The Pennsylvania State University
The Graduate School

College of Engineering

OPTIMIZATION AND HARDWARE ACCELERATION

OF CONSENSUSBASED MATCHING AND TRACKING

A Thesis in

ComputerScience and Engineering

by

Joshua S. Snyder

© 2015 Joshua S. Snyder

Submitted in Partial Fulfillment
of the Requirements
for the Degree of

Master of Science

May 2015

The thesis of Joshua S. Snyder was reviewed and approved* by the following:

VijaykrishnanNarayanan
Distinguished Professor of Computer Science and Engineering
Thesis Adviser

JohnSampson
Professor of Computer Science and Engineering

Lee Coraor
AssociateProfessor of Computer Science and Engineering
Graduate Program Head foo@puter Science and Engineering

Kevin Irick
External Research Adviser

*Signatures are on file in the Graduate School

ABSTRACT

Image and video understanding has become an increasingly valuable capability
for many emerging applications suchsasart retail, intelligent surveillancand
autonomous robotic systemd he critical barrier to enabling these applications is the
high execution latencies of complex vision tasks that makeinealsystem constraints
difficult, or impossible, to achiex One specific instance af complex vision tasis
object tracking, whiclis the focus of this thesi®bject tracking is a necessary
component of grocery shopping assistance applications that track a grocery item and a
per sonds han dnddorthe itegr toipidkat sipAlthbugh thera are many
object tracking algorithms to choose from, this wiorkestigateshe performance
bottlenecks and optimizations of tB®nsensudvased Matching and Tracking, CMT
algorithm To circumvent the limitations of standard optiflalv based trackerGMT
uses alescriptomatchingstepto edet ect an o bhateouldlies key f e at
permanentlyostin the standard approacfhis allows for an object to ledden or
occludedfrom view andredetecteance it reappears in the view of the camera.

For fully autonomous systems, in whichirgtialization of a failed object track
may not be possible or prohibitively costly, robustness of the tracker is of critical
importance As stch, this work introducesanenhancedersion ofthe CMT algorithm
that exhibits improvements in accuracy and robustnesgadigatecagainst a
standardized benchmarRhe improvement in accuracy and robustness of the enhanced

CMT comes at the cost of geificant increase in computational latencyccordingly,

this work also proposeshybrid systenthat integrates higperformance custom
hardwareacceleratorsvith a traditional processor to alleviate these new performance

bottlenecks antb support ral-time throughput.

TABLE OF CONTENTS

LIST OF FIGURES. ... e e e e e amnneeannss Vil
LIST OF TABLES. ... oottt rreee e et e e et e e e e mmmran e eees ix
ACKNOWLEDGEMENTS ceree e e et e e e e e e aan s X.
Chapter 1. NTRODUCTION.......ccciiiiiiiiiiiiie i ieeeiiiiieieee et et e e e e e e e s emmmr e e e e e e e aeeaaaaaeaaans 1
1.1 Image Processing and Object Tracking...............uuuiiiiccceeeiiiiiiiiiiiie e 1
1.2 FPGA ACCEIEIALION.uuuiueiiiiees e e e ceeetiiies e e e e e e e e e e e e e e e e einnea s e eeeeeeeaaeeeeeeeeesennnnns 2
1.3 Organization Of TRESIS.........cvviiiiiiii e errr e e e e e e e e eees 3
Chapter 2. BIECT TRACKING ..ot eiiitieeerie e eenssraee e e e e sneend 4
2.1 OVEIVIEW OF CIMT.. it e e e e e e e e e rnnnn s s s e e e e e e e e e e e e e e eeeesannnas 5
2.1.1 BRISK Keypoints and DeSCIPLOLS............uuuuuuiiiieiemeeeeiriiiiiieas e e e e e eeeenns 6
2.1.2 Initialization Of CMT.......coiiiiie e 6
2.1.3 Keypoint TraCKiNgG..........ovveruuiiiiiiime e e e e e e e ememaaan e e e e e e eaeaeaeas 8
2.1.4 Scale, Rotation, and Center VOLING............uuuuiiiiiicceeeeiiiiiiineane e e e eeeeneas 9
2.1.5 Keypoint MatChiNg.........ccooiiiiiiiiiiiieeee e 10

2.2 IMprovements t0 CMT......ooiiiiiii e 11
2.2.1 SURF Keypoints and DesCriptors............covvviviiiiieeme e 11
2.2.2 Adaptive Background SubtractiQn...............ooooiiiiicere e 13
2.2.3 Weighted Distance ConfidenNCEeS...........eieiiiiiiieceecciiie e eeeeeeeeea 15

2.3 Comparison of Tracking AlgorithmsS............uuuviiiiiiiiieeeiiiiiee e 16
2.3.1 Evaluation TOOIKIL.........couiiiiiiiiii e 16
2.3.2 Results of Evaluation TOOIKIL............ccoiiiiiiiiii e eeeeeeeeeeeeee e 17

2.4 Reasons for Choosing Enhanced CMT.........c.oooiiiiiiiiceen e 20
2.5 Motivationto Accelerate Enhanced CMT........ooovvvviiiiiiiiiieeeeeeiiine e 21

Chapter 3. ARDWARE ARCHITECTURE...........coiiiiiteee e 25

1 S U1 O PPERR 26
3.1.1 KeypPoint DELECHION.uuiiiiiiiiiiiiiei ettt 27
3.1.2 Orientation ASSIGNMENL..........covviiiiiiiiiimmr e eeernaa s 28
3.1.3 DeSCriptor EXIraCtiQII.........uuuiiiiiiiiiiiii ettt e e e e e e e 29
3.1.4 Performance MEtriCS..........oooiiiiiiiiiiieeee e e 29
3.1.5 Software INteGration............ccoeeeiiiiiiiiccce e 30

3.2 DeSCriptor MatChiNG..........uuuuueiieis e ceeeices e e e e e e eeeer s e e e e e e e e e e e eeeeanane 31
I R O V=T V1 PR 31
3.2.2 DatapatlCoNtrOlIEr..........ooeeeeeee e errr e e e 33
3.2.3 INPUL DALA LOGIC.......iiiieieiiiiiitieees e eees e e e e e e e e eeeas 35
3.2.4 Computational LOQIC...........uuuuuuuiiiiii it e e e e snnnrin s e e e e e e e e 38
3.2.5 Performance MEetriCS.......ccouveeiieeeeeiiiiieeeii e eeeeeeeeeeeiviiieeee e e e eeeeeeeeeeenn A4
3.2.6 Integration With SOftWAKE...........uuiiiiiiii e 46

Chapter 4. BSULTS ... erena e e e e e e e e e e e e e e e e e aaeene s 48

4.1 Average Software Times for Enhanced CMT...........cccccvvvvivieeciiviiiiieeeeeen. . . 48

4.2 SURF Algorithm ACCElerator............cooiiiiiiiiiiieeee e 51

4.3 Descriptor Matching Acceleratar.............ccociiiiiimmeniiie e 53

4.4 Overall ENNanCed CMT........uuiiiiiiiiiiiiei ettt srmmme e 57

4.5 Target Hardware Configurations............ccooouuueriimmmrniiiiiiieeeeee e eeeereeeeees 58

Chapter 5. ONCLUSIONSoiiiiiii e 61
L o o N[O T 64

Vi

LIST OF FIGURES

Figure 1. Initialization of CMT using the first frame of the sequence. Blue keypoints
(inside the ROI) are object keypoints while red keypoints (outside the ROI) are
Dackground KEYPOINTS.......ccooiiiiiiieeie e e e e e e e e e e amnnaas 7

