
The Pennsylvania State University

The Graduate School

College of Engineering

REAL TIME OBJECT TRACKING ON ACTIVE PAN TILT ZOOM CAMERA 
USING CMT

A Thesis in

Computer Science & Engineering

by 

Kameran Davis

© 2015 Kameran J. Davis

Submitted in Partial Fulfillment 

of the Requirements

for the Degree of

Master of Science

May 2015



ii

The thesis of Kameran J. Davis was reviewed and approved* by the following:

Vijaykrishnan Narayanan 
Professor of Computer Science and Engineering
Thesis Co-Advisor

John Sustersic 
Research Associate, Autonomous Systems Department, Applied Research Lab
Thesis Co-Advisor

Jack Sampson
Assistant Professor of Computer Science and Engineering

Lee Coraor
Associate Professor of Computer Science and Engineering
Director of Academic Affairs

*Signatures are on file in the Graduate School



iii

Abstract:

Object tracking is a fast growing topic in computer vision.  Object tracking is especially useful in terms of 

unmanned and manned aerial, ground, and underwater vehicles, making inroads to replace manned 

vehicles for purposes such as videography, structural monitoring, surveillance, and aerial mapping.  

Other applications include motion-based detectors as well as human-computer interaction.  In this 

thesis, a feedback-based solution to automatically track a selected target is proposed and implemented, 

based on object motion in different parts of the scene and experimentation is performed to illustrate 

fulfillment of the Pan Tilt Zoom operations of the camera while tracking test subjects in real-time.  The 

approach uses Consensus Based Matching and Tracking of Keypoints to track the centroids of the 

objects.  After each frame, the algorithm updates the location of the object centroid relative to the 

center of the camera’s point of view.  With the proposed real-time tracking system, this location is then 

used to calculate what direction and by how many degrees does the camera need to move so that the 

object of interest is contained with the camera’s center of view.  This solution can be even be extended 

to function on multiple cameras tracking a single object, allowing to factor in other elements such as 

depth perception, or even the expanded to function as part of a fully autonomous localization and 

navigation systems for unmanned vehicles and robots.  
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Chapter 1

Introduction 

Over the years, advances in computing technologies have made it possible for a plethora of computer 

vision applications to run on desktop systems in real time.  Pan-Tilt-Zooms (PTZ) cameras are able to 

acquire high-resolution images and allow tracking events over a very broad range in the environment.  

There is an enormous amount of camera models for PTZ cameras in the market, and more are being 

installed each year in multiple outlets, whether these are homes, offices, or even unmanned and 

manned vehicles and robots.  It is due to the cameras’ capability to provide a much larger field of view, 

as compared to a static camera, that this camera is much sought after.  The pan, tilt, and zoom 

operations of the camera allows users to even track any objects of interest in a particular scene.  

1.1 Motivation

Many useful applications of tracking can include identifying objects, recognition of specific activities.  

One of the key components in being able to perform such activities, is to track particular objects in 

successive frames.  The primary task of our research is to track objects on a PTZ camera and track the 

object as the object moves from the center of the camera’s line of sight.  A PTZ camera is one that has 

motorized control for rotating the camera in all directions in addition to being able to zoom in on an 

image.  Many benefits can stem from the implementation of such a system.  These include the benefit of 

providing developers with the tools necessary to develop UxVs, surveillance systems, and for even 

expansion or incorporation into a fully autonomous system.

1.2 Research Focus

This research details the development of a PTZ camera system for tracking the object of interest and 

signaling the camera accordingly to follow the object of interest.  The first portion of this work will 

discuss various feature descriptors and which feature descriptor would be the best fit in the proposed 
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tracking system for performance purposes.  The work will then shift towards the development of 

algorithms which determine how far and in what direction should the camera turn to keep the object of 

interest in the center of its scope.  This portion of the work also includes a prediction system based on a 

sequence of frames and the amount of object displacement that occurs in between frames.

1.3 Goals

Automatic tracking can be used in numerous applications.  The goal of the work documented is to set up 

a real-time tracking system to be implemented on a PTZ camera. The test scenario is designed to show 

fulfillment of the Pan-Tilt-Zoom operations of the camera while tracking a test subject.  Specifics for 

fulfillment are provided in further detail based on the given and some assumptions and the desire to 

design such a system capable of accomplishing consistent target tracking.  For each test subject, the PTZ 

camera system results will have to be compared to truth data to meet expectations.
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Chapter 2

Background 

2.1 Overview

In terms of computer vision, object tracking is a very important task. Some areas that utilize object 

tracking include:

* Vehicle navigation: navigation unmanned vehicles with path planning and obstacle avoidance 

capabilities.

*Automatic Surveillance: monitoring a variety of scenes to detect activities 

* Human-Computer Interaction: interactions which occur between a computer and human, such 

as giving gestures, or tracking eye location to use as input data for computers.

* Motion-based Detection: object identification based on shape

Object tracking can become very complex due to a number of factors including:

* Real time processing requirements (e.g. Delay from Network Cameras)

* Scene Illumination Changes

* Noise in the image

* Object occlusions, whether partial or full

* Complex object shapes or motions

Many of the existing object trackers are model-free.  In other words, fragments are chosen arbitrarily 

and not by reference to pre-determined parts based description of the target.  Model-free object 
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tracking’s main advantage is the applicability in a variety of different scenarios without requiring any 

domain-specific knowledge or training.  It is becoming more important that algorithms handle the 

complete disappearance of the object for an undefined amount of time.

There have been considerable progress in making model-free object tracking methods more robust, but 

the problem itself is unsolved due to challenges from occlusions, clutter, and various types of 

appearance changes caused by variations in illumination, camera position, or the object itself.

Models that decompose objects into multiple parts prove more robust, as local changes will only affect 

individual parts that are lost or in an erroneous state.  

Keypoint detectors such as SIFT, FAST, BRISK, and several others estimate properties such as scale and 

rotation out of the image data, making keypoints ideal for parts-passed object model representation.  

