
The Pennsylvania State University

The Graduate School

Department of Computer Science and Engineering

ENABLING INTELLIGENT VISION SYSTEMS IN A

CONFIGURABLE MULTI -ALGORITHM PIPELINE

A Dissertation in

Computer Science and Engineering

by

Matthew Joseph Cotter

Ò 2015 Matthew Joseph Cotter

Submitted in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

May 2015

ii

The dissertation of Matthew Joseph Cotter was reviewed and approved* by the following:

Vijaykrishnan Narayanan

Professor in the Department of Computer Science and Engineering at The

Pennsylvania State University

Dissertation Advisor

Chair of Committee

Mary Jane Irwin

Evan Pugh Professor in the Department of Computer Science and Engineering at

The Pennsylvania State University

John Sampson

Professor in the Department of Computer Science and Engineering at The

Pennsylvania State University

Mary Beth Rosson

Interim Dean of the Department of Information Sciences and Technology at The

Pennsylvania State University

John P. Sustersic

Special Member

Research Associate at the Applied Research Laboratory, Intelligent Systems

Department, Autonomous Control & Intelligent Systems (ACIS) Division

Steven P. Levitan

Special Member

John A. Jurenko Professor of Computer Engineering in the Department of

Electrical and Computer Engineering at The University of Pittsburgh

Lee Coraor

Head of the Graduate Program in the Department of Computer Science and

Engineering

*Signatures are on file in the Graduate School

iii

ABSTRACT

The machine vision community has expended tremendous effort in the research and

development of algorithms in an effort to develop a system that is capable of seeing the world as

humans do. These algorithms often focus on the accomplishment of specific tasks analogous to

human vision such as scene awareness, object detection, object recognition, and object tracking.

Joining forces with cognitive neuroscientists has steered much of this research towards the

development of algorithms that not only accomplish the required tasks, but endeavor to do so in a

biologically inspired fashion. Still, development and evaluation of these so-called neuromorphic

algorithms is often done in isolation, with little regard given to the rest of the system necessary to

make this human-like system a reality.

This dissertation provides a framework for the current and future development of

complex and highly integrated multi-algorithm vision systems. This framework not only enables

the composition of such systems, but enables seamless development and integration of improved

algorithmic modules. In addition to this high-level system composition framework, the Cerebrum

tool, targeted at development of hardware-accelerated architectures is detailed in this work. This

tool enables the creation of such hardware-based accelerators by researchers and engineers

without specific or detailed knowledge of the target hardware platform.

In addition to the framework and tools, this dissertation also details the analysis,

development and evaluation of hardware accelerators for HMAX object recognition and AIM

saliency detection. Armed with this intelligent framework and algorithmic accelerators,

demonstrations of vision systems that leverage multiple algorithms are constructed and evaluated.

Hierarchical object classification, leveraging the benefits of Exemplar SVM and

accelerated HMAX is shown to provide performance superior to either algorithm in isolation.

iv

Furthermore, a more complex system, targeting the domain of personal retail assistance is

composed and demonstrated for the benefit of visually impaired persons.

With an eye towards future systems, this dissertation also serves to evaluate and explore a

number of technologies whose time is coming. New transistors, such as Tunnel FETs, and novel

architectures, such as coupled oscillator arrays, are examined to identify benefits and concerns in

their use for the development of future visual systems, both at the algorithmic and

circuit/component level. This work also explores the potential for inclusion of additional data

modalities, such as audio, for a more effective understanding of scene awareness.

The flexibility of the framework described here enables the inclusion of these emerging

devices, architectures, and modalities alongside traditional software and hardware-accelerated

implementations within a unified system in order to develop, evaluate, and deploy all of the

components required for any given visual system.

v

TABLE OF CONTENTS

List of Figures .. vii

List of Tables ... ix

Acknowledgements .. x

Chapter 1 Introduction ... 1

Contributions of this Dissertation .. 2

Chapter 2 Vision Algorithms ... 5

2.1 Scene Context & Awareness .. 7
GIST ... 7

2.2 Attention & Visual Saliency .. 9
Attention based on Information Maximization .. 10

2.3 Object Recognition .. 12
HMAX .. 12
Exemplar SVM ... 15

2.4 Object Tracking .. 17
Consensus-based Matching and Tracking of Keypoints (CMT) 18

Chapter 3 Development of Intelligent Visual Systems .. 21

3.1 Intelligent Visual Pipeline & Framework .. 22
Communication .. 24
Modular Implementation .. 25

3.1 Algorithmic Accelerator Prototyping Tool (Cerebrum) ... 26
Cerebrum Front End ... 27
Cerebrum Back End ... 29

Chapter 4 Accelerated Architectures ... 31

4.1 HMAX Accelerators .. 31
Baseline Implementation .. 32
S2/C2 Accelerator .. 37
S1 Accelerator .. 41
System Evaluation .. 41

4.2 AIM Accelerator .. 46

Chapter 5 Case Study: Hierarchically Refined Object Recognition .. 50

HMAX+ESVM Pipeline .. 50
Evaluation .. 54

vi

Chapter 6 Case Study: Object Detection and Tracking for Personal Assistance 58

Detection .. 60
Boosted Recognition .. 60
Tracking ... 61
Feedback .. 61

Chapter 7 Future Implications of Emerging Technologies and Non-Visual Features 63

7.1 Emerging Technologies ... 63
Tunnel FETs ... 65
Non-Boolean Architectures .. 69

7.2 Multiple Modalities .. 75
Audiovisual Scene Recognition ... 75
Lexicovisual Scene Recognition .. 79

Chapter 8 Summary ... 83

References .. 85

vii

LIST OF FIGURES

Figure 2-1. Example of AIM attentional algorithm. .. 10

Figure 2-2. Computational layers and data flow of the HMAX algorithm 12

Figure 2-3. Example image pyramid generated in preprocessing of HMAX 13

Figure 2-4. Examples of oriented Gabor filters, as used in the S1 layer of HMAX 13

Figure 2-5. Illustration of cross scale pooling in C1 layer of HMAX 14

Figure 2-6. Illustration of several stages of CMT tracking .. 19

Figure 3-1. Example of Intelligent Visual Pipeline. .. 21

Figure 3-2. Example of Cerebrum Core definition .. 27

Figure 4-1. Execution time of HMAX as a function of number of threads 33

Figure 4-2. Speedup of S2 stage of HMAX as a function of multithreading 35

Figure 4-3. Power Consumption of HMAX due to multithreading ... 36

Figure 4-4. S2/C2 Stage Accelerator for HMAX .. 39

Figure 4-5. S1 Stage Accelerator for HMAX .. 41

Figure 4-6. Speedup of GPU- and FPGA-accelerated HMAX .. 43

Figure 4-7. Power Efficiency of GPU- and FPGA-accelerated HMAX 43

Figure 4-8. HMAX Classification Accuracy for Caltech256 dataset 44

Figure 4-9. HMAX Classification Accuracy for PASCAL VOC2007 dataset 45

Figure 4-10. Algorithmic data flow through AIM algorithm, including structural

breakdown .. 47

Figure 4-11. Acceleration of fully custom AIM accelerator vs other platforms 48

Figure 4-12. Examples of salient regions identified by AIM... 49

Figure 5-1. The runtime cost of Exemplar SVM scales with the number of exemplars per

class .. 51

Figure 5-2. Difficulty of feature-based classification, such as HMAX, increases (to a

point) with the number of candidate classes .. 51

Figure 5-3. Intelligent visual pipeline configured for HMAX+ESVM classification.............. 53

viii

Figure 5-4. Per-class recognition accuracy for HMAX on grocery dataset 54

Figure 5-5. Per-class recognition accuracy for ESVM on grocery dataset 55

Figure 5-6. Accuracy of HMAX recognition, as the number of candidate classifications

for consideration is increased ... 56

Figure 5-7. Per-class recognition accuracy for HMAX+ESVM on grocery dataset 57

Figure 6-1. Example of Intelligent Visual Pipeline configured for Personal Assist 59

Figure 7-1. Limitations of Scaling of Vcc and Vt in Silicon MOSFETs 64

Figure 7-2. Transport and Drive Characteristics of n-MOSFET vs. n-TFET 65

Figure 7-3. Unidirectional conduction of n-TFET (Id-Vds) .. 66

Figure 7-4. Energy-Delay Plot of TFET-based 32-bit Sparse MCC Adder 67

Figure 7-5. D-Latch Based Flip-Flop Design Using FinFETs (left) and TFETs (right) 67

Figure 7-6. Threshold voltage drop (left) and switching overshoot (right) for FinFETs

(top) and Tunnel FETs (bottom) .. 68

Figure 7-7. Effect of Enhanced Miller Capacitance on TFET SRAM Soft Errors 69

Figure 7-8. Effect of electrical masking on soft error propagation .. 69

Figure 7-9. Oscillator Inputs Derived for Edge Detection ... 72

Figure 7-10. Edge Detection using Oscillators (left) Original Image (middle) Canny

Edges (right) Oscillator Edges .. 73

Figure 7-11. Oscillator Inputs Derived for Saliency Approximation 74

Figure 7-12. Results of Visual Saliency From left to right: Original Image, AIM Saliency,

Full Oscillator Array, Separated Oscillator Arrays .. 74

Figure 7-13. Evaluation of scene recognition using both visual and audio features 78

Figure 7-14. Change in scene recognition accuracy between visual and audiovisual

features ... 79

Figure 7-15. Exploration of impact of lexical prior weight on accuracy 81

Figure 7-16. Evaluation of scene recognition using both visual and audio features 82

ix

LIST OF TABLES

Table 3-1. Examples of Intelligent Visual Pipeline Modules .. 22

Table 3-2. Examples of Intelligent Visual Pipeline Module Outputs 24

Table 4-1. HMAX Algorithm Parameters .. 32

Table 4-2. HMAX Stage Execution time, as a percentage of total execution time 34

Table 4-3. AIM Accelerator Resource Utilization on Virtex6 FPGA 47

x

ACKNOWLEDGEMENTS

First and foremost, I would like to acknowledge the tireless guidance and encouragement

of my dissertation advisor, Dr. Vijaykrishnan Narayanan. Without his willingness to take me on

and guide me, this work, as well as my graduate and post-graduate career would no doubt have

been impossible.