Figure 2. Calculation of anchors and springs. The anchors are red and the springs are

Figure 3. Forward backward tracking example where the yellow lines are the keypoint

tracking and the red line is the error distanCe..............ooeeeiiiieeeiiiiie e 9

Figure 4. Example of center voting. Green springs are accurate votes for the center

while the red springs are votes considered as OUtlierS..............uvvivviieenciiviviiieeeene. 10
Figure 5. Precisionrecall graphs from eight different examples [8]....................... 12

Figure 6. Example of Background Subtraction. The white lines are matches from the
previous background (left) to the current background (right). All matkbggoints are
removed from consideration for object matching................oooooiii 14

Figure 7. VOT toolkit analysis of OpenTLD, CMT (Original Algahm), and
CMT_Adapted (Updated Algorithm) on baseline test...............ooooviiieeeieii e, 18

Figure 8.VOT toolkit analysis output of OpenTLD, CMT_Python (Onigl Algorithm),
and CMT_Adapted (Updated Algorithm) on region noise test..........cccc.vvvvvvnuceee... 19

Figure 9. Pie chart of average timing percentages per frame for adapted CMT algorithm
using a frame Of Size 1920XL1080.......ccuuiiiiiiiiiiiiii i 22

Figure 10. Piechart of average timing percentages per frame of the background

matching step for a frame size of 1920X1080...........cccovviiiiiiicemn e 23
Figure 11. High-level overview of the whole object tracking system.................... 25
Figure 12. High-level block diagram of the SURF accelerator..............cccccccceeuee. 26

Vil

Figure 13. Example of integral image calculation.................ccccovvieeeieei e, 27
Figure 14. Overview of the descriptor matcher datapath module......................... 32
Figure 15. Block-level design of the datapath controller................c.oevviiieeeiiiinnee. 33

Figure 16. Description of the 28-bit Model (Observed) Group Descriptor stored in the
Model (Observed) Group QUEUE.............oeeueuriiriimmmeeeeeeeeeeeeiinnse s emmressnnnna s 34

Figure 17. Description of the Model (Observed) Descriptor stored in the Model
(Observed) DesCriptOr QUEUE.........iiiee et e eeeeeeeieeeee s e e e e e e e e e e e e e e e eeeeesinnneeeeeeeeeeeeeeennenes 35

Figure 18. Block diagram othe input logic for the matching acceleratar............... 36

Figure 19. High-level architecture of the overall computational logic sectotié

descriptor matching datapath.................euiiiiiccc e 38
Figure 20. Architecture of the distance compute block for computing match scar3.
Figure 21. Match Score Output Logic/Buffer for the entire matcher datapath......43
Figure 22. Performance timing percentages for an 800x600 size frame..............: 49
Figure 23. Total latencies of SURF accelerator for varying frame....................... 52

Figure 24. Overal times for descriptor matching based on number of keypoints and the
number of engines and pipelines with maximum engine queue of 1,024 keypoings

Figure 25. Overall times for descriptor matching based on number of keypoints and the

number of engines and pipelines with maximum engine queue of 2,048 keypoint&

Figure 26. Total latencies of descriptor matching for two different platform
(ol0] 110 18] €= Ui o] 4 1S PP PP PP PR PP PPPPPPRPP 60

Figure 27. Image representing a video that is tracking two objects simultaneaus?

viii

LIST OF TABLES

Table 1. Average accuracy and number of failures for the three algorithms on the
DASEIING TESL....cceeeeeeeeeee e e et ———— e e e eeaerraanaa 18

Table 2. Average accuracy and number of failures for the three algorithms on the region

OIS TEST... e eeeee ittt e e ettt eemme e s e e e e e et senemr e e e e e e e e e e 19
Table 3. Average number of keypoint in the example videQ............ccccccvvviieeennnee. 50
Table 4. Average times per function in MilliSECONdS...........covvviiiiiiiiian 51

Table 5. Total time for tracking functions with the SURF and matching accelerators.
Table 6. The total DSP and BRAM usage amounts for the Vi#e800T................... 59

Table 7. The total DSP and BRAM usage amounts for the Zynq 7045................ 59

ACKNOWLEDGEMENTS

| am very grateful to my thesis advisor, Dr. VijaykrishiNarayanan, for
allowing me to work in the Microsystems Design Labora{®ipL) andproviding
guidance throughouny research and thesigork. | am also greatly indebted to my
honors academic advisor, Dr. Lee Coraor, who helped me apply to the Integrated
Undergraduate/Graduate program through the Schreyer Honors College and helped

successfullyguide me through each semesiEmy five years at Penn State

| would like to give a special thanksat of my lab mates who wer@ucial to
my successluring mytime in the MDL, with special recognition far. Kevin Irick and
Dr. Matthew Cotter. | have gained invaluable experience working with these two

individuals, both in hardware and in software, and | cannot thank them enough.

Lastly, | would like to thankny family and friends for all of their support and
encouragement throughout my time at Penn State and for pushing me to be the best
person | can be, whether in the classroom, lab, or in life. Without them, | would not be

where | am today.

CHAPTER 1

INTRODUCTION

Processors have become increasimgyerfulsince their inception. The first
microprocessor, invented by Intel in 197datured a single torder pipeline and
operatedat amaximum clockfrequencyof 740 kilohertz. In comparisomodern
processor$eature eight or more cores with each operatirthpethree to four gigahertz
range Even withsignificantimprovementsn processor capabilitieend performance
thereare many realime canstrained applications whose computational requirements far
exceed the capacity of modern processtmghe context of image and video
applications, realime is generally defined as a system thaintains aninimum
throughput of 30 frames/second or aximum processing latency of 33ms per input.
Object Trackingthe topic of this thesiss one such vision task that requires +tiale
operationand can exhibit higher accuracy if image frames are provided at higher than

reattime rates.

1.1Image Processing and Object Tracking
Most complex image taskare very computationally expensive. Wioik with

pixels, especially itarge resolution images, requirelege amount oflata to be

processed. A higlefinition color image with a size of 1920x108@nhtains abous0
million bits, where each pixel is 24 bitAlso, with most cameras recand) at 30 frames
per second, thienage tasknust process abo(t5 billion bitsper second.The amount of
data needing to be processed per second is simply too large for most complex image tasks
when running on a standard processor.
The algorithm that this thesis focuses on is Consebassd Matching and
Tracking, or CMT[1]. Thisalgorithm is taken to be one of the leadotgecttrackers
that is available to the publibutis optimized for processing speadd not for extreme
accuracy.This thesis will explore more accteaand robust versions of this algorithm

and comparéhe different versions order to decide whkh versions best

1.2FPGA Acceleration

FPGAs or Field Programmable Gate Arragipw a programmer to completely
customizea datapath within the hardware to perf@apecific jobs theysimulatea
processor that is built to do one joBPGAs are being used mdrequentlybecause of
their cusomizability, high throughput ahassively parallel processes, and the ability to
simulate a physical chiwithout having to print oneFor the purpose oftgect tracking,
any part of the algorithm that can pecessedh parallelcan be mapped to the FPGA
order to accelerate the process. All other parts will stay on the host proedssbmill
communicate with the FPGAThis thesis will focus oseveraFPGAaccelerators and

their architectures for specific parts of the object tracking algorithm.