Further works on extremely fast keypoint detectors and binary descriptors have dramatically decreased 

the computational burden of detecting and matching corresponding keypoints, allowing for the use of 

keypoints in a real-time tracking system.

There are many cases where targets must be tracked across an area larger than what is visible in a single 

camera’s field of view.  This opens up one of two solutions:

* The target is tracked across multiple cameras.

* The target is followed with a moving PTZ camera.

The later approach is often times more desirable than the former because in cross camera tracking, the 

target can become lost in the blind regions between cameras, as in real world environments, it is very

difficult to calibrate cameras.  In addition, it can be difficult to lay out cameras in such a way that there is 

always overlap between the fields of view of the cameras.  Following a target allows for more flexibility 
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to adjust the camera in response to certain events so that a clear view of the target of interest is 

obtained. 

2.2 Object Detection

2.2.1 Computer Vision Based Object Detection

Many of today’s technologies incorporated Computer Vision (CV) techniques for being able to identify 

objects for tracking in real-time.  Detection is the action or process of identifying the presence of 

something concealed.  Object detection can be broken down into components such as features, shape, 

appearance, representations, and classifications.  

* Detection – Detection is the action of identifying the presence of a material thing can be seen.  

Object detection can fall into one of multiple subcategories which include segmentation-based 

detection, learned-based detection, point-based detection, and motion-based detection.  These 

categories are described as point detectors, segmentation, background modeling, and 

supervised classifiers in Yilmaz, et al.

* Learning/Recognition – Recognition is the action of recognizing the identification of a person, 

place, or thing from previous knowledge.  This term can often be confused with detection as it 

uses many of the same object detection methods in order to “recognize” objects in an image. 

* Classification – Classification is the process of classifying something according to specific 

shared characteristics or qualities.  One example is the identification of an object through a 

series of successive states until a given name is reached such as:

Object -> Animate -> Animal -> Reptile -> Snake -> Python -> Dark Yellow ->

Female -> Name = “Betsy”.
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Classification tends to be very tedious and computationally expensive in specifying every detail 

of a particular object of interest.  

2.2.2 Detection Categories

2.2.2.1 Supervised Classifiers

Recent work in feature tracking uses learning algorithms with classifiers that recognize objects in 

images.  Supervised classifiers are typically refer to the usage of learning algorithms that have the 

presence of an outcome variable to guide the learning process to train classifiers.

* Neural Networks are used to reduce computational steps required during search processes.  

Focus is generally on face recognition.  A face must initially be detected within an image before 

it can be recognized.  

* Adaboost, or “Adaptive Boosting”, is a machine learning meta-algorithm written by Yoav 

Freund and Robert Scharpire.  It is considered one of the most efficient algorithms in object 

detection where boosting is a widely used technique [42] [43].  Adaboost makes use of a small 

number of weak-classifiers, which then construct cascades of strong classifiers.  This 

combination result in high accuracy rates and computational efficiency.  

* Artificial Neural Networks are families of statistical learning algorithms which were inspired by 

the biological neural networks, or central nervous system, and are used for function 

approximations that depends on large number of inputs that are typically unknown.  These 

along with support vector machines (SVM) as well as Naïve Bayes Classifiers are different 

method of classification and inference methods.  



7

2.2.2.2 Background Modeling

In changing backgrounds, establishing a model can be difficult, therefore, background modeling is used 

typically with static cameras.  A regular sequence of frames is generally used to distinguish the 

background from the foreground pixels as well as to provide some robust processes for interpreting the 

background.  Piccardi provides a very detailed look at background modeling with numerous sources such 

as Sequential K-D approximation, Kernel Density Estimation, Temporal Median Filters, Running Gaussian 

Averages, and Occurrence of Image Variations [44].

2.2.2.3 Segmentation

The main objective of segmentation is to segment objects or regions from the background.  It can be 

defined as the task of finding groups of pixels that can go together.  Some popular methods include 

Markov Random Field (MRF), Mean Shift (MS), and active contours.  Thresholding is another simple way 

of segmenting images.  The process of thresholding segments objects in an image by using features such 

as color and intensity, however, the challenge is in the selection of an optimum threshold in order to 

obtain specific objects of interest.

2.2.2.4 Point Detection

The information about a particular point is generally contained in a descriptive vector, or descriptor, 

which has a voluminous number of dimensions.   Some examples of point detectors include Harris 

interest point detector, Gradient Location Orientation Histogram (GLOH) [45], DAISY [46], and the 

Histogram of Oriented Gradients [47].  Many of these approaches use a combination of methods and 

processing developments.  The computer vision community is continually expanding on one another’s 

ideas to develop further improving algorithms.
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2.2.3 Object Representation

In terms of tracking scenarios, objects are defined as any person or object that is of interest for analysis.   

These objects can be represented by their shapes and appearances.  These multiple representations 

include

* Point – represented by a centroid or a set of points; the point representation is generally 

suitable for the representation of objects that occupy small regions in an image.

* Primitive Geometry – represented by an ellipse, rectangle, etc.; object motion for these 

representation are modeled typically by translation, affine, or homography transformation.  

Though primitive geometric shapes tend to be more suitable for representing simple rigid 

objects, they can also be used for tracking non rigid objects.

* Articulated Model – represented by body parts that are held together by joints; the primary 

relationship between different parts is governed by kinematic motion models.  In order to 

represent an object that is articulated, one can model the constituent parts using either 

cylinders or ellipses.

* Silhouette – represented by the boundary of an object, the region inside is the silhouette; 

Silhouette models are useful for tracking complex non-rigid shapes.

* Skeletal Model – Object skeletons are extracted through the application of medial axis 

transformation on the object silhouette.  This model is often utilized as a shape representation 

for recognizing objects.  In general, there is a prominent relationship between the object 

representations and tracking algorithms.  Object representations are chosen according to the 

application domain.  For object tracking, which appear very small in an image, point 
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representation is typically appropriate.  For those objects whose shapes can be approximated by 

rectangles or ellipses, primitive geometric shape representations are a more appropriate choice.

