

The Pennsylvania State University

The Graduate School

College of Information Sciences and Technology

SECURE ACQUISITION OF DIGITAL EVIDENCE

FROM VMWARE ESXI HYPERVISORS

A Thesis in

Information Sciences and Technology

by

Matthew Joseph Tentilucci

© 2015 Matthew Joseph Tentilucci

Submitted in Partial Fulfillment
of the Requirements

for the Degree of

Master of Science

May 2015

 ii

The thesis of Matthew Joseph Tentilucci was reviewed and approved* by the following:

 Anna Squicciarini
Assistant Professor of Information Sciences and Technology

 Thesis Advisor

 Gerald Santoro
 Senior Lecturer, Information Sciences and Technology

Assistant Professor of Communication Arts and Sciences

Dinghao Wu
Assistant Professor of Information Sciences and Technology

Carleen Maitland
Associate Professor of Information Sciences and Technology
Affiliate Professor, The School of International Affairs
Interim Associate Dean for Undergraduate and Graduate Studies

*Signatures are on file in the Graduate School

 iii

ABSTRACT

The use of computer virtualization technologies has rapidly grown since the early 2000’s.

Factors driving this growth include the ever-increasing utilization of cloud computing as well as

benefits to consolidating physical hardware within a data center. In addition to the growth of

virtualization technologies, computer security incidents are also increasing. However,

researchers have drawn attention to the problem that many of the traditional computer forensics

tools and investigation techniques cannot be used to gather and analyze digital evidence obtained

from virtualization technologies or cloud computing resources.

To solve a part of this problem, this thesis proposes a new open source tool called

ESXimager that securely acquires digital evidence from VMware ESXi hypervisors. The tool

securely images selected virtual machine files running on VMware ESXi and ensures image

integrity through the entire imaging process. Written in Perl and utilizing Tk, the tool makes use

of an ESXi server’s ability to execute shell commands. Bit-stream copies are created using the dd

command, image integrity is verified using the MD5 and SHA1 hashing algorithms, and images

are securely transferred to an external imaging machine with SFTP. With a secure image created,

a forensics investigator can load the image into a separate computer forensics tool for analysis.

ESXimagers capabilities are validated in a small yet realistic test environment. The tool

connects to an ESXi server, creates images of selected virtual machine files, calculates multiple

hashes, and securely transfers images to a local imaging machine. In addition, the tool detects if

the integrity of an image file is compromised.

With some additional development and testing in a larger environment, this could

potentially become the go-to tool used to acquire images from VMware ESXi hypervisors.

 iv

Table of Contents

LIST OF FIGURES ... vi

LIST OF TABLES... viii

ACKNOWLEDGEMENTS... ix

Chapter 1 Introduction ... 1
Overview of Computer Forensics.. 2

Chapter 2 Related Works .. 3

Chapter 3 Methodology ... 5
Environment .. 7

Hardware Specification... 9

Chapter 4 Forensic Image Acquisition Tool – ESXimager ... 12
Graphical User Interface.. 12

Running the Program for the First Time ... 13
Creating a New Case... 15
Connection to an ESXi Server .. 16
Selecting Files to be Acquired .. 16
Creating an Image with DD .. 19
Transferring Image with SFTP.. 20
Verifying Image Integrity ... 21

Additional Features ... 22
Directory Tree and File List .. 22
View File Information... 23
Verify Integrity.. 25

Under the Hood ... 26
Finding Virtual Machines on the ESXi Server ... 26
Suspending Virtual Machines ... 27
Un-suspending Virtual Machines.. 29
Calculating MD5 and SHA1 Hashes... 31
Logging ... 34

Chapter 5 Scenarios and Results.. 36

 v

Scenarios.. 36
Scenario 1.. 36
Scenario 2.. 36
Scenario 3.. 37

Results ... 37
Scenario 1.. 37
Scenario 2.. 38
Scenario 3.. 40

Chapter 6 Limitations and Future Work .. 47

References... 50

Appendix: A Source Code ... 53
ESXimager2.9A.pl .. 53

 vi

LIST OF FIGURES

Figure 1 – Logical topology of test environment ... 8	

Figure 2 - Physical topology of test environment... 9	

Figure 3 - View of ESXimager program when first opened... 13	

Figure 4 - Information message, no configuration file found... 14	

Figure 5 - Window that allows user to create a configuration file 14	

Figure 6 - Sample configuration file... 14	

Figure 7 - Create new case window.. 15	

Figure 8 - Banner displaying the current open case.. 15	

Figure 9 - Interface to enter user credentials to connect to an ESXi server...................... 16	

Figure 10 - Displays all virtual machines running on the connected ESXi server 17	

Figure 11 - Names of virtual machines as seen in the vSphere client interface 17	

Figure 12 - Program asking if the selected virtual machine(s) should be suspended before

continuing ... 18	

Figure 13 - Informational message box providing feedback to user 18	

Figure 14 - User selects which file(s) to image .. 19	

Figure 15 - Confirm user file selections before imaging .. 19	

Figure 16 - Information message box displayed to use as first round of hashes are being

calculated .. 20	

Figure 17 - Information message box displayed while the DD command is being run ... 20	

Figure 18 - SFTP transfer progress window... 21	

Figure 19 - Image verification, final calculation of MD5 and SHA1 hashes 21	

Figure 20 - Error message informing user image is corrupt ... 22	

Figure 21 - Imaging process complete.. 22	

Figure 22 - Directory tree and file list window within ESXimager GUI 23	

Figure 23 - Selected file in file-listing window .. 24	

Figure 24 - File information menu bar item ... 24	

Figure 25 - File information window.. 25	

Figure 26 - Verify integrity menu bar item... 25	

Figure 27 - Verifying image integrity... 26	

Figure 28 - Code to execute find command and parse its output 26	

Figure 29 - All local storage and external storage volumes are mounted in /vmfs/volumes/

.. 27	

 vii

Figure 30 - Equivalent output of the find command received by the program................. 27	

Figure 31 - Code used to find a virtual machines world ID and then suspend the virtual

machine... 29	

Figure 32 - Output of /sbin/vmdumper -l command as seen from the command line 29	

Figure 33 - Perl code to restart a virtual machine once image acquisition is complete.... 30	

Figure 34 - Output of vim-cmd vmsvc/getallvms as seen on the command line.............. 30	

Figure 35 - Sample output of calculating MD5 and SHA1 hashes on an ESXi server 31	

Figure 36 - Sample output of calculating MD5 and SHA1 hashes on a Linux desktop... 31	

Figure 37 - Sample output of calculating MD5 and SHA1 hashes on a machine running

OS X ... 32	

Figure 38 - Perl code used to calculate MD5 hashes on the local imaging computer. This

code differentiates between machines running Linux or OS X 33	

Figure 39 - Code snippet from checkOS subroutine showing how special Perl variable

$^O is evaluated.. 33	

Figure 40 - Sample ESXimager log file output .. 35	

Figure 41 - logIt Perl subroutine... 35	

Figure 42 - File information window showing hash history of specified file................... 38	

Figure 43 - Error message shown when image is found to be corrupt 38	

Figure 44 - iSCSI disk added to ESXi datastore... 39	

Figure 45 - .vmss file being acquired from iSCSI storage.. 39	

Figure 46 - Datastore names are symbolic links to ESXi own naming convention 39	

Figure 47 - Network traffic graph during image acquisition from iSCSI datastore 40	

Figure 48 - ESXimager begins working on target 4 GB file .. 41	

Figure 49 - ESXimager finishes imaging 4 GB file.. 41	

Figure 50 - ESXi CPU performance graph for 4 GB file acquisition............................... 42	

Figure 51 - Linux imaging CPU utilization during 4 GB file acquisition 43	

Figure 52 - Host machine disk queue length during 4 GB imaging test........................... 44	

Figure 53 - Host machine disk queue over 18-hour period .. 44	

Figure 54 - ESXimager begins imaging 40 GB file.. 45	

Figure 55 – ESXimager finishes imaging 40 GB file ... 45	

 viii

LIST OF TABLES

Table 1 - Description of files that comprise a virtual machine... 6	

Table 2 – Host Machine hardware specifications ... 9	

Table 3 - FreeNAS hardware specifications ... 10	

Table 4 - CentOS 6.5 hardware specifications ... 10	

Table 5 - VMware ESXi 5.5 hardware specifications .. 10	

Table 6 - Puppy Linux hardware specifications ... 10	

Table 7 - DSL hardware specifications... 11	

Table 8 - Windows Server 2008 R2 hardware specifications... 11	

Table 9 - Timeline breakdown during 40 GB file imaging .. 45	

 ix

ACKNOWLEDGEMENTS

I would first like to thank my advisor, Anna Squicciarini, for your guidance on my thesis

and all the advice you have given me over the past two years. In addition, thank you to Gerald

Santoro and Dinghao Wu for being part of my committee and for your interest in and support of

my project.

Thank you to my parents, Joe and Susan, for all your support through my entire academic

career and help shaping me into the person I am today.

Lastly, thank you to my wife, Sarah, for all your love and encouragement over the past

two years as I worked towards achieving this goal.

 1

Chapter 1

Introduction

 Within computing, virtualization has become an exceedingly popular technology that has

revolutionized the operation of data centers all around the world. This virtualization technology

allows a physical server to run multiple virtual servers that utilize a set of shared physical

hardware. This pooling of computer resources allows companies to optimize their existing server

infrastructure and reduce the number of physical servers required for business operations. In most

cases this allows the company to save money on Information Technology (IT) related costs. The

use of virtualization technologies is not limited to large enterprises; medium and even small

enterprises make use of virtualization as well.

 The concept of virtualization first appeared in the 1960’s and 1970’s in mainframe

computing, but did not become popular in modern computing until the early 2000’s. A company

that led this resurgence is VMware. For five years running, Gartner has ranked VMware as a

“leader” in its annual “Magic Quadrant for x86 Server Virtualization Infrastructure” [1]. With

over 500,000 customers, presence in 100% of Fortune 100 companies, and revenues of $5.21

billion in 2013, VMware is a massive supplier of virtualization software [2]. Virtualization has

matured, becoming a popular and an almost necessary technology within IT operations. Gartner

also estimates that “at least 70% of x86 server workloads are virtualized” [1].

 While virtualization has positively benefited the overall IT community, a problem that

continues to plague businesses and IT operations are computer security incidents and data

breaches. In the past few years there have been numerous high profile security breaches at

companies such as Target, TJX, Living Social, and Sony resulting in the disclosure of personal

 2

information and intellectual property. In order to respond to these incidents, companies will

utilize computer forensics experts to determine how the attack was executed, what information

was stolen, and if the attackers still have access to the network.

 There are numerous tools dedicated to conducting digital forensics that are both open

source and proprietary. Despite the number of forensic tools available, a specific niche has yet to

be filled that gives forensics investigators the ability to securely acquire digital forensic evidence

of a virtual machine running on top of a virtualization platform.

Overview of Computer Forensics

 Nelson et. al. defines that “computer forensics involves obtaining and analyzing digital

information for use as evidence in civil, criminal, or administrative cases.” Obtaining digital

evidence usually involves creating a bit-stream copy, commonly referred to as an image, of the

original target device [3]. The bit-stream copy will create an exact copy of the digital information

stored on the original device. To validate the images integrity, hashing algorithms are used.

Utilizing the content of a file as input, a hashing algorithm calculates a value unique to that file. If

any piece of the file is changed, added, or removed the hash algorithm will calculate a different

value. This is useful when verifying that the image file is an exact copy of the original device in

which case the two will have the same hash value. Common hashing algorithms used to verify

image integrity include Message Digest (MD5) and Secure Hash Algorithm (SHA1).

 Once an image is created and its integrity verified, the image is analyzed using one of the

many open source or proprietary computer forensics tools. Popular tools include EnCase, Access

Data’s Forensic Toolkit (FTK), and The Sleuth Kit (TSK) [4][5][6].

 3

Chapter 2

 Related Works

In a way, the growing use of cloud computing and increasing use of cloud technologies is

driving the growth of virtualization technologies like VMware. With cloud computing on the rise,

there is still a need to be able to conduct digital forensics investigations on virtual machines or

appliances that exist in the cloud [7]. A number of researchers have drawn attention to the fact

that not much research has been done in the area of cloud forensics and question if traditional

forensics tools and methods can be used to conduct forensics on the cloud [7][8][9]. Delport et.

al. focused on methods of isolating a cloud instance targeted for investigation in order to preserve

potential evidence, much like a physical crime scene. Work was done to determine if existing

digital forensics tools and acquisition methods could work to perform cloud forensics [9][10].

Urias et. al. determined that many tools are not designed to deal with the complex and fluid

structure of virtualization technologies utilized in cloud environments such as the pooling of

CPU, memory, and storage resources that could potentially be spread across many different

physical sets of hardware. Atkison and Cruz explained what tools could be used to acquire and

analyze digital forensic images from virtual machines but pointed out new tools need to be

created to fill the specific need of conducting digital forensics on virtual infrastructure. Martini

and Choo developed a six-step process to collect digital evidence from a cloud platform, utilizing

VMware vCloud as a case study. In addition, a proof-of-concept program was created that made

use of vClouds REST (Representational State Transfer) API (Application Programming Interface)

to acquire digital forensics information following their proposed process [8].

 4

Research has also been done to evaluate using a virtual environment to conduct forensics

analysis. After acquiring a digital forensics image from a suspect machines hard drive, it is

converted into a virtual machine allowing an investigator to boot the machine and perform digital

forensics without affecting the original evidence [10].

Work specifically related to analyzing a virtual machine has been done as well [11].

Hirwani securely acquired the virtual hard disk file and corresponding snapshots from a VMware

virtual machine. After acquiring these digital forensics images, they were analyzed by a program

developed by Hirwani that compared the snapshot files to determine what files had been created,

deleted, or modified.

 5

Chapter 3

Methodology

With the ever-increasing use of virtualization technologies, the majority being VMware

products, and the swell in computer security breaches, there is a need to analyze these systems.

When a virtual machine is involved in a security incident, a forensics investigator will need to

create an exact copy of the virtual machine in order to conduct a proper investigation. Even if the

virtual machine is providing a mission critical service, the virtual machine can be quickly

suspended to preserve its state while an image is created or a snapshot taken.

In order to create an image of a virtual machine, a forensics investigator will need to

manually enter a series of commands and transfer the image from the virtualization server to

another storage medium. This process and sequence of commands to create a forensically sound

image from a VMware ESXi hypervisor was detailed in a SANS blog article in 2010 [12]. SANS

is a private company that offers cyber security related training and certifications. However,

manually completing this task can lead to mistakes or human errors. In order for digital evidence

to be admissible in court, carefully documented steps must be taken to ensure digital evidence is

not altered. While manually entering commands is an acceptable approach, utilizing a program to

create a digital forensic image is more reliable and can provide more detailed information about

the imaging process. Therefore, the goal of this project was to create a free, open source piece of

software to securely create digital forensic images from VMware ESXi hypervisors. The tool

created was named ESXimager.

VMware ESXi hypervisors allow multiple virtual machines to run on top of a single set

of physical hardware. By utilizing technologies like VMware ESXi, companies can consolidate

 6

their physical hardware to better utilize their computing resources, saving on power, space,

management costs and more.

With companies utilizing virtual machines run on top of a platform like VMware ESXi,

most traditional digital forensics methods no longer work. A popular digital forensic method is to

acquire an image or a bit-by-bit copy of a computer’s hard drive in order to conduct a digital

forensics investigation. However, if technology like VMware ESXi is in place, a forensics

investigator cannot necessarily pull the hard drives out of the ESXi server and create a forensic

image. The actual files for the virtual machine may be located on a Storage Area Network (SAN)

or Network Attached Storage (NAS) device or it may spread across multiple physical disks within

the ESXi server’s local storage.

Virtual machines that run on a VMware ESXi server have their hardware (bios, memory,

disk) virtualized. These virtual pieces of hardware are stored as a set of files on the ESXi server.

The table below lists all the components of a VMware virtual machine [13].

File Extension Purpose

.nvram Stores virtual machines BIOS information

.vmdk Contains contents of virtual machines virtual hard drive

.vmem Backup of virtual machines memory

.vmsd Metadata about snapshots

.vmsn Snapshot state file

.vmss Stores virtual machines suspended state

.vmx Contains important virtual machine configuration data

Table 1 - Description of files that comprise a virtual machine

This method of storing a virtual machine’s hardware as a set of files makes it possible to acquire a

bit-by-bit copy of the virtual machine’s hard drive.

The program created for this project is not only able to securely acquire a bit-by-bit copy

of the virtual machines virtual hard drive file but also any other file that makes up a virtual

 7

machine. The program creates a bit-by-bit copy utilizing the Linux dd command and the output

file created is in a raw format, commonly denoted as such by having the .dd file extension. With

a secure bit level copy of the virtual machines file(s) now acquired, a forensics investigator can

take the raw .dd file and open it in another digital forensics tool, such as EnCase or Sleuth Kit, to

analyze it [4][6].

In order to test the tools ability to securely create these digital forensics images, a test

environment was created and a number of experiments were performed to verify that the program

is able to execute the functions mentioned above.

Environment

In order to simulate the use of the ESXi forensics imager software, a test environment

was created to represent a small business’s use of an ESXi server and a scaled down environment

of a medium to large enterprise. The test environment includes a VMware ESXi 5.5 server

running two Linux virtual machines and one Windows virtual machine, a FreeNAS server used

for iSCSI network storage, and a CentOS 5.5 machine used for running the ESXimager software.

Logically, all of the machines are connected to the same Ethernet network, see Figure 1.

 8

Figure 1 – Logical topology of test environment

However, the physical topology of the network is much more complex. Only two physical

computers are present in the test environment, a desktop computer and the FreeNAS file server.

The desktop computer hosts the other five computers in the environment in the form of virtual

machines. As seen in Figure 2, the desktop computer is running VMware Workstation 9 and has

two virtual machines, CentOS 6.5 and VMware ESXi 5.5. Then within the VMware ESXi 5.5

server, three more virtual machines are being run, Puppy Linux, Damn Small Linux, and

Windows Server 2008 R2. These five virtual machines share the desktop computer’s Ethernet

adapter, which allows each virtual machine to logically appear on the same network.

