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ABSTRACT 

 

  Image and video understanding has become an increasingly valuable capability 

for many emerging applications such as smart retail, intelligent surveillance, and 

autonomous robotic systems.   The critical barrier to enabling these applications is the 

high execution latencies of complex vision tasks that make real-time system constraints 

difficult, or impossible, to achieve.   One specific instance of a complex vision task is 

object tracking, which is the focus of this thesis.  Object tracking is a necessary 

component of grocery shopping assistance applications that track a grocery item and a 

personôs hand and guides the hand to the item to pick it up.  Although there are many 

object tracking algorithms to choose from, this work investigates the performance 

bottlenecks and optimizations of the Consensus-based Matching and Tracking, CMT, 

algorithm.  To circumvent the limitations of standard optical-flow based trackers, CMT 

uses a descriptor matching step to redetect an objectôs key features that would be 

permanently lost in the standard approach.  This allows for an object to be hidden or 

occluded from view and redetected once it reappears in the view of the camera.   

 For fully autonomous systems, in which re-initialization of a failed object track 

may not be possible or prohibitively costly, robustness of the tracker is of critical 

importance.  As such, this work introduces, an enhanced version of the CMT algorithm 

that exhibits improvements in accuracy and robustness as evaluated against a 

standardized benchmark.  The improvement in accuracy and robustness of the enhanced 

CMT comes at the cost of a significant increase in computational latency.   Accordingly, 



iv 

this work also proposes a hybrid system that integrates high-performance custom 

hardware accelerators with a traditional processor to alleviate these new performance 

bottlenecks and to support real-time throughput. 
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CHAPTER 1 

INTRODUCTION  
 

 

 Processors have become increasingly powerful since their inception.  The first 

microprocessor, invented by Intel in 1971, featured a single in-order pipeline and 

operated at a maximum clock frequency of 740 kilohertz.  In comparison, modern 

processors feature eight or more cores with each operating in the three to four gigahertz 

range.    Even with significant improvements in processor capabilities and performance, 

there are many real-time constrained applications whose computational requirements far 

exceed the capacity of modern processors.  In the context of image and video 

applications, real-time is generally defined as a system that maintains a minimum 

throughput of 30 frames/second or a maximum processing latency of 33ms per input.  

Object Tracking, the topic of this thesis, is one such vision task that requires real-time 

operation and can exhibit higher accuracy if image frames are provided at higher than 

real-time rates.   

  

1.1 Image Processing and Object Tracking 

Most complex image tasks are very computationally expensive.  Working with 

pixels, especially in large resolution images, requires a large amount of data to be 
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processed.  A high-definition color image with a size of 1920x1080 contains about 50 

million bits, where each pixel is 24 bits.  Also, with most cameras recording at 30 frames 

per second, the image task must process about 1.5 billion bits per second.  The amount of 

data needing to be processed per second is simply too large for most complex image tasks 

when running on a standard processor.  

The algorithm that this thesis focuses on is Consensus-based Matching and 

Tracking, or CMT [1].  This algorithm is taken to be one of the leading object trackers 

that is available to the public, but is optimized for processing speed and not for extreme 

accuracy.  This thesis will explore more accurate and robust versions of this algorithm 

and compare the different versions in order to decide which version is best. 

 

1.2 FPGA Acceleration 

FPGAs, or Field Programmable Gate Arrays, allow a programmer to completely 

customize a datapath within the hardware to perform specific jobs; they simulate a 

processor that is built to do one job.  FPGAs are being used more frequently because of 

their customizability, high throughput of massively parallel processes, and the ability to 

simulate a physical chip without having to print one.  For the purpose of object tracking, 

any part of the algorithm that can be processed in parallel can be mapped to the FPGA in 

order to accelerate the process.  All other parts will stay on the host processor, which will 

communicate with the FPGA.  This thesis will focus on several FPGA accelerators and 

their architectures for specific parts of the object tracking algorithm.   
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1.3 Organization of Thesis 

The remaining chapters of this thesis will be organized in the following fashion:  

Chapter 2 will discuss the object tracking algorithm CMT, as well as modifications made 

to CMT to increase accuracy and robustness.  Chapter 3 discusses the architecture of 

several hardware accelerators that will be used in this system.  Chapter 4 will discuss 

expected results of the accelerators in several different configurations of the system.  

Finally, Chapter 5 will draw conclusions from the rest of the thesis. 
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CHAPTER 2 

OBJECT TRACKING  
 

 

 Previous work has tried to significantly improve object tracking, specifically for 

model-free versions.  Algorithms that are ñmodel-freeò are given an initial region of 

interest (ROI) in the first frame of the video or camera stream and it is the job of the 

tracking algorithm to determine where the object is located in subsequent frames.  The 

biggest advantage of model-free tracking algorithms is the ability to be used in virtually 

any situation.  There is no need to train the algorithm on different object models for the 

specific applications before tracking when using a model-free tracker.   

 Another important property of a tracking algorithm is the ability to redetect a 

tracked object after it has stopped tracking it for any reason, whether leaving the field of 

view or an error by the algorithm.  If an object is lost while tracking, the tracker must be 

able to determine where the object returns to view.  Tracking algorithms that have this 

property are considered long-term object trackers.  Long-term object trackers are crucial 

to systems that have little or no user input after initialization, such as an assistance 

application for visually-impaired individuals. 

