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Abstract

In the dominance of social networks era, vast information is created and shared across
the world each day. The uniqueness and the prevalence of these user-generated content
present both challenges and opportunities. In this thesis, in particular, we study several
tasks on mining the user-generated content with regard to textual content and link-based
content.

First, we study the home location estimation for Twitter users from their shared tex-
tual content. We employ Gaussian Mixture Model to compensate the drawback in the
Maximum Likelihood Estimation. We propose two unsupervised feature selection meth-
ods based on the notions of Non-Localness and Geometric-Localness to prune noisy data
in the content.

Second, we study the item recommendation problem with a broader view of a social
network system. By taking various relationships into consideration, the data sparseness
problem common in recommendation tasks are alleviated. Based on the same charac-
teristics principle, we propose a matrix co-factorization framework with a shared latent
space to optimize the recommendation collectively. Several algorithms are proposed
under the framework to exploit intricate relationships in a social network system.

Finally, we investigate the effectiveness of classification with the imperfect tex-
tual content extracted from videos, where often very limited information is available.
Through means of automatic recognition techniques, some link-based content is en-
riched with a trade-off of incorrectness. We also propose a heuristics-based method
to extract n-gram keyphrases from noisy textual content by taking the importance of
sub-term keywords into consideration.
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Chapter 1
Introduction

1.1 Overview

Billions of users are drawn to social networks to share their ideas or activities, and
to learn information shared by others. As a result, a vast amount of information is
generated in todays social networks. The sharing can take in many forms such as words,
images, videos, or even links to other users showing the friendships. In general, user-
generated content on social networks can be studied from two aspects: textual content
and link-based content. Ideas expressed in written words in a particular language are
considered as textual content, such as posts, messages, comments. Link-based content
refers to the relationship between two objects, such as a user and a video, a user and
another user and so on. We discuss challenges in mining the user-generated content
in both types, and present our studies on specific mining tasks with regard to different
types. Fig 1.1 gives an overview of this study.

1.1.1 Improving Prediction Using User-Generated Texts

Social network sites have gained much popularity in recent years. For example, 300
million users post 200 million of messages or tweets called tweets in 2011 on the leading
Microblogging service provider, Twitter. The ever-growing new data from Twitter or
Facebook presents opportunities to study social network users, their communication,



2
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Figure 1.1. Overview of Thesis Study

and opinions. On the other hand, the new type of content also exhibits several distinct
characteristics as compared with the formal textual corpus researchers used to study
such as scientific articles, news reports and so on.

Firstly, the messages are short and many. For example, only 140 characters are
allowed in a single tweet, making it difficult for topic detection and structural analy-
sis beyond sentence. From observation, many messages relate to users daily activities
and personal comments. For example, what they do, where they go, how they feel for an
event or a product. Secondly, the messages are noisy. Users tend to be creative under the
length limitation. As a result, abbreviations are often used while punctuations are often
omitted. Self-created words, slangs, jagons, expressions (e.g. LOL) and emoticons (e.g.
:-)) are popular while multi-lingual usage between messages is not uncommon. Gram-
matical analysis is therefore difficult to be effective. Finally, a message may have social
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network aspect. Messages such retweets, relaying messages from others to ones follow-
ers, reflect the relationships between two users. Despite the challenges, many promising
applications have been proposed by taking advantage of the messages. For example,
tweets have been analyzed to track flu epidemic[1], to localize illness by geographic
region and to analyze symptoms medication usage[2], to capture breaking news[3], to
detect earthquake[4], to verify rumor[5], and so on.

Geography plays an important role in our daily life, which in turn may have impacts
on the content our messages. For example, users often tweet to plan a gathering on
a nearby restaurant, to cheer a local sports team or to discuss local candidates in the
election. All of which give a hint on the users whereabouts. The understanding of user
location is beneficial in many applications, such as connecting the users in the neigh-
borhood or recommending nearby restaurants. Although Twitter allows users to specify
their location in their profile, users often either do not provide such geographic informa-
tion (for laziness or privacy concern) or provides them only in inconsistent granularities
(e.g., country, state, or city) and reliability. Therefore, being able to automatically un-
cover user’s home location using her social media data becomes an important problem.

1.1.2 Improving Recommendation Using User-Generated Relation-
ships

A social network itself is a natural link-based content, connecting users to users. This
form of content is very prevalent as we extend the connection to the various objects on
the Web. For example, online video sharing social networks such as Youtube links users
to videos, as well as users. Flickr and Instagram are among popular social networks
linking users to images. LinkedIn connects users through communities or organizations.
Mining tasks on link-based content tend to more difficult text mining, since links are
much less informative than the textual content. Although some linked objects might
have textual information associate with them such as metadata, but often they are very
limited and might be expensive to acquire. Therefore, many techniques developed for
textual-content is not always applicable.

One of the fundamental tasks in studying this type of data is to make a recommenda-
tion for users, and even for various types of objects, such as recommendation a potential
member for a community, or a video to a subscripted channel or a collection. Current



4

studies for item recommendation with the link-based content often focus on individual
task, and overlook the intricate connections across tasks. Often, we can find a correla-
tion across different types of links on the same social network platform. For example, a
user shared an animal image is more likely to tag an animal image from others as one of
her favorite, or to join a group of animal photos. Similarly, we could also recommend
possible friends to a user, if the two share similar interests. In general, we could view
a social network as a system accommodating entities of various types such as users,
groups and images. We then differentiate the connections between entities of the same
type from those between entities of different types, referred to as self-relationship and
inter-relationship, respectively. Each type of relationships presents a unique recommen-
dation task. By taking various relationships into consideration, we might enrich the
data and alleviate data sparseness problem, which is generally considered as one of the
major obstacles in making quality recommendation. In this work, we first investigate
the correlation between various relationships. From the analysis, we propose the same
characteristics principle, which leads to a co-factorization framework where entities of
the same type has a shared latent space in a given system. We then propose several algo-
rithms under the framework to take advantages of different relationships. We show that
by considering multiple tasks collectively, the recommendation can be further improved.

1.1.3 Improving Classification Using User Generated Videos

One of the challenges in mining link-based content is the data is less informative than
the the textual content. With the advance of the automatic recognition techniques, the
textual content can be uncovered partially on some object in the link-based content, such
as images with texts or videos with speeches. The videos with speeches, also known as
spoken documents, is a popular forms for modern users to broadcast their ideas, and well
shared in many multimedia platforms, such as Youtube and Vimeos. Education oriented
websites such as Coursera and TED also create a good number of spoken documents that
are often popularly shared across social networks. The textual content extracted from the
automatic recognition process tends to provide richer informative than we can studied
through its links, or even than the metadata associate with it. However, the qualities of
extracted content may vary, depending on many variables, such the recording condition,
speaking speed, the training process, and so on.



5

In this study, we first study the effectiveness of the text classification with spoken
documents. Using both real and synthesized data, we compare the performance of dif-
ferent text categorization methods, and learn the impacts of various factors with the
transcripts such as quality and length. To further take advantages of the imperfect con-
tent, we propose a heuristic method to extracts keywords and keyphrases for a spoken
document by taking the importance of sub-terms into consideration. We show that the
proposed method works well with noisy spoken documents from various knowledge
domains, and extracts keyphrases better than existing tf-idf extraction method does.

1.2 Thesis Organization

The rest of this thesis is organized as follows.
In Chapter 2, we present our method for estimating Twitter user’s home location. We

propose a probability framework and two novel local word selections to further improve
the performance. We compare our results to other state-of-the-art methods.

In Chapter 3, we our study on improve item recommendation for link-based content.
We propose several algorithms that take multiple recommendation tasks into considera-
tion, and collectively, make better recommendation.

In Chapter 4, we investigate capability of the noisy transcripts on the classification
task. We present a performance comparison of classifying videos by different types of
transcript. We also propose a method to automatic generate keywords for videos from
their noisy transcripts, when metadata is not available.

In Chapter 5, we conclude the current work and discuss the possible directions for
future research.



Chapter 2
Improving Prediction Using

User-Generated Texts

2.1 Introduction

Knowing users’ home locations in social network systems bears an importance in appli-
cations such as location-based marketing and personalization. In many social network
sites, users can specify their home locations along with other demographics information.
However, often, users either do not provide such geographic information (for laziness or
privacy concern) or provide them only in inconsistent granularities (e.g., country, state,
or city) and reliabilities.

Intuition behind the problem is that geography plays an important role in our daily
lives so that word usage patterns in Twitter may exhibit some geographical clues. For
example, users often tweet about a local shopping mall where they plan to hang out,
cheer a player in local sports team, or discuss local candidates in elections. Therefore,
it is natural to take this observation into consideration for location estimation.

2.1.1 Problem Definition

In this study, we focus on the case of Twitter users and try to predict their city locations
based on only the contents of their tweet messages, without using other information
such as user profile metadata or network features. When such additional information
is available, we believe one can estimate user locations with a better accuracy and will
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leave it as a future work. Our problem is formalized as follows:

• For a user u, given a set of his/her tweet messages T
u

= {t1, ..., t|Tu|}, where t
i

is
a tweet message up to 140 characters, and a list of candidate cities, C, predict a
city c (2 C) that is most likely to be the home location of u.

2.2 Related Work

The location estimation problem which is also known as geolocating or georeferencing
has gained much interests recently. Table2.1 shows a summary of related studies. One
of pioneering work and state-of-the-art is conducted by Cheng et al.[6] which uses a
proposed probabilistic framework to estimate city-level location based only on the con-
tents of tweets without considering other geospatial clues. The performance is greatly
improved with porposed feature selection, which requires a manual selection of local
words for training a classification model. Chandra et al. [7] extended Cheng’s work by
taking the “reply-tweet” relation into consideration in addition to the text contents. The
results, however, is not better than Cheng’s work. Hecht et al [8] analyzed the user loca-
tion filed in user profile and used Multinomial Naive Bayes to estimate user’s location
in state and country level. They also observed that 34% of Twitter user do not provide
the location information in their profile. [9] approached the problem with a language
model approach with varying levels of granularities, from zip codes to country levels.

Studies have also been conducted by utilizing social relation in addition of the textual
contents. Backstrom et al.[10] proposed an algorithm that predicts the location of an
individual from a sparse set of located Facebook friends with performance that exceeds
IP-based geolocation. Similarly, Flap[11] predicted Twitter user’s mobility by treating
users with known GPS positions as noisy sensors of the location of their friends. Other
location related studies include [12, 13]. [12] studied the problem of matching a tweet
to a list of objects of a given domain (e.g., restaurants) whose geolocation is known.
Their study assumes that the probability of a user tweeting about an object depends on
the distance between the user’s and the object’s locations. The matching of tweets in
turn helps decide the user’s location. [13] studied the problem of associating a single
tweet to a tag of point of interests, e.g., club, or park, instead of user’s home location.

A similar task that has been extensively studied is to predict the origin of multime-
dia data, e.g. where a photo is taken, or a video is recorded, with its associated tags,
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Table 2.1. Summary of related studies on location estimation.

Paper Task Features Method Dataset
[9] User location Text Language model Spritzer,

Firehose
[6] User location Text Proposed, Cheng

feature selection,
smoothing

[7] User location Text, Proposed Cheng
hashtag,
retweet

[8] User location Text Multinomial Naive Bayes Hechet
[10] User location Friendship Proposed Backstrom
[11] User mobility Friendship Proposed Sadilek
[14] Image location User tag Language model, Serdyukov

smoothing
[15] Image location User tag Language model, PlacingTask11

feature selection
[16] Image location User tag, Proposed PlacingTask10

visual feature

description, images features, or audio features. Serdyukov et al.[14] used a language
model approach to predict the image location with the tags defined by user. Several
smoothing techniques are proposed to improve the accuracy. Van Laere et al.[15] used
a language model approach and combination of several classifiers by Dempster-Shafer
theory to improve the performance. Kelm et al.[16] use fusion models built from differ-
ent features to approach problem. The placing task in MediaEval provides a benchmark
evaluation for geolocating photos and videos on Flickr[17].

2.3 Proposed Methods

Recently, the generative methods (e.g., [14, 9, 15]) have been proposed to solve the
proposed Problem 1. Assuming that each tweet and each word in a tweet is generated
independently, the prediction of home city of user u given his or her tweet messages
is made by the conditional probability under Bayes’s rule and further approximated by
ignoring P (T

u

) that does not affect the final ranking as follows:

P (C|T
u

) =

P (T
u

|C)P (C)

P (T
u

)
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/ P (C)

Y

tj2Tu

Y

wi2tj

P (w
i

|C)

where w
i

is a word is a tweet t
j

. If P (C) is estimated with the maximum likelihood, the
cities having a high usage of tweets are likely to be favored. Another way is to assume
a uniform prior distribution among cities, also known as the language model approach
in IR, where each city has its own language model estimated from tweet messages. For
a user whose location in unknown, then, one calculates the probabilities of the tweeted
words generated by each city’s language model. The city whose model generates the
highest probability of the tweets from the user is finally predicted as the home location.
This approach characterizes the language usage variations over cities, assuming that
users have similar language usage within a given city. Assuming a uniform P (C), we
propose another approach by applying Bayes rule to the P (w

i

|C) of above formula and
replace the products of probabilities by the sums of log probabilities, as is common in
probabilistic applications:

P (C|T
u

) / P (C)

Y

tj2Tu

Y

wi2tj

P (C|w
i

)P (w
i

)

P (C)

/
X

tj2Tu

X

wi2tj

log(P (C|w
i

)P (w
i

)

Therefore, given C and T
u

, the home location of the user u is the city c (2 C) that
maximizes the above function as:

argmax
c2C

X

tj2Tu

X

wi2tj

log(P (c|w
i

)P (w
i

)

Instead of estimating a language model for a city, this model suggests to estimate the
city distribution on the use of each word, P (C|w

i

), which we refer to it as spatial word
usage in this study, and aggregate all evidences to make the final prediction. Therefore,
its capability critically depends on whether or not there is a distinct pattern of word usage
among cities. Note that the proposed model is similar to the one used in [6], P (C|T

u

) /
P

tj2Tu

P
wi2tj P (C|w

i

)P (w
i

), where the design was based on the observation rather
than derived theoretically.

The Maximum Likelihood Estimation (MLE) is a common way to estimate P (w|C)
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and P (C|w). However, it suffers from the data sparseness problem that underestimates
the probabilities of words of low or zero frequency. Various smoothing techniques such
as Dirichlet and Absolute Discount [18] are proposed. In general, they distribute the
probabilities of words of nonzero frequency to the words of zero frequency. For esti-
mating P (C|w), the probability of tweeting a word in locations where there are zero or
few twitter users are likely to be underestimated as well. In addition to these smoothing
techniques, some probability of a location can be distributed to its neighboring locations,
assuming that two neighboring locations tend to have similar word usages. While re-
ported effective in other IR applications, however, the improvements from such smooth-
ing methods to estimate user locations have been shown to be limited in the previous
studies [14, 6]. One of our goals in this study is therefore to propose a better estimation
for P (C|w) to improve the prediction while addressing the spareness problem.

2.3.1 Estimation with Gaussian Mixture Model

The Backstrom model [19] demonstrated that users in a particular location tend to query
some search keywords more often than users in other locations, especially, for some
topic words such as sport teams, city names, or newspaper. For example, as demon-
strated in [19], redsox is searched more often in New England area than other places.
In their study, the likelihood of a keyword queried in a given place is estimated by Sd�↵,
where S indicates the strength of frequency on the local center of the query, and ↵ indi-
cates the speed of decreasing when the place is d away from the center. Therefore, the
larger S and ↵ in the model of a keyword shows a higher local interest, indicating strong
local phenomena. While promising results are shown in their analysis with query logs,
however, this model is designed to identify the center rather than to estimate the prob-
ability of spatial word usage and is difficult to handle the cases where a word exhibits
multiple centers (e.g., giants for the NFL NY Giants and the MLB SF Giants).

Therefore, to address such issues, we propose to use the bivariate Gaussian Mixture
Model (GMM) as an alternative to model the spatial word usage and to estimate P (C|w).
GMM is a mature and widely used technique for clustering, classification, and density
estimation. It is a probability density function of a weighted sum of a number of Gaus-
sian components. Under this GMM model, we assume that each word has a number of
centers of interests where users tweet it more extensively than users in other locations,
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(a) phillies

(b) giants

Figure 2.1. Results of GMM estimation on selected words in Twitter data set.

thus having a higher P (c|w), and that the probability of a user in a given location tweet-
ing a word is influenced by the word’s multiple centers, the magnitudes of the centers,
and user’s geographic distances to those centers. Formally, using GMM, the probability
of a city c on tweeting a word w is:

P (c|w) =
KX

i=1

⇡
i

N(c|µ
i

,⌃
i

)
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US sports teams

Figure 2.2. US sports teams home location with GMM estimation.

where each N(c|µ
i

,⌃
i

) is a bivariate Gaussian distribution with the density as:

1

2⇡|⌃
i

|1/2 exp
⇢
�1

2

(c� µ
i

)

T

⌃

�1
i

(c� µ
i

)

�

where K is the number of components and
P

K

i=1 ⇡i

= 1. To estimate P (C|w) with
GMM, each occurrence of the word w is seen as a data point (lon, lat), the coordinate of
the location where the word is tweeted. In other words, if a user has tweeted phillies
3 times, there are 3 data points (i.e., (lon, lat)) of the user location in the data set to be
estimated by GMM. Upon convergence, we compute the density for each city c in C,
and assign it as the P (c|w). In the GMM-estimated P (C|w), the mean of a component
is the hot spot (i.e., center) of tweeting the word w, while the covariance determines the
magnitude of a center. Similar to the Backstrom model, the chance of tweeting a word w

decreases exponentially away from the centers. Unlike the Backstrom model, however,
GMM easily generalizes to multiple centers and considers the influences under different
centers (i.e., components) altogether. Furthermore, GMM is computationally efficient
since the underlying EM algorithm generally converges very quickly. Compared to
MLE, GMM may yield a high probability on a location where there are few Twitter user,
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as long as the the location is close to a hot spot. It may also assign a low probability to
locations with high frequency of tweeting a word if that location is far way from all the
hot spots. On the other hand, GMM-based estimation can be also viewed as a radical
geographic smoothing such that neighboring cities around the centers are favored.

