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ABSTRACT

The machine vision community has expended tremendous effort in the resmagrch
development of algorithmsian effort to develop a system that is capabieseing the world as
humans do. These algorithms often focus on the accomplishment ofcstasti analogous to
human vision such aene awareness, object detegtaijectrecognition, and object tracking.
Joining forces with cognitive neuroscientists has steered much of this research towards the
development of algorithms that not only accdisipthe required tasks, but endeavor to do so in a
biologically inspiredfashion Still, development and evaluation of thesecatbed neuromorphic
algorithms is often done in isolation, with little regard given to the rest of the system necessary to
make this humaslike system a reality.

This dissertation provides a framework for the current and future development of
complex and highly integrated muéigorithm vision systems. This framework not only enables
the composition of such systems, but ensbkamless development and integration of improved
algorithmic modules. In addition to this hitgwvel system composition framework, the Cerebrum
tool, targeted at development of hardwacoeelerated architectures is detailed in this work. This
tool enabés the creation of such hardwdn@sed accelerators by researchers and engineers
without specific or detailed knowledge of the target hardware platform.

In addition to the framework and tools, this dissertation also details the analysis,
development and @lation of hardware accelerators for HMAX object recognition and AIM
saliency detection. Armed with this intelligent framework and algorithmic accelerators,
demonstrations of vision systems that leverage multiple algorithms are constructed and evaluated.

Hierarchical object classification, leveraging the benefits of Exemplar SVM and

accelerated HMAX is shown to provide performance superior to either algorithm in isolation.



Furthermore, a more complex system, targeting the domain of personal retail esssstan
composed and demonstrated for the benefit of visually impaired persons.

With an eye towards future systems, this dissertation also serves to evaluate and explore a
number of technologies whose time is coming. New transistors, such as Tunnel EEI®/en
architectures, such as coupled oscillator arrays, are examined to identify benefits and concerns in
their use for the development of future visual systems, both at the algorithmic and
circuit/component level. This work also explores the potentiainiclusion of additional data
modalities, such as audio, for a more effective understanding of scene awareness.

The flexibility of the framework described here enables the inclusion of these emerging
devices, architectures, and modalities alongsidetimadi software and hardwaeecelerated
implementations within a unified system in order to develop, evaluate, and dépbthe

components required for any given visual system.
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Chapter 1
Introduction
The vision of building a system capable of understanding the world the way humans do

has long been a goal of both timachine vigon [1,2] and cognitive neurosciencemmunities

[3,4,5]. The ultimate goal of such a system is to enable the systamawomouslhanswer

questionssuchaB:Wher e am | ?20, fAAMWat iiss gwad rnfgWhhlnt?dd o n g

I see?d06, fAWhat objects ar an @Vhae arethey oing® T Ar e
humans, these questions afeentoo simple to consciously consider. Howevardowinga
computing systerwith these capabilitiesas proverchallenging. For many years, both
communities have attempted to tackle these problemsatelyaComputer scientists have
focused on developing image processing algorittooted in disciplinesuch as information
theory and machine learning to create systems to accomplish some of these goals. At the other
end of tle spectrum, cognitive scigsts and neurgcientists have examined mammalian behavior
and activity in the brain in order @stablishan understanding of exactly how humans process
information. It is this observation which drives the development of biologically inspired
algorithms.

More recentlyresearch has brought batision communitiesogether in an effort to
createa system that is capable of seeing the world how humans see it. Much of this effort has
focused on realizing biologicatynspired implementations of key aspedtshe human visual
process. Development of such neuromorphic algorithms has focused on a few select aspects of
the human visual process suctsasre and context recognitidd,6], attentional awarene$g,8]

and object recognitiof8,9,10,11]. Much of the work in developing thesgte of the art

t hi
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algorithmshas focused on thdimplementation and evaluatiémisolation in order to solve the
specific problem they addréssanswenng only one, opossibly two, of thesequestios at a time.

In order to effectively model human perceptibowever multiple algorithms must work
in concert inorderto quickly, efficiently, and accurately provide as much information as possible.
Towardthat end, his work discusses a unified mudtigorithm pipeline whictis capable of
enabling such intelligent visual perception systems. The goal of this pipeline is not to model the
entire visual system exactly as in hum@mst a fully neuromorphisystend but to provide a
framework in which modules may be added, removed, configured and tuned to provide an
effective answer to all of the questions necess@thapter Zelves deeper into some of the
algorithms that are used toable an intelligent visual system. While there are a wide variety of
algorithms which are capable of addressing machine vision problems such as awareness,
attention, recognition and tracking, this chapter serves as an overview of the most prominent and
widely used algorithms, many of which are further analyzed and employed throughout the

remainder of this dissertation.

Contributions of this Dissertation

Theframework for a flexible and configurable pipeline for visual systems is presented in
Chapter 3This framework contributes a foundation for the incremental and iterative
development and evaluation of complex malgorithm visual systems. This software
architecture enables implementatiagnostic supposllowing individual modulesto be
developed and improved independently towards the ultimate realization of the desired system.

In addition to this highevel vision framework, a tool for the graphical development of
FPGA-based hardware accelerators has been developedtod@hi€erebrunj12], has not only

been used to develdbe hardware acceleratéor HMAX, detailed within this dissertation, but



has also been made publicly available and used for the developnatinéeichardware
acceleratoras-well. While dmilar packages have been developed, such as the iLab
Neuromorphic Vision C++ Toolk{tl3], these tools focus specifically on the development of
purely softvare based models pfimarily neuromorphic vision algorithmslhe Cerebruntool
appears to be the first of its kind to enable eaaddrop synthesis of visioalgorithms targeted
towards an FPG/Aasedhardware architecture.

Furthermore, this work provideanalysis of multiple vision algorithms, specifically
HMAX and AIM, for object recognition and salient target detection, respectiValyanalysis
and profiling of these algorithms ultimately served as a basis for the exploration and development
of hardware accelerators, detailed@mapter 4 contributing towards the realization of r¢iahe
complex visual systems. In addition to the development of these acceldhasongyrk provides
a foundational evaluation of the bengff such hardwaraccelerators in terms of power and
performance, relative to other implementations on general purpose CPUs and graphics processing
units (GPUSs).

The effectiveness and utility of systems making use of these hardware accelerators and
multi-algorithm intelligent vision pipelines are demonstrated within this work as well. The
flexibility of the pipeline is shown through the use of cascaded object recognition algorithms.
This hierarchical object recognition scheme, detailedhiapter 5Sleveragethe speed of the
hardwareaccelerated HMAX algorithm as well highesaccuracies of Exemplar S\iglased
classification in order to improve overall recognition accuracy in a reduced time frame.

This work further demonstras thepotentialsocial contributions of such a complex
pipeline through the demonstration of a reakld personal assistance system. The personal
shopping assistance scenario, targeting visdalpaired, persons is describedGhapter 6 This
systemincorporates a number of visidrased algorithms to locate, identify, and track desired

products within a grocery store environment. In addition to this information gathering, the
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system also demonstrates how this informatian be leveraged in order to provide feedback
allowing a visuallyimpaired person to locate and pickup products without additional assistance.
Finally, this work provides an exploration of a variety of new and emerging technologies
that may be leveraged intelligent vision systems of the future. The evaluation of Tunnel FETS,
as a candidate for the replacement of traditional MOSFET and FInFET devices, provides a
foundation for the development and continued evaluation of these devices as theyThigure.
work contributes to thexamination of novel architectures, such as coupled oscillators, by
exploring their capability to effectively provide implementations of a variety of operations and
algorithms used within the domain of machine vision and image $simge New sources of
information may contribute to the understanding of a visual scene as well. This work explores
the application of audio signals which may be present, but often ignored, in video systems in
order to improve the capability for compleiswal systems to achieve better context and scene

awareness.



Chapter 2

Vision Algorithms

Towards the development of an intelligent vision system, many algorithms must work
together. This chapter examines some of the questions that need to be answered by such
system, and provides a detailed background on algorithms capable of doing so.