 Although there have been advancements in the model-free object tracking 

domain, there is still a lack of methods to deal with partial and full occlusions, noise, and 

appearance changes.  Some tracking algorithms use online learning methods to deal with 
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these problems, especially object appearance changes.  A few of these methods are 

discussed in more detail [2] [3] [4], but one tracker in particular that performs online 

tracking is OpenTLD [5], which is an open-source, fast version of the original TLD 

algorithm [6].  OpenTLD, where TLD stands for Tracking Learning and Detection, 

employs a learning method that stores positive and negative patches of an object so that it 

can more accurately track changes in its appearance.  The largest drawback to online 

learning is the error that it introduces throughout the video sequence.  As the ROI, 

produced by the algorithm, starts to slowly drift away from the object, patches will be 

classified as being positive templates when they are actually negative, and the algorithm 

will start learning to track an incorrect region in the frames.   

 One algorithm that was developed to address these issues was CMT, or 

Consensus-based Matching and Tracking [1].   

 

2.1 Overview of CMT 

 There is strong evidence that shows a combination of static and adaptive elements 

will improve the robustness of a tracking algorithm [6] [7].  CMT employs a solution to 

decouple the static and adaptive model elements.  This algorithm decouples the elements 

by modeling the appearance of the object and background on only the initial frame and 

processes appearance changes by using an adaptive tracking method, which tracks 

BRISK keypoints. 
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2.1.1 BRISK Keypoints and Descriptors 

 A keypoint in an image is a location where the region around it is salient, or 

interesting.  In other words, this region stands out from the others around it.  Each 

keypoint contains a set of values that describe the keypoint (and the region around it), 

called descriptors.  There are many different types of keypoint detection and descriptor 

extraction algorithms, but CMT uses BRISK [8]. 

 BRISK stands for Binary Robust Invariant Scalable Keypoints.  This algorithm is 

based upon the use of scale-space keypoint detection [8].  This method estimates the true 

scale of each keypoint by using different layers of scales, going from fine to coarse, and 

finds the maximum FAST score [9] from all of the layers [8].  The keypoint descriptor is 

then built as a 512-bit binary string (64 descriptors, which are 8 bits each) by 

concatenating the results from simple pixel brightness tests and using the orientation of 

each keypoint to achieve rotation invariance [8].   

 

2.1.2 Initialization of CMT 

 Beginning with the first frame of a video sequence and an initial ROI, CMT 

initializes the algorithm by first detecting all keypoints and descriptors and categorizing 

them as either belonging to the object (inside the ROI) or global (all keypoints in the 

image) models.  Each object keypoint is given a unique class identifier, starting with one, 

while all background keypoints are given a class identifier of zero, which will be used 

later in keypoint matching. 
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Figure 1.  Initialization of CMT using the first frame of the sequence.  Blue keypoints (inside the 

ROI) are object keypoints while red keypoints (outside the ROI) are background keypoints. 

 

The keypoints in the object model will  be used to calculate different values.  Each 

keypoint will have its distance to the center of the ROI calculated, which are called 

springs.  The distance from each corner of the ROI to the center is also calculated (for 

simplification, all initial ROIs are axis aligned rectangles).  These distances are called 

anchors.  Finally, the distances between keypoints and the angles between the keypoint 

descriptors are calculated.  The springs, anchors, inter-keypoint distances, and keypoint 

descriptor angles are used to determine scale and rotation changes.   
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Figure 2.  Calculation of anchors and springs.  The anchors are red and the springs are white. 

 

2.1.3 Keypoint Tracking 

All keypoints in the initial ROI will be classified as active keypoints and will try 

to be tracked into the next frame.  CMT uses a combination Lucas-Kanade (LK) optical-

flow [10] and error thresholding to perform keypoint tracking.  The LK optical-flow 

algorithm searches for a location in the current frame where the keypoint from the 

previous frame is found.  CMT then uses the LK optical-flow in a reverse fashion and a 

forward-backward error method to determine the error of the tracked keypoint [11].  If 

the backward optical-flow step produces a keypoint that is above a certain distance (error 

measure) from the original keypoint, then that keypoint is not tracked and is removed 

from consideration.  The following image shows an example of the forward-backward 

keypoint tracking and error measure. 
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Figure 3.  Forward backward tracking example where the yellow lines are the keypoint tracking 

and the red line is the error distance. 

 

 The above example shows that for keypoint 1, the forward-backward tracking 

produces an error distance between the predicted location and the original location of the 

keypoint.  However, keypoint 2 is tracked back to the exact location and produces no 

error. 

All keypoints that are successfully tracked are set as active keypoints and will be 

tracked to the next frame (if possible).  The tracking step of CMT is the adaptive property 

of the algorithm because it has the ability to track any keypoint, even if it is not in the 

object model.  Therefore, changes in the objectôs appearance can be processed by the 

tracker. 

 

2.1.4 Scale, Rotation, and Center Voting 

Following the tracking step, CMT estimates the new center, scale, and rotation of 

the ROI.  The center of the new ROI is estimated by using the spring distances and a 

voting method, where each tracked keypoint votes for the center of the ROI.  The votes 
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are then clustered to form the center point [1].  The algorithm also estimates the scale and 

rotation of the ROI by using the inter-keypoint distances and descriptor angles [1]. 

 

 

Figure 4.  Example of center voting.  Green springs are accurate votes for the center while the red 

springs are votes considered as outliers. 

 

2.1.5 Keypoint Matching 

 The final step of CMT is the matching of keypoints.  This step allows for lost 

keypoints in the tracking step to be redetected and continue to be tracked.  When the 

object is lost all together, it can also be redetected during this step.  CMT first detects all 

BRISK keypoints in the current frame.  Then, the keypoints are used to extract the 

descriptors.  These descriptors are first matched to the global model (all keypoints from 

the initial frame), and, if there is a valid center estimate, all keypoints are then matched to 

the object model. All matches that have been matched to a background keypoint in the 

global model are not considered further.  Matches to object keypoints in the model are 

evaluated for their confidences and only kept if the value is over a certain confidence 
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threshold [1].  The keypoint distances are also calculated and used to check the geometric 

location of the keypoints in respect to the new center [1].  All unmatched tracked 

keypoints are also added to the new active keypoint list.  As long as there are enough 

keypoints retained from the tracking and matching steps, a new ROI is formed and the 

cycle repeats with the next frame. 