In Fig. 2.1(a), we show the contour lines of log-likelihood of a GMM estimation
with 3 components (i.e., K = 3) on the word phillies which has been tweeted
1,370 times from 229 cities in Twitter data set (see Section 2.4). A black circle in the
map indicates a city, where radius is proportional to the frequency of phillies being
tweeted by users in the city. The corresponding centers are plotted as blue triangles.
Note that there is a highly concentrated cluster of density around the center in northeast,
close to Philadelphia, which is the home city of phillies. The other two centers and
their surrounding areas have more low and diluted densities. Note that GMM works well
in clustering probabilities around the location of interests with the evidences of tweeting
location, even if the number of components (K) is not set to the exact number of centers.
Sometimes, there might be more than one distinct cluster in a city distribution for a
word. For example, giants is a name of a NFL team (i.e., New York Giants) as well a
MLB team (i.e., San Francisco Giants). Therefore, it is likely to be often mentioned by
Twitter users from both cities. As shown in Fig. 2.1(b), the two highest peaks are close
to both cities. The peak near New York city has a higher likelihood than that near San
Francisco, indicating giants is a more popular topic for users around New York city
area. In Fig. 2.2, finally, we show that GMM can be quite effective in identifying the
location of interests by selecting the highest peaks for various sport teams in US.

As shown in above example, in fitting the spatial word usage with GMM, if a word
has strong patterns, one or more major clusters are likely be formed and centered around
the locations of interests with highly concentrated densities. If two close locations are
both far away from the major clusters, their probabilities are likely to be smoothed out
to a similar and low level, even if they are distinct in actual tweeted frequencies.

2.3.2 Unsupervised Selection of Local Words

[6] made an insightful finding that in estimating locations of Twitter users, using only
a selected set of words that show strong locality (termed as local words) instead of
using entire corpus can improve the accuracy significantly (e.g., from 0.101 to 0.498).
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Similarly, we assumed that words have some locations of interests where users tend to
tweet extensively. However, not all words have a strong pattern. For example, if a user
tweets phillies and libertybell frequently, the probability for Philadelphia to
be her home location is likely to be high. On the other hand, even if a user tweets
words like restaurant or downtown often, it is hard to associate her with a specific
location. That is because such words are commonly used and their usage will not be
restricted locally. Therefore, excluding such globally occurring words would likely to
improve overall performance of the task.

In particular, in selecting local words from the corpus, [6] used a supervised classi-
fication method. They manually labeled around 19,178 words in a dictionary as either
local or non-local and used parameters (e.g., S, ↵) from the Backstorm’s model and
the frequency of a word as features to build a supervised classifier. The classifier then
determines whether other words in the data set are local. Despite the promising results,
we believe that such a supervised selection approach is problematic–i.e., not only their
labeling process to manually create a ground truth is labor intensive and subject to hu-
man bias, it is hard to transfer labeled words to new domain or data set. Moreover, the
dictionary used in labeling process might not differentiate the evidences on different
forms of a word. For example, the word bears (i.e., name of an NFL team) is likely
to be a local word, while the word bear might not be. As a result, we believe that a
better approach is to automate the process (i.e., unsupervision) such that the decision on
the localness of a word is made only by their actual spatial word usage, rather than their
semantic meaning being interpreted by human labelers. Toward this challenge, in the
following, we propose two unsupervised methods to select a set of “local words” from
a corpus using the evidences from tweets and their tweeter locations directly.

2.3.3 Finding Local Words by Non-Localness: NL

Stop words such as the, you, or for are in general commonly used words that bear
little significance and considered as noises in many IR applications such as search engine
or text mining. For instance, compare Fig. 2.3 showing the frequency distribution for
the stop word for to Fig. 2.1 showing that for word with strong local usage pattern like
giants. In Fig. 2.3, one is hard to pinpoint a few hotspot locations for for since it
is globally used.In the location prediction task, as such, the spatial word usage of these
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Figure 2.3. The occurrences of the stop word for in Twitter data set.

stop words shows a somewhat uniform distributions adjusted to the sampled data set. As
an automatic way to filter noisy non-local words out from the given corpus, therefore, we
propose to use the stop words as counter examples. That is, local words tend to have the
farthest distance in spatial word usage pattern to stop words. We first estimate a spatial
word usage p(C|w) for each word as well as stop words. The similarity of two words, w

i

and w
j

, can be measured by the distance between two probability distributions, p(C|w
i

)

and p(C|w
j

). We consider two divergences for measuring the distance: Symmetric
Kullback-Leibler divergence (sim

SKL

) and Total Variation (sim
TV

):
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j
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P (c|w
i

)
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For a given stop word list S = {s1, ..., s|S|}, we then define the Non-Localness,
NL(w), of a word w as the average similarity of w to each stop word s in S, weighted
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by the number of occurrences of s (i.e., frequency of s, freq(s)) :

NL(w) =
X

s2S

sim(w, s)
freq(s)P

s

02S

freq(s0)

From the initial tweet message corpus, finally, we can rank each word w
i

by its
NL(w

i

) score in ascending order and use top-k words as the final “local” words to be
used in the prediction.

2.3.4 Finding Local Words by Geometric-Localness: GL

Intuitively, if a word w has: (1) a smaller number of cities with high probability scores
(i.e., only a few peaks), and (2) smaller average inter-city geometric distances among
those cities with high probability scores (i.e., geometrically clustered), then one can
view w as a local word. That is, a local word should have a high probability density
clustered within a small area. Therefore, based on these observations, we propose the
Geometric-Localness, GL, of a word w:

GL(w) =

P
c

0
i2C0

P (c0
i

|w)

|C 0|2
P

geo-dist(cu,cv)
|{(cu,cv)}|

where geo-dist(c
u

, c
v

) measures the geometric distance in miles between two cities c
u

and c
v

. Suppose one sort cities c (2 C) according to P (c|w). Using a user-set threshold
parameter, r (0 < r < 1), then, one can find a sub-list of cities C 0

= (c01, ..., c
0
|C0|)

s.t. P (c0
i

|w) � P (c0
i+1|w) and

P
c

0
i2C0 P (c0

i

|w) � r. In the formula of GL(w), the
numerator then favors words with a few “peaky” cities whose aggregated probability
scores satisfy the threshold r. The denominator in turn indicates that GL(w) score is
inversely proportional to the number of “peaky” cities (i.e., |C 0|2) and their average
inter-distance (i.e.,

P
geo-dist(cu,cv)
|{(cu,cv)}| ). From the initial tweet message corpus, finally, we

rank each word w
i

by its GL(w
i

) score in descending order and use top-k words as the
final “local” words to be used in the prediction.
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2.4 Experimental Validation

2.4.1 Experimental Setup

For validating the proposed ideas, we used the same Twitter data set collected and used
by [6]. This data set was originally collected between Sep. 2009 and Jan. 2010 by crawl-
ing through Twitter’s public timeline API as well as crawling by breadth-first search
through social edges to crawl each user’s followees/followers. The data set is further
split into training and test sets. The training set consists of users whose location is set
in city levels and within the US continental, resulting in 130,689 users with 4,124,960
tweets. The test set consists of 5,119 active users with around 1,000 tweets from each,
whose location is recorded as a coordinate (i.e., latitude and longitude) by GPS device, a
much more trustworthy data than user-edited location information. In our experiments,
we considered only 5,913 US cities with more than 5,000 of population in Census 2000
U.S. Gazetteer. Therefore, the problem that we experimented is to correctly predict one
city out of 5,913 candidates as the home location of each Twitter user. We preprocess
the training set by removing non-alphabetic characters (e.g., “@”) and stop words, and
selects the words of at least 50 occurrences, resulting in 26,998 unique terms at the
end in our dictionary. No stemming is performed since singular and plural forms may
provide different evidences as discussed in Section 2.3.2.

To measure the effectiveness of estimating user’s home location, we used the follow-
ing two metrics also used in the literature [6, 7, 14]. First, the accuracy (ACC) measures
the average fraction of successful estimations for the given user set U :

ACC =

|{u|u 2 U and dist(Loc
true

(u), Loc
est

(u))  d}|
|U |

The successful estimation is defined as when the distance of estimated and ground-truth
locations is less than a threshold distance d. Like [6, 7], we use d = 100 (miles) as the
threshold. Second, for understanding the overall margins of errors, we use the average
error distance (AED) as:

AED =

P
u2U dist(Loc

true

(u), Loc
est

(u))

|U |
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Table 2.2. Baseline results using different models.

Probability Model ACC AED
(1)

PP
log(P (c|w

i

)P (w
i

)) 0.1045 1,760.4
(2)

PP
P (c|w

i

)P (w
i

) 0.1022 1,768.73
(3)

PP
logP (w

i

|c) 0.1914 1,321.42

Table 2.3. Results of Model (1) on GMM with varying # of components K.

K 1 2 3 4 5
ACC 0.0018 0.025 0.3188 0.2752 0.2758
AED 958.94 1785.79 700.28 828.71 826.1

K 6 7 8 9 10
ACC 0.2741 0.2747 0.2739 0.2876 0.3149
AED 830.62 829.14 830.33 786.34 746.75

2.4.2 Baselines

In Section 2, we compared three different models as discussed in Sec 2.3 to understand
the impact of selecting the underlying probability frameworks. Table 2.2 presents the
results of different models for location estimation. All the probabilities are estimated
with MLE using all words in our dictionary. The baseline Models (1) and (2) (proposed
by [6]) utilize the spatial word usage idea, and have around 0.1 of ACC and around 1,700
miles in AED. The Model (3), a language model approach, shows a much improved
result–about two times higher ACC and AED with 400 miles less. These results are
considered as baselines in our experiments.

2.4.3 Prediction with GMM Based Estimation

Next, we study the impact of the proposed GMM estimation1 for estimating locations.
In general, the results using GMM shows much improvements over baseline results of
Table 2.2. Table 2.3 shows the results using Model (1) whose probabilities are esti-
mated by GMM with different # of components K, using all the words in the corpus.
Except the cases with K = 1 and K = 2, all GMM based estimations show substantial
improvements over MLE based ones, where the best ACC (0.3188) and AED (700.28

1Using EM implementation from scikit-learn, http://scikit-learn.org
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miles) are achieved at K = 3. Although the actual # of locations of interests varies for
each word, in general, we believe that the words that have too many location of interests
are unlikely to make contribution to the prediction. That is, as K becomes large, the
probabilities are more likely to be distributed, thus making the prediction harder. There-
fore, in subsequent experiments, we focus on GMM with a small # of components.

2.4.4 Prediction with Unsupervised Selection of Local Words

We attempt to see if the “local words” idea first proposed in [6] can be validated even
when local words are selected in the unsupervised fashion (as opposed to [6]’s super-
vised approach). In particular, we validate with two unsupervised methods that we
proposed on MLE estimation.

2.4.4.1 Non-Localness (NL)

In measuring NL(w) score of a word w, we use the English stop word list from SMART
system [20]. A total of 493 stop words (out of 574 in the original list), roughly 1.8% of
all terms in our dictionary, occurred about 23M times (52%) in the training data. Due
to their common uses in the corpus, such stop words are viewed as the least indicative
of user locations. Therefore, NL(w) measures the degree of similarity of w to average
probability distributions of 493 stop words. Accordingly, if w shows the most dissimilar
spatial usage pattern, i.e. P (C|w), from those of stop words, then w is considered to
be a candidate local word. The ACC and AED (in miles) results are shown in Fig. 2.4,
as a function of the # of local words used (i.e., chosen as top-k when sorted by NL(w)

scores). In summary, Model (2) shows the best result of ACC (0.43) and AED (628
miles) with 3K local words used, a further improvement over the best result by GMM
in Section 2.4.3 of ACC (0.3188) and AED (700.28 miles). Model (1) has a better ACC
but a worse AED than Model (3) has. In particular, local words chosen using sim

TV

as
the similarity measure outperforms sim

SKL

for all three Models.

2.4.4.2 Geometric-Localness (GL)

Our second approach selects a word w as a local word if w yields only a small number
of cities with high probability scores (i.e., only a few peaks) and a smaller average inter-
city geometric distances. Fig. 2.5(a) and (b) show the ACC and AED of three probability
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Figure 2.4. Results with local words selected by Non-Localness (NL) on MLE estimation (X-
axis indicates # of top-k local words used).

models using either r = 0.1 and r = 0.5. The user-set parameter r (=
P

c

0
i2C0 P (c0

i

|w)) of
GL(w) formula indicates the sum of probabilities of top candidate cities C 0. Overall, all
variations show similar behavior, but in general, Model (2) based variations outperform
Model (1) or (3) based ones. Model (2) in particular achieves the best performance of
ACC (0.44) and AED (600 miles) with r = 0.5 and 2K local words. Note that this is a
further improvement over the previous case using NL as the automatic method to pick
local words–ACC (0.43) and AED (628 miles) with 3K local words. Fig. 2.5(c) and (d)
show the impact of r in GL(w) formula, in X-axis, with the number of local words used
fixed at 2K and 3K. In general, GL shows the best results when r is set to the range of
0.4 – 0.6. In particular, Model (2) is more sensitive to the choice of r than Models (1)
and (3). In general, we found that GL slightly outperforms NL in both ACC and AED
metrics.

2.4.5 Prediction with GMM and Local Words

In previous two sub-sections, we show that both GMM based estimation with all words
and MLE based estimation with unsupervised local word selection are effective, com-
pared to baselines. Here, further, we attempt to improve the result by combining both
approaches to have unsupervised local word selection on the GMM based estimation.
We first use the GMM to estimate P (C|w) with K = 3, and calculate both NL(w)
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Figure 2.5. Results with local words selected by Geometric-Localness (GL) on MLE estimation
(X-axis in (a) and (b) indicates # of top-k local words used and that in (c) and (d) indicates r of
GL(w) formula).

and GL(w) using P (C|w). Finally, we use the top-k local words and their P (C|w) to
predict user’s location. Since Model (3) makes a prediction with P (W |C) rather than
P (C|W ), GMM based estimation cannot be used for Model (3), and thus is not com-
pared. Due to the limitation of space, we report the best case using NL(w) in Fig 2.6.
Model (1) generally outperforms Model (2) and achieves the best result so far for both
ACC (0.486) and AED (583.2 miles) with sim

TV

using 2K local words. While details
are omitted, it is worthwhile to note that when used together with GMM, NL in general
outperforms GL, unlike when used with MLE.

Table 2.4 illustrates examples where cities are predicted successfully by using NL-
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Figure 2.6. Results with local words selected by Non-Localness (NL) on GMM estimation
(X-axis indicates # of top-k local words used).

Table 2.4. Examples of correctly estimated cities and corresponding tweet messages (local
words are in bold face).

Est. City Tweet Message

Los Angeles
i should be working on my monologue for my audition thurs-
day but the thought of memorizing something right now is
crazy

Los Angeles

i knew deep down inside ur powell s biggest fan p lakers will
win again without kobe tonight haha if morisson leaves lak-
ers that means elvan will not be rooting for lakers anymore

New York

the march vogue has caroline trentini in some awesome
givenchy bangles i found a similar look for less an intern
from teen vogue fashion dept just e mailed me asking if i
needed an assistant aaadorable

selected local words and with GMM-based estimation. Note that words such as audition
(i.e., the Hollywood area is known for movie industries) and kobe (i.e., name of the
basketball player based in the area) are a good indicator of the city of the Twitter user.

In summary, overall, Model (1) shows a better performance with GMM while Model
(2) with MLE as the estimation model. In addition, Model (1) usually uses less words to
reach the best performance than Model (2) does. In terms of selecting local words, NL

works better than GL in general, with sim
TV

in particular. In contrast, the best value of
r depends on the model and the estimation method used. The best result for each model
is summarized in Table 2.5 while further details on different combinations of those best
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Table 2.5. Summary of best results of probability and estimation models.

Model Estimation Measure Factor #word ACC AED
(1) GMM NL sim

TV

2K 0.486 583.2
(2) MLE GL r = 0.5 2K 0.449 611.6
(3) MLE GL r = 0.1 2.75K 0.323 827.8

results for Models (1) and (2) are shown Fig. 2.7.

2.4.6 Smoothing vs. Feature Selection

The technique to simultaneously increase the probability of unseen terms (that cause
the sparseness problem) and decrease that of seen terms is referred to as smoothing.
While successfully applied in many IR problems, in the context of location prediction
problem from Twitter data, it has been reported that smoothing has very little effect in
improving the accuracy [14, 6]. On the other hand, as reported in [6], feature selection
seems to be very effective in solving the location prediction problem. That is, instead
of using the entire corpus, [6] proposed to use a selective set of “local words” only.
Through the experiments, we validated that the feature selection idea via local words
is indeed effective. For instance, Fig. 2.7 shows that our best results usually occur
when around 2,000 local words (identified by either NL or GL methods), instead of
26,998 original terms, are used in predicting locations. Having a reduced feature set is
beneficial, especially in terms of speed. For instance, with Model (1) estimated by MLE,
using 50, 250, 2,000, and 26,999 local words, it took 27, 32, 50, and 11,531 seconds
respectively to finish the prediction task. In general, if one can get comparable results
in ACC and AED, solutions with a smaller feature set (i.e., less number of local words)
are always preferred. As such, in this section, we report our exploration to reduce the
number of local words used in the estimation even further.

