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Abstract

This work extends a previous one that investigated link age and its effect on network evolu-
tion. Whether aging adversely influences prediction power of links in network evolution is the
fundamental question partially answered in the previous work. Additionally, this study argues
whether reliable old connections in a network have a great impact on future link predictions.
One of our hypotheses is that aging of a link is a crucial factor in link prediction. The other
one is that prediction power of a link usually lessens over time. Using logistic regression and
mixture extension, younger links are observed to dominate the link prediction process in most
cases. However, this is not always the case. We cannot ignore the links that are old but still
powerful. In addition to prediction power of the links, using a mixture model improves the overall
link prediction accuracy. The findings of this research support the implications of the previous
work that some old and unstable links might be removed from the network.
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Chapter 1
Introduction

With whom would an author be interested in collaborating in his academic research? Another

co-author of those with whom he published a paper 10 years ago, or last year? Or, is it likely to

expect that he is willing to receive LinkedIn connection recommendations based on the one he

met 5 years ago? Or, let us ask a question from his daily routine. Would he still want to receive

advertisements related to an item that he added on his wish list 3 years ago?

Most of the popular network properties are based on network growth. These properties

indicate that a network always evolves by new vertex additions. This means that a link always

remain in the network after being connected. At this point, however, the stability of the links

becomes questionable. In other words, one cannot guarantee that links will always be active once

they are added. In this work, we study how the effectiveness of links in a network changes over

time. Specifically, we answer this problem in terms of their efficacy in predicting possible future

link formations.

Figure 1.1: A Simple Network showing the Connections with respect to years

Studies in network theory have proposed many models that capture the overall statistics

of a network. Thanks to these models, networks with high clustering coefficient, scale free

power distributions can be generated. Some studies have also revealed that degree information
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of networks increases with new nodes, while the diameter of the network does decrease. This

implies, hence, that networks expand over time. Since networks gradually develop, predicting

future nodes and edges has attracted scientist’s interest. Many models accurately predicting

future links have been introduced in recent years. Even though this has provided scientist with

the opportunity to observe the factors affecting link prediction, few researches have investigated

how aging has an impact on a link’s power in predicting new connections.

Most of the related works propose models that generate networks, and which predict and

recommend possible future links to these networks. This is where the question arises: Does a

network always grow? Are the links in the network always active? If not, is there any way to

realize which links do not contribute to the network evolution? [1] states that as a link ages, it

is getting less powerful in predicting new links. However, this study does have some limitations

such that there could be important old links in network, and their prediction power might not

decrease. This means, [1] illuminates the problem to some extent, but we still need a broader

solution.

Conducting this work is significant because main goal is to observe whether links are always

active once they are connected to a network. We investigate links’ contribution to network

evolution, and consider the aging of the links as a factor affecting this contribution. Proving that

link age might adversely influence the prediction power of a link might lead to the addition of

the notion of ’vertex subtraction’ to network theory.

In this study, our hypothesis is that younger links are usually more effective than the older

ones in predicting future connections. We expect that as a link ages, it does not provide much

information to predict possible link formations. This does not mean that all of the old links in a

network gets weaker as they age. There are certainly old connections that are still powerful and

informative on link prediction. However, many of the older links gradually become inactive in

network evolution, and it is possible to delete these old and uninformative links from the network.

In order to validate the hypothesis, we treat this problem as a supervised learning task. This

provides us the opportunity to solve this link prediction problem by using features and labels

generated from the network. To generate the network, we use DBLP computer science dataset

that includes research papers published in the field of computer science. Using the dataset, we

create a co-authorship network by including authors who have at least 5 published papers. Each

node in the network correspond to an author. Each link between two nodes means that two

authors co-author a paper. We sort the co-authorship network with respect to years such that

each year has its own network information. [1] demonstrates that author’s collaboration period

between one another radically decreases after 3 years. Hence, we define our source network as the

combination of three consecutive years, and target network as the following year’s co-authorship

information. Figure (1.2) shows that source network has the years y,y+ 1 and y+ 2, while target

network consists of the year y + 3’s information.

We use source and target networks to generate features and labels, respectively, to predict the

following year’s link formations, and to observe how link age influence the link prediction. For
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Figure 1.2: Visualization of Source and Target Networks

feature generation, we compare each links in the network, say i− j pairs, and use the following:

x1 =
∑

∀k⊂mfij

nca,y(i, k)

x2 =
∑

∀k⊂mfij

nca,y(j, k)

where nca,y(i, k) is the number of co-authored papers between nodes i and k in year y. The node

k corresponds to each mutual friend that the nodes i and j have in common. Same process is

repeated to find the total number of co-authored papers between the nodes j and k. Since we

have three consecutive years in the source network, and each year has 2 individual features, we

have 6 features in total. To create the labels that show the presence or absence of the links in

the network, we use the target network. If nodes i and j are connected in the target network,

the label, yij , is 1 and 0 otherwise.

Logistic regression classifier with a mixture extension is the model that we use. The reason

why logistic regression is used is that learned coefficients of it would quantitatively describe which

feature is more dominant. We use mixture extension because some links may be influenced by

either old or young links. Or, in some cases, old links could be more important. There may be

multiple profiles that explains different subsets of the network links.

Our experimental results show that younger links are generally more helpful than older ones

in predicting the following year’s links. In addition to what is found in [1], we also observe that

in some cases, older connections are still strong and provide more information than younger links

in predicting the future year’s links. In fact, the performance of either young or old links are even

better when we consider multiple component. This means that although younger connections

provide more information than older ones in most cases, we cannot pigeonhole the idea that all

of the older links gets weaker when they age.
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The overall outline of this work is as follows: Chapter 2 reviews the previous work related to

our study. Chapter 3 introduces the model that we use. Chapter 4 describes the data and the

experimental procedure. Chapter 5 provides the results based on the experiments. Last but not

least, Chapter 6 includes the discussions and future research that can be conducted.



Chapter 2
Related Work

Generation and evolution of a network has been widely studied in recent years. Researchers

have proposed numerous methods visualizing the statistical properties that give the overall pic-

ture of a network. Since networks are dynamic, many models predicting future formations have

been presented. Besides, the link prediction in networks has been even interpreted as a super-

vised link prediction problem. However, few studies have focused on the significance of link age

in forming future links in a network.

Figure 2.1: Network Generation and Evolution

Models approximating the statistical properties of networks have been thoroughly studied

in literature. A network with high clustering coefficient and short average path length can be

generated [2]. For larger networks, it has been shown that networks with scale-invariant power-

law degree distribution can also be generated [3]. This is based on the fact that networks grow

with new nodes; and these nodes usually connect to those whose connections are well-established

(Preferential Attachment). Graphical distribution of a network is reveled to be inferred by power

law [4]. It is also useful to generate complex networks [4]. Degree information of a graph is proven

to be grown as the network evolves (Densification Power Law) [5]. Another model produces a

network with heavy-tailed degree, the Densification Power Law, and a shrinking diameter [5].
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Advances in structures of network topology are reviewed in [6, 7]. All these well known studies

show that theory of network structure has already been developed.

Evolution of a network can be considered as adding more vertices to the network. To predict

which nodes will be added to form new links in the network, vertex similarity measures can be

used [8]. In addition to this, accuracy of link prediction is higher when local structured similar-

ity measures are used [9, 10]. Al Hasan et.al [11] is one of the first studies considering the link

prediction problem as a supervised learning task. This means that presence or absence of links

in a network can be the labels, and global or local statistics of the network can be expressed as

the features of this supervised classification [11]. Their approach is simply extracting features

from network, and labeling the links such that they belong to particular classes according to

their presence or absence in the network. Many of the supervised classification techniques are

compared in [11] to find the prediction accuracy. Even though all of the techniques provide

satisfactory results, it is pointed out in the paper that SVM is the best one among all of the

methods. Papers [12], [13], [14], are the literature surveys that review most of the popular work

in detail.

Even though network generation and evolution has been widely studied, influence of link age

on formation of new links has yet to attract much attention [1]. This phenomenon has been stud-

ied after link prediction problem is approached as a supervised link prediction task [11]. Chen

et al. [1] enlightens two unanswered questions in literature: First, how the interaction of nodes

change over time; and second, how the age of a link has an impact on predicting the following

year’s link info. They first realized that the collaboration periods among nodes are no more than

3 years. What is observed in their experiments is that connection of nodes drastically decreases

after 3 years. In order to answer the second question, logistic regression classifier is used [1].