I also need to thank the rest of my doctoral committee for their input, guidance, and

feedback as I pursued the various aspects of my research and for their confidence both in me and

my work as I move forward beyond graduate school.

While all students, faculty, and researchers at the Microsystems Design Laboratory

(MDL) at Penn State have been remarkably helpful during my time there, I do need to single out

three individuals in particular: Michael Debole, Ahmed Al Maashri, and Kevin Irick. Without the

day-to-day help and support from these amazing individuals, I am not sure that I could have made

it as far as I have.

Last and certainly not least, I have to acknowledge the patience and sacrifices of my

family throughout my academic career. Without their understanding, none of what I have done or

will ever do would be possible.

Chapter 1

Introduction

The vision of building a system capable of understanding the world the way humans do

has long been a goal of both the machine vision [1,2] and cognitive neuroscience communities

[3,4,5]. The ultimate goal of such a system is to enable the system to autonomously answer

questions such as: ñWhere am I?ò, ñWhat is going on?ò, ñWhat is worth looking at?ò, ñWhat do

I see?ò, ñWhat objects are present?ò, ñAre things moving?ò, and ñWhere are they going?ò To

humans, these questions are often too simple to consciously consider. However, endowing a

computing system with these capabilities has proven challenging. For many years, both

communities have attempted to tackle these problems separately. Computer scientists have

focused on developing image processing algorithms rooted in disciplines such as information

theory and machine learning to create systems to accomplish some of these goals. At the other

end of the spectrum, cognitive scientists and neuroscientists have examined mammalian behavior

and activity in the brain in order to establish an understanding of exactly how humans process

information. It is this observation which drives the development of biologically inspired

algorithms.

More recently, research has brought both vision communities together in an effort to

create a system that is capable of seeing the world how humans see it. Much of this effort has

focused on realizing biologically-inspired implementations of key aspects of the human visual

process. Development of such neuromorphic algorithms has focused on a few select aspects of

the human visual process such as scene and context recognition [4,6], attentional awareness [7,8]

and object recognition [3,9,10,11]. Much of the work in developing these state of the art

2

algorithms has focused on their implementation and evaluation in isolation in order to solve the

specific problem they addressðanswering only one, or possibly two, of these questions at a time.

In order to effectively model human perception, however, multiple algorithms must work

in concert in order to quickly, efficiently, and accurately provide as much information as possible.

Toward that end, this work discusses a unified multi-algorithm pipeline which is capable of

enabling such intelligent visual perception systems. The goal of this pipeline is not to model the

entire visual system exactly as in humansðnot a fully neuromorphic systemðbut to provide a

framework in which modules may be added, removed, configured and tuned to provide an

effective answer to all of the questions necessary. Chapter 2 delves deeper into some of the

algorithms that are used to enable an intelligent visual system. While there are a wide variety of

algorithms which are capable of addressing machine vision problems such as awareness,

attention, recognition and tracking, this chapter serves as an overview of the most prominent and

widely used algorithms, many of which are further analyzed and employed throughout the

remainder of this dissertation.

Contributions of this Dissertation

The framework for a flexible and configurable pipeline for visual systems is presented in

Chapter 3. This framework contributes a foundation for the incremental and iterative

development and evaluation of complex multi-algorithm visual systems. This software

architecture enables implementation-agnostic support allowing individual modules to be

developed and improved independently towards the ultimate realization of the desired system.

In addition to this high-level vision framework, a tool for the graphical development of

FPGA-based hardware accelerators has been developed. This tool, Cerebrum [12], has not only

been used to develop the hardware accelerator for HMAX , detailed within this dissertation, but

3

has also been made publicly available and used for the development of other hardware

accelerators as well. While similar packages have been developed, such as the iLab

Neuromorphic Vision C++ Toolkit [13], these tools focus specifically on the development of

purely software based models of primarily neuromorphic vision algorithms. The Cerebrum tool

appears to be the first of its kind to enable drag-and-drop synthesis of vision algorithms targeted

towards an FPGA-based hardware architecture.

Furthermore, this work provides analysis of multiple vision algorithms, specifically

HMAX and AIM, for object recognition and salient target detection, respectively. The analysis

and profiling of these algorithms ultimately served as a basis for the exploration and development

of hardware accelerators, detailed in Chapter 4, contributing towards the realization of real-time

complex visual systems. In addition to the development of these accelerators, this work provides

a foundational evaluation of the benefits of such hardware-accelerators in terms of power and

performance, relative to other implementations on general purpose CPUs and graphics processing

units (GPUs).

The effectiveness and utility of systems making use of these hardware accelerators and

multi-algorithm intelligent vision pipelines are demonstrated within this work as well. The

flexibility of the pipeline is shown through the use of cascaded object recognition algorithms.

This hierarchical object recognition scheme, detailed in Chapter 5, leverages the speed of the

hardware-accelerated HMAX algorithm as well higher as accuracies of Exemplar SVM-based

classification in order to improve overall recognition accuracy in a reduced time frame.

This work further demonstrates the potential social contributions of such a complex

pipeline through the demonstration of a real-world personal assistance system. The personal

shopping assistance scenario, targeting visually-impaired, persons is described in Chapter 6. This

system incorporates a number of vision-based algorithms to locate, identify, and track desired

products within a grocery store environment. In addition to this information gathering, the

4

system also demonstrates how this information can be leveraged in order to provide feedback

allowing a visually-impaired person to locate and pickup products without additional assistance.

Finally, this work provides an exploration of a variety of new and emerging technologies

that may be leveraged in intelligent vision systems of the future. The evaluation of Tunnel FETs,

as a candidate for the replacement of traditional MOSFET and FinFET devices, provides a

foundation for the development and continued evaluation of these devices as they mature. This

work contributes to the examination of novel architectures, such as coupled oscillators, by

exploring their capability to effectively provide implementations of a variety of operations and

algorithms used within the domain of machine vision and image processing. New sources of

information may contribute to the understanding of a visual scene as well. This work explores

the application of audio signals which may be present, but often ignored, in video systems in

order to improve the capability for complex visual systems to achieve better context and scene

awareness.

5

Chapter 2

Vision Algorithms

Towards the development of an intelligent vision system, many algorithms must work

together. This chapter examines some of the questions that need to be answered by such a

system, and provides a detailed background on algorithms capable of doing so.

Questions such as ñWhere am I?ò and ñWhat is going on?ò are answered through the use

of context recognition algorithms [6,14,15], attempting to capture what is commonly referred to

as the ñgistò of a scene, the name by which they are often called. These GIST-type algorithms

employ a feature extraction methodology in order to construct a feature space for future

classification using these algorithms. The features generated by these algorithms are typically

useful for quickly identifying a generic location or scenario, such as a city street, meadow, or

forest. In addition to recognition of such broad environments, these context awareness algorithms

can also enable the identification of specific locations, such as a particular room or aisle in a

grocery store.

Attentional algorithms such as AIM [1,2,16] and visual saliency [7,8] attempt to answer

the simple question: ñWhat is worth looking at?ò While the question is simple, the approach is

not. AIM attacks this problem from an information theoretic perspective to develop a measure of

self-information or ñsurpriseò found at each pixel in an image. These regions of high information

indicate regions worth focusing attention on. Visual saliency approaches the problem from the

cognitive science perspective, employing features that are demonstrated to produce attentional

responses in humans, monkeys and other mammals. Both of these algorithms work to produce a

heat map, indicating relative levels of interest which can be found at various locations in the

image.

6

The most intensive research in visual processing algorithms has been focused towards the

field of object recognition. These types of algorithms are designed to answer questions such as

ñWhat do I see?ò and ñWhat objects are present?ò Many algorithms have been developed to

address the problem of answering these questions. Algorithms such as HMAX [3,9,17,5,18], are

modeled after the human ventral stream of visual processing. HMAX extracts features from a

particular region of an image by identifying correlations to previously learned features. Others

such as Exemplar SVM [19] and SURF [20] use combinations of feature extraction, brute force

matching, and machine learning in order to match visible objects to previously seen templates or

examples.

Machine vision has long studied tracking algorithms in order to answer the questions

ñAre things moving?ò, and ñWhere are they going?ò This research has led to the development of

such seminal algorithms as basic mean-shift [21] tracking and Lucas-Kanade optical flow [22,23].

Many current state-of-the-art tracking algorithms, such as OpenTLD [24,25] and CMT [26], are

built upon these core algorithms, augmented with the inclusion feature detection, feature

extraction, and machine learning algorithms.

All of these algorithms are useful in completing a piece of the puzzle on their own.

However, the deep understanding that humans are capable of in their perception does not arise

through analysis of all of these pieces in isolation. Upon seeing a scene, humans are capable of

quicklyðvirtually simultaneouslyðidentifying the context of a scene, identifying the locations

of key objects in a scene. This is quickly followed by identification of what those objects are and

how they (or other objects) may be moving within the scene. As understanding of a scene

develops, new inferences will be made and conclusions drawn, modulated or reinforced by the

previously observed data. For example, being able to quickly identify a scene as a city street can

modulate the attention, focusing it towards the ground level areas, such as sidewalks and roads.