Figs. 2.5–2.7 all indicate that both ACC and AED (in all settings) improve in propor-
tion to the size of local words up to 2K–3K range, but deviate afterwards. In particular,
note that those high-ranked words within top-300 (according to NL or GL measures)
may be good local words but somehow have limited impact toward overall ACC and
AED. For instance, using GMM as the estimation model, GL yields the following within
the top-10 local words: {windstaerke, prazim, cnen}. Upon inspection, however,
these words turn out to be Twitter user IDs. These words got high local word scores
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Figure 2.7. Settings for two models to achieve the best ACC.

(i.e., GL) probably because their IDs were used in re-tweets or mentioned by users with
a strong spatial pattern. Despite their high local word scores, however, their usage in the
entire corpus is relatively low, limiting their overall impact. Similarly, using MLE as the
estimation mode, NL found the followings at high ranks: {je, und, kt}. These words
are Dutch (thus not filtered in preprocessing) and heavily used in only a few US towns2

of Dutch descendants, thus exhibiting a strong locality. However, again, their overall
2Nederland (Texas), Rotterdam (New York), and Holland (Michigan)
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Table 2.6. Prediction with reduced # of local words by frequency.
(a) Model (1), GMM, NL

Number of local words used
50 100 150 200 250

ACC Top 2K 0.433 0.447 0.466 0.476 0.499
Top 3K 0.446 0.449 0.444 0.445 0.446

AED Top 2K 603.2 599.6 582.9 565.7 531.1
Top 3K 509.3 567.7 558.9 539.9 536.5

(b) Model (1), MLE, GL

Number of local words used
50 100 150 200 250

ACC Top 2K 0.354 0.382 0.396 0.419 0.420
Top 3K 0.397 0.400 0.399 0.403 0.416

AED Top 2K 771.7 761.0 760.3 730.6 719.8
Top 3K 806.2 835.1 857.5 845.9 822.3

(c) Model (3), MLE, GL

Number of local words used
50 100 150 200 250

ACC Top 2K 0.2227 0.276 0.315 0.336 0.343
Top 3K 0.301 0.366 0.385 0.401 0.408

AED Top 2K 743.9 663.3 618.5 577.7 570.3
Top 3K 620.7 565.6 535.1 510.8 503.3

impact is very limited due to the rarity outside those towns. From these observations,
therefore, we believe that both localness as well as frequency information of words must
be considered in ranking local words.

Informally, score(w) = � localness(w)
�l

+ (1 � �) frequency(w)
�f

, where �

l

and �

f

are
normalization constants for localness(w) and frequency(w) functions, and � controls
the relative importance between localness and frequency of w. The localness of w can be
calculated by either NL or GL, while frequency of w can be done using IR methods such
as relative frequency or TF-IDF. For simplicity, in this experiments, we implemented the
score() function in two-steps: (1) we first select base 2,000 or 3,000 local words by NL

or GL method; and (2) next, we re-sort those local words based on their frequencies.
Table 2.6 shows the results of ACC and AED using only a small number (i.e., 50–
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Table 2.7. Top-30 Frequency-resorted local words (GMM, NL).

la nyc hiring dallas francisco
obama fashion atlanta houston denver

san diego sf austin est
chicago los seattle hollywood yankees

york boston washington angeles bears
ny miami dc fl orlando

250) of top-ranked local words after re-sorted based on both localness and frequency
information of words. Note that using only 50–250 local words, we are able to achieve
comparable ACC and AED to the best cases of Table 2.5 that use 2,000–3,000 local
words. The improvement is the most noticeable for Model (1). The results show the
quality of the location prediction task may rely on a small set of frequently-used local
words.

Table 2.7 shows top-30 local words with GMM, when re-sorted by frequency, from
3,000 NL-selected words. Note that most of these words are toponyms, i.e., names of
geographic locations, such as nyc, dallas, and fl. Others include the names of peo-
ple, organizations or events that show a strong local pattern with frequent usage, such
as obama, fashion, or bears. Therefore, it appears that toponyms are important in
predicting the locations of Tweeter users. Interestingly, a previous study in [14] showed
that toponyms from image tags were helpful, though not significantly, in predicting the
location of the images. Table 2.8 shows the results using city names with the highest
population in U.S. gazetteer as the “only” features for predicting locations (without us-
ing other local words). Note that performances are all improved with all three models,
but are not good as those in Table 2.6. Therefore, we conclude that using toponyms in
general improve the prediction of locations, but not all toponyms are equally important.
Therefore, it is important to find critical local words or toponyms using our proposed
NL or GL selection methods. It further justifies that such a selection needs to be made
from the evidences in tweet contents and user location, rather based on semantic mean-
ings or types of words (as [6] did).
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Table 2.8. Prediction with only toponyms.

Number of toponyms used
50 200 400

ACC
Model (1) 0.246 0.203 0.115
Model (2) 0.306 0.291 0.099
Model (3) 0.255 0.347 0.330

AED
Model (1) 1202.7 1402.7 1719.7
Model (2) 741.9 953.5 1777.4
Model (3) 668.2 512.4 510.1

2.4.7 Discussion on Parameter Settings

First, same as the setting in literature, we used d = 100 (miles) in computing ACC–i.e.,
if the distance between the estimated city and ground truth city is less than 100 miles,
we consider the estimation to be correct. Fig. 2.8(a) shows that ACC as a function of
d using the best configuration (Model (1), GMM, NL) with 50 and 250 local words,
respectively. Second, the test set that we used in experiments consists of a set of active
users with around 1K tweets, same setting as [6] for comparison. Since not all Twitter
users have that many tweets, we also experiment using different portion of tweet mes-
sages per user. That is, per each user in the test set, we randomly select from 1% to 90%
of tweet messages to predict locations. The average results from 10 runs are shown in
Fig. 2.8(b). While we achieve ACC (shown in left Y-axis) of 0.104 using 1% (10 tweets)
per user, it rapidly improves to 0.2 using 3% (30 tweets), and 0.3 using 7% (70 tweets).
Asymmetrically, AED (shown in right Y-axis) decreases as tweets increases.

2.5 Conclusion

In this chapter, we proposed a novel approach to estimate the spatial word usage prob-
ability with Gaussian Mixture Models. We also proposed unsupervised measurements
to rank the local words which effectively remove the noises that are harmful to the
prediction. We show that our approach can, using less than 250 local words, achieve
a comparable or better performance to the state-of-the-art that uses 3,183 local words
selected by the supervised classification based on 11,004 hand-labeled ground truth.
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Chapter 3
Improving Recommendation Using

User-Generated Relationships

3.1 Introduction

Thanks to the innovation of social networks, various types of user activities are recorded,
such as following, liked, comment and so on. These kinds of behaviors can be viewed as
users expressing their preferences, and are very common in many social network web-
sites such as Facebook, Google+, and so on. To study them and make recommendation
for items that user would like have been one of the most important tasks for modern
recommender system researchers. Recently, Netflix Prize showed promising results for
movie recommendation. However the explicit feedback studied in Netflix, such as 1-5
stars in movie ratings, is very limited and often expensive to acquire. In contrast, the
implicit feedback, such as inferred preferences, are more prevalent but also less infor-
mative, presenting both opportunities and challenges. In addition, the studies in movie
recommendation aim to improve the overall performances, while in item recommenda-
tion the performance of top ranked results is more important.

Another challenges in studying user’s preference is that the data, despite prevalent,
still suffers from the data spareness problem due to long tail phenomenon. One possible
remedy to reduce the effect is to enrich the data by taking related information into con-
sideration. However, the recent studies on item recommendation often focus on a single
task, and overlook the interactions between different types of activities of a user. Studies
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in rating prediction in movie recommendation has shown that the correlation in the rat-
ings of an user and the ratings of her friends (i.e. the homophily effect[21]) can be used
to improve the rating prediction. We are interested in finding if similar correlations can
be found in different types of like, and if they can be used to improve item recommen-
dation. On Flickr, for example, a user expresses her preference on an image by tagging
it as her favorite, on an user by following her, or on a community(group) by subscribe to
it (called group). Often, we can find some correlation between different types of ‘likes’.
For example, a user who shared a animal image shows she has some interest on animals,
and is likely to tag a animal image from others as her favorite, or join a group of animal
photos. In addition, a group on Flickr also collects a set of images related to its theme.
Thus we can extend the like relationship to different types of subjects. That is, a group
likes an image. It is also possible that the likes between different type of subjects might
also be correlated. That is, a user likes a group might also like the images the group
likes, or in other direction, a user might like the images collected by his liked group.

To further study the relationships between different subjects involved in a social
network, we present a view of a system. We view a social network like Flickr a system
of various types of entities such as users, groups, and images, each has a like relationship
with each other, or itself. We categorize the like relationships by the involved types
of entities into two kinds: inter-relationship if the liking is between different types of
entity (e.g. user to image), and self-relationship if the liking is between same type of
entity (e.g. user to user). In our Flickr example, as shown in Fig 3.1, a user has an inter-
relationship with an image by ‘upload’ and ‘tag’, and with group by ‘join’ and ‘discuss’,
while a group has an inter-relationship with an image by ‘collect’. An entity might also
have a relationship with others of the same type, such as a user following another user
(friendship), or an image similar another image. Each of the relationships in the system
presents an unique recommendation task, for example, recommending users to user or
recommending images to user. While the current studies for item recommendation,
tend to tackle each individually, we are interested in improving the tasks collectively.
The presented view of a social network system is rather general, not specific to Flickr.
For example, Facebook and Google+ both have community which has its own actions
similar to a user, such as posting an message or a photo. Therefore, our view also applies
to other system.

In this chapter, we first present an analysis in finding correlation between differ-
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Figure 3.1. Multiple Entities with Relationships on Flickr

ent types of like for users. We then propose different algorithms to take advantage of
the correlation. We show that different tasks might enrich each other and improve the
performance of each.

3.1.1 Problem Definition

3.1.1.1 Notations

In this section, following our new view on a social network system, we discuss the no-
tation and present our tasks to be studied in our example system Flikcr. The followings
guide the notations used in this paper.

• Rating Matrix R. A superscript might be used to indicate the corresponding rating
matrix. RUG, RUI and RGI is the rating matrix for user-group, user-image and
group-images, respectively.

• Weighting Matrix W . The matrix used to develop Weighted Regularized Matrix
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Factorization. Similar to R, a superscript might be indicates the specific matrix.

• Latent factor matrix. U , G and I is the low rank latent matrix for user, group
and image, respectively. Each is of the size of the number of subjects/items
times the rank K. When the symbols are used in superscript with a matrix, it
indicates the specific matrix corresponds to them. For example, SU is the self-
relationship matrix for user. With they are with subscript, it indicate the latent
vector with respect to the subject/item. For example, I

k

is the latent vector for
image k.

• self-relationship matrix S. An element S
ij

in a self-relationship matrix S indicates
a existing friendship or similarity connection between i and j.

• Vector. We use the subscript i · or · j with a matrix symbol to indicate a row vector
and a column vector, respectively. For example, RUG

i · and W UG
· j indicates subject

i’s rating vector and item j’s weighting vector, respectively.

• Diagonal matrix. We use e above a vector to indicate a diagonal matrix whose
diagonal is the vector. For example, gW UI

· k is a diagonal matrix whose diagonal is
the vector W UI

· k .

• Scalar value. A matrix with two index symbols in the subscript indicates a specific
value matrix. For example, RGI

j,k

is the rating of group j on image k.

• Index variable. h, i, j, k are used to index a matrix or vector.

• Rank K. K is the dimensionality of the latent factor.

• Size. The number of users, groups and images is N
U

,N
G

and N
I

respectively.

• Regularization parameter. � denotes the parameter for controlling the level of
regularization.

• k · k
F

denotes the Frobenius norm.

• I denotes identity matrix.

• ⇡ denotes approximation.
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• nz() is a function which defines the number of non-zero elements in a matrix or
vector.

3.1.1.2 Recommendation Tasks

We are interested in the following four tasks: The tasks we study in this paper are defined
as follows.

• Group Recommendation for User: recommending groups that a user is most likely
to join. RUG 2 {0, 1}NU⇥NG represents the user-group matrix.

• Image Recommendation for User: recommending images that a user is most likely
to tag as favorite. RUI 2 {0, 1}NU⇥NI represents the user-image matrix.

• Image Recommendation for Group: recommending images that a group is most
likely to collect. RGI 2 {0, 1}NG⇥NI represents the user-image matrix.

• Friend Recommendation for User: recommending images that a user is most
likely to make friend. SU 2 {0, 1}NU⇥NU represents the user-user matrix.

To abbreviate, we refer them in the form of ”entity-entity”, such as ”user-group”. Our
broader view exceed the traditional user-item view, therefore we use ”subject” instead
of ”user”.

The values in the rating matrices are inferred from the recorded actions. We take
the All Missing As Negative(AMAN) notion [22], where unobserved value are treated
as negative class. For example, if user u joins group g then RUG

ug

= 1. Similarly, if user
u tags image i or group g collects image i, then RUI

ui

= 1 or RGI
gi

= 1. Otherwise, the
values are zero.

3.2 Related Work

Collaborative filtering (CF) has been studied extensively in the recent years. In gen-
eral, the studies [23] fall in three categories: memory-based, model-based, and hybrid.
Memory-based approach typically involves aggregate the ratings of most similar users
or items as the prediction for a subject. In model based approach, the recommender sys-
tem tries to identify the latent factors that explain the existing ratings. In particular, the



34

low-rank matrix factorization methods have been shown very successful for predicting
movie ratings in the Netflix Prize competition [24]. Compared to the explicit feedback
where users give definite ratings within a fixed range, such as [0,5] or good,bad, rec-
ommendations for implicit feedback, such as playing times for song or subscriptions of
an interested group, are less studied. The challenges are different for the two types of
data: a rating in a fixed range is predicated with explicit feedback, while a small set of
items which the user is most likely interested is recommended with implicit feedback.
Different evaluation measures are used accordingly: RMSE or MAE are typically used
for explicit data, and ranked score such as NDCG, MAP, MRR, and Top-k scores are
often used for implicit data. Thus the recommendation with implicit feedback is closely
connected to studies for Top-k recommendation.

Pan et al. [25] proposed a specific problem setup One Class Collective Filtering
(OCCF) where the data only positive examples can be observed. Weighted Regulated
Matrix Factorization (WRMF) proposed by Hu et al. [25] and Pan et al. [22] which
uses different confidence level for the observed and unobserved data. More recently,
several matrix factorization techniques are proposed to improve Top-k recommenda-
tion by designing different optimization criteria. Bayesian Personalized Ranking (BPR)
proposed by [26] aims to maximize the pair-wise differences between relevant and irrel-
evant items, which results to optimize the Area Under the Curve (AUC) measure. How-
ever, it is argued [27] that AUC might not be good measure for the recommendation task.
Collaborative Less-is More Filtering (CLiMF), Shi et al. [27], overcomes the difficulty
to directly optimize MRR measure due to its non-smoothed function by approximate it
with smoothed function of MRR to allow it to be optimized computationally. On the
similar idea, Shi et al. [28] proposed TFMAP optimize MAP measure. Although MRR
and MAP well reflect ranked results, the optimization requires high numerical stability
in computation which might present challenges for practical use.

Incorporating side information to improve recommendation has been proved use-
ful in recent studies. The studies usually take conventional user-item view, and seek
to take more information on users or items in consideration. The most often utilized
side information including item description, user profile [29], trust network, and social
network [30]. User profile and item description are usually used similar to memory-
based approach where similarities between users or items are calculated in order to find
neighbors for them. Under the assumption that similar users (or items) might have
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similar behaviors, the recommendation might get improved by referring to their most
similar neighbors. Similarly, trust network or social network might benefit the recom-
mendation if users have similar taste to their sccial friends or users gained their trust. In
particular, SocialMF [31] includes the trustee’s latent factors into the user factor during
the optimization, which leads the implicit information propagation along the trusting
links. SoRec [32] which co-factorize user-item matrix along with the user’s trusted
network. These studies focus on self-relationships as illustrated in Fig 3.1, and the
inter-relationships are investigated to our best knowledge.

3.3 Proposed Methods

3.3.1 Analysis on Flickr Dataset

3.3.1.1 Network Structure Analysis

MediaEval provides public benchmarking datasets to evaluating algorithms for multi-
media access and retrieval. We use the randomly sampled users in MediaEval 2011
dataset as seed users and crawl their related information. We then select users which
has at least 10 contacts, 10 subscribed groups, and 10 favorite images to form our set of
user U . We also select groups G and images I which have least 10 connections to each
other into our dataset. From the collected dataset, we build the following like matrices:
user-group (UG), user-image (UI), group-image(GI), and user-user (friendship) (Su).

The homophily phenomenon indicates that friends in a social network tend to have
similar interests. Several recent studies [32, 31] have shown improved performances by
taking items liked by friends interest into consideration. To understand the difference
between friendship network and other types of likes, we first compare the network struc-
tures of the like matrices, and then evaluate the correlations between them. Table 3.1
describes the size and the density of the matrices. Despite items with low interactions
are filtered out, the matrices are still 99% sparse or lower, indicating that the recom-
mendation tasks have high difficulty. Figure 3.2 demonstrates the degree distribution
of the studied matrices. The degree of user in UI and Su are very similar. The num-
bers of users is similar in UG and Su when the node degree is small, while all other
distributions approximately follow the power law pattern.