Learned coefficients of the logistic regression classifier show [1] that younger links dominate the

prediction of the following year’s links. Hence, inactive and unimportant links are claimed to be

deleted from the network [1].

In our work, we want to evaluate the link age as a factor when predicting future links. As

in [11], we consider this as a supervised learning problem. What is different in our study is that

we evaluate the importance of link age, while [11] concentrates on prediction accuracy of super-

vised learning methods such as decision tree, K-NN, MLP and SVM. As mentioned above, [1]

also studies link age as a factor of link prediction. What makes our study unique is that we use

logistic regression classifier and its mixture extension, which is a more powerful model than used

in [1], allowing multiple link formation profile. Hence, our proposed model is able to cover more

scenarios than the one given in [1].

In summary, in literature, there are countless well-known models that generates networks with

shortest path length, high clustering coefficient, scale free power-law distribution etc. Besides,
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some notable researchers in network evolution area have proposed particular properties such that

network always expands by new vertices. Network evolution has also been studied in terms of

predicting possible future connections of the nodes. Many models accurately predicting new links

have been introduced. Even though these problems have been widely investigated, how active

the links are in link prediction as they age is still an open area to study. In this work, we answer

this question.



Chapter 3
Methodology

This section introduces the methods to conduct this research. We first introduce the data-

set we use to perform experiments. Then, we discuss how the features are generated from the

dataset. Next, we introduce logistic function, derive its mixture extension for link prediction

problems and propose it as our model for this work. We finally, describe our performance criteria

showing how this work achieves.

3.1 DBLP Dataset

To create the co-authorship network and to find the influence of link age in new link prediction,

we use the DBLP Computer Science Bibliography data set. The data is collected between the

years 1905 and 2007, and includes the detailed list of research papers published in the field of

computer science. It has the following information: author, paper and the year that the paper

is published.

Table 3.1: Data Characteristics

Number of Nodes 178,154

Number of Edges 3,621,265

Table (3.1) shows that the number of nodes of the data set is 178,154. When predicting new

links, we compare each node to the rest of the nodes in the network. In this case, the data

set becomes tremendously large, which causes computational problems. In order to avoid such

complications, we sample 20,000 nodes from the data.

In order to train the data we use the year 2003’s network. Information of the years between

2004 and 2007, on the other hand, is used for testing.
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3.2 Features

After the data is obtained and sampled, the next step is generating the features to perform

the experiments. We use the following six features extracted from the years t, t+ 1, t+ 2;

Table 3.2: Features with respect to years

x1 =
∑
∀k⊂mfij nca,t(i, k) x2 =

∑
∀k⊂mfij nca,t+1(i, k) x3 =

∑
∀k⊂mfij nca,t+2(i, k)

x4 =
∑
∀k⊂mfij nca,t(j, k) x5 =

∑
∀k⊂mfij nca,t+1(j, k) x6 =

∑
∀k⊂mfij nca,t+2(j, k)

Where the features x1−x4, x2−x5 and x3−x6 belong to the years t, t+ 1, t+ 2, respectively.

Describing x1−x4 will be sufficient to understand x2−x5 and x3−x6 since the only distinction

between these is that they are generated using different year’s data. nca,t(i, k) is the number

of co-authored papers between the nodes i and k where k denotes each mutual friend that the

nodes i and j have in common. Hence, the notation ∀k ⊂ mfij shows the mutual neighbors of i

and j.

As described before, x1 and x4 are the features extracted from the year t. The difference

between x1 and x4 is that the former generates the number of co-authored paper between the

nodes i and k, while the latter finds the number of co-authored papers between j and k. 1

After generating the feature matrix, we re-scale it such that each feature has the value between

0 and 1. By re-scaling the features, values of the learned coefficients become the most significant

factor to evaluate the performance of the model.

Assuming that the dimension of the feature matrix is d, we have the following row for each

i− j pair;

X̃ij = [x1, x2, x3, ..., xd] (3.1)

After the normalization process, we have;

X̃
¯

=

[
x1 −min(Xij)

max(Xij)−min(Xij)
,

x2 −min(Xij)

max(Xij)−min(Xij)
, · · · , xd −min(Xij)

max(Xij)−min(Xij)

]
(3.2)

1Generating a co-authorship network, mutual friends and feature matrix is thoroughly described in Appendix
(A).
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Table (3.2) shows that we use 6 features in this study. In this case, the dimension of our feature

matrix is d = 6, and we have 6 data points to normalize for each realization.

The network of the years t,t+ 1 and t+ 2 are defined as the source network, while t+ 3 is the

target network. We use the features of the source network given in table (3.2) to predict the links

in the target network. When doing so, we only use the nodes that are in both source and target

networks. This means that we ignore the nodes that are only in the source or target networks.

We also do not consider the links connected in both networks since we want to concentrate only

on new connections. Hence, we pay no attention to edges that are in both of these networks.

Figure 3.1: Generating labels

Since this is a supervised link prediction problem, we need class labels. To get these labels,

we use the links in target network that is either 1 or 0. The class label 1 means that there is a

link between i− j pair, while 0 means there is not.

Table 3.3: Classifiers

C1 C2 C3 C4

t X X
t+1 X X
t+2 X X

In order to compare the performance of the links with respect to particular years, we use 4

different classifiers. Classifier C1 includes all of the features, while C2, C3 and C4 have only the

youngest, mid-age and the oldest links, respectively.

3.3 Model: Logistic Regression and a Mixture Extension

for Link Prediction

Before introducing the logistic regression concept, let us recall the problem we are concen-

trating on. We investigate the effect of link age on new link predictions. In order to find an

answer to this, the problem should be divided into two separate parts: first, we have networks

of consecutive years, and second, we want to observe how these networks influence the following



11

year’s network formation.

To observe how the networks of the consecutive years impact the following year, we need to

combine their features so that we have meaningful information to predict the following year’s

connection. This means that we are to find the prediction power of each feature in order to

observe their importance.

The second part of the problem is whether these networks have an impact on presence or

absence of the links in the network of the following year. Link existence implies binary outcomes

such that the outcome is 1 and 0 in case of link existence and non-existence, respectively. To

solve the second part of the problem, we need to predict the outcome of the class labels.

Since we want to know how features of the input affect output and to predict the outcomes of

it, logistic regression model is a perfect match for our purpose. The reason is that one can infer

the strength of each feature by the coefficients of the logistic regression function. This advantage

of the logistic regression model helps us to solve the first part of our problem. Logistic regression

is also widely used to predict the outcomes of dependent variables such as class labels, which is

another reason why it is a good fit as a model.

We have described the problem that we want to solve and the model we want to use. We

now introduce the logistic function. Then we will derive the conditional likelihood and the log

likelihood to maximize the probabilities.

The logistic regression function is the following;

P (Y = 1|X̃
¯

; θ
¯
) =

1

1 + e(θ0+
∑d

k=1 xkθk)
(3.3)

The term (θ0 +
∑d
k=1 xkθk) is nothing but the expression of a linear regression function whose

range is between [−∞,∞]. Since this term is used inside an exponential function as given in equa-

tion (3.3), P (Y = 1|X; θ) tends to 1 and 0 as (θ0 +
∑d
k=1 xkθk) goes to∞ and −∞, respectively.