 9

Figure 2 - Physical topology of test environment

Hardware Specification

Each physical and virtual machine has specific hardware resources available for use.

Name Host Machine

Operating System Windows 7

CPU Hexa-Core 3.3 GHz

RAM 16 GB

Storage 1 TB (2 x 500 GB RAID0)

Table 2 – Host Machine hardware specifications

 10

Name FreeNAS

Operating System FreeBSD

CPU Quad-Core 3.4 GHz

RAM 8 GB

Storage 1 TB

Table 3 - FreeNAS hardware specifications

Name CentOS 6.5

Operating System CentOS 6.5

CPU 2 vCPU 3.3 GHz

RAM 2 GB

Storage 100 GB

Table 4 - CentOS 6.5 hardware specifications

Name VMware ESXi 5.5

Operating System VMware ESXi 5.5

CPU 2 vCPU 3.3 GHz

RAM 4 GB

Storage 140 GB Local Storage, 100 GB

iSCSI storage

Table 5 - VMware ESXi 5.5 hardware specifications

Name Puppy Linux

Operating System Puppy Linux

CPU 1 vCPU 3.3 GHz

RAM 1 GB

Storage 4 GB

Table 6 - Puppy Linux hardware specifications

 11

Name DSL

Operating System Damn Small Linux

CPU 1 vCPU 3.3 GHz

RAM 1 GB

Storage 5 GB

Table 7 - DSL hardware specifications

Name Windows Server 2k8 R2

Operating System Windows Server 2008 R2

CPU 1 vCPU 3.3 GHz

RAM 2 GB

Storage 40 GB Local Storage, 40 GB

iSCSI Storage

Table 8 - Windows Server 2008 R2 hardware specifications

 12

Chapter 4

Forensic Image Acquisition Tool – ESXimager

 To facilitate and simplify the acquisition of digital evidence from VMware ESXi servers,

there was a need to streamline the process and remove the likelihood of human errors during

evidence collection. A program, aptly named ESXimager, was created utilizing the Perl

programming language. ESXimager gives a forensics investigator a simple yet secure way of

acquiring digital evidence from VMware ESXi servers. This section is broken into three parts:

first, how to acquire an image through the Graphical User Interface (GUI), second description of

additional features available through the GUI, third highlights of specific pieces of code to show

how the program works under the hood.

Graphical User Interface

 Important to any program is the Graphical User Interface (GUI). While there are many

programs that forgo the use of a GUI in favor of a command line driven approach, adding a GUI

front-end makes the program more user friendly, allows for information to be easily and clearly

displayed, and allows the user to easily interact with the program’s many features. ESXimager

utilizes the Tk widget toolkit to create the GUI elements for the program. The look and feel of the

program when it is first run can be seen in Figure 3.

 13

Figure 3 - View of ESXimager program when first opened

 The ESXimager GUI has a number of different features; the purpose and functionality

will be explained below. The following sub-sections are laid out and explained in the order a user

would logically work through the program to acquire an image.

Running the Program for the First Time

 In order for ESXimager to run properly, there are a number of parameters that must first

be set before any digital forensic evidence can be acquired. When the program is first executed by

the user, it looks for a configuration file which it expects to exist in the user’s home directory, for

example /home/matt/ESXimager/ESXimager.cfg. If the ESXimager.cfg file cannot be

located in the users home directory, the program assumes this is the first time the user is

executing the program. The program will display an information message to the user and then

prompt them to another window to create a configuration file, see Figure 4 and Figure 5,

respectively.

 14

Figure 4 - Information message, no configuration file found

Figure 5 - Window that allows user to create a configuration file

The configuration file stores three important pieces of information, the location of the

program’s overall working directory, the location to store cases, and the location for the overall

program log file. The ESXimager configuration file window pre-populates with default

recommended values, but the user can manually specify these values. If left with the default

values, the ESXimager working directory contains the ESXimager.cfg file, the cases directory,

and the overall program log file. These values are saved to the configuration file and loaded each

subsequent time the program is run. Because there are only three configuration parameters to

keep track of between program executions, it was a design decision to store these parameters in a

flat file format, a sample configuration file can be seen in Figure 6.

 WorkingDir=/home/matt/ESXimager

 CaseDir=/home/matt/ESXimager/Cases/

 LogFile=/home/matt/ESXimager/ESXimager.log

Figure 6 - Sample configuration file

 15

Creating a New Case

 A common theme used by other computer forensics programs and within the computer

forensics community is to organize different computer investigations by cases. ESXimager allows

the user to create a new case in which any forensics images acquired will be stored. This allows

different digital forensics investigations to be separated both physically in terms of where the

images are stored and logically for ease of use purposes.

 Before the user can create any forensic images, a case must be opened in order to

determine where the forensic images will be stored. To create a new case, the user can use the

menu bar to navigate to File ! New Case after which a window will popup asking the user to

specify a case name, see Figure 7. After specifying a case name, the program will create a new

folder in the case directory specified in the ESXimager.cfg configuration file. To avoid any

problems with the name of the case folder, any whitespace is removed from the case name. Using

the example in Figure 7, a new case folder will be created in /home/matt/ESXimager/Cases/

and the folder will be named NewTestCase. Once the new case has been created, the program

sets this as the current open case and changes a banner at the top of the program window to

reflect the name and location of the currently open case, see Figure 8.

Figure 7 - Create new case window

Figure 8 - Banner displaying the current open case

 16

Connection to an ESXi Server

 In order to acquire digital forensic images the user must connect to an ESXi server.

Before the ESXimager program can connect to the ESXi server, SSH access must be enabled

which is disabled by default. It is a potential security vulnerability to enable SSH access to an

ESXi server so once the image acquisition process is complete, SSH should be disabled. The

ESXimager program provides an easy interface that allows a user to specify the IP address,

username, and password required to connect to the ESXi server, see Figure 9.

Figure 9 - Interface to enter user credentials to connect to an ESXi server

Until a connection is made to an ESXi server, a large portion of the main program window

remains blank and inactive. Once successfully connected, the main window automatically

populates with any virtual machines found on the ESXi server.

Selecting Files to be Acquired

 Once connected to an ESXi server, the main window will populate with all virtual

machines found on the given ESXi server. From this point the program guides the user through a

three-step process to select which files they want to acquire. First, the virtual machines running

on the ESXi server the user has connected to are shown in the main program window, see Figure

10.

 17

Figure 10 - Displays all virtual machines running on the connected ESXi server

The user is then able to select which virtual machine’s files they want to view. For each virtual

machine listed, the absolute path to that virtual machine’s storage directory is displayed. Names

displayed correspond to the virtual machines names shown within the VMware vSphere client

interface. For example, in Figure 10 there is a virtual machine found that has a name of

PuppyLinux, this name corresponds to the name of the virtual machine as seen in the VMware

vSphere client interface, see Figure 11.

Figure 11 - Names of virtual machines as seen in the vSphere client interface

At this point the program determines if the virtual machine(s) selected by the user are currently

running. Some portions of the virtual machine will be inaccessible and there may be some

inconsistent results if the virtual machine is not first suspended before imaging. The user is asked

if they wish to suspend the selected virtual machine before continuing and it is made clear that

suspending the virtual machine is recommended before continuing onto the next step of the

imaging process, see Figure 12. If the user does elect to suspend the virtual machine, a second

 18

window will appear giving the user some feedback that the program is working on suspending the

virtual machine, see Figure 13.

Figure 12 - Program asking if the selected virtual machine(s) should be suspended before continuing

Figure 13 - Informational message box providing feedback to user

Second, depending on which virtual machines the user selected from step one, the related

files are shown and the user can select one or multiple files to image and acquire to their local

machine, see Figure 14.

 19

Figure 14 - User selects which file(s) to image

Last, the program confirms to the user which files they wish to image, see Figure 15.

Figure 15 - Confirm user file selections before imaging

Creating an Image with DD

After confirming the file selection to image, the ESXimager program now executes a

number of instructions and commands that will securely image the selected files without further

user intervention. It is at this point the first MD5 and SHA1 hashes are calculated for the current

file being imaged. While the hashes are being calculated, the user will have no control of the

 20

program, so an information message box is displayed informing the user what the program is

currently doing, see Figure 16.

Figure 16 - Information message box displayed to use as first round of hashes are being calculated

After the first round of hashes is calculated, the program proceeds to create a bit-by-bit

copy of the file using the Linux dd command. The image created by the dd command is initially

stored in the same directory as the original file until it is copied and removed in later steps. The

user has no control of the program at this stage, and an information window is displayed

informing the user the current status of the program, see Figure 17.

Figure 17 - Information message box displayed while the DD command is being run

 Finally, once the dd command is finished running, a second round of MD5 and SHA1

hashes are calculated. This time the image file created by dd is hashed in order to ensure the

image does not differ from the original.

Transferring Image with SFTP

With the second round of hashes calculated, the image file is ready to be transferred from

the ESXi server to the imaging machine where the ESXimager program is running. Secure File

Transfer Protocol (SFTP) is used to move the image file off the ESXi server mainly because the

image files are encrypted when being sent across the network. Also, the existence of the

 21

Net::SFTP::Foreign Perl module simplified this process, providing a number of features that

enabled the easy connection and transfer of files via SFTP. Like the previous steps of the imaging

process, the SFTP transfer process does not require nor does it allow for any user interaction.

Thanks to the features part of the Net::SFTP::Foreign Perl module, an informative transfer status

window is displayed to the user that reflects the progress of the SFTP file transfer, see Figure 18.

Figure 18 - SFTP transfer progress window

 Once the SFTP transfer is complete, a third set of MD5 and SHA1 hashes are calculated

to ensure the image has not deviated from the original.

Verifying Image Integrity

 The last step of the imaging process performed by the ESXimager program is a final

integrity check of all the acquired image files. A fourth and final set of MD5 and SHA1 hashes of

the image files now residing locally on the imaging machine are calculated and compared to the

previous set of three MD5 and SHA1 hashes, see Figure 19. If any of the hashes calculated for a

given image file differ from the previously calculated hashes, the program informs and warns the

user that the image file is corrupt, see Figure 20. If no problems are found with the final image

verification the program informs the user the imaging process is complete, see Figure 21.

Figure 19 - Image verification, final calculation of MD5 and SHA1 hashes

 22

Figure 20 - Error message informing user image is corrupt

Figure 21 - Imaging process complete

Additional Features

 In addition to the ESXimagers functionality to create an image as explained in the

previous section, there are some additional features within the GUI that can be utilized outside the

imaging process.

Directory Tree and File List

 Within the main ESXimager program GUI, there are two additional windows that show a

directory tree and directory file listing, see Figure 22. When the program opens, the directory tree

expands to show all of the cases in the case directory. Once a case is opened or created, the file

list window refreshes to show a file listing of the currently open case directory. As seen in Figure

 23

22, the current case open exists in /home/matt/ESXimager/Cases/Scenario3P2.1, so the

file list window shows a listing of that directory accordingly. If a user clicks on a directory in the

directory tree window, the file list window will automatically update to show the files in the

selected directory.

Figure 22 - Directory tree and file list window within ESXimager GUI

 The user is not able to create or delete files from this interface, nor are they able to open a

case by clicking on a directory in the directory tree. These windows give the user an easy way to

see what images have been acquired to the currently open case, or view images acquired in

previous cases.

View File Information

 Through ESXimager’s entire imaging process, four sets of hashes are calculated at

various stages. These hash values are stored to ensure the integrity of the image files can be

 24

verified. The program provides a way to allow a user to easily view all the hash values calculated

for a specific file. Utilizing the file-listing window explained in the previous section, a user can

select an image file, see Figure 23, then using the menu bars at the top navigate to View ! File

Information, see Figure 24.

Figure 23 - Selected file in file-listing window

Figure 24 - File information menu bar item

 With these two options selected, a new window appears showing some basic file

information such as the name and size, but more importantly all of the hash values calculated for

that file, see Figure 25. The hash value history includes a timestamp of when the value was

calculated, what point during the imaging process the value was calculated, and the actual hash

values. This allows a user to manually verify that the hash values have not changed and the

integrity of the image is intact.

 25

Figure 25 - File information window

Verify Integrity

 While the ESXimager program calculates a number of hash values during the imaging

process, the user may want to periodically check to ensure hash values of the images in a

particular case have not changed. To re-validate the integrity of all the images within a case, the

user can utilize the verify integrity tool. This can be done by opening a case and navigating to

Tools ! Verify Integrity, see Figure 26. When this option is selected, ESXimager will calculate

both the MD5 and SHA1 hash values for each image file in an open cases directory and compare

them to all previously calculated hash values for that image file, see Figure 27. If different hash

values are calculated, ESXimager alerts the user to the problem. In addition, the new hash values

are stored to be used for future comparisons, if necessary.

Figure 26 - Verify integrity menu bar item

 26

Figure 27 - Verifying image integrity

Under the Hood

 Some unique portions of code had to be written to solve a number of interesting problems

to fulfill all the goals of this program. In addition, implementing some of the more advanced

features introduced some daunting coding challenges, which require further explanation.

Finding Virtual Machines on the ESXi Server

 A very important part of the ESXimager program is its ability to locate all of the virtual

machines stored on an ESXi server when successfully connected. The goal of this part of the

program is to determine which virtual machines reside on this ESXi server and the absolute path

to where those virtual machines are stored. To locate these virtual machines, the find command

is used because of its ease of use and the quality of the information returned. After successfully

connecting to the ESXi server, the program executes a find command on the ESXi server and

then parses the output to obtain the name of each virtual machine and the absolute path to where

they are stored, see Figure 28.

my $stdout = $ssh->capture("find $vmstore -name \"*.vmx\"");

@vmxFound = split(/\s+/, $stdout);
Figure 28 - Code to execute find command and parse its output

The $vmstore variable is set to /vmfs/volumes/ because any local storage or NAS storage

will be mounted to a location in that directory, see Figure 29.

 27

Figure 29 - All local storage and external storage volumes are mounted in /vmfs/volumes/

The find command is specifically looking for files in the /vmfs/volumes/ directory that end

with a .vmx extension. One .vmx file is required for each virtual machine as it contains important

parameters and specific configuration information for a virtual machine. In addition, the .vmx file

for a given virtual machine is stored in the same location as all the other virtual machine’s files.

Given the uniqueness of this file type and its storage location, using the find command not only

determines what virtual machines are running on the ESXi server but also returns information on

the virtual machine’s storage location as well. The output captured by the $stdout variable is

equivalent to what is seen in Figure 30.

Figure 30 - Equivalent output of the find command received by the program

Suspending Virtual Machines

 Suspending a virtual machine freezes the machine’s current state. It is particularly

important to first suspend a virtual machine before imaging one of its files because of the method

the ESXimager program acquires an image. While it is possible to perform an image acquisition

while the virtual machine is still running, some files will not be accessible and there is the

possibility that inconsistencies can develop between the acquired image and the original. For

these reasons, if the ESXimager program detects that a virtual machine to be imaged by the user

 28

is currently running, it prompts the user to suspend the virtual machine. ESXimager needs one

important piece of information in order to suspend a virtual machine and that is the virtual

machines World ID Number. Each virtual machine running on an ESXi server has a unique

World ID Number.

 Within the code, the process of finding the World ID Number for a particular virtual

machine involves running a command on the ESXi server then capturing and parsing the output

to find the correct World ID. As seen in Figure 31, the code parses through the output of the

/sbin/vmdumper –l command looking for a line in the output that matches the $vmxpath

variable which contains the absolute path to the .vmx file, otherwise known as the configuration

file for the virtual machine which is to be suspended. Once the World ID of the virtual machine to

be suspended is found, the program executes the following command on the ESXi server to

suspend the virtual machine, /sbin/vmdumper $VMwidSplit[1] suspend_vm. This is the

same command used before to find the World ID but is now being passed two different

arguments, the world ID, contained within the $VMwidSplit[1] variable, and suspend_vm.

#suspends a given VM, expects absolute path to vm's .vmx path

sub suspendVM

{

 my $vmxPath = $_[0];

 my $stdout = $ssh->capture('/sbin/vmdumper -l');

 my @lines = split(/\n/, $stdout);

 foreach(@lines)

 {

 my @lineParts = split(/\s+/, $_);

 foreach (@lineParts)

 {

 if ($_ =~ m/$vmxPath/)

 {

 my $VMwid = $lineParts[0];

 $VMwid =~ s/=/ /g;

 29

 my @VMwidSplit = split(/\s+/,$VMwid);

my $stdout = $ssh->capture("/sbin/vmdumper

$VMwidSplit[1] suspend_vm") or warn "remote

command failed " . $ssh->error;

…

Figure 31 - Code used to find a virtual machines world ID and then suspend the virtual machine

The equivalent output the program would be parsing from the /sbin/vmdumper –l

command can be seen in Figure 32. Also shown in the output in Figure 32 is the absolute path to

the virtual machine’s configuration file on the same line as the virtual machines World ID.

Because the ESXimager program already knows the absolute path to the virtual machine’s .vmx

file, Perl can be used to parse the output and match a .vmx file to a world ID number.

Figure 32 - Output of /sbin/vmdumper -l command as seen from the command line

Un-suspending Virtual Machines

 Another important feature offered by this program is the ability to un-freeze and power

on a virtual machine after it was suspended. While it is important to keep a virtual machine in a

suspended state while image acquisition is taking place, once the image acquisition process is

complete the virtual machine should be automatically turned back on. Once the imaging process

is complete, two commands are executed on the ESXi server, which can be seen in bold in the

section of Perl code in Figure 33. The first command executed on the ESXi server and parsed by

the Perl program is vim-cmd vmsvc/getallvms | grep $vmxFile. This command returns

a list of all the virtual machines on the ESXi server, along with another identifier to a virtual

machine, - the Virtual Machine ID (VMID). It is important to note that the VMID is different

from the World ID used previously to suspend a virtual machine. Once the ESXimager program

has parsed the output and obtained the VMID of the virtual machine to power back on, a second

 30

command is executed on the ESXi server, vim-cmd vmsvc/power.on $parts[0]. Within

this code, the $parts[0] variable contains the VMID.

