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ABSTRACT 
 

The machine vision community has expended tremendous effort in the research and 

development of algorithms in an effort to develop a system that is capable of seeing the world as 

humans do. These algorithms often focus on the accomplishment of specific tasks analogous to 

human vision such as scene awareness, object detection, object recognition, and object tracking. 

Joining forces with cognitive neuroscientists has steered much of this research towards the 

development of algorithms that not only accomplish the required tasks, but endeavor to do so in a 

biologically inspired fashion.  Still, development and evaluation of these so-called neuromorphic 

algorithms is often done in isolation, with little regard given to the rest of the system necessary to 

make this human-like system a reality.  

This dissertation provides a framework for the current and future development of 

complex and highly integrated multi-algorithm vision systems.  This framework not only enables 

the composition of such systems, but enables seamless development and integration of improved 

algorithmic modules.  In addition to this high-level system composition framework, the Cerebrum 

tool, targeted at development of hardware-accelerated architectures is detailed in this work. This 

tool enables the creation of such hardware-based accelerators by researchers and engineers 

without specific or detailed knowledge of the target hardware platform. 

In addition to the framework and tools, this dissertation also details the analysis, 

development and evaluation of hardware accelerators for HMAX object recognition and AIM 

saliency detection. Armed with this intelligent framework and algorithmic accelerators, 

demonstrations of vision systems that leverage multiple algorithms are constructed and evaluated. 

Hierarchical object classification, leveraging the benefits of Exemplar SVM and 

accelerated HMAX is shown to provide performance superior to either algorithm in isolation. 
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Furthermore, a more complex system, targeting the domain of personal retail assistance is 

composed and demonstrated for the benefit of visually impaired persons. 

With an eye towards future systems, this dissertation also serves to evaluate and explore a 

number of technologies whose time is coming.  New transistors, such as Tunnel FETs, and novel 

architectures, such as coupled oscillator arrays, are examined to identify benefits and concerns in 

their use for the development of future visual systems, both at the algorithmic and 

circuit/component level. This work also explores the potential for inclusion of additional data 

modalities, such as audio, for a more effective understanding of scene awareness. 

The flexibility of the framework described here enables the inclusion of these emerging 

devices, architectures, and modalities alongside traditional software and hardware-accelerated 

implementations within a unified system in order to develop, evaluate, and deploy all of the 

components required for any given visual system.  
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Chapter 1  
 

Introduction  

The vision of building a system capable of understanding the world the way humans do 

has long been a goal of both the machine vision [1,2] and cognitive neuroscience communities 

[3,4,5]. The ultimate goal of such a system is to enable the system to autonomously answer 

questions such as: ñWhere am I?ò, ñWhat is going on?ò, ñWhat is worth looking at?ò, ñWhat do 

I see?ò, ñWhat objects are present?ò, ñAre things moving?ò, and ñWhere are they going?ò To 

humans, these questions are often too simple to consciously consider. However, endowing a 

computing system with these capabilities has proven challenging.  For many years, both 

communities have attempted to tackle these problems separately. Computer scientists have 

focused on developing image processing algorithms rooted in disciplines such as information 

theory and machine learning to create systems to accomplish some of these goals.  At the other 

end of the spectrum, cognitive scientists and neuroscientists have examined mammalian behavior 

and activity in the brain in order to establish an understanding of exactly how humans process 

information. It is this observation which drives the development of biologically inspired 

algorithms.  

More recently, research has brought both vision communities together in an effort to 

create a system that is capable of seeing the world how humans see it. Much of this effort has 

focused on realizing biologically-inspired implementations of key aspects of the human visual 

process.  Development of such neuromorphic algorithms has focused on a few select aspects of 

the human visual process such as scene and context recognition [4,6], attentional awareness [7,8] 

and object recognition [3,9,10,11]. Much of the work in developing these state of the art 
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algorithms has focused on their implementation and evaluation in isolation in order to solve the 

specific problem they addressðanswering only one, or possibly two, of these questions at a time.  

In order to effectively model human perception, however, multiple algorithms must work 

in concert in order to quickly, efficiently, and accurately provide as much information as possible. 

Toward that end, this work discusses a unified multi-algorithm pipeline which is capable of 

enabling such intelligent visual perception systems. The goal of this pipeline is not to model the 

entire visual system exactly as in humansðnot a fully neuromorphic systemðbut to provide a 

framework in which modules may be added, removed, configured and tuned to provide an 

effective answer to all of the questions necessary.  Chapter 2 delves deeper into some of the 

algorithms that are used to enable an intelligent visual system. While there are a wide variety of 

algorithms which are capable of addressing machine vision problems such as awareness, 

attention, recognition and tracking, this chapter serves as an overview of the most prominent and 

widely used algorithms, many of which are further analyzed and employed throughout the 

remainder of this dissertation. 

Contributions of this Dissertation 

The framework for a flexible and configurable pipeline for visual systems is presented in 

Chapter 3. This framework contributes a foundation for the incremental and iterative 

development and evaluation of complex multi-algorithm visual systems. This software 

architecture enables implementation-agnostic support allowing individual modules to be 

developed and improved independently towards the ultimate realization of the desired system.  

In addition to this high-level vision framework, a tool for the graphical development of 

FPGA-based hardware accelerators has been developed.  This tool, Cerebrum [12], has not only 

been used to develop the hardware accelerator for HMAX ,  detailed within this dissertation, but 
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has also been made publicly available and used for the development of other hardware 

accelerators as well. While similar packages have been developed, such as the iLab 

Neuromorphic Vision C++ Toolkit [13], these tools focus specifically on the development of 

purely software based models of primarily neuromorphic vision algorithms.  The Cerebrum tool 

appears to be the first of its kind to enable drag-and-drop synthesis of vision algorithms targeted 

towards an FPGA-based hardware architecture. 

Furthermore, this work provides analysis of multiple vision algorithms, specifically 

HMAX and AIM, for object recognition and salient target detection, respectively. The analysis 

and profiling of these algorithms ultimately served as a basis for the exploration and development 

of hardware accelerators, detailed in Chapter 4, contributing towards the realization of real-time 

complex visual systems. In addition to the development of these accelerators, this work provides 

a foundational evaluation of the benefits of such hardware-accelerators in terms of power and 

performance, relative to other implementations on general purpose CPUs and graphics processing 

units (GPUs). 

The effectiveness and utility of systems making use of these hardware accelerators and 

multi-algorithm intelligent vision pipelines are demonstrated within this work as well.  The 

flexibility of the pipeline is shown through the use of cascaded object recognition algorithms. 

This hierarchical object recognition scheme, detailed in Chapter 5, leverages the speed of the 

hardware-accelerated HMAX algorithm as well higher as accuracies of Exemplar SVM-based 

classification in order to improve overall recognition accuracy in a reduced time frame. 

This work further demonstrates the potential social contributions of such a complex 

pipeline through the demonstration of a real-world personal assistance system.  The personal 

shopping assistance scenario, targeting visually-impaired, persons is described in Chapter 6.  This 

system incorporates a number of vision-based algorithms to locate, identify, and track desired 

products within a grocery store environment.  In addition to this information gathering, the 
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system also demonstrates how this information can be leveraged in order to provide feedback 

allowing a visually-impaired person to locate and pickup products without additional assistance. 

Finally, this work provides an exploration of a variety of new and emerging technologies 

that may be leveraged in intelligent vision systems of the future. The evaluation of Tunnel FETs, 

as a candidate for the replacement of traditional MOSFET and FinFET devices, provides a 

foundation for the development and continued evaluation of these devices as they mature. This 

work contributes to the examination of novel architectures, such as coupled oscillators, by 

exploring their capability to effectively provide implementations of a variety of operations and 

algorithms used within the domain of machine vision and image processing. New sources of 

information may contribute to the understanding of a visual scene as well.  This work explores 

the application of audio signals which may be present, but often ignored, in video systems in 

order to improve the capability for complex visual systems to achieve better context and scene 

awareness. 
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Chapter 2  
 

Vision Algorithms 

Towards the development of an intelligent vision system, many algorithms must work 

together.  This chapter examines some of the questions that need to be answered by such a 

system, and provides a detailed background on algorithms capable of doing so. 

Questions such as ñWhere am I?ò and ñWhat is going on?ò are answered through the use 

of context recognition algorithms [6,14,15], attempting to capture what is commonly referred to 

as the ñgistò of a scene, the name by which they are often called.  These GIST-type algorithms 

employ a feature extraction methodology in order to construct a feature space for future 

classification using these algorithms.  The features generated by these algorithms are typically 

useful for quickly identifying a generic location or scenario, such as a city street, meadow, or 

forest.  In addition to recognition of such broad environments, these context awareness algorithms 

can also enable the identification of specific locations, such as a particular room or aisle in a 

grocery store. 