1.30rganization of Thesis

The remaining chapters of thisesis will be organized in the following fashion:
Chapter 2 will discusthe object tradkg algorithm CMT as well as modifications made
to CMT to increase accuracy and robustneStapter 3 discusses taechitecture of
several hardware accelerators that will be used in this system. Chapter 4 will discuss
expected results of the acceleratm several different configurations of the system.

Finally, Chapter 5 will draw conclusions from the rest of the thesis.

CHAPTER 2

OBJECT TRACKING

Previouswork hastried to significantlyimprove object tracking, specificalfgr
modeklreeversions Algorithms that arémodelfreed are given ainitial region of
interest (ROI) irthe first frame of the video or camera stream andtitdgob ofthe
tracking algorithrmo determine where the objectiagatedin subsequent fraes. The
biggestadvantage omodelfree tracking algorithms is the ability to be used in virtually
any situation. There is no need to train the algorithm on different object models for the
specific applicatioabefore tacking when using a modéke tracker.

Another important propertgf atracking algorithm is the dhiy to redetect a
trackedobject after it hastopped tracking it for any reason, whether leaving the field of
view or an error by the algorithmf an objecis lost while tracking, théracke must be
able to determine where the objesturns to view Tracking algorithms that have this
property areeonsideredong-term object trackersLong-term object trackers amucial
to systems that have litttr no user input after initializationush asan assistance
application for visuallyimpaired individuals.

Although there have been advancements in the foekebbject tracking
domain, theres still a lack of method& deal with partial and full occlusions, noise, and

appearance changeSome tracking algorithmsseonline learning methods to deal with

these problems, especially object appearance changes. A few of these methods
discussed in more det#] [3] [4], but one tracker in particular thagrformsonline
tracking is OpenTLO5], which is an opessource, fastersion of the original TLD
algorithm[6]. OpenTLD, where TLD stands fordcking Learning and Detection,
employs a learning method that stores positive and negative patadresbpéct so that it
canmore accurately track changes in its appearambe.largest drawback to oné
learningis the errorthat it introduceghroughout the video sequencas the ROJ
produced by the algorithrstarts to slowly dft away from the objecipatches will be
classified as being positive templat@sen they are actually negatiand the algorithm
will start learning to traclan ircorrect region in the frames

One algorithm that was developedaddress these issues was CMT, or

Consensubased Matching and Trackifgy].

2.10verview of CMT

There is strong evidence that showsanbination of static and adaptive elements
will improve the robustness aftracking algorithni6] [7]. CMT employs a solution to
decouple the static and adaptive mloelements. This algorithaecouplsthe elements
by modelingthe appearanaaf the object and backgroumd only the initial fame and
processeappearance changes byngsan adaptive tracking method, which tracks

BRISK keypoints.

2.1.1BRISK Keypoints and Descriptors

A keypoirt in an image is a location where the region around it is salient, or
interesting. In other words, thisgion stands out from tlehers around it. Each
keypoint contains a set of values that describe the keypoint (and the region around it),
called desgptors There are many different types of keypalatectionand descriptor
extraction algorithms, but CMilisesBRISK [8].

BRISK stands for Binary Robust lakiant Scalable Keypoints. Thaggorithm is
based upothe use of scaiepace keypoint detectig8]. This method estimates the true
scale of each keypoint by using different layers of scales, going from fine to coarse, and
finds the maximum FAST scof8] from all of the layer$8]. The keypoint descriptor is
then built as &12-bit binary string(64 descriptors, which are 8 bits eably)
concatenatingheresults from simpl@ixel brightness tests and using the orieratiof

each keypoint to achievetation invarianc¢s].

2.1.2 Initialization of CMT

Beginning with the first frame of a video sequence and an initial ROI, CMT
initializes the algorithm by first detecting all keypoints arebdriptors and categorizing
them as either belonging to the objéoside the ROI) or global (all keypoints in the
image) modelsEach object keypoint is given a unique class identifier, starting with one,
while all background keypoints arévgn a classdentifier of zero, which will be used

later in keypoint matching.

Figure 1. Initialization of CMT using the first frame of the sequence. Blue keyp@imggie the
ROI) are object keypoints while red keypoiftaitside the ROlare background keypoints.

The keypoints in the object modeill be used to calculate different valudsach
keypoint will have its distance tbe center of the ROI calculated, which eadled
springs. The distance from each coroiethe ROI to the center is also calculated (for
simplification, all initial ROIs are axis aligned rectangles). These distances are called
anchors. Finally, the distareketween keypoints and the angles between the keypoint
descriptors are calculate@he springs, anchors, intkeypoint distances, and keypoint

descriptor angles are used to determine scale and rotation changes

Figure 2. Calculation of anchorsnal springs. The anchors are red and the springstate.

2.1.3 Keypoint Tracking

All keypoints in the initial ROI will beclassified asctive keypoints and witry
to be tracked ito the next frame. CMT uses a combinatioicasKanade (LK) optical
flow [10] and error thresholding perform keypoint trackingThe LK opticatflow
algorithmsearches foa locationin the current frame where the keypoint from the
previous frame is foundCMT thenuses the LK opticaflow in a reverse fashion and a
forward-backwarderrormethodto determine the error of thieacked keypoinfl1]. If
the backwarapticatflow step produces a keypoitiatis above a certain distance (error
measurejrom the original keypoint, then that keypointisttracked and is renved
from consideration.The following image shows an example of the forwlaagkward

keypoint tracking and error measure.

Figure 3. Forward backward tracking example where the yellow lines are the keypoint tracking
and the red line is the error distance.

The above example shows that for keypoint 1, the fornlakward tracking
produces an error distance between the predicteddocatd the original location of the
keypoint. However, keypoint 2 is tracked back to the exact location and produces no
error.

All keypoints that are successfully tracka set as actiieeypointsand will be
tracked tahe next fram€if possible) The tracking step of CMT is the adaptive property
of the algorithmbecausét has theability to track any keypoineven if it is not in the
object model Therefore, changesi h e o0 &ppearancedcan be processed by the

tracker.

2.1.4 Scale, Rotatig and Center Voting
Following the tracking step, CMT estimates tieav centerscale and rotation of
the ROI The center of the new ROI is estimated by using the spring distances and a

voting methogdwhere each tracked keypoint votes for the center of the R votes

arethenclustered to form the centpoint[1]. The algorithm also estimatdse scale and

rotation of the ROI by using the intkeypoint distances ardkscriptor anglefl].

Figure 4. Example of center voting. Greepringsareaccuratevotes for the center while the red
springsare votesonsidered as outliers

2.1.5 Keypoint Matching

The final step of CMT is the matching of keypoints. This step alli@wviost
keypoints in the tracking step to be redetectedcamtinue to be tracked. Nén the
object is lost all together, it can also teeletected during this step. CMT first detects all
BRISK keypoints in the current frame. Then, the keypoints are used to extract the
descriptors. These descriptors frgt matched tdhe global modeld]l keypoints from
the initial fram@, and, if therds a valid center estimate, all keypoints are then matched to
the object modelAll matches that have been matched to a background keypoint in the
global model are not considered further. Matches to object keypoints in the model are

evaluated for theiranfidences and only kept if the value is over a certain confidence

10

threshold1]. The keypoint distances are alsalculated andised to check the geometric
location of the keypoints in respect to the new cddferAll unmatched tracked
keypoints are also added to the new active keypoint list. As lotihggesare enough
keypoints retaineffom thetracking and matchingteps a new ROI is formed and the

cycle repeats with the next frame.