#starts a given VM, expects absolute path to .vmx file in

question

sub startVM

{

 my $vmToRestart = $_[0];

 my $vmxFile = getFileName($vmToRestart);

my $stdout = $ssh->capture("vim-cmd vmsvc/getallvms |grep

$vmxFile");

 my @lines = split(/\n/, $stdout);

 my $count = @lines;

#only one .vmx file was matched so we dont need to worry

about starting the wrong VM

 if ($count == 1)

 {

 my @parts = split(/\s+/, $lines[0]);

my $stdout = $ssh->capture("vim-cmd vmsvc/power.on

$parts[0]") or warn "remote command failed " . $ssh-

>error;

…

Figure 33 - Perl code to restart a virtual machine once image acquisition is complete

Figure 34 contains an equivalent output of the vim-cmd vmsvc/getallvms the

program would be parsing. The VMID can be seen in the first column and the corresponding

.vmx file can be seen in the third column.

Figure 34 - Output of vim-cmd vmsvc/getallvms as seen on the command line

 31

Calculating MD5 and SHA1 Hashes

 Calculating hashes of the created images is a very important step to ensure the image’s

integrity. The ESXimager program calculates four sets of MD5 and SHA1 hashes at different

stages of the image acquisition process. Hashes are calculated for the original target file before a

copy is created. Hashes are calculated again after a copy has been made with the dd command,

again when the image is transferred to the imaging machine via SFTP, and the last set is

calculated at the end of the image acquisition process.

Calculating hashes either on the ESXi server or locally on the imaging machine is

relatively straightforward. Because the ESXi server runs a variation of Linux, the same command

syntax is used to calculate MD5 and SHA1 hashes regardless if the commands are run on the

ESXi server or locally on the imaging machine. In addition, the MD5 and SHA1 commands on an

ESXi server or Linux machine have the same formatted output. The output of running the

sha1sum and md5sum commands on an ESXi server and locally on a Linux desktop machine can

be seen in Figure 35 and Figure 36 respectively.

Figure 35 - Sample output of calculating MD5 and SHA1 hashes on an ESXi server

Figure 36 - Sample output of calculating MD5 and SHA1 hashes on a Linux desktop

 32

 The ESXimager program can also run on OS X. However, when calculating hashes on an

OS X machine, the commands to calculate MD5 and SHA1 hashes are slightly different and

produce differently formatted output. The command and output of calculating MD5 and SHA1

hashes on an OS X machine can be seen in Figure 37.

Figure 37 - Sample output of calculating MD5 and SHA1 hashes on a machine running OS X

 A subroutine had to be added to account for the need to run different variations of the

MD5 and SHA1 commands depending on the operating system. A Perl subroutine can be seen in

Figure 38 that allows the ESXimager program to run a different MD5 or SHA1 calculation

command depending on the type of operating system.

#Calculate MD5 hash of local file

sub calculateMD5HashLocal

{

 my $fileToHash = $_[0];

 my $operatingSystem = checkOS();

logIt("[info] ($currentCaseName) Calculating md5 hash of

local file this may take a while be patient...", 1, 1, 1);

my $stdout;

 $stdout = `md5sum $fileToHash` if $operatingSystem == 1;

 $stdout = `md5 $fileToHash` if $operatingSystem == 2;

 my @split = split (/\s+/, $stdout);

 #[$#split] gives you the last element of an array

 $stdout = $split[0] if $operatingSystem == 1;

 $stdout = $split[$#split] if $operatingSystem == 2;

 33

logIt("[info] ($currentCaseName) Done calculating md5 hash

of local file.", 1, 1, 1);

 chomp $stdout;

 return $stdout;

}

Figure 38 - Perl code used to calculate MD5 hashes on the local imaging computer. This code differentiates

between machines running Linux or OS X

One of the first steps in this subroutine is to define the variable $operatingSystem

which holds the value returned by checkOS, another Perl subroutine. The checkOS subroutine

makes use of a special Perl variable called $^O which holds the name of the operating system the

Perl code is being executed on. A snippet of how the checkOS subroutine evaluates the $^O

variable and returns the current operating system can be seen in Figure 39. The $^O variables

value is a string that will contain the word linux or darwin depending if the Perl code is being

executed on a Linux or OS X operating system, respectively. Some string comparison is used to

determine if the operating system is Linux or OS X and depending on the result, the $osValue is

set to 1 or 2 and then returned.

my $OS = $^O;

 my $osValue;

 if($OS eq "linux")

 {

 $osValue = 1;

 }

 #darwin aka osx

 elsif($OS eq "darwin")

 {

$osValue = 2;

 }

 …

 return $osValue;

Figure 39 - Code snippet from checkOS subroutine showing how special Perl variable $^O is evaluated

 34

With a value representing the operating system the code is running on now returned by

the checkOS subroutine, the program now executes the correct code depending on the operating

system being used. Referring back to Figure 38, depending if the $operatingSystem variable

is either 1 or 2 the correct operating system specific MD5 command is run and the correct

element of the @split array, containing the hash value, is obtained. The same process occurs

when calculating a SHA1 hash on the local machine on which the ESXimager program is

running.

Logging

Logging is a very important part of the ESXimager program. Log files allow a forensics

investigator to look back at all the steps the program executed during the imaging process and

provide a type of paper trail. There are three log files maintained by the ESXimager program: an

overall program log file, a debug log file, and a log file for the current open case. Each case has

its own log file, which only includes log messages related to that particular case. The overall log

file includes any messages written to a case log file, as well as some messages written while the

program is initializing. The debug log file includes all the messages from the case and overall log

files, in addition to more detailed information about what operations are being executed. The

ESXimager program creates log entries in a specific format, Timestamp - Message type (debug,

info, warning, error) – Where the message originated (main program or a specific case) –

Message. A sample of one of the log files can be seen in Figure 40. To use the first log message

in the figure below as an example to explain the convention above, it is an information message,

the message came from a function related to acquiring an image so the case name is included

(PerfTest), and the message is that the md5 hashing calculation has begun.

 35

Figure 40 - Sample ESXimager log file output

 Because there were multiple log files that had to be maintained, many including the same

log messages, a simple Perl subroutine was created to write log messages to the appropriate files.

The Perl subroutine was aptly named logIt, see Figure 41. The subroutine expects four

arguments, the first being the message to print to the log files, then three numbers 0 or 1

representing which log files the message should be written to. The three log files are the overall

program log file, the case log file, and the console log window in the ESXimager program.

Regardless of what arguments are passed, the log message is written to the debug log file.

sub logIt

{

 my $lineToPrint = $_[0];

 my $programLogPrint = $_[1];

 my $caseLogPrint = $_[2];

 my $consoleLogPrint = $_[3];

my $lineToPrint = getLoggingTime() . " " . $lineToPrint .

"\n";

 print PROGRAMLOGFILE $lineToPrint if $programLogPrint == 1;

 print $currentCaseLog $lineToPrint if $caseLogPrint == 1;

$consoleLog->insert('end', $lineToPrint) if

$consoleLogPrint == 1;

 $consoleLog->see('end') if $consoleLogPrint == 1;

 print DEBUGLOGFILE $lineToPrint;

 return $lineToPrint;

}

Figure 41 - logIt Perl subroutine

 36

Chapter 5

Scenarios and Results

Scenarios

In order to properly evaluate the performance and capabilities of the ESXimager

program, three test scenarios were created. Each scenario highlights a specific feature or

capability to show the ESXimager program can be used to conduct digital forensic image

acquisitions in an actual information technology environment.

Scenario 1

 Image integrity is of the upmost importance when conducting a digital forensics

investigation. Once an image of the target hard drive or file is created, a forensics investigator

must ensure the integrity of the image remains true to the original. Failure to ensure image

integrity could result in false data being retrieved or digital evidence not being admissible in

court.

 This scenario highlights the ability of the ESXimager program to ensure image integrity

through each step of the image acquisition process. ESXimager tracks the integrity of the image

and if the integrity is compromised, the program can detect this change and notify the user

accordingly.

Scenario 2

 Large enterprises may have dozens of VMware ESXi servers that may utilize a Storage

Area Network (SAN) or Network Attached Storage (NAS) device. A SAN could be connected to

an ESXi server through a variety of different protocols, fiber channel, Internet Small Computer

System Interface (iSCSI), or Network File System (NFS) [14].

 37

In this scenario it is demonstrated that the ESXimager program can find and acquire

virtual machines stored on a remote storage device. In this case, remote storage has been added to

the ESXi server via iSCSI.

Scenario 3

Virtual machines and files of all different sizes can exist on an ESXi server. The size of a

file to be acquired can have an impact on the amount of time it takes to acquire that file, but also

on the ESXi servers CPU, memory, and disk resources.

 The effect of the image acquisition process on the CPU performance, memory usage, and

disk resources of the ESXi server and the time required to acquire images of varying sizes will be

examined in this scenario.

Results

Scenario 1

 In this first scenario, the image integrity verification functions of the program were

tested. An ESXi server was connected to and the .vmss (virtual machine save state) file of the

Damn Small Linux virtual machine was selected to be imaged. As the ESXimager program was

working through the imaging process, some phony data was injected into the image utilizing the

echo >> command to append additional text to the image file. Echoing even one character into

the image file will cause a different hash value to be calculated alerting the digital forensics

investigator that the image file differs from the original.

 Data was echoed into the image file at two stages of the imaging process. First, as the

initial copy was being created with the dd command on the ESXi server and second as the file

was being transferred to the imaging machine via SFTP. The changes in the MD5 and SHA1 hash

values calculated after each of these stages can be seen in Figure 42. Clearly, the calculated MD5

 38

and SHA1 hash values change after the dd command and after the SFTP transfer, the two places

where bogus data was appended to the image file before these hashes were calculated.

Figure 42 - File information window showing hash history of specified file

 At the end of the imaging process, the ESXimager program compares all of the hash

values to one another to ensure the image files integrity has not been corrupted during any point

of the imaging process. If inconsistent hash values are found, such as when bogus data was

appended to the image file in this scenario, the program warns the user, see Figure 43.

Figure 43 - Error message shown when image is found to be corrupt

Scenario 2

 Scenario 2 demonstrates ESXimagers ability to find and acquire virtual machines that are

not stored directly on the ESXi server’s local storage. With the particular test environment used

 39

for these experiments, remote storage was added to an ESXi server utilizing iSCSI. As shown in

Figure 44, a FreeBSD iSCSI Disk with approximately 100 GB of storage has been added as a

datastore on the ESXi server.

Figure 44 - iSCSI disk added to ESXi datastore

 A Windows Server 2008 R2 virtual machine was configured utilizing the iSCSI datastore

for its storage. After connecting and selecting the virtual machine to image, the windows servers’

.vmss (virtual machine save state) file was selected to be acquired, see Figure 45.

Figure 45 - .vmss file being acquired from iSCSI storage

On the back end, the ESXi server utilizes its own naming convention to name each

datastore, creating and assigning each datastore its own Universally Unique Identifier (UUID).

Although the user provides a name to identify the datastore, which can be see in Figure 44 under

the identification column, these names are simply symbolic links on the backend to the volumes

UUID, see Figure 46.

Figure 46 - Datastore names are symbolic links to ESXi own naming convention

 40

 During the imaging process the network utilization was also monitored from the

FreeNAS server, which was the source of the iSCSI disk, see Figure 47. With the FreeNAS

server’s particular set of hardware, about 200 Mbps of concurrent throughput was achieved

through the imaging process. Also, when the dd copy is being created at 15:29 (3:29 PM) higher

amounts of data is being read and written to the disk.

Figure 47 - Network traffic graph during image acquisition from iSCSI datastore

Scenario 3

 Scenario 3 looks at how the imaging process affects the computing resources on both the

ESXi server and the local imaging machine in addition to the length of time it takes to acquire

different sized image. This scenario is broken down into two parts, the imaging of a 4 GB file and

a 40 GB file.

 41

Part 1

 A 4 GB file was acquired in part one of this scenario. After selecting the file to be imaged

and moving past all of the user input stages, the ESXimager program began working on the target

file at 1:12 PM, see Figure 48. All imaging operations were completed at 1:48 PM including

restarting the virtual machine, see Figure 49. The entire imaging process took about 36 minuets to

complete, including all the intricate steps the ESXimager program performs.

Figure 48 - ESXimager begins working on target 4 GB file

Figure 49 - ESXimager finishes imaging 4 GB file

 In addition to measuring how long it took to image a 4 GB file, the impact on computing

resources was also evaluated primarily on the ESXi server. Figure 50 shows the impact the

imaging process of the 4 GB file had on the ESXi servers CPU utilization. Each major portion of

the imaging process is annotated to show how each step of the imaging process affects the servers

CPU utilization. The most prominent line, the orange line, represents the overall CPU utilization

percentage. The md5sum, sha1sum, and dd commands do not make use of multi-core CPU’s and

only utilize one CPU core to the fullest extent. In this test environment, the ESXi server had

access to two CPU cores and since these commands only make use of one CPU core, a single

core on the ESXi server was maxed out at 100% utilization during the hash calculations and the

dd copy. With one CPU core maxed at 100% utilization and the other between 1-5%, the average

CPU usage for the ESXi server hovered at about 50% during the hash calculations and the dd

 42

image creation. Once these steps were complete and the program began to copy the image to the

imaging machine via SFTP, CPU utilization received a slight bump, going up to roughly 65%

overall utilization. Once the SFTP transfer was complete, the imaging tasks were completed on

the ESXi server and CPU utilization returned to normal.

Figure 50 - ESXi CPU performance graph for 4 GB file acquisition

 With the imaging tasks completed on the ESXi server and the image transferred, the rest

of the processing took place on the imaging machine. The imaging machine calculated two more

sets of hash values after the SFTP transfer is complete and the same CPU limitations apply to the

md5sum and sha1sum commands on the imaging machine. As seen in Figure 51, the imaging

machine has two CPU cores but the total utilization between the two cores does not surpass

roughly 50%. This screenshot includes CPU utilization at the tail end of the SFTP transfer the

 43

duration of the MD5 and SHA1 hash calculations.

Figure 51 - Linux imaging CPU utilization during 4 GB file acquisition

 Because the test environment relied heavily on the use of nested virtualization

technologies being run entirely on a single host desktop machine, some final metrics related to the

host machines hard drive performance were gathered. With one physical machine running 5

virtual machines, it was surmised that the host machine’s hardware might have been a limiting

factor in the performance of the ESXimager program particularly in the host machine’s hard

drive. Utilizing the Windows Performance Monitor application, a number of hard drive metrics

were obtained. The most important metric obtained was the hard drives queue length over time,

which according to Hua is an indication of a bottleneck on the system [15].

Disk queue length represents the number of Input/Output (I/O) requests that are queued

and according to a Microsoft TechNet article, an average disk queue length exceeding twice the

number of spindles means there is likely a bottleneck [16]. The host machines storage consists of

two 500 GB hard drives in a Redundant Array of Independent Disks (RAID) 0 configuration.

Utilizing the formula from the Microsoft TechNet article, a disk queue length higher than 4 could

mean there is a potential bottleneck. Figure 52 shows the host machine disk queue length during

the 4 GB imaging test. Interestingly, the graph shows a much higher disk queue while the SFTP

transfer was taking place between 1:40 PM (13:40) and 1:46 PM (13:46). Throughout the whole

imaging process, the disk queue remains under 5 but during the SFTP transfer, the disk queue

spikes to almost 40. This potentially means the SFTP transfer process is being limited by the host

 44

machine’s disks Input Output Operations per Second (IOPS). With faster storage, the SFTP

process may take less time to complete. Furthermore, Figure 53 shows the host machine’s disk

queue length over an 18-hour period, which includes imaging tests that were conducted as well as

normal computer usage (web browsing, word processing, Excel, email etc…). For the most part

the disk queue length over the 18-hour period remains below 5, but during the multiple imaging

tests the queue length spikes to above 30.

Figure 52 - Host machine disk queue length during 4 GB imaging test

Figure 53 - Host machine disk queue over 18-hour period

Part 2

In Part 2, a 40 GB file was imaged. From start to finish the imaging process took just

under 10.5 hours. The process began at 7:54 PM (19:54) and ended at 6:21 AM (6:21), see Figure

54 and Figure 55 respectively.

 45

Figure 54 - ESXimager begins imaging 40 GB file

Figure 55 – ESXimager finishes imaging 40 GB file

The unusual part about was this test is that each hash calculation took an extremely long

time on the ESXi server. Even more strangely, for the same file, the hash calculations finished

exceedingly quickly on the Linux imaging machine. To give an idea of how long each step of the

imaging process took for this 40 GB file, see Table 9.

Process Where Processing

Occurred

Start Time End Time Duration

MD5 Calculation 1 ESXi 7:54 PM 8:55 PM 1h 1m

SHA1 Calculation 1 ESXi 8:55 PM 10:15 PM 1h 20m

dd Image Creation ESXi 10:15 PM 10:45PM 30m

MD5 Calculation 2 ESXi 10:45 PM 1:12 AM 2h 27m

SHA1 Calculation 2 ESXI 1:12 AM 4:03 AM 2h 51m

SFTP Transfer ESXi & Imaging

Machine

4:03 AM 6:05 AM 2h 2m

MD5 Calculation 3 Imaging Machine 6:05 AM 6:09 AM 4m

SHA1 Calculation 3 Imaging Machine 6:09 AM 6:13 AM 4m

MD5 Calculation 4 Imaging Machine 6:13 AM 6:17 AM 4m

SHA1 Calculation 4 Imaging Machine 6:17 AM 6:21 AM 4m

Table 9 - Timeline breakdown during 40 GB file imaging

There is a colossal disparity between the time it takes the ESXi server to calculate hash

values and the time it takes for the Linux imaging machine to calculate the same hash values.

Referring back to Table 4 and Table 5, these two virtual machines have access to almost

 46

comparable computing resources. Each have two vCPUs and the ESXi server has 4 GB of RAM

where the CentOS imaging machine only has 2 GB of RAM.