Attentional algorithms such as AIM [1,2,16] and visual saliency [7,8] attempt to answer 

the simple question: ñWhat is worth looking at?ò While the question is simple, the approach is 

not. AIM attacks this problem from an information theoretic perspective to develop a measure of 

self-information or ñsurpriseò found at each pixel in an image. These regions of high information 

indicate regions worth focusing attention on.  Visual saliency approaches the problem from the 

cognitive science perspective, employing features that are demonstrated to produce attentional 

responses in humans, monkeys and other mammals. Both of these algorithms work to produce a 

heat map, indicating relative levels of interest which can be found at various locations in the 

image. 
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The most intensive research in visual processing algorithms has been focused towards the 

field of object recognition. These types of algorithms are designed to answer questions such as 

ñWhat do I see?ò and ñWhat objects are present?ò Many algorithms have been developed to 

address the problem of answering these questions. Algorithms such as HMAX [3,9,17,5,18], are 

modeled after the human ventral stream of visual processing. HMAX extracts features from a 

particular region of an image by identifying correlations to previously learned features. Others 

such as Exemplar SVM [19] and SURF [20] use combinations of feature extraction, brute force 

matching, and machine learning in order to match visible objects to previously seen templates or 

examples.  

Machine vision has long studied tracking algorithms in order to answer the questions 

ñAre things moving?ò, and ñWhere are they going?ò This research has led to the development of 

such seminal algorithms as basic mean-shift [21] tracking and Lucas-Kanade optical flow [22,23].  

Many current state-of-the-art tracking algorithms, such as OpenTLD [24,25] and CMT [26], are 

built upon these core algorithms, augmented with the inclusion feature detection, feature 

extraction, and machine learning algorithms.  

All of these algorithms are useful in completing a piece of the puzzle on their own. 

However, the deep understanding that humans are capable of in their perception does not arise 

through analysis of all of these pieces in isolation.  Upon seeing a scene, humans are capable of 

quicklyðvirtually simultaneouslyðidentifying the context of a scene, identifying the locations 

of key objects in a scene. This is quickly followed by identification of what those objects are and 

how they (or other objects) may be moving within the scene.  As understanding of a scene 

develops, new inferences will be made and conclusions drawn, modulated or reinforced by the 

previously observed data. For example, being able to quickly identify a scene as a city street can 

modulate the attention, focusing it towards the ground level areas, such as sidewalks and roads. 

Additionally, the knowledge of the current location can influence the likelihood of detecting 
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certain types of objectsðlions are not often found on a city street and cereal boxes donôt often 

appear in the vegetable aisle of a grocery store.  

 

2.1 Scene Context & Awareness 

Scene and context recognition algorithms are useful in the identification of a location 

depicted in an image.  The specificity of the location may vary, identifying scenes and contexts 

ranging from a specific location to a general setting.  Regardless, scene and context recognition 

algorithms enable additional inferences to be made not only about what is going on in the scene, 

but as to the types of objects that may be identified in the image as well [14,15,27].  

GIST 

A variety of descriptions can be applied to various scenes, much as humans are capable 

of describing a scene in multiple ways. Many of these descriptors define various visual aspects of 

an image, often in degrees. By combining these descriptions, a better understanding of the total 

content of a scene can be achieved. Oliva and Torralba, in [28], have presented a method for the 

holistic description of a scene using a spatial envelope encompassing these types of descriptors. 

This envelope attempts to quantify the degree of several image descriptors such as naturalness, 

openness, roughness, expansiveness, and ruggedness. These descriptors lead to features which are 

capable of describing an image in terms of many human-understandable qualities.  

Naturalness captures the apparent synthetic nature of a scene, providing an indicator of 

whether the location appears man-made (urban) or natural (such as a field or forest). Providing a 

measure of how contained a scene is, openness describes whether the content of a scene is 
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bounded.  For example, while an area such as a forest or grassy meadow has a high degree of 

openness, an indoor room such as an office appears to have clearly defined boundaries and a 

corresponding lack of apparent ñfreedomò. Roughness distinguishes the complexity of a scene, 

differentiating between scenes which contain a degree of regularity and smoothness, such as the 

exterior of an office building versus those which exhibit a high irregularity and lack of 

smoothness, such as a forest. 

Due to perspective, parallel lines in a scene provide a measure of depth based on their 

level of convergence in a scene.  Expansion quantifies this by determining the degree at which 

vertical and horizontal edges in a scene converge. Scenes with a high depth, and correspondingly 

high degree of expansiveness, contain lines that significantly converge towards their respective 

vanishing points. Ruggedness attempts to measure the contours of the scene of the ground level.  

Measured with respect to the horizon line of an image, this feature readily provides effective 

discrimination between man-made environments, typically with relatively smooth ground levels, 

such as floors and streets, and natural environments with highly uneven terrain, foliage, and rocky 

formations. 

These descriptors can all be formulated as a measure of the spatial information in an 

image, represented at varying spatial frequencies.  The algorithm outlined in [28] details the 

application of such filters in order to compute these descriptors. Each descriptor is computed by 

applying the appropriate filters to the input image. The image is first converted into its 

corresponding representation in the spatial frequency domain. This representation has a two-fold 

impact on the computation.  First, in the frequency domain, any influence of relative location of 

objects in the scene is obscured.  Second, the application of the frequency-domain filters to the 

frequency domain image results in highly simplified computation. Rather than defining, or 

transforming, each descriptor filter in the spatial domain, convolution of each filter requires 

simple point-wise multiplication in the frequency domain. 
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Once all of the filters have been applied to the image, a summary of the responses must 

be extracted to use as features for recognition. In order to accomplish this, the response of each 

filter is transformed back into the spatial domain.  A grid of NxM equal-sized subregions is 

defined across the image and the average response across each of these regions is computed.  A 

finer grid corresponds to a feature vector more representative of the entire image, at the cost of a 

larger vector for subsequent processing and increased computation time. 

 

2.2 Attention & Visual Saliency 

The baseline models for visual attention essentially strive towards the ideal goal of 

identifying what region(s) of an image the eyes would be most drawn to look at first. A variety of 

attentional models have been developed.  Bottom-up models [1,2,16,29] strive to identify regions 

of interest (ROIs) within a scene based on global image features. These models derive their 

measure of attention for any particular pixel or region based solely on statistics and information 

available within the image. While this approach has validity in identifying human fixations [1], 

there is evidence that human attention is driven by more than what is seen. [30] Recent attentional 

models have shown that human fixations are often modulated by a task-dependent factor.  These 

task-driven, or top-down, attentional models have become increasingly attractive for systems in 

which the targets are known ahead of time.  Both models have uses in intelligent vision systems, 

with bottom-up attention later influenced by top-down processing.  
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Attention based on Information Maximization 

Saliency (Attention) based on Information Maximization [2], dubbed AIM, is a bottom-

up attentional model that works to identify regions of interest in an image. These regions are 

identified using a statistical approach based on information theory.  In essence, this algorithm 

endeavors to assign values to every pixel in an image corresponding to the level of Shannon self-

information.  These regions found to contain the most information within the image are identified 

as regions of interest.  The kinds of regions identified by this algorithm are found to correspond to 

those that contain the most surprise, relative to the rest of the image. An example of the results of 

this algorithm can be seen in Figure 2-1.  

 

  

 

Figure 2-1. Example of AIM attentional algorithm. 

(top-left) Input image, (top-right) Saliency map, (bottom) Thresholded ROI mask 

 

The level of self-information contained throughout the image is extracted through the use 

of a series of convolutional operations. The kernels used for these convolutions are learned a 

priori  and form the foundation of the computation of the algorithm. These kernels are derived 

through a multi-step process.  Initially, a random sampling of image patches is taken from a large 
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set of images. Each of these patches is then evaluated in terms of its capability to extract 

information. These patches are then evaluated using Independent Component Analysis (ICA) in 

order to identify the set of patches which produces the most mutually exclusive information. 

These patches then become the basis functions on which the primary algorithm is based. 