2.2 Improvements to CMT

Although CMT gave goodglisualresults when running with different video
sequences, there were still improvements that could be made to increase the accuracy and
robustness of the algorithm. The three major improvements that weeaimihdis work
were using SURF keypoints and descriptors instead of BRISK, adaptive background
subtraction, and weighted distaramnfidencesrom the center of the ROI. These

improvementsrediscussed in the following subsections.

2.2.1 SURF Keypointand Descriptors

Onekeypointdetectioralgorithm that can replace BRISK is SURF, or Speeded
Up Robust Featurdd?]. It was createdo be a faster, yet comparable, algorithm than
SIFT [13], whichis thought of as the most appealing algorithm in terms of accuracy and
robustnaes. SURFHs based upon the use of a Hessian mamk uses the determinant of
this matrix to detect and deterna the location and scale ladypointsin an imagd12].
Although SURF does not find the exact Hessian matrix, it insegral images and box
filters to approximatsecondorde Gaussian derivatives, which arged to create the

matrix[12]. Thedescriptors for SURF are based upon SIFT, but with a lower

11

complexity. First, SURF fixes a circular, reproducible fixed region around a keypoint
[12]. Then a square region is constructed aroundréegeccircular region, agned with
the selected orientation, ancettescriptor is extracted from different computations inside
this region12].

SUREF, although slower computationally in software, tends to produce more
robust keypoint and descriptors than BRISK, which is used iartgmal version of
CMT. According to[8], SURF does not outperform BRISK in all sitwais, but on
average its performance is higher than BRISKe following graphs of precision vs.

recall, taken froni8], shows that on average, SURF outperforms BRISK.

- - == SIFT SURF - BRISK
1 1
1 1 SIFT(S60), SURF(465), BRISK(478) SIFT(2570), SURF(2714), BRISK(2712)
SIFT(1292), SURF(133%), BRISK{1284) SIFT(836), SURF(531), BRISK(E33) 0e 08
0e 08 S

= - Zoe SRt - Zos

1-l-o.s L os 259 30nsisiratwren = 2. o z

S (A D g 1 PEE L G ”

8 o0 /,/ }M i T e g o4 B S = 0.4 o g
. kBl BV % i 0.2 ol P RS -
02 T Y. 02 =17 SR

}_/ ’I f J[=
= e 0 ® o02 o4 05 08 1 0 o2 04 06 08 1
0 02 04 06 08 1 0 02 04 06 08 1 : . : 2
1-Procision [-] 1-Precision () 1=Pwpcicion) $-Proision |}
(a) Graffiti 1-3 (b) Wall 14 (c) Bikes 14 (f) Trees 1-4
‘ 1 1 1
SIFT(1020), SURF(1008). BRISK(1049) SIFT(1187), SURF(1147), BRISK(1148) SIFT(458), SURF(467), BRISK(467) SIFT(1555). SURF(1562), BRISK(1645)
08 08 0.8 08 /
N e e e = ff [= P 7
L osl————T = Los L o8 ,,.z/‘/ Los 35BS TE T
} N e z _m 3 o ;] -
& o4 & o4 ___,_--»--‘-/,/ goal =TT go,a/ -
s AR T i SR) - i S
0.2 02~k e »% o.zj/,-' 02f e e
0 02 04 06 08 1 0 02 04 06 08 1 ™ 02 04 08 08 1 % oz os o085 o8 1
1-Precisicn [-] 1-Precision [-] 1-Precision [-] 1-Precision [-]
(c) Image Rotation of 60° on Wall 1. (d) Boat 1-4 (g) Leuven 1-4 (h) Ubc 1-4

Figure 5. Precisionrecall graphs from eight different examp|8

Because part of this work is to improve the performance of CMT, SURF can be
used instead of BRISK to make CMT a more robust and accurate object tracking

algorithm.

12

2.2.2 Adaptive Background Subtraction

One of thdargest pitfallsof CMT is the adaptability of the models. Because the
algorithmuses static globand objectnodelsthat are initialized in the first frame of the
sequence, it becomes increasingficlilt to match these models as the number of
frames increasend the scene changeAlthoughkeypoint tracking handlesome of the
adaptability issues (such as a change in appearance of the object), it does not help when
trying to match keypoist Whenusng descriptors to match keypointghether it is
BRISK or SURF, the morkeypointsthat are trying to be matched to a modete@ases
the number of keypointhat are incorrectly matched due to noise. Therefore, the
objective of background subtractieto reduce the number of keypoints being matched
to the object model by not considering keypoints that are in the background.

Currently, CMT does twegeparatenatching steps: it matches all of the keypoints
in the current frame tthe global modeand it matches all current keypoints to the object
model. Thecondition on the first match i6 a keypoint is matched to a background
keypoint in the global modéhas a class of zero), then it should not be considered
further. However, the second matchistep tries to matchll of the same keypoints
being matched in the first stephich contains all of the noisy background keypoints, to
only the object model.

The problem witmormalbackground subtraction is that it is not easgédorm
when the bekground ischanging. If the backgroundgsiaranteed to be stationary, then
a staightforward foreground detection method &&napplied. But for the intended

application of this work, the cameiganot assumed to e a fixed location. Therefore, a

13

new adaptive background model must be created to try to match and subtract background

keypoints from consideration. In this new method, a new adaptive background model is

createdn each frame when the object is tracked and an ROI is produced.

Figure 6. Example of Background Subtraction. The white lines are matches from the previous
background (left) to the current background (right). All matched keypoints are removed from
consideration for object matching.

An adaptive baround model is formed by all keypointgith descriptorsthat
areoutside of the current ROI, plus a small percentage buffbe keypointescriptors
are then useds the model for matching all observed keypaimthie next frame A
straightforwardmatching step is applied to all observed keypoints with the adaptive
background model. If a keypoint matches a model background keypoint with a high
confidence value, it is kept as a background keypoint for further processing. Otherwise,
the keypoint ikept as a possible object keypoint to later be matched to the object model.
All keypoints that are matched to the background are then run through a homography
algorithm to get rid of any outliers. The keypoint that are considered as outliers are

added ¢ the list of possible object keypoint§his processwill reduce the number of

14

keypoints trying to be matched to the object model, which in turn will increase the
accuracy of the matches. When an ROl is not prodecedwbaclkground model will
not be ceatedand theobserved keypoints wihe matched to the most recent mogkén

the object was tracked.

2.2.3 Weighted Distanc€onfidences

The last major improvement matteCMT isthe way thamatchconfidences are
calculated. Along with the mmal confidencecalculations, there needémlbea way to
restrain keypoints from being falsely matched to object keypoints that Vangea
distance way from the ROI. One problem with CMT is that it considdr&eypoints
equally whematching them agastthe object model. This resultsnmany keypoints
being falsely matchedin this distance weighted confidensgution, keypoints that are
being matched to the object model are each given a weight that representsthew far
point isfrom the centeof the ROl This weight is calculatedsing a Gaussian
distribution, setting the mean valueztexo (the center of the ROI) and@ianceequal to
the largest distance from center to a corner of the R&¢ confidences of the matches

arethenmultiplied bythe calculated weightThe folloving equation shows this step

0 QMOONE £ "QQQQE HIQAGEE "QQQAE 0 Q

In this equation, x is the Euclidean distance from the center of the ROI to the

point beingc 0 n s i d e Fisethibvaancedas defined earlier.