 

2.2 Improvements to CMT 

 Although CMT gave good visual results when running it with different video 

sequences, there were still improvements that could be made to increase the accuracy and 

robustness of the algorithm.  The three major improvements that were made in this work 

were using SURF keypoints and descriptors instead of BRISK, adaptive background 

subtraction, and weighted distance confidences from the center of the ROI.  These 

improvements are discussed in the following subsections. 

 

2.2.1 SURF Keypoints and Descriptors 

 One keypoint detection algorithm that can replace BRISK is SURF, or Speeded 

Up Robust Features [12].  It was created to be a faster, yet comparable, algorithm than 

SIFT [13], which is thought of as the most appealing algorithm in terms of accuracy and 

robustness.  SURF is based upon the use of a Hessian matrix and uses the determinant of 

this matrix to detect and determine the location and scale of keypoints in an image [12].  

Although SURF does not find the exact Hessian matrix, it uses integral images and box 

filters to approximate second-order Gaussian derivatives, which are used to create the 

matrix [12].  The descriptors for SURF are based upon SIFT, but with a lower 
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complexity.  First, SURF fixes a circular, reproducible fixed region around a keypoint 

[12].  Then a square region is constructed around the created circular region, aligned with 

the selected orientation, and the descriptor is extracted from different computations inside 

this region [12]. 

 SURF, although slower computationally in software, tends to produce more 

robust keypoint and descriptors than BRISK, which is used in the original version of 

CMT.  According to [8], SURF does not outperform BRISK in all situations, but on 

average its performance is higher than BRISK.  The following graphs of precision vs. 

recall, taken from [8], shows that on average, SURF outperforms BRISK. 

 

  

Figure 5.  Precision-recall graphs from eight different examples [8]. 

 

Because part of this work is to improve the performance of CMT, SURF can be 

used instead of BRISK to make CMT a more robust and accurate object tracking 

algorithm.   
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2.2.2 Adaptive Background Subtraction 

 One of the largest pitfalls of CMT is the adaptability of the models.  Because the 

algorithm uses static global and object models that are initialized in the first frame of the 

sequence, it becomes increasingly difficult to match these models as the number of 

frames increase and the scene changes.  Although keypoint tracking handles some of the 

adaptability issues (such as a change in appearance of the object), it does not help when 

trying to match keypoints.  When using descriptors to match keypoints, whether it is 

BRISK or SURF, the more keypoints that are trying to be matched to a model increases 

the number of keypoints that are incorrectly matched due to noise.  Therefore, the 

objective of background subtraction is to reduce the number of keypoints being matched 

to the object model by not considering keypoints that are in the background.  

 Currently, CMT does two separate matching steps:  it matches all of the keypoints 

in the current frame to the global model and it matches all current keypoints to the object 

model.  The condition on the first match is if  a keypoint is matched to a background 

keypoint in the global model (has a class of zero), then it should not be considered 

further.  However, the second matching step tries to match all of the same keypoints 

being matched in the first step, which contains all of the noisy background keypoints, to 

only the object model.   

 The problem with normal background subtraction is that it is not easy to perform 

when the background is changing.  If the background is guaranteed to be stationary, then 

a straightforward foreground detection method can be applied.  But for the intended 

application of this work, the camera is not assumed to be in a fixed location.  Therefore, a 
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new adaptive background model must be created to try to match and subtract background 

keypoints from consideration.  In this new method, a new adaptive background model is 

created in each frame when the object is tracked and an ROI is produced.   

 

 

Figure 6.  Example of Background Subtraction.  The white lines are matches from the previous 

background (left) to the current background (right).  All matched keypoints are removed from 

consideration for object matching. 

 

 An adaptive background model is formed by all keypoints, with descriptors, that 

are outside of the current ROI, plus a small percentage buffer.  The keypoint descriptors 

are then used as the model for matching all observed keypoints in the next frame.  A 

straight-forward matching step is applied to all observed keypoints with the adaptive 

background model.  If a keypoint matches a model background keypoint with a high 

confidence value, it is kept as a background keypoint for further processing.  Otherwise, 

the keypoint is kept as a possible object keypoint to later be matched to the object model.  

All keypoints that are matched to the background are then run through a homography 

algorithm to get rid of any outliers.  The keypoint that are considered as outliers are 

added to the list of possible object keypoints.  This process will reduce the number of 
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keypoints trying to be matched to the object model, which in turn will increase the 

accuracy of the matches.  When an ROI is not produced, a new background model will 

not be created and the observed keypoints will be matched to the most recent model when 

the object was tracked.   

 

2.2.3 Weighted Distance Confidences 

 The last major improvement made to CMT is the way that match confidences are 

calculated.  Along with the normal confidence calculations, there needed to be a way to 

restrain keypoints from being falsely matched to object keypoints that were a large 

distance away from the ROI.  One problem with CMT is that it considers all keypoints 

equally when matching them against the object model.  This results in many keypoints 

being falsely matched.  In this distance weighted confidence solution, keypoints that are 

being matched to the object model are each given a weight that represents how far the 

point is from the center of the ROI.  This weight is calculated using a Gaussian 

distribution, setting the mean value to zero (the center of the ROI) and a variance equal to 

the largest distance from center to a corner of the ROI.  The confidences of the matches 

are then multiplied by the calculated weight.  The following equation shows this step: 

 

ὡὩὭὫὬὸὩὨ ὅέὲὪὭὨὩὲὧὩὔέὶάὥὰ ὅέὲὪὭὨὩὲὧὩὩz
 

 

 

In this equation, x is the Euclidean distance from the center of the ROI to the 

point being considered and ů2 is the variance as defined earlier. 
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If the weighted confidence is above a certain confidence threshold value (which is 

set lower than the normal confidence value), then the keypoint is kept as a valid match.  