Additionally, the knowledge of the current location can influence the likelihood of detecting

7

certain types of objectsðlions are not often found on a city street and cereal boxes donôt often

appear in the vegetable aisle of a grocery store.

2.1 Scene Context & Awareness

Scene and context recognition algorithms are useful in the identification of a location

depicted in an image. The specificity of the location may vary, identifying scenes and contexts

ranging from a specific location to a general setting. Regardless, scene and context recognition

algorithms enable additional inferences to be made not only about what is going on in the scene,

but as to the types of objects that may be identified in the image as well [14,15,27].

GIST

A variety of descriptions can be applied to various scenes, much as humans are capable

of describing a scene in multiple ways. Many of these descriptors define various visual aspects of

an image, often in degrees. By combining these descriptions, a better understanding of the total

content of a scene can be achieved. Oliva and Torralba, in [28], have presented a method for the

holistic description of a scene using a spatial envelope encompassing these types of descriptors.

This envelope attempts to quantify the degree of several image descriptors such as naturalness,

openness, roughness, expansiveness, and ruggedness. These descriptors lead to features which are

capable of describing an image in terms of many human-understandable qualities.

Naturalness captures the apparent synthetic nature of a scene, providing an indicator of

whether the location appears man-made (urban) or natural (such as a field or forest). Providing a

measure of how contained a scene is, openness describes whether the content of a scene is

8

bounded. For example, while an area such as a forest or grassy meadow has a high degree of

openness, an indoor room such as an office appears to have clearly defined boundaries and a

corresponding lack of apparent ñfreedomò. Roughness distinguishes the complexity of a scene,

differentiating between scenes which contain a degree of regularity and smoothness, such as the

exterior of an office building versus those which exhibit a high irregularity and lack of

smoothness, such as a forest.

Due to perspective, parallel lines in a scene provide a measure of depth based on their

level of convergence in a scene. Expansion quantifies this by determining the degree at which

vertical and horizontal edges in a scene converge. Scenes with a high depth, and correspondingly

high degree of expansiveness, contain lines that significantly converge towards their respective

vanishing points. Ruggedness attempts to measure the contours of the scene of the ground level.

Measured with respect to the horizon line of an image, this feature readily provides effective

discrimination between man-made environments, typically with relatively smooth ground levels,

such as floors and streets, and natural environments with highly uneven terrain, foliage, and rocky

formations.

These descriptors can all be formulated as a measure of the spatial information in an

image, represented at varying spatial frequencies. The algorithm outlined in [28] details the

application of such filters in order to compute these descriptors. Each descriptor is computed by

applying the appropriate filters to the input image. The image is first converted into its

corresponding representation in the spatial frequency domain. This representation has a two-fold

impact on the computation. First, in the frequency domain, any influence of relative location of

objects in the scene is obscured. Second, the application of the frequency-domain filters to the

frequency domain image results in highly simplified computation. Rather than defining, or

transforming, each descriptor filter in the spatial domain, convolution of each filter requires

simple point-wise multiplication in the frequency domain.

9

Once all of the filters have been applied to the image, a summary of the responses must

be extracted to use as features for recognition. In order to accomplish this, the response of each

filter is transformed back into the spatial domain. A grid of NxM equal-sized subregions is

defined across the image and the average response across each of these regions is computed. A

finer grid corresponds to a feature vector more representative of the entire image, at the cost of a

larger vector for subsequent processing and increased computation time.

2.2 Attention & Visual Saliency

The baseline models for visual attention essentially strive towards the ideal goal of

identifying what region(s) of an image the eyes would be most drawn to look at first. A variety of

attentional models have been developed. Bottom-up models [1,2,16,29] strive to identify regions

of interest (ROIs) within a scene based on global image features. These models derive their

measure of attention for any particular pixel or region based solely on statistics and information

available within the image. While this approach has validity in identifying human fixations [1],

there is evidence that human attention is driven by more than what is seen. [30] Recent attentional

models have shown that human fixations are often modulated by a task-dependent factor. These

task-driven, or top-down, attentional models have become increasingly attractive for systems in

which the targets are known ahead of time. Both models have uses in intelligent vision systems,

with bottom-up attention later influenced by top-down processing.

10

Attention based on Information Maximization

Saliency (Attention) based on Information Maximization [2], dubbed AIM, is a bottom-

up attentional model that works to identify regions of interest in an image. These regions are

identified using a statistical approach based on information theory. In essence, this algorithm

endeavors to assign values to every pixel in an image corresponding to the level of Shannon self-

information. These regions found to contain the most information within the image are identified

as regions of interest. The kinds of regions identified by this algorithm are found to correspond to

those that contain the most surprise, relative to the rest of the image. An example of the results of

this algorithm can be seen in Figure 2-1.

Figure 2-1. Example of AIM attentional algorithm.

(top-left) Input image, (top-right) Saliency map, (bottom) Thresholded ROI mask

The level of self-information contained throughout the image is extracted through the use

of a series of convolutional operations. The kernels used for these convolutions are learned a

priori and form the foundation of the computation of the algorithm. These kernels are derived

through a multi-step process. Initially, a random sampling of image patches is taken from a large

11

set of images. Each of these patches is then evaluated in terms of its capability to extract

information. These patches are then evaluated using Independent Component Analysis (ICA) in

order to identify the set of patches which produces the most mutually exclusive information.

These patches then become the basis functions on which the primary algorithm is based.

The runtime operation of the algorithm can be separated into three stages. In the first

stage, each of learned basis kernels is convolved with the image. For multi-channel images, each

channel is convolved with the basis kernels independently. After convolutions have completed,

the response values are binned into histograms in order to compute pixel-response frequency

counts. The pixel-responses are used along with these histograms to compute a probability and

then a log-likelihood density estimation. This value estimates the probability of a particular pixel

response, and therefore the probability of a given pixel. The summation of all of these likelihoods

produces an estimate of the self-information at each pixel, resulting in an information map as seen

in Figure 2-1 (top-right).

The exact process of identifying salient pixels from this map may vary. One simple

approach is to identify a percentile threshold above which a pixel is considered to be salient and

below which is considered irrelevant. Using this threshold, the likelihood value(s) which fall on

or around this threshold are identified. This value is then used to binarize the information map

into salient and non-salient pixels. An example of this binary map is shown in Figure 2-1

(bottom).

12

2.3 Object Recognition

HMAX

Object recognition in the human brain is processed in the ventral stream, between the V1

visual cortex and the inferior temporal (IT) cortex [3,11,31]. Based on this biological model,

HMAX attempts to mirror the behavior and processing performed along the ventral stream in a

biologically consistent manner. Working to match the scale-and rotationally-invariant

capabilities of human process, this model builds a set of complex features, derived from simple

features. This processing happens in a hierarchical, feed-forward fashion. Figure 2-2 [32] shows

an example of the computational operations and dataflow of the HMAX algorithm.

Figure 2-2. Computational layers and data flow of the HMAX algorithm

The first processing step performed in HMAX is a pre-processing step. In order to enable

scale invariance, the first stage of the HMAX algorithm generates an image pyramid, representing

the original input image at a variety of scales and resolutions, as seen in Figure 2-3. After

composition of the image pyramid, the remainder of the HMAX algorithm is comprised of

alternating layers of convolution operations and pooling operations, corresponding to the

(S)imple and (C)omplex cells found within the visual cortex.

13

Figure 2-3. Example image pyramid generated in preprocessing of HMAX

The image of the duck is taken from the COIL-20 dataset [citation]

The first of these layers, the S1 layer, enables the rotational invariance of the HMAX

algorithm. In the S1 layer, each scale of the image pyramid is convolved with a series of Gabor

filters, a widely accepted model of the receptive fields in the visual cortex [31]. As in [33], this

series of filters is designed to be 11x11 in size with dominant orientations equally spaced between

0 and ˊ radians. The remaining parametersðwavelength (ɚ), effective filter width (ů), and aspect

ratio (ɔ)ðare set as described in [18] to have values of 5.6, 4.6, and 0.3 respectively.

Equation 2-1. Gabor filter used in the S1 layer of HMAX processing

Figure 2-4. Examples of oriented Gabor filters, as used in the S1 layer of HMAX

Orientation angles spaced equally between 0 and ˊ radians

14

 Following the S1 layer, the C1 layer performs localized pooling across S1 output cells.

This layer compresses some of the scale invariance introduced in the preprocessing stage by max-

pooling values across adjacent scales. In addition to this cross-scale activity, pooling

encompasses local regions of these adjacent scales. The resulting output of the C1 layer is a

highly condensed set of images, retaining all orientation information generated by the S1 layer.

Figure 2-5. Illustration of cross scale pooling in C1 layer of HMAX

The most complex layer of HMAX processing, the S2 layer is modeled on the V4

(posterior IT) region of the ventral stream. In this layer, a large database of tuned features are

matched across each scale of C1 output. This database consists of a number of prototype image

patches, of varying sizes (4x4, 8x8, 12x12, and 16x16 as in [10]). Each of these patches consists

of the target feature as seen at each orientation as generated by the S1. The matching function of

the S2 may be varied, however, the normalized dot product, as shown in Equation 2-2, has been

shown to be an effective matching function [32]. The processing of the prototypes through the S2

ensures that each prototypeôs orientation is matched against the corresponding orientation of C1

MAX

(Largest scale, smallest region) (Middle scale, medium region) (Smallest scale, largest region)

15

output. The output of the S2 layer results in a large amount of data, namely a response image for

every dictionary template, correlated at every scale and orientation fed into the S2.