The runtime operation of the algorithm can be separated into three stages. In the first 

stage, each of learned basis kernels is convolved with the image. For multi-channel images, each 

channel is convolved with the basis kernels independently.  After convolutions have completed, 

the response values are binned into histograms in order to compute pixel-response frequency 

counts. The pixel-responses are used along with these histograms to compute a probability and 

then a log-likelihood density estimation. This value estimates the probability of a particular pixel 

response, and therefore the probability of a given pixel. The summation of all of these likelihoods 

produces an estimate of the self-information at each pixel, resulting in an information map as seen 

in Figure 2-1 (top-right). 

The exact process of identifying salient pixels from this map may vary. One simple 

approach is to identify a percentile threshold above which a pixel is considered to be salient and 

below which is considered irrelevant. Using this threshold, the likelihood value(s) which fall on 

or around this threshold are identified. This value is then used to binarize the information map 

into salient and non-salient pixels.  An example of this binary map is shown in Figure 2-1 

(bottom). 
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2.3 Object Recognition 

HMAX  

Object recognition in the human brain is processed in the ventral stream, between the V1 

visual cortex and the inferior temporal (IT) cortex [3,11,31]. Based on this biological model, 

HMAX attempts to mirror the behavior and processing performed along the ventral stream in a 

biologically consistent manner.  Working to match the scale-and rotationally-invariant 

capabilities of human process, this model builds a set of complex features, derived from simple 

features.  This processing happens in a hierarchical, feed-forward fashion. Figure 2-2 [32] shows 

an example of the computational operations and dataflow of the HMAX algorithm.  

 

 

Figure 2-2. Computational layers and data flow of the HMAX algorithm 

 

The first processing step performed in HMAX is a pre-processing step.  In order to enable 

scale invariance, the first stage of the HMAX algorithm generates an image pyramid, representing 

the original input image at a variety of scales and resolutions, as seen in Figure 2-3. After 

composition of the image pyramid, the remainder of the HMAX algorithm is comprised of 

alternating layers of convolution operations and pooling operations, corresponding to the 

(S)imple and (C)omplex cells found within the visual cortex.  
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Figure 2-3. Example image pyramid generated in preprocessing of HMAX 

The image of the duck is taken from the COIL-20 dataset [citation] 

 

The first of these layers, the S1 layer, enables the rotational invariance of the HMAX 

algorithm. In the S1 layer, each scale of the image pyramid is convolved with a series of Gabor 

filters, a widely accepted model of the receptive fields in the visual cortex [31].  As in [33], this 

series of filters is designed to be 11x11 in size with dominant orientations equally spaced between 

0 and ˊ radians. The remaining parametersðwavelength (ɚ), effective filter width (ů), and aspect 

ratio (ɔ)ðare set as described in [18] to have values of 5.6, 4.6, and 0.3 respectively.  

 

 

Equation 2-1. Gabor filter used in the S1 layer of HMAX processing 

 

 

Figure 2-4. Examples of oriented Gabor filters, as used in the S1 layer of HMAX 

Orientation angles spaced equally between 0 and ˊ radians 
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 Following the S1 layer, the C1 layer performs localized pooling across S1 output cells. 

This layer compresses some of the scale invariance introduced in the preprocessing stage by max-

pooling values across adjacent scales. In addition to this cross-scale activity, pooling 

encompasses local regions of these adjacent scales. The resulting output of the C1 layer is a 

highly condensed set of images, retaining all orientation information generated by the S1 layer. 

 

 

 

Figure 2-5. Illustration of cross scale pooling in C1 layer of HMAX 

 

The most complex layer of HMAX processing, the S2 layer is modeled on the V4 

(posterior IT) region of the ventral stream. In this layer, a large database of tuned features are 

matched across each scale of C1 output.  This database consists of a number of prototype image 

patches, of varying sizes (4x4, 8x8, 12x12, and 16x16 as in [10]). Each of these patches consists 

of the target feature as seen at each orientation as generated by the S1.  The matching function of 

the S2 may be varied, however, the normalized dot product, as shown in Equation 2-2, has been 

shown to be an effective matching function [32]. The processing of the prototypes through the S2 

ensures that each prototypeôs orientation is matched against the corresponding orientation of C1 

MAX

(Largest scale, smallest region) (Middle scale, medium region) (Smallest scale, largest region)
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output. The output of the S2 layer results in a large amount of data, namely a response image for 

every dictionary template, correlated at every scale and orientation fed into the S2. 

 

 

Equation 2-2. Equation describing the Normalized Dot-Product used in the S2 layer of HMAX 

 

The final layer of HMAX processing, the C2 layer, enables global invariance by pooling 

across all responses for each prototype over a range of scales. By grouping large bands of scales 

together, this pooling effectively eliminates the impact of large variations in scale.  Pooling across 

the entirety of each response image removes the impact of position within the frame. Likewise, 

pooling across orientations ensures that the best response for each prototype is found regardless 

of how the object is oriented in the initial input image. This global pooling results in a large and 

complex feature set that can be used for any number of machine learning systems for object 

recognition. 

Exemplar SVM 

The Exemplar SVM (ESVM) [19] model performs object detection based on the 

relatively simple concept of finding the best match of a particular object within a database of 

previously learned objects. In support of this, an SVM classifier is trained for each object, 

exemplar, in the learned database. While the database may contain any number of exemplars for a 

given class, a unique classifier is trained for each exemplar independently. These exemplars are 

each represented through the use of a rigid Histogram of Oriented Gradients (HOG) template. 
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HOG processing is based on gradient computation within the window. Each detected gradient is 

then employed in a nonlinear weighting operation, allowing each gradient to vote for a particular 

orientation, based on the magnitude response. These votes are then binned by orientation over 

small spatial windows within each cell. Contrast normalization is performed across all blocks 

within the cell, producing a normalized HOG cell response. The complete HOG descriptor is a 

combined vector of all components of the normalized cell responses from all of the blocks in the 

detection window [34]. 

Each specialized exemplar classifier is trained by first windowing the object ground truth 

in such a way as to produce approximately 100 cell windows. While the exact windowing 

function is different for each exemplar, the size of all cells for any given exemplar are the same. 

This results in the number of HOG features being different for each exemplar SVM classifier. 

The training process for each exemplar begins by this window selection, extracting the HOG 

features from each window. These features serve as the positive training example of the chosen 

exemplar, XE.  A number of negative training examples are then generated by extracting cells, of 

the same size as the training exemplar from database objects which do not represent the same 

class as that of the chosen exemplar. For each of the windows extracted from the non-chosen 

exemplars, HOG features are extracted.  These features serve as the negative training examples of 

the chosen exemplar, NE.  

Finally, the SVM classifier is trained to learn the feature weights which provide maximal 

separation of the features represented in XE from those found in NE. For each positive exemplar, it 

is not uncommon to use a very large set of negative examples for training. However, the number 

of training vectors only impacts the training phase of the ESVM algorithm. 

Once trained, an unknown object is processed through each of the trained ESVM 

classifiers.  For each classifier, the cell windowing and HOG feature extraction is performed in 
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such a way as to match the cell topology of the positive example of the class. This ensures that 

the resulting HOG feature vector will have the same length as the ESVM classifier.  

The detection and classification of ESVM has been shown to be highly effective [19]. 

However, as the classification process must be carried out for each candidate SVM, the runtime 

performance scales not with the number of classes as many classification schemes, but rather with 

the number of exemplars. Thus, the ensemble of exemplars can become quite large. The ability to 

classify a wide number of classes would require processing of the entire ensemble, requiring 

significant expenditure of time and resources. 

2.4 Object Tracking 

Machine vision has developed a number of algorithms that can be useful for tracking 

moving objects. The most basic of these algorithms is mean shift tracking.  This algorithm suffers 

from a number of deficits which later algorithms have tried to address.  Deformations and 

rotations in the object easily create confusion and can cause tracking to fail.  Algorithms such as 

Lucas-Kanade optical flow [22] attempt to improve on this by attempting to first identify key 

components of a tracked object. These components are tracked individually by identifying local 

regions in subsequent frames which exhibit strong correlation to the component in the previous 

frame. The net motion of the object can be computed through analysis of the apparent movement 

of its components.  However, this type of tracking may succumb to errors when dealing with 

objects that are capable of deformation, effectively changing the relative locations between key 

components while in motion. 

More advanced algorithms have attempted to address this issue through several means. 

OpenTLD [25] employs an online learning model during tracking. This enables a periodic update 

allowing the algorithm to adapt to subtle changes in the object over time, effectively 
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compensating for deformations. However, rapid movements or changes in the object without 

corresponding updates to the model can cause tracking to fail. Once this happens, it becomes 

difficult for TLD to re-engage tracking with the target.  

