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Abstract

Spatial data management issues, widely studied in the past few decades, have posed great chal-
lenges to researchers. A variety of efficient queries for calculating containment, intersection,
nearest neighbors, reverse nearest neighbors among others have been proposed and studied.
However, in recent years, increasing smartphone proliferation and web connectivity has lead to a
new wave. The increasing popularity of modern LBSNs (Location Based Social Networks) such
as Facebook, Foursquare, Periscope, Meetup among others that have never before existed. These
services allow users to instantly share their location experiences around this activity with others.
Location Based Service providers thus have a lot of user generated socio-spatial data that needs
to be stored, processed and analyzed. We strongly believe that novel socio-spatial storage and
querying systems are required to meet this need in the near future. In this work, we particularly
focus on the challenge of quantifying influence in the socio-spatial domain. The idea is to find
groups that satisfy spatial (proximity) and social (group cohesion) constraints and thus can be
considered in the influence set for a given query point. To solve this problem, we propose the
idea of Reverse Nearest Social Group (RNSG) Query. This socio-spatial query is strongly
related to Reverse Nearest Neighbor (RNN) query that has been of much interest to spatial data
researchers in the past. Unlike the Reverse Nearest Neighbor query that finds individuals having
query point as the Nearest Neighbor, RNSG query finds all social groups that satisfy k-core
constraint and have their farthest member (individual with maximum euclidean distance to the
query point) as a Reverse Nearest Neighbor of the query point. Compared to conventional RNN
queries, RNSGQ is much more challenging because of the added social constraint. To tackle
this challenging research problem, we propose an algorithm R-SAGE(Rnn-based Social-Aware
Group discovEry Algorithm) to find all RNSG(s) efficiently. Experiments conducted on real
world datasets show that the proposed R-SAGE algorithm outperforms the other baselines sig-
nificantly. The proposed solution thus has huge implications on solving various problems in a
variety of existing and upcoming domains such as Location Based Systems, Decision Support
Systems, Social Marketing, Continuous Referral Systems to name a few. The efficient RNSGQ
framework facilitates solving these novel socio-spatial problems and thus coping up with the
recent challenges.
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Chapter 1
Introduction

With the availability of affordable and portable smartphones, user generated data and content

has exponentially increased in the past years. This massive growth in data generation needs a

perfect amalgamation of software infrastructure, intelligent algorithms, networking capabilities

and hardware resources in place to cope up with. Organizations are thus increasingly investing

a large amount of resources to efficiently retrieve massive datasets on demand to drive business

solutions and insights. Round the clock, Computer Scientists are working on solving hard prob-

lems; designing efficient solutions to slay the data complexity that arise with this tremendous

scale.

Within the realm of our data rich world, spatial data representing information about physical

location and shape of geometric objects is very popular. Also, in the past decade, Location

Based Services (LBS) that offer a rich personal experience by making use of user’s location and

social graph data have become immensely popular. Internet is swamped with plethora of Location

Based Services. Some of the popular genres (not exhaustive) are : recommending social activities,

requesting a nearby business or service, locating friends, meeting new people, receiving location

based notifications and map directions. For every genre there exists multiple applications that

provide overlapping service. In this crowded space, some applications rise to attain massive scale

and popularity. Boasting millions of active users, these largely populous networks usually vary

significantly in the context and scope of their application but ubiquitously stem from a clever

use of socio-spatial data. The new and exciting opportunities with these LBSNs are however

accompanied by a variety of challenges that have never been realized before.

Korn and Muthukrishnan [16], described how Reverse Nearest Neighbor can intuitively quan-

tify the notion of influence set for a query point. Thus in the past, Reverse Nearest neighbor

queries have received considerable attention due to their importance in several applications in-

volving notification systems, decision support systems, profile-based marketing among others.

The problem of finding influence set occurs frequently in spatial domain and has wide implica-

tions. Adding to its significance is the fact that this problem can also be considered as a spatial
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primitive for solving even more complex queries. If we define proximity based on some similarity

function, we can further use it in various generic scenarios. Some examples where an RNN query

could be useful are: A restaurant wants to determine which customers are likely to visit a newly

opened store? An RNN query can identify this important piece of information. Another example

could be a scenario where a gaming company might send out emails to gamers that are highly

likely to enjoy a new title based on game’s genre and their existing likings.

However, as RNN focuses only on the spatial domain, it is unable to model scenarios where

social groups are more relevant. This is feasible when users are simply interested in finding

groups of individuals rather than a single individual under the influence. Therefore, we might

want to use this information for finding social groups under the influence of a query point.

Combining the strengths of RNN and social groups can enable new applications in the domains

discussed above. Similar to RNN query, a large number of radically different scenarios can be

modeled in the socio-spatial domain using a generic similarity function and group definition.

Thus efficient socio-spatial queries involving influence can be used to solve variety of problems

that might not fit in a typical LBSN scenario, but nevertheless are fundamentally alike. To

provide concrete examples, we extend some of originally documented examples for RNN queries

and in addition provide more examples where a notion of social group provides novel use.

• Building Decision Support Systems : In a marketing application, adopting an outlet

location over another based of geographical proximity of customers is highly critical. An

important task is thus to find customer groups that will find a facility in a given location

more convenient than their existing choices.

• Building Continuous Notification Systems : A referral service notifies users when

the a service he or she is interested in changes. Combining RNN and social graphs, we can

enhance LBSNs to send group invites to individuals who are likely to find a newly open

business location(example: restaurant) appropriate in future. A mobile discount coupon

can be pushed when the group visits the outlet.

• Profile Based Marketing : Companies willing to push new services to users based on

a profile can utilize a social influence query. For example : AT&T launches a new service

where all customers in a family data plan(social group) can upgrade to a higher data cap.

Modeling customers and service into a socio-spatial domain, the social influence query will

return user groups that are in the influence region i.e. will find the service useful.

• Organizing Meetups for Social Groups : Websites such as Meetup [3] provide an

online social networking environment which facilitates offline meetings of people based

on similar likes, interests and backgrounds. The success of a meetup group depends on

how often individuals meet in the offline world. Inherently, knowing atleast some of the

members in such offline interactions facilitates a good social environment and encourages

participation. The location of event is another very important factor, as remote distances

discourages people to attend. Thus, when organizing such a meetup given an event location,
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we want to send out invites to individuals belonging to cohesive social groups (to maintain

familiarity) that are collectively closest to the rendezvous location.

It is quite essential to realize the subtle complexity of our problem statement. As we are

working in a socio-spatial domain, designing any efficient solution needs to consider both these

factor to derive an optimal solution. We cannot simply daisy chain a RNN algorithm with a

community detection algorithm to obtain an optimal solution. Designing an efficient solution,

needs fresh ingenuity as to balance tradeoffs in both the domains.

1.1 Overview of the Problem

While a lot of work has been done in the area of Reverse Nearest Neighbor Query, a little

attention has been paid to idea of RNN in context of social groups. Our goal is thus focused

on designing the Reversed Nearest Social Group Query (RNSGQ), which integrates the idea of

RNN and a social cohesive group to capture the spatial influence and the spreading of influence

among a set of individuals. Next, we list some of the challenges involved in deployment of a

hypothetical system. We demonstrate that the problem is non-trivial and then formally capture

our requirements in a mathematical statement.

1. Accurate Representation of a real world scenario: As to the best of our knowledge,

there is no existing work that successfully quantifies influence on social groups, the quality

of our work is dictated by how well we define the problem. There are two questions that

are of particular interest : a) How do we accurately model a social group in our problem ?

b) How do we choose a distance function that accurately quantifies influence ?

2. Scalable Performance: Scalability is one of the key attributes that defines the ingenuity

of a solution. In context of LBSNs, which usually have a large number of active users, the

requirement is even more pressing.

3. Online Workloads with Dynamic Data : We might encounter further challenges when

the underlying dataset for RNSGQ is frequently changing. Also, it is quite plausible that

our designed system is expected to respond to queries in an on-line environment where

maintaining low query latency is critical.

Before presenting a mathematical formulation of the problem, we discuss an informal example

to better convey the intuition behind our work. We hope that it will build a better understanding

of the problem and the associated challenges for the readers.

Figure 1.1 is an extremely simple example of a scenario where RNSGQ can be useful. Let us

assume that two triangular points S and S′ are restaurants and the six circular points a, b, c, d, e

and f are user locations in a LBSN. The dashed lines between points show the corresponding

user friendship. With RNSGQ, we could look at the figure and ask : Which groups are in the

influence set for S or S′?. If S or S′ represent competing restaurants, given a choice, which ones
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Figure 1.1. RNSGQ: A simple example

are to be more likely chosen by a group? For a marketer or a manager, having this information

can be critical while making key business decisions in a competitive environment. However, it

should be apparent that before we can answer this question, we need to address the potential

ambiguity in the idea of influence and social groups. To answer this question without explaining

what we imply by a social group or what defines influence set is improbable. Thus a definitive

mathematical formulation of “problem of influence” and “social group” precisely conveying our

intent is central to solving the problem.

1.2 Research Contribution and Organization

Thesis Contribution: We now highlight the achievements of the work. In summary, the key

contributions of our research are:

1. Developing and understanding the notion of Reverse Nearest Social Groups. We propose

an answer for the question : How do we concretely define the notion of influence for social

groups? Our work thus successfully formalizes the idea of “influence sets” in context of

social groups.

2. Providing an in-depth analysis of finding Reverse Nearest Social Groups for a large socio-

spatial network and proposing Social First and Spatial First approaches for solving the

problem.

3. Proposing a novel algorithm R-SAGE(Rnn-based Social-Aware Group discovEry Algo-

rithm).