Equation 2-2. Equation describing the Normalized Dot-Product used in the S2 layer of HMAX

The final layer of HMAX processing, the C2 layer, enables global invariance by pooling

across all responses for each prototype over a range of scales. By grouping large bands of scales

together, this pooling effectively eliminates the impact of large variations in scale. Pooling across

the entirety of each response image removes the impact of position within the frame. Likewise,

pooling across orientations ensures that the best response for each prototype is found regardless

of how the object is oriented in the initial input image. This global pooling results in a large and

complex feature set that can be used for any number of machine learning systems for object

recognition.

Exemplar SVM

The Exemplar SVM (ESVM) [19] model performs object detection based on the

relatively simple concept of finding the best match of a particular object within a database of

previously learned objects. In support of this, an SVM classifier is trained for each object,

exemplar, in the learned database. While the database may contain any number of exemplars for a

given class, a unique classifier is trained for each exemplar independently. These exemplars are

each represented through the use of a rigid Histogram of Oriented Gradients (HOG) template.

16

HOG processing is based on gradient computation within the window. Each detected gradient is

then employed in a nonlinear weighting operation, allowing each gradient to vote for a particular

orientation, based on the magnitude response. These votes are then binned by orientation over

small spatial windows within each cell. Contrast normalization is performed across all blocks

within the cell, producing a normalized HOG cell response. The complete HOG descriptor is a

combined vector of all components of the normalized cell responses from all of the blocks in the

detection window [34].

Each specialized exemplar classifier is trained by first windowing the object ground truth

in such a way as to produce approximately 100 cell windows. While the exact windowing

function is different for each exemplar, the size of all cells for any given exemplar are the same.

This results in the number of HOG features being different for each exemplar SVM classifier.

The training process for each exemplar begins by this window selection, extracting the HOG

features from each window. These features serve as the positive training example of the chosen

exemplar, XE. A number of negative training examples are then generated by extracting cells, of

the same size as the training exemplar from database objects which do not represent the same

class as that of the chosen exemplar. For each of the windows extracted from the non-chosen

exemplars, HOG features are extracted. These features serve as the negative training examples of

the chosen exemplar, NE.

Finally, the SVM classifier is trained to learn the feature weights which provide maximal

separation of the features represented in XE from those found in NE. For each positive exemplar, it

is not uncommon to use a very large set of negative examples for training. However, the number

of training vectors only impacts the training phase of the ESVM algorithm.

Once trained, an unknown object is processed through each of the trained ESVM

classifiers. For each classifier, the cell windowing and HOG feature extraction is performed in

17

such a way as to match the cell topology of the positive example of the class. This ensures that

the resulting HOG feature vector will have the same length as the ESVM classifier.

The detection and classification of ESVM has been shown to be highly effective [19].

However, as the classification process must be carried out for each candidate SVM, the runtime

performance scales not with the number of classes as many classification schemes, but rather with

the number of exemplars. Thus, the ensemble of exemplars can become quite large. The ability to

classify a wide number of classes would require processing of the entire ensemble, requiring

significant expenditure of time and resources.

2.4 Object Tracking

Machine vision has developed a number of algorithms that can be useful for tracking

moving objects. The most basic of these algorithms is mean shift tracking. This algorithm suffers

from a number of deficits which later algorithms have tried to address. Deformations and

rotations in the object easily create confusion and can cause tracking to fail. Algorithms such as

Lucas-Kanade optical flow [22] attempt to improve on this by attempting to first identify key

components of a tracked object. These components are tracked individually by identifying local

regions in subsequent frames which exhibit strong correlation to the component in the previous

frame. The net motion of the object can be computed through analysis of the apparent movement

of its components. However, this type of tracking may succumb to errors when dealing with

objects that are capable of deformation, effectively changing the relative locations between key

components while in motion.

More advanced algorithms have attempted to address this issue through several means.

OpenTLD [25] employs an online learning model during tracking. This enables a periodic update

allowing the algorithm to adapt to subtle changes in the object over time, effectively

18

compensating for deformations. However, rapid movements or changes in the object without

corresponding updates to the model can cause tracking to fail. Once this happens, it becomes

difficult for TLD to re-engage tracking with the target.

Another algorithm, Consensus-Based Matching and Tracking of Keypoints (CMT),

sacrifices some of this flexibility in order to enable simplified target reacquisition.

Consensus-based Matching and Tracking of Keypoints (CMT)

The CMT algorithm performs object tracking by combining a persistent object model

based on advanced keypoints and optical flow. Tracking is initialized by providing the algorithm

with the current frame and the region of that frame which contains the object. The entire input

frame is processed using the advanced keypoint detection algorithm, BRISK in the default

implementation. The set of active keypoints is constructed by identifying all of the keypoints

which fall inside the region defining the target object. These keypoints, and their associated

descriptors comprise the defined object model. This model, in addition to the keypoints, contains

information relating their relative locations and angles, called springs, with respect to the center

of the defined object region. This additional information is used for object center, scale, and

rotation estimation during subsequent frames, as seen in Figure 2-6a. All remaining keypoints,

and their descriptors, are defined to constitute the background model of the scene.

19

(a)

(b)

(c)

(d)

Figure 2-6. Illustration of several stages of CMT tracking

(a) Keypoints and springs identified during initialization. (b) Optical flow estimation. (c) Scale and

Rotation estimation using relationships between keypoints. (d) Center point estimation using

transformed springs

Subsequent frames are processed by first performing keypoint based Lucas-Kanade

optical flow (Figure 2-6b) of the active model keypoints into the current frame. Both forward and

reverse optical flow are computed to define a degree of error in the tracking of each keypoint.

Any keypoint which is not able to be tracked within a reasonable error bound is ignored in the

tracking as untracked.

The set of keypoints that are successfully tracked are then used to estimate the relative

scale and rotation of the object (Figure 2-6c). This is done through analysis of the relative change

in distance and locations between keypoints. After estimation of scale and rotation, these

keypoints are then used to estimate the center of the object (Figure 2-6). By using the springs for

20

each of these keypoints, an agglomerative hierarchical clustering algorithm is employed to allow

each keypoint to vote for the location it considers the most likely center. The center of the

primary cluster is taken as the estimate for the new object center, after any votes which fall too

far outside this cluster are discarded.

After tracking, the algorithm attempts to reconstitute any keypoints which were not

successfully tracked by performing another round of keypoint detection and matching against the

initial model. It is this step that enables CMT to reacquire an object after it has been obscured,

left view, or temporarily changed its form or appearance enough to be lost. For each keypoint in

the image, it is matched to the model developed in the tracking initialization through the use of a

brute force matching algorithm. While the matcher identifies the best match between keypoints,

the algorithm enforces a minimum threshold the degree of this match. Additionally, another

constraint is imposed, requiring a high degree of relative confidence in the match, by comparing

it to the second-best match as well.

With tracking and matching complete, the set of active keypoints is updated and a new

bounding box is computed. In its current form, CMT does not adapt the model of the object over

time, so one drawback is that it loses tracking of objects that have a significant change in view

over time, such as an object with differing front and rear sides that rotates.

21

Chapter 3

Development of Intelligent Visual Systems

This chapter details the framework for the development of an intelligent visual system

based on a software-architected pipeline. This pipeline presents a unified software architecture for

the inclusion, development and utilization of a wide variety of detection, recognition, and

tracking modules, among others, necessary to construct such an intelligent system. A

visualization of a complex intelligent vision pipeline is shown in Figure 3-1. Despite its

grounding in a software implementation, the components of the pipeline are entirely self-

contained, rendering the internals of their implementations irrelevant.

Figure 3-1. Example of Intelligent Visual Pipeline.

A software tool for the prototyping and development of FPGA-based hardware

accelerators is also presented in this chapter. This tool presents a hardware-agnostic interface for

Target Tracking
(Reacquisition)

Open TLD
CMT

Attention
Saliency

AIM

Context
Recognition

GIST

Object Filtering
ViCoNet

Object
Recognition

HMAX
SURF
CNN
ESVM

Target Tracking
(Initiation/Update)

Open TLD
CMT

Object
Detection

SURF
Symmetry

Video
Frame

22

research scientists to develop algorithmic accelerators targeting a variety of FPGA hardware

platforms. The interfaces to these accelerators can be easily mapped into the intelligent vision

pipeline described here, regardless of the exact nature of their implementation.

3.1 Intelligent Visual Pipeline & Framework

The intelligent visual pipeline discussed here is created with several goals in mind. The

first of these goals is that the pipeline configuration is highly flexible. The only requirement of

components in the system is that they conform to one of several interfaces indicating their general

purpose: input, output, detection, feature extraction, classification, filtering, or tracking. Often

used together, feature extraction and classification modules may be grouped together into a

general class of modules explicitly targeted at self-contained recognition. Examples of the types

of components and algorithms that would fall into these categories are listed in Table 3-1. These

interfaces are not exhaustive. The dynamic nature of the pipeline facilitates the development and

integration of interfaces which have not yet been defined. This enables future support of

algorithms and information modules that are not yet known, or known to be necessary.

Table 3-1. Examples of Intelligent Visual Pipeline Modules

Input Output Detection
Recognition

Filtering Tracking
Feature Extraction Classification

Image Set
Display

Visualizer
Saliency SURF Linear (RLS)

Visual Co-occurrence

Network (ViCoNet)
OpenTLD

Video File
Audio

Feedback
AIM SIFT

Brute Force

Matching
Top-K Response CMT

GigE

Camera

Haptic

Feedback
SURF HMAX SVM OpenTLM

USB

Webcam
 SIFT

Histogram Of

Gradients (HoG)
ESVM

IP Camera Symmetry

Web Stream

23

The modular flexibility provided by this framework enables hierarchical solutions to

vision-related problems by cascading multiple different algorithms together. Visual GIST-type

algorithms, by providing context and awareness, can greatly improve the recognition of objects in

a scene. However, the types and configuration of objects found in a scene may be just as telling.