There are several ways that the appearance of an object can be represented.  Some of these shape 

representations can also be combined with appearance representations for the purpose of tracking.  The 

most common representations based on appearance include:

* Probability Densities – The probability density estimations of the object appearance are either 

parametric, such as Gaussian or nonparametric, such as Parzen windows or histograms.  The 

probability densities of object appearance features, such as color and texture, can be computed 

from the image regions specified by shape models (the interior region of an ellipse).

* Templates – Templates are formed using simple geometric shapes or silhouettes.  One major 

advantage is that templates carries both spatial and appearance information.  Templates, on the 

other hand, only encode the object appearance, therefore, they are generally suitable for 

tracking objects whose poses do not vary considerably during the course of tracking.  Self-

adaption of templates during tracking is possible. 

* Active Models - Active models are generated the simultaneous modeling of the object shape 

and appearance.  The object shape is defined by a set of landmarks, which can reside on the 

object boundary or, alternatively, reside inside the object region.  For every landmark available, 

an appearance vector is stored which is in the form of gradient magnitude, texture, or color.  

Active models require a training phase as well where both the shape and its associated 

appearance are learned from a set of samples using, for example, the principal component 

analysis.
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* Multiview Models – Multiview models encode different views of an object. One approach for

representing the different object views is by generating a subspace from given views.  Subspace 

approaches, such as Independent Component Analysis and Principal Component Analysis, have 

been used for both appearance and shape representation.

One of the critical roles in tracking includes selecting the right features.  The most desirable property of 

visual features is the objects’ distinguishability in a feature space.  Many tracking algorithms typically 

use a combination of these features.  The features include the following:

* Edges – The boundaries of objects typically generate strong changes in image intensities.  Edge 

detection is often used to identify these changes.  Edges are less sensitive to illumination 

changes in comparison to color features.  Algorithms that track the boundary of objects use 

edges as the representative features.

* Color – The apparent of an object is influenced by two factors.  One is the surface reflectance 

properties of an object.  The RGB (Red, Green, Blue) color space is typically used to represent 

color.  The other factor is the spectral power distribution of the illuminant.

* Texture – The texture includes the measure of the intensity variation of a surface that 

quantifies properties such as regularity and smoothness.  In comparison to color, texture 

requires a processing step to generate descriptors.  In addition, texture features are less 

sensitive to illumination changes compared to color.

* Optical Flow – Optical flow is the dense field of displacement vectors defining the translation 

of each pixel within a specific region. Optical flow is computed using the brightness constraint, 

which assumes brightness constancy of the corresponding pixels in each consecutive frame.  
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Optical flow is commonly used as a feature in motion-based segmentation and tracking 

applications.

2.3 Pan-Tilt-Zoom Camera Applications

Contributions using PTZ cameras continue to increase due to improvements in real-time object 

detection and tracking algorithms.  There have been multiple studies done that discusses tracking and 

maintaining objects of interest in real-time.  Camera motion can undesired, for the purposes such as 

image stabilization requirements, or desired, for tasks such as building background mosaics [28].  In each 

case, the principals involves finding the transform from an image to its respective reference.  These 

transforms are generally found between frames by matching point correspondences [55] or block 

matching [27].  Another technique is the use of projective textures as references [56].

Features that are non-specific are very useful in general-purpose applications.  These type of features 

generally include motion-based features.  General purpose trackers allows for a greater degree of 

flexibility in handling multi-purpose problems and also allows for tracking of objects of nearly any shape 

or size.  This makes an ideal situation for tracking systems that can track a plethora of objects without 

having the worry with changes in illumination or appearance with certain application specific methods.

PTZ cameras have been categorized into three major research areas: calibration, 3D localization, and 

tracking. As processing power continues to improve, new as well as existing tools have been applied in 

real-time situations.  These tools have also been used for tracking object within a static camera’s view or 

tracking those objects with a moving camera.

Tracking
Planar Structure From Motion [26]

Background Subtraction with Mosaic [27][28][29]
CAMShift with Kalman Filter [30][31][32][33]

CAMShift with Window Differencing [34]
CAMShift with back/foreground properties [35]
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Region Covariance Feature Matching [36]
Background Compensation [37]

Face Sequences [19]
Upper Body and Face Detector [38]

Complementary Features with Particle Filtering [18][39]
Multi-Target Tracking [49][51][52][53][54]

3D Localization
Reactive Zoom [26]

Mosaic [40]
Calibration

Bundle Adjustment [20]
Givens Rotations and an Image Pair [21]

Intrinsic as a function of Zoom [23]
SIFT with Displacement Constraints [22]

SIFT to create Mosaic Image [24]
Geometric Restrictions (Motion Recalibration) [25]

Table 2.1: Pan-Tilt-Zoom Camera Applications

Heuristics, techniques designed for producing solutions in a quicker fashion when classic methods are 

considered too slow, have often been used to design detectors for the purposed increasing speed or 

accuracy.  Some particular applications in terms of pan, tilt, and zoom cameras include tracking the color 

on specific shapes [32].  Other methods are often used for detecting objects such as MeanShift, 

CAMShift [30] [32] [35] [38], learning an object’s appearance using Principal Component Analysis and 

the sum of a squared difference [39],  skin color segmentation [48], and GMMs [35].  Some of the 

overhead associated with application specific algorithms generally include increased setup time, 

decreased system versatility, and some feature change limitations.

Work has also been done on multi-target tracking.  One work proposed the Rao-Blackwellized PF for the 

purpose of multi-target tracking.  According to their work, the authors assume that finite sets of motion 

models are able to sufficiently address target tracking issues and select the Interacting Multiple Model 

Filter due to its performance [49].  Further work includes methods of jointly estimating object tracks, 

estimating the corresponding 2D and 3D temporal trajectories in the reference system of a camera as 

well as estimating model parameters for the purpose of estimating stable tracks that can be associated 
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to multiple object IDs [51].  These same authors also developed a system capable of detecting and 

tracking people and objects from image and depth sensors on mobile robots [52]. Other methods of 

multi-target detection and tracking includes the use of particle filters [53] [54].