4. Providing comprehensive theoretical and experimental analysis of proposed solutions.

In the remainder of this paper, we continue to describe the idea behind RNSGQ. We use a

mathematical formulation to concretely define our problem in Chapter 2. This also help us build a



5

fundamental understanding of Spatial Querying and Social Cohesiveness. The Chapter 3 further

provides a comprehensive survey of Spatial Indexes, Spatial Queries, Social Measures and leads to

a discussion on Socio Spatial queries. Next, Chapter 4 analyses the problem statement in depth

and presents related findings. The learnings are then used to present Social first and Spatial

first approaches for solving the problem. In Chapter 5, we build on Spatial first and Social

first approaches to propose a solution referred to as R-SAGE(Rnn-based Social-Aware Group

discovEry Algorithm). Theoretical and Experimental analysis is then presented in Chapter 6 and

Chapter 7. We use an extensive comparison of performance to demonstrate the effectiveness of

our finally proposed solution relative to the baselines. Finally, Chapter 8 summarizes the work

and distills our learning.



Chapter 2
Problem Formulation

With a necessary background on socio-spatial queries, we formulate our research problem for-

mally. Consider a social network G = (V,E), where V is the set of clients and E is the set

of undirected edges representing the friendships among these clients. In this network G, each

v ∈ V is also associated with a location lv. Let S denote a set of server objects sharing the

spatial plane, where each s ∈ S is defined with a location ls. We denote the spatial distance

between two objects u, v as DIST (u, v). A RNSGQ (q, k) comes with two parameters, where

the first parameter q ∈ S is the spatial query point and the second parameter k is the social

constraint for clients in V . The RNSGQ(q, k) thus aims to find : The Set W of all Reverse

Nearest Social Groups (RNSGs) for q ∈ S, such that 1) each Wi ∈ W satisfies the k-core [9]

constraint, i.e. each member in Wi has edges connecting to at least other k members in Wi. 2)

For each Wi, the farthest actor f ∈Wi from q has q as its nearest neighbor i.e. ∃f ∈Wi such that

DIST (f, q) >= DIST (vj , q) ∧ f is a RNN of q,∀vj ∈Wi − {f} (thus minimizing the maximum

distance(MINMAXDIST) to q) and 3) each Wi is maximal i.e. there exists no Wj ⊇ Wi such

that Wj satisfies conditions 1) and 2).

To quantify spatial proximity of a group, there are several probable solutions. We can design

spatial functions that could seek to minimize: MINDIST (minimum distance of group to query

point), AVGDIST (average distance of group to query point) or MAXDIST (maximum distance

of group to the query point). We claim that even though these functions are quite useful, they

do not perfectly fit our scenario. This can be attributed to the fact that for the entire group to

be in the influence set of the query point, none of these measure ensure that every individual in a

group is in the influence region. To understand the idea further, let us look at a simple example

in Figure 2.1. For this example, we will assume k value to be 1.

A group defined as B,C and D will be in the influence set of S1 if we use a spatial influence

function based on AVGDIST (minimizing the average distance of group to query point). However,

can we really consider D to be in the influence of S1? Intuitively, D is in close proximity to S2.

Similarly, a group defined as F,G and H will be in the influence set of S3 if we use a spatial
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influence function based on MINDIST (minimizing the minimum distance of group to query

point). However, a similar dilemma persists i.e. can we really consider H to be in the influence

of S3 (instead of S1).Finally, a group defined as A,E and I will be in the influence set of S4 if

we simply use MAXDIST (minimizing the minimum distance of group to query point) without

introducing the idea of a farthest actor. Again, intuitively A is in the influence of S2 (instead of

S4) by proximity.

Figure 2.1. Distance Functions for quantifying Influence

The underlying theme is simple: Unlike MINDIST, MAXDIST and AVGDIST that can

report groups with members that are unacceptably far away in the influence set, our influence

criterion appropriately ensures an upper bound on the distance of groups to the query point.

Moreover, after a careful analysis we realize that our influence criterion although similar to

simple minimum MAXDIST criterion provides an even stricter constraint ensuring all members

are in relative proximity.

Similarly, there are many existing popular social cohesive measures such as diameter, clique,

clubs, clans [19] and k-plex [24]. Each group measure aims to capture different aspects of social

closeness. However, extracting groups satisfying a specific social cohesive measures are usually

hard problems. In contrast, k-core attracts much attention as it is a simple degree-based measure

and can be done in polynomial time. It is thus an effective choice for describing social constraint.

Moreover, while issuing the query, the parameter “k” can be tweaked by the user to strictly

or loosely enforce social cohesiveness. It is interesting to note that, we can even take it to the
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extreme with “k” as 0. Our query is then just a spatial Reverse Nearest Neighbor query. The

framework we design and propose is not restricted to a particular parameter value for “k” and

efficiently handles any parameter.

Solution Outline: To design an effective framework for solving Reverse Nearest Social Group

Queries, we present a solution framework that attacks the problem using several different strate-

gies. We start the discussion by providing an in-depth analysis of the problem scenario. Insights

based on server location and group location drawn from a farthest actor analysis are distilled for

comprehending problem structure better. From this analysis, we move forward to propose two

different approaches for solving our problem : 1) A Spatial first approach that prioritizes spatial

pruning and 2) A Social first approach that in contrast emphasizes on social pruning.

To provide readers with a brief outline, the spatial first approach does an iterative exploration

based on distance browsing and prioritize pruning based on distance by iteratively consider clients

to find social groups. In contrast, the social first approach uses a pre-computed k-core to facilitate

social pruning and uses divide and conquer for finding social groups (leveraging the fact that

actors in different cores do not form a group).

The two approaches help us focus individually on the social and spatial component of the

challenge. This serves as a baseline and paves the way for our final solution R-SAGE(Rnn-based

Social-Aware Group discovEry Algorithm). The R-SAGE algorithm builds on existing RNN

work in [28] and uses two-phased : 1) discovery and 2) computation to efficiently compute the

solution set. Our final proposed algorithm thus greatly improves the scalability and performance

as a solution when compared to the previous baselines.



Chapter 3
Related Work

In this chapter, we review all the essential concepts that are relevant to our problem of finding

social groups in the influence set for a given query point. We begin our exploration in Section 3.1

by covering the fundamentals of data storage in context of relational databases. Further along, in

Section 3.2 we describe some of the foundational data structures that facilitate efficient retrieval

of spatial data. Next, Section 3.3 builds up on this previous background to discuss some of the

most popular spatial data queries relevant to our work. In Section 3.4, we focus our attention on

the problem of Core Decomposition for networks which lays the foundation of social groups in our

problem. Finally, we discuss some of the recent work done in the area of multi-domain queries

such as socio-spatial queries. This is due to the fact that our problem at hand, the RNSGQ is a

socio-spatial query.

3.1 Fundamentals of Data Storage

To begin our literature survey, we take a look at some of the popular access methods used by

all modern databases. The discussion will help the reader appreciate the science and engineering

behind efficient data storage and retrieval. With this discussion, we also want to lay the founda-

tion and trace the roots of modern indexing techniques. In a true sense, we are indeed standing

on the shoulders of giants.

Development of efficient data structures like B+ Tree (the most ubiquitous variant of original

B Tree index [10]) lay the foundation of efficient retrieval of data stored in modern filesystems.

While our focus is on spatial data, B+ Tree are still relevant as they can be recognized as an

efficient index for one dimensional data. The idea behind the B+ Tree index is to sort data keys

based on some relative ordering property. The actual data objects are stored in the leaf node,

while the internal nodes of the Tree store pointers for traversal. Each internal node is responsible

for key ranges that fall inside some closed interval. A data object, given the corresponding key

value can thus be retrieved by a method similar to that of a Binary-Search Tree. However, due to
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a high fanout degree (number of pointers to child nodes), I/O operations are significantly reduced.

For example, Figure 3.1, shows a B+ Tree(degree 3) indexing data values 1 to 9. In addition to

finding data value for a corresponding key, sequential scanning of the dataset is quickly feasible

with pointers in leaf node. Although B+ Trees are highly efficient for fast retrieval of data

objects, their inherent limitation of indexing only in a single dimensional domain makes them

somewhat less relevant in spatial data storage. Researchers have tried to propose clever indexing

techniques that allow B+ Tree to be used for multi dimensional data. One such index structure

is Space Filling Curves [22]. The idea is to map every point in space to a unique number. A

curve then defined a linear ordering of all points. The points are indexed with B+ Tree and can

be used for efficient retrieval.

Next, in the upcoming Section 3.2, we will discuss organization techniques designed specifically

for spatial domain. These techniques are optimized for multidimensional data and outperform

the likes of B+ Tree.

Figure 3.1. B+ Tree Example

Hash Index deserver a quick mention as they can are used for equality comparisons in

databases. These indexes, however do not support range queries and can be used only for simple

key-value lookups. Another property of Hash Indexes require that whole keys be used to search

for a qualified database row unlike B+ Trees where a leftmost prefix is sufficient [4].

3.2 Spatial Data Index

Spatial Index optimize queries on objects defined in a geometric space. These objects can be

anything like points, lines and polygons and are essentially characterized by a location and

geometric extent. Spatial queries can then be designed based on a variety of predicates such as

relative location and geometric relationship between these objects. Some of the popular examples

are: Spatial Selection, Intersection, Nearest Neighbor, Spatial Joins among others. The area is

challenging, as dimensionality and extent complicates indexing, retrieving and updating data.

The central theme behind most of the popular Spatial Access Methods is to group nearby

objects in space into disk pages. These pages are then organized in some hierarchical fashion in an

index. Another common technique used is to define approximations of spatial objects (commonly

referred to as Minimum Bounding Rectangles [31]) that can be used to filter unwanted results and
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reduce query execution costs. We will next cover some of the access methods used for indexing

multidimensional data, particularly the R-Tree.

R-Tree [14] are among the most popular spatial access method used in commercial databases.

Proposed by Antonin Guttman in 1984, they offer efficient storage with minimal update overhead.