This method reduces a large amount of error and only allows the object to move a small 

distance or change scales slowly in each frame. 

 

2.3 Comparison of Tracking Algorithms 

 The goal of the enhanced CMT algorithm is to improve both the accuracy and 

robustness of the object tracking algorithm.  With this in mind, there needs to be a way to 

evaluate the different algorithms in a uniform fashion.   

 

2.3.1 Evaluation Toolkit 

For this task, an evaluation toolkit used for the Visual Object Tracking (VOT) 

2014 challenge [14] was used to compare the different tracking algorithms.  The 

challenge provides a data set of 25 different video sequences and a MATLAB  toolkit in 

order to measure accuracy and robustness, along with some other values, such as camera 

motion, of an object tracker.  Accuracy is defined as the amount of overlap between the 

ground truth ROI and the ROI produced by the tracking algorithm [15].  The more that 

the tracking ROI overlaps the ground truth ROI, the higher the accuracy will be.  The 

robustness measure is simply the failure rate, or the amount of times there is no overlap 

between the ground truth ROI and the tracker produced ROI [15].   

An important note to make on the measuring of the accuracy and robustness is 

that the toolkit will re-initialize the object ROI after each failure within a sequence.  

Therefore, a higher number of failures will usually result in a higher accuracy.  Re-
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initialization gives the algorithm a chance to collect new information about the object as 

the objectôs appearance is changing.  Therefore, a decrease in the number of failures 

should ultimately result in a higher overall performance of a tracker, even if it does not 

show in the accuracy results. 

 The toolkit runs two different tests, a baseline test and a region noise test.  The 

baseline test initializes the tracker with a tight ROI around the object in the first frame, 

while the region noise test initializes the tracker with an imperfect ROI, which introduces 

noise into the initial models.  Both tests run through all of the video sequences and 

reinitialize the tracker after every failure [14].  Each sequence is run several times in 

order to get good results.  The toolkit then outputs the different values for each sequence 

and an overall average of each measured value over all of the sequences.  

 

2.3.2 Results of Evaluation Toolkit 

In order to decide which tracking algorithm is better, both the original CMT and 

the enhanced CMT algorithms were run through the toolkit.  Also, OpenTLD [5] was run 

through the toolkit as a reference to a different type of object tracking algorithm.  The 

following figures and tables are the results of the different tests and show the average 

values for accuracy and robustness (number of failures). 
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Figure 7.  VOT toolkit analysis of OpenTLD, CMT (Original Algorithm), and CMT_Adapted 

(Enhanced Algorithm) on baseline test. 

 

Algorithm  Average Accuracy Average No. of Failures 

OpenTLD 0.529 8.96 

CMT 0.496 7.32 

CMT_Adapted 0.513 3.36 
 

Table 1.  Average accuracy and number of failures for the three algorithms on the baseline test. 

 

 In Figure 7, the accuracy and robustness is plotted on a graph for the baseline test, 

with accuracy ranging from 0 to 1 on the y-axis and robustness ranging from 0 to 1 on the 

x-axis.   

Table 1 is a numeric representation of the baseline test results.  These values are the 

averages from all 25 video sequences, where robustness is a function of the number of 

failures and then normalized between 0 and 1.  By visually inspecting the graph, 

OpenTLD achieves the best accuracy out of the three algorithms, but has the worst 

robustness.  The enhanced CMT algorithm obtains the highest robustness values (by a 
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significant amount) and has the second highest accuracy of the three algorithms.  More 

importantly, the enhanced CMT algorithm is better in both accuracy and robustness than 

the original CMT algorithm.     

 

 

Figure 8. VOT toolkit analysis output of OpenTLD, CMT (Original Algorithm), and 

CMT_Adapted (Enhanced Algorithm) on region noise test. 

 

Algorithm  Average Accuracy Average No. of Failures 

OpenTLD 0.467 8.757 

CMT 0.462 7.051 

CMT_Adapted 0.482 3.539 
 

Table 2.  Average accuracy and number of failures for the three algorithms on the region noise 

test. 

 

 Figure 8 and Table 2 show the results from the region noise test performed by the 

VOT toolkit.  As shown, all of the accuracies of the algorithms decrease from the 

baseline test, but the enhanced CMT algorithm achieves better accuracy and robustness 

values that the other two algorithms.  This improvement over OpenTLD is the effect of 
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using SURF keypoints instead of pixels in the random fern classifier [5].  Keypoints are 

more robust and less prone to noise than a simple random pixel intensity calculation, as 

done in OpenTLD.  The enhanced CMT algorithm achieves better results that the original 

CMT algorithm because of the three improvements outlined in Section 2.2.    

 

2.4 Reasons for Choosing Enhanced CMT  

 There are two main reasons for choosing the enhanced CMT algorithm to 

continue working on.  The first reason is the improvement in accuracy over the original 

CMT algorithm and the large decrease in the number of failures over both CMT and 

OpenTLD.  As the results of the two tests shown in the previous section, the accuracy for 

the enhanced CMT increased slightly over the original algorithm, although it is still 

slightly below the accuracy of OpenTLD.  However, the largest improvement of 

enhanced CMT is the robustness.  The average number of failures were cut in over half 

compared to the original CMT algorithm and OpenTLD.  This is important to note 

because for most applications of object tracking, there will be no user intervention to re-

initialize the tracker on the object every time it fails.   