Que st i onWhesam |lBandidhatisgoingon® ar e answered thr ol
of context recognition algorithn§,14,15], attempting to capture what is commonly referred to
as the fAgistodo of a scene, the naypealgbrithmsvhi ch t h
employ a feature extraction metlabolgy in order to construct a feature space for future
classification using these algorithms. The features generated by these algorithms are typically
useful for quickly identifying a generic location or scenario, such as a city street, meadow, or
forest. In addition to recognition of such broad environments, these context awareness algorithms
canalsoenable the identification of specific locations, such as a particular room or aisle in a
grocery store.

Attentional algorithms such as AlM,2,16] and visual saliencl7,8] attempt to answer
the simplequestionfi Wh at i s wo r WHile the gquestionnisgimpet tRedapproach is
not. AIM attacks this problem from an information theoretic perspective to develop a measure of
selffi nf ormati on or Asurprised f oasobhigminforrmatonh pi x e
indicate regions worth focusing attention on. Visual saliency approaches the problem from the
cognitive science perspective, employing features that are demonstrated to produce attentional
responses in humans, monkeys and other nasiBoth of these algorithms work to produce a
heat map, indicating relative levels of interest which can be found at various locations in the

image.



6

The most intensive research in visual processing algorithms has been focused towards the
field of objectrecognition. These types of algorithms are designed to answer questions such as
i What doandi Whate?o0bj ect Manwalgerithpshave leeantdéveloped to
address the problem of answering these questions. Algorithms such as FB@A4X,5,18], are
modeled after the human ventral stream of visual proceddMgX extracts features from a
particular region of an image by identifying correlations to previously learned features. Others
such as Exemplar SVIL9] and SURH20] use combinations of feature extraction, brute force
matching, and machine learning in order to match visible objects to previously seen templates or
examples.

Machine vision has long studied tracking algorithms in order to answeudéséians
i Ar e t hi n gasn thheie aretlePgoing? Thi s research has | ed
such seminal algorithms as basic mehiit [21] tracking and Luca&anade optical flow22,23].
Many current statef-the-art tracking algorithms, such as OpenT[d3,25] and CMT[26], are
built upon these core algorithms, augmented with the inclusion feature detection, feature
extraction, and machine learning algorithms.

All of these algorithms are useful in completing a pietcéhe puzzle on their own.
However, the deep understanding that humans are capable of in their perception does not arise
through analysis of all of these pieces in isolation. Upon seeing a scene, humans are capable of
quicklyd virtually simultaneously identifying the context of a scene, identifying the locations
of key objects in a scene. This is quickly followed by identification of what those objects are and
how they (or other objects) may be moving within the scene. As understanding of a scene
develos, new inferences will be made and conclusions drawn, modulated or reinforced by the
previously observed data. For example, being able to quickly identify a scene as a city street can
modulate the attention, focusing it towards the ground level areasassatewalks and roads.

Additionally, the knowledge of the current location can influence the likelihood of detecting



certaintypes of objeadsl i ons are not often found on a city

appear in the vegetable aisle of a grgctore.

2.1Scene Context & Awareness

Scene and context recognition algorithms are useful in the identification of a location
depicted in an image. The specificity of the location may vary, identifying scenes and contexts
ranging from a specific lociain to a general setting. Regardless, scene and context recognition
algorithms enable additional inferences to be made not only about what is going on in the scene,

but as to the types of objects that may be identified in the image d44&H,27].

GIST

A variety of descriptionsan be applied to various scepesich as humans are capable
of describing a scene in multiple waany of these descriptodefinevarious visual aspects of
an image, often in degred®y combiningthese descriptions, a better understanding of the total
content of a scene can be achiev@liva and Torralba, ifi28], havepresented a method for the
holistic description of a scene using a spatial envedoggempassing these types of descriptors
This envelope attempts to quantify the degree of several image descriptors such as naturalness,
openness, rghness, expansiveness, and ruggedness. These descriptors lead to features which are
capable of describing an image in terms of many hunmaterstandable qualities.

Naturalness captures the apparent synthetic nature of a scene, providing an indicator of
whether the location appears manade (urban) or natural (such as a field or forest). Providing a

measure of how contained a scene is, openness describes whether the content of a scene is



bounded. For example, while an area such as a forest or grassy niead@Wwigh degree of

opennessan indoor room such as an office appears to have clearly defined boundaries and a
corresponding | ack of apparent Afreedomo. Roug
differentiating between scenes which contain grele of regularity and smoothness, such as the

exterior of an office building versus those which exhibit a high irregularity and lack of

smoothness, such as a forest.

Due to perspective, parallel lines in a scene provide a measure of depth based on their
level of convergence in a scene. Expansion quantifies this by determining the degree at which
vertical and horizontal edges in a scene converge. Scenes with a high depth, and correspondingly
high degree of expansiveness, contain lines that significantiyecge towards their respective
vanishing points. Ruggedness attempts to measure the contours of the scene of the ground level.
Measured with respect to the horizon line of an image, this feature readily provides effective
discrimination between mamadeenvironments, typically with relatively smooth ground levels,
such as floors and streets, and natural environments with highly uneven terrain, foliage, and rocky
formations.

These descriptors can all be formulated as a measure of the spatial information in
image, represented at varying spatial frequenciég algorithm outlined if28] details the
application of such filters in order to compute these descrifart descriptor is computed by
apphing the appropriate filters to the input image. The image is first converted into its
corresponding representation in the spatial frequency domain. This representation hsd two
impact on the computation. First, in the frequency domain, any infludmetative location of
objects in the scene is obscured. Second, the application of the fregoemain filters to the
frequency domain image results in highly simplified computation. Rather than defining, or
transforming, each descriptor filter thespatial domaingconvolution of each filter requires

simple pointwise multiplication in the frequency domain.
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Once all of the filters have been applied to the image, a summary of the responses must
be extracted to uses geatures for recognition. In ordey accomplish this, the response of each
filter is transformed back into the spatial domain. A grid of NxM egimdd subregions is
defined across the image and the average response across each of these regions is computed. A
finer grid corresponds ta feature vector more representative of the entire image, at the cost of a

larger vector fosubsequentrocessing and increased computation time.

2.2 Attention & Visual Saliency

The baseline models for visual attention essentially strive towards thedddaf
identifying what region(s) of an image the eyes would be most drawn to look aA fitstiety of
attentional models have been developed. Bottprmodelq1,2,16,29 strive to identifyregions
of interest (ROIs) within a scene based on global image features. These models derive their
measure of attention for any particular pixel or regioretiaolely on statistics and information
available within the image. While this approach has validity in identifying human fixdfibns
there is evidence that human attention is driven by more tharisde&in.[30] Recent attentional
models have shown that human fixations are often modulated by-dejaskdentactor. These
taskdriven, or topdown, attentional models have become increasinglgaitte for systems in
which the targets are known ahead of time. Both models have uses in intelligent vision systems,

with bottomup attention later influenced by ta@own processing.
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Attention based on Information Maximization

Saliency (Attention) basesh Information Maximization2], dubbed AIM,is a bottora
up attentional model that works to identify regions of interest in an image. These regions are
identified using a statistical approach basec¢hformation theory. In essence, this algorithm
endeavors to assign values to every pixel in an image corresponding to the level of Shannon self
information. These regions found to contain the most information within the image are identified
as regions ointerest. The kinds of regions identified by this algoritme found to correspond to
those that contain the most surprise, relative to the rest of the ikragxample of the resultsf

this algorithm can be seen Figure2-1.

Figure2-1. Example of AIM attentional algorithm.
(top-left) Inputimage, (togright) Saliencymap (bottom)Thresholded ROI mask

The level of selinformation contained throughotite image is extracted through the use
of a series of convolutional operations. The kernels used for these convolutions aredearned
priori and form thdoundation of the computatiasf the algorithmThesekernelsare derived

througha multi-step proces Initially, a random sampling of image patches is taken from a large
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set of images. Each of these patches is then evaluated in terms of its capability to extract
information. These patches are then evaluated using Independent Component Analysis (ICA) in
order to identify the set of patches which produces the most mutually exclusive information.
Thesepatches then become the basis functions on which the primary algorithm is based.