Each like matrix consists of two types of entity, and forms a bipartite network. We
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Table 3.1. Description of Flickr Dataset.

Dimensionality Density

user-group 10592⇥15625 1.04%
user-image 10592⇥62008 0.16%
group-image 15625⇥62008 0.26%
user-user 10592⇥10592 0.63%

perform bipartite network analysis on them (shown in Table 3.2), and compare them to
the friendship network (shown in Table 3.3) with different network characteristics, such
as average degree, clustering coefficient, and centrality. Clustering coefficient measures
the tendency of vertices clustering in a graph. For sparse matrix, in general, networks
higher average number of degree provide more information, while higher clustering
coefficient indicates vertices are more likely to group with others. The closeness cen-
trality measures the shortest path distances of a vertex to others, which provide another
perspective on how the network is structured. Higher centrality shows the vertices are
closer to each other on average.

While the user social network are users’ direct preferences on other users, the user-
group and user-image bipartite network can be considered as indirect connections be-
tween users, through common liked groups or images. The mean degree of friends in
Table 3.3) considers both in and out degrees. By considering only out degree, the num-
ber of users a user follows, it is 67.13, larger than than the number of liked group, 13,
but fewer than the number of liked images, 100.4. The closeness centrality also exhibits
a reverse pattern, partially due to the higher density, that users are closer in user-group
than social network, and in turn, than user-image. A network with high clustering ef-
fect tends to have better capability to categorize the nodes. In our analysis, the social
network shows strongest clustering compared to the other two user networks. Among
the later two types of connection, the groups is a better medium to connect users then
does the images. In sum, the user friendship network has distinctively higher clustering
coefficient, but is similar to other types of network for the other measures.

3.3.1.2 Correlation Analysis

In this section, we discuss how to validate the correlation between different types of likes
by asking the question: Can a user liked groups be recovered by in the groups collecting
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(c) user-user Su

(d) group-image GI

Figure 3.2. Degree Distribution in Flickr Dataset.
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Table 3.2. Bipartite Like Network Analysis on Flickr Dataset.
(a) user-group

Mean Degree Clustering coefficient Closeness centrality

user 13.0 0.024 0.51
group 162.7 0.018 0.53

(b) user-image
Mean Degree Clustering coefficient Closeness centrality

user 100.4 0.008 0.33
image 17.2 0.035 0.49

(c) group-image
Mean Degree Clustering coefficient Closeness centrality

group 163.6 0.011 0.36
image 41.2 0.029 0.54

Table 3.3. Friendship (user-user) Network Analysis on Flickr Dataset.

Mean Degree Clustering coefficient Closeness centrality

user-user 134.3 0.12 0.41

her liked images? Here we define the preferences directly expressed by user as first
order relationships such as liked groups or liked images. The groups collecting liked
images by a user is inferred indirectly from a first order relationship, hence a second
order relationship. If the two first-order relationships are closely related, we might be
able to infer one relationship through a second order relationship. For example, a user
expresses her interests with the liked images and liked groups. If the liked items exhibit
consistent interests from a user, we might find overlaps between her liked imaged and
images collected by her liked group. From the perspective of information retrieval (IR),
we view the items in the first order relationship as the relevant items and try to retrieve
them through a second order relationship. Therefore, metrics from IR such as precision
and recall can be used to measure the quantity of overlaps for a user, defined as

recall(u) =
|FO(u) \ SO(u)|

|FO(u)|
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Table 3.4. Results of Second Order Likes Retrieval.
precision recall F1

liked images, retrieved by random groups 0.0016 0.2534 0.0032
liked images, retrieved by liked groups 0.0031 0.6908 0.0061
liked images, retrieved by liked users 0.0057 0.3980 0.0113

liked groups retrieved by random images 0.0236 0.2713 0.0434
liked groups retrieved by liked images 0.0496 0.4220 0.0888
liked groups, retrieved by liked users 0.0289 0.8336 0.0559

precision(u) =
|FO(u) \ SO(u)|

|SO(u)|

. The FO(u) is the set of items in a first order relationship for user u. For example,
{i|i is an image liked by u}. The SO(u) is the set of items in a second order relation-
ship. For example, {i|g likes i, and g is a group liked by u}. Since friendship networks
works well in improving recommendation task, we use it as a reference to compare
the other types of like relationship. We also compare the result of random selection
of groups for each user. The result are from groups that are uniformly randomly se-
lected for each user according her number of liked groups, and are averaged from 20
times repetitions. In the results, as demonstrated in Table 3.4, the friendships (liked
users) can retrieve around 40% of liked images (recall) for a user on averages, while
the liked groups can retrieve around 70%, both better than 25% of random selection.
In general, the higher recall shows more overlaps, thus more correlation. The recall is
also affected by degree of second order relationship. For example, the recall will be
1 if a user or a group likes all the images. The case is rare, however, as we learned
in the degree distribution. To take the number of items involved into account, we also
compared a more balanced measure F1 score (2*(precision*recall)/(recision+recall0),
which showed friendships (0.011) actually have better quality than liked group (0.006).
In another test, we retrieve liked groups for users by their friends and their liked images,
and found the latter has better correlation than the former. Overall, the studied three
types of like relationship are correlated to others, but the quality may vary.

In this chapter, we study several algorithm that exploit the connections between
different like relationships. We first discuss the baseline method and present results
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from one of the stat-of-the-arts algorithms for item recommendation, which makes ef-
fective recommendation for an individual task. We then propose algorithms under a
co-factorization framework to collectively optimize multiple tasks.

3.3.2 Weighted Influences (WINF)

We have shown that items in a first order relationship can be recalled by a second order
relationship in Sec 3.3.1.2. We further extend it by ranking the results by the frequency
of a returned item. Intuitively, if an item is liked more times in a second order relation-
ship, it should be more relevant to a user. For example, a user likes both group animal
and group dog. Both groups like image dog1, while group dog also likes image dog2.
We can infer that the user likes the image dog1 with a frequency 2, and dog2 with a
frequency 1. Thus we return [dog1, dog2] as an ordered recommendations. Formally, to
recommend an ordered list of groups rec(u) to user u,

rec(u) =argsort�(R
UG

u,· ⇥RGI

)

=argsort�(
�
RUG

u,· R
GI

·,1 , · · · , RUG

u,· R
GI

·,NI

�
)

, where⇥ denotes matrix multiplication and argsort� is a function returning the indexes
that reorders the array in decreasing order. RUG

u,· R
GI

·,i is the frequency for image i. We
can apply the same principle to other tasks as well. The advantage of this method is
computational efficient and model free. However, its effectiveness less comparable as
we will show in the later section. We use this algorithm as a baseline for performance
comparison.

3.3.3 Same Characteristics Principle

To exploit various relationships in a given social network, we propose a multiple ma-
trices co-factorization framework based the ‘same characteristics principle’. Balanced
with scalability and accuracy, low rank matrix factorization (MF) technique based col-
laborative filtering is proven to be one of the most effective methods in recommender
system. The underlying idea for matrix factorization is to find a small number of latent
factors for subjects and items that best explains the ratings. Typically, a rating matrix
is decomposed into a latent user matrix and a latent item matrix, which represent their
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inherent characteristics. Here we propose ‘same characteristics principle’ which essen-
tially assumes all entities has a consistent set of characteristics across the system, even
for different tasks. Therefore, for a subject or an item, its latent factors should remain
fixed for all tasks. We argue the assumption is more reasonable than using different
factors for different tasks. Under the principle, a user should have consistent interests
for her selection on the groups and images, which also fits better for general people in
the real world. The principle implies that the latent space is all shared for different en-
tities. That is, the underlying representation for each dimension in the the latent space
is also fixed. For example, the all entities are factored into a two-dimensional space
¡black&white, color¿ and all tasks are explained with these two dimensions. Although
matrix factorization in general does not have such interpretable factors, we use it for
the sake of explanation. By sharing a common latent space across the system, the data
sparseness could be alleviated when a subject with few ratings in one task might be
helped by another task. Furthermore, regularization is also strengthened since a com-
mon set of latent factors now subject to multiple task matrices, thus reducing the chance
of over-training.

Another advantages of the same characteristics principle is that it naturally leads to
a unified co-factorization framework which is capable to accommodate rich information
and different relationships. In general, the framework can be implemented with any
MF technique. Among the state-of-the-art MFs for item recommendation, WRMF is
balanced with good performance and efficiency. Thus, we implement our framework
with WRMF . We introduce WRMF in the next section, then discuss how to incorporate
different type of relationship gradually in the following.

3.3.4 WRMF : Weighted Regularized Matrix Factorization

Weighted Regularized Matrix Factorization[22, 25] is proposed to make item recom-
mendation for One Class Collaborative Filtering. It naturally extends the matrix fac-
torization techniques for the explicit rating recommendation task by incorporating a
weighting matrix to indicate the confidences. A existing rating gives more confidence,
thus heavier weight is given (1+↵) in the corresponding W , as opposed to the 1 for
empty rating. Despite the simplicity of design, its performance has been shown as one of
tops among other state-of-the-arts algorithms for the task, such as BPR[26], CLiMF[27],
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TFMAP[28], and SLIM[33]. The simplicity leads to better efficiency in computation,
thus more favorable as opposed to others. Therefore, we choose WRMF as the base
matrix factorization technique to implement our co-factorization framework. Another
advantage of WRMF is that the model training can be carried out by Alternative-Least-
Squares (ALS) optimization which makes parallel implementation possible. In general,
to approximate matrix R with low rank factor matrices U and V , WRMF minimizes the
object function:

LWRMF =

X

ij

W
ij

(R
ij

� U
i

V T

j

)

2
+ �(kUk2

F

+ kV k2
F

)

, where

W
ij

=

(
1 if R

ij

= 0

1 + ↵ if R
ij

= 1

3.3.5 WRS : WRMF with self-relationship

Homophily phenomenon [21] states people with social ties tend to have similar char-
acteristics or interests. Studies that exploits this phenomenon report promising results
for explicit ratings, such as SoRec[32] and SocialMF[31]. From from the of view of
items, a similar connection can be formed by the similarity between two from the asso-
ciate information, such as item descriptions. Studies[34, 35] also report improvements
by taking item’s side information into consideration. In our extended view, we consider
both of them a case of self-relationship , since both of the participating entities are of
them same type. Here we express a self-relationship in the from of matrix by SU , SG

and SI , representing a self-relationship network for user, group and image, respectively.
Friendship is a natural self-relationship between users, which might exist in different

forms. On Flickr, the social relationship is uni-directional and in one of the categories:
‘following’, ‘friends’ and ‘family’, depending on the tie between the two. The latter
two also imply the ‘following’. In our study, we use ‘following’ to represent the social
relationship. By the social relationship, we define SU as

SU
ij

=

(
1 if user i follows j
0 otherwise
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Content based filtering has been shown effective by utilizing textual information
associated with subjects or items, such as user profile[29], search history[36]. On Flickr,
each group has a group name and description edited by its administrators to explain
itself. With such textual information, we compute the tf-idf vector representation and
derive a similarity accordingly between two. Let T

i

and T
j

denotes the tf-idf vector for
group i and group j and index h refer to a vocabulary, the similarity score is defined as:

sim

textual

(i, j) = cos(T
i

, T
j

) =

P
h

T
ih

T
jh

rP
h

T
ih

2
rP

h

T
jh

2

To construct the similarity network, we can consider threshold or top-k approach. The
former selects a pre-defined threshold � and make a connection if similarity score is
larger than �. That is,

SG

ij

=

(
1 if sim(i, j) � �

0 if else

. For the top-K approach, the score of k-th item is selected as � for each subject.
When such textual information is limited, we can resort to memory-based method

which exploits existing ratings to compute similarity between subject. As one of the
well studied collaborative filtering technique, it has been shown effective in many com-
mercial systems. The similarity derivation is similar to the textual similarity. For group
i and group j, their rating similarity with respect to the user-image is

sim

GI

(i, j) = cos(RGI

i · , R
GI

j · ) =

P
h

RGI
ih

RGI
jh

rP
h

RGI
ih

2
rP

h

RGI
jh

2

. Rating similarity with respect to the user-group sim

GU

can also be calculated in the
same fashion. The final rating similarity can be determined by weighted average with a
weight � as

sim

rating

(i, j) = � sim
GI

(i, j) + (1� �)sim
GU

(i, j)

, and following above steps to construct rating similarity network. Equivalently, for
images, we can compute textual similarities with the tags specified by its owner, or



44

Y

SU RUV SV

VUX

Figure 3.3. Co-factorization in WRS .

rating similarities with existing ratings. One or a combination of the similarities is then
used to construct similarity network SI .

As most studies discussed above evaluate self-relationship with explicit feedback by
its overall performances, the reports for its effectiveness on item recommendation with
implicit feedback are still limited. Therefore we proposed WRS , an extension with
WRMF to incorporate self-relationship such as the friendship network or similarity net-
work from side information. For a recommendation task with observed rating matrix
RUV , self-relationship matrices SU and SV , WRS finds latent matrices U, V,X and Y

such that RUV ⇡ UV T , SU ⇡ UXT and SV ⇡ V Y T . The relationships of latent ma-
trices and rating matrices is demonstrated in Fig 3.3. WRS minimizes the the objective
function:

LWRS (R
UV , SU , SV , U, V,X, Y )

=

X

i,j

W UV
ij

(RUV
ij

� U
i

V T

j

)

2

+ �U

X

i,j

W U
ij

(SU

ij

� U
i

XT

j

)

2

+ �V

X

i,j

W V
ij

(SV

ij

� V
i

Y T

j

)

2

+ �(kUk2
F

+ kV k2
F

+ kXk2
F

+ kY k2
F

)

Here, UV represents a general subject-item task. kUk2
F

, kV k2
F

, kXk2
F

, and kY k2
F
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are regularized terms to control the model complexities with �. With same character-
istics principle, a common latent space matrix U for subjects is shared for both rating
matrix RUV and self-relationship matrix SU , thus connecting the two tasks the matrices
represent. The same go with the items as well. All tasks are weighted regularized by
their corresponding weighting matrices, e.g. W UV to RUV . �U and �V are used to control
to impact from the self-relationship . If it was set to 0, the information from the self-
relationship matrix will be nullifies. As it increases, its impact gets larger in the cost
function, which essentially also lowers the impact from other matrices.

The objection function WRI can be minimized with the Alternative-Least-Squares.
We first take derivative of LWRS for each latent vector and set it to zero, that is, set
@LWRS
@Ui

= 0, @LWRS
@Vi

= 0, @LWRS
@Xi

= 0 and @LWRS
@Yi

= 0. Then we can derive the updating rules
as the following.

U
i

=

⇣
RUV

i ·
]W UV

i · V + �US
U
i ·
gW U

i ·X
⌘⇣

V T ]W UV
i · V + �UX

T gW U
i ·.X + �I

⌘�1

(3.1a)

V
i

=

⇣
RUV

· i
]W UV

· i U + �VS
V
i ·
gW V

i ·Y
⌘⇣

UT ]W UV
· i U + �V Y

T gW V
i ·Y + �I

⌘�1

(3.1b)

X
i

= �US
U
· i
gW U

· iU
⇣
�UU

TgW U
· iU + �I

⌘�1

(3.1c)

Y
i

= �VS
V
· i
gW V

· iV
⇣
�V V

T gW V
· iV + �I

⌘�1

(3.1d)

The detail step for train a model is described in Alg 1. Latent matrices are initialized
by assigning random small values in the beginning. In each iteration in the optimization,
only one factor matrix makes update at a given time and depends only on others whose
values are fixed. For example, updating U only requires V and X , and both are fixed
until U is done. Therefore, different subjects U

i

can be updated in parallel.
As suggested in [25], by rewriting (V T ]W UV

i · V ) to (V TV � V T

(

]W UV
i · � I)V ), the

computation time can be shortened, since now (

]W UV
i · �I) only has nz(RUV

i.

) non-zero el-
ements and V TV can be computed beforehand and outside of iterations. nz(R) indicates
the number of non-zero elements in R. In a iteration of updating Ui, shown in Eq (3.1a),
the time complexity for the first term (RUV

i ·
]W UV

i · V + �US
U
i ·
gW U

i ·X) is O(nz(RUV
i.

)K +

nz(W U
i.

)K), since only non-zero terms needs to be involved in the calculation. K is the
dimensionality of a latent factor. The second term ,(V T ]W UV

i · V + �UX
T gW U

i ·.X + �I)�1

has time complexity O(nz(RUV
i.

)K2
+ nz(SU

i.

)K2
+K3

) with the above speed-up. The
matrix inversion operation is assumed to take O(K3

). The overall time complexity for
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updating U is O(nz(RUV
)K2

+nz(SU
)K2

+NUK
3
) by aggregating all iterations, where

N
U

is the number of subjects in U . Since K is typically small, the computation largely
depends on number of observed ratings and the number of subject. Since updating of
each iteration is fully parallel-able, the overall time can speed up around n times with
n-way parallelism. Similar analysis applies for Eq (3.1c) and Eq (3.1d).

Algorithm 1: Learning Algorithm for WRS
input : Ratings matrices RUV , SU , SV , maximum number of iteration maxiter,

parameters �,�U ,�V

output: Latent matrices U, V,X, Y

Initialize U, V,X, Y with random small values;
for t 1 to maxiter do

parallel for i 1 to NU do
Update U

i

according to Eq (3.1a);
end
parallel for i 1 to NV do

Update V
i

according to Eq (3.1b);
end
parallel for i 1 to NX do

Update X
i

according to Eq (3.1c);
end
parallel for i 1 to NY do

Update Y
i

according to Eq (3.1d);
end

end

3.3.6 WRI : WRMF with inter-relationship

RUG RUI RGI

IGU

Figure 3.4. Co-factorization in WRI .