2.4 Summary

This chapter provided a brief overview of object detection and tracking, computer vision techniques and 

their respective Pan Tilt Zoom applications.  The Pan Tilt Zoom applications and tracking forms the basis 

for ever developing work in building Pan Tilt Zoom computer vision systems for performing a vast 

assortment of tasks.  Common tasks include Mean-Shift, Optical Flow and differentiating forms of 

background subtraction.  
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Chapter 3

Computer Vision Tracking Techniques

Many algorithms are available for detecting and tracking objects, and the field continues to expand in 

terms of speed and complexity.  Many of the algorithms chosen were based on availability, popularity, 

and programmability.  Real-world camera feeds with varying locations provide comparison data for 

experimentation and testing with many of the following metrics and methods.  This chapter compares 

the different available image/video processing techniques used on stationary as well as moving cameras.

3.1 Motion Detection

Motion detection can be defined as the process of detecting changes in the position of an object relative 

to the object’s surroundings.  Motion detection can be achieved through several means including sound, 

infrared, magnetism, radio frequency, vibrations, and optics.  The following sections will discuss motion 

detection as they are related to the field of computer vision.

3.1.1 Optical Flow

Optical flow is the pattern of apparent motion of surfaces, objects, and edges within a visual scene 

caused by the relative motion between an observer, whether a camera or an eye, and the scene.  The 

estimation of motion is possible through the use of sequences of ordered images.  These estimations are 

either discrete image displacements of instantaneous image velocities.    The optical flow method 

attempts to calculate the motion that occurs between two image frames which are taken at times t and 

t+Δt at each voxel position.

3.1.2 Gaussian Mixture Model
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The Gaussian Mixture Model is a parametric probability density function that is represented as the 

weighted sum of Gaussian component densities.  These models are generally used as parametric models 

of the probability distribution of continuous measurements or features in a biometric system.  

Parameters are estimated from training data using the iterative Expectation-Maximization (EM) 

algorithm or Maximum A Posteriori (MAP) estimation from well-trained prior models.  The model with 

M components is represented in the following equation:

where x is the D-dimensional continuous-valued data vector(measurement or features), wi,i=1,….,M, are 

the weights of the mixture, and g(x|μi,Σi),I = 1,….,M are the component Gaussian densities.  Every

component density represents a D-variate Gaussian function of the following form:

with the mean vector μi and the covariance matrix Σi.  The entire model is parameterized by mean 

vectors, covariance matricies, and mixture weights from all component densities.  These parameters are 

then collectively represented by the following notation:

3.1.3 Point Selection and Averaging

Optical flow requires point selection.  A region about the desired tracking point, tp, is selected initially to 

establish points to observe through a sequence of frames.  Calculations of tracking points used for error 

analysis is equated by summing up the foreground point location for the Gaussian mixture model and 
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flowpoints for optical flow in I(i+1) and dividing them by the overall number of foreground points or 

flowpoints.  Those are expressed as the following:

where nf is the number of flowpoints, nFG is the number of foreground pixels, xf is the pixel coordinate of 

a flowpoint, and xFG is the pixel coordinate of a foreground model.

3.2 Feature Detection

Feature detection is the process of obtaining image information and making local decisions at each 

image point whether or not there is an image feature of a specific type.  There are multiple categories of 

image features which can fall under one of four categories.

* Ridges – Ridges are idea for elongated objects.  Ridges are often defined as a one-dimensional 

curve representing an axis of symmetry, and has an attribute of local ridge width that is 

associated with every ridge point.  Unlike the other feature detection categories, it is generally 

more difficult to extract ridge features from general classes of grey-level images.

* Corners – Corner algorithms were developed so that explicit edge detection would no longer 

be a requirement, for example by analyzing the curvature of an image gradient.  These corners 

were also found being detected on parts of the image that were not corners in a traditional 

sense.  An example of this includes a small bright spot surrounded by a dark background.  These 

points are commonly known as interest points, but “corner” is more generally used.
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* Edges – Edges are defined as the points where there is an edge or boundary that exist 

between two different image regions.  Edges are typically are arbitrarily shaped, and can include 

junctions.  These algorithms generally place a degree of constraints on gradient value, shape, 

and smoothness properties.

* Blobs – Blobs provide a unique description of image structures in terms of regions, as opposed 

to corners that are point-like similar to the other categories discussed above. Blobs, however, 

can contain a local maximum, or preferred point, meaning that blob detectors can also be 

regarded as interest point operators.  With a shrinking image, for example, the detectors 

responds to points which are sharp in the shrunken image, but may be smooth in terms of the 

original image.  Its here that the difference between a blob detector and a corner detector may 

become somewhat obscured.  This can however be remedied through an appropriate notion of 

scale.  

The following section will discuss the different type of feature detectors that were compatible with the 

applications that are discussed in this thesis.

3.2.1 SIFT

Scale-invariant feature transform (SIFT) was published by David Lowe in 1999.  SIFT is able to detect 

features that are invariant to image scale and rotation, and has been shown to provide robust matching 

across a substantial range off distortion, illumination changes, noise, and changes in 3D viewpoints.  

Keypoints of objects are extracted from a set of reference images that are stored in a database.   The 

object is then recognized in another image by individually comparing each feature from the new image 

of the database and finding the candidate matching features, which is based on the Euclidean distance 

of their feature vectors.



3.2.2 SURF

Speeded Up Robust Features (SURF) is partly inspired by the SIFT descriptor.  The authors claim that 

SURF is less sensitive to noise than SIFT.  SURF also requires less computational time which makes SURF 

an attractive feature detection algorithm.  Rather than using Gaussian averaging for the image, squares 

are used for approximation.

SURF uses BLOB, based on the Hessi

executed per training image through a process of visualizing each keypoint detected by SURF, manually 

excluding keypoints not on the object of interest.

3.2.3 FAST

Features from Accelerated Segment Test (FAST) is a corner detection method, used to extract feature 

points and can later be used to track and map objects.  This detection method uses a circle of 16 pixels 

to classify whether or not a point p

of N pixels that are neighboring in the circle are brighter than the intensity of candidate pixel 

by Ip) plus the threshold value t or all darker than the intensity of candidate pixel 

value t, then p is classified as a corner.