The runtime operation of the algorithm can be separated into three statpestirst
stage, ach oflearnedbasis kernels is convolved with the imager multichannel images, each
channel is convolved with the basis kernels independeAftgr convolutions have completed,
the response values are binned into histogramedier ®o compute pixalesponse frequency
counts. The pixetesponses are used along with these histograms to compute a probability and
then a logikelihood density estimation. This value estimates the probability of a particular pixel
response, and themrk the probability of a given pixéelhe summation of all of these likelihoods
produces an estimate of the saefiormation at each pixeresulting in an information map as seen
in Figure2-1 (top-right).

The exact process ofedtifying salient pixels from this map may vary. One simple
approach is to identify a percentile threshold above which a pixel is considdreshlient and
below which is considered irrelevant. Using this threshold, the likelihood value(s) which fall on
or around this threshold are identified. This value is then used to binarize the information map
into salient and noegalientpixels. An example of this binary map is showrFigure2-1

(bottom).
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2.3 Object Recognition

HMAX

Object recognition in the human brain is processed in the ventral stream, between the V1
visual cortex and the infier temporal (IT) cortex3,11,31]. Based on thibiological model
HMAX attempts tomirror the behavior and processing performed along the ventral stream in a
biologically consistent manner. Workitgmatch the scatand rotationallyinvariant
capabilties of human process, this model builds a set of complex features, derived from simple
features. This processing happens in a hierarchicakféeedrd fashionFigure2-2 [32] shows

an example of the computational operations and dataflow of the HMAX algorithm.

Oriented-Gabor Filtering
ernel: 11x11xm
y

Template

Pyramid Generation Matching
= . i—m

Local Maximum Pooling Global Maximum Pooling

Correlation

G

b
Input Image o 2
[256x256] { [256x256] ...[38x38] } {[246x246xm] ...[28x28xm]}  {[47x47xm] ...[5x5xm]} {[44x44xp] ...[2x2xp] } [px1]

1

Figure2-2. Computational layers and data flow of the HMAX algorithm

The first processing step fermed in HMAX is a preprocessing step. In order to enable
scale invariance, the first stage of the HMAX algorithm generates an image pyramid, representing
the original input image at a niaty of scales and resolutions, as seefigure2-3. After
composition of the image pyramid, the remainder of the HMAX algorishoomprisedf
alternating layers of convolution operations and pooling operations, corresponding to the

(S)imple and (C)omplex cells found withilme visual cortex.
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Figure2-3. Example image pyramid generated in preprocessing of HMAX
The imageof the duckis taken from the COH20 dataset [citation]

Thefirst of these layers, the S1 layenableghe rotational invariareof the HMAX
algorithm.In the S1 layer, eacttale of the image pyramid is convolved with a series of Gabor
filters, a widely accepted model of the receptive fields in the visual d@1gxAs in[33], this
series ofilters is designed to be 11x11 in size with dominant orientations equally spaced between
0 and 'Theramhiniagmparametdd'svav el engt h (&), effective

r at id @re $epap described[ibg] to have values of 5.6, 4.6, and 0.3 respectively.

Equation2-1. Gabor filter used in the S1 layer of HMAX processing

--
--

Figure2-4. Examplesof oriented Gabor filtergsused in the S1 layer of HMAX

Orientation angles spaced equally betw@enand ~ r adi ans
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Followingthe S1 layerthe C1 layer performs localized pooling across S1 output cells.
This layer compresses some of the scale invariance introduced in the preprocessingrstage by
pooling values across adjacent scales. In addititimdarossscale activity, pooling
encompasses local regions of these adjacent scales. The resulting output of the C1 layer is a

highly condensed set of images, retaining all orientation information generated by the S1 layer.

(Largestscale, smallest region) (Middlescale, mediunmegion) (Smallestscale largest region)

MAX

Figure2-5. lllustration of cross scale poolinig C1 layer of HMAX

The most complex layer of HMAX processing, the S2 layer is modeled on the V4
(posterior IT) region of the ventral stream. In this layer, a large database of tangddare
matchedacross each scale of C1 output. This database consists of a number of prototype image
patches, of varying sizes (4x4, 8x8, 12x12, and 16x16 [d9jjn Each of these patches corsist
of the target feature as seen at each orientation as generated by the S1. The matching function of
the S2 may be varied, however, the normalized dot product, as sh&guoation2-2, has been
shown to be an edttive matching functiof32]. The processing of the prototypes through the S2

ensures that each prototypeds orientation is
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output. The output of the Slayer results in a large amount of data, namely a response image for

every dictionary template, correlated at every scale and orientation fed into the S2.

X.P

kr"flllz X = in

H-%m

R(X,P) =

Equation2-2. Equation describing the Normzdid DotProduct used in the S2 layer of HMAX

The final layer of HMAX processing, the C2 layer, enables global invariance by pooling
across all responses for each prototype over a range of scales. By grouping large bands of scales
together, this pooling &dctively eliminates the impact of large variations in sc&leoling across
the entirety of each response image removes the impact of position within thelfilkeendse,
poolingacross orientationsnsures that the best response for each prototypend fegardless
of how the object is oriented in the initial input imaghis global pooling results in a large and
complex feature set that can be used for any number of machine learning systems for object

recognition

Exemplar SVM

The Exemplar SYVMESVM) [19] model performs object detection based on the
relatively simple concept of finding the best match of a particular object within a database of
previously learned objectk support of this, an SVMlassifier is trained for each object
exemplarjn the learned databad#&/hile the database may contain any number of exemplars for a
given class, a unique classifier is traineddach exemplar independentlhese exemplars are

eachrepresented throughe use of a rigid Histogram of Oriented Gradients (HOG) template



16

HOG processing is based on gradient computation within the window. Each detected gradient is
then employed in a nonlinear weighting operation, allowing each gradient to vote for agarticul
orientation, based on the magnitude response. These votes are then binned by orientation over
small spatial windows within each celtontrast normalization is performed across all blocks
within the cell, producing a normalized HOG cell respoiide.completeHOG descriptor is a
combinedvector of all components of the normalized cell responses from all of the blocks in the
detection window34].

Each specialized exemplar classifier is trained by itadowing the object ground truth
in such a way as to produce approximately 100 cell windows. While the exact windowing
function is different for each exemplaing size of all cells for any given exempéae the same
This results in the number of HO@atures being different for each exemplar SVM classifier.
The training proces®r each exempldoegins by this window selection, extracting the HOG
features from each window. These features serve as the positive training es@tinplehosen
exemplar Xe. A humber of negative training examples are then generated by extracting cells, of
the same size as the training exemplar from database objects which do not represemt the
class as that of thehoserexemplar For each of the windows extracted fraime nonchosen
exemplars, HOG features are extracted. These features serve as the negative training examples of
the chosen exemplaXe.

Finally, the SVM classifier is trained to learn the feature weights which provide maximal
separation of the featurespresented iXe from those found ifNe. For each positive exemplar, it
is hot uncommon to use a very large set of negative examples for training. However, the number
of training vectors only impacts the training phase of the ESVM algorithm.

Once trainedan unknown object is processed through each of the trained ESVM

classifiers. For each classifier, tbell windowingand HOG featurextractionis performed in
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such a way as to match the cell topology of the positive example of the class. This easures th
the resulting HOGeature vector will have the same length as the ESVM classifier.

The detection and classification of ESVM has been shown to be highly effe@jve
However, athe classificatioprocess must be carried out for each candidate SVM, the runtime
performance scales not with the number of classes as many classification schemes, but rather with
the number of exemplarshus, theensemblef exemplarcanbecome quitéarge.The abilityto
classify a wide number of classes would regpiecessing ofhe entire ensemblegquiring

significant expenditure of time and resources.

2.4 Object Tracking

Machine vision has developed a number of algorithms that can be useful for tracking
moving oljects. The most basic of these algorithms is mean shift tracKinig. algorithm suffers
from a number of deficits which later algorithms have tried to address. Deformations and
rotations in the object easily create confusion and can cause trackiiigAdgfarithms such as
LucasKanade optical flow22] attempt to improve on this by attempting to first identify key
components of a tracked object. These components are tracked individually by irig iaifgl
regions in subsequent frames which exhibit strong correlation to the component in the previous
frame. The net motion of the object can be computed through analysis of the apparent movement
of its components. However, this type of tracking maycsmb to errors when dealing with
objects that are capable of deformation, effectively changing the relative locations between key
components while in motion.