Organized in a multilevel hierarchical fashion where every node has a minimum and maximum

capacity, objects are always stored at the lowest level of the Tree. A MBR approximates the

smallest rectangle that contains all of the associated data points. As levels fill up, a recursively

merging and splitting technique is used to solve the problem of overflow and underflow. The

bounding boxes are used to decide whether or not to search inside a subtree. Most of the

nodes in the tree are thus never read during a search. The idea behind R-Tree index is overall

quite similar to that of B+ Tree discussed previously. However, unlike the B+ Tree structure

where subsets of the data key range are disjoint, the MBRs associated with sibling R-Tree nodes

frequently overlap. Consequently, a query might traverse multiple paths in the R-Tree to return

meaningful results. Figure 3.2 demonstrates an example of hierarchical spatial organization with

Figure 3.2(a) showing the data points along with corresponding MBRs and Figure 3.2(b) the

R-Tree indexing this data. The Tree groups points p1, p2, p3 in the leaf node u1 which is itself a

child of internal node u6. This MBR r1 stored contains all these nodes.

Figure 3.2. R-Tree Example

Since the work done by Guttman on R-Tree, multiple variants of the general R-Tree data-

structure have been proposed. The most popular variants being the R+ Tree [25] and the

R*-Tree [11]. The newer data structures defer from the original R-Tree work by optimizing on

the heuristics used when grouping objects together in an MBR. The work done originally in

R-Trees attempted to minimize MBR area using various heuristics that trade effectiveness for

speed. In contrast, R*-Trees consider a variety of features when making decisions about how

to group, split, and merge data objects. A revised node split algorithm and concept of forced

reinsertion at node overflow is used to improve split heuristic performance. We will be using

R*-Tree variant as the primary spatial indexing method in this work.

The database community has collaboratively designed many other multiple spatial indexes.
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Some of the other popular indexes are Grid File [20], Quad Trees [13] and k-d Trees [12]. We

briefly touch upon the central themes of these data structures.

Grid File : The grid file divides the entire domain space into multiple cells and uses a grid of

n-dimensions(n representing number of keys to reference a single point). A grid directory is used

to store mappings between cells and disk blocks similar to hashing. To answer a spatial query,

cells that intersect with a query are determined. Next the grid directory are used to fetch data

points corresponding to these cells.

Quad Trees : A quad Tree recursively divides space into four quadrants (Figure 3.3). The

regions can have arbitrary shapes and need not be symmetric. The partitioning is done in a way

that each leaf node has sufficient space for pointers to disk blocks. Similar to R-Trees, spatial

queries are evaluated by finding blocks that overlap with query area. However, a major issue

with Quad Tree is the fact that due to regular partitioning into four blocks, the utilization of

leaf nodes is non-uniform.

Figure 3.3. Other Spatial Data Structures

K-d Trees : K-d Trees are a variant of binary Trees that provide for indexing in k dimensions.

The space is recursively by choosing a coordinate as a basis. Points to the left in spatial domain

are represented by the left subTree and points right of the hyperplane are represented by the

right subTree.

3.3 Spatial Data Query

This section discusses traditional popular spatial queries. Some of these include: spatial selection,

nearest neighbor and reverse nearest neighbor. When discussing these queries, we will assume

R-Tree or its variants being used for underlying indexing. Most of these spatial queries are now

considered as building blocks for designing any modern complex query. To provide readers with

some necessary context, we refer to query point and its competing counterparts as servers (pro-

viding a service requiring the notion of influence) and clients as individuals under the proposed

influence.
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We already informally discussed Spatial Selection queries in context to B+ Trees. We quickly

review this query for sake of completeness. The Spatial Selection query involve returning objects

in a plane with respect to a reference object and a predicate. In Spatial Selection MBRs stored in

internal R-Tree nodes are iteratively tested against the query predicate. The child nodes whose

parents qualify this MBR filtering step are further inspected. Most of the times, a predicate like

intersection or containment is tested. The query finally retrieves all objects that qualify from

the MBRs tested

Range queries return all objects in the dataset that lie within a specified area. The query is

framed as searching from a central query point q along with supplemental range parameters given

by a predicate P . The two most common categories include the range query and the window

query.

Range Queries retrieve objects inside a circular region centered at the query point q with a

radius r. Similarly Window Queries return all objects inside of a rectangular window around a

query point q with extents given by length l and a height h. We visualize these ideas in Figure

3.4.

Figure 3.4. Spatial Range and Window Queries

In both of Figures 3.4(a) and (b), data points a and b satisfy the range and window query

respectively. All other data points are simply filtered out by the predicate.

Some potential applications for these queries are :

• A restaurant wants to find all individuals within a range. A range query can accomplish

this task.

• A user might want to explore all monuments in a tourist city area. Here the user is interested

in a region that can be modeled as a spatial window.

To process Range and Window queries, the key idea is to search all the child nodes of a R-Tree

whose MBR overlap with the queried search region. When traversing the leaf node satisfying

the property, the algorithm will include all the objects in the result. This can be done in a

BFS(Breadth First Search) or a DFS(Depth First Search) fashion.
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Another fundamental spatial query is the Nearest Neighbor(NN) query that retrieves objects

closest to a given query point q in the spatial domain. This problem is extremely important as

most of the other Spatial data queries use it as a foundation when designing more complicated

spatial queries. Researchers refer to the problem as finding the k-Nearest Neighbor of a query

point. Here the parameter k implies that we return k closest objects to the query point. Finding

Nearest Neighbor is can then be considered a special case where k = 1.

Let us assume that we have a query point q and we consider all other data points in a set C.

The k-Nearest Neighbor query returns a set c, where |q, c| ≤ |q, c′|, ∀c′ ∈ C. Several techniques

have been proposed in the past literature for processing Nearest Neighbor information. Most

of the efficient techniques assume that the data points are indexed by an R or R*-Tree. These

efficient solutions employ a technique popularly referred to as distance browsing [15] in the

literature. The idea behind this technique is to processes points in order of minimum distance

from the query point q. The algorithm makes use of a priority queue to examine data points in

an increasing order of Euclidean distance. It is intuitive that the first k objects encountered are

part of the result set.

We provide a visualization for Nearest Neighbor(1-NN) query in Figure 3.5.

Figure 3.5. Nearest Neighbor Query

The point p is the Nearest Neighbor and discovered first by the distance browsing query with

q as query point. Other points a, b and c are not discovered.

The RNN or Reverse Nearest Neighbor query is highly critical as it closely resembles our

problem of finding influence set consisting of social groups. In contrast, the RNN problem

instead focuses only on the spatial domain and aims to find individual objects that have the

query point as Nearest Neighbor. Similar to the Nearest Neighbor problem, we have a general

problem defined as RkNN and a more specific variant RNN where the value for k is 1.

Let us now define the RNN query for a point q. The RNN result set consists of a set c such

that all points in this set are closer to query point q than any other data point in C. We can thus

define the solution set having all elements c ∈ C with |c, q| ≤ |c, c′|, ∀c′ ∈ C. The RNN query

thus identifies all objects that have the query point closest by Euclidean distance. Unlike NN
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query type, the cardinality of an RNN result set varies. It is also possibly for the result set to

be empty(where none of the points have query point as Nearest Neighbor). It is also important

to note that we present a monochromatic (clients and servers belonging to the same set) view

of RNN query in the problem definition. In addition to this definition, a similar bi-chromatic

variant can also be formulated where clients and servers belong to different sets.

We provide a visualization for Reverse Nearest Neighbor(Rk-NN) query in Figure 3.6. The

point p and r have q as their Nearest Neighbor. Hence they are the Reverse Nearest Neighbor

for q.

Figure 3.6. Reverse Nearest Neighbor Query

As we discussed in Chapter 1, we can use the RNN query for solving scenarios involving

influence in spatial domain. The granularity of influence set are individual point instead of social

groups as we are dealing with just the spatial domain.

A lot of methods in the past have been proposed to compute RNN queries. Some of the past

influential works are [17], [27], [29], [32] and [28]. As we will present to the readers in upcoming

chapters, the work done by Stanoi et al. in [28] is most relevant to our current problem. Our

proposed solution R-SAGE builds up on this existing work to solve for Reverse Nearest Social

Group Query.

3.4 Core Decomposition of Graphs

Another idea that is central to our problem of finding Reverse Nearest Social groups is that

of k-core decomposition. This idea of a core was originally proposed by Seidman in [23]. The

problem defined a core as a cohesive subgroup of individuals within a network where a cohesive

subgroup consists of individuals with strong direct relationship. Here is a precise definition as

originally formulated in [23]: Let G = (V,L) be a graph. V is the set of vertices and L is the

set of lines (edges or arcs). We will denote n = |V | and m = |L|. A subgraph Hk = (W,L|W )

induced by the set W is a k-core or a core of order k ⇐⇒ ∀v ∈W : degH(v) ≥ k, and Hk is the

maximum subgraph with this property. The core of maximum order is also referred as the main

core. The core number of vertex v is the highest order of a core that contains this vertex.

As we discussed in Chapter 1, k-core is central to our problem formulation as we define a

social group as an entity where every individual is atleast familiar to k other people in the group.
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This is a natural way to model our problem, as we can vary the value of k to dictate group

cohesion. A higher value for k will dictate a tightly knitted group whereas a lower k value would

promote a set of loosely connected individuals.

Figure 3.7 demonstrate the example of cores in a network. In this example, point I has a

core number of zero. Point G has a core value of one and F , H get a value of two. Rest of the

points A,B,C,D and E lie in a core of value three.

Figure 3.7. k-Core example

The problem of core decomposition received little attention until Vladimir et al. in [9] pro-

posed an efficient solution for calculating maximal core in a graph. The work uses a recursively

technique to delete all vertices and edges of degree less than k, resulting in a remaining graph

which is a k-core. In the upcoming chapters, we will use k-core based constraint to model social

groups. However, it is important to note that in addition to satisfying the social property, when

calculating influence set in RNSGQ, it is also critical to ensure that all individuals in k-core also

satisfy the spatial proximity constraint.

3.5 Multi domain query problems

We can classify the problem of finding Reverse Nearest Social Group for a query point as a

multi-domain query. This is due to the fact that it involves working with spatial as well as

social domain. In this section, we quickly mention some of the past research conducted in the

socio-spatial domain. This will give readers a flavor of problems that involve juggling multiple
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domains. As we discussed previously, these problems have received considerable attention in

the past half a decade because of a boom in the area of Location Based Social Networks. Our

research is a further stepping stone in this direction.