47

As we learn in Sec 3.3.1.2, there are also correlations exists between different tasks,
similar to correlation between users in friendship network. Unlike self-relationship , the
connects are made between different types of entity through a common subject. For
example, the same user expresses interests in groups and images. To exploit this cor-
relation, we propose WRI which solves three studied recommendation tasks globally
and collectively. With the same principle, multiple matrices are factorized with a com-
mon set of latent factors for each entity. With the rating matrices RUG, RUI and RGI ,
WRS finds latent matrices U , G and I , representing user, group, image, respectively,
such that RUG ⇡ UGT , RUI ⇡ UIT and RGI ⇡ GIT . The relationship between rating
matrices and latent matrices are demonstrated in Fig 3.4. Specifically, WRI optimizes
the objective function:

LWRI (R
UG, RUI, RGI, U,G, I)

=

X

i,j

W UG
ij

(RUG
ij

� U
i

GT

j

)

2

+ �UI

X

i,k

W UI
ik

(RUI
ik

� U
i

IT
k

)

2

+ �GI

X

j,k

WGI
jk

(RGI
jk

�G
j

IT
k

)

2

+ �(kUk2 + kGk2 + kIk2)

�
UI

and �
GI

are used to adjust relatively weights between the three task. kUk2, kGk2

and kIk2 are regularization terms, controled by �. Similar to WRS , the objection func-
tion WRI can be minimized with ALS, which results in the following updating rules.

U
i

=

⇣
RUG

i ·
]W UG

i · G+ �UIR
UI
i ·

gW UI
i · I

⌘⇣
GT ]W UG

i · G+ �UII
T gW UI

i · I + �I
⌘�1

G
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⇣
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· j
]W UG

· j U + �GIR
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j ·

gWGI
j · I

⌘⇣
UT ]W UG
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T gWGI
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⌘�1

I
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⇣
�GIR
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· k

gWGI
· k G+ �UIR
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· k
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· k U

⌘⇣
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The optimization steps is detailed in Alg 2. Following the analysis in Sec3.3.5, the
overall time complexity for updating U is O(nz(RUG

)K2
+ nz(RUI

)K2
+N

U

K3
).
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Algorithm 2: Learning Algorithm for WRI
input : Ratings matrices RUI , RUG, RGI , maximum number of iteration maxiter,

parameter �, �
UI

, �
GI

output: Latent matrices U,G, I

Initialize G,I with random small values;
for t 1 to maxiter do

parallel for i 1 to M do
Update U

i

according to Eq (??);
end
parallel for j  1 to N do

Update G
j

according to Eq (??);
end
parallel for k  1 to L do

Update I
k

according to Eq (??);
end

end

3.3.7 WRCO : Multiple Relationships Co-Factorization

RUG RUI RGI

IGU

SU SV SI

ZYX

Figure 3.5. Co-factorization in WRCO .

We propose WRCO to exploit both self-relationship and inter-relationship to con-
nect multiple tasks and side information under a unified framework. With rating ma-
trices RUG, RUI and RGI , self-relationship matrices SU , SG and SI , WRS finds latent
matrices U , G, I , X , Y and Z, such that RUG ⇡ UGT , RUI ⇡ UIT , RGI ⇡ GIT ,



49

SU ⇡ UXT , SV ⇡ V Y T and , SI ⇡ IZT . The relationship between rating matrices and
latent matrices are demonstrated in Fig 3.5. Combining both WRS and WRI , the object
function for WRCO is defined as

LWRCO (R
UG, RUI, RGI, SU , SG, SI, U,G, I,X, Y, Z)

=
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Similar to WRS and WRI , we optimize WRCO with ALS with the following updat-
ing rules.

U
i

=

⇣
RUG

i ·
]W UG

i · G+ �UIR
UI
i ·

gW UI
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(3.2a)
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The update procedure is detail in Alg 3. Following the previous analysis, The
time complexity for for updating U in WRCO is then O(nz(RUG

)K2
+ nz(RUI

)K2
+

+nz(SU
)K2

+N
U

K3
).

Algorithm 3: Learning Algorithm for WRCO
input : Ratings matrices RUI , RUG, RGI , SU , SG, SI , maximum number of iteration

maxiter, parameter �, �
UI

, �
GI

, �U ,�G,�I

output: Latent matrices U,G, I,X, Y, Z

Initialize U ,G,I ,X ,Y ,Z with random small values;
for t 1 to maxiter do

parallel for i 1 to N
U

do
Update U

i

according to Eq (3.2a);
end
parallel for j  1 to N

G

do
Update G

j

according to Eq (3.2b);
end
parallel for k  1 to N

I

do
Update I

k

according to Eq (3.2c);
end
parallel for i 1 to N

U

do
Update X

i

according to Eq (3.2d);
end
parallel for j  1 to N

G

do
Update Y

j

according to Eq (3.2e);
end
parallel for k  1 to N

I

do
Update Z

k

according to Eq (3.2f);
end

end

3.4 Experimental Validation

3.4.1 Experimental Setup

We use two types of data split to examine our ideas. One is the commonly used cross
validation. The ratings in the studied matrices are randomly shuffled and are split into
6 folds. We run each experiment 5 times. In each iteration, we use 4 folds as training
set, 1 fold as development set to select best parameters, and the remaining 1 fold as
validation set. The average results from validating set are reported. In the prepared
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data, the average degree can as high as more than 100 in our dataset depending the
matrices, as shown in the Table 3.2. In the real worlds, the number might be too ideal
since the dataset is prepared by filtering out subject with very low number of ratings
in order to study the relationship between different likes. Therefore, a given K split
strategy is also employed, where only K ratings from each subject is studied. We set
K to 20, which is acceptable even for users with infrequent usage. In this split, we use
20 randomly selected ratings are used for each subject to train a model. The remaining
ratings are split into 5 folds where 1 fold is used to tune parameters and 4 folds are used
for validation. We ran the process 5 times, and report the average results.

In the ideas with matrix factorization, the factor matrices are randomly initialized
which may slightly affect the final results. To stabilize the comparison, we generated a
set of factor matrices beforehand and use them in the same type of experiment.

We studied our results from different perspectives. RMSE and MAE are commonly
used in the studies for explicit feedback to measure the overall performance of the pre-
diction. In contrast, for item recommendation, top ranked of the predicted items is more
important, since users are often only interested in top items suggested items from rec-
ommender system. Therefore, we use MRR and top-k metrics to measure the ranking
performance. MRR reflects the rank of the first relevant items, while top-k metrics mea-
sure the ranking up to k returns. To reflect the overall ranking performance, we used
NDCG which is a average score weighted by ranks. An item is relevant for an subject if
there exists such a rating in the testing set. Ratings in the training set are simply ignored.
The followings give a formal definition of the used metrics.

• Mean Reciprocal Rank(MRR). The average reciprocal ranks for the first relevant
item, defined as

1

n(S)

n(S)X

i=1

1

rank of first relevant item for subject i

• Normal Discounted Cumulative Gain (NDCG). NDCG works on the all the re-
turn predictions and measures the overall ranking quality of relevant predictions,
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defined as NDCG=DCG/IDCG, where

DCG =

n(I)X

p=1

2

rel(p)

log(p+ 1)

, where p is the position of each ranked prediction. rel(p) = 1 if the item at p is
relevant, and rel(p) = 0, otherwise. IDCG is the maximum possible DCG for a
set of predictions.

• Precision at k (Prec@k). Prec@k measures the performance of top k predictions
in term of precision defined as

Prec@k =

number of relevant items in top k prediction
k

• Recall at k (Recall@k). Recall@k measures the performance of top k predictions
in term of recall defined as

Recall@k =

number of relevant items in top k prediction
number of all relevant items

To conclude over performance of an idea, we present averages from all the tasks. Since
the number of subjects are different, two types of average are used: mean, the simple
arithmetic mean from all tasks, and weighted mean (w. mean) average weighted by the
number of subjects in a task.

3.4.2 Baseline

We first compare the difficulty of different tasks with different number of factors K in
factorization with regard to different metrics. For CV , as demonstrated in Table 3.6a
and Table 3.6b, the respective difficulties for the the studied tasks correspond to the
densities of the rating matrices. Performance with regard to individual metric increase
as K increases. The user-group has best performance in all metrics, and followed by
user-user, group-image and user-image. Results from Given 20 , as demonstrated in
Table 3.7a and Table 3.7b, has some differences compared to the results of CV . The
user-user tops user-group in term of the Recall@20, while the difficulties follows the
same order as in CV for all other metrics despite all matrices now have similar densities.
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The performance might not be improved the increase of the number of factors. For
example, user-group has the top performance at K = 5, and gradually declines as K

increases. The user-user tops at K = 20 for MRR and Prec@20.
Table 3.5 compares the performances of WRMF with number of factors of 5, and

weighted influences (WINF) with likes and friends. WRMF outperforms the WINF for
all task in all metrics, while WINF with friendship outperforms WINF with different
likes.

Table 3.5. Comparison of WRMF and WINF.
(a) user-group

MRR NDCG Recall@20 Prec@20

WRMF nf5 0.008 0.287 0.036 0.038
WINF likes 0.002 0.183 0.005 0.003
WINF friends 0.003 0.192 0.010 0.007

(b) user-image
MRR NDCG Recall@20 Prec@20

WRMF nf5 0.007 0.356 0.070 0.066
WINF likes 0.002 0.189 0.010 0.007
WINF friends 0.003 0.187 0.011 0.009

(c) group-image
MRR NDCG Recall@20 Prec@20

WRMF nf5 0.321 0.383 0.083 0.101
WINF likes 0.036 0.198 0.009 0.008

3.4.3 Results of WRS

To learn the effectiveness of WRS , we study several networks including friendship net-
work, group similarity network, and image similarity network. Friendship network
straightforward since the connections are expressed directly by users. The similarity
network can to be inferred from different perspectives. In this experiment, we use tex-
tual similarity to construct the network by the description and title of groups and the
tags and title of the images. We also need to decide the k to select the top-k most similar
items to build the connections. We first test different k to learned their behaviors in
the WRS with varifying �. The � is used to control the impact of the self-relationship .
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Figure 3.6a. Comparison of CV Tasks with WRMF .
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Figure 3.6b. Comparison of CV Tasks with WRMF .
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Figure 3.7a. Comparison of Given 20 Tasks with WRMF .
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Figure 3.7b. Comparison of Given 20 Tasks with WRMF .
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(a) SG, CV , with MRR

(b) SG, Given 20 , with MRR

Figure 3.8. Selecting top-k Most Similar Items in the Network.
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When set to 0, WRS degenerates to WRMF . Table 3.8 shows the results of MRR of
selecting different k for the user-group tasks. Both data splits shows stable results with
k = 30. Therefore, we use it for SG. For SI , different k shows only marginal impact on
the results. We also use k = 30 for SI .

We then study impact of self-relationship individually on different tasks. To present
an overview on the results, we report the relative improvements over WRMF aggregated
from the studied four metrics MRR, NDCG, Prec@20, and Recall@20. For CV , as
shown in Table 3.6, SU improve both user-group and user-image tasks by 6% and 2%
as K increases, while SG and SI improve user-group and user-image by 3% and 1%
, respectively. The task group-image are not helped with both SG and SI . In general,
larger K shows better improvement. For Given 20 , as shown in Table 3.7, SU im-
prove both user-group and user-image tasks by 20% and 22% as K increases, while
SG and SI improve user-group and user-image by 13% and 5%, respectively. Com-
pared to CV , the improvement is more significant, indicating better effectiveness of self-
relationship when data is few. Similar to CV , group-image is only marginal improved.
For both data split, SU has most improvement, while the SI has the least improvement.

Table 3.6. Relative Improvement of WRS over WRMF , CV .
(a) SU

K \Tasks user-group user-image

20 0.55% 0.72%
40 1.68% 2.48%
80 6.46% 2.79%

(b) SG

K \Tasks user-group group-image

20 0.23% -0.60%
40 0.62% -0.24%
80 3.78% 0.01%

(c) SI

K \Tasks user-image group-image

80 1.56% 0.51%

We also present the impact of varifying �. Fig 3.9a shows the contribution of SU
with the different � while Fig 3.9b shows that of SG. In general, we can find a pattern
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Table 3.7. Relative Improvement of WRS over WRMF , Given 20 .
(a) SU

K \Tasks user-group user-image

10 5.41% 3.43%
20 12.92% 12.24%
40 20.69% 22.81%

(b) SG

K \Tasks user-group group-image

10 1.07% 1.68%
20 6.25% 0.42%
40 13.90% 0.47%

(c) SI

K \Tasks user-image group-image

40 5.70% 0.25%

that the performance improves as � increases. After certain point, the performance
declines as � increases. The feature helps to find the optimal performance by a greedy
strategy in the grid search of the best parameter.

After learning the individual impact of self-relationship , we then combine different
types of them for a task. We evaluate the user-group tasks with the help of SU and
SG. In this setting, �

U

and �
G

are used to adjust the relative impact. Table 3.8 shows
the comparison of SU and SG. From the results, combining both self-relationship does
not further improve the tasks. To gain more insight, Fig 3.10 shows the contour plot of
improvement with varifying both �

U

and �
G

. The plot shows the two local maximums
locate both on the edges, when either one of them is zero. Therefore, add more both
self-relationship does not gain improvement over individual self-relationship .

Table 3.8. Comparison of WRS with SU and SG.

self-relationship user-group

SU 6.42%
SG 3.78%
SU+SU 6.44%
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(a) CV

(b) Given 20

Figure 3.9a. Impact of � with SU on user-group.
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(a) CV

(b) Given 20

Figure 3.9b. Impact of � with SG on user-group.
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Figure 3.10. Selecting �
U

and �
G

.

3.4.4 Results of WRI

Next we present the results of WRI and make comparison of both WRI and WRS . Ta-
ble 3.9 shows selected results of WRI with CV split, in which WRI further improves the
results from WRMF , especially for user-image and image-group. For Given 20 , as
shown in Table 3.10, the improvements are significant for all three tasks. The overall
performance is impacted by �s that balance the importance of different tasks. When
a task has higher relative weight, the better the performance, and the lower the perfor-
mance of the others. Table 3.11 shows the selection of different � for user-group in
CV . As the value increases, the performance of user-group gets better, while the perfor-
mances of the other two tasks decline. Table 3.11 shows the selection of different � for
user-group in Given 20 , which also demonstrates similar pattern.

Table 3.9. Results of WRI in CV .
K \Tasks user-group user-image image-group

10 0.81% 8.36% 17.33%
20 1.27% 9.30% 12.61%
40 1.87% 5.68% 10.99%
80 -0.35% 10.23% 5.27%
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Table 3.10. Results of WRI in Given 20 .
K \Tasks user-group user-image group-image

10 0.72% 1.48% 2.63%
20 2.75% 3.31% 19.68%
40 8.12% 13.67% 8.20%

Table 3.11. Varifying � of WRI in CV .

� \Tasks user-group user-image group-image

1.2 0.11% 9.79% 13.12%
1.3 0.75% 8.71% 13.23%
1.4 1.27% 9.30% 12.61%
1.5 1.49% 9.52% 11.28%
1.6 2.53% 8.16% 9.83%
1.7 2.86% 7.00% 8.82%
1.8 3.16% 6.33% 7.79%
1.9 3.57% 5.60% 7.91%
2.0 4.05% 3.90% 5.71%

Table 3.12. Varifying � of WRI in Given 20 .

� \Tasks user-group user-image group-image

2.0 2.68% 0.01% 22.90%
2.2 2.75% 3.31% 19.68%
2.4 2.23% 4.80% 14.43%
2.5 2.50% 5.28% 11.34%
2.6 3.55% 5.99% 8.55%

Finally, we compare results from different proposed methods to WRMF . Table 3.13
shows the comparison for CV . For user-group, WRS with SU has the best performance
in terms of MRR, NDCG, and Recall@20 while WRS with SU and SG tops at Prec@20.
For user-image and group-image, WRI clearly outperforms others. For Given 20 , as
shown in Table 3.14, WRS with SU has best performance in user-group, while WRI outperforms
other methods for the other two tasks.
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Table 3.13. Comparison of Proposed Methods, CV , K = 40.
(a) user-group
Methods \Metrics MRR NDCG Recall@20 Prec@20

WRMF 0.3904 0.4309 0.1220 0.1347
WRS (SU ) 0.3967 0.4347 0.1251 0.1360
WRS (SG) 0.3930 0.4315 0.1229 0.1352
WRS (SU ,SG) 0.3942 0.4346 0.1249 0.1366
WRI 0.3851 0.4305 0.1221 0.1345

(b) user-image
Methods \Metrics MRR NDCG Recall@20 Prec@20

WRMF 0.0675 0.2213 0.0187 0.0154
WRS (SU ) 0.0682 0.2232 0.0196 0.0155
WRS (SI) 0.0670 0.2212 0.0187 0.0154
WRI 0.0738 0.2278 0.0212 0.0175

(c) group-image
Methods \Metrics MRR NDCG Recall@20 Prec@20

WRMF 0.1360 0.2632 0.0422 0.0459
WRS (SG) 0.1367 0.2630 0.0414 0.0457
WRS (SI) 0.1365 0.2634 0.0417 0.0459
WRI 0.1408 0.2738 0.0459 0.0476

3.5 Conclusion

In this Chapter, to full exploit the inter-connecitons between different subjects involved
in a social network, we present a view of a social networks, where an entity has self-
relationship with others of the same type and has inter-relationship with others of dif-
ferent types. According to same characteristics principle, we propose a co-factorization
framework where each type of entity shares a common latent space. We proposed
WRS to exploit the self-relationship , and WRI to exploit inter-relationship . We studied
three types of self-relationship , including friendship network, textual similarity net-
work for groups and images. In the experiments, we show the additional input from
relationships can improve the recommendation further. However, combining multiple
relationships might not gain extra improvements. Overall, the user-group recommenda-
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Table 3.14. Comparison of Proposed Methods, Given 20 , K = 20.
(a) user-group

Methods \Metrics MRR NDCG Recall@20 Prec@20

WRMF 0.5811 0.5699 0.0604 0.2793
WRS (SU ) 0.6303 0.6013 0.0696 0.3230
WRS (SG) 0.6104 0.5709 0.0639 0.3032
WRI 0.6164 0.5876 0.0648 0.3083

(b) user-image
Methods \Metrics MRR NDCG Recall@20 Prec@20

WRMF 0.1324 0.3589 0.0091 0.0332
WRS (SU ) 0.1424 0.3695 0.0104 0.0406
WRS (SI) 0.1305 0.3577 0.0094 0.0349
WRI 0.1430 0.3751 0.0108 0.0393

(c) group-image
Methods \Metrics MRR NDCG Recall@20 Prec@20

WRMF 0.3019 0.4614 0.0306 0.1360
WRS (SG) 0.3017 0.4622 0.0313 0.1363
WRS (SI) 0.2962 0.4636 0.0305 0.1350
WRI 0.3248 0.4804 0.0339 0.1457

tion tasks is benefited with the friendship network, while user-image and group-image
get improved with inter-relationship .