More advanced algorithms have attempted to address this issue through several means.
OpenTLD[25] employs an online learning model during tracking. This enables a periodic update

allowing the algorithm to adapt to subtle changes in the object over time, effectively
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compensating for deformations. Wever, rapid movements or changes in the object without
corresponding updates to the model caunse tracking to faiDnce this happens, it becomes
difficult for TLD to re-engage tracking with the target.

Another algorithm, ConsensiBased Matching andracking of Keypoints (CMT),

sacrifices some of this flexibility in order to enable simplified target reacquisition.

Consersusbased Matching and Trackingof Keypoints (CMT)

The CMT algorithm performs object tracking by combining a persistent object model
based on advanced keypoints and optical flow. Tracking is initialized by providing the algorithm
with the current frame and the region of that frame which contains the object. The entire input
frame is processed using the advanced keypoint detectiontlalgoBRISK in the default
implementation. Theet of active keypoints constucted by identifying all of thieypoints
which fall inside the region defining the target objéttese keypoints, and their associated
descriptors comprise thliefined objectmodel. This model, in addition to the keypoints, contains
information relating their relative locations and angéedled springswith respect to the center
of the defined object region. This additional information is used for object center, scale, and
rotation estimation during subsequent fraj@ssseen ifrigure2-6a. All remaining keypoints,

and their descriptors, are defined to constitute the background model of the scene.
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Figure2-6. lllustration ofseveral stages of CMT tracking
(a) Keypoints and springs identified during initializatigh) Optical flow estimation(c) Scale and

Rotation estimation using relationships between keypo{djsCenter pint estimation using
transformed springs

Subsequent frames are processed by first performing keypoint baseeKlanzaie
optical flow (Figure2-6b) of the active model keypoints into the current frame. Both forward and
reverseoptical flow are computed to define a degree of error in the tracking of each keypoint.
Any keypoint which is not able to be tracked within a reasonable error bound is ignored in the
tracking as untracked.

The set of keypoints that are successfully teacare then used to estimate the relative
scale and rotation of the objg€tigure2-6¢). This is done through analysis of the relative change

in distance and locations between keypoints. After estimation of scale and roitezsen,

keypoints are thensed to estimate the center of the ob{Eajure2-6). By usingthesprings for
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each of these keypoints, an agglomerative hierarchical clustering algorigénnplicyedto allow

each keypoint to vote fahe location it considers the most likely center. The center of the
primary cluster is taken as the estimate for the new object center, after any votes which fall too
far outside this cluster are discarded.

After tracking, the algorithm attempts to rectitase any keypoints which were not
successfully tracked by performing another round of keypoint detection and matching against the
initial model. It is this step that enables CMT to reacquire an object after it has been obscured,
left view, ortemporariy changed its form or appeararem@ugh to be losEor each keypoint in
the image, it is matched to the model developed in the tracking initialization through the use of a
brute force matching algorithm. While the matcisentifiesthe best matchetweerkeypoints,
the algorithm enforces a minimum threshthild degree athis match Additionally, another
constraint is imposed, requiring a high degree of relative confidence rimeticl, ly comparing
it to the secondbest match as well.

With tracking andnatching complete, the set of active keypoints is updateda new
bounding box is computed. In its current form, CMT does not adapt the model of the object over
time, so one drawback is that it loses tracking of objects that have a significant chairge in

over time, such as an object with differing front and rear sides that rotates.
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Chapter 3

Development ofintelligent Visual Systems

This chapter details the framewddk the development of an intelligent visual system
based on a softwaiachitected pipeli@. This pipeline presents a unified software architecture for
the inclusion, development and utilization of a wide variety of detection, recognition, and
tracking modules, among others, necessary to construct such an intelligent 8ystem.
visualization ofa complex intelligent vision pipeline is shownHFigure3-1. Despite its
grounding in a software implementation, the components of the pipeline are entirely self

contained, rendering the internals of their implementations iaatev

~ Target Tracking
(Reacquisition)
Open TLD
CMT

Object Filtering
ViCoNet

Target Tracking

Initiation/Update
Context s OpenTED )

Recognition CcMT
GIST

Object

Recognition
HMAX

Attention SURF

CNN

Saliency ESVM

AIM

Object

Detection
SURF
Symmetry

Figure3-1. Example of Intelligent Visual Pipeline.

A software tool for the prototyping and development of FH&a&ed hardware

accelerators is also presented in this chapter. This tool predsanr@veareagnostic interface for
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research scientists to develop algorithmic accelerators targeting a variety of FPGA hardware
platforms. The interfaces to these accelerators can be easily mapped into the intelligent vision

pipeline described here, regaiseof the exact nature of their implementation.

3.1 Intelligent Visual Pipeline& Framework

The intelligent visual pipeline discussed herereatedvith several goals in mindThe
first of these goals is that the pipeline configuration is highly flexibhe only requirement of
components in the system is that they conform to one of several interfaces indicating their general
purpose: input, outputietection featureextraction, classificatioriltering, or tracking Often
used together, feature exttion and classification modules may be grouped together into a
general class of modules explicitly targetededfcontainedecognition.Examples of the types
of components and algorithms that would fall into these categories are liStebl@3-1. These
interfaces are not exhaustive. The dynamic nature of the pipeline facilitates the development and
integration of interfaces which have not yet been defined. This enables future support of

algorithms and information modulesatrare not yet known, or known to be necessary.

Table3-1. Examplef Intelligent Visual Pipeline Modules

. Recognition S .
Input Output Detection Fenture Extraction | Classification Filtering Tracking
Display . . Visual Caoccurrence
ImageSet Visualizer Saliency SURF Linear (RLS) Network (ViCoNet) OpenTLD
. . Audio Brute Force
Video File Feedback AIM SIFT Matching Top-K Response CMT
GigE Haptic
Camera Feedback SURF HMAX SVM OpenTLM
USB Histogram Of
Webcam SIFT Gradients (HoG) ESVM
IP Camera Symmetry
Web Stream
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The modular flexibility provided by this framework enables hierarchical solutions to
vision-related problems by cascading multiple different algorithms togéfisral GIST-type
algorithns, by providing context and awarenesan greatlymprovethe recognition of objects in
a scene. However, the types and configuration of objects found in a scene may be just as telling.
For example, if an object recognition module strongly recognizesadelgects such as cars,
buses, and signs, the system may be able to infer that the location is a city regardless of the result
of the context recognition algorithm. In turn, this improved context awareness may enable further
refinement of other, less @lgsrecognized objects in the scene.

Thecascade@drrangement of modules may also include sinailgorithmsin order to
better solve or reinforce results, such as in the case of object recogFii®is the case
explored by the hierarchical recognitipipeline described i@hapter 5This pipeline employs
multiple feature extraction and classificatimodulesalongsidea classification filtering module
in order to exploit the accuracy and performance cheniatics of different recognition
algorithms.

With time beinga key limiting factor in a real time vision system, it may be often the
case where there is insufficient time to sufficiently classify or process all detected objects within
a scene. The inclien of trackingenabled modules in this intelligent pipeline opens a new means
of improving performance by exploiting the temporal dimension. Detected objects can be tracked
through frames over time, regardless of whether or not they are given a cltssifldger time,
as the number of new detections decreases, the slack time may be given to classify these
previously unclassified objects. In the event that no objects are found to be unclassified,
classification can still provide benefits in the presesfdeacking capabilities, however. Objects
with weak classifications may be reclassified, possibly with greater effort, in order to improve or

reinforce the assigned classification.
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The flexibility of this pipeline only requires that those componentsssaey for the
target application be includetihe hierarchical recognition described in Chapter 5 presents a
simple pipeline, \Wile a more complex pipeline, as describe€hapter 6utilizes a wider range

of components

Communication

Each module must conform to a particular interface, indicative of the type of operation
that it performs or purpose it serv@fie distinguishing factors of these interfadbsreforelies
in the type of data that it produce&.summary of theypes of outputs each module produces is
given inTable3-2. Input modules produce raw input data such as frames from an IP camera or
video file. These output data streams are tagged with the ID and function of the module that

generated it in order to facilitate advanced data flows.