θ0, ..., θd and x1, ..., xd are the parameters of the logistic function and the features,respectively.

d denotes the dimension of the feature vector. In order to avoid notational complexity, let us

define x0 = 1, and write the following:

P (Y = 1|X
¯

; θ
¯
) =

1

1 + e(
∑d

k=0 xkθk)

=
1

1 + e−(X¯
θ
¯
T
)

= p (3.4)

where the parameters are,

θ
¯

= [θ0, θ1, ..., θd]

X̃
¯

= [x1, x2, ..., xd]

X
¯

= [1 X̃
¯

] (3.5)

One can think of computing the probability of logistic regression as parameterized Bernoulli
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distribution. What this means is that if the probability of link presence, P (Y = 1|X; θ), is

defined as p, then the probability of link absence is 1 − p. Assuming that y denotes the link

presence or absence, this can be shown as the following:

P (Y = y|X
¯

; θ
¯
) =

p, y = 1

1− p, y = 0
(3.6)

The above equation is given separately. Merging these two separate probabilistic equations

will notationally be convenient for future derivations. Since the probabilities are p and 1-p for

y=1 and y=0, respectively, we can write the equation as follows:

P (Y = y|X
¯

; θ
¯
) = py(1− p)(1−y) (3.7)

Equation (3.7) given above give us the opportunity to derive an equation such that the

probability can be found for each y. For example, when y = 1, the equation becomes P (Y =

1|X
¯

; θ
¯
) = p, and similarly, P (Y = 0|X

¯
; θ
¯
) = (1− p) when y = 0.

3.3.1 Mixture of Logistic Regression

We have introduced the notion of logistic regression, and given its probability mass function.

In our study, however, we want to use a mixture of logistic functions. The reason for using

mixture is that some link formations may be strongly influenced by new links, while others may

be influenced by reliable old links. More generally, there may be multiple predictive profiles that

are each helpful in predicting part of the network in a future year. To mix the model, we use

individual distributions and mixing coefficients that sum to one.

P [Y = y|X
¯

; Λ] =

M∑
k=1

αkPk[Y = y|X
¯

; θ
¯k

] (3.8)

where Λ includes the parameters α1, ..., αM and {θk0, ..., θkd} such that k = [1, 2, ...,M ], and d

is the dimension of the feature vector, respectively. Recall that αk’s are the mixing coefficients

such that
M∑
k=1

αk = 1 where M is the number of components. Pk[Y = y|X
¯

; θ
¯k

] is the individual

distribution of the component k for a given feature and parameter vectors X
¯

and θk
¯

, respectively.

Λ = ({αk}, {θk,j}) (3.9)

We are to optimize the parameters in Λ to maximize the likelihood of P (Y = y|X
¯

; θ
¯k

). Before

discussing the optimization part, we will introduce the notion of maximum likelihood in the

following section.
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3.3.2 Maximum Likelihood

As discussed in section (3.3.1), we have mixture of logistic regression, P (Y = y|X
¯

; θ
¯k

), whose

likelihood is to be maximized. We already discussed that coefficients in equation (3.9) are the ones

to be optimized so that we have the maximum likelihood. In order to optimize these parameters,

we have an objective function, which is a likelihood function in this case. Assuming the data has

N nodes to compare, and all of these realizations are independent of each other, the likelihood

function can be written as the following;

L =

N∏
i=1

N∏
j=i+1

P [Yij = yij |X̃
¯ ij

; Λ] (3.10)

where i and j are individual nodes, and i − j is the edge showing the link information in a

network. It is common in machine learning applications to take the logarithm of the likelihood

function for mathematical and notational convenience. In so doing, we have the following;

` =

N∑
i=1

N∑
j=i+1

logP [Yij = yij |X̃
¯ ij

; Λ] (3.11)

=

N∑
i=1

N∑
j=i+1

log

M∑
k=1

αkPk[Yij = yij |X
¯ ij

; θ
¯k

] (3.12)

Equation (3.12) shows that the log likelihood of the mixture of logistic regression is found

by simply summing the logarithm of the mixture densities of each realization. Having found an

equation for the log-likelihood function, we now write the complete data log-likelihood.

3.3.3 EM Algorithm

In order to estimate the parameters that maximizes the likelihood, we use Expectation-

Maximization (EM) algorithm [15] that is widely used in pattern recognition community. EM

algorithm is an iterative process that estimates the parameters that maximizes the likelihood. It

is useful especially when the data has latent variables.

EM algorithm has two main steps: Expectation and Maximization steps. In the expectation

step, the algorithm computes the expectation of the log-likelihood function by assuming all of the

latent variables are observed. This is done for each iteration. Then, in the maximization step,

also known as the M-Step, the maximum likelihood function is maximized by using the quantities

found in the E-Step. Since this is an iterative algorithm, the parameters that are maximized in

the M-Step of the ith iteration are used in the E-Step of the (i + 1)th iteration. This process

continues until the parameters and the log-likelihood function converges, which means that there

is not a significant change in parameters anymore.

[15] proves that the likelihood function used in the EM Algorithm never decreases during

EM iterations. Based upon this fact, we expect in theory that objective function monotonically

converges after some point.



14

3.3.3.1 Expectation Step

The data that we use has obviously latent (hidden) variables [16]. In this section, however,

we assume that we observe the latent variables and know the following binary random variable

such that it is 1 if a particular component is responsible for generating the information for a link

i-j, and 0, otherwise. This binary random variable can be shown as;

Vij,k =

1, if kth component generated (i, j) link info

0, otherwise
(3.13)

If Vij,k is defined as above, and assuming the data is complete, the log-likelihood function, `c

can be written as;

`c =

N∑
i=1

N∑
j=i+1

log

M∑
k=1

Vij,kPk[Yij = yij |X
¯ ij

; θ
¯k

] (3.14)

=

N∑
i=1

N∑
j=i+1

M∑
k=1

Vij,kPk[Yij = yij |X
¯ ij

; θ
¯k

] (3.15)

where, (i− j) is the pair that is linked in network. N and M are the total number of nodes and

the number of components, respectively. As mentioned, Vij,k is the binary random variable that

shows whether or not kth component generated the link (i−j). Pk[Y = 1|X; Θ] is the probability

that there is a link between (i− j) pairs.

If there is a link between pair (i− j), then we get Pk[Yij = 1|X̃
¯ ij

; Θ
¯

] or p. By the same token,

if there is no link between (i− j), then we get Pk[Yij = 0|X̃
¯ ij

; Θ
¯

] or (1− p).
Taking the expectation of the complete data log-likelihood, lc, we get;

E[`c|X; Θ] = E

 N∑
i=1

N∑
j=i+1

log

M∑
k=1

Vij,kPk[Yij = yij |X
¯ ij

; θ
¯k

]

 (3.16)

=

N∑
i=1

N∑
j=i+1

M∑
k=1

E[Vij,k|X
¯ ij

] log(αkPk[Yij = yij |X
¯ ij

; θ
¯k

]

=

N∑
i=1

N∑
j=i+1

M∑
k=1

E[Vij,k|X
¯ ij

](logαk + logPk[Yij = yij |X
¯ ij

; θ
¯k

])

=

N∑
i=1

N∑
j=i+1

M∑
k=1

E[Vij,k|X
¯ ij

] logαk

+

N∑
i=1

N∑
j=i+1

M∑
k=1

E[Vij,k|X
¯ ij

] logPk[Yij = yij |X
¯ ij

; θ
¯k

]) (3.17)

From equation (3.17), it is possible to recognize E[Vij,k|X
¯ ij

] as the posterior probability of

component k, i.e P [µij = k|X
¯ ij

]. Besides, using Bayes’s rule, an equation can be derived for
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P [Vij,k = k|X
¯ ij

; θ
¯k

]. In so doing, we have the following;

E[Vij,k|X
¯ ij

; θ
¯k

] = P [Vij,k = 1|X
¯ ij

; θ
¯k

] (3.18)

=
P [Yij = yij |Vij,k,X

¯ ij
; θ
¯k

]P [Vij,k = 1|X
¯ ij

; θ
¯k

]

P [Yij = yij |X
¯ ij

; Θ
¯

]
(3.19)

=
αkPk[Yij = yij |X

¯ ij
; θ
¯k

]
M∑
l=1

αlPl[Yij = yij |X
¯ ij

; θ
¯l

]

] (3.20)

We found an equation for the expectation of the binary random variable; and it is given in

eqaution (3.20).

3.3.3.2 Maximization Step

Equations (3.16) and (3.17) show how the expectation of the complete data log-likelihood can

be expressed. We now maximize the parameters α and θ using the expectation equation derived

in (3.17). Since the parameters α and β are independent of each other, we first optimize α, then

θ, respectively. We will then use these maximized parameters in the expectation step of the next

iteration.

Maximizing α

In order to maximize α, we are to take the derivative of equation (3.17), and set it to zero.