3.2.4 GFTT

Good Features to Track (GFTT) is a feature selection criterion that is optimal by construction due to it 

being based on how the tracker works, and a feature monitor method that is able to detect occlu

disocclusions, and features that do not correspond to points in the world.

determining affine changes by utilizing the Newton
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Speeded Up Robust Features (SURF) is partly inspired by the SIFT descriptor.  The authors claim that 

sitive to noise than SIFT.  SURF also requires less computational time which makes SURF 

an attractive feature detection algorithm.  Rather than using Gaussian averaging for the image, squares 

SURF uses BLOB, based on the Hessian, due to its high accuracy, to find points of interest.

executed per training image through a process of visualizing each keypoint detected by SURF, manually 

excluding keypoints not on the object of interest.

rated Segment Test (FAST) is a corner detection method, used to extract feature 

points and can later be used to track and map objects.  This detection method uses a circle of 16 pixels 

is indeed a corner.  Each pixel is label from 1 to 16 clockwise.  If a set 

in the circle are brighter than the intensity of candidate pixel 

or all darker than the intensity of candidate pixel p minus the threshol

is classified as a corner.

is a feature selection criterion that is optimal by construction due to it 

being based on how the tracker works, and a feature monitor method that is able to detect occlu

disocclusions, and features that do not correspond to points in the world.  GFTT is a solid method for 

determining affine changes by utilizing the Newton-Raphson minimization procedure, similar to what 

Speeded Up Robust Features (SURF) is partly inspired by the SIFT descriptor.  The authors claim that 

sitive to noise than SIFT.  SURF also requires less computational time which makes SURF 

an attractive feature detection algorithm.  Rather than using Gaussian averaging for the image, squares 

to find points of interest.  Training is 

executed per training image through a process of visualizing each keypoint detected by SURF, manually 

rated Segment Test (FAST) is a corner detection method, used to extract feature 

points and can later be used to track and map objects.  This detection method uses a circle of 16 pixels 

label from 1 to 16 clockwise.  If a set 

in the circle are brighter than the intensity of candidate pixel p (denoted 

minus the threshold 

is a feature selection criterion that is optimal by construction due to it 

being based on how the tracker works, and a feature monitor method that is able to detect occlusions, 

GFTT is a solid method for 

Raphson minimization procedure, similar to what 
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has been done for a pure translation model [57].  This tracker shows that features with good texture 

properties can be defined through optimizing the tracker’s accuracy.

3.2.5 BRISK

Binary Robust Invariant Scalable Keypoints (BRISK) is a 512 bit binary descriptor that is used to compute 

the weighted Gaussian average over a selected pattern of points near the keypoint.  It then compares 

the values of specific pairs of Gaussian windows, leading to either a 1 or 0, depending on which window 

in the pair was greater.  This then creates binary descriptors that work with hamming distance rather 

than Euclidean, and can be made to run extremely quickly using special SSSE hardware instructions for a 

speedup of up to 6x.  

3.2.6 FLANN

Fast Library for Approximate Nearest Neighbors (FLANN) is an algorithm that is used with both SIFT and 

SURF.  This system consist of a library of nearest neighbor algorithms from which FLANN then 

automatically determines the most appropriate algorithm and parameter settings given a specific 

database.  There are a variety of settings that can be changed using FLANN.  One of the initial 

parameters if the type of search to perform.  There is a kd-tree search, a k-means search, a linear, brute-

force search, and an auto-tuned search that selects one of the previously mentioned searched and tunes 

the parameters.  
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Chapter 4

CMT

4.1 OpenTLD / CMT

The capability of tracking objects is at the core of any application that is intended on understanding raw 

video data.  Tracking-Learning-Detection (TLD) is a real-time algorithm developed for the use of tracking 

unknown objects in video streams. This system was developed by Zdenek Kalal during his PhD thesis at 

the University of Surrey. The object of interest is defined by using a bounding box in a single frame.  TLD 

synchronously tracks the object of interest, learns its appearance and detects it whenever it appears in 

the video. The result is a real-time tracking system that can improve over time.  The ROS 

implementation of OpenTLD consists of two nodes: the tracker node which use the OpenTLD library and 

an interface node that allows you to select a bounding box, start and stop the object tracking, start and 

stop the learning, import or export a model, change the tracker’s method and clear the background and.  

Consensus-based Matching and Tracking of Keypoints (CMT) is an updated more precise version of 

OpenTLD.  CMT is a novel keypoint-based method for long-term model-free object tracking in a 

combined matching-and-tracking framework.  This algorithm is able to track a wide variety of object

classes in a multitude of scenes without the need of adapting the algorithm to the concrete scenario in 

any way.  The main idea behind CMT is breaking down the object of interest into small parts, or 

keypoints.  In order to localize the object in each frame, each keypoint casts votes for the object center.  

In each frame, the program finds the keypoints that were already there in the initial selection of the 

object of interest.  This is done using two different methods.  First, the program tracks keypoints from 

the previous frame by estimating what is known as its optic flow.  Secondly, the algorithm matches 

keypoints globally by comparing their descriptors.  Compared to other approaches, this algorithm excels 

when the goal is high accuracy. [8] This algorithm attempts to decouple static and dynamic elements in a 
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radical fashion by basing the appearance model on the first frame only and by addressing changes in 

appearance by employing adaptive tracking techniques.

Figure 4.1: CMT Breakdown

Given a sequence of images I1,……,In, as well as an initializing region b1 in I1, CMT recovers the pose of 

the object of interest or indicates that the object is not visible.

The object model is based on a set of keypoints:

Each keypoint denotes a location in template coordinates and the descriptor f.  O is initialized by 

detecting and describing keypoints in I1 that are inside the initializing region b1, then followed by a 

mean-normalization of the keypoint location. In order to recover the object pose, in each It with t>2, the 

authors were interested in finding the following set of corresponding keypoints.