In terms of performance, the ESXi server had comparable CPU utilization as in the

previous 4 GB imaging test, see Figure 50. No hard evidence or documentation has been found

that could possibly explain why the ESXi server takes such a long time to calculate these hash

values. There could be a potential number of limitations with the current setup of the test

environment such as utilizing a single set of physical hardware to run so many virtual machines

doing both CPU and disk intensive tasks. Or perhaps using nested virtualization and running the

ESXi hypervisor within VMware Workstation caused an unforeseen bottleneck. These questions

cannot be answered until a more robust and realistic test environment is created.

 47

Chapter 6

Limitations and Future Work

 There are a number of limitations that exist in the ESXimager program’s current state.

Most of these limitations are solvable and require additional development time. First, a virtual

machine can have multiple .vmdk (virtual machine hard drive) files. These files can exist on one

or multiple different datastores. Currently ESXimager assumes the .vmdk file exists in the same

location as the .vmx file is found. Second, when creating the dd image the image file is stored in

the same directory as the original file. The program does not check first to see if there is enough

space available on the volume before executing the dd copy. Third, a large enterprise

environment will most likely contain multiple ESXi servers connected to the same central storage

location such as a SAN or NAS. ESXimager currently searches for .vmx files to find virtual

machines. However, combining this method with shared storage will potentially cause the

program to find virtual machines that are not running on the ESXi server the program is currently

connected to. A more reliable way needs to be created to only find virtual machines running on

the ESXi server currently connected to. Fourth, during the hash calculations and dd copy, the

program becomes unresponsive to user input. The way it is currently coded, the program waits for

the hash or dd commands to finish before being able to accept new user inputs. This problem can

be fixed by making use of the fork command. Fifth, when using dd, knowing the correct block

size can drastically improve the time it takes for the copy to finish. Currently the program

assumes the datastores use 1M block sizes. The block size can be determined by parsing the

output of the vmfstools command. Sixth, the program currently has only been tested to work

with ESXi 5.5. There are differences between ESXi 5.5 and previous versions that will cause the

 48

program to not function correctly. There will obviously be additional bugs and more potential

limitations found from additional testing in larger, more realistic environments.

 An additional limitation or system stability concern should also be mentioned.

ESXimager must utilize root user credentials in order to properly function and the tool executes

shell commands to accomplish its imaging tasks. This indicates there is a possibility that

ESXimager could compromise the stability or security of an ESXi server. Although unlikely, the

tool could malfunction and cause an errant command to be executed on the ESXi server, which

could harm or damage the ESXi server and the virtual machines running on it.

 Future work could include fixing the limitations mentioned above and adding more

robust features. A potentially useful and unique feature would be to allow ESXimager to capture

network traffic directly from an ESXi server.

Companies and organizations may utilize a firewall or a network tap hooked up to packet

capture software to save and examine network traffic if deemed necessary. VMware even has a

Knowledge Base (KB) article detailing how to configure a virtual machine to monitor network

traffic on a specific ESXi portgroup [17]. While the concept of collecting network traffic for

analysis is not new, to the best of my knowledge a tool has not yet been created to easily allow

network traffic captures to occur directly from an ESXi server. Like the imaging process

explained above, an ESXi server’s ability to execute shell commands could be leveraged to allow

for direct network traffic captures to take place. The pktcap-uw shell command allows for live

network traffic captures to take place directly from the ESXi server, available in ESXi version 5.5

[18]. Previous versions of ESXi utilize the tcpdump-uw command which has been replaced by

the pktcap-uw command [19]. This feature would be particularly useful if an investigator

wanted to obtain a network traffic capture from a particular virtual machine. Perhaps the virtual

machine is compromised or an investigator wants to check if the virtual machine is making any

 49

suspicious network connections. Instead of having to setup and utilize another technology such as

a network tap, a network capture could be initiated directly from the ESXi server, effectively

removing a step and simplifying the process. The network capture could further be filtered by

source, destination, protocol, or port. It is important to note that an ESXi server will only be able

to capture traffic of virtual machines running on the server. The pktcap-uw command would

output into a .pcap file which could then be opened and examined with a tool like Wireshark

[20].

 This tool fills a specific niche to help grow the number of digital forensics tools designed

to work in virtual environments. The hope is that ESXimager in its current state will make digital

forensic investigations easier to conduct in virtual and cloud environments. In order to ensure the

continued development of this program and in the hopes of making it into a widely used and

helpful tool it has been made available on GitHub [21]. With the help and input of the computer

forensics community, this program has the potential to be of vital importance to computer

forensics investigations.

 50

References

[1] T. J. Bittman, M. A. Margevicius, and P. Dawson, “Magic Quadrant for x86 Server

Virtualization Infrastructure,” Gartner, 02-Jul-2014. [Online]. Available:

http://www.gartner.com/technology/reprints.do?id=1-1WR7CAC&ct=140703&st=sb.

[Accessed: 08-Jan-2015].

[2] “VMware Named a Leader in 2014 Magic Quadrant for x86 Server Virtualization

Infrastructure for Fifth Consecutive Year,” 09-Jul-2014. [Online]. Available:

http://www.vmware.com/company/news/releases/vmw-newsfeed/VMware-Named-a-Leader-

in-2014-Magic-Quadrant-for-x86-Server-Virtualization-Infrastructure-for-Fifth-Consecutive-

Year/1859233. [Accessed: 08-Jan-2015].

[3] B. Nelson, A. Phillips, and C. Steuart, Guide to computer forensics and investigations, 4th

Ed. Boston, MA: Cengage Learning, 2009.

[4] “EnCase: Cybersecurity, E-Discovery, Digital Forensics.” [Online]. Available:

https://www.guidancesoftware.com/. [Accessed: 02-Mar-2015].

[5] “Forensic Toolkit (FTK) | AccessData.” [Online]. Available:

http://accessdata.com/solutions/digital-forensics/forensic-toolkit-ftk. [Accessed: 03-Mar-

2015].

[6] “The Sleuth Kit (TSK) & Autopsy: Open Source Digital Forensics Tools.” [Online].

Available: http://www.sleuthkit.org/. [Accessed: 02-Mar-2015].

[7] W. Delport, M. Köhn, and M. S. Olivier, “Isolating a cloud instance for a digital forensic

investigation.,” in ISSA, 2011.

 51

[8] B. Martini and K.-K. R. Choo, “Remote programmatic vCloud forensics: a six-step collection

process and a proof of concept,” in Trust, Security and Privacy in Computing and

Communications (TrustCom), 2014 IEEE 13th International Conference on, 2014, pp. 935–

942.

[9] V. Urias, J. Young, and S. Hatcher, “Implications of Cloud Computing on Digital Forensics,”

J. Comput. JoC, vol. 1, no. 1, 2014.

[10] T. Atkison and J. C. F. Cruz, “Digital Forensics on a Virtual Machine.”

[11] M. Hirwani, “Forensic analysis of VMware hard disks,” Rochester Institute of Technology,

2011.

[12] P. Henry, “SANS Digital Forensics and Incident Response Blog | How To Digital Forensic

Imaging In VMware ESXi | SANS Institute,” SANS Digital Forensics and Incident Response

Blog, 04-Oct-2010. .

[13] “What Files Make Up a Virtual Machine?” [Online]. Available:

https://www.vmware.com/support/ws55/doc/ws_learning_files_in_a_vm.html. [Accessed:

25-Feb-2015].

[14] “VMware vSphere 4 ESXi Installable and vCenter Server Documentation Center.” [Online].

Available: http://pubs.vmware.com/vsphere-4-esxi-installable-

vcenter/index.jsp?topic=/com.vmware.vsphere.esxi_server_config.doc_41/esx_server_config

/introduction_to_storage/c_networked_storage.html. [Accessed: 17-Feb-2015].

[15] F. Hua, “How to measure IOPS for Windows,” The Official Synology Blog, 03-Apr-2013. .

[16] “Monitoring Queue Length.” [Online]. Available: https://technet.microsoft.com/en-

us/library/cc938625.aspx. [Accessed: 25-Feb-2015].

[17] “VMware KB: Monitoring network traffic from within a virtual machine on a VMware

vSphere ESX/ESXi server.” [Online]. Available:

 52

http://kb.vmware.com/selfservice/microsites/search.do?language=en_US&cmd=displayKC&

externalId=1038847. [Accessed: 02-Mar-2015].

[18] “VMware KB: Using the pktcap-uw tool in ESXi 5.5.” [Online]. Available:

http://kb.vmware.com/selfservice/search.do?cmd=displayKC&docType=kc&docTypeID=DT

_KB_1_1&externalId=2051814. [Accessed: 03-Mar-2015].

[19] “VMware KB: Capturing a network trace in ESXi using Tech Support Mode or ESXi Shell.”

[Online]. Available:

http://kb.vmware.com/selfservice/microsites/search.do?language=en_US&cmd=displayKC&

externalId=1031186. [Accessed: 02-Mar-2015].

[20] “Wireshark · Go Deep.” [Online]. Available: https://www.wireshark.org/. [Accessed: 03-

Mar-2015].

[21] “GitHub.” [Online]. Available: https://github.com/. [Accessed: 04-Mar-2015].

 53

Appendix: A

Source Code

ESXimager2.9A.pl
#!/usr/bin/perl

use strict;

#use warnings;

use Tk;

use Tk::ProgressBar;

use Tk::MsgBox;

use Tk::DirTree;

use Tk::Pane;

use Tk::Font;

use Net::OpenSSH;

use Net::SFTP::Foreign;

use Data::Dumper;

use Time::HiRes;

########################

#ESXimager2.9.pl

#Matt Tentilucci

#2-22-2014

#V2.1 - Adding in user confirmation of VM choices and passing them back

to sshToESXi sub, removing lots of misc. lines from debugging/trial and

error

#V2.2 - Redesign user selection of VMs window and switched from grid to

pack geometry manager. Instead of having a sub window,

there will be a frame within main window that will be updated with

the VM choices for the user to image. This should be a much

cleaner look and prevent multiple windows from popping up. Also added

configuration file and Tools->Settings menu bar for editing it

 54

#V2.3 - Added in menu item to open an existing case, variable cleanup,

create new case, open case

#V2.4 - Created dirTreeFrame to show case directory listing to use once

a case has been opened -> future, allow user to click on files and get

info(size, hash, etc...)

moved some boxes around, the connect frame is now horizontal at the

top of the window

#V2.5 - Improved VM imaging window. Asks the user what VM they want to

image, then what files from that VM, then confirms selection. Added

windows telling the user

what the program is doing, when the file gets DD, or hashes are being

calculated because the program will not respond to user inputs when

those things are being executed

Controlled where subwindows are shown on the screen, they show up in

the middle of the main window. Changed console log box to scrolled and

tied STDOUT to print in the box.

Now using print will print in the consoleLog, also $consoleLog-

>see('end') shows the bottom of the console log and essentially makes

it scroll automatically as it grows

After the image has been dd'd and SFTP'd the script will cleanup the

.dd files is created on the ESXi server

Made the checkbutton frame scrolled when user has to select what

vms/files they want to image

#V2.6 - Integrating buttons into file listing listbox to put selected

file through strings and hexdump -C. Case names will not allow spaces,

will =~ s/ //;

#V2.7 - Improved logging capabilities. Added Overall log file to keep

track if everything, added case log file that keeps track of things

related to a particular case

created logIt sub to simplify logging since log messages need to go

to multiple places

#V2.8 - Create xml data structure to store a hash log of file acquired.

Each case will have its own "hash log" xml file

Implemented a way to verify the integrity of the images takes both

automatically after the imaging process is complete and also manually

through

 55

the Tools->Verify Integrity menu button

Added in way to view an image files information, hash history, size,

etc... view->file information

#V2.8A - Removed unnecessary comments, removed unnecessary lines,

condensed code = ~250 lines

#V2.9A - Misc. spelling fixes, create case window now appears in middle

of screen, changed dd to use bs=1M b/c the datastores default to 1M

block sizes(Should find the

block size by executing vmfstools --query -h /path/to/volume and

parsing output)

Also since MD5 and SHA1 values are calculated, tried to give some

indication as to which one is currently being calculated by slightly

changing the window depending on which is being calculated

Added in elapsed time it takes each operation to complete. Gives user

about how long it takes to calculate hashes and for dd to complete.

These times are displayed and logged

once the task has completed. Updating in real time would require

forking of the dd and hash tasks which would require possibly major

code changes this late

########################

#Before the config file is read and the desired log file location is

determined, I want to log debug messages so I will utilize this array

my @debugMessages;

push @debugMessages, logIt("[debug] (main) Program opened.",0,0,0);

push @debugMessages, logIt("[debug] (main) Initializing some

variables.",0,0,0);

#variable so ssh session to esxi can be accessible outside of sub

my $ssh;

my $checkFrame1;

my $checkFrame2;

my $buttonFrame1;

my $buttonFrame2;

#used for storing the data structure of the case integrity file

my $hashRef;

 56

#hash ref used to save hashes of a file as it is being imaged. This

will be added into $hasRef and reset once a particular file has been

imaged

my $processingHashRef;

my $preMD5;

my $preSHA1;

#Variables for location of working directory, case directory,

configuration file, and log file

my $configFileLocation = $ENV{"HOME"} . "/ESXimager/ESXimager.cfg";

my $ESXiWorkingDir;

my $ESXiCasesDir;

my $logFileDestination;

my $currentCaseName = "No Case Opened Yet";

my $currentCaseLocation;

my $currentCaseLog;

my $currentCaseIntegrityFile;

push @debugMessages, logIt("[debug] (main) Done initializing

variables.",0,0,0);

#Creates main window

my $mw = MainWindow->new;

push @debugMessages, logIt("[debug] (main) Creating

MainWindow.",0,0,0);

$mw->title("ESXimager 2.9");

$mw->geometry("1400x600");

#Create menu bar

push @debugMessages, logIt("[debug] (main) Creating menu bar.",0,0,0);

$mw->configure(-menu => my $menubar = $mw->Menu);

my $file = $menubar->cascade(-label => '~File');

my $tools = $menubar->cascade(-label => '~Tools');

my $view = $menubar->cascade(-label => '~View');

my $help = $menubar->cascade(-label => '~Help');

 57

$file->command(-label => 'New Case', -underline => 0, -command =>

\&createNewCase);

$file->command(-label => 'Open Case', -underline => 0, -command =>

\&openExistingCase);

$file->separator;

$file->command(-label => "Quit", -underline => 0, -command => \&exit);

$tools->command(-label => "Verify Integrity", -command =>

\&checkImageIntegrity);

$tools->command(-label => "Settings", -command => \&editSettings);

$help->command(-label => "About", -command => \&showHelp);

#console window

#Anytime print is used, it will output to the $consoleLog window

push @debugMessages, logIt("[debug] (main) Creating ConsoleLog

window.",0,0,0);

my $consoleLog = $mw->Scrolled('Text',-height => 10, -width => 125)-

>pack(-side => 'bottom', -fill => 'both');

tie *STDOUT, 'Tk::Text', $consoleLog->Subwidget('scrolled');

##Connection Frame##

push @debugMessages, logIt("[debug] (main) Creating Connection

Frame.",0,0,0);

#Create top left frame for holding username, password, server IP,

connect button widgets

my $connectionFrame = $mw->Frame(-borderwidth => 2, -relief =>

'groove');

$connectionFrame->pack;#(-side => 'left', -anchor => 'nw');

#label for IP

$connectionFrame->Label(-text => "Server IP")->pack(-side => 'left', -

anchor => 'n');

#entry for IP

my $ESXip = $connectionFrame->Entry(-width => 20, -text =>

"192.168.100.142")->pack(-side => 'left', -anchor => 'n');

#Label for user

 58

$connectionFrame->Label(-text => "Username")->pack(-side => 'left', -

anchor => 'n');

#entry for user

my $username = $connectionFrame->Entry(-width => 20, -text =>

"root")->pack(-side => 'left', -anchor => 'n');

#label for pass

$connectionFrame->Label(-text => "Password")->pack(-side => 'left', -

anchor => 'n');

#entry for pass

my $password = $connectionFrame->Entry(-width => 20, -show => "*", -

text => "netsys01")->pack(-side => 'left', -anchor => 'n');

#connect button, first calls sub to do input sanitization and checking

on ip, username, and password boxes then

#either falls out with an error, or another sub is called to connect to

the ESXi server

$connectionFrame->Button(-text => "Connect", -command =>

\&sanitizeInputs)->pack(-side => 'left', -anchor => 'n');

##End Connection Frame##

#Creates a label in the top left display the case currently "open"

my $caseLabel = $mw->Label(-text => "$currentCaseName. You must open a

case before imaging a VM")->pack;#(-side => 'left', -anchor => 'nw');

##Dir File Frame##

push @debugMessages, logIt("[debug] (main) Creating Dir File

Frame.",0,0,0);

my $dirFileFrame = $mw->Frame(-borderwidth => 2, -relief => 'groove');

$dirFileFrame->pack(-side => 'right', -fill => 'both');

###Dir Tree Frame##

push @debugMessages, logIt("[debug] (main) Creating Dir Tree

Frame.",0,0,0);

my $dirTreeFrame = $dirFileFrame->Frame(-borderwidth => 2, -relief =>

'groove');

$dirTreeFrame->pack(-side => 'left', -fill => 'both');

 59

my $dirTree = $dirTreeFrame->Scrolled('DirTree', -scrollbars => 'e', -

directory => $ESXiCasesDir, -width => 35, -height => 20, -browsecmd =>

\&listFiles)->pack(-side => 'left', -anchor => 'n', -fill => 'both');

###End Dir Tree Frame##

###File List Frame##

push @debugMessages, logIt("[debug] (main) Creating File List

Frame.",0,0,0);

my $fileListFrame = $dirFileFrame->Frame(-borderwidth => 2, -relief =>

'groove');

$fileListFrame->pack(-side => 'right', -fill => 'both');

my $fileList = $fileListFrame->Scrolled('Listbox', -scrollbars => 'e',

-width => 40, -height => 15)->pack(-side => 'top', -anchor => 'n', -

fill => 'both', -expand => 1);

listFiles($ESXiCasesDir);

$fileListFrame->Label(-text => "Display Selected File In: ")->pack(-

side => 'left', -anchor => 's', -fill => 'both');

my $stringsButton = $fileListFrame->Button(-text => "Strings", -command

=> [\&runThroughStrings, \$fileList])->pack(-side => 'left', -anchor =>

's', -fill => 'both', -expand => 1);

my $hexdumpButton = $fileListFrame->Button(-text => "Hexdump", -command

=> [\&runThroughHexdump, \$fileList])->pack(-side => 'left', -anchor =>

's', -fill => 'both', -expand => 1);

###End File List Frame##

##End Dir Tree Frame##

#This needs to go after $fileList is defined

$view->command(-label => "File Information", -command =>

[\&viewFileInfo, \$fileList]);

##VM Choices Frame##

push @debugMessages, logIt("[debug] (main) Creating VM Choices

Frame.",0,0,0);

my $vmChoicesFrame = $mw->Frame(-borderwidth => 2, -relief =>

'groove');

$vmChoicesFrame->pack(-side => 'left', -fill => 'both', -expand => 1);

my $vmChoicesLabel = $vmChoicesFrame->Label(-text => "Connect to an

ESXi server to populate\n")->pack;

 60

##EndVM Choices Frame##

$consoleLog->see('end');

push @debugMessages, logIt("[debug] (main) Done creating Main

Window.",0,0,0);

checkOS();

readConfigFile();

#In addition to opening the program log file, we can open and print out

everything to our debug log file

my $debugLogLocation = $logFileDestination;

$debugLogLocation =~ s/\.log/Debug\.log/;

open (DEBUGLOGFILE, ">>$debugLogLocation");

{ my $ofh = select DEBUGLOGFILE;

 $| = 1;

 select $ofh;

}

foreach(@debugMessages)

{

 print DEBUGLOGFILE $_

}

#With the config file read, we now know where the ovarall

$logFileDestination is so we can open a file handle

open (PROGRAMLOGFILE, ">>$logFileDestination");

#Make file handle 'hot' so lines don't get buffered before printing

http://perl.plover.com/FAQs/Buffering.html

{ my $ofh = select PROGRAMLOGFILE;

 $| = 1;

 select $ofh;

}

logIt("[info] (main) Initialized... GREETINGS PROFESSOR FALKEN.", 1, 0,

1);

#Reads the configuration file for this program. It looks in

/home/user/ESXimager/ESXimager.cfg

 61

#If it does not find a config file it will prompt the user to create

one, bringing them to the

#configuration window. Otherwise, the config file is loaded and the

storage locations defined in it are used

sub readConfigFile

{

 my $expectedConfigFileLoc = $ENV{"HOME"} .