 The second reason to use the enhanced CMT tracker is because it uses SURF 

keypoint and descriptors, which are also used in many other vision algorithms, such as 

image stabilization, object recognition, stereo correspondence, and similar object 

detection.  When using object tracking in a vision pipeline, it is more efficient to use 

keypoints and descriptors that are already being used, rather than computing completely 

different ones.  For example, when trying to find and pick up an item on a grocery shelf, 

the first step is to detect the item using an object recognition algorithm.  Once the object 
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is found, the ROI produced can initialize the tracker and guide a personôs hand to the 

item in order to pick it up.  Because object recognition already uses SURF keypoints and 

descriptors, there is no reason to use a different keypoint and waste resources. 

 

2.5 Motivation to Accelerate Enhanced CMT  

 One goal of CMT is to do accurate object tracking as quickly as possible.  At 

smaller frame sizes, such as 640x480 (the default frame size for the CMT application), 

the algorithm runs at about 15-20 frames per second on an Intel Core i7 processor being 

clocked at 1.6 GHz with 8 GB of RAM.  However, at larger frame sizes, such as 

1920x1080 with high resolution, the average frame rate of the algorithm is only about six 

frames per second.  The problem with processing at low frame rates is if a camera is 

recording at 30 frames per second and the algorithm can only process six frames per 

second, the algorithm can only process one in every five frames.  This can result in larger 

distances between objects in consecutive processed frames if the object, or camera, is 

moving, which will decrease the accuracy of the object tracking.  Therefore, the goal of 

this thesis is to provide a system that can perform object tracking at as close to real-time 

(30 frames per second) as possible with large, high resolution frames.  

 Because the enhanced CMT algorithm uses SURF keypoints and descriptors that 

are more robust than BRISK, the tracking tends to be much slower in software.  The 

average processing time for a 1920x1080 frame is about 1.4 seconds, which is only 0.7 

frames per second.  The following figure shows the breakdown of the major parts of the 

enhanced CMT algorithm. 
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Figure 9.  Pie chart of average timing percentages per frame for enhanced CMT algorithm using 

a frame of size 1920x1080. 

 

 As Figure 9 shows, the largest portion of enhanced CMT is spent processing 

SURF keypoints and descriptors, which is 34% of the total time.  Because of this large 

percentage of time, the enhanced CMT algorithm would greatly benefit from a SURF 

accelerator that computed both the keypoints and descriptors.  The second largest portion 

of the algorithm is the estimation step, which calculates the estimated center using 

clustering techniques and also estimates the scale and rotation of the ROI.  This step can 

also be subject to acceleration.  Lastly, the background and object matching steps take up 

the next largest amount of time in this algorithm.  Because background matching uses 

almost all of the same techniques as the object matching step, these two steps can use one 



23 

configurable matching accelerator.  Background matching takes longer than object 

matching purely because there are more keypoints to be matched.  The following figure 

shows the breakdown off times in the background matching step, and is also 

representative of the object matching step (minus the homography step). 

 

 

Figure 10.  Pie chart of average timing percentages per frame of the background matching step 

for a frame size of 1920x1080. 

 

 Currently, this figure shows four separate steps that are done separately in 

software.  When done separately, the homography algorithm, which detects outliers in a 

set of keypoints, takes up the most time at 40%.  Homography is the last step in 
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background matching, and is not done in object matching at all.  Therefore, this can 

easily be done in software after the matches are computed using the matching accelerator.  

The key part of the matching steps for both the background and object models is knn-

matching (where k equals two).  This, along with the ñconcate verticalò and ñother 

operations/memory managementò portions of the figure, make up the core of descriptor 

matching.  Unfortunately, memory management (reads and writes) in software can be 

expensive.  If a matching accelerator can handle both the brute-force knn-matching and 

the logic to determine whether or not the match is acceptable, then the software does not 

have to deal with memory management issues and the whole matching step will be sped 

up significantly.  The next chapter will look at architectures for both the descriptor 

matcher and SURF algorithm.  
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CHAPTER 3 

HARDWARE ARCHITECTURE  
 

 

 The goal of this work is to speed up the enhanced CMT algorithm using FPGA 

accelerators to offload the more computationally intensive algorithms from software.  By 

doing this, the throughput of the system will greatly increase and, hopefully, will reach 

real-time processing speeds.  Although the whole enhanced CMT algorithm could be put 

onto an FPGA, this work will only explore two algorithms to accelerate:  the descriptor 

matching algorithm and the SURF algorithm.  Working with both software and hardware 

allows the tracking algorithm to be modular, which means there can be different parts of 

the enhanced CMT algorithm happening on both hardware and software with the ability 

to add more hardware modules in the future. 

 

 

Figure 11.  High-level overview of the whole object tracking system. 
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The above figure shows the overview of the whole tracking system, where the 

SURF and matching accelerators are done on an FPGA, and are connected to the CPU 

that will be performing the rest of the algorithm.  The following sections will give an 

overview of the SURF accelerator, currently in development, and discuss, in detail, an 

architecture of the descriptor matching algorithm. 

 

3.1 SURF 

 The SURF accelerator takes the current SURF algorithm that is used in OpenCV 

and speeds it up to compute the keypoints and descriptors faster.  There are three main 

parts of this accelerator:  keypoint detection, orientation assignment, and descriptor 

extraction.  Keypoint detection encompasses three sub-steps:  integral image generator, 

fast hessian filters, and keypoint localization.  The following figure shows a high-level 

overview of the different steps in this accelerator. 

 

 

Figure 12.  High-level block diagram of the SURF accelerator. 
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 The next three subsections will go into more detail about the architecture and 

algorithms used SURF accelerator. 