Table3-2. Examples of Intelligent Visual Pipeline Module Outputs

. Recognition I .
| D - — Fil Track
nput Output etection Feature Extraction | Classificaion litering racking
Raw (image Visual, Regions Regions
. 9e, auditory, 9 Classification Classification 9
audio,etc) . of Interest Feature Vectors of Interest
physical Scores/Labels Scores/Labels
data feedback (ROIs) (ROIs)

An event/subscription style model is used by thelpe to propagate data from one
module to the nexiThis allows each module to register for the type of data stream that is
requires. The pipeline architecture is then able to connect each available data stream to any
modules which have requestediitaddition to specifying the type of data requested, the module

may specify additional constraints or restrictions on the source of the data. For example, a
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classification module registered to receive feature vectors and trained on HMAX features should
notbe sent feature vectors generated by a HoG module. So, the classification module may
specify that the type of feature vector must come from an HMAX module.

The type of data a modul e itgmmgefacaThigallozst | snodt
for example, an object recognition module to request input streams from other object recognition
modulesThis, naturally, may result in an infinite loop, so the pipeline is crafted so that a module
may not receive its own output directly. Such a loop is sidkjble if routed through additional

intermediate modules, so there is some responsibility on the developer of each module to properly

ensure thatepetitive input data is eventually discarded without producing a response.

Modular Implementation

The secongjoal of this intelligent pipeline is to ensure that its operation is wholly
agnostic with respect to the underlying implementation of each module. Conceptually, this
means that a software implementation of HMAX is no different from a hareacarderated
implementation of MAXd they are both feature extractors in the eyes of the pipeline. All
classifier modules take in data and produce classificatigults.

However, it may be of use to know the underlying implementatioen constructing a
pipeline impementation. Thus, each module may be annotated with additional version or
implementation tags that allow intelligent assembly of the pipeline. If a pipeline requires an
implementation of the AIM ROI detectdor example, functionally it does not mattenether the
module is softwardased, or hardwai@ccelerated However, the architect may specify that, if
available, a hardwaraccelerated version be used rather thaofavare implementation.

Ultimately this allows the description of the pipelindo®boiled down to its essence, which is a
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series of modules and the connections between them, allowing the system to assemble the most

effective version possible given the available components.

3.1 Algorithmic Accelerator Prototyping Tool (Cerebrum)

A numkber of factors make it difficult for researchers in fields such as neuroscience to
quickly and efficiently construct high performance, hardwareelerated systems to evaluate the
algorithms they develop. Firstly, often times researchers in these figkdiéaskill set to
develop the required hardware accelerators. Additionally, even armed with the necessary
accelerators, synthesis of the components into a usable system presents an equally challenging
task without additional assistanceélithout the toolsable to leverage eohip communication
infrastructures, such as netwois-chip and a lack of standardization across FPGA systems, use
of these platforms as a prototyping and development system is seen as far too daunting a task. In
an effort to remedyhis situation, and bridge the usability gap between computational researchers
and engineers, the Cerebrum software tool was developed.

Cerebrum defines and leverages a standardized abstraction across both FPGAs and
hardware modules (IP cores) availaldethem. This enables a clear framework for the creation
and modification of an algorithmic dataflow requiring minimal engineering effort. This tool is
composed of a front end graphical user interface, exposing the available components and
platforms to thaiser. The back end of the tool automates the processing of several engineering
tasks necessary to take the wdefined algorithmic dataflow and map it onto the desired FPGA

platform.
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Cerebrum Front End

The front end GUI of Cerebrum presents the usets avitragand-drop style of interface
for the development of hardware accelerated algoritRmisthe purposes of designing the
algorithm, a library of available IP cores are displayed to the user. The visibility and availability
of IP cores in the librargnay be limited by the target hardware platform, thus preventing the user
from spending time developing towards a system which ultimately cannot be synthesized due to
IP incompatibility. The library of modules is defined by a structured XMked architecta
which enables the hardware developer to expose hardware parameters and control how
components and IP cores are connecléé. snippet of XML shown ifigure3-2. Example of
Cerebrum Core definitigmnlemonstrates a Cerebrumdére specificationThis example

Cerebruntore defines aimple 1/O interface core.

<Software>
<DesignDisplay>
<Category Syslemel=rot er f aceso /[ >
<Ports>
<Port Type="  INITIATOR " Name=" r x dnterface="bit:128" />
<Port Type=" TARGET Name=" tx " Interface="bit:128" />
</Ports/>
</DesignDisplay>
</Software>
<Hardware>
<Interface Type="SAP" PE="True"> sys_iface </>
<PCores>
<PCore Type=" sys _rx _if * Version="1.
<PCore Type=" sys_tx_if * Ver sion="1.
</PCores>
<Clocks>
<Name®® 100 MHz Oscill ator"é Frequency="1
</Clocks>
</Hardware>

o o
N
)
(¢}

Figure3-2. Example of Cerebrum Core definition

The<Software> section describes the appearance and interface of whevithr
respect to the front end GUI. This section defines where the core appears in the library of

components, and what visible ports it exposes to the user, among other visual properties. The
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types of the ports defined here indicate how the core maytdxéaiced with other cores in the
design. Cerebrum defines four types of ports, applicable to different types of cores. Streaming
cores utilize ports designated as eitidPUT or OUTPUT Computational cores expose
INITIATOR andTARGETports.OUTPUTports may only direct data iNPUT ports (of other
streaming cores) FARGETports (of computational cores). LikewisBITIATOR ports may
only direct data to atNPUT of streaming cores or BARGETof computational cores.

The <Hardware> section defines thetails of the hardware components which comprise
the Cerebrum Core. In addition to defining the type of the Cerebrum Core @B&ming
OPerator) or SAPQwitch-AttachedProcessor), this section defines the specific IP cores and any
required clocks prduced by or required by the component. Other aspects of the hardware
covered by this section include importing predefined component interconnects, declaring a
limited set of supported platforms and architectures, as well as the estimated resource
requiremats of the components contained in @&rebrum coreArmed with the cores available
in the library, construction of a system becomes a simple matter of dragging and dropping the
necessary components into the workspace and creating the dataflow conrettiees them.
This specification wrapper hides alltbieinternal details from the algorithm developer.

Once the user has drawn a system on the workspace, the back end of the Cerebrum tool
takes over to perform the task of translating the displayedraystto the target platforrm
order to achieve this, the tool requires three sets of specifications. Tispdicficationis the
design specification, created by the user in the Cerebrum front encieddraspecifications
that of thetargethardvareplatform. The platform specification defines several-lewel details
about the reconfigurable platform. This includes the number and types of FPGAs available, how
they are connected, both logically and physically, the resources available on eaaty an

FPGAspecific pin constraints or signals. Tiiveal requiredspecificationis the Cerebrum project.
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This file defines all of the options associated with how and where the EDA tools should be run.
Armed with complete specifications for the projeck tlesign, and the platform, the tool may
proceed to back end synthesis, translating the provided information into a hardware definition for

the target FPGA platform.

Cerebrum Back End

Using these specifications, the Cerebrum back end performs a setigssahsorder to
realize the desired system on the target hardware. The first step in this process is the mapping of
the necessary components to the available FPGAs in the system. A customized accelerator
mapping algorithm was developed in order to optennultiple constraints including
minimization of data flow and intdfPGA communication while maximizing resource utilization.

The mapping algorithm proceeds through several phases in order to work towards an optimal
solution.

A feasibility check is firsperformed. This step is designed to stoirtuit the algorithm
in the event that the system requires more resources than are available on the entire FPGA
platform. If, at least superficially, there are sufficient resources to map the required components
mapping proceeds to the component grouping phase.

Advanced users may annotate the design with requirements that some components be co
located orthesame FPGA, without regard to the specific FPGA in the platform. Sets of
component groups that are so amated are coalesced into a Component Group. For the purposes
of mapping, this group is treated as a single
contained components as well as data connections to all components with connections to the
compaments internal to the group. Once all component groups have been formed, mapping

proceeds to I/O distance computation.
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Each component, or component groumrisotated with its distance from the system
input and output connections. This distance is catedl by finding the average number of hops,
or edges, in the available paths between the compandiite specific connection. These
distances are used to optimize placemerbafiponentsvith shorter I/O on FPGAs closer to the
corresponding system I/Qg.