"/ESXimager/ESXimager.cfg";

 #if config file exists

 if (-e $expectedConfigFileLoc)

 {

 push @debugMessages, logIt("[debug] (main) Found config

file in expected location, here: $expectedConfigFileLoc.",0,0,0);

 open (CONFIGFILE, $expectedConfigFileLoc);

 push @debugMessages, logIt("[debug] (main) Reading config

file.",0,0,0);

 while(<CONFIGFILE>)

 {

 chomp($_);

 if($_ =~ m/^WorkingDir=.+/)

 {

 my @configFileSplit = split(/=/);

 chomp($configFileSplit[1]);

 $ESXiWorkingDir = $configFileSplit[1];

 push @debugMessages, logIt("[debug] (main)

Setting ESXi Working Dir to: $ESXiWorkingDir.",0,0,0);

 }

 elsif($_ =~ m/CaseDir=.+/)

 {

 my @configFileSplit = split(/=/);

 chomp($configFileSplit[1]);

 $ESXiCasesDir = $configFileSplit[1];

 push @debugMessages, logIt("[debug] (main)

Setting ESXi cases directory to: $ESXiCasesDir.",0,0,0);

 $dirTree->chdir($ESXiCasesDir);

 listFiles($ESXiCasesDir);

 62

 }

 elsif($_ =~ m/LogFile=.+/)

 {

 my @configFileSplit = split(/=/);

 chomp($configFileSplit[1]);

 $logFileDestination = $configFileSplit[1];

 push @debugMessages, logIt("[debug] (main)

Setting log file destination to: $logFileDestination.",0,0,0);

 }

 else

 {

 push @debugMessages, logIt("[debug] (main)

Misformated Config file, dont know what $_ is.",0,0,0);

 $consoleLog->insert('end', "Misformated Config

file, dont know what $_ is\n");

 $consoleLog->see('end');

 }

 }

 close(CONFIGFILE);

 }

 #config file must not exist in the expected location

 else

 {

 push @debugMessages, logIt("[debug] (main) No config file

could be located. Going to create config file.",0,0,0);

 my $message = $mw->MsgBox(-title => "Info", -type => "ok",

-icon => "info", -message => "It appears this is the first time you are

running this program, a configuration file could not be located. The

following window will allow you to create a configuration file.");

 $message->Show;

 editSettings();

 }

}

#sanitizes and checks inputs with connect button is clicked, then

presents and error or

 63

#calls another sub to connect to the ESXi server

sub sanitizeInputs

{

 my $ip = $ESXip->get;

 my $user = $username->get;

 my $password = $password->get;

 logIt("[info] (main) Sanitizing inputs...", 1, 0, 1);

 my $validInput = 0;

 #Check if the a valid IP address was entered

 if(($ip =~ /^(\d{1,3})\.(\d{1,3})\.(\d{1,3})\.(\d{1,3})$/) && ($1

<= 255 && $2 <= 255 && $3 <= 255 && $4 <= 255))

 { $validInput++; }

 else

 {

 logIt("[error] (main) Please enter a valid ip address.", 1,

0, 1);

 my $error = $mw->MsgBox(-title => "Error", -type => "ok", -

icon => "error", -message => "Please enter a valid ip address.");

 $error->Show;

 }

 #checks to see if username field has something typed in

 if(length($user) > 0)

 { $validInput++; }

 else

 {

 logIt("[error] (main) Please enter a username.", 1, 0, 1);

 my $error = $mw->MsgBox(-title => "Error", -type => "ok", -

icon => "error", -message => "Please enter a username.");

 $error->Show;

 }

 #checks to see if password field has something typed in

 if(length($password) > 0)

 { $validInput++; }

 else

 64

 {

 logIt("[error] (main) Please enter a password.", 1, 0, 1);

 my $error = $mw->MsgBox(-title => "Error", -type => "ok", -

icon => "error", -message => "Please enter a password.");

 $error->Show;

 }

 #Calls sub to connect only if input validation has passed

 if($validInput == 3)

 {

 logIt("[info] (main) Done sanitizing inputs.", 1, 0, 1);

 sshToESXi($ip, $user, $password)

 }

}

#connects to the ESXi server via SSH, may need to make $ssh global so

commands can be run outside this sub

sub sshToESXi

{

 my $ip = $_[0];

 my $user = $_[1];

 my $password = $_[2];

 logIt("[info] (main) Attempting to connect to ESXi server at

$ip...", 1, 0, 1);

 $mw->update;

 $ssh = Net::OpenSSH->new("$user:$password\@$ip", master_opts => [

-o => "StrictHostKeyChecking=no"]);

 if(!$ssh->error)

 {

 logIt("[info] (main) Successfully connected to $ip", 1, 0,

1);

 $mw->update;

 #Are all vm's stored here? Investigate what path is used

for each esxi host for iscsi or VMs on a SAN

 findVMs("/vmfs/volumes/", $ip);

 65

 }

 else

 {

 logIt("[error] (main) Failed to connect to $ip " . $ssh-

>error, 1, 0, 1);

 my $error = $mw->MsgBox(-title => "Error", -type => "ok", -

icon => "error", -message => "Failed to connect to $ip " . $ssh-

>error);

 $error->Show;

 }

}

#Step 1: $checkFrame1 and $buttonFrame1 - find VMs on ESXi server and

allows the user to select which VM(s) they want to image

sub findVMs

{

 #destroys the two frames from the selectVMFiles sub if they are

defined. Either the user hit the back button or they imaged a VM which

returns to this screen when completed

 if (defined $checkFrame2 && defined $buttonFrame2)

 {

 $checkFrame2->destroy();

 $buttonFrame2->destroy();

 }

 my @vmxFound;

 my @getVMs;

 my $vmstore = $_[0];

 my $ip = $_[1];

 #make the checkbox frame scrollable incase there are multiple

VMs/files that go beyond the window size

 $checkFrame1 = $vmChoicesFrame->Scrolled('Pane',-scrollbars =>

'osoe')->pack(-side => 'top', -fill => 'both', -expand => 1);

 if (defined $vmChoicesLabel)

 {

 66

 $vmChoicesLabel->packForget;

 }

 $checkFrame1->Label(-text=>"Please select which virtual machines

you want to image:")->pack(-side => "top")->pack();

 #finds anything with .vmx extension meaning it is a VM

 my $stdout = $ssh->capture("find $vmstore -name \"*.vmx\"");

 @vmxFound = split(/\s+/, $stdout);

 my @checkButtons;

 my @checkButtonValues;

 my $counter = 0;

 #Creates check buttons depending on how many VMs are found on the

server

 foreach(@vmxFound)

 {

 $checkButtonValues[$counter] = '0';

 $checkButtons[$counter] = $checkFrame1->Checkbutton(-text

=> $_,-onvalue => $_,-offvalue => '0',-variable =>

\$checkButtonValues[$counter])->pack();

 $counter++;

 }

 #Creates ok and cancel button to approve VM selections

 $buttonFrame1 = $vmChoicesFrame->Frame()->pack(-side =>

"bottom");

 my $okButton = $buttonFrame1->Button(-text => 'Next', -command =>

[\&selectVMFiles, \@checkButtonValues])->pack(-side => "left");

}

#Step 2: $checkFrame2 and $checkFrame2 - destroys the frames from the

findVMs sub and replaces them with files associated with the VMs they

want to image.

#Asks the user what files they want to acquire, .vmx .vmdk .vmem

etc.....

 67

sub selectVMFiles

{

 my @vmsToRestart;

 if($currentCaseName =~ m/No Case Opened Yet/)

 {

 logIt("[error] (main) A case has not yet been opened. Open

a case before imaging a VM.", 1, 0, 1);

 my $message = $mw->MsgBox(-title => "Error", -type => "ok",

-icon => "error", -message => "A case has not yet been opened. Open a

case before imaging a VM.\n");

 $message->Show;

 }

 else

 {

 my $choicesRef = shift; #$_[0];

 my @findVMFiles;

 foreach(@$choicesRef)

 {

 if($_ ne '0')

 {

 push @findVMFiles, $_;

 }

 else

 {}

 }

 my $count = @findVMFiles;

 if ($count == 0)

 {

 logIt("[error] ($currentCaseName) No VM's were

selected to be imaged.", 1, 1, 1);

 my $message = $mw->MsgBox(-title => "Error", -type =>

"ok", -icon => "error", -message => "No VM's were selected to be

imaged.\n");

 $message->Show;

 }

 else

 68

 {

 foreach(@findVMFiles)

 {

 logIt("[info] ($currentCaseName) Checking state

of Virtual Machine: $_", 1, 1, 1);

 my $vmStatus = checkIfVMRunning($_);

 if ($vmStatus == 1)

 {

 logIt("[info] ($currentCaseName) Virtual

Machine: $_ is running.", 1, 1, 1);

 my $messageBoxAnswer = $mw->messageBox(-

title => "Suspend Virtual Machine?", -type => "YesNo", -icon =>

"question", -message => "$_ is currently powered on and running.\nIt is

strongly recommended the virtual machine be suspended before

imaging.\nDo you want to suspend it?\n", -default => "yes");

 if ($messageBoxAnswer eq 'Yes')

 {

 logIt("[info] ($currentCaseName)

User has selected to suspend $_. The virtual machine will be restarted

once imaging is complete.", 1,1,1);

 suspendVM($_);

 push @vmsToRestart, $_;

 }

 }

 else

 {

 logIt("[info] ($currentCaseName) Virtual

Machine: $_ is not running.", 1, 1, 1);

 }

 }

 $checkFrame1->destroy();

 $buttonFrame1->destroy();

 my @checkButtons;

 my @checkButtonValues;

 69

 my $counter = 0;

 $checkFrame2 = $vmChoicesFrame->Scrolled('Pane', -

scrollbars => 'osoe')->pack(-side => 'top', -fill => 'both', -expand =>

1);

 foreach(@findVMFiles)

 {

 my $VMDirPath = getDirName($_);

 #lists (ls) the given directory on the esxi

server

 my $stdout = $ssh->capture("ls $VMDirPath");

 my @filesFound = split(/\s+/, $stdout);

 foreach(@filesFound)

 {

 my $filePath = $VMDirPath . $_;

 $checkButtonValues[$counter] = '0';

 $checkButtons[$counter] = $checkFrame2-

>Checkbutton(-text => $filePath,-onvalue => $filePath,-offvalue =>

'0',-variable => \$checkButtonValues[$counter])->pack();

 $counter++;

 }

 }

 #Creates ok and cancel button to approve VM

selections

 $buttonFrame2 = $vmChoicesFrame->Frame()->pack(-side

=> "bottom");

 my $backButton = $buttonFrame2->Button(-text =>

'Back',-command => [\&findVMs])->pack(-side => "left");

 my $okButton = $buttonFrame2->Button(-text =>

'Next',-command => [\&confirmUserVMImageChoices, \@checkButtonValues,

\@vmsToRestart])->pack(-side => "left");

 }

 }

}

 70

#Step 3: Confirms the users choices for which VMs they wish to acquire,

expects a reference to the array of checkButton choices as well as a

#reference to the array of VMs that need to be restarted once imaging

is complete

sub confirmUserVMImageChoices

{

 if($currentCaseName =~ m/No Case Opened Yet/)

 {

 logIt("[error] (main) A case has not yet been opened. Open

a case before imaging a VM.", 1, 0, 1);

 my $message = $mw->MsgBox(-title => "Error", -type => "ok",

-icon => "error", -message => "A case has not yet been opened. Open a

case before imaging a VM.\n");

 $message->Show;

 }

 else

 {

 my $choicesRef = $_[0]; #shift; #$_[0];

 my $vmsToRestartRef = $_[1];

 my @VMsToImage;

 foreach(@$choicesRef)

 {

 if($_ ne '0')

 {

 push @VMsToImage, $_;

 }

 else

 {}

 }

 my $count = @VMsToImage;

 if ($count == 0)

 {

 logIt("[error] ($currentCaseName) No files were

selected to be imaged.", 1, 1, 1);

 71

 my $message = $mw->MsgBox(-title => "Error", -type =>

"ok", -icon => "error", -message => "No files were selected to be

imaged.\n");

 $message->Show;

 }

 else

 {

 my @shortVMFileNames;

 foreach(@VMsToImage)

 {

 push @shortVMFileNames, "\n" .

getFileName($_);

 }

 my $messageBoxAnswer = $mw->messageBox(-title =>

"Confirm File Selection", -type => "YesNo", -icon => "question", -

message => "Would you like to image the following VMs files?:

@shortVMFileNames", -default => "yes");

 if ($messageBoxAnswer eq 'Yes')

 {

 logIt("[info] ($currentCaseName) the following

files will be imaged: @shortVMFileNames", 1, 1, 1);

 my @fileNames;

 my $startTime = time();

 foreach(@VMsToImage)

 {

 #delete whatever is currently in the

processing hash ref

 #we want to only have hash values for a

particular file

 $processingHashRef = {};

 for (keys %$processingHashRef)

 {

 delete $processingHashRef->{$_};

 }

 72

 logIt("[info] ($currentCaseName) Working

on $_", 1, 1, 1);

 my $targetImageFile = ddTargetFile($_);

 my $ip = $ESXip->get;

 logIt("[info] ($currentCaseName) Going to

SFTP $targetImageFile to this computer from ESXi server at IP $ip", 1,

1, 1);

 $mw->update;

 sftpTargetFileImage($targetImageFile);

 my $filename =

getFileName($targetImageFile);

 push @fileNames, $filename;

 #print "Hash Ref: $hashRef File:

$filename ProcessingHashReg: $processingHashRef\n";

 $hashRef->{$filename} =

$processingHashRef;

 }

 my $arrayRef = \@fileNames;

 checkImageIntegrity($arrayRef);

 #Restart VMs that were suspended once the

imaging process is complete

 logIt("[info] ($currentCaseName) Attempting to

restart suspended VMs.", 1, 1, 1);

 foreach (@$vmsToRestartRef)

 {

 startVM($_);

 }

 #After imaging is complete, we want to write

our $hashRef data structure containing all the hash history to the case

integrity file

 my $caseIntegrityFileLocation =

$currentCaseLocation . "/" . $currentCaseName . ".integrity";

 open ($currentCaseIntegrityFile,

">$caseIntegrityFileLocation");

 73

 logIt("[info] ($currentCaseName) Writing to

integrity file", 1, 1, 1);

 print $currentCaseIntegrityFile Data::Dumper-

>Dump([$hashRef], [qw/digest/]);

 close($currentCaseIntegrityFile);

 #Maybe add more info to the "done" window

 listFiles($currentCaseLocation);

 logIt("[info] ($currentCaseName) All imaging

operations complete.", 1, 1, 1);

 my $endTime = time();

 my $outputTime = $endTime - $startTime;

 logIt("[info] ($currentCaseName) Imaging

process took $outputTime seconds", 1, 1, 1);

 my $message = $mw->MsgBox(-title => "Info", -

type => "ok", -icon => "info", -message => "\tDone!\nImaging process

took $outputTime seconds\n");

 $message->Show;

 #Return the vm selection window to what it was

originally in case user wants to image more VMs

 findVMs();

 }

 else

 {}

 }

 }

}

#Step 4: DD target VMs, expects the absolute path to the vm file on

ESXi server

sub ddTargetFile

{

 #!!check to see if ddimages directory exists!! figure out later

 my $absolutePathFileToDD = $_[0];

 #This was a much easier solution to determining where to dd the

file to

 74

 my $ddDestination = $absolutePathFileToDD . ".dd";

 #Took out datastore1 b/c with esxi4 does not have a datastore1,

this may have to be changed depending on how it works with a NAS

involved

 #Instead, place the dd image file in the same directory as the

orig. Could be changed

 #to "find" the storage directory and make a directory by

splitting and poping the

 #absolute path apart but this should work for now

 #determine file size of file we are about to acquire

 my $fileSize = $ssh->capture("ls -lah $absolutePathFileToDD");