 

3.1.1 Keypoint Detection 

 The first step in SURF keypoint detection is to calculate the integral image.  The 

integral image is used for the Hessian filters [12].  The calculation for the integral image 

is explained in detail in [16], but the following figure shows a representation of the 

calculation. 

 

Figure 13.  Example of integral image calculation. 

 

 Calculating the integral image is simply taking the intensity values of all the 

pixels within a rectangle, formed by a point and the origin, and summing them up.  For 

example, in Figure 13, the integral image value at Point 1 is the sum of all of the pixel 

values in Rectangle A.  However, if an integral image value is needed for a specific 

rectangle, such as rectangle D, the value can be computed by taking the pixel value at 

Point 4, adding it to the integral image value at Point 1, then subtracting both of the 

integral image values at Points 2 and 3.   



28 

The integral image values are very useful to make the Hessian Filter step fast, 

which is the next step of keypoint detection.  The inputs to these filters are Gaussian 

second order partial derivatives, but because the integral image was calculated, the 

integral image values can be used as a good approximation of these partial derivatives 

[12].  The fast Hessian block contains eight different box filters, which the values from 

the integral image go through before outputting a response to the keypoint localizer.  This 

step is thresholded by a value determined before running the algorithm.  A larger 

threshold value for the Hessian responses will result in fewer keypoints produced by this 

step. However, too small of a threshold means the algorithm will produce more, less 

informative keypoints that will add noise for the other steps, such as matching. 

   The keypoint localizer is the final step in keypoint detection.  A non-maximum 

suppression is applied in a certain neighborhood around each response [12].  Then, the 

maximum of the determinant of the Hessian responses are interpolated in scale and image 

space using a method proposed in [17]. 

 

3.1.2 Orientation Assignment 

Once all of the keypoints are detected, the orientation of each keypoint is 

assigned.  This step is critical in order for the features to be rotation invariant.  First, the 

Haar-wavelet response is calculated in the x and y directions, which occurs is in a circular 

region around the keypoint with a scaled radius according to the scale at which the 

keypoint was found and the current scale [12].  After the wavelet responses are 

calculated, each one is weighted using a Gaussian distribution from the center of the 

keypoint and are represented by vectors [12].  Finally, the horizontal and vertical 
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responses are summed using a sliding orientation around the center with an angle of ˊ/3.  

The maximum of the summations reveal the dominant orientation of the keypoint. 

 

3.1.3 Descriptor Extraction 

 The last step of the SURF algorithm is to extract the descriptors from each of the 

keypoints.  First, a square, scaled region is constructed around the keypoint, aligned in 

the direction of the keypoint.  Then, more Haar-wavelet responses are calculated in 

smaller sub-regions of the larger square in both the vertical and horizontal directions 

according to the orientation of the square region [12].  The responses are then summed up 

and combined to produce a descriptor vector with length of 64.   

 

3.1.4 Performance Metrics 

 Although the SURF accelerator is currently being implemented, it is not currently 

to a point where it can be fully evaluated for an exact latency time.  Therefore, the 

following equation is a good estimation of the total latency of the SURF algorithm. 

 

ὛὟὙὊ ὒὥὸὩὲὧώ
Π έὪ ὴὭὼὩὰί Ὥὲ ὥὲ ὭάὥὫὩzὑ ὕz

ὅὰέὧὯ ὊὶὩήόὩὲὧώ
 

  

This equation is based on the size of an image (in pixels) because of the keypoint 

detection step must go through the whole image.  The factor of KL being multiplied to the 

number of pixels represents the average number of cycles to compute each keypoint and 

descriptor pair.  In this architecture, KL is equal to 11 clock cycles.  OS is the overhead 

associated with memory bottlenecks.  For the current implementation, the overhead is 
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about five percent of the total value, so OL is estimated to equal 1.05.  This model is for 

an architecture that is pipelined, but not fully streaming.  The ideal case is a fully 

pipelined and streaming architecture, in which case the following equation can estimate 

the total latency. 

 

ὛὟὙὊ ὒὥὸὩὲὧώ
Π έὪ ὴὭὼὩὰί Ὥὲ ὥὲ ὭάὥὫὩzὕ

ὅὰέὧὯ ὊὶὩήόὩὲὧώ
  

  

The KL factor is deleted from the equation because of the fully streaming nature 

of this architecture because each cycle will produce a keypoint.  The only increase in this 

model equation is the overhead value, where OSideal is now estimated to equal 1.08 (an 

additional three percent overhead from the first model).  This streaming architecture will 

make the SURF accelerator extremely fast and will be able to perform SURF keypoint 

detection and descriptor extraction in greater than real-time (30+ frames per second). 

 

3.1.5 Software Integration 

 The SURF accelerator will be called upon once per frame by the CPU in order to 

get all keypoints and descriptors in the entire image.  When initialization occurs, the 

hardware accelerator will provide the software with all of the keypoints and descriptors, 

so that software can set the object and background models to the corresponding 

keypoints.  Every frame after initialization will use the SURF accelerator to get the 

keypoints and descriptors that will be used to match against the background and object 

models.  Because SURF is the most time consuming process of the enhanced CMT 
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algorithm, this accelerator will produce a large speed up in the overall system and be able 

to help the tracker reach real-time performance. 

 

3.2 Descriptor Matching 

 The descriptor matching algorithm tries to match observed descriptors to a set of 

model descriptors and produces the two best match scores for each observed keypoint.  It 

then determines whether or not the best match is confident enough to be considered a true 

match to a model descriptor.  It does this by using a brute-force distance computation 

method where each observed keypoint is given a match score to each model keypoint.  A 

match is considered to be a close match when the distance between the two descriptors is 

close to zero.  The match scores can then be used to do other calculations, such as 

confidence and difference ratio between the two closest matches. 