One of the foundational work in Socio-Spatial group query is by Yang et al. [33]. The research

work titled On socio-spatial group query for location-based social networks aims to enhance or-

ganizing impromptu activity by issuing invitations in accordance with the locations of attendees

and the social relationship among them. The work is relevant to us as it involves a similar tradeoff

in spatial-social domain when selecting a group of attendees close to a rally point while ensuring

that they have a good social relationship. The problem is formulated in [33] as: Given a social

graph G = (V,E), where each vertex v ∈ V is a candidate attendee with a location lv, and any

two mutually acquainted vertices u and v are connected by an edge eu,v. A Socio-Spatial Group

Query SSGQ(p, q, k) finds a set F of p vertices from G where the total spatial distance from the

vertices in F to the rally point q, i.e., v ∈ Fd(v, q) is minimized and each vertex on average can

share no edge with at most k other vertices in F .

To solve this problem, authors propose an approach titled as SSGSelect that uses concepts de-

fined as Distance Ordering (ordering points by distance), Socio-Spatial Ordering(ordering points

both by socio-spatial properties), Distance Pruning(pruning points not satisfying spatial con-

straint), and Familiarity Pruning(pruning points not satisfying social constraint) for finding an

optimal solution. The authors demonstrate that SSGSelect is highly efficient and outperforms

manual coordination and other baselines significantly.

Another significant work in Socio-Spatial domain is by Nikos et al. [7] in their work: A general

framework for geo-social query processing. This work proposes a general framework to tackle

processing Socio-Spatial queries using data management techniques and novel algorithmic design.

The work demonstrates how a complex socio-spatial query can be executed by combination of

primitive queries issued to the social and geographical modules that allows perfect separation of

concerns. The work proposes two GeoSN queries Range Friends (finding friends of a user within

a given range) and Nearest Friends (finding the nearest friends of a user to a given query point).

In addition to Range Friends and Nearest Friends, the work proposes a Nearest Star Group query

which similar to our proposed problem, and aims to find a star subgraph of the social network

that minimizes aggregate (euclidean) distance to query point. In the problem formulation, a star

subgraph implies a social group where four users are connected by a star’s center i.e. a common

friend. We would like to point out to the readers that the proposed query Nearest Star Group is

fairly limited in comparison to Reverse Nearest Social Group Query as it enforces a very strict

restriction on the group structure.

Another substantial work in Socio-Spatial group queries has been proposed by Shen et al. in

[26] titled Socio-Spatial Group Queries for Impromptu Activity Planning. This work introduces

the idea of Multiple Rally-Point Social Spatial Group Query(MRGQ), to find an appropriate

activity location for a group of attendees in proximity with tight social relationships. An MRGQ

includes four parameters, p(size of the answer group), Q(list of activity locations), k(familiarity

constraint) and t(spatial radius) of the query. The problem sets to find a set F ⊆ V where
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|F | = p and minimize the total spatial distance from F to q, i.e.,
∑

v∈F dv,q, where dv,q ≤ t,

∀v ∈ F , and unfamiliar (v, F ) ≤ k3, ∀v ∈ F . The authors demonstrate that the problem is

NP-hard but can be solved efficiently for small number of attendees. A solution based on Integer

Linear Programming optimization model is proposed, followed by a algorithm which uses search

space exploration and pruning to reduce runtime for finding the optimal solution.

Summarizing, in this chapter, we presented research in relational data storage and retrieval

that led to the design of a variety of efficient access methods. We then discussed the evolution

of access methods specialized for spatial data. This was followed by studying queries in spatial

and then social-spatial domain to trace the genesis of Reverse Nearest Social Group Query.

Finally, concluding our discussion, we can suggest that although many of the discussed socio-

spatial queries differ significantly in terms of their objectives, there is a common theme that

transcends all of them. All Socio-Spatial queries present unique challenges for algorithm designers

as they involve exercising innovative ideas in multiple domains for efficient pruning and thus

finding optimal / efficient solutions. As Reverse Nearest Social Group Query is a Socio-Spatial

query, we will face similar challenges when designing an efficient solution.
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RNSGQ Processing

To lay a foundation, we introduce the computational framework necessary for supporting RNSGQ

and state any underlying assumptions. We then provide a comprehensive analysis to further

delve in and understand our problem throughly. As we will demonstrate, this analysis helps

us to understand both the social and spatial aspects of approaching the problem. Armed with

this knowledge, we then present two baseline solutions based on these approaches. The chapter

concludes with us reinforcing the lessons learnt and paving way for designing an efficient solution.

The work thus serves as a groundwork to address challenges involved due to tradeoff in spatial

and social domains.

Although the query is designed to work with complex LBSN storing a large amount of data,

we make minimal set of assumptions when designing a system model for RNSG query. In Chapter

3, we presented an overview of Spatial Data Storage. For the analysis and baseline solutions we

present in this chapter, we will assume access to an R*-Tree data structure and support for

fundamental queries like Distance Browsing [15] and Nearest Neighbor Queries [21]. We make no

assumptions as to if the data resides in disk or memory. The R*-Tree can be chosen to implement

as an in-memory or disk resident data structure.

4.1 Problem Analysis

To answer this problem and analyze possible solution strategies, we will again use a simple

example to present some very important observations that will help us shape the problem solution.

With this suitable background, we then proceed to define the plausible problem solutions.

Consider Figure 4.1 with a set of Server points S1, S2, S3 and client points v1, v2, v3 and v4

where S1 is our query point. Let us assume that we want to find all the RNSG(s) that satisfy

the 1-core constraint. For Figure 4.1, the set of points v1, v2, v3, v4 together, or a subset can be

a potential Reverse Nearest Social Group for S1.

To study the problem further, we first investigate the concept of a farthest actor. For a given
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Figure 4.1. RNSGQ Analysis

query point q, we define farthest actor as a client vi that is a Reverse Nearest Neighbor (RNN) for

q and is also situated at a distance (euclidean) greater to q than any other RNN client vj ∈ V −vi
that are part of the same k-core.

In Figure 4.1, we can prove that v4 is a farthest actor. Comparing v4 to other client points,

v2 is not a RNN of S1, v1 is a RNN but is situated at a distance less than v4. In contrast,

the point v3 is situated at a farther distance but does not have S1 as a RNN. Thus v4 is RNN

in the core situated at a maximum distance(satisfying all criteria discussed above). As we will

demonstrate later, finding all farthest actor given a query point is a non-trivial problem and

one of the key challenges that we need to overcome for finding RNSGs efficiently. To contribute

further insights, understand farthest actor and quantify influence, we now propose the following

statements:

Influence Proposition 1: There exist no server within radius of distance r for the actor v4

(denoted as d(v4, r)).

Proof: Let us assume that there does exist a server S within radius of distance r for the actor

v4. If this is true then server S is the Nearest Neighbor of v4 (by definition). However, this

contradicts from our initial assumption of S1 being the Nearest Neighbor of v4. Therefore we

can conclude that there exist no servers within d(v4, r) (marked as gray in Figure 4.1).

Influence Lemma: For a given query point q, if a client v at a distance r is a farthest actor

for q, then a group Wi consisting of v and all vi that lie within d(q, r) and are part of the same

k-core form a Reverse Nearest Social Group for q.

Proof: From Influence Proposition 1, we can safely conclude that any server q
′

in set S − q
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will have a distance more than r to v. Thus a group Wi consisting of v and all vi within

d(q, r) will have MAXDIST(Maximum Distance) (Wi, q) = r but MAXDIST (Wi, q) > r. We

can safely conclude that MAXDIST (Wi, q) < MAXDIST (Wi, q), as the MAXDIST is being

dictated by the farthest actor v. In our example Figure 4.1, MAXDIST ({v1, v2, v4} , S1) <=

MAXDIST({v1, v2, v4} , S −{S1}). As the group is a nearest neighbor according to MAXDIST,

farthest actor and is also assumed to be satisfying the core constraint, we can qualify it as a

RNSG.

We now take a step back and ask For each potential group and a given query point, how can

we find all the farthest RNN actors? The key to solving the RNSG query is thus to effectively

examine and identify these client points. With that in place, we could then for each potential

group find all the points vi ∈ V that lie at a distance less than or equal to d(q, r) and along with

the farthest actor v satisfy the social constraints.

As the problem of finding RNSG(s) for a query point involves finding data points that satisfy

the spatial as well as the social constraints, an efficient algorithm needs to effectively consider the

distinct spatial and social layers. If we simply choose to prioritize one over another, we will not

return a correct result set. With this necessary background, we now propose two basic processing

approaches to solve this problem.

The spatial approach is based on an iterative space expanding technique based on distance

browsing, where we prioritize pruning based on distance and iteratively consider clients to find

RNSG.

To guide an efficient exploration of the search space, at each iteration, we want to incre-

mentally consider client according to their distance from the query point S. For achieving this,

we leverage the distance browsing technique in Spatial index R*-Tree. The distance browsing

technique can be efficiently used to discover points in ascending or descending order of distance

from a query point.

Let us take the example of Figure 4.2 to understand how we want to approach finding RNSG(s)

for query point S. Remember the idea for us is to find all the possible farthest RNN actor points

that will help us reach our end goal. To begin with, we use distance browsing, to discover the

point 1 at first. Once we have a newly discovered point, we would want to check if this point

1 is a Reverse Nearest Neighbor for S and also a potential farthest actor? We can easily check

the former condition by issuing a Nearest Neighbor query for 1 using our R*-Tree Spatial index.

However, as at the moment, we do not know what points lie further? Thus a key challenge is to

figure out if the point is indeed a farthest actor? How do we resolve this dilemma?

To answer this question, we need to discover all possible points that could potentially act as

the farthest actor in the connected component that contains 1. To do this, we propose a Breadth

First Search traversal to explore all the points reachable from 1 and maintain a list of all these

points sorted by decreasing distance to S i.e. {6, 5, 2, 4, 3}. Now, to discover a maximal group,

we iterate from farthest point in the list and check is the point satisfies the RNN constraint. In

Figure 4.2, point 6 and 5 fail to satisfy this property as they have S3 and S2 as their respective

Nearest Neighbors. Point 2 is a RNN point but does not satisfy the core constraint as its degree



22

Figure 4.2. Socio Spatial Example

is 1.