Once again, users with advanced knowledge of the target platform may influence the
mapping algorithm. During the design process, if desired, each component may be annotated for
placement on a specific FPGHI. the event that a component is assigneaht&PGA and
assigned to be grouped with another component, the entire component group is then assigned to
the FPGA. If the user attempts to assign groups components to different FPGAs an error is
generated, advising the user to correct the discrepandy.aValid premapping, each such
component is assigned to its target FPGA, virtually allocating the required resources.

Finally, the optimization of component placement begins. A greedy algorithm is used to
find the best target FPGAs for each componenaréler to avoid a lack of resources at later
iterations of the algorithm, the components and groups with require the most resources are placed
first. Optimal placement is determined by finding the FPGA which has the most resources
remaining and also minizes the data traffic between FPGAs. This traffic is measured by finding
the number of inteFPGA hops required for data to flow through the component, if it were placed
on each FPGA. This approach continues until either all components are successfedly ga
component is encountered for which no available FPGA has sufficient remaining resources.

With all components mapped to a target FPGA Gbeebrunback endgenerates the
files necessary for the proprietary back end tool flow. A system file isrgtd for each FPGA
based on the components that were assigned to it during by the mapping algorithm. Following
this, the entire back enbol flow is automategdproceeding through the steps of synthesis,

technology mapping, placement and routing, anallfirbit streangeneration.
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Chapter 4

Accelerated Architectures

This chapter provides details on the development of novel accelerators for two visual
algorithms. The first algorithio acceleratodescribed here is targeted for the HMAX feature
extraction algothm. This includes aetailed analysis and profiling of the algorithm, bithparts
and as a whole, enabliijghly effective and targeted optimizations in the overall architecture.
This architecture is composed of multiple accelerators which enablediffirmance with
minimal degradation in accurachjhe HMAX acceleratodescribechere not only represesa
novel architecture for the algorithm, but was also established as the foundation for ongoing
research as part of the DARPA Neovisi¢B89] project.

Further extending the family of visiesrientedacceleratorsthis section also details the
development of an attentional model accelerator based on the AIM algofiitignAIM
accelerator describectte was developed for incorporation into the visual processing pipeline of
the Supervised Autonomous Fires Technology (SAF36] programunder the Office of Naval

Research.

4. 1HMAX Accelerators

The HMAX algorithm, designed for function in an effort to mirror the biological
responses in the brain, displays several inefficiencies when executed on a general purpose
processor. These inefficiencies are a result of the computational structure of thiaralgondt
result in less than optimal runtime performance. In order to effectively utilize HMAX as a feature

extraction engine for object recognition in a real time intelligent visual system, a detailed study of
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the algorithm is necessary. This study, dethlere, identifies many of these inefficiencies
within thegeneral purpos€PU implementation of HMAX, thus enabling the development of
effective and efficient hardware accelerators enabling dramatically improved performance of the
HMAX algorithm.

As detdled in Chapter 2the implementation of HMAXised in this dissertatias based
on the variant HMIN 33]. This implementation defines a number of parameters for this iartic
implementation of the HMAX algorithm, which are summarize@able4-1. In order to
establish firm baselines for performance purely in software, the C++ implementation was first
augmented to suppartultiple threads, enablinperformance gains through threagel

parallelism.

Table4-1. HMAX Algorithm Parameters

Parameter Value
(Range)

Pyramid Scales 81012

S1 Orientations 4orl2

C2 Pooling 1 Scale

Overlap

S2 Dictionary 5120 templateg

Templates

S2 Dictionary 4x4, 8x8,

Template Sizes 12x12, 16x16

C2 Pooling 6 Scales

Range [11-6, 61]

Baseline Implementation

The evaluation platform for the muttireaded software implementation of HMAX
consisted of an Intddased systa equipped witldual2.4GHz QuadCore Xeonrclass processsr
with a total of12 GB of main system memory. Each of the four cores of the Xeon processor were
HyperThreadingcapable, providing logical CPUs per core, resulting in a total of 16 processing

units. The software was compiled with maximum optimizations and the SSE2 SIMD instruction
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set enabled for further increaggerformanceFigure4-1 demonstrates the impact of

multithreading on the runtime performance of the software.
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Figure4-1. Execution time of HMAX as a function olumber of threads

In addition to the number of available threads, the runtime performance was also found to
depend, nearly linearly, on the number déptations to be processed. Reducing the number of
orientations by a factor of 3, from 12 down to 4, the execution time of the algorithm was reduced
by a factor of 2.5 to 2.8, depending on the degree of multithreading erBiideithpact of
threadlevel parallelism is clearly evident in the observed execution times, wherein a 2X increase
in the number of threads often results in a nearly 2X increase in performance. However,
increasing the number of threads from 8 to 16 produces only a 1.3X improvemesd ki
time.

This reduced performance benefit is explained by analyzing the impact of multithreading
on each stage of the HMAX algorithm. Asown inTable4-2, the S2 stage of processing
thoroughly dominates the runtime of thalgorithm In fact, the S2 computation averageer

96% of the total executicime with virtually no regard to the number of available threads or
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orientations being processédhis indicates that the vast majority of the performance gains found

due to nultithreading can be found within the S2 stage.

Table4-2. HMAX Stage Execution time, as a percentage of total execution time

# #
Threads| Orientations S1 c1 S2 c2
1 4 1.62 0.19 97.61 0.53
12 1.77 0.21 97.82 0.19
5 4 1.69 0.22 97.45 0.56
12 1.79 0.22 97.78 0.19
4 4 1.89 0.30 97.15 0.50
12 1.90 0.26 97.60 0.17
8 4 3.54 0.58 94.97 0.60
12 2.96 0.40 96.27 0.25
16 4 4.71 0.87 93.26 0.76
12 3.08 0.56 95.92 0.29

Further profiling of the S2 stageexifically reveals the reason for relatively reduced

performance gains when increasing the number of parallel threads from 8 to 16. As the number of

threads increases beyond the number of processed orientations, the ability to exploit the available

paralldism dramatically decreases. As the critical path of the S2 is comprised of correlation of

input images with prototypes in the S2 dictionary, exploitation of parallelism at this level is

difficult. The largest performance gains come from the thieael parallelism at the granularity

of processing one orientation/scale being processed per thread. Maximal oridatagion

parallelism is achieved at the point in which the number of threads equals the number of

orientations, 4 and 12 respectively. Furtimereases in available threads are able to exploit-scale

level parallelism in the processing of the S2, but ultimately the reaches the point of diminishing

returns, as seen Figure4-2.
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Figure4-2. Speedup of S2 stage of HMAX as a function of multithreading

As performance is not the only concern in many systems, such as embedded systems,
power consumption must be taken into consideration as well. For each of the algorithmic and
multi-threading configurations described here, the runtime power consumption of the system is
measured as well and showrFigure4-3. For this evaluation, power was measured by using a
power meter, which provides both contine@nd instantaneous power measurements during
runtime.

Theresults here clearly demonstrate the benefits of such parallelism. However, further
performance improvements will require application specific acceleration. Specifically, aspects of
the algorithm Bown to be least influenced by the enabled parallelism, such as convolution
operations, require a targeted approach. Due to its enormous influence on the overall execution
time of the algorithm as well as the prevalence of convolution operations wihig2th

represents the stage which can gain the most benefit from targeted acceleration.
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Figure4-3. Power Consumption of HMAX due to multithreading

Thedevelopment and evaluation of the hardware moduled a8 accelerating HMAX
was done on a muiPGA platform. This platform consists of four Xilinx Virtex5 SX240T
FPGAs connected together using L-deltage Differential Signaling (LVDS) interconnect. The
four FPGAs, are in turn connected to the developragsitem through the Front Side Bus (FSB)
in a processor socket. The host system is the same@Quead®.4GHz Xeon processor that the
software implementations of HMAX were developed and evaluatelsh @ander to facilitate
communication between accelerataa packeswitched, highbandwidth Networlon-Chip
(NoC) architecture istilized [32]. This framework enables runtime reconfigurability of the
network as well as strearar computebased acceleratorfhe dataflow of this network is highly
fluid as well, allowing the construction and use of virtual data pattffows enabling
accelerators to pass data through apgtaened series of accelerators to enable a variety of

algorithms using common modules



37
S2/C2 Accelerator

The core function of the S2 stage is a correlation operation, akin to template matching,
computed between the outputs of the C1 stage and each of the stored prototypes in the S2
dictionary. This correlation operation has to be perforbetdeen every scale of the C1 and
every prototype in the dictionary and every scale being proceBsisdequires an enormous
amount of computation and produces a very large amount oftdataination of the data flow
between S2 and Gshowsthat the massive amount of data generated by the S2 is quickly and
radically pooled into a much smaller feature spBegailed analysis of exactly how this happens
leads to the realization that several benefits can be realized by combining the S2 and C2 stages
into a single unified module.