 $fileSize = returnFileSize($fileSize);

 my $subWindow = $mw->Toplevel;

 $subWindow->title("(Step 1/5) Calculating *MD5* and SHA1

Hashes");

 ########debugging window position

 my $mwx = $mw->x;

 my $mwy = $mw->y;

 my $mwHeight = $mw->height;

 my $mwWidth = $mw->width;

 my $swHeight = $subWindow->height;

 my $swWidth = $subWindow->width;

 ###########debugging window position

 #Adjusts the sub window to appear in the middle of the main

window

 my $xpos = int((($mw->width - $subWindow->width) / 2) + $mw->x);

 my $ypos = int((($mw->height - $subWindow->height) / 2) + $mw-

>y);

 $subWindow->geometry("+$xpos+$ypos");

 #Tells the user what is happening b/c they will not have control

until they get to the SFTP step

 75

 $subWindow->Label(-text => "File: $absolutePathFileToDD\nSize:

$fileSize\nCalculating *MD5* hash for $absolutePathFileToDD...\nThis

may take some time depending on the file size, please be patient\n")-

>pack;

 $mw->update;

 sleep(1);

 my $startTime = time();

 my $md5 = calculateMD5HashOnESX($absolutePathFileToDD);

 my $endTime = time();

 my $outputTime = $endTime - $startTime;

 chomp ($outputTime);

 $subWindow->Label(-text => "MD5 calculation took: $outputTime

seconds\n")->pack;

 logIt("[info] ($currentCaseName) MD5 calculation of file

$absolutePathFileToDD took $outputTime seconds", 1, 1, 1);

 #Try and give some idea when program is calculating each hash

 $subWindow->title("(Step 1/5) Calculating MD5 and *SHA1*

Hashes");

 $subWindow->Label(-text => "File: $absolutePathFileToDD\nSize:

$fileSize\nCalculating *SHA1* hash for $absolutePathFileToDD...\nThis

may take some time depending on the file size, please be patient\n")-

>pack;

 $mw->update;

 sleep(2);

 $startTime = time();

 my $sha1 = calculateSHA1HashOnESX($absolutePathFileToDD);

 $endTime = time();

 $outputTime = $endTime - $startTime;

 chomp ($outputTime);

 $subWindow->Label(-text => "SHA1 calculation took: $outputTime

seconds\n")->pack;

 76

 logIt("[info] ($currentCaseName) SHA1 calculation of file

$absolutePathFileToDD took $outputTime seconds", 1, 1, 1);

 #Done telling the user some info, destroy the sub window b/c we

are about to create a new one with new info

 $subWindow->destroy();

 logIt("[info] ($currentCaseName) Hashes of $absolutePathFileToDD

Before DD:\n \tMD5: $md5\n \tSHA1: $sha1", 1, 1, 1);

 $processingHashRef->{getLoggingTime() . " Before DD on remote

server MD5"} = $md5;

 $processingHashRef->{getLoggingTime() . " Before DD on remote

server SHA1"} = $sha1;

 $mw->update;

 sleep(1);

 my $subWindow = $mw->Toplevel;

 $subWindow->title("(Step 2/5) Creating bit level copy with DD");

 #Dont need to recalculate window position again b/c the main

window should not have been moved. Just using values calculated from

above

 $subWindow->geometry("+$xpos+$ypos");

 $subWindow->Label(-text => "File: $absolutePathFileToDD\nSize:

$fileSize\nCreating a copy of $absolutePathFileToDD with DD...\nThis

may take some time depending on the file size, please be patient\n")-

>pack;

 $mw->update;

 logIt("[info] ($currentCaseName) Beginning DD of file:

$absolutePathFileToDD Destination: $ddDestination", 1, 1, 1);

 sleep(5);

 $startTime = time();

 77

 my $stdout = $ssh->capture("dd if=$absolutePathFileToDD

of=$ddDestination bs=1M");

 $endTime = time();

 $outputTime = $endTime - $startTime;

 chomp ($outputTime);

 $subWindow->Label(-text => "DD took: $outputTime seconds\n")-

>pack;

 logIt("[info] ($currentCaseName) DD copy of file

$absolutePathFileToDD took $outputTime seconds", 1, 1, 1);

 sleep(5);

 $subWindow->destroy();

 $mw->update;

 logIt("[info] ($currentCaseName) DD of file:

$absolutePathFileToDD to Destination: $ddDestination Done.", 1, 1, 1);

 sleep(1);

 my $subWindow = $mw->Toplevel;

 $subWindow->title("(Step 3/5) Calculating *MD5* and SHA1 hashes

after DD");

 #Dont need to recalculate window position again b/c the main

window should not have been moved. Just using values calculated from

above

 $subWindow->geometry("+$xpos+$ypos");

 $fileSize = $ssh->capture("ls -lah $ddDestination");

 $fileSize = returnFileSize($fileSize);

 $subWindow->Label(-text => "File: $ddDestination\nSize:

$fileSize\nCalculating *MD5* hash for $ddDestination...\nThis may take

some time depending on the file size, please be patient\n")->pack;

 $mw->update;

 my $pathToHash = $ddDestination;

 $startTime = time();

 78

 my $md5Check = calculateMD5HashOnESX($pathToHash);

 $endTime = time();

 $outputTime = $endTime - $startTime;

 chomp ($outputTime);

 $subWindow->Label(-text => "MD5 calculation took: $outputTime

seconds\n")->pack;

 logIt("[info] ($currentCaseName) MD5 calculation of file

$pathToHash took $outputTime seconds", 1, 1, 1);

 #Try and give some idea when program is calculating each hash

 $subWindow->title("(Step 3/5) Calculating MD5 and *SHA1* hashes

after DD");

 $subWindow->Label(-text => "File: $ddDestination\nSize:

$fileSize\nCalculating *SHA1* hash for $ddDestination...\nThis may take

some time depending on the file size, please be patient\n")->pack;

 $mw->update;

 sleep(2);

 $startTime = time();

 my $sha1Check = calculateSHA1HashOnESX($pathToHash);

 $endTime = time();

 $outputTime = $endTime - $startTime;

 chomp ($outputTime);

 $subWindow->Label(-text => "SHA1 calculation took: $outputTime

seconds\n")->pack;

 logIt("[info] ($currentCaseName) SHA1 calculation of file

$pathToHash took $outputTime seconds", 1, 1, 1);

 $preMD5 = $md5Check;

 $preSHA1 = $sha1Check;

 logIt("[info] ($currentCaseName) Hashes of $pathToHash After

DD:\n \tMD5: $md5Check\n \tSHA1: $sha1Check", 1, 1, 1);

 $processingHashRef->{getLoggingTime() . " After DD on remote

server MD5"} = $md5Check;

 $processingHashRef->{getLoggingTime() . " After DD on remote

server SHA1"} = $sha1Check;

 79

 #Done telling the user some info, destroy the sub window b/c we

are about to create a new one with new info

 $subWindow->destroy();

 $mw->update;

 sleep(1);

 return $pathToHash;

}

#Step 5: SFTP target VMs, expects absolute path to target dd file

sub sftpTargetFileImage

{

 my $fileToSFTP = $_[0];

 my %args; #= (user => 'root',password => 'netsys01');

 my $serverIP = $ESXip->get;

 my $user = $username->get;

 my $password = $password->get;

 my $host= '192.168.100.141';

 #label program will go to if a file hash is different after SFTP

and the user wants to try and reacquire the file

 REACQUIRE:

 logIt("[info] ($currentCaseName) SFTP connecting to ESXi server

$serverIP", 1, 1, 1);

 $mw->update;

 my $sftp = Net::SFTP::Foreign->new($serverIP, user => $user,

password => $password);

 $sftp->die_on_error("SSH Connection Failed");

 logIt("[info] ($currentCaseName) Successfully connected to

$serverIP", 1, 1, 1);

 my $getFileName2 = getFileName($fileToSFTP);

 80

 #Now that we have a cases directory, the images need to be saved

to that directory

 my $localDestination = $currentCaseLocation . "/" .

$getFileName2;

 logIt("[info] ($currentCaseName) Transferring $fileToSFTP from

ESXi server to this computer. Local Destination:$localDestination", 1,

1, 1);

 $mw->update;

 #Create progress bar to show user program is doing something

 my $percentDone = 0;

 my $subWindow = $mw->Toplevel;

 $subWindow->title("(Step 4/5) Transferring image to local

computer via SFTP");

 my $startTime = time();

 $subWindow->geometry("300x30");

 my $xpos = int((($mw->width - $subWindow->width) / 2) + $mw->x);

 my $ypos = int((($mw->height - $subWindow->height) / 2) + $mw-

>y);

 $subWindow->geometry("+$xpos+$ypos");

 my $progressBar = $subWindow->ProgressBar(-width => 30, -blocks

=> 50, -from => 0, -to => 100, -variable => \$percentDone)->pack(-fill

=> 'x');

 $sftp->get($fileToSFTP,$localDestination, callback => sub {

 my ($sftp, $data, $offset, $size) = @_;

 #For whatever reason if the file size is 0, we avoid

dividing by 0

 if ($size == 0)

 {$size = 1;}

 $percentDone = ($offset / $size) * 100;

 $subWindow->update;

 }); #or die "File transfer failed\n";

 81

 $subWindow->destroy;

 #With transfer complete, destroy the progress bar window

 logIt("[info] ($currentCaseName) SFTP transfer complete.", 1, 1,

1);

 my $endTime = time();

 my $outputTime = $endTime - $startTime;

 chomp ($outputTime);

 logIt("[info] ($currentCaseName) SFTP transfer of file

$fileToSFTP took $outputTime seconds", 1, 1, 1);

 sleep(2);

 #get the file size locally

 my $fileSize = `ls -lah $localDestination`;

 $fileSize = returnFileSize($fileSize);

 #Create subwindow to tell use the program is calculating hashes

 my $subWindow = $mw->Toplevel;

 $subWindow->title("(Step 5/5) Calculating *MD5* and SHA1 hashes

after SFTP transfer");

 #Adjusts the sub window to appear in the middle of the main

window

 my $xpos = int((($mw->width - $subWindow->width) / 2) + $mw->x);

 my $ypos = int((($mw->height - $subWindow->height) / 2) + $mw-

>y);

 $subWindow->geometry("+$xpos+$ypos");

 #Tells the user what is happening b/c they will not have control

while hashes are being calculated

 $subWindow->Label(-text => "File: $localDestination\nSize:

$fileSize\nCalculating *MD5* hash for $localDestination...\nThis may

take some time depending on the file size, please be patient\n")->pack;

 $mw->update;

 logIt("[info] ($currentCaseName) Working on $localDestination",

1, 1, 1);

 82

 $startTime = time();

 my $md5Check = calculateMD5HashLocal($localDestination);

 $endTime = time();

 $outputTime = $endTime - $startTime;

 chomp ($outputTime);

 $subWindow->Label(-text => "MD5 calculation took: $outputTime

seconds\n")->pack;

 logIt("[info] ($currentCaseName) MD5 calculation of file

$localDestination took $outputTime seconds", 1, 1, 1);

 #Try and give some idea when program is calculating each hash

 $subWindow->title("(Step 5/5) Calculating MD5 and *SHA1* hashes

after SFTP transfer");

 $subWindow->Label(-text => "File: $localDestination\nSize:

$fileSize\nCalculating *SHA1* hash for $localDestination...\nThis may

take some time depending on the file size, please be patient\n")->pack;

 $mw->update;

 sleep(2);

 $startTime = time();

 my $sha1Check = calculateSHA1HashLocal($localDestination);

 $endTime = time();

 $outputTime = $endTime - $startTime;

 chomp ($outputTime);

 $subWindow->Label(-text => "SHA1 calculation took: $outputTime

seconds\n")->pack;

 logIt("[info] ($currentCaseName) SHA1 calculation of file

$localDestination took $outputTime seconds", 1, 1, 1);

 logIt("[info] ($currentCaseName) Hashes of $localDestination

After SFTP Transfer:\n \tMD5: $md5Check\n \tSHA1: $sha1Check", 1, 1,

1);

 $processingHashRef->{getLoggingTime() . " After SFTP transfer

MD5"} = $md5Check;

 $processingHashRef->{getLoggingTime() . " After SFTP transfer

SHA1"} = $sha1Check;

 83

 $subWindow->destroy();

 if ($preMD5 ne $md5Check || $preSHA1 ne $sha1Check)

 {

 logIt("[error] ($currentCaseName) Hashes do not match for

file $localDestination. Pre MD5:$preMD5 Post MD5:$md5Check Pre

SHA1:$preSHA1 Post SHA1:$sha1Check", 1, 1, 1);

 my $message = $mw->MsgBox(-title => "Error", -type => "ok",

-icon => "error", -message => "Hashes do not match for file

$localDestination. Pre MD5:$preMD5 Post MD5:$md5Check Pre SHA1:$preSHA1

Post SHA1:$sha1Check\n");

 $message->Show;

 my $messageBoxAnswer = $mw->messageBox(-title => "Re-

acquire file?", -type => "YesNo", -icon => "question", -message =>

"Would you like to try and re-acquire file: $localDestination?", -

default => "yes");

 if ($messageBoxAnswer eq 'yes')

 {

 logIt("[info] ($currentCaseName) Attempting to re-

acquire file: $localDestination.", 1, 1, 1);

 goto REACQUIRE;

 }

 }

 sleep(1);

 cleanup($fileToSFTP);

}

#Checks the integrity of all the files currently in the given case

integrity file, or checks a subset of files if an array reference

containing

#the file names to be checked is passed to the sub

sub checkImageIntegrity

{

 my $arrayOfSpecificFiles = $_[0];

 84

 if($currentCaseName =~ m/No Case Opened Yet/)

 {

 logIt("[error] (main) A case has not yet been opened. Open

a case before verifying image integrity.", 1, 0, 1);

 my $message = $mw->MsgBox(-title => "Error", -type => "ok",

-icon => "error", -message => "A case has not yet been opened. Open a

case before verifying image integrity.\n");

 $message->Show;

 }

 else

 {

 logIt("[info] ($currentCaseName) Verifying integrity of

image files...", 1, 1, 1);

 if (defined $arrayOfSpecificFiles && $arrayOfSpecificFiles

ne '')

 {

 foreach (@$arrayOfSpecificFiles)

 {

 my $absolutePath = $currentCaseLocation . "/" .

$_;

 logIt("[info] ($currentCaseName) Checking

integrity of $absolutePath", 1, 1, 1);

 #determine file size of file

 my $fileSize = `ls -lah $absolutePath`;

 $fileSize = returnFileSize($fileSize);

 my $subWindow = $mw->Toplevel;

 $subWindow->title("Calculating *MD5* and SHA1

Hashes for Image Integrity Verification");

 ########debugging window position

 my $mwx = $mw->x;

 my $mwy = $mw->y;

 my $mwHeight = $mw->height;

 my $mwWidth = $mw->width;

 85

 my $swHeight = $subWindow->height;

 my $swWidth = $subWindow->width;

 #Adjusts the sub window to appear in the middle

of the main window

 my $xpos = int((($mw->width - $subWindow-

>width) / 2) + $mw->x);

 my $ypos = int((($mw->height - $subWindow-

>height) / 2) + $mw->y);

 $subWindow->geometry("+$xpos+$ypos");

 #Tells the user what is happening b/c they will

not have control while files are being hashed

 $subWindow->Label(-text => "File:

$absolutePath\nSize: $fileSize\nCalculating *MD5* hash for

$absolutePath...\nThis may take some time depending on the file size,

please be patient\n")->pack;

 $mw->update;

 sleep(1);

 my $startTime = time();

 my $currentMD5Hash =

calculateMD5HashLocal($absolutePath);

 my $endTime = time();

 my $outputTime = $endTime - $startTime;

 chomp ($outputTime);

 $subWindow->Label(-text => "MD5 calculation

took: $outputTime seconds\n")->pack;

 logIt("[info] ($currentCaseName) MD5

calculation of file $absolutePath took $outputTime seconds", 1, 1, 1);

 #Try and give some idea when program is

calculating each hash

 $subWindow->title("Calculating MD5 and *SHA1*

Hashes for Image Integrity Verification");

 86

 $subWindow->Label(-text => "File:

$absolutePath\nSize: $fileSize\nCalculating *SHA1* hash for

$absolutePath...\nThis may take some time depending on the file size,

please be patient\n")->pack;

 $mw->update;

 sleep(2);

 $startTime = time();

 my $currentSHA1Hash =

calculateSHA1HashLocal($absolutePath);

 $endTime = time();

 $outputTime = $endTime - $startTime;

 chomp ($outputTime);

 $subWindow->Label(-text => "SHA1 calculation

took: $outputTime seconds\n")->pack;

 logIt("[info] ($currentCaseName) SHA1

calculation of file $absolutePath took $outputTime seconds", 1, 1, 1);

 #Done telling the user some info, destroy the

sub window b/c we are about to create a new one with new info

 $subWindow->destroy();

 logIt("[info] ($currentCaseName) Hashes of

$absolutePath:\n \tMD5: $currentMD5Hash\n \tSHA1: $currentSHA1Hash", 1,

1, 1);

 my $message = getLoggingTime() . " Verifying

Image Integrity MD5";

 $hashRef->{$_}->{$message} = $currentMD5Hash;

 $message = getLoggingTime() . " Verifying Image

Integrity SHA1";

 $hashRef->{$_}->{$message} = $currentSHA1Hash;

 my %derefHash = %$hashRef;

 my $savedHashRef = $derefHash{$_};

 my %HoH = %$savedHashRef;

 my $isDifferent;

 87

 foreach my $key (keys %HoH)

 {

 if ($key =~ m/.*MD5.*/)

 {

 my $value =

compareHashes($currentMD5Hash, $HoH{$key});

 $isDifferent = $isDifferent +

$value;

 }

 elsif ($key =~ m/.*SHA1.*/)

 {

 my $value =

compareHashes($currentSHA1Hash, $HoH{$key});

 $isDifferent = $isDifferent +

$value;

 }

 else {}

 }

 if ($isDifferent > 0)

 {

 logIt("[warning] ($currentCaseName) Image

corrupt! Hashes are different for file: $absolutePath", 1, 1, 1);

 my $message = $mw->MsgBox(-title =>

"Error", -type => "ok", -icon => "error", -message => "Image corrupt!