Moving ahead and checking client 4, the point satisfies the farthest actor criteria. At this

point, we are halfway through our goal, we have found the farthest actor point and can now

look for a potential RNSG for S. Thus, we propose to perform a social pruning (running k-core

algorithm) on the rest of subset {4, 3, 1} dictated by Lemma 1. As these points satisfy the spatial

and social constraint, we report the set as one of our solution.

Similarly, we discover 9 as the next closest point, and further discover all the connected

points 12, 11, 7, 10, 8, 9. The farthest actor which is a RNN of S is 12. After performing the

social pruning on subset, we filter out 11 and we have 12, 7, 10, 8, 9 as our resultant group.

Finally, for the next group discovered starting from 13 i.e. {16, 14, 15, 13} none of the points

satisfy the farthest actor constraint. Hence we reject all the data points without even checking

for social constraints. Algorithm 1 compiles all of the steps clearly.

We now discuss the other school of thought in solving the RNSG problem. As discussed

previously, in this approach, we use a pre-computed k-core to facilitate social pruning and use

a technique similar to divide and conquer for solving the problem. We refer to this approach as

divide and conquer as it stems from the idea that actors in different cores do not form a social

group.

Let us use Figure 4.2, to understand the Social approach for solving the problem. We start

by running a k-core algorithm on graph G to prune all elements that do not satisfy the k-core

constraints. In Figure 4.2, as our constraint require a 2-core, we prune {16, 2, 11} as they have a

core value of 1. The idea for this approach is to next traverse each core to find the maximal social

groups. We propose to iterate on every core actor in descending order of distance from S. This is

due to the fact that one of our preliminary goals is to find the farthest actor for S that satisfies the
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Algorithm 1 Spatial First Approach for Reverse Nearest Social Group Query

V ← Set of all clients
S ← Query Point Location
for all client points v ∈ V in ascending order of distance from S do

if NotProcessed(v) then
Do a BFS starting at v to :
⇒ Find the entire connected component.
⇒Maintain list L of clients in the connected component in descending order of distance.
for all l ∈ L do // To find the farthest actor with S as its Nearest Neighbor

if (Degree(l) < k || NearestNeighbor(l) != S ) then
Ignore and mark as processed. // Not a part of our result set

else
Perform k-core computation for elements in L[l..(l.length)].
if (IsKCore(L[l..(l.length)]) then

Return the core as a solution.
end if
Mark all points in L as processed.

end if
end for

end if
end for

RNN constraint. Iterating in descending order of distance reduces any un-necessary computation

and is more intuitive way to solve the problem. To iterate over clients in descending order of

distance, we can use a variant of distance browsing approaches to consider clients in descending

order. For Figure 4.2, we start with the core C1 = {6, 5, 4, 3, 1} and inclemently check to find the

farthest actor satisfying the RNN constraint. For this core, the farthest RNN actor is 4 giving

us a subset {4, 3, 1}. As we are considering a subset of a core, we again need to check again if the

subset satisfies the core constraints. To do this we run a k-core algorithm again to check if 4, 3, 1

make a 2-core. As they satisfy the group constraints, they are one of the RNSG for S. Next we

consider core {12, 7, 10, 8, 9}, as 12 does satisfy the RNN constraint, we can simply result this as

one of our answers. Finally we consider the core {14, 15, 13} but as none of the point satisfy the

RNN constraint, we skip the clients. We now summarize the Social First approach in Algorithm

2.

Algorithm 2 Social First Approach for Reverse Nearest Social Group Query

C ← Set of all clients
S ← Query Point Location
Execute k-core decomposition on the entire graph to retrieve a core V from all points in C.
while (NotEmpty(V )) do // Consider every v ∈ V in descending order of distance

if (NearestNeighbor(v) != S) then
Ignore and delete v from V .

else // v is a NN and is assumed to be situated at a distance r from S
Find and return the sub-core K consisting of v and points in d(S, r).
Delete all elements in K from V .

end if
end while
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We discussed both the Spatial First and Social First approach in the last section. The

individual algorithms give us some insights on their respective advantages and disadvantages.

However some of the subtle nuances of algorithms might remain hidden unless pondered on. In

this section, we thus explicitly discuss the merits and de-merits for both approaches.

The Spatial First approach provides excellent distance browsing capabilities that allow us to

explore groups nearby the query point. As all the reverse nearest social groups are expected to

minimize the distance to query point, this is a huge advantage. The advantages discussed earlier

are also the reason behind some of the major shortcomings for the approach. As the algorithm

aims to explore groups iteratively according to increasing distance, this makes identifying farthest

actors difficult. Moreover, using BFS to find other group members causes huge performance

penalties in densely connected social graphs with few very large connected components.

The Social first approach as discussed in last section, provides an excellent divide and conquer

strategy for simply pruning a large number of clients based on their social connectivity. This

provides a substantial advantage as k-core computation has a linear runtime and scales wells

for large number of clients. Finding farthest actors is relatively straight forward too as we can

consider every core in decreasing order of distance from query point. Facilitating spatial pruning

using the Social Pruning approach is although quite cumbersome. Once a core is identified, in

order to compute farthest actors, a large number of Nearest Neighbor queries have to be issued.

This can be very expensive. Moreover, to check if k-core subgroups satisfy core constraints, we

have to repeatedly check for social constraints. Thus performing k-core decomposition repeatedly.

This can be expensive.

Analyzing merits and demerits of the baselines help us in determine recurring challenges in

designing an efficient solution. It is apparent from the past few sections that given a query

point for computing RNSG(s) effectively, we should be able to effectively compute: Given a

set of nodes, do they satisfy spatial constraints? and Given a set of nodes (that satisfy spatial

constraints as dictated by farthest actor), do they also satisfy k-core constraints?

As repeated execution of these steps lie at the crux of our algorithm, a rough breakdown of

the cost of our query will give us further insights. It is important to note that these steps are a

part of both Spatial First as well as Social First approach. The total cost of baseline algorithms

can thus be broken down into the following individual components: 1) Finding Farthest Actors

which is very costly as we were issuing a large number of Nearest Neighbor queries. This is also

due to the fact that social network graph consist of few very large connected components, and

the algorithms end up traversing all nodes of a large graph. Thus to find all other elements, we

need to visit the entire connected component. 2) Finding all other plausible group members (the

ones reachable from farthest actor and within a distance bounded by the farthest point) which

is again costly. 3) Checking if these nodes together satisfy Social Constraints which is costly

too. This is due to the fact that for checking social cohesiveness, we need to check for k-core

constraint. When done repeatedly, it is computationally expensive.

Recalling our past discussions of baselines, an interesting observation is the fact that: our

solution revolves around finding farthest actors. The farthest actors are interestingly a subset of
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Reverse Nearest Neighbors for the query point. However, we do not directly use any ideas from

research in efficiently calculating Reverse Nearest Neighbors to calculate Reverse Nearest Social

Groups. The baselines instead use a more primitive repeated execution of Nearest Neighbor

queries. This is because we are trying to approach the research problem distinctively in Spatial

and Social domain. In the next chapter, we will build on the observation of calculating RNN

points to efficiently calculate Reverse Nearest Social Groups for a given point.



Chapter 5
Improving RNSGQ Computation

In this chapter, we propose an efficient algorithm defined as R-SAGE(Rnn-based Social-Aware

Group discovEry Algorithm) to compute all Reverse Nearest Social Groups. As a reminder to our

readers, we list the key challenges for efficiently doing so. Going ahead, our proposed solution will

address all these challenges by combining pruning in spatial and social domain. The challenges

are: 1) Finding all farthest actor effectively, 2) Quickly locating the rest of qualifying group

members as dictated by Lemma 1 and 3) Efficiently checking if a set of clients satisfy the core

constraints.

To communicate our ideas with the reader, a narrative style similar to past few chapters

is used. We follow through an example to explain our vision for the problem solution. The

algorithm R-SAGE is further divided into two distinct phase to convey the major learnings: 1)

A discovery phase for finding relevant server and client data points. In this phase, to keep track

of clients socio-spatial properties, we propose a spatially aware disjoint set data-structure. This

data-structure keeps track of clients according to the connected components they lie in and their

respective distances to the query point. 2) Once the discovery phase terminates, a computation

phase is employed for calculating the exact social groups.

5.1 Calculating Reverse Nearest Social Groups with R-

SAGE

Discovery Phase: The key intuition behind this approach is to estimate a region where the

social groups in the influence set will lie. Along with the spatial estimation, we also want to

discover the social graph for each qualifying node and temporarily index them in a fashion so as

to aid in checking core constraints quickly.

Following key steps are performed in this phase:

1. Calculating a bounded region for the query point where all the social groups and competing

servers will lie.
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2. Retrieving all Servers and Clients in the region.

3. Indexing clients in order of increasing distance and by social connectivity to facilitate quick

checking of social constraints in the next phase.

RNN Background With these goals in mind, we build on the state of the art algorithm

proposed in [28] that calculates all Reverse Nearest Neighbors for a query point effectively.

Discussed in length at Chapter 5, farthest actor is among one of the RNN point, thus this

technique shares high relevance to our work. We adapt and improve on the technique to efficiently

compute social groups as defined in the scope of our work rather than individual client points. To

provide our readers with the necessary background, let us first quickly discuss the major ideas of

the previous work. We strongly recommend the readers to refer to this work for an in-depth look.

After this brief discussion, while discussing RNSGQ, we will provide a step by step example to

further build on the idea to solve for our problem statement. The algorithm proposed by Stanoi

et al. [28] can be summarized as:

1. Finding an Approximate region Approx(q) where RNN points lie. This region will contain

an influence set with either the exact same points as defined by a precise RNN region or a

Superset of these points i.e. including some incorrect points that are not in the influence

set.

