame. 52

Figure 24. Overall times for descriptor matching based on number of keypoints and the

number of engines and pipelines with maximum engine queue of 1,024 keypoints. 55

Figure 25. Overall times for descriptor matching based on number of keypoints and the

number of engines and pipelines with maximum engine queue of 2,048 keypoints. 56

Figure 26. Total latencies of descriptor matching for two different platform

configurations. .. 60

Figure 27. Image representing a video that is tracking two objects simultaneously. 62

ix

LIST OF TABLES

Table 1. Average accuracy and number of failures for the three algorithms on the

baseline test. .. 18

Table 2. Average accuracy and number of failures for the three algorithms on the region

noise test.. 19

Table 3. Average number of keypoint in the example video. ... 50

Table 4. Average times per function in milliseconds. ... 51

Table 5. Total time for tracking functions with the SURF and matching accelerators. .. 57

Table 6. The total DSP and BRAM usage amounts for the Virtex-7 690T. 59

Table 7. The total DSP and BRAM usage amounts for the Zynq 7045. 59

x

ACKNOWLEDGEMENTS

 I am very grateful to my thesis advisor, Dr. Vijaykrishnan Narayanan, for

allowing me to work in the Microsystems Design Laboratory (MDL) and providing

guidance throughout my research and thesis work. I am also greatly indebted to my

honors academic advisor, Dr. Lee Coraor, who helped me apply to the Integrated

Undergraduate/Graduate program through the Schreyer Honors College and helped

successfully guide me through each semester of my five years at Penn State.

 I would like to give a special thanks to all of my lab mates who were crucial to

my success during my time in the MDL, with special recognition to Dr. Kevin Irick and

Dr. Matthew Cotter. I have gained invaluable experience working with these two

individuals, both in hardware and in software, and I cannot thank them enough.

Lastly, I would like to thank my family and friends for all of their support and

encouragement throughout my time at Penn State and for pushing me to be the best

person I can be, whether in the classroom, lab, or in life. Without them, I would not be

where I am today.

1

CHAPTER 1

INTRODUCTION

 Processors have become increasingly powerful since their inception. The first

microprocessor, invented by Intel in 1971, featured a single in-order pipeline and

operated at a maximum clock frequency of 740 kilohertz. In comparison, modern

processors feature eight or more cores with each operating in the three to four gigahertz

range. Even with significant improvements in processor capabilities and performance,

there are many real-time constrained applications whose computational requirements far

exceed the capacity of modern processors. In the context of image and video

applications, real-time is generally defined as a system that maintains a minimum

throughput of 30 frames/second or a maximum processing latency of 33ms per input.

Object Tracking, the topic of this thesis, is one such vision task that requires real-time

operation and can exhibit higher accuracy if image frames are provided at higher than

real-time rates.

1.1 Image Processing and Object Tracking

Most complex image tasks are very computationally expensive. Working with

pixels, especially in large resolution images, requires a large amount of data to be

2

processed. A high-definition color image with a size of 1920x1080 contains about 50

million bits, where each pixel is 24 bits. Also, with most cameras recording at 30 frames

per second, the image task must process about 1.5 billion bits per second. The amount of

data needing to be processed per second is simply too large for most complex image tasks

when running on a standard processor.

The algorithm that this thesis focuses on is Consensus-based Matching and

Tracking, or CMT [1]. This algorithm is taken to be one of the leading object trackers

that is available to the public, but is optimized for processing speed and not for extreme

accuracy. This thesis will explore more accurate and robust versions of this algorithm

and compare the different versions in order to decide which version is best.

1.2 FPGA Acceleration

FPGAs, or Field Programmable Gate Arrays, allow a programmer to completely

customize a datapath within the hardware to perform specific jobs; they simulate a

processor that is built to do one job. FPGAs are being used more frequently because of

their customizability, high throughput of massively parallel processes, and the ability to

simulate a physical chip without having to print one. For the purpose of object tracking,

any part of the algorithm that can be processed in parallel can be mapped to the FPGA in

order to accelerate the process. All other parts will stay on the host processor, which will

communicate with the FPGA. This thesis will focus on several FPGA accelerators and

their architectures for specific parts of the object tracking algorithm.

3

1.3 Organization of Thesis

The remaining chapters of this thesis will be organized in the following fashion:

Chapter 2 will discuss the object tracking algorithm CMT, as well as modifications made

to CMT to increase accuracy and robustness. Chapter 3 discusses the architecture of

several hardware accelerators that will be used in this system. Chapter 4 will discuss

expected results of the accelerators in several different configurations of the system.

Finally, Chapter 5 will draw conclusions from the rest of the thesis.

4

CHAPTER 2

OBJECT TRACKING

 Previous work has tried to significantly improve object tracking, specifically for

model-free versions. Algorithms that are ñmodel-freeò are given an initial region of

interest (ROI) in the first frame of the video or camera stream and it is the job of the

tracking algorithm to determine where the object is located in subsequent frames. The

biggest advantage of model-free tracking algorithms is the ability to be used in virtually

any situation. There is no need to train the algorithm on different object models for the

specific applications before tracking when using a model-free tracker.

 Another important property of a tracking algorithm is the ability to redetect a

tracked object after it has stopped tracking it for any reason, whether leaving the field of

view or an error by the algorithm. If an object is lost while tracking, the tracker must be

able to determine where the object returns to view. Tracking algorithms that have this

property are considered long-term object trackers. Long-term object trackers are crucial

to systems that have little or no user input after initialization, such as an assistance

application for visually-impaired individuals.