Another algorithm, Consensus-Based Matching and Tracking of Keypoints (CMT), 

sacrifices some of this flexibility in order to enable simplified target reacquisition. 

Consensus-based Matching and Tracking of Keypoints (CMT)  

The CMT algorithm performs object tracking by combining a persistent object model 

based on advanced keypoints and optical flow.  Tracking is initialized by providing the algorithm 

with the current frame and the region of that frame which contains the object. The entire input 

frame is processed using the advanced keypoint detection algorithm, BRISK in the default 

implementation. The set of active keypoints is constructed by identifying all of the keypoints 

which fall inside the region defining the target object. These keypoints, and their associated 

descriptors comprise the defined object model. This model, in addition to the keypoints, contains 

information relating their relative locations and angles, called springs, with respect to the center 

of the defined object region. This additional information is used for object center, scale, and 

rotation estimation during subsequent frames, as seen in Figure 2-6a. All remaining keypoints, 

and their descriptors, are defined to constitute the background model of the scene. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 2-6. Illustration of several stages of CMT tracking 

(a) Keypoints and springs identified during initialization. (b) Optical flow estimation. (c) Scale and 

Rotation estimation using relationships between keypoints. (d) Center point estimation using 

transformed springs 

 

 

Subsequent frames are processed by first performing keypoint based Lucas-Kanade 

optical flow (Figure 2-6b) of the active model keypoints into the current frame. Both forward and 

reverse optical flow are computed to define a degree of error in the tracking of each keypoint. 

Any keypoint which is not able to be tracked within a reasonable error bound is ignored in the 

tracking as untracked.   

The set of keypoints that are successfully tracked are then used to estimate the relative 

scale and rotation of the object (Figure 2-6c).  This is done through analysis of the relative change 

in distance and locations between keypoints.  After estimation of scale and rotation, these 

keypoints are then used to estimate the center of the object (Figure 2-6).  By using the springs for 
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each of these keypoints, an agglomerative hierarchical clustering algorithm is employed to allow 

each keypoint to vote for the location it considers the most likely center. The center of the 

primary cluster is taken as the estimate for the new object center, after any votes which fall too 

far outside this cluster are discarded.  

After tracking, the algorithm attempts to reconstitute any keypoints which were not 

successfully tracked by performing another round of keypoint detection and matching against the 

initial model.  It is this step that enables CMT to reacquire an object after it has been obscured, 

left view, or temporarily changed its form or appearance enough to be lost. For each keypoint in 

the image, it is matched to the model developed in the tracking initialization through the use of a 

brute force matching algorithm. While the matcher identifies the best match between keypoints, 

the algorithm enforces a minimum threshold the degree of this match. Additionally, another 

constraint is imposed, requiring a high degree of relative confidence in the match, by comparing 

it to the second-best match as well.  

With tracking and matching complete, the set of active keypoints is updated and a new 

bounding box is computed. In its current form, CMT does not adapt the model of the object over 

time, so one drawback is that it loses tracking of objects that have a significant change in view 

over time, such as an object with differing front and rear sides that rotates. 
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Chapter 3  
 

Development of Intelligent Visual Systems 

This chapter details the framework for the development of an intelligent visual system 

based on a software-architected pipeline. This pipeline presents a unified software architecture for 

the inclusion, development and utilization of a wide variety of detection, recognition, and 

tracking modules, among others, necessary to construct such an intelligent system. A 

visualization of a complex intelligent vision pipeline is shown in Figure 3-1. Despite its 

grounding in a software implementation, the components of the pipeline are entirely self-

contained, rendering the internals of their implementations irrelevant.    

 

 

Figure 3-1. Example of Intelligent Visual Pipeline. 

 

A software tool for the prototyping and development of FPGA-based hardware 

accelerators is also presented in this chapter. This tool presents a hardware-agnostic interface for 
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research scientists to develop algorithmic accelerators targeting a variety of FPGA hardware 

platforms.  The interfaces to these accelerators can be easily mapped into the intelligent vision 

pipeline described here, regardless of the exact nature of their implementation. 

3.1 Intelligent Visual Pipeline & Framework 

The intelligent visual pipeline discussed here is created with several goals in mind.  The 

first of these goals is that the pipeline configuration is highly flexible.  The only requirement of 

components in the system is that they conform to one of several interfaces indicating their general 

purpose: input, output, detection, feature extraction, classification, filtering, or tracking. Often 

used together, feature extraction and classification modules may be grouped together into a 

general class of modules explicitly targeted at self-contained recognition. Examples of the types 

of components and algorithms that would fall into these categories are listed in Table 3-1. These 

interfaces are not exhaustive. The dynamic nature of the pipeline facilitates the development and 

integration of interfaces which have not yet been defined. This enables future support of 

algorithms and information modules that are not yet known, or known to be necessary. 

 

Table 3-1. Examples of Intelligent Visual Pipeline Modules 

Input  Output  Detection 
Recognition 

Filtering  Tracking  
Feature Extraction Classification 

Image Set 
Display 

Visualizer 
Saliency SURF Linear (RLS) 

Visual Co-occurrence 

Network (ViCoNet) 
OpenTLD 

Video File 
Audio 

Feedback 
AIM  SIFT 

Brute Force 

Matching 
Top-K Response CMT 

GigE 

Camera 

Haptic 

Feedback 
SURF HMAX  SVM  OpenTLM 

USB 

Webcam 
 SIFT 

Histogram Of 

Gradients (HoG) 
ESVM   

IP Camera  Symmetry     

Web Stream       
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The modular flexibility provided by this framework enables hierarchical solutions to 

vision-related problems by cascading multiple different algorithms together. Visual GIST-type 

algorithms, by providing context and awareness, can greatly improve the recognition of objects in 

a scene. However, the types and configuration of objects found in a scene may be just as telling. 

For example, if an object recognition module strongly recognizes several objects such as cars, 

buses, and signs, the system may be able to infer that the location is a city regardless of the result 

of the context recognition algorithm. In turn, this improved context awareness may enable further 

refinement of other, less easily recognized objects in the scene.  

The cascaded arrangement of modules may also include similar algorithms in order to 

better solve or reinforce results, such as in the case of object recognition. This is the case 

explored by the hierarchical recognition pipeline described in Chapter 5. This pipeline employs 

multiple feature extraction and classification modules alongside a classification filtering module 

in order to exploit the accuracy and performance characteristics of different recognition 

algorithms. 

With time being a key limiting factor in a real time vision system, it may be often the 

case where there is insufficient time to sufficiently classify or process all detected objects within 

a scene. The inclusion of tracking-enabled modules in this intelligent pipeline opens a new means 

of improving performance by exploiting the temporal dimension. Detected objects can be tracked 

through frames over time, regardless of whether or not they are given a classification. Over time, 

as the number of new detections decreases, the slack time may be given to classify these 

previously unclassified objects. In the event that no objects are found to be unclassified, 

classification can still provide benefits in the presence of tracking capabilities, however. Objects 

with weak classifications may be reclassified, possibly with greater effort, in order to improve or 

reinforce the assigned classification. 
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The flexibility of this pipeline only requires that those components necessary for the 

target application be included. The hierarchical recognition described in Chapter 5 presents a 

simple pipeline, while a more complex pipeline, as described in Chapter 6, utilizes a wider range 

of components. 

Communication 

Each module must conform to a particular interface, indicative of the type of operation 

that it performs or purpose it serves. The distinguishing factors of these interfaces, therefore, lies 

in the type of data that it produces.  A summary of the types of outputs each module produces is 

given in Table 3-2. Input modules produce raw input data such as frames from an IP camera or 

video file. These output data streams are tagged with the ID and function of the module that 

generated it in order to facilitate advanced data flows. 

 

Table 3-2. Examples of Intelligent Visual Pipeline Module Outputs 

Input  Output  Detection 
Recognition 

Filtering  Tracking  
Feature Extraction Classification 

Raw (image, 

audio, etc.) 

data 

Visual, 

auditory, 

physical 

feedback 

Regions 

of Interest 

(ROIs) 

Feature Vectors 
Classification 

Scores/Labels 

Classification 

Scores/Labels 

Regions 

of Interest 

(ROIs) 

 

An event/subscription style model is used by the pipeline to propagate data from one 

module to the next. This allows each module to register for the type of data stream that is 

requires.  The pipeline architecture is then able to connect each available data stream to any 

modules which have requested it. In addition to specifying the type of data requested, the module 

may specify additional constraints or restrictions on the source of the data.  For example, a 
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classification module registered to receive feature vectors and trained on HMAX features should 

not be sent feature vectors generated by a HoG module.  So, the classification module may 

specify that the type of feature vector must come from an HMAX module.  