∂

∂αk
(E[`c|X

¯
; Θ

¯
]) = 0 (3.21)

Since the second term of equation (3.17) does not include the parameter α, its derivative will be

zero. Hence, we only concentrate on the first part of the equation.

∂

∂αk
(E[`c|X

¯
; Θ

¯
]) =

∂

∂αk

 N∑
i=1

N∑
j=i+1

M∑
k=1

E[Vij,k|Xij
¯

] logαk

 (3.22)

Knowing from equation (3.18) that E[Vij,k|Xij
¯

] can be expressed as P [Vij,k = 1|X
¯ ij

; θ
¯k

], we can

write the following:

∂

∂αk
(E[`c|X

¯
; Θ

¯
]) =

∂

∂αk

 N∑
i=1

N∑
j=i+1

M∑
k=1

P [Vij,k = 1|Xij
¯

; θ
¯
] logαk

 (3.23)

We use Lagrangian multiplier to maximize αk, and set the derivative to zero. Since the mixing

coefficients sum to 1, lagrangian multiplier λ has the constraint such that
∑M
k=1 αk = 1. Thus,
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the equation will be as,

∂

∂αk

 N∑
i=1

N∑
j=i+1

M∑
k=1

P [Vij,k = 1|X
¯ ij

; θ
¯k

] logαk + λ

(
M∑
k=1

αk − 1

) = 0 (3.24)

To take the derivative of equation (3.24), we are to consider the terms logαk and λ
(∑M

k=1 αk − 1
)

since these are the only ones with the parameter α. After taking the derivative, we can write the

following;

N∑
i=1

N∑
j=i+1

1

αk
P [Vij,k = 1|X

¯ ij
; θ
¯k

] + λ = 0 (3.25)

Solving equation (3.25) yields the equation that maximizes α.

α
(n+1)
k =

1(
N
2

) N∑
i=1

N∑
j=i+1

P [Vij,k = 1|X
¯ ij

; θ
¯k

] (3.26)

where N is the number of nodes.
N∑
i=1

N∑
j=i+1

gives us all of the (i − j) pairs in the network.

P [Vij,k = 1|X
¯ ij

; θ
¯k

] is the expectation of the binary random variable Vij,k as given in equation

(3.18).

Maximizing θ

Once the mixing coefficients, α
(n+1)
k , are maximized, the next, and the final step in this

iteration is to find an equation for the parameters θ for the optimization process. To do so, we

need the gradient ascent algorithm that is given below;

θ(n+1) = θ(n) + µ∇θ`ic (3.27)

where `ic is the incomplete data log likelihood and shown as,

`ic =

N∑
i=1

N∑
j=i+1

log

M∑
k=1

αkPk[Yij = yij |X
¯ ij

; θ
¯k

] (3.28)

∇θ`ic =
∂

∂θk,t

 N∑
i=1

N∑
j=i+1

log

M∑
k=1

αkPk[Yij = yij |X
¯ ij

; θ
¯k

]

 (3.29)

=

N∑
i=1

N∑
j=i+1

∂

∂θk,t

(
log

M∑
k=1

αkPk[Yij = yij |X
¯ ij

; θ
¯k

]

)
(3.30)
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where the indices k and t correspond to the components and features, respectively.

Let A =
∑
k

αkPk[Yij = yij |X
¯ ij

; θ
¯k

]. Then (3.30) can be shown as,

∇θ`ic =

N∑
i=1

N∑
j=i+1

∂

∂θk,t
(logA) (3.31)

=

N∑
i=1

N∑
j=i+1

1

A

∂

∂θk,t
(A) (3.32)

We find ∂
∂θk,t

(A) in order to solve (3.32).

∂

∂θk,t
(A) =

∂

∂θk,t

(∑
k

αkPk[Yij = yij |X
¯ ij

; θ
¯k

]

)
(3.33)

= αk
∂

∂θk,t

(
Pk[Yij = yij |X

¯ ij
; θ
¯k

]
)

(3.34)

Equation (3.32) has been simplified into the equation (3.34). To go further, ∂
∂θk,t

(
Pk[Yij = yij |X

¯ ij
; θ
¯k

]
)

is found. From (3.7),

∂

∂θk,t

(
Pk[Yij = yij |X

¯ ij
; θ
¯k

]
)

=
∂

∂θk,t

(
p
yij
ij,k(1− pij,k)(1−yij)

)
(3.35)

= yijp
(yij−1)
ij,k

∂

∂θk,t
(pij,k)(1− pij,k)(1−yij)

+ p
yij
ij,k(1− yij)(1− pij,k)(−yij)

∂

∂θk,t
(−pij,k) (3.36)

=
∂

∂θk,t
(pij,k)

p
yij
ij,k

(1− pij,k)yij

(
(1− pij,k)

pij,k
yij − (1− yij)

)
(3.37)

In order to find an answer to (3.37), ∂
∂θk,t

pij,k is derived. Let us define ep as e−(X¯
θ
¯
T
), then, using

(3.4), we can write the derivative as,

∂pij,k
∂θk,t

=
∂

∂θk,t

1

1 + ep
(3.38)

Then,

∂pij,k
∂θk,t

= (−1)(1 + ep)
−2 ∂

∂θk,t
ep
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= (−1)(1 + ep)
−2ep

∂

∂θk,t
(−

M∑
k

xij,kθk,t)

= (−1)(1 + ep)
−2ep(−xij,t)

= (−1)
1

1 + ep

ep
1 + ep

(−xij,t)

= pij,k(1− pij,k)xij,t (3.39)

If (3.39) is plugged into (3.37),

∂

∂θk,t
(Pk[Yij = yij |X

¯ ij
; θ
¯k

]) = pij,k(1− pij,k)xij,t
p
yij
ij,k

(1− pij,k)yij

(
(1− pij,k)

pij,k
yij − (1− yij)

)
(3.40)

=

+xij,tpij,k(1− pij,k), yij = 1

−xij,tpij,k(1− pij,k), yij = 0

= (2yij − 1)xij,tpij,k(1− pij,k) (3.41)

By using (3.41) in (3.34),

∂

∂θk,t
(A) = (2yij − 1)αkpij,k(1− pij,k)xij,t (3.42)

Recall that gradient of the incomplete data log likelihood is the following:

∇θ`ic =

N∑
i=1

N∑
j=i+1

1

A

∂

∂θk,t
(A)

Hence the simplified version of the gradient of the incomplete data log likelihood is,

∇θ`ic =

N∑
i=1

N∑
j=i+1

1∑
k

αkPk[Yij = yij |X
¯ ij

; θ
¯k

]
(2yij − 1)αkpij,k(1− pij,k)xij,t (3.43)

Finally, θ(n+1) becomes,

θ
(n+1)
k,t = θnk,t + µ∇θ`ic (3.44)
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3.4 Evaluation Methods

Previous sections of Chapter (3) have introduced the dataset, features and the proposed

model. This section covers how the performance of the model is measured. Specifically, the way

links are predicted is explained. Since true positive rate is the main evaluation metric that we

use in this work, a brief background of it will also be given.

As mentioned, we use mixture of logistic regression model to approach our model. Since

there is no close form solution for the coefficients of the model, we use EM algorithm, and

iteratively learn the coefficients. These coefficients are randomly initialized to observe how the

model behaves for different initial parameters. The parameter initialization process is as follows:

we first initialize the mixing coefficients, α, such that they sum to 1. Then, we randomly initialize

θ such that each one has the value in the range of [10−7, 10−5].

After finding the parameters, we compute the value of the mixing logistic regression using

equation (3.8). In order to evaluate the performance, we use n predictions. In this study the

range of n varies between 1 and 5000. To get these predictions, we rank the probabilities in

descending order, and choose the the first n of these.

Having chosen the predictions, the next step is to label these probabilities. In logistic re-

gression applications, the outcome is 1 if the probability is greater than or equal to 0.5, and 0

otherwise. Since the probabilities in our case are small, however, we define our own threshold.