 Although there have been advancements in the model-free object tracking

domain, there is still a lack of methods to deal with partial and full occlusions, noise, and

appearance changes. Some tracking algorithms use online learning methods to deal with

5

these problems, especially object appearance changes. A few of these methods are

discussed in more detail [2] [3] [4], but one tracker in particular that performs online

tracking is OpenTLD [5], which is an open-source, fast version of the original TLD

algorithm [6]. OpenTLD, where TLD stands for Tracking Learning and Detection,

employs a learning method that stores positive and negative patches of an object so that it

can more accurately track changes in its appearance. The largest drawback to online

learning is the error that it introduces throughout the video sequence. As the ROI,

produced by the algorithm, starts to slowly drift away from the object, patches will be

classified as being positive templates when they are actually negative, and the algorithm

will start learning to track an incorrect region in the frames.

 One algorithm that was developed to address these issues was CMT, or

Consensus-based Matching and Tracking [1].

2.1 Overview of CMT

 There is strong evidence that shows a combination of static and adaptive elements

will improve the robustness of a tracking algorithm [6] [7]. CMT employs a solution to

decouple the static and adaptive model elements. This algorithm decouples the elements

by modeling the appearance of the object and background on only the initial frame and

processes appearance changes by using an adaptive tracking method, which tracks

BRISK keypoints.

6

2.1.1 BRISK Keypoints and Descriptors

 A keypoint in an image is a location where the region around it is salient, or

interesting. In other words, this region stands out from the others around it. Each

keypoint contains a set of values that describe the keypoint (and the region around it),

called descriptors. There are many different types of keypoint detection and descriptor

extraction algorithms, but CMT uses BRISK [8].

 BRISK stands for Binary Robust Invariant Scalable Keypoints. This algorithm is

based upon the use of scale-space keypoint detection [8]. This method estimates the true

scale of each keypoint by using different layers of scales, going from fine to coarse, and

finds the maximum FAST score [9] from all of the layers [8]. The keypoint descriptor is

then built as a 512-bit binary string (64 descriptors, which are 8 bits each) by

concatenating the results from simple pixel brightness tests and using the orientation of

each keypoint to achieve rotation invariance [8].

2.1.2 Initialization of CMT

 Beginning with the first frame of a video sequence and an initial ROI, CMT

initializes the algorithm by first detecting all keypoints and descriptors and categorizing

them as either belonging to the object (inside the ROI) or global (all keypoints in the

image) models. Each object keypoint is given a unique class identifier, starting with one,

while all background keypoints are given a class identifier of zero, which will be used

later in keypoint matching.

7

Figure 1. Initialization of CMT using the first frame of the sequence. Blue keypoints (inside the

ROI) are object keypoints while red keypoints (outside the ROI) are background keypoints.

The keypoints in the object model will be used to calculate different values. Each

keypoint will have its distance to the center of the ROI calculated, which are called

springs. The distance from each corner of the ROI to the center is also calculated (for

simplification, all initial ROIs are axis aligned rectangles). These distances are called

anchors. Finally, the distances between keypoints and the angles between the keypoint

descriptors are calculated. The springs, anchors, inter-keypoint distances, and keypoint

descriptor angles are used to determine scale and rotation changes.

8

Figure 2. Calculation of anchors and springs. The anchors are red and the springs are white.

2.1.3 Keypoint Tracking

All keypoints in the initial ROI will be classified as active keypoints and will try

to be tracked into the next frame. CMT uses a combination Lucas-Kanade (LK) optical-

flow [10] and error thresholding to perform keypoint tracking. The LK optical-flow

algorithm searches for a location in the current frame where the keypoint from the

previous frame is found. CMT then uses the LK optical-flow in a reverse fashion and a

forward-backward error method to determine the error of the tracked keypoint [11]. If

the backward optical-flow step produces a keypoint that is above a certain distance (error

measure) from the original keypoint, then that keypoint is not tracked and is removed

from consideration. The following image shows an example of the forward-backward

keypoint tracking and error measure.

9

Figure 3. Forward backward tracking example where the yellow lines are the keypoint tracking

and the red line is the error distance.

 The above example shows that for keypoint 1, the forward-backward tracking

produces an error distance between the predicted location and the original location of the

keypoint. However, keypoint 2 is tracked back to the exact location and produces no

error.

All keypoints that are successfully tracked are set as active keypoints and will be

tracked to the next frame (if possible). The tracking step of CMT is the adaptive property

of the algorithm because it has the ability to track any keypoint, even if it is not in the

object model. Therefore, changes in the objectôs appearance can be processed by the

tracker.

2.1.4 Scale, Rotation, and Center Voting

Following the tracking step, CMT estimates the new center, scale, and rotation of

the ROI. The center of the new ROI is estimated by using the spring distances and a

voting method, where each tracked keypoint votes for the center of the ROI. The votes

10

are then clustered to form the center point [1]. The algorithm also estimates the scale and

rotation of the ROI by using the inter-keypoint distances and descriptor angles [1].

Figure 4. Example of center voting. Green springs are accurate votes for the center while the red

springs are votes considered as outliers.