The type of data a module may request isnôt strictly limited by its interface. This allows, 

for example, an object recognition module to request input streams from other object recognition 

modules. This, naturally, may result in an infinite loop, so the pipeline is crafted so that a module 

may not receive its own output directly. Such a loop is still possible if routed through additional 

intermediate modules, so there is some responsibility on the developer of each module to properly 

ensure that repetitive input data is eventually discarded without producing a response. 

Modular Implementation  

The second goal of this intelligent pipeline is to ensure that its operation is wholly 

agnostic with respect to the underlying implementation of each module.  Conceptually, this 

means that a software implementation of HMAX is no different from a hardware-accelerated 

implementation of HMAXðthey are both feature extractors in the eyes of the pipeline. All 

classifier modules take in data and produce classification results.   

However, it may be of use to know the underlying implementation when constructing a 

pipeline implementation.  Thus, each module may be annotated with additional version or 

implementation tags that allow intelligent assembly of the pipeline.  If a pipeline requires an 

implementation of the AIM ROI detector, for example, functionally it does not matter whether the 

module is software-based, or hardware-accelerated.  However, the architect may specify that, if 

available, a hardware-accelerated version be used rather than a software implementation. 

Ultimately this allows the description of the pipeline to be boiled down to its essence, which is a 
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series of modules and the connections between them, allowing the system to assemble the most 

effective version possible given the available components. 

3.1 Algorithmic Accelerator Prototyping Tool (Cerebrum) 

A number of factors make it difficult for researchers in fields such as neuroscience to 

quickly and efficiently construct high performance, hardware-accelerated systems to evaluate the 

algorithms they develop. Firstly, often times researchers in these fields lack the skill set to 

develop the required hardware accelerators. Additionally, even armed with the necessary 

accelerators, synthesis of the components into a usable system presents an equally challenging 

task without additional assistance.  Without the tools able to leverage on-chip communication 

infrastructures, such as networks-on-chip and a lack of standardization across FPGA systems, use 

of these platforms as a prototyping and development system is seen as far too daunting a task. In 

an effort to remedy this situation, and bridge the usability gap between computational researchers 

and engineers, the Cerebrum software tool was developed.   

Cerebrum defines and leverages a standardized abstraction across both FPGAs and 

hardware modules (IP cores) available for them. This enables a clear framework for the creation 

and modification of an algorithmic dataflow requiring minimal engineering effort. This tool is 

composed of a front end graphical user interface, exposing the available components and 

platforms to the user. The back end of the tool automates the processing of several engineering 

tasks necessary to take the user-defined algorithmic dataflow and map it onto the desired FPGA 

platform. 
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Cerebrum Front End 

The front end GUI of Cerebrum presents the users with a drag-and-drop style of interface 

for the development of hardware accelerated algorithms. For the purposes of designing the 

algorithm, a library of available IP cores are displayed to the user. The visibility and availability 

of IP cores in the library may be limited by the target hardware platform, thus preventing the user 

from spending time developing towards a system which ultimately cannot be synthesized due to 

IP incompatibility. The library of modules is defined by a structured XML-based architecture 

which enables the hardware developer to expose hardware parameters and control how 

components and IP cores are connected. The snippet of XML shown in Figure 3-2. Example of 

Cerebrum Core definition, demonstrates a Cerebrum IP core specification. This example 

Cerebrum core defines a simple I/O interface core.  

 

 

<Software>  

  <DesignDisplay>  

     <Category Name=òSystem  Interfacesò /> 

     <Ports>  

 <Port Type=" INITIATOR " Name=" rxò Interface="bit:128" />

 <Port Type=" TARGET" Name=" tx " Interface="bit:128" />  

     </Ports/>  

  </DesignDisplay>  

</Software>  

<Hardware>  

  <Interface Type="SAP" PE="True"> sys_iface </>  

  <PCores>  

    <PCore Type=" sys _rx _if " Version="1.01.a" é /> 

    <PCore Type=" sys _t x_if " Version="1.01.a" é /> 

  </PCores>  

  <Clocks>  

    <Name=ò100MHz Oscillator"é Frequency="100MHz"é /> 

  </Clocks>  

</Hardware>  

 

Figure 3-2. Example of Cerebrum Core definition 

 

The <Software>  section describes the appearance and interface of the core with 

respect to the front end GUI. This section defines where the core appears in the library of 

components, and what visible ports it exposes to the user, among other visual properties. The 
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types of the ports defined here indicate how the core may be interfaced with other cores in the 

design.  Cerebrum defines four types of ports, applicable to different types of cores.  Streaming 

cores utilize ports designated as either INPUT or OUTPUT.  Computational cores expose 

INITIATOR  and TARGET ports. OUTPUT ports may only direct data to INPUT ports (of other 

streaming cores) or TARGET ports (of computational cores).  Likewise, INITIATOR  ports may 

only direct data to an INPUT of streaming cores or a TARGET of computational cores. 

The <Hardware> section defines the details of the hardware components which comprise 

the Cerebrum Core. In addition to defining the type of the Cerebrum Core (SOP: Streaming 

OPerator) or SAP (Switch-Attached Processor), this section defines the specific IP cores and any 

required clocks produced by or required by the component. Other aspects of the hardware 

covered by this section include importing predefined component interconnects, declaring a 

limited set of supported platforms and architectures, as well as the estimated resource 

requirements of the components contained in the Cerebrum core. Armed with the cores available 

in the library, construction of a system becomes a simple matter of dragging and dropping the 

necessary components into the workspace and creating the dataflow connections between them. 

This specification wrapper hides all of the internal details from the algorithm developer. 

 Once the user has drawn a system on the workspace, the back end of the Cerebrum tool 

takes over to perform the task of translating the displayed system onto the target platform. In 

order to achieve this, the tool requires three sets of specifications.  The first specification is the 

design specification, created by the user in the Cerebrum front end.  The second specification is 

that of the target hardware platform. The platform specification defines several low-level details 

about the reconfigurable platform. This includes the number and types of FPGAs available, how 

they are connected, both logically and physically, the resources available on each, and any 

FPGA-specific pin constraints or signals. The final required specification is the Cerebrum project. 
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This file defines all of the options associated with how and where the EDA tools should be run. 

Armed with complete specifications for the project, the design, and the platform, the tool may 

proceed to back end synthesis, translating the provided information into a hardware definition for 

the target FPGA platform. 

Cerebrum Back End 

Using these specifications, the Cerebrum back end performs a series of steps in order to 

realize the desired system on the target hardware.  The first step in this process is the mapping of 

the necessary components to the available FPGAs in the system. A customized accelerator 

mapping algorithm was developed in order to optimize multiple constraints including 

minimization of data flow and inter-FPGA communication while maximizing resource utilization. 

The mapping algorithm proceeds through several phases in order to work towards an optimal 

solution. 

A feasibility check is first performed.  This step is designed to short-circuit the algorithm 

in the event that the system requires more resources than are available on the entire FPGA 

platform. If, at least superficially, there are sufficient resources to map the required components, 

mapping proceeds to the component grouping phase. 

Advanced users may annotate the design with requirements that some components be co-

located on the same FPGA, without regard to the specific FPGA in the platform. Sets of 

component groups that are so annotated are coalesced into a Component Group. For the purposes 

of mapping, this group is treated as a single ñblack boxò component requiring the resources of all 

contained components as well as data connections to all components with connections to the 

components internal to the group.  Once all component groups have been formed, mapping 

proceeds to I/O distance computation. 



30 

 

 

Each component, or component group, is annotated with its distance from the system 

input and output connections. This distance is calculated by finding the average number of hops, 

or edges, in the available paths between the component and the specific connection.  These 

distances are used to optimize placement of components with shorter I/O on FPGAs closer to the 

corresponding system I/O port. 

Once again, users with advanced knowledge of the target platform may influence the 

mapping algorithm. During the design process, if desired, each component may be annotated for 

placement on a specific FPGA. In the event that a component is assigned to an FPGA and 

assigned to be grouped with another component, the entire component group is then assigned to 

the FPGA. If the user attempts to assign groups components to different FPGAs an error is 

generated, advising the user to correct the discrepancy. With a valid pre-mapping, each such 

component is assigned to its target FPGA, virtually allocating the required resources. 