For example, if an object recognition module strongly recognizes several objects such as cars,

buses, and signs, the system may be able to infer that the location is a city regardless of the result

of the context recognition algorithm. In turn, this improved context awareness may enable further

refinement of other, less easily recognized objects in the scene.

The cascaded arrangement of modules may also include similar algorithms in order to

better solve or reinforce results, such as in the case of object recognition. This is the case

explored by the hierarchical recognition pipeline described in Chapter 5. This pipeline employs

multiple feature extraction and classification modules alongside a classification filtering module

in order to exploit the accuracy and performance characteristics of different recognition

algorithms.

With time being a key limiting factor in a real time vision system, it may be often the

case where there is insufficient time to sufficiently classify or process all detected objects within

a scene. The inclusion of tracking-enabled modules in this intelligent pipeline opens a new means

of improving performance by exploiting the temporal dimension. Detected objects can be tracked

through frames over time, regardless of whether or not they are given a classification. Over time,

as the number of new detections decreases, the slack time may be given to classify these

previously unclassified objects. In the event that no objects are found to be unclassified,

classification can still provide benefits in the presence of tracking capabilities, however. Objects

with weak classifications may be reclassified, possibly with greater effort, in order to improve or

reinforce the assigned classification.

24

The flexibility of this pipeline only requires that those components necessary for the

target application be included. The hierarchical recognition described in Chapter 5 presents a

simple pipeline, while a more complex pipeline, as described in Chapter 6, utilizes a wider range

of components.

Communication

Each module must conform to a particular interface, indicative of the type of operation

that it performs or purpose it serves. The distinguishing factors of these interfaces, therefore, lies

in the type of data that it produces. A summary of the types of outputs each module produces is

given in Table 3-2. Input modules produce raw input data such as frames from an IP camera or

video file. These output data streams are tagged with the ID and function of the module that

generated it in order to facilitate advanced data flows.

Table 3-2. Examples of Intelligent Visual Pipeline Module Outputs

Input Output Detection
Recognition

Filtering Tracking
Feature Extraction Classification

Raw (image,

audio, etc.)

data

Visual,

auditory,

physical

feedback

Regions

of Interest

(ROIs)

Feature Vectors
Classification

Scores/Labels

Classification

Scores/Labels

Regions

of Interest

(ROIs)

An event/subscription style model is used by the pipeline to propagate data from one

module to the next. This allows each module to register for the type of data stream that is

requires. The pipeline architecture is then able to connect each available data stream to any

modules which have requested it. In addition to specifying the type of data requested, the module

may specify additional constraints or restrictions on the source of the data. For example, a

25

classification module registered to receive feature vectors and trained on HMAX features should

not be sent feature vectors generated by a HoG module. So, the classification module may

specify that the type of feature vector must come from an HMAX module.

The type of data a module may request isnôt strictly limited by its interface. This allows,

for example, an object recognition module to request input streams from other object recognition

modules. This, naturally, may result in an infinite loop, so the pipeline is crafted so that a module

may not receive its own output directly. Such a loop is still possible if routed through additional

intermediate modules, so there is some responsibility on the developer of each module to properly

ensure that repetitive input data is eventually discarded without producing a response.

Modular Implementation

The second goal of this intelligent pipeline is to ensure that its operation is wholly

agnostic with respect to the underlying implementation of each module. Conceptually, this

means that a software implementation of HMAX is no different from a hardware-accelerated

implementation of HMAXðthey are both feature extractors in the eyes of the pipeline. All

classifier modules take in data and produce classification results.

However, it may be of use to know the underlying implementation when constructing a

pipeline implementation. Thus, each module may be annotated with additional version or

implementation tags that allow intelligent assembly of the pipeline. If a pipeline requires an

implementation of the AIM ROI detector, for example, functionally it does not matter whether the

module is software-based, or hardware-accelerated. However, the architect may specify that, if

available, a hardware-accelerated version be used rather than a software implementation.

Ultimately this allows the description of the pipeline to be boiled down to its essence, which is a

26

series of modules and the connections between them, allowing the system to assemble the most

effective version possible given the available components.

3.1 Algorithmic Accelerator Prototyping Tool (Cerebrum)

A number of factors make it difficult for researchers in fields such as neuroscience to

quickly and efficiently construct high performance, hardware-accelerated systems to evaluate the

algorithms they develop. Firstly, often times researchers in these fields lack the skill set to

develop the required hardware accelerators. Additionally, even armed with the necessary

accelerators, synthesis of the components into a usable system presents an equally challenging

task without additional assistance. Without the tools able to leverage on-chip communication

infrastructures, such as networks-on-chip and a lack of standardization across FPGA systems, use

of these platforms as a prototyping and development system is seen as far too daunting a task. In

an effort to remedy this situation, and bridge the usability gap between computational researchers

and engineers, the Cerebrum software tool was developed.

Cerebrum defines and leverages a standardized abstraction across both FPGAs and

hardware modules (IP cores) available for them. This enables a clear framework for the creation

and modification of an algorithmic dataflow requiring minimal engineering effort. This tool is

composed of a front end graphical user interface, exposing the available components and

platforms to the user. The back end of the tool automates the processing of several engineering

tasks necessary to take the user-defined algorithmic dataflow and map it onto the desired FPGA

platform.

27

Cerebrum Front End

The front end GUI of Cerebrum presents the users with a drag-and-drop style of interface

for the development of hardware accelerated algorithms. For the purposes of designing the

algorithm, a library of available IP cores are displayed to the user. The visibility and availability

of IP cores in the library may be limited by the target hardware platform, thus preventing the user

from spending time developing towards a system which ultimately cannot be synthesized due to

IP incompatibility. The library of modules is defined by a structured XML-based architecture

which enables the hardware developer to expose hardware parameters and control how

components and IP cores are connected. The snippet of XML shown in Figure 3-2. Example of

Cerebrum Core definition, demonstrates a Cerebrum IP core specification. This example

Cerebrum core defines a simple I/O interface core.

<Software>

 <DesignDisplay>

 <Category Name=òSystem Interfacesò />

 <Ports>

 <Port Type=" INITIATOR " Name=" rxò Interface="bit:128" />

 <Port Type=" TARGET" Name=" tx " Interface="bit:128" />

 </Ports/>

 </DesignDisplay>

</Software>

<Hardware>

 <Interface Type="SAP" PE="True"> sys_iface </>

 <PCores>

 <PCore Type=" sys _rx _if " Version="1.01.a" é />

 <PCore Type=" sys _t x_if " Version="1.01.a" é />

 </PCores>

 <Clocks>

 <Name=ò100MHz Oscillator"é Frequency="100MHz"é />

 </Clocks>

</Hardware>

Figure 3-2. Example of Cerebrum Core definition

The <Software> section describes the appearance and interface of the core with

respect to the front end GUI. This section defines where the core appears in the library of

components, and what visible ports it exposes to the user, among other visual properties. The

28

types of the ports defined here indicate how the core may be interfaced with other cores in the

design. Cerebrum defines four types of ports, applicable to different types of cores. Streaming

cores utilize ports designated as either INPUT or OUTPUT. Computational cores expose

INITIATOR and TARGET ports. OUTPUT ports may only direct data to INPUT ports (of other

streaming cores) or TARGET ports (of computational cores). Likewise, INITIATOR ports may

only direct data to an INPUT of streaming cores or a TARGET of computational cores.

The <Hardware> section defines the details of the hardware components which comprise

the Cerebrum Core. In addition to defining the type of the Cerebrum Core (SOP: Streaming

OPerator) or SAP (Switch-Attached Processor), this section defines the specific IP cores and any

required clocks produced by or required by the component. Other aspects of the hardware

covered by this section include importing predefined component interconnects, declaring a

limited set of supported platforms and architectures, as well as the estimated resource

requirements of the components contained in the Cerebrum core. Armed with the cores available

in the library, construction of a system becomes a simple matter of dragging and dropping the

necessary components into the workspace and creating the dataflow connections between them.

This specification wrapper hides all of the internal details from the algorithm developer.

 Once the user has drawn a system on the workspace, the back end of the Cerebrum tool

takes over to perform the task of translating the displayed system onto the target platform. In

order to achieve this, the tool requires three sets of specifications. The first specification is the

design specification, created by the user in the Cerebrum front end. The second specification is

that of the target hardware platform. The platform specification defines several low-level details

about the reconfigurable platform. This includes the number and types of FPGAs available, how

they are connected, both logically and physically, the resources available on each, and any

FPGA-specific pin constraints or signals. The final required specification is the Cerebrum project.

29

This file defines all of the options associated with how and where the EDA tools should be run.

Armed with complete specifications for the project, the design, and the platform, the tool may

proceed to back end synthesis, translating the provided information into a hardware definition for

the target FPGA platform.

Cerebrum Back End

Using these specifications, the Cerebrum back end performs a series of steps in order to

realize the desired system on the target hardware. The first step in this process is the mapping of

the necessary components to the available FPGAs in the system. A customized accelerator

mapping algorithm was developed in order to optimize multiple constraints including

minimization of data flow and inter-FPGA communication while maximizing resource utilization.

The mapping algorithm proceeds through several phases in order to work towards an optimal

solution.

A feasibility check is first performed. This step is designed to short-circuit the algorithm

in the event that the system requires more resources than are available on the entire FPGA

platform. If, at least superficially, there are sufficient resources to map the required components,

mapping proceeds to the component grouping phase.