In order to locate the object, each keypoint will cast a vote h(a,m) -> R2 for the object center, resulting in 

the following set of votes:
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In the simplest form, the translation changes of the object is considered only:

where rm represents the relative position of the corresponding keypoint of O. When the scale of an 

object changes, votes have the tendency to either overshoot the object center of fall short.  This 

limitation is overcome by scaling the votes by a single scale factor of s, therefore the previous equation 

will become:

When the location a or the model index m of an entry in K’ is incorrect, the votes will not target the 

object center, but instead point to arbitrary image locations.   If Vc contains less than theta * |O| 

elements, it is assumed that the object is not visible.  Otherwise, the votes in the consensus cluster are 

turned into an estimate for the object center where n = |Vc|.

For the final output, the authors compute a non-axis-aligned bounded box by transforming the four 

corners c1,…,c4 of b1 by

where R is the rotation matrix 

It has been shown through an extensive evaluation that CMT achieves state-of-the-art results on a great 

number of sequences.  The approach was compared to other “state-of-the-art” tracking approaches 
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such as SB (Semi-supervised online Boosting [13]), TLD (Tracking-Learning-Detection [14]), STRUCK 

(Structured output Tracking [15]), FT (Fragments-based Tracking [16]), and LM (LearnMatch [17]). 

4.2 Comparison to Other Trackers

This algorithm is compared to the other state-of-the-art tracking approaches such as STRUCK, TLD, FT, 

LM, HT, and SB.  The algorithms were tested on 20 different sequences ranging from track running, to 

car chases.  

Sequence CMT Structured 
-Output 
Tracking 
(STRUCK)

Tracking 
Learning 
Detection 
(TLD)

Fragments-
based 
Tracking 
(FT)

LearnMatch 
(LM)

Hough-
Track 
(HT)

Semi-
supervised 
online 
Boosting 
(SB)

Liquor 
(Low)

0.91 0.74 0.70 0.46 0.86 0.07 0.43

(Medium) 0.89 0.66 0.68 0.44 0.84 0.00 0.43

(High) 0.85 0.49 0.23 0.38 0.70 0.00 0.43

Table 4.2.1: Tracker Comparison Chart (Liquor)

Sequence CMT Structured 
-Output 
Tracking 
(STRUCK)

Tracking 
Learning 
Detection 
(TLD)

Fragments-
based 
Tracking 
(FT)

LearnMatch 
(LM)

Hough-
Track 
(HT)

Semi-
supervised 
online 
Boosting 
(SB)

Person 
Crossing 
(Low)

0.76 0.51 0.86 0.88 0.80 0.18 0.96
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(Medium) 0.70 0.42 0.70 0.66 0.75 0.10 0.91

(High) 0.58 0.12 0.10 0.15 0.42 0.04 0.16

Table 4.2.2: Tracker Comparison Chart (Person Crossing)

Tables 4.2.1 and 4.2.2 show two samples of test results the authors obtained from their experiments.  

Their algorithm achieved the highest recall in 9 (low acc.), 11 (medium acc.) and 12 (high acc.) out of the 

20 sequences and attains the highest average recall in all categories.  Experimental evaluations 

demonstrated that this method is able to achieve state-of-the-art results and that it this algorithm is 

especially well suited when high accuracy is desirable.
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Chapter 5

Tracking Methodologies

5.1 Tracking

When the C++ port of the CMT algorithm is running, the camera is signaled to take one shot.  Once the 

shot has been taken and is displayed on screen, the user then has the option to select the object to be 

tracked.  Once a target object has been identified by the operator, the first task of the tracking module is 

to determine where the center point of the object is relative to the camera’s point of view.  These 

coordinate values are obtained through the CMT algorithm.

Figure 5.1: Sample of C++ CMT Port Working

Afterwards the tracker then makes a decision on whether or not the center of the object is in the center 

of the camera’s field of view.  Equations to control the pan and tilt of the camera are as follows:

where COx is the x coordinate of the center of the image and CIx is the x coordinate of the center of the 

object of interest.  R is represented as follows:



26

where A is a constant 7.  This is reference point that is used to shift the camera’s view to the mid-point 

between the center of the camera’s field of view and the edge of the camera’s field of view if that value 

were to be sent as a pan parameter to the camera.  This is illustrated in Figure 5.2, where the red larger 

point on the horizontal axis is the midpoint between the center and the edge, and the gold point is the 

center of the camera’s field of view.  This value may vary depending on the type of camera that is being 

used.  Similarly for the tilt control of the camera:

where COy is the y coordinate of the center of the image and CIy is the y coordinate of the center of the 

object of interest.  R is represented as follows:

where A is a constant 5. This is reference point that is used to shift the camera’s view to the mid-point 

between the center of the camera’s field of view and the edge of the camera’s field of view if that value 

were to be sent as a tilt parameter to the camera.  This is also illustrated in Figure 5.2, where the green 

larger point on the vertical axis is the midpoint between the center and the edge, and the gold point is 

the center of the camera’s field of view.  This value will also vary depending on the type of camera that 

is being used. Once the tilt and pan values have been obtained, the values are then used in signals 

which are sent to the camera through a Transmission Control Protocol/Internet Protocol (TCP/IP) port 

connection.  
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Figure 5.2: Reference Points (red = pan; green = tilt; gold = center)

5.2 Prediction

Due to the nature of the network camera, there is slightly noticeable degree of delay.  Therefore, the 

system cannot always center the camera on the target correctly using only the determined object 

position.  In order to compensate the motion of the target during the delays, a position predictor was 

used.  Prediction depends on the average speed of the target over a set amount of frames, the angle 

difference of the object between frames, and the actual amount of delay itself.  The average speed of 

the target for a set of frames is the following:



where x1……xn are the two displacements.  Motions are calculated when the camera is not moving. 

and d2 represents the delay between each respective frame.   Therefore, the system will put the camera 

center on the predicted position which is:

where β represents the original target coordinate

frames.  P itself represents the target coordinate prediction.  

the speed of the network and camera response time, and the displacement o
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are the two displacements.  Motions are calculated when the camera is not moving. 

represents the delay between each respective frame.   Therefore, the system will put the camera 

center on the predicted position which is:

original target coordinate, dn is the average camera delay over a number of 

P itself represents the target coordinate prediction.  The camera is adaptively controlled with 

the speed of the network and camera response time, and the displacement of the target itself.

are the two displacements.  Motions are calculated when the camera is not moving. d1

represents the delay between each respective frame.   Therefore, the system will put the camera 

e camera delay over a number of 

The camera is adaptively controlled with 

f the target itself.