15

If the weighted confidence is abosecertain confience threshold valyghich is
set lower than the normal confidence vajulbégn the keypoint ikept as a valid match.
This method reduces a largmaunt of error and only allows the object tova@ small

distanceor change scales slowily each frame

2.3 Comparison of Tracking Algorithms
The goal of theenhancedMT algorithmis to improve both the accuracy and
robustness of the object trackingarithm. With this in mind, thereeedgo be a way to

evaluate the different algorithms in a uniform fashion.

2.3.1 Evaluation Toolkit

For this taskanevaluation toolkit used fahe Visual ObjectTracking (VOT)
2014 challeng§l4] was used to compare the different tracking algorithiise
challenge provides a data set of 25 different video sequencedVahtlaAB toolkit in
order to measure accuracy and robustness, along with somealtres, such as camera
motion, of an object trackerAccuracy is defined @he amount of overlap between the
ground truth ROI and the ROI produced by the tracking algofiitih The more that
the tracking ROI overlaps thiground truth ROI, the higinehe accuracy will be. The
robustness measure is simply the failure rate, or the amount of times there is no overlap
between the ground truth ROI and the tracker produced Bl

An impottant nde to make on the measuy of the accuracy and robustness is
that the toolkit will reinitialize the object ROI after each failure within a sequence.

Therefore, a higher number of failures will usually result in a higher accuraey. Re

16

initialization gives the algorithm a chance to collect new informatibout the object as
the object b6s ap pheraforegardecease iisthecnbinder gf ifauges
should ultimately result in a higher overall performance of a tracker, even if it does not
show inthe accuracy results.

The toolkit runs two different tests, a baseline test and a region noise test. The
baseline test initializes the tracker with a tight ROI around the object in the first frame,
while the region noise test initializes the trackeihwait imperfecROI, which introduces
noise into the initial modsl Both tests run through all of the video sequences and
reinitialize the tracker after every failuf®4]. Each sequence is rgaverakimes in
order to get god results. The toolkit then outputs the different values for each sequence

and an overall average of each measured \@ataeall of the sequences

2.3.2 Results of Evaluation Toolkit

In order to decide which tracking algorithm is better, both thgirai CMT and
theenhancedMT algorithms were run through the toolkitAlso, OpenTLD[5] was run
through the toolkias a reference to a different type of object tracking algorithine
following figuresand tablesire the esults of thalifferenttests andhow the average

values for accuracgnd robustness (number of failures).

17

AR plot for experiment baseline

-

(O openTLD
CMT 0.9
CMT_Adapted
0.8}

Accuracy
NowWw R o o~
T T T T T

o
=

o

0.2 04 0.6 0.8 1
Robutness (S = 30.00)

[=]

Figure 7. VOT toolkit analysis of OpenTLD, CMT (Original Algorithm), and CMT_Adapted
(Enhancedlgorithm) on baseline test.

Algorithm Average Accuracy | Average No. of Failures
OpenTLD 0.529 8.96
CMT 0.496 7.32
CMT_Adapted 0.513 3.36

Table 1. Average accuracy and number of failures for the three algorithrige baseline test.

In Figure7, the accuracy and robustness is plotted on a daajghe baseline test,
with accuracyangingfrom O to 1 on thg-axis and robustnesangingfrom O to 1 on the
X-axis.

Tablelis a numeric representation of the baseline test restiisse values are the
averages from all 25 video sequences, where robustness is a function of the number of
failures and then normalized between 0 and 1. By visually inspecting the graph,
OpenTLDachieveghe best accuracy out of the three algorithms, but has the worst

robustness.TheenhancedMT algorithm obtains the highest robustness values (by a

18

significant amount) and has the second highest accuracy of the three algorithms. More
importantly, theenhancedMT algorithm is better in bothccuracy and robustness than

the origiral CMT algorithm.

AR plot for experiment region_noise

cMT
CMT_Adapted

(O openTLD
09+

08}

0.7}

06+

05F

Accuracy

04

03+

02}

01}

0

0 0.2 0.4 06 0.8 1
Robutness (S = 30.00)

Figure 8. VOT toolkit analyss ouput of OpenTLD, CMT{Original Algorithm), and
CMT_Adapted(Enhancedhlgorithm) on region noiseest.

Algorithm Average Accuracy | Average No. of Failures
OpenTLD 0.467 8.757
CMT 0.462 7.051
CMT_Adapted 0.482 3.539

Table 2. Average accuracy and number of failures for tiree algorithmsn the region noise
test.

Figure8 andTable2 show the results from the region noise test performed by the
VOT toolkit. As shown, all of the accuracies of the algorithms decrease from the
baseline test, but trenhancedCMT algorithmadhievesbetteraccuracy and robustness

values that the other two algorithm$his improvement over OpenTLB the effect of

19

usingSURF keypoints instead pfxels inthe random fern classifi¢s]. Keypoints are
more robust ashless prone to noise thasianplerandom pixel intensity calculatipas
done in OpenTLD. ThenhancedMT algorithm achieves better results tha priginal

CMT algorithmbecausef the three improvements outlined in Section 2.2.

24 Reasons for ioosingEnhancedCMT

There are two main reasons for choosingahieancedMT algorithm to
continue working on The first reason is the improvement in accuracy over the original
CMT algorithm and the larggecreasén the number of failures over both CMihd
OpenTLD. As the results of the two test®wnin the previous section, the accuracy for
theenhancedMT increased slightly over the original algorithm, although it is still
slightly belowthe accuracy of OpenTLD. However, the largest improventent o
enhancedMT is the robustness. The average number of failures were cut in over half
compared to theriginal CMT algorithm and OpenTLD. This is important to note
because for most applications of object trackihgre will be no user intervention te-r
initialize the tracker on the objeevery time it fails

The second reason to use #mhancedCMT tracker is because it uses SURF
keypoint and descriptors, which are also used in many other vision algorithms, such as
image stabilization, objececognition, stereo correspondence, and similar object
detection When using object tracking in a vision pipeline, it is more efficient to use
keypoints and descriptors that are already being used, rather than computing completely
different ones. For exaple, when trying to find and pick up an item on a grocery shelf,

the first step is to detect the item using an ohjeobgnitionalgorithm. Once the object

20

is found,the ROl produced an i nitialize the tracker and

item in oder to pick it up.Because object recognition already uses SURF keypoints and

descriptors, there is no reason to use a different keypoint and waste resources.

2.5 Motivation to Accelerate EnhancedCMT

Onegoalof CMT isto do accurate object tracking @sickly as possible At
smaller frame sizes, such as 640x480 (the default frame size foMheapplicatior),
the algorithm runstaabout 1520 frames per secorwh an Intel Core i7 processor being
clocked at 1.6 GHz with 8 GB of RAM. However, at larffame sizes, such as
1920x1080with high resolution, the average frame rat¢he algorithm is only abowstix
frames per second. The problem wptlocessing at loirame rates is if a camera is
recording at 30 frames per second and the algorithm dgpmtesssix frames per
second, the algorithm can only procesg in every five framesThiscan resulin larger
distances between objects in consecytraeessed frames if the object, or camira,
moving, which will decrease thaccuracyof theobjecttracking. Therefore, the goal of
this thesigs toprovide a system that can perform object tracking at as close timeal
(30 frames per second) as possiith large, high resolution frames.