Following Figure 5.1, to find this approximate region, four Nearest Neighbor servers (S1,

S2, S3 and S4) in each quadrants are discovered. Since the NN points are closer to Q,

they restrict the influence region for Q. However, this region is still an approximation as

we are missing out on points like S5 which is not a Nearest Neighbor but still restricts the

influence set. An approximate influence region defined as {A1, A2, A3, A4} is obtained by

calculating the intersection of bisectors of point |QS1|, |QS2|, |QS3| and |QS4|.

2. Next, using clever analysis and by simply looking into the approximate region, another

region Refined(q) is calculated. This region is theoretically guaranteed to consist of all

other competing servers that can potentially affect the influence region of query point.

Once the region is defined, all the servers in this region are retrieved.

The key insight to finding Refined(q), comes from the fact that any Server Point whose

bisector (with query point) intersects with the lines defined by A1, A2, A3, A4 constricts

the influence region further. Figure 5.2 defines the four circles with diameter equaling the

distance between query point Q and {A1, A2, A3, A4} respectively. Figure 5.3 builds on

the circles constructed to define an MBR consisting of all four circles. Stanoi et al. prove

that if bisector of the midpoint for line segment joining an arbitrary server S and q lies

outside the MBR of Circles (as denoted by M1, M2, M3 and M4 in Figure 5.3) then the

point cannot constraint influence region for q.

Assuming the coordinate of a circle i be defined as cix and ciy, the authors propose that

the MBR dimensions can be further calculated as:
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Figure 5.1. Server with Nearest Neighbors in all four Quadrants

Low(x) = min((c1x− r1), (c2x− r2)...(cix− ri))

Low(y) = min((c1y − r1), (c2y − r2)...(ciy − ri))

High(x) = max((c1x + r1), (c2x + r2)...(cix + ri))

High(y) = max((c1y + r1), (c2y + r2)...(ciy + ri))

The area defined as Refined(q) is derived the MBR as:

Refined(q) = 2 ∗ lowx − qx, 2 ∗ highx − qx, 2 ∗ lowy − qy, 2 ∗ highy − qy

The complete Proof for the work is presented in [28].

3. Finally all RNN points in the approximate region are retrieved and verified to be in the

influence set by comparing the distance to competing server points retrieved further in

Refined(q) in Step 2.

Spatially Aware Union-Find Data Structure: Union Find data structure have been clas-

sically proposed in computer science to keep track of a set of elements partitioned into a number

of non-overlapping subsets. This classic data-structure can thus be used to dynamically track

the connected components of a graph as vertex are added as they model disjoint set conceptually.
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Figure 5.2. Nearest Neighbors with corresponding circles

Fundamentally, the classic Data Structure supports the following two operations:

1. Find: This operation can be used to check the set in which an element lies.

2. Union: This operation can be used to join / union two disjoint subsets into a single large

subset.

As we will propose next in the section, during the discovery phase, we want to keep track

of all clients and the social groups they lie in. Thus a union-find based data structure seems a

good fit. However, our use case is slightly different from the classic data-structure. In addition

to simple union and find operations, we need to support:

• Iterate: Given a client as farthest actor, this operation can be used to iterate on all other

clients that lie in the same connected component within a distance bounded by the queried

farthest actor.

We will use a simple example to demonstrate the idea behind a spatially-aware Union-Find

Data-Structure. Walking through an example, we will augment a simple Union-Find data-
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Figure 5.3. MBR bounding area for Reverse Nearest Social Groups

structure into a Spatially aware counterpart. Let us assume a scenario where we start with

five nodes 0, 1, 2, 3 and 4 each in a different connected component. This is shown in Figure 5.4.

Figure 5.4. Union-Find: Five different Sets / Connected Components

Next, we merge 2 with 3 to make a single set (imagine a scenario where 2 and 3 share an

edge).

Finally in Figure 5.6, we merge 1 with the set consisting of 2 and 3 to insert it into a connected

component.

Figure 5.7 shows the state of Union Find data-structure, where reference to parent points are

shown corresponding to the state described in Figure 5.4, 5.5 and 5.6. The readers are urged

to note that the Union Find data-structure also supports height information to support faster

query runtimes. However this information has been omitted in the current figure for the sake of

brevity.
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Figure 5.5. Union-Find: Four Connected Components

Figure 5.6. Union-Find: Three Connected Components

To augment the data-structure with additional spatial information, we propose to make the

following set of changes: Our implementation maintains double pointers for every node i.e. every

parent node points to all immediate child nodes. Thus after using the Find operation to locate

the parent node, we can traverse the child pointers to iterate on all other nodes in a connected

component. In this example, this would imply storing 2 and 1 as child nodes for 3. Next, every

node stores its distance to query point thus allowing to filter nodes that lie beyond a farthest

actor.

The resulting data-structure is visualized in Figure 5.8. Note that the first two rows for parent

pointers are shown for completeness and demonstrating the evolution of the data-structure with

join operations ( they are not part of the final snapshot ). Extra meta-data in the form of distance

is stored along with every client. Moreover, each client also a list of its immediate child nodes.

Discovery Phase example for RNSGQ The adoption of the technique for calculating

RNSGQ is now explained with an example: Figure 5.9 shows a simple scenario with our query

point Q and five other serves S1, S2, S3, S4 and S5. Clients location H1 to H15 are also present

along with the server points. We assume the value for k defining core constraints is 2.

We use the distance browsing technique with R*-Tree to visit data points in ascending order.

As discussed previously, we are presently interested in pruning search space, discovery of data

points in the region and indexing them by social characteristics. Thus the key goals for this phase

are: 1) Finding Servers in all four quadrants that constrict influence region of Q and 2) Finding

all clients that lie in this region. The idea is to incrementally maintain connected components

information. A spatially aware Union Find structure is employed the purpose (as described in

the previous paragraph). This will help in checking for social constraints faster.

We want to accomplish all this by visiting data points just once and henceforth saving com-

putation and I/O costs. We trace the example in Figure 5.9 to show a step by step computation

of our result set:

1. We start by visiting point H7, moving to H11, H10, H8, H6 and H1. Ids of these elements

are inserted into the spatially aware union find data-structure UF.
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Figure 5.7. Union-Find: Timeline for Connected Component Information

Figure 5.8. Design of Spatially Aware Union-Find Data Structure

2. We now encounter S4. As it is a server, we check the quadrant it lies and then add it to

the Server list (no server found in quadrant 4 yet).

3. H5, H2 are next discovered point and added to UF.

4. We now have an interesting case, the point is H9 which is in fourth quadrant and farther

from the NN Server S4. Can we simply prune this point?

The answer is NO, the pruning is not possible as H9 is connected to H12 (which we havent

discovered yet). Even though H9 is not a RNN point, it is part of social group where

farthest actor H12 could be a potential RNN for Q. Thus the point is simply added to UF.

5. Server S2 is discovered and added to Server list (Quadrant 2).

6. Further along we find points H3 and H4. As degree of H3 < core constraint, it is pruned.

H4 is added to UF.
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Figure 5.9. Reverse Nearest Social Group Query Example

7. Server S3 in 3rd quadrant and S1 in 1st quadrant are discovered and added to server

list. At this point, we have discovered NN in all four quadrants. Consequently, we can

compute a Refined(q) and as discussed by authors that restricts the possible area for finding

competitive serves. However, along with restricting server distance, there is another crucial

spatial pruning implication. This brings us to Lemma 2.

Lemma 2: For a given query point Q and an approximate region Approx(q), defined by

four vertex A1, A2, A3 and A4. If D is maximum distance among d(Q,A1), d(Q,A2),

d(Q,A3) and d(Q,A4). Then, there does not exist any group member further away from D.

Proof: As per Lemma 1, a group consist of a farthest actor and all members satisfying

social constraints that lie within d (q, r) (where r is the distance of farthest actor from query

point) . Thus a group’s bound on distance from query point is dictated by the farthest

actor. We now extend this a step further. In our case, the farthest Reverse Nearest Neighbor

situated at a distance D sets a bound on maximum distance of any farthest actor. Thus

consequently defining a bound on all groups and their respective members. Figure 5.10
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demonstrate the idea visually.

8. We now discover H15, H14 and H13 but choose not to store them in UF as they cannot

possibly be in the solution set as dictated by Lemma 2.

Figure 5.10. Pruning for Reverse Nearest Social Group Query

9. S5 is discovered and added to Server List.

At the end of discovery phase, we have the following memory data-structures with us: UF

and Server List. The contents for the example are listed below :

Server List = {S4, S3, S3, S1, S5}
UF = {{H9, H10, H11, H12} , {H5, H6, H7, H8} , {H1, H2, H4}}.

We omit to include the exact structure of UF as the idea behind Spatially aware Union-Find

data-structure has been discussed previously. Moreover, a precise internal structure might vary
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depending on the implementation details. However, conceptually the idea is simple, we have the

connected components stored as disjoint sets. The spatial Union Find data structure as discussed

previously allows us to perform following operations quickly:

1. Find: Quickly find which connected component a point lies in.

2. Iterate: Quickly iterate on all members in a connected component within a distance

bounded by farthest actor.

Computation Phase: With all the necessary information, we are now armed to calculate the

RNSG(s) for query point Q. All the information is encoded in Server List and UF.

The highlights for this step are :

1. Iterate on all connected component (any order) but visiting individual points in descending

order of distance in UF to check for all farthest actor (by comparing the distance with q

and the other list of Servers). It is important to note that sorting is required in order to

visit nodes in decreasing order of distance. This requires a small amount of extra work

in the size of a set ( running a fast sorting algorithm). However, as in our scenario the

list is small due to pruning of search space to Refined(q), this step is not computationally

expensive.

2. Finding elements that lie within the group for this point and checking for core constraints.

The state of the art algorithm for finding core number runs in linear time. This is computa-

tionally cheap but can get expensive if executed repeatedly on large graphs. Similar to the

previous point, although we use this subroutine as it is, we only run the k-core algorithm

on a very small pruned input set. Thus our implementation is again very fast.