Chapter 4
Improving Classification Using

User Generated Videos

4.1 Introduction

With the rapid development of technologies in software and hardware, users can now
easily produce videos and share them in many social networks such Youtube, Face-
book and so on. One popular form of these recorded videos is monologue, where users
expressed themselves in speech in order to disseminate their ideas. Recently, many edu-
cational videos are created in this forms and are popularly shared, such as lecture videos
and conference presentations. This particular types of videos, often referred as spoken
documents, contains richer information in the speeches than other types and presents an
unique opportunity for analysis with the techniques developed for textual contents. In
this chapter, we explore the capability of textual mining with imperfect transcript from
spoken documents. Compared to link-based content, the transcripts are more informa-
tive and compatible with text mining techniques. However, they often contain errors and
their effectiveness as features for the mining task is still in doubt. Therefore, as first step
to exploit the multimedia data toward uncover user status, we aim to study the capabil-
ities of classification with noisy transcript by itself in this chapter. In order to compare
the performance, we study performance from both noisy and perfect transcripts. In ad-
ditional to the classification, our also study the keyword recommendation problem in the
noisy transcript. Existing methods usually focus on 1-gram keyword extraction. How-
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ever, sometimes, n-gram keyphrases (e.g., bi-gram like “black hole”) could indicate
hidden topics of documents better than 1-gram keywords (e.g., either “black” or ”hole”)
does. Therefore, how to extend existing keyword extraction to n-gram keyphrases ex-
traction is a challenge.

4.1.1 Problem Definition

4.1.1.1 Video Classification as Text Categorization Problem

Since the core intuition of our proposal is to treat the extracted transcripts of academic
videos as documents and apply conventional text categorization techniques to these doc-
uments, in this section, we cover three popular text categorization methods that will be
compared in our experiments (see Section 4.4.1).

The task of text categorization [37, 38] assigns a Boolean value to each pair hd
j

, c
i

i
belonging to D ⇥ C, where D is the domain of documents and C = {c1, c2, . . . , cN} is
the set of predefined categories. A value of T (true) assigned to hd

j

, c
i

i indicates that a
document, d

j

, is under a category, c
i

, while a value of F (false) indicates otherwise. In
other words, the text categorization task is to approximate the unknown target function
R0

: D⇥C ! {T, F}, by means of a function R : D⇥C ! {T, F} called the classifier
such that R0 and R coincide as close as possible.

4.1.1.2 Keyword Extraction

The key terms of a video refer to representative n-gram words that capture the main
topics or ideas of a video. Furthermore, we separately refer to a 1-gram and n-gram
(n � 2) key terms as a keyword and keyphrase, respectively. The key terms can
further facilitate users to efficiently search and browse target contents and help indexing,
summarization, classification, and clustering [39].

Despite the extensive investigation, we believe that existing studies still lack of two
aspects: (1) n-gram: Existing methods usually focus on 1-gram keyword extraction.
However, sometimes, n-gram keyphrases (e.g., bi-gram like “black hole”) could indicate
hidden topics of documents better than 1-gram keywords (e.g., either “black” or ”hole”)
does. Therefore, how to extend existing keyword extraction to n-gram keyphrases ex-
traction is a challenge. (2) Spoken Documents: Existing methods tend to focus on the
keyword extraction on written documents. However, the spoken documents which are
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Table 4.1. An example of noisy spoken documents.
Noisy transcript

the idea was introduced in the context of
that after he dropped carbon we don’t need to trade a car-
bon in order to have handedness an example shows is shown
by the oxidation abbas sulfide to solve oxide

Correct transcript
the idea was introduced in the context of a tetrahedral car-
bon but you don’t need a tetrahedral carbon in order to have
handedness and an example is shown by the oxidation of a
sulfide to a sulfoxide

transcribed by automatic speech recognition (ASR) in VDL have a substantial degree
of “errors” (as illustrated in Table 4.1) and present another challenge. The effectiveness
of keyphrases extraction on spoken documents has not been investigated fully. In this
paper, taking consideration with these two issues, we present our preliminary results of
study on the effectiveness n-gram keyphrase extraction from noisy spoken documents.

While 1-gram keywords are, in general, good representatives for a given spoken
document, when they are polysemous, they lack specificity, causing much confusion.
In such a case, using an extra word could improve the specificity. For example, using
“water bank” or “commercial bank” helps to clarify what the “bank” refers to. Further-
more, one thirds of human annotations tend to be n-gram keyphrases. To enable this
idea, therefore, we aim to extend the unsupervised tf-idf method (that [40, 41] reported
to be the best) to support keyphrase extraction as well.

The tf-idf weighing is a simple statistic scheme to identify words of high frequency
in pivot documents that do not appear frequently in the whole corpus. Let d be a docu-
ment in a corpora D, t is a term in d, whose frequency is tf

t

. Then the tf-idf score of t
is defined as: tf-idf

t

= tf
t

⇥ log( |D|
|Dt|), where |D| is the number of documents in D and

|D
t

| is the number of documents in D that have the term t.
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4.2 Related Work

4.2.1 Automatic Video Classification

Automatic video classification has been an active research area in recent year. The
video classification tries to classify a given video into one of the predefined categories.
The categories usually have conceptual or semantic meanings, such genres, subjects or
topics. For example, [42] classifies movies by its genre: comedy, horror, action and
drama/other movies, while [43] categorizes news videos into topics including politics,
daily events, sports, weather, entertainment, health, business, and science& technology.
A similar concept of video classification is the task of high-level feature extraction from
TRECVID, in which each participant is required to return a list of shots in the corpus
for each of the concepts, including indoor, outdoor, people, landscape, cityscape, etc.

The decision of a classification methods depend on the features of a video, including
audio, visual and textual features. Researches may use only one of them or a combina-
tion of them, which is usually referred to as multi-modal or fusion-based approach.

1. Audio features can be extracted from the audio channel and can be used to help
classification through different levels of audio understanding. For example, the
audio signature of the sound of a bouncing ball or a song playing in the back-
ground may be identified and help to make classification. For the audio signature,
zero-crossing rate (ZCR) [44] in the wave of audio and discrete cosine transform
(DCT) [45] in frequency domain can be extracted and used for the classification
method.

2. Visual features are very commonly used, which is often analyzed with cinematic
principles. For example, for action movies the editor often changes shots fre-
quently in a short period to make a perception of a fast rhythm to viewers. The
examples of such visual features include colors [46] and motions [47]. However,
most of academic videos have only speeches without dominant sound in the au-
dio channel, so it would be difficult to connect the sound itself to any academic
subjects. Moreover, academic videos usually have a small number of moving ob-
jects with little movement. The range of the camera motion and shot changes are
also limited. These monotonic visual features would be also of little help for our
classification task.
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3. Textual features can be viewable text, transcript or metadata of the video. Such
viewable text information are identifiable text data either filmed or added in post-
production in the video, such as license number on car plate or scores in a sport
game. The viewable text filmed in a video can be obtained by an optical character
recognition (OCR) process [48]. In addition, transcript which is the dialog in a
video can be obtained in their closed caption (CC) [43] or subtitle, or be extracted
by automatic speech recognition (ASR) software. CC and subtitle may not always
available while ASR can always be extracted if the video contains a speech (e.g.,
news or academic videos). However, as mentioned in Section 4.3.1, the accu-
racy of ASR against academic videos is much poorer than against regular videos.
Metadata of the video are descriptive information associated with the video. The
example includes file name, speaker name, title, length of video, etc. While some
academic videos in the Leedeo project provide valuable metadata, large portion
of them do not have any useful metadata, which makes video classification based
on metadata difficult.

Qi et al. [49] use audio and visual features to segment news videos into stories,
and then extract the text on the screen using OCR to classify the stories. Their method
has around 80% accuracy in classifying 2 hours CNN news videos. Zhu et al. study
the news story segmentation and classification with CC in [43]. They take advantage
of the demarcations feature of CC to segment news videos and classify them with a
weighted voting method. They evaluate the method by different percentages of training
sample with 425 CNN news stories and 8 categories and achieve around 75% accuracy
with 50% training samples. In [50], Lin et al. proposed a meta-classification strategy
with SVM on CC and visual features from image to classify 440 CNN news stories into
2 categories, i.e., weather-report and others. Using CC alone it has 100% precision.
Brezeale et al. classify 81 movies according to the movie genres, individual ratings
user and grouped user ratings with CC as textual feature and DC terms as visual feature
in [51]. From the result, CC consistently outperforms DC terms in all 3 tasks. In [52],
Wang et al. propose a text-biased approach which mainly uses ASR transcript as textual.
In addition, they use audio-visual feature as an extra clue to classify 559 CCTV news
stories into 10 categories. Their methods use SVM on the ASR transcript, which only
has around 10% error rate. From the result, the textual feature alone provides better
precision than the combined features in most categories. Percannella et al. also classify
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news videos using SVM on ASR transcript in [53], and study the impact of using only
parts of the news. Yang et al. report a study of classification of web-scaled videos by a
two modalities approach which takes advantage of metadata of videos on the source web
site [54]. The features used in this research include the titles, descriptions and tags of
web videos on the web site and other 3 visual features. In their experiment, the textual
features all outperform visual features and are comparative to the fusion of the features.

From the literatures, we conclude that the textual features have dominant impact on
the semantic video classification, but most works on video classification with textual
features focus on only news videos. Some studies report a better result when using
multi-modal features but the improvement is usually limited at the cost of substantial
time cost.

4.2.2 Spoken Document Retrieval and Classification

One notable earlier contribution on searching spoken document is the Spoken Docu-
ment Retrieval (SDR) track from TERC 6 to TREC 9[55]. The goal is to investigate the
retrieval methodologies on corrupted documents which are generated from automatic
speech recognition and whose true content may not be available. On this evaluation-
driven task, the participant implements a SDR system including two components: ASR
and IR. For each topic in the test topics, the IR component returns a list of relevant doc-
uments in a collection of transcripts, whose true relevancy is assessed later by human
judges. There are three tasks for the IR component: reference retrieval where a (nearly)
perfect transcript is used, baseline retrieval where a ASR-generated prepared by NIST
is used, and speech retrieval where ASR-generated transcripts participant’s ASR com-
ponent is used. In TREC 8, the dataset has 21,754 stories, 557 hours of news recordings
from ABC, CNN, Public Radio International, and the Voice of America. The closed-
captions of the recordings, though not perfect, are served as the perfect transcript. The
error rate ranges from 7.5% (for radio) to 14.5% (for videos) in estimation. NIST pro-
vided two sets of baseline transcript B1 which has 27.5% WER and 2.54% OOV rate,
and B2 which has 26.7% WER and 1.97% OOV rate. The best WER from participants’
ASR component is 20.5%. A conclusion made from the result is that retrieval perfor-
mance and word error rates have a near-linear relationship; however the performance
degrades very gently (5%) for increasing recognition errors (10 35%). With the fact
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that the speech retrieval has a similar performance to reference retrieval with a large
collection spoken documents, SDK is claimed as solved problem.

However, as pointed out in [56, 57], the recognizer in SDR is well-tuned for the new
video, resulting in a low range of WER and OOV rate as low as 1.97%. Moreover, news
speeches have many good properties that made the ASR task so successful. For example,
it is usually prepared beforehand and professionally recorded, and its language style is
close to written materials. There are many other spoken documents that don’t have such
properties, such as teleconferences or academic lectures, for which we may expect WER
above 50%, a range that is not investigated in SDR. Recently, several methods are pro-
posed to alleviate the problem by adding more possible words, such as N-best and lattice
[58, 59], in the transcript to reduce WER, and by sub-word modeling, such as phonemes
or syllables, to avoid OOV problem [60]. In particular, [61, 62] report experiment of
retreival on the academic corpous. Alternately, [57] uses acoustic model adaption with
discriminative acoustic modeling methods and language model adaptation learned from
the related materials such as companion textbooks to reduce the WER from 33.6% to
28.4% on 6.1 hours of audio of 5 lectures given at MIT. Spoken Document Classifi-
cation(SDC)is another fundamental task for understanding spoken documents. From
the literature, it gained less attention than gained the SDR. Essentially, a SDC system
connects the output of ASR to a Text Categorization (TC) module. The TC module ex-
tracts the features from the ASR-generated transcripts and performs classification with
learning method. It is suspected that the classification performance would be affected
by WER and OOV rate. As a result, several proposals are made with similar approaches
to SDC, toward reducing the WER and OOV rate. [63] summarized the previous works
into categories: the bag-of-words model, n-gram language model and sub-word model.
In [64], instead of only use the frequency of term in bag-of-word model as the feature
vector, the authors argument the vector with other linguistic sub-word units such as syl-
lables, phonemes, and character n-grams. Using additional sub-word units ameliorates
the fixed vocabulary problem while maintaining the semantic by words, at the cost of
very large dimension vector. The paper also discuss the coupling problem in SVM for
multiple-class classification and experiment their methods on TV and radio reports.

[65] compared the effect of classification with n-gram and different of sub-word
(phonemes, syllables, words)on perfect transcripts and ASR-generated transcript. The
test is conducted on 952 German radio programs, each of 5 minutes long, around 600
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words and human-annotated in one of two subjects: politics and science. On the 1-gram
ASR-generated syllables with only 30% accuracy, the result shows 6.7% and 48% drop
of F1 measure for politics and science, respectively, from the 1-gram perfect syllables
transcript. Overall, syllables and phonemes performs better than words on for perfect
transcript; however, the relationship is clear on ASR-generated transcripts.

[63] proposed a phonotactic-semantic approach which is a mix of n-gram model and
sub-word model to reduce OOV problem while achieving multilinguality and semantic
abstraction. In their bag-of-sounds model, a spoken document is transcribed into a pho-
netic transcript which is a essentially document of sound tokens, and TC is applied on
the transcript accordingly. This approach capture the sound characteristics of possibly
multiple spoken languages by a universal collection of acoustic segment models without
imposing any phonetic definitions. The method is evaluated with SVM and LSA on the
1996 NIST Language Recognition Evaluation (LRE) datasets which is original used for
spoken language identification problem. The test set includes 1,492 30-sec sessions on
12 languages that are also served as class labels. The result shows 18.2% reduction in
error over the benchmark performance.

4.2.3 Keyword Extraction

Supervised key term extraction has been well studied in the literature such as KEA [66],
which is one of the state-of-the-art keyphrase extraction methods, developed in the New
Zealand Digital Library project. Despite promising performance, the supervised frame-
work needs time-consuming labeling process by domain experts. On the other hand,
unsupervised extraction has been shown some promising results recently. Liu et al. [67]
studied the keyword extraction problem on meeting transcripts. Their work showed
that unsupervised extraction shares a similar performance with supervised extraction on
meeting transcripts. Hasan et al. [40] compared five state-of-the-art unsupervised key
term extraction methods (i.e. tf-idf, TextRank, SingleRank, ExpandLink and Clustering-
based approach), and found that the simplest tf-idf based approach outperforms all the
others on various corpora, including news articles, journal abstracts, conference papers
and meeting transcripts.

In addition, many useful features are only provided on the well structure of a doc-
ument. HaCohen-Kerner et al. [68] consider the position of a word in a sentence, the
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position of a word in a paragraph, and resemblance of a sentence to the title to select
keywords for scientific articles. Kim et al. [69] take advantage of the syntactic structure
of a sentence to extract the keyphrases in a scientific articles. However, these promising
deep linguistic features are not available for the spoken documents transcribed by ASR.

In addition to keywords, keyphrases sometimes could indicate hidden topics in doc-
uments better. Liu et al.[41] conducted a user study where users freely annotate any
word or phrase as key term. The final set of user annotation, it is reported that, consists
of 66% of keywords and 33% of keyphrases. Chen et al.[70] reported a similar mea-
sure of 38% keyphrases of human annotation in their study. These results indicate that
the use of keyphrases is substantial in human annotations. With the above observation,
therefore, we aim to extend the study of unsupervised tf-idf based extraction [40] to
keyphrase extraction and validate its effectiveness on erroneous spoken documents.