Figure 5
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Figure 5.3: Object Tracker Flow Chart
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5.3 User Interface

The interface is simple in design.  Once the program has started, the PTZ camera will take an initial 

photo, which will be displayed on screen.  From this point, the user then has the ability to select which 

object should be followed.  After selecting the object, the user can select “t” or “T” to begin tracking 

that object using CMT.  The object of interest will be covered with keypoints based on which keypoint 

detector the user decides to use as well as a box surround the object of interest.  The image is broken 

down into four quadrants, in which the program will inform the user on which quadrant the center of 

the object of interest lies. The quadrants are illustrated in Figure 5.3. After each successive frame, the 

program will also throw out pan and tilt numbers which will be sent to the camera for the purpose of 

controlling the pan and tilt position of the camera.  The camera continuously tracks the object of 

interest until the user indicates to terminate the tracker, thus closing the program.  This flow is 

illustrated in Figure 5.2.
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Figure 5.4: Camera Module Breakdown

Figure 5.3 illustrates the working of the camera module.  The aim of the camera control module is to 
keep the center point of the target as close to the center of the image as possible.  In every frame, the 
object center is calculated returned back to the user.

* If the center of the object is in quadrant I, the camera will pan right and tilt up.

* If the center of the object is in quadrant II, the camera will pan left and tilt up.

* If the center of the object is in quadrant III, the camera will pan right and tilt down.

* If the center of the object is in quadrant IV, the camera will pan left and tilt down.

* If the center of the object is in between quadrants I and III, the camera will pan right.

* If the center of the object is in between quadrants II and IV, the camera will pan left.

* If the center of the object is in between quadrants I and II, the camera will tilt up.

* If the center of the object is in between quadrants III and IV, the camera will tilt down.
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Figure 5.5: Tracker Interface Sample
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5.4 Connecting To the Camera

The camera used for experimentation utilizes WebView over HTTP protocol, or WV-HTTP.  This is a 

protocol that provides video transmission as well as camera control function for network cameras 

through way of HTTP.  The program initially takes a single shot and displays that on screen using 

GetOneShot.  

* GetOneShot – GetOneShot retrieves JPEG data stream in a multi-part format.  When multiple 

frames are specified, the maximum connection time is therefore the limit.  The following URL 

protocol was used for GetOneShot:

http://<username>:<password>@<IP address>/-wvhttp-01-/GetOneShot?frame_count=0

For full functionality, additional signals are sent to the camera.

* OpenCameraServer(priority = ‘ ‘, video = ‘ ‘, vc_host = ‘ ‘) – OpenCameraServer creates a WV-

HTTP session.  When creating a privileged session, priority is specified with “priority”.  This 

priority level is then used for access management, control privilege management, and so on.  

Session life span can differ depending on the priority, with privileged sessions (those with a 

priority level of 5 or higher) unlimited, and general sessions (those with priority levels of 0) 

limited to the maximum connection time, or set value.

GET /-wvhttp-01-/OpenCameraServer HTTP/1.1\r\n

* GetCameraControl – GetCameraControl requests the camera control privileges.  The control 

privileges allocation time is determined by the session’s priority level, with privileged sessions 

unlimited, and others set to a finite value, or the set value.

GET /-wvhttp-01-/ GetCameraControl?connectionid=’ ‘&p = ‘ ‘& t =‘ ‘  HTTP/1.1\r\n
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*OperateCamera(p = ‘ ‘, t = ‘ ‘, z = ‘ ‘, pan = ‘ ‘, tilt = ‘ ‘, zoom = ‘ ‘, focus_mode = ‘ ‘, focus_value = 

‘ ‘, back_light = ‘ ‘) – OperateCamera switches and controls the camera pan, tilt, zoom, focus, 

and backlight correction.

GET /-wvhttp-01-/ OperateCamera?connectionid=’ ‘&p = ‘ ‘& t =‘ ‘  HTTP/1.1\r\n

* CloseCameraServer  - CloserCameraServer deletes the WV-HTTP session.

GET /-wvhttp-01-/CloserCameraServer   HTTP/1.1\r\n
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Chapter 6

Experiments and Application

The following section will detail the software and devices that are used for tracker experimentation.  

The system will be tested on multiple objects around the lab including drink bottles, mobile devices, and 

a set of markers that are visually similar.

6.1 Hardware

A single computer is used to control the pan, tilt, and zoom of the camera as well as the camera itself.  

Table 6.1 provides the computer specifications.

Figure 6.1 ASUS Ultra Etorque X1 CPU

Manufacturer ASUS
Model Ultra Etorque X1

Processor Intel® Core™ i7-4770K CPU @ 3.50GHz 3.50 
GHz 

Installed Memory 16.0 GB
Graphics Card Intel® HD Graphics 4600

Dedicated Graphics Memory 64 MB
Processor Cores 4
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System Type Windows 7, 64-bit Operating System

Table 6.1 Computer Specifications

The camera used is a Canon VB-C300 Network Camera.  This camera is illustrated in Figure 6.1.  Because 

of the nature of network communication, there is some delay in receiving acquired frames as well as 

sending control commands.   Communication between the control center and the PTZ camera is 

executed through TCP/IP packets (i.e. all images that are captures and the control commands are sent 

through the network).