Finally, the optimization of component placement begins. A greedy algorithm is used to 

find the best target FPGAs for each component. In order to avoid a lack of resources at later 

iterations of the algorithm, the components and groups with require the most resources are placed 

first. Optimal placement is determined by finding the FPGA which has the most resources 

remaining and also minimizes the data traffic between FPGAs. This traffic is measured by finding 

the number of inter-FPGA hops required for data to flow through the component, if it were placed 

on each FPGA. This approach continues until either all components are successfully placed, or a 

component is encountered for which no available FPGA has sufficient remaining resources. 

With all components mapped to a target FPGA, the Cerebrum back end generates the 

files necessary for the proprietary back end tool flow. A system file is generated for each FPGA 

based on the components that were assigned to it during by the mapping algorithm. Following 

this, the entire back end tool flow is automated; proceeding through the steps of synthesis, 

technology mapping, placement and routing, and finally bit stream generation.   
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Chapter 4  
 

Accelerated Architectures 

 

This chapter provides details on the development of novel accelerators for two visual 

algorithms. The first algorithmic accelerator described here is targeted for the HMAX feature 

extraction algorithm. This includes a detailed analysis and profiling of the algorithm, both in parts 

and as a whole, enabling highly effective and targeted optimizations in the overall architecture.  

This architecture is composed of multiple accelerators which enable high performance with 

minimal degradation in accuracy. The HMAX accelerator described here not only represents a 

novel architecture for the algorithm, but was also established as the foundation for ongoing 

research as part of the DARPA Neovision2 [35] project.  

Further extending the family of vision-oriented accelerators, this section also details the 

development of an attentional model accelerator based on the AIM algorithm.  The AIM 

accelerator described here was developed for incorporation into the visual processing pipeline of 

the Supervised Autonomous Fires Technology (SAF-T) [36] program under the Office of Naval 

Research. 

4.1 HMAX  Accelerators 

The HMAX algorithm, designed for function in an effort to mirror the biological 

responses in the brain, displays several inefficiencies when executed on a general purpose 

processor. These inefficiencies are a result of the computational structure of the algorithm and 

result in less than optimal runtime performance. In order to effectively utilize HMAX as a feature 

extraction engine for object recognition in a real time intelligent visual system, a detailed study of 
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the algorithm is necessary.  This study, detailed here, identifies many of these inefficiencies 

within the general purpose CPU implementation of HMAX, thus enabling the development of 

effective and efficient hardware accelerators enabling dramatically improved performance of the 

HMAX algorithm. 

As detailed in Chapter 2, the implementation of HMAX used in this dissertation is based 

on the variant HMIN [33]. This implementation defines a number of parameters for this particular 

implementation of the HMAX algorithm, which are summarized in Table 4-1. In order to 

establish firm baselines for performance purely in software, the C++ implementation was first 

augmented to support multiple threads, enabling performance gains through thread-level 

parallelism.  

Table 4-1. HMAX Algorithm Parameters 

Parameter  Value 

(Range) 

Pyramid Scales  8 to 12 

S1 Orientations 4 or 12 

C2 Pooling 

Overlap 

1 Scale 

S2 Dictionary 

Templates 

5120 templates 

S2 Dictionary 

Template Sizes 

4x4, 8x8, 

12x12, 16x16 

C2 Pooling  

Range 

6 Scales 

[11-6, 6-1] 

Baseline Implementation 

The evaluation platform for the multi-threaded software implementation of HMAX 

consisted of an Intel-based system equipped with dual 2.4GHz Quad-Core Xeon-class processors 

with a total of 12 GB of main system memory. Each of the four cores of the Xeon processor were 

HyperThreading-capable, providing 2 logical CPUs per core, resulting in a total of 16 processing 

units. The software was compiled with maximum optimizations and the SSE2 SIMD instruction 
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set enabled for further increased performance. Figure 4-1 demonstrates the impact of 

multithreading on the runtime performance of the software.  

 

Figure 4-1. Execution time of HMAX as a function of number of threads 

 

In addition to the number of available threads, the runtime performance was also found to 

depend, nearly linearly, on the number of orientations to be processed.  Reducing the number of 

orientations by a factor of 3, from 12 down to 4, the execution time of the algorithm was reduced 

by a factor of 2.5 to 2.8, depending on the degree of multithreading enabled. The impact of 

thread-level parallelism is clearly evident in the observed execution times, wherein a 2X increase 

in the number of threads often results in a nearly 2X increase in performance. However, 

increasing the number of threads from 8 to 16 produces only a 1.3X improvement in execution 

time.  

This reduced performance benefit is explained by analyzing the impact of multithreading 

on each stage of the HMAX algorithm. As shown in Table 4-2, the S2 stage of processing 

thoroughly dominates the runtime of the algorithm. In fact, the S2 computation averages over 

96% of the total execution time with virtually no regard to the number of available threads or 
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orientations being processed. This indicates that the vast majority of the performance gains found 

due to multithreading can be found within the S2 stage.   

 

Table 4-2. HMAX Stage Execution time, as a percentage of total execution time 

# 

Threads 

# 

Orientations 
S1 C1 S2 C2 

1 
4 1.62 0.19 97.61 0.53 

12 1.77 0.21 97.82 0.19 

2 
4 1.69 0.22 97.45 0.56 

12 1.79 0.22 97.78 0.19 

4 
4 1.89 0.30 97.15 0.50 

12 1.90 0.26 97.60 0.17 

8 
4 3.54 0.58 94.97 0.60 

12 2.96 0.40 96.27 0.25 

16 
4 4.71 0.87 93.26 0.76 

12 3.08 0.56 95.92 0.29 

 

Further profiling of the S2 stage specifically reveals the reason for relatively reduced 

performance gains when increasing the number of parallel threads from 8 to 16. As the number of 

threads increases beyond the number of processed orientations, the ability to exploit the available 

parallelism dramatically decreases.  As the critical path of the S2 is comprised of correlation of 

input images with prototypes in the S2 dictionary, exploitation of parallelism at this level is 

difficult.  The largest performance gains come from the thread-level parallelism at the granularity 

of processing one orientation/scale being processed per thread. Maximal orientation-level 

parallelism is achieved at the point in which the number of threads equals the number of 

orientations, 4 and 12 respectively. Further increases in available threads are able to exploit scale-

level parallelism in the processing of the S2, but ultimately the reaches the point of diminishing 

returns, as seen in Figure 4-2. 
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Figure 4-2. Speedup of S2 stage of HMAX as a function of multithreading 

 

As performance is not the only concern in many systems, such as embedded systems, 

power consumption must be taken into consideration as well.  For each of the algorithmic and 

multi-threading configurations described here, the runtime power consumption of the system is 

measured as well and shown in Figure 4-3. For this evaluation, power was measured by using a 

power meter, which provides both continuous and instantaneous power measurements during 

runtime. 

The results here clearly demonstrate the benefits of such parallelism. However, further 

performance improvements will require application specific acceleration. Specifically, aspects of 

the algorithm shown to be least influenced by the enabled parallelism, such as convolution 

operations, require a targeted approach. Due to its enormous influence on the overall execution 

time of the algorithm as well as the prevalence of convolution operations within, the S2 

represents the stage which can gain the most benefit from targeted acceleration.  
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Figure 4-3. Power Consumption of HMAX due to multithreading 

 

The development and evaluation of the hardware modules used for accelerating HMAX 

was done on a multi-FPGA platform. This platform consists of four Xilinx Virtex5 SX240T 

FPGAs connected together using Low-Voltage Differential Signaling (LVDS) interconnect. The 

four FPGAs, are in turn connected to the development system through the Front Side Bus (FSB) 

in a processor socket.  The host system is the same Quad-Core 2.4GHz Xeon processor that the 

software implementations of HMAX were developed and evaluated on. In order to facilitate 

communication between accelerators, a packet-switched, high-bandwidth Network-on-Chip 

(NoC) architecture is utilized [32]. This framework enables runtime reconfigurability of the 

network as well as stream- or compute-based accelerators. The dataflow of this network is highly 

fluid as well, allowing the construction and use of virtual data paths, or flows, enabling 

accelerators to pass data through a pre-planned series of accelerators to enable a variety of 

algorithms using common modules. 
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S2/C2 Accelerator 

The core function of the S2 stage is a correlation operation, akin to template matching, 

computed between the outputs of the C1 stage and each of the stored prototypes in the S2 

dictionary. This correlation operation has to be performed between every scale of the C1 and 

every prototype in the dictionary and every scale being processed. This requires an enormous 

amount of computation and produces a very large amount of data. Examination of the data flow 

between S2 and C2 shows that the massive amount of data generated by the S2 is quickly and 

radically pooled into a much smaller feature space. Detailed analysis of exactly how this happens 

leads to the realization that several benefits can be realized by combining the S2 and C2 stages 

into a single unified module. 