We set the proportion of 1s in the original class label as the threshold. If we define the class

label 1s and 0s as y1 and y0, the threshold, thr, can be expressed as follows:

thr =
y1

y1 + y0
(3.45)

In this work, the label 1s are predicted if the mixture probability is greater than the threshold

defined above. By the same token, if the probability is less than the threshold, the model labels

it as 0. By letting y′ is the predicted label, we can write the following:

y′ =

1, P [Y = y|X
¯

; Λ] ≥ thr

0, P [Y = y|X
¯

; Λ] < thr
(3.46)

As a final step, we evaluate the relative performance of the first n predictions. This is defined

as the true positive rate of the first n predictions divided by the true positive rate of random

guessing of these predictions. Letting RP and TPR as the relative performance and the true

positive rate, we can elaborate this definition as follows:

RPn =
TPRn

TPRrandn
(3.47)

where TPRn is the true positive rate of the first n predictions, and TPRrandn is the true positive

rate of the random guessing of the first n predictions of the class label data. Since our main

evaluation metric is the true positive rate [17], let us introduce the fundamentals of this concept.
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Contingency table is given in Table (3.4). True positive rate, TPR, is computed as number of

Table 3.4: Contingency Table

Original Labels
1 0

P
re

d
ic

te
d

L
a
b

el
s

1
True

Positives
False

Positives

0
False

Negatives
True

Negatives

true positive divided by total number of original positives. As can be seen from Table (3.4), total

number of the original positives is simply the summation of the true positives and false negatives.

Hence, TPR is shown as:

True Positive Rate (TPR) =
True Positives

True Positives + False Negatives
(3.48)

We compute the relative performance of the classifiers by using equations (3.47) and (3.48).

TPRn is the number of true positives in the first n predictions divided by the the total number

of positives in the n predictions. TPRrandn is simply the proportion of ones of the first n

predictions of the class label data. We find the relative performance of the classifiers with

varying components as described above. Then, we observe the performances and evaluate which

one performs best.

In this chapter, we discussed the methods that we use to approach our problem. We intro-

duced our data, features, proposed model and performance evaluation metrics, and explained in

detail. In the next chapter, we will provide and evaluate the experimental results.



Chapter 4
Experimental Results

In this section, we give the results of the experiments we performed. We first give the figures

showing how the objective function vs EM iteration varies against different number of components

and different initialization types. Then, the learned logistic regression and mixing coefficients

will be provided. We finally give the performances of the different number of components.

4.1 Optimization Results

We observed in our experiments that the way we initialize the parameters have an impact

on convergence of the objective function. Figure (4.1) shows how the objective function behaves

when we use distinct methods to initialize the parameters. Figure (4.1a) depicts that the objective

function converges only after 6 iterations when we randomly initialize the parameters for the

certain data. For the same data, in figure (4.1b), we see that the objective function does not

significantly change after 16 iterations. Hence, the way that we initialize the parameters as

described in section (3.4) provides faster convergence.

Figures (4.2) demonstrates how the classifier C1 performs for different number of components.

(4.2a),(4.2b),(4.2c) and (4.2d) are the optimization results of the log-likelihood function when

the number of components are 1,2,3 and 7, respectively. In theory, we expect the log likelihood

function to improve as more component is used. As for the experiments, it is clear to see that

the log likelihood in figures (4.2a), (4.2b) and is increasing as more component is mixed. After

some point, however, this rise stops as given in figure (4.2d). Hence, we can reach the conclusion

that using mixture model increases the likelihood.

Hence the following conclusions can be reached from above figures: First, log-likelihood im-

proves with EM iterations. Second, values of the converged log-likelihood is higher when more

mixture components are used.

Having maximized the objective function, the learned coefficients of the logistic regression are

given in Table (4.1). As introduced before, parameter θ is the coefficients of the logistic regression.
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Figure 4.1: Objective Function with Different Initial Values
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Figure 4.2: Objective Function of C1 with different number of components.
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Table 4.1: Learned Coefficients of the Classifier C1 in the year 2003

Year = 2003 θ1 θ2 θ3 θ4 θ5 θ6

M=1 0.05 0.08 0.28 0.05 0.10 0.30

M=2 0.25 0.46 0.93 0.22 0.46 0.95
0.06 0.12 0.53 0.05 0.12 0.53

M=3 0.06 0.11 0.64 0.09 0.12 0.66
2.53 4.75 9.54 2.53 4.70 8.62
2.29 4.31 8.40 2.59 4.39 8.72

M=7 0.92 1.73 3.30 0.82 1.75 3.51
1.16 2.18 4.27 1.26 2.08 4.40
1.09 2.04 4.09 1.09 2.05 4.23
0.53 1.00 2.00 0.53 1.10 2.42
0.27 0.51 1.01 0.22 0.51 1.22
0.92 1.72 3.45 0.95 1.72 3.48
0.01 0.05 0.28 0.01 0.04 0.38

In Table (4.1), θ1− θ4, θ2− θ5 and θ3− θ6 are the learned coefficients of the years 2000,2001 and

2002, respectively. Recall that we re-scaled the feature matrix so that the learned coefficients

would quantitatively tell which feature is more significant. By evaluating the coefficients in Table

(4.1), thus, we can clearly say that magnitude of θ3−θ6 are the greatest among any of the thetas.

This means that features belong to the year 2002 contributed most when predicting the new links

in the year 2003.

Table 4.2: Mixing Coefficients of the Classifier C1 in the year 2003

Year : 2003 α1 α2 α3 α4 α5 α6 α7

M=1 1.00 - - - - - -
M=2 0.80 0.20 - - - - -
M=3 0.00 0.52 0.47 - - - -
M=7 0.19 0.24 0.22 0.11 0.05 0.19 0.00

Table (4.2) shows the updated mixing coefficients of the classifier C1 in the year 2003. These

mixing coefficients can be considered as weights. α7 when M = 7, for instance, is 0, which tells

us that seventh component does not effect on the performance of the model.

Similar to C1, the learned coefficients of the classifiers C2,C3 and C4 are given in Table (4.3).

As for the values given in table (4.1), learned coefficients of the classifier C2, θ3 − θ6, are the

ones that are the largest. This indicates that the parameters that belong to the year 2002 are

more informative than those belong to 2000 and 2001.

A question can be asked at this point that the parameters have a symmetrical pattern. For

example, in table (4.3), θ3 − θ6, θ2 − θ5 and θ1 − θ4 themselves are similar or sometimes even

equal to each other. This stems from the fact that we use features x3 − x6, x2 − x5 and x1 − x4
to find the coefficients. From Table (A.13), features of each year is generated by simply summing
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Table 4.3: Learned coefficients of classifiers C2,C3 and C4 in the year of 2003

Year: 2003 C2 C3 C4

θ3 θ6 θ2 θ5 θ1 θ4

M=1 3.63 3.93 1.07 1.07 1.07 1.02

M=2 2.21 2.44 1.08 1.08 0.99 0.91
1.76 1.95 0.25 0.25 0.73 0.71

M=3 1.22 1.35 1.05 1.05 0.27 0.26
1.58 1.76 0.27 0.27 1.83 1.78
1.85 2.06 2.08 2.08 1.66 1.50

M=7 2.00 2.35 0.27 0.27 1.57 1.51
2.48 2.99 0.47 0.47 1.09 1.09
2.50 3.02 0.16 0.15 1.48 1.47
0.42 0.45 0.56 0.54 1.20 1.16
1.93 2.25 0.19 0.12 1.62 1.45
1.86 2.16 0.67 0.66 1.62 1.44
2.47 2.98 0.22 0.29 0.19 0.39

Table 4.4: Mixing coefficients of the classifiers C2,C3 and C4 in the year 2003.

Year: 2003 α1 α2 α3 α4 α5 α6 α7

M=1 C2 1.00 - - - - - -
C3 1.00 - - - - - -
C4 1.00 - - - - - -

M=2 C2 0.66 0.34 - - - - -
C3 1.00 0.00 - - - - -
C4 0.78 0.22 - - - - -

M=3 C2 0.35 0.17 0.48 - - - -
C3 0.40 0.43 0.17 - - - -
C4 0.49 0.18 0.33 - - - -

M=7 C2 0.24 0.07 0.27 0.10 0.07 0.07 0.18
C3 0.07 0.28 0.11 0.19 0.06 0.21 0.09
C4 0.09 0.28 0.15 0.32 0.06 0.09 0.00

the number of co-authored papers between i−k and j−k where k denotes the mutual nodes of i

and j pairs. Since the features generated using i− k and j − k pairs have similar characteristics,

learned coefficients are also proportional to each other.