Figure 6.2: Canon VB-C300 Network Camera

Units 1
Manufacturer Canon
Product Name VB-C300
Image Sensor ¼ Type CCD (Primary Color Filter)

Max Resolution 115° (-90° - 25°)
Scanning Method Progressive

Number of Effective Pixels 330,000 Pixels
Lens 2.4x Optical with Auto Focus (4x Digital)

Focal Length 3.0(W) – 7.2mm (T)
Pan Angle Range 340° (+170°)
Tilt Angle Range 115° (-90° - 25°)
Moving Speed Pan: Max. 90°/sec, Tilt: Max. 70°/sec

Table 6.2: Camera Specifications
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6.2 Software

The C++ compiler and programming development environment used was Microsoft Visual Studios 2013.  

The computer vision application programming interface used was an open BSD-licensed Software 

Development Kit called OpenCV version 2.4.9 [50].

6.3 Assumptions

There are several assumptions that will be made concerning the test subject as well as the environment, 

and several given and assumptions that are made concerning the design of the Pan Tilt Zoom camera 

system.  The following assumptions are given regarding the test subject, PTZ camera system, and the 

environment:

* The test subject is unknown to the Pan Tilt Zoom system

* The environment is static during testing (i.e., no significant movements beside the test 

subject)

* The PTZ system contains only one camera for tracking the test subject

* The PTZ system is capable of capturing the test subject upon entrance into each camera’s Field 

of View (FOV) after the object of interest has been selected.

* The PTZ system can track a fully or partially visible test subject

The algorithm is evaluated for tracking generic moving objects.  Using the single camera without zoom, 

objects were tracked at approximately 1.0 m/s.  In the case that the camera loses sight of the object of 

interest, the camera is signaled to move to the centerpoint of the last known location of the object.  

Once the object is back within the camera’s scope, the camera will then proceed to track the object. 



38

Chapter 7

Results

The experiments were performed using BRISK features.  This decision was made due to BRISK providing 

the least amount latency issues as opposed to the other feature detectors mentioned earlier, while still 

being able to provide enough keypoints for consistent tracking.  This may have resulted from some of 

the feature detectors being more computationally intensive.   The amount of latency that occurred 

during tracking typically ranged between a quarter of a second to nearly three-fourths of a second. The 

background was generally static.  The only moving objects included the objects of interest and my hand, 

used to move the objects.  Initial experiments showed that the camera had a tendency to undershoot 

when following the object.  This stemmed primarily from too many signals being sent to the camera 

during specific time frames.  This promoted the use of waits to limit signals to around 3-4 commands per 

second.  This remedied some of the initial issues.  The prediction system also helped the camera keep 

the object closer to the center of the camera’s field of view.   There were some issues generated from 

the regular use of CMT.  In the markers sequence, for example, the tracker tended to switch to another 

marker in the near vicinity (ex. Switching from the brown marker to the black marker and eventually 

back to the brown marker).  When the tracker switched to another marker, the tracker would then 

begin following that marker.  Because of this occurrence, the amount false positives were much higher 

in markers sequence as opposed to the phone camera and bottle sequence.  This information can found 

in Figures 7.2, 7.4, and 7.6.



Other sequences include capturing other objects around the lab including plastic bottles, phone 
cameras, and various shapes.  These are illustrated in Figures 7.3 and 7.5.

Figure 7.2: True/False Positive Chart (Marke
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Figure 7.1: Sequence (Markers)

Other sequences include capturing other objects around the lab including plastic bottles, phone 
These are illustrated in Figures 7.3 and 7.5.

Figure 7.2: True/False Positive Chart (Markers)

Other sequences include capturing other objects around the lab including plastic bottles, phone 



Figure 7.4: True/False Positive Chart (Phone Camera)
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Figure 7.3: Sequence (Phone Cam)

Figure 7.4: True/False Positive Chart (Phone Camera)



Figure 7.6: True/False Positive Chart (Bottle)

41

Figure 7.5: Sequence (Bottle)

Figure 7.6: True/False Positive Chart (Bottle)
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

A real-time, PTZ camera system was developed.  The system discussed in this work requires no training.  

Some of the major advantages of not having to train or set pre-defined features includes but is not 

limited to reducing the setup time.  Other objectives completed includes the implementation of a 

prediction system to compensate for the delays that occurs due to the nature of the network camera.  

Multiple teste were conducted illustrating the ability to track a variety of objects in the environment and 

the ability of the PTZ camera to respond accordingly when an object of interest moves away from the 

center of the camera’s FOV.

8.2 Limitations

Some initial lag does exist when the camera initially starts up.  The lag typically last for around 5 seconds 

before the camera is able to consistently track the object of interest. 

Due to the nature of CMT, the user is currently only able to track one item at a time as opposed to 

tracking multiple items simultaneously. 

8.3 Future Work and Considerations

8.3.1 Design Space Exploration

Additional work can focus on the evaluation of some design alternatives for system development.   

Certain video sequences and feeds can often times lead to a substantial reduction in the number of 

tracked and active keypoints.  After losing a certain percentage of keypoints, the tracker may eventually 

lose the entire object altogether.  In this case, it would probably be feasible to consider using another 

object tracker that would better stabilize the overall tracking maintenance or making some changes to 
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the CMT algorithm to prevent a box bounding the object of interest to “jump” unrealistically to another 

point.  A substitute to that could also include tracking the object with multiple keypoint detectors for a 

more stable keypoint model, but with the overhead of extra computational time. Other small design 

choices that can be considered is the possibility of changing the camera altogether with the intention of 

selecting a camera that provides a smaller amount of network latency in comparison to the Canon VB-

C300.

8.3.2 UxV Autonomy

We see a couple of directions we may go for future expansion of work in this thesis.  Expansion of the 

system to function as a fully autonomous localization and navigation system for an unmanned vehicle.  

Using cameras on UxVs will allow for more freedom of movement.  This incorporation will allow for the 

camera to move so that subjects remain in its Field of View, potential expanding effective capture 

volume as well as for better travel/flight data.

8.3.3 Depth Perception

Other considerations includes the addition of another camera for the purpose of a dual camera system.  

The main idea behind the camera is that additional information can be obtained from the environment 

such as depth.  This extra depth data will then allow you to know what objects are near and far from the 

camera.  
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