The C2 stage finds the maximal response of a particular prototype regardless of 

orientation and within a limited range of scales.  The order these values are generated is 

irrelevantðonly the maximal value matters. This means that the max-pooling operation can be 

performed on-the-fly as each new prototype response is generated, by comparing the new value 

and the existing pooled value. In addition to the consolidation and optimization of the pooling 

operation performed by the C2, this has the added benefit of dramatically reducing the amount of 

data that must be transferred over the NoC between the S2 and C2 modules. The degree of this 

reduction in data transfer is quantified by Equation 4-1. In this equation, the numerator 

corresponds to the data values that would be sent over the network to the C2 without this 

optimization. S corresponds to the index of the S2 scale being processed, XS and YS indicate the 

size of the S2 output at scale S.  Nprototypes indicates the total number of prototypes in the S2 

dictionary, and Nprototypes[XS,YS]  indicates the number of prototypes that can be successfully 

correlated with the template. This indicator is required to account for the fact that the larger 

prototypes are too large to correlate with the smaller scales, resulting in no values to pool under 
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these conditions.  The denominator of this equation represents the amount of data that is sent over 

the network from the combined S2/C2 module with this optimization.  It boils down to the 

number of prototypes in the dictionaryð1 max value per prototypeðtimes the number of scale 

bands over which pooling is done, in this case 2. 

 

В ὢ ὣ ὔ ὢȟὣ

ὔ   ς
 

Equation 4-1. The degree of data transfer reduction between S2 and C2 of HMAX by combining 

the two modules into a single accelerator 

 

Using the default HMIN configuration parameters, consisting of 12 scales and 12 

orientations, along with an S2 prototype dictionary of 5120 prototypes, this equation indicates a 

data transfer reduction by a factor of 4,154X. 

Further reduction in network traffic and data transfer is possible through clever 

management of the input data to the S2. The correlation of inputs with prototypes requires 

frequent accesses to the input data for each orientation as it is required for processing of each 

prototypeôs corresponding orientation.  Rather than requesting this data repeatedly from an off-

module memory, all orientations for a given scale are loaded into local memory once and then 

fetched, as needed, for processing. This optimization results in a 5,005X reduction in data 

transferred, using the same configuration based on the calculation shown in Equation 4-2. The 

symbols in this equation are the same as those in Equation 4-1, with Norientations representing the 

number of orientations being processed. 
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Equation 4-2. The degree of data transfer reduction to S2 through the use of input scale buffering 

 

The architecture of this combined and optimized S2/C2 module is shown in Figure 4-4 

[37]. Each input scale, including all applicable orientations, is buffered in the image memory. The 

dictionary of prototype patches are preloaded into an attached on-chip SRAM memory.  This 

memory structure is necessary due to the large size (24MB) of the prototype dictionary in use.  

 

 

Figure 4-4. S2/C2 Stage Accelerator for HMAX 

(a) High-level view of S2/C2 Accelerator Pipeline. (b) Pixel-wise accumulation across 

correlation responses within each scale. (c) C1 outputs are buffered in a local image memory, 

referenced by orientation. (d) Accumulated outputs are normalized after computation. (e) Global 

max-pooling is performed on a per-pixel basis as outputs are generated. 
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An array of systolic 2D convolution units are supplied inputs from this image memory. 

The coefficients of the convolution units are loaded from the local prototype dictionary for each 

prototype being processed. The size of operation for each convolution unit is configurable to 

support the various prototype sizes in the HMAX implementation. The size of the active 

operation is changed by the control unit as new prototypes are loaded from the dictionary 

memory. The access latency of the dictionary memory is obscured by overlapping the 

computation of the convolution operations with the loading of prototypes.  

A temporary memory structure is used to store the accumulated output of each 

orientationôs convolution. Upon initiation of each new scale, this memory is reset. As each value 

is generated from the convolutional units, the corresponding location in the accumulation 

memory is read, updated, and rewritten.  Once processing of the particular convolution is 

complete the resulting values are forwarded ahead to the normalization. 

The normalization unit contains a small memory buffer that is preloaded with coefficients 

used to normalize the convolution of each orientationôs template.  These values are used to 

compute the normalized pixel-wise output for each prototype which is forwarded to the pooling 

unit. 

As the outputs of each scale are generated for each prototype, they are fed into the global 

pooling unit.  This unit identifies the maximum response from among all of the inputs. This max 

value is then compared to the existing values in the corresponding entry of the C2 data table.  If 

the new value is greater, the C2 table entry is replaced with the new value. 

Once all prototypes have been processed, a read request to the S2/C2 accelerator returns 

the feature vector contained in this C2 table.  
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S1 Accelerator 

The S1 stage is responsible for processing the oriented Gabor filters over the input image 

scales.  The accelerator for this stage is designed to compute these convolution operations in a 

streaming fashion, producing output pixels as soon as they are ready. The architecture of this 

accelerator is composed of FIFO which converts the serial inputs to a parallel stream for 

convolution.  A 2D convolution engine that follows takes the parallel stream and Gabor 

coefficients from a local memory to produce a series of outputs that are fed into an adder tree 

structure. The serial outputs of this adder tree are the streaming outputs of the S1 accelerator. 

Figure 4-5 [37] shows an overview of this S1 accelerator architecture. 

 

 

Figure 4-5. S1 Stage Accelerator for HMAX 

System Evaluation 

Graphics Processing Units (GPUs) are another popular architecture for high-performance 

systems.  These devices enable high levels of acceleration by exploiting parallelism through the 

utilization of a massive number relatively simple, but high performance computational resources. 

In order to establish a well-rounded comparison of this FPGA-accelerated architecture, a GPU-

based implementation of HMAX [38] was evaluated in tandem.  The GPU evaluation was 
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performed on an NVIDIA Tesla M2090 [39], which houses a 1.3GHz Tesla T20A GPU with 

1.3GB of memory.  The GPU is hosted on a system which has 49GB of system memory and a 12-

core 3GHz Xeon-class Intel processor. 

In addition to runtime performance, power is a critical aspect in the evaluation of these 

platforms. For the CPU and FPGA power measurements, both idle and active power consumption 

was measured using a power meter.  The GPU power consumption was measured using tools 

provided by NVIDIA to query power measurement sensors located on the GPU. For these 

platforms, the idle power is removed, with only the power due to computation being considered. 

Figure 4-6 shows the relative speedups achieved by both the GPU- and FPGA-

accelerated implementations of HMAX in terms of frames per second (fps). For both the 

configurations using both 4 and 12 orientations, both of these platforms easily outpace the 

performance of the software implementation. The FPGA architecture provides significant gains 

over the CPU implementations of 7.3X and 8.0X for 4 and 12 orientations, while exhibiting only 

modest gainsð1.1X and 1.2X respectivelyðover the GPU implementation. From these results, it 

appears that the GPU is almost as good as the FPGA.   

 However, execution time is not the only metric considered. Figure 4-7 adds the impact of 

power consumption to the equation.  This figure shows the relative performances of these 

platforms in terms of frames per second per Watt (fps/W). This metric incorporates power by 

estimating the power required to achieve a particular level of performance. Due to the high power 

consumption of the GPU, the FPGA implementation easily pulls away in terms of power 

efficiency. The FPGA outperforms the CPU for 4 orientations in this metric by a factor of 10.9X 

and by 13.8X for 12 orientations. Similarly, the FPGA beats the GPU by factors of 2.3X and 2.6X 

for 4 and 12 orientations, respectively, 
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Figure 4-6. Speedup of GPU- and FPGA-accelerated HMAX  

 

 

Figure 4-7. Power Efficiency of GPU- and FPGA-accelerated HMAX 

 

 

Furthermore, the impact of this architecture on the algorithmôs performance in terms of 

accuracy must be considered. Evaluations of the classification accuracy of the accelerated HMAX 
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were performed using both the Caltech256 [40] and PASCAL VOC2007 [41] datasets. For the 

evaluation of the Caltech dataset, the number of scales was fixed to 12.  However, the evaluation 

was performed using both 4 and 12 orientations. The number of training images for each category 

was varied from 5 to 40, while the number of test images per category remained constant and 

non-overlapping with the training set in each case. The results of these evaluations are shown in 

Figure 4-8 [37]. Using 40 training images, HMAX is capable of achieving accuracies of 23% and 

25% for 4 and 12 orientations.  These results fall within 15% of the best reported accuracies at 

[40] on this highly difficult and varied dataset. 