4.3 Proposed Methods

4.3.1 Classification Methods

The first step in text categorization is to deform the original document to the feature
space. A set of features of a document are represented by a high dimensional feature
vector, and each element of a vector is from a selected token in a document. In order
to obtain proper tokens from documents, we apply stem-process and reduce the unnec-
essary large dimension of a feature. Then, we apply stop-process to remove stop-words
such as a, the, or and.

In this study, we exploit three well known classification methods, i.e., Naive Bayes,
KNN, and SVM, based on supervised learning approach. In other words, with labeled
documents (i.e., the belongings of the categories are known), the proper classifier is
acquired using learning methods or algorithms by obtaining the classification function
of R. Note that these methods are known as good text classifiers, but the performance
has not been verified as spoken document classifiers, which contains many noisy words
from spoken-language or error-prone speech transcribers.

Spoken documents in our setting (i.e., extracted transcripts from academic videos)
are almost always very noisy due to several reasons: (1) Since academic videos are more
domain specific than regular videos (e.g., news or sports videos) are, often, vocabularies
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in academic videos are more peculiar and technical. Therefore, the accuracy of ASR
software drops significantly for academic videos; and (2) Since the majority of aca-
demic videos are still produced in non-professional environment, the quality of audio in
them is much poorer than are the videos professionally produced one, i.e., broadcasting
companies. Such poor quality of transcript causes the accuracy of ASR software sig-
nificantly to degrade when it is applied to academic videos. Therefore, it is not entirely
clear whether conventional text categorization techniques would work well for spoken
documents as well. We aim at answering this question in this section.

A naive Bayes classifier is a simple probabilistic classifier based on Bayesian the-
orem and is especially appropriate when the dimension of feature space is high [38].
Despite its simplicity, Naive Bayes can often outperform sophisticated classification
methods. The probability of a document d being in class c is computed as:

P (c|d) _ P (c)
Y

1knd

P (t
k

|c) (4.1)

where P (t
k

|c) is the conditional probability of token t
k

occurring in a document of
class c and n

d

is the total number of tokens. To find the most probable class in text
categorization, we compute maximum a posteriori (MAP) class c

map

:

c
map

= argmax

c2C
ˆP (c|d) = argmax

c2C
ˆP (c)

Y

1knd

ˆP (t
k

|c) (4.2)

Since the parameter P (c) and P (t
k

|c) in the equation (4.1) is estimated by training sets,
we use ˆP instead of P . ˆP (c) is simply computed by Nc

N

, where N
c

is the number of doc-
uments in class c and N is total number of documents. ˆP (t

k

|c) can be estimated as the
relative frequency of token t in documents belonging to class c such as TctP

t02V Tct0
, where

T
ct

is the number of occurrences of t in training documents from class c. Since some
tokens may not appear in certain classes, we may have zero in the equation (4.2). Thus,
Laplace smoothing is applied to ˆP (t

k

|c) such that they become: Tct+1P
t02V Tct0+1 . For the

case of academic spoken language, specially obtained by automatic speech recognition
(ASR) transcriber, many inadequate words such as hm or ah are commonly found and
thus removed during a preprocessing step. Therefore, the naive Bayes classifier can be
directly applied to the noisy transcripts, because the key words will be kept with highly
weighed value.
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K-nearest neighbor (KNN ) is one of the simplest machine learning algorithms [71].
A document is classified by the majority of K closest neighbors. For example, if K =

1, the unknown document will be classified by the known nearest neighbor (or class).
KNN consists of two steps like other supervised algorithms. In the training step, the
KNN classifier selects training set of documents and sprays them to the appropriate
positions of the multi-dimensional field for the proper uses in the classification step.
The unknown test documents are classified by K nearest known neighbors positioned
in the training step. We use Euclidean distance in our feature space, i.e., distance

i

=

||d
i

� d0||, where d0 is a test document and d
i

is a training document.
The support vector machine (SVM) classifier finds linear hyperplane boundaries in

input feature space [72]. In this section, we start from two-class model and then expand
it to the multi-class model.

If training data consists of N pairs (x1, y1), (x2, y2), ..., (x
N

, y
N

), with x
i

2 Rp and
y
i

2 {�1, 1}, the hyperplane is defined by {x : f(x) = xT� + �0 = 0}, where �

is a unit vector, i.e., ||�|| = 1. In addition, the classification rule induced by f(x) is
G(x) = sign[xT� + �0]. To obtain the biggest margin, in the case of overlapped classes
(i.e., not separable), by defining the slack variables

min ||�|| subject to
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Since the problem in Equation (4.3) is quadratic with linear inequality constraints,
it becomes a convex optimization problem. With Lagrange multipliers, Equation (4.3)
is re-expressed by min

�,�0
1
2 ||�||

2
+ �

P
N

i=1 ⇣i, where � replaces the constant. Note that
the separable case corresponds to � = 1. To acquire lower boundary, we need to
maximize the Lagrangian dual object function, L
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, . . . ,↵
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} is Lagrange
multipliers.

Generally, the support vector machine extends the dimension of the original fea-
ture space to achieve linear boundary separations in the enlarged space, corresponding
to non-linear boundaries in the original feature space, using selected kernel function,
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K(x, x0
) = hh(x), h(x0

)i. As a result, the decision function can be re-written as:

ˆG(x) = sign
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i=1
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i

K(x, x
i

) +

ˆ�0

#
. (4.4)

Note that the details of induction procedure were omitted, because of space limit.
As we discuss earlier, SVM is subject to find hyperplane boundaries for 2-class

classification. However, in many cases, we should classify more than 2 classes. For
example, in our experiments, 17 classes exist in data sets. Thus, we compute the number
of SVM one-by-one bases, hence the total number of SVM is 17(17�1)

2 = 136. For test
data, we apply all decision functions and the majority of selected classes is decided as
the belonging of input data.

4.3.2 Heuristic Keyphrase Extraction

The challenge to extract keyphrases using tf-idf based method lies on the fact that the
frequency of keyphrases is usually much smaller than that of keywords. Therefore,
often, deciding the importance of a keyphrase purely based on its tf-idf scores is inac-
curate. In particular, note that tf-idf approach does not take the importance of sub-terms
into consideration. Two keyphrases, say “commercial bank” and “water bank”, would
have the same importance if they have the same tf-idf score (i.e., both appeared k times
in the corpus). However, individually, if the sub-term “commercial” has a higher tf-idf
score than “water” has, then “commercial bank” should bear a higher importance than
“water bank” would have. In addition, to make matters complicated, we observed that if
context is clear in a document, people tend to use shorter words instead of repeating the
whole keyphrase. For example, in an article regarding “normal distribution”, the author
may simply use “the distribution” to refer the full phrase.

Based on above observations, we proposes to extend the tf-idf based keyphrase ex-
traction to incorporate the sub-terms’ scores, thus taking the importance of sub-terms
into consideration. However, simply boosting the score of the phrases by its sub-terms’
score may lead to a set of very similar keyphrases extracted. For instance, a term “bank”
with a high tf-idf score may appear in many keyphrases such as “commercial bank”,
“water bank”, “bank loan”, etc. Therefore, over-boosting all these keyphrases’ score
due to the “bank” may push all keyphrases in high ranks, leading the skewed keyphrase
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extraction. Therefore, we have to adjust weighting for different n-gram keyphrases and
iteratively discount the weights of sub-terms from the already-extracted keywords.

Formally, let T = {t1, t2, ..., tm} be a candidate set of key terms, where each t
i

(=
w

i,1wi,2...wi,n

) is an n-gram key term candidate, and s(t
i

) is the tf-idf score of the term
t
i

. Let t1=“probability distribution”, then w1,1=“probability”, and w1,2=“distribution”.
Our extraction runs in two steps:

1. Boost. We compute the normal tf-idf scores for all t’s sub-terms. Then we boost
their score as follows:

s
new

(t) =
nX

k=1

↵
k

n�k+1X

j=1

s(w
j

w
j+1...wj+k�1)

where ↵
k

are the weight for k-gram terms. After the boosting, we select the top
ranked n-gram keyphrase and remove it from the candidate set T .

2. Discount. For the keyphrases selected in step 1, we discount the scores of all its
sub-terms, and redo the calculation to select the next keyphrase. �

k

is a discount-
ing parameter to decide how much the original score of a k-gram term should be
diluted.

We repeat both boost and discount steps until the termination condition is met (e.g.,
the desired number of key terms are found). The details of the steps are shown in
Algorithm 4.

4.4 Experimental Validation

4.4.1 Video Classification

4.4.1.1 Experimental Setup

The Naive Bayes (NB) and KNN algorithms are implemented in Matlab 7.0, while
SVMlight [73] is used for the SVM implementation. All experiments were conducted
on a HP Desktop with Intel Quad-core 2.4GHz, 4G RAM, and Windows Vista OS.

Data Set. To experiment our proposal, ideally, we need a data set that have sufficient
number of video clips with various subjects. Moreover, to understand the impact of



80

Algorithm 4: Boost & Discount
input : l, number of keywords to be selected.
output: R, set of keywords

repeat
for t in the candidate set T do

s(t) 0

for k = 1 to n do
kgram scr  0

for j = 1 to n� k + 1 do
kgram scr  kgram scr + s(w

j

w
j+1...wj+k�1)

end
s(t) s(t) + ↵

k

⇥ kgram scr
end

end
add t0 that has the highest score to R
remove t0 from T
for k = 1 to n do

for i = 1 to n� k + 1 do
s(w1w2...wi+k�1) �

k

⇥ s(w1w2...wi+k�1)

end
end

until l keywords are selected;

noise in transcripts, the data set should have human-transcribed perfect-quality1 tran-
scripts. As a raw data set that meets these requirements, we chose the Open Yale

Courses project2 that provides a collection of introductory course videos and tran-
scripts taught by faculty at Yale University. The collection includes 25 courses from
17 subjects. The number of lectures in each subject ranges from 20 to 37 while the
length of lectures in each subject ranges from 35 to 90 minutes. The total running time
is over 585 hours. Table 4.2 summarizes the statistics of the Yale data set. The Yale data
set provides different formats of media for browsing such as video, audio, and human-
transcribed transcripts.

Speech Recognition. The work of our speech recognition is based on Sphinx 4.0, one
of the state-of-the-art hidden Markov model (HMM) speech recognition systems which

1While it is possible for human-transcribed transcripts may still have errors, compared to automatically
generated ones, we believe their quality must be much more superior. Therefore, in this experiment, we
consider human-transcribed transcripts as “perfect” ones.

2http://oyc.yale.edu/
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Subject # Courses # Lectures Length(hh:mm)
astronomy 1 24 18:48

bio-engineering 1 25 19:49
chemistry 1 37 30:04
classics 1 24 28:29

ee-biology 1 36 27:28
economics 2 26,24 59:34

english 4 26,26,24,25 87:05
history 3 27,24,24 60:25

history-of-art 1 23 27:36
italian-lang-lit 1 24 28:20
mcd-biology 1 24 27:02

music 1 23 19:01
philosophy 1 26 20:42

physics 1 24 28:43
political-sci 1 24 17:35
psychology 2 20,23 44:56

religious-studies 2 26,24 39:43
Total 25 633 585:20

Table 4.2. Statistics of the open Yale courses data set.

is a open source project from CMU [74]. In this pluggable framework of speech recog-
nition, three main components exist, i.e., FrontEnd, Linguist, and Decoder. In our ex-
periment, we use WordPruningBreadthFirstSearchManager as the search manager in the
decoder and LexTreeLinguist as the Linguist. We adopt HUB4 acoustic model that have
been trained using 140 hours of 1996 and 1997 hub4 training data which are continu-
ous speeches from broadcast news [75]. We also use HUB4 language model which is a
trigram model built for tasks similar to broadcast news. The vocabulary includes 64000
words.

Synthesized Test Sets. From the original Yale data set, next, we synthesize multiple
test data sets for our experiments as follows:

(1) Cross Validation: To divide the data set into training and testing sets, two splits
are considered: 5-fold cross validation (CV) and course split (CS). First, in the CV test
set, for each subject, randomly chosen 80% of transcripts are used for training, while
remaining 20% for testing. This CV process repeats 5 times, and we measure the average
at the end. Second, in the CS test set, for those subjects with more than 1 course (e.g.,
English and History), one course is chosen as the training set while another as the
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testing set. While CV test sets aim to test whether subject can be determined given part
of the lectures of a course, CS test sets aim to test whether subject can be determined
given a complete new course that has not been studied for a classifier. Therefore, in
general, CS test sets are more difficult than CV test sets.

(2) Term Weighting: Text categorization methods take a term matrix as an input,
which is extracted from transcripts with various term weighting schemes. There are 4
term weighting schemes used in our experiments, i.e., txx, tfx, txc and tfc (us-
ing the notations from SMART system [76]), where t, f, c, and x indicates raw term
frequency, inverse document frequency, cosine normalization, and none, respectively.
For each transcript, we prepare 4 versions with txx, tfx, txc and tfc weighting
schemes. The size of the overall term matrix is 31,762 terms and 634 documents after
Porter’s stemming.

(3) Quality of Transcripts: To compare the impact of the quality of transcripts in
video classification, we compare three test sets: (i) a perfect transcript by human scribers
(PF), (ii) an erroneous transcript with synthetic errors by Edit operations (i.e., insert,
delete, and substitute) (SE), and (iii) an erroneous transcript by ASR software (SR).
The quality of transcript is estimated by Word Error Rate (WER), which is based on
minimum edit distance of the erroneous transcript relative to a perfect one [77] defined
as: WER =

# of insert+delete+substitute
# of words in the perfect transcript .

(4) Length of Transcripts: Finally, full version vs. abbreviated test sets of transcripts
are examined to see the impact of the length of transcripts for classification. For the
abbreviated versions, we use the simple scheme of the first 10% of the first 10 minutes
of total length of each transcript.

Evaluation Metrics. For the evaluation metrics, we consider F-measure in two pop-
ular averaging metrics to calculate the result of our multi-label classification task, i.e.,
macro-averaged F-measure (MacroAF), and micro-averaged F-measure (MicroAF). The
macro/micro-averaged F-measure is determined by the macro/micro-averaged precision
and recall. To calculate macro-averaged precision (MacroAP), the precision for each
class is firstly calculated separately and then the MacroAP is calculated by taking the
average of precisions across all classes. On the other hand, in micro-averaged preci-
sion (MicroAP), each transcript is given an equal weight so the MicroAP is the average
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precision of the data set as a whole. Formally, the averaging metrics are defined as:

MacroAP =
1

|K|

|K|X

i=1

TP
i

TP
i

+ FP
i

,MicroAP =

P|K|
i=1 TPi

P|K|
i=1 TPi

+ FP
i

where TP
i

and FP
i

are the number of true positive and false positive for class i, respec-
tively. The macro/micro-averaged recall (MacroAR/MicroAR) are defined in a similar
fashion. Finally, MacroAF and MicroAF are defined as the harmonic mean of MacroAP
and MacroAR, and that of MicroAP and MicroAR, respectively.

4.4.1.2 Result of Perfect Transcript

First, we assess the result of the baseline test, i.e., subject classification using perfect
transcripts. Figure 4.1 (a) shows the baseline result of Naive Bayes (NB) method. For
CV test set, the tfxweight scheme has the highest MacroAF and MicroAF (i.e., around
0.99), while the txc has the lowest MacroAF and MicroAF (i.e., 0.06 and 0.16, respec-
tively). For much harder CS test set, overall F-measure drops by 40% from CV case.
Among weighting schemes, it appears that t (term frequency) and f (inverse document
frequency) play the major role, while somehow c (cosine normalization) works against.
Note that in the CS test set, if two courses A and B are significantly different in their
contents even if both belong to the same subject (say two courses “Computer Vision”
and “Relational Databases” in Computer Science), then training using one course does
not necessarily help in testing the other course. Therefore, in general, we expect a sharp
drop in precisions when we compare CV to CS case. Second, the baseline result for
the SVM method (with linear kernel and C = 1) is shown in Figure 4.1(b). All 4 term
schemes have good F-measure ranging from 0.92 to 0.99. The F-measure for tfx and
tfc against CS test set are around 0.6, while those of txx and txc are below 0.3.
Overall, for CV test set, SVM method shows a promising result, especially compared to
the other two text categorization methods. Finally, Figures 4.1(c)–(d) show the baseline
result of the KNN method with K = 7, 13, and 25. All term schemes have F-measures
exceeding 0.9, except for tfx weight scheme whose precision is around 0.6% ⇠ 0.7%.
For a much harder CS test set, F-measures rapidly drops compared to CV case. The best
weighting schemes for CS case are tfc and txx which achieve F-measures around 0.4.
On this baseline test, we observed that NB and KNN are more subject to the choice of
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(a) Naive Bayes (NB) (b) SVM

(c) KNN (CV)

(d) KNN (CS)

Figure 4.1. Precisions using perfect transcripts.

weight scheme, and that micro-averaging and macro-averaging have similar results on
our dataset.
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4.4.1.3 Effect of the Noise of Transcript

Although there are a large number of academic videos available on the Web, the avail-
ability of their perfect transcripts are very limited since human transcription is an expen-
sive and time-consuming task. Meanwhile, automatic speech recognition (ASR) soft-
ware can generate imperfect machine-transcribed transcripts at decent speed and cost.
At the time of the writing, however, the word error rate (WER) of the state-of-the-art
ASR system is around 10% for broadcast news and around 20% for conversational tele-
phone speech as reported in [77]. Moreover, as discussed in Section 4.3.1, when ASR
system is applied to academic videos, its WER increases even further due to poor audio
quality and peculiar vocabularies used. While conventional text categorization meth-
ods perform relatively well (especially for CV test sets) in Section 4.4.1.2, we wonder
if that remains true with “noisy” transcripts which are more commonly encountered in
practical settings. However, an ASR recognizer interacts with several models and the
complexity limits the possibility of predicting its behavior. Instead of building a model
of possible output from an ASR recognizer, we take a approach of simulation to study
relation of different levels of noisy transcripts and classification performance in term of
precision.