Tracing the example presented in Figure 5.9: We start with H4 and compare the point distance

to servers in Server List and conclude that the point is not a farthest actor. H2 and H1 fail on

similar ground. Client H5 satisfies the NN criteria. Retrieving rest of group members in the

connected component H6,H7,H8 we find that they also satisfy the core constraint and are thus

reported as social group. H12 and H9 fail to satisfy the farthest actor criteria. H10 and H11

although do satisfy the spatial constraint but fail to be a part of the result as social criterion is

not satisfied.

The algorithm highlights another key strength of our solution discussed previously in Chapter

1. As our algorithm performs excellent pruning in both social and spatial domains, it is highly

suitable for an online environment where maintaining low-latency is critical. Moreover as we do

perform any pre-processing that imposes a strict notion of a server and a client to pre-construct

an index, the roles of server and client can be chosen during the runtime.
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5.2 Algorithm for Reverse Nearest Social Group Query

Now that our readers are familiar with the workings of our proposed algorithm for Reverse

Nearest Social Group Query, we formally define the R-SAGE algorithm. The two phases as

discussed previously are packages into seperate subroutines.

When executing the R-SAGE algorithm, we make the following set of simple assumptions.

IsKCore: We have an access to a subroutine IsKCore that checks whether a graph satisfies the

k-Core constraint as proposed in [9]. IsSever: This subroutine checks whether a point is a server

and returns true / false accordingly. IsQuadrantNN: The subroutine IsQuadrantNN computes

which quadrant a point lies in and then further ensures that no other point was previously

discovered in this quadrant (thus ensuring the discovered point is Quadrant’s Nearest Neighbor).

Our proposed algorithm R-SAGE(Rnn-based Social-Aware Group discovEry Algorithm) can

thus easily locate all groups in the influence set without any pre-computation. This is feasible

only because of the novel insights applied by the technique in both spatial as well as social

domain.
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Algorithm 3 Reverse Nearest Social Group Query

procedure DiscoverServerClients(RTree)
NNS, SL,UF ← {}
discoveredServer ← FALSE // Flag to exit loop when all Servers have been found
ApproxQ← {−∞,∞,∞,−∞}
RefinedQ← {−∞,∞,∞,−∞}
repeat
∀v ∈ RTree in increasing order of distance
if ( IsServer(v) && IsQuadrantNN(v) ) then // Check if v is quadrant’s NN server

NNS.insert(v)
if (NNS.length() = 4) then // We have all Nearest Neighbor

ApproxQ← intersection of bisectors |Q−L[0]|, |Q−L[1]|, |Q−L[2]|&|Q−L[3]|
Calculate center for MBR circle (c1x, c1y)...(c4x, c4y)
Calculate radius for MBR circle r1...r4
Low(x)← min((c1x− r1), (c2x− r2), (c3x− r3)), (c4x− r4))
Low(y)← min((c1y − r1), (c2y − r2), (c3y − r3)), (c4y − r4))
High(x)← max((c1x + r1), (c2x + r2), (c3x + r3)), (c4x + r4))
High(y)← max((c1y + r1), (c2y + r2), (c3y + r3)), (c4y + r4))
Refined(q)← 2 ∗ lowx − qx, 2 ∗ highx − qx, 2 ∗ lowy − qy, 2 ∗ highy − qy

end if
else if ( v ∈ Refined(q) ) then // Point lies within Refined(q)

if ( IsServer(v) ) then
SL.insert(v)

end if
if ( IsClient(v) && v ∈ MAXDIST(ApproxQ) ) then

UF.insert(v)
end if

else
discoveredServer = FALSE

end if
until (discoveredServer = FALSE)

end procedure

procedure ComputeRNSGQuery(NNS,SL,UF,QueryPoint)
for all Groups C ∈ UF do

for all client point v ∈C in descending order of distance do
if ( NearestNeighbor(v) = QueryPoint) then

C ← UF.find(v) // Fetch clients in C bounded by distance to v
if (IsKCore(C) then

Return the core as a solution.
end if
Mark all points in C as processed.

end if
end for

end for
end procedure



Chapter 6
Theoretical Analysis

In Chapter 4 we proposed two baseline algorithms for calculating the Reverse Nearest Social

Group Query. Further Chapter 5 proposed an improvised algorithm for calculating social groups

in the influence set for a query point. However, we refrained for providing any formal verification

to aid in proving the correctness of our algorithms. In this chapter we fill in the missing pieces and

provide a strong theoretical foundation for checking correctness of our algorithm. In addition,

we also provide a framework for understanding performance characteristics of our solutions as

quantifying performance is as critical as correctness. We use several different datasets and criteria

to reinforce our results.

Correctness Proofs: Before we can argue on the correctness of our algorithms, we first need

to answer a much more fundamental question, i.e. Irrespective of any specific technique, what

are the fundamental problems any RNSG algorithm must solve in order to derive a correct an-

swer?. Once we have a precise answer to this question, we can then use it as a measure to

prove the correctness for any given algorithm. With this insight, let us proceed to define our

correctness framework properties. As dictated by the problem definition ( consisting of distance

function MINMAXDIST, farthest actor and core-constraint), any solution needs to satisfy three

correctness properties:

Property 1: All Reverse Nearest Social Groups consist of a farthest actor that is a Reverse

Nearest Neighbor of the query point and lies at a distance greater than any other point in the

group.

Property 2: All Reverse Nearest Social Groups calculated minimize the maximum distance

from a group to query point.

Property 3: All Reverse Nearest Social Groups calculated satisfy core constraints.

Thus for all our solutions, a group in a solution set as specified in Lemma 1: Consists of a

farthest actor v at a distance r and all vi that lie within d(q, r) and is a k-core. Lemma 1 further

dictates that such a group indirectly satisfies all three properties (a formal proof in Section 4.1).
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Thus we can rephrase the two correctness properties for our baseline as: Correctly identifying

all farthest actors with corresponding groups having all members within a distance less than the

farthest actor from a query point and correctly checking the k-core constraints.

With this background, we now proceed to individually verify the two base line approaches.

The Spatial First algorithm iteratively looks for client data points that are situated near the

query point. Next, the algorithm starts a BFS to find the entire connected component for this

point. These points are then sorted in descending order of distance and iteratively checked for

satisfying the farthest actor criteria. An in-depth algorithm explanation has been provided in

Chapter 4.

Theorem 1: Spatial First algorithm finds all Reverse Nearest Social Groups.

Proof: For a connected component, the algorithm sorts the data points in descending order

of distance and performs Nearest Neighbor checks on every point. Thus the farthest actor is

calculated correctly. The connected component members are sorted by the distance to query

point, once the farthest actor is found, only members of the group at a lesser distance are

considered. Thus the farthest actor and the corresponding group within d(q, r) is found correctly.

Finally, a k-core check is performed on all qualified elements satisfying Property 3. The algorithm

continues to execute until all the farthest actors and the corresponding groups are found (by

terminating after processing all points), thus finding all qualified groups.

The Social First algorithm starts by running a k-core preprocessing step and retrieving core

number for every point. For every corresponding core, data points are considered in descending

order of distance and checked for the farthest actor criteria. A subset of elements satisfying

spatial constraints are then checked for fulfilling the social constraint. An in-depth algorithm

explanation has been provided in Section 4.1.

Theorem 2: Social First algorithm finds all Reverse Nearest Social Groups.

Proof: A k-core based pruning is performed and cores are then considered in descending order

of distance from query point to be checked for farthest actor constraint (by repeated executing

Nearest Neighbor query). This allows us to find the farthest actor and all elements at a distance

lesser from the query point thus satisfying Property 1 and 2. A k-core check is performed on all

qualified elements satisfying Property 3. The algorithm continues to execute until all the cores

are processed thus finding all qualified groups.

Our final solution R-SAGE builds on the state of art techniques for finding Reverse Nearest

Neighbor clients. Along with finding the RNN set, the algorithm keeps track of social connectivity

and distance of clients from the query point to allow quick checks on socio-spatial constraints.

An in-depth explanation has been provided in Section 5.1.

Theorem 3: R-SAGE algorithm finds all Reverse Nearest Social Groups.

Proof: The algorithm finds farthest actors correctly by finding the RNN set for query point

(satisfying Property 1).The algorithm then uses smart data-structures to consider clients in the
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same connected component having distance less than farthest actors from the query point. This

ensures that Property 2 is satisfied.Finally, all the elements are checked for core-constraints thus

satisfying Property 3. The algorithm continues to execute until all farthest actors (by repeating

the above steps for all qualified connected components) and the corresponding clients have been

processed. Thus retrieving all qualified groups.
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Experimental Analysis

Before we take a plunge into the experimental results, we provide an in-depth dataset analysis

for the readers. This is important as performance of algorithm is tightly linked to the dataset

characteristics. Thus it is critical to have a good sense of the data used for experimentation. We

use two real world datasets (popular LBSN Foursquare [1] and now defunct Whrrl [6]) for our

analysis.

A lot of research efforts in the past have been dedicated to analyzing real world social graphs

and some of the interesting phenomenons observed that are specific to these networks [30] [18] [8].

It is thus well established that social networks differ greatly from randomly generated graphs. As

one of the key implications for RNSGQ is to quantify influence in Location based social network,

it makes much sense to use a real world dataset fort this analysis. This helps us to get closer

into a real world system when designing a solution.

The datasets have been borrowed from the past research in Socio-Spatial domain [33]. Both of

these datasets consist of following attributes: 1) A list of businesses ids along with their location.

2) A list of users and their friendship graph and 3) A list of user check-ins (past history of user

visits to businesses).

In order to make the data suitable for our work, we cleanse and preprocessing the data. Here

we list the key scrubbing and transformation performed on the original raw data. We remind our

readers that the transformation is applied on both the datasets. The transformation involves :

1) Removing all locations missing location(latitude-longitude) data. 2) Removing all users who

have past checkins only in businesses with missing location data. 3) Discarding friendship tuples

that involve a deleted users. 4) Converting all user ids to a numeric string and 5) Pre-processing

checkin history of a client to obtain a single home location by calculating centroid point of all

past visited locations.