 

 

Figure 4-8. HMAX Classification Accuracy for Caltech256 dataset 

 

The PASCAL VOC2007 dataset was evaluated using k-fold cross validation. Due to the 

large size of the dataset, consisting of over 15000 object instances in 5011 training images, an 

independent multi-class voting scheme was used utilizing 10 independently trained classifiers.  

The training data for each object class was independently divided into 10 non-overlapping 

training sets.  After training, the evaluation was performed on the test data, by allowing each 
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classifier to vote for its most likely candidates, and synthesizing a probability for each class given 

the voting scheme.  These classifications and probabilities were then used to generate the average 

precision data shown in Figure 4-9 [37].  

 

 

Figure 4-9. HMAX Classification Accuracy for PASCAL VOC2007 dataset 

 

The PASCAL dataset was again used to evaluate the impact of fixed-point hardware 

precision on the relative classification accuracy.  The HMAX algorithm was used to generate 

features in both the floating-point software implementation and the fixed-point FPGA 

implementation.  Independent classifiers were trained on both of these datasets and evaluated 

using features similarly extracted from the test datasets. The truncation of floating-point data to 

fixed-point precision was found to cause less than 2% degradation in the accuracy of 

classification. 
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4.2 AIM Accelerator 

While, the details of the AIM algorithm are described in Chapter 2, the core computations 

of the algorithm can be broken down into three phases.  The first of these involves the 

convolution of the input image with the defined basis filter functions. For multi-channel imagery, 

each channel must be convolved with the basis functions separately. The second stage of the 

algorithm is the computation of the probability density estimation.  This estimation is performed 

by first binning the pixel responses across basis functions into a histogram.  These histogram 

frequency counts are then used to convert each pixel response into a log-likelihood through the 

use of a logarithm operation. Finally, the log-likelihoods are aggregated on a per-pixel basis to 

generate the information map.  Additional processing may be used to translate this information 

map into a binarized version indicating which pixels are considered sufficiently salient. This 

algorithm flow and breakdown is given in Figure 4-10.  

The AIM accelerator was developed initially on a Xilinx Virtex6 SX475 series FPGA. 

Several customized architectural modules were developed for this accelerator: a convolver for the 

basis filter operations, a histogramming module, a logarithmic computation module and an output 

aggregator. The accelerator module returns the information map, while the threshold computation 

and pixel masking is currently left to the host system, if desired. The fully customized accelerator 

incorporates multiple pipelines, each consisting of one instance of each module, except for the 

aggregator which is only instantiated a single time. The overall resource usage of the Virtex6 

FPGA for a 4-pipeline implementation of this customized accelerator is shown in Table 4-3.  
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Figure 4-10. Algorithmic data flow through AIM algorithm, including structural breakdown 

 

Table 4-3. AIM Accelerator Resource Utilization on Virtex6 FPGA 

 
Resources 

Required 

Resources 

Available 

Percentage 

Utilization  

Logic Elements 43,099 297,600 6% 

Flip-Flops 37,105 595,200 14% 

36kb Block RAMs 139 1064 13% 

Digital Signal 

Processors (DSPs) 
446 2016 22% 

 

The performance of the custom AIM accelerator was evaluated against a number of 

computing platforms. The results, shown in Figure 4-11, demonstrate that this accelerator easily 

outpaces the performance of even other hardware-based accelerators implemented without 

algorithm-specific customization. The fully customized AIM accelerator demonstrates a 6X to 

10X speedup when compared to non-custom microaccelerator architectures at the same 
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frequency, and an 8X to 19X improvement over a high-performance multicore Xeon processor. 

When compared to the low-power ARM core commonly found on embedded platforms, the 

performance improvement is even more dramaticð330X to 630X. 

 

 

Figure 4-11. Acceleration of fully custom AIM accelerator vs other platforms 

 

In further development of this accelerator, it was retargeted for acceleration on a Virtex7 

VX690T FPGA. The FPGA was connected via PCI Express in a host system equipped with a 

3.2GHz Intel Xeon CPU running Ubuntu Linux.  This accelerator was evaluated in comparison 

with an optimized software implementation on the same system. In addition to the performance 

metrics, an evaluation of the power consumption of this system was performed as well.  For 

power measurement, only the active runtime power was considered.  This was calculated by 

subtracting the power consumed during runtime from the power measured while the system was 

idle. The accelerated implementation was found to run 16.7X faster than the software, while 

consuming 31.5% less power. Salient regions identified by the AIM accelerator are shown in 

Figure 4-12. 
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Figure 4-12. Examples of salient regions identified by AIM 

The images on the left are the input frames, while the images on the right at the AIM-indicated 

salient regions. The top images are from the Stanford tower dataset [42], the bottom images come 

from data supplied by ONR for the SAF-T [36] program. 
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Chapter 5  
 

Case Study: Hierarchically Refined Object Recognition 

HMAX+ ESVM Pipeline 

Object recognition in real world systems must strive to meet two criteria: high 

performance and high accuracy.  Given the enormous number of potential objects to be found in 

the world, this is no small task. Algorithms such as Exemplar SVM are capable of achieving 

remarkably high accuracy in the face of a large number of candidate classes due the nature of the 

computation performed.  ESVM works to identify not only an object class, but the closest 

matching learned exemplar of that class. This accuracy comes at the cost of evaluating a series of 

classifiers whose number grows not necessarily with the number of classes, but with the number 

of exemplars per class.  Figure 5-1 [43] show this growth in the detection time of the ESVM as 

the number of exemplars per class increases.  

By contrast, object recognition based on an algorithm such as HMAX is effectively 

independent of the number of classes, as the feature extraction dominates the runtime relative to 

the actual classification.  Shown in Figure 5-2 [43], HMAX features perform very well for a 

limited number of classes.  With less than 10 candidate classes, the accuracy of object recognition 

can easily reach 90% or higher with just HMAX features. However, the discriminative power of 

these features quickly diminishes as the number of candidate classes increases.  Even stabilizing 

around 50% accuracy for a large number of classes leaves much to be desired. 
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Figure 5-1. The runtime cost of Exemplar SVM scales with the number of exemplars per class 

 

 

Figure 5-2. Difficulty of feature-based classification, such as HMAX, increases (to a point) with 

the number of candidate classes 
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The ideal system would combine the high accuracy and discriminative power of ESVM 

with the relative speed and performance of HMAX.  Aiming towards just such a system, this 

chapter describes the results of doing exactly thatðcombining these algorithms in a hierarchical 

fashion to improve ESVM performance and accuracy by using HMAX as a filter to dramatically 

reduce the number of exemplars that must be evaluated. 

The evaluation of this hierarchical recognition system was performed in the context of a 

grocery store environment. The training and testing datasets were independently generated by 

sampling from items that would be found in typical grocery store aisle. Eighty seven products 

were identified, characterized under eight general categories of packaging shapes. Using this list, 

the set of training images was synthesized by using the Microsoft Bing Search API to download a 

large number of images corresponding to each of these categories.  The images for each category 

were manually pruned to ensure that no cross-product contamination was present in the dataset. 

This pruning also guaranteed that all images in the training set accurately represented the type or 

instance of the product that would be seen on grocery store shelves. Examples of images pruned 

from this dataset would be images that contained two brands of soda in the same image or images 

that contained a brand logo without any packaging. After the required pruning was complete, the 

training dataset consisted of just under 7800 images spanning the 87 categories.  These images 

were used to independently train an HMAX-based classifier and Exemplar SVM system. 

In the context of personal assistance in a grocery store environment, the object regions of 

interest may be detected by a number of algorithms such as saliency [6,29,44], objectness [45], or 

symmetry [46]. Figure 5-3 shows an example of an intelligent visual pipeline configured for such 

a recognition system.  
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Figure 5-3. Intelligent visual pipeline configured for HMAX+ESVM classification 

 

Once an ROI is selected, it is first dispatched to the HMAX classifier for processing.  In 

this hierarchical system, the results of the HMAX classification, rather than being taken as an 

absolute winner-take-all classification, are passed on to an object filtering function.  This prunes 

the number of candidate classes to a limited subset of the HMAX results. The classes included in 

this filtered set of classes are the most likely classes as returned by HMAX, taken as the K classes 

which have the highest classifier scores, in decreasing order of score (and estimated probability). 

By narrowing the set of candidate classes down to a few, the number of exemplars that must be 

processed through the ESVM is not fixed and greatly reduced by the number of classes returned 

by the filter. 
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