 The following subsections will introduce the descriptor matching architecture, 

from a high-level overview, to more detailed descriptions of the more complex modules. 

 

3.2.1 Overview 

 The architecture for the descriptor matcher is made up of two main modules:  a 

controller and a datapath.  The controller consists of a state machine and takes overall 

controll of the matcher.  The datapath is where all computations are performed.  This 

includes the streaming of data in and out of the module.  The following figure shows a 

high-level design of the datapath module.   
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Figure 14.  Overview of the descriptor matcher datapath module. 

 

 In this overview, there are three main sections:  the datapath controller, input data 

logic, and computational logic.  The datapath controller acts like a traffic controller, 

making requests for data and directing it through the datapath.  The input data logic, 

consisting of the observed keypoint stream, model keypoint data, and the keypoint 

conversion/spreading logic, takes care of data coming into the datapath (both the 

observed and model keypoints) and converts them to applicable data types before 

distributing them to the different engines.  Finally, the computational logic consists of the 

engines where the match scores are calculated (there can be up to eight of these in a 
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datapath), and the match score output logic/buffer that takes the best score from all of the 

engines in respect to an observed keypoint and buffers it until needed by an external 

source.   

 

3.2.2 Datapath Controller 

 The job of the datapath controller is to request the necessary data from memory 

and direct it to the correct place in the datapath.  It is possible to use one controller for 

each engine, but it is better to let one overall controller be in charge of the incoming data 

and distribute it to each of the engines.  This not only reduces the complexity of the 

engines, but it also saves resources by not having to duplicate controllers in each of the 

engines.  The following figure is a representation of the datapath controller. 

 

 

Figure 15.  Block-level design of the datapath controller. 
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 Although the controller will mostly be a state machine controlling signals and 

requests, there are two main sets of queues being used for the controlling of data requests.  

The first set of queues are the observed and model group queues.   

 

 

Figure 16.  Description of the 128-bit Model (Observed) Group Descriptor stored in the Model 

(Observed) Group Queue. 

 

 Figure 16 shows the 128-bit model group descriptor.  This descriptor has the same 

layout as the observed group descriptor.  Each group descriptor points directly to a 

keypoint descriptor, show in Figure 17.  The MGD base address and device ID is a 

combination of bits that points to the address of the first of up to 255 model descriptors, 

represented by the ñ# Modelsò field.  The model (or observed) group queue will store 

these descriptors in order make requests to memory for the model descriptors when 

needed. 
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Figure 17.  Description of the Model (Observed) Descriptor stored in the Model (Observed) 

Descriptor Queue. 

 

 The above figure is the bit layout for the model (or observed) descriptors.  These 

descriptors are pointed to by the group descriptors, and are set up as a list.  There can be 

up to 255 model descriptors per group descriptor, and each model descriptor can have up 

to 4,095 keypoints associated with it, which are all stored in a list.  The MD base address 

and device ID fields are used to access the first keypointôs data.  These descriptors are 

used to make requests for individual keypointôs descriptors that will be loaded into the 

different engines depending on whether they are observed or model keypoints. 

 

3.2.3 Input Data Logic 

 The input data logic includes the two keypoint data paths as well as some data 

manipulations before sending the descriptors to the engines.  The following figure is a 

representation of this logic. 
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Figure 18.  Block diagram of the input logic for the matching accelerator. 

 

 The observed keypoint stream is a stream of descriptor data from each of the 

requested keypoints from the current image, while the model keypoint data is descriptor 

data coming from memory that was stored from a previous model.  The descriptors will 

never be loaded into the datapath at the same time, which allows the datapath to make 

resource optimizations.  The multiplexor shown in the above figure, controlled by the 

datapath controller, selects which data is to be sent through to the rest of the input logic.   

The first step is a float to fixed data converter.  This simply takes the floating 

point representation of the descriptor (which is used in software) and converts it to a 

fixed point representation of the same value.  The input to the module is 128-bits, which 

is split up into two 64-bit floating point data structures.  The output is a 128-bit 

representation of four 32-bit fixed point data structures.   

The second step of the input logic is a data width adapter.  The goal of this step is 

to buffer the descriptor data for each keypoint, plus 128 bits of information about the 

keypoint, until all 64 descriptor dimensions at 32 bits each have been buffered. Then, the 
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output is a descriptor vector of 2,176 bits.  These data structures are equivalent to one 

SURF feature in software and will be used in all of the calculations for matching. 

Next, the SURF feature will go through a keypoint filtering step where keypoints 

are filtered out of consideration if not needed.  Keypoints do not come into the datapath 

in a manor where it only gets the keypoints that the datapath needs.  Being able to filter 

unwanted keypoints is a crucial step.  For example, if wanting to only get keypoints 

inside a specific ROI while a large amount of keypoints are coming into the datapath, it is 

possible for the keypoint filtering step to get rid of any keypoints that are outside the 

ROI.  

Finally, the keypoint descriptors will be spread out to all applicable and available 

engines to perform the match score calculations.  Since there can be up to eight engines 

in the datapath, each engine can be configured to work on different models.  This can be 

useful for object detection and matching when trying to match an ROI to a known model.  

Different engines can also work on the same model, such as the background model, when 

there are a large number of model keypoints.  The keypoint spreading logic will 

determine the engines that have space for descriptors (in the case of model descriptors 

being loaded into engine queues) and which engines are working on which models.  For 

observed descriptors, each one will need to be spread to all of the engines currently 

working on model descriptors because each observed keypoint must be matched to all 

model keypoints.   
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3.2.4 Computational Logic 

 The last step of the descriptor matching datapath is the computational logic 

section, which is made up of the matching engines and match score logic. The following 

figure is a high-level block diagram of this section.  More detailed architectures of some 

of the specific blocks will be explored in this section. 