2.1.5 Keypoint Matching

 The final step of CMT is the matching of keypoints. This step allows for lost

keypoints in the tracking step to be redetected and continue to be tracked. When the

object is lost all together, it can also be redetected during this step. CMT first detects all

BRISK keypoints in the current frame. Then, the keypoints are used to extract the

descriptors. These descriptors are first matched to the global model (all keypoints from

the initial frame), and, if there is a valid center estimate, all keypoints are then matched to

the object model. All matches that have been matched to a background keypoint in the

global model are not considered further. Matches to object keypoints in the model are

evaluated for their confidences and only kept if the value is over a certain confidence

11

threshold [1]. The keypoint distances are also calculated and used to check the geometric

location of the keypoints in respect to the new center [1]. All unmatched tracked

keypoints are also added to the new active keypoint list. As long as there are enough

keypoints retained from the tracking and matching steps, a new ROI is formed and the

cycle repeats with the next frame.

2.2 Improvements to CMT

 Although CMT gave good visual results when running it with different video

sequences, there were still improvements that could be made to increase the accuracy and

robustness of the algorithm. The three major improvements that were made in this work

were using SURF keypoints and descriptors instead of BRISK, adaptive background

subtraction, and weighted distance confidences from the center of the ROI. These

improvements are discussed in the following subsections.

2.2.1 SURF Keypoints and Descriptors

 One keypoint detection algorithm that can replace BRISK is SURF, or Speeded

Up Robust Features [12]. It was created to be a faster, yet comparable, algorithm than

SIFT [13], which is thought of as the most appealing algorithm in terms of accuracy and

robustness. SURF is based upon the use of a Hessian matrix and uses the determinant of

this matrix to detect and determine the location and scale of keypoints in an image [12].

Although SURF does not find the exact Hessian matrix, it uses integral images and box

filters to approximate second-order Gaussian derivatives, which are used to create the

matrix [12]. The descriptors for SURF are based upon SIFT, but with a lower

12

complexity. First, SURF fixes a circular, reproducible fixed region around a keypoint

[12]. Then a square region is constructed around the created circular region, aligned with

the selected orientation, and the descriptor is extracted from different computations inside

this region [12].

 SURF, although slower computationally in software, tends to produce more

robust keypoint and descriptors than BRISK, which is used in the original version of

CMT. According to [8], SURF does not outperform BRISK in all situations, but on

average its performance is higher than BRISK. The following graphs of precision vs.

recall, taken from [8], shows that on average, SURF outperforms BRISK.

Figure 5. Precision-recall graphs from eight different examples [8].

Because part of this work is to improve the performance of CMT, SURF can be

used instead of BRISK to make CMT a more robust and accurate object tracking

algorithm.

13

2.2.2 Adaptive Background Subtraction

 One of the largest pitfalls of CMT is the adaptability of the models. Because the

algorithm uses static global and object models that are initialized in the first frame of the

sequence, it becomes increasingly difficult to match these models as the number of

frames increase and the scene changes. Although keypoint tracking handles some of the

adaptability issues (such as a change in appearance of the object), it does not help when

trying to match keypoints. When using descriptors to match keypoints, whether it is

BRISK or SURF, the more keypoints that are trying to be matched to a model increases

the number of keypoints that are incorrectly matched due to noise. Therefore, the

objective of background subtraction is to reduce the number of keypoints being matched

to the object model by not considering keypoints that are in the background.

 Currently, CMT does two separate matching steps: it matches all of the keypoints

in the current frame to the global model and it matches all current keypoints to the object

model. The condition on the first match is if a keypoint is matched to a background

keypoint in the global model (has a class of zero), then it should not be considered

further. However, the second matching step tries to match all of the same keypoints

being matched in the first step, which contains all of the noisy background keypoints, to

only the object model.

 The problem with normal background subtraction is that it is not easy to perform

when the background is changing. If the background is guaranteed to be stationary, then

a straightforward foreground detection method can be applied. But for the intended

application of this work, the camera is not assumed to be in a fixed location. Therefore, a

14

new adaptive background model must be created to try to match and subtract background

keypoints from consideration. In this new method, a new adaptive background model is

created in each frame when the object is tracked and an ROI is produced.

Figure 6. Example of Background Subtraction. The white lines are matches from the previous

background (left) to the current background (right). All matched keypoints are removed from

consideration for object matching.

 An adaptive background model is formed by all keypoints, with descriptors, that

are outside of the current ROI, plus a small percentage buffer. The keypoint descriptors

are then used as the model for matching all observed keypoints in the next frame. A

straight-forward matching step is applied to all observed keypoints with the adaptive

background model. If a keypoint matches a model background keypoint with a high

confidence value, it is kept as a background keypoint for further processing. Otherwise,

the keypoint is kept as a possible object keypoint to later be matched to the object model.

All keypoints that are matched to the background are then run through a homography

algorithm to get rid of any outliers. The keypoint that are considered as outliers are

added to the list of possible object keypoints. This process will reduce the number of

15

keypoints trying to be matched to the object model, which in turn will increase the

accuracy of the matches. When an ROI is not produced, a new background model will

not be created and the observed keypoints will be matched to the most recent model when

the object was tracked.

2.2.3 Weighted Distance Confidences

 The last major improvement made to CMT is the way that match confidences are

calculated. Along with the normal confidence calculations, there needed to be a way to

restrain keypoints from being falsely matched to object keypoints that were a large

distance away from the ROI. One problem with CMT is that it considers all keypoints

equally when matching them against the object model. This results in many keypoints

being falsely matched. In this distance weighted confidence solution, keypoints that are

being matched to the object model are each given a weight that represents how far the

point is from the center of the ROI. This weight is calculated using a Gaussian

distribution, setting the mean value to zero (the center of the ROI) and a variance equal to

the largest distance from center to a corner of the ROI. The confidences of the matches

are then multiplied by the calculated weight. The following equation shows this step:

ὡὩὭὫὬὸὩὨ ὅέὲὪὭὨὩὲὧὩὔέὶάὥὰ ὅέὲὪὭὨὩὲὧὩὩz

In this equation, x is the Euclidean distance from the center of the ROI to the

point being considered and ů2 is the variance as defined earlier.