The C2 stage finds the maximal response of a particular prototype regardless of
orientation and within a limited range of scales. The order these values are generated is
irrelevan® only the maximal value matters. This means thatrhaxpooling operation can be
performed orthefly as each new prototype response is generated, by comparing the new value
and the existing pooled value. addition to the consolidation and optimization of the pooling
operation performed by the C2, thias the added benefit of dramatically reducing the amount of
data that must be transferred over the NoC between the S2 and C2 modules. The degree of this
reduction in data transfer is quantified Bguationd-1. In this equationthe numerator
corresponds to the data values that would be sent over the network to the C2 without this
optimization.Scorresponds to the index of the S2 scale being processaddYsindicate the
size of the S2 outpuatt scaleS. Nprowotypesindicates the total number of prototypes in the S2
dictionary, antNprototypedX's, Y9 indicates the number of prototypes that can be successfully
correlated with the template. This indicator is reqiitceaccount for the fact that the larger

prototypes are to@tge to correlate with the smaller scales, resulting in no values to pool under
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these conditions. The denominator of this equation represents the amount of data that is sent over
the network from the combined S2/C2 module with this optimization. It ows to the
number of prototypes in the diction@rnil max value per prototypetimes the number of scale

bands over which pooling is done, in this case 2.

Equation4d-1. The degree of data transfer reduction between S2 and C2 of HMAX by combining
the two nodules into a single accelerator

Using the default HMIN configuration parameters, consisting of 12 scales and 12
orientations, along with an S2 prototype dictionary of 5120 prototypes, this equation indicates a
data transfer reduction by a factor of 4,X54

Further reduction in network traffic and data transfer is possible through clever
management of the input data to the S2. The correlation of inputs with prototypes requires
frequent accesses to the input data for each orientation as it is requirsatéssmg of each
prototypebs corresponding orientation.- Rat her
module memory, all orientations for a giveraleare loaded into local memory once and then
fetched, as needefibr processing. This optimizian results in a 5,005Xeduction in data
transferredusing the same configuration based on the calculation sho&aguition4-2. The
symbols in this equation are the same as thoEeuationd-1, with Norentationsrepresenting the

number of orientations being processed.
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Equationd-2. The degree of data transfer reduction to S2 through the use of input scale buffering

The architecture of this combined and optimized S2/C2 module is shdviguire4-4
[37]. Each input scale, including all applicable orientatianbuffered in the image memoiihe
dictionary of prototype patches are preloaded into an attacheklipiSRAM memory. This

memory structurés necessary due to the large size (24MB) of the prototype dictionary in use.
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Figure4-4. S2/C2 Stage Accelerator for HMAX

(a) High-level view of S2/C2 Acceleratdtipeline (b) Pixelwise accumulationaoss
correlation responses within each scé&dgC1 outputs are buffered in a local image memory,
referenced by orientatiofd) Accumulated outputs are normalized after computafeyGlobal
max-pooling is performed on a perxel basis as outputs agenerated.
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An array of systolic 2D convolution units are supplied inputs from this image memory.

The coefficients of the convolution units are loaded from the local prototype dictionary for each
prototype being processed. The size of operation for @aoolution unit is configurable to
support the various prototype sizes in the HMAX implementation. The size of the active
operation is changday the control unit as new prototypes are loaded from the dictionary
memory.The access latency of the dictiopanemory is obscured by overlapping the
computation of the convolution operations with the loading of prototypes.

A temporary memory structure is used to store the accumulated output of each
orientationds convol ut scalgthis mepooy is reseh Asteacavalueo n o f
is generated from the convolutional units, the corresponding location in the accumulation
memory is read, updated, and rewritten. Once processing péttieular convolution is
complete the resulting valsareforwarded ahead to the normalization.

The normalization unit contains a small memory buffer that is preloaded with coefficients
used to normalize the convolhesdvaleesnareauSedtwach or i e
compute the normalized pixelise output foreachprototypewhich is forwarded to the pooling
unit.

As the outpits of each scale are generdi@deach prototypdaheyare fed into the global
pooling unit. This unit identifies the maximum response from among all of the ifjniggnax
value is the compared tthe existing values in the corresponding entry of the C2 data table. If
the new value is greater, the C2 table entry is replaced with the new value.

Once all prototypes have been processed, a read request to the S2/C2 accelerator returns

thefeature vector contained in this C2 table.
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S1 Accelerator

The S1 stage is responsible for processing the oriented Gabor filters over the input image
scales. The accelerator for this stage is designed to compute these convolution operations in a
streamiig fashion, producing output pixels as soon as they are réadyarchitecture of this
accelerator is composed of FIFO which consiré serial inputs to a parallel stream for
convolution. A 2D convolution engine that follows takes the parallel stredr@ahor
coefficients from a local memory to produce a series of outputs that are fed into an adder tree
structure The serial outputs of this adder tree are the streaming outputs of the S1 accelerator

Figure4-5[37] shows an overview of this S1 accelerator architecture.
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Figure4-5. S1 Stage Accelerator for HMAX

SystemEvaluation

Graphics Processing Units (GPUs) are anotbeular architecture for higherformance
systems. These devienable high levels of acceleration by exploiting parallelism through the
utilization of a massive number relatively simple, but high performance computational resources.
In order to establish wellrounded comparison of this FPG&celerated architecture, a GPU

based implementation of HMAK38] was evaluated in tandem. The GPU evaluation was
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performed on an NVIDIA Tesla M20939], which houses a 1.3GHz Tesla T20A GPU with

1.3GB of memory. The GPU is hosted on a systéich hasA9GB of system memomignda 12
core 3GHz Xeortlass Intel processor.

In addition to runtime performance, pemis a critical aspect in threvaluation of these
platforms. For the CPU and FPGA power measurembkatkjdle and active powaronsumption
wasmeasured using a power meter. The GPU power consumption was measured using tools
provided by NVIDIA to querypower measurement sensors located on the GPU. For these
platforms,the idle power isemoved with only the power due to computation being considered.

Figure4-6 shows the relative speedups achieved by both the @RUFPGA
accekrated implementations of HMAK terms of frames per second (fpBpr both the
configurations using both 4 and 12 orientations, both of these platforms easily outpace the
performance of the software implementation. The FPGA architecture provides aignif&ins
over the CPU implementations a8X and8.0X for 4 and 12 orientationsvhile exibiting only
modest gaind 1.1X and 12X respectively over the GPU implementation. From these results, it
appears that the GPU is almost as good as the FPGA.