Current hash values are different from the hashes in the saved digest

file for file: $absolutePath\nIt is strongly suggested you re-acquire

this file!\n");

 $message->Show;

 }

 else

 {

 logIt("[info] ($currentCaseName) No

integrity problems found for file: $absolutePath", 1, 1, 1);

 }

 }

 } else

 88

 {

 my %digest = %$hashRef;

 foreach my $key (keys %digest)

 {

 if ($key =~ m/.*\.dd/)

 {

 my $absolutePath = $currentCaseLocation .

"/" . $key;

 logIt("[info] ($currentCaseName) Checking

integrity of $absolutePath", 1, 1, 1);

 #determine file size of file

 my $fileSize = `ls -lah $absolutePath`;

 $fileSize = returnFileSize($fileSize);

 my $subWindow = $mw->Toplevel;

 $subWindow->title("Calculating MD5 and

SHA1 Hashes for Image Integrity Verification");

 ########debugging window position

 my $mwx = $mw->x;

 my $mwy = $mw->y;

 my $mwHeight = $mw->height;

 my $mwWidth = $mw->width;

 my $swHeight = $subWindow->height;

 my $swWidth = $subWindow->width;

 #Adjusts the sub window to appear in the

middle of the main window

 my $xpos = int((($mw->width - $subWindow-

>width) / 2) + $mw->x);

 my $ypos = int((($mw->height -

$subWindow->height) / 2) + $mw->y);

 $subWindow->geometry("+$xpos+$ypos");

 #Tells the user what is happening b/c

they will not have control while files are being hashed

 89

 $subWindow->Label(-text => "File:

$absolutePath\nSize: $fileSize\nCalculating MD5 and SHA1 hashes for

$absolutePath...\nThis may take some time depending on the file size,

please be patient\n")->pack;

 $mw->update;

 sleep(1);

 my $currentMD5Hash =

calculateMD5HashLocal($absolutePath);

 my $currentSHA1Hash =

calculateSHA1HashLocal($absolutePath);

 #Done telling the user some info, destroy

the sub window b/c we are about to create a new one with new info

 $subWindow->destroy();

 logIt("[info] ($currentCaseName) Hashes

of $absolutePath:\n \tMD5: $currentMD5Hash\n \tSHA1: $currentSHA1Hash",

1, 1, 1);

 my $message = getLoggingTime() . "

Verifying Image Integrity MD5";

 $hashRef->{$key}->{$message} =

$currentMD5Hash;

 $message = getLoggingTime() . " Verifying

Image Integrity SHA1";

 $hashRef->{$key}->{$message} =

$currentSHA1Hash;

 my $ref = $digest{$key};

 my %HoH = %$ref;

 my $isDifferent;

 foreach my $otherKey (keys %HoH)

 {

 if ($otherKey =~ m/.*MD5.*/)

 {

 90

 my $value =

compareHashes($currentMD5Hash, $HoH{$otherKey});

 $isDifferent = $isDifferent +

$value;

 }

 elsif ($otherKey =~ m/.*SHA1.*/)

 {

 my $value =

compareHashes($currentSHA1Hash, $HoH{$otherKey});

 $isDifferent = $isDifferent +

$value;

 }

 else {}

 }

 if ($isDifferent > 0)

 {

 logIt("[warning] ($currentCaseName)

Image corrupt! Hashes are different for file: $absolutePath", 1, 1, 1);

 my $message = $mw->MsgBox(-title =>

"Error", -type => "ok", -icon => "error", -message => "Image corrupt!

Current hash values are different from the hashes in the saved digest

file for file: $absolutePath\nIt is strongly suggested you re-acquire

this file!\n");

 $message->Show;

 }

 else

 {

 logIt("[info] ($currentCaseName) No

integrity problems found for file: $absolutePath", 1, 1, 1);

 }

 }

 else {}

 }

 my $caseIntegrityFileLocation =

$currentCaseLocation . "/" . $currentCaseName . ".integrity";

 91

 open ($currentCaseIntegrityFile,

">$caseIntegrityFileLocation");

 logIt("[info] ($currentCaseName) Writing to

integrity file", 1, 1, 1);

 print $currentCaseIntegrityFile Data::Dumper-

>Dump([$hashRef], [qw/digest/]);

 close($currentCaseIntegrityFile);

 }

 logIt("[info] ($currentCaseName) Done performing image

integrity verification", 1, 1, 1);

 }

}

#Checks if the virtual machine use wants to image is currently powered

on/running. Ideally you want to freeze the VM so nothing changes as you

acquire the VM

#Expects to be passed the absolute path to the VM in questions .vmx

file

sub checkIfVMRunning

{

 my $vmxPath = $_[0];

 my $stdout = $ssh->capture('/sbin/vmdumper -l');

 my @lines = split(/\n/, $stdout);

 foreach(@lines)

 {

 my @lineParts = split(/\s+/, $_);

 foreach (@lineParts)

 {

 if ($_ =~ m/$vmxPath/)

 {

 return 1;

 last;

 }

 }

 }

 92

 return 0;

}

#suspends a given VM, expects absolute path to vm's .vmx path

sub suspendVM

{

 my $vmxPath = $_[0];

 logIt("[info] ($currentCaseName) Working on $vmxPath ...",

1,1,1);

 my $stdout = $ssh->capture('/sbin/vmdumper -l');

 my @lines = split(/\n/, $stdout);

 foreach(@lines)

 {

 my @lineParts = split(/\s+/, $_);

 foreach (@lineParts)

 {

 if ($_ =~ m/$vmxPath/)

 {

 my $VMwid = $lineParts[0];

 $VMwid =~ s/=/ /g;

 my @VMwidSplit = split(/\s+/,$VMwid);

 my $stdout = $ssh->capture("/sbin/vmdumper

$VMwidSplit[1] suspend_vm") or warn "remote command failed " . $ssh-

>error;

 my $lineToPrint = getLoggingTime() . " [info]

($currentCaseName) Suspending VM...";

 print PROGRAMLOGFILE $lineToPrint;

 print $currentCaseLog $lineToPrint;

 print DEBUGLOGFILE $lineToPrint;

 $consoleLog->insert('end', $lineToPrint);

 $consoleLog->see('end');

 my $subWindow = $mw->Toplevel;

 $subWindow->title("Suspending VM: $vmxPath");

 #Adjusts the sub window to appear in the middle

of the main window

 93

 my $xpos = int((($mw->width - $subWindow-

>width) / 2) + $mw->x);

 my $ypos = int((($mw->height - $subWindow-

>height) / 2) + $mw->y);

 $subWindow->geometry("+$xpos+$ypos");

 my $size = 24;

 my $font = $subWindow->fontCreate(-size =>

$size);

 my $text = "Suspending VM...";

 my $suspendVMLabel = $subWindow->Label(-text =>

$text,-width => 20, -font => $font)->pack(-fill => 'both');

 $mw->update;

 my $vmStillRunning = 1;

 while ($vmStillRunning == 1)

 {

 $vmStillRunning =

checkIfVMRunning($vmxPath);

 print PROGRAMLOGFILE ".";

 print $currentCaseLog ".";

 print DEBUGLOGFILE ".";

 print ".";

 $text = $text . ".";

 $suspendVMLabel->configure(-text =>

$text);

 $mw->update;

 sleep(1);

 }

 print PROGRAMLOGFILE "Done!\n";

 print $currentCaseLog "Done!\n";

 print DEBUGLOGFILE "Done!\n";

 print "Done!\n";

 logIt("[info] $vmxPath suspended.", 1,1,1);

 $subWindow->destroy();

 94

 return 0;

 }

 }

 }

 return 0;

}

#starts a given VM, expects absolute path to .vmx file in question

sub startVM

{

 my $vmToRestart = $_[0];

 logIt("[info] ($currentCaseName) Going to try and restart this

VM: $vmToRestart", 1, 1, 1);

 my $vmxFile = getFileName($vmToRestart);

 my $stdout = $ssh->capture("vim-cmd vmsvc/getallvms |grep

$vmxFile");

 my @lines = split(/\n/, $stdout);

 my $count = @lines;

 #only one .vmx file was matched so we dont need to worry about

starting the wrong VM

 if ($count == 1)

 {

 my @parts = split(/\s+/, $lines[0]);

 my $stdout = $ssh->capture("vim-cmd vmsvc/power.on

$parts[0]") or warn "remote command failed " . $ssh->error;

 my $lineToPrint = getLoggingTime() . " [info]

($currentCaseName) Starting VM...";

 print PROGRAMLOGFILE $lineToPrint;

 print $currentCaseLog $lineToPrint;

 $consoleLog->insert('end', $lineToPrint);

 $consoleLog->see('end');

 my $subWindow = $mw->Toplevel;

 $subWindow->title("Starting VM: $vmToRestart");

 #Adjusts the sub window to appear in the middle of the main

window

 95

 my $xpos = int((($mw->width - $subWindow->width) / 2) +

$mw->x);

 my $ypos = int((($mw->height - $subWindow->height) / 2) +

$mw->y);

 $subWindow->geometry("+$xpos+$ypos");

 my $size = 24;

 my $font = $subWindow->fontCreate(-size => $size);

 my $text = "Starting VM...";

 my $startVMLabel = $subWindow->Label(-text => $text,-width

=> 20, -font => $font)->pack(-fill => 'both');

 $mw->update;

 my $vmStillRunning = 0;

 while ($vmStillRunning == 0)

 {

 $vmStillRunning = checkIfVMRunning($vmToRestart);

 print PROGRAMLOGFILE ".";

 print $currentCaseLog ".";

 print ".";

 $text = $text . ".";

 $startVMLabel->configure(-text => $text);

 $mw->update;

 sleep(1);

 }

 print PROGRAMLOGFILE "Done!\n";

 print $currentCaseLog "Done!\n";

 print "Done!\n";

 logIt("[info] ($currentCaseName) $vmToRestart restarted.",

1,1,1);

 $subWindow->destroy();

 return 0;

 }

}

 96

#because the dd images are being stored into the same directory the

file exists in on the ESXi server, we want to clean up these files when

we are done

#expects the absolute path of the file to delete on the esxi server and

will also check that the file has a .dd extension so the wrong file

does not get

#deleted which would be very bad

#ideally dd would "store" copies somewhere else but this is how I have

it setup for now

sub cleanup

{

 logIt("[info] ($currentCaseName) Cleaning up.", 1, 1, 1);

 my $fileToDel = $_[0];

 if ($fileToDel =~ m/.+\.dd$/)

 {

 logIt("[info] ($currentCaseName) Going to delete remote

file $fileToDel.", 1, 1, 1);

 my $stdout = $ssh->capture("rm -f $fileToDel");

 logIt("[info] ($currentCaseName) Done deleting remote file

$fileToDel $stdout", 1, 1, 1);

 $consoleLog->see('end');

 }

 else

 {

 logIt("[info] ($currentCaseName) File ($fileToDel) does not

have a .dd extension, will not delete this file.", 1, 1, 1);

 $consoleLog->see('end');

 }

}

#Allows user to edit settings of program. Location where cases, log

files, etc are stored. Maybe additional configurable options later

#Will be run from the Tools->Settings menu bar or run from the

readConfigFile sub if no configuration file is found

sub editSettings

{

 97

 if (-e $configFileLocation)

 {

 open (CONFIGFILE, $configFileLocation);

 while(<CONFIGFILE>)

 {

 chomp($_);

 if($_ =~ m/^WorkingDir=.+/)

 {

 my @configFileSplit = split(/=/);

 chomp($configFileSplit[1]);

 $ESXiWorkingDir = $configFileSplit[1];

 }

 elsif($_ =~ m/CaseDir=.+/)

 {

 my @configFileSplit = split(/=/);

 chomp($configFileSplit[1]);

 $ESXiCasesDir = $configFileSplit[1];

 }

 elsif($_ =~ m/LogFile=.+/)

 {

 my @configFileSplit = split(/=/);

 chomp($configFileSplit[1]);

 $logFileDestination = $configFileSplit[1];

 }

 else

 {

 logIt("[error] (main) Misformated Config file,

dont know what $_ is", 1,0,1);

 }

 }

 close(CONFIGFILE);

 }

 #config file must not exist in the expected location

 else

 {

 98

 $configFileLocation = $ENV{"HOME"} .

"/ESXimager/ESXimager.cfg";

 $ESXiWorkingDir = $ENV{"HOME"} . "/ESXimager";

 $ESXiCasesDir = $ESXiWorkingDir . "/Cases/";

 $logFileDestination = $ESXiWorkingDir . "/ESXimager.log";

 }

 my $settingsWindow = $mw->Toplevel;

 $settingsWindow->title("Settings");

 #Adjusts the sub window to appear in the middle of the main

window

 my $xpos = int((($mw->width - $settingsWindow->width) / 2) + $mw-

>x);

 my $ypos = int((($mw->height - $settingsWindow->height) / 2) +

$mw->y);

 $settingsWindow->geometry("+$xpos+$ypos");

 #label for configuration file location

 $settingsWindow->Label(-text => "Configuration File Location:

$configFileLocation")->grid(-row => 0, -column => 0);

 #label for working directory location

 $settingsWindow->Label(-text => "ESXimager Working Directory: ")-

>grid(-row => 1, -column => 0, -sticky => "e");

 #entry for working directory location

 my $workingDirLocation = $settingsWindow->Entry(-width => 40, -

text => $ESXiWorkingDir)->grid(-row => 1, -column => 1);

 #label for cases location

 $settingsWindow->Label(-text => "Cases Directory: ")->grid(-row

=> 2, -column => 0, -sticky => "e");

 #entry for cases location

 my $caseLocation = $settingsWindow->Entry(-width => 40, -text =>

$ESXiCasesDir)->grid(-row => 2, -column => 1);

 #label for log file location

 99

 $settingsWindow->Label(-text => "Log File: ")->grid(-row => 3, -

column => 0, -sticky => "e");

 #entry for log file location

 my $logFileLocation = $settingsWindow->Entry(-width => 40, -text

=> $logFileDestination)->grid(-row => 3, -column => 1);

 #connect button, calls sub to update the configuration file (or

create it if it does not exist yet)

 #puts the buttons in a frame at the bottom of the window

 my $settingsWindowBottomFrame = $settingsWindow->Frame;

 $settingsWindowBottomFrame->grid(-row => 4, -column => 0, -

columnspan => 2);

 $settingsWindowBottomFrame->Button(-text => "Save", -command =>

sub {

 $ESXiWorkingDir = $workingDirLocation->get;

 $ESXiCasesDir = $caseLocation->get;

 $logFileDestination = $logFileLocation->get;

 #checks to see if working directory structure exists then

creates it if necessary

 unless (-e $ESXiWorkingDir or mkdir($ESXiWorkingDir, 0755))

 {die "Unable to create $ESXiWorkingDir";}

 open (CONFIGFILE, ">$configFileLocation");

 print CONFIGFILE "WorkingDir=$ESXiWorkingDir\n";

 print CONFIGFILE "CaseDir=$ESXiCasesDir\n";

 print CONFIGFILE "LogFile=$logFileDestination\n";

 close(CONFIGFILE);

 logIt("[info] (main) Config File Saved", 1,0,1);

 })->pack(-side => "left");

 my $cancelButton = $settingsWindowBottomFrame->Button(-text =>

"Exit", -command => [$settingsWindow => 'destroy'])->pack(-side =>

"left");

}

#sub to create a new case, essentially all it does is create a

directory under whatever $ESXiCasesDir is and updates the label in $mw

sub createNewCase

 100

{

 my $createCaseWindow = $mw->Toplevel;

 $createCaseWindow->title("Create New Case");

 my $xpos = int((($mw->width - $createCaseWindow->width) / 2) +

$mw->x);

 my $ypos = int((($mw->height - $createCaseWindow->height) / 2) +

$mw->y);

 $createCaseWindow->geometry("+$xpos+$ypos");

 #label for configuration file location

 $createCaseWindow->Label(-text => "Case Directory Location:

$ESXiCasesDir")->grid(-row => 0, -column => 0);

 #label for working directory location

 $createCaseWindow->Label(-text => "Case Name: ")->grid(-row => 1,

-column => 0, -sticky => "e");

 #entry for working directory location

 my $newCaseName = $createCaseWindow->Entry(-width => 40)->grid(-

row => 1, -column => 1);

 my $createCaseWindowBottomFrame = $createCaseWindow->Frame;

 $createCaseWindowBottomFrame->grid(-row => 2, -column => 0, -

columnspan => 2);

 $createCaseWindowBottomFrame->Button(-text => "Create", -command

=> sub {

 $currentCaseName = $newCaseName->get;

 #Dont want case names to have any spaces

 $currentCaseName =~ s/ //g;

 $mw->update;

 my $newCaseDirPath = $ESXiCasesDir .