4.2 Relative Performance of the Classifiers

For testing, we use the data that belongs to the years between 2004 and 2007. Figures (4.3),

(4.4), (4.5) and (4.6) demonstrate how the classifiers C1, C2, C3, C4 behave for different number

of components and data sets. In this section, we will discuss the performance of each classifier
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for varying component numbers and years. Then, we will compare the relative performance of

the classifiers to each other to find out which one achieves best.

4.2.1 Relative Performance of C1

In 2004s data, we see that the performance increases as the number of components increase.

C1 performs worst for the single component. When we mix 4 components together, the per-

formance is better than the one for single component. When we use 7 components, moreover,

the performance is even better. In this dataset, hence, we observe that the relative performance

improves when more components are mixed.

C1 performs almost the same for different component numbers we tried using 2005s data. For

the first 950 predictions the performance is the same, while C1M=7
goes down after this point.

For the network of the year 2006, the performance does not always improve when the number

of components increases. For the first 350 predictions, single component gives us a better result.

Mixing more components in the range between 350 and 600 predictions provides more desired

results. After the first 600 predictions, the performance of C1M=7
is getting worse than the one

for single and 4 components.

When it comes to 2007s data, C1M=1
and C1M=4

have the similar performance, while C1M=7

provides the best result.

4.2.2 Relative Performance of C2

We observe in our experiments that performance of C2 does not quite change with different

number of components. In 2004, 2006 and 2007 data, C2M=1
, C2M=4

and C2M=7
have the similar

performance results. In 2007, the performance of C2M=7
improves after the first 900 predictions,

while it performs worse than the others in 2005. Apart from these two statements, the relative

performances have similar patterns.

4.2.3 Relative Performance of C3

The performance of C3 has some similar patterns for different number of components. In

2004, for instance, we observe similar results for different component number for the first 800

predictions. After this point, however, mixing 7 components outperformed the others.

In 2005, C3M=7
and C3M=4

perform similarly, while C3M=7
provides the best performance. In

2006, we observe similar patterns for different components. In 2007, we also have almost identical

performances for the first 550 predictions. Using single component after this point gives better

result than using mixture of the components.

4.2.4 Relative Performance of C4

We observe similar performances in years 2004, 2005 and 2006. In 2004, the performance of

C4 when 7 components are mixed is slightly better than the other. In 2007, we clearly see that
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C4M=7
outperforms the others.

As a conclusion, we can point out that when using mixture of components, the results are at

least same as or better than using single component. This is expected since we know from theory

that mixing components should improve the performance.

4.2.5 Comparison of the Relative Performance of the Classifiers

In section (4.2), we mainly discuss how each classifier behaves when different number of

components and data sets are used. We now turn our attention to compare the performance of

each classifier to others. Again, we do so by using the networks of years 2004, 2005, 2006 and

2007.

Performance of each classifier for a single component is given in figure (4.7). Figures (4.7b),

(4.7c) and (4.7d) show that the classifiers including younger connections perform better than

those with older links in years 2005,2006 and 2007. In 2004, on the other hand, we see that old

and mid-aged links dominate the link prediction process (Figure (4.7a)).

When we mix more components to allow multiple link formation profiles, we observe in

figures (4.8) and (4.9) that the performance of each classifier does improve. In 2005,2006 and

2007, for instance, the performance of young and old links have better performance, but younger

connections are still better than older ones in predicting the following year’s link formations. In

2004’s data that is given in figures (4.8a) and (4.8a), on the other hand, oldest links are still

strong, especially for the first 200 predictions.
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(a) C1 when M=1,4,7 in 2004
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(b) C1 when M=1,4,7 in 2005
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(c) C1 when M=1,4,7 in 2006
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(d) C1 when M=1,4,7 in 2007

Figure 4.3: Relative Performance of C1 with different number of components in the range between 2004
and 2007
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(a) C2 when M=1,4,7 in 2004
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(b) C2 when M=1,4,7 in 2005
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(c) C2 when M=1,4,7 in 2006
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(d) C2 when M=1,4,7 in 2007

Figure 4.4: Relative Performance of C2 with different number of components in the range between 2004
and 2007
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(a) C3 when M=1,4,7 in 2004
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(b) C3 when M=1,4,7 in 2005
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(c) C3 when M=1,4,7 in 2006
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(d) C3 when M=1,4,7 in 2007

Figure 4.5: Relative Performance of C3 with different number of components in the range between 2004
and 2007
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(a) C4 when M=1,4,7 in 2004

200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

First n Predictions

R
el

at
iv

e 
P

er
fo

rm
an

ce

C4 when M=1,4,7 in 2005

 

 

C4
1

C4
4

C4
7

(b) C4 when M=1,4,7 in 2005
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(c) C4 when M=1,4,7 in 2006
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(d) C4 when M=1,4,7 in 2007

Figure 4.6: Relative Performance of C4 with different number of components in the range between 2004
and 2007
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(c) C1,C2,C3,C4 M=1 in 2006
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Figure 4.7: Relative Performance of C1,C2,C3,C4 when M=1 in the range between 2004 and 2007



32

200 400 600 800 1000
0

20

40

60

80

100

120

140

First n Predictions

R
el

at
iv

e 
P

er
fo

rm
an

ce

C1,C2,C3,C4 when M=4 in 2004

 

 

C1
4

C2
4

C3
4

C4
4

(a) C1,C2,C3,C4 M=4 in 2004
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200 400 600 800 1000
0

2

4

6

8

10

12

14

First n Predictions

R
el

at
iv

e 
P

er
fo

rm
an

ce

C1,C2,C3,C4 when M=4 in 2006

 

 

C1
4

C2
4

C3
4

C4
4
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Figure 4.8: Relative Performance of C1,C2,C3,C4 when M=4 in the range between 2004 and 2007
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(a) C1,C2,C3,C4 M=7 in 2004
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(c) C1,C2,C3,C4 M=7 in 2006
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Figure 4.9: Relative Performance of C1,C2,C3,C4 when M=7 in the range between 2004 and 2007



Chapter 5
Conclusion, Discussion and Future

Work

In this chapter, we summarize the main points highlighted in previous parts of this thesis,

and discuss the main findings, contributions and future work. Section (5.1) gives a summary of

the thesis. Section (5.2) discusses the main findings and how these contribute to the network

evolution theory. Then, section (5.3) introduces the possible future work extending what has

been done in this work. Finally, section (5.4) concludes the thesis.

5.1 Summary of the Thesis

This thesis has introduced a mixture of logistic regression model to observe how aging could

be an important factor that might adversely affects the prediction power of the links in a network.

Chapter 2 reviewed some of the existing work that is widely known in network theory. Much

of the current work is based on network generation models that capture some of the common

popular statistical properties such as high clustering coefficient, scale-free power law distribution.

Network evolution is also an attractive field. Scientists have observed many common properties

such as densification power law, heavy tailed degree. Since networks evolve over time, many

link prediction algorithms have also been proposed. For instance, the link prediction problem

has been approached using supervised learning methods, and highly accurate results have been

obtained. Even though above fields have been hot topic for years, link’s age evaluation in network

evolution has not gained sufficient attention.

Chapter 3 describes the experimental setup of this work. More specifically, DBLP data-set is

used to create the co-authorship network. Using similarity measures in this network, features are

generated. Class labels are derived from the network according to the presence or absence of the

links. Chapter 3 also introduces the model used. Logistic regression model is introduced, and

its mixture extension is derived. Each part of this derivation process is thoroughly described.
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Since the estimation of the coefficients of the logistic regression model do not have a closed form

solution, expectation maximization algorithm, a widely known iterative method, is introduced.

The parameter optimization procedure is also explained.

Chapter 4 provides the experimental results. Training results are given first. In training

results section, performance of EM algorithm is discussed. Since initialization of the parameters

does have an impact on the performance, many experiments with different initialized parameters

are performed, and the results are provided. Then, the way log-likelihood function behaves

against each iteration is observed, and the results are given. Finally, results of the learned

coefficients for different number of components are provided. For the test set, relative performance

of each classifiers with varying components are given. Then performance of each classifier is shown

in the same figure for comparison.