However, execution time is not the only metric consideFégure4-7 adds the impact of
power consumption to the equation. This figure shows the relative performances of these
platforms in terms of frames per second per Watt (fpsiMils metric incorporates power by
estimating the power required to achieve a particular level of performance. Due to the high power
consumption of the GPU, the FPGA implementation easily pulls away in terms of power
efficiency. The FPGA outperforms thd>O for 4 orientations in this metric by a factor of 10.9X
and by 13.8X for 12 orientations. Similarly, the FPGA beats the GPU by factors of 2.3X and 2.6X

for 4 and 12 orientations, respectively,
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Furthermore, the impact of this architectur

accuray must be considere&valuations of the classification accuracy of the accelerated HMAX
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were performed using both the Caltech8@ and PASCAL VOC200741] datasetskor the

evaluation of the Caltech dataset, the number of scales was fixed to 12. However, the evaluation
was performed using both 4 and 12 orientations. The number of training images for each category
was varied from 5 to 40, whileemumber of test images per category remained constant and
nonoverlapping withthe trainingsetin each caselhe results of these evaluations are shown in
Figure4-8[37]. Using 40 training images, HMAX is capable of achieving accuracies of 23% and
25% for 4 and 12 orientations. These results fall within 15% of the best reported accuracies at

[40Q] on this highly difficut and varied dataset.
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Figure4-8. HMAX Classification Accuracy for Caltech256 dataset

The PASCAL VOC2007 dataset was evaluated usifgyckcross validation. Due to the
large size of the dataset, consgigtof over 15000 object instances in 5@&Hlningimagesan
independent mukclass voting scheme was used utilizing 10 independently trained classifiers.
The training data for each object class was independently divided intanderlapping

trainingsets. After training, the evaluation was performed on the test data, by allowing each
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classifier to vote for its most likely candidates, and synthesizing a probability for each class given
the voting scheme. These classifications and probabilitiesthemaised to generate the average

precision data shown fRigure4-9[37].
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Figure4-9. HMAX Classification Accuracy for PACAL VOC2007 dataset

The PASCAL dataset was again used to evaluate the impact ofiixethardware
precision on the relative classification accuracy. The HMAX algorithm was used to generate
features in both the floatiAgoint software implementatiomd the fixedpoint FPGA
implementation. Independent classifiers were trained on both of these datasets and evaluated
using features similarly extracted from the test datasets. The truncation of fipaitglata to
fixed-point precision was found to cseiless than 2% degradation in the accuracy of

classification.



46
4.2 AIM Accelerator

While, the details of the AIM algorithm are describe€imapter 2the core computations
of the algorithm can be broken down into thpbass. The first of these involves the
convolution of the input image with the defined basis filter functibns . mult-channel imagery,
each channel must be convolved with the basis functions separately. The second stage of the
algorithm is the computatioof the probability density estimation. This estimation is performed
by first binning the pixel responses across basis functions into a histogram. These histogram
frequency counts are then used to convert each pixel response irtiikalibgod throughthe
use of a logarithm operation. Finally, the ddglihoods are aggregated on a-pexel basis to
generate the information map. Additional processing may be used to translate this information
map into a binarized version indicating which pixels aresmtered sufficiently salienthis
algorithm flow and breakdown is given kigure4-10.

The AIM accelerator was developed initially on a Xilinx Virtex6 SX475 series FPGA.
Several customized architectural modules were develigpelis accelerator: a convolver for the
basis filter operations, a histogramming module, a logarithmic computation module and an output
aggregator. The accelerator module returns the information map, while the threshold computation
and pixel masking iswrrently left to the host system, if desired. The fully customized accelerator
incorporates multiple pipelines, each consisting of one instance of each module, except for the
aggregator which is only instantiated a single time. The overall resource Gishg&/otex6

FPGA for a 4pipeline implementation of this customized accelerator is shoWabte4-3.
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Figure4-10. Algorithmic data flow through AIM algorithm, including sttucal breakdown

Table4-3. AIM Accelerator Resource Utilization on Virtex6 FPGA

Resources Resources Percentage
Required Available Utilization
Logic Elements 43,099 297,600 6%
Flip-Flops 37,105 595200 14%
36kb Block RAMs 139 1064 13%
Digital Signal
Processors (DSPs 446 2016 22%

The performance of the custom AIM accelerator was evaluated against a number of
computing platforms. The results, showrFigure4-11, demonstrate thahis accelerator easily
outpaces the performance of even other hardivased accelerators implemented without
algorithmspecific customizatiornThe fully customizedAIM accelerator demonstrates X €

10X speedup when compared to feustom microaccetatorarchitecturesit the same



48

frequency, an@n8X to 19X improvement over a higherformance multicore Xeon processor.
When compared to the lepower ARM core commonly found on embedded platforms, the

performance improvement is even more dranda880X 1o 630X.
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Figure4-11. Acceleration of fully custom AIM accelerator vs other platforms

In further development of this eelerator, it wasetargeted for acceleration on a Virtex7
VX690T FPGA.The FPGA wasannected via PCI Express in a host system equippecdawith
3.2GHz Intel Xeon CPWwunning Ubuntu Linux.This accelerator was evaluateccomparison
with an optimized software implementation on the same system. In addition to the performance
metrics, an evaation of the power consumption of this system was performed askell.
power measurement, only the active runtime power was considered. This was calculated by
subtracting the power consumed during runtime from the power measured while thevegstem
idle. Theaccelerated implementation was found to run 16.7X faster than the software, while
consuming 31.5% less pow&alient regions identified by the AIM accelerator are shown in

Figure4-12.
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Figure4-12. Examples of salient regions identified by AIM

The images on the left are the input frames, while the images on the right at tHadidkted
salient regions. The top images are from the Stanéwerdatasef42], the bottom images come
from data supplied by ONR for the SAH36] program.
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Chapter 5

Case Study: Hierarchically Refined Object Recognition

HMAX+ ESVM Pipeline

Object recognition in real world systems must strive to meet two criteria: high
performance and high accuracy. Given the enormous number of potential objects to be found in
the world, this is no small task. Algorithms such as Exemplar SVM asbleapf achieving
remarkably high accuracy in the face of a large number of candidate classes due the nature of the
computation performed. ESVM works to identify not only an object class, but the closest
matching learned exemplar of that class. This amyucomes at the cost of evaluating a series of
classifiers whose number grows not necessarily with the number of classes, but with the number
of exemplars per class$igure5-1[43] show this growth in the detection time of the ESVM as
the number of exemplars per class increases.

By contrast, object recognition based on an algorithm such as HMAX is effectively
independent of the number of classes, as the feature extrdationates the runtime relative to
the actual classification. Shownhigure5-2 [43], HMAX features perform very well for a
limited number of classes. With less than 1@didate classes, the accuracy of object recognition
can easily reach 90% or higher with just HMAX features. However, the discriminative power of
these features quickly diminishes as the number of candidate classes increases. Even stabilizing

around 50% amuracy for a large number of classes leaves much to be desired.
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The ideal system would combine the high accuracy and discriminative power of ESVM
with the relative speed and performanc&IbfAX. Aiming towards just such a system, this
chapter describes the results of doing exacthdtltambining these algorithms in a hierarchical
fashion to improve ESVM performance and accuracy by using HMAX as a filter to dramatically
reduce the number exemplars that must be evaluated.

The evaluation of this hierarchical recognition system was performed in the context of a
grocery store environment. The training and testing datasets were independently generated by
sampling from items that would be foummdtypical grocery store aisle. Eighty seven products
were identified, chacterized under eight general categories of packaging sHagieg. this list,
the set of training images was synthesized by using the Microsoft Bing Search API to download a
largenumber of images corresponding to each of these categories. The images for each category
were manually pruned to ensure that no cpyssluct contamination was present in the dataset.
This pruning alsguaranted that all images in the training set acdatarepresented the type or
instance of the product that would be seen on gyatere shelves. Examples of images pruned
from this dataset wouldeimages that contained two brands of soda in the same image or images
that contained a brand logo witharty packagingifter the required pruning was complete, the
training dataset consisted of just under 7800 images spanning the 87 categories. These images
were used to independently train an HMAAsed classifier and Exemplar SVM system.

In the context opersonal assistance in a grocery store environment, the object regions of
interest may be detected by a number of algorithms such as sdbgt®44], objectnes$45], or
symmetry[46]. Figure5-3 shows an example of an intelligent visual pipeline camid for such

a recognition system.
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Figure5-3. Intelligent visual pipelineonfiguredfor HMAX+ESVM classification

Once arROl is selected, it is first dispatched to the HMAX classifier for processing.
this hierarchical system, the results of the HMAX classification, rather than being taken as an
absolute winnetake-all classification, are passed on to an object filtering function. This prunes
the number of candidate classes to a limited subsbediMAX results. The classes included in
this filtered set of classes are the most likely classes as returned by HMAX, takeK atatses
which have the highest classifier scores, in decreasing order of score (and estimated probability).
By narrowingthe set of candidate classes down to a few, the number of exemplars that must be
processed through the ESVM is not fixed and greatly reduced by the number of classes returned

by the filter.


















































































