$currentCaseName;

 #checks to see if cases directory structure exists

then creates it if necessary

 unless (-e $ESXiCasesDir or mkdir($ESXiCasesDir,

0755))

 {die "Unable to create $ESXiCasesDir";}

 101

 #Checks to see if case name user wants to make

already exists

 if (-e $newCaseDirPath)

 {

 my $error = $mw->MsgBox(-title => "Error", -

type => "ok", -icon => "error", -message => "The case name:

$currentCaseName already exists. Please use another case name.");

 $error->Show;

 }

 else

 {

 mkdir ($newCaseDirPath, 0755);

 $currentCaseLocation = $newCaseDirPath;

 my $caseLogFileLocation = $currentCaseLocation

. "/$currentCaseName.log";

 open ($currentCaseLog,

">>$caseLogFileLocation");

 logIt("[info] ($currentCaseName) Created new

case: $currentCaseName Location: $currentCaseLocation", 1, 1, 1);

 logIt("[info] ($currentCaseName) Opened case

log file $caseLogFileLocation", 1, 1, 1);

 my $caseIntegrityFileLocation =

$currentCaseLocation . "/" . $currentCaseName . ".integrity";

 open ($currentCaseIntegrityFile,

">>$caseIntegrityFileLocation");

 logIt("[info] ($currentCaseName) Opened case

integrity file $caseIntegrityFileLocation", 1, 1, 1);

 #delete whatever is currently in the hash ref

 $hashRef = {};

 for (keys %$hashRef)

 {

 delete $hashRef->{$_};

 }

 #Adds the case name and case location to our

hash

 102

 $hashRef->{"casename"} = $currentCaseName;

 $hashRef->{"caselocation"} =

$currentCaseLocation;

 print $currentCaseIntegrityFile Data::Dumper-

>Dump([$hashRef], [qw/digest/]);

 $caseLabel->configure(-text => "Current Case:

$currentCaseName Location: $currentCaseLocation");

 $dirTree->chdir($currentCaseLocation);

 listFiles($currentCaseLocation);

 $mw->update;

 #Done telling the user some info, destroy the

sub window b/c we are about to create a new one with new info

 $createCaseWindow->destroy();

 }

 })->pack(-side => "left");

 my $cancelButton = $createCaseWindowBottomFrame->Button(-text =>

"Exit", -command => [$createCaseWindow => 'destroy'])->pack(-side =>

"left");

}

#Allows user to open existing case, brings up a popup directory

navigation window to allow the user to select the case they want to

open

sub openExistingCase

{

 ##More work to be done here

 my $directory = $mw->chooseDirectory(-initialdir=>$ESXiCasesDir,

-title => "Select a case to open");

 if ($directory ne '')

 {

 $currentCaseLocation = $directory;

 $currentCaseName = getFileName($currentCaseLocation);

 my $caseLogFileLocation = $currentCaseLocation .

"/$currentCaseName.log";

 open ($currentCaseLog, ">>$caseLogFileLocation");

 103

 logIt("[info] ($currentCaseName) Opened an existing case:

$currentCaseName Location: $currentCaseLocation", 1, 1, 1);

 logIt("[info] ($currentCaseName) Opened log file:

$caseLogFileLocation For case: $currentCaseName", 1, 1, 1);

 my $caseIntegrityFileLocation = $currentCaseLocation . "/"

. $currentCaseName . ".integrity";

 $hashRef = {};

 for (keys %$hashRef)

 {

 delete $hashRef->{$_};

 }

 open (CASEINTEGRITY, "< $caseIntegrityFileLocation");

 my @lines = <CASEINTEGRITY>;

 close(CASEINTEGRITY);

 my $digest = "";

 my $perlsrc = join(" ", @lines);

 eval $perlsrc;

 $hashRef = $digest;

 logIt("[info] ($currentCaseName) Opened case integrity file

$caseIntegrityFileLocation", 1, 1, 1);

 $caseLabel->configure(-text => "Current Case:

$currentCaseName Location: $currentCaseLocation");

 $dirTree->chdir($currentCaseLocation);

 listFiles($currentCaseLocation);

 $mw->update;

 }

 else {#use must have pressed cancel when selecting a directory

 }

}

#given a directory path, will list all the files in given directory

into the $fileList listbox next to the dirTree

sub listFiles

{

 my $path = $_[0];

 104

 #deletes all the entries in the listbox before populating it

 $fileList->delete(0,'end');

 opendir (DIR, $path);

 $fileList->insert('end', $path);

 $fileList->insert('end', "---------------------------------------

-------------------");

 while (my $file = readdir(DIR))

 {

 next if $file =~ /^[.]/;

 if (-f $file)

 {

 $fileList->insert('end', "its a file\n");

 }

 else

 {$fileList->insert('end', $file);}

 }

 closedir(DIR);

}

#Runs a selected file from the file listbox through the strings command

and shows the output in a new window, expects a reference to the

$fileList listbox

sub runThroughStrings

{

 my $fileListBoxRef = $_[0];

 #de-reference

 my $fileListBoxDeref = $$fileListBoxRef;

 #curselection (cursor selection) returns an array in case

multiple items are selected however, I only allow one item to be

selected with this implementation -selectionmode?

 my @cursorSelection = $fileListBoxDeref->curselection;

 #The current directory being listed is always shown at the top of

the fileList listbox, this is element 0 of the listbox

 my $currentDirectory = $fileListBoxDeref->get(0);

 105

 my $targetFile = $fileListBoxDeref->get(0) . "/" .

$fileListBoxDeref->get($cursorSelection[0]);

 if (-f $targetFile)

 {

 my $subWindow = $mw->Toplevel;

 $subWindow->title("Strings Output of File: $targetFile");

 my $stringsOutputWindow = $subWindow->Scrolled('Text')-

>pack(-fill => 'both');

 my $stringsFindLabel = $subWindow->Entry(-width => 20)-

>pack();

 $subWindow->Button(-text => "Find", -command => sub {

 my $searchString = $stringsFindLabel->get;

 my $stdout = `strings $targetFile | grep

$searchString`;

 my $findStringsSubWindow = $mw->Toplevel;

 my $stringsFindOutputWindow = $findStringsSubWindow-

>Scrolled('Text')->pack(-fill => 'both');

 $findStringsSubWindow->Button(-text => "Close

Window", -command => [$findStringsSubWindow => 'destroy'])->pack();

 $stringsFindOutputWindow->insert('end', $stdout);

 })->pack();

 $subWindow->Button(-text => "Close Window", -command =>

[$subWindow => 'destroy'])->pack();

 my $stdout = `strings $targetFile`;

 $stringsOutputWindow->insert('end', $stdout);

 }

 #To prevent anything from happening if the user selects the

divider line ------------------------ or the current directory path

located at the top of the listbox

 elsif($cursorSelection[0] == 1 | $cursorSelection[0] == 0)

 {

 my $message = $mw->MsgBox(-title => "Error", -type => "ok",

-icon => "error", -message => "No valid file selected. Please select a

file.\n");

 $message->Show;

 106

 }

 #Otherwise they probably selected a directory

 else

 {

 my $message = $mw->MsgBox(-title => "Error", -type => "ok",

-icon => "error", -message => "$targetFile is a directory. Please

select a file.\n");

 $message->Show;

 }

}

#Runs a selected file from the file listbox through the strings command

and shows the output in a new window, expects a reference to the

$fileList listbox

sub runThroughHexdump

{

 my $fileListBoxRef = $_[0];

 #de-reference

 my $fileListBoxDeref = $$fileListBoxRef;

 #curselection (cursor selection) returns an array in case

multiple items are selected however, I only allow one item to be

selected with this implementation -selectionmode?

 my @cursorSelection = $fileListBoxDeref->curselection;

 #The current directory being listed is always shown at the top of

the fileList listbox, this is element 0 of the listbox

 my $currentDirectory = $fileListBoxDeref->get(0);

 my $targetFile = $fileListBoxDeref->get(0) . "/" .

$fileListBoxDeref->get($cursorSelection[0]);

 if (-f $targetFile)

 {

 my $subWindow = $mw->Toplevel;

 $subWindow->title("Hexdump Output of File: $targetFile");

 my $stringsOutputWindow = $subWindow->Scrolled('Text')-

>pack(-fill => 'both');

 107

 $subWindow->Button(-text => "Close Window", -command =>

[$subWindow => 'destroy'])->pack();

 my $stdout = `hexdump -C $targetFile`;

 $stringsOutputWindow->insert('end', $stdout);

 }

 #To prevent anything from happening if the user selects the

divider line ------------------------ or the current directory path

located at the top of the listbox

 elsif($cursorSelection[0] == 1 | $cursorSelection[0] == 0)

 {

 my $message = $mw->MsgBox(-title => "Error", -type => "ok",

-icon => "error", -message => "No valid file selected. Please select a

file.\n");

 $message->Show;

 }

 #Otherwise they probably selected a directory

 else

 {

 my $message = $mw->MsgBox(-title => "Error", -type => "ok",

-icon => "error", -message => "$targetFile is a directory. Please

select a file.\n");

 $message->Show;

 }

}

#Displays a window with information about one of the image files that

has been acquired

#Such as the date acquired, the hashes, file size

sub viewFileInfo

{

 my $fileListBoxRef = $_[0];

 #de-reference

 my $fileListBoxDeref = $$fileListBoxRef;

 #curselection (cursor selection) returns an array in case

multiple items are selected however, I only allow one item to be

selected with this implementation -selectionmode?

 108

 my @cursorSelection = $fileListBoxDeref->curselection;

 #The current directory being listed is always shown at the top of

the fileList listbox, this is element 0 of the listbox

 my $currentDirectory = $fileListBoxDeref->get(0);

 my $targetFile = $fileListBoxDeref->get(0) . "/" .

$fileListBoxDeref->get($cursorSelection[0]);

 if (-f $targetFile && $targetFile =~ m/.*\.dd/)

 {

 my %digest = %$hashRef;

 foreach my $key (keys %digest)

 {

 if ($key eq $fileListBoxDeref-

>get($cursorSelection[0]))

 {

 my $subWindow = $mw->Toplevel;

 $subWindow->title("View Information of File:

$targetFile");

 my $fileInfoOutputWindow = $subWindow-

>Scrolled('Text')->pack(-fill => 'both');

 $subWindow->Button(-text => "Close Window", -

command => [$subWindow => 'destroy'])->pack();

 $fileInfoOutputWindow->insert('end', "File: " .

$fileListBoxDeref->get($cursorSelection[0]) . "\n");

 my $filesize = `ls -lah $targetFile`;

 $fileInfoOutputWindow->insert('end', "Size: " .

returnFileSize($filesize) . "\n");

 $fileInfoOutputWindow->insert('end', "Hash

History:\n");

 my $absolutePath = $currentCaseLocation . "/" .

$key;

 my $ref = $digest{$key};

 my %HoH = %$ref;

 foreach my $otherKey (sort keys %HoH)

 {

 109

 $fileInfoOutputWindow->insert('end',

"\t$otherKey $HoH{$otherKey}\n");

 }

 }

 }

 }

 elsif($targetFile =~ m/.*\.log/ || $targetFile =~

m/.*\.integrity/)

 {

 my $message = $mw->MsgBox(-title => "Error", -type => "ok",

-icon => "error", -message => "No information available for .log or

.integrity files\n");

 $message->Show;

 }

 #To prevent anything from happening if the user selects the

divider line ------------------------ or the current directory path

located at the top of the listbox

 elsif($cursorSelection[0] == 1 | $cursorSelection[0] == 0)

 {

 my $message = $mw->MsgBox(-title => "Error", -type => "ok",

-icon => "error", -message => "No valid file selected. Please select a

file.\n");

 $message->Show;

 }

 #Otherwise they probably selected a directory

 else

 {

 my $message = $mw->MsgBox(-title => "Error", -type => "ok",

-icon => "error", -message => "$targetFile is a directory. Please

select a file.\n");

 $message->Show;

 }

}

#**

***#

 110

#******Start of Commonly Used Subs to Make Life

Better***

*************#

#**

***#

#simplify logging. Will take what you want to print as an argument and

output to $consoleLog, the main program log, and the current case log

#Expects he exact message to be printed. ex. [info] (foo) case foo was

opened

#Also expects three values 0 or 1 to determine what to print out to

(for whatever reason a message need to only be printed to one log file)

Args: message programLogFile caseLogFile consoleLog

sub logIt

{

 my $lineToPrint = $_[0];

 my $programLogPrint = $_[1];

 my $caseLogPrint = $_[2];

 my $consoleLogPrint = $_[3];

 my $lineToPrint = getLoggingTime() . " " . $lineToPrint . "\n";

 print PROGRAMLOGFILE $lineToPrint if $programLogPrint == 1;

 print $currentCaseLog $lineToPrint if $caseLogPrint == 1;

 $consoleLog->insert('end', $lineToPrint) if $consoleLogPrint ==

1;

 $consoleLog->see('end') if $consoleLogPrint == 1;

 print DEBUGLOGFILE $lineToPrint;

 return $lineToPrint;

}

#Gets the current time and returns a nice timestamp for logging

purposes

#http://stackoverflow.com/questions/12644322/how-to-write-the-current-

timestamp-in-a-file-perl

sub getLoggingTime

{

 111

 my

($sec,$min,$hour,$mday,$mon,$year,$wday,$yday,$isdst)=localtime(time);

 my $nice_timestamp = sprintf ("%04d%02d%02d %02d:%02d:%02d",

$year+1900,$mon+1,$mday,$hour,$min,$sec);

 return $nice_timestamp;

}

#Given the output of ls -lah of a single file, returns the file size,

*nix systems only

sub returnFileSize

{

 my $output = $_[0];

 my @split = split(/\s+/, $output);

 return $split[4];

}

#Sub is passed long absolute path of a file and returns the file name

and extension

#ex. sub is passed /var/storage/foo/bar.vmx and returns bar.vmx

sub getFileName

{

 my $absolutePath = $_[0];

 my $fileName;

 my @fileNameParts = split('/',$absolutePath);

 $fileName = pop @fileNameParts;

 return $fileName;

}

#Sub is passed long absolute path of a file and returns the files

parent directory

#ex. sub is passed /var/storage/foo/bar.vmx and returns

/var/storage/foo/

 112

sub getDirName

{

 my $absolutePath = $_[0];

 my @fileNameParts = split('/',$absolutePath);

 #Because there is a leading / in the path we need to get rid of

the first element in the array because it is nothing. print "--$_--" =

 shift @fileNameParts;

 pop @fileNameParts;

 my $parentDirPath;

 foreach(@fileNameParts)

 {

 $parentDirPath = $parentDirPath . "/" . $_;

 }

 $parentDirPath = $parentDirPath . "/";

 return $parentDirPath;

}

#Calculate MD5 hash of file about to be copied on ESX server

sub calculateMD5HashOnESX

{

 my $fileToHash = $_[0];

 logIt("[info] ($currentCaseName) Calculating md5 hash of file on

ESXi server this may take a while be patient...", 1, 1, 1);

 my $stdout = $ssh->capture("md5sum $fileToHash");

 my @split = split (/\s+/, $stdout);

 $stdout = $split[0];

 logIt("[info] ($currentCaseName) Done calculating md5 hash of

file on ESXi server.", 1, 1, 1);

 chomp $stdout;

 return $stdout;

}

Calculate SHA1 hash of the file about to be copied on ESX server

 113

sub calculateSHA1HashOnESX

{

 my $fileToHash = $_[0];

 logIt("[info] ($currentCaseName) Calculating sha1 hash of file on

ESXi server this may take a while be patient...", 1, 1, 1);

 my $stdout = $ssh->capture("sha1sum $fileToHash");

 my @split = split (/\s+/, $stdout);

 $stdout = $split[0];

 logIt("[info] ($currentCaseName) Done calculating sha1 hash of

file on ESXi server.", 1, 1, 1);

 chomp $stdout;

 return $stdout;

}

#Calculate MD5 hash of local file

sub calculateMD5HashLocal

{

 my $fileToHash = $_[0];

 my $operatingSystem = checkOS();

 logIt("[info] ($currentCaseName) Calculating md5 hash of local

file this may take a while be patient...", 1, 1, 1);

 my $stdout;

 $stdout = `md5sum $fileToHash` if $operatingSystem == 1;

 $stdout = `md5 $fileToHash` if $operatingSystem == 2;

 my @split = split (/\s+/, $stdout);

 #[$#split] gives you the last element of an array

 $stdout = $split[0] if $operatingSystem == 1;

 $stdout = $split[$#split] if $operatingSystem == 2;

 logIt("[info] ($currentCaseName) Done calculating md5 hash of

local file.", 1, 1, 1);

 chomp $stdout;

 return $stdout;

}

 114

Calculate SHA1 hash of local file

sub calculateSHA1HashLocal

{

 my $fileToHash = $_[0];

 my $operatingSystem = checkOS();

 logIt("[info] ($currentCaseName) Calculating sha1 hash of local

file this may take a while be patient...", 1, 1, 1);

 my $stdout;

 $stdout = `sha1sum $fileToHash` if $operatingSystem == 1;

 $stdout = `shasum $fileToHash` if $operatingSystem == 2;

 #shasum on osx has same output as linux sha1sum

 my @split = split (/\s+/, $stdout);

 #[$#split] gives you the last element of an array

 $stdout = $split[0] if $operatingSystem == 1;

 $stdout = $split[0] if $operatingSystem == 2;

 logIt("[info] ($currentCaseName) Done calculating sha1 hash of

local file.", 1, 1, 1);

 chomp $stdout;

 return $stdout;

}

#Because I am developing this on both OSX and linux I need to ensure

#the script would work on both linux and OSX. The reason being is that

linux

#used the command 'md5sum' whereas OSX just uses 'md5'

sub checkOS

{

 push @debugMessages, logIt("[debug] (main) Checking operating

system.",0,0,0);

 my $OS = $^O;

 my $osValue;

 if($OS eq "linux")

 {

 115

 push @debugMessages, logIt("[debug] (main) Operating system

is Linux.",0,0,0);

 $osValue = 1;

 }

 #darwin aka osx

 elsif($OS eq "darwin")

 {

 push @debugMessages, logIt("[debug] (main) Operating system

is Mac OSX (darwin).",0,0,0);

 $osValue = 2;

 }

 else

 {

 push @debugMessages, logIt("[debug] (main) Unsupported

operating system detected. ^O.",0,0,0);

 my $message = $mw->MsgBox(-title => "Error", -type => "ok",

-icon => "error", -message => "You are running an operating system that

this script is not designed to work for...\nYour operating system is:

$^O\nSupported operating systems are Linux (linux) and OSX

(darwin)\n");

 $message->Show;

 exit;

 }

 return $osValue;

}

#compares two hashes and returns 1 if they are different and 0 if they

are the same

sub compareHashes

{

 my $currentHash = $_[0];

 my $savedHash = $_[1];

 if($currentHash ne $savedHash)

 {

 return 1;

 116

 }

 else

 {

 return 0;

 }

}

#**

***#

#******End of Commonly Used Subs to Make Life

Better***

***************#

#**

***#

#Wait for events. Required for the program to work

MainLoop;

#Close any file handles that may be open

close (PROGRAMLOGFILE);

close ($currentCaseLog);

close (DEBUGLOGFILE);

close ($currentCaseIntegrityFile);