Advanced users may annotate the design with requirements that some components be co-

located on the same FPGA, without regard to the specific FPGA in the platform. Sets of

component groups that are so annotated are coalesced into a Component Group. For the purposes

of mapping, this group is treated as a single ñblack boxò component requiring the resources of all

contained components as well as data connections to all components with connections to the

components internal to the group. Once all component groups have been formed, mapping

proceeds to I/O distance computation.

30

Each component, or component group, is annotated with its distance from the system

input and output connections. This distance is calculated by finding the average number of hops,

or edges, in the available paths between the component and the specific connection. These

distances are used to optimize placement of components with shorter I/O on FPGAs closer to the

corresponding system I/O port.

Once again, users with advanced knowledge of the target platform may influence the

mapping algorithm. During the design process, if desired, each component may be annotated for

placement on a specific FPGA. In the event that a component is assigned to an FPGA and

assigned to be grouped with another component, the entire component group is then assigned to

the FPGA. If the user attempts to assign groups components to different FPGAs an error is

generated, advising the user to correct the discrepancy. With a valid pre-mapping, each such

component is assigned to its target FPGA, virtually allocating the required resources.

Finally, the optimization of component placement begins. A greedy algorithm is used to

find the best target FPGAs for each component. In order to avoid a lack of resources at later

iterations of the algorithm, the components and groups with require the most resources are placed

first. Optimal placement is determined by finding the FPGA which has the most resources

remaining and also minimizes the data traffic between FPGAs. This traffic is measured by finding

the number of inter-FPGA hops required for data to flow through the component, if it were placed

on each FPGA. This approach continues until either all components are successfully placed, or a

component is encountered for which no available FPGA has sufficient remaining resources.

With all components mapped to a target FPGA, the Cerebrum back end generates the

files necessary for the proprietary back end tool flow. A system file is generated for each FPGA

based on the components that were assigned to it during by the mapping algorithm. Following

this, the entire back end tool flow is automated; proceeding through the steps of synthesis,

technology mapping, placement and routing, and finally bit stream generation.

31

Chapter 4

Accelerated Architectures

This chapter provides details on the development of novel accelerators for two visual

algorithms. The first algorithmic accelerator described here is targeted for the HMAX feature

extraction algorithm. This includes a detailed analysis and profiling of the algorithm, both in parts

and as a whole, enabling highly effective and targeted optimizations in the overall architecture.

This architecture is composed of multiple accelerators which enable high performance with

minimal degradation in accuracy. The HMAX accelerator described here not only represents a

novel architecture for the algorithm, but was also established as the foundation for ongoing

research as part of the DARPA Neovision2 [35] project.

Further extending the family of vision-oriented accelerators, this section also details the

development of an attentional model accelerator based on the AIM algorithm. The AIM

accelerator described here was developed for incorporation into the visual processing pipeline of

the Supervised Autonomous Fires Technology (SAF-T) [36] program under the Office of Naval

Research.

4.1 HMAX Accelerators

The HMAX algorithm, designed for function in an effort to mirror the biological

responses in the brain, displays several inefficiencies when executed on a general purpose

processor. These inefficiencies are a result of the computational structure of the algorithm and

result in less than optimal runtime performance. In order to effectively utilize HMAX as a feature

extraction engine for object recognition in a real time intelligent visual system, a detailed study of

32

the algorithm is necessary. This study, detailed here, identifies many of these inefficiencies

within the general purpose CPU implementation of HMAX, thus enabling the development of

effective and efficient hardware accelerators enabling dramatically improved performance of the

HMAX algorithm.

As detailed in Chapter 2, the implementation of HMAX used in this dissertation is based

on the variant HMIN [33]. This implementation defines a number of parameters for this particular

implementation of the HMAX algorithm, which are summarized in Table 4-1. In order to

establish firm baselines for performance purely in software, the C++ implementation was first

augmented to support multiple threads, enabling performance gains through thread-level

parallelism.

Table 4-1. HMAX Algorithm Parameters

Parameter Value

(Range)

Pyramid Scales 8 to 12

S1 Orientations 4 or 12

C2 Pooling

Overlap

1 Scale

S2 Dictionary

Templates

5120 templates

S2 Dictionary

Template Sizes

4x4, 8x8,

12x12, 16x16

C2 Pooling

Range

6 Scales

[11-6, 6-1]

Baseline Implementation

The evaluation platform for the multi-threaded software implementation of HMAX

consisted of an Intel-based system equipped with dual 2.4GHz Quad-Core Xeon-class processors

with a total of 12 GB of main system memory. Each of the four cores of the Xeon processor were

HyperThreading-capable, providing 2 logical CPUs per core, resulting in a total of 16 processing

units. The software was compiled with maximum optimizations and the SSE2 SIMD instruction

33

set enabled for further increased performance. Figure 4-1 demonstrates the impact of

multithreading on the runtime performance of the software.

Figure 4-1. Execution time of HMAX as a function of number of threads

In addition to the number of available threads, the runtime performance was also found to

depend, nearly linearly, on the number of orientations to be processed. Reducing the number of

orientations by a factor of 3, from 12 down to 4, the execution time of the algorithm was reduced

by a factor of 2.5 to 2.8, depending on the degree of multithreading enabled. The impact of

thread-level parallelism is clearly evident in the observed execution times, wherein a 2X increase

in the number of threads often results in a nearly 2X increase in performance. However,

increasing the number of threads from 8 to 16 produces only a 1.3X improvement in execution

time.

This reduced performance benefit is explained by analyzing the impact of multithreading

on each stage of the HMAX algorithm. As shown in Table 4-2, the S2 stage of processing

thoroughly dominates the runtime of the algorithm. In fact, the S2 computation averages over

96% of the total execution time with virtually no regard to the number of available threads or

25.4

69.5

12.7

35.3

6.7

17.5

3.5
9.3

2.7
6.8

0

10

20

30

40

50

60

70

80

4 Orientations 12 Orientations

E
xe

c
u
ti
o
n
 T

im
e

 (
s)

1 Thread 2 Threads 4 Threads 8 Threads 16 Threads

34

orientations being processed. This indicates that the vast majority of the performance gains found

due to multithreading can be found within the S2 stage.

Table 4-2. HMAX Stage Execution time, as a percentage of total execution time

Threads

Orientations
S1 C1 S2 C2

1
4 1.62 0.19 97.61 0.53

12 1.77 0.21 97.82 0.19

2
4 1.69 0.22 97.45 0.56

12 1.79 0.22 97.78 0.19

4
4 1.89 0.30 97.15 0.50

12 1.90 0.26 97.60 0.17

8
4 3.54 0.58 94.97 0.60

12 2.96 0.40 96.27 0.25

16
4 4.71 0.87 93.26 0.76

12 3.08 0.56 95.92 0.29

Further profiling of the S2 stage specifically reveals the reason for relatively reduced

performance gains when increasing the number of parallel threads from 8 to 16. As the number of

threads increases beyond the number of processed orientations, the ability to exploit the available

parallelism dramatically decreases. As the critical path of the S2 is comprised of correlation of

input images with prototypes in the S2 dictionary, exploitation of parallelism at this level is

difficult. The largest performance gains come from the thread-level parallelism at the granularity

of processing one orientation/scale being processed per thread. Maximal orientation-level

parallelism is achieved at the point in which the number of threads equals the number of

orientations, 4 and 12 respectively. Further increases in available threads are able to exploit scale-

level parallelism in the processing of the S2, but ultimately the reaches the point of diminishing

returns, as seen in Figure 4-2.

35

Figure 4-2. Speedup of S2 stage of HMAX as a function of multithreading

As performance is not the only concern in many systems, such as embedded systems,

power consumption must be taken into consideration as well. For each of the algorithmic and

multi-threading configurations described here, the runtime power consumption of the system is

measured as well and shown in Figure 4-3. For this evaluation, power was measured by using a

power meter, which provides both continuous and instantaneous power measurements during

runtime.

The results here clearly demonstrate the benefits of such parallelism. However, further

performance improvements will require application specific acceleration. Specifically, aspects of

the algorithm shown to be least influenced by the enabled parallelism, such as convolution

operations, require a targeted approach. Due to its enormous influence on the overall execution

time of the algorithm as well as the prevalence of convolution operations within, the S2

represents the stage which can gain the most benefit from targeted acceleration.

2.0 2.0

3.8 4.0

7.4 7.6

9.9
10.4

0.0

2.0

4.0

6.0

8.0

10.0

12.0

4 Orientations 12 Orientations

S
p
e

e
d
u
p
 (

N
o
rm

a
liz

e
d
 t

o
 1

 T
h
re

a
d
)

2 Threads 4 Threads 8 Threads 16 Threads

36

Figure 4-3. Power Consumption of HMAX due to multithreading

The development and evaluation of the hardware modules used for accelerating HMAX

was done on a multi-FPGA platform. This platform consists of four Xilinx Virtex5 SX240T

FPGAs connected together using Low-Voltage Differential Signaling (LVDS) interconnect. The

four FPGAs, are in turn connected to the development system through the Front Side Bus (FSB)

in a processor socket. The host system is the same Quad-Core 2.4GHz Xeon processor that the

software implementations of HMAX were developed and evaluated on. In order to facilitate

communication between accelerators, a packet-switched, high-bandwidth Network-on-Chip

(NoC) architecture is utilized [32]. This framework enables runtime reconfigurability of the

network as well as stream- or compute-based accelerators. The dataflow of this network is highly

fluid as well, allowing the construction and use of virtual data paths, or flows, enabling

accelerators to pass data through a pre-planned series of accelerators to enable a variety of

algorithms using common modules.