The location data is represented as Latitude and Longitude. A Plus/Minus notation is used

for encoding extra direction information. We provide a concise review for our readers to quickly

remind them of the system : The Latitude of a pointmeasures how far north or south of the

equator a place is located. To provide an anchor, the equator is situated at 0◦, the North Pole
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at 90◦ north (or simply 90◦, as positive latitude implies north), and the South Pole at 90◦ south

(or 90◦). Thus Latitude measurements range from 0◦ to (+/) 90◦. Longitude on the other

handmeasures how far east or west of the prime meridian a place is located. A minus sign

indicates west of prime meridian and a positive sign implies east. The longitude measurements

range from 0◦ to (+/)180◦.

Let us start our dicussion by summarizing the key Foursquare dataset attributes in Table 7.1.

Next Table 7.2 shows a pattern of check-ins for foursquare and Table 7.3 summarizes information

on connected components in the dataset. Finally we summarize the kcore attributes for the

dataset in Figure 7.1.

Attribute Count
Server Count 57117
Client Count 127753
Friendship Count 591876

Table 7.1. Foursquare Dataset Summary

Check-In Count Number of Users
1 to 10 123256
11 to 20 3850
21 to 30 495
31 to 40 89
41 to 50 493
51 to 400 28

Table 7.2. Foursquare Check-In Summary

User Count Number of Connected Components
87229 1
5 1
4 5
3 11
2 34

Table 7.3. Foursquare Connected Component Summary

In our study, Foursquare is the larger dataset. It has a higher client to server ratio. Moreover,

the friendship graph is dense. Table 7.2 shows the distribution of check-in counts in the dataset.

We observe that most of the clients have a smaller number of check-ins. Further, Table 7.3 shows

number of components with a specific user count. We observe that most of the clients are part of

a single large connected component with 87229 nodes. Finally, Figure 7.1 summarizes the k-Core

distribution of the graph. We observe that the largest core has a consists of 87355 nodes.

We now a present a similar analysis for the Whrrl dataset. The key dataset attributes are

summarized in Table 7.4. Similar to Foursquare dataset, we use Figure 7.5 to show a pattern of

check-ins for Whrrl and Table 7.6 to summarize connected component information. Finally we

summarize the kcore attributes for the Whrrl dataset in Figure 7.2.

In our study, Whrrl is the smaller dataset. Unlike Foursquare, it has a higher server to client

ratio. Moreover, the friendship graph is relatively sparse. Table 7.5 shows the distribution of
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Figure 7.1. Foursquare k-core

Attribute Count
Server Count 47828
Client Count 5256
Friendship Count 48626

Table 7.4. Whrrl Dataset Summary

check-in counts in the dataset. We observe that most of the clients have a smaller number of

check-ins. Next, Table 7.6 shows number of components with a specific user count. Most of the

clients are part of a single large connected component with 4871 nodes. Figure 7.2 summarizes

the k-Core distribution of the graph. We observe that the largest core has a consists of 4871

nodes.

We now divert our attention to performance analysis of baseline algorithms and our final

solution. Particularly, we are interested in a relative comparison between the performance of our

proposed solution and baselines. For an empirical performance analysis, we implement all the

techniques discussed in this work in C++. All experiments are performed on a Unix machine

with an 2.4 GHz Intel Core i5 processor and 8 GB of RAM. We use a R*-Tree implementation

in C++ from an open source library libspatialindex [2]. The Stanfords SNAP(Stanford Network

Analysis Project) [5] graph implementation is used to store the social groups. Throughout our



44

Check-In Count Number of Users
1 to 50 4681
51 to 100 244
100 to 150 75
151 to 200 34
201 to 250 14
251 to 450 14

Table 7.5. Whrrl Check-In Summary

User Count Number of Connected Components
4871 1
8 3
5 3
4 10
3 4
2 30

Table 7.6. Whrrl Connected Component Summary

experiments, we make the following assumptions when designing all the algorithms: 1) The clients

are stored in a database where the location is indexed by an R*-Tree that resides in memory. 2)

The social graph is stored in-memory. 3) We stimulate a cold start for experiments and set the

spatial library buffer pool size set to zero and 4) C++11 <chrono> high resolution clock is used

to measure all runtimes. We assume a constant CPU workload when running the experimental

analysis (as varying load may affect runtime).

The key idea is to measure runtime performance of algorithms for varying value of k. The

Figure 7.3 and Figure 7.4 summarizes our result for the two datasets Foursquare and Whrrl. We

observe the runtime trend for Foursquare and Whrrl datasets by varying the value of k. This is

achieved by executing 1000 random queries for every value of k. A graph is then plotted on a log

scale and shows the runtime trends for Spatial First, Social First and the R-SAGE algorithm.

Note that the Spatial First approach is missing for the Foursquare dataset as it does not retrieve

any results in a reasonable amount of a time(60minutes).

We summarize the k-Core trend for Foursquare. The Social First starts with a very high

runtime with an average of 8.3 seconds per query. However, as we increase the value of k, a

sharp decline in the runtime is observed. With a value of k as 25, the average runtime comes

down to 2.81 seconds. This can be clearly attributed to a large pruning of clients during pre-

processing where a lot of clients are eliminated from the search space as they do not satisfy

the core constraint. The R-SAGE algorithm is observed to be independent of the value of k as

the majority of pruning is performed by restricting the search space and k-Core computation is

simply run on a very small subset of clients.

We can now summarize the k-Core trend for Whrrl. The Spatial First approach does not

show much of a variation with changing value of k. This is because the algorithm is based on a

scanning approach and has to traverse the search space for finding a solution set. The runtime is

very high and averages around 4.5 seconds. The Social First approach, similar to the Foursquare

dataset shows a similar trend. The query starts with a high average runtime of 2.36 seconds

per query for k value of 5. However, as we increase the value of k to 25, the average runtime
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Figure 7.2. Whrrl k-core

decrease to 0.0963 seconds. Finally, the R-SAGE shows no correlation to the increasing value of

k as discussed previously. We observe an average runtime of 0.051 seconds for k as 5. The value

remains relatively unchanged for k as 25 at 0.059 seconds.

We would also like to measure runtime over an extended number of queries. The Figures 7.5

and 7.6 summarizes our result for the two datasets Foursquare and Whrrl. We observe the runtime

trend for Foursquare and Whrrl datasets by increasing the number of queries while keeping the

value of k constant at 10. A graph is then plotted on a log scale that shows the runtime trends

for Spatial First, Social First and the R-SAGE algorithm. Just as we observed when looking

at the runtime with respect to k value, the Spatial First approach is missing for the Foursquare

dataset as it does not retrieve any results in a reasonable amount of a time(60minutes).

The k-Core trend for Foursquare can now be summarized. The Social First algorithm has

an average runtime of 5.3 seconds for 25 random queries. The runtime shots up a little to 6.7

seconds when executing 1000 random queries. We attribute this to the entropy in the system when

executing a large number of queries over an extended period of time. The R-SAGE algorithm

in contrast shows a clear increase in runtime as we increase the number of queries. This might

be a little perplexing for the readers and might seem counter intuitive. The observation however

stems from the fact that the algorithm relies on dataset properties ( finding NN servers) for

pruning a large number of clients and servers. With increasing number of random queries, the

algorithm uses outliers as inputs that do not have Nearest Neighbor Servers in all four quadrants

restricting the search space. For these cases, the pruning is inefficient and the average runtime

is increased.
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Figure 7.3. Foursquare k-core vs Runtime

Figure 7.4. Whrrl k-core vs Runtime

To conclude, we summarize the k-Core trend for Whrrl. The Spatial First algorithm has an

average runtime of 4.6 seconds for 25 random queries. The runtime stays relatively constant

around 4.6 seconds when executing 1000 random queries. The Social First algorithm has an

average runtime of 0.132 seconds for 25 random queries ( due to pruning with k value as 10).

The runtime stays constant around 0.138 seconds when executing 1000 random queries.The R-

SAGE algorithm as discussed previously for Foursquare dataset shows an increase in runtime

with increasing number of queries. The average runtime is 0.009 seconds for 25 random queries
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Figure 7.5. Foursquare Query Number vs Runtime

Figure 7.6. Whrrl Query Number vs Runtime

which shoots to 0.051 seconds for 1000 random queries.



Chapter 8
Conclusion

We start our discussion by highlighting the exponentially increase in user generated socio-spatial

data and discuss the associated challenges involved in storing and querying massive socio-spatial

datasets. We acknowledge a critical need for database designers to tackle novel challenges when

designing queries in socio-spatial domain. Next we discuss the idea of quantifying influence in

socio-spatial domain. We talk about influence for social groups and its ties to Reverse Nearest

Neighbor Query in spatial domain. We formulate the problem Reverse Nearest Social Group

Query (RNSGQ) mathematically for a concrete definition. For motivating RNSGQ, we propose

a variety of applications that span several different domains. Further, we motivate the idea

that extending the notion of influence to social groups as a natural extension to the RNN prob-

lem. With the definition of RNSGQ, we can model further rich problems that involve influence

particularly important in the Socio-Spatial domain.

We present a farthest actor based analysis to exemplify the idea of minimizing the maximum

distance from a group to a query point. Next, we use this analysis to propose two different

approaches for solving our problem : 1) A Spatial first approach that prioritizes spatial pruning

and 2) A Social first approach that in contrast emphasizes on social pruning. To propose an

efficient solution and balancing the tradeoffs in both spatial and social domains, we next pro-

pose a two-phase R-SAGE(Rnn-based Social-Aware Group discovEry) algorithm. The proposed

algorithm R-SAGE was shown to easily locate all groups in the influence set without any pre-

computation. This was feasible only because of the novel insights applied by the technique that

facilitate excellent pruning. Another key strength of our algorithm relies on the fact that it does

not impose a strict notion of a server and a client as no pre-processing is involved. Thus the roles

of server and client can be chosen during the runtime.

Concluding, we successfully formulate the notion of Reverse Nearest Social Groups and the

idea of quantifying influence set consisting of social groups. The proposed algorithm R-SAGE

is empirically demonstrated as an efficient problem solution.
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