Synthetically Erroneous Transcripts (SE). The synthetically erroneous transcript al-
lows us to simulate different levels of WERs and the impact of edit operations therein. In
our experiment, 3 different edit operations (i.e., add, delete, and substitute) are
simulated independently on all the perfect transcripts as follows: (1) Addition: a num-
ber of terms for specific error rate are selected in a uniformly random fashion and their
term frequency is added by one. A term can only be selected once; (2) Deletion: a fixed
number (100 by default) of terms whose frequency are greater than zero are selected in
a uniformly random fashion, and their term frequency is deducted by one accordingly.
This procedure repeats until the total number of desirable deletions is achieved; and (3)
Substitution: we performs aforementioned deletion followed by the insertion.

The MacroAF and MicroAF for insertion are shown in Figure 4.2. The SVM method
performs well and remains stable for all 4 term weighting schemes. The NB has the best
precision with txx and tfx but the performance with tfc slightly decreases when
WER goes high. Again, txc does not work well in this task. Precision for KNN (K=7)
ranges from 0.7 ⇠ 0.9 except with tfc which is around 0.8. In conclusion, when
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Figure 4.2. Precision of SE test set with addition.
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Figure 4.3. Precision of SE test set with deletion.

transcripts have errors due to insertion operations, the performance changes depending
on the chosen weighting schemes, but it remains robust even if WER increases. Both
MacroAF and MicroAF have very similar pattern.

Figure 4.3 shows the result with deletion. For SVM, only txx and txc work well
initially but their precisions decrease as WER increases, especially WER exceeds 0.6.
The results of KNN are similar to those of SVM but a little worse for all 4 weighting
schemes. NB has only txx working, whose precision drops sharply after WER of 0.7.
Figure 4.4 shows the result for substitution. When WER is low, the results are similar
to the results of insertion for 4 weighting schemes. The performance slightly decreases
as WER increases and drops sharply after WER of 0.8.
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Figure 4.4. Precision of SE test set with random substitution.

4.4.1.4 Effect of the Length of Transcripts

In this section, we investigate the impact of length of the transcript to the video classifi-
cation. We test 3 cases on the length of transcript including the first 1%, 5%, and 10%
of perfect transcript and ASR-generated transcript. The intuition to shorten the length
of transcripts by taking the first 1–10% is that in many academic videos such as lecture
or presentation videos, speakers often give a summary of the talk in the beginning. On
average, the length of the first 10% of perfect transcripts and the first 10 minutes of
ASR-generated transcripts is around 600 and 1000 words, respectively.

Figure 4.5 shows a comparison of all three methods on different length of perfect
transcripts with CS grouped by weighting schemes. In Figure 4.5(a), tfx scheme shows
the best accuracy, i.e., using only the first 1% of transcripts, NB could achieve the F-
measure of 0.9. In Figure 4.5(b), tfc scheme which has the best performance, shows
roughly the same results using the 100%, 10%, and 5% of transcripts, but has a sharp
drop from 5% to 1%. The F-measure of other schemes also decrease, but have larger
differences when moving from 100% to 10% and to 5%. In Figure 4.5(c), SVM has
high F-measure regardless of the chosen weighting scheme. This is similar to the results
of tfc with KNN and tfx with NB. We believe if a method (with a specific weighting
scheme) has a strong precision and recall, the length of transcripts used in the classi-
fication has less impact on them. Even with, 1% of the length, it is still possible to
achieve the F-measure of 0.8. On the other hand, above a threshold of certain length,
the F-measure becomes stable.
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Figure 4.6 shows the result of using the different length of ASR-generated transcript.
For NB, tfx shows the best result in which MicroAF reaches 0.81 with the first 5%
transcripts. MicroAF reaches 0.92 with the first 10% transcript, which is comparable
to the result on the first 10% perfect one, 0.95. For KNN, only tfc can be considered
effective, whose F-measure is 0.5 with the first 1% of transcript, and improves to 0.80
with the first 10%. For SVM, all weighting schemes show similar performance. The
F-measures are between 0.5 0.6 on the first 1% transcript, and improve to 0.8 0.9 on the
first 5% one.

From this experiment, we observed that, with a good choice of term weighting,
the result of the first 5% of full length is comparable to that of full length transcript.
For ASR-generated transcript, we need at least the 10% to reach similar performance.
Moreover, we may conclude that for: (1) The text categorization is susceptible to the
choice of term weighting scheme; (2) The CS test set is more difficult to classify and
may need be studied further; and (3) The impact of the quality and length of transcript
exists, but not substantial. Validated with the CV test set, all three text categorization
methods can achieve the F-measure over 0.8 with a good choice of weight scheme.
However, in general, SVM shows the most robust performance.

4.4.2 Keyword Extraction

4.4.2.1 Experimental Setup

Data Set. We used Open Yale Courses collection3 as the corpus. The collection con-
sists of hundreds of lecture recordings taught in Yale University. It includes dozens of
subjects from 20 different departments, making both ASR and key term extraction tasks
challenging. For each lecture, the collection provides a near-perfect human-transcribed
transcript (i.e., Reference), used as a ground truth. Then, for each lecture, we prepared
ASR-generated transcript (i.e., Hypothesis) using Sphinx 34 with acoustic and language
models trained with the HUB4 news data set. Table 4.3 shows basic statistics of the
subjects of selected lectures.

Before the extraction task, we preprocessed both references and hypotheses with
stop words removal, part-of-speech filtering, and lemmatization. While keyphrase can

3http://oyc.yale.edu/
4http://cmusphinx.sourceforge.net/
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(a) Naive Bayes (NB)

(b) KNN (K=7)

(c) SVM

Figure 4.5. Comparison using different length of perfect transcripts on CV.

include any n-gram terms with n � 2, in this experiment, we focused on the compari-
son of 1-gram (i.e., keyword) and 2-gram terms (i.e., keyphrase) since the frequency of
3-grams (and beyond) is comparatively low in our corpus after preprocessing. The user
study aims to compare the performance of original tf-idf extraction and our proposed
method on both types of transcripts. We randomly selected one lecture from each sub-
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(a) Naive Bayes (NB)

(b) KNN (K=7)

(c) SVM

Figure 4.6. Comparison using different length of ASR-generated transcripts on CV.

ject in the collection and had three users review it. The average word error rate (WER5)
estimation for hypothesis is 45.78%. Note that the WER is relatively high since many
courses contain challenging conditions for ASR–e.g., cross languages, multiple speak-
ers, poor recording quality, etc. However, the average correct words percentage (CWP6)

5WER = 100⇥ Insertions+Substitutions+Deletions
Total Words in Reference

6CWP=100⇥ Words Matched in Edit Distance Alignment
Total Words in Reference
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Table 4.3. Statistics of the subjects of selected lectures.
Subjects Ref. Len. Hyp. Len. WER (%) CWP (%)

astr 7220 7468 31.48 75.72
beng 6989 7470 28.56 80.70
chem 8716 8920 54.51 55.79
clcv 9975 10611 37.39 72.01
econ 9827 9040 60.81 49.45
eeb 6717 9995 37.20 69.11
engl 6209 6830 42.87 70.46
hist 6771 7614 52.77 64.94
hsar 12200 13095 42.62 68.21
ital 9569 10864 75.70 41.11

mcdb 9906 9982 45.19 61.85
musi 5656 6383 44.55 70.77
phil 7727 7742 38.02 67.09
phys 11624 11157 65.84 38.82
plsc 5791 6215 33.33 75.70
psyc 10537 10595 37.95 67.76
rlst 8670 9004 41.49 66.54

Mean 8212 8646 45.78 64.84

is 64.84%, more appropriate to represent the quality of hypotheses based on the bag of
words model of tf-idf.

Evaluation. For 1-gram key terms, top 15 key terms are extracted with original tf-idf
extraction on references (ref-1g), and hypotheses (hyp-1g). For 2-gram key terms, top
10 keywords are extracted with tf-idf extraction on references (ref-2g-tdf) and on hy-
potheses (hyp-2g-tdf), with our proposed method (i.e., Boost & Discount) on references
(ref-2g-bd), and on hypotheses (hyp-2g-bd). We ran a preliminary test and manually
checked the results to select the parameters ↵ and �. Empirically, a uniform weighting
for each term works well. Therefore the following values are used: ↵

k

=

1
n(n�k+1) and

�
k

=

1
2 . All key terms extracted with different settings are then pooled into 1-gram

candidate set and 2-gram candidate set according to the number of grams, and sorted
so that order has no significance. For each lecture to be judged, users are presented
with its reference and two pooled sets of key term candidates. Users then pick one to
five key terms that are most representative to the reference from the two candidate sets
separately. The limitation on the number of term to be selected aims to test if the sys-
tems can generate the best (rather than just relevant) key terms. Note that this is a more
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Table 4.4. An example of extracted key terms.
ref-1g hyp-1g

probability probability
finance insurance

nala finance
insurance distribution

ref-2g-bd (our proposal) ref-2g-tdf
probability theory random variable
random variable probability theory

independent probability interest rate
insurance company black swan

Table 4.5. Comparison of keyphrase extraction.
Top 10 Keyphrases

settings ref-2g-bd ref-2g-tdf hyp-2g-bd hyp-2g-tdf
# of selection 4.21

# of terms from 3.05 2.55 2.47 1.97

restrictive condition and will generally reduce the precision. As the human judges, 15
graduate students with science or engineering majors were recruited.

Many previous studies used a set of human annotated key terms as a gold standard
and compared the outputs from proposed extraction system against the gold standard to
evaluate the performance. However, this method may not evaluate the precision accu-
rately since the quality of the key terms is not directly judged. To test the effectiveness of
extracted key terms and provide a fair ground for the comparison of different methods,
therefore, we propose to use the TREC style pooling method [78], where top-ranked
retrieved documents from all systems are “pooled” together and the relevance of each
documents in the pool is judged individually by human judges. The main difference
of the proposed evaluation to the gold standard method is that the judges evaluate the
effectiveness of extracted key terms directly (instead of proposing their own key terms).

4.4.2.2 Original tf-idf vs. Boost & Discount

In the user study, a human judge is presented with a set of key term candidates which
are top-10 outputs from four different settings. Table 4.4 gives an example of extracted
key terms. We are interested in finding out the methods that contribute more number of
key terms selected by human judge. The average size of the pool is 18.48, indicating
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Figure 4.7. Impact of ranks on keyphrase extraction.

that those methods share a number of terms.
Table 4.5 shows the summary of what human judges selected. On average, judges

selected 4.21 key terms. Among these selection, 1.97 are attributed to hyp-2g-tdf while
2.47 terms to hyp-2g-bd. That is, our proposed B&D method is about 25% more accu-
rate over the tf-idf method using the hypotheses data set, with a statistically significant
difference (p < 0.01). Our method also has an improvement of 19%, from 2.55 for
ref-2g-tdf to 3.05 for ref-2g-bd (P < 0.03).

The impact of the ranking across different methods is also investigated, as shown
in Fig 4.7, where X-axis is the number of rank used and Y-axis is the precision (i.e.,
the proportion of accumulated key terms selected by users). For example, if a method
suggests 5 key terms (in top-5 rank) from ref-2g-bd and 2 of them are also selected by
human judges, the precision becomes 40%. The figure shows that our B&D method out-
performs the tf-idf extraction method over all the ranks using both types of transcripts.

The td-idf statistics is known to be susceptible if domains of documents vary [79].
Since our Yale data set contains a dozen different subjects, in Figure 4.8, we studied
the impact of unsupervised extraction on different knowledge domains with hyp-2g-bd
and hyp-2g-tdf. Each data point indicates the averaged precision from lectures under
different subjects. As demonstrated, precision varies across different subjects. Over-
all, subjects such as engineering show better precision. Biomedical Engineering (beng),
Ecology & Evolutionary Biology (eeb), and Molecular Cellular and Developmental Bi-
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Figure 4.8. Precisions across different subjects.
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Figure 4.9. Precisions across different CWPs.

ology (mcdb) are subjects that showed the highest precision. Religious Studies (rlst)
and Italian Language and Literature (ital), however, showed lower precisions, partly due
a substantial use of non-English words in spoken documents. Finally, Figure 4.9 shows
that our proposal shows improved precision over the tf-idf approach across all ranges of
CWP.
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Table 4.6. Comparison btw. hypothesis and reference.
Top 15 Keywords

Settings ref-1g hyp-1g
# of selection 5.55

# of terms from 4.28 4.16

4.4.2.3 Hypothesis vs. Reference

Next we study the impact of erroneous transcripts. First, we note that from the top 15
keywords extracted, ref-1g and hyp-1g have an average overlap rate of 52.53%, having
about 7.88 number of terms in common. On average, 5.55 number of 1-gram keywords
are selected per lecture. From the results, as shown in Table 4.6, we found 4.28 of them
are from ref-1g and 4.16 are from hyp-1g. It shows that the 1-gram keyword extraction
on hypotheses have very similar performance, though inferior but not significantly, to
that on references. For the 2-gram keyphrases, as shown in Table 4.4, the overlap rate
is 39.6% between ref-2g-bd and hyp-2g-bd on average among the top 10 key terms
extracted. The result shows 2-gram keyphrase extraction on hypotheses has 19% degra-
dation than that on references with the proposed method. The tf-idf method has 22%
degradation. The larger degradation, however, is expected since 2-gram keyphrases are
harder to be correctly recognized in ASR process. For instance, if “digital library con-
ference ” is recognized as “digital signal conference”, then the CWP would be 66% for
1-gram terms but 0% for 2-gram terms.

4.5 Conclusion

We have conducted comparative study on the subjects classification of academic videos
with various methods. For the study, we transformed the video subject classification
problem into the text categorization one by exploiting the transcripts of videos. We
also investigated the impact of plausible factors, such as noise/quality of transcripts and
the length of a video with three popular text categorization methods. Our experimental
results shows that SVM promises the best result in both CV and CS cases. In terms
of term weights, tfx is good in NB and SVM, but not in KNN, while tfc is good in
SVM and KNN, but not in NB. From the synthetically erroneous transcripts test, we
observed that the learning methods with a good choice of weighting scheme is very
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robust even though 70% of the transcript is incorrect. In addition, the learning methods
is dependable when only a small part of transcript, human or machine transcribed, are
available.

We also proposed a heuristic improvement for the unsupervised keyphrase extraction
by incorporating the importance of sub-terms in an iterated fashion, and validated its
effectiveness with a pooling method. Our method shows 25% improvement from the
original method on ASR-generated transcripts. The proposed method also made 19%
improvement on reference transcripts. The user study shows that keyword extraction on
erroneous ASR-generated transcripts is almost effective as that on references, with only
2.8% decrease of accuracy. Compared to the keyphrases from references, however, the
effectiveness degrades to 19.3% for keyphrases due to the ASR difficulties.



Chapter 5
Conclusion

5.1 Conclusion

For the location estimation problem, we proposed a novel approach to estimate the spa-
tial word usage probability with Gaussian Mixture Models. We also proposed unsu-
pervised measurements to rank the local words to effectively reduce the noises that are
harmful to the prediction. We show that our approach can, using less than 250 lo-
cal words, achieve a comparable or better performance to the state-of-the-art that uses
3,183 local words selected by the supervised classification based on 11,004 hand-labeled
ground truth. For the demographic status prediction problem, we showed that using text
feature is effective in predicting various user statuses.

For the item recommendation task, the proposed new view of a social network ac-
commodates rich relationships in a system. The proposed co-factorization framework
based on same characteristics principle shares a common latent space for the same type
of entities, thus effectively connecting different recommendation tasks, and side infor-
mation. As a results, both WRS and WRI showed significant improvement over WRMF ,
indicating its effectiveness in exploiting self-relationship and inter-relationship , respec-
tively. The data sparseness is also alleviated from the more substantial improvement
with the Given 20 split. However, we also learn that adding multiple relationships might
not always gain extra improvements. Overall, the user-group recommendation tasks is
benefited with the friendship network, while user-image and group-image get improved
with inter-relationship .

In the study on classification of noisy textual content, we learn that the perfor-
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mances are comparable between perfect content and noisy content through extensive
experiments with different classification methods. We also found that SVM yields most
promising result for both CV and CS cases. As for the feature selection, tfx works
well with NB and SVM, but not with KNN, while tfc works well with SVM and KNN,
but not with NB. We also observed that the classification is in general very robust even
with the presence of noisy content up to 70%. The learning methods is dependable when
only a small part of transcript, human or machine transcribed are available. Finally, our
proposed heuristic keyword extraction takes the importance of sub-terms into account.
Evaluated with a pooling method, the results show 25% improvement over the original
method with noisy content, and 19% improvement with perfect content. The user study
shows the keyword extraction equally effective for noisy content as opposed to the per-
fect content. However, the effectiveness degrades to 19.3% for keyphrases due to the
ASR difficulties.

Many directions are ahead for future work. For the location estimation problem, to
further improve accuracy is one of them. Discriminative method tends to have better
results than a generative method. Applying our local word selection with discriminative
method might be another one. On the other hand, social relation has been shown to be
effective in recent studies. Incorporation of additional features to the textual based ones
might also help the performance. Furthermore, extending the current work to predict the
user mobility is another interesting direction.
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