5.2 Discussion

This work evaluates the age of the links in link prediction, and considers aging as a factor

that influences network evolution. In our experiments, we observe that relative performance of

young links are generally higher than old links. This means that young links’ contribution to

the link prediction process is higher than old connections in many cases. Thinking that there

could be reliable old links that are significant, we use mixture components and performed the

experiments. And, we observe in our experiments that in some cases, old connections are still

informative. Apart from these old but significant links, younger connections are more powerful

in predicting following year’s link formations. Another observation is that performance of the

connections do improve when more components are mixed. These lead to a conclusion that we

could disregard some of the old and uninformative connections when predicting new links since

they do not provide much information. Hence, we could also state that in network evolution

theory, node-link removal should also be taken into account as [1] also proposed.

5.3 Future Work

Our link prediction process in this study is as follows: we generate features of the co-

authorship network using three consecutive years’ information, and predict the following years’

link connections. We restrict ourselves to three consecutive years because [1] reveals that collab-

oration period of authors decreases after the third year. Even though [1] observes that even in

starring, co-starring behavior also diminishes after 3 years, further research could be conducted

to find out whether this period differs in any other network.

The second question mark is that we do not know how exactly to remove the nodes or links

from the network. A proper procedure is still needed. After finding a way to handle this,

the networks with/out old links could be analyzed and compared in terms of their statistical

properties.
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5.4 Conclusion

This work proposes a model to observe age of links as an effect in link prediction. Our

experiments demonstrate that as a link in a network becomes mature, its effect on link prediction

generally worsens. This means that some of the links could become inactive over time. A

conclusion can be reached at this point that link removal from network might be a possible

action to maintain the stability of a network.



Appendix

Feature Extraction

In this section, we discuss the data we use, how we process it to generate the co-authorship

network, and the methods to extract the feature matrix. We will first start by introducing the

fundamentals of the data-set.

1 Fundamentals of the Data

To create the co-authorship network, we use DBLP Computer Science Bibliography data set,

which provides us with detailed list of research papers published in the field of computer science.

Table (A.1) shows some of the properties of the data.

Table A.1: Data Characteristics

Number of Nodes 178154

Number of Edges 3,621,265

Table (A.2) represents a sample of the data. As seen from the table, it has three columns: from

node, year, to node. These columns represent author id, year of the publication and the coauthor

id, respectively. The main advantage of this data set is that we can generate a co-authorship

network, sort it with respect to years, and investigate how the influence of links in predicting

new formations change over time. In order to find this effect, we first create the co-authorship

network, then find the mutual friends of author pairs, and finally extract the features.

2 Generating the Co-Author Network

In this section, we explain how we generate the co-authorship network. More specifically, we

use the sample data, and show how to generate the network step by step. From the definition,

we know that a co-author is the one who collaborates and publishes a paper with an author. To
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From Node Year To Node
(Author ID) (Paper ID)

000001 2000 55
000001 2000 56
000001 2000 58
000001 2004 65
000001 2005 66
000002 2004 99
000003 2000 55
000003 2000 56
000003 2000 57
000003 2000 58
000003 2006 78
000003 2004 79
000004 1958 1
000005 2000 55
000005 2000 56
000005 2000 57
000005 2000 58
000005 2000 59
000005 2005 78

...
...

...
881512 2005 279197
881514 1981 008540

Table A.2: A Sample data

find the co-authors in our case, hence, we simply compare the paper IDs given in the data. Those

whose paper IDs are the same are the co-authors of each other. Using this notion, we generate

the co-authorship network. In order to make the network even stronger, we delete the authors

and co-authors with less than 5 papers [1]. For the sample data we give above, for instance, we

delete the following authors since they do not have at least 5 papers.

000002 2004 99
000004 1958 1
881512 2005 279197
881514 1981 008540

Table A.3: Sample data: Authors who do not have at least 5 papers.

In so doing, we get rid of the authors 2, 4, 881512 and 881514 in table (A.2). Having deleted

these nodes, we get table (A.4).

We now find the co-authorship network of the year 2000. To do so, we filter the sample data

with respect to year 2000, and get the table (A.5) and figure (A.1).

Recall that we find the co-authors by comparing paper IDs. Authors with same paper id

mean they publish a paper together. To make this more meaningful, let us simplify the network

given in figure (A.1) so that we only focus on the papers that author 1 publishes.
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From Node Year To Node
(Author ID) (Paper ID)

000001 2000 55
000001 2000 56
000001 2000 58
000001 2004 65
000001 2005 66
000003 2000 55
000003 2000 56
000003 2000 57
000003 2000 58
000003 2006 78
000003 2004 79
000005 2000 55
000005 2000 56
000005 2000 57
000005 2000 58
000005 2000 59
000005 2005 78

...
...

...

Table A.4: Sample data: Authors with at least 5 papers.

Figure A.1: Data visualization of table (A.5)

Figure (A.2) depicts that author 1 published papers 55,56 and 58. For the paper 58, we see

that authors 3,5,74,75,76 and 77 contributes the paper. By the same token, 1,3,5 write papers

55 and 56. Hence, we reach the conclusion that 3, 5, 74, 75, 76, 77 are the co-authors of 1 in year

2000. Using this notion, we find the complete network of year 2000.

Recall that the main aim of this study is to observe how link age impacts the prediction
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From Node Year To Node
(Author ID) (Paper ID)

000001 2000 55
000001 2000 56
000001 2000 58
000003 2000 55
000003 2000 56
000003 2000 57
000003 2000 58
000005 2000 55
000005 2000 56
000005 2000 57
000005 2000 58
000005 2000 59
000074 2000 58
000075 2000 58
000076 2000 58
000077 2000 58

...
...

...

Table A.5: Sample data of the year 2000.

Figure A.2: Author #1’s netowork in year 2000.

power. In order to find the relationship, we need to compare the networks of different years. [1]

proves that the average co-authoring period is no longer than 3 years. Hence, we will consider

this time span when comparing the networks.

We have already discussed how to generate a co-authorship network and given the network

of year 2000 as an example. Since we restrict the co-authoring period to 3 years, we also need to

find the networks of years 2001 and 2002. We will then compare these networks to the year 2003

to observe how they influence the new connections in 2003. Since we already discuss network
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Table A.6: Co-Authors of the sample data of year 2000

Author ID Co-Authors

1 3 5 74 75 76 77
3 1 5 74 75 76 77
5 1 3 74 75 76 77
74 1 3 5 75 76 77
75 1 3 5 74 76 77
76 1 3 5 74 75 77
77 1 3 5 74 75 76

generation process, we only give the results for 2001,2002 and 2003 networks.

Table A.7: Co-Authors of the sample data of year 2001

Author ID Co-Authors

3 5 75 76
4 6 0 0
5 3 75 76
6 4 0 0
75 3 5 76
76 3 5 75

Table A.8: Co-Authors of the sample data of year 2002

Author ID Co-Authors

2 3 4 6 0 0
3 2 4 6 72 76
4 2 3 6 80 0
6 2 3 4 0 0
72 3 76 0 0 0
76 3 76 0 0 0
80 4 0 0 0 0

2.1 Updating Co-Authorship Networks

Co-Author networks of years 2000,2001,2002 and 2003 are given in tables (A.6),(A.7),(A.8),(A.9),

respectively. Let us define a source networkN1 that has the three consecutive years 2000,2001,2002

and a target network N2 that has the co-authorship information of the year 2003. We use the

connections in [2000,2002] to predict the new links in 2003. Note that there are distinct nodes

either in N1 and N2. To predict new links in N2, we need to use the same nodes to compare the

links. To do so, we use the common nodes that both N1 and N2 have in common.

Node = NodeN1 ∩NodeN2 (A.1)
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Table A.9: Co-Authors of the sample data of year 2003

Author ID Co-Authors

2 4 76 83 0 0
4 2 5 76 77 83
5 4 76 77 0 0
76 2 4 5 77 0
77 4 5 76 79 0
79 77 0 0 0 0
83 2 4 0 0 0

In the above example, the unique nodes in N1 and N2 and the common nodes to train N2 are;

NodeN1
= {1, 2, 3, 4, 5, 6, 72, 73, 75, 76, 77, 80}

NodeN2
= {2, 4, 5, 76, 77, 79, 83}

Node = {2, 4, 5, 76, 77}

The next step is that we ignore the edges that are connected in both N1 and N2 since we want

to focus only on the formation of the new links. In so doing, the edges in N2 become unique,

which means that they are the new links in target network. After these two steps, we have the

following networks for the sample data that we use as an example;

Table A.10: Co-Author Network of 2000 and 2001.