Because thenhancedCMT algorithm uses SURF keypasand descriptors that
are more robust than BRISK, the tracking tends to be much slower in software. The
average processing time for a 1920x1080 frame is about 1.4 seconds, which is only 0.7
frames per second. The following figure shows the breakdowreahajor parts of the

enhancedMT algorithm

21

PERCENTAGE OF TIME FOR PROCESSFRAME()

M Background Matching ® Estimate ™ Track m Object Matching ®m Update Background m SURF

Figure 9. Pie chart ofiveragdaiming percentageper framefor enhancedMT algorithmusing
aframe of sizel920x1080.

As Figure9 shows, the largest portion ehhancedMT is spent processing
SURF keypoints and descriptors, which is 34% of the total tBBezause of tis large
percentage of time, trenhancedMT algaithm would greatly benefit from a SURF
accelerator that computed both the keypoints and descriptors. The second largest portion
of the algorithm is the estimation step, which calculates the estinetest cising
clustering techniques and also estim#tesscale and rotation of the ROThis step can
also be subject to acceleration. Lastly, the background and object matching steps take up
the nextargest amount of time iris algorithm. Because background matching uses

almost all of the same technigs as the object matching step, thesestwps can usene

22

configurable matching accelerator. Background matching takes longer than object
matching purely because there are more keypoints to be matched. The following figure
shows théoreakdown off times ithe background matching step, as@lso

representative of thebject matchig step (minus the homography step).

PERCENTAGE OF TIME FOR
BACKGROUNDMATCHING()

W Knn Match W Concate Vertical

M Other Operations / Memory Management M Homography of Background Keypoints

Figure 10. Pie chart ofaveragdiming percentageger frameof the background matchingegt
for aframe size 0f.920x1080.

Currently, this figure shows four separate steps that are done separately in
software. When done separately, the homography algorithm, which detiiets au a

set of keypoints, takes up the most time at 40%. Homography is the last step in

23

backgroundnatching, and is not done in object matching at all. Therefore, this can

easily be done in software after timatches are computed using the matchirglacator

The key part of the matching steps for bittebackground and objeatodels iknn-
matching(wherek equals tw. This, along with the Aconca
operations/ memory management o porctipioons of
matching Unfortunately, memory managemerdggdsand writes) in software can be

expensive If a matching accelerator can handle both the Horte knn-matchingand

the logic to determine whether or not the matdicrseptablethen the softwa does not

have to deal with memory management issues and the whole matching step will be sped

up significantly. The next chapter will look at architectures for bothdhscriptor

matcher andURF algorithm.

24

CHAPTER 3

HARDWARE ARCHITECTURE

The goal of this work is to speed up #rehancedMT algorithm using FPGA
acceleratas to offload the more computationally intensive algoritfirosn software By
doing this, the throughput of the system will greatly increase and, hopefully, will reach
real-time processing speeds. Althoutje wholeenhancedMT algorithm could be put
onto an FPGAthis work will only explore two algorithms to acceleratae descriptor
matching algrithm and the SURF algorithm. Working with both software and hardware
allows thetrackingalgorithm to be modulawhich meanshere can be differearts of
theenhancedMT algorithmhappening on both hardware and software with the ability

to add more hardware modules in the future.

CPU

SURF Accelerator Matching Accelerator

Key point Orientation Descriptor KNN-Matching Match Score
Detection Assignment Extraction Engines Logic

Figure 11. High-level overview of the whole object tracking system.

25

The above figure shows the overview of the whole tracking system, where the
SURF and matching accelerators are done on an F&@are connected to the CPU
that will be performing the rest of thégarithm. The followingsectionswill give an
overview of the SURF accelerator, currently in development, and discuss, in detail, an

architecture of the descriptoratching algorithm

3.1 SURF

The SURF accelerator takes the curi@dRFalgorithm that$ used in OpenCV
and speeds it up to compute the keypoints and descripttes There are three main
parts of this accelerator: keypoint detection, orientation assignment, and descriptor
extraction. Keypoint detection encompasses threestags: itegral image generator,
fast hessian filters, and keypoint localization. The following figure shows déwigh

overview of the different steps in théxcelerator.

Integral Image Fast Hessian Keypoint
Generator Filters Localizer

Orientation
Assighment

Descriptor
Extractor

Figure 12. High-level block diagram of the SURF accelerator.

26

The next three subsections will go into more detail about the architecture and

algorithms use@®URFaccelerator.

3.1.1 Keypoint Detection

The first step in SURF keypoint detection is to calculate the integral image. The
integral image is used for théessian filter§12]. The calculation for the integral image
is explained in detail ifiL6], but the following figure shows a representation of the

calculation

Figure 13. Example of integral image calculation.

Calculating the integral image is simply taking the intensity values of all the
pixels withinarectangleformed bya point and the originand summinghem up For
example, irFigure13, the integral image value Boint 1 is the sum of all of the pixel
values inRectangle A. However, if an integral image value is needed for a specific
rectangle, such as rectangle D, the value can be computed by taking the pixel value at
Point 4, adding itto the integral image value Bbint 1, hen subtractingoth of the

integrd image values dPoints 2 and 3.

27

The integral image values are very useful to make the Hessian Filter step fast,
which is the next step of keypoint detection. The inputs to these filters are Gaussian
second order partial derivatives, but because tiegial image was calculated, the
integral image values can be used as a good approximation of these partial derivatives
[12]. The fast Hessian block contains eight different box filters, wihietvalues from
the integral imaggo through before outputting a response to the keypoint localizer. This
step is thresholded bywalue determined before running the algorithinlarger
threshold value for the Hessian responsigesult in fewerkeypointsproduced byhis
step. Hovever,too small of a thresholcheanghe algorithm will producenore, less
informative keypoints that will add noise for the other steps, such as matching.

The keypoint localizer is the final step in keypoint detection. Amagimum
suppression is afipd in a certaimeighborhood around each respofis. Then, the
maximum of the determinant of the Hessian responses are interpolated in scale and image

spaceusinga method proposed [7].

3.1.2 Orientation Assignment

Once all of the keypoints are detected, the orientation of each keypoint is
assigned. This step is critical in order for the features totagoninvariant. First, the
Haarwavelet response is calculated in the x and yctioes, whichoccursis in a circular
region around the keypoint withsaaledradius according to the scale at which the
keypoint was foun@nd the current scaj&2]. After the wavelet responses are
calculated, each one isewghted using a Gaussian distribution from the center of the

keypoint and are represented by vecf@®. Finally, the horizontal and vertical

28

responses are summed using a sliding orientation around the center with arf angle/o3 .

The maximum of the summations reveal the dominant orientation of the keypoint.

3.1.3 Descriptor Extraction

The last step of the SURF algorithm is to extract the descriptors from each of the
keypoints. First, a square, scaled region is constiwteund the keypoinglignedin
the direction othe keypoint. Then, more Haamavelet responses are calculated in
smaller sukregions of the larger squarehnththe vertical and horizontal directions
according to the orientation of the square re¢i@). The responses are then summed up

and combined to produce a descriptor vector with length of 64.

3.1.4 Performance Metrics
Although the SURF accelerator is currently being implemented, it is not currently
to a point vihere it can be fully evaluated for an exact latency time. Therefore, the

following equation is a good estimation of the total latency of the SURF algorithm.

e o A 1ETQQOQBEQN R Z 0
YYYoQuo Q¢ T AT L N
0aeWIMN6QE ww

This equation is based on the size of an imaygpixels)because of the keypoint
detection stepnust gothrough the whole image. The factorkaf being multiplied to the
number of pixels represents the average number of cycles to compute each keypoint and
descriptor pair. In thiarchitectureKy is equal to 11 clock cycle®sis the overhead

associated with memory bottlenecks. For the curmmeptlementation, the overhead is

29

aboutfive percent of the total valuso Q is estimated to equdl.05. This model is for
an architecture that is pipelined, but not fully streaming. The ideal case is a fully
pipelined and streaming architecture, in whaoase the following equation castimate

the total latency.