1.46 1.47

2.37 2.30

3.85 3.78

4.46
4.86

0.00

1.00

2.00

3.00

4.00

5.00

6.00

4 Orientations 12 Orientations

P
o
w

e
r

(N
o
rm

a
liz

e
d
 t

o
 1

 T
h
re

a
d
)

2 Threads 4 Threads 8 Threads 16 Threads

37

S2/C2 Accelerator

The core function of the S2 stage is a correlation operation, akin to template matching,

computed between the outputs of the C1 stage and each of the stored prototypes in the S2

dictionary. This correlation operation has to be performed between every scale of the C1 and

every prototype in the dictionary and every scale being processed. This requires an enormous

amount of computation and produces a very large amount of data. Examination of the data flow

between S2 and C2 shows that the massive amount of data generated by the S2 is quickly and

radically pooled into a much smaller feature space. Detailed analysis of exactly how this happens

leads to the realization that several benefits can be realized by combining the S2 and C2 stages

into a single unified module.

The C2 stage finds the maximal response of a particular prototype regardless of

orientation and within a limited range of scales. The order these values are generated is

irrelevantðonly the maximal value matters. This means that the max-pooling operation can be

performed on-the-fly as each new prototype response is generated, by comparing the new value

and the existing pooled value. In addition to the consolidation and optimization of the pooling

operation performed by the C2, this has the added benefit of dramatically reducing the amount of

data that must be transferred over the NoC between the S2 and C2 modules. The degree of this

reduction in data transfer is quantified by Equation 4-1. In this equation, the numerator

corresponds to the data values that would be sent over the network to the C2 without this

optimization. S corresponds to the index of the S2 scale being processed, XS and YS indicate the

size of the S2 output at scale S. Nprototypes indicates the total number of prototypes in the S2

dictionary, and Nprototypes[XS,YS] indicates the number of prototypes that can be successfully

correlated with the template. This indicator is required to account for the fact that the larger

prototypes are too large to correlate with the smaller scales, resulting in no values to pool under

38

these conditions. The denominator of this equation represents the amount of data that is sent over

the network from the combined S2/C2 module with this optimization. It boils down to the

number of prototypes in the dictionaryð1 max value per prototypeðtimes the number of scale

bands over which pooling is done, in this case 2.

В ὢ ὣ ὔ ὢȟὣ

ὔ ς

Equation 4-1. The degree of data transfer reduction between S2 and C2 of HMAX by combining

the two modules into a single accelerator

Using the default HMIN configuration parameters, consisting of 12 scales and 12

orientations, along with an S2 prototype dictionary of 5120 prototypes, this equation indicates a

data transfer reduction by a factor of 4,154X.

Further reduction in network traffic and data transfer is possible through clever

management of the input data to the S2. The correlation of inputs with prototypes requires

frequent accesses to the input data for each orientation as it is required for processing of each

prototypeôs corresponding orientation. Rather than requesting this data repeatedly from an off-

module memory, all orientations for a given scale are loaded into local memory once and then

fetched, as needed, for processing. This optimization results in a 5,005X reduction in data

transferred, using the same configuration based on the calculation shown in Equation 4-2. The

symbols in this equation are the same as those in Equation 4-1, with Norientations representing the

number of orientations being processed.

39

В ὢ ὣ ὔ ὔ ὢȟὣ

В ὢ ὣ ὔ

Equation 4-2. The degree of data transfer reduction to S2 through the use of input scale buffering

The architecture of this combined and optimized S2/C2 module is shown in Figure 4-4

[37]. Each input scale, including all applicable orientations, is buffered in the image memory. The

dictionary of prototype patches are preloaded into an attached on-chip SRAM memory. This

memory structure is necessary due to the large size (24MB) of the prototype dictionary in use.

Figure 4-4. S2/C2 Stage Accelerator for HMAX

(a) High-level view of S2/C2 Accelerator Pipeline. (b) Pixel-wise accumulation across

correlation responses within each scale. (c) C1 outputs are buffered in a local image memory,

referenced by orientation. (d) Accumulated outputs are normalized after computation. (e) Global

max-pooling is performed on a per-pixel basis as outputs are generated.

40

An array of systolic 2D convolution units are supplied inputs from this image memory.

The coefficients of the convolution units are loaded from the local prototype dictionary for each

prototype being processed. The size of operation for each convolution unit is configurable to

support the various prototype sizes in the HMAX implementation. The size of the active

operation is changed by the control unit as new prototypes are loaded from the dictionary

memory. The access latency of the dictionary memory is obscured by overlapping the

computation of the convolution operations with the loading of prototypes.

A temporary memory structure is used to store the accumulated output of each

orientationôs convolution. Upon initiation of each new scale, this memory is reset. As each value

is generated from the convolutional units, the corresponding location in the accumulation

memory is read, updated, and rewritten. Once processing of the particular convolution is

complete the resulting values are forwarded ahead to the normalization.

The normalization unit contains a small memory buffer that is preloaded with coefficients

used to normalize the convolution of each orientationôs template. These values are used to

compute the normalized pixel-wise output for each prototype which is forwarded to the pooling

unit.

As the outputs of each scale are generated for each prototype, they are fed into the global

pooling unit. This unit identifies the maximum response from among all of the inputs. This max

value is then compared to the existing values in the corresponding entry of the C2 data table. If

the new value is greater, the C2 table entry is replaced with the new value.

Once all prototypes have been processed, a read request to the S2/C2 accelerator returns

the feature vector contained in this C2 table.

41

S1 Accelerator

The S1 stage is responsible for processing the oriented Gabor filters over the input image

scales. The accelerator for this stage is designed to compute these convolution operations in a

streaming fashion, producing output pixels as soon as they are ready. The architecture of this

accelerator is composed of FIFO which converts the serial inputs to a parallel stream for

convolution. A 2D convolution engine that follows takes the parallel stream and Gabor

coefficients from a local memory to produce a series of outputs that are fed into an adder tree

structure. The serial outputs of this adder tree are the streaming outputs of the S1 accelerator.

Figure 4-5 [37] shows an overview of this S1 accelerator architecture.

Figure 4-5. S1 Stage Accelerator for HMAX

System Evaluation

Graphics Processing Units (GPUs) are another popular architecture for high-performance

systems. These devices enable high levels of acceleration by exploiting parallelism through the

utilization of a massive number relatively simple, but high performance computational resources.

In order to establish a well-rounded comparison of this FPGA-accelerated architecture, a GPU-

based implementation of HMAX [38] was evaluated in tandem. The GPU evaluation was

42

performed on an NVIDIA Tesla M2090 [39], which houses a 1.3GHz Tesla T20A GPU with

1.3GB of memory. The GPU is hosted on a system which has 49GB of system memory and a 12-

core 3GHz Xeon-class Intel processor.

In addition to runtime performance, power is a critical aspect in the evaluation of these

platforms. For the CPU and FPGA power measurements, both idle and active power consumption

was measured using a power meter. The GPU power consumption was measured using tools

provided by NVIDIA to query power measurement sensors located on the GPU. For these

platforms, the idle power is removed, with only the power due to computation being considered.

Figure 4-6 shows the relative speedups achieved by both the GPU- and FPGA-

accelerated implementations of HMAX in terms of frames per second (fps). For both the

configurations using both 4 and 12 orientations, both of these platforms easily outpace the

performance of the software implementation. The FPGA architecture provides significant gains

over the CPU implementations of 7.3X and 8.0X for 4 and 12 orientations, while exhibiting only

modest gainsð1.1X and 1.2X respectivelyðover the GPU implementation. From these results, it

appears that the GPU is almost as good as the FPGA.

 However, execution time is not the only metric considered. Figure 4-7 adds the impact of

power consumption to the equation. This figure shows the relative performances of these

platforms in terms of frames per second per Watt (fps/W). This metric incorporates power by

estimating the power required to achieve a particular level of performance. Due to the high power

consumption of the GPU, the FPGA implementation easily pulls away in terms of power

efficiency. The FPGA outperforms the CPU for 4 orientations in this metric by a factor of 10.9X

and by 13.8X for 12 orientations. Similarly, the FPGA beats the GPU by factors of 2.3X and 2.6X

for 4 and 12 orientations, respectively,

43

Figure 4-6. Speedup of GPU- and FPGA-accelerated HMAX

Figure 4-7. Power Efficiency of GPU- and FPGA-accelerated HMAX

Furthermore, the impact of this architecture on the algorithmôs performance in terms of

accuracy must be considered. Evaluations of the classification accuracy of the accelerated HMAX

6.64 6.45

7.30
8.00

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

4 Orientations 12 Orientations

S
p
e

e
d
u
p
 (

fp
s,

 N
o
rm

a
liz

e
d
 t

o
 C

P
U

)

CPU GPU FPGA

4.74
5.31

10.90

13.80

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

4 Orientations 12 Orientations

P
o
w

e
r

E
ff
.

(f
p
s/

W
,

N
o
rm

a
liz

e
d
 t

o
 C

P
U

)

CPU GPU FPGA

44

were performed using both the Caltech256 [40] and PASCAL VOC2007 [41] datasets. For the

evaluation of the Caltech dataset, the number of scales was fixed to 12. However, the evaluation

was performed using both 4 and 12 orientations. The number of training images for each category

was varied from 5 to 40, while the number of test images per category remained constant and

non-overlapping with the training set in each case. The results of these evaluations are shown in

Figure 4-8 [37]. Using 40 training images, HMAX is capable of achieving accuracies of 23% and

25% for 4 and 12 orientations. These results fall within 15% of the best reported accuracies at

[40] on this highly difficult and varied dataset.

Figure 4-8. HMAX Classification Accuracy for Caltech256 dataset

The PASCAL VOC2007 dataset was evaluated using k-fold cross validation. Due to the

large size of the dataset, consisting of over 15000 object instances in 5011 training images, an

independent multi-class voting scheme was used utilizing 10 independently trained classifiers.