Co-Author Network of 2000 Co-Author Network of 2001

Author ID Co-Authors Author ID Co-Author

2 0 0 0 0 0 2 0 0 0 0 0
4 0 0 0 0 0 4 6 0 0 0 0
5 1 3 75 76 77 5 3 75 76 0 0
76 1 3 5 75 77 76 3 5 75 0 0
77 1 3 5 75 76 77 0 0 0 0 0

Table A.11: Co-Author Network of 2002 and 2003.

Co-Author Network of 2002 Co-Author Network of 2003

Author ID Co-Authors Author ID Co-Author

2 3 4 6 0 0 2 76 0 0 0 0
4 2 3 6 80 0 4 5 76 77 0 0
5 0 0 0 0 0 5 4 0 0 0 0
76 3 72 0 0 0 76 2 4 0 0 0
77 0 0 0 0 0 77 4 0 0 0 0

Tables (A.10) and (A.11) shows the authors and co-authors of years [2000,2003]. The steps

explained in section (2) shows the way how co-authorship network is created and updated to
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train the data. As a next step we will describe how to find the mutual friends in the following

section.

3 Generating Mutual Friends

The definition of a mutual friend is intuitively the common authors of a given pair of authors

in a network. This can be formulated as the following;

mfij = cni ∩ cnj (A.2)

where mfij is mutual friend of ij pair, cni and cnj are the connected neighbors (co-authors) of

nodes i and j, respectively. To illustrate this notion clearer, let us use the connected components

of 5 and 76 in year 2000. From table (A.6),

Figure A.3: Mutual Friends of 5-76 in 2003. Table (A.10)

cn5 = {1, 3, 75, 76, 77} (A.3)

cn76 = {1, 3, 5, 75, 77} (A.4)

mf5−75 = {1, 3, 75, 77} (A.5)

Using this idea, we find the mutual friends of the co-author network of year 2000 and show

in table (A.12).

As seen in table (A.12), we find the mutual friends by pairing the authors in network, and

comparing their co-authors. It is important to note that we pair the node i by matching the rest

of the nodes in the network with it. An algorithm computing the mutual friends is given below;
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Table A.12: Mutual Friends of co-author network in 2000.

Author Mutual Friends
i j (i-j)

2 4 0 0 0 0
2 5 0 0 0 0
2 76 0 0 0 0
2 77 0 0 0 0
4 5 0 0 0 0
4 76 0 0 0 0
4 77 0 0 0 0
5 76 1 3 75 77
5 77 1 3 75 76
76 77 1 3 5 75

Algorithm 1 Computing mutual friends

1: Declaring the Variables:
2: N : . Number of authors in the co-author network
3: mfij : . Mutual Friend of ij pair
4: cai : . Co-Authors of the node i
5: caj : . Co-Authors of the node j
6:

7: Initialize:
8: id← Row Size of Co-Authorship Network

9: N←
(
id

2

)
10: Loop:
11: for i := 1→ N do
12: for j := i+ 1→ N do
13: mfij ← cai ∩ caj

4 Generating Feature Matrix

We create the feature matrix by using the following equations:

x1 =
∑

∀k⊂mfij

nca,t(i, k) (A.6)

x2 =
∑

∀k⊂mfij

nca,t(j, k) (A.7)

where mfij is the mutual friends of pair i-j and nca,t is the number of co-authored papers between

author i and k in year t. This means that for x1, we sum the number of co-authored papers

between i and k in year t where k corresponds to each mutual friends of pair i and j. Likewise,

we follow the same steps for x2 with an only one distinction. For x2, we find the number of

co-authored papers between j and k where k refers to each mutual friend of pair i− j.
Since we want to compare how link age influences new connections, we generate the features
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of each year. To do so, we use equations (A.6) and (A.7) for t = {y, y + 1, y + 2}. Since having

3 consecutive years, and 2 features for each year, we have 6 features in total.

Table A.13: Features with respect to years

Year Features

y x1 =
∑
∀k⊂mfij nca,y(i, k) x4 =

∑
∀k⊂mfij nca,y(j, k)

y+1 x2 =
∑
∀k⊂mfij nca,y+1(i, k) x5 =

∑
∀k⊂mfij nca,y+1(j, k)

y+2 x3 =
∑
∀k⊂mfij nca,y+2(i, k) x6 =

∑
∀k⊂mfij nca,y+2(j, k)

We already declared the notations given in feature equations, and thoroughly explained the

mutual friend term in section (3). We now focus how to compute the number of co-authored

papers in the following section.

Computing Number of Co-Authored Papers between Two Nodes

Number of co-authored papers between two nodes is computed by the following: We first find

the papers that two authors published. Then, we find the papers that these two authors have in

common. Finally, the number of the common papers will give us number of co-authored papers

between two nodes.

nca(i, k) = |papi ∩ papk| (A.8)

where nca(i, k) is the number of co-authored papers between i and k, papi and papk are the

papers of i and k in year t, respectively.

So far, we have covered all the concepts to extract the feature matrix. To illustrate how to

generate the feature matrix, we use the sample data given in the previous sections. For example,

mutual friends of authors 5 and 76 in 2000 in sample data given in table (A.12) are;

mf(5−76) = {1, 3, 75, 77}

Recall that we set y=2000 in the examples we give in this chapter, so we need to find equations

(A.13) and (A.13) to compute the features of (5-76).

x1 =
∑

∀k⊂mf(5−76)

nca,2000(i, k)

= nca,2000(5, 1) + nca,2000(5, 3) + nca,2000(5, 75) + nca,2000(5, 77)

We need to compute number of co-authored papers nca,2000 to find the features. Using equation

(A.8),

nca,2000(5, 1) = |pap5 ∩ pap76|
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From (A.5),

pap5 = {55, 56, 57, 58, 59}

pap76 = {55, 56, 58}

nca,2000(5, 1) = |{55, 56, 57, 58, 59} ∩ {55, 56, 58}|

nca,2000(5, 1) = 3

By the same token, we compute nca,2000(5, 3) = 4, nca,2000(5, 75) = 1 and nca,2000(5, 77) = 1.

x1 = 3 + 4 + 1 + 1 = 9

By following the same steps, we find the feature values of 5 and 76 for years 2001 and 2000.

Table A.14: Feature Matrix of years 2000,2001,2002

i j x1 x2 x3 x4 x5 x6

2 4 0 0 2 0 0 2
2 5 0 0 0 0 0 0
2 76 0 0 1 0 0 1
2 77 0 0 0 0 0 0
4 5 0 0 0 0 0 0
4 76 0 0 1 0 0 1
4 77 0 0 0 0 0 0
5 76 9 2 0 4 2 0
5 77 9 0 0 4 0 0
76 77 4 0 0 4 0 0
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[12] Lü, L. and T. Zhou (2011) “Link prediction in complex networks: A survey,” Physica A:
Statistical Mechanics and its Applications, 390(6), pp. 1150–1170.

[13] Getoor, L. and C. P. Diehl (2005) “Link mining: a survey,” ACM SIGKDD Explorations
Newsletter, 7(2), pp. 3–12.

[14] Al Hasan, M. and M. J. Zaki (2011) “A survey of link prediction in social networks,”
Social network data analytics, pp. 243–275.

[15] Dempster, A. P., N. M. Laird, and D. B. Rubin (1977) “Maximum Likelihood from
Incomplete Data via the EM Algorithm,” Journal of the Royal Statistical Society. Series B
(Methodological), 39(1), pp. pp. 1–38.
URL http://www.jstor.org/stable/2984875

[16] Bishop, C. M. (2006) Pattern Recognition and Machine Learning (Information Science and
Statistics), Springer-Verlag New York, Inc., Secaucus, NJ, USA.

[17] Fawcett, T. (2006) “An introduction to ROC analysis,” Pattern recognition letters, 27(8),
pp. 861–874.