Mé "Q Qo Q& EQA "D

YY'YOA 0 QE 0w R
OAaEDIMNOQE ww

The K_ factor is deleted from the equation because of the fully strepnature
of this architecturdecause each cycle will produce a keypoifihe onlyincrease in this
model equatioms the overhead value, wheBgigealis Nowestimated to equal 1.08 (an
additional three percentverhead from the first model). This stneing architecture will
make the SURF accelerator extremely fast and will be able to perform SURF keypoint

detection and descriptor extraat in greater than rediime 0+ frames per second).

3.1.5 Software Integration

The SURF accelerator will be cadl upon once per franty the CPUnN order to
get all keypoints and descriptors in the entire image. When initialization occurs, the
hardware accelerator will provide the software with all of the keypoints and descriptors,
so thatsoftwarecanset the olgctand background models to the corresponding
keypoints Every frame afteinitialization will usethe SURF accelerator to get the
keypoints and descriptors that will be used to match against the backauodindject

models Because SURF is the most time consuming process ehttencedCMT

30

algorithm, this accelerator will produce a large speeih tipe overall systerand be able

to help the tracker reach rdahe performance.

3.2 Descriptor Matching

The descriptomatching algorithntries to match observed descriptoratet of
model descriptorand produces the two best match scores for each observed keypoint. It
thendeterming whether or not the best match is confident enough to be considered a true
match toamodel descriptor. It does this by usiadruteforcedistance computation
method where each observed keypoint is given a match score to each model kéypoint.
match is considered to be a close match when the distance béteeeo descriptors is
close b zero. The match scores can then be used to do other calculations, such as
confidence and difference ratio between the two closest matches.

The following subsections wilhtroducethe descriptoratching architecture,

from a highlevel overview, to madetailed descriptianof the morecomplexmodules.

3.2.1 Overview

The architecture for theescriptormatcheris made up of two main modules: a
controller and a datapath. The controller cossiba state machine and takeverall
controll of the macher. The datapath is where all computatiareperformed. This
includes the streaming of data in and out of the module. The following figure shows a

high-level design of thelatapath module

31

Datapath

Observed Keypoint Model Keypoint
Stream Data
[I
. . Keypoint
Floatto Fixed | | Datawidth | | Queue
Converter Adapter ¥
Filter

Spreading Logic

Datapath Controller [

Engine 0 Model/Observed Logic

0GQ - — = MGQ

Model Descriptor
ueue

I—Plp_elinqu - ‘ o ’:r’l;:_e;n_ﬁ‘:\l -
I \
I

[sa]e} mMDQ Distance

Compute |

Distance
Compute

\
\ \
0T
+ L
[\
\ |
[\
| L

Match Score Logic

Match Score
Output Logic / Buffer

Figure 14. Overviewof thedescriptomatcher datapath module.

In this overview, there are three main sectiotiedatapath controller, input data
logic, and computational logicThe datapath controller acts like a traffic controller,
making requests for data and directinthroughthe datapathThe input data logic,
consisting of the observed keypoint stream, model keypoint data, and the keypoint
conversion/spreading logic, takes care of data coming into the datapath (both the
observed and model keypoints) and converts tteeapplicable data types before
distributing them to the different enginesinally, the computational logic consists of the

engines where the match scores are calculated (there can be up to eight of these in a

32

datapath), and the match score output |bgiitér that takes the best score from all of the
engines in respect to an observegpoint and buffers it untieededy an external

source

3.2.2 Datapath Controller
The job of the datapath controller is to request the necessary data from memory
and direct ito the correct place in the datapath. It is possible t@nse&ontroller for
each engindyutit is better to let one overall controller be in charge of tenmng data
and distribute it to each dfi¢ engines. This not only reduces tbenplexity of the
engines, but it also saves resources by not having to duplicate controllers in each of the

engines. The following figre is a representation of the datapathtroller.

Datapath Controller

Observed Model
Group Group
Queue [— —- Queue

Observed Model

Descriptor Descriptor
Queue Queue

I —— _:

Figure 15. Block-level design of the datapath controller.

33

Although the controller will mostly be a state machine controlling signals and
requests, there are two main sets of queues being used for the conpfallatg requests.

The first set of queues are the observed and model group queues.

Model Group Descriptor

}4743-bit54+721—bit54+f 4 b'|t54+ S-bits+i15-bit54+736-bi‘r54>{
T R T e T

Figure 16. Description of the 12&it Model (Observed) Group Descriptor stored in the Model
(Observed) Group Queue.

Figurel6 shows the 12®it model group descriptor. This descriphas tle same
layoutas the observed group descript@ach group descriptor points directly to a
keypont descriptor, show ifigurel?7. The MGD base address and device ID is a
combination of bits that poisto the address of the first of up to 255dabdescriptors,
represented by the A# Model so field.
these descriptoris ordermake requests to memdiyr the model descriptorshen

needed.

34

The

Model Descriptor

F7354+729-bit54+7 12—b'|t54+715-bit54+736-bi1‘54>{
T T T T T
s~ 1

kr"—n-bits——\fs.biu»‘

Figure 17. Description of the Moel (Observed) Descriptor stored in the Model (Observed)
Descriptor Queue.

The above figure is the bit layout for the model (or observed) descriptors. These
descriptors are pointed to by the group descriptod,are set up as a listhere can be
upto 255 model descriptors per group descriptor, and each model descriptor can have up
to 4,095 keypoints associated withvithich are all stored in a lisfThe MD base address
and device |I D fields are used tiptorssarrcess th
used to make requests for individual keypo

different engines depending on whether they are observed or model keypoints.

3.2.3 Input Data Logic
The input data logic includes the tikeypointdata p&hs as well as somdata
manipulations before sending the descriptors to the engitesfollowing figure is a

representation of this logic.

35

Observed Keypoint Model Keypoint
Stream Data

I—I ’—I
|

Floatto Fixed | | Datawidth
Converter Adapter

Keypoint
— Queue
Filter

Keypoint

Spreading Logic

Figure 18. Block diagram of the input logic for the matching accelerator.

The observed keypoint streanaistream of descriptor data from each of the
requested keypoints from the current image, while the model keypoint data is descriptor
data coming from memory that was stored from a previoogel. The descriptors will
neverbeloadedinto the datapath at the same timdjch allows the datapath to make
resource optimizationsThe multiplexor shown in the above figure, controlled by the
datapath controlleselects which datig to be senthroughto the rest of the input log.

The first step is a float to fixedhtaconverter. This simply takes the floating
point representation of the descriptor (which is used in software) and converts it to a
fixed point representation of the same valilibe input to the module is 128ts, which
is split up intotwo 64bit floating point data structures. The output is a-bi28
representation of four 38it fixed point data structures.

The second step of theputlogic is a data width adaptelhe goal of this step is
to buffer thedescriptor data for each keypoint, plus 128 bits of information about the

keypoint, until all 64 descriptor dimensions at 32 bits each have been buitkesrithe

36

outputis adescriptor vector of 2,176 bit3 hese data structures are equivalent to one
SUREF feature in software and will be useaiihof the calculations famatching.