16

If the weighted confidence is above a certain confidence threshold value (which is

set lower than the normal confidence value), then the keypoint is kept as a valid match.

This method reduces a large amount of error and only allows the object to move a small

distance or change scales slowly in each frame.

2.3 Comparison of Tracking Algorithms

 The goal of the enhanced CMT algorithm is to improve both the accuracy and

robustness of the object tracking algorithm. With this in mind, there needs to be a way to

evaluate the different algorithms in a uniform fashion.

2.3.1 Evaluation Toolkit

For this task, an evaluation toolkit used for the Visual Object Tracking (VOT)

2014 challenge [14] was used to compare the different tracking algorithms. The

challenge provides a data set of 25 different video sequences and a MATLAB toolkit in

order to measure accuracy and robustness, along with some other values, such as camera

motion, of an object tracker. Accuracy is defined as the amount of overlap between the

ground truth ROI and the ROI produced by the tracking algorithm [15]. The more that

the tracking ROI overlaps the ground truth ROI, the higher the accuracy will be. The

robustness measure is simply the failure rate, or the amount of times there is no overlap

between the ground truth ROI and the tracker produced ROI [15].

An important note to make on the measuring of the accuracy and robustness is

that the toolkit will re-initialize the object ROI after each failure within a sequence.

Therefore, a higher number of failures will usually result in a higher accuracy. Re-

17

initialization gives the algorithm a chance to collect new information about the object as

the objectôs appearance is changing. Therefore, a decrease in the number of failures

should ultimately result in a higher overall performance of a tracker, even if it does not

show in the accuracy results.

 The toolkit runs two different tests, a baseline test and a region noise test. The

baseline test initializes the tracker with a tight ROI around the object in the first frame,

while the region noise test initializes the tracker with an imperfect ROI, which introduces

noise into the initial models. Both tests run through all of the video sequences and

reinitialize the tracker after every failure [14]. Each sequence is run several times in

order to get good results. The toolkit then outputs the different values for each sequence

and an overall average of each measured value over all of the sequences.

2.3.2 Results of Evaluation Toolkit

In order to decide which tracking algorithm is better, both the original CMT and

the enhanced CMT algorithms were run through the toolkit. Also, OpenTLD [5] was run

through the toolkit as a reference to a different type of object tracking algorithm. The

following figures and tables are the results of the different tests and show the average

values for accuracy and robustness (number of failures).

18

Figure 7. VOT toolkit analysis of OpenTLD, CMT (Original Algorithm), and CMT_Adapted

(Enhanced Algorithm) on baseline test.

Algorithm Average Accuracy Average No. of Failures

OpenTLD 0.529 8.96

CMT 0.496 7.32

CMT_Adapted 0.513 3.36

Table 1. Average accuracy and number of failures for the three algorithms on the baseline test.

 In Figure 7, the accuracy and robustness is plotted on a graph for the baseline test,

with accuracy ranging from 0 to 1 on the y-axis and robustness ranging from 0 to 1 on the

x-axis.

Table 1 is a numeric representation of the baseline test results. These values are the

averages from all 25 video sequences, where robustness is a function of the number of

failures and then normalized between 0 and 1. By visually inspecting the graph,

OpenTLD achieves the best accuracy out of the three algorithms, but has the worst

robustness. The enhanced CMT algorithm obtains the highest robustness values (by a

19

significant amount) and has the second highest accuracy of the three algorithms. More

importantly, the enhanced CMT algorithm is better in both accuracy and robustness than

the original CMT algorithm.

Figure 8. VOT toolkit analysis output of OpenTLD, CMT (Original Algorithm), and

CMT_Adapted (Enhanced Algorithm) on region noise test.

Algorithm Average Accuracy Average No. of Failures

OpenTLD 0.467 8.757

CMT 0.462 7.051

CMT_Adapted 0.482 3.539

Table 2. Average accuracy and number of failures for the three algorithms on the region noise

test.

 Figure 8 and Table 2 show the results from the region noise test performed by the

VOT toolkit. As shown, all of the accuracies of the algorithms decrease from the

baseline test, but the enhanced CMT algorithm achieves better accuracy and robustness

values that the other two algorithms. This improvement over OpenTLD is the effect of

20

using SURF keypoints instead of pixels in the random fern classifier [5]. Keypoints are

more robust and less prone to noise than a simple random pixel intensity calculation, as

done in OpenTLD. The enhanced CMT algorithm achieves better results that the original

CMT algorithm because of the three improvements outlined in Section 2.2.

2.4 Reasons for Choosing Enhanced CMT

 There are two main reasons for choosing the enhanced CMT algorithm to

continue working on. The first reason is the improvement in accuracy over the original

CMT algorithm and the large decrease in the number of failures over both CMT and

OpenTLD. As the results of the two tests shown in the previous section, the accuracy for

the enhanced CMT increased slightly over the original algorithm, although it is still

slightly below the accuracy of OpenTLD. However, the largest improvement of

enhanced CMT is the robustness. The average number of failures were cut in over half

compared to the original CMT algorithm and OpenTLD. This is important to note

because for most applications of object tracking, there will be no user intervention to re-

initialize the tracker on the object every time it fails.