The training data for each object class was independently divided into 10 non-overlapping

training sets. After training, the evaluation was performed on the test data, by allowing each

0

5

10

15

20

25

30

5 10 15 20 25 30 35 40

C
la

ss
ifi

c
a

ti
o
n
 A

c
c
u
ra

c
y

(%
)

Number of Training Images

4 Orientations 12 Orientations

45

classifier to vote for its most likely candidates, and synthesizing a probability for each class given

the voting scheme. These classifications and probabilities were then used to generate the average

precision data shown in Figure 4-9 [37].

Figure 4-9. HMAX Classification Accuracy for PASCAL VOC2007 dataset

The PASCAL dataset was again used to evaluate the impact of fixed-point hardware

precision on the relative classification accuracy. The HMAX algorithm was used to generate

features in both the floating-point software implementation and the fixed-point FPGA

implementation. Independent classifiers were trained on both of these datasets and evaluated

using features similarly extracted from the test datasets. The truncation of floating-point data to

fixed-point precision was found to cause less than 2% degradation in the accuracy of

classification.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
a

e
ro

p
la

n
e

b
ic

y
c
le

b
ir
d

b
o

a
t

b
o

tt
le

b
u

s

c
a

r

c
a

t

c
h
a

ir

c
o
w

d
in

in
g

ta
b

le

d
o

g

h
o

rs
e

m
o

to
rb

ik
e

p
e

rs
o
n

p
o

tt
e

d
p

la
n
t

sh
e

e
p

so
fa

tr
a
in

tv
m

o
n
it
o
r

A
ve

ra
g

e
 P

re
c
is

io
n

Category ID

HMAX Best

46

4.2 AIM Accelerator

While, the details of the AIM algorithm are described in Chapter 2, the core computations

of the algorithm can be broken down into three phases. The first of these involves the

convolution of the input image with the defined basis filter functions. For multi-channel imagery,

each channel must be convolved with the basis functions separately. The second stage of the

algorithm is the computation of the probability density estimation. This estimation is performed

by first binning the pixel responses across basis functions into a histogram. These histogram

frequency counts are then used to convert each pixel response into a log-likelihood through the

use of a logarithm operation. Finally, the log-likelihoods are aggregated on a per-pixel basis to

generate the information map. Additional processing may be used to translate this information

map into a binarized version indicating which pixels are considered sufficiently salient. This

algorithm flow and breakdown is given in Figure 4-10.

The AIM accelerator was developed initially on a Xilinx Virtex6 SX475 series FPGA.

Several customized architectural modules were developed for this accelerator: a convolver for the

basis filter operations, a histogramming module, a logarithmic computation module and an output

aggregator. The accelerator module returns the information map, while the threshold computation

and pixel masking is currently left to the host system, if desired. The fully customized accelerator

incorporates multiple pipelines, each consisting of one instance of each module, except for the

aggregator which is only instantiated a single time. The overall resource usage of the Virtex6

FPGA for a 4-pipeline implementation of this customized accelerator is shown in Table 4-3.

47

Figure 4-10. Algorithmic data flow through AIM algorithm, including structural breakdown

Table 4-3. AIM Accelerator Resource Utilization on Virtex6 FPGA

Resources

Required

Resources

Available

Percentage

Utilization

Logic Elements 43,099 297,600 6%

Flip-Flops 37,105 595,200 14%

36kb Block RAMs 139 1064 13%

Digital Signal

Processors (DSPs)
446 2016 22%

The performance of the custom AIM accelerator was evaluated against a number of

computing platforms. The results, shown in Figure 4-11, demonstrate that this accelerator easily

outpaces the performance of even other hardware-based accelerators implemented without

algorithm-specific customization. The fully customized AIM accelerator demonstrates a 6X to

10X speedup when compared to non-custom microaccelerator architectures at the same

Convolver
0

Convolver
1

Convolver
2

Convolver
N-1

Histogram Histogram Histogram Histogram

Logarithm Logarithm Logarithm Logarithm

Aggregator

Threshold
Value

Computation

Pixel
Masking

Input
Image

Basis
Feature
Convolution

Density
Estimation

Information
Map
Aggregation

Saliency
Map

48

frequency, and an 8X to 19X improvement over a high-performance multicore Xeon processor.

When compared to the low-power ARM core commonly found on embedded platforms, the

performance improvement is even more dramaticð330X to 630X.

Figure 4-11. Acceleration of fully custom AIM accelerator vs other platforms

In further development of this accelerator, it was retargeted for acceleration on a Virtex7

VX690T FPGA. The FPGA was connected via PCI Express in a host system equipped with a

3.2GHz Intel Xeon CPU running Ubuntu Linux. This accelerator was evaluated in comparison

with an optimized software implementation on the same system. In addition to the performance

metrics, an evaluation of the power consumption of this system was performed as well. For

power measurement, only the active runtime power was considered. This was calculated by

subtracting the power consumed during runtime from the power measured while the system was

idle. The accelerated implementation was found to run 16.7X faster than the software, while

consuming 31.5% less power. Salient regions identified by the AIM accelerator are shown in

Figure 4-12.

1

10

100

1000

10000

100000

640x480 1024x768 1280x960

E
x
e
c
u

ti
o

n
 T

im
e
 (

m
s

)

Image Size

Dual-Core ARM C-A9, 1.5GHz, Single ThreadDual-Core ARM C-A9, 1.5GHz, 16 Threads

Micro-accelerators, 100MHz Cascaded Microaccelerators, 100MHz

8 Core Xeon Processor, 2.67GHz, 16 ThreadsFully Customized AIM Accelerator, 100MHz

49

Figure 4-12. Examples of salient regions identified by AIM

The images on the left are the input frames, while the images on the right at the AIM-indicated

salient regions. The top images are from the Stanford tower dataset [42], the bottom images come

from data supplied by ONR for the SAF-T [36] program.

50

Chapter 5

Case Study: Hierarchically Refined Object Recognition

HMAX+ ESVM Pipeline

Object recognition in real world systems must strive to meet two criteria: high

performance and high accuracy. Given the enormous number of potential objects to be found in

the world, this is no small task. Algorithms such as Exemplar SVM are capable of achieving

remarkably high accuracy in the face of a large number of candidate classes due the nature of the

computation performed. ESVM works to identify not only an object class, but the closest

matching learned exemplar of that class. This accuracy comes at the cost of evaluating a series of

classifiers whose number grows not necessarily with the number of classes, but with the number

of exemplars per class. Figure 5-1 [43] show this growth in the detection time of the ESVM as

the number of exemplars per class increases.

By contrast, object recognition based on an algorithm such as HMAX is effectively

independent of the number of classes, as the feature extraction dominates the runtime relative to

the actual classification. Shown in Figure 5-2 [43], HMAX features perform very well for a

limited number of classes. With less than 10 candidate classes, the accuracy of object recognition

can easily reach 90% or higher with just HMAX features. However, the discriminative power of

these features quickly diminishes as the number of candidate classes increases. Even stabilizing

around 50% accuracy for a large number of classes leaves much to be desired.

51

Figure 5-1. The runtime cost of Exemplar SVM scales with the number of exemplars per class

Figure 5-2. Difficulty of feature-based classification, such as HMAX, increases (to a point) with

the number of candidate classes

52

The ideal system would combine the high accuracy and discriminative power of ESVM

with the relative speed and performance of HMAX. Aiming towards just such a system, this

chapter describes the results of doing exactly thatðcombining these algorithms in a hierarchical

fashion to improve ESVM performance and accuracy by using HMAX as a filter to dramatically

reduce the number of exemplars that must be evaluated.

The evaluation of this hierarchical recognition system was performed in the context of a

grocery store environment. The training and testing datasets were independently generated by

sampling from items that would be found in typical grocery store aisle. Eighty seven products

were identified, characterized under eight general categories of packaging shapes. Using this list,

the set of training images was synthesized by using the Microsoft Bing Search API to download a

large number of images corresponding to each of these categories. The images for each category

were manually pruned to ensure that no cross-product contamination was present in the dataset.

This pruning also guaranteed that all images in the training set accurately represented the type or

instance of the product that would be seen on grocery store shelves. Examples of images pruned

from this dataset would be images that contained two brands of soda in the same image or images

that contained a brand logo without any packaging. After the required pruning was complete, the

training dataset consisted of just under 7800 images spanning the 87 categories. These images

were used to independently train an HMAX-based classifier and Exemplar SVM system.

In the context of personal assistance in a grocery store environment, the object regions of

interest may be detected by a number of algorithms such as saliency [6,29,44], objectness [45], or

symmetry [46]. Figure 5-3 shows an example of an intelligent visual pipeline configured for such

a recognition system.

53

Figure 5-3. Intelligent visual pipeline configured for HMAX+ESVM classification

Once an ROI is selected, it is first dispatched to the HMAX classifier for processing. In

this hierarchical system, the results of the HMAX classification, rather than being taken as an

absolute winner-take-all classification, are passed on to an object filtering function. This prunes

the number of candidate classes to a limited subset of the HMAX results. The classes included in

this filtered set of classes are the most likely classes as returned by HMAX, taken as the K classes

which have the highest classifier scores, in decreasing order of score (and estimated probability).

By narrowing the set of candidate classes down to a few, the number of exemplars that must be

processed through the ESVM is not fixed and greatly reduced by the number of classes returned

by the filter.

Target Tracking
(Reacquisition)

Attention
Saliency

Context
Recognition

Object Filtering
Top-K Selection

Object
Recognition

HMAX
ESVM

Target Tracking
(Initiation/Update)

Object
Detection

Symmetry

Video
Frame