Next, the SURF feature will go through a keypoint filtering step wkeypoints
are filtered out bconsideration if not needed. Keypoints do not come into the datapath
in a manor where it only gets the keypoints that the datapath needs. Being able to filter
unwanted keypoints is a crucial stdpor example,fiwanting to only get keypoints
insidea specific ROI while a large amount of keypoints are coming into the datapa
possible for the keypoint filtering step to get rid of any keypoints that are outside the
ROL.

Finally, the keypoint descriptors will be spread out tapplicableand available
engines to perform the match score calculati@iace there cabe up to eight engines
in the datapath, each engine can be configured to work on different modelsarlgs
useful for object detection amdatching when trying to mata@n ROI toa known model.
Different engines can also work on the same model, asithe background model, when
there are a large number of model keypoifitse keypoint spreadinggic will
determine the engines that have space for descriptors (in the case of model descriptors
being loaded into engine queuasd which engines are wang on which modal For
observed descriptors, each one will need to be spread to all of the engines currently
working on model descriptoisecause each observed keypoint must be matched to all

model keypoints.

37

3.2.4 Computational Logic

The last stp of the descriptor matching datapath is the computational logic
section, which is made up of the matching engines and match score logic. The following
figure is a higHevel block diagram of this section. More detailed architectures of some

of the specit blocks will be explored in this section.

. [
Engine0 ™ lodel/Observed Logic |
I

Model Keypoint Queue
— 1 _ — 1 _

| Pipeline 0 | Pipeline N

Distance
Compute

Distance |
Compute

Pipeline
Match
Table

Pipeline
Match
Table

I
|

- —

Match Score Logic

B F=N

Match Score
Output Logic / Buffer

Figure 19. High-level architecture of the overall computational logic sedtiche descriptor
matching datapath.

The computational portion of the data path is composed of matehgiges.
There can be up twightof these engines. Each engine is responsible for computing a

match score for each observed keypoint descriptor against all model descriptors loaded

38

intotheenginé s model k e The engine will then eutp@ehtwo best match
scoredo the model keypoint in the engifigsing the match score logic block), and pass
thoseto the overall datapath match score output logic/buffer block. This last step will
take the overall two best matches from the different engindsompute confidence and
ratio scores to determine whether or not the descriptor is a good match to the model
descriptor.

There is also a configurability aspect of the datapath score output logic/buffer
block. For the background subtraction stepnhancedMT, the accelerator mugeep
track of both good and bad matches to the background model. Good matches will be
given to the homography algorithm to detect outliers and bad matches will be used for the
object matching stepSo, for descriptor ntahing used in background subtraction, the
datapattwill be configured to output both good and bad matchesythen performing

object descriptor matching, it will only be configured to output good matches.

3.2.4.1 Matching Engines

Figure19shows a higHevel representation of one matching engine. Within the
engine there ar®ur main parts: model/observed logmpdel keypoinfjueue,
computational pipelines, and match score logic. The first step is to have logic to
determindgype ofdata is coming ito the engine, eitherraodel or observed descriptor.
The type of data will determine where it will be sent in the endin¢he case of model
descriptors, the data will be seatthe model keypoint queuelf the data isn observed
descriptor then the descriptor will be sent to each active pipslinere match scores can

be calculated with respect to every model descriptor

39

Next, the model keypoint queue is a set of BRAMs that will hold all of the model
keypoints for that particular engine. Each pipeline will only compute match scores on a
subset of this queue, depending on how many pipelines are being used. The model
desciptors will be stored in the queue until all observed keypoints in an image have been
streamed through, at which point the current descriptors will be deleted from the queue
and new ones will be loaded.

Following the model descriptor queare the computenal pipelines. These
pipelines take care of all of the distance computatidter the model keypoint queues
are populated in the engireyservediescriptors will be loaded into the distance compute
block of the pipeline.The following figure reprgents the architectufer the distance

compute block.

Distance Compute

Model Desaiptor

Vector
Difference

’_k_|

Vector Multiply

Adder Tree

Square Root

]

Match Score Match Info
Queue Queue

[

Figure 20. Architecture of the distance compute block for computing match scores.

40

The distance compute blocktime computational pipeline represents the
calculation of match scosdor each observedndmodel keypoinpair. Because every
observed keypoint has to be matched to every model keypoint, the number of calculations
will be Ko* Km, whereKo is the numbeof observed keypoints ardl is the number of
model keypoints. However, these computations are spread across different pipelines and
engineswhichwill reduce the amount of time talculateall matches.

The first thing the distance compute blocksloei s | oad an observec
descriptor vector This vectowill be used foithe distance calculation until aitored
modeldescriptordiavebeen matchedThematch scorealculation follows thequation

for a Euclidearndistance measure:

D OIXYDHET Q 00 0O

Where ODRis the I" dimension of the observetkscriptor vectoand MD is the 1"
dimension of the modelescriptor vector
To start the pipeline, adeldescriptorswill be fetched from the model keypoint
gueue and sent to the vector difference block, which takes the diffebeteeen the
model and observetkscriptors This difference happerd each dimension of the
descriptor vectqrso there are 64 3@t subtractions happening simultaneously. As soon
as this calculation is done, the result is sent to be squared in the vector multiply block and

another modetiescriptor vectocan be sent into the pipelin@he vectomultiply block

41

takes two descriptarectors as inputand multiplies them together.uBin this case, the
vectors will be exactly the sams the result will produce a squaringtioé difference
betweerthe observed and model descriptoext, the adder tree sums up all of the
different dimensions of the squarééscriptorvector. Thigresult alone will give the L1,
or Manhattan, distance for the match score. However, to be more accurate, the square
root is taken antheresulting value is the L2, or Euclidean, distance between the two
descriptor vector The smaller this distancg the betterthe match.

Once the match score is calculated, it is placed into a match score gjoege
with the information associated with the score, such as the indices of the observed and
modelkeypoints being matchedrhe two outputs of the queueslvmerge into one data
structure and bsentfrom the distance compute block to the pipeline match table.

The pipeline match table does a quick comparison between the match scores of
each observed descriptor and outputs theld@gimatches from the pipele. The same
logic used in this step will be used in the engine match score logic block. Because the
accelerator needs teturns the top two matches for each observed keypoint, each match
table logic step must output the top two scores from each observed keypoint. The engine
match score logic will output the top two match scores from each observed keypoint

across all pipéhes in the engine.

3.2.4.2 Datapath Match Score Output Logic/Buffer

Once the two best match scores for an observed keypoint have left each active

engine, the datapath must choose the best two scoreadross all enginesThere also

42

needs to be soe post processing on these matches to determine whether or not the match

to the model is good or not. The following figure shows this logic.

Match Score Output
Logic / Buffer | | |* * ¢ * * »*
Match Score Comparison
Confidence and Ratio Calculations
Thresholding
Above Below
Threshold Threshold
Queue Queue

Figure 21. Match Score Output Logic/Buffer for the entire matcher datapath.

Theinputsto this block are the two best scores from each oathigeengines for
a particulabservedkeypoint. The first step is to take the top two match sdooes all
inputsfor akeypoint. The next step calculating the confidence ftine best natch score
as well as the ratio between the matches. The confidence and ratio equations are shown

below.

6 €& MQUOMPE @IV SLYDE T Q

O QIAIYDhET Q
Q®EEAXM A IXYDE T Q

YWO QF,Y

43