 The second reason to use the enhanced CMT tracker is because it uses SURF

keypoint and descriptors, which are also used in many other vision algorithms, such as

image stabilization, object recognition, stereo correspondence, and similar object

detection. When using object tracking in a vision pipeline, it is more efficient to use

keypoints and descriptors that are already being used, rather than computing completely

different ones. For example, when trying to find and pick up an item on a grocery shelf,

the first step is to detect the item using an object recognition algorithm. Once the object

21

is found, the ROI produced can initialize the tracker and guide a personôs hand to the

item in order to pick it up. Because object recognition already uses SURF keypoints and

descriptors, there is no reason to use a different keypoint and waste resources.

2.5 Motivation to Accelerate Enhanced CMT

 One goal of CMT is to do accurate object tracking as quickly as possible. At

smaller frame sizes, such as 640x480 (the default frame size for the CMT application),

the algorithm runs at about 15-20 frames per second on an Intel Core i7 processor being

clocked at 1.6 GHz with 8 GB of RAM. However, at larger frame sizes, such as

1920x1080 with high resolution, the average frame rate of the algorithm is only about six

frames per second. The problem with processing at low frame rates is if a camera is

recording at 30 frames per second and the algorithm can only process six frames per

second, the algorithm can only process one in every five frames. This can result in larger

distances between objects in consecutive processed frames if the object, or camera, is

moving, which will decrease the accuracy of the object tracking. Therefore, the goal of

this thesis is to provide a system that can perform object tracking at as close to real-time

(30 frames per second) as possible with large, high resolution frames.

 Because the enhanced CMT algorithm uses SURF keypoints and descriptors that

are more robust than BRISK, the tracking tends to be much slower in software. The

average processing time for a 1920x1080 frame is about 1.4 seconds, which is only 0.7

frames per second. The following figure shows the breakdown of the major parts of the

enhanced CMT algorithm.

22

Figure 9. Pie chart of average timing percentages per frame for enhanced CMT algorithm using

a frame of size 1920x1080.

 As Figure 9 shows, the largest portion of enhanced CMT is spent processing

SURF keypoints and descriptors, which is 34% of the total time. Because of this large

percentage of time, the enhanced CMT algorithm would greatly benefit from a SURF

accelerator that computed both the keypoints and descriptors. The second largest portion

of the algorithm is the estimation step, which calculates the estimated center using

clustering techniques and also estimates the scale and rotation of the ROI. This step can

also be subject to acceleration. Lastly, the background and object matching steps take up

the next largest amount of time in this algorithm. Because background matching uses

almost all of the same techniques as the object matching step, these two steps can use one

23

configurable matching accelerator. Background matching takes longer than object

matching purely because there are more keypoints to be matched. The following figure

shows the breakdown off times in the background matching step, and is also

representative of the object matching step (minus the homography step).

Figure 10. Pie chart of average timing percentages per frame of the background matching step

for a frame size of 1920x1080.

 Currently, this figure shows four separate steps that are done separately in

software. When done separately, the homography algorithm, which detects outliers in a

set of keypoints, takes up the most time at 40%. Homography is the last step in

24

background matching, and is not done in object matching at all. Therefore, this can

easily be done in software after the matches are computed using the matching accelerator.

The key part of the matching steps for both the background and object models is knn-

matching (where k equals two). This, along with the ñconcate verticalò and ñother

operations/memory managementò portions of the figure, make up the core of descriptor

matching. Unfortunately, memory management (reads and writes) in software can be

expensive. If a matching accelerator can handle both the brute-force knn-matching and

the logic to determine whether or not the match is acceptable, then the software does not

have to deal with memory management issues and the whole matching step will be sped

up significantly. The next chapter will look at architectures for both the descriptor

matcher and SURF algorithm.

25

CHAPTER 3

HARDWARE ARCHITECTURE

 The goal of this work is to speed up the enhanced CMT algorithm using FPGA

accelerators to offload the more computationally intensive algorithms from software. By

doing this, the throughput of the system will greatly increase and, hopefully, will reach

real-time processing speeds. Although the whole enhanced CMT algorithm could be put

onto an FPGA, this work will only explore two algorithms to accelerate: the descriptor

matching algorithm and the SURF algorithm. Working with both software and hardware

allows the tracking algorithm to be modular, which means there can be different parts of

the enhanced CMT algorithm happening on both hardware and software with the ability

to add more hardware modules in the future.

Figure 11. High-level overview of the whole object tracking system.

26

The above figure shows the overview of the whole tracking system, where the

SURF and matching accelerators are done on an FPGA, and are connected to the CPU

that will be performing the rest of the algorithm. The following sections will give an

overview of the SURF accelerator, currently in development, and discuss, in detail, an

architecture of the descriptor matching algorithm.

3.1 SURF

 The SURF accelerator takes the current SURF algorithm that is used in OpenCV

and speeds it up to compute the keypoints and descriptors faster. There are three main

parts of this accelerator: keypoint detection, orientation assignment, and descriptor

extraction. Keypoint detection encompasses three sub-steps: integral image generator,

fast hessian filters, and keypoint localization. The following figure shows a high-level

overview of the different steps in this accelerator.

Figure 12. High-level block diagram of the SURF accelerator.

27

 The next three subsections will go into more detail about the architecture and

algorithms used SURF accelerator.

3.1.1 Keypoint Detection

 The first step in SURF keypoint detection is to calculate the integral image. The

integral image is used for the Hessian filters [12]. The calculation for the integral image

is explained in detail in [16], but the following figure shows a representation of the

calculation.

Figure 13. Example of integral image calculation.

 Calculating the integral image is simply taking the intensity values of all the

pixels within a rectangle, formed by a point and the origin, and summing them up. For

example, in Figure 13, the integral image value at Point 1 is the sum of all of the pixel

values in Rectangle A. However, if an integral image value is needed for a specific

rectangle, such as rectangle D, the value can be computed by taking the pixel value at

Point 4, adding it to the integral image value at Point 1, then subtracting both of the

integral image values at Points 2 and 3.

28

The integral image values are very useful to make the Hessian Filter step fast,

which is the next step of keypoint detection. The inputs to these filters are Gaussian

second order partial derivatives, but because the integral image was calculated, the

integral image values can be used as a good approximation of these partial derivatives

[12]. The fast Hessian block contains eight different box filters, which the values from

the integral image go through before outputting a response to the keypoint localizer. This

step is thresholded by a value determined before running the algorithm. A larger

threshold value for the Hessian responses will result in fewer keypoints produced by this

step. However, too small of a threshold means the algorithm will produce more, less

informative keypoints that will add noise for the other steps, such as matching.

 The keypoint localizer is the final step in keypoint detection. A non-maximum

suppression is applied in a certain neighborhood around each response [12]. Then, the

maximum of the determinant of the Hessian responses are interpolated in scale and image

space using a method proposed in [17].

3.1.2 Orientation Assignment

Once all of the keypoints are detected, the orientation of each keypoint is

assigned. This step is critical in order for the features to be rotation invariant. First, the

Haar-wavelet response is calculated in the x and y directions, which occurs is in a circular

region around the keypoint with a scaled radius according to the scale at which the

keypoint was found and the current scale [12]. After the wavelet responses are

calculated, each one is weighted using a Gaussian distribution from the center of the

keypoint and are represented by vectors [12]. Finally, the horizontal and vertical

29

responses are summed using a sliding orientation around the center with an angle of ˊ/3.

The maximum of the summations reveal the dominant orientation of the keypoint.

3.1.3 Descriptor Extraction

 The last step of the SURF algorithm is to extract the descriptors from each of the

keypoints. First, a square, scaled region is constructed around the keypoint, aligned in

the direction of the keypoint. Then, more Haar-wavelet responses are calculated in

smaller sub-regions of the larger square in both the vertical and horizontal directions

according to the orientation of the square region [12]. The responses are then summed up

and combined to produce a descriptor vector with length of 64.

3.1.4 Performance Metrics

 Although the SURF accelerator is currently being implemented, it is not currently

to a point where it can be fully evaluated for an exact latency time. Therefore, the

following equation is a good estimation of the total latency of the SURF algorithm.

ὛὟὙὊ ὒὥὸὩὲὧώ
Π έὪ ὴὭὼὩὰί Ὥὲ ὥὲ ὭάὥὫὩzὑ ὕz

ὅὰέὧὯ ὊὶὩήόὩὲὧώ

This equation is based on the size of an image (in pixels) because of the keypoint

detection step must go through the whole image. The factor of KL being multiplied to the

number of pixels represents the average number of cycles to compute each keypoint and

descriptor pair. In this architecture, KL is equal to 11 clock cycles. OS is the overhead

associated with memory bottlenecks. For the current implementation, the overhead is

30

about five percent of the total value, so OL is estimated to equal 1.05. This model is for

an architecture that is pipelined, but not fully streaming. The ideal case is a fully

pipelined and streaming architecture, in which case the following equation can estimate

the total latency.

ὛὟὙὊ ὒὥὸὩὲὧώ
Π έὪ ὴὭὼὩὰί Ὥὲ ὥὲ ὭάὥὫὩzὕ

ὅὰέὧὯ ὊὶὩήόὩὲὧώ

The KL factor is deleted from the equation because of the fully streaming nature

of this architecture because each cycle will produce a keypoint. The only increase in this

model equation is the overhead value, where OSideal is now estimated to equal 1.08 (an

additional three percent overhead from the first model). This streaming architecture will

make the SURF accelerator extremely fast and will be able to perform SURF keypoint

detection and descriptor extraction in greater than real-time (30+ frames per second).

3.1.5 Software Integration

 The SURF accelerator will be called upon once per frame by the CPU in order to

get all keypoints and descriptors in the entire image. When initialization occurs, the

hardware accelerator will provide the software with all of the keypoints and descriptors,

so that software can set the object and background models to the corresponding

keypoints. Every frame after initialization will use the SURF accelerator to get the

keypoints and descriptors that will be used to match against the background and object

models. Because SURF is the most time consuming process of the enhanced CMT

31

algorithm, this accelerator will produce a large speed up in the overall system and be able

to help the tracker reach real-time performance.

3.2 Descriptor Matching

 The descriptor matching algorithm tries to match observed descriptors to a set of

model descriptors and produces the two best match scores for each observed keypoint. It

then determines whether or not the best match is confident enough to be considered a true

match to a model descriptor. It does this by using a brute-force distance computation

method where each observed keypoint is given a match score to each model keypoint. A

match is considered to be a close match when the distance between the two descriptors is

close to zero. The match scores can then be used to do other calculations, such as

confidence and difference ratio between the two closest matches.

 The following subsections will introduce the descriptor matching architecture,

from a high-level overview, to more detailed descriptions of the more complex modules.

3.2.1 Overview

 The architecture for the descriptor matcher is made up of two main modules: a

controller and a datapath. The controller consists of a state machine and takes overall

controll of the matcher. The datapath is where all computations are performed. This

includes the streaming of data in and out of the module. The following figure shows a

high-level design of the datapath module.

32

Figure 14. Overview of the descriptor matcher datapath module.

 In this overview, there are three main sections: the datapath controller, input data

logic, and computational logic. The datapath controller acts like a traffic controller,

making requests for data and directing it through the datapath. The input data logic,

consisting of the observed keypoint stream, model keypoint data, and the keypoint

conversion/spreading logic, takes care of data coming into the datapath (both the

observed and model keypoints) and converts them to applicable data types before

distributing them to the different engines. Finally, the computational logic consists of the

engines where the match scores are calculated (there can be up to eight of these in a

33

datapath), and the match score output logic/buffer that takes the best score from all of the

engines in respect to an observed keypoint and buffers it until needed by an external

source.

3.2.2 Datapath Controller

 The job of the datapath controller is to request the necessary data from memory

and direct it to the correct place in the datapath. It is possible to use one controller for

each engine, but it is better to let one overall controller be in charge of the incoming data

and distribute it to each of the engines. This not only reduces the complexity of the

engines, but it also saves resources by not having to duplicate controllers in each of the

engines. The following figure is a representation of the datapath controller.

Figure 15. Block-level design of the datapath controller.

34

 Although the controller will mostly be a state machine controlling signals and

requests, there are two main sets of queues being used for the controlling of data requests.

The first set of queues are the observed and model group queues.

Figure 16. Description of the 128-bit Model (Observed) Group Descriptor stored in the Model

(Observed) Group Queue.

 Figure 16 shows the 128-bit model group descriptor. This descriptor has the same

layout as the observed group descriptor. Each group descriptor points directly to a

keypoint descriptor, show in Figure 17. The MGD base address and device ID is a

combination of bits that points to the address of the first of up to 255 model descriptors,

represented by the ñ# Modelsò field. The model (or observed) group queue will store

these descriptors in order make requests to memory for the model descriptors when

needed.

35

Figure 17. Description of the Model (Observed) Descriptor stored in the Model (Observed)

Descriptor Queue.

 The above figure is the bit layout for the model (or observed) descriptors. These

descriptors are pointed to by the group descriptors, and are set up as a list. There can be

up to 255 model descriptors per group descriptor, and each model descriptor can have up

to 4,095 keypoints associated with it, which are all stored in a list. The MD base address

and device ID fields are used to access the first keypointôs data. These descriptors are

used to make requests for individual keypointôs descriptors that will be loaded into the

different engines depending on whether they are observed or model keypoints.

3.2.3 Input Data Logic

 The input data logic includes the two keypoint data paths as well as some data

manipulations before sending the descriptors to the engines. The following figure is a

representation of this logic.

36

Figure 18. Block diagram of the input logic for the matching accelerator.

 The observed keypoint stream is a stream of descriptor data from each of the

requested keypoints from the current image, while the model keypoint data is descriptor

data coming from memory that was stored from a previous model. The descriptors will

never be loaded into the datapath at the same time, which allows the datapath to make

resource optimizations. The multiplexor shown in the above figure, controlled by the

datapath controller, selects which data is to be sent through to the rest of the input logic.

The first step is a float to fixed data converter. This simply takes the floating

point representation of the descriptor (which is used in software) and converts it to a

fixed point representation of the same value. The input to the module is 128-bits, which

is split up into two 64-bit floating point data structures. The output is a 128-bit

representation of four 32-bit fixed point data structures.

The second step of the input logic is a data width adapter. The goal of this step is

to buffer the descriptor data for each keypoint, plus 128 bits of information about the

keypoint, until all 64 descriptor dimensions at 32 bits each have been buffered. Then, the

37

output is a descriptor vector of 2,176 bits. These data structures are equivalent to one

SURF feature in software and will be used in all of the calculations for matching.

Next, the SURF feature will go through a keypoint filtering step where keypoints

are filtered out of consideration if not needed. Keypoints do not come into the datapath

in a manor where it only gets the keypoints that the datapath needs. Being able to filter

unwanted keypoints is a crucial step. For example, if wanting to only get keypoints

inside a specific ROI while a large amount of keypoints are coming into the datapath, it is

possible for the keypoint filtering step to get rid of any keypoints that are outside the

ROI.

Finally, the keypoint descriptors will be spread out to all applicable and available

engines to perform the match score calculations. Since there can be up to eight engines

in the datapath, each engine can be configured to work on different models. This can be

useful for object detection and matching when trying to match an ROI to a known model.

Different engines can also work on the same model, such as the background model, when

there are a large number of model keypoints. The keypoint spreading logic will

determine the engines that have space for descriptors (in the case of model descriptors

being loaded into engine queues) and which engines are working on which models. For

observed descriptors, each one will need to be spread to all of the engines currently

working on model descriptors because each observed keypoint must be matched to all

model keypoints.

38

3.2.4 Computational Logic

 The last step of the descriptor matching datapath is the computational logic

section, which is made up of the matching engines and match score logic. The following

figure is a high-level block diagram of this section. More detailed architectures of some

of the specific blocks will be explored in this section.

Figure 19. High-level architecture of the overall computational logic section in the descriptor

matching datapath.

 The computational portion of the data path is composed of matching engines.

There can be up to eight of these engines. Each engine is responsible for computing a

match score for each observed keypoint descriptor against all model descriptors loaded

39

into the engineôs model keypoint queue. The engine will then output the two best match

scores to the model keypoint in the engine (using the match score logic block), and pass

those to the overall datapath match score output logic/buffer block. This last step will

take the overall two best matches from the different engines and compute confidence and

ratio scores to determine whether or not the descriptor is a good match to the model

descriptor.

 There is also a configurability aspect of the datapath score output logic/buffer

block. For the background subtraction step in enhanced CMT, the accelerator must keep

track of both good and bad matches to the background model. Good matches will be

given to the homography algorithm to detect outliers and bad matches will be used for the

object matching step. So, for descriptor matching used in background subtraction, the

datapath will be configured to output both good and bad matches, but when performing

object descriptor matching, it will only be configured to output good matches.

3.2.4.1 Matching Engines

 Figure 19 shows a high-level representation of one matching engine. Within the

engine there are four main parts: model/observed logic, model keypoint queue,

computational pipelines, and match score logic. The first step is to have logic to

determine type of data is coming into the engine, either a model or observed descriptor.

The type of data will determine where it will be sent in the engine. In the case of model

descriptors, the data will be sent to the model keypoint queue. If the data is an observed

descriptor, then the descriptor will be sent to each active pipeline where match scores can

be calculated with respect to every model descriptor.

40

 Next, the model keypoint queue is a set of BRAMs that will hold all of the model

keypoints for that particular engine. Each pipeline will only compute match scores on a

subset of this queue, depending on how many pipelines are being used. The model

descriptors will be stored in the queue until all observed keypoints in an image have been

streamed through, at which point the current descriptors will be deleted from the queue

and new ones will be loaded.

 Following the model descriptor queue are the computational pipelines. These

pipelines take care of all of the distance computations. After the model keypoint queues

are populated in the engine, observed descriptors will be loaded into the distance compute

block of the pipeline. The following figure represents the architecture for the distance

compute block.

Figure 20. Architecture of the distance compute block for computing match scores.

41

 The distance compute block in the computational pipeline represents the

calculation of match scores for each observed and model keypoint pair. Because every

observed keypoint has to be matched to every model keypoint, the number of calculations

will be KO
 * K M, where KO is the number of observed keypoints and KM is the number of

model keypoints. However, these computations are spread across different pipelines and

engines, which will reduce the amount of time to calculate all matches.

 The first thing the distance compute block does is load an observed keypointôs

descriptor vector. This vector will be used for the distance calculation until all stored

model descriptors have been matched. The match score calculation follows the equation

for a Euclidean distance measure:

ὓὥὸὧὬ ὛὧέὶὩ ὕὈ ὓὈ

 Where ODi is the ith dimension of the observed descriptor vector and MDi is the ith

dimension of the model descriptor vector.

To start the pipeline, model descriptors will be fetched from the model keypoint

queue and sent to the vector difference block, which takes the difference between the

model and observed descriptors. This difference happens at each dimension of the

descriptor vector, so there are 64 32-bit subtractions happening simultaneously. As soon

as this calculation is done, the result is sent to be squared in the vector multiply block and

another model descriptor vector can be sent into the pipeline. The vector multiply block

42

takes two descriptor vectors as inputs and multiplies them together. But in this case, the

vectors will be exactly the same, so the result will produce a squaring of the difference

between the observed and model descriptors. Next, the adder tree sums up all of the

different dimensions of the squared descriptor vector. This result alone will give the L1,

or Manhattan, distance for the match score. However, to be more accurate, the square

root is taken and the resulting value is the L2, or Euclidean, distance between the two

descriptor vector. The smaller this distance is, the better the match.

Once the match score is calculated, it is placed into a match score queue, along

with the information associated with the score, such as the indices of the observed and

model keypoints being matched. The two outputs of the queues will merge into one data

structure and be sent from the distance compute block to the pipeline match table.

The pipeline match table does a quick comparison between the match scores of

each observed descriptor and outputs the two best matches from the pipeline. The same

logic used in this step will be used in the engine match score logic block. Because the

accelerator needs to returns the top two matches for each observed keypoint, each match

table logic step must output the top two scores from each observed keypoint. The engine

match score logic will output the top two match scores from each observed keypoint

across all pipelines in the engine.

3.2.4.2 Datapath Match Score Output Logic/Buffer

 Once the two best match scores for an observed keypoint have left each active

engine, the datapath must choose the best two scores from across all engines. There also

43

needs to be some post processing on these matches to determine whether or not the match

to the model is good or not. The following figure shows this logic.

Figure 21. Match Score Output Logic/Buffer for the entire matcher datapath.

 The inputs to this block are the two best scores from each of the active engines for

a particular observed keypoint. The first step is to take the top two match scores from all

inputs for a keypoint. The next step is calculating the confidence for the best match score

as well as the ratio between the matches. The confidence and ratio equations are shown

below.

ὅέὲὪὭὨὩὲὧὩρ ὄὩίὸ ὓὥὸὧὬ ὛὧέὶὩ

ὙὥὸὭέ
ὄὩίὸ ὓὥὸὧὬ ὛὧέὶὩ

ὛὩὧέὲὨ ὄὩίὸ ὓὥὸὧὬ ὛὧέὶὩ