 

 

Figure 19.  High-level architecture of the overall computational logic section in the descriptor 

matching datapath. 

 

 The computational portion of the data path is composed of matching engines.  

There can be up to eight of these engines.  Each engine is responsible for computing a 

match score for each observed keypoint descriptor against all model descriptors loaded 
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into the engineôs model keypoint queue.  The engine will then output the two best match 

scores to the model keypoint in the engine (using the match score logic block), and pass 

those to the overall datapath match score output logic/buffer block.  This last step will 

take the overall two best matches from the different engines and compute confidence and 

ratio scores to determine whether or not the descriptor is a good match to the model 

descriptor.   

 There is also a configurability aspect of the datapath score output logic/buffer 

block.  For the background subtraction step in enhanced CMT, the accelerator must keep 

track of both good and bad matches to the background model.  Good matches will be 

given to the homography algorithm to detect outliers and bad matches will be used for the 

object matching step.  So, for descriptor matching used in background subtraction, the 

datapath will be configured to output both good and bad matches, but when performing 

object descriptor matching, it will only be configured to output good matches. 

 

3.2.4.1 Matching Engines 

 Figure 19 shows a high-level representation of one matching engine.  Within the 

engine there are four main parts:  model/observed logic, model keypoint queue, 

computational pipelines, and match score logic.  The first step is to have logic to 

determine type of data is coming into the engine, either a model or observed descriptor.  

The type of data will determine where it will be sent in the engine.  In the case of model 

descriptors, the data will be sent to the model keypoint queue.  If the data is an observed 

descriptor, then the descriptor will be sent to each active pipeline where match scores can 

be calculated with respect to every model descriptor. 
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 Next, the model keypoint queue is a set of BRAMs that will hold all of the model 

keypoints for that particular engine.  Each pipeline will only compute match scores on a 

subset of this queue, depending on how many pipelines are being used.  The model 

descriptors will be stored in the queue until all observed keypoints in an image have been 

streamed through, at which point the current descriptors will be deleted from the queue 

and new ones will be loaded. 

 Following the model descriptor queue are the computational pipelines.  These 

pipelines take care of all of the distance computations.  After the model keypoint queues 

are populated in the engine, observed descriptors will be loaded into the distance compute 

block of the pipeline.  The following figure represents the architecture for the distance 

compute block. 

 

 

Figure 20.  Architecture of the distance compute block for computing match scores. 
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 The distance compute block in the computational pipeline represents the 

calculation of match scores for each observed and model keypoint pair.  Because every 

observed keypoint has to be matched to every model keypoint, the number of calculations 

will be KO
 * K M, where KO is the number of observed keypoints and KM is the number of 

model keypoints.  However, these computations are spread across different pipelines and 

engines, which will reduce the amount of time to calculate all matches.   

 The first thing the distance compute block does is load an observed keypointôs 

descriptor vector.  This vector will be used for the distance calculation until all stored 

model descriptors have been matched.  The match score calculation follows the equation 

for a Euclidean distance measure: 

 

ὓὥὸὧὬ ὛὧέὶὩ ὕὈ ὓὈ  

 

 Where ODi is the ith dimension of the observed descriptor vector and MDi is the ith 

dimension of the model descriptor vector. 

To start the pipeline, model descriptors will be fetched from the model keypoint 

queue and sent to the vector difference block, which takes the difference between the 

model and observed descriptors.  This difference happens at each dimension of the 

descriptor vector, so there are 64 32-bit subtractions happening simultaneously.  As soon 

as this calculation is done, the result is sent to be squared in the vector multiply block and 

another model descriptor vector can be sent into the pipeline.  The vector multiply block 
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takes two descriptor vectors as inputs and multiplies them together.  But in this case, the 

vectors will be exactly the same, so the result will produce a squaring of the difference 

between the observed and model descriptors.  Next, the adder tree sums up all of the 

different dimensions of the squared descriptor vector.  This result alone will give the L1, 

or Manhattan, distance for the match score.  However, to be more accurate, the square 

root is taken and the resulting value is the L2, or Euclidean, distance between the two 

descriptor vector.  The smaller this distance is, the better the match.   

Once the match score is calculated, it is placed into a match score queue, along 

with the information associated with the score, such as the indices of the observed and 

model keypoints being matched.  The two outputs of the queues will merge into one data 

structure and be sent from the distance compute block to the pipeline match table.  

The pipeline match table does a quick comparison between the match scores of 

each observed descriptor and outputs the two best matches from the pipeline.  The same 

logic used in this step will be used in the engine match score logic block.  Because the 

accelerator needs to returns the top two matches for each observed keypoint, each match 

table logic step must output the top two scores from each observed keypoint.  The engine 

match score logic will output the top two match scores from each observed keypoint 

across all pipelines in the engine.   

  

3.2.4.2 Datapath Match Score Output Logic/Buffer 

 Once the two best match scores for an observed keypoint have left each active 

engine, the datapath must choose the best two scores from across all engines.  There also 
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needs to be some post processing on these matches to determine whether or not the match 

to the model is good or not.  The following figure shows this logic.  

 

 

Figure 21.  Match Score Output Logic/Buffer for the entire matcher datapath. 

 

 The inputs to this block are the two best scores from each of the active engines for 

a particular observed keypoint.  The first step is to take the top two match scores from all 

inputs for a keypoint.  The next step is calculating the confidence for the best match score 

as well as the ratio between the matches.  The confidence and ratio equations are shown 

below